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Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 17 satellite workshops (AVIS, BYTECODE, CEES, CLASE, CMSB,
COCV, FAC, FESCA, FINCO, GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP,
TGC, UITP), seven invited lectures (not including those that were specific to
the satellite events), and several tutorials. We received over 550 submissions to
the five conferences this year, giving acceptance rates below 30% for each one.
Congratulations to all the authors who made it to the final program! I hope that
most of the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of
Edinburgh, in cooperation with
– European Association for Theoretical Computer Science (EATCS);
– European Association for Programming Languages and Systems (EAPLS);
– European Association of Software Science and Technology (EASST).

The organizing team comprised:
– Chair: Don Sannella
– Publicity: David Aspinall
– Satellite Events: Massimo Felici
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– Secretariat: Dyane Goodchild
– Local Arrangements: Monika-Jeannette Lekuse
– Tutorials: Alberto Momigliano
– Finances: Ian Stark
– Website: Jennifer Tenzer, Daniel Winterstein
– Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering

Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and
Reykjav k), Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn
Duesterwald (IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro
(Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri (Bologna),
Reiko Heckel (Paderborn), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Kim Larsen (Aalborg), Tiziana Margaria (Dortmund), Ugo Mon-
tanari (Pisa), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh),
Vladimiro Sassone (Sussex), Peter Sestoft (Copenhagen), Michel
Wermelinger (Lisbon), Igor Walukiewicz (Bordeaux), Andreas Zeller
(Saarbrücken), Lenore Zuck (Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the program committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizer of ETAPS 2005, Don Sannella. He
has been instrumental in the development of ETAPS since its beginning; it is
quite beyond the limits of what might be expected that, in addition to all the
work he has done as the original ETAPS Steering Committee Chairman and
current ETAPS Treasurer, he has been prepared to take on the task of orga-
nizing this instance of ETAPS. It gives me particular pleasure to thank him for
organizing ETAPS in this wonderful city of Edinburgh in this my first year as
ETAPS Steering Committee Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair

ı́



Preface

This volume contains the 29 papers presented at ESOP 2005, the 14th European
Symposium on Programming, which took place in Edinburgh, UK, April 6–
8, 2005. The ESOP series began in 1986 with the goal of bridging the gap
between theory and practice, and the conferences continue to be devoted to
explaining fundamental issues in the specification, analysis, and implementation
of programming languages and systems.

The volume begins with a summary of an invited contribution by Andrew
Myers titled “Programming with Explicit Security Policies,” and continues with
the 28 papers selected by the Program Committee from 114 submissions. Each
submission was reviewed by at least three referees, and papers were selected
during a 10-day electronic discussion phase.

I would like to sincerely thank the members of the Program Committee for
their thorough reviews and dedicated involvement in the PC discussion. I would
also like to thank the subreferees, for their diligent work. Martin Karusseit and
Noam Rinetzky helped me with MetaFrame, used as the conference management
software. Finally, I would like to thank Anat Lotan-Schwartz for helping me to
collect the final papers and prepare these proceedings.

January 2005 Mooly Sagiv
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Patrick Cousot École Normale Supérieure, France
Oege de Moor Oxford University, UK
Manuel Fähndrich Microsoft Research, USA
John Field IBM, USA
Maurizio Gabbrielli Università di Bologna, Italy
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Programming with Explicit Security Policies

Andrew C. Myers

Cornell University
andru@cs.cornell.edu

Abstract. Are computing systems trustworthy? To answer this, we need to know
three things: what the systems are supposed to do, what they are not supposed to
do, and what they actually do. All three are problematic. There is no expressive,
practical way to specify what systems must do and must not do. And if we had a
specification, it would likely be infeasible to show that existing computing systems
satisfy it. The alternative is to design it in from the beginning: accompany pro-
grams with explicit, machine-checked security policies, written by programmers
as part of program development. Trustworthy systems must safeguard the end-
to-end confidentiality, integrity, and availability of information they manipulate.
We currently lack both sufficiently expressive specifications for these information
security properties, and sufficiently accurate methods for checking them. Fortu-
nately there has been progress on both fronts. First, information security policies
can be made more expressive than simple noninterference or access control poli-
cies, by adding notions of ownership, declassification, robustness, and erasure.
Second, program analysis and transformation can be used to provide strong, au-
tomated security assurance, yielding a kind of security by construction. This is
an overview of programming with explicit information security policies with an
outline of some future challenges.

1 The Need for Explicit Policies

Complex computing systems now automate and integrate a constantly widening sphere
of human activities. It is crucial for these systems to be trustworthy: both secure and
reliable in the face of failures and malicious attacks. Yet current standard practices in
software development offer weak assurance of both security and reliability. To be sure,
there has been progress on automatic enforcement of simple safety properties, notably
type safety. And this is valuable for protecting systems from code injection attacks
such as buffer overruns. But many, perhaps most serious security risks do not rely on
violating type safety. Often the exposed interface of a computing system can be used
in ways unexpected by the designers. Insiders may be able to misuse the system using
their privileges. Users can sometimes learn sensitive information when they should not
be able to. These serious vulnerabilities are difficult to identify, analyze, and prevent.

Unfortunately, current practices for software development and verification do not
seem to be on a trajectory that leads to trustworthy computing systems. Incremental
progress will not lead to this goal; a different approach is needed. We have been exploring
a language-based approach to building secure, trustworthy systems, in which programs
are annotated with explicit, machine-checked information security policies relating to

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 1–4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 A.C. Myers

properties such as the confidentiality and integrity of information. These properties are
both crucial to security and difficult to enforce. It is possible to write relatively simple
information flow policies that usefully capture these aspects of security. These explicit
policy annotations then support automatic enforcement through program analysis and
transformation.

2 Limitations of Correctness

Of course, the idea of automatic verification has always been appealing—and somewhat
elusive. The classic approach of verifying that programs satisfy specifications can be a
powerful tool for producing reliable, correct software. However, as a way to show that
programs are secure, it has some weaknesses. First, there is the well-known problem that
the annotation burden is high. A second, less appreciated problem is that classic speci-
fications with preconditions and postconditions are not enough to understand whether a
program is secure. Correctness assertions abstract program behavior; if the abstraction
leaves out security-relevant information, the actual program may contain security vio-
lations (especially, of confidentiality) invisible at the level of the abstraction. Thus, it’s
also important to understand not only what programs do but also what they don’t do.
Even if the program has no observable effect beyond what its specification describes,
the specification itself may allow the confidential information to be released. A third
problem is that correctness assertions don’t address the possible presence of malicious
users or code, which is particularly problematic for distributed systems.

3 End-to-End Information Security

If classic specification techniques are too heavyweight and yet not expressive enough,
what are the alternatives? One possibility is information flow policies, which constrain
how information moves through the system. For example, a policy that says some data
is confidential means that the system may not let that data flow into locations where
it might be viewed insecurely. This kind of policy implicitly controls the use of the
data without having to name all the possible destinations, so it can be lightweight yet
compatible with abstraction. Furthermore, it applies to the system as a whole, unlike
access control policies, which mediate access to particular locations but do not control
how information propagates. One can think of information flow policies as an application
of the end-to-end principle to the problem of specifying computer security.

Information flow policies can express confidentiality and integrity properties of sys-
tems: confidentiality is about controlling where information flows to; integrity is about
controlling where information flows from. Integrity is also about whether information
is computed correctly, but even just an analysis of integrity as information flow is useful
for ensuring that untrustworthy information is not used to update trusted information.

Fundamentally, information flow is about dependency [ABHR99], which makes
sense because security cannot be understood without understanding how components
depend on one another. The approach to enforcing information flow that has received
the most attention is to analyze dependency at compile time using a security type sys-
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tem [SM03]. The Jif programming language [Mye99], based on Java, is an example of
a language with a type system for information security.

The other appealing aspect of information flow policies is that they can be connected
to an underlying semantic security condition, noninterference. Noninterference says
roughly that the low-security behavior of a system does not change when high-security
inputs are changed. This condition (which has many variants) can be expressed in the
context of a programming language operational semantics [VSI96], making possible a
proof that a security type system constrains the behavior of the system.

4 Whole-System Security and Mutual Distrust

Many of the computing systems for which security is especially important are distributed
systems serving many principals, typically distributed at least partly because of security
concerns. For example, consider a web shopping service.At the least, it serves customers,
who do not entirely trust the service, and the companies selling products, who do not
trust the customers or each other. For this reason, the computational resources in use
when a customer is shopping are located variously on the customer’s computer, on the
web service provider, and on the seller’s computers. It is important to recognize that
these principals have their own individual security requirements; the system as a whole
must satisfy those requirements in order for them to participate.

To enforce information security for such a system, it is necessary to know the require-
ments of each of the principals. The decentralized label model [ML00] is an information
flow policy language that introduces a notion of information flow policies owned by
principals. For example, in the context of confidentiality, a policy p1 : p2 means that
principal p1 owns the policy and trusts principal p2 to read the corresponding infor-
mation. More generally, p1 trusts p2 to enforce the relevant security property on its
behalf. This structure makes it possible to express a set of policies on behalf of multiple
principals while keeping track of who owns (and can relax) each policy.

For example, suppose we are implementing the game of Battleship with two players,
A and B. Player A wants to be able to read his own board but doesn’t want B to read
it, so the confidentiality label is {A : A}. For integrity, both principals want to make
sure that the board is updated in accordance with the rules of the game, so the integrity
label has two owned policies: {A : A ∧B, B : A ∧B}, where A ∧B is a conjunctive
principal representing the fact that both A and B must trust the updates to A’s board.

5 Security Through Transformation

Secure distributed systems achieve security through a variety of mechanisms, including
partitioning code and data (as in the web shopping example), replication, encryption,
digital signatures, access control, and capabilities. Analyzing the security of a complex
system built in this fashion is currently infeasible.

Recently, we have proposed the use of automatic program transformation as a way to
solve this problem [ZZNM02]. Using the security policies in a non-distributed program,
the Jif/split compiler automatically partitions its code and data into a distributed system
that runs securely on a collection of host machines. The hosts may be trusted to varying
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degrees by the participating principals; a partitioning is secure if policies of each principal
can be violated only by hosts it trusts. The transformation employs not only partitioning,
but also all of the distributed security mechanisms above to generate distributed code
for Jif programs. For example, given the labels above, Jif/split can split the code of a
Battleship program into a secure distributed system.

6 Conclusions and Future Challenges

The ability to provably enforce end-to-end security policies with lightweight, intuitive
annotations is appealing. Using policies to guide automatic transformation into a dis-
tributed system is even more powerful, giving a form of security by construction. How-
ever, research remains to be done before this approach can be put into widespread use.

Noninterference properties are too restrictive to describe the security of real-world
applications. Richer notions of information security are needed: quantitative information
flow, policies for limited information release, dynamic security policies [ZM04], and
downgrading policies [CM04]. End-to-end analyses are also needed for other security
properties, such as availability.

Checking information flow policies with a trusted compiler increases the size of the
trusted computed base; techniques for certifying compilation would help.

The power of the secure program transformation technique could be extended by
employing more of the tools that researchers on secure protocols have developed; secret
sharing and secure function computation are obvious examples.

Strong information security requires analysis of how programs use information.
Language techniques are powerful and necessary tools for solving this problem.
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Trace Partitioning in Abstract Interpretation
Based Static Analyzers

Laurent Mauborgne and Xavier Rival
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{Laurent.Mauborgne, Xavier.Rival}@ens.fr

Abstract. When designing a tractable static analysis, one usually needs
to approximate the trace semantics. This paper proposes a systematic
way of regaining some knowledge about the traces by performing the
abstraction over a partition of the set of traces instead of the set it-
self. This systematic refinement is not only theoretical but tractable: we
give automatic procedures to build pertinent partitions of the traces and
show the efficiency on an implementation integrated in the Astrée static
analyzer, a tool capable of dealing with industrial-size software.

1 Introduction

Usually, concrete program executions can be described with traces; yet, most
static analyses abstract them and focus on proving properties of the set of reach-
able states. For instance, checking the absence of runtime errors in C programs
can be done by computing an over-approximation of the reachable states of the
program and then checking that none of these states is erroneous. When com-
puting a set of reachable states, any information about the execution order and
the concrete flow paths is lost.

However, this reachable states abstraction might lead to too harsh an approx-
imation of the program behavior, resulting in a failure of the analyzer to prove
the desired property. For instance, let us consider the following program:

if(x < 0){ sgn = −1; }
else{ sgn = 1; }

Clearly sgn is either equal to 1 or −1 at the end of this piece of code; in particular
sgn cannot be equal to 0. As a consequence, dividing by sgn is safe. However,
a simple interval analysis [7] would not discover it, since the lub (least upper
bound) of the intervals [−1,−1] and [1, 1] is the interval [−1, 1] and 0 ∈ [−1, 1].
A simple fix would be to use a more expressive abstract domain. For instance,
the disjunctive completion [8] of the interval domain would allow the property
to be proved: an abstract value would be a finite union of intervals; hence,
the analysis would report x to be in [−1,−1] ∪ [1, 1] at the end of the above
program. Yet, the cost of disjunctive completion is prohibitive. Other domains

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 5–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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could be considered as an alternative to disjunctive completion; yet, they may
also be costly in practice and their design may be involved. For instance, common
relational domains like octagons [16] or polyhedra [11] would not help here, since
they describe convex sets of values, so the abstract union operator is an imprecise
over-approximation of the concrete union. A reduced product of the domain of
intervals with a congruence domain [13] succeeds in proving the property, since
−1 and 1 are both in {1 + 2 × k | k ∈ N}. However, a more intuitive way to
solve the difficulty would be to relate the value of sgn to the way it is computed.
Indeed, if the true branch of the conditional was executed, then sgn = −1;
otherwise, sgn = 1. This amounts to keeping some disjunctions based on control
criteria. Each element of the disjunction is related to some property about the
history of concrete computations, such as “which branch of the conditional was
taken”. This approach was first suggested by [17]; yet, it was presented in a
rather limited framework and no implementation result was provided. The same
idea was already present in the context of data-flow analysis in [14] where the
history of computation is traced using an automaton chosen before the analysis.

Choosing of the relevant partitioning (which explicit disjunctions to keep
during the static analysis) is a rather difficult and crucial point. In practice,
it can be necessary to make this choice at analysis time. Another possibility
presented in [1] is to use profiling to determine the partitions, but this approach
is relevant in optimization problems only.

The contribution of the paper is both theoretical and practical:

– We introduce a theoretical framework for trace partitioning, that can be
instantiated in a broad series of cases. More partitioning configurations are
supported than in [17] and the framework also supports dynamic partitioning
(choice of the partitions during the abstract computation);

– We provide detailed practical information about the use of the trace parti-
tioning domain. First, we describe the implementation of the domain; second,
we review some strategies for partition creation during the analysis.

All the results presented in the paper are supported by the experience of the
design, implementation and practical use of the Astrée static analyzer [2, 15].
This analyzer aims at certifying the absence of run-time errors (and user-defined
non-desirable behaviors) in very large synchronous embedded applications such
as avionics software. Trace partitioning turned out to be a very important tool
to reach that goal; yet, this technique is not specific to the families of software
addressed here and can be applied to almost any kind of software.

In Sect. 2, we set up a general theoretical framework for trace partitioning.
The main choices for the implementation of the partitioning domain are evoked
in Sect. 3; we discuss strategies for partitioning together with some practical
examples in Sect. 4. Finally, we conclude in Sect. 5.

2 Theoretical Framework

This section supposes basic knowledge of the abstract interpretation framework
[5]. For an introduction, the reader is referred to [9].
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2.1 Definitions

Programs: We define a program P as a transition system (S,→,Sι) where S
is the set of states of the program; → is the transition relation describing the
possible execution elementary steps and Sι denotes the set of initial states.

Traces: We write S� for the set of all finite non-empty sequences of states. If σ
is a finite sequence of states, σi will denote the (i+1)th state of the sequence, σ0
the first state and σ� the last state. We define ς (σ) as the set of all the states
in σ. We extend this notation to sets of sequences: ς (Σ) def=

⋃
σ∈Σ ς (σ).

If τ is a prefix of σ, we write τ � σ. A trace of the program P is defined
as an element of �P � def= {σ ∈ S� | σ0 ∈ Sι ∧ ∀i, σi → σi+1 }. Note that the set
�P � is prefix-closed. An execution of the program is a possibly infinite sequence
starting from an initial state and such that there is no possible transition from
the final state, if any. Executions are represented by the set of their prefixes,
thus avoiding the need to deal with infinite sequences.

2.2 Reachability Analysis

In order to prove safety properties about programs, one needs to approximate
the set of reachable states of the programs. This is usually done in one step by the
design of an abstract domain D� representing sets of states and a concretization
function that maps a representation of a set of states to the set of all traces
containing these states only. In order to be able to refine that abstraction, we
decompose it in two steps. The first step is the reachability abstraction, the
second one the set of states abstraction.

We start from the most precise description of the behaviors of program P ,
given by the concrete semantics �P � of P , i.e the set of finite traces of P , so the
concrete domain is defined as P�(S�) def= {Σ ⊆ S� |Σ is prefix-closed}.

Reachability Abstraction: The set of reachable states of Σ can be defined by
the abstraction αR(Σ) def= {σ� | σ ∈ Σ }. Considering the concretization γR(T ) def=

{σ ∈ S� | ∀i, σi ∈ T }, we get a Galois connection P�(S�)
αR

�� P(S)
γR�� . This Ga-

lois connection will allow us to describe the relative precision of the refinements
defined in the sequel of this section.

Set of States Abstraction: In the rest of the section, we will assume an
abstract domain D� representing sets of states and a concretization function1

γ : D� → P(S). Basically, γ(I) represents the biggest set of states safely ap-
proximated by the (local) abstract invariant I. The goal of this abstraction is to
compute an approximation of the set of states effectively.

2.3 Trace Discrimination

Definition 1 (Covering). A function δ : E→P(F ) is said to be a covering of
F if and only if

⋃
x∈E(δ(x)) = F .

1 Abstract domains don’t necessarily come with an abstraction function.
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Definition 2 (Partition). A function δ : E → P(F ) is said to be a partition
of F if and only if δ is a covering of F and ∀x, y ∈ E, x �= y ⇒ δ(x) ∩ δ(y) = ∅.

Trace Discriminating Reachability Domain: Using a well-chosen function
δ of E → P(S�), one can keep more information about the traces. We define
the trace discriminating reachability domain Dδ

R as the set of functions from
E to P(S), ordered pointwise. The trace discriminating reachability abstraction
is αδ

R : P�(S�) →Dδ
R, αδ

R(Σ)(x) def= {σ� | σ ∈ Σ ∩ δ(x)}. The concretization is
then γδ

R(f) = {σ | ∀τ � σ,∀x, τ ∈ δ(x) ⇒ τ� ∈ f(x)} ((αδ
R, γ

δ
R) form a Galois

connection).

Comparing Trace Discriminating and Standard Reachability: Follow-
ing [8], we compare the abstractions using the associated upper closure operators
(the closure operator associated to an abstraction α, γ is γ◦α). The simple reach-
ability upper closure maps any set of tracesΣ to the set {σ | ∀i,∃τ ∈ Σ, σi = τ� }
of traces composed of states in Σ. Thus, in order to give a better approximation,
the new upper closure must not map any Σ to a set containing a state which
was not in Σ. If δ is not a covering, then there is a sequence which is not in⋃

x∈E δ(x), and by definition of γδ
R, that sequence can be in any γδ

R(f), so it is
very likely that Dδ

R is not as precise as the simple reachability domain. On the
other hand, if

⋃
x∈E δ(x) = S�, γδ

R ◦ αδ
R is always at least as precise as γR ◦ αR.

A function δ : E → P(S�) can distinguish a set of traces Σ1 from a set Σ2
if there exists x in E such that Σ1 ⊆ δ(x) and Σ2 ∩ δ(x) = ∅. The following
theorem states that, if the covering δ can distinguish at least two executions
with a state in common, then the abstraction based on δ is more precise than
standard reachability. Moreover, the abstraction based on δ is always at least as
precise as the standard reachability abstraction.

Theorem 1. Let δ be a covering of S�. Then, (Dδ
R, γ

δ
R) is a more precise ab-

straction of P�(S�) than (S, γR). Moreover, if there are two elements of P�(S�)
which share a state and are distinguished by δ, then the abstraction (Dδ

R, γ
δ
R) of

P�(S�) is strictly more precise than (S, γR).

Proof. By definition, γδ
R ◦αδ

R(Σ) is the set of traces σ such that ∀τ � σ,∀x, (τ ∈
δ(x) ⇒ ∃υ ∈ Σ∩δ(x), τ� = υ�). ∃υ ∈ Σ∩δ(x), τ� = υ� implies ∃υ ∈ Σ, σi = υ�.
If δ is a covering, then for all τ , there is at least one x such that τ ∈ δ(x). So
γδ

R ◦ αδ
R ⊆ γR ◦ αR, meaning that the abstraction (Dδ

R, γ
δ
R) of P�(S�) is more

precise than (S, γR).
To prove that we have a strictly more precise abstraction, we exhibit a set of

traces Σ such that γδ
R ◦αδ

R(Σ) is strictly smaller than γR ◦αR(Σ). Following the
hypothesis, let Σ1, Σ2, s and x be such that s is a state in ς (Σ1) ∩ ς (Σ2), and
Σ1 ⊆ δ(x) and Σ2 ∩δ(x) = ∅. Let σ be a sequence of Σ1 such that σ� = s (this is
always possible because Σ1 is an element of P�(S�), and as such prefix-closed).
Let Σ = (ς (δ(x)) − {s})� ∪ Σ2. Then ς (σ) ⊆ ς (Σ), so σ is in γR ◦ αR(Σ). But
whatever υ ∈ Σ ∩ δ(x), υ does not contain s, so it cannot end with s, hence
σ �∈ γδ

R ◦ αδ
R(Σ). ��
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Corollary 1. If δ is a non trivial partition of S� (no δ(x) is S�), then the
abstraction (Dδ

R, γ
δ
R) of P�(S�) is strictly more precise than (S, γR).

Proof. Suppose that for an x, ∀s ∈ ς (δ(x)), ∀y �= x, s �∈ ς (δ(y)). Then, because
δ is a covering, all sequences containing a state of δ(x) is in δ(x), which means
δ(x) = (ς (δ(x)))�. Since δ is a non trivial partition of S� not all δ(x) can be of
this form. So there is an x and a y such that δ(x) distinguishes between δ(x)
and δ(y) having a state in common. ��

In the sequel, we will consider partitions only, so the results of Theorem 1 apply.

2.4 Some Trace Partitioning Abstractions

In this paragraph, we instantiate the framework to various kinds of partitions. In
this instantiation we suppose a state can be decomposed into a control state in L
and a memory state in M. Thus S = L × M. We also assume that the abstract
domain D� forgets about the control state, just keeping an approximation of the
memory states.

We illustrate some partitions with a simple abstract program containing a
conditional on Fig 1.

Final Control State Partition: Let δL : L → P�(S�) be the partition of
S� based on the final control state: δL(l) def= {σ ∈ S� | ∃ρ, σ� = (l, ρ)}. This
partition is very common and usually done silently when designing the abstract
semantics. It leads to the abstraction (D�

l , γ) of D, where D�
l

def= L → D� and
γ(I) def= {σ ∈ P�(S�) | ∀i, σi = (li, ρi) ∧ ρi ∈ γ(I(li))}.

Control Flow Based Partition: In [17], Tzolovski and Handjieva introduced
trace-based partitioning using control flow. To simplify, they proposed to extend
the control states with an history of the control flow in the form of lists of tags
ti or fi (meaning that the test number i was true or false). Then, they perform
a final control state partition on this new set of control states. In order to keep
the set of control states finite, they associate with each while loop an integer
limiting the number of ti to be considered.

Formally, let B ⊆ L be the set of control points introducing a branching (e.g.
conditionals, while loops...). We define C

def= {(b, l) ∈ B × L| ∃ρ, ρ′ ∈ M, (b, ρ) →
(l, ρ′)} as the set of possible branch choices in the program. Note that in a branch
choice (b, l), l is necessarily directly accessible from b. In order to define the trace
partition used in [17], we define the control flow abstraction of a trace as the
sequence cf (σ) ⊆ C

� made of the maximal sequence of branch choices taken
in the trace. Then, the control flow based partition is defined as the partition
δcf : L × C

� →P(S�), δcf(l, β) def= {σ ∈ δL(l) | cf (σ) = β }.
In order to keep the partition finite, [17] limits the number of partitions per

branching control points. They use a parameter κ : B → N in the abstraction
function. The κ-limiting abstraction is defined as λκ(β) which is the subsequence
of β obtained by deleting the branching choices βi = (b, l) such that if b is the
conditional of a loop, the loop have been taken more than κ(b) consecutive times
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l0

��
l1

���� ��
��

l2

��
��

l3

����
l4

��
l5

〈l0,ε〉
��

〈l1,ε〉
������ ������

〈l2,(l1,l2)〉
��

〈l3,(l1,l3)〉
��

〈l4,(l1,l2)〉
��

〈l4,(l1,l3)〉
��

〈l5,(l1,l2)〉 〈l5,(l1,l3)〉

〈l0,ε〉
��

〈l1,ε〉
������ ������

〈l2,(l1,l2)〉
��

〈l3,(l1,l3)〉
��

〈l4,(l1,l2)〉
������

〈l4,(l1,l3)〉
������

〈l5,ε〉

a. Control State Partition b. Control Flow Partition c. Merging Control Flow

Partition

Fig. 1. Some partitions for the program l0 : s0; l1 : if(c){ l2 : s1; } else { l3 : s2; } l4 :
s3; l5 : s4

(if b is a simple branching, it is deleted if κ(b) is 0). Then, if we use λκ◦cf instead
of cf , the effect will be to merge partitions distinguishing the simple branchings
for which κ is 0 and the iterations of the loops after some point. So the partition
finally used is δcf : L × λκ(C�)→P(S�).

2.5 Designing Pertinent Partitions

The control flow based partition can give very precise results but is also very
expensive. Even if the parameter κ is very restrictive (keeping the useful parti-
tions only) the setting will keep the partitions after they are needed. This is very
costly because each partitioning point multiplies the cost by 2 at least. Using
the more general setting we describe, it is possible to define more pertinent and
less expensive partitions. We describe here two examples.

Merging Control Flow: In order to reduce the cost it is possible to include
in the same partition, not only the traces before a branching point, but also the
traces exceeding a certain following control point. We do that if we guess that
the partition based on the branching is not useful after this point. In conjunction
with the final state control partition, it means that at each control point, we keep
only some presumably useful partitions. Formally, we introduce a new parameter,
M ⊆ L and modify cf such that we forget everything that is before a control
point in M. To be more precise, it is even possible to use a function M→B and
forget only the branching points corresponding to the merging point. On the
example of Fig. 1, if M = {l5}, we get the partition in Fig. 1-c.

Value Based Trace Partition: The most adapted information for the defini-
tion of the partitions might not lie in the control flow. For instance, to regain
some complex relationship between a variable with a few possible values and
the other variables, we can add a partition according to the values of the vari-
able at a given control point. The advantage of this approach is the very low
implementation cost compared to the design of a new relational domain.
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2.6 The Trace Partitioning Abstract Domain

The partitions of S� are naturally ordered by the notion of being finer (they
even form a complete lattice).

Definition 3. A partition δ1 is finer than δ2 if ∀x,∃y, δ1(x) ⊆ δ2(y). We write
δ1 � δ2.

This lattice can be the basis of an abstract domain, using techniques inspired
of the cofibered domains of [18]. The interest of such a domain is twofold. First, it
allows dynamic partitioning by changing the partitions during the analysis (de-
pending on the properties of the program inferred during the analysis). Second,
it gives the possibility of using infinite partitions (or very big partitions) which
can be abstracted away during the computation of the invariants by widening.

Basis: We introduce the notion of equivalence between partitions: δ1 is equiv-
alent to δ2 if ∀x,∃y, δ1(x) = δ2(y). The basis of the trace partitioning abstract
domain is the set T of all partitions of S� up to equivalence.

Let δ1 and δ2 in T. If δ1 � δ2, then the abstraction Dδ1
R is more precise than

Dδ2
R if compared as closure operators, as seen in Sect. 2.3. The most precise

(finest) partition distinguishes all traces: it is {{σ} | σ ∈ S�}. Note that the
standard reachability domain corresponds to the supremum element of T: we
define δ0 : {0}→P�(S�) as δ0(0) def= S�. It is obvious that (S, αR) is isomorphic
to (Dδ0

R , α
δ0
R ).

Definition 4 (partitioning abstract domain). The trace partitioning ab-
stract domain, D

�, is defined as: D
� = {(δ, I) | δ ∈ T ∧ I ∈ Dδ

R}.

Application of Dynamic Partitioning: Choosing the partitions at analysis
time is crucial in many cases. For instance, the analyzer should be able to decide
whether or not to operate value based partitioning (Sect. 2.5) during the analy-
sis; indeed, in case the analysis gives no precise information about the range of
an integer variable i, partitioning the traces with the values of i would lead to
a dramatic analysis cost, possibly for no precision improvement. Other applica-
tions include the dynamic choice of the number of unrolled iterations in a loop
(Sect. 4.4) or the analysis of recursive functions [4].

Widening: Because the basis contains infinite ascending chains, we need a
widening to use the trace partitioning domain in practice. We can produce a
widening on D

� as soon as we have a widening on the basis ∇T and a widening
on the set of states abstract domain. This widening ∇ can be derived by a con-
struction similar to [18]. To compute (δ1, I1)∇(δ2, I2), we compute δ = δ1∇Tδ2
and then widen the best approximations of I1 and I2 in Dδ

R.

3 Implementation of the Domain

We now provide an overview of the data structures and algorithms which turned
out the most efficient for the implementation of the trace partitioning domain.
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3.1 Partition Creation and Merge

Partitions are created at partition begin control points. Such points are defined by
partitioning directives The choice of the points where partition directives should
be inserted will be discussed in Sect. 4.1. The main directives we implemented
are: If-partitioning, Loop-partitioning, Call-stack handling, Value-partitioning.
A partition end point merges some or all partitions. Partition begins and parti-
tion ends may or may not be well parenthesized as far as the soundness of the
analysis is concerned. We may imagine some partitioning strategies that would
merge older partitions first and result in more precise results. Astrée assumes
that partition begins and partition ends are well parenthesized for the sake of
efficiency only.

A token stands for an element of the partitions observed at a (set of) con-
trol point(s). As suggested in Sect. 2.5, we partition traces according to some
conditions like the choice of a branch in a conditional structure. We let such a
condition be denoted by a pre-token. Then, a token is defined as the series of
such conditions the execution flowed through, hence can be considered a stack of
tokens. We choose a stack here instead of a list or a set, since the last partition
opened should be closed first so the order of pre-tokens should be preserved.

Definition 5 (tokens). Pre-tokens (p ∈ P) and tokens (t ∈ T ) are defined by
the following grammar (which can be extended):

p ::= If true(l) | If false(l) | Val Var(v, k, l)
| While unroll(l, k) | While iter(l) | Fun Call(f, l)

t ::= ε
| t.p

where f is a function name, l a program point, v a program variable, k an integer.

For instance, the pre-token Fun Call(f, l) characterizes traces that called the
function f at point l and have not returned yet. The pre-token If true(l) char-
acterizes the traces that flowed through the true branch of the conditional at
point l and have not reached the corresponding merge point yet. The pre-token
Val Var(v, k, l) characterizes the traces that have reached l with the condition
v = k satisfied and have not reached the corresponding merge point yet. The
pre-token While unroll(l, k) characterizes the traces that spent exactly k itera-
tions in the loop at point l; the pre-token While iter(l) characterizes the traces
that spent more iterations in the loop than the number of unrolls for this loop.

A partition in the sense of Sect. 2.3 is defined as a tuple (l, t) where l is a
control state and t a token, since we partition the system with the control states.
In other words, we fix E = L × T .

3.2 Abstract Values

Let us consider a control point l and a set P of partitions observed at this
point, during the analysis. Then, the prefix of the tokens corresponding to the
partitions in P can be shared. By construction, the set of tokens corresponding
to the partition at a given program point is prefix-closed; hence, a local invariant
is represented by a tree; a path from the root to a leaf in such a tree corresponds
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to a uniquely defined token. We write D� for the underlying domain abstracting
sets of states. We assume that D� features a least element ⊥ and a lub �.

Definition 6 (abstract value). The abstract partitioning domain is defined
as D

� = L → D�
p, with the pointwise ordering, where elements of D�

p are defined
by induction as follows:

d ::= leaf[v] (v ∈ D�) | node[φ] (φ ∈ P → D�
p)

Roughly speaking, an element of D�
p encodes a function T → D�; so an element

of D
� corresponds to an element of L → (T → D�) (which is equivalent to

(L×T ) → D�). Hence, D
� is obtained from the trace discriminating reachability

domain (Sect. 2.3) by composition the abstraction γ : D� → P(S) pointwise. It
is a particular instance of a partitioning abstract domain as defined in Sect. 2.6.
Furthermore, we insure sharing of common parts of the underlying numerical
invariants across partitions, which reduces memory requirements.

Let us consider the program below (example of Sect 2.4 continued). We as-
sume that the conditional at point l1 is partitioned and that the corresponding
merge-point is l4. The shape of the partitions (hence, the local abstract invari-
ants) at various program points is displayed below (the • symbol stands for a
value in D�).

l0 : s0;
l1 : if(c){
l2 : s1

}else{
l3 : s2}
l4 : s3;
l5 : s4;

l0, l1, l5 l2

l3 l4

tt

t

ff

f

⊥

⊥

3.3 Iteration Scheme

The computation of an approximation of �P � requires some counterpart for the
transition relation →. For all l, l′ ∈ L, we let ϑl,l′ : D�

p → D�
p denote the abstract

transfer function corresponding to the edge (l, l′). It is sound if and only if
∀d ∈ D�

p, ∀ρ, ρ′ ∈ M, ρ ∈ γp(d) ∧ (l, ρ) → (l′, ρ′) ⇒ ρ′ ∈ γp(ϑl,l′(d)).
In case (ϑl,l′) is a family of sound abstract transfer functions, an abstract

semantic function can be derived, such that F ◦ γ ⊆ γ ◦F �; iterating it from the
least element and using standard widening techniques yield a sound approxima-
tion of �P �t, i.e. the definition of a sound abstract semantics �P �� ∈ D

�.

3.4 Abstract Transfer Functions

We let C denote the set of conditional expressions. We define the main abstract
transfer functions below:
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– Non partitioning-related transfer functions. we consider the case of
the operator guard : C×D�

p → D�
p, which is the abstract counterpart of the

concrete condition testing (guardn is the operator provided by D�):

guard(C, leaf[v]) = leaf[guardn(C, v)]
guard(D,node[φ]) = node[p �→ guard(D,φ(p))]

– Partition creation (create : (T → C) × D�
p): if C : T → C is a family of

conditions associated to all the created partitions, then create(C, d) creates
a new partition defined by the condition C(t) for each token t (Sect. 2.4). It
can be written with an auxiliary function to accumulate prefixes:

create(C, d) = create0(C, ε, d)
create0(C, t, leaf[v]) = node[p �→ leaf[guardn(C(t), v)]]

create0(C, t,node[φ]) = node[p �→ create0(C, t.p, φ(p))]

– Partition merge (merge : P(T ) × D�
p → D�

p): merge(X, d) yields a
new abstract value whose partitions are elements of the set X (where the
elements of X denote covering of the traces at the current program point
and form another prefix-closed set of tokens); basically merge merges some
existing partitions so as to restrict to a smaller set of partitions (Sect. 2.5).
In practice X is a subset of the set of prefixes of the tokens corresponding
to the partitions in d. It is defined in a similar way as merge:

merge(X, d) = merge0(X, ε, d)
merge0(X, t, leaf[v]) = leaf[v]

merge0(X, t,node[φ]) = leaf[�n{v | node[φ] ancestor of leaf[v]}] if t ∈ X
merge0(X, t,node[φ]) = node[p �→ merge0(X, t.p, φ(p))] otherwise

The program displayed in Sect. 3.2 exemplifies partition creation (between l1
and l2, l3) and partition merge (between l4 and l5).

4 Trace Partitioning in Practice

The theoretical framework and our implementation of the trace partitioning
abstract domain allow the introduction of a huge number of different partitions
to refine the analysis. One last issue is to find which partition will indeed help
the analysis while not impending too much on the complexity.

4.1 Manual Directives and Automatic Strategies

Our implementation allows the end-user to make such choices by specifying par-
titioning directives such as control flow or value partitions, or partition merges
in the program code. Some functions to be partitioned according to the control
flow (as in [17]) can also be specified (a merge is inserted at the return point).
Although this possibility proved very useful for static analysis experts to im-
prove the precision of an analysis, it is quite likely that most end-users would



Trace Partitioning in Abstract Interpretation Based Static Analyzers 15

l0 : int i = 0;
l1 : while(i < n && x > tx[i + 1])
l2 : i + +;
l3 : y = tc[i] × (x − tx[i]) + ty[i]
l4 : . . .

tc = {0; 0.5; 1; 0}
tx = {0; −1; 1; 3}
ty = {−1; −0.5; −1; 2}

tag1

tag2

tag3
y =




−1 if x ≤ −1
−0.5 + 0.5 × x if − 1 ≤ x ≤ 1
−1 + x if 1 ≤ x ≤ 3
2 if 3 ≤ x

Fig. 2. Linear interpolation

miss opportunities to partition or propose too costly partitions. That is why
we believe that static analyzer designers should also devise automatic strategies
adapted to the kind of programs they wish to analyze precisely.

Automatic strategies for trace partitioning stem from imprecisions observed
in the analysis of the target programs. When those imprecisions are understood,
they can be captured by semantic patterns. In the three following sections, we
present typical examples of imprecisions solved by a partitioning, together with
the strategy which provides the ad-hoc partitions.

4.2 Linear Interpolations

Example: Computing functions defined by linear interpolation is a rather com-
mon task in real-time embedded software (e.g. functions describing the command
reaction laws). We consider here the case of the piece of code below that inputs a
value in variable x and computes in variable y the result of a linear interpolation.
The loop checks in which range the variable x lies; then, the corresponding value
is computed accordingly.

Non Relational Analysis: The execution of this fragment of code is expected
to yield a value in the range [−1, 2] whatever the value of x. However, inferring
this most precise range is not feasible with a standard interval analysis, even if
we partition the traces depending on the values of i at point l3. Let us try with
−100 ≤ x ≤ 0: then, we get i ∈ {0, 1} at point l3. The range for y at point
l4 is [−0.5 + 0.5 × (−100.),−0.5] ≡ [−50.5,−0.5] (this range is obtained in the
case i = 1; the case i = 0 yields y = −1). Accumulating such huge imprecisions
during the analysis may cause the properties of interest (e.g. the absence of
runtime errors or the range of output values) not to be proved. We clearly see
that some relations between the value of x and the value of i are required here.

Analysis with Trace Partitioning: Our approach to this case is to partition
the traces according to the number of iterations in the loop. Indeed, if the loop
is not iterated, then i = 0 at point l3 and x < −1; if it is iterated exactly once,
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then i = 1 at point l3 and −1 ≤ x ≤ 1 and so forth. This approach yields
the most precise range. Let us resume the analysis, with the initial constraint
−100 ≤ x ≤ 0. The loop is iterated at most once and the partitions at point l3
give:

– no iteration: i = 0; x < −1; y = −1
– one iteration: i = 1; −1 ≤ x ≤ 0; −1 ≤ y ≤ −0.5.

Therefore, the resulting range is y ∈ [−1,−0.5], which is the optimal range (i.e.
exactly the range of all values that could be observed in concrete executions).

The partitions generated in this example correspond to l0, (l1, 0), (l2, 0),
(l1, 1), (l2, 1), (l3, 0), (l3, 1), l4; the partition associated to li is the set of traces
ending at li; the partition associated with (li, j) is the set of traces ending at
li after completing j iteration in the loop. This set of partitions is determined
during the analysis, with directives requesting partitioning at point l1 and merge
at point l4.

As we noted before, the trace partitioning turns out to be a reasonable alter-
native to the design of a more involved relational domain.

Strategy Implemented in Astrée: The imprecision observed when analyz-
ing the linear interpolation have two causes: first, the expression at point l3
computes the sum of two expressions which are not independent. Non-relational
domains are quite imprecise in such cases (e.g. if x ∈ [−1, 1], a dumb interval
analysis will find x − x ∈ [−2, 2]). The second cause is that, through the use
of arrays, the expression makes an implicit disjunction. Most efficient relational
domains are imprecise on disjunctions (unions is usually the abstract operation
that loses the most precision).

In Astrée, we use the following strategy to build partitions solving this
kind of problem: first, we identify expressions e with an array access in a sum,
such that another element of the sum is related to the index of the array access
(it is the case for the expression at l3, Fig 2). Then, we look backward for the
last non-trivial assignment of that index. If it is in a loop, then we partition
the loop, otherwise, we partition the values of the index after its assignment.
In addition, we partition all the control flow between the index assignment and
the expression e. We keep the analysis efficient by merging those partitions right
after the expression e is used.

4.3 Barycenter

Finding precise invariants when analyzing divisions sharing a variable in the
dividend and divider require either complex ad-hoc transfer functions (as in [12])
or guessing an appropriate linear form [3]. If the variable found in the dividend
and divider ranges in a small set (less than, say, a thousand) we can get very
precise results by partitioning the traces according to the dynamic values of that
variable. Such partition will be quite cheap because its scope will be very local:
it is only necessary to partition right before the assignment, and then we can
merge right after the assignment.
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A simple example using division is the computing a barycenter between two
values. One expects the barycenter to be between those two values. But it is in
fact a difficult task with classical abstract domains. In the following figure, we
show an example of classical barycenter computation. As it is the case in many
real-time embedded systems, this computation is inside an infinite loop.

l0 : int r = 0; float x = 0.0;
l1 : while(true){
l2 : r = random(0, 50);
l3 : x = (x ∗ r + random(−100, 100))/(r + 1);
l4 : }

Using non-relational domains, one cannot prove that x will never overflow,
whereas it is a simple matter, partitioning the values during just one instruction,
to prove that x stays in [−100, 100]. If we suppose x ∈ [−100, 100] and r ∈ [0, 50],
we get (x ∗ r + random(−100, 100))/(r + 1) in [−5100, 5100]. whereas if we take
any particular r in [0, 50], we can compute that the expression is in [−100, 100].

4.4 Loop Unrolling

Analyzing separately the n first iterations of a loop may greatly improve the
precision of the final result, as is the case of the following examples:

– Some families of embedded programs –as those addressed by Astrée– con-
sist in a large loop; the initialization of some variables might be done during
the first iteration(s), so it might be helpful to distinguish the first iterations
during the analysis so as to take into account their particular role.

– Unrolling a loop might turn weak updates into strong updates. For instance,
let us consider the program for(i = 0; i < n; i = i + 1){t[i] = i}, which
initializes an array t (we assume that all cells are equal to 0 before the loop).
If we perform no unrolling of the loop, a simple interval analysis infers the
interval constraint i ∈ [0, n − 1]; so the assignment to t[i] is a weak update
and in the end we get the family of constraints ∀j, t[j] ∈ [0, n− 1].
The body of the loop is very small; hence, the complete unrolling of all the
iterations of the loop is not too costly. It leads to the much more precise
family of constraints ∀j, t[j] = j.

In practice, defining the control point corresponding to the loop as the par-
titioning point and the control points right after the loop as the merging point
leads to the unrolling of the n first iterations. This allows for more precise re-
sults in the analysis of the loop; yet does not make the analysis of the subsequent
statements more costly.

The analysis of an unrolled loop starts with the computation of an invariant
for the n first iterations; after that an invariant for all the following iterations is
achieved thanks to the standard widening techniques. It is also possible to start
with a partition of the whole loop, and decide during the computation of the
invariants, that because of the growth of n, this partition might not be finite (or
be too large) and thus, as described in Sect. 2.6, to use a coarser partition.
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4.5 Experimental Results

We tested Astrée on a family of industrial size embedded codes. All partitions
where chosen automatically. In the following table, we show the results for the
analysis without partitioning and then with partitioning. For each program,
we provide the size of the code as a number of LOCs, the number of iterations
required for the analysis of the main loop (these programs all consist in a series
of tasks executed at every clock tick, which is equivalent to a main loop), the
analysis time in minutes (on a 3 GHz Bi-opteron, with 8 Gb of RAM), the
memory consumption in megabytes and the number of alarms.

Program test 1 test 2 test 3 test 4
Code size (LOCs) 70 000 65 000 215 000 380 000
Iterations 48 43 33 32 80 59 163 62
Analysis time (minutes) 44 70 21 28 180 330 970 680
Memory peak (Mb) 520 550 340 390 1 100 1300 1 800 2200
Alarms 658 0 552 2 4 963 1 6 693 0

The results show the expected positive impact on the precision, as the num-
ber of alarms of the analyzer is always reduced with partitioning; in all cases
the analysis with partitioning results in a very low number of alarms whereas
the analysis without partitioning yields huge numbers of false positives –much
beyond what the end-user could check by hand. The analysis being more precise,
less iterations to reach a post fixpoint are required with trace partitioning. In the
case of test 4, the number of iterations required by the analysis with partitioning
disabled even causes a much higher analysis time. Of course, using partitioning
each iteration takes longer, but the cost in time and memory is very reasonable.

5 Conclusion

The partitioning of abstract domains was first introduced in [6]; it describes
trace partitioning on the concrete level (sets of traces). We proposed to use
such partitions to guide a restricted kind of disjunctions. Disjunctive completion
usually gives very precise results, but has an exponential cost, that is why in
practice, one must restrict the number of disjunctions. The idea of using the
control flow to chose which disjunctions to keep was first introduced in [17],
but still their proposal was not practical, especially for large programs. What
we proposed here is a more general and flexible framework which allowed the
Astrée static analyzer to be very precise on industrial programs [3].

Future work includes the extension of the partitioning abstract domain with
backwards transfer functions, so as to do backwards analysis. A second extension
would be to partition traces with the number of times a property of the memory
state P was satisfied at a control point l, generalizing the condition-guided par-
titioning we presented here. This would allow expressing some kind of temporal
properties of traces, by distinguishing traces that satisfied P at least once and
the others.
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D., and Rival, X. The astrée analyzer. In European Symposium on Programming
(ESOP’05) (2005), This volume of LNCS, Springer-Verlag.

[11] Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among
variables of a program. In 5th ACM Symposium on Principles of Programming
Languages (POPL’78) (1978), ACM Press, pp. 84–97.

[12] Feret, J. Static analysis of digital filters. In European Symposium on Program-
ming (ESOP’04) (2004), no. 2986 in LNCS, Springer-Verlag.

[13] Granger, P. Static Analysis of Arithmetical Congruences. Int. J. Computer.
Math. 30 (1989).



20 L. Mauborgne and X. Rival

[14] Holley, L. H., and Rosen, B. K. Qualified data flow problems. In 7th ACM
Symposium on Principles of Programming Languages (POPL’80) (1980), ACM
Press, pp. 69–82.
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Abstract. ASTRÉE is an abstract interpretation-based static program
analyzer aiming at proving automatically the absence of run time errors
in programs written in the C programming language. It has been applied
with success to large embedded control-command safety critical real-
time software generated automatically from synchronous specifications,
producing a correctness proof for complex software without any false
alarm in a few hours of computation.

1 Introduction

Software development, testing, use, and evolution is nowadays a major concern
in many machine-driven human activities. Despite progress in the science of
computing and the engineering of software aiming at developing larger and more
complex systems, incorrect software is not so uncommon and sometimes quite
problematic. Hence, the design of sound and efficient formal program verifiers,
which has been a long-standing problem, is a grand challenge for the forthcoming
decades.

All automatic proof methods involve some form of approximation of program
execution, as formalized by abstract interpretation. They are sound but incom-
plete whence subject to false alarms, that is desired properties that cannot be
proved to hold, hence must be signaled as potential problems, even though they
do hold at runtime.

Although ASTRÉE addresses only part of the challenge, that of proving the
absence of runtime errors in large embedded control-command safety critical real-
time software generated automatically from synchronous specifications [1, 2, 3],
it is a promising first step, in that it was able to make the correctness proof for
large and complex software by abstract-interpretation based static analysis [4, 5]
in a few hours of computations, without any false alarm.
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2 Domain of Application of ASTRÉE

Synchronous C Programs. ASTRÉE can analyze C programs with pointers
(including to functions), structures and arrays, integer and floating point com-
putations, tests, loops, function calls, and branching (limited to forward goto,
switch, break, continue). It excludes union types, dynamic memory alloca-
tion, unbounded recursive function calls, backward branching, conflicting side
effects and the use of C libraries. This corresponds to a clean memory model
and semantics as recommended for safety critical embedded real-time synchro-
nous software for non-linear control of very complex control/command systems.

Semantics. The concrete operational semantics for the considered subset is
that of the international C norm (ISO/IEC 9899:1999) instanced by imple-
mentation-specific behaviors depending upon the machine and compiler (e.g.,
representation and size of integers, IEEE 754-1985 norm for floats and dou-
bles), restricted by user-defined programming guidelines (e.g., whether static
variables can or cannot be assumed to be initialized to 0) and finally restricted
by program-specific user requirements (such as static assertions). Programs may
have a volatile environment where inputs are assumed to be safe (e.g., volatile
floats cannot be NaN) and may be specified by a trusted configuration file (e.g.,
specifying physical restrictions on captor values or the maximum number of
clock ticks, i.e., of calls to a wait for clock() function specific to synchronous
systems). The collecting semantics is the set of partial traces for the concrete
operational semantics starting from initial states. The abstract semantics is an
abstraction of a trace-based refinement of the reachable states.

Specification. The absence of runtime errors is the implicit specification that
there is no violation of the C norm (e.g., array index out of bounds), no imple-
mentation-specific undefined behaviors (e.g., floating-point division by zero), no
violation of the programming guidelines (e.g., arithmetics operators on short
variables should not overflow the range [−32768, 32767] although, on the specific
platform, the result can be well-defined through modular arithmetics), and no
violation of the programmer-supplied assertions (which must all be statically
verified). It follows that the only possible interrupts are clock ticks, an essential
requirement of synchronous programs.

3 Characteristics of ASTRÉE

ASTRÉE is a program analyzer (it analyzes directly the program source and
not some external specification or program model) which is static (the verifica-
tion is performed before execution), entirely automatic (no end-user intervention
is needed after parameterization by specialists for adaptation to a category of
programs), semantic-based (unlike syntactic feature detectors in the spirit of
lint), sound (it covers the whole state space and, contrarily to mere debuggers
or bounded-trace software verifiers, never omits a potential error), terminating
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(there is no possibility of non-termination of the analysis), and, in practice, has
shown to be efficient (a few hours of computations for hundreds of thousands
lines of code).

ASTRÉE is multi-abstraction in that it does not use a canonical abstraction
but instead uses an approximate reduced cardinal product [5] of many numer-
ical and symbolic abstract domains. The analyses performed by each abstract
domain closely interact to perform mutual reductions. The abstraction is spe-
cializable in that new abstract domains can be easily included or useless ones
excluded to adapt the analysis to a given category of programs. The design of
ASTRÉE in Ocaml is modular. An instance of ASTRÉE is built by selecting
Ocaml modules from a collection, each implementing an abstract domain. Most
abstract domains are infinitary and infinite-height. We use widening/narrowing
to enforce convergence. ASTRÉE is specialized to a safe programming style but
is also domain-aware in that it knows about control/command (e.g., digital fil-
ters). Each abstract domain is parametric so that the precision/cost ratio can
be tailored to user needs by options and/or directives in the code. The auto-
matic parameterization enables the generation of parametric directives in the
code to be programmed. ASTRÉE can therefore be specialized to perform fully
automatically for each specific application domain. This design structure makes
ASTRÉE both fast and very precise: there are very few or no false alarms when
conveniently adapted to an application domain. It follows that ASTRÉE is a
formal verifier that scales up.

4 Design of ASTRÉE by Refinement

ASTRÉE was designed starting from a simple memory model (with references
to abstract variables representing either a single or multiple concrete memory
locations) and an interval abstraction (a ≤ X ≤ b where X is a variable and
a, b are constants to be determined by the analysis), which is precise enough
to express the absence of runtime errors. The widening uses thresholds [1]. This
is extremely fast (if sufficient care has been taken to use good data structures)
but quite imprecise. Then, numerous abstract domains were designed and ex-
perimented until an acceptable cost/precision ratio was obtained. Sometimes, a
more precise domain results in an improvement in both analysis precision and
time (most often because the number of iterations is reduced).

5 The ASTRÉE Fixpoint Iterator

The fixpoint computation of the invariant post-fixpoint [4] is by structural in-
duction on the program abstract syntax, keeping a minimal number of abstract
invariants. Functions are handled by semantic expansion of the body (thus ex-
cluding unbounded recursion) while convergence is accelerated by non-monotonic
widening/narrowing for loops [4, 2]. It follows that the abstract fixpoint trans-
former is non-monotonic, which is not an issue as it abstracts monotonic con-
crete fixpoints [6]. Because abstract domains are themselves implemented using
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floats, possible rounding errors may produce instabilities in the post-fixpoint
check which can be solved thanks to perturbations [2, 7, 8]. Finally, the speci-
fication checking is performed by a forward propagation of the stable abstract
post-fixpoint invariant.

6 Examples of Numerical Abstractions in ASTRÉE

The Domain of Octagons. An example of numerical abstract domain is the
weakly relational domain of octagons [9, 10, 7] (±X ± Y ≤ a where X, Y are
variables and a is a constant to be determined by the analysis).

Fig. 1. Rate limiter and configuration file

For instance [7], at each loop iteration of the rate limiter of Fig. 1, a new
value for the entry X is fetched within [−128, 128] and a new maximum rate D is
chosen in [0, 16]. The program then computes an output Y that tries to follow X
but is compelled to change slowly: the difference between Y and its value in the
preceding iteration is bounded, in absolute value, by the current value of D. The
state variable S is used to remember the value of Y at the last iteration while R
is a temporary variable used to avoid computing the difference X − S twice. A
relational domain is necessary to prove that the output Y is bounded by the range
[−128, 128] of X, which requires the discovery of the invariant R = X − S. The
octagon abstract domain will discover a weaker property, R + S ∈ [−128, 128],
which is precise enough to prove that Y ∈ [−M,M ] is stable whenever M ≥ 144.
So, by widening, M will be set to the least threshold greater than 144 which is
loose but precise enough to prove the absence of runtime errors (indeed ASTRÉE
finds Y ∈ [−261, 261]). This example is out of the scope of the interval domain.

Heterogeneous Structural Abstraction. The use of the domain of octagons
in ASTRÉE is an example of heterogeneous abstraction which depends upon
the program structure and is not the same at each program point. Indeed, the
octagonal abstraction would be too costly to handle, e.g., thousands of global
variables at each program point. The domain of octagons is therefore parame-
terized by packs of variables attached to blocks/functions by way of directives.
These packs specify which variables should be candidate for octagonal analysis
in the given block/function. The determination of accurate packs would require
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Fig. 2. Filter trace Ellipsoid abstraction Octagon abstraction Interval abstraction

a huge amount of work, if done by hand. Therefore the packing parameterization
is automatized using context-sensitive syntactic criteria. Experimentations show
that the average pack size is usually of order of 3 or 4 variables while the number
of packs grows linearly with the program size. It follows that precise abstractions
are performed only when needed, which is necessary to scale up.

Floating-Point Interval Linear Form Abstraction. A general problem
with relational numerical domains is that of floating point numbers. Considering
them as reals (as usually done with theorem provers) or fixed point numbers
(as in CBMC [11]) would not conform to the norm whence would be unsound.
Using rationals or other symbolic reals in the abstract domains would be too
costly. The general approach [7, 8] has been to define the concrete semantics
of floating point computations in the reals (taking the worst possible rounding
errors explicitly into account), to abstract with real numbers but to implement,
thanks to a further sound over-approximation, using floats. For example the float
expression (x + y) + z is evaluated as in the reals as x + y + z + ε1 + ε2 where
|ε1| ≤ εrel.|x+ y| + εabs and |ε2| ≤ εrel.|x+ y+ ε1 + z| + εabs. The real ε1 encodes
rounding errors in the atomic computation (x + y), and the real ε2 encodes
rounding errors in the atomic computation (x+ y+ ε1) + z. The parameters εrel
and εabs depends on the floating-point type being used in the analyzed program.
This linearization [7, 8] of arbitrary expressions is a correct abstraction of the
floating point semantics into interval linear forms [a0, b0]+

∑n
k=1[ak, bk]Xk. This

approach separates the treatment of rounding errors from that of the numerical
abstract domains.

The Simplified Filter Abstract Domains. The simplified filter abstract
domains [13] provide examples of domain-aware abstractions. A typical example
of simplified filter behavior is traced in Fig. 2 (tracing the sequence D1 in Fig. 3).
Interval and octagonal envelops are unstable because they are rotated and shrunk
a little at each iteration so that some corner always sticks out of the envelop.
However, the ellipsoid of Fig. 2 is stable. First, filter domains use dynamical linear
properties that are captured by the other domains such as the range of input
variables (x1 and y1 for the example of Fig. 3) and symbolic affine equalities
with interval coefficients (to model rounding errors) such as t1 ∈ [1 − ε1, 1 +
ε1].x1+[b1[0]−ε2, b1[0]+ε2].D1[0]− [b1[1]−ε3, b1[1]+ε3].D1[1]+[−ε, ε] for the
example of Fig. 3 (where ε1, ε2, and ε3 describe relative error contributions and ε
describes an absolute error contribution). These symbolic equalities are captured
either by linearization (see Sect. 6), or by symbolic constant propagation (see
Sect. 7). Then, simplified filter domains infer non linear properties and compute
bounds on the range of output variables (t1 and t2 in Fig. 2). For the example
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Fig. 3. Fourth order Infinite Impulse Response (IIR) filter [12]

of Fig. 3, ASTRÉE over-approximates the interval of variation of D2[0] by
[−6890.23, 6890.23], which is precise enough to prove the absence of overflow.

On the Limits of User-Provided Assertions. The filter ellipsoidal abstrac-
tion illustrates the limits of user provided assertions. Even if the user injects the
correct bounds, as an interval information, for all filter outputs, the interval
domain cannot exploit them as they are not stable. To reach zero false alarm,
the abstract domains should be able to express a loop invariant which is strong
enough to be inductive and to imply the absence of runtime errors. User asser-
tions are therefore useful only when they refer to assertions expressible in the
abstract domains of a static analyzer. They are mainly useful to provide widen-
ing/narrowing limits but techniques such as widenings with thresholds are even
more convenient.

On the Limits of Automatic Refinement. The filter ellipsoidal abstraction
shows the limits of automatic refinement strategies based on counter-examples.
From a finite series of counter-examples to the stability of intervals or octagons,
the refinement procedure would have to automatically discover the ellipsoidal
abstraction and infer the corresponding sophisticated data representations and
algorithms.

The Arithmetic-Geometric Progression Abstract Domain. In synchro-
nous programs, the arithmetic-geometric progression abstract domain [14] can
be used to estimate ranges of floating point computations that may diverge in
the long run due to rounding errors (although they may be stable in the reals)
thanks to a relation with the clock, which, for physical systems that cannot run
for ever, must be bounded. In the example of Fig. 4, the bound of B is:

|B| ≤ a ∗ ((20.+ b/(a− 1)) ∗ (a)clock − b/(a− 1)) + b ≤ 30.7191369175

where a = 1.00000011921 and b = 5.87747175411e− 39.
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Fig. 4. Geometric progression and configuration file

Relative Precision of Abstract Domains. The arithmetic-geometric pro-
gression abstract domain provides an example of sophisticated domain that can
advantageously replace a simpler domain, specifically the clock domain [1], for-
merly used in ASTRÉE, relating each variable X to the bounded clock C (in-
cremented on clock ticks) as intervals for X −C and X +C to indirectly bound
X from the user-provided bound on the clock C.

7 Examples of Symbolic Abstractions in ASTRÉE

Memory Abstraction. A first example of symbolic domain in ASTRÉE is the
memory abstraction model shortly described in [2].

The Symbolic Constant Domain. The symbolic constant domain [7, 8] is
reminiscent of Kildall’s constant propagation abstract domain, that is the smash
product of infinitely many domains of the form ⊥ � e � �, but memorizes sym-
bolic expressions e instead of numerical constants. It keeps track of symbolic
relations between variables and performs simplifications (such as simplifying
Z=X; Y=X-Z into Z=X; Y=0, which does appear in mechanically generated pro-
grams). Such relational information is essential for the interval abstract domain
(e.g., to derive that Y = 0). Again the abstract domain is parameterized (e.g.,
by simplification strategies).

The Boolean Relation Domain. The Boolean relation domain [2] copes with
the use of booleans in the control of synchronous programs. It is a reduced
cardinal power [5] with boolean base implemented as a decision tree with sharing
(à la BDD) and exponents at the leaves. It is parametric in the maximum number
of boolean variables and in the packs of variables which are involved at the
leaves. The maximum number 3 was determined experimentally and the packing
is automatized.

The Expanded Filter Abstract Domains. The expanded filter abstract
domains associate recursive sequence definitions to tuples of numerical vari-
ables automatically detected by the analysis [13]. For instance, a second order
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filter is encoded by a recursive definition of the form Sn+2 = a.Sn+1 + b.Sn +
c.En+2 + d.En+1 + e.En ((En) denotes an input stream and (Sn) denotes an
output stream). The second order filter domain relates abstract values M to
the quadruples of variables (V,W,X, Y ) detected by the analysis. This symbolic
property means that there exists a positive integer p and a recursive sequence
satisfying Sn+2 = a.Sn+1 + b.Sn + c.En+2 + d.En+1 + e.En, for any positive
integer n, such that:

– V = Sp+1, W = Sp, X = Ep+1, and Y = Ep;
– the abstract value M gives an abstraction of the values S0 and S1 and of the

sequence (En).

We compute a bound on the value of V , by unfolding the recursive definition
several times (so that we describe the contribution of the last inputs very accu-
rately). The contributions of rounding errors and of previous inputs are bounded
by using a simplified filter domain (the ellipsoid domain [13] in our example).

Trace Partitioning. Trace partitioning [15] is a local parametric symbolic
abstraction of sets of traces, which is a local refinement of reachable states. By
relative completeness of Floyd’s proof method, it is useless to reason on traces
and sets of states should be precise enough. However, this greatly simplifies the
abstraction which would otherwise require to establish more relations among
variables. Examples are loop unrolling, case analysis for tests, etc.

8 Performances of ASTRÉE

ASTRÉE has been applied with success to large embedded control-command
safety critical real-time software generated automatically from synchronous spec-
ifications, producing a correctness proof for complex software without any false
alarm in a few hours of computations (see Fig. 5).

Nb of lines 70 000 226 000 400 000
Number of iterations 32 51 88
Memory 599 Mb 1.3 Gb 2.2 Gb
Time 46mn 3h57mn 11h48mn
False alarms 0 0 0

Fig. 5. Performance of ASTRÉE (64 bits monoprocessor)

9 ASTRÉE Visualisator

According to the desired information, it is possible to serialize the invariants
and alarms attached by ASTRÉE to program points, blocks, loops or functions
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Fig. 6. Vizualisator

and to vizualize them, per abstract domain, using a graphical vizualisator to
navigate in the program invariants as shown on Fig. 6.

10 Conclusion and Future Work

Abstract interpretation-based static analyzers have recently shown to scale-up
for different programming languages and different areas of application [16, 17].
ASTRÉE is certainly the first static analyzer able to fully prove automatically
the absence of runtime errors in real-life large industrial synchronous programs.
It is therefore a verifier (as opposed to a debugger or testing aid). In case of
erroneous source programs, an assistance to error source localization is presently
being incorporated in ASTRÉE thanks to backward analyses. By extension of
the abstract domains, ASTRÉE can be extended beyond synchronous programs.

To go beyond and generalize to more complex memory models and asyn-
chronous programs will necessitate a complete redesign of the basic memory
abstraction and fixpoint iterators. This will be the object of ASTRÉE successors.

Acknowledgements. We warmly thank Bruno Blanchet for his contribution
to ASTRÉE.
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8. Miné, A.: Relational abstract domains for the detection of floating-point run-

time errors. In Schmidt, D., ed.: Proc. 30th ESOP ’2004, Barcelona. LNCS 2986,
Springer (2004) 3–17
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Abstract. We present an aggressive interprocedural analysis for inferring value
equalities which are independent of the concrete interpretation of the operator
symbols. These equalities, called Herbrand equalities, are therefore an ideal basis
for truly machine-independent optimizations as they hold on every machine. Be-
sides a general correctness theorem, covering arbitrary call-by-value parameters
and local and global variables, we also obtain two new completeness results: one
by constraining the analysis problem to Herbrand constants, and one by allowing
side-effect-free functions only. Thus if we miss a constant/equality in these two
scenarios, then there exists a separating interpretation of the operator symbols.

1 Introduction

Analyses for finding definite equalities between variables or variables and expressions
in a program have been used in program optimization for a long time. Knowledge about
definite equalities can be exploited for performing and enhancing powerful optimizing
program transformations. Examples include constant propagation, common subexpres-
sion elimination, and branch elimination [3, 8], partial redundancy elimination and loop-
invariant code motion [18, 22, 12], and strength reduction [23]. Clearly, it is undecidable
whether two variables always have the same value at a program point even without in-
terpreting conditionals [17]. Therefore, analyses are bound to detect only a subset, i.e., a
safe approximation, of all equivalences. Analyses based on the Herbrand interpretation
of operator symbols consider two values equal only if they are constructed by the same
operator applications. Such analyses are said to detect Herbrand equalities. Herbrand
equalities are precisely those equalities which hold independent of the interpretation of
operators. Therefore, they are an ideal basis for truly machine-independent optimiza-
tions as they hold on every machine, under all size restrictions, and independent of the
chosen evaluation strategy.

In this paper, we propose an aggressive interprocedural analysis of Herbrand equali-
ties. Note that a straight-forward generalization of intraprocedural inference algorithms
to programs with procedures using techniques along the lines of [7, 20, 13] fails since
the domain of Herbrand equalities is obviously infinite. Besides a general correctness
theorem, covering arbitrary call-by-value parameters and local and global variables, we
also obtain two new completeness results: One by constraining the analysis problem to
Herbrand constants, and one by allowing side-effect-free functions only. Thus if we miss

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 31–45, 2005.
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a constant/equality in these constrained scenarios, then a separating interpretation of the
operator symbols can be constructed.

For reasons of exposition, we treat the case of side-effect-free functions, which con-
stitutes an interesting class of programs in its own, separately first. The key technical
idea here is to abstract the effect of a function call x1 := f(x1, . . . ,xk), xi program
variables, by a conditional assignment, i.e., a pair (φ,x1 := e) consisting of a precon-
dition φ together with an assignment x1 := e, e some term, where φ is a conjunction
of Herbrand equalities. If the precondition is satisfied, the function call behaves like
the assignment x1 := e, otherwise, like an assignment of an unknown value. The inter-
esting observation is that for functions without side-effects, this is not only sound, i.e.,
infers only valid Herbrand equalities between variables, but also complete, i.e., infers
for every program point u all equalities which are valid at u. In fact, our algorithm is
the first inter-procedural analysis of Herbrand equalities which is complete on this class
of programs. Moreover, its running time asymptotically coincides with that of the best
intraprocedural algorithms for the same problem [22, 9]. Technically, the conditional as-
signments for functions are determined by effective weakest precondition computations
for particular postconditions. For side-effect-free functions, the postcondition takes the
form y =̇x1 where y is a fresh variable and x1 is the variable that receives the return
value of the function. In the next step, we generalize this analysis to functions with mul-
tiple return values. Such functions correspond to procedures accessing and modifying
multiple global variables. The resulting analysis is sound; moreover, we prove that it is
strong enough to find all Herbrand constants, i.e., determines for every program point
u all equalities xj =̇ t for variables xj and ground terms t.

Related Work. Early work on detecting equalities without considering the meaning of
the operator symbols dates back to Cocke and Schwartz [4]. Their technique, the famous
value numbering, was developed for basic blocks and assigns hash values to compu-
tations. While value numbering can be rather straightforwardly extended to forking
programs, program joins pose nontrivial problems, because the concept of value equal-
ity based on equal hash numbers is too fine granular. In his seminal paper [11], Kildall
presents a generalization that extends Cocke’s and Schwartz’s technique to flow graphs
with loops by explicitly representing the equality information on terms in form of parti-
tions, which allows one to treat joins of basic blocks in terms of intersection. This gave
rise to a number of algorithms focusing on efficiency improvement [17, 1, 3, 19, 8, 10].

The connection of the originally pragmatic techniques to the Herbrand interpretation
has been established in [21] and Steffen et al. [22], which present provably Herbrand
complete variants of Kildall’s technique and a compact representation of the Herbrand
equalities in terms of structured partition DAGs (SPDAGs). Even though these DAGs
provide a redundancy-free representation, they still grow exponentially in the number of
program terms. This problem was recently attacked by Gulwani and Necula, who arrived
at a polynomial algorithm by showing that SPDAGs can be pruned, if only equalities of
bounded size are of interest [9]. This observation can also be exploited for our structurally
rather different interprocedural extension.

Let us finally mention that all this work abstracts conditional branching by non-
deterministic choice. In fact, if equality guards are taken into account then determining
whether a specific equality holds at a program point becomes undecidable [15]. Dis-
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equality constraints, however, can be dealt with intraprocedurally [15]. Whether or not
inter-procedural extensions are possible is still open.

The current paper is organized as follows. In Section 2 we introduce un-interpreted
programs with side-effect-free functions as the abstract model of programs for which
our Herbrand analysis is complete. In Section 3 we collect basic facts about conjunctions
of Herbrand equalities. In Section 4 we present the weakest precondition computation
to determine the effects of function calls. In Section 5 we use this description of ef-
fects to extend an inference algorithm for intraprocedurally inferring all valid Herbrand
equalities to deal with side-effect-free functions as well. In Section 6 we generalize the
approach to a sound analysis for procedures accessing global variables and indicate that
it infers all Herbrand constants. Finally, in Section 7 we summarize and describe further
directions of research.

2 Herbrand Programs

We model programs by systems of nondeterministic flow graphs that can recursively
call each other as in Figure 1. Let X = {x1, . . . ,xk} be the set of variables the program
operates on. We assume that the basic statements in the program are either assignments
of the form xj := t for some expression t possibly involving variables from X or
nondeterministic assignments xj := ? and that branching in general is nondeterministic.
Assignments xj := xj have no effect onto the program state. They can be used as skip
statements as, e.g., at the right edge from program point 4 to 5 in Figure 1 and also to
abstract guards. Nondeterministic assignments xj := ? safely abstract statements in a
source program our analysis cannot handle, for example input statements.

Fig. 1. A small Herbrand program

A program comprises a finite set Funct of function names that contains a distin-
guished function Main. First, we consider side-effect-free functions with call-by-value
parameters and single return values. Without loss of generality, every call to a function
f is of the form: x1 := f(x1, . . . ,xk) — meaning that the values of all variables are
passed to f as actual parameters, and that the variable x1 always receives the return
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Main :

x1 := f(x1,x2,x3)

x3 := a(x2)

f :

x1 := a(x2) x1 := f(x1,x2,x3)

x1 := x3
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value of f which is the final value of x1 after execution of f .1 In the body of f , the
variables x2, . . . ,xk serve as local variables. More refined calling conventions, e.g., by
using designated argument variables or passing the values of expressions into formal pa-
rameters can easily be reduced to our case. Due to our standard layout of calls, each call
is uniquely represented by the name f of the called function. In Section 6, we will extend
our approach to procedures which read and modify global variables. These globals will
be the variables x1, . . . ,xm, m ≤ k. Procedures f are then considered as functions
computing vector assignments (x1, . . . ,xm) := f(x1, . . . ,xk).

Let Stmt be the set of assignments and calls. Program execution starts with a call to
Main. Each function name f ∈ Funct is associated with a control flow graph Gf =
(Nf , Ef , stf , retf ) that consists of a set Nf of program points; a set of edges Ef ⊆
Nf × Stmt × Nf ; a special entry (or start) point stf ∈ Nf ; and a special return
point retf ∈ Nf . We assume that the program points of different functions are disjoint:
Nf ∩ Ng = ∅ for f �= g. This can always be enforced by renaming program points.
Moreover, we denote the set of edges labeled with assignments by Base and the set of
edges calling some function f by Call.

We consider Herbrand interpretation of terms, i.e., we maintain the structure of
expressions but abstract from the concrete meaning of operators. LetΩ denote a signature
consisting of a set Ω0 of constant symbols and sets Ωr, r > 0, of operator symbols
of rank r which possibly may occur in right-hand sides of assignment statements or
values. Let TΩ the set of all formal terms built up from Ω. For simplicity, we assume
that the set Ω0 is non-empty, and there is at least one operator. Note that under this
assumption, the set TΩ is infinite. Let TΩ(X) denote the set of all terms with constants
and operators from Ω which additionally may contain occurrences of variables from
X. Since we do not interpret constants and operators, a state assigning values to the
variables is conveniently modeled by a mapping σ : X → TΩ . Such mappings are also
called ground substitutions. Accordingly, the effect of one execution of a function can
be represented by a term e ∈ TΩ(X) which describes how the result value for variable
x1 is constructed from the values of the variables x1, . . . ,xk before the call. Note that
such effects nicely can be accumulated from the rear where every assignment xj := t
extends the effect by substituting t for variable xj .

We define the collecting semantics of a program which will be abstracted in the sequel.
Every assignment xj := t induces a transformation [[xj := t]] : 2X→TΩ → 2X→TΩ of
the set of program states before the assignment into the set of states after the assignment,
and a transformation [[[xj := t]]] : 2TΩ(X) → 2TΩ(X) of the set of function effects
accumulated after the assignment into the effects including the assignment:

[[xj := t]]S = {σ[xj �→ σ(t)] | σ ∈ S} [[[xj := t]]]T = {e[t/xj ] | e ∈ T}
Here σ(t) is the term obtained from t by replacing each occurrence of a variable xi by
σ(xi) and σ[xj �→ t′] is the substitution that maps xj to t′ ∈ TΩ and xi �= xj to σ(xi).
Moreover, e[t/xj ] denotes the result of substituting t in e for variable xj . Similarly, we
have two interpretations of the non-deterministic assignment xj := ?:

[[xj := ?]]S =
⋃{[[xj := c]]S | c ∈ TΩ} = {σ[xj �→ σ(c)] | c ∈ TΩ , σ ∈ S}

[[[xj := ?]]]T =
⋃{[[[xj := c]]]T | c ∈ TΩ} = {e[c/xj ] | c ∈ TΩ , e ∈ T}

1 Alternatively, we could view the variable x1 as one global variable which serves as scratch pad
for passing information from a called procedure back to its caller.
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Thus, xj := ? is interpreted as the non-deterministic choice between all assignments
of values to xj . In a similar way, we reduce the semantics of calls to the semantics of
assignments, here to the variable x1. For determining the sets of reaching states, we
introduce a binary operator [[call]] : 2TΩ(X) × 2X→TΩ → 2X→TΩ which uses a set of
effects of the called function to transform the set of states before the call into the set
of states after the call. For transforming sets of effects, we rely on a binary operator
[[[call]]] : 2TΩ(X) × 2TΩ(X) → 2TΩ(X) which takes the effects of a called function to
extend the effects accumulated after the call. We define:

[[call]] (T, S) =
⋃{[[x1 := t]]S | t ∈ T} = {σ[x1 �→ σ(t)] | t ∈ T, σ ∈ S}

[[[call]]] (T1, T2) =
⋃{[[[x1 := t]]]T2 | t ∈ T1} = {e[t/x1] | t ∈ T1, e ∈ T2}

Thus, a call is interpreted as the non-deterministic choice between all assignments x1 :=
t where t is a potential effect of the called function. We use the operators [[[. . .]]] to
characterize the sets of effects of functions, S(f) ⊆ TΩ(X), f ∈ Funct, by means of a
constraint system S:

[S1] S(f) ⊇ S(stf )
[S2] S(retf ) ⊇ {x1}
[S3] S(u) ⊇ [[[s]]] (S(v)) if (u, s, v) ∈ Base
[S4] S(u) ⊇ [[[call]]] (S(f),S(v)) if (u, f, v) ∈ Call

Note that the effects are accumulated in sets S(u) ⊆ TΩ(X) for program points u from
the rear, i.e., starting from the return points. Calls are dealt with by constraint [S4]. If
the ingoing edge (u, f, v) is a call to a function f , we extend the terms already found
for v with the potential effects of the called function f by means of the operator [[[call]]].
Obviously, the operators [[[xj := t]]] and hence also the operators [[[xj := ?]]] and [[[call]]] are
monotonic (even distributive). Therefore, by Knaster-Tarski’s fixpoint fixpoint theorem,
the constraint system S has a unique least solution whose components (for simplicity)
are denoted by S(u),S(f) as well.

We use the effects S(f) of functions and the operators [[...]] to characterize the sets
of reaching program states, R(u),R(f) ⊆ (X → TΩ), by a constraint system R:

[R1] R(Main) ⊇X→ TΩ

[R2] R(f) ⊇R(u) , if (u, f, ) ∈ Call
[R3] R(stf ) ⊇R(f)
[R4] R(v) ⊇ [[s]] (R(u)) , if (u, s, v) ∈ Base
[R5] R(v) ⊇ [[call]] (S(f),R(u)) , if (u, f, v) ∈ Call

Again, since all occurring operators are monotonic (even distributive), this constraint
system has a unique least solution whose components are denoted by R(u) and R(f).

3 Herbrand Equalities

A substitution σ : X → TΩ(X) (possibly containing variables in the image terms)
satisfies a conjunction of equalities φ ≡ s1 =̇ t1∧. . .∧sm =̇ tm (where si, ti ∈ TΩ(X)
and “ =̇ ” a formal equality symbol) iff σ(si) = σ(ti) for i = 1, . . . ,m. Then we also
write σ |= φ. We say, φ is valid at a program point u iff it is valid for all states σ ∈ R(u).
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As we rely on Herbrand interpretation here, an equality which is valid at a program point
u is also called a valid Herbrand equality at u.

Let us briefly recall some basic facts about conjunctions of equations. A conjunction
φ is satisfiable iff σ |= φ for at least one σ. Otherwise, i.e., if φ is unsatisfiable, φ
is logically equivalent to false. This value serves as the bottom value of the lattice
we use in our analysis. The greatest value is given by the empty conjunction which is
always true and therefore also denoted by true. The ordering is by logical implication
“⇒”. Whenever the conjunction φ is satisfiable, then there is a most general satisfying
substitution σ, i.e., σ |= φ and for every other substitution τ satisfying φ, τ = τ1 ◦σ for
some substitution τ1. Such a substitution is often also called a most general unifier of φ.
In particular, this means that the conjunction φ is equivalent to

∧
xi �=σ(xi) xi =̇σ(xi).

Thus, every satisfiable conjunction of equations is equivalent to a (possibly empty) finite
conjunction of equations xji

=̇ ti where the left-hand sides xji
are distinct variables and

none of the equations is of the form xj =̇xj . Let us call such conjunctions reduced. The
following fact is crucial for proving termination of our proposed fixpoint algorithms.

Proposition 1. For every sequence φ0 ⇐ . . . ⇐ φm of pairwise inequivalent conjunc-
tions φj using k variables, m ≤ k + 1. ��

Proposition 1 follows since for satisfiable reduced non-equivalent conjunctions φi, φi+1,
φi ⇐ φi+1 implies that φi+1 contains strictly more equations than φi.

In order to construct an abstract lattice of properties, we consider equivalence classes
of conjunctions of equations which, however, will always be represented by one of
their members. Let E(X′) denote the set of all (equivalence classes of) finite reduced
conjunctions of equations with variables from X′. This set is partially ordered w.r.t.
“⇒” (on the representatives). The pairwise greatest lower bound always exists and is
given by conjunction “∧”. Since by Proposition 1, all descending chains in this lattice
are ultimately stable, not only finite but also infinite subsets X ⊆ E(X′) have a greatest
lower bound. Hence, E(X′) is a complete lattice.

4 Weakest Preconditions

For reasoning about return values of functions, we introduce a fresh variable y and
determine for every function f the weakest precondition,WP(f), of the equationy =̇x1
w.r.t. f . Given that the set of effects of f equals T ⊆ TΩ(X), the weakest precondition
of y =̇x1 is given by

∧
{y =̇ e | e ∈ T} – which is equivalent to a finite conjunction due

to the compactness property of Proposition 1. Intuitively, true as precondition means
that the function f has an empty set of effects only, whereas φ′ ∧y =̇ e expresses that the
single value returned for x1 is e — under the assumption that φ′ holds. Thus, φ′ implies
all equalities e =̇ e′, e′ ∈ T . In particular, if φ′ is unsatisfiable, i.e., equivalent to false,
then the function may return different values.

For computing preconditions, we will work with the subset Ey of E(X ∪ {y})
of (equivalence classes of) conjunctions φ of equalities with variables from X ∪ {y}
which are either equivalent to true or equivalent to a conjunction φ′ ∧ y =̇ e for some
e ∈ TΩ(X). We can assume that φ′ does not contain y, since any occurrence of y in φ′

can be replaced with e. We introduce a function αS : 2TΩ(X) → Ey by:
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αS(T ) =
∧

e∈T (y =̇ e)

By transforming arbitrary unions into conjunctions, αS is an abstraction in the sense of
[6]. Our goal is to define abstract operators [[[xj := t]]]�, [[[xj := ?]]]� and [[[call]]]�.

A precondition [[[xj := t]]]� φ of a conjunction of equalities φ for an assignment
xj := t can be obtained by the well-known rule:

[[[xj := t]]]�φ = φ[t/xj ]

where φ[t/xj ] denotes the formula obtained from φ by substituting t for xj . This trans-
formation returns the weakest precondition for the assignment. The transformer for
non-deterministic assignments is reduced to the transformation of assignments:

[[[xj := ?]]]�φ =
∧

c∈TΩ
[[[xj := c]]]�φ =

∧
c∈TΩ

φ[c/xj ]

By assumption, TΩ contains at least two elements t1 �= t2. If φ contains xj , then
φ[t1/xj ] ∧ φ[t2/xj ] implies t1 =̇ t2 (because we are working with Herbrand interpreta-
tion) which is false by the choice of t1, t2. Hence, the transformer can be simplified to:

[[[xj := ?]]]�φ = φ[t1/xj ] ∧ φ[t2/xj ] =
{

false if xj occurs in φ
φ otherwise

The first equation means that xj := ? is semantically equivalent (w.r.t. weakest precondi-
tions of Herbrand equalities) to the nondeterministic choice between the two assignments
xj := t1 and xj := t2.

In order to obtain safe preconditions for calls, we introduce a binary operator [[[call]]]�.
In the first argument, this operator takes a precondition φ1 of a function body for the
equation y =̇x1. The second argument of [[[call]]]� is a postcondition φ2 after the call. We
define:

[[[call]]]�(true, φ2) = true

[[[call]]]�(φ′ ∧ (y =̇ e), φ2) =
{

φ′ ∧ φ2[e/x1] if x1 occurs in φ2

φ2 otherwise

If the weakest precondition of y =̇x1 is true, we return true, since a set of effects is
abstracted with true only if it is empty. In order to catch the intuition of the second
rule of the definition, first assume that φ′ is true. This corresponds to the case where
the abstracted set of effects consists of a single term e only. The function call then is
semantically equivalent to the assignment x1 := e. Accordingly, our definition gives:
[[[call]]]�(y =̇ e, φ2) = φ2[e/x1]. In general, different execution paths may return differ-
ent terms e′ for x1. The precondition φ′ then implies that all these e′ equal e. If φ2 does
not contain x1, φ2 is not affected by assignments to x1 anyway. Therefore in this case,
[[[call]]]�(φ1, φ2) = φ2. If on the other hand, φ2 contains the variable x1, then φ2 holds
after the call provided φ2[e/x1] holds before the call as well as φ′.

The definition of [[[call]]]�(φ1, φ2) is independent of the chosen representation ofφ1. To
see this, assume that φ1 is also equivalent to φ′

1 ∧(y =̇ t1) for some φ′
1, t1 not containing

y. Then in particular,φ′∧(y =̇ t) implies y =̇ t1 as well asφ′
1 from which we deduce that

φ′ also implies t =̇ t1. Therefore, φ′ ∧ φ2[t/x1] implies φ′
1 ∧ φ2[t1/x1]. By exchanging

the roles of φ′, t and φ′
1, t1 we find the reverse implication and the equivalence follows.

We establish the following distributivity properties:

Proposition 2. 1. [[[xj := t]]]� preserves true and distributes over “∧”.
2. [[[xj := ?]]]� preserves true and distributes over “∧”.
3. In each argument, the operation [[[call]]]� preserves true and distributes over “∧”.
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Proof: Assertion 1 holds since substitutions preserve true and commute with “∧”. Assertion
2 follows from 1, since [[[xj := ?]]]� φ = ([[[xj := t1]]]� φ) ∧ ([[[xj := t2]]]� φ) for ground terms
t1 �= t2. For the third assertion, the statement concerning the second argument of [[[call]]]� is
straightforwardly verified from the definition. The same is true for the preservation of true in the
first argument. It remains to verify that

[[[call]]]�(φ1 ∧ φ2, φ) = [[[call]]]�(φ1, φ) ∧ [[[call]]]�(φ2, φ)

If either φ1 or φ2 equal false, the assertion is obviously true. The same holds if either φ1 or φ2

equal true. Otherwise, we can assume that for i = 1, 2, φi is satisfiable, reduced and of the form:
φ′

i∧(y =̇ ei) for some φ′
i not containing y. If φ does not contain x1, the assertion is again trivially

true. Therefore, we additionally may assume that φ contains at least one occurrence of x1. Then
by definition, [[[call]]]�(φi, φ) = φ′

i ∧ φ[ei/x1], and we obtain:

[[[call]]]�(φ1, φ) ∧ [[[call]]]�(φ2, φ) = φ′
1 ∧ φ[e1/x1] ∧ φ′

2 ∧ φ[e2/x1]
= φ′

1 ∧ φ′
2 ∧ (e1 =̇ e2) ∧ φ[e1/x1]

since φ contains an occurrence of x1. On the other hand, we may also rewrite φ1 ∧ φ2 to:
φ′

1 ∧ φ′
2 ∧ (e1 =̇ e2) ∧ (y =̇ e1) where only the last equation contains y. Therefore:

[[[call]]]�(φ1 ∧ φ2, φ) = φ′
1 ∧ φ′

2 ∧ (e1 =̇ e2) ∧ φ[e1/x1]

which completes the proof. ��
We construct a constraint system WP for preconditions of functions by applying the
abstraction function αS to the constraint system S for collecting effects of functions.
Thus, we replace {x1} with (y =̇x1) and the operators [[[. . .]]] with [[[. . .]]]�. We obtain:

[WP1] WP(f) ⇒WP(stf )
[WP2] WP(retf )⇒ (y =̇x1)
[WP3] WP(u) ⇒ [[[s]]]�(WP(v)) , if (u, s, v) ∈ Base
[WP4] WP(u) ⇒ [[[call]]]�(WP(f),WP(v)) , if (u, f, v) ∈ Call

By Knaster-Tarski fixpoint theorem, the constraint system WP has a greatest solution
w.r.t. “⇒” which we denote with WP(f),WP(u), f ∈ Funct, u ∈ N . With Proposi-
tion 2, we verify that αS has the following properties:

1. αS({x1}) = (y =̇x1);
2. αS([[[xj := t]]]T ) = [[[xj := t]]]�(αS(T ));
3. αS([[[xj := ?]]]T ) = [[[xj := ?]]]�(αS(T ));
4. αS([[[call]]](T1, T2)) = [[[call]]]�(αS(T1), αS(T2)).

By the Transfer Lemma from fixpoint theory (c.f., e.g., [2, 5]), we therefore find:

Theorem 1 (Weakest Preconditions). Let p be a program of size n with k variables.

1. For every function f of p, WP(f) =
∧

{(y =̇ t) | t ∈ S(f)}; and
for every program point u of p, WP(u) =

∧
{(y =̇ t) | t ∈ S(u)}.

2. The greatest solution of constraint system WP can be computed in time O(n ·k ·∆)
where ∆ is the maximal size of a DAG representation of a conjunction occurring
during the fixpoint computation. ��

Thus, the greatest solution of the constraint system WP precisely characterizes the
weakest preconditions of the equality x1 =̇y. Evaluation of “∧” as well as of a right-
hand side in the constraint system WP at most doubles the sizes of DAG representations
of occurring conjunctions. Therefore, the value ∆ is bounded by 2O(n·k).
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Example 1. Consider the function f from Figure 1. First, f and every program point
is initialized with the top element true of the lattice Ey. The first approximation of the
weakest precondition at program point 4 for y =̇x1 at 5, then is:

WP(4) = (y =̇x1) ∧ ([[[x1 := x3]]]� (y =̇x1) = (y =̇x1) ∧ (y =̇x3)

Accordingly, we obtain for the start point 3,

WP(3) = [[[call]]]�(true,WP(4)) ∧ ([[[x1 := a(x2)]]]� (WP(4)))
= true ∧ (y =̇ a(x2)) ∧ (y =̇x3)
= (x3 =̇ a(x2)) ∧ (y =̇x3)

Thus, we obtain (x3 =̇ a(x2)) ∧ (y =̇x3) as a first approximation for the weakest pre-
condition of y =̇x1 w.r.t. f . Since the fixpoint computation already stabilizes here, we
have found that WP(f) = (x3 =̇ a(x2)) ∧ (y =̇x3) . ��

5 Inferring Herbrand Equalities

For computingweakest preconditions,we have relied on conjunctions ofequalities,(pre-)
ordered by “⇒” where the greatest lower bound was implemented by the logical “∧”.
For inferring Herbrand equalities, we again use conjunctions of equalities, now over the
set of variables X alone, i.e., we use E = E(X) — but now we resort to least upper
bounds (instead of greatest lower bounds). Conceptually, the least upper bound φ1 � φ2
of two elements in E corresponds to the best approximation of the disjunction φ1 ∨ φ2.
Thus, it is the conjunction of all equalities implied both by φ1 and φ2. We can restrict
ourselves to equalities of the form xi =̇ t (xi ∈ X, t ∈ TΩ(X)). Accordingly,

φ1 � φ2 =
∧{xj =̇ t | (φ1 ∨ φ2)⇒ (xj =̇ t)}

=
∧{xj =̇ t | (φ1 ⇒ (xj =̇ t)) ∧ (φ2 ⇒ (xj =̇ t))}

Consider, e.g., φ1 ≡ (x1 =̇ g(a(x3))) ∧ (x2 =̇ a(x3)) and φ2 ≡ (x1 =̇ g(b)) ∧ (x2 =̇ b).
Then φ1 � φ2 is equivalent to x1 =̇ g(x2).

Conjunctions of equalities are not closed under existential quantification. Therefore,
we introduce the operators ∃�xj as the best approximations to ∃ xj in E:

∃�xj .φ =
∧{xi =̇ t | i �= j, (∃xj .φ)⇒ (xi =̇ t), t does not contain xj}

=
∧{xi =̇ t | i �= j, φ⇒ (xi =̇ t), t does not contain xj}

So, for example, ∃�x2. (x1 =̇ a(x2)) ∧ (x3 =̇ b(a(x2), c)) = x3 =̇ b(x1, c)
We readily verify that “∃�xj” preserves false and commutes with “�”. The operations

“�” and “∃� xj” can be efficiently implemented on partition DAG representations [22] .
More specifically, ‘∃� xj” is linear-time whereas the least upper bound of two conjunc-
tions with DAG representations of sizes n1, n2 can be performed in time O(n1 + n2)
resulting in (a DAG representation of) a conjunction of size O(n1 + n2).

We define the abstraction αR : 2X→TΩ → E that maps a set of states to the conjunc-
tion of all equalities valid for all states in the set:

αR(S) =
∧{xj =̇ t | ∀σ ∈ S : σ |= xj =̇ t}

As an equality holds for a state σ : X → TΩ iff it is implied by the conjunction
x1 =̇σ(x1) ∧ . . . ∧ xk =̇σ(xk) we have αR(S) =

⊔{∧k
i=1 xi =̇σ(xi) | σ ∈ S}. In

particular, this implies that αR commutes over unions.
We must provide abstractions of the operators [[. . .]]. We define:
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[[xj := t]]�φ = ∃�y.φ[y/xj ] ∧ (xj =̇ t[y/xj ])
[[xj := ?]]�φ =

⊔{[[xj := c]]�φ | c ∈ TΩ}
=

⊔{∃�y.φ[y/xj ] ∧ (xj =̇ c]) | c ∈ TΩ}
= ∃�y.

⊔{φ[y/xj ] ∧ (xj =̇ c]) | c ∈ TΩ}
= ∃�y.φ[y/xj ]
= ∃�xj .φ

Thus, [[xj := t]]�φ is the best abstraction of the strongest postcondition of φw.r.t. xj := t
and the abstract transformer [[xj := ?]]� is given by abstract existential quantification.
For instance, we have: [[x1 := x3]]� (x3 =̇ a(x2)) = (x1 =̇ a(x2)) ∧ (x3 =̇ a(x2)) and
[[x3 := ?]]� (x3 =̇ a(x2)) ∧ (x1 =̇ a(x2)) = (x1 =̇ a(x2)) . These definitions provide
obvious implementations using partition DAGs. In particular, the abstract transformer
[[xj := t]]� can be computed in time linear in the size n1 of the argument and the size n2
of (a DAG representation of) t. Moreover, the DAG representation of the result is again
of size O(n1 + n2). A similar estimation also holds for nondeterministic assignments.

The crucial point in constructing an analysis is the abstract operator [[call]]� for func-
tion calls. The first argument of this operator takes the weakest precondition φ1 of
(y =̇x1) for a (possibly empty) set of effects of some function. The second argument
φ2 takes a conjunction of equalities which is valid before the call. We define:

[[call]]�(true, φ2) = false

[[call]]�(φ′ ∧ (y =̇ e), φ2) =
{

[[x1 := e]]�φ2 if φ2 ⇒ φ′

[[x1 := ?]]�φ2 otherwise

The first rule states that everything is true at an unreachable program point. Otherwise,
we can write φ1 as φ′ ∧ (y =̇ e) where φ′ and e do not contain y. If φ′ is implied by the
preconditionφ2, we are guaranteed that all return values for x1 are equivalent to e. In this
case, the call behaves like an assignment x1 := e. Otherwise, at least two different return
values are possible. Then we treat the function call like a non-deterministic assignment
x1 := ?.

Example 2. Consider, e.g., the call of function f in Main in Fig. 1. By Example 1,
WP(f) equals φ1 = (x3 =̇ a(x2)) ∧ (y =̇x3). Before the call, φ2 = (x3 =̇ a(x2))
holds. Accordingly, we obtain:

[[call]]�((x3 =̇ a(x2)) ∧ (y =̇x3),x3 =̇ a(x2)) = [[x1 := x3]]�(x3 =̇ a(x2))
= (x1 =̇ a(x2)) ∧ (x3 =̇ a(x2)) . ��

In order to precisely infer all valid Herbrand equalities, we observe:

Proposition 3. 1. [[xj := t]]� and [[xj := ?]]� preserve false and commute with “�”.
2. In the first argument, [[call]]� maps true to false and translates “∧”into “�”, i.e.,

[[call]]�(true, φ) = false and [[call]]�(φ1 ∧ φ2, φ) = [[call]]�(φ1, φ) � [[call]]�(φ2, φ) .

In the second argument, [[call]]� preserves false and commutes with “�”, i.e.,

[[call]]�(φ, false) = false and [[call]]�(φ, φ1 � φ2) = [[call]]�(φ, φ1) � [[call]]�(φ, φ2) .

Proof: Statement 1 easily follows from the definitions. Therefore we only prove the second
statement about the properties of [[call]]�. The assertion concerning the second argument easily
follows from assertion 1. The assertion about the transformation of true in the first argument
follows from the definition. Therefore, it remains to consider a conjunction φ1 ∧ φ2 in the first
argument of [[call]]�. We distinguish two cases.
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Case 1:φ1∧φ2 is not satisfiable, i.e., equivalent to false. Then [[call]]�(φ1∧φ2, φ) = [[x1 := ?]]� φ.
If any of the φi is also not satisfiable, then [[call]]�(φi, φ) = [[x1 := ?]]� φ which subsumes the
effect of any assignment x1 := e onto φ, and the assertion follows. Therefore assume that both
φ1 and φ2 are satisfiable. Each of them then can be written as φ′

i ∧ (y =̇ ei). If any of the φ′
i

is not implied by φ, then again [[call]]�(φi, φ) = [[x1 := ?]]� φ which subsumes the effect of the
assignment x1 := e3−i onto φ. Thus,

[[call]]�(φ1, φ) � [[call]]�(φ2, φ) = [[call]]�(φi, φ) = [[x1 := ?]] φ = [[call]]�(φ1 ∧ φ2, φ) .

If on the other hand, both φ′
i are implied by φ, then φ′

1 ∧ φ′
2 is satisfiable. Thus, σ(e1) �= σ(e2)

for any σ |= φ′
1 ∧ φ′

2. In particular, e1 =̇ e2 cannot be implied by φ. Since φ′
i is implied by φ,

[[call]]�(φi, φ) = [[x1 := ei]]� φ. On the other hand, for every ψ containing x1, it is impossible that
both φ⇒ ψ[e1/x1] and φ⇒ ψ[e2/x1] hold. Therefore, the least upper bound of [[call]]�(φ1, φ)
and [[call]]�(φ2, φ) is given by the conjunction of all ψ implied by φ which do not contain x1. This
conjunction precisely equals [[x1 := ?]]� φ = [[call]]�(false, φ), and the assertion follows.
Case 2: φ1 ∧ φ2 is satisfiable. Then also both of the φi are satisfiable and can be written as
conjunctions φ′

i∧ (y =̇ ei) for some φ′
i and ei not containing y. If φ does not imply φ′

1∧φ′
2, then

both sides of the equation are equal to [[x1 := ?]] φ and nothing is to prove. Therefore, assume
that φ⇒ φ′

1 ∧ φ′
2. If φ also implies e1 =̇ e2, then for every ψ, φ⇒ ψ[e1/x1] iff φ⇒ ψ[e2/x1].

Therefore in this case,

[[call]]�(φi, φ) = [[x1 := e1]]� φ = [[x1 := e2]]� φ = [[call]]�(φ1 ∧ φ2, φ)

and the assertion follows. If φ does not imply e1 =̇ e2, the least upper bound of [[x1 := ei]]� φ is
the conjunction of all ψ not containing x1 which are implied by φ — which equals:

[[x1 := ?]]� φ = [[call]]�(φ′ ∧ (y =̇ e1), φ) = [[call]]�(φ1 ∧ φ2, φ)

for φ′ ≡ φ′
1 ∧ φ′

2 ∧ (e1 =̇ e2), and the assertion follows. ��
Applying the abstraction αR to the constraint system R of reaching states, we obtain
the constraint system H:

[H1] H(Main)⇐ true
[H2] H(f) ⇐H(u) , if (u, f, ) ∈ Call
[H3] H(stf ) ⇐H(f)
[H4] H(v) ⇐ [[s]]�(H(u)) , if (u, s, v) ∈ Base
[H5] H(v) ⇐ [[call]]�(WP(f),H(u)) , if (u, f, v) ∈ Call

Note that WP(f) is used in constraint H5 as a summary information for function f .
Note also that H specifies a forwards analysis while WP accumulates information in
a backwards manner. Again by Knaster-Tarski fixpoint theorem, the constraint system
H has a least solution which we denote with H(f),H(u), f ∈ Funct, u ∈ N . By
Proposition 3, we have:

1. αR(X → TΩ) = true;
2. αR([[xj := t]]S) = [[xj := t]]�(αR(S));
3. αR([[xj := ?]]S) = [[xj := ?]]�(αR(S));
4. αR([[call]](T, S)) = [[call]]�(αS(T ), αR(S)).

We finally obtain:

Theorem 2 (Soundness and Completeness for Side-effect-free Functions). Assume
p is a Herbrand program of size n with k variables.
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1. For every function f , H(f) =
⊔

{
∧k

i=1 xi =̇σ(xi) | σ ∈ R(f)}; and for every

program point u, H(u) =
⊔

{
∧k

i=1 xi =̇σ(xi) | σ ∈ R(u)}.
2. Given the values WP(f), f ∈ Funct, the least solution of the constraint system

H can be computed in time O(n · k · ∆) where ∆ is the maximal size of a DAG
representation of an occurring conjunction.

By statement 1 of the theorem, our analysis of side-effect-free functions is not only sound,
i.e., never returns a wrong result, but complete, i.e., we compute for every program pointu
and for every function f , the conjunction of all equalities which are valid when reaching
u and a call of f , respectively. Each application of “�” as well as of any right-hand
side in the constraint system H may at most double the sizes of DAG representations of
occurring conjunctions. Together with the corresponding upper bound for the greatest
solution of the constraint system WP, the value∆ therefore can be bounded by 2O(n·k).
Indeed, this upper bound is tight in that it matches the corresponding lower bound for
the intra-procedural case [9].

Example 3. Consider again the program from Figure 1. At the start point 0 of Main,
no non-trivial equation holds. Therefore, H(0) = true. For program point 1, we have:

H(1) = [[x3 := a(x2)]]�true = x3 =̇ a(x2)

In Section 4, we have computed the weakest precondition of y =̇x1 for the function f
as (x3 =̇ a(x2)) ∧ (y =̇x3). Since H(1) implies the equation x3 =̇ a(x2), we obtain a
representation of all equalities valid at program exit 2 by:

H(2) = [[call]]�(WP(f),H(1)) = [[x1 := x3]]�(x3 =̇ a(x2))
= (x3 =̇ a(x2) ∧ (x1 =̇ a(x2))

Thus at the return point of Main both x3 =̇ a(x2) and x1 =̇ a(x2) holds. ��

6 Programs with Global Variables

In this section, we indicate how our inference algorithm for side-effect-free functions can
be extended to an inference algorithm for functions with multiple return values. For the
following, we assume that the first m variables are global or, equivalently, that a run of
a function f simultaneously computes new values for all variables x1, . . . ,xm. Thus, a
function call is now denoted by the vector assignment: (x1, . . . ,xm) := f(x1, . . . ,xk).
One execution of a function is modeled by a tuple τ = (e1, . . . , em) where ej ∈ TΩ(X)
expresses how the value of variable xj after the call depends on the values of the variables
before the call. This tuple can also be viewed as a substitution τ : {x1, . . . ,xm} →
TΩ(X). Accordingly, we change the concrete semantics of a call to:

[[call]](T, S) = {σ[x1 �→ σ(e1), . . . ,xm �→ σ(em)] | (e1, . . . , em) ∈ T, σ ∈ S}
[[[call]]](T1, T2) = {τ1 ◦ τ2 | τi ∈ Ti}

In order to obtain effective approximations of the set of effects of function calls, we
conceptually abstract one function call computing the values of m variables, by m
function calls each of which computes the value of one global variable independently of
the others. Technically, we abstract sets of k-tuples with k-tuples of sets. This means that
we perform for each variable xj ∈ {x1, . . . , xm} a separate analysis Pj of the function
body. Accordingly, we generalize the system WP to a constraint system P:
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[Pj1] Pj(f) ⇒ Pj(stf )
[Pj2] Pj(retf )⇒ (yj =̇xj)
[Pj3] Pj(u) ⇒ [[[s]]]�(Pj(v)) , if (u, s, v) ∈ Base
[Pj4] Pj(u) ⇒ [[[callm]]]�(P1(f), . . . ,Pm(f),Pj(v)) , if (u, f, v) ∈ Call

Here for j = 1, . . . ,m, yj is a distinct fresh variable meant to receive the return value for
the global variable xj . The key difference to the constraint system WP is the treatment
of calls by means of the new operator [[[callm]]]�. This operator takes m + 1 arguments
φ1, . . . , φm, ψ (instead of 2 in Section 4). For j = 1, . . . ,m, the formula φj ∈ Eyj

represents a precondition of the call for the equality xj =̇yj . The formula ψ on the other
hand represents a postcondition for the call. We define:

[[[callm]]]�(. . . , true, . . . , ψ) = true
[[[callm]]]�(φ′

1 ∧ (y1 =̇ e1), . . . , φ′
m ∧ (ym =̇ em), ψ) =

∧
i∈I φ′

i ∧ ψ[e1/x1, . . . , em/xm]

where I = {i ∈ {1, . . . ,m} | xi occurs in ψ}. As in Section 4, φj ⇔ true implies that
the set of effects is empty. In this case, the operator returns true. Therefore, now assume
that for every j, φj is equivalent to φ′

j ∧ yj =̇ ej where φ′
j and ej contain only variables

from X. If for all j, φ′
j equals true, i.e., the return value for xj equals ej , then the

call behaves like the substitution ψ[e1/x1, . . . , em/xm], i.e., the multiple assignment
(x1, . . . , xm) := (e1, . . . , em). Otherwise, we add the preconditions φ′

i for every xi

occurring in ψ to guarantee that all return values for xi are equal to ei.
As in Section 5, we can use the greatest solution of P to construct a constraint system

H′ from H by replacing the constraints H5 for calls with the new constraints:

[H5′] H(v)⇐ [[callm]]�(P1(f), . . . ,Pm(f),H(u)) , if (u, f, v) ∈ Call

Here, the necessary new abstract operator [[callm]]� for calls is defined by:

[[callm]]�(. . . , true, . . . , ψ) = false
[[callm]]�(φ′

1 ∧ (y1 =̇ e1), . . . , φ′
m ∧ (ym =̇ em), ψ) =

∃�y1, . . . ,ym.ψ[y/x] ∧∧
j∈I(xj =̇ ej [y/x] )

where [y/x] is an abbreviation for the replacement [y1/x1, . . . ,ym/xm] and I denotes
the set {i | ψ ⇒ φ′

i}. We find:

Theorem 3 (Soundness). Assume we are given a Herbrand program p with m globals.

1. The greatest solution of the constraint system P for p yields for every function f of
p, safe preconditions for the postconditions xi =̇yi, i = 1, . . . ,m.

2. The least solution of the constraint system H′ for p yields for every program point
u of p, a conjunction of Herbrand equalities which are valid at u.

The analysis has running-time O(n ·m2 · k ·∆) where n is the size of the program and
∆ is the maximal size of a conjunction occurring during the analysis. ��

At each evaluation of a constraint during the fixpoint computation for P the maximal
size of a conjunction is at most multiplied by a factor of (m + 1). Since the number
of such evaluations is bounded by O(n · m · k), we conclude that ∆ is bounded by
(m + 1)O(n·m·k). Beyond mere soundness, we can say more about the quality of our
analysis. In fact, it is strong enough to determine all interprocedural Herbrand constants,
i.e., to infer for all program points, all equalities of the form xj =̇ t, t a ground term.
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Theorem 4 (Completeness for Constants). Assume p is a Herbrand program of size
n with m globals. Then the following holds:

1. For every program point u of p, every variable xj ∈ X and ground term t, the
equality xj =̇ t holds at u iff it is implied by Hm(u).

2. All Herbrand constants up to size d can be determined in time O(n ·m2 · k2 · d).

Thus, our algorithm allows for maximally precise interprocedural propagation of Her-
brand constants. Moreover, if we are interested in constants up to a given size only, the
algorithm can be tuned to run in polynomial time.

Proof: [Sketch] The idea for a proof of the first assertion of Theorem 4 is to introduce a new liberal
notion of effect of a function which describes the effect by means of a tuple of sets (instead of a
set of tuples). Similar to Sections 4 and 5 one then proves that the constraint systems P together
with Hm precisely compute all Herbrand equalities valid relative to the liberal notion of effect.
This implies that our analysis is sound. In order to prove that it is complete for equalities xj =̇ t,
t a ground term, we show that if two states at a program point u computed with the liberal effect
result in different values for xj then there are also two states at u computed according to the strict
notion of effects which differ in their values for xj . ��

7 Conclusion

We have presented an interprocedural algorithm for inferring valid Herbrand equalities.
Our analysis is complete for side-effect-free functions in that it allows us to infer all valid
Herbrand equalities. We also indicated that our analysis for procedures with more than
one global still allows us to determine all Herbrand constants. Constant propagation can
even be tuned to run in polynomial time if we are interested in constants of bounded size
only. Our key idea for the case of side-effect-free functions is to describe the effect of a
function by its weakest precondition of the equality y =̇x1.

It remains for future work to investigate the practical usability of the proposed anal-
ysis. It also might be interesting to see whether other interprocedural analyses can take
advantage of a related approach. In [16], for instance, we discuss an application for
determining affine relations. In [15] we have presented an analysis of Herbrand equal-
ities which takes disequality guards into account. It is completely open in how far this
intra-procedural analysis can be generalized to some inter-procedural setting.
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Abstract. We consider integer arithmetic modulo a power of 2 as pro-
vided by mainstream programming languages like Java or standard im-
plementations of C. The difficulty here is that the ring Zm of integers
modulo m = 2w, w > 1, has zero divisors and thus cannot be embedded
into a field. Not withstanding that, we present intra- and inter-procedural
algorithms for inferring for every program point u, affine relations be-
tween program variables valid at u. Our algorithms are not only sound
but also complete in that they detect all valid affine relations. Moreover,
they run in time linear in the program size and polynomial in the number
of program variables and can be implemented by using the same modular
integer arithmetic as the target language to be analyzed.

1 Introduction

Analyses for automatically finding linear invariants in programs have been stud-
ied for a long time [6, 3, 4, 7, 12, 11, 9]. With the notable exception of Granger
[3], none of these analyses can find out, that the linear invariant 21 · x − y = 1
holds upon termination of the following Java program:

class Eins {
public static void main(String [] argv) {

int x = 1022611261; int y = 0;
if (argv.length > 0) {

x = 1; y = 20;
}
System.out.println("" + (21*x-y));

}
}

Why is this? In order to allow implementing arithmetic operations by the efficient
instructions provided by processors, Java, like other common programming lan-
guages, performs arithmetic operations for integer types modulo m = 2w where
w = 32, if the result expression is of type int, and w = 64, if the result ex-
pression is of type long [2–p. 32]. The invariant 21 · x − y = 1 is valid because
21 ∗ 1022611261 = 1 modulo 232. In order to work with mathematical structures
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Fig. 1. Zp interpretation is unsound

with nice properties analyses for finding linear invariants typically interpret vari-
ables by members from a field, e.g., the set Q of rational numbers [6, 11, 8], or
Zp = Z/(pZ) for prime numbers p [4]. Even worse: analyses based on Zp for a
fixed prime p alone may yield unsound results.1 In the small flow graph in Fig. 1,
for instance, x is a constant at program point 2 if variables take values in Zp for
a prime number p > 2, but it is not a constant if variables take values in Zm.
Interestingly, the given problem is resolved by Granger’s analysis which not only
detects all affine relations between integer variables but also all affine congruence
relations. On the other hand, Granger’s analysis is just intra-procedural, and no
upper complexity bound to his algorithm is known.

In this paper we present intra- and inter-procedural analyses that are sound
and, up to the common abstraction of guarded to non-deterministic branching,
complete with respect to arithmetic modulo powers of 2. Our analyses are thus
tightly tailored for the arithmetic used in mainstream programming languages.
For this arithmetic, our analyses are more precise than analyses based on com-
puting over Q, or Zp and, in contrast to analyses based on computing over Zp

with a fixed prime p, they are sound w.r.t. the arithmetic used in mainstream
programming languages. Technically, our new analyses are based on the meth-
ods from linear algebra that we have studied previously [8, 11]. The major new
difficulty is that unlike Q and Zp, Zm is no longer a field. In particular, Zm has
zero divisors implying that not every non-zero element is invertible. Therefore,
results from linear algebra over fields do not apply to sets of vectors and matrices
over Zm. However, these sets are still modules over Zm. An extensive account
of linear algebra techniques for modules over abstract rings can, e.g., be found
in [5, 13]. Here, we simplify the general techniques to establish the properties of
Zm which suffice to implement similar algorithms as in [8, 11]. Interestingly, the
new analyses provide extra useful information beyond analyses over Q alone, for
instance, whether or not a variable is always a multiple of 2.

Besides the soundness and completeness issues discussed above, there is an-
other advantage of our analyses that is perhaps more important from a practical
point of view than precision. For any algorithm based on computing in Q, we
must use some representation for rational numbers. When using floating point

1 If the primes of the analysis are chosen randomly, the resulting analysis is at least
“probabilistically sound” [4].
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numbers, we must cope with rounding errors and numerical instability. Alter-
natively, we may represent rational numbers as pairs of integers. Then we can
either rely on integers of bounded size as provided by the host language. In
this case we must cope with overflows. Or we represent integers by arbitrarily
long bit strings. In this case the sizes of our representations may explode. On
the other hand, when computing over Zp, p a prime, special care is needed to
get the analysis right. The algorithms proposed in this paper, however, can be
implemented using the modulo arithmetic provided by the host language itself.
In particular, without any additional effort this totally prevents explosion of
number representations, rounding errors, and numerical instability.

Our paper is organized as follows. In Section 2, we investigate the properties
of the ring Zm for powers m = 2w and provide basic technology for dealing
with generating systems of Zm-modules. In particular we show how to compute
a (finite description of) all solutions of a system of linear equations over Zm.
In Section 3, we show how these insights can be used to construct sound and
complete program analyses. We introduce our basic notion of programs together
with their concrete semantics. We introduce affine relations and adapt the basic
technology provided in [11] for fields to work for rings Zm. Finally, we sketch
how to obtain highly efficient intraprocedural analyses of affine relations over
Zm. In Section 4, we summarize and explain further directions of research.

2 The Ring Zm for Powers m = 2w

In [5, 13], efficient methods are developed for computing various normal forms of
matrices over principal ideal rings (PIR’s). Here, we are interested in the residue
class ring Zm for prime powers m which is a special case of a PIR. Accordingly,
the general methods from [5, 13] are applicable. It turns out, however, that for
prime powers m, the ring Zm has a very special structure. In this section, we
show how this structure can be exploited to obtain specialized algorithms in
which the computation of (generalized) gcd’s is (mostly) abandoned. Since the
abstract values of our program analyses will be submodules of Z

N
m for suitable

N , we also compute the exact maximal length of a strictly ascending chain of
such submodules. Since we need effective representations of modules, we provide
algorithms for dealing with sets of generators. In particular, we show how to solve
homogeneous systems of linear equations over Zm without gcd computations. In
the sequel, let m = 2w, w ≥ 1. We begin with the following observation.

Lemma 1. Assume a ∈ Zm is different from 0. Then we have:

1. If a is even, then a is a zero divisor, i.e., a · b = 0 (modulo m) for some
b ∈ Zm different from 0.

2. If a is odd, then a is invertible, i.e., a · b = 1 modulo m for some b ∈ Zm.
Using arithmetic modulo m, the inverse b can be computed in time O(w).

Proof. Assume a = 2 · a′. Then a · 2w−1 = 2w · a′ = 0 (modulo m). If, on the
other hand, a is odd, then a and m are relative prime. Therefore, we can use the
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Euclidean algorithm to determine integers x and y such that 1 = a · x + m · y.
Accordingly, b = x (modulo m) is the inverse of a. This algorithm, however,
cannot be executed modulo m. In the case where w = 1, we know that Zm is
in fact the field Z2. Thus, the inverse of a �= 0 (modulo 2) is given by a. If on
the other hand w > 1, we can use the Euclidean algorithm to determine odd
integers x1 and y1 with 1 = a · x1 + 2w−1 · y1. By computing the square of both
sides of this equation, we obtain:

1 = a2x2
1 + 2 · ax12w−1y1 + 2(w−1)2y2

1

Every summand of the right-hand side except the first contains 2w as a factor
and thus equals 0 (modulo m). Hence, b = ax2

1 (modulo m). Since the Euclidean
algorithm uses O(log(m)) operations, the complexity statement follows. ��

Example 1. Consider w = 32 and a = 21. We use the familiar notation of Java int
values as elements in the range [−231, 231 − 1]. The Euclidean algorithm applied
to a and m′ = 231 (or: −231 in signed notation) gives us x1 = −1124872387 and
y1 = 11. Then b = 21 · x2

1 = 1022611261 modulo 232 is the inverse of a. ��

Since computing inverses can be rather expensive, we will avoid these whenever
possible. For a ∈ Zm, we define the rank of a as r ∈ {0, . . . , w} iff a = 2r · a′ for
some invertible element a′. In particular, the rank is 0 iff a itself is invertible, and
the rank is w iff a = 0 (modulo m). Note that the rank of a can be computed by
determining the length of suffix of zeros in the bit representation of a. If there
is no hardware support for this operation, it can be computed with O(log(w))
arithmetic operations using a variant of binary search.

A subset M ⊆ Z
k
m of vectors2 (x1, . . . , xk)t with entries xi in Zm is a Zm-

module iff it is closed under vector addition and scalar multiplication with ele-
ments from Zm. A subset G ⊆ M is a set of generators of M iff M = {

∑l
i=1 rigi |

l ≥ 0, ri ∈ Zm, gi ∈ G}. Then M is generated by G and we write M = 〈G〉.
For a non-zero vector x = (x1, . . . , xk)t, we call i the leading index iff xi �= 0

and xi′ = 0 for all i′ < i. In this case, xi is the leading entry of x. A set of
non-zero vectors is in triangular form iff for all distinct vectors x, x′ ∈ G, the
leading indices of x and x′ are distinct. Every set G in triangular form contains
at most k elements. We define the rank of a triangular set G of cardinality s as
the sum of the ranks of the leading entries of the vectors of G plus (k− s) ·w (to
account for k− s zero vectors). Note that this deviates from the common notion
of the rank of a matrix.

Assume that we are given a set G in triangular form together with a new
vector x. Our goal is to construct a set Ḡ in triangular form generating the same
Zm-module as G∪{x}. If x is the zero vector, then we simply can choose Ḡ = G.
Otherwise, let i and 2rd (d invertible) denote the leading index and leading entry
of x, respectively. We distinguish several cases:

1. The i-th entry of all vectors x′ ∈ G are 0. Then we choose Ḡ = G ∪ {x}.

2 The superscript “t” denotes the transpose operation which mirrors a matrix at the
main diagonal and changes a row vector into a column vector (and vice versa).
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2. i is the leading index of some y ∈ G where the leading entry equals 2r′
d′ (d′

invertible).
(a) If r′ ≤ r, then we compute x′ = d′ · x − 2r−r′

d · y. Thus, the i-th entry
of x′ equals 0, and we proceed with G and x′.

(b) If r′ > r, then we construct a new set G′ by replacing y with the vector
x. Furthermore, we compute y′ = d · y − 2r′−rd′ · x. Thus, the i-th entry
of y′ equals 0, and we proceed with G′ and y′.

Eventually, we arrive at a set Ḡ having the desired properties. Moreover, either
the resulting Ḡ equals G or the rank of Ḡ is strictly less than the rank of G.

Overall, computing a triangular set for a given triangular set and a new vector
amounts to at most O(k) computations of ranks together with O(k2) arithmetic
operations. On the whole, it therefore can be done with O(k · (k + log(w)))
operations. Accordingly, we obtain the following theorem:

Theorem 1. 1. Every Zm-module M ⊆ Z
k
m is generated by some set G of

generators of cardinality at most k.
2. Given a set G′ of generators of cardinality n, a set G of cardinality at most

k can be computed in time O(n · k · (k + log(w))) such that 〈G〉 = 〈G′〉.
3. Every strictly increasing chain of Zm-modules M0 ⊂ M1 ⊂ . . . ⊂ Ms ⊆ Z

k
m,

has length s ≤ k · w.

Proof. The second statement follows from our construction of triangular sets
of generators. Starting from the empty set, which is triangular by definition,
we successively add the vectors in G′ with the procedure described above. The
complexity is then estimated by summing up the operations of these n inclusions.

The first statement trivially follows from the second because M is a finite
generator of itself. It remains to consider the third statement. Assume that
Mi ⊂ Mi+1 for i = 0, . . . , s− 1. Consider finite sets Gi of generators for Mi. We
construct a sequence of triangular sets generating the same modules as follows.
G′

0 is the triangular set constructed for G0. For i > 0, G′
i is obtained from G′

i−1
by successively adding the vectors in Gi to the set G′

i−1. Since Mi−1 �= Mi, the
triangular set G′

i−1 is necessarily different from the set G′
i for all i = 1, . . . , s.

Therefore, the ranks of the G′
i are strictly decreasing. Since the maximal possible

rank is k · w and ranks are non-negative, the third statement follows. ��

Example 2. In order to keep the numbers small, we choose here and in the
following examples of this section w = 4, i.e., m = 16. Consider the vectors
x = (2, 6, 9)t and y = (0, 2, 4)t with leading indices 1 and 2 and both with
leading entry 2. Thus, the set G = {x, y} is triangular. Let z = (1, 2, 1)t. We
want to construct a triangular set of generators equivalent to G∪ {z}. Since the
leading index of z equals 1, we compare the leading entries of x and z. The ranks
of the leading entries of x and z are 1 and 0, respectively. Therefore, we exchange
x in the generating set with z while continuing with x′ = x−2 ·z = (0, 2, 7)t. The
leading index of x′ has now increased to 2 . Comparing x′ with the vector y, we
find that the leading entries have identical ranks. Thus, we can subtract a suitable
multiple of y to bring the second component of x′ to 0 as well. We compute
x′′ = x′ − 1 · y = (0, 0, 3)t. As triangular set we finally return Ḡ = {z, y, x′′}. ��



Analysis of Modular Arithmetic 51

For a set of generators G being triangular, does not imply being a minimal
set of generators. For w = 3 consider, e.g., the triangular set G = {x, y} where
x = (4, 1)t, y = (0, 2)t. Multiplying x with 2 results in: 2·x = (8, 2)t = (0, 2)t = y.
Thus {x} generates the same module as G implying that G is not minimal.

It is well-known that the submodules of Z
k
m are closed under intersection.

Ordered by set inclusion they thus form a complete lattice Sub(Zk
m), like the

linear subspaces of F
k for a field F. However, while the height of the lattice of

linear subspaces of F
k is k for dimension reasons, the height of the lattice of

submodules of Z
k
m is precisely k ·w. By Theorem 1, k ·w is an upper bound for

the height and it is not hard to actually construct a chain of this length. The
least element of Sub(Zk

m) is {0}, the greatest element is Z
k
m itself. The least

upper bound of two submodules M1,M2 is given by
M1 �M2 = 〈M1 ∪M2〉 = {m1 + m2 | mi ∈Mi} .

We turn to the computation of the solutions of systems of linear equations in k
variables over Zm. Here, we consider only the case where the number of equations
is at most as large as the number of variables. By adding extra equations with
all coefficients equal to zero, we can assume that every such system has precisely
k equations. Such a system can be denoted as Ax = b where A is a square
(k × k)-matrix A = (aij)1≤i,j≤k with entries aij ∈ Zm, x = (x1, . . . ,xk)t is a
column vector of unknowns and b = (b1, . . . , bk)t is a column vector of elements
bi ∈ Zm. Let L denote the set of all solutions of Ax = b. Let L0 denote the
set of all solutions of the corresponding homogeneous system Ax = 0 where
0 = (0, . . . , 0)t. It is well-known that, if the system Ax = b has at least one
solution x, then the set of all its solutions can be obtained from x by adding
solutions of the corresponding homogeneous system, i.e.,

L = {x + y | y ∈ L0}
Let us first consider the case where the matrix A is diagonal, i.e., aij = 0 for all
i �= j. The following lemma deals completely with this case.

Lemma 2. Assume A is a diagonal (k× k)-matrix over Zm where the diagonal
elements are given by aii = 2widi for invertible di (wi = w means aii = 0).

1. Ax = b has a solution iff for all i, wi does not exceed the rank of bi.
2. If Ax = b is solvable, then one solution is given by: x = (x1, . . . , xk)t with

xi = 2w′
i−wi · d−1

i b′i where bi = 2w′
ib′i for invertible elements b′i.

3. The set of solutions of the homogeneous system A x = 0 is the Zm-module
generated from the vectors: e(j) = (e1j , . . . , ekj)t, j = 1, . . . , k, where eij =
2w−wi if i = j and eij = 0 otherwise. ��

In contrast to equation systems over fields, a homogeneous system Ax = 0
thus may have non-trivial solutions — even if all entries aii are different from
0. Note also, that in contrast to inhomogeneous systems, sets of generators for
homogeneous systems can be computed without computing inverses.

Example 3. Let w = 4, i.e., m = 16, and

A =
(

2 0
0 8

)
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Then the Zm-module of solutions of Ax = 0 is generated by the two vectors
e(1) = (8, 0)t and e(2) = (0, 2)t. ��

For the case where the matrix A is not diagonal, we adapt the concept of invert-
ible column and row transformations known from linear algebra to bring A into
diagonal form. More precisely, we have:

Lemma 3. Let A denote an arbitrary (k × k)-matrix over Zm. Then we have:

1. A can be decomposed into matrices: A = L · D · R where D is diagonal and
L,R are invertible (k × k)-matrices over Zm.

2. W.r.t. this decomposition, x is a solution of A x = b iff x = R−1x′ for a
solution x′ of the system D x = b′ for b′ = L−1b.

3. The matrix D together with the matrix R−1 and the vector b′ = L−1 b can
be computed in time O(log(w) · k3). In particular, computation of inverses
is not needed for the decomposition.

Proof. In order to prove that every matrix A can indeed be decomposed into
a product A = L · D · R for a diagonal matrix D and invertible matrices L,R
over Zm, we recall the corresponding technique over fields from linear algebra.
Recall that the idea for fields consisted in successively selecting a non-zero Pivot
element (i, j) in the current matrix. Since every non-zero element in a field is
invertible, the entry d at (i, j) has an inverse d−1. By multiplying the row with
d−1, one can bring the entry (i, j) to 1. Then one can apply column and row
transformations to bring all other elements in the same column or row to zero.
Finally, by exchanging suitable columns or rows, one can bring the former Pivot
entry into the diagonal. In contrast, when computing in the ring Zm, we do
not have inverses for all non-zero elements, and even if there are inverses, we
would like to avoid their construction. Therefore, we refine the selection rule
for Pivot elements by always selecting as a Pivot element the (i, j) where the
entry d = 2rd′ of the current matrix has minimal rank r, and d′ is invertible
over Zm. Since r has been chosen minimal, still all other elements in row i and
column j are multiples of 2r. Therefore, all these entries can be brought to 0
by multiplying the corresponding row or column with d′ and then subtracting a
suitable multiple of the i-th row or j-th column, respectively. These elementary
transformations are invertible since d′ is invertible. Finally, by suitable exchanges
of columns or rows, the entry (i, j) can be moved into the diagonal. Proceeding
with the classical construction for fields, the inverses of the chosen elementary
column transformations are collected in the matrix R while the inverses of the
chosen elementary row transformations are collected in the matrix L. Since the
elementary transformations which we apply only express exchange of columns
or rows, multiplication with an invertible element or adding of a multiple of one
column / row to the other, these transformations are also invertible over Zm.

Now it should be clear how the matrix D together with the matrix R−1

and the vector b′ = L−1b can be computed. The matrix R−1 is obtained by
starting from the unit matrix and then performing the same sequence of column
operations on it as on A. Also, the vector b′ is obtained by performing on b the
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same sequence of row transformations as on A. In particular, this provides us
with the complexity bound as stated in item (3). ��

Putting lemmas 2 and 3 together we obtain:

Theorem 2. 1. A representation of the set L0 of a homogeneous equation sys-
tem A x = 0 over Zm can be computed without resorting to the computation
of inverses in time O(log(w) · k3).

2. A representation of the set L of all solutions of an equation system A x = b
over Zm can be computed in time O(w · k + log(w) · k3).

Example 4. Consider, for w = 4, i.e., m = 16, the equation system with the two
equations

12x1 + 6x2 = 10
14x1 + 4x2 = 8

We start with
A0 =

(
12 6
14 4

)
, b0 =

(
10
8

)
, R0 =

(
1 0
0 1

)
We cannot use (1, 1) with entry 12 as a Pivot, since the rank of 12 exceeds the
ranks of 14 and 6. Therefore we choose (1, 2) with entry 6. We bring the entry
at (2, 2) to 0 by multiplying the second row with 3 and subtracting the first row
twice in A0 and in b0:

A1 =
(

12 6
2 0

)
, b1 =

(
10
4

)
, R1 =

(
1 0
0 1

)
By subtracting twice the second column from the first in A1 and R1, we obtain:

A2 =
(

0 6
2 0

)
, b2 =

(
10
4

)
, R2 =

(
1 0
14 1

)
Now, we exchange the columns 1 and 2 in A3 and R3:

A3 =
(

6 0
0 2

)
, b3 =

(
10
4

)
, R3 =

(
0 1
1 14

)
Since 3 · 11 = 1 mod 16, we can easily read off x′0 =

( 11·5
2

)
=
( 7

2

)
as a solution of

A3 x = b3. We also see that the two vectors x′1 =
( 8

0

)
and x′1 =

( 0
8

)
generate the

module of solutions of the homogeneous system A3x = 0. Consequently, x0 =
R3 x

′
0 =
( 2

3

)
is a solution of A0 x = b0 and the two vectors x1 = R3 x

′
1 =
( 0

8

)
and

x1 = R3 x
′
2 =
( 8

0

)
generate the module of solutions of the homogeneous system

A0 x = 0. We conclude that the set of solutions of A0 x = b0 (over Z16) is

L =
{(

2+8a
3+8b

)
| a, b ∈ Z16

}
=

{( 2
3

)
,
( 2

11

)
,
( 10

3

)
,
( 10

11

)}
��

3 Affine Program Analysis

In the last section, we have proposed algorithms for reducing sets of generators of
Zm-modules and for solving systems of (homogeneous) linear equations over Zm.
In this section, we show how these algorithms can be plugged into the algorithmic
skeletons of the sound and complete analyses of affine relations over fields as,
e.g., presented in [11] to obtain sound and complete analyses of affine relations
over Zm. For the sake of an easier comparison, we use the same conventions as in
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Fig. 2. An inter-procedural program

[11] which we recall here briefly in order to be self-contained. Thus, programs are
modeled by systems of non-deterministic flow graphs that can recursively call
each other as in Figure 2. Let X = {x1, . . . ,xk} be the set of (global) variables
the program operates on. We use x to denote the column vector of variables
x = (x1, . . . ,xk)t. In this paper, we assume that the variables take values in
the ring Zm. Thus, a state assigning values to the variables is modeled by a k-
dimensional (column) vector x = (x1, . . . , xk)t ∈ Z

k
m; xi being the value assigned

to variable xi. For a state x, a variable xi and a value c ∈ Zm, we write x[xi �→ c]
for the state (x1, . . . , xi−1, c, xi+1, . . . , xk)t as usual.

We assume that the basic statements in our programs either are affine as-
signments of the form xj := t0 +

∑k
i=1 tixi (with ti ∈ Zm for i = 0, . . . , k and

xj ∈ X) or non-deterministic assignments of the form xj := ? (with xj ∈ X).
We annotated the edges in Fig. 2 with sequences of assignments just in order
to reduce the number of program points. Since assignments xj := xj have no
effect onto the program state, they are skip-statements and omitted in pictures.
Skip-statements can be used to abstract guards. This amounts to replacing con-
ditional branching in the original program with non-deterministic branching. It
is relative to this common abstraction when we say an analysis is complete.

Non-deterministic assignments xj := ? can be used as a safe abstraction of
statements our analysis cannot handle precisely, for example of assignments
xj := t with non-affine expressions t or of read statements read(xj).

In this setting, a program comprises a finite set Proc of procedure names
together with one distinguished procedure Main. Execution starts with a call
to Main. Each procedure q ∈ Proc is specified by a distinct edge-labeled control
flow graph with a single start point stq and a single return point retq where each
edge is either labeled with an assignment or a call to some procedure.

The key idea of [11] which we take up here for the analysis of modular arith-
metic, is to construct a precise abstract interpretation of a constraint system
characterizing the program executions that reach program points. For that, pro-
gram executions or runs are represented by sequences r of affine assignments:

r ≡ s1; . . . ; sm

where si are assignments of the form xj := t, xj ∈ X and t ≡ t0 +
∑k

i=1 tixi

for some t0, . . . , tk ∈ Zm. (Non-deterministic assignments give rise to multiple
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runs.) We write Runs for the set of runs. Every assignment statement xi := t
induces a state transformation [[xj := t]] : Z

k
m → Z

k
m given by

[[xj := t]]x = x[xj �→ t(x)] ,

where t(x) is the value of term t in state x. This definition is inductively extended
to runs: [[ε]] = Id, where Id is the identical mapping and [[ra]] = [[a]] ◦ [[r]].

A closer look reveals that the state transformation of an affine assignment
xj := t0 +

∑k
i=1 tixi is in fact an affine transformation. As a composition of

affine transformations, the state transformer of a run is therefore also an affine
transformation — no matter whether we compute over fields or some Zm. Hence,
for any run r, we can choose Ar ∈ Z

k2

m and br ∈ Z
k
m such that [[r]]x = Arx+ br.

The definition of affine relations over Zm is completely analogous to affine
relations over fields. So, an affine relation over Z

k
m is an equation a0 + a1x1 +

. . . + akxk = 0 for some ai ∈ Zm. As for fields, we represent such a relation by
the column vector a = (a0, . . . , ak)t. Instead of a vector space, the set of all affine
relations now forms a Zm-module isomorphic to Z

k+1
m . We say that the vector

y ∈ Z
k
m satisfies the affine relation a iff a0 + a′ · y = 0 where a′ = (a1, . . . , ak)t

and “·” denotes the scalar product. This fact is denoted by y |= a.
We say that the affine relation a is valid after a single run r iff [[r]]x |= a for

all x ∈ Z
k
m, i.e., iff a0 + a′ · [[r]]x = 0 for all x ∈ Z

k
m; x represents the unknown

initial state. Thus, a0 + a′ · [[r]]x = 0 is the weakest precondition for validity of
the affine relation a after run r. In [11], we have shown in the case of fields, that
the weakest precondition can be computed by a linear transformation applied
to the vector a. The very same argumentation works as well in the more general
case of arbitrary rings. More specifically, this linear transformation is given by
the following (k + 1)2 matrix Wr:

Wr =
(

1 btr

0 At
r

)
(1)

Also over Zm, the only affine relation which is true for all program states is the
relation 0 = (0, . . . , 0)t. Since the initial state is arbitrary, an affine relation a is
thus valid at a program point u iff Wr a = 0 for all runs r that reach u.

This is good news, since it shows that as in the case of fields, we may use the
set W = {Wr | r reaches u} to solve the validity problem for affine relations by
setting up and solving the linear equation system Wa = 0, W ∈ W. While in our
case this set is finite because Zm is finite, it can be large. We are thus left with
the problem of representing W compactly. In the case of fields, we could observe
that the set of (k + 1) × (k + 1) matrices forms a vector space. Over Zm this is
no longer the case. However, this set is still a Zm-module isomorphic to Z

(k+1)2
m .

We observe that as in the case of fields we can use a generating system of the sub-
module 〈W〉 instead of W to set up this linear equation system without changing
the set of solutions. By Theorem 1, 〈W〉 can be described by a generating system
of at most (k+1)2 matrices. Therefore, in order to determine the set of all affine
relations at program point u, it suffices to compute a set of generators for the
module 〈{Wr | r reaches u}〉. This is the contents of the next theorem:
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Theorem 3. Assume we are given a generating system G of cardinality at most
(k + 1)2 for the set 〈{Wr | r reaches u}〉. Then we have:

a) The affine relation a ∈ Z
k+1
m is valid at u iff W a = 0 for all W ∈ G.

b) A generating system for the Zm-submodule of all affine relations valid at
program point u can be computed in time O(k4 · (k + log(w))).

Proof. We only consider the complexity estimation. By statement a), the affine
relation a is valid at u iff a is a solution of all the equations∑k

j=0 wijaj = 0

for each matrix W = (wij) ∈ G and i = 0, . . . , k. The generating system G
contains at most (k + 1)2 matrices each of which contributes k + 1 equations.
First, we can bring this set into triangular form. By Theorem 1, this can be done
in time O(k4 ·(k+log(w))). The resulting system has at most k+1 equations. By
Theorem 2, a generating system for the Zm-module of solutions of this system
can be computed with O(log(w) ·k3) operations. The latter amount, however, is
dominated by the former, and the complexity statement follows. ��

As in the case of fields, we are left with the task of computing, for every program
point u, a generating system for 〈{Wr | r reaches u}〉. Following the approach
in [11], we compute this submodule of Z

(k+1)2
m as an abstract interpretation of

a constraint system for set of runs reaching u. From Section 2 we know that
Sub(Z(k+1)2

m ) is a complete lattice of height O(k2 ·w) such that we can compute
fixpoints effectively. The desired abstraction of run sets is given by α : 2Runs →
Sub(Z(k+1)2

m ), α(R) = 〈{Wr | r ∈ R}〉. Indeed, the mapping α is monotonic
(w.r.t. subset ordering on sets of runs and submodules) and commutes with
arbitrary unions. Similar to the case of fields, we set up a constraint system. The
variables in the new constraint system take submodules of Z

(k+1)2
m as values:

[Sα1] Sα(q) ⊇ Sα(retq)
[Sα2] Sα(stq) ⊇ 〈{Ik+1}〉
[Sα3] Sα(v) ⊇ Sα(u) ◦ 〈{Wxj :=t}〉 for an edge (u, v) labeled xj := t

[Sα4] Sα(v) ⊇ Sα(u) ◦ 〈{Wxj :=0,Wxj :=1}〉 for an edge (u, v) labeled xj := ?
[Sα5] Sα(v) ⊇ Sα(u) ◦ Sα(q) for an edge (u, v) calling q

[Rα1] Rα(Main) ⊇ 〈{Ik+1}〉
[Rα2] Rα(q) ⊇ Rα(u) for an edge (u, ) calling q

[Rα3] Rα(u) ⊇ Rα(q) ◦ Sα(u) if u is a program point of q

The variable Sα(q) is meant to capture the abstract effect of the procedure q.
By the constraints Sα1, this value is obtained as the module of transformations
Sα(retq) accumulated for the return point retq of q. According to Sα2, this ac-
cumulation starts at the start point stq with (the module generated by) the
identity transformation. The constraints Sα3 and Sα4 deal with affine and non-
deterministic assignments, respectively, while the constraints Sα5 correspond to
calls. The abstract effects of procedures are then used in the second part of the
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constraint system to determine for every procedure and program point the mod-
ule of transformations induced by reaching runs. The constraint Rα1 indicates
that we start before the call to Main with the identity transformation. The con-
straints Rα2 indicate that transformations reaching a procedure should comprise
all transformation reaching its calls. Finally, the constraints Rα3 state that the
transformations for a program point u of some procedure q should contain the
composition of transformations reaching q with the transformation accumulated
for u from the start point stq of q.

In this constraint system, the operator “◦” abstracts concatenation of run
sets. As in the case of fields, it is defined in terms of matrix multiplication by

M1 ◦M2 = 〈{A1A2 | Ai ∈Mi}〉
for sets of matrices M1,M2 ⊆ Z

(k+1)2
m . An edge annotated by xj := ? induces

the set of all runs xj := c, c ∈ Zm. As in the case of fields, however, the module
spanned by the matricesWxj :=c, c ∈ Zm, is generated by the two matricesWxj :=0
and Wxj :=1. Therefore, these two suffice to abstract the effect of xj := ?.

Again as in the case of fields, the constraint system from above can be solved
by computing on generating systems. In contrast to fields, however, we no longer
have the notion of a basis available. Instead, we rely on sets of generators in
triangular form. In order to avoid the need to solve a system of equations over
Zm fully whenever a new vector is added to a set of generators, we use our
algorithm from Theorem 1 to bring the enlarged set again into triangular form.
A set of generators, thus, may have to be changed — even if the newly added
vector is implied by the original one. The update, however, then decreases the
rank of the set of generators implying that ultimately stabilization is detected.

We assume that the basic statements in the given program have size O(1).
Thus, we measure the size n of the given program by |N | + |E|. We obtain:

Theorem 4. For every program of size n with k variables the following holds:

a) The values: 〈{Wr | r reaches X}〉, X a procedure or program point, equal the
components of the least solution of the constraint system for the Rα(X).

b) These values can be computed in time O(w · n · k6 · (k2 + log(w))).
c) The sets of all valid affine relations at program point u, u ∈ N , can be

computed in time O(w · n · k6 · (k2 + log(w))). ��

A full proof of Theorem 4 can be found in [10]. In our main application, w
equals 32 or 64. The term log(w) in the complexity estimation accounts for
the necessary rank computations. In our application, log(w) equals 5 or 6 and
thus is easily dominated by k2. We conclude that the extra overhead over the
corresponding complexity from [11] for the analysis over fields (w.r.t. unit cost
for basic arithmetic operations) essentially consists in one extra factor w = 32 or
64 which is due to the increased height of the lattice used. We expect, however,
that fixpoint computations in practice will not exploit full maximal lengths of
ascending chains in the lattice but stabilize much earlier.

Example 5. Consider the inter-procedural program from Figure 2 and assume
that we want to infer all valid affine relations modulo Zm for m = 232, and let
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c abbreviate 7654321. The weakest precondition transformers for s1 ≡ x1 :=
7654321 · x1;x2 := x1 + x2 and s2 ≡ x1 := 69246289 · x1;x2 := x1 + x2 are:

B1 =
(

1 0 0
0 c c
0 0 1

)
B2 =
(

1 0 0
0 c−1 c−1

0 0 1

)

since c · 69246289 = 1 mod 232. For Rα(q), we find the matrices Ik+1 and

P1 = B1 ·B2 =
(

1 0 0
0 1 c + 1
0 0 1

)

None of these is subsumed by the other where the corresponding triangular set
of generators is given by G1 = {Ik+1, P} where

P =
(

0 0 0
0 0 c + 1
0 0 0

)

The next iteration then results in the matrix

P2 = B1 · P1 ·B2 =
(

1 0 0
0 1 (c + 1)2

0 0 1

)

Since P2 = Ik+1 +(c+1) ·P , computing a triangular set G2 of generators for G1
together with P2 will result in G2 = G1, and the fixpoint iteration terminates.

In order to obtain the weakest precondition transformers, e.g., for the end-
point 6 of Main, we additionally need the transformation B0 for x1 := 5;x2 := 0:

B0 =
(

1 5 0
0 0 0
0 0 0

)

Using the set {Ik+1, P} of generators for Sα(q), we thus obtain for Rα(6) the
generators:

W1 = B0 · Ik+1 =
(

1 5 0
0 0 0
0 0 0

)
W2 = B0 · P =

(
0 0 5c + 5
0 0 0
0 0 0

)

This gives us the following equations for the affine relations at the exit of Main:

a0 + 5a1 = 0
(5c+ 5)a2 = 0

Solving this equation system over Zm according to Theorem 2 shows that the
set of all solutions is generated by:

a =
(−5

1
0

)
a′ =
(

0
0
231

)

The vector a means −5 + x1 = 0 or, equivalently, x1 = 5. The vector a′ means
that 231 · x2 = 0 or, equivalently, x2 is even. Both relations are non-trivial and
could not have been derived by using the corresponding analysis over Q. ��
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The runtime of our inter-procedural analysis is linear in the program size n
but polynomial in the number of program variables k of a rather high degree.
In [8], we have presented an efficient algorithm which in absence of procedures,
computes all valid affine relations in time O(n · k3) — given that all arithmetic
operations count for 1. This algorithm improves on the original algorithm by Karr
[6] for the same problem by one factor of k. Due to lack of space we will neither
rephraze this nor Karr’s original algorithm but remark that both algorithms
assume that the program variables take values in a field, namely Q — but any
other field Zp (p prime) would do as well. Similar to the algorithm from [11],
they compute with finite-dimensional vector spaces represented through sets of
generators. Just as in our exposition for the interprocedural analysis, we obtain
a sound and complete intraprocedural analysis if we replace the vector spaces of
the algorithm in [8] with the corresponding Zm-modules and use the algorithms
from Section 2 for reducing the cardinalities of sets of generators and solving
sets of homogeneous equations. Summarizing, we obtain:

Theorem 5. Consider an affine program of size n with k variables but without
procedures. Then for m = 2w, the set of all affine relations at all program points
which are valid over Zm can be computed in time O(w ·n · k2 · (k+ log(w))). ��

4 Conclusion

We have presented sound and complete inter- and intraprocedural algorithms
for computing valid affine relations in affine programs over rings Zm where m =
2w. These techniques allow us to analyze integer arithmetic in programming
languages like Java precisely (upto abstraction of guards). Our new algorithms
were obtained from the corresponding algorithms in [11] and [8] by replacing
techniques for vector spaces with techniques for Zm-modules. The difficulty here
is that for w > 1, the ring Zm has zero divisors — implying that not every
element in the ring is invertible. Since we maintained the top-level structure of
the analysis algorithms, we achieved the same complexity bounds as in the case of
fields — upto one extra factor w due to the increased height of the used complete
lattices. We carefully avoid explicit computation of inverses in our algorithms for
reducing sets of generators and for solving homogeneous linear equation systems.
Otherwise the complexity estimates for the algorithms would be worse because
computation of inverses cannot reasonably be assumed constant time.

Our algorithms have the clear advantage that their arithmetic operations
can completely be performed within the ring Zm of the target language to be
analyzed. All problems with excessively long numbers are thus resolved. In [10]
we also show how to extend the analyzes to Zm for an arbitrary m > 2.

We remark that in [11], we also have shown how the linear algebra methods
over fields can be extended to deal with local variables and return values of
procedures besides just global variables. These techniques immediately carry
over to arithmetic in Zm. The same is true for the generalization to the inference
of all valid polynomial relations up to a fixed degree bound.
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One method to deal with inequalities instead of equalities is to use polyhedra
for abstracting sets of vectors [1]. It is a challenging question what kind of impact
modular arithmetic has on this abstraction.

Acknowledgments. We thank Martin Hofmann for pointing us to the topic of an-
alyzing modular arithmetic and the anonymous referees for valuable comments.
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mation et Accélération. PhD thesis, Ecole Normale Supérieure de Cachan, 2003.

8. M. Müller-Olm and H. Seidl. A Note on Karr’s Algorithm. In 31st Int. Coll.
on Automata, Languages and Programming (ICALP), pages 1016–1028. Springer
Verlag, LNCS 3142, 2004.

9. M. Müller-Olm and H. Seidl. Computing Polynomial Program Invariants. Infor-
mation Processing Letters (IPL), 91(5):233–244, 2004.

10. M. Müller-Olm and H. Seidl. Interprocedural Analysis of Modular Arithmetic.
Technical Report 789, Fachbereich Informatik, Universität Dortmund, 2004.

11. M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear
Algebra. In 31st ACM Symp. on Principles of Programming Languages (POPL),
pages 330–341, 2004.

12. T. Reps, S. Schwoon, and S. Jha. Weighted Pushdown Systems and their Appli-
cation to Interprocedural Dataflow Analysis. In Int. Static Analysis Symposium
(SAS), pages 189–213. LNCS 2694, Springer-Verlag, 2003.

13. A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, ETH Zürich,
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Abstract. Program slicing is a well-known methodology that aims at
identifying the program statements that (potentially) affect the values
computed at some point of interest. Within imperative programming,
this technique has been successfully applied to debugging, specialization,
reuse, maintenance, etc. Due to its declarative nature, adapting the slic-
ing notions and techniques to a logic programming setting is not an easy
task. In this work, we define the first, semantics-preserving, forward slic-
ing technique for logic programs. Our approach relies on the application
of a conjunctive partial deduction algorithm for a precise propagation of
information between calls. We do not distinguish between static and dy-
namic slicing since partial deduction can naturally deal with both static
and dynamic data. A slicing tool has been implemented in ecce, where
a post-processing transformation to remove redundant arguments has
been added. Experiments conducted on a wide variety of programs are
encouraging and demonstrate the usefulness of our approach, both as a
classical slicing method and as a technique for code size reduction.

1 Introduction

Program slicing is a fundamental operation that has been successfully applied to
solve many software engineering tasks, like, e.g., program understanding, mainte-
nance, specialization, debugging, reuse, etc. Slicing was originally introduced by
Weiser [32]—in the context of imperative programs—as a debugging technique.
Despite its potential applications, we found very few approaches to slicing in
logic programming (some notable exceptions are, e.g., [10, 27, 28, 30, 33]).

Informally, a program slice consists of those program statements which are
(potentially) related with the values computed at some program point and/or
variable, referred to as a slicing criterion. Program slices are usually computed
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from a program dependence graph [5] that makes explicit both the data and
control dependences for each operation in a program. Program dependences can
be traversed backwards and forwards—from the slicing criterion—giving rise
to so-called backward and forward slicing. Additionally, slices can be static or
dynamic, depending on whether a concrete program’s input is provided or not.
More detailed information on program slicing can be found in [12, 29].

Recently, Vidal [31] introduced a novel approach to forward slicing of lazy
functional logic programs. This work exploits the similarities between slicing and
partial evaluation—already noticed in [25]—to compute forward slices by a slight
modification of an existing partial evaluation scheme [2]. The main requirement
of [31] is that the underlying partial evaluation algorithm should be—in the
terminology of [26]—both monovariant and monogenetic in order to preserve the
structure of the original program. Unfortunately, this requirement also restricts
the precision of the computed slices.

In this work, we extend the approach of [31] in several ways. First, we adapt
it to the logic programming setting. Second, we consider a polyvariant and poly-
genetic partial evaluation scheme: the conjunctive partial deduction algorithm
of [3] with control based on characteristic trees [9, 18, 19]. Therefore, the com-
puted slices are significantly more precise than those of the previous approach.
Furthermore, since the basic partial deduction algorithm is kept unmodified, it
can easily be implemented on top of an existing partial deduction system (in
our case, ecce [19]). Finally, we use the redundant argument filtering transfor-
mation of [21] to slice out unnecessary arguments of predicates (in addition to
slicing out entire clauses).

The combination of these two approaches, [31] and [21], together with a
special-purpose slicing code generator, gives rise to a simple but powerful forward
slicing technique. We also pay special attention to using slicing for code size
reduction. Indeed, within the ASAP project [1], we are looking at resource-aware
specialization techniques, with the aim of adapting software for pervasive devices
with limited resources. We hence also analyze to what extent our approach can
be used as an effective code size reduction technique, to reduce the memory
footprint of a program.

Our main contributions are the following. We introduce the first, semantics-
preserving, forward slicing technique for logic programs that produces executable
slices. While traditional approaches in the literature demand different techniques
to deal with static and dynamic slicing, our scheme is general enough to produce
both static and dynamic slices. In contrast to [31], the restriction to adopt a
monovariant/monogenetic partial evaluation algorithm is not needed. Dropping
this restriction is important as it allows us to use more powerful specialization
schemes and, moreover, we do not need to modify the basic algorithm, thus
easing the implementation of a slicing tool (i.e., only the code generation phase
should be changed). We illustrate the usefulness of our approach on a series of
benchmarks, and analyze its potential as a code-size reduction technique.

The paper is organized as follows. After introducing some foundations in
the next section, Sect. 3 presents our basic approach to the computation of
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Fig. 1. The Essence of Conjunctive Partial Deduction

forward slices. Then, Sect. 4 considers the inclusion of a post-processing phase
for argument filtering. Section 5 illustrates our technique by means of a detailed
example, while Sect. 6 presents an extensive set of benchmarks. Finally, Sect. 7
compares some related works and concludes. More details and missing proofs
can be found in [22].

2 Background

Partial evaluation [13] has been applied to many programming languages, in-
cluding functional, imperative, object-oriented, logic, and functional logic pro-
gramming languages. It aims at improving the overall performance of programs
by pre-evaluating parts of the program that depend solely on the static input.

In the context of logic programming, full input to a program P consists of a
goal G and evaluation corresponds to constructing a complete SLDNF-tree for
P ∪ {G}. For partial evaluation, the static input takes the form of a goal G′

which is more general (i.e., less instantiated) than a typical goal G at runtime.
In contrast to other programming languages, one can still execute P for G′ and
(try to) construct an SLDNF-tree for P ∪ {G′}. However, since G′ is not yet
fully instantiated, the SLDNF-tree for P ∪ {G′} is usually infinite and ordinary
evaluation will not terminate. A technique which solves this problem is known
under the name of partial deduction [23]. Its general idea is to construct a finite
number of finite, but possibly incomplete1 SLDNF-trees and to extract from
these trees a new program that allows any instance of the goal G′ to be executed.

Conjunctive partial deduction (CPD) [3] is an extension of partial deduction
that can achieve effects such as deforestation and tupling [24]. The essence of
CPD can be seen in Fig. 1. The so-called global control of CPD generates a set
C = {C1, . . . , Cn} of conjunctions whereas the local control generates for each

1 An SLDNF-tree is incomplete if, in addition to success and failure leaves, it also
contains leaves where no literal has been selected for a further derivation step.
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conjunction a possibly incomplete SLDNF-tree τi (a process called unfolding).
The overall goal is to ensure that every leaf conjunction is either an instance of
some Ci or can be split up into sub-conjunctions, each of which is an instance of
some conjunction in C. This is called the closedness condition, and guarantees
correctness of the specialized program which is then extracted by:

– generating one specialized predicate per conjunction in C (and inventing a
new predicate name for it), and by producing

– one specialized clause—a resultant—per non-failing branch of τi.

A single resolution step with a specialized clause now corresponds to perform-
ing all the resolutions steps (using original program clauses) on the associated
branch. Closedness can be ensured by various algorithms [16]. Usually, one starts
off with an initial conjunction, unfolds it using some “unfolding rule” (a function
mapping a program P and a goal G to an SLDNF-tree for P ∪ {G}) and then
adds all uncovered2 leaf conjunctions to C, in turn unfolding them, and so forth.
As this process is usually non-terminating, various “generalization” operations
are applied, which, for example, can replace several conjunctions in C by a sin-
gle less instantiated one. One useful foundation for the global control is based
on so-called characteristic trees, used for example by the sp [7] and ecce [19]
specialization systems. We describe them in more detail below, as they turn out
to be important for slicing.

Characteristic trees were introduced in partial deduction in order to capture
all the relevant aspects of specialization. The following definitions are taken from
[19] (which in turn were derived from [9] and the SP system [7]).

Definition 1 (characteristic path). Let G0 be a goal, and let P be a normal
program whose clauses are numbered. Let G0, . . . , Gn be the goals of a finite,
possibly incomplete SLDNF-derivation D of P ∪ {G0}. The characteristic path
of the derivation D is the sequence 〈l0 : c0, . . . , ln−1 : cn−1〉, where li is the
position of the selected literal in Gi, and ci is defined as follows:

– if the selected literal is an atom, then ci is the number of the clause chosen
to resolve with Gi;

– if the selected literal is ¬p(t̄), then ci is the predicate p.

Note that an SLDNF-derivation D can be either failed, incomplete, successful,
or infinite. As we will see below, characteristic paths will only be used to char-
acterize finite and nonfailing derivations. Once the top-level goal is known, the
characteristic path is sufficient to reconstruct all the intermediate goals as well
as the final one.

Now that we have characterized derivations, we can characterize goals through
the derivations in their associated SLDNF-trees.

Definition 2 (characteristic tree). Let G be a goal, P a normal program,
and τ a finite SLDNF-tree for P ∪ {G}. Then the characteristic tree τ̂ of τ is

2 I.e., those conjunctions which are not an instance of a conjunction in C.
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the set containing the characteristic paths of the nonfailing SLDNF-derivations
associated with the branches of τ . τ̂ is called a characteristic tree if and only if
it is the characteristic tree of some finite SLDNF-tree.

Let U be an unfolding rule such that U(P,G) = τ . Then τ̂ is also called the
characteristic tree of G (in P ) via U . We introduce the notation chtree(G,P,U) =
τ̂ . We also say that τ̂ is a characteristic tree of G (in P ) if it is the characteristic
tree of G (in P ) via some unfolding rule U .

When characteristic trees are used to control CPD, the basic algorithm returns
a set of characteristic conjunctions, C̃, that fulfills the conditions for the correct-
ness of the specialization process. A characteristic conjunction is a pair (C, τ̂),
where C is a conjunction of literals—a goal—and τ̂ = chtree(C,P, U) is a char-
acteristic tree for some program P and unfolding rule U . From this set of charac-
teristic conjunctions, the specialized program is basically obtained by unfolding
and renaming.

3 Extracting Executable Forward Slices

Within imperative programming, the definition of a slicing criterion depends on
whether one considers static or dynamic slicing. In the former case, a slicing
criterion is traditionally defined as a pair (p, v) where p is a program statement
and v is a subset of the program’s variables. Then, a forward slice consists
of those statements which are dependent on the slicing criterion (i.e., on the
values of the variables v that appear in p), a statement being dependent on the
slicing criterion if the values computed at that statement depend on the values
computed at the slicing criterion or if the values computed at the slicing criterion
determine if the statement under consideration is executed [29]. As for dynamic
slicing, a slicing criterion is often defined as a triple (d, i, v), where d is the input
data for the program, i denotes the i-th element of the execution history, and v
is a subset of the program’s variables.

Adapting these notions to the setting of logic programming is not immediate.
There are mainly two aspects that one should take into account:

– The execution of partially instantiated goals—thanks to the use of logic vari-
ables—makes it unclear the distinction between static and dynamic slicing.

– The lack of explicit control flow, together with the absence of side effects,
makes unnecessary to consider a particular trace of the program’s execution
for dynamic slicing.

Therefore, we define a slicing criterion simply as a goal.3 Typically, the goal will
appear in the code of the source program. However, we lift this requirement for
simplicity since it does affect to the forthcoming developments. A forward slice
should thus contain a subset of the original program with those clauses that are
reachable from the slicing criterion. Similarly to [27], the notion of “subset” is

3 If we fix an entry point to the program and restrict ourselves to a particular evalu-
ation strategy (as in Prolog), one can still consider a concrete trace of the program.
In this case, however, a standard tracer would suffice to identify the interesting goal.



66 M. Leuschel and G. Vidal

formalized in terms of an abstraction relation, to allow arguments to be removed,
or rather replaced by a special term:

Definition 3 (term abstraction). Let �t be the empty term (i.e., an unnamed
existentially quantified variable, like the anonymous variable of Prolog). A term
t is an abstraction of term t′, in symbols t � t′, iff t = �t or t = t′.

Definition 4 (literal abstraction). An atom p(t1, . . . , tn) is an abstraction
of atom q(t′1, . . . , t

′
m), in symbols p(t1, . . . , tn) � q(t′1, . . . , t

′
m), iff p = q, n = m,

and ti � t′i for all i = 1, . . . , n. A negative literal ¬P is an abstraction of a
negative literal ¬Q iff P � Q.

Definition 5 (clause abstraction). A clause c is an abstraction of a clause
c′ = L′

0 ← L′
1, . . . , L

′
n, in symbols c � c′, iff c = L0 ← L1, . . . , Ln and Li � L′

i

for all i ∈ {1, . . . , n}.

Definition 6 (program abstraction). A normal program4 P = (c1, . . . , cn)
is an abstraction of normal program P ′ = (c′0, . . . , c

′
m), in symbols P � P ′, iff

n ≤ m and there exists a subsequence (s1, . . . , sn) of (1, . . . ,m) such that ci � c′si

for all i ∈ {1, . . . , n}.

Informally, a program P is an abstraction of program P ′ if it can be obtained
from P ′ by clause deletion and by replacing some predicate arguments by the
empty term �t. In the following, P is a slice of program P ′ iff P � P ′. Trivially,
program slices are normal programs.

Definition 7 (correct slice). Let P be a program and G a slicing criterion. A
program P ′ is a correct slice of P w.r.t. G iff P ′ is a slice of P (i.e., P ′ � P )
and the following conditions hold:

– P ∪ {G} has an SLDNF-refutation with computed answer θ if and only if
P ′ ∪ {G} does, and

– P ∪ {G} has a finitely failed SLDNF-tree if and only if P ′ ∪ {G} does.

Traditional approaches to program slicing rely on the construction of some data
structure which reflects the data and control dependences in a program (like,
e.g., the program dependence graphs of [5]). The key contribution of this paper
is to show that CPD can actually play such a role.

Roughly speaking, our slicing technique proceeds as follows. Firstly, given
a program P and a goal G, a CPD algorithm based on characteristic trees is
applied. The use of characteristic trees is relevant in our context since they
record the clauses used during the unfolding of each conjunction. The complete
algorithm outputs a so-called global tree—where each node is a characteristic
conjunction—which represents an abstraction of the execution of the considered
goal. In fact, this global tree contains information which is similar to that in a

4 We consider that programs are sequences of clauses in order to enforce the preser-
vation of the syntax of the original program.
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program dependence graph (e.g., dependences among predicate calls). In stan-
dard conjuntive partial deduction, the characteristic conjunctions, C̃, in the com-
puted global tree are unfolded—following the associated characteristic trees—to
produce a correct specialization of the original program (after renaming). In
order to compute a forward slice, only the code generation phase of the CPD
algorithm should be changed: now, we use the characteristic tree of each con-
junction in C̃ to determine which clauses of the original program have been used
and, thus, should appear in the slice.

Given a characteristic path δ, we define cl(δ) as the set of clause numbers
in this path, i.e., cl(δ) = {c | 〈l : c〉 appears in δ and c is a clause number}.
Program slices are then obtained from a set of characteristic trees as follows:

Definition 8 (forward slicing). Let P be a normal program and G be a slic-
ing criterion. Let C̃ be the output of the CPD algorithm (a set of characteristic
conjunctions) and T be the characteristic trees in C̃. A forward slice of P w.r.t.
G, denoted by sliceT (P ), contains those clauses of P that appear in some char-
acteristic path of T . Formally, sliceT (P ) = ∪τ̂∈T {cl(δ) | δ ∈ τ̂}.

The correctness of the forward slicing method is stated as follows:

Theorem 1. Let P be a normal program and G be a slicing criterion. Let P ′

be a forward slice according to Def. 8. Then, P ′ is a correct slice of P w.r.t. G.

The proof can be found in [22]. Our slicing technique produces correct forward
slices and, moreover, is more flexible than previous approaches in the literature.
In particular, in can be used to perform both dynamic and static forward slicing
with a modest implementation effort, since only the code generation phase of
the CPD algorithm should be changed.

4 Improving Forward Slices by Argument Filtering

The method of Def. 8 has been fully implemented in ecce, an off-the-shelf partial
evaluator for logic programs based on CPD and characteristic trees. In practice,
however, we found that computed slices often contain redundant arguments that
are not relevant for the execution of the slicing criterion. In order to further refine
the computed slices and be able to slice out unnecessary arguments of predicates,
we use the redundant argument filtering transformations (RAF) of [21].

RAF is a technique which detects certain redundant arguments (finding all
redundant arguments is undecidable in general [21]). Basically, it detects those
arguments which are existential and which can thus be safely removed. RAF is
very useful when performed after CPD. Redundant arguments also arise when
one re-uses generic predicates for more specific purposes. For instance, let us
define a member/2 predicate by re-using a generic delete/3 predicate:

member(X,L) :- delete(X,L,DL).
delete(X,[X|T],T). delete(X,[Y|T],[Y|DT]) :- delete(X,T,DT).
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Here, the third argument of delete is redundant and will be removed by the
partial evaluator ecce if RAF is enabled:

member(X,L) :- delete(X,L).
delete(X,[X|T]). delete(X,[Y|T]) :- delete(X,T).

The ecce system also contains the reverse argument filtering (FAR) of [21]
(“reverse” because the safety conditions are reversed w.r.t. RAF). While RAF
detects existential arguments (which might return a computed answer binding),
FAR detects arguments which can be non-existential and non-ground but whose
value is never used (and for which no computed answer binding will be returned).
Consider, e.g., the following program:

p(X) :- q(f(X)). q(Z).

Here, the argument of q(f(X)) is not a variable but the value is never used. The
ecce system will remove this argument if FAR is enabled:

p(X) :- q. q.

The elimination of redundant arguments turns out to be quite useful to remove
unnecessary arguments from program slices (see next section). Only one exten-
sion is necessary in our context: while redundant arguments are deleted in [21],
we replace them by the special symbol �t so that the filtered program is still a
slice—an abstraction—of the original program. The correctness of the extended
slicing algorithm then follows from Theorem 1 and the results in [21].

5 Forward Slicing in Practice

In this section, we illustrate our approach to the computation of forward slices
through some selected examples. Consider the program in Fig. 2 which defines an
interpreter for a simple language with constants, variables, and some predefined
functions. First, we consider the following slicing criterion:

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),[xx],[11],X).

The slice computed by ecce w.r.t. this slicing criterion is as follows:

int(cst(X),_,_,X).

int(plus(X,Y),Vars,Vals,Res) :-
int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX+RY.

int(minus(X,Y),Vars,Vals,Res) :-
int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.

int(fun(X),Vars,Vals,Res) :- def0(X,Def), int(Def,Vars,Vals,Res).

def0(one,cst(1)).

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),[xx],[11],X).
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int(cst(X),_,_,X).
int(var(X),Vars,Vals,R) :- lookup(X,Vars,Vals,R).
int(plus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX+RY.
int(minus(X,Y),Vars,Vals,Res) :-

int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.
int(fun(X),Vars,Vals,Res) :- def0(X,Def), int(Def,Vars,Vals,Res).
int(fun(X,Arg),Vars,Vals,Res) :-

def1(X,Var,Def), int(Arg,Vars,Vals,ResArg),
int(Def,[Var|Vars],[ResArg|Vals],Res).

def0(one,cst(1)).
def0(rec,fun(rec)).
def1(inc,xx,plus(var(xx),cst(1))).
def1(rec,xx,fun(rec,var(xx))).
lookup(X,[X|_],[Val|_],Val).
lookup(X,[Y|T],[_|ValT],Res) :- X \= Y, lookup(X,T,ValT,Res).

Fig. 2. A simple functional interpreter

Here, some predicates have been completely removed from the slice (e.g., def1
or lookup), even though they are reachable in the predicate dependency graph.
Furthermore, unused clauses are also removed, cutting down further the size of
the slice. By applying the argument filtering post-processing, we get5

int(cst(X),*,*,X).

int(plus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX+RY.
int(minus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX-RY.
int(fun(X),*,*,Res) :- def0(X,Def), int(Def,*,*,Res).

def0(one,cst(1)).

slice1(X) :- int(minus(cst(4),plus(fun(one),cst(2))),*,*,X).

The resulting slice is executable and will produce the same result as the original
program, e.g., the query slice1(X) returns the answer X=1. Note that this ex-
ample could have been tackled by a dynamic slicing method, as a fully specified
query was provided as the slicing criterion. It would be interesting to know how
a dynamic slicer would compare against our technique, and whether we have
lost any precision. In order to test this, we have implemented a simple dynamic
slicer in SICStus Prolog using profiled code and extracting the used clauses using
the profile data/4 built-in. The so extracted slice corresponds exactly to our
result (without the argument filtering; see [22]), and hence no precision has been
lost in this example.

5 For clarity, in the examples we use “*” to denote the empty term �t. In practice,
empty terms can be replaced by any term since they play no role in the computation.
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In general, not only the code size of the slice is smaller but also the runtime
can be improved. Thus, our forward slicing algorithm can be seen as a—rather
conservative—partial evaluation method that guarantees that code size does not
increase. For instance, it can be useful for resource aware specialization, when
the (potential) code explosion of typical partial evaluators is unacceptable.

Our slicing tool can also be useful for program debugging. In particular,
it can help the programmer to locate the source of an incorrect answer (or an
unexpected loop; finite failure is preserved in Def. 7) since it identifies the clauses
that could affect the computed answer, thus easing the correction of the program.
Consider, e.g., that the definition of function plus contains a bug:

int(plus(X,Y),Vars,Vals,Res) :-
int(X,Vars,Vals,RX), int(Y,Vars,Vals,RY), Res is RX-RY.

i.e., the programmer wrote RX-RY instead of RX+RY. Given the following goal:

slice2(X) :- int(plus(cst(1),cst(2)),[x],[1],X).

the execution returns the—incorrect—computed answer X = -1. By computing
a forward slice w.r.t. slice2(X), we get (after argument filtering) the following:

int(cst(X),*,*,X).
int(plus(X,Y),*,*,Res) :- int(X,*,*,RX), int(Y,*,*,RY), Res is RX-RY.
slice2(X) :- int(plus(cst(1),cst(2)),*,*,X).

This slice contains only 3 clauses and, thus, the user can easily detect that the
definition of plus is wrong.

The previous two slices can be extracted by a dynamic slicing technique,
since they do not involve a non-terminating goal. Now, we consider the following
slicing criterion:

slice3(X) :- int(fun(rec),[aa,bb,cc,dd],[0,1,2,3],X).

Despite the fact that this goal has an infinite search space, our slicing tool returns
the following slice (after argument filtering):

int(fun(X),*,*,*) :- def0(X,Def), int(Def,*,*,*).
def0(rec,fun(rec)).
slice3(X) :- int(fun(rec),*,*,*).

From this slice, the clauses which are responsible of the infinite computation can
easily be identified.

6 Experimental Results

In this section, we show a summary of the experiments conducted on an extensive
set of benchmarks. We used SICStus Prolog 3.11.1 (powerpc-darwin-7.2.0) and
Ciao-Prolog 1.11 #221, running on a Powerbook G4, 1GHz, 1GByte of RAM.
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Table 1. Speedups obtained by Specialization and by Slicing

Prolog System SWI-Prolog SICStus Ciao
Technique Specialized Sliced Specialized Sliced. Specialized Sliced
TOTAL 2.43 1.04 2.74 1.04 2.62 1.05
Average 5.23 1.07 6.27 1.09 11.26 1.09

The operating system was Mac OS 10.3. We also ran some experiments with
SWI Prolog 5.2.0. The runtime was obtained by special purpose benchmarker
files (generated automatically be ecce) which execute the original and special-
ized programs without loop overhead. The code size was obtained by using the
fcompile command of SICStus Prolog and then measuring the size of the com-
piled *.ql files. The total speedups were obtained by the formula n∑n

i=1

speci
origi

where n is the number of benchmarks, and speci and origi are the absolute ex-
ecution times of the specialized/sliced and original programs respectively.6 The

total code size reduction was obtained by the formula 1 −
∑n

i=1
specszi∑n

i=1
origszi

where n

is the number of benchmarks, and specszi and origszi are the code sizes of the
specialized/sliced and original programs respectively.

DPPD. We first compared the slicing tool with the default conjunctive spe-
cialization of ecce on the DPPD library of specialization benchmarks [15]. In a
sense these are not typical slicing scenarios, but nonetheless give an indication
of the behavior of the slicing algorithm. The experiments also allow us to eval-
uate to what extent our technique is useful as an alternative way to specialize
programs, especially for code size reduction. Finally, the use of the DPPD li-
brary allows comparison with other reference implementations (see, e.g., [3, 14]
for comparisons with mixtus, sp and paddy).

Table 1 (which is a summary of the full tables in [22]) shows the speedup of
the ecce default specialization and of our slicing algorithm. Timings for SWI
Prolog, SICStus Prolog, and Ciao Prolog are shown. It can be seen that the
average speedup of slicing is just 4%. This shows how efficient modern Prolog
implementations are, and that little overhead has to be paid for adding extra
clauses to a program. Anyway, the main purpose of slicing is not speedup,
but reducing code size. In this case, slicing has managed an overall code size
reduction of 26.2% whereas the standard specialization has increased the code
size by 56%. In the worst case, the specialization has increased the code size by
493.5% (whereas slicing never increases the code size; see the full tables in [22]).

Slicing-Specific Benchmarks. Let us now turn our attention to four, more
slicing-specific experiments. Table 2 contains the results of these experiments.
The inter medium benchmark is the simple interpreter of Sect. 5. The ctl trace

6 Observe that this is different from the average of the speedups (which has the dis-
advantage that big slowdowns are not penalized sufficiently).



72 M. Leuschel and G. Vidal

Table 2. Slicing Specific Benchmarks

Slicing Time Runtime Size
Original Sliced Original Sliced Reduction

Benchmark ms ms speedup Bytes Bytes %
inter medium 20 117 1.06 4798 1578 67.1%
lambdaint 390 177 1.29 7389 4769 35.5%
ctl trace 1940 427 1.35 8053 4214 47.7%
matlab 2390 1020 1.02 27496 8303 69.8%
Total 1.16 60.5%

Table 3. Various Slicing Approaches

Full Slicing Simple Std. PD Näıve PD
Benchmark Time (ms) Reduction Time (ms) Reduction Time (ms) Reduction
inter medium 20 67.1% 50 67.1% 20 41.8%
lambdaint 390 35.5% 880 9.0% 30 9.0%
ctl trace 1940 47.7% 140 47.7% 40 1.3%
matlab 2390 69.8% 1170 69.8% 200 19.3%
Total 4740 60.5% 2240 56.4% 290 17.0%

benchmark is the CTL model checker from [20], extended to compute witness
traces. It is sliced for a particular system and temporal logic formula to model
check. The lambdaint benchmark is an interpreter for a simple functional lan-
guage taken from [17]. It is sliced for a particular functional program (computing
the Fibonacci numbers). Finally, matlab is an interpreter for a subset of the Mat-
lab language (the code can be found in [22]). The overall results are very good:
the code size is reduced by 60.5% and runtime decreased by 16%.

Comparing the Influence of Local and Global Control. In Table 3, we
compare the influence of the partial deduction control. Here, “Full slicing” is the
standard CPD that we have used so far; “Simple Std. PD” is a standard (non-
conjunctive) partial deduction with relatively simple control; and “Näıve PD” is
very simple standard partial deduction in the style of [31], i.e., with a one-step
unfolding and very simple generalization (although it is still more precise than
[31] as it can produce some polyvariance), where we have turned the redundant
argument filtering off.

The experiments we conducted (see [22] for the table of results) show the clear
difference between our slicing approach and one using a näıve PD on the DPPD
benchmarks used earlier: our approach manages a code size reduction of 26%
whereas the näıve PD approach manages just 9.4%. The table also shows that
the overall impact of the filtering is quite small. This is somewhat surprising,
and may be due to the nature of the benchmarks. However, it may also mean
that in the future we have to look at more powerful filtering approaches.
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7 Discussion, Related and Future Work

In this work, we have introduced the first, semantics-preserving, forward slicing
technique for logic programs. Traditional approaches to program slicing rely on
the construction of some data structure to store the data and control depen-
dences in a program. The key contribution of this paper has been to show that
CPD can actually play such a role. The main advantages of this approach are
the following: there is no need to distinguish between static and dynamic slicing
and, furthermore, a slicing tool can be fully implemented with a modest imple-
mentation effort, since only the final code generation phase should be changed
(i.e., the core algorithm of the partial deduction system remains untouched). A
slicing tool has been fully implemented in ecce, where a post-processing trans-
formation to remove redundant arguments has been added. Our experiments
demonstrate the usefulness of our approach, both as a classical slicing method
as well as a technique for code size reduction.

As mentioned before, we are not aware of any other approach to forward
slicing of logic programs. Previous approaches have only considered backward
slicing. For instance, Schoening and Ducassé [27] defined the first backward slic-
ing algorithm for Prolog which produces executable programs. Vasconcelos [30]
introduced a flexible framework to compute both static and dynamic backward
slices. Similar techniques have also been defined for constraint logic programs
[28] and concurrent logic programs [33]. Within imperative programming, Field,
Ramalingam, and Tip [6] introduced a constrained slicing scheme in which source
programs are translated to an intermediate graph representation. Similarly to
our approach, constrained slicing generalizes the traditional notions of static and
dynamic slicing since arbitrary constraints on the input data can be made.

The closest approaches are those of [31] and [21]. Vidal [31] introduced a
forward slicing method for lazy functional logic programs that exploits the sim-
ilarities between slicing and partial evaluation. However, only a restrictive form
of partial evaluation—i.e., monovariant and monogenetic partial evaluation—is
allowed, which also restricts the precision of the computed slices. Our new ap-
proach differs from that of [31] in several aspects: we consider logic programs;
we use a polyvariant and polygenetic partial evaluation scheme and, therefore,
the computed slices are significantly more precise; and, moreover, since the basic
partial deduction algorithm is kept unmodified, it can easily be implemented on
top of an existing partial deduction system. On the other hand, Leuschel and
Sørensen [21] introduced the concept of correct erasure in order to detect and
remove redundant arguments from logic programs. They present a constructive
algorithm for computing correct erasures which can be used to perform a simple
form of slicing. In our approach, we use this algorithm as a post-processing phase
to slice out unnecessary arguments of predicates in the computed slices. The com-
bination of these two approaches, [31] and [21], together with a special-purpose
slicing code generator, form the basis of a powerful forward slicing technique.

Since our work constitutes a first step towards the development of a forward
slicing technique for logic programs, there are many interesting topics for future
work. For instance, an interesting topic for further research involves the compu-
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tation of backward slices (a harder topic). In this case, the information gathered
by characteristic trees is not enough and some extension is needed.

One should also investigate to what extent abstract interpretation can be
used to complement our slicing technique. On its own, abstract interpretation
will probably lack the precise propagation of concrete values, hence making it
less suitable for dynamic slicing. However, for static slicing it may be able to
remove certain clauses that a partial deduction approach cannot remove (see,
e.g., [4, 8] where useless clauses are removed to complement partial deduction)
and one should investigate this possibility further. One could also investigate
better global control, adapted for slicing (to avoid wasted specialisation effort in
case added polyvariance does not increase the precision of the slice). Finally, we
can use our slicing technique as a starting point for resource aware specialization,
i.e., finding a good tradeoff between code size and execution speed.
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Abstract. The notion of control dependence underlies many program analysis
and transformation techniques. Despite wide applications, existing definitions and
approaches for calculating control dependence are difficult to apply seamlessly
to modern program structures. Such program structures make substantial use of
exception processing and increasingly support reactive systems designed to run
indefinitely.

This paper revisits foundational issues surrounding control dependence and
slicing. It develops definitions and algorithms for computing control dependence
that can be directly applied to modern program structures. A variety of properties
show that the new definitions conservatively extend classic definitions. In the con-
text of slicing reactive systems, the paper proposes a notion of slicing correctness
based on weak bisimulation and proves that the definition of control dependence
generates slices that conform to this notion of correctness. The new definitions and
algorithms for control dependence form the basis of a publicly available program
slicer that has been implemented for full Java.

1 Introduction

The notion of control-dependence underlies many program analysis and transformation
techniques used in numerous applications including program slicing applied for program
understanding [2], debugging [3], partial evaluation [4], compiler optimizations [5] such
as global scheduling, loop fusion, code motion etc. Intuitively, a program statement n1 is
control-dependent on a statement n2, if n2 (typically, a conditional statement) controls
whether or not n1 will be executed or bypassed during an execution of the program.

While existing definitions and approaches for calculating control dependence and
slicing are widely applied and have been used in the current form for well over 20
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years, there are several aspects of these definitions that prevent them from being applied
smoothly to modern program structures which rely significantly on exception processing
and increasingly support reactive systems which are designed to run indefinitely.

(I.) Classic definitions of control dependence are stated in terms of program control-
flow graphs (CFGs) in which the CFG has a unique end node – they do not apply directly
to program CFGs with (a) multiple end nodes or with (b) no end node. Restriction (a)
means that existing definitions cannot be applied directly to programs/methods with
multiple exit points – a restriction that would be violated by any method that raises
exceptions or includes multiple returns. Restriction (b) means that existing definitions
cannot be applied directly to reactive programs or system models with control loops that
are designed to run indefinitely.

Restriction (a) is usually addressed by performing a pre-processing step that trans-
forms a CFG with multiple end nodes into a CFG with a single end node by adding a
new designated end node to the CFG and inserting arcs from all original exit states to
the new end node [6, 2]. Restriction (b) can also be addressed in a similar fashion by,
e.g., selecting a single node within the CFG to represent the end node. This case is more
problematic than the pre-processing for Restriction (a) because the criteria for selecting
end nodes that lead to the desired control dependence relation between program nodes
is often unclear. This is particularly true in threads such as event-handlers which have
no explicit shut-down methods, but are “shut down” by killing the thread (thus, there is
nothing in the thread’s control flow to indicate an exit point).

(II.) A deeper problem is that existing definitions of slicing correctness either apply
to programs with terminating execution traces, or they often fail to state whether or
not the slicing transformation preserves the termination behavior of the program being
sliced. Thus these definitions cannot be applied to reactive programs that are designed to
execute indefinitely. Such programs are used in numerous modern applications such as
event-processing modules in GUI systems, web services, distributed real time systems
with autonomous components, e.g. data sensors, etc.

Despite the difficulties, it appears that researchers and practitioners do continue
to apply slicing transformations to programs that fail to satisfy the restrictions above.
However, in reality the pre-processing transformations related to issue (I) introduce ex-
tra overhead into the entire transformation pipeline, clutter up program transformation
and visualization facilities, necessitate the use/maintenance of mappings from the trans-
formed CFGs back to the original CFGs, and introduce extraneous structure with ad-hoc
justifications that all down-stream tools/transformations must interpret and build on in
a consistent manner. Moreover, regarding issue (II), it will be infeasible to continue to
ignore issues of termination as slicing is increasingly applied in high-assurance applica-
tions such as reducing models for verification [7] and for reasoning about security issues
where it is crucial that liveness/non-termination properties be preserved.

Working on a larger project on slicing concurrent Java programs, we have found
it necessary to revisit basic issues surrounding control dependence and have sought to
develop definitions that can be directly applied to modern program structures such as
those found in reactive systems. In this paper, we propose and justify the usefulness and
correctness of simple definitions of control dependence that overcome the problematic
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aspects of the classic definitions described above. The specific contributions of this paper
are as follows.

– We propose new definitions of control dependence that are simple to state and easy
to calculate and that work directly on control-flow graphs that may have no end
nodes or non-unique end nodes, thus avoiding troublesome pre-processing CFG
transformations (Section 4).

– We prove that these definitions applied to reducible CFGs yield slices that are cor-
rect according to generalized notions of slicing correctness based on a form of
weak bisimulation that is appropriate for programs with infinite execution traces
(Section 5.1).

– We clarify the relationship between our new definitions and classic definitions by
showing that our new definitions represent a form of “conservative extension” of
classic definitions: when our new definitions are applied to CFGs that conform to the
restriction of a single end node, our definitions correspond to classic definitions –
they do not introduce any additional dependences nor do they omit any dependences
(Section 4.1).

– We discuss the intuitions behind algorithms for computing control dependence (ac-
cording to the new definitions) to justify that control dependence is computable in
polynomial time (Section 6).

Expanded discussions, definitions and full proofs appear in the companion technical
report [8]. The proposed notions of control dependence described in this paper have
been implemented in Indus [9] – our publicly available open-source Eclipse-based Java
slicer that works on full Java 1.4 and has been applied to code bases of up to 10,000
lines of Java application code (< 80K bytecodes) excluding library code. Besides its
application as a stand-alone program visualization, debugging, and code transformation
tool, our slicer is being used in the next generation of Bandera, a tool set for model-
checking concurrent Java systems.[1]

2 Basic Definitions

2.1 Control Flow Graphs

In the sequel, we follow tradition and represent a program as a control-flow graph, whose
definition we adapt from Ball and Horwitz [10].

Definition 1 (Control Flow Graphs).
A control-flow graph G = (N,E,n0) is a labeled directed graph in which

– N is a set of nodes that represent commands in program,
– the set of N is partitioned into two subsets NS, NP, where NS are statement nodes

with each ns ∈ NS having at most one successor, where NP are predicate nodes with
each np ∈ NP having two successors, and NE ⊆ NS contains all nodes of NS that
have no successors, i.e., NE contains all end nodes of G,
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– E is a set of labeled edges that represent the control flow between graph nodes
where each np ∈ NP has two outgoing edges labeled T and F respectively, and each
ns ∈ (NS − NE) has an outgoing edge labeled A (representing Always taken),

– the start node n0 has no incoming edges and all nodes in N are reachable from n0.

We will display the labels on CFG edges only when necessary for the current exposition.
As stated earlier, existing presentations of slicing require that each CFG G satisfies

the unique end node property: there is exactly one element in NE = {ne} and ne is
reachable from all other nodes of G. The above definition does not require this property
of CFGs, but we will sometimes consider CFGs with the unique end node property in
our comparisons to previous work.

To relate a CFG with the program that it represents, we use the function code to
map a CFG node n to the code for the program statement that corresponds to that node.
Specifically, for ns ∈ NS, code(ns) yields the code for an assignment statement, and
for np ∈ NP, code(np) the code for the test of a conditional statement (the labels on
the edges for np allow one to determine the nodes for the true and false branches of
the conditional). The function def maps each node to the set of variables defined (i.e.,
assigned to) at that node (always a singleton or empty set), and ref maps each node to
the set of variables referenced at that node.

A CFG path π from ni to nk is a sequence of nodes ni,ni+1, . . . ,nk such for every
consecutive pair of nodes (nj ,nj+1) in the path there is an edge from nj to nj+1. A path
between nodes ni and nk can also be denoted as [ni..nk]. When the meaning is clear from
the context, we will use π to denote the set of nodes contained in π and we write n ∈ π
when n occurs in the sequence π. Path π is non-trivial if it contains at least two nodes.
A path is maximal if it is infinite or if it terminates in an end node.

The following definitions describe relationships between graph nodes and the distin-
guished start and end nodes [11]. Node n dominates nodem in G (written dom(n,m)) if
every path from the start node s tom passes throughn (note that this makes the dominates
relation reflexive). Node n post-dominates node m in G (written post-dom(n,m)) if ev-
ery path from nodem to the end node e passes through n. Node n strictly post-dominates
node m in G if post-dom(n,m) and n �=m. Node n is the immediate post-dominator of
nodem if n �=m and n is the first post-dominator on every path fromm to the end node
e. Note that domination relations are well-defined but post-domination relationships
are not well-defined for graphs that do not have the unique end node property. Node n
strongly post-dominates nodem in G if n post-dominatesm and there is an integer k≥ 1
such that every path from node m of length ≥ k passes through n [2]. The difference
between strong post-domination and the simple definition of post-domination above is
that even though node n occurs on every path from m to e (and thus n post-dominates
m), it may be the case that there is a loop in the CFG between m and n that admits an
infinite path beginning at m that never encounters n. Strong post-domination rules out
the possibility of such loops between m and n – thus, it is sensitive to the possibility of
non-termination along paths from m to n.

A CFG G of the form (N,E,n0) is reducible if E can be partitioned into disjoint sets
Ef (the forward edge set) and Eb (the back edge set) such that (N,Ef ) forms a DAG in
which each node can be reached from the entry node n0 and for all edges e ∈ Eb, the
target of e dominates the source of e. All “well-structured” programs, including Java
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programs, give rise to reducible control-flow graphs. Our definitions and most of our
correctness results apply to irreducible CFGs as well, but our correctness result of slicing
based on bisimulation holds for reducible graphs since bisimulation requires ordering
properties that can only be guaranteed on reducible graphs – (see example in Section 4
preceding Theorem 2.)

2.2 Program Execution

The execution semantics of program CFGs is phrased in terms of transitions on program
states (n,σ) where n is a CFG node andσ is a store mapping the corresponding program’s
variables to values.A series of transitions gives an execution trace through p’s statement-
level control flow graph. For state (ni,σi), the code at ni is executed on the transition
from (ni,σi) to successor state (ni+1,σi+1). Execution begins at the start node n0, and the
execution of each node possibly updates the store and transfers control to an appropriate
successor node. Execution of a node ne ∈ NE produces a final state (halt,σ) where the
control point is indicated by a special label halt – this indicates a normal termination of
program execution. The presentation of slicing in Section 5 involves arbitrary finite and
infinite non-empty sequences of states written Π = s1 , s2, . . .. For a set of variables V ,
we write σ1 =V σ2 when for all x ∈ V , σ1(x) = σ2(x).

2.3 Notions of Dependence and Slicing

A program slice consists of the parts of a program p that (potentially) affect the variable
values referenced at some program points of interest; such program points are tradition-
ally called the slicing criterion [12]. A slicing criterionC for a program p is a non-empty
set of nodes {n1, . . . , nk} where each ni is a node in p’s CFG.

The definitions below are the classic ones of the two basic notions of dependence that
appear in slicing of sequential programs: data dependence and control dependence [12].

Data dependence captures the notion that a variable reference is dependent upon any
variable definition that “reaches” the reference.

Definition 2 (data dependence). Node n is data-dependent on m (written m
dd→ n –

the arrow pointing in the direction of data flow) if there is a variable v such that: (1)
there exists a non-trivial path π in p’s CFG from m to n such that for every node
m′ ∈ π− {m,n}, v /∈ def(m′), and (2) v ∈ def(m)∩ ref(n).

Control dependence information identifies the conditionals that may affect execution
of a node in the slice. Intuitively, node n is control-dependent on a predicate node m if
m directly determines whether n is executed or “bypassed”.

Definition 3 (control dependence). Node n is control-dependent on m in program p

(written m
cd→ n) if (1) there exists a non-trivial path π from m to n in p’s CFG such

that every node m′ ∈ π− {m,n} is post-dominated by n, and (2) m is not strictly
post-dominated by n.

For a node n to be control-dependent on predicate m, there must be two paths that
connect m with the unique end node e such that one contains n and the other does
not. There are several slightly different notions of control-dependence appearing in the
literature, and we will consider several of these variants and relations between them in
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the rest of the paper. At present, we simply note that the above definition is standard and
widely used (e.g., see [11]).

We write m
d→ n when either m

dd→ n or m
cd→ n. The algorithm for constructing

a program slice proceeds by finding the set of CFG nodes SC (called the slice set

or backward static slice) from which the nodes in C are reachable via
d→. The term

“backward” signifies that the algorithm starts at the criterion nodes and looks backward
through the program’s control-flow graph to find other program statements that influence
the execution at the criterion nodes. Our definitions of control dependence can be applied
in computing forward slices as well.

Definition 4 (slice set). Let C be a slicing criterion for program p. Then the slice set
SC of p with respect to C is defined as follows:

SC = {m | ∃n .n ∈ C and m
d

→∗ n}.

We will consider slicing correctness requirements in greater detail in Section 5.1. For
now we note that commonly in the slicing literature the desired correspondence between
the source program and the slice is not formalized; the emphasis is often on applications
rather than foundations, and this also leads to subtle differences between presentations.
When a notion of “correct slice” is given, it is often stated using the notion of projection
[13]. Informally, given an arbitrary traceΠ of p and an analogous traceΠs of ps, ps is a
correct slice of p if projecting out the nodes in criterion C (and the variables referenced
at those nodes) for both Π and Πs yields identical state sequences.

3 Assessment of Existing Definitions

3.1 Variations in Existing Control Dependence Definitions

Although Definition 3 of control dependence is widely used, there are a number of (often
subtle) variations appearing in the literature. Here are some:

Admissibility of indirect control dependences. For example, using the definition of control

dependence in Definition 3, for Fig. 1 (a), we can conclude that a
cd→ f and f

cd→ g however

a
cd→ g does not hold because g does not post-dominate f. The fact that a and g are

indirectly related (a does play a role in determining if g is executed or bypassed) is
not captured in the definition of control dependence itself but in the transitive closure
used in the slice set construction (Definition 4). However, some definitions of control
dependence [2] incorporate this notion of transitivity directly into the definition itself as
we will illustrate later.

Sensitivity to non-termination. Consider Fig. 1 (a) again, where node c represents a post-

test that controls a potentially infinite loop. According to Definition 3, a
cd→ d holds but

c
cd→ d does not hold (because d post-dominates c) even though c may determine whether

d executes or never gets to execute due to an infinite loop that postpones d forever. Thus,
Definition 3 is non-termination insensitive.
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We now further illustrate the variations by recalling definitions of strong and weak
control dependence given by Podgurski and Clarke [2] and used in a number of works,
e.g., the study of control dependence by Bilardi and Pingali [14].

Definition 5 (Podgurski-Clarke Control Dependence).

– n2 is strongly control dependent on n1 (n1
PC−scd→ n2) if there is a path from n1 to n2

that does not contain the immediate post dominator of n1.

– n2 is weakly control dependent on n1 (n1
PC−wcd→ n2) if n2 strongly post dominates

n′1, a successor of n1, but does not strongly post dominate n′′
1 , another successor of

n1.

Whereas Definition 3 captures direct control dependence only, strong control depen-
dence as defined above captures indirect control dependence. For example, in Fig. 1, in

contrast to Definition 3, we have a
PC−scd→ g because there is a path afg which does not

contain e, the immediate post-dominator of a. However, one can show that when used
in the context of Definition 4 (which computes the transitive closure of dependences),
the two definitions give rise to the same slices.

Weak control dependence subsumes the notion of strong control dependence

(n1
PC−scd→ n2 implies n1

PC−wcd

→∗ n2) and it captures weaker dependences between nodes

induced by non-termination: it is non-termination sensitive. For Fig. 1 (a), c
PC−wcd→ d

because d does not strongly post-dominate b: the presence of the loop controlled by c
guarantees that there exists no k such that every path from node b of length ≥ k passes
through d.

The impact of the variations on slicing. Note that slicing based on Definition 3 or
the strong control dependence above can transform a non-terminating program into a
terminating one (i.e., non-termination is not preserved in the slice). In Fig. 1 (a), assume
that the loop controlled by c is an infinite loop. Using the slice criterion C = {d} would
include a but not b and c (we assume no data dependence between d and b or c) if
the slicing is based on strong control dependence. Thus, in the sliced program, one
would be able to observe an execution of d, but such an observation is not possible in
the original program because execution diverges before d is reached. In contrast, the
difference between direct and indirect statements of control dependence seems to be
largely a technical stylistic decision in how the definitions are stated.

Very few works consider the non-termination sensitive notion of weak control de-
pendence above. We conjecture that there are at least two reasons for this. First, weak
control dependence is actually a larger relation (relating more nodes) and will thus in-
clude more nodes in the slice. Second, many applications of slicing focus on debugging
and program visualization and understanding, and in these applications having slices
that preserve non-termination is less important than having smaller slices. However,
slicing is increasingly used in security applications and as a model-reduction technique
for software model checking. In these applications, it is important to consider variants of
control dependence that preserve non-termination properties, since failure to do so could
allow inferences to be made that compromise security policies, for instance invalidate
checks of liveness properties [7].
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Fig. 1. (a) is a simple CFG. (b) illustrates how a CFG that does not have a unique exit node
reachable from all nodes can be augmented to have unique exit node reachable from all nodes. (c)
is a CFG with multiple control sinks of different sorts

3.2 Unique End Node Restriction on CFGs

All definitions of control dependences that we are aware of require that CFGs satisfy the
unique end node requirement – but many software systems fail to satisfy this property.
Existing works simply require that CFGs have this property, or they suggest that CFGs
can be augmented to achieve this property, e.g., using the following steps: (1) insert a
new node e into the CFG, (2) add an edge from each exit node (other than e) to e, (3)
pick an arbitrary node n in each non-terminating loop and add an edge from n to e.

In our experience, such augmentations complicate the system being analyzed in sev-
eral ways. If the augmentation is non-destructive, a new CFG is generated which costs
time and memory. If the augmentation is destructive, this may clash with the require-
ments of other clients of the CFG, thus necessitating the reversal of the augmentation
before subsequent analyses can proceed. If the augmentation is not reversed, the graph
algorithms and analyses algorithms should be made intelligent to operate on the actual
CFG embedded in the augmented CFG.

Many systems have threads where the main control loop has no exit – the loop is
“exited” by simply killing the thread. For example, in Xt library, most applications
create widgets, register callbacks, and call XtAppMainLoop() to enter an infinite loop
that manages the dispatching of events to the widgets in the application. In PalmOS,
applications are designed such that they start upon receiving a start code, execute a
loop, and terminate upon receiving a stop code. However, the application may choose to
ignore the stop code once it starts, and hence, not terminate except when it is explicitly
killed. In such cases, a node in the loop must be picked as the loop exit node for the
purpose of augmenting the CFG. But this can disrupt the control dependence calculations.
In Fig. 1 (b), we would intuitively expect e,b,c, and d to be control dependent on a

in the unaugmented CFG. However, a
PC−wcd→ {e,b,c} and c

PC−wcd→ {b,c,d,f} in the
augmented CFG. It is trivial to prune dependences involving f. But now there are new

dependences c
PC−wcd→ {b,c,d} which did not exist in the unaugmented CFG. Although

a suggestion to delete any dependence on c may work for the given CFG, it fails if there

exists a node g that is a successor of c and a predecessor of d. Also, a
PC−wcd→ d exists

in the unaugmented CFG but not in the augmented CFG, and it is not obvious how to
recover this information.
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We address these issues head-on by considering alternate definitions of control-
dependence that do not impose the unique end-node description.

4 New Dependence Definitions

In previous definitions, the control dependence of nj on ni is specified by considering
paths from ni and nj to a unique CFG end node – essentially ni and the end node delimit
the path segments that are considered. Since we aim for definitions that apply when CFGs
do not have an end node or have more than one end node, we aim to instead specify that
nj is control dependent on ni by focusing on paths between ni and nj . Specifically, we
focus on path segments that are delimited by ni at both ends – intuitively corresponding
to the situation in a reactive program where instead of reaching an end node, a program’s
behavior begins to repeat itself by returning again to ni. At a high level, the intuition
remains the same as in, e.g., Definition 3 – executing one branch of ni always leads to
nj , whereas executing another branch of ni can cause nj to be bypassed. The additional
constraints that are added (e.g., nj always occurs before any occurrence of ni) limits the
region in which nj is seen or bypassed to segments leading up to the next occurrence of
ni – ensuring that ni is indeed controlling nj . The definition below considers maximal
paths (which includes infinite paths) and thus is sensitive to non-termination.

Definition 6 (ni
ntscd→ nj). In a CFG, nj is (directly) non-termination sensitive control

dependent on node ni, if ni has at least two successors, nk and nl, and (1) for all maximal
paths from nk, nj always occurs and, either nj = ni, or nj occurs before any occurrence
of ni; and, (2) there exists a maximal path from nl on which either nj does not occur, or
nj is strictly preceded by ni.

We supplement a traditional presentation of dependence definitions with definitions
given as formulae in computation tree logic (CTL) [15]. CTL is a logic for describing
the structure of sets of paths in a graph, making it a natural language for expressing control
dependences. Informally, CTL includes two path quantifiers, E and A, which define that
a path from a given node with a given structure exists or that all paths from that node
have the given structure. The structure of a path is defined using one of five modal
operators (we refer to a node satisfying φ as a φ-node): Xφ states that the successor node
is a φ-node, Fφ states the existence of a φ-node, Gφ states that a path consists entirely
of φ-nodes, φUψ states the existence of a ψ-node and that the path leading up to that
node consists of φ-nodes, finally, the φWψ operator is a variation on U that relaxes the
requirement that a ψ-node exist. In a CTL formula path quantifiers and modal operators
occur in pairs, e.g., AFφ says on all paths from a node a φ node occurs.

The following CTL formula captures the definition of control dependence above.

ni
ntscd→ nj = (G,ni) |= EX(A[¬niUnj ])∧EX(E[¬njW(¬nj ∧ ni)])

Here, (G,ni) |= expresses the fact that the CTL formula is checked against the graph G
at node ni. The two conjuncts are essentially a direct transliteration of the two conditions
in Definition 6.

We have formulated Definition 6 to apply to execution traces instead of CFG paths.
In this setting one needs to bound relevant segments by ni as discussed above. However,



86 V.P. Ranganath et al.

when working on CFG paths, the definition conditions can actually be simplified to read
as follows: (1) for all maximal paths from nk, nj always occurs, and (2) there exists a
maximal path from nl on which nj does not occur. A CTL formula for this simplified
definition is

ni
ntscd→ nj = (G,ni) |= EX(AF(nj)∧EX(EG(¬nj))).

See [8] for the proof that the simplified definition and Definition 6 are equivalent on
CFGs.

Illustrating non-termination sensitivity of Definition 6: Note that c
ntscd→ d in Fig. 1 (a)

since there exists a maximal path (an infinite loop between b and c) where d never occurs.

In Fig. 1 (c), note that d
ntscd→ i because there is an infinite path from j (cycle on (j,d))

on which i does not occur.
We now turn to constructing a non-termination insensitive version of control depen-

dence. The definition above considered all paths leading out of a conditional. Now, we
need to limit the reasoning to finite paths that reach a terminal region of the graph. To
handle this in the context of CFGs that do not have the unique end-node property, we
generalize the concept of end node to control sink – a set of nodes such that each node
in the set is reachable from every other node in the set and there is no path leading out
of the set. More precisely, a control sink κ is a set of CFG nodes that form a strongly
connected component such that for each n ∈ κ each successor of n is also in κ. It is
trivial to see that each end node forms a control sink and each loop without any exit
edges in the graph forms a control sink. For example, {e} and {b,c,d} are control sinks
in Fig. 1 (b unaugmented), and {e} and {d,i, j} are control sinks in Fig. 1 (c). Let the
set of sink-bounded paths from nk (denoted SinkPaths(nk)) contain all paths π from nk

to a node ns such that ns belongs to a control sink.

Definition 7 (ni
nticd→ nj). In a CFG, nj is (directly) non-termination insensitively

control dependent on ni if ni has at least two successors, nk and nl, and (1) for all
paths π ∈ SinkPaths(nk), nj ∈ π; and, (2) there exists a path π ∈ SinkPaths(nl) such
that nj �∈ π and if π leads to a control sink κ, nj �∈ κ.

In CTL:

ni
nticd→ nj = (G,ni) |= EX(ÂF(nj))∧EX(Ê[¬njU(c-sink? ∧ nj �∈ c-sink)])

where: Â and Ê represent quantification over sink-bounded paths only; c-sink? evaluates
to true only if the current node belongs to a control sink; c-sink returns the sink set
associated with the current node.

Illustrating non-termination insensitivity of Definition 7: Note that c �nticd−→ d in Fig. 1
(a) since all paths from c to the control sink, {e}, contain d. In Fig. 1 (b unaugmented)

a
nticd→ e because there exists a path from b to the control sink {b,c,d} and neither the path

nor the sink contain e; and, a
nticd→ {b,c,d} because there is a path ending in control sink

{e} that does not contain b, c, or d. Interestingly, for Fig. 1 (c) our definition concludes

that d �nticd−→ i because although there is a trivial path from d to the control sink {d,i, j},
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i belongs to that control sink. This is because the definition inherently captures a form
of fairness – since the back edge from j guarantees that d will be executed an infinite
number of times, the only way to avoid executing i would be to branch to d on every
cycle. Consequently, even though there may be control structures inside of a control sink,
they will not give rise to any control dependences. In applications where one desires to
detect such dependences, one would apply the definition to control sinks in isolation
with back edges removed.

4.1 Properties of the Dependence Relations

We begin by showing that the new definitions of control dependence conservatively
extend classic definitions: when we consider our definitions in the original setting with
CFGs with unique end nodes, the definitions coincide with the classic definitions. In
addition, direct non-termination insensitive control dependence (Definition 7) implies
the transitive closure of direct non-termination sensitive control dependence.

Theorem 1 (Coincidence Properties). For all CFGs with the unique end node property,

and for all nodes ni,nj ∈ N we have: (1) ni
cd→ nj implies ni

nticd→ nj; (2) ni
nticd→ nj

implies ni
cd→ nj; (3) ni

PC−wcd→ nj iff ni
ntscd→ nj; (4) For all CFGs, for all nodes

ni,nj ∈N : ni
nticd→ nj implies ni

ntscd→
∗
nj .

Part(4) of the above theorem is illustrated as follows: in Fig. 1 (a), a
nticd→ d holds but

a
ntscd→ d does not. But a

ntscd→
∗
d holds as both a

ntscd→ c and c
ntscd→ d hold.

For the (bisimulation-based) correctness proof in Section 5.1, we shall need a few
results about slice sets (members of which are termed “observable”). The main intuition
is that the nodes in a slicing criteriaC represent “observations” that one is making about
a CFG G under consideration. Specifically, for an n ∈ C, one can observe that n has
been executed and also observe the values of any variables referenced at n. A crucial
property is that the first observable node on any path (n1 in the lemmas below) will be
encountered sooner or later on all other paths. Letting Ξ be the set of nodes, we have:

Lemma 1. Assume Ξ is closed under
ntscd→ , and that n0 /∈ Ξ . Assume that there is a

path π from n0 to n1, with n1 ∈Ξ but for all n ∈ π with n �= n1, n /∈Ξ . Then all maximal
paths from n0 will contain n1.

The notion of “closed” Ξ is this: if ni ∈Ξ and ni
ntscd→ nj then nj ∈Ξ .

Lemma 2. AssumeΞ is closed under
nticd→ , and that n0 /∈Ξ . Assume that there is a path

π from n0 to n1, with n1 ∈Ξ but for all n ∈ π with n �= n1, n /∈Ξ . Then all sink-bounded
paths from n0 will contain n1.

As a consequence we have the following result, giving conditions to preclude the exis-
tence of infinite un-observable paths:

Lemma 3. Assume that n0 /∈Ξ , but that there is a path π starting at n0 which contains

a node in Ξ . (1) If Ξ is closed under
nticd→ , then all sink bounded paths starting at n0

will reach Ξ . (2) If Ξ is also closed under
ntscd→ , then all maximal paths starting at n0

will reach Ξ .
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We are now ready for the section’s main result: from a given node there is a unique
first observable. For this, we need the CFG to be reducible, as can be seen by the
counterexample where from n0 there are edges to n1 and n2 between which there is a
cycle.

Theorem 2. Assume that n0 /∈Ξ , that n1,n2 ∈Ξ , and that there are paths π1 = [n0..n1]
and π2 = [n0..n2] such that on both paths, all nodes except the last do not belong to Ξ .

If Ξ is closed under
ntscd→ and if the CFG is reducible, then n1 = n2.

5 Slicing

We now describe how to slice a (reducible) CFG G wrt. a slice set SC , the smallest set

containing C which is closed under data dependence
dd→ and also closed under

ntscd→ .
The result of slicing is a program with the same CFG as the original one, but with the

code map code1 replaced by code2. Here code2(n) = code1(n) for n ∈ SC ; for n /∈ SC :

– if n is a statement node then code2(n) is the statement skip;
– if n is a predicate node then code2(n) is cskip, the semantics of which is that it

non-deterministically chooses one of its successors.

The above definition is conceptually simple, so as to facilitate the correctness proofs. Of
course, one would want to do some post-processing, like eliminating skip commands
and eliminating cskip commands where the two successor nodes are equal; we shall
not address this issue further but remark that most such transformations are trivially
meaning preserving.

5.1 Correctness Properties

For a slicing criterion C, execution of nodes not in C correspond to silent moves or
non-observable actions. The slicing transformation should preserve the behavior of the
program with respect to C observations, but parts of the program that are irrelevant
with respect to computing C observations can be “sliced away”. The slice set SC built
according to Definition 4 represents the nodes that are relevant for maintaining the
observations C. Thus, to prove the correctness of slicing we will establish the stronger
result that G will have the same SC observations wrt. the original code map code1 as wrt.
the sliced code map code2, and this will imply that they have the same C observations.

The discussion above suggests that appropriate notions of correctness for slicing
reactive programs can be derived from the notion of weak bisimulation found in concur-
rency theory, where a transition may include a number of τ -moves [16]. In our setting,
we shall consider transitions that do one or more steps before arriving at a node in the
slice set.

Definition 8. For i= 1,2, wrt. code map codei: s
i�−→ s′ denotes that program state s

rewrites in one step to s′. And, s0
i=⇒ s denotes that there exists s1 . . .sk (k ≥ 1) with

sk = s such that

(1) for all j ∈ {1 . . .k} we have sj−1
i�−→ sj;

(2) nk ∈ SC but for all j ∈ {1 . . .k−1}, nj /∈ SC , where sj = (nj ,σj) for each j.
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Definition 9. Binary relation S on program states is a bisimulation if whenever (s1,s2) ∈
S then: (a) if s1

1=⇒ s′1 then there exists s′2 such that s2
2=⇒ s′2 and (s′1,s

′
2) ∈ S; and,

(b) if s2
2=⇒ s′2 then there exists s′1 such that s1

1=⇒ s′1 and (s′1,s
′
2) ∈ S.

For each node n in G, we define relv(n), the set of relevant variables at n, by stipulating
that x ∈ relv(n) if there exists a node nk ∈ SC and a path π from n to nk such that
x ∈ refs(nk), but x /∈ defs(nj) for all nodes nj occurring before nk in π.

The above is well-defined in that it does not matter whether we use code1 or code2,
as it is easy to see that the value of relv(n) is not influenced by the content of nodes

not in SC , since that set is closed under
dd→. (Also, the closedness properties of SC are

not affected by using code2 rather than code1.) We have now arrived at the correctness
theorem:

Theorem 3. Let relation S0 be given by (n1,σ1)S0 (n2,σ2) iff n1 = n2 and σ1 =relv(n1)

σ2. Then (given reducible G) if SC is closed under
ntscd→ then S0 is a bisimulation.

6 Non-termination Sensitive Control Dependence Algorithm

Control dependences are calculated using a symbolic data-flow analysis. Each outgoing
edge n → p of a predicate node n is represented by a token tnp. At each node m, a
summary set Smn is maintained for each predicate node n. Tokens are injected into the
summary sets of the successors of each predicate node. The tokens are then propagated
according to the following rules until no propagatian can occur.

– If q is a non-predicate node in q → r then the tokens in the summary sets at q are
copied into the corresponding summary sets at r. This records that all maximal paths
containing q also contain r.

– Only if all tokens corresponding to a predicate node n have arrived at node q then
the tokens in the summary sets at n are copied into corresponding summary sets at
q. This records that all maximal paths containing n also contain q.

Upon termination, tnp ∈ Smn indicates that all maximal paths from n starting with
n→ p containm. Based on this observation, if |Smn|> 0∧|Smn| �= Tn then, by Defini-
tion 6, it can be inferred that m is directly control dependent on n. On the other hand, if
|Smn|> 0 and |Smn| = Tn then, by Definition 6, it can be inferred that m is not directly
control dependent on n.

The above algorithm has a worst-case asymptotic complexity ofO(|N|3 ×K) where
K is the sum of the outdegree of all predicate nodes in the CFG. Linear time algorithms
to calculate control dependence based on augmented CFGs have been proposed in the
literature [2]. The practical cost of this augmentation varies with the specific algorithm
and the nature of control dependence being calculated. Our experience with an imple-
mentation of our algorithm in a program slicer for full Java [17] suggests that, despite
its complexity bound, it elegantly scales to programs with tens-of-thousands of lines of
code. We suspect that this is due in part to the elimination of the processing overhead
involved in dealing with augmented CFGs.
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Non-Termination-Sensitive-Control-Dependence(G)
1 G(N,E,n0,N

E) : a control flow graph.
2 S[|N|, |N|] : a matrix of sets where S[n1,n2] represents Sn1n2 .
3 T [|N|] : a sequence of integers where T [n1] denotes Tn1 .
4 CD[|N|] : a sequence of sets.
5 workbag : a set of nodes.
6
7 # (1) Initialize
8 workbag←∅
9 for each n1 in condNodes(G) and n2 in succs(n1,G)

10 do workbag← workbag∪{n2}
11 Sn2n1 ←{tn1n2}
12
13 # (2) Calculate all-path reachability
14 while workbag �= ∅
15 do flag← false
16 n3← remove(workbag)
17 for each n1 in condNodes(G)\n3
18 do if |Sn3n1 |= Tn1

19 then for each n4 in condNodes(G)\n3
20 do if Sn1n4\Sn3n4 �= ∅
21 then Sn3n4 ← Sn3n4 ∪Sn1n4

22 flag = true
23
24 if flag and |succs(n3,G)|= 1
25 then n5← the successor of n3 in G
26 for n4 in condNodes(G)
27 do if Sn5n4\Sn3n4 �= ∅
28 then Sn5n4 ← Sn5n4 ∪Sn3n4

29 workbag← workbag∪{n5}
30 else if flag and |succs(n3,G)|> 1
31 then for each n4 in N
32 do if |Sn4n3 |= Tn3

33 then workbag← workbag∪{n4}
34
35 # (3) Calculate non-termination sensitive control dependence
36 for each n3 in N
37 do for each n1 in condNodes(G)
38 do if |Sn4n3 |> 0 and |Sn3n1 | �= Tn1

39 then CD[n3]← CD[n3]∪{n1}
40
41 return CD

Fig. 2. The algorithm to calculate non-termination sensitive control dependence

A complete description of the algorithm, its correctness, and its complexity analysis
is given in [8].



A New Foundation for Control-Dependence and Slicing 91

7 Related Work

Fifteen years ago, control dependence was rigorously explored by Podgurski and Clarke
[2]. Since then there has been a variety of work related to calculation and application of
control dependence in the setting of CFGs that satisfy the unique end node property.

In the realm of calculating control dependence, Bilardi et.al [14] proposed new
concepts related to control dependence along with algorithms based on these concepts
to efficiently calculate weak control dependence. Johnson proposed an algorithm that
could be used to calculate control dependence in time linear in the number of edges [18].
In comparison, in this paper we sketch a feasible algorithm in a more general setting.

In the context of slicing, Horwitz, Reps, and Binkley [19] presented what has now be-
come the standard approach to inter-procedural slicing via dependence graphs. Recently,
Allen and Horwitz [20] extended previous work on slicing to handle exception-based
inter-procedural control flow. In this work, they handle CFG’s with two end nodes (one
for normal return and one for exceptional return) but it is unclear how this affects the
control dependence captured by the dependence graph. In comparison, we have shown
that program slicing is feasible with unaugmented CFGs.

For relevant work on slicing correctness, Horwitz et.al. use a semantics based multi-
layered approach to reason about the correctness of slicing in the realm of data de-
pendence [21]. Ball et.al use a program point specific history based approach to prove
the correctness of slicing for arbitrary control flow [10]. We extend that work to con-
sider arbitrary control flow without the unique end-node restriction. Their correctness
property is a weaker property than bisimulation – it does not require ordering to be
maintained between observable nodes if there is no dependence between these nodes
– and it holds for irreducible CFGs. Even though our definitions apply to irreducible
graphs, we need reducible graphs to achieve the stronger correctness property. We are
currently investigating if we can establish their correctness property using our control
dependence definitions on irreducible graphs.

Hatcliff et.al. present notions of dependence for concurrent CFGs, and propose a
notion of bisimulation as the correctness property [6]. Millett and Teitelbaum [22] study
static slicing of Promela (the model description language for the model-checker SPIN)
and its application to model checking, simulation, and protocol understanding. They
reuse existing notions of slicing, however, they neither discuss issues related to preser-
vation of non-termination and liveness properties nor formalize a notion of correct slice
for their applications. Krinke [23] considers static slicing of multi-threaded programs
with shared variables, and focuses on issues associated with inter-thread data dependence
but does not consider non-termination sensitive control dependence.

8 Conclusion

The notion of control dependence is used in myriad of applications, and researchers
and tool builders increasingly seek to apply it to modern software systems and high-
assurance applications – even though the control flow structure and semantic behavior
of these systems do not mesh well with the requirements of existing control dependence
definitions. In this paper, we have proposed conceptually simple definitions of control



92 V.P. Ranganath et al.

dependence that (a) can be applied directly to the structure of modern software thus
avoiding unsystematic preprocessing transformations that introduce overhead, concep-
tual complexity, and sometimes dubious semantic interpretations, and (b) provide a solid
semantic foundation for applying control dependence to reactive systems where program
executions may be non-terminating.

We have rigorously justified these definitions by providing detailed proofs of cor-
rectness (see the companion technical report [8]), by expressing them in temporal
logic (which provides an unambiguous definition and allows them to be mechanically
checked/debugged against examples using automated verification tools), by showing
their relationship to existing definitions, and by implementing and experimenting with
them in a publicly available slicer for full Java. In addition, we have provided algorithms
for computing these new control dependence relations, and argued that any additional
cost in computing these relations is negligible when one considers the cost and ill-effects
of preprocessing steps required for previous definitions. Thus, we believe that there are
many benefits for widely applying these definitions in static analysis tools.

In ongoing work, we continue to explore the foundations of statically and dynamically
calculating dependences for concurrent Java programs for slicing, program verification,
and security applications. In particular, we are exploring the relationship between de-
pendences extracted from execution traces and dependences extracted from control-flow
graphs in an effort to systematically justify a comprehensive set of dependence notions
for the rich features found in concurrent Java programs. This effort will yield a more
direct semantic connection between notions of dependence and execution traces instead
of working indirectly through syntactic-oriented CFG definitions. With the translated,
temporal logic-based dependence definitions, we are investigating how certain temporal
properties of the unsliced version of the program are preserved in the sliced version.
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Abstract. Procedure summaries are an approximation of the effect of a procedure
call. They have been used to prove partial correctness and safety properties. In this
paper, we introduce a generalized notion of procedure summaries and present a
framework to verify total correctness and liveness properties of a general class of
while programs with recursion. We provide a fixpoint system for computing sum-
maries, and a proof rule for total correctness of a program given a summary. With
suitable abstraction methods and algorithms for efficient summary computation,
the results presented here can be used for the automatic verification of termination
and liveness properties for while programs with recursion.

1 Introduction

Procedure summaries are a fundamental notion in the analysis and verification of re-
cursive programs [21, 19, 3]. They refer to the approximation of the “functional” effect
of a procedure call. So far, they have shown useful for deriving and proving partial
correctness, invariance and safety properties (“nothing bad may happen”). The results
in this paper show that procedure summaries may be useful for deriving and proving
termination and liveness properties (“something good will happen”).

More specifically, we present a notion of summaries that applies to general pro-
grams with arbitrary nesting of while loops and recursion; the program variables range
over possibly infinite data domains. A summary captures the effect of the unbounded
unwinding of the body of procedure definitions, as well as of while loops. More gen-
erally, a summary may refer to any pair of programs points and captures the effect of
computations that start and end at these program points.

We may use a pair of state assertions to express a summary, e.g. the pair (x> 0,x< 0)
to describe that the program variable x is first positive and then negative. We also may use
assertions on state pairs, e.g. the assertion x′ = −x to describe that the program variable
x gets multiplied by −1.

It is obvious that partial correctness and invariance and safety properties can be
expressed in terms of summaries. This paper shows that also termination can be expressed
in terms of summaries. We here concentrate on termination; the reduction of more general
liveness properties to termination would follow the lines of [23, 14, 15].

The two classical proof rules for partial correctness and termination use invariants
and variants (ranking functions) for the auxiliary assertion on the program. We present
a proof rule for total correctness that uses summaries for the (one) auxiliary assertion on
the program. Besides illustrating a new facet of total correctness of recursive programs,
the contribution of the proof rule lies in its potential for automation via abstract interpre-
tation [8, 9]. The considerable investment of research into the efficient computation of

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 94–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Summaries for While Programs with Recursion 95

summaries has been a success; its payoff through industrialized tools checking invari-
ance and safety properties of recursive programs [3] may well extend to termination and
liveness properties. We believe that our paper may lead to several directions of follow-up
work towards that goal.

2 Related Work

Among the vast amount of work on the analysis and verification of recursive programs,
we will cover the part that seems most relevant for ours. In short, to advance a sum-up
of the comparison, none of that work considers a notion of summary as general as ours
(which refers to arbitrarily precise descriptions of the effect of computations between
general pairs of program points of general while programs), and none of that work
exploits summaries for termination.

Hierarchical State Machines (HSMs) [5], called Recursive State Machines (RSMs)
in [2], are a model of recursive programs over finite data domains (and hence with finitely
many states, if state refers to the valuation s of the program variables, i.e. without the
stack contents γ; in our technical exposition, we use configuration to refer to the pair
(s,γ) and avoid the term ‘state’ altogether).

As a side remark, we note that while loops are irrelevant in finite-state programs such
as HSMs or RSMs, and can be eliminated in programs with recursion. Our exposition
(for programs with while loops and recursion) permits to compare summaries for while
loops with the summaries for recursive procedures replacing them.

The model checking algorithms in [5] and in [2] account for temporal properties
including termination and liveness. Hence, one may wonder whether one can not prove
those properties for general recursive programs by first abstracting them to finite-state
recursive programs (using e.g. predicate abstraction as in [3]) and then applying those
model checking algorithms. The answer is: no, one can not. Except for trivial cases, the
termination or liveness property gets lost in the abstraction step. In the automation of our
proof rule by abstract interpretation, one may use the idea of transition predicate abstrac-
tion [15] to obtain abstractions of summaries; a related idea, developed independently,
appears in [11].

The model checking algorithms in [5] and in [2] are based on the automata-theoretic
approach. In [5], the construction of a monitor Buechi automaton for the LTL or CTL*
property is followed by a reachability analysis for the monitored HSM in two phases.
First, summary edges from call to return of a module and path edges from entry nodes
of a module to an arbitrary node in the same module are constructed. Additionally, it is
indicated whether those paths pass an accepting state of the monitor. Second, the graph
of a Kripke structure augmented with summary and path edges is checked for cycles.
If a cycle through an accepting path exists the Buechi acceptance condition is satisfied
and the property fails.

In [5], the construction of summary edges follows the fundamental graph-theoretic
set-up of [19]. In [2], a (closely related) setup of Datalog rules is used. The fixpoint
system that we use (in our proof rule in order to validate a summary for a given program)
are reminiscent of those Datalog rules; for a rough comparison one may say that we
generalize the Datalog rules from propositional to first-order logic. This is needed for



96 A. Podelski, I. Schaefer, and S. Wagner

the incorporation of infinite data types, which in fact is mentioned as a problem for future
work in [2].

The CaRet logic in [1] expresses properties of recursive state machines, such as non-
regular properties concerning the call stack, that go beyond the properties considered
in this paper (which refer to program variables only). The model checking algorithm
for CaRet presented in [1] uses summary edges for procedures as in [2] and is again
restricted to finite data types.

The model checker Bebob [4], a part of the SLAM model checking tool [3], is based
on the construction of procedure summaries adapted from [19] using CFL-reachability.
The applied algorithm is again a two stage process. First, path and summary edges are
constructed and then, the actual reachability analysis is carried out by using summary and
path edges. Bebop applies to C-like structured programs with procedures and recursion
and no other than Boolean variables.

The work presented here is related to the work on program termination in [13, 14,
15] in the following way. The notion of transition invariants introduced in [14] for
characterizing termination can be instantiated for recursive programs in either of two
ways, by referring to program valuations (i.e. without stack contents) or by referring
to configurations (i.e. pairs of program valuations and stack contents). Either case does
not lead to useful proof rules for total correctness. The notion of summaries, and its
putting to use for termination proofs for recursive programs, are contributions proper to
this paper. The work in [14] and in [15] is relevant for the automation of our proof rule
in two different ways. The algorithm presented in [13] can be used to efficiently check
the third condition of the proof rule. As mentioned above, the abstraction investigated
in [15] can be used to approximate summaries (and thus automate their construction by
least-fixpoint iteration).

As pointed out by an anonymous referee, it is possible to define summaries using
the formalism of so-called weighted pushdown systems [6, 20]. This would be useful in
order to give an alternative view on our results in this framework.

3 Examples

We consider the program factorial below. We will construct a summary for the program
and use the summary for proving total correctness. We hereby informally instantiate the
proof rule that we will introduce in Section 6. The semantics of procedure calls is call
by reference.

factorial(x,y) = entry : if x > 0
{

x = x − 1;
�1 : factorial(x,y);
�2 : x = x+1;

y = x · y;
}

exit :

factorial
factorial

x>
0

x ≤ 0 ∧ x′ = x ∧ y′ = y

x ′
=

x+
1

∧
y ′

=
x ′y

∧ x
′ =

x−1

�2

exitentry

�1
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In the abstract notation used in this paper, the program consists of one module M0 given
by a set Cmds0 of three commands and a set Calls0 of one call.

Cmds0 = { (entry, x ≤ 0 ∧ x′ = x ∧ y′ = y , exit) ,
(entry, x > 0 ∧ x′ = x − 1 ∧ y′ = y , �1) ,

(�2, x′ = x+1 ∧ y′ = x′y , exit) }

Calls0 = { (�1, 0, �2) }

The one-step transition relation R over program valuations is specified by the asser-
tions R1 to R5 below. The assertions R1 to R3 correspond to the execution of the com-
mands in Cmds0 (and are obtained by their direct translation). The assertions R4 and R5
correspond to the execution of a call; we will see further below how we can obtain R4
and R5.

As usual, we express a binary relation over program valuations as a set of valuations
of the program variables and the primed version of the program variables. The program
variables include the program counter pc which ranges over the four locations (entry,
exit, �1 and �2) of the program.

R1 pc = entry ∧ x ≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = exit

R2 pc = entry ∧ x > 0 ∧ x′ = x − 1 ∧ pc′ = �1

R3 pc = �2 ∧ x′ = x+1 ∧ y′ = x′y ∧ pc′ = exit

R4 pc = �1 ∧ x ≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = �2

R5 pc = �1 ∧ x > 0 ∧ x′ = x ∧ y′ = (x − 1)!xy ∧ pc′ = �2

We next consider execution sequences that contain no or finished recursive calls (where
the final stack of the execution sequence is again the same as the initial one). The
corresponding transition relation T is specified by assertions such as T1 and T2 below
(we omit the other T -assertions). The assertions T1 and T2 apply to pairs of program
valuations at entry and exit. The assertions R4 and R5 apply to pairs of program valuations
at �1 and �2. We obtain R4 and R5 by replacing in T1 and T2 the conjuncts pc = entry
and pc′ = exit by the conjuncts pc = �1 and pc′ = �2.

T1 pc = entry ∧ x ≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = exit

T2 pc = entry ∧ x > 0 ∧ x′ = x ∧ y′ = (x − 1)!xy ∧ pc′ = exit

Finally, we consider multiple-step execution sequences with unfinished recursive calls
(i.e. where the final stack of the execution sequence has increased by at least one item).
The corresponding transition relation S is specified by assertions such as S1 and S2 below
(we omit the other S-assertions).

S1 pc = entry0 ∧ x ≥ 0 ∧ x′ > x ∧ pc′ = entry0

S2 pc = �1 ∧ x ≥ 0 ∧ x′ > x ∧ pc′ = �1

The disjunction of R-, S- and T -assertions (their complete list can be found in [16]) is
a summary of the factorial program. The total correctness, specified by the pair of the
precondition and the postcondition
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pre ≡ pc = entry ∧ x ≥ 0 ∧ y = 1

post ≡ pc′ = exit ∧ y ′ = x!

follows, by the proof rule presented in Section 6, from two kinds of basic observation
on the summary.

(1) The assertion T1∨T2 in conjunction with the assertion pre entails the assertion post.
(2) Each assertion denotes a well-founded relation. This is true for the assertion S1 by a
classical argument, and it is trivially true for each of the other assertions presented here
(since a relation with pairs of different locations � and �′ admits only chains of length 1).

Second Example: Insertion Sort. In this example, reasoning over termination must ac-
count for the nesting of recursive calls and while loops. Given an array A and a positive
integer n the ins sort program sorts A. The procedure insert is applied to an array of size
n and uses a while loop to insert its nth element A[n − 1] in its proper place, assuming
that the first n − 1 elements are sorted.

ins sort(A,n) =
entry0 : if n ≤ 1 then A

else
{

n = n − 1;
�1 : ins sort(A,n);
�2 : n = n+1;
�3 : insert(A,n);

}
exit0 :

insert(A,n) =
entry1 : i = n;
�4 : while (n > 1 &

A[n − 1]< A[n − 2])
{

swap(A[n − 2],A[n − 1]);
n = n − 1;

}
�5 : n = i;
exit1 :

A summary of the ins sort program must account for execution sequences with nested
recursion and unfolding of while loops. Again, we give a summary for the program in
the form of a disjunction of R-, S- and T -assertions; see below for the ones that are most
interesting for the total correctness proof.

T1 pc = entry0 ∧ n ≤ 1 ∧ pc′ = exit0

T2 pc = entry0 ∧ A′[0] ≤ A′[1] ≤ . . .≤ A′[n − 1] ∧ pc′ = exit0

T3 pc = �4 ∧ n > 0 ∧ n′ < n ∧ pc′ = �4

S1 pc = entry0 ∧ n > 0 ∧ n′ < n ∧ pc′ = entry0

S2 pc = �1 ∧ n > 0 ∧ n′ < n ∧ pc′ = �1

Total correctness follows from the same two kinds of properties of the summary as in
the previous example. The assertions T1 and T2 imply partial correctness if n is equal
to the length of the array. Termination follows from the well-foundedness of T3 (which
accounts for computation sequences in the while loop) and S1 and S2 (which account for
the recursive descend). Note that the well-foundedness argument is itself detached from
the account for (possibly nested) recursion and loops; it is applied to each assertion in
isolation.
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4 Recursive Programs

In this section we fix the abstract notation for general while programs with recursion.
It should be straightforward to map the concrete syntax of an imperative programming
language into this notation. In the remainder of the paper, we assume to have an arbitrary
but fixed program P .

– The program consists of a set of modules {M0, . . . ,Mm}.
– The set of locations of the module M j is denoted by Loc j.
– Each module M j has two distinguished locations noted entry j and exit j which are

its unique entry point and its unique exit point.
– Each command of a module is a triple (�1,c, �2) consisting of the locations �1 and �2

of the module (the before and the after location) and the transition constraint c.
A transition constraint is a formula over primed and unprimed program variables.

– Each call of a module is a triple (�1,k, �2) consisting of the locations �1 and �2 of
the module (the call location and the return location) and the index k of the module
being called (i.e. k ∈ {0, . . . ,m}).

The sets Cmds and Calls consist of the commands and calls, respectively, of all modules
of the program. The set Loc consists of its locations, i.e. Loc = Loc0 ∪ . . .Locm.

The set Var consists of the program variables, which usually range over unbounded
data domains. The set Var′ contains the primed versions of the program variables. We
use an auxiliary variable, the program counter pc, which ranges over the finite set Loc
of locations of all modules.

A program valuation (“state”) s is a valuation for the program variables and the
program counter, i.e. s is a mapping from Var ∪ {pc} into the union of data domains.
We note Σ the set of all program valuations.

A configuration q = (s,γ) is a pair of a program valuation s and a word γ (the
stack) over the alphabet Loc of program locations of all modules. We note Q the set of
configurations; formally, Q = Σ ×Loc�.

In assertions we use γ as a “stack variable”, i.e. a variable that ranges over Loc�. An
assertion (e.g. a first-order formula) over the set of variables Var ∪ {pc} ∪ {γ} denotes
a set of configurations. For example, the set of initial configurations is denoted by the
assertion pc = entry0 ∧ γ = ε where entry0 is the entry location of the designated
‘main’ module M0 and ε is the empty stack. An assertion over the set of variables
Var∪ {pc} ∪ {γ} ∪Var′ ∪ {pc′} ∪ {γ ′} denotes a binary relation over configurations.

We note � the transition relation over configurations, i.e. � ⊆ Q × Q. The three
different types of transitions are: local transition inside a single module, call of another
module and return from a module. The transition relation � is denoted by the disjunction
of the assertions below.

pc = �1 ∧ pc′ = �2 ∧ c ∧ γ ′ = γ where (�1,c, �2) ∈ Cmds

pc = �1 ∧ pc′ = entry j ∧ Var′ = Var ∧ γ ′ = �2.γ where (�1, j, �2) ∈ Calls

pc = exit j ∧ pc′ = �2 ∧ Var′ = Var ∧ γ = �2.γ ′ where (�1, j, �2) ∈ Calls

According to the three kinds of assertions, we distinguish three kinds of transitions.
A local transition q � q′ is induced by a command (�1,c, �2) of the module. It is

enabled in the configuration q if the values of the program variables satisfy the guard
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formula in the transition constraint c of the command at the corresponding location �1.
The program counter and the program variables are updated in q′ accordingly; the stack
remains unchanged.

Both, a call and a return transition q � q′, are induced by a call command (�1, j, �2)
calling a module M j. In both, the stack γ is updated and the program variables remain
unchanged (Var′ = Var stands for the conjunction of x′ = x over all program variables x).

In a call transition the stack is increased by the return location �2 (by a push operation).
The value of the program counter is updated to the entry location entry j of the module
M j being called.

When the exit location of the called module M j is reached, the control flow returns
to the return location �2 of the calling module, which is the top value of the return stack.
Thus, in a return transition, the value of the program counter is updated by the top value
of the stack, and the stack is updated by removing its top element (by a pop operation).

A (possibly infinite) computation is a sequence of configurations q0,q1,q2, . . . that
starts with an initial configuration and that is consecutive, i.e. qi � qi+1 for all i ≥ 0.

5 Summaries

In its generalized form that we introduce in this section, a summary captures the effect of
computations that start and end at any pair of program points (and not just to the pair of
the entry and exit points of a module). The computations in questions may contain calls
that are not yet returned; i.e., in general they don’t obey to the ‘each call is matched by
a subsequent return’ discipline. We first introduce the corresponding transition relation

over program valuations the descends relation, noted
≤−→.

Definition 1 (Intraleads ( =−→), Strictly Descends ( <−→), Descends ( ≤−→)). The pair
(s,s′) of program valuations lies in the intraleads relation if a configuration (s,γ) can go
to the configuration (s′,γ) (with the same stack) via a local transition or via the finished
execution of a call statement.

s
=−→ s′ if (s,γ) � (s′,γ) or

(s,γ) � (s1, �.γ) � (s2,γ2) � . . .� (sn−1,γn−1) . . .� (sn, �.γ) � (s′,γ)
where γ ∈ Loc�, � ∈ Loc, and γ2, . . . ,γn−1 contain �.γ as suffix

The pair (s,s′) of program valuations lies in the strictly descends relation if a configu-
ration (s,γ) can go to a configuration (s′, �.γ) via a call transition.

s
<−→ s′ if (s,γ) � (s′, �.γ)

where γ ∈ Loc� and � ∈ Loc

The descends relation
≤−→ is the union of the two relations above.

≤−→ = =−→ ∪ <−→

We can now define summaries.
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Definition 2 (Summary). A summary S is a binary relation over program valuations
that contains the transitive closure of its descends relation.

S ⊇ ≤−→
+

In other words, a summary S contains a pair (s,s′) of program valuations if there exists
a computation from a configuration (s,γ) to a configuration (s′,γ ′) such that the initial
stack γ is a suffix not only of the final stack γ ′ but also of every intermediate stack.

Summaries as Fixpoints. The fixpoint system below1 is a conjunction of inclusions
between relations over valuations.

Fixpoint System Φ(R,S,T)

I1 R ⊇ (pc = �1 ∧ c ∧ pc′ = �2) (�1,c, �2) ∈ Cmds

I2 T ⊇ R ∪ T ◦ R

I3 R ⊇ (pc = �1 ∧ c ∧ pc′ = �2) if

T ⊇ (pc = entry j ∧ c ∧ pc′ = exit j) (�1, j, �2) ∈ Calls

I4 S ⊇ (pc = �1 ∧ Var′ = Var ∧ pc′ = entry j) (�1, j, �2) ∈ Calls

I5 S ⊇ S ◦ (pc = �1 ∧ Var′ = Var ∧ pc′ = entry j) (�1, j, �2) ∈ Calls

I6 S ⊇ S ◦ T ∪ T ◦ S

A fixpoint is a triple (R,S,T ) that satisfies all inclusions of the form I1 to I6. It can be
computed by least fixpoint iteration of (an abstraction of) the operator defined by the
fixpoint system. The operator induced by I3 takes a set of pairs of valuations, restricts
it to pairs at entry and exit locations and replaces them with the corresponding pairs at
call and return locations.

Theorem 1. If the three relations over program valuations R, S and T form a fixpoint
for the fixpoint system Φ, their union S = R ∪ T ∪ S is a summary for the program.

The theorem follows from Lemmas 1 and 2 below.

Lemma 1. The relation T is a superset of the transitive closure of the intraleads relation.

T ⊇ =−→+
(1)

1 In our notation, we identify an assertion with the relation that it denotes. We use the operator ◦
for relational composition. That is, for binary relations A and B,

A ◦ B = {(s,s′′) | ∃s′ : (s,s′) ∈ A ∧ (s′,s′′) ∈ B}.
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Proof. It is sufficient to show the statement below, which refers to configurations whose
stack is empty.

If (s′,ε) is � -reachable from (s,ε), then T contains (s,s′).

We proceed by induction over the computation that leads from (s,ε) to (s′,ε).

Base Step (s,ε) � (s′,ε).
The only one-step transition that does not change the stack is a local transition, i.e.
the valuation (s,s′) satisfies an assertion of the form pc = �1 ∧ pc′ = �2 ∧ c where
(�1,c, �2) is a command in Cmds. By inclusions I1 and I2, R and thus also T contains
(s,s′).

Induction Step (s,ε) � (s1,γ1) � . . .� (sn,γn) � (s′,ε).

Case 1. The computation from (s,ε) to (s′,ε) contains no intermediate configuration
with empty stack.
The stack γ1 of the second configuration consists of one location �1, i.e. γ1 = �1, and
it is equal to the stack γn of the last but one configuration.
The transition (s,ε) � (s1, �1) is a call transition induced by, say, the call (�1,k, �2).
This means that the value of the program counter in s1 is the entry location entryk
of the called module M k.
The transition (sn, �1) � (s′,ε) is a return transition. This means that the value of
the program counter in sn is the exit location exitk of the called module M k.
The computation from (s1, �1) to (sn, �1) is an execution (in M k) from entryk to exitk.
Since no intermediate configuration has an empty stack, every intermediate stack
has �1 as its first element. Hence (sn,ε) is � -reachable from (s1,ε). By induction
hypothesis, T contains the pair (s1,sn). By inclusions I2 and I3, R and thus also T
contain (s,s′).

Case 2. The computation from (s,ε) to (s′,ε) contains at least one intermediate
configuration with empty stack.
We consider the subsequence of all configurations with empty stack in the compu-
tation.

(s,ε) �+ (si1 ,ε) �+ . . .�+ (sim ,ε) �+ (s′,ε)

For each part of the computation from (sii ,ε) to (sii+1 ,ε), we can apply the first
case (none of the intermediate configurations has an empty stack) and obtain that
R contains all pairs of valuations in consecutive configurations of the subsequence.
By inclusion I2, T is the transitive closure of R and thus contains (s,s′).

�

The proof of Lemma 1 exhibits that R is a superset of the intraleads relation.

R ⊇ =−→ (2)

Since T ⊇ R+ holds by I2, inclusion (1) is a direct consequence of inclusion (2). It
seems, however, impossible to show (2) without showing (1).
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Lemma 2. The relation S is a superset of the transitive closure of the descends relation
minus the transitive closure of the intraleads relation.

S ⊇ ≤−→
+

\ =−→+

Proof. Since
≤−→

+
\ =−→+

= ( =−→� ◦ <−→ ◦ =−→�
)+

it is sufficient to show the statement below, which refers to configurations whose stack
is empty.

If (s′,γ ′) with non-empty stack γ ′ is � -reachable from (s,ε), then S contains (s,s′).

We proceed by induction over the size d of γ ′.

Base Step (d = 1). The computation leading from (s,ε) to (s′,γ ′) is of the form

(s,ε) �∗ (s1,ε) � (s2, �) �∗ (s′, �).

The transition (s1,ε) � (s2, �) is a call transition. By inclusion I4, S contains (s1,s2).
If s is different from s1 or s′ is different from s2: by Lemma 1, T contains (s,s1)
resp. (s2,s′), and by inclusion I6, S contains (s,s′).

Induction Step (d ⇒ d +1). The computation is of the form

(s,ε) �+ (sk,γk) � (sk+1, �.γk) �∗ (s′, �.γk).

By induction hypothesis, S contains (s,sk). The transition from (sk,γk) to (sk+1, �.γk)
is a call transition. By inclusion I5 of the fixpoint system, S contains (s1,sk+1). If
sk+1 is different from s′: by Lemma 1, T contains (sk+1,s), and by inclusion I6, S
contains (s,s′).

�

6 Total Correctness

We assume that the correctness of the program is specified by the pair of pre- and
postconditions pre and post where pre is an assertion over the set Var of unprimed
program variables and post is an assertion over the set Var∪Var′ of primed and unprimed
program variables. The assertions are associated with the entry and exit points of the
‘main’ module M0.

Partial correctness is the following property: if a computation starts in a configuration
q = (s,ε) with the empty stack and the valuation s satisfying the assertion pc = entry0 ∧
pre and terminates in a configuration q′ = (s′,ε) with the empty stack and the valuation
s′ satisfying the assertion pc = entry0, then the pair of valuations (s,s′) satisfies the
assertion post.
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Theorem 2. The program is partially correct if and only if there exists a summary S
whose restriction to the precondition and the entry and exit points of the ‘main’ module
M0 entails the postcondition.

S ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

In the formulation above, the only-if direction of the theorem requires an assumption on
the program syntax, namely that the ‘main’ module M0 does not get called, i.e. no call is
of the form (�1,0, �2). The assumption can always be made fulfilled by a small syntactic
transformation of the program.

To see why the assumption is needed, consider the example program factorial which,
in the syntax given in Section 3, does not satisfy the assumption. The S-assertion S2
(which refers to the precondition and the entry and exit points of the ‘main’ module M0)
does not entail the postcondition y′ = x! and neither does the refinement of S2 of the
form

∃n > 0 : pc = entry0 ∧ x > 0 ∧ x′ = x − n ∧ y′ = (x − n)!y ∧ pc′ = exit0

which is contained in every summary of the program.
The assumption on the program syntax is not required in the formulation of the

corollary below, which refers to the relation T .

Corollary 1. The program is partially correct if and only if there exists a relation T
over program valuations that is a solution in the fixpoint system Φ and whose restriction
of T to the precondition and the entry and exit points of the ‘main’ module entails the
postcondition.

T ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

Obviously only the inclusions of the form I1 − I3 of Φ are relevant for a solution for T .
Termination is the property that every computation of the program, i.e. every se-

quence of configurations q0 � q1 � q2 . . . is finite. The next theorem states that one can
characterize termination in terms of summaries.

Theorem 3. The program is terminating if and only if there exists a summary S that is
a finite union of well-founded relations.

Proof (Sketch). For a proof by contradiction, we assume that there exists an infinite
computation (s0,ε),(s1,γ1),(s2,γ2), . . . starting in the empty stack. We now construct an
infinite subsequence of configurations (s0,γ 0),(s1,γ 1),(s2,γ 2), . . . such that the corre-
sponding valuations form a descending sequence.

s0 ≤−→ s1 ≤−→ s2 ≤−→ . . .

The first part of the subsequence of configurations consists of all configurations with
an empty stack, i.e. (sk,γ k) = (sik ,ε). If there are infinitely many configurations with
empty stacks, then we are done with the construction and we obtain an infinite intraleads
sequence.
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Otherwise, there is a configuration (sik ,ε) such that the stack of all subsequent con-
figurations is not empty.

The transition from (sik ,ε) to (sik+1, �) is a call transition. Hence the pair of valuations

(sik ,sik+1) is in
<−→.

We repeat the above construction step with (sik+1, �) instead of (s0,ε). Inductively
we get an infinite sequence s0,s1,s2, . . . of valuations such that pairs of consecutive

valuations are in
≤−→ and hence in S .

We now use the assumption that S is a finite union of well-founded relations, say2

S = S1 ∪ . . .∪ Sm.

We define a function f with finite range that maps an ordered pair of indices of elements of
the sequence s0,s1,s2 . . . to the index j of the relation S j that contains the corresponding
pair of valuations.

f (k, l) def.= j where (sk,sl) ∈ S j

The function f induces an equivalence relation ∼ on pairs of indices of s0,s1,s2, . . ..

(k1, l1) ∼ (k2, l2)
def.⇔ f (k1, l1) = f (k2, l2).

The index of ∼ is finite since the range of f is finite. By Ramsey’s theorem [18], there
exists an infinite set of indices K such that all pairs from K belong to the same equivalence
class. Thus, there exists m and n in K, with m< n, such that for every k and l in K, with
k < l, we have (k, l) ∼ (m,n). Let k1,k2, . . . be the ascending sequence of elements of K.
Hence, for the infinite sequence sk1 ,sk2 , . . . we have (sk1 ,ski) ∈ S j for all i ≥ 1. But this
is a contradiction to the fact that S j is well-founded.

�

Corollary 2. The program is terminating if and only if there exist three relations over
program valuations R,S and T that form a solution of the of the fixpoint system Φ and
that are finite unions of well-founded relations.

Deductive Verification. Below we give a proof rule for the total correctness of general
while programs with recursion. The proof rule is sound and complete by Theorem 1 and
Corollaries 1 and 2.

Deductive verification according to the proof rule proceeds in three steps, for three
given relations R, S and T over program valuations. The first step checks that the triple
(R,S,T ) is a fixpoint, i.e. that the relations R, S and T satisfy the inclusions given under
I1 − I6 of the fixpoint system of Section 5. The second step checks that the restriction
of the relation T to the precondition and the entry and exit points of the ‘main’ module
entails the postcondition. The third step checks that R ∪ S ∪ T is a finite union of well-
founded relations.

2 The assumption implies that one of the relations S j occurs infinitely often in the sequence
s0,s1,s2, . . .. This is, however, not yet a contradiction to the well-foundedness of S j , which
needs a consecutive S j -sequence.
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P : program
R,T,S : assertions over pairs of valuations

pre,post : pre- and postconditions for P

1. R, S and T form a fixpoint of Φ.

2. T ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

3. T and S are finite unions of well-founded relations.

Total correctness of P : {pre} P {post}

An informal description of an application of the above proof rule has been given in
Section 3. It is now straightforward to instantiate the proof rule also formally for the
presented examples.

Automatic Verification. The inclusions I1 − I6 of the fixpoint system and the condition
for partial correctness amounts to checking entailment between assertions. Checking the
well-foundedness of the finitely many member-relations of S and T can be established
automatically in many cases; see [13, 22, 12, 7]. The synthesis of the relations R, S and
T is possible by least fixpoint iteration (over the domain of relations over program
valuations) in combination with abstract interpretation methods [8, 9].

7 Conclusion

We have introduced a generalization of the fundamental notion of procedure summaries.
Our summaries refer to arbitrarily precise descriptions of the effect of computations
between general pairs of program points of general while programs (over in general
infinite data domains). We have shown how one can put them to work for the verification
of termination and total correctness of general while programs with recursion.

We have presented a proof rule for total correctness that uses summaries as the
auxiliary assertion on the program. As already mentioned, the proof rule has an obvious
potential for automation via abstract interpretation. We believe that our paper may lead to
several directions of follow-up work to realize this potential, with a choice of abstraction
methods (see e.g. [8, 9, 15, 11]) and techniques for the efficient construction of summaries
(see e.g. [19, 2]). Other lines of future work are the extension to concurrent threads (see
e.g. [10, 17]) and the account of correctness properties expressed in the CaRet logic [1].
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Abstract. This paper presents a determinacy inference analysis for logic
programs. The analysis infers determinacy conditions that, if satisfied by
a call, ensures that it computes at most one answer and that answer is
generated only once. The principal component of the technique is a goal-
independent analysis of individual clauses. This derives a condition for
a call that ensures only one clause in the matching predicate possesses
a successful derivation. Another key component of the analysis is back-
wards reasoning stage that strengthens these conditions to derive prop-
erties on a call that assure determinacy. The analysis has applications in
program development, implementation and specialisation.

1 Introduction

One issue in logic programming is checking whether a given program and goal are
deterministic [3, 5, 7, 11, 14], that is, whether the goal has at most one computed
answer (and whether that answer is generated only once). As well as being key
to efficient parallel [6, 10] and sequential [5, 7] implementations, knowledge of
determinacy is important in program development and O’Keefe [18] writes,

“you should keep in mind which . . . predicates are determinate, and when
they are determinate, and you should provide comments for your own
code to remind you of when your own code is determinate.”

This paper presents a determinacy inference analysis. It synthesises a determi-
nacy condition for each predicate that, if satisfied by a call to the predicate,
guarantees that there is at most one computed answer for the call and that the
answer is produced only once if ever. Determinacy inference generalises deter-
minacy checking; rather than verify that a particular goal is deterministic it
deduces, in a single application of the analysis, a class of goals that are deter-
ministic. The analysis has the advantage of being goal-independent, and is a
step towards the ideal when human interaction is only required to inspect the
answers. More exactly, the analysis can be activated by directing the analyser to
a source file and pressing a button; in contrast to goal-dependent techniques the
analysis does not require a top-level goal or module entry point to be specified by
the programmer. As well as being applicable to determinacy checking problems,
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the analysis opens up new applications. In program development, if the class of
deterministic goals inferred by the analysis does not match the expectations of
the programmer, then the program is possibly buggy, or at least inefficient. In
program specialisation, it is well-known that if a non-leftmost call in a goal is
unfolded, then the corresponding residual program can be less efficient than the
original one. Determinacy inference can address this issue and it seems promis-
ing as a form of binding-time analysis in the so-called semi-online (or mixline)
approach to program specialisation [13]. In this scheme, the usual static and
dynamic polarisation that is used within classic binding-time analysis [4] is re-
fined by adding an additional binding-type semi. As well as always unfolding
a static call and never unfolding a dynamic call, the unfolding decision for a
semi call is postponed until specialisation time. Determinacy inference fits into
this scheme because a goal-dependent binding-time analysis can verify whether
a determinacy condition for a given call is satisfied and therefore whether the
call is determinate. These calls can then be marked as semi since determinate
goals are prime candidates for unfolding. These semi calls are also annotated
with lightweight conditions that select the clause with which to unfold the call.
The net result is more aggressive unfolding. To summarise, this paper makes the
following contributions:

– it presents a determinacy inference technique which generalises previously
proposed determinacy checking techniques. The analysis also has applica-
tions in the burgeoning area of semi-online program specialisation;

– it shows how determinacy inference can be decomposed into the sub-problems
of (1) deriving a mutual exclusion condition on each call that ensures that
only one matching clause has a successful derivation; (2) applying backward
reasoning to enrich these conditions on calls so as to assure determinacy;

– it shows that (1) can be tackled with techniques such as depth-k [20] and
argument-size analysis [2] when suitably augmented with a projection step;
and that (2) can be tackled with backward analysis [12];

– it reports experimental work that provides evidence that the method scales
and that it can infer rich (and sometimes surprising) determinacy conditions.

Section 2 illustrates the key ideas with a worked example. Section 3 explains
how mutual exclusion conditions can be derived that, when satisfied by a call,
ensures that no more than one clause of the matching predicate can lead to a
successful derivation. Section 4 presents a backward analysis that strengthens
these conditions to obtain determinacy conditions. Section 5 details an initial
experimental evaluation and sections 6 and 7 the related work and conclusions.
To make the ideas accessible to a wider programming language audience, the
analysis is, wherever possible, presented informally with minimal notation.

2 Worked Example

This section explains the analysis by way of an example. In order to derive
conditions on calls that are sufficient for determinacy, it is necessary to reason
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about individual success patterns of the constituent clauses of a predicate. In
particular, it is necessary to infer conditions under which the success patterns for
any pair of clauses do not overlap. This can be achieved by describing success
patterns with suitable abstractions. One such abstraction can be constructed
from the list-length norm that is defined as follows:

‖t‖



t if t is a variable
1 + ‖t2‖ if t = [t1|t2]
0 otherwise

The norm maps a term to a size that is in fact a linear expression defined over
the natural numbers and the variables occurring in the term. Observe that if
two terms t1 and t2 are described by constant expressions of different value,
that is ‖t1‖ �= ‖t2‖, then t1 and t2 are distinct. In fact, to reason about non-
overlapping sets of success patterns (rather than sets of terms), it is necessary
to work with argument-size relationships [2] which are induced from a given
norm. To illustrate argument-size relationships, and their value in determinacy
inference, the following program will be used as a running example throughout
this section. The program, like all those considered in the paper, is flat in the
sense that the arguments of atoms are vectors of distinct variables. Clauses are
numbered for future reference.

(1) append(Xs, Ys, Zs) :-
Xs = [], Ys = Zs.

(2) append(Xs, Ys, Zs) :-
Xs = [X|Xs1],
Zs = [X|Zs1],
append(Xs1, Ys, Zs1).

(3) rev(Xs,Ys) :-
Xs = [], Ys = [].

(4) rev(Xs,Ys) :-
Xs = [X|Xs1], Ys2 = [X],
rev(Xs1, Ys1),
append(Ys1, Ys2, Ys).

2.1 Computing Success Patterns

To derive size relationships the program is abstracted by applying the norm to
the terms occurring within it. Applying the norm to the terms in a syntactic
equation t1 = t2 yields a linear equation ‖t1‖ = ‖t2‖. The key idea is that a
variable in the derived program – the so-called abstract program – describes the
size of the corresponding variable in the original program. Since term sizes are
non-negative, it is safe to additionally assert that each variable in the abstract
program is non-negative. The abstract program thus obtained is listed below.

(1) append(Xs, Ys, Zs) :-
Xs ≥ 0,Ys ≥ 0,Zs ≥ 0,
Xs = 0, Ys = Zs.

(2) append(Xs, Ys, Zs) :-
Xs ≥ 0,Ys ≥ 0,Zs ≥ 0,
Xs1 ≥ 0,Zs1 ≥ 0,
Xs = 1 + Xs1,
Zs = 1 + Zs1,
append(Xs1, Ys, Zs1).

(3) rev(Xs, Ys) :-
Xs ≥ 0,Ys ≥ 0,
Xs = 0, Ys = 0.

(4) rev(Xs,Ys) :-
Xs ≥ 0,Ys ≥ 0,
Xs1 ≥ 0,Ys1 ≥ 0,Ys2 ≥ 0,
Xs = 1 + Xs1, Ys2 = 1,
rev(Xs1,Ys1),
append(Ys1,Ys2,Ys).

=
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The value of the abstract program is that its success patterns, which are given
below, describe size attributes of the original program. The key idea is that the
success sets of the abstract program faithfully describe the size relationships on
the success sets of the original program.

append(x1, x2, x3) :- (x1 ≥ 0) ∧ (x2 ≥ 0) ∧ (x1 + x2 = x3)
rev(x1, x2) :- (x1 ≥ 0) ∧ (x1 = x2)

The relation x1 + x2 = x3 captures the property that if the original program is
called with a goal append(x1, x2, x3) then any computed answer will satisfy the
property that the size of x1 wrt ‖.‖, when summed with the size of x2 will exactly
coincide with the size of x3. Moreover, the success patterns that are systems of
linear inequalities can be inferred automatically by mimicking the TP operator
[21] and specifically calculating a least fixpoint (lfp) [2].

2.2 Synthesizing Mutual Exclusion Conditions

Mutual exclusion conditions are synthesized next; one condition for each pred-
icate in the program. Such a condition, if satisfied by a call, guarantees that if
one clause of the predicate can lead to a solution then no other clauses can do
so. For example, one mutual exclusion condition for append is that its first argu-
ment is bound to a non-variable term. If the first clause leads to a solution, then
its head must unify with the call. Thus the second clause cannot match the call
and vice versa. Notice, that mutual exclusion is not sufficient for determinacy.
For instance, the call append([W|X],Y,Z) – which satisfies the above mutual
exclusion condition – possesses multiple solutions. Mutual exclusion conditions
are synthesised by computing success patterns for individual clauses. This is ac-
complished by evaluating the body of an abstract clause with the predicate-level
success patterns. This yields the following clause-level success patterns:

1 append(x1, x2, x3) :- (x1 = 0) ∧ (x2 ≥ 0) ∧ (x2 = x3)
2 append(x1, x2, x3) :- (x1 ≥ 1) ∧ (x2 ≥ 0) ∧ (x1 + x2 = x3)
3 rev(x1, x2) :- (x1 = 0) ∧ (x2 = 0)
4 rev(x1, x2) :- (x1 ≥ 1) ∧ (x1 = x2)

The next step is to compute a rigidity property that guarantees that at most
one of its clauses can yield a computed answer. A term t is rigid wrt to a norm
‖.‖ if ‖t‖ is a fixed constant. For example, a term t is rigid wrt list-length if t is
not an open list. More generally, a Boolean function such as x1 ∧ (x2 ↔ x3) can
express rigidity constraints on the arguments of a call; it states that x1 is rigid
wrt ‖.‖ and that x2 is rigid iff x3 is rigid. Suppose now that p(x):-c1 and p(x):-c2
are success patterns for two clauses. A rigidity constraint on the arguments of
p(x) that is sufficient for mutual exclusion can be computed by:

XP (p(x))
∨

{∧Y | Y ⊆ var(x) ∧ (∃Y (c1) ∧ ∃Y (c2) = false)}

where var(o) is the set of variables occurring in the syntactic object o. The
projection operator ∃Y (c) maps c onto a weaker linear constraint that ranges

=
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over variables in the set Y . For example, ∃{x2}((x1 ≥ 1)∧(x1 = x2)) = (x2 ≥ 1).
If ∃Y (c1) ∧ ∃Y (c2) is unsatisfiable, then the Boolean formula ∧Y expresses a
rigidity condition on the arguments of p(x) that is sufficient for mutual exclusion.
To see this, observe that if the arguments in Y are rigid, then their sizes cannot
change as execution proceeds. Thus the projection ∃Y (ci) holds at the selection
of the respective clause since it holds at the end of a successful derivation. Since
∃Y (c1) ∧ ∃Y (c2) is unsatisfiable when Y are rigid, ∧Y is enough for mutual
exclusion. This tactic generates the following conditions for the reverse program
which states that the clauses of append(x1, x2, x3) are mutually exclusive if either
x1 is rigid or both x2 and x3 are rigid.

XP (append(x1, x2, x3)) = ∨{∧{x1},∧{x2, x3},∧{x1, x2, x3}} = x1 ∨ (x2 ∧ x3)
XP (rev(x1, x2)) = ∨{∧{x1},∧{x2}} = x1 ∨ x2.

2.3 Synthesizing Determinacy Conditions

The last phase in determinacy inference involves calculating a rigidity constraint
for each predicate such that any call satisfying the constraint will yield at most
one computed answer. This is achieved with backward analysis [12] which com-
putes a greatest fixpoint (gfp) to strengthen the mutual exclusion conditions into
determinacy conditions. The gfp makes use of rigidity success patterns which are
computed, again, by simulating the TP operator in a lfp calculation.

Least Fixpoint. The lfp calculation is performed on another abstract version
of the program. This version is obtained by replacing syntactic constraints with
rigidity constraints. For example, Xs = 1 + Xs1 is replaced with the Boolean
formula Xs ↔ Xs1 which expresses that Xs is rigid wrt list-length iff Xs1 is rigid.
The abstract program obtained in this fashion is given below.

(1) append(Xs, Ys, Zs) :-
Xs, Ys ↔ Zs.

(2) append(Xs, Ys, Zs) :-
Xs ↔ Xs1,
Zs ↔ Zs1,
append(Xs1, Ys, Zs1).

(3) rev(Xs, Ys) :-
Xs, Ys.

(4) rev(Xs,Ys) :-
Xs ↔ Xs1, Ys2,
rev(Xs1, Ys1),
append(Ys1, Ys2, Ys).

Interpreting this program with a version of TP that operates over Boolean func-
tions, the following success patterns are obtained that express rigidity properties
of the original program. The pattern for rev, for instance, states x1 is rigid iff
x2 is rigid in any computed answer to rev(x1, x2) in the original program.

append(x1, x2, x3) :- x1 ∧ (x2 ↔ x3) rev(x1, x2) :- x1 ∧ x2

Greatest Fixpoint. Each iteration in the gfp calculation amounts to:

– deriving a determinacy condition for each clause of the predicate that ensures
no more than one derivation commencing with that clause may succeed;

– conjoining these conditions with the mutual exclusion of the predicate.
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The single resulting condition, which is expressed as rigidity constraint, defines
the next iterate. The iterates that arise when processing reverse are given below:

I0 =
{
append(x1, x2, x2) :- true

rev(x1, x2) :- true

}
I1 =
{
append(x1, x2, x2) :- x1 ∨ (x2 ∧ x3)

rev(x1, x2) :- x1 ∨ x2

}

I3 = I2 =
{
append(x1, x2, x2) :- x1 ∨ (x2 ∧ x3)

rev(x1, x2) :- x1

}

To illustrate the gfp consider computing the determinacy condition for rev
in I2. The first clause of rev possesses body atoms which are deterministic
builtins. Thus the rigidity condition of true is trivially sufficient for this clause
to be deterministic. Consider now the second clause. The two calls in its body,
rev(Xs1,Ys1) and append(Ys1,Ys2,Ys), are processed separately as follows:

– The determinacy condition in I1 for rev(Xs1,Ys1) is Xs1 ∨ Ys1 and the
combined success pattern of the equations that precede it is (Xs ↔ Xs1)∧Ys2.
Thus rev(Xs1,Ys1) is deterministic if ((Xs ↔ Xs1) ∧ Ys2) → (Xs1 ∨ Ys1)
holds upon entry to the body of the clause.

– The determinacy condition in I1 for append(Ys1,Ys2,Ys) is Ys1∨(Ys2∧Ys).
The combined success pattern of the equations and the call rev(Xs1,Ys1)
that precede it is (Xs ↔ Xs1) ∧ Ys2 ∧ (Xs1 ∧ Ys1) = Xs ∧ Xs1 ∧ Ys1 ∧ Ys2.
The call append(Ys1,Ys2,Ys) is deterministic if (Xs ∧ Xs1 ∧ Ys1 ∧ Ys2) →
(Ys1 ∨ (Ys2 ∧ Ys)) holds when the body is entered.

These conditions for determinacy of rev(Xs1,Ys1) and append(Ys1,Ys2,Ys)
are then conjoined to give, say f , (in this case conjunction is trivial since the
condition for append is true). The condition f is formulated in terms of the
rigidity of variables occurring in the body of the rev clause. What is actually
required is a condition on a rev call that is sufficient for determinacy. Thus those
variables in f that do not occur in the clause head, namely Xs1, Ys1 and Ys2, are
eliminated from f to obtain a condition sufficient for the call rev(Xs,Ys) to be
deterministic. Eliminating Xs1, Ys1 and Ys2 from f (in the manner prescribed
in section 4) gives Xs. If Xs holds, then f holds. Hence if the second clause is
selected and the call possesses a rigid first argument, then determinacy follows.

Finally, determinacy conditions for the two rev clauses are conjoined with
the mutual exclusion condition to obtain true ∧ Xs ∧ (Xs ∨ Ys) = Xs. Thus the
call rev(Xs,Ys) is guaranteed to be deterministic if Xs is rigid.

3 Synthesising Mutual Exclusion Conditions

To compute mutual exclusion conditions, it is necessary to characterise successful
computations at level of clauses. Specifically, it is necessary to characterise the set
of solutions for any call that can be obtained with a derivation that commences
with a given clause. Success pattern analysis can be adapted to this task.
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3.1 Success Patterns

Example 1. To illustrate a success pattern analysis other than argument-size
analysis, consider a depth-k analysis of the Quicksort program listed below.

(1) sort(X,Y) :- L = [], qsort(X,Y,L).

(2) qsort(X,S,T) :- X = [], S = T.
(3) qsort(X,S,T) :- X = [Y|X1], M1 = [Y|M],

part(X1,Y,L,G), qsort(L,S,M1), qsort(G,M,T).

(4) part(X,M,L,G) :- Xs = [], L = [], G = [].
(5) part(X,M,L,G) :-

X = [Y|X1], L = [Y|L1], Y ≤ M, part(X1,M,L1,G).
(6) part(X,M,L,G) :-

X = [Y|X1], G = [Y|G1], Y > M, part(X1,M,L,G1).

In this context of depth-k analysis, a success pattern is an atom paired with a
Herbrand or linear constraint where the terms occurring in the constraint have
a depth that does not exceed a finite bound k. The success patterns for the
predicates and clauses are given below, to the left and the right, respectively.

sort(x1, x2) :- true
qsort(x1, x2, x3) :- true

part(x1, x2, x3, x4) :- true

1 sort(x1, x2) :- true
2 qsort(x1, x2, x3) :- x1 = [], x2 = x3
3 qsort(x1, x2, x3) :- x1 = [ | ], x2 = [ | ]
4 part(x1, x2, x3, x4) :- x1 = [], x3 = [], x4 = []
5 part(x1, x2, x3, x4) :- x1 = [y| ], x3 = [y| ], y ≤ x2
6 part(x1, x2, x3, x4) :- x1 = [y| ], x4 = [y| ], y > x2

3.2 Mutual Exclusion Conditions

The technique previously introduced for synthesising mutual exclusion condi-
tions is formulated in terms of argument-size analysis and rigidity analysis and
the relationship between rigidity and size; rigidity constraints are used to specify
conditions under which pairs of size abstractions are incompatible. To generalise
these ideas to other domains, such as depth-k, it is necessary to generalise the
concept of norm and replace it with a mapping ν from the set of terms to a set of
abstract terms. The concept of rigidity is still meaningful in this general setting:
a term t is rigid wrt ν iff ν(θ(t)) = ν(t) for every θ ∈ Sub where Sub is the set of
substitutions. Let rigidν be the rigidity predicate on terms induced by ν, that
is, rigidν(t) holds if t is rigid wrt ν. For example, if ν is depth-2 abstraction [20]
then rigidν(t) holds iff all the variables in t occur at depth 2 or more.

Mutual exclusion conditions are expressed within a dependency domain that
can specify rigidity requirements. The property that all the variables in a term
occur at or beneath level k can be tracked within the dependency domain, but
it is simpler to trace a property that implies rigidity (rather than the induced
rigidity property itself). Hence let rigid′ν denote any predicate such that rigidν(t)
holds if rigid′ν(t) holds. For instance, rigid′ν(t) = ground(t). Such a predicate
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can then induce abstraction αrigid′
ν

: ℘(Sub) → Pos and concretisation γrigid′
ν

:
Pos → ℘(Sub) maps between Pos and ℘(Sub) as follows:

γrigid′
ν
(f) = {θ ∈ Sub | ∀κ ∈ Sub.assign(κ ◦ θ) |= f}

αrigid′
ν
(Θ) = ∧{f ∈ Pos | Θ ⊆ γrigid′

ν
(f)}

where assign(θ) = ∧{x ↔ rigid′
ν(θ(x)) | x ∈ dom(θ)}. Note that although the

underlying domain is Pos – the set of positive Boolean functions – the abstraction
is not necessarily groundness. Indeed, the predicate rigid′

ν parameterises the
meaning of αrigid′

ν
and γrigid′

ν
and these maps define the interpretation of Pos.

Now that a target domain exists in which determinacy conditions can be
expressed, it remains to define a general procedure for inferring these conditions.
Let p(x):-c1 and p(x):-c2 be the success patterns of two clauses C1 and C2 of
p(x) where c1 and c1 are abstract term constraints such as depth-k abstractions.
Let Y ⊆ var(x). The following predicate checks if the condition ∧y∈Y rigid′

ν(y)
is enough for C1 and C2 to be mutually exclusive on p(x).

XP (Y, p(x), C1, C2 ) (∃Y (c1) ∧ ∃Y (c2) = false)

The following proposition (whose proof is given in [15]) formalises the intuitive
argument that was given in section 2.2.

Proposition 1. Let θ ∈ Sub and Y ⊆ var(x). Suppose XP (Y, p(x), C1, C2)
holds and ∧y∈Y rigid

′
ν(θ(y)) holds. Then

– all derivations of θ(p(x)) using C1 as the first clause fail or
– all derivations of θ(p(x)) using C2 as the first clause fail.

Now let S denote the set of clauses that define p(x). A rigidity constraint ∧Y is
a mutual exclusion condition for p(x) iff it is a mutual exclusion condition for
all pairs of clauses drawn from S. This observation leads to the following:

XP (p(x)) =
∨

{∧Y | Y ⊆ var(x)∧∀C1, C2 ∈ S.(C1 �= C2 → XP (Y, p(x), C1, C2)}

The following corollary of proposition 1 verifies that XP (p(x)) is truly a mutual
exclusion condition for p(x).

Corollary 1. If αrigid′
ν
({θ}) |= XP (p(x)) then at most one clause of p(x) can

lead to a successful derivation of θ(p(x)).

Example 2. The left-hand column gives the exclusion conditions for the quick-
sort program, synthesised from the clause-level depth-k abstractions listed in
example 1 and using the predicate rigid′ν(t) = ground(t). The same predicate
was used to generate the exclusion conditions in the right-hand column using
argument-size abstractions (not provided).

XP (sort(x1, x2)) = true
XP (qsort(x1, x2, x3)) = x1

XP (part(x1, x2, x3, x4)) = x1 ∧ x2

XP (sort(x1, x2)) = true
XP (qsort(x1, x2, x3)) = x1 ∨ (x2 ↔ x3)

XP (part(x1, x2, x3, x4)) = false

=
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Note that weaker requirements for mutual exclusion can be obtained by com-
bining these two sets of conditions. Note too that these conditions can only be
combined by operating in a domain defined in terms of a common predicate
ground(t) which is stronger than both rigid‖.‖(t) and rigiddepth−k(t).

4 Synthesising Determinacy Conditions

This section revisits the backward analysis that strengthens mutual exclusion
conditions to obtain the determinacy conditions. As with the previous section,
the presentation focusses on those issues left open in the worked example section.

4.1 Abstracting the Program for General Rigidity

The exercise of specifying αrigid′
ν

and γrigid′
ν

is more than an aesthetic predilec-
tion. It provides a mechanism for deriving an abstract program that captures
rigidity relationships between program variables where the notion of rigidity is
specified by rigid′

ν . Consider first how to abstract an equation t1 = t2 in the
context of rigid′

ν . The relationship between an equation and its most general
unifiers (mgus) is such that the equation can be safely described by any Boolean
function f such that αrigid′

ν
({θ}) |= f where θ is any mgu of t1 = t2. For exam-

ple, if ν′(t) = ‖t‖ then x1 ↔ x3 describes x1 = [x2|x3]. To see this, let κ ∈ Sub
and observe that θ = {x1 �→ [x2|x3]} is a mgu of the equation x1 = [x2|x3]. Then

rigid′
ν(κ ◦ θ(x3)) rigid′

ν(κ(x3)) rigid′
ν([κ(x2)|κ(x3)]) rigid′

ν(κ ◦ θ(x1))

Thus assign(κ ◦ θ) |= (x1 ↔ x3) for all κ ∈ Sub, whence it follows that x1 ↔ x3
describes x1 = [x2|x3]. If rigid′

ν(t) = ground(t) then t1 = t2 is abstracted by
∧{x ↔ ∧vars(θ(x)) | x ∈ dom(θ)} where θ is a mgu of the equation t1 = t2,
though (∧vars(t1)) ↔ (∧vars(t2)) is a simpler, albeit less precise, abstraction.
A call to a builtin p(x) can be handled by abstracting it with any function f
such that αrigid′

ν
(Θ) |= f where Θ is the set of computed answers for p(x). For

instance, if ν′(t) = ground(t) then x1 ∧ x2 describes the call (x1 is x2) whereas
if ν′(t) = ‖t‖ then x1 ∧ x2 describes the builtin length(x1, x2).

Example 3. The following rigidity program is obtained from the quicksort pro-
gram using rigid′

ν(t) = ground(t).

(1) sort(X, Y) :- L, qsort(X, Y, L).
(2) qsort(X, S, T) :- X, S ↔ T.
(3) qsort(X, S, T) :- X ↔ (Y ∧ X1), M1 ↔ (Y ∧ M),

part(X1, Y, L, G), qsort(L, S, M1), qsort(G, M, T).

(4) part(X, M, L, G) :- Xs, L, G.
(5) part(X, M, L, G) :-

X ↔ (Y ∧ X1), L ↔ (Y ∧ L1), Y, M, part(X1,M,L1,G).
(6) part(X, M, L, G) :-

X ↔ (Y ∧ X1), G ↔ (Y ∧ G1), Y, M, part(X1,M,L,G1).

= = =
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Example 4. Once the abstract program is defined, the rigidity success patterns
can be calculated in the manner previously described to give:

part(x1, x2, x3, x4) :- x1 ∧ x3 ∧ x4
qsort(x1, x2, x3) :- x1 ∧ (x2 ↔ x3)

sort(x1, x2) :- x1 ↔ x2

4.2 Determinacy Conditions

Synthesis of determinacy conditions commences by assuming that all calls are
trivially determinate, that is, the condition true is sufficient for determinacy.
These conditions are then checked by reasoning backwards across all clauses. If
a condition turns out to be too weak then it is strengthened and the whole process
is repeated until the conditions are verified to be sufficient for determinacy. One
of the more subtle aspects of this procedure relates to variable elimination. If
a condition f , defined in terms of a variable x is sufficient for determinacy,
then it can become necessary to calculate another condition, g say, independent
of x which is also sufficient for determinacy. Universal quantification operator
∀x : Pos �→ Pos provides a mechanism for doing this:

∀x(f) = if f ′ ∈ Pos then f ′ else false where f ′ = f [x �→ true] ∧ f [x �→ false]

The significance of this operator is that ∀x(f) |= f , hence if f is sufficient for de-
terminacy, then so is ∀x(f). To succinctly define the gfp operator it is convenient
to define a project onto (rather than project out) operator ∀Y (f)∀y1(∀y2(· · · ∀yn

(f) · · ·)) where each yi is a (free) variable occurring in f which does not appear
in the set of variables Y ; in effect f is projected onto Y .

Example 5. Consider ∀{X,S,T}(e) with e = X ∨ (X1 ∧ M1) ∨ (X1 ∧ Y). Now

e[M1 �→ true] ∧ e[M1 �→ false] = (X ∨ X1) ∧ (X ∨ (X1 ∧ Y)) = X ∨ (X1 ∧ Y)

Thus put e′ = ∀M1(e) = X ∨ (X1 ∧ Y) and repeating this tactic:

e′[X1 �→ true] ∧ e′[X1 �→ false] = (X ∨ Y) ∧ (X)X

Hence put e′′ = ∀X1(e′) = X and it follows ∀{X,S,T}(e)X. Observe that X |= e.

The gfp operates on an abstract program P obtained via rigidity abstraction.
To express the operator intuitively, the success set of rigidity patterns, denoted
S, is considered to be a map from atoms to Pos formulae. Similarly, the rigidity
conditions inferred in the gfp, denoted I, are represented as a map from atoms
to formulae. The mechanism that the gfp operator uses to successively update
I is to replace each pattern p(x) :- f ∈ I with another p(x) :- XP (p(x)) ∧ (∧F )
until stability is achieved where the set of Boolean formula F is defined by:

F =


∀x(e)

∣∣∣∣∣∣
p(x) :- f1, · · · , fm, p1(x1), · · · , pn(xn) ∈ P
gi = (∧1≤k≤mfk) ∧ (∧1≤j<iS(p(xj)))

e =
∧

1≤i≤n(gi → I(pi(xi)))
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The function XP (p(x)) ∧ (∧F ) is at least as strong as the formula f it replaces
and thus the operator generates a downward iteration sequence. If I ′ is the gfp
thus obtained, the following theorem states how it characterises determinacy.

Theorem 1. If θ ∈ Sub and αrigid′
ν
({θ}) |= I ′(p(x)) then θ(p(x)) has at most

one computed answer.

Example 6. The iterates that arise when processing the quicksort program are

I0



part(x1, x2, x3, x4) :- true,
qsort(x1, x2, x3) :- true,

sort(x1, x2) :- true


 I1 =



part(x1, x2, x3, x4) :- x1 ∧ x2,
qsort(x1, x2, x3) :- x1,

sort(x1, x2) :- true




I3 = I2



part(x1, x2, x3, x4) :- x1 ∧ x2,
qsort(x1, x2, x3) :- x1,

sort(x1, x2) :- x1




To illustrate how computation proceeds, consider computing the determinacy
condition for qsort in I2. The first abstract clause for qsort(X, S, T) does not
contain any call; hence its determinacy condition is computed as true. The second
abstract clause for qsort(X, S, T) has three calls. The first call part(X1, Y, L, G)
has a determinacy condition X1∧Y in I1. The cumulative success patterns of the
builtins that precede it are (X ↔ (Y ∧ X1)) ∧ (M1 ↔ (Y ∧ M)). Thus if

e1 = ((X ↔ Y ∧ X1) ∧ (M1 ↔ Y ∧ M)) → (X1 ∧ Y)

holds when the body is entered, then part(X1, Y, L, G) will be deterministic.
The second call qsort(L, S, M1) has a determinacy condition L in I1 and the

success pattern of part(X1, Y, L, G) is X1 ∧ L ∧ G. Moreover the Boolean function
f = (X ↔ Y) ∧ (M1 ↔ (Y ∧ M)) ∧ X1 ∧ L ∧ G describes effect of the calls that
precede qsort(L, S, M1). Hence e2 = f → Ltrue is a condition which, if it holds
at entry to the body, is sufficient for the call qsort(L, S, M1) to be deterministic.
Likewise e3 = true is sufficient for the qsort(G, M, T) call to be deterministic. The
combined determinacy condition is thus e1 ∧ e2 ∧ e3 = e1 and eliminating the
body variables which do not occur in the head (using the result from example 5)
yields ∀{X,S,T}(e1)X. Combining this with the mutual exclusion condition gives X,
thus the determinacy requirement for qsort does not change.

An astute reader will have noticed in the worked example section that a call
to the rev(x1, x2) predicate is determinate if either x1 or x2 are rigid. Yet the
analysis only infers that the rigidity of x1 is sufficient for determinacy. If the
rev and append calls in the body of the second rev clause are interchanged,
however, then the analysis will infer that the rigidity of x2 is sufficient for deter-
minacy. This would suggest the following revision of the above operator: infer
a determinacy condition for each permutation of the body atoms; then apply
disjunction to merge these conditions to find a more general condition sufficient
for determinate behaviour of that clause. However, this tactic, as well as being

=

=
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benchmark predicate exclusion condition determinacy condition
treesort tree to list aux(x1, x2, x3) x1 x1

tree to list(x1, x2) true x1
list to tree(x1, x2) true x1
insert list(x1, x2, x3) x1 x1 ∧ x2
insert(x1, x2, x3) x1 ∧ (x2 ∨ x3) x1 ∧ (x2 ∨ x3)
treesort(x1, x2) true x1

queens noattack(x1, x2, x3) x2 x2
safe(x1) x1 x1
delete(x1, x2, x3) false false
perm(x1, x2) x1 ∨ x2 false
queens(x1, x2) true false

permsort select(x1, x2, x3) false false
ordered(x1) x1 x1
perm(x1, x2) x1 ∨ x2 false
sort(x1, x2) true false

serialize arrange0(x1, x2) x1 ∨ x2 x1
numbered(x1, x2, x3) x1 x1
palin(x1) true true
pairlists(x1, x2, x3) x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3
serialize0(x1, x2) true x1 ∧ x2
split0(x1, x2, x3, x4) x1 ∧ x2 x1 ∧ x2
go(x1) true false

Fig. 1. Precision results for determinacy inference

potentially inefficient, is also in general wrong. To see this, suppose that the
sufficient condition for determinacy for one goal ordering is x1 and the condition
for another is x1 → x2. However, within Pos, x1 ∨ (x1 → x2) = true and yet
true is the vacuous condition which places no constraint on the call rev(x1, x2).

5 Experimental Evaluation

To evaluate inference analysis, a prototype analyzer has been constructed in
SICStus Prolog 3.8.3. The implementation follows sections 3 and 4 closely. The
depth-k and argument-size analyses (which applies term-size abstraction) com-
pute success patterns for each clause in the input program, syntheses groundness
abstractions sufficient for mutual exclusion. These modules also produce the ab-
stract program on which subsequent analyses are based. The backward analysis is
engineered using much of the machinery described in [12]. One notable difference
is that some builtins require special handling; most builtins are determinate but
others are determinate only when certain conditions are satisfied. For instance,
current op(x1,x2,x3) is determinate only when x2 are x3 are ground.

The analyser has been applied to 50 programs ranging in size between 10
and 4000 LOC. These programs can be found at http://www.oakland.edu/
∼l2lu/Benchmarks-Det.zip. Quantitative precision measures are difficult for
determinacy inference because the number of predicates that the programmer
intended to be determinate is, in general, unknown. To demonstrate the precision
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argument-size depth-k
file succ lfp gfp succ lfp gfp

boyer 1666 591 60 441 360 50
bryant 7522 261 90 371 321 80

chat 80 67393 2153 431 494578 4977 631
ga 2146 161 40 2814 290 40
ili 2314 450 111 1222 531 100

ime 653 140 40 120 161 40
nand17921 1682 421 841 801 260

nbody 877 191 30 241 301 80

argument-size depth-k
file succ lfp gfp succ lfp gfp

peep 404 170 30 761 441 70
peval 6938 621 100 4466 611 90
press 584 251 40 320 381 70

reducer 7867 270 50 190 301 50
rubik 30150 420 70 571 3755 221

sim10270 561 171 35411 611 100
sim v5-2 2948 581 170 491 701 180

trs 13174 280 91 321 450 100

Fig. 2. Timing results for determinacy inference

of the analysis, some illustrative results are therefore given for several familiar
programs. The results for the first program listed in Figure 1 illustrate that the
determinacy conditions are often disjunctive reflecting the multi-mode nature of
predicates. The second program demonstrates that the analysis will infer false
for a predicate that is genuinely non-determinate. The third program shows that
even the exclusion conditions are themselves interesting. For example, one might
have thought that the predicate select(x1, x2, x3) – which selects an element
x1 of the list x2 to give the residual list x3 – is determinate if called with
x1, x2 and x3 ground. However, the call select(1, [1,1,2], [1,2]) succeeds
twice and as a consequence sort([1,1,2], L) manifests the buggy behaviour
that it generates the answer L = [1,1,2] twice. Finally, the fourth program
illustrates a so-called false positive. The top-level predicate go(x1) appears to
be determinate and we conjecture that this can be inferred by replacing the
groundness analysis used in the above experiments with a rigidity analysis [9]
that is sensitive to the particular structure of the trees that arise in serialize.

To assess scalability, timing experiments were performed on the analysis com-
ponents using a 2.49GHz PC with 240 MB RAM running XP. Only the timings
for the larger programs are given in Figure 2. The succ, lfp and gfp columns give
the time in milliseconds required for the argument-size or depth-k analysis and
calculating the lfp and gfp using the exclusion conditions synthesised from one of
these analysis (not both together). Interestingly, the gfp is uniformly faster than
the lfp despite the fact that the gfp operator is more complicated than the lfp
operator. The table shows that the analysis time is dominated by the analyses
that feed the client analysis – the backward analysis. There is no reason why
the argument size analysis cannot be improved by replacing a constraint based
implementation [2] with one based on a polyhedral library [16]. Moreover, the
depth-k analysis would benefit from a more intelligent iteration strategy. Nev-
ertheless, the results demonstrate that determinacy inference is practical even
when component analyses are implemented naively.

6 Related Work

Giacobazzi and Ricci [10] recognize the value of goal-independence in determi-
nacy analysis and present a solution that tracks deterministic ground depen-
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dencies. A ground dependence from a set of input arguments to a set of output
arguments is deterministic if, whenever the input arguments are ground, the
execution of the predicate binds any output argument to a single ground term.
Hence their proposal cannot reason about predicates that compute the same
output multiply. The work predates the domains Def and Pos [1] and thus is
formulated in terms of hypergraphs. However, even defining an order on hy-
pergraphs is surprisingly subtle. For example, the ordering on abstract atoms
proposed in [10] asserts that p(g, g) is less than the atom p(ng, ng) paired with
a deterministic ground dependence from the first argument to the second. Ob-
serve, however, that the first abstract atom describes a set of concrete atoms that
includes p(a, b) and p(a, c) but the set of concrete atoms described by the second
cannot include both. Nevertheless, the proposal is not fundamentally flawed and
in our opinion the work is in many ways ahead of its time.

Some determinacy checking analyses [14, 17, 19] are rich enough to reason
about cuts, if-then-else, and even check for mutual exclusion by applying integer
programming. These works raise a number of intriguing questions for determi-
nacy inference, for example, how can cut be accommodated [17, 19] and how
hard is determinacy inference [14] (presumably inference is as hard as checking).

Determinacy inference was inspired by the modular construction of termina-
tion inference [8] which is itself composed of components that include argument-
size analysis [2] and backward analysis [12]. In termination inference, size re-
lations are used to deduce grounding conditions sufficient to observe size de-
creases, and thus termination, on successive recursive calls. Backward analysis
is applied to derive sufficient conditions for termination for a compound goal
that is executed left-to-right. In determinacy inference, the size issue does not
relate primarily to calls but to the relative sizes of the answers generated from
different clauses. Determinacy inference also differs from termination inference
in that the latter applies the framework of [12] directly whereas the former does
not. While the gfp in [12] propagates requirements from right-to-left across the
body of a clause; the gfp in this paper propagates determinacy requirements on
each call in the body using the conjunction of the success patterns of those calls
that precede it. Observe that this conjunction can be pre-computed; it does not
need to be reevaluated on each application of gfp operator. Thus, the structure
of the gfp presented in this paper enables efficiency savings.

7 Conclusions

This paper has shown how the problem of checking that a goal is determinate can
be reformulated as the problem of inferring a class of determinate goals. Despite
the generality of this problem, this paper has shown how a determinate inference
engine can be constructed by composing classic goal-independent success set
analyses such as argument-size and depth-k analysis with modern backward
analysis techniques. The paper has demonstrated that the analysis is tractable
and the importance of determinacy suggests that the analysis will be useful.
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Abstract. We present a program analysis that can automatically dis-
cover the shape of complex pointer data structures. The discovered in-
variants are, then, used to verify the absence of safety errors in the
program, or to check whether the program preserves the data consis-
tency. Our analysis extends the shape analysis of Sagiv et al. with gram-
mar annotations, which can precisely express the shape of complex data
structures. We demonstrate the usefulness of our analysis with binomial
heap construction and the Schorr-Waite tree traversal. For a binomial
heap construction algorithm, our analysis returns a grammar that pre-
cisely describes the shape of a binomial heap; for the Schorr-Waite tree
traversal, our analysis shows that at the end of the execution, the result
is a tree and there are no memory leaks.

1 Introduction

We show that a static program analysis can automatically verify pointer pro-
grams, such as binomial heap construction and the Schorr-Waite tree traversal.
The verified properties are: for a binomial heap construction algorithm, our anal-
ysis verifies that the returned heap structure is a binomial heap; for the Schorr-
Waite tree traversal, it verifies that the output tree is a binary tree, and there are
no memory leaks. In both cases, the analysis took less than 0.2 second in Intel
Pentium 3.0C with 1GB memory, and its result is simple and human-readable.

Note that although these programs handle regular heap structures such as
binomial heaps and trees, the topology of pointers (e.g., cycles) and their impera-
tive operations (e.g., pointer swapping) are fairly challenging for fully automatic
static verification without any annotation from the programmer.

The static analysis is an extension to Sagiv et al.’s shape analysis [13] by
grammars. To improve accuracy, we associate grammars, which finitely summa-
rize run-time heap structures, with the summary nodes of the shape graphs. This
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enrichment of shape graph by grammars provides an ample space for precisely
capturing the imperative effects on heap structures. The grammar is unfolded
to expose an exact heap structure on demand. The grammar is also folded to
replace an exact heap structure by an abstract nonterminal. To ensure the ter-
mination of the analysis, the grammar merges multiple production rules into a
single one, and unify multiple nonterminals; this simplification makes the gram-
mar size remain within a practical bound.

The analysis’s correctness is proved via separation logic [12, 11]. The analysis
is a composition of abstract operations over the grammar-based shape graphs.
The semantics (concretization) of the shape graphs is defined as assertions in
separation logic. Each abstract operator is proved safe by showing that the
separation-logic assertion for the input graph implies that for the output graph.
The input program C wrapped by the input and output assertions {P}C{Q} is
always a provable Hoare triple by the separation-logic proof rules.

The main limitation of our analysis is that the analysis cannot handle DAGs
and general graphs. To overcome this limitation, we need to use a more general
grammar, where the nonterminals can talk about shared cells.

Related Work. We borrowed several interesting ideas from the shape analy-
sis [14]. Our analysis represents a program invariant using a set of shape graphs
where each shape graph consists of either concrete or abstract nodes. It uses the
idea of refining an abstract node, often called focus or materialization, and also
the idea of merging the shape graphs which have a similar structure [9, 5].

The difference is the use of grammar; it is the main reason for the improved
precision of our analysis. Another difference is that our analysis separates node-
summarizing criteria from the properties of the summary nodes. Normally, the
shape analysis of Sagiv et al. partitions all the concrete nodes according to the
instrumentation predicates that they satisfy, and groups each partition into a
single summary node. Thus, two different summary nodes must satisfy different
sets of instrumentation predicates. Our analysis, on the other hand, groups the
concrete nodes using the most approximate grammar: each group is a maximal
set of concrete nodes that can be expressed by the most approximate grammar.
Then, the analysis summarizes each group by a single summary node, and anno-
tates the summary node with a new grammar that “best” describes the pointer
structure of the summarized concrete nodes. As a consequence, two different
summary nodes in our analysis can have the identical grammar annotations.

Graph type [7, 10] and shape type [6] are also closely related to our work. Both
of them express invariants of heap objects (or data structures) using grammar-
based languages, which are more expressive than the grammars we used. How-
ever, they assume that all the loop invariants of a program are provided, while
our work infers such invariants.

Outline. Section 2 describes the source programming language. Section 3
overviews separation logic that we use to give the meaning of abstract values.
Then, we explain the key ideas of our analysis, using a simpler version that can
handle tree-like structures with no shared nodes. Section 4 and 5 explain the
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abstract domain and abstract operators, and Section 6 defines the analyzer. The
simpler version is extended to the full analysis in Section 7. Section 8 demon-
strates the accuracy of our analysis using binomial heap construction algorithm
and the Schorr-Waite tree traversing algorithm.

2 Programming Language

We use the standard while language with additional pointer operations.

Vars x Fields f ∈ {0, 1}
Boolean Expressions B ::= x = y | !B
Commands C ::= x := nil | x := y | x := new | x := y->f | x->f := y

| C;C | if B C C | while B C

This language assumes that every heap cell is binary, having fields 0 and 1. A
heap cell is allocated by x := new, and the contents of such an allocated cell is
accessed by the field-dereference operation ->. All the other constructs in the
language are standard.

3 Separation Logic with Recursive Predicates

Let Loc and Val be unspecified infinite sets such that nil �∈ Loc and Loc∪{nil} ⊆
Val. We consider separation logic for the following semantic domains.

Stack ∆= Vars ⇀fin Val Heap ∆= Loc ⇀fin Val× Val State ∆= Stack× Heap

This domain implies that a state has the stack and heap components, and that
the heap component of a state has finitely many binary cells.

The assertion language in separation logic is given by the following grammar:1

P ::= E = E | emp | (E �→ E,E) | P ∗ P | true | P ∧ P | P ∨ P | ¬P | ∀x. P

Separating conjunction P ∗Q is the most important, and it expresses the splitting
of heap storage; P ∗Q means that the heap can be split into two parts, so that P
holds for the one and Q for the other. We often use precise equality and iterated
separating conjunction, both of which we define as syntactic sugars. Let X be a
finite set {x1, . . . , xn} where all xi’s are different.

E
.= E′ ∆= E=E′ ∧ emp

⊙
x∈X Ax

∆= if (X = ∅) then emp else (Ax1 ∗ . . . ∗Axn)

In this paper, we use the extension of the basic assertion language with
recursive predicates [15]:

P ::= . . . | α(E, . . . , E) | rec Γ in P Γ ::= α(x1, . . . , xn) = P | Γ, Γ

1 The assertion language also has the adjoint −∗ of ∗. But this adjoint is not used in
this paper, so we omit it here.
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The extension allows the definition of new recursive predicates by least-fixed
points in “rec Γ in P”, and the use of such defined recursive predicates in
α(E, . . . , E). To ensure the existence of the least-fixed point in rec Γ in P , we
will consider only well-formed Γ where all recursively defined predicates appear
in positive positions.

A recursive predicate in this extended language means a set of heap objects.
A heap object is a pair of location (or locations) and heap. Intuitively, the first
component denotes the starting address of a data structure, and the second the
cells in the data structure. For instance, when a linked list is seen as a heap
object, the location of the head of the list becomes the first component, and the
cells in the linked list the second component.

The precise semantics of this assertion language is given by a forcing rela-
tion |=. For a state (s, h) and an environment η for recursively defined predicates,
we define inductively when an assertion P holds for (s, h) and η. We show the
sample clauses below; the full definition appears in [8].

(s, h), η |= α(E) iff ([[E]]s, h) ∈ η(α)
(s, h), η |= rec α(x)=P in Q iff (s, h), η[α→k] |= P
(where k = lfixλk0.{(v′, h′) | (s[x→v′], h′), η[α→k0] |= P}) .

4 Abstract Domain

Shape Graph. Our analysis interprets a program as a (nondeterministic) trans-
former of shape graphs. A shape graph is an abstraction of concrete states; this
abstraction maintains the basic “structure” of the state, but abstracts away all
the other details. For instance, consider a state ([x→1, y→3], [1→ 〈2,nil〉 , 2→〈nil,
nil〉, 3→ 〈1, 3〉]). We obtain a shape graph from this state in two steps. First, we
replace the specific addresses, such as 1 and 2, by symbolic locations; we introduce
symbols a, b, c, and represent the state by ([x→a, y→c], [a→ 〈b,nil〉 , b→ 〈nil,nil〉 ,
c→ 〈a, c〉]). Note that this process abstracts away the specific addresses and just
keeps the relationship between the addresses. Second, we abstract heap cells a
and b by a grammar. Thus, this step transforms the state to ([x→a, y→c], [a→tree,
c→ 〈a, c〉]) where a→tree means that a is the address of the root of a tree, whose
structure is summarized by grammar rules for nonterminal tree.

The formal definition of a shape graph is given as follows:

SymLoc ∆= {a, b, c, . . .} NonTerm ∆= {α, β, γ, . . .}
Graph ∆= (Vars ⇀fin SymLoc)× (SymLoc ⇀fin {nil}+ SymLoc2 + NonTerm)

Here the set of nonterminals is disjoint from Vars and SymLoc; these nontermi-
nals represent recursive heap structures such as tree or list. Each shape graph
has two components (s, g). The first component s maps stack variables to sym-
bolic locations. The other component g describes heap cells reachable from each
symbolic location. For each a, either no heap cells can be reached from a, i.e,
g(a) = nil; or, a is a binary cell with contents 〈b, c〉; or, the cells reachable from a
form a heap object specified by a nonterminal α. We also require that g describes
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all the cells in the heap; for instance, if g is the empty partial function, it means
the empty heap.

The semantics (or concretization) of a shape graph (s, g) is given by a trans-
lation into an assertion in separation logic:

meansv(a, nil) ∆= a
.= nil meansv(a, α) ∆=α(a) meansv(a, 〈b, c〉) ∆=(a �→ b, c)

meanss(s, g)
∆= ∃a. (

⊙
x∈dom(s) x

.= s(x)) ∗ (
⊙

a∈dom(g) meansv(a, g(a)))

The translation function meanss calls a subroutine meansv to get the translation
of the value of g(a), and then, it existentially quantifies all the symbolic locations
appearing in the translation. For instance, meanss([x→a, y→c], [a→tree, c→ 〈a, c〉])
is ∃ac. (x .= a) ∗ (y .= c) ∗ tree(a) ∗ (c �→ a, c).

When we present a shape graph, we interchangeably use the set notation and
a graph picture. Each variable or symbolic location becomes a node in a graph,
and s and g are represented by edges or annotations. For instance, we draw a
shape graph (s, g) = ([x→a], [a→ 〈b, c〉 , b→nil, c→α]) as:

α

b c

ax

nil

Note that pair g(a) is represented by two edges (the left one is for field 0 and
the right one for field 1), and non-pair values g(b) and g(c) by annotations to
the nodes.

Grammar. A grammar gives the meaning of nonterminals in a shape graph.
We define a grammar R as a finite partial function from nonterminals (the lhs
of production rules) to ℘nf({nil} + ({nil} + NonTerm)2) (the rhs of production
rules), where ℘nf(X) is the family of all nonempty finite subsets of X.

Grammar ∆= NonTerm ⇀fin ℘nf({nil}+ ({nil}+ NonTerm)2)

Set R(α) contains all the possible shapes of heap objects for α. If nil ∈ R(α),
α can be the empty heap object. If 〈β, γ〉 ∈ R(α), then some heap object for α
can be split into a root cell, the left heap object β, and the right heap object γ.
For instance, if R(tree) = {nil, 〈tree, tree〉} (i.e., in the production rule notation,
tree ::= nil | 〈tree, tree〉), then tree represents binary trees. In our analysis, we
use only well-formed grammars, where all nonterminals appearing in the range
of a grammar are defined in the grammar.

The meaning meansg(R) of a grammar R is given by a recursive predicate
declaration Γ in separation logic. Γ is defined exactly for dom(R), and satisfies
the following: when nil �∈ R(α), Γ (α) is

α(a) =
∨

〈v,w〉∈R(α)

∃bc. (a�→b, c) ∗ meansv(b, v) ∗ meansv(c, w),

where neither b nor c appears in a, v or w; otherwise, Γ (α) is identical as
above except that a .= nil is added as a disjunct. For instance, meansg([tree→
{nil, 〈tree, tree〉}]) is {tree(a) = a

.=nil ∨ ∃bc.(a �→ b, c)∗tree(b)∗tree(c)}.
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(s1, g1) (s2, g2) (s3, g3)
nil nilα α α

(a) not normalized (b) normalized (c) (s1, g1) �∼ (s2, g2) but (s1, g1) ∼ (s3, g3)

Fig. 1. Examples of the Normalized Shape Graphs and Similar Shape Graphs

Abstract Domain. The abstract domain D̂ for our analysis consists of pairs
of a shape graph set and a grammar: D̂ ∆= {�} + ℘nf(Graph) × Grammar. The
element � indicates that our analysis fails to produce any meaningful results
for a given program because the program has safety errors, or the program uses
data structures too complex for our analysis to capture. The meaning of each
abstract state (G, R) in D̂ is means(G, R) ∆= rec meansg(R) in

∨
(s,g)∈G meanss(s, g).

5 Normalized Abstract States and Normalization

The main strength of our analysis is to automatically discover a grammar that
describes, in an “intuitive” level, invariants for heap data structures, and to
abstract concrete states according to this discovered grammar. This inference of
high-level grammars is mainly done by the normalization function from D̂ to a
subdomain D̂∇ of normalized abstract states. In this section, we explain these
two notions, normalized abstract states and normalization function.

5.1 Normalized Abstract States

An abstract state (G, R) is normalized if it satisfies the following two conditions.
First, all the shape graphs (s, g) in G are abstract enough: all the recognizable
heap objects are replaced by nonterminals. Note that this condition on (G, R)
is about individual shape graphs in G. We call a shape graph normalized if it
satisfies this condition. Second, an abstract state does not have redundancies: all
shape graphs are not similar, and all nonterminals have non-similar definitions.

Normalized Shape Graphs. A shape graph is normalized when it is “max-
imally” folded. A symbolic location a is foldable in (s, g) if g(a) is a pair and
there is no path from a to a shared symbolic location that is referred more than
once. When dom(g) of a shape graph (s, g) does not have any foldable locations,
we say that (s, g) is normalized. For instance, Figure 1.(a) is not normalized, be-
cause b is foldable: b is a pair and does not reach any shared symbolic locations.
On the other hand, Figure 1.(b) is normalized, because all the pairs in the graph
(i.e., a and c) can reach shared symbolic location e.
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Similarity. We define three notions of similarity: one for shape graphs, another
for two cases of the grammar definitions, and the third for the grammar defini-
tions of two nonterminals.

Two shape graphs are similar when they have the similar structures. Let S
be a substitution that renames symbolic locations. Two shape graphs (s, g) and
(s′, g′) are similar up to S, denoted (s, g) ∼G

S (s′, g′), if and only if

1. dom(s) = dom(s′) and S(dom(g)) = dom(g′);
2. for all x ∈ dom(s), S(s(x)) = s′(x); and
3. for all a ∈ dom(g), if g(a) is a pair 〈b, c〉 for some b and c, then g′(S(a)) =

〈S(b), S(c)〉; if g(a) is not a pair, neither is g′(S(a)).

Intuitively, two shape graphs are S-similar, when equating nil and all nonter-
minals makes the graphs identical up to renaming S. We say that (s, g) and
(s′, g′) are similar, denoted (s, g) ∼ (s′, g′), if and only if there is a renaming
relation S such that (s, g) ∼G

S (s′, g′). For instance, in Figure 1.(c), (s1, g1) and
(s2, g2) are not similar because we cannot find a renaming substitution S such
that S(s1(x)) = S(s1(y)) (condition 2). However, (s1, g1) and (s3, g3) are sim-
ilar because a renaming substitution {d/a, e/b, f/c} makes (s1, g1) identical to
(s3, g3) when nil and all nonterminals are erased from the graphs.

Cases e1 and e2 in the grammar definitions are similar, denoted e1 ∼C e2,
if and only if either both e1 and e2 are pairs, or they are both non-pair values.
The similarity E1 ∼D E2 between grammar definitions E1 and E2 uses this case
similarity: E1 ∼D E2 if and only if, for all cases e in E1, E2 has a similar case
e′ to e (e ∼C e′), and vice versa. For example, in the grammar

α ::= 〈β, nil〉 , β ::= nil | 〈β, nil〉 , γ ::= 〈γ, γ〉 | 〈α,nil〉

the definitions of α and γ are similar because both 〈γ, γ〉 and 〈α,nil〉 are similar
to 〈β,nil〉. But the definitions of α and β are not similar since α does not have
a case similar to nil.

Definition 1 (Normalized Abstract States). An abstract state (G, R) is
normalized if and only if

1. all shape graphs in G are normalized;
2. for all (s1, g1), (s2, g2) ∈ G, we have (s1, g1)∼(s2, g2) ⇒ (s1, g1)=(s2, g2);
3. for all α ∈ dom(R) and all cases e1, e2 ∈ R(α), e1∼Ce2 implies that e1=e2;
4. for all α, β in dom(R), R(α)∼DR(β) implies that α=β.

We write D̂∇ for the set of normalized abstract states.

k-Bounded Normalized States. Unfortunately, the normalized abstract do-
main D̂∇ does not ensure the termination of the analysis, because it has infinite
chains. For each number k, we say that an abstract state (G, R) is k-bounded iff
all the shape graphs in G use at most k symbolic locations, and we define D̂∇

k

to be the set of k-bounded normalized abstract states. This finite domain D̂∇
k is

used in our analysis.
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Fig. 2. Examples of (fold), (unify), and (unil)

5.2 Normalization Function

The normalize function transforms (G, R) to a normalized (G′, R′) with a further
abstraction (i.e., means(G, R) ⇒ means(G′, R′)).2 It is defined by the composi-
tion of five subroutines: normalize = boundk ◦ simplify ◦ unify ◦ fold ◦ rmjunk.

The first subroutine rmjunk removes all the “imaginary” sharing and garbage
due to constant symbolic locations, so that it makes the real sharing and garbage
easily detectable in syntax. The subroutine rmjunk applies the following two rules
until an abstract state does not change. In the definition, “%” is a disjoint union
of sets, and “·” is a union of partial maps with disjoint domains.

(alias) (G � {(s · [x→a], g · [a→nil])} , R) � (G ∪ {(s · [x→a′], g · [a→nil, a′→nil])} , R)
where a should appear in (s, g) and a′ is fresh.

(gc) (G � {(s, g · [a→nil])} , R) � (G ∪ {(s, g)} , R) where a does not appear in (s, g)

For instance, given a shape graph ([x→a, y→a], [a→nil, c→nil]), (gc) collects the
“garbage” c, and (alias) eliminates the “imaginary sharing” between x and y by
renaming a in y→a. So, the shape graph becomes ([x→a, y→b], [a→nil, b→nil]).

The second subroutine fold converts a shape graph to a normal form, by
replacing all foldable symbolic locations by nonterminals. The subroutine fold
repeatedly applies the following rule until the abstract state does not change:

(fold) (G � {(s, g ·[a→ 〈b, c〉 , b→v, c→v′])}, R) � (G ∪ {(s, g ·[a→α])}, R·[α→{〈v, v′〉}])
where neither b nor c appears in (s, g), α is fresh, and v and v′ are not pairs.

The rule recognizes that the symbolic locations b and c are accessed only via a.
Then, it represents cell a, plus the reachable cells from b and c by a nonterminal
α. Figure 2 shows how the (fold) folds a tree.

The third subroutine unify merges two similar shape graphs in G. Let (s, g)
and (s′, g′) be similar shape graphs by the identity renaming ∆ (i.e., (s, g) ∼G

∆

2 The normalize function is a reminiscent of the widening in [2, 3].



132 O. Lee, H. Yang, and K. Yi

(s′, g′)). Then, these two shape graphs are almost identical; the only exception is
when g(a) and g′(a) are nonterminals or nil. unify eliminates all such differences
in two shape graphs; if g(a) and g′(a) are nonterminals, then unify changes g
and g′, so that they map a to the same fresh nonterminal γ, and then it defines
γ to cover both α and β. The unify procedure applies the following rules to an
abstract state (G, R) until the abstract state does not change:

(unify) (G � {(s1, g1 · [a1→α1]), (s2, g2 · [a2→α2])}, R)
� (G ∪ {(S(s1), S(g1)·[a2→β]), (s2, g2 ·[a2→β])}, R · [β→R(α1) ∪R(α2)])
where (s1, g1 ·[a1→α1])∼G

S (s2, g2 ·[a2→α2]), S(a1)≡a2, α1 �≡α2, and β is fresh.

(unil) (G � {(s1, g1 · [a1→α]), (s2, g2 · [a2→nil])}, R)
� (G ∪ {(S(s1), S(g1)·[a2→β]), (s2, g2 ·[a2→β])}, R · [β→R(α) ∪ {nil}])
where (s1, g1 · [a1→α])∼G

S (s2, g2 · [a2→nil]), S(a1)≡a2, and β is fresh.

The (unify) rule recognizes two similar shape graphs that have different non-
terminals at the same position, and replaces those nonterminals by fresh non-
terminal β that covers the two nonterminals. The (unil) rule deals with the two
similar graphs that have, respectively, nonterminal and nil at the same position.
For instance, in Figure 2.(b), the left two shape graphs are unified by (unify)
and (unil). We first replace the left children α and β by γ that covers both; that
is, to a given grammar R, we add [γ→R(α) ∪ R(β)]. Then we replace the right
children β and nil by δ that covers both.

The fourth subroutine simplify reduces the complexity of grammar by com-
bining similar cases or similar definitions.3 It applies three rules repeatedly:

– If the definition of a nonterminal has two similar cases 〈β, v〉 and 〈β′, v′〉,
and β and β′ are different nonterminals, unify nonterminals β and β′. Apply
the same for the second field.

– If the definition of a nonterminal has two similar cases 〈β, v〉 and 〈nil, v′〉,
add the nil case to R(β) and replace 〈nil, v′〉 by 〈β, v′〉. Apply the same for
the second field.

– If the definitions of two nonterminals are similar, unify the nonterminals.

Formally, the three rules are:

(case) (G, R) � (G, R) {β/α} where {〈α, v〉 , 〈β, v′〉} ⊆ R(γ) and α �≡ β.
(same for the second field)

(nil) (G, R · [α→E � {〈β, v〉 , 〈nil, v′〉}]) � (G, R′[β→R′(β) ∪ {nil}])
where R′ = R · [α→E ∪ {〈β, v〉 , 〈β, v′〉}]. (same for the second field)

(def) (G, R) � (G, R) {β/α} where R(α) ∼ R(β) and α �≡ β.

Here, (G, R){α/β} substitutes α for β, and in addition, it removes the definition
of β from R and re-defines α such that α covers both α and β:

(G, R · [α→E1, β→E2]) {α/β} ∆= (G {α/β} , R {α/β} · [α→(E1 ∪ E2) {α/β}]).

3 The simplify subroutine is similar to the widening operator in [4].
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For example, consider the following transitions:

α::=nil | 〈β, β〉 | 〈γ, γ〉 , β::= 〈γ, γ〉 , γ::= 〈nil, nil〉
(case)
� α::=nil | 〈β, β〉 , β::= 〈β, β〉 | 〈nil, nil〉 (nil)

� α::=nil | 〈β, β〉 , β::= 〈β, β〉 | 〈β, nil〉 |nil
(nil)
� α::=nil | 〈β, β〉 , β::= 〈β, β〉 |nil

(def)
� α::=nil | 〈α, α〉

In the initial grammar, α’s definition has the similar cases 〈β, β〉 and 〈γ, γ〉,
so we apply {β/γ} (case). In the second grammar, β’s definition has similar
cases 〈β, β〉 and 〈nil,nil〉. Thus, we replace nil by β, and add the nil case to β’s
definition (nil). We apply (nil) once more for the second field. In the fourth
grammar, since α and β have similar definitions, we apply {α/β} (def). As a
result, we obtain the last grammar which says that α describes binary trees.

The last subroutine boundk checks the number of symbolic locations in each
shape graph. The subroutine boundk simply gives � when one of shape graphs
has more than k symbolic locations, thereby ensuring the termination of the
analysis.4

boundk(G, R)=if (no (s, g) in G has more than k symbolic locations) then (G, R) else�

Lemma 1. Given every abstract state (G, R), normalize(G, R) always terminates,
and its result is a k-bounded normalized abstract state.

6 Analysis

Our analyzer (defined in Figure 3) consists of two parts: the “forward analysis”
of commands C, and the “backward analysis” of boolean expressions B. Both of
these interpret C and B as functions on abstract states, and they accomplish the
usual goals in the static analysis: for an initial abstract state (G, R), [[C]](G, R)
approximates the possible output states, and [[B]](G, R) denotes the result of
pruning some states in (G, R) that do not satisfy B.

One particular feature of our analysis is that the analysis also checks the
absence of memory errors, such as null-pointer dereference errors. Given a com-
mand C and an abstraction (G, R) for input states, the result [[C]](G, R) of ana-
lyzing the command C can be either some abstract state (G′, R′) or �. (G′, R′)
means that all the results of C from (G, R) are approximated by (G′, R′), but in
addition to this, it also means that no computations of C from (G, R) can gen-
erate memory errors. �, on the other hand, expresses the possibility of memory
errors, or indicates that a program uses the data structures whose complexity
goes beyond the current capability of the analysis.

The analyzer unfolds the grammar definition by calling the subroutine unfold.
Given a shape graph (s, g), a variable x and a grammar R, the subroutine unfold

4 Limiting the number of symbolic locations to be at most k ensures the termination of
the analyzer in the worst case. When programs use data structures that our grammar
captures well, the analysis usually terminates without using this k limitation, and
yields meaningful results.
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[[C]] : D̂ → D̂

[[x := new]] (G, R) = ({(s[x→a], g[a→ 〈b, c〉 , b→nil, c→nil]) | (s, g) ∈ G } , R) new a, b, c
[[x := nil]] (G, R) = ({(s[x→a], g[a→nil]) | (s, g) ∈ G } , R) new a

[[x := y]] (G, R) = when y ∈ dom(s) for all (s, g) ∈ G,
({(s[x→s(y)], g) | (s, g) ∈ G } , R)

[[x->0 := y]] (G, R) = when unfold(G, R, x) = G′ and ∀(s, g) ∈ G′. y ∈ dom(s),
({(s, g[s(x)→ 〈s(y), c〉] | (s, g) ∈ G′, g(s(x)) = 〈b, c〉} , R)

[[x := y->0]] (G, R) = when unfold(G, R, y) = G′,
({(s[x→b], g) | (s, g) ∈ G′, g(s(y)) = 〈b, c〉} , R)

[[C1;C2]] (G, R) = [[C2]] ([[C1]] (G, R))
[[if B C1 C2]] (G, R) = [[C1]] ([[B]] (G, R)) �̇ [[C2]] ([[!B]] (G, R))
[[while B C]] (G, R) = [[!B]]

(
lfix �̇ λA : D̂∇

k . normalize(A �̇ (G, R) �̇ [[C]] ([[B]]A))
)

[[C]]A = � (other cases)

[[B]] : D̂ → D̂

[[x = y]] (G, R) = when split(split((G, R), x), y) = (G′, R′)
({(s, g) ∈ G′ | s(x)≡s(y) ∨ g(s(x))=g(s(y))=nil)} , R′)

[[!x = y]] (G, R) = when split(split((G, R), x), y) = (G′, R′)
({(s, g) ∈ G′ | s(x)�≡s(y) ∧ (g(s(x))�=nil ∨ g(s(y))�=nil)} , R′)

[[!(!B)]] (G, R) = [[B]] (G, R)
[[B]] A = � (other cases)

Subroutine unfold unrolls the definition of a grammar:

unfold((s, g), R, x)=



{(s, g[a→ 〈b, c〉 , b→v, c→u])| 〈v, u〉 ∈R(a)} if g(s(x))=α ∧ nil �∈R(α)
{(s, g)} if g(s(x)) is a pair
� otherwise

unfold(G, R, x) =
{⋃

(s,g)∈G unfold((s, g), R, x) if ∀(s, g) ∈ G. unfold((s, g), R, x) �= �
� otherwise

Subroutine split((s, g), R, x) changes (s, g) to (s′, g′) s.t. s′(x) means nil iff g′(s′(x))=nil.

split((s, g), R, x)=if (∃α. g(s(x))=α ∧R(α)⊇{nil} ∧R(α) �= {nil})
then ({(s, g[s(x)→nil]), (s, g[s(x)→β])}, R[β→R(α)−{nil}]) for fresh β
else if (∃α. g(s(x))=α ∧R(α)={nil}) then ({(s, g[s(x)→nil])} , R)

else ({(s, g)} , R)

split(G, R, x) =
{ �̇ (s,g)∈Gsplit((s, g), R, x) if ∀(s, g)∈G. x ∈ dom(s)
� otherwise

The algorithmic order �̇ defined in [8] satisfies that if A �̇B, means(A)⇒ means(B)

Fig. 3. Analysis

first checks whether g(s(x)) is a nonterminal or not. If g(s(x)) is a nontermi-
nal α, unfold looks up the definition of α in R and unrolls this definition in the
shape graph (s, g): for each case e in R(α), it updates g by [s(x)→e]. For in-
stance, when R(β) = {〈β, γ〉 , 〈δ, δ〉}, unfold(([x→a], [a→β]), R, x) is shape-graph
set {([x→a], [a→ 〈β, γ〉]), ([x→a], [a→ 〈δ, δ〉])}.
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7 Full Analysis

The basic version of our analysis, which we have presented so far, cannot deal
with data structures with sharing, such as doubly linked lists and binomial heaps.
If a program uses such data structures, the analysis gives up and returns �.

The full analysis overcomes this shortcoming by using a more expressive
language for a grammar, where a nonterminal is allowed to have parameters.
The main feature of this new parameterized grammar is that an invariant for a
data structure with sharing is expressible by a grammar, as long as the sharing
is “cyclic.” A parameter plays a role of “targets” of such cycles.

The overall structure of the full analysis is almost identical to the basic version
in Figure 3. Only the subroutines, such as normalize, are modified. In this section,
we will explain the full analysis by focusing on the new parameterized grammar,
and the modified normalization function for this grammar. The full definition is
in [8].

7.1 Abstract Domain

Let self and arg be two different symbolic locations. In the full analysis, the
domains for shape graphs and grammars are modified as follows:

NTermApp ∆= NonTerm×(SymLoc+⊥) NTermAppR ∆= NonTerm×({self, arg}+⊥)
Graph ∆= (Vars ⇀fin SymLoc)× (SymLoc ⇀fin {nil}+ SymLoc2 + NTermApp)
Grammar ∆= NonTerm ⇀fin ℘nf({nil}+ ({nil}+{self, arg}+NTermAppR)2)

The main change in the new definitions is that all the nonterminals have
parameters. All the uses of nonterminals in the old definitions are replaced by the
applications of nonterminals, and the declarations of nonterminals in a grammar
can use two symbolic locations self and arg, as opposed to none, which denote
the implicit self parameter and the explicit parameter.5 For instance, a doubly-
linked list is defined by dll ::= nil | 〈arg, dll(self)〉. This grammar maintains the
invariant that arg points to the previous cell. So, the first field of a node always
points to the previous cell, and the second field the the next cell. Note that ⊥
can be applied to a nonterminal; this means that we consider subcases of the
nonterminal where the arg parameter is not used. For instance, if a grammar R
maps β to {nil, 〈arg, arg〉}, then β(⊥) excludes 〈arg, arg〉, and means the empty
heap object.

As in the basic case, the precise meaning of a shape graph and a grammar is
given by a translation into separation-logic assertions. We can define a transla-
tion means by modifying only meansv and meansg.

meansv(a, nil) ∆= a
.= nil meansv(a, α(b)) ∆= α(a, b)

meansv(a, b)
∆= a

.= b meansv(a, α(⊥)) ∆= ∀b.α(a, b)

In the last clause, b is a different variable from a. The meaning of a grammar is
a context defining a set of recursive predicates.

5 We allow only “one” explicit parameter. So, we can use pre-defined name arg.
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meansg(R) ∆= {α(a, b)=
∨

e∈R(α) meansgc(a, b, e)}α∈dom(R)

meansgc(a, b, nil) ∆= meansv(a, nil)
meansgc(a, b, 〈v1, v2〉) ∆= ∃a1a2. (a �→ a1, a2)∗meansv(a1, v1 {a/self, b/arg})

∗meansv(a2, v2 {a/self, b/arg})
In the second clause, a1 and a2 are variables that do not appear in v1, v2, a, b.

7.2 Normalization Function

To fully exploit the increased expressivity of the abstract domain, we change the
normalization function in the full analysis. The most important change in the
new normalization function is the addition of new rules (cut) and (bfold) into
the fold procedure.

The (cut) rule enables the conversion of a cyclic structure to grammar def-
initions. Recall that the (fold) rule can recognize a heap object only when the
object does not have shared cells internally. The key idea is to “cut” a “non-
critical” link to a shared cell, and represent the removed link by a parameter to
a nonterminal. If enough such links are cut from an heap object, the object no
longer has (explicitly) shared cells, so that the wrapping step of (fold) can be
applied. The formal definition of the (cut) rule is:

(cut) (G � {(s, g · [a→ 〈a1, a2〉])}, R) �

(G ∪ {(s, g · [a→α(b)])},
R · [α→{〈a1, a2〉 {self/a, arg/b}}]

)

where there are paths from variables to a1 and a2 in g, free(〈v1, v2〉) ⊆ {a, b},
and α is fresh. (If free(〈v1, v2〉) ⊆ {a}, we use α(⊥) instead of α(b).)

Figure 4.(a) shows how a cyclic structure is converted to grammar definitions.6

In the first shape graph, “cell” a is shared because variable x points to a and
“cell” c points to a, but the link from c to a is not critical because even without
this link, a is still reachable from x. Thus, the (cut) rule cuts the link from
c to a, introduces a nonterminal αc with the definition {〈arg〉}, and annotates
node c with αc(a). Note that the resulting graph (the second shape graph in
Figure 4.(a)) does not have explicit sharing. So, we can apply the (fold) rule to
c, and then to b as shown in the last two shape graphs in Figure 4.(a).

The (bfold) rule wraps a cell “from the back.” Recall that the (fold) rule puts
a cell at the front of a heap object; it adds the cell as a root for a nonterminal.
The (bfold) rule, on the other hand, puts a cell a at the exit of a heap object.
When b is used as a parameter for a nonterminal α, the rule “combines” b and
α. This rule can best be explained using a list-traversing algorithm. Consider a
program that traverses a linked list, where variable r points to the head cell of
the list, and variable c to the current cell of the list. The usual loop invariant of
such a program is expressed by the first shape graph in Figure 4.(b). However,
only with the (fold) rule, which adds a cell to the front, we cannot discover
this invariant; one iteration of the program moves c to the next cell, and thus
changes the shape graph into the second shape graph in Figure 4.(b), but this

6 To simplify the presentation, we assume that each cell in the figure has only a single
field.
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Initial grammar
α::=〈α(arg)〉 | 〈arg〉
β::=〈β(⊥)〉 |nil

Final grammar
α::=〈α(arg)〉 | 〈γ(arg)〉
β::=〈β(⊥)〉 |nil
γ ::=〈arg〉

Fig. 4. Examples of (cut) and (bfold)

new graph is not similar to the initial one. The (bfold) rule changes the new
shape graph back to the one for the invariant, by merging α(b) with cell b. The
(cut) rule first cuts the link from b to c, extends a grammar with [γ→{〈arg〉}],
and annotates the node b with γ(c). Then, the (bfold) rule finds all the places
where arg is used as itself in the definition of α, and replaces arg there by γ(arg).
Finally, the rule changes the binding for a from α(b) to α(c), and eliminates cell
b, thus resulting the last shape graph in Figure 4(b).7 The precise definition of
(bfold) does what we call linearity check, in order to ensure the soundness of
replacing arg by nonterminals:8

(bfold) (G ∪ {(s, g · [a→α(b), b→β(w)])} , R) � (G ∪ {(s, g · [a→α′(w)])} , R · [α′→E])
where b does not appear in g, α is linear (that is, arg appears exactly once in
each case of R(α)), and E = {nil ∈ R(α)} ∪ {〈f(v1), f(v2)〉 | 〈v1, v2〉 ∈ R(α)}
where f(v) = if (v ≡ arg) then β(arg) else

(
if (v ≡α(arg)) then α′(arg)else v

)
.

7.3 Correctness

The correctness of our analysis is expressed by the following theorem:

Theorem 1. For all programs C and abstract states (G, R), if [[C]](G, R) is a
non-� abstract state (G′, R′), then triple {means(G, R)}C{means(G′, R′)} holds
in separation logic.

We proved this theorem in two steps. First, we showed a lemma that all subrou-
tines, such as normalize and unfold, and the backward analysis are correct. Then,

7 The grammar is slightly different from the one for the invariant. However, if we
combine two abstract states and apply unify and simplify, then the grammar for the
invariant is recovered.

8 Here we present only for the case that the parameter of α is not passed to another dif-
ferent nonterminals. With such nonterminals, we need to do a more serious linearity
check on those nonterminals, before modifying the grammar.
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Table 1. Experimental Results

program description cost(sec) analysis result
listrev.c list construction followed by list

reversal
0.01 the result is a list

dbinary.c construction of a tree with par-
ent pointers

0.01 the result is a tree with parent
pointers

dll.c doubly-linked list construction 0.01 the result is a doubly-linked list
bh.c binomial heap construction 0.14 the result is a binomial heap
sw.c Schorr-Waite tree traversal 0.05 the result is a tree
swfree.c Schorr-Waite tree disposal 0.02 the tree is completely disposed

For all the examples, our analyzer proves the absence of null pointer dereference errors
and memory leaks.

with this lemma, we applied the induction on the structure of C, and showed
that {means(G, R)}C{means(G′, R′)} is derivable in separation logic. The valid-
ity of the triple now follows, because separation-logic proof rules are sound. The
details are in [8].

8 Experiments

We have tested our analysis with the six programs in Table 1. For each of the
programs, we ran the analyzer, and obtained abstract states for a loop invari-
ant and the result. In this section, we will explain the cases of binomial heap
construction and the Schorr-Waite tree traversal. The others are explained at
http://ropas.snu.ac.kr/grammar.

Binomial Heap Construction. In this experiment, we took an implementa-
tion of binomial heap construction in [1], where each cell has three pointers: one
to the left-most child, another to the next sibling, and the third to the parent. We
ran the analyzer with this binomial heap construction program and the empty
abstract state ({}, []). Then, the analyzer inferred the following same abstract
state (G, R) for the result of the construction as well as for the loop invariant.
Here we omit ⊥ from forest(⊥).

G =
{(

[x→a], [a→forest]
)}

R =
[

forest ::= nil | 〈stree(self), forest, nil〉 ,
stree ::= nil | 〈stree(self), stree(arg), arg〉

]

The unique shape graph in G means that the heap has only a single heap
object whose root is stored in x, and the heap object is an instance of forest.
Grammar R defines the structure of this heap object. It says that the heap
object is a linked list of instances of stree, and that each instance of stree in the
list is given the address of the containing list cell. These instances of stree are,
indeed, precisely those trees with pointers to the left-most children and to the
next sibling, and the parent pointer.
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Schorr-Waite Tree Traversal. We used the following (G0, R0) as an initial
abstract state:

G0 = {([x→a], [a→tree])} R0 = [tree ::= nil | 〈I, tree, tree〉]

Here we omit ⊥ from tree(⊥). This abstract state means that the initial heap
contains only a binary tree a whose cells are marked I.

Given the traversing algorithm and the abstract state (G0, R0), the analyzer
produced (G1, R1) for final states, and (G2, R2) for a loop invariant:

G1 =
{(

[x→a], [a→treeR]
)}

R1 = [treeR ::= nil | 〈R, treeR, treeR〉]
G2 =
{(

[x→a, y→b], [a→treeRI, b→rtree]
)}

R2 =
[

rtree ::= nil | 〈R, treeR, rtree〉 | 〈L, rtree, tree〉 , tree ::= nil| 〈I, tree, tree〉 ,
treeR ::= nil| 〈R, treeR, treeR〉 , treeRI ::= nil | 〈I, tree, tree〉 | 〈R, treeR, treeR〉

]

The abstract state (G1, R1) means that the heap contains only a single heap
object x, and that this heap object is a binary tree containing only R-marked
cells. Note that this abstract state implies the absence of memory leaks because
the tree x is the only thing in the heap.

The loop invariant (G2, R2) means that the heap contains two disjoint heap
objects x and y. Since the heap object x is an instance of treeRI, the object x
is an I-marked binary tree, or an R-marked binary tree. This first case indicates
that x is first visited, and the second case that x has been visited before. The
nonterminal rtree for the other heap object y implies that one of left or right field
of cell y is reversed. The second case, 〈R, treeR, rtree〉, in the definition of rtree
means that the current cell is marked R, its right field is reversed, and the left
subtree is an R-marked binary tree. The third case, 〈L, rtree, tree〉, means that
the current cell is marked L, the left field is reversed, and the right subtree is an
I-marked binary tree. Note that this invariant, indeed, holds because y points to
the parent of x, so the left or right field of cell y must be reversed.
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Abstract. Distributed systems and applications are often expected to enforce
high-level authorization policies. To this end, the code for these systems relies
on lower-level security mechanisms such as, for instance, digital signatures, local
ACLs, and encrypted communications. In principle, authorization specifications
can be separated from code and carefully audited. Logic programs, in particular,
can express policies in a simple, abstract manner.

For a given authorization policy, we consider the problem of checking whether
a cryptographic implementation complies with the policy. We formalize authoriza-
tion policies by embedding logical predicates and queries within a spi calculus.
This embedding is new, simple, and general; it allows us to treat logic programs
as specifications of code using secure channels, cryptography, or a combination.
Moreover, we propose a new dependent type system for verifying such implemen-
tations against their policies. Using Datalog as an authorization logic, we show
how to type several examples using policies and present a general schema for
compiling policies.

1 Typing Implementations of Authorization Policies

An authorization policy prescribes conditions that must be satisfied before performing
any privileged action (for example, accessing a sensitive resource). A system complies
with the policy if these conditions hold whenever the action is performed—however, the
policy does not usually prescribe a particular choice of enforcement mechanisms.

Authorization issues can be complex, even at an abstract level. Some policies ad-
dress security concerns for numerous actors, involving roles, groups, partial trust, and
controlled delegation. Those policies are best expressed in high-level languages, with
supporting tools. Specifically, logic programming seems well suited for expressing poli-
cies: each authorization request is formulated as a logical request against a database of
facts and rules, while the policy itself carefully controls changes to the database. Hence,
variants of Datalog have been usefully applied to design trust management systems (e.g.,
PolicyMaker [6], SD3 [20], Binder [12]), express complex policies (e.g., Cassandra [4]),
and study authorization languages (e.g., SDSI/SPKI [1, 21], XrML [11]).

Given a target policy, we consider the problem of verifying that a particular sys-
tem correctly implements this policy. In a distributed setting, this refinement typically
involves security protocols and cryptography. For instance, when receiving a request,
one may first verify an identity certificate, then authenticate the message, and finally
consider the privileges associated with the sender. Authorization decisions are often in-
termingled with other imperative code, and are hard to analyze and audit. For instance,
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the request may rightfully appear in many places in the code, most of them without a
valid identity certificate at hand. The relation between imperative code and declarative
policies is usually informal: theoretical studies rarely connect the logic to an operational
semantics.

Our formal development is within a spi calculus [3], that is, a pi calculus with abstract
cryptographic operations. We use a global policy, interpreted against processes in a way
that generalizes a previous embedding [17] of correspondence assertions [24]. There
are many techniques to verify standard correspondences with respect to the Dolev-Yao
model [13], the standard “network is the opponent” threat model for cryptographic
protocols. However, these correspondences are attached to low-level events (such as
a successful decryption), and it can be quite hard to relate them to high-level access
control decisions. Perhaps in consequence, more abstract correspondences have seldom
been validated against the Dolev-Yao model, even though they rely on cryptography.

In contrast to several previous works, we use the authorization language as a statically
enforced specification, instead of a language for programming dynamic authorization
decisions. The two approaches are complementary. The static approach is less expressive
in terms of policies, as we need to anticipate the usage of the facts and rules involved at
runtime. In contrast, a logic-based implementation may dynamically accept (authenti-
cated) facts and rules, as long as they lead to a successful policy evaluation. The static
approach is more expressive in terms of implementations, as we can assemble imper-
ative and cryptographic mechanisms (for example, communications to collect remote
certificates), irrespective of the logic-based evaluation strategy suggested by the policy.
Hence, the static approach may be more efficient and pragmatically simpler to adapt to
existing systems. Non-executable policies may also be simpler to write and to maintain,
as they can safely ignore functional issues.

Summary of Contributions. To our knowledge, this is the first attempt to relate autho-
rization logics to their cryptographic implementation in a pi calculus. Specifically:

– We show how to embed a range of authorization logics within a pi calculus. (We
use Datalog as a simple, concrete example of an authorization logic.)

– We develop a new type system that checks conformance to a logic policy by keeping
track of logical facts and rules in the typing environment, and using logical deduction
to type authorization queries. Our main theorem states that all queries activated in
a well-typed program follow from the enclosing policy.

– As a sample application, we present two distributed implementations of a simple
Datalog policy for conference management featuring rules for filing reports and
delegating reviews. One implementation requests each delegation to be registered
online, whereas the other enables offline, signature-based delegation, and checks
the whole delegation chain later, when a report is filed.

– As another, more theoretical application, we present a generic implementation of
Datalog in the pi calculus—well-typed in our system—which can be used as a default
centralized implementation for any part of a policy.

We built a typechecker and a symbolic interpreter for our language, and used them to
validate these applications. Our initial experience confirms the utility of such tools for
writing code that composes several protocols, even if its overall size remains modest so
far (a few hundred lines).
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Related Work. There is a substantial literature on type systems for checking security
properties. In the context of process calculi, there are, for example type systems to check
secrecy [2] and authenticity [16] properties in the spi calculus, access control properties
of mobile code in the boxed ambient calculus [8], and discretionary access control [9]
and role-based access control [7] in the pi calculus. Moreover, various experimental
systems, such as JIF [22] and KLAIM [23], include types for access control. Still, there
appears to be no prior work on typing implementations of a general authorization logic.

In the context of strand spaces and nonce-based protocols, Guttman et al. [19] an-
notate send actions in a protocol with trust logic formulas which must hold when a
message is sent, and receive actions with formulas which can be assumed to hold when
a message is received. Their approach also relies on logically-defined correspondence
properties, but it assumes the dynamic invocation of an external authorization engine,
thereby cleanly removing the dependency on a particular authorization policy when rea-
soning about protocols. More technically, we attach static authorization effects to any
operation (input, decryption, matching) rather than just message inputs.

Blanchet’s ProVerif [5] checks correspondence assertions in the applied pi calculus
by reduction to a logic programming problem. ProVerif can check complex disjunctive
correspondences, but has not been applied to check general authorization policies.

Guelev et al. [18] also adopt a conference programme committee as a running ex-
ample, in the context of model checking the consequences of access control policies.

Contents. The paper is organized as follows. Section 2 reviews Datalog, illustrates its
usage to express authorization policies, and states a general definition of authorization
logics. Section 3 defines a spi calculus with embedded authorization assertions. Section 4
presents our type system and states our main safety results. Section 5 develops well-
typed distributed implementations for our sample delegation policy. Section 6 provides
our pi calculus implementation of Datalog and states its correctness and completeness.
Section 7 concludes and sketches future work. Due to space constraints, some standard
definitions and all proofs are omitted; they appear in a technical report [14].

2 A Simple Logic for Authorization

Datalog. We briefly present a syntax and semantics for Datalog. (For a comprehensive
survey of Datalog, see for instance [10].) A Datalog program consists of facts, which
are statements about the universe of discourse, and clauses, which are rules that can be
used to infer facts. In the following, we interpret programs as authorization policies.

Syntax for Datalog:

u ::= X | M term: a logic variable X or a spi calculus message M
L ::= p(u1, . . . ,un) literal: predicate p holds for u1, . . . ,un

C ::= L :−L1, . . . ,Ln clause (or rule), with n ≥ 0 and fv(L) ⊆⋃i fv(Li)
S ::= {C1, . . . ,Cn} Datalog program (or policy): a set of clauses

A literal L is a predicate p(u1, . . . ,un), of fixed arity n ≥ 0, on terms u1, . . . ,un. Terms
range over logical variables X ,Y,Z and messages M; these messages are treated as
Datalog atoms, but they have some structure in our spi calculus, defined in Section 3.
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A clause L :−L1, . . . ,Ln has a head, L, and a body, L1, . . . ,Ln; it is intuitively read as
the universal closure of the propositional formula L1 ∧ . . .∧Ln → L. In a clause, variables
occurring in the body bind those occurring in the head. A phrase of syntax is ground if
it has no free variables. We require that each clause be ground. A fact F is a clause with
an empty body, L :− . We often write the (ground) literal L as an abbreviation of the fact
L :− .

We use the following notations: for any phrase ϕ , we let fn(ϕ) and fv(ϕ) collect free
spi calculus names and free variables, respectively. We write ϕ̃ for the tuple ϕ1, . . . ,ϕt ,
for some t ≥ 0. We write {u/X} for the capture-avoiding substitution of u for X , and
write {ũ/X̃} instead of {u1/X1} . . .{un/Xn}. We let σ range over these substitutions.
Similarly, we write {M/n} for capture-avoiding substitution of message M for name n.

A fact can be derived from a Datalog program using the rule below:

Logical Inference: S |= F

(Infer Fact)
L :−L1, . . . ,Ln ∈ S S |= Liσ ∀i ∈ 1..n

S |= Lσ
for n ≥ 0

More generally, a clause C is entailed by a program S, also written S |= C, when
we have {F | S′ ∪ {C} |= F} ⊆ {F | S′ ∪ S |= F} for all programs S′. Similarly, C is
uniformly contained in S when the inclusion above holds for all programs S′ containing
only facts. Entailment is a contextual property for programs: if S |= C and S ⊆ S′, then
S′ |= C. We rely on this property when we reason about partial programs. We generalize
inference to clauses accordingly:

Logical Inference for Clauses (Entailment): S |= C

(Infer Clause)
S ∪ {L1σ , . . . ,Lnσ} |= Lσ σ maps fv(L1, . . . ,Ln) to fresh, distinct atoms

S |= L :−L1, . . . ,Ln

Example. Our main example application is a simplified conference management system,
in charge of assigning papers to referees and collecting their reports. For simplicity, we
focus on the fragment of the policy that controls the right to file a paper report in
the system, from the conference manager’s viewpoint. This right, represented by the
predicate Report(U,ID,R), is parameterized by the principal who wrote the report, a
paper identifier, and the report content. It means that principal U can submit report R on
paper ID. For instance, the fact Report(alice,42,report42) authorizes a single report to
be filed. Preferably, such facts should be deducible from the policy, rather than added to
the policy one at a time. To this end, we introduce a few other predicates.

Some predicates represent the content of some extensional database of explicitly
given facts. In our example, for instance, PCMember(U) means that principal U is a
member of the committee; Referee(U,ID) means that principal U has been asked to
review ID; and Opinion(U,ID,R) means that principal U has written report R on paper ID.
Other predicates are intensional; they represent views computed from this authorization
database. For instance, one may decide to specify Report(U,ID,R) using two clauses:

Report(U,ID,R):−Referee(U,ID),Opinion(U,ID,R) (clause A)
Report(U,ID,R):−PCMember(U),Opinion(U,ID,R) (clause B)
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These clauses state that U can report R on ID if she has this opinion and, moreover,
either U has been assigned this paper (clause A), or U is in the programme committee
(clause B)—thereby enabling PC members to file reports on any paper even if it has not
been assigned to them. Variants of this policy are easily expressible; for instance, we
may instead state that PC members can file only subsequent reports, not initial ones, by
using a recursive variant of clause B:

Report(U,ID,R):−PCMember(U),Opinion(U,ID,R),Report(V,ID,S)

Delegation. Continuing with our example, we extend the policy to enable any designated
referees to delegate their task to a subreferee. To this end, we add an extensional predicate,
Delegate(U,V,ID), meaning that principal U intends to delegate paper ID to principal V,
and we add a clause to derive new facts Referee(V,ID) accordingly:

Referee(V,ID) :− Referee(U,ID),Delegate(U,V,ID) (clause C)

Conversely, the policy { A,B,C } does not enable a PC member to delegate a paper,
unless the paper has been assigned to her.

Discussion. In contrast to more sophisticated authorization languages, which associates
facts with principals “saying” them, we adopt the subjective viewpoint of the conference
system, which implicitly owns all predicates used to control reports. Even if Opinion(U, )
and Delegate(U,...) are implicitly owned by U, these predicates represent the fact that
the conference system believes these facts, rather than U’s intents. Also, the distinction
between intensional and extensional predicates is useful to interpret policies but is not
essential. As we illustrate in Section 5, this distinction in the specification does not
prescribe any implementation strategy.

From Datalog to Arbitrary Authorization Logics. Although Datalog suffices as an au-
thorization logic for the examples and applications developed in this paper, its syntax
and semantics are largely irrelevant to our technical developments. More abstractly, our
main results hold for any logic that meets the requirements listed below:

Definition 1. An authorization logic (C , fn, |=) is a set of clauses C ∈ C closed by
substitutions σ of messages for names, with finite sets of free names fn(C) such that
Cσ = C if dom(σ) ∩ fn(C) = ∅ and fn(Cσ) ⊆ (fn(C) \ dom(σ)) ∪ fn(σ); and with an
entailment relation S |= C, between sets of clauses S ⊆ C and clauses C,C′ ∈ C , such
that (Mon) S |= C ⇒ S ∪ {C′} |= C and (Subst) S |= C ⇒ Sσ |= Cσ .

3 A Spi Calculus with Authorization Assertions

The spi calculus [3] extends the pi calculus with abstract cryptographic operations in
the style of Dolev and Yao [13]. Names represent both cryptographic keys and com-
munication channels. The version of spi given here has a small but expressive range
of primitives: encryption and decryption using shared keys, input and output on shared
channel names, and operations on pairs. We conjecture our results, including our type
system, would smoothly extend to deal with more complex features such as asymmetric
cryptography and communications, and a richer set of data types.
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The main new features of our calculus are authorization assertions: statements and
expectations. These processes generalize the begin- and end-assertions in previous em-
beddings of correspondences in process calculi [17]. Similarly, they track security prop-
erties, but do not in themselves affect the behaviour of processes.

A statement is simply a clause C (either a fact or a rule). For example, the following
process is a composition of clause A of Section 2 with two facts:

A | Referee(alice,42) | Opinion(alice,42,report42) (process P)

An expectation expectC represents the expectation on the part of the programmer that
the rule or fact C can be inferred from clauses in parallel. Expectations typically record
authorization conditions. For example, the following process represents the (justified)
expectation that a certain fact follows from the clauses of P.

P | expect Report(alice,42,report42) (process Q)

Expectations most usefully concern variables instantiated at runtime. In the follow-
ing, the contents x of the report is received from the channel c:

P | out c (report42,ok) | in c(x,y); expect Report(alice,42,x) (process R)

(The distinguished name ok is an annotation to help typing, with no effect at runtime.)
All the statements arising in our case studies fall into two distinct classes. One class

consists of unguarded, top-level statements of authorization rules, such as those in the
previous section, that define the global authorization policy. The other class consists
of input-guarded statements, triggered at runtime, that declare facts—not rules—about
data arising at runtime, such as the identities of particular reviewers or the contents of
reports. Moreover, all the expectations in our case studies are of facts, not rules.

The syntax and the operational semantics of our full calculus appear on the next
page. The split and match processes for destructing pairs are worth comparing. A split
binds names to the two parts of a pair, while a match is effectively a split followed by a
conditional; think of match M as (N,y);P as split M as (x,y); if x = N then P. Taking
match as primitive is a device to avoid using unification in a dependent type system [16].
Binding occurrences of names have type annotations, T or U ; the syntax of our system
of dependent types is in Section 4.

The operational semantics is defined as a reduction relation, with standard rules.
Statements and expectations are inert processes; they do not have particular rules for
reduction or congruence (although they are affected by other rules). The conditional
operations decrypt, split, and match simply get stuck if decryption or matching fails;
we could allow alternative branches for error handling, but they are not needed for the
examples in the paper.

In examples, we rely on derived notations for n-ary tuples, and for pattern-matching
tuples via sequences of match and split operations. For n > 2, (M1,M2, . . . ,Mn) ab-
breviates (M1,(M2, . . . ,Mn)). We write our process notation for pattern-matching tu-
ples in the form tuple M as (N1, . . . ,Nn);P, where n > 0, M is a message (expected
to be a tuple), and each Ni is an atomic pattern. Let an atomic pattern be either a
variable pattern x, or a constant pattern, written =M, where M is a message to be
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Syntax for Messages and Processes:

a,b,c,k,x,y,z name
M,N ::= message

x name: a key or a channel
{M}N authenticated encryption of M with key N
(M,N) message pair
ok distinguished name

P,Q,R ::= process
out M(N) asynchronous output of N to channel M
in M(x:T );P input of x from channel M (x has scope P)
new x:T ;P fresh generation of name x (x has scope P)
!P unbounded parallel composition of replicas of P
P | Q parallel composition of P and Q
0 inactivity
decrypt L as {y:T}N;P bind y to decryption of L with key N (y has scope P)
split M as (x:T,y:U);P solve (x,y) = M (x has scope U and P; y has scope P)
match M as (N,y:U);P solve (N,y) = M (y has scope P)
C statement of clause C
expect C expectation that clause C is derivable

Notations: (x̃:T̃ ) &= (x1:T1, . . . ,xn:Tn) and new x̃:T̃ ;P
&= new x1:T1; . . .new xn:Tn;P

Let S = {C1, . . . ,Cn}. We write S | P for C1 | . . . | Cn | P.

Rules for Reduction: P → P′

P → P′ ⇒ P | Q → P′ | Q (Red Par)
P → P′ ⇒ new x:T ;P → new x:T ;P′ (Red Res)
P ≡ Q,Q → Q′,Q′ ≡ P′ ⇒ P → P′ (Red Struct)

out a(M) | in a(x:T );P → P{M/x} (Red Comm)
decrypt {M}k as {y:T}k;P → P{M/y} (Red Decrypt)
split (M,N) as (x:T,y:U);P → P{M/x}{N/y} (Red Split)
match (M,N) as (M,y:U);P → P{N/y} (Red Match)

Structural equivalence P ≡ Q is defined as usual, and P →∗
≡ P′ is P ≡ P′ or P →∗ P′.

matched. Each variable pattern translates to a split, and each constant pattern trans-
lates to a match. For example, tuple (a,b,c) as (x,=b,y);P translates to the process
split (a,(b,c)) as (x,z);match z as (b,z);split (z,z) as (y,z);P, where z is fresh. We
allow pattern-matching in conjunction with input and decryption processes, and omit
type annotations. The technical report has the formal details of these notations.

The presence of statements and expectations in a process induces the following
safety properties. Informally, to say an expectation expect C is justified means there are
sufficient statements in parallel to derive C. Then a process is safe if every expectation
in every reachable process is justified.

Definition 2 (Safety). A process P is safe iff whenever P →∗
≡ new x̃:T̃ ;(expect C | P′)

then P′ ≡ new ỹ:Ũ ;(C1 | . . . | Cn | P′′) and {C1, . . . ,Cn} |= C with {ỹ} ∩ fn(C) = ∅.

(The definition mentions x̃ to allow fresh names in C, while it mentions ỹ to ensure that
the clauses C, C1, . . . , Cn all use the same names; the scopes of these names are otherwise
irrelevant in the logic.)
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Given a process P representing the legitimate participants making up a system, we
want to show that no opponent process O can induce P into an unsafe state, where some
expectation is unjustified. An opponent is any process within our spi calculus, except it
is not allowed to include any expectations itself. (The opponent goal is to confuse the
legitimate participants about who is doing what.) As a technical convenience, we require
every type annotation in an opponent to be a certain type Un; type annotations do not
affect the operational semantics, so the use of Un does not limit opponent behaviour.

Definition 3 (Opponent). A process O is an opponent iff it contains no expectations,
and every type annotation is Un.

Definition 4 (Robust Safety). A process P is robustly safe iff P | O is safe for all
opponents O.

For example, the process Q given earlier is robustly safe, because the statements
in P suffice to infer Report(alice,42,report42), and they persist in any interaction with an
opponent. On the other hand, the process R is safe on its own, but is not robustly safe.
Consider the opponent out c (bogus,ok). We have:

R | out c (bogus,ok) → P | out c (report42,ok) | expect Report(alice,42,bogus)

This is unsafe because Report(alice,42,bogus) is not derivable from the statements in
process P. We can secure the channel c by using the new operator to make it private.
The process new c; R is robustly safe; no opponent can inject a message on c.

4 A Type System for Verifying Authorization Assertions

We present a new dependent type system for checking implementations of authorization
policies. Our starting point for this development was a type and effect system by Gor-
don and Jeffrey [15] for verifying one-to-many correspondences. Apart from the new
support for logical assertions, the current system features two improvements. First, a
new rely-guarantee rule for parallel composition allows us to typecheck a safe process
such as L | expect L; the analogous parallel composition cannot be typed in the original
system. Second, effects are merged into typing environments, leading to a much cleaner
presentation, and to the elimination of typing rules for effect subsumption. We begin by
defining the syntax and informal semantics of message types.

Syntax for Types:

T,U ::= type
Un public data
Ch(T ) channel for T messages
Key(T ) secret key for T plaintext
(x:T,U) dependent pair (scope of x is U)
Ok(S) ok to assume the clauses S

T is generative (may be freshly created) iff T is either Un, Key(U), or Ch(U).
Notation: (x1:T1, . . . ,xn:Tn,Tn+1)

&= (x1:T1, . . . ,(xn:Tn,Tn+1))
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A message of type Un is public data that may flow to or from the opponent; for
example, all ciphertexts are of type Un. A message of type Ch(T ) is a name used as a
secure channel for messages of type T . Similarly, a message of type Key(T ) is a name
used as a secret key for encrypting and decrypting plaintexts of type T . A message of
type (x:T,U) is a pair (M,N) where M is of type T , and N is of type U{M/x}. Finally,
the token ok is the unique message of type Ok(S), proving S may currently be inferred.

For example, the type Ch((x:Un,Ok(Report(alice,42,x)))) can be assigned to c in
process R, stating that c is a channel for communicating pairs (M,ok) where M : Un and
ok : Ok(Report(alice,42,M)).

Next, we define typing environments—lists of variable bindings and clauses—plus
two auxiliary functions. The function env(−) sends a process to an environment that
collects its top-level statements, with suitable name bindings for any top-level restric-
tions. The function clauses(−) sends an environment to the program consisting of all
the clauses listed in the environment plus the clauses in top-level Ok(−) types.

Syntax for Environments, and Functions env(P) and clauses(E):

E ::= ∅ | E,x:T | E,C Notation: E(x) = T if E = E ′,x:T,E ′′

E is generative iff E = x1:T1, . . . ,xn:Tn and each Ti is generative.

env(P | Q)x̃,ỹ = env(P)x̃,env(Q)ỹ (where {x̃, ỹ} ∩ fn(P | Q) = ∅)
env(new x:T ;P)x,x̃ = x:T,env(P)x̃ (where {x̃} ∩ fn(P) = ∅)
env(!P)x̃ = env(P)x̃ env(C)∅ = C env(P)∅ = ∅ otherwise

Convention: env(P) &= env(P)x̃ for some distinct x̃ such that env(P)x̃ is defined.

clauses(E,C) = clauses(E)∪ {C} clauses(E,x:Ok(S)) = clauses(E)∪ S
clauses(E,x:T ) = clauses(E) if T �= Ok(S) clauses(∅) = ∅

Our system consists of three judgments, defined by the following tables. The judg-
ments define well-formed environments, types of messages, and well-formed processes.

Rules for Environments and Messages: E ' (, E ' M : T

(Env ∅)

∅ ' (

(Env x)
E ' ( fn(T ) ⊆ dom(E) x /∈ dom(E)

E,x:T ' (

(Env C)
E ' ( fn(C) ⊆ dom(E)

E,C ' (
(Msg x)
E ' ( x ∈ dom(E)

E ' x : E(x)

(Msg Encrypt)
E ' M : T E ' N : Key(T )

E ' {M}N : Un

(Msg Encrypt Un)
E ' M : Un E ' N : Un

E ' {M}N : Un
(Msg Pair)
E ' M : T E ' N : U{M/x}

E ' (M,N) : (x:T,U)

(Msg Pair Un)
E ' M : Un E ' N : Un

E ' (M,N) : Un
(Msg Ok)
E ' ( fn(S) ⊆ dom(E) clauses(E) |= C ∀C ∈ S

E ' ok : Ok(S)

(Msg Ok Un)
E ' (

E ' ok : Un

The rule (Msg Ok) populates an Ok(S) type only if we can infer each clause in the
Datalog program S from the clauses in E. For example, if

E = alice:Un,42:Un, report42:Un,Referee(alice,42),Opinion(alice,42,report42)
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then E ' ok : Ok(Report(alice,42, report42)). The other message typing rules are fairly
standard. As in previous systems [16, 15], we need the rules (Msg Encrypt Un), (Msg
Pair Un), and (Msg Ok Un) to assign Un to arbitrary messages known to the opponent.

Rules for Processes: E ' P

(Proc Nil)
E ' (
E ' 0

(Proc Rep)
E ' P

E ' !P

(Proc Res)
E,x:T ' P T generative

E ' new x:T ;P

(Proc Expect)
E,C ' ( clauses(E) |= C

E ' expect C

(Proc Par)
E,env(Q) ' P E,env(P) ' Q fn(P | Q) ⊆ dom(E)

E ' P | Q

(Proc Fact)
E,C ' (
E ' C

(Proc Decrypt)
E ' M : Un E ' N : Key(T ) E,y:T ' P

E ' decrypt M as {y:T}N;P

(Proc Input)
E ' M : Ch(T ) E,x:T ' P

E ' in M(x:T );P

(Proc Decrypt Un)
E ' M : Un E ' N : Un E,y:Un ' P

E ' decrypt M as {y:Un}N;P

(Proc Input Un)
E ' M : Un E,x:Un ' P

E ' in M(x:Un);P

(Proc Match)
E ' M : (x:T,U) E ' N : T E,y:U{N/x} ' P

E ' match M as (N,y:U{N/x});P

(Proc Output)
E ' M : Ch(T ) E ' N : T

E ' out M(N)

(Proc Match Un)
E ' M : Un E ' N : Un E,y:Un ' P

E ' match M as (N,y:Un);P

(Proc Output Un)
E ' M : Un E ' N : Un

E ' out M(N)

(Proc Split)
E ' M : (x:T,U) E,x:T,y:U ' P

E ' split M as (x:T,y:U);P

(Proc Split Un)
E ' M : Un E,x:Un,y:Un ' P

E ' split M as (x:Un,y:Un);P

There are three rules of particular interest. (Proc Expect) allows expect C provided
C is entailed in the current environment. (Proc Fact) allows any statement, provided
its names are in scope. (Proc Par) is a rely-guarantee rule for parallel composition; it
allows P | Q, provided that P and Q are well-typed given the top-level statements of Q
and P, respectively. For example, by (Proc Par), ∅ ' Foo() | expect Foo() follows from
∅ ' Foo() and Foo() ' expect Foo(), the two of which follow directly by (Proc Fact)
and (Proc Expect).

Main Results. Our first theorem is that well-typed processes are safe; to prove it, we rely
on a lemma that both structural congruence and reduction preserve the process typing
judgment.

Lemma 1 (Type Preservation). If E ' P and either P ≡ P′ or P → P′ then E ' P′.

Theorem 1 (Safety). If E ' P and E is generative, then P is safe.

Our second theorem is that well-typed processes whose free names are public, that
is, of type Un, are robustly safe. It follows from the first via an auxiliary lemma that any
opponent process can be typed by assuming its free names are of type Un.
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Lemma 2 (Opponent Typability). If fn(O) ⊆ {x̃} for opponent O then x̃:Ũn ' O.

Theorem 2 (Robust Safety). If x̃:Ũn ' P then P is robustly safe.

We conclude this section by showing our calculus can encode standard one-to-many
correspondence assertions. The idea of correspondences is that processes are annotated
with two kinds of labelled events: begin-events and end-events. The intent is that in each
run, for every end-event, there is a preceding begin-event with the same label.

We can encode one particular syntax [15] as follows:

begin !L;P
&= L | P end L;P

&= expect L | P

With this encoding and a minor extension to the type system (tagged union types), we
can express and typecheck all of the authentication protocols from Gordon and Jeffrey’s
paper [15], including WMF and BAN Kerberos.

The correspondences expressible by standard begin- and end-assertions are a special
case of the class of correspondences expressible in our calculus where the predicates
in expectations are extensional, that is, given explicitly by facts. Hence, we refer to our
generalized correspondence assertions based on intensional predicates as intensional
correspondences, to differentiate them from standard (extensional) correspondences.

5 Application: Access Control for a Programme Committee

We provide two implementations for the Datalog policy with delegation introduced in
Section 2 (defining clauses A, B, and C). In both implementations, the server enables
those three clauses, and also maintains a local database of registered reviewers, on a
private channel pwdb:

A | B | C | new pwdb : Ch( u:Un, Key(v:Un,id:Un,Ok(Delegate(u,v,id))),
Key(id:Un,report:Un,Ok(Opinion(u,id,report))));

Hence, each message on pwdb codes an entry in the reviewer database, and associates
the name u of a reviewer with two keys used to authenticate her two potential actions:
delegating a review, and filing a report. The usage of these keys is detailed below.

Although we present our code in several fragments, these fragments should be read
as parts of a single process, whose typability and safety properties are summarized at
the end of the section. Hence, for instance, our policy and the local channel pwdb are
defined for all processes displayed in this section.

Online Delegation, with Local State. Our first implementation assumes the conference
system is contacted whenever a referee decides to delegate her task. Hence, the system
keeps track of expected reports using a local database, each record showing a fact of the
form Referee(U,ID). When a report is received, the authenticated sender of the report
is correlated with her record. When a delegation request is received, the corresponding
record is updated.

The following code defines the (abstract) behaviour of reviewer v; it is triggered
whenever a message is sent on createReviewer; it has public channels providing con-
trolled access to all her privileged actions—essentially any action authenticated with one
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of her two keys. For simplicity, we proceed without checking the legitimacy of requests,
and we assume v is not a PC member—otherwise, we would implement a third action
for filing PC member reports.

(!in createReviewer(v);
new kdv: Key(z:Un,id:Un,Ok(Delegate(v,z,id)));
new krv: Key(id:Un,report:Un,Ok(Opinion(v,id,report)));
( (!out pwdb(v,kdv,krv))
| (!in sendreportonline(=v,id,report);

Opinion(v,id,report) | out filereport(v,{id,report,ok}krv) )
| (!in delegateonline(=v,w,id);

Delegate(v,w,id) | out filedelegate(v,w,id,{w,id,ok}kdv) ))) |
Two new keys are first generated. The replicated output on pwdb associates those keys
with v. The replicated input on sendreportonline guards a process that files v’s reports;
in this process, the encryption {id,report,ok}krv protects the report and also carries the
fact Opinion(v,id,report) stating its authenticity. The replicated input on delegateonline
similarly guards a process that files v’s delegations.

Next, we give the corresponding code that receives these two kinds of requests at
the server. (We omit the code that selects reviewers and sends message on refereedb.) In
the process guarded by !in filereport(v,e), the decryption “proves” Opinion(v,id,report),
whereas the input on refereedb “proves” Referee(v,id): when both operations succeed,
these facts and clause A jointly guarantee that Report(v,id,report) is derivable. Con-
versely, our type system would catch errors such as forgetting to correlate the paper
or the reviewer name (e.g., writing =v,id instead of =v,=id in refereedb), leaking the
decryption key, or using the wrong key.

The process guarded by !in filedelegate(v,w,id,sigd) is similar, except that it uses the
fact Delegate(v,w,id) granted by decrypting under key kdv to transform Referee(v,id)
into Referee(w,id), which is expected for typing ok in the output on refereedb.

new refereedb : Ch( (u:Un,(id:Un,Ok(Referee(u,id)))));
(!in filereport(v,e);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
in refereedb(=v,=id, ); expect Report(v,id,report)) |

(!in filedelegate(v,w,id,sigd);
in pwdb(=v,kdv,krv); decrypt sigd as {=w,=id, }kdv;
in refereedb(=v,=id, ); out refereedb(w,id,ok)) |

Reviews from PC members, using Capabilities. The code for processing PC member
reports is similar but simpler:

new kp:Key(u:Un,Ok(PCMember(u)));
(!in createPCmember(u,pc);PCMember(u) | out pc({(u,ok)}kp) ) |
(!in filepcreport(v,e,pctoken);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
decrypt pctoken as {=v, }kp; expect Report(v,id,report) ) |

Instead of maintaining a database of PC members, we (arbitrarily) use capabilities,
consisting of the name of the PC member encrypted under a new private key kp. The
code also implement two services as replicated inputs, to register a new PC member
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and to process a PC member report. The fact Opinion(v,id,report) is obtained as above.
Although the capability sent back on channel pc has type Un, its successful decryption
yields the fact PCMember(v) and thus enables Report(v,id,report) by clause B.

Offline Delegation, with Certificate Chains. The second implementation relies instead
on explicit chains of delegation certificates. It does not require that the conference system
be contacted when delegation occurs; on the other hand, the system may have to check
a list of certificates before accepting an incoming report.

To this end, the process guarded by the replicated input on channel filedelegatereport
allocates a private channel link and uses that channel recursively to verify each piece of
evidence filed with the report, one certificate at a time. The process guarded by link has
two cases: the base case (decrypt cu) verifies an initial refereeing request and finally
accepts the report as valid; the recursive case (tuple cu) verifies a delegation step then
continues on the rest of the chain (ct). Note that the type assigned to link precisely states
our loop invariant: Delegate(u,v,id) proves that there is a valid delegation chain from u
(the report writer) up to v (the current delegator) for paper id.

A further, less important difference is that our second implementation relies on
self-authenticated capabilities under key ka for representing initial refereeing requests,
instead of messages on the private database channel refereedb. Finally, our second im-
plementation relies on auxiliary clauses making Delegate reflexive and transitive; these
clauses give us more freedom but they do not affect the outcome of our policy—one can
check that these two clauses are redundant in any derivation of Report.

( Delegate(U,W,ID):−Delegate(U,V,ID),Delegate(V,W,ID) ) |
( Delegate(U,U,ID):−Opinion(U,ID,R) ) |
new ka:Key((u:Un,(id:Un,Ok(Referee(u,id)))));
(!in filedelegatereport(v,e,cv);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
new link:Ch(u:Un,c:Un,Ok(Delegate(u,v,id))); out link(v,cv,ok) |
!in link(u,cu, );
( decrypt cu as {=u,=id, }ka; expect Report(v,id,report)) |
( tuple cu as (t,skt,ct);
in pwdb(=t,kdt, ); decrypt skt as {=u,=id, }kdt; out link(t,ct,ok)) |

Proposition 1. Let EP assign the types displayed above to pwdb, refereedb, kp, and ka.
Let EUn assign type Un to createReviewer, createPCMember, sendreportonline, delega-
teonline, filereport, filedelegate, filepcreport, filedelegatereport, and any other variable
in its domain.

Let P be a process such that EUn,EP ' P. Let Q be the process consisting of all
process fragments in this section followed by P.

We have EUn ' Q, and hence Q is robustly safe.

This proposition is proved by typing Q then applying Theorem 2. In its statement, the
process P has access to the private keys and channels collected in EP; this process
accounts for any trusted parts of the server left undefined, including for instance code
that assigns papers to reviewers by issuing facts on Referee and using them to populate
refereedb and generate valid certificates under key ka. We may simply take P = 0, or let P
introduce its own policy extensions, as long as it complies with the typing environments
EUn and EP.
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In addition, the context (implicitly) enclosing Q in our statement of robust safety
accounts for any untrusted part of the system, notably the attacker, but also additional
code for the reviewers interacting with Q (and possibly P) using the names collected
in EUn, and notably the free channels of Q. Hence, the context may impersonate referees,
intercept messages on free channels, then send on channel filedelegatereport any term
computed from intercepted messages. The proposition confirms that minimal typing
assumptions on P suffice to guarantee the robust safety of Q.

6 Application: A Default Implementation for Datalog

We finally describe a translation from Datalog programs to the spi calculus. To each
predicate p and arity n, we associate a fresh name pn with type Tp,n. Unless the predicate p
occurs with different arities, we omit indices and write p and Tp for pn and Tp,n. Relying
on some preliminary renaming, we also reserve a set of names V for Datalog variables.
The translation is given below:

Translation from Datalog to the spi calculus: [[S]]

Tp,n = Ch(x1:Un, . . . ,xn:Un,Ok(p(x1, . . . ,xn)))
[[S]] = ∏C∈S[[C]] [[∅]] = 0 [[L :−L1, . . . ,Lm]] = ![[L1, . . . ,Lm]]∅[[[L]]+] for m ≥ 0
[[p(u1, . . . ,un)]]+ = out pn(u1, . . . ,un,ok)
[[L1,L2, . . . ,Lm]]Σ [·] = [[L1]]Σ

[
[[L2, . . . ,Lm]]Σ∪fv(L1)[·]

]
[[ε]]Σ [·] = [·]

[[p(u1, . . . ,un)]]Σ [·] = in pn(u1, . . . ,un,= ok); [·]
where ui is ui when ui �∈ (V \ (Σ ∪ fv(u j<i))) and ui is =ui otherwise.

P ⇓L when ∃P′.P →∗
≡ P′ | [[L]]+

For example, using the policy of Section 2, the translation of predicate Report uses
a channel Report of type TReport = Ch(U :Un, ID:Un,R:Un,Ok(Report(U,ID,R))) and
the translation of clause A yields the process

[[Report(U,ID,R):−Referee(U,ID),Opinion(U,ID,R)]] =
!in Referee(U,ID,=ok); in Opinion(=U,=ID,R,=ok); out Report(U,ID,R,ok)

The next lemma states that the translation of a Datalog program is well typed when
placed in parallel with itself as a policy.

Lemma 3 (Typability of the encoding). Let S be a Datalog program using predi-
cates p̃n and names ỹ with fn(S) ⊆ {ỹ}. Let E = ỹ:Ũn, p̃n:T̃n,p. We have E ' S | [[S]].

More precisely, the lemma also shows that our translation is compositional: one can
translate some part of a logical policy, develop some specific protocols that comply with
some other part of the policy, then put the two implementations in parallel and rely on
messages on channels pn to safely exchange facts concerning shared predicates.

Lemma 3 establishes that our translation is correct by typing. The following theorem
also states that the translation is complete: any fact that logically follows from the Datalog
program can be observed in the pi calculus.

Theorem 3 (Correctness and completeness). Let S be a Datalog program and F a
fact. We have S |= F if and only if [[S]] ⇓F .
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Example. To illustrate our translation, we sketch an alternative implementation of our
conference management server. Instead of coding the recursive processing of messages
sent by subreferees, as in Section 5, we set up a replicated input for each kind of certificate,
with code to check the certificate and send a message on a channel of the translation.
Independently, when a fact is expected, we simply read it on a channel of the translation.
For instance, to process incoming reports, we may use the code

!in trivial filereport(v,id,report);
in Report(=v,=id,=report,=ok); expect Report(v,id,report)

The translation of clause A sends a matching message on Report, provided the sys-
tem sends matching messages on Opinion and Referee. This approach is correct and
complete, but also non-deterministic and very inefficient. As a refinement, since any
(well-typed) program can access the channels of the translation, one may use the trans-
lation as a default implementation for some clauses and provide optimized code for
others.

7 Conclusions and Future Work

We presented a spi calculus with embedded authorization policies, a type system that
can statically check conformance to a policy (even in the presence of active attackers),
and a series of applications coded using a prototype implementation.

In itself, our type system does not “solve” authorization: the security of a well-typed
program still relies on a careful (manual) review of the policy, on the discriminating
statement of trusted facts (or even rules) in the program, and on the presence of expect
processes marking sensitive actions—indeed, in our setting, every program is safe for a
sufficiently permissive policy. Nonetheless, our type system statically enforces a disci-
pline prescribed by the policy across the program, as it uses channels and cryptographic
primitives to process messages, and can facilitate code reviews.

Future Work. From a logical viewpoint, many authorization languages extend Datalog
with notions of locality and partial trust, considering for examples facts and clauses
relative to each principal. Similarly, many variants of the pi calculus feature explicit
localities and principals and could, in principle, provide a more realistic distributed se-
mantics for these logics. We are also exploring extensions of our type system to support,
for instance, some subtyping, public-key cryptographic primitives, and linearity proper-
ties. More experimentally, we plan to extend our typechecker and symbolic interpreter,
and to study their integration with other proof techniques.

Acknowledgments. Karthikeyan Bhargavan contributed to several discussions at the start
of this project, and commented on a draft of this paper. Martı́n Abadi and the anonymous
conference reviewers made useful suggestions.
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Abstract. Since the 1980s, two approaches have been developed for analyzing
security protocols. One of the approaches relies on a computational model that
considers issues of complexity and probability. This approach captures a strong
notion of security, guaranteed against all probabilistic polynomial-time attacks.
The other approach relies on a symbolic model of protocol executions in which
cryptographic primitives are treated as black boxes. Since the seminal work of
Dolev and Yao, it has been realized that this latter approach enables significantly
simpler and often automated proofs. However, the guarantees that it offers have
been quite unclear.

In this paper, we show that it is possible to obtain the best of both worlds:
fully automated proofs and strong, clear security guarantees. Specifically, for the
case of protocols that use signatures and asymmetric encryption, we establish that
symbolic integrity and secrecy proofs are sound with respect to the computational
model. The main new challenges concern secrecy properties for which we obtain
the first soundness result for the case of active adversaries. Our proofs are carried
out using Casrul, a fully automated tool.

1 Introduction

Security protocols are short programs designed to achieve various security goals, such
as data privacy and data authenticity, even when the communication between parties
takes place over channels controlled by an attacker. Their ubiquitous presence in many
important applications makes designing and establishing the security of such protocols
a very important research goal. Unfortunately, attaining this goal seems to be quite a
difficult task, and many of the protocols that had been proposed have been found to be
flawed.

Starting in the early ’80s, two distinct and quite different methods have emerged in an
attempt to ground the security of protocols on firm, rigorous mathematical foundations.
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They are generically known as the computational (or the cryptographic) approach and
the symbolic (or the Dolev-Yao) approach.

Under the computational approach, the security of protocols is based on the security
of the underlying primitives, which in turn is proved assuming the hardness of solving
various computational tasks such as factoring or taking discrete logarithms. The main
tools used for proofs are reductions: to prove a protocol secure one shows that a suc-
cessful adversary against the protocol can be efficiently transformed into an adversary
against some primitive used in its construction. Here, quantification is universal over
all possible probabilistic polynomial-time (p.p.t.) adversaries and the execution model
that is analyzed is specified down to the bit-string level. Proofs in the computational
model imply strong guarantees (security holds in the presence of an arbitrary proba-
bilistic polynomial-time adversary). At the same time however, security reductions for
even moderately-sized protocols become extremely long, difficult, and tedious.

The central characteristics of the symbolic approach are an abstract view of the
execution and a significantly limited adversary. More precisely, in this model, the im-
plementation details of the primitives are abstracted away, and the execution is modeled
only symbolically. Furthermore, the actions of the adversary are quite constrained. For
instance, it is postulated that it can recover the plaintext underlying a ciphertext only if
it can derive the appropriate decryption key. The resulting execution models are rather
simple and can easily be handled by automated tools. In fact, many security proofs have
already been carried out using model checkers [16] and theorem provers [19]. Unfortu-
nately, the high degree of abstraction and the limited adversary raise serious questions
regarding the security guarantees offered by such proofs, especially from the perspective
of the computational model.

Recently, a significant research effort has been directed at bridging the gap between
the two approaches [3, 18, 5, 17]. The idea is to determine condition under which sym-
bolic analysis is sound with respect to standard computational models.This path promises
tremendous benefits: protocols can be analyzed and proved secure using the simpler, au-
tomated methods specific to the symbolic approach, yet the security guarantees are with
respect to the more comprehensive computational model. In this paper we extend and ap-
ply the work of Micciancio and Warinschi [17] to demonstrate for the first time that fully
automated security proofs with clear computational implications are indeed possible.

Specifically, our results are as follows. First, we give a language for specifying
protocols. The syntax of our language is close to that of Casrul and allows the use of
random nonces, digital signatures and public-key encryption. For protocols specified
in this language we give two kinds of executions for protocols. Each of these models
considers a powerful active adversary that controls and potentially tampers with the
communication in an unbounded number of sessions of the protocol executed by honest
users. The first model is a computational model in which the adversary is an arbitrary
p.p.t. algorithm. The second model is symbolic, and the adversary is a typical Dolev-Yao
adversary. One crucial property of the latter model is that it actually coincides with the
execution semantics used by an existing automated tool called Casrul. We then link the
two models in several ways.

Our first contribution (Theorem 1) is a soundness theorem for proofs of trace prop-
erties: if all symbolic traces of a protocol satisfy a certain predicate (i.e. the protocol



Computationally Sound, Automated Proofs for Security Protocols 159

is secure in the symbolic model), then the concrete traces satisfy the same predicate
with overwhelming probability against p.p.t. adversaries (i.e. the protocol is secure in
the computational model). Our result is a proper extension of a similar theorem of [17]
to protocols that besides nonces and public-key encryption also use digital signatures.

Our second main result concerns soundness of secrecy proofs. This issue is signifi-
cantly more challenging since unlike in the case of trace properties, secrecy is formalized
in quite different ways in the two models that we consider: inability of deriving the secret
in the formal world1 and indistinguishability of adversary’s views in the computational
world. Nevertheless, we are able to prove that in the case of nonces, symbolic secrecy
implies computational secrecy.

Although our theorems justify formal analysis as used in Casrul [9], we also briefly
considered other automatic tools, such as Proverif [7], Casper [16], and Securify [10]
and we strongly believe that similar soundness results could be obtained for these tools
also. While our choice was mainly determined by our familiarity with Casrul (one of
the authors is a close collaborator of the team that develops Casrul) an additional factor
was that most of the tools dedicated to an unbounded number of sessions allow only for
proofs of secrecy and not for authenticity.

Related work. The rationale behind the need for soundness theorems was outlined
by Abadi [1] and the first such result was obtained by Abadi and Rogaway [3]. Quite a
few other results followed, and here we recall those that are closest to our work. These
include the soundness theorem for secrecy properties given by Abadi and Rogaway for
symmetric encryption in the presence of passive adversaries [3].Another results is that of
Laud [14] who shows soundness of confidentiality properties for symmetric encryption
in a model with a fixed number of sessions. A soundness result for trace properties
was proved by Micciancio and Warinschi [17] for a language that used random nonces
and public-key encryption. In this paper we extend their work to also include digital
signature and ciphertext forwarding. Soundness of trace properties for an even richer
language that includes in addition symmetric encryption and authentication was given
by Backes, Pfitzmann, and Waidner [5] and work in progress is aimed at achieving
soundness for secrecy of symmetric keys [4]. While it is conceivable that building upon
these results at least partial automation of symbolic proofs can be achieved, this work
still remains to be carried out.

The restof thepaper is structuredas follows. InSection2webriefly recall digital signa-
tures and public-key encryption schemes. We present the protocol syntax in Section 3 and
the two execution models in Section 4. In Section 5 we define generic security properties
and prove our soundness theorems for trace and secrecy properties. Section 6 concludes
with a discussion regarding the implications of our results on the proofs done with Casrul.

2 Computational Cryptography

In this paper we will use a generic digital signature scheme DS = (Ks,Sig,Vf) given,
as usual, by algorithms for key generation, signing and verifying. Also, we consider an

1 Secrecy can alternatively be defined using an equivalence based formulation, as in the spi-
calculus [2] for example, but in this paper we concentrate on the formulation used in Casrul.
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arbitrary public-key encryption scheme AE = (Ke,Enc,Dec) given by algorithms for
key generation, encryption and decryption. For a precise specification of their syntax we
refer to [11].

Traditionally, security is defined for each individual primitive separately. Since the
protocols that we aim to analyze may use both encryption and digital signatures, it is
more convenient to define the security of signatures and encryption when used simulta-
neously, in a multi-user environment. We develop a formal model for security that mixes
definitional ideas from [13] (for digital signature schemes) and from [20] and [6] (for
asymmetric encryption). Here, we only give an overview of the definition. The precise
definition can be found in [11]. We consider an experiment parametrized by a digital
signature scheme DS , an asymmetric encryption scheme AE , an adversary A, a bit b
and a security parameter η. In this experiment the adversary A has access to an oracle
denoted ODS,AE(b, η). The adversary issues the following requests in any order and any
number of times:

– creation of keys: the oracle generates (internally) keys for encryption, decryption,
signing, and verifying and returns the public keys (i.e. keys for encryption and for
verifying) to the adversary.

– signature request: the adversary can request signatures on any message it chooses,
under any of the secret signing keys that has been generated. The oracle computes
such a signature and returns it to the adversary.

– encryption requests: here the adversary submits a pair of messages (m0,m1), spec-
ifies an encryption key that has been generated and obtains from the oracle the
encryption of mb under that key.

– decryption requests: the adversary can require to see the decryption of any cipher-
text of his choosing, provided that the ciphertext has not been obtained from the
encryption oracle.

The goal of the adversary is to produce a valid signature on some message which it
did not query to the oracle (i.e. break the signature scheme), or determine what is the
selection bit b with probability significantly better than 1/2 (i.e. break the encryption).

If for all p.p.t. adversaries either of the above events happens only with negligible
probability2 (in the security parameter), then we say that DS and AE are jointly secure.
Although this is a new measure of security intended for analyzing security of encryption
and that of signing when used simultaneously, it is easy to prove that it is implied by
standard requirements on the individual primitives. More precisely, it is easy to show that
if the digital signature scheme DS is existentially unforgeable under chosen-message
attack [13] and if AE is secure in the sense of indistinguishability under chosen-ciphertext
attacks (IND-CCA) then DS and AE are jointly secure.

3 Protocol Syntax

We consider protocols specified in a language similar to the one of Casrul [21] allowing
parties to exchange messages built from identities and randomly generated nonces using

2 A function is said to be negligible if it grows slower than the inverse of any polynomial.
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public key encryption and digital signatures. Consider an algebraic signatureΣ with the
following sorts. A sort ID for agent identities, sorts SKey,VKey,EKey,DKey containing
keys for signing, verifying, encryption, and decryption respectively. The algebraic sig-
nature also contains sorts Nonce, Label, Ciphertext, Signature, and Pair for respectively
nonces, labels, ciphertexts, signatures, and pair. The sort Label is used in encryption and
signatures to distinguish between different encryption/signature of the same plaintext.
The sort Term is a supersort containing all other sorts, except SKey and DKey. There are
nine operations: the four operations ek, dk, sk, vk are defined on the sort ID and return the
encryption key, decryption key, signing key, and verification key associated to the input
identity. The two operations ag and adv are defined on natural numbers and return labels:
these labels are used to differentiate between different encryptions (and signatures) of
the same plaintext, created by the honest agents or the adversary. We distinguish between
labels for agents and for the adversary since they do not use the same randomness. The
other operations that we consider are pairing, public key encryption, and signing with
the following ranges and domains.

– 〈 , 〉 : Term × Term → Pair
– { } : EKey × Term × Label → Ciphertext
– [ ] : SKey × Term × Label → Signature

Protocols are specified using the algebra of terms constructed over the above signature
from a set X of sorted variables. Specifically, X = X.n ∪ X.a ∪ X.c ∪ X.s ∪ X.l, where
X.n,X.a,X.c,X.s,X.l are sets of variables of sort nonce, agent, ciphertext, signature,
and labels respectively. Furthermore, X.a and X.n are as follows. If k ∈ N is some fixed
constant representing the number of protocol participants, w.l.o.g. we fix the set of agent
variables to be X.a = {A1, A2, . . . , Ak}, and partition the set of nonce variables, by the
party that generates them. Formally:X.n = ∪A∈X.aXn(A) andXn(A) = {Xj

A | j ∈ N}.
This partition avoids to specify later, for each role, which variables stand for generated
nonces and which variables stand for expected nonces.

The messages that are sent by participants are specified using terms in TΣ(X), the
free algebra generated by X over the signature Σ. The individual behavior of each
protocol participant is defined by a role that describes a sequence of message recep-
tions/transmissions. A k-party protocol is given by k such roles.

Definition 1 (Roles and protocols). The set Roles of roles for protocol participants is
defined by Roles = (({init} ∪ TΣ(X)) × (TΣ(X) ∪ {stop}))∗.
Ak-party protocol is a mappingΠ : [k] → Roles, where [k] denotes the set {1, 2, . . . , k}.

We assume that a protocol specification is such that Π(j) = ((lj1, r
j
1), (l

j
2, r

j
2), . . .), the

j’th role in the definition of the protocol being executed by player Aj . Each sequence
((l1, r1), (l2, r2), . . .) ∈ Roles specifies the messages to be sent/received by the party
executing the role: at step i, the party expects to receive a message conforming to li
and returns message ri. We wish to emphasize however that terms lji , r

j
i are not actual

messages but specify how the message that is received and the message that is output
should look like.



162 V. Cortier and B. Warinschi

Example 1. The Needham-Schroeder-Lowe protocol [15] is specified as follows: there
are two roles Π(1) and Π(2) corresponding to the sender’s role and the receiver’s role.

A → B : {Na, A}ek(B)

B → A : {Na, Nb, B}ek(A)

A → B : {Nb}ek(B)

Π(1) = (init, {X1
A1
, A1}ag(1)

ek(A2)
), ({X1

A1
, X1

A2
, A2}L

ek(A1), {X
1
A2

}ag(1)
ek(A2)

)

Π(2) = ({X1
A1
, A1}L1

ek(A2)
, {X1

A1
, X1

A2
, A2}ag(1)

ek(A1)
), ({X1

A2
}L2

ek(A2)
, stop)

Executable protocols. Clearly, not all protocols written using the syntax above are
meaningful. We only consider the class of executable protocols, i.e. protocols for each
role can be implemented in an executable program, using only the local knowledge of the
corresponding agent. This requires in particular that any sent message (corresponding
to some rj

k) is always deducible from the previously received messages (corresponding
to lj1, . . . , l

j
k). A precise definition may found in [11].

4 Execution Models

In this section we give a symbolic and a computational execution model for the proto-
cols specified using the syntax defined in the previous section. In the symbolic model
the honest parties and the adversary exchange elements of a certain term algebra; the
adversary can compute its messages only following the standard Dolev-Yao restrictions.
In the concrete execution model, the messages that are exchanged are bit-strings and the
honest parties and the adversary are p.p.t. Turing machines.

4.1 Formal Execution Model

In the formal execution model, messages are terms of the free algebra T f defined by:

T f ::= N | a | ek(a) | dk(a) | sk(a) | vk(a) | n(a, j, s) a ∈ ID, j, s ∈ N

〈T f , T f 〉 | {T f }ag(i)
ek(a) | {T f }adv(i)

ek(a) | [T f ]ag(i)sk(a) | [T f ]adv(i)
sk(a) a ∈ ID, i ∈ N

If A is a variable, or constant of sort agent, we define its knowledge by kn(A) =
{dk(A), sk(A)} ∪ Xn(A) i.e. an agent knows its secret decryption and signing key as
well as the nonces it generates during the execution. The formal execution model is
a state transition system. A global state of the system is given by (SId, f,H) where
H is a set of terms of T f representing the messages sent on the network and f main-
tains the local states of all sessions ids SId. Session identities are tuples of the form
(n, j, (a1, a2, . . . , ak)) ∈ (N × N × IDk), where n ∈ N identifies the session, the names
a1, a2, . . . , ak are the identities of the parties that are involved in the protocol and j is
the index of the role that is executed in this session. Mathematically, f is a function
f : SId → ([X → T f ] × N × N), where f(sid) = (σ, i, p) is the local state of session
sid. The function σ is a partial instantiation of the variables occurring in role Π(i) and
p ∈ N is the control point of the program. Three transitions are allowed.
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m ∈ S
S � m

b ∈ X.a
S � b, ek(b), vk(b) Initial knowledge

S � m1 S � m2

S � 〈m1 ,m2〉
S � 〈m1 ,m2〉

i ∈ {1, 2}
S � mi

Pairing and unpairing

S � ek(b) S � m
i ∈ N

S � {m}adv(i)
ek(b)

S � {m}lek(b) S � dk(b)

S � m
Encryption and decryption

S � sk(b) S � m
i ∈ N

S � [m]adv(i)
sk(b)

S � [m]ag(i)sk(b)
i, j ∈ N

S � [m]adv(j)
sk(b)

S � [m]lsk(b)

S � m
Signature

Fig. 1. Deduction rules for the formal adversary; here S is an arbitrary set of formal terms

– (SId, f,H)
corrupt(a1,...,al)−−−−−−−−−−−→ (SId, f,∪1≤j≤lkn(aj) ∪H). The adversary corrupts

parties by outputting a set of identities. He receives in return the secret keys corre-
sponding to the identities. It happens only once at the beginning of the execution.

– The adversary can initiate new sessions: (SId, f,H)
new(i,a1,...,ak)−−−−−−−−−−→ (SId′, f ′, H ′)

where H ′, f ′ and SId′ are defined as follows. Let s = |SId| + 1, be the session
identifier of the new session, where |SId| denotes the cardinality of SId.H ′ is defined
by H ′ = H ∪ {(s, i, (a1, . . . , ak))} and SId′ = SId ∪ {(s, i, (a1, . . . , ak))}. The
function f ′ is defined as follows.

• f ′(sid) = f(sid) for every sid ∈ SId.
• f ′(s, i, (a1, . . . , ak)) = (σ, i, 1) where σ is a partial function σ : X → T f and:

{
σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

) = n(ai, j, s) j ∈ N

We recall that the principal executing the roleΠ(i) is represented byAi thus, in that
role, every variable of the form Xj

Ai
represents a nonce generated by Ai.

– The adversary can send messages: (SId, f,H)
send(sid,m)−−−−−−−→ (SId, f ′, H ′) where

sid ∈ SId, m ∈ T f , H ′, and f ′ are defined as follows. We define f ′(sid′) = f(sid′)
for every sid′ �= sid. We denote Π(j) = ((lj1, r

j
1), . . . , (l

j
kj
, rj

kj
)). f(sid) = (σ, j, p)

for some σ, j, p. There are two cases.
• Either there exists a least general unifier θ of m and ljpσ. Then f ′(sid) = (σ ∪
θ, i, p+ 1) and H ′ = H ∪ {rj

pσθ}.
• Or we define f ′(sid) = f(sid) and H ′ = H (the state remains unchanged).

If we denote by SID = N × N × IDk the set of all sessions ids, the set of symbolic
execution traces is SymbTr=SID×(SID→([X→T f ]×N×N))×2T f

.
The adversary intercepts messages between honest participants and computes new

messages using the deduction relation ' defined in Figure 1. Intuitively, S ' m means
that the adversary is able to compute the message m from the set of messages S. All
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deduction rules are rather standard with the exception of the last two; for these rules
some explanations are in order. The next to last rule states that given a signature on
some message m, the adversary can compute new signatures on the same message. The
last rules states that the adversary can recover the corresponding message out of a given
signature. Both rules are needed to obtain soundness. The rules reflect capabilities that
do not contradict the standard computational security definition of digital signatures,
and thus are available to computational adversaries.

Then, a symbolic execution trace (SId1, f1, H1), . . . , (SIdn, fn, Hn) is valid if the
messages sent by the adversary can be computed by Dolev-Yao operations, i.e. if, when-

ever (SIdi, fi, Hi)
send(s,m)−−−−−−−→ (SIdi+1, fi+1, Hi+1), we haveHi ' m. Given a protocol

Π , the set of valid symbolic execution traces is denoted by Execs(Π).

Example 2. Playing with the Needham-Schroeder-Lowe protocol described in Exam-
ple 1, an adversary can corrupt an agent a3, start a new session for the second role with
players a1, a2 and send the message {n(a3, 1, 1), a1}adv(1)

ek(a2)
to the player of the second

role. The corresponding valid trace execution is:

(∅, f1, ∅)
corrupt(a3)−−−−−−−−→ (∅, f1,kn(a3))

new(2,a1,a2)−−−−−−−−→ ({sid1}, f2,kn(a3) ∪ {sid1})

send(sid1,{n3,a1}adv(1)
ek(a2))−−−−−−−−−−−−−−−→
(

{sid1}, f3,kn(a3) ∪ {sid1, {n3, n2, a2}ag(1)
ek(a1)

}
)
,

where sid1 = (1, 2, (a1, a2)), n2 = n(a2, 1, 1), n3 = n(a3, 1, 1), and f2, f3 are defined
as follows: f2(sid1) = (σ1, 2, 1), f3(sid1) = (σ2, 2, 2) where σ1(A1) = a1, σ1(A2) =
a2, σ1(X1

A2
) = n2, and σ2 extends σ1 by σ2(X1

A1
) = n3.

4.2 Concrete Execution Model

In a concrete execution, the messages that are exchanged are bit-strings and depend on
a security parameter η (which is used for example to determine the length of random
nonces). We denote by Cη the set of valid messages. We denote the subsets contain-
ing values for agent identities, nonces, encryption keys, verification keys, ciphertexts,
signatures, and pairs by Cη.a, Cη.n, Cη.e, Cη.v, Cη.c, Cη.s, Cη.p respectively. The im-
plementation is such that each bit-string in Cη has a unique type which can be efficiently
recovered by using the function type : Cη → {a, n, e, v, c, s, p}. The operations are im-
plemented as follows: we assume a PKI-like setting in which the public keys of parties
(those for encryption and signature verification) are accessible to all parties. We model
this situation by making available to all parties the (efficiently invertible and) publicly
computable functions vk : Cη.a → Cη.v and ek : Cη.a → Cη.e which given an agent
identity return its signature verification key and encryption key respectively. In the con-
crete implementation, encryption, and signing are implemented with encryption scheme
AE = (Ke,Enc,Dec) and digital signature scheme DS = (Ks,Sig,Vf), which we fix
throughout this section. Pairing is implemented by some standard (efficiently invertible)
encoding function 〈· , ·〉 : Cη × Cη → Cη.p.

The global state of the execution is a pair (f,SId), where f is used to represent the
local state of each session, and SId represents the set of session ids.
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Session ids are tuples (n, i, (a1, a2, . . . , al)), where n ∈ N is a unique session
identifier, i is the index of the role executed in this session and a1, a2, . . . ak ∈ Cη are
the names of the agents involved in running this session. The state function f : SId →
[X → Cη]×N×N, given a session id sid returns f(sid) = (σ, i, p) whereσ assigns values
to the variables of the program executed in this session (see the discussion regarding the
execution of individual roles), i is the index of the role executed in this session and p is
the program counter that keeps track of the next step to be executed in this session.

We now discuss how the execution proceeds in this setting.

– At the beginning of the execution, the adversary corrupts a set of parties via a request
corrupt(a1, a2, . . .), where a1, a2, . . . ∈ Cη.a are agent identities. As a result, the
key generation algorithms for encryption and signing are executed, the public keys
are published and the secrets keys are given to the adversary.

– The adversary initiates new sessions by issuing requests new(i, a1, . . . , ak), with
i ∈ [k] and a1, . . . , ak ∈ Cη.a. In this case, cryptographic keys are generated for
those agents which do not have such keys, the (public) encryption and verification
keys are published and a new session is initiated: if (SId, f) is the state of the
execution prior to the request the resulting state is (SId′, f ′) with SId′ = SId∪{sid},
sid = (|SId| + 1, i, (a1, . . . , ak)), and f ′ defined as follows:

• f ′(s) = s for s ∈ SId (i.e. the local states of previous sessions stay unchanged)
• f ′(sid) = (σ, i, 1) with σ : X → Cη defined as follows:

{
σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

) = n(ai, j, s)
$← Cη.n j ∈ N

The local state of the new session is initialized by mapping agent variables to the
names of the agents selected by the adversary, and selecting random values for the
nonces generated by the party executing the role.
In addition, for each term {t}l

ek(Aj) and each term [t]lsk(Aj) that are sent (i.e. occurring

within some rj
i of Π(i)) we choose random coins resid(t, Aj , l) and

rssid(t, Aj , l) respectively. These coins will later be used in randomizing the en-
cryption and signing functions in the concrete implementation.

– The third kind of queries are message transmission queries send(sid,m), with
sid ∈ SId and m ∈ Cη which are processed in two steps:
First, the incoming message is parsed as an instantiation of the term lpi , where we
let (σ, i, p) be the local state f(sid) of session sid prior to the request. The parsing is
done recursively, on the structure of lpi , and the final result is a mapping σ′ assigning
values in Cη to the variables occurring in lpi . To facilitate the parsing procedure,
we assume that 1) from any valid ciphertext it is easy to recover the key used for
encryption (which is public) and 2) from any valid signature, it is easy to recover the
message that was signed and the verification key that needs to be used for verifying.
Both these requirements can be easily achieved by tagging the signatures and the
ciphertext with the appropriate information.

In the second step, the local state of sid is updated and a protocol message is
computed and returned to the adversary. If the parsing procedure fails at any point
(the types of the term and of the bit-string do not match, or a ciphertext is invalid
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etc) then the local state of sid remains unchanged. This is also the case if there exists
some variable X ∈ X for which σ and σ′ assign different values. Otherwise, the
local store is updated to σ = σ ∪ σ′ and the answer is computed by replacing each
variable X in rp

i with σ(X) and replacing the encryptions and signatures with their
computational counterparts, i.e. with the randomized functions Enc and Sig.

The execution model that we described above uses randomization: the adversary is proba-
bilistic, and the honest parties use randomization for generating nonces, encryptions, and
signatures. It can be shown that if the adversaryA runs in polynomial-time, then the hon-
est parties use a number of coins that is a polynomial in the security parameter. In the fol-
lowing, for a fixed adversary A we denote by {0, 1}pA(η), resp. by {0, 1}gA(η), the spaces
from where the adversary, resp. the honest parties, draw the coins used in the execution.
Notice that each pair of random coins (RA, RΠ) ∈ {0, 1}pA(η)×{0, 1}gA(η) determines
a unique sequence of global states (f1,SId1), (f2,SId2), . . ., called the concrete trace
determined by random coins (RΠ , RA) and which we denote by ExecΠ(RΠ),A(RA)(η).
If the set of all possible session ids is SId = N × [k] × (Cη.a)k then, we denote by
ConcTr the set of all possible concrete traces: ∪η(SId× [SId → [X → Cη])∗.

5 Security Properties and Soundness Theorems

We are interested in two types of security properties. Integrity properties and secrecy
properties. The former are quite general: for example, they encompass various forms of
authentication (both for messages and entities). Our focus will be secrecy properties: we
give formalizations for this kind of properties in both the formal and in the computational
model, focusing on nonces. We then prove our second main result, a soundness theorem
for secrecy of nonces.

5.1 Relating Symbolic and Concrete Traces

Concrete traces can be regarded as instantiations of formal traces via appropriate in-
stantiations of the terms. More precisely, given a formal trace ts = (SIds

1, f1, H1), . . .,
(SIds

n, fn, Hn), one can obtain a concrete execution trace tc = (SIdc
1, g1), . . . , (SIdc

n, gn)
on the following way. Once an injective function c : T f → Cη that maps terms
to bitstrings is chosen, tc is obtained by instantiating the local states: if fi(sid) =
(σsid, isid, psid) then gi(sid) = (τ sid, isid, psid) where τ sid = c ◦ σsid, and the session
ids are unchanged: SIds

i = SIdc
i . In that case, we say that tc is a concrete instantiation

of ts (or alternatively ts is a symbolic representation of tc) and we write ts � tc.
For P ⊆ SymbTr we denote by concrete(P) the set {tc | ∃ts ∈ P ts � tc} of all

concrete instantiations of symbolic traces in P.
Technically, the following lemma is at the core of our results. It states that with

overwhelming probability, the concrete executions traces of a protocol are instantiations
of valid symbolic execution traces.

Lemma 1. Let Π be an executable protocol. If in the concrete implementation the
schemes AE and DS are jointly secure then for any p.p.t. algorithm A

Pr
[

∃ts ∈ Execs(Π) | ts � Execc
Π(RΠ),A(RA)(η)

]
≥ 1 − νA(η)
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where the probability is over the choice (RΠ , RA) $← {0, 1}pA(η) × {0, 1}gA(η) and
νA(·) is some negligible function.

Proof (Overview). Due to space constraints we only sketch the main aspects of the proof
(details may be found in [11]).

The proof works in two steps. First, we explain how each concrete execution trace
Execc

Π(RΠ),A(RA) determines a unique symbolic trace ts. We construct ts by tracing the
queries made by the concrete adversary A and translating them into symbolic queries.
Specifically, we map each bit-string m occurring in the execution to a symbolic term
c(m) as follows. Agent identities, cryptographic keys and random nonces (which are
quantities that are uniquely determined by RΠ ) are canonically mapped to symbolic
representations: for example the bit-string representing the decryption key of party ai is
mapped to sk(ai). The rest of the messages are interpreted as they occur: each message
m sent by the adversary is parsed (notice that all keys that are needed are already known)
and its symbolic interpretation is obtained by replacing all occurring basic values (keys,
nonces, identities) with their symbolic interpretation, and then replacing the concrete
operations with their symbolic counterparts.

In the second step of the proof, we show that with overwhelming probability over
the choice of (RΠ , RA), the trace ts obtained as explained above is a valid execution
trace. We prove this statement by contradiction: given an adversary A we construct three
adversaries B1,B2 and B3 such that if with non-negligible probability the symbolic trace
associated to the execution of A is not a valid Dolev-Yao trace, then at least one of the
three adversaries breaks the joint security of DS and AE .

The idea behind the construction of these adversaries is to execute adversary A as a
subroutine, and use access to the oracle ODS,AE (to which each of the three adversaries
has access) to simulate the execution of the protocol on behalf of the honest parties. Then,
we show that, using the invalid query made by A, adversary Bi (with i = 1, 2, 3) can break
either the encryption, or the signing scheme, each of the three adversaries exploiting one
of the following three possibilities. Adversary B1 is based on the assumption that the
invalid query of adversary A contains a signature [t]sk(ai) under the secret key of an
honest party ai which was never sent prior in the execution. This essentially means that
the corresponding concrete term is a signature forgery, and adversary B1 simply outputs
it. Adversaries B2 and B3 correspond to the case where the adversary A outputs the
encryption of some term t such that neither t nor the encryption can be computed by
the adversary from the previous messages using only Dolev-Yao operations. In this case
we show how to use the adversary A to determine some secret which he should not
have been able to compute. This secret is a random nonce generated by some honest
party in the case of adversary B2 and a signature also generated by an honest party, in
the case of adversary B3. Moreover, the adversaries B1,B2, and B3 that we construct
are such that their sample space partition the sample space of the experiment in which
adversary A is executed. Therefore, if with non-negligible probability the adversary A
has an invalid symbolic execution trace, then with non-negligible probability at least one
of the adversaries B1,B2,B3 breaks the joint security of DS and AE which contradicts
the hypothesis of the theorem. ��
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5.2 Trace Properties

For both the symbolic and the computational execution model, trace properties are
predicates on the global execution traces. The definition of security (i.e. when a protocol
satisfies a given trace property) differs between the symbolic and the computational
model. We now give these definitions and give our main result: a soundness theorem for
proofs of trace properties.

Symbolic trace properties. A symbolic trace property is a predicate on (or alterna-
tively a subset of) the set SymbTr. We say that protocol Π satisfies the symbolic trace
property Ps ⊆ SymbTr and we write Π |=s Ps, if all valid execution traces satisfy Ps,
i.e. Execs(Π) ⊆ Ps.

Various definitions of authentication may be expressed using such trace properties.
Informally, a trace of a protocol is a “good” mutual entity authentication trace, if for
any two identities a and b, if a (playing the second role of the protocol) has finished a
session of the protocol with intended partner b (playing the first role of the protocol),
then b has finished a session with intended partner a. Using this characterization, we say
that a protocol is a secure authentication protocol if all its traces are good. Depending
on which notion of authentication we consider, we may also require that for any session
where a terminates, there exists exactly one corresponding session where b terminates
and b must have finished before a.

Computational trace properties. A computational trace property is a predicate on
ConcTr. We say that protocol Π satisfies the concrete security property Pc ⊆ ConcTr,
and we write Π |=c Pc if its execution traces satisfy Pc with overwhelming probability
over the coins used in the execution, i.e. for every p.p.t. adversary A, the probability
Pr
[
ExecΠ(RΠ),A(RA)(η) �∈ Pc

]
is negligible as a function of η. The probability is taken

over the choice (RΠ , RA) $← {0, 1}pA(η) × {0, 1}qA(η).
For mutual authentication, good traces are those satisfying the predicate we sketched

for the symbolic model, but the definition of security for protocols is specific to the
computational setting: it asks from protocol to have good traces with overwhelming
probability. It thus allows for “bad” runs, but only with negligible probability.

One of our contributions is the following soundness theorem for trace properties.

Theorem 1. Let Π be an executable protocol, Ps ⊆ SymbTr be an arbitrary sym-
bolic trace property and Pc ⊆ ConcTr be a computational security property such that
concrete(Ps) ⊆ Pc. Then Π |=s Ps implies Π |=c Pc.

Proof. Let A be an arbitrary p.p.t. adversary for Π . We have

Pr
[
ExecΠ(RΠ ),A(RA)(η) ∈ Pc ] ≥

Pr
[
ExecΠ(RΠ ),A(RA)(η) ∈ Pc ∧ ∃t ∈ Execs(Π), t � ExecΠ(RΠ ),A(RA)(η)

]
.

Since Π |=s Ps and concrete(Ps) ⊆ Pc it follows that:

Pr
[
ExecΠ(RΠ ),A(RA)(η) ∈ Pc ] ≥ Pr

[ ∃t ∈ Execs(Π) | t � ExecΠ(RΠ ),A(RA)(η)
]
.

By Lemma 1, we deduce Pr
[
ExecΠ(RΠ),A(RA)(η) �∈ Pc

]
≤ νA(η), i.e.Π |=c Πc. ��
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5.3 Secrecy Properties

In the symbolic model, secrecy is naturally expressed as a trace property: a message
is secret if it cannot be derived by the adversary. In the computational model however,
typical definitions are much stronger and they usually say that an attacker cannot obtain
not only the secret, but also any partial information about the secret. In this section we
give symbolic and computational definitions for the secrecy of nonces used in a protocol
and prove a soundness theorem: if a nonce is deemed secret using symbolic techniques,
then the nonce is secret with respect to the stronger, computational definition.

We concentrate on the case of secrecy of nonces since there is no canonical definition
for secrecy of composed messages in the computational world. In addition, as noticed
in [12], the definition of secrecy for keys for example has to be weaker than indistin-
guishability as soon as the encrypted messages contain some redundancy. However, if
the keys are not used, then security of keys is similar to the security of nonces and our
results yield meaningful results for symmetric key exchange.

Secrecy in the symbolic model. Let Π be an arbitrary k-party protocol. We say that
Π guarantees the secrecy of the nonceXj

Ai
∈ Xn(Ai) if in all possible executions, each

instantiation of this variable remains unknown to the adversary. Formally, this means
that for every valid trace (sid1, f1, H1), . . . , (sidn, fn, Hn) of the protocol, for every
session id sidp = (r, i, (a1, . . . , ak)) where a1, . . . , ak are honest agents (i.e. none of
them appears in the corrupt query), we have Hn �' n(ai, j, r). If this is the case, we
write Π |=s SecNonce(i, j).

Secrecy in the computational model. We define the secrecy of the nonce Xj
Ai

in protocol Π using an experiment Expsec b
ExecΠ,A(i, j)(η) that we describe below. The

experiment is parametrized by a bit b and involves an adversary A. The input to the
experiment is a security parameter η. It starts by generating two random noncesn0 andn1
in Cη.n. Then the adversary A starts interacting with the protocolΠ as in the experiment
ExecΠ,A(η): it generates new sessions, sends messages and receives messages to and
from these sessions (as prescribed by the protocol). At some point in the execution the
adversary initiates a session s in which the role of Ai is executed, and declares this
session under attack. Then, in this session the variable Xj

Ai
is instantiated with nb (i.e.

one of the two nonces chosen in the beginning of the experiment, the selection being
made according to the bit b). The rest of the execution is exactly as in ExecΠ,A. In the
end, the adversary is given n0 and n1 and outputs a guess d, which is also the result of
the experiment. We define the advantage of the adversary A by:

Advsec
ExecΠ,A(i, j)(η) = Pr

[
Expsec 1

ExecΠ,A(i, j)(η) = 1
]
−Pr
[
Expsec 0

ExecΠ,A(i, j)(η) = 1
]

We say that nonce Xj
Ai

is computationally secret in protocol Π , and we write Π |=c

SecNonce(i, j) if for every p.p.t. adversary A its advantage is negligible.
Our second main result, captured by the following theorem, states that if a nonce is

secret in the symbolic model then it is also secret in the computational model.

Theorem 2. Let Π be an executable protocol. If the schemes DS and AE are jointly
secure, then: Π |=f SecNonce(i, j) implies Π |=c SecNonce(i, j).
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6 Automated Proof Using Casrul

In this section we describe the automated tool Casrul [9] and discuss the implications of
our results for the proofs done with Casrul.

Casrul is a system for automated verification of cryptographic protocols, developed
by the Cassis group at Loria (France) available at

http://www.loria.fr/equipes/cassis/softwares/casrul/
It translates a protocol given in common abstract syntax into a rewrite system. The

rewrite system is processed using a first order theorem prover for equational logic for the
automated detection of flaws. We note that Casrul does not allow the use of signatures
and labels yet. Nevertheless, both its syntax and semantics coincide with ours for public
key protocols, i.e. protocols that only use pairing and asymmetric encryption, but without
using labels. We believe that both labels and signatures could be easily added in Casrul.

Automated proof for computational security using Casrul. Casrul can be used
to prove three particular types of properties: entity authentication, authentication on data
and data secrecy. Here, we discuss the implications of these proofs with respect to the
computational model.

The syntax of Casrul does not yet allow the use of labels for encryption. However,
it can be shown that for the security properties that are typically proved with Casrul,
proofs in the execution model without labels are sound w.r.t. the model where labels
are used. Thus, thanks to Theorem 1, Casrul proofs of the security with respect to these
properties have a clear computational interpretation. For example, the Casrul proof that
the Needham-Schroeder-Lowe [15] protocol is a secure mutual authentication protocol
(file NSPK LOWE3.hlpsl) implies the same property, but in the computational model.

Similarly, Casrul proofs of nonce secrecy imply, via Theorem 2, the strong, com-
putational secrecy notion that we gave in Section 5.3. For example, Casrul enables to
prove the computational secrecy of nonces used in the corrected Needham-Schroeder-
Lowe protocol [15] (file NSPK LOWE2.hlpsl) and in the SPLICE protocol [22] (file
SPLICE2.hlpsl).

Note that Casrul works only with a finite number of sessions, thus proofs in the
computational model are obtained only for that fixed number of sessions. Nevertheless,
since our proofs consider adversaries that create an unbounded of sessions, we could
also obtain proofs of computational security properties by using tools dedicated to an
unbounded number of sessions like Hermes [8] or Securify [10]. This would require to
first prove that protocols secure in the symbolic models of Securify or Hermes are also
secure in our symbolic model. We believe this to be true since their symbolic models
are very similar to ours. We did not use these tools for our proofs since they only
provide automatic proofs of secrecy. Automated proofs of other security properties like
authentication are still under development.
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Abstract. In this paper, we extend previous results relating the Dolev-
Yao model and the computational model. We add the possibility to ex-
change keys and consider cryptographic primitives such as signature.
This work can be applied to check protocols in the computational model
by using automatic verification tools in the formal model.

To obtain this result, we introduce a precise definition for security
criteria which leads to a nice reduction theorem. The reduction theorem
is of interest on its own as it seems to be a powerful tool for proving
equivalences between security criteria. Also, the proof of this theorem
uses original ideas that seem to be applicable in other situations.

Note: An extended version of this paper appears as technical report [17].

1 Introduction

There are two approaches to the verification of cryptographic protocols. The so-
called formal approach 1 that originates from the work of Dolev and Yao and was
first described in [8]. The distinguishing feature of this approach is the perfect
cryptography hypothesis that essentially postulates that an intruder can only
gain information from an encoded message if he knows the inverse key. The other
hypothesis is that fresh nonce creation is perfect. Even under these assumptions
flaws have been found in protocols that were believed to be secure. Several au-
tomatic tools (whether complete in the case of bounded protocols or incomplete
in the case of unbounded ones) have been developed (e.g., [18, 6, 11, 4]). In the
second approach, encryption schemes are studied using a computational model
based on Turing machines. In this context, there is no idealization made con-
cerning the cryptographic schemes: cryptographic functions operate on strings,
attackers are Turing machines and correctness is defined in terms of high com-
plexity and weak probability of success [9, 3]. This computational approach is

1 Formal is not used here in the sense of rigorous but denotes the use of formal
methods.
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recognized as more realistic than the formal approach. However, its complexity
makes it very difficult to develop (semi-)automatic verification methods.

Therefore, a major research goal is to relate both approaches such that a
protocol that is verified within the formal approach is guaranteed to be correct in
the computational (that is without making the perfect cryptography hypothesis).
This research has been initiated by the work of Abadi and Rogaway [2] and a
later work [1] where it has been proved that a notion of indistinguishability
in the formal model is valid in the computational model. This work has been
pushed further in [19] and then in [15] where an active intruder is considered.
This last paper proves that if the encryption scheme verifies a certain property
(called IND-CCA), then security in the formal model implies security in the
computational model. The important part of this work is that it applies to active
adversaries. Other related works include Backes, Pflizmann and Waidner [14]
where the formal model is not exactly the Dolev-Yao model, although very close.
It is not clear whether protocols can be checked automatically in this formalism.
Also, the cryptographic primitives are modeled at a rather detailed level in
the computational model. P. Laud [12] proves safety of the formal model for
symmetric encryption. In particular, he deals with encryption cycles.

Our objective in this paper is to continue this work and weaken some of
the restrictions imposed on protocols in previous works. The main restriction
in [15] is that secret keys cannot be part of sent messages and that message
forwarding is not allowed. To weaken these restrictions, we first give a general
definition of a security criterion (like IND-CCA). These criteria can be seen
as a game that an intruder should not be able to win. Our first result is a
reduction theorem that proves the equivalence between a criterion and simpler
criteria. This allows us to prove that the IND-CCA criterion is equivalent to
quite richer and useful criteria. Definition of criteria is an important part as
they make it possible to release some of the restrictions over protocols made by
previous works. These criteria are equivalent to IND-CCA, a well studied notion
in provable cryptography. Finally, we use these criteria in order to prove that
Dolev-Yao constitutes a safe abstraction of the computational model even for
protocols involving both asymmetric encoding and digital signature.

2 Preliminaries

An asymmetric encryption scheme AE = (KG, E ,D) is defined by three algo-
rithms. The key generation algorithm KG is a randomized function which given
a security parameter η outputs a pair of keys (pk, sk), where pk is a public key
and sk the associated secret key. The encryption algorithm E is also a random-
ized function which given a message and a public key outputs the encryption
of the message by the public key. Finally the decryption algorithm D takes as
input a cyphertext and a secret key and outputs the corresponding plain-text,
i.e., D(E(m, pk), sk) = m. The execution time of the three algorithms is assumed
polynomially bounded by η.
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A signature scheme SS = (KG,S,V) is also defined by three algorithms. The
key generation algorithm randomly generates pairs of keys (sik, vk), where sik
is the signature key and vk is the verification key. The signature algorithm S
randomly produces a signature of a given message by a given signature key. The
verification algorithm V is given a message m, a signature σ and a verification
key vk and tests if σ is a signature of m with the signature key corresponding to
vk. Hence, V(m,S(m, sik), vk) returns true for any message m and any pair of
keys (sik, vk) generated by KG. In this case, we still assume that the algorithms
have a polynomial complexity.

An adversary for a given scheme is a Polynomial Random Turing Machine
(PRTM) which has access to a set of oracles. These oracles depend on the scheme
and are given in the different cases thereafter. In the following, we consider Tur-
ing machines which execution is polynomially bounded in the security parameter
η, i.e. for any input corresponding to security parameter η, the machine stops
within P (η) steps for some polynomial P .

To model access to oracles, we slightly modify the definition of Turing ma-
chines. Our Turing machines have two additional tapes, one for arguments (of
function/oracle calls) and one for results. Then, let F be a countable set of
function names. We define our PRTM as a pair of a Turing machine A, where
transitions can be function calls, and a substitution σ linking function names
f ∈ F to functions from string of bits (arguments) to string of bits (results).
These functions are also described by polynomial Turing machines (which can
also access oracles). To distinguish oracles from real functions (which can be
their implementations), function names are always underlined when considering
access to an oracle. The semantics of A/σ are the standard semantics of A ex-
cept that whenever A fires a transition labeled by a function call f , the content
of the results tape becomes fσ(args), where args is the value of the arguments
tape.

To simplify notations, we write directly A/f1, ..., fn where fi are functions.
Thus, we omit the name of the function as soon as this name is not relevant
for comprehension and functions are directly called using the fi notation when
defining A.

A function h : R → R is negligible, if it is ultimately bounded by x−c, for
each positive c ∈ N, i.e., for all c > 0 there exists Nc such that |h(x)| < x−c, for
all x > Nc.

The definition of messages and of the intruder in the formal model is by now
standard, e.g. [8, 18].

3 A Generic Reduction Theorem

In [15], protocols allowing sending of secret keys are not considered because it
is not possible in IND-CCA to encode secret keys. To solve that, we introduce a
new criterion N-PAT-IND-CCA and prove it equivalent to IND-CCA. A similar
result is needed to introduce signature.
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A security criterion γ is defined by an experiment that involves an adversary
and two ways W0 and W1 of implementing a set of oracles. The adversary is
aware of both implementations and is allowed to call the oracles but does not
know a priori which implementation is really used. The challenge consists in
guessing which implementation is used. More precisely, an adversary is a prob-
abilistic polynomial time Turing machine (PRTM) that has access to a set of
oracles (either W0 or W1). The adversary’s advantage is the probability that the
adversary outputs 1 when the set of oracles is W1 minus the probability that
the adversary outputs 1 when the set of oracles is W0. An encryption scheme is
said γ-secure, if the advantage of any adversary is negligible.

In this section, we present a generic result allowing us to prove that a security
criterion γ1 can be reduced to a criterion γ2. This means that if there exists an
adversary that breaks γ2 then there exists an adversary that breaks γ1. The
proof is constructive in the sense that such an adversary for γ1 can be effectively
computed.

Given a finite set xi where i ranges from 1 to n, x denotes the whole set of xi.
When more precision is required, this set can also be denoted by x1..n. In this
section, we give a formal definition of a criterion and show how a criterion can
be partitioned in a safe way. The theorem presented here allows us to verify that
a criterion is equivalent to another one by using such partitions. This result is
applied in the following sections to show an equivalence between a few security
criteria.

3.1 Security Criterion

A criterion γ is a collection formed by:

– A bit b, this bit is the challenge that has to be guessed by the adversary.
– A finite number of parameters c1 to cna. These parameters are shared by the

oracles and most of the time, they are chosen randomly at the beginning of
the experiment. Θ is the PRTM producing these parameters (usually a key
generation algorithm).

– A finite number of oracles f1 to fnb that depend on their argument, c and b.
For each fi, there exist fα

i and fβ
i such that the corresponding oracles when

given argument (l, r) produce fβ
i (fα

i (l, c), c) when b = 0 and fβ
i (fα

i (r, c), c)
when b = 1.

– A finite number of oracles g1 to gnc that depend on their argument and c.
The corresponding oracles when given argument x produce gi(x, c).

Oracles in g do not depend on b, they cannot be used directly by the adversary
to gain information on b but they can be useful by giving information on the
shared parameters c that can finally allow the adversary to deduce the value of
b. Oracles in f have two layers α and β, these layers are used to decompose a
criterion into a partition of criteria as the α layer allows the β layers to depend
on less parameters.

Example 1. Let γ be the criterion (b, {pk1, sk1, pk2, sk2}, {f1, f2}, ∅). Functions
f1 and f2 have no α layer, i.e. fα

i (x, ...) = x and fi(m0,m1) corresponds to the
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encryption of message mb using key pki. Thus γ corresponds to 2-IND-CPA as
introduced in [5]: the adversary has to guess the value of bit b by using only two
oracles that encrypt the left or the right message according to b. The 2-IND-
CCA criterion can be obtained by adding two oracles g1 and g2. These oracles
decrypt messages encoded respectively with key pk1 and pk2 assuming that these
messages have not been produced by oracle f1 or f2. ��

The advantage of a PRTM A against γ is

Advγ
A(η) = Pr[Expγ

A(η, 1) = 1] − Pr[Expγ
A(η, 0) = 1]

Where Exp is the Turing machine defined by:

Experiment Expγ
A(η, b):

c
R← Θ(η)

if b = 0 then
fi ← λ(l, r).fβ

i (fα
i (l, c), c) for i in 1...nb

else
fi ← λ(l, r).fβ

i (fα
i (r, c), c) for i in 1...nb

d
R← A/η, f , g

return d

A has access to an oracle giving η and to the oracles f and g as defined above.
Oracles in f depend on b, this dependence is explicited by ”creating” oracles f
according to the value of b.

The advantage of A is the probability to answer 1 when the value of b is 1
minus the probability to answer 1 when the value of b is 0. Thus, if we consider
a machine A that always outputs the same result, its advantage is 0, this also
holds when considering a machine that gives a random output. Advantages are
between −1 and 1, however, if A has a negative advantage, it is easy to build a
PRTM B that has the opposite of A’s advantage (we simply need to run A and
to return the inverse of its output).

3.2 Criterion Partition and the Reduction Theorem

Example 2. Let us consider the 2-IND-CPA criterion γ defined before. Then, we
say that γ′ = (b, {pk1, sk1}, {f1}, ∅) and γ′′ = (b, {pk2, sk2}, {f2}, ∅) constitutes
a valid partition of γ when both criteria are valid (i.e. f1 and f2 are in the same
criterion as their respective parameters pk1 and pk2). γ′ and γ′′ correspond to
the IND-CPA criterion (only one oracle is available). By the reduction theorem,
if an encryption scheme is IND-CPA secure (advantage of any PRTM against γ′

and γ′′ is negligible), then it is 2-IND-CPA secure. ��

A pair of criteria γ′, γ′′ defines a valid partition of γ if there exist na′, nb′ and
nc′ such that

– γ′ =
(
b, c1..na′ , fβ

1..nb′ , g1..nc′
)

– γ′′ =
(
b, c(na′+1)..na, f(nb′+1)..nb, g(nc′+1)..nc

)
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– For i ≤ nb′, fα
i only depends on c(na′+1)..na.

– For i ≤ nb′, fβ
i only depends on c1..na′ .

– For i ≤ nc′, gi only depends on c1..na′ .
– For i > nb′, fi only depends on c(na′+1)..na.
– For i > nc′, gi only depends on c(na′+1)..na.

The four last conditions are necessary for γ′ and γ′′ to remain valid: oracles from
a criterion only have access to parameters generated by the same criterion. The
reduction theorem states that an advantage against a criterion γ can be used to
produce an advantage over criterion γ′ or criterion γ′′.

Theorem 1 (Reduction Theorem). If γ′, γ′′ is a valid partition of γ and A
is a PRTM, then there exist two PRTM Ao and B such that

|Advγ
A(η)| ≤ 2.|Advγ′

B (η)| + |Advγ′′
Ao(η)|

Proof Idea for the Reduction Theorem. The purpose of this section is
to explain the main ideas underlying the proof of the reduction theorem, the
detailed proof appears in [17]. An application of this proof to a simple example
is given below.

The adversary Ao against the criterion γ′′ simulates A. To do so, he has to
answer the queries made to oracles from γ′. Since Ao cannot construct faithfully
these oracles (as it does not have access to parameters from γ′′), it returns
incorrect answers to A. Finally Ao uses the output of A to answer its own
challenge. If the advantage of Ao is comparable to the advantage of A, then γ
can be reduced to criterion γ′′.

Else the advantage of Ao is negligible compared to the advantage of A, then
another adversary, B, has the same advantage as A. The adversary B is playing
against the criterion γ′. It generates a challenge for A. Moreover, if b = 1 the
answers to the queries made by A are correct and if b = 0 the answers are forged
in the same way as in Ao. When A answers its challenge, B verifies it. If it is
correct, B supposes that b = 1, else it supposes that b = 0. Indeed, Ao probably
has a lower advantage than A.

Example 3. Consider our previous (IND-CPA) example. Machine Ao is opposed
to γ′′, it creates the missing key pk1 and uses it to simulate the missing oracle:
the simulation is achieved by always encoding the left argument, fakef1(l, r) =
E(l, pk1). Machine B is opposed to γ′ with the challenge bit b′. It creates its
missing key pk2 and a random bit b. The fake oracle fakef2 uses this bit b.
Oracle f1 is also faked using b′: fakef1(m0,m1) = f1(m0,mb). The faked oracles
behave like the original oracles when b′ = 1. They behave like the oracles faked
in Ao when b′ = 0. This behavior is summed up in the following array:

oracles b′ = 0 b′ = 1
Epk1(m0,m1) E(m0, pk1) E(mb, pk1)
Epk2(m0,m1) E(mb, pk2) E(mb, pk2)
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Then, if the underlying A machine answers b correctly, we assume that it was
confronted to the right oracles and thus machine B answers 1, else it answers 0.
The intuition behind machine B is that its advantage tells whether oracles from
γ′ are useful or can be faked without losing the advantage. ��

4 Applications of the Reduction Theorem

We now introduce a new security criterion and prove it equivalent to IND-CCA
by using our reduction theorem. N-PAT-IND-CCA allows the adversary to obtain
the encryption of messages containing challenge secret keys, even if it does not
know the value of these secret keys. For that purpose, the adversary is allowed
to give pattern terms to the left-right oracles.

The pattern terms are terms where new atomic constants have been added:
pattern variables. These variables denote the different challenge secret keys ([i]
asks the oracle to replace it with the value of ski). Variables can be used as
atomic messages (data pattern). When a left-right oracle is given a pattern term,
it replaces patterns by values of corresponding keys and encodes the message.
More formally, patterns are given by the following grammar where bs is a bit-
string and i is an integer.

pat ::= 〈pat, pat〉|{pat}bs|bs|[i]

The computation (valuation) made by the oracle is easily defined recursively in
a context giving the bit-string values for the different keys. Its result is a bit-
string and it uses the encryption algorithm E and the concatenation denoted by
operator ·.

v(bs, pk, sk) = bs v({p}bs, pk, sk) = E(v(p, pk, sk), bs))
v([i], pk, sk) = ski v(〈p1, p2〉, pk, sk) = v(p1, pk, sk).v(p2, pk, sk)

There is yet a restriction: we exclude encryption cycles. Hence keys are ordered
and a pattern [i] can only be encrypted under pkj if i > j. References concerning
this restriction appear in [2].

The related criterion is γN where c is a list containing N pairs of keys
(pki, ski). Oracles in f are the encryption oracles. They behave like the ora-
cles defined in the previous example except that they perform the replacement
of pattern variables with key values. The v operation is performed in the α layer
whereas the β layer corresponds to the previous oracles (i.e. simple encoding).
Formally, fα

i (x) = v(x, c) and fβ
i (x) = E(x, ski). Oracles in g decrypt a message

using secret keys as long as their argument has not been produced by an oracle
in f .

An asymmetric encryption scheme AE is said to be N-PAT-IND-CCA iff for
any adversary A, AdvγN

AE,A(η) is negligible. Note that 1-PAT-IND-CCA corre-
sponds to IND-CCA.

Lemma 1. Let AE be an asymmetric encryption scheme. If AE is N-PAT-IND-
CCA, then AE is also IND-CCA.
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Proposition 1. Let AE be an asymmetric encryption scheme. If AE is N-PAT-
IND-CCA, then AE is also (N+1)-PAT-IND-CCA.

Proof. We have ci = (pki, ski). Then let γ′ and γ′′ be the partitions obtained
with na′ = nb′ = nc′ = 1; fβ

1 and gβ
1 only need c1; fα

1 only needs c2..(N+1), this
would not hold if we release the acyclicity hypothesis. Finally, fi and gi with
i ≥ 2 only need c2..(N+1) and so this is a valid partition. Hence, criterion γN+1
has a valid partition constituted by γ1 and γN .

The reduction theorem applies and gives:

|AdvγN+1
A (η)| ≤ 2.|Advγ1

B (η)| + |AdvγN

Ao (η)|

By hypothesis, AE is N-PAT-IND-CCA (hence IND-CCA). Then advantages
of B and Ao are negligible and we can conclude that the advantage of A is
negligible too. ��

Corollary 1. For any N , AE is IND-CCA if and only if AE is also N-PAT-
IND-CCA.

This result tells us that if an encryption scheme is IND-CCA secure, then
it is still secure when adding the possibility to ask for encryption of patterns
instead of just encryption of messages.

4.1 Signature

In order to extend previous results to the case of protocols using signature, we
present here a new definition of security for signature scheme, UNF-CCA, which
is an adaptation of Selective (Un)Forgery Against Adaptive Chosen Message
Attack [10].

The main requirement is that an adversary should not be able to forge a pair
containing a message m and the signature of m using the secret signature key.
An N-UNF-CCA adversary A is given N verification keys and has to produce
a message and its signature under one of the keys. It has access to the security
parameter η, N verification keys vki and N signature oracles Ssiki(.). The exper-
iment outputs bit 1 if A managed to produce a compromising pair (m, {m}siki

)
which right part is not the result of a call to a signature oracle. Otherwise, the
experiment outputs bit 0. Formally the experiment is detailed below.

Experiment ExpN−UNF
SS,A (η):

for i = 1 to N do

(siki, vki)
R← KG(η)

(m,σ) R← A/η,vk1, ..., vkN ,
Ssik1(.), ...,SsikN

(.),
if σ is a valid signature of m under one of the siki

not produced by Ssiki(.)
return 1

else return 0
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The advantage of adversary A in winning the UNF-CCA challenge is defined
as:

AdvN−UNF
SS,A (η) = Pr[ExpN−UNF

SS,A (η) = 1]

A signature scheme SS is said to be N-UNF-CCA iff for any adversary A,
AdvN−UNF

SS,A (η) is negligible. Instead of 1-UNF-CCA, we write UNF-CCA.
As the challenge is not anymore guessing the value of a bit b, our reduction

theorem cannot apply directly. However, by modifying the proof scheme given
above, it is possible to deduce the following property relating the UNF-CCA and
N-UNF-CCA criteria. The proof is given in [17].

Proposition 2. For any signature scheme SS, if SS is UNF-CCA, then it is
also N-UNF-CCA.

4.2 N-PAT-UNF-IND-CCA

To be able to deal with protocols using both an encryption scheme and a sig-
nature scheme, we define a new criterion N-PAT-UNF-CCA, a combination of
N-PAT-IND-CCA and N-UNF-CCA. Let us consider an asymmetric encryption
scheme AE = (KG, E ,D) and a signature scheme SS = (KG′,S,V). We use two
types of adversary: those who try to find the secret bit b used in the N left-right
pattern encryption oracles and those who try to produce a message and its sig-
nature under one of the N challenge signature keys. Each of these corresponds
to an experiment, we denote by N −PUI1 and N −PUI2, respectively. The left-
right pattern encryption oracles accept patterns of the form [siki] where siki is
one of the challenge signature keys. Then, the corresponding advantages are:

AdvN−PUI1
(AE,SS),A(η) = Pr[ExpN−PUI1

(AE,SS),A(η, 1) = 1] − Pr[ExpN−PU1
(AE,SS),A(η, 0) = 1]

AdvN−PUI2
(AE,SS),A(η) = Pr[ExpN−PUI2

(AE,SS),A(η) = 1]

A couple (AE ,SS) is said to be N-PAT-UNF-IND-CCA iff for all adversary
A, AdvN−PUI1

(AE,SS),A(η) and AdvN−PUI2
(AE,SS),A(η) are negligible.

The following property states that the combination of a secure signature
scheme and a secure encryption scheme is still secure. Its proof can be done
using the same proof scheme as for the reduction theorem.

Proposition 3. If AE is N-PAT-IND-CCA and if SS is N-UNF-CCA, (AE ,SS)
is N-PAT-UNF-IND-CCA.

To sum up, we proved the following equivalences between criteria:

IND − CCA ⇔ N − PAT − IND − CCA
UNF − CCA ⇔ N − UNF − CCA

(IND − CCA,UNF − CCA) ⇔ N − PAT − UNF − IND − CCA
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5 Dolev-Yao Is a Safe Abstraction

In this section, we give a precise formalization of the link between the two com-
monly used approaches for verification of cryptographic protocols, i.e. the com-
putational approach and the formal approach. For that purpose, we first define
cryptographic protocols, then we relate traces from both models. This relation
is used to prove the main theorem.

5.1 Description of Cryptographic Protocols

A multi-party protocol is defined by a list of triples (m1,m2, R), called actions.
The action (m1,m2, R) means that an agent playing role R sends a message m2
after receiving a message m1. It is possible to replace m1 with an empty message
denoted by “-” for the first action of the protocol. For the last action, the same
thing can be done with m2. A role R represents a program that is executed by
an agent Ag during a session S. In session S, we say that agent Ag impersonates
role R. Let us consider the Needham-Schroeder-Lowe protocol (NSL introduced
in [13]) there are two roles: the initiator and the receiver.

For a session S, an agent Ag has some local variables used during the exe-
cution of his role: his local copy of variable V ar is denoted by Ag.S.V ar. Each
agent has five variables for each of his sessions: Init, Rec,Na,Nb, Pc. The list
of actions is:

– (−, {〈Init,Na〉}PkRec
, Init)

– ({〈init, na〉}PkRec
, {〈Rec, na,Nb〉}Pkinit

, Rec)
– ({〈Rec,Na, nb〉}PkInit

, ({nb}PkRec
, Init)

– (({Nb}PkRec
,−, Rec)

We make a distinction between values known before an action and values received
during the action: values already known are denoted using a capital for their first
letter. Let Ag be an agent impersonating the initiator. In the first action, Ag
chooses B as a receiver, and the value of nonce Na for session s. He sets variables
Ag.s.Init to Ag, Ag.s.Rec to B and Ag.s.Na with the chosen value. Then he
sends message {〈Ag.s.Init, Ag.s.Na〉}Ag.s.Rec. In the second action, B receives a
message encrypted with his public key. He decrypts it and parses the plain-text
as a pair 〈init, na〉. After that, he chooses a new session number s′ and sets
B.s′.Init to init, B.s′.Rec to B, B.s′.Na to na and finally chooses a fresh value
for B.s′.Nb. Finally, he sends message {〈B.s′.Rec,B.s′.Na,B.s′.Nb〉}PkB.s′.Init

to Ag. The remaining actions have similar semantics.

Hypothesis over Protocols. The following restrictions are made over the
protocol Π considered in this section. Π has to be executable, that is each role
can be run by a PRTM. In the formal world, for any execution, secret keys of
honest agents remain secrets, there is no encryption cycle, there is a nonce in
each signed message that also remains secret. Moreover, we ask that messages
include enough typing information to allow parsing of received messages. We
also assume that any agent knows identities of all the other agents.
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Computational and Formal Models. For both models, agents involved in a
protocol send their messages through a network. This network is modeled by the
Adversary. The Adversary intercepts any message sent by an agent. He can forge
new messages using his knowledge and send these messages to agents usurping
an agent’s identity.

In the formal model, the Adversary is a classical Dolev-Yao Intruder [8].
In the computational model, both the Adversary and the implementation of
the protocol are PRTM, denoted by Ac and Πc. Πc is used as an oracle by Ac.
Messages are bit-strings, new nonces generated by agents are random bit-strings.
Keys used by agents are generated using KG. Encryptions and decryptions are
obtained using algorithms from AE . Signatures related functions use SS.

Ac can create new valid identities and thus impersonate some dishonest
agents.

5.2 Non Dolev-Yao Traces

A trace is a list of tuples (m1,m2, Ag, s) called transitions where m1 is a message
sent by the Adversary to agent Ag for session s and m2 is the answer from Ag.
As before, message m1 and m2 can be “-”. Assignment tc ← Ac/η,Πc denotes
that the trace tc is obtained by the computational Adversary Ac confronted
to Πc . We assume that only messages accepted by an agent appear in the
trace. We now transform a computational trace into a pseudo formal trace. The
resulting trace is only pseudo formal because even if messages are expressed
using Dolev-Yao terms, this does not imply that there exists a formal Adversary
producing this trace. The transformation given here can be seen as verification of
the trace by all the honest agents working together. Their goal is to check if the
adversary performed an action that is not in the Dolev-Yao model. To achieve
this, messages in the computational trace (which are bit-strings) are replaced
with Dolev-Yao terms using the following:

– Bit-strings corresponding to identities are associated to fresh atoms: H1,
H2, ... for honest agents and I1, I2, ... for dishonest agents.

– Bit-strings corresponding to long-term keys are associated to fresh keys:
PkH1 , PkH2 , ... and PkI1 , PkI2 , ... for public keys, SkId for associated secret
keys.

– Bit-strings corresponding to nonces N generated in session S by an honest
agent are associated to fresh atoms Ns.

– Bit-strings corresponding to fresh public or secret keys generated by an hon-
est agent in session s are associated with fresh keys Pks and Sks.

– Bit-strings corresponding to keys generated by the Adversary are associated
with fresh keys Pkj

I and Skj
I .

– Bit-strings corresponding to concatenation of a message associated to term
T1 with a message associated to term T2 are associated with 〈T1, T2〉.

– Bit-strings corresponding to encryption of messages associated to term T
with a key associated to term K are associated to term {T}K .

Note that this is not complete as we have not yet taken into account nonces
generated by the Adversary. As the Adversary is a PRTM, whenever he has to
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send a new nonce, he does not have to generate it randomly: he can send com-
posed messages instead of nonces or perform operations over bit-strings (XOR,
changing bit order, adding or removing bits...). Hence for the honest agents it is
impossible to guess how the Adversary has chosen his nonces. This is why when
transforming a bit-string corresponding to a message where an honest agent re-
ceives a new nonce, we only test if the corresponding bit-string is an already
known nonce. In this case, the bit-string is associated to the nonce term. Else,
it is associated to a fresh variable Xi. If later this bit-string is parsed as some-
thing else (tuple, encoding), variable Xi is replaced by the appropriate term.
The same thing is done when an honest agent receives a message encrypted with
a key which inverse is not known or a signature impossible to verify (at reception
time). When every message in the trace has been transformed, each remaining
Xj is replaced by the fresh atom N j

I , i.e. remaining variables are considered as
fresh nonces. The pseudo-formal trace corresponding to computational trace tc
is denoted by α(tc).

Definition 1 (Non Dolev-Yao Traces). A formal trace tf is said Non Dolev-
Yao (NDY) iff there exists a message sent by the Adversary which cannot be
deduced from previous messages using Dolev-Yao’s deduction, this message is
called a NDY message. A computational trace tc is said NDY iff α(tc) is NDY.

5.3 A Computational Trace Is Certainly a Dolev-Yao Trace

In this section, we prove that if the encryption and signature schemes verify
IND-CCA resp. UNF-CCA and if the number of possible nonces is exponential
in η, then the probability that a computational trace is NDY is negligible. This
means that the computational Adversary, even with all the computing power of
PRTM, cannot have a behavior not represented by a formal adversary.

Theorem 2. Let Π be a protocol. Let AE be the encryption scheme and SS the
signature scheme used in Πc. If AE is IND-CCA and SS is UNF-CCA then for
any concrete Adversary Ac:
Pr
[
tc ← Ac/η,Πc ; tc NDY

]
is negligible.

The proof of this theorem can be found in [17].

5.4 Formal and Computational Properties

Let Pc be a property in the computational world represented by a predicate
over computational traces. A protocol Π verifies Pc (denoted by Π |=c Pc) iff
for any Adversary Ac, Pr

[
tc ← Ac/η,Πc ; ¬Pc(tc)

]
is negligible. A property

in the formal world is represented by a predicate Pf over formal traces. Hence,
a protocol Π verifies Pf (denoted by Π |=f Pf ) iff any trace produced by a
Dolev-Yao adversary against Π verifies Pf .

Using theorem 2, we prove the following result which states that proving
formally Pf allows us to deduce Pc.

Theorem 3. Let Pf and Pc be a formal and a computational property such that

∀tc,∀tf ,
(
Pf (tf ) ∧ α(tc) = tf

)
⇒ Pc(tc)
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If AE is IND-CCA and SS is UNF-CCA, then

Π |=f Pf ⇒ Π |=c Pc

This theorem states that if the formal property correctly under-approximates
the computational property then the formal abstraction is correct.

This theorem has been applied to mutual authentification in [15] and holds
for nonce secrecy [7].

6 Conclusion

In this paper, we considered active intruders. Our main result is that an ad-
versary behavior follows the formal model with overwhelming probability, if the
encryption scheme is IND-CCA and the signature scheme is UNF-CCA. This
result has immediate applications as automatic verification of security protocols
is quite developed now and as there are encryption algorithms that verify the
required properties. Our result extends previous ones and allow:

– Multi-party protocols.
– More cryptographic primitives: combination of digital signature and asym-

metric encryption.
– Protocols where encoding of secret keys and message forwarding are allowed.

A second main contribution of our paper is a formal definition for security criteria
and a reduction theorem. This theorem and its proof scheme seem to apply in a
wide variety of cases. It allows to prove equivalences between a security criterion
and some of its sub-criteria. This theorem allowed us to give a quick proof of
already known results, to generalize this to new results and we believe that it
could be useful whenever one wants to relate two security criteria.

Concerning extensions of this work, in [16], we extend these results to proto-
cols using simultaneously all the classical cryptographic primitives: asymmetric
and symmetric encoding, signature and hashing. This paper also deals with sim-
ple equational theories.
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Abstract. Electronic voting promises the possibility of a convenient, efficient
and secure facility for recording and tallying votes in an election. Recently high-
lighted inadequacies of implemented systems have demonstrated the importance
of formally verifying the underlying voting protocols. The applied pi calculus
is a formalism for modelling such protocols, and allows us to verify properties
by using automatic tools, and to rely on manual proof techniques for cases that
automatic tools are unable to handle. We model a known protocol for elections
known as FOO 92 in the applied pi calculus, and we formalise three of its expected
properties, namely fairness, eligibility, and privacy. We use the ProVerif tool to
prove that the first two properties are satisfied. In the case of the third property,
ProVerif is unable to prove it directly, because its ability to prove observational
equivalence between processes is not complete. We provide a manual proof of the
required equivalence.

1 Introduction

Electronic voting promises the possibility of a convenient, efficient and secure facility for
recording and tallying votes. It can be used for a variety of types of elections, from small
committees or on-line communities through to full-scale national elections. However, the
electronic voting machines used in recent US elections have been fraught with problems.
Recent work [13] has analysed the source code of the machines sold by the second largest
and fastest-growing vendor, which are in use in 37 US states. This analysis has produced
a catalogue of vulnerabilities and possible attacks.

A potentially much more secure system could be implemented, based on formal
protocols that specify the messages sent between the voters and administrators. Such
protocols have been studied for several decades. They offer the possibility of abstract
analysis of the protocol against formally-stated properties. There are two main kinds
of protocol proposed for electronic voting [16]. In blind signature schemes, the voter
first obtains a token, which is a message blindly signed by the administrator and known
only to the voter herself. She later sends her vote anonymously, with this token as proof
of eligibility. In schemes using homomorphic encryption, the voter cooperates with the
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administrator in order to construct an encryption of her vote. The administrator then
exploits homomorphic properties of the encryption algorithm to compute the encrypted
tally directly from the encrypted votes.

Among the properties which electronic voting protocols may satisfy are the following:

Fairness: no early results can be obtained which could influence the remaining voters.
Eligibility: only legitimate voters can vote, and only once.
Privacy: the fact that a particular voted in a particular way is not revealed to anyone.
Individual verifiability: a voter can verify that her vote was really counted.
Universal verifiability: the published outcome really is the sum of all the votes.
Receipt-freeness: a voter cannot prove that she voted in a certain way (this is important

to protect voters from coercion).

In this paper, we study a protocol commonly known as the FOO 92 scheme [12],
which works with blind signatures. By informal analysis (e.g., [16]), it has been con-
cluded that FOO 92 satisfies the first four properties in the list above.

Because security protocols are notoriously difficult to design and analyse, formal
verification techniques are particularly important. In several cases, protocols which were
thought to be correct for several years have, by means of formal verification techniques,
been discovered to have major flaws [14, 6]. Our aim in this paper is to use verification
techniques to analyse the FOO 92 protocol. We model it in the applied pi calculus [3],
which has the advantages of being based on well-understood concepts. The applied pi
calculus has a family of proof techniques which we can use, is supported by the ProVerif
tool [4], and has been used to analyse a variety of security protocols [1, 11].

2 The FOO 92 Protocol

The protocol involves voters, an administrator, verifying that only eligible voters can
cast votes, and a collector, collecting and publishing the votes. In comparison with
authentication protocols, the protocol also uses some unusual cryptographic primitives,
such as secure bit-commitment and blind signatures. Moreover, it relies on anonymous
channels.

In a first phase, the voter gets a signature on a commitment to his vote from the
administrator. To ensure privacy, blind signatures [7] are used, i.e. the administrator
does not learn the commitment of the vote.

– Voter V selects a vote v and computes the commitment x = ξ(v,r) using the
commitment scheme ξ and a random key r;

– V computes the message e = χ(x, b) using a blinding function χ and a random
blinding factor b;

– V digitally signs e and sends his signature σV (e) to the administrator A together
with his identity;

– A verifies that V has the right to vote, has not voted yet and that the signature is
valid; if all these tests hold, A digitally signs e and sends his signature σA(e) to V ;

– V now unblinds σA(e) and obtains y = σA(x), i.e. a signed commitment to V ’s
vote.
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The second phase of the protocol is the actual voting phase.

– V sends y, A’s signature on the commitment to V ’s vote, to the collector C using
an anonymous channel;

– C checks correctness of the signature y and, if the test succeeds, enters (�, x, y) onto
a list as an �-th item.

The last phase of the voting protocol starts, once the collector decides that he received
all votes, e. g. after a fixed deadline. In this phase the voters reveal the random key r
which allows C to open the votes and publish them.

– C publishes the list (�i, xi, yi) of commitments he obtained;
– V verifies that his commitment is in the list and sends �, r to C via an anonymous

channel;
– C opens the �-th ballot using the random r and publishes the vote v.

Note that we need to separate the voting phase into a commitment phase and an opening
phase to avoid releasing partial results of the election.

3 The Applied Pi Calculus

The applied pi calculus [3] is a language for describing concurrent processes and their
interactions. It is based on the pi calculus, but is intended to be less pure and therefore
more convenient to use. Properties of processes described in the applied pi calculus
can be proved by employing manual techniques [3], or by automated tools such as
ProVerif [4]. As well as reachability properties which are typical of model checking
tools, ProVerif can in some cases prove that processes are observationally equivalent
[5]. This capability is important for privacy-type properties such as those we study here.
The applied pi calculus has been used to study a variety of security protocols, such as
those for private authentication [11] and for fast key establishment [1].

To describe processes in the applied pi calculus, one starts with a set of names (which
are used to name communication channels or other constants), a set of variables, and a
signature Σ which consists of the function symbols which will be used to define terms.

In the applied pi calculus, one has (plain) processes and extended processes. Plain
processes are built up in a similar way to processes in the pi calculus, except that mes-
sages can contain terms (rather than just names). Extended processes can also be active
substitutions: {M/x} is the substitution that replaces the variable x with the term M .
Active substitutions generalise “let”. The process νx.({M/x} | P ) corresponds exactly
to “let x = M in P ”.

Active substitutions are useful because they allow us to map an extended process A
to its frame φ(A) by replacing every plain processes inAwith 0. A frame is an extended
process built up from 0 and active substitutions by parallel composition and restriction.
The frame φ(A) can be viewed as an approximation of A that accounts for the static
knowledge A exposes to its environment, but not A’s dynamic behaviour.

The operational semantics of processes in the applied pi calculus is defined by struc-
tural rules defining two relations: structural equivalence, noted ≡, and internal reduc-
tion, noted →. A context C[·] is a process with a hole; an evaluation context is a context
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whose hole is not under a replication, a conditional, an input, or an output. Structural
equivalence is is the smallest equivalence relation on extended processes that is closed
under α-conversion on names and variables, by application of evaluation contexts, and
satisfying some further basic structural rules such as A | 0 ≡ A, associativity and
commutativity of |, binding-operator-like behaviour of ν, and when Σ ' M = N the
equivalences:

νx.{M/x} ≡ 0 {M/x} | A ≡ {M/x} | A{M/x} {M/x} ≡ {N/x}

Internal reduction → is the smallest relation on extended processes closed under struc-
tural equivalence such that ā〈x〉.P | a(x).Q → P | Q and whenever Σ �' M = N ,

if M = M then P else Q → P if M = N then P else Q → Q.

Many properties of security protocols (including some of the properties we study
in this paper) are formalised in terms of observational equivalence between processes.
To define this, we write A ⇓ a when A can send a message on a, that is, when A →∗

C[ā〈M〉.P ] for some evaluation context C that does not bind a.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that A R B implies:

1. if A ⇓ a then B ⇓ a.
2. if A →∗ A′ then B →∗ B′ and A′ R B′ for some B′.
3. C[A] R C[B] for closing evaluation contexts C.

In cases in which the two processes differ only by the terms they contain, if they
are also observationally equivalent then ProVerif may be able to prove it directly. How-
ever, ProVerif’s ability to prove observational equivalence is incomplete, and therefore
sometimes one has to resort to manual methods, whose justifications are contained in [3].

The method we use in this paper relies on two further notions: static equivalence (≈s),
and labelled bisimilarity (≈l). Static equivalence just compares the static knowledge
processes expose to their environment. Two frames are statically equivalent if, when
considered as substitutions, they agree on the distinguishability of terms. For frames,
static equivalence agrees with observational equivalence, while for general extended
processes, observational equivalence is finer.

The definition of labelled bisimilarity is like the usual definition of bisimilarity,
except that at each step in the unravelled definition one additionally requires that the
processes are statically equivalent. Labelled bisimilarity and observational equivalence
coincide [3]. Therefore, to prove observational equivalence, it is sufficient to prove
bisimilarity and static equivalence at each step. This is what we do to prove the privacy
property.

4 Modelling FOO 92 in the Applied Pi Calculus

4.1 Model

We use the applied pi calculus to model the FOO 92 protocol. The advantage is that
we can combine powerful (hand) proof techniques from the applied pi calculus with
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(* Signature *)
fun commit /2 (* bit commitment *)
fun open /2 (* open bit commitment *)
fun s ign /2 (* digital signature *)
fun checksign /2 (* open digital signature *)
fun pk /1 (* get public key from private key *)
fun host /1 (* get host from public key *)
fun getpk /1 (* get public key from host *)
fun b l i n d /2 (* blinding *)
fun unb l ind /2 (* undo blinding *)

(* Equational theory *)
equat ion open ( commit (m, r ) , r ) = m
equat ion getpk ( host ( pubkey ) )= pubkey
equat ion checksign ( s ign (m, sk ) , pk ( sk ) ) = m
equat ion unb l ind ( b l i n d (m, r ) , r ) = m
equat ion unb l ind ( s ign ( b l i n d (m, r ) , sk ) , r ) = s ign (m, sk )

Process 1. Signature and equational theory

automated proofs provided by Blanchet’s ProVerif tool. Moreover, the verification is not
restricted to a bounded number of sessions and we do not need to explicitly define the
adversary. We only give the equational theory describing the intruder theory. Generally,
the intruder has access to any message sent on a public, i.e. unrestricted, channel. These
public channels model the network. Note that all channels are anonymous in the applied
pi calculus. Unless the identity or something like the IP address is specified explicitly
in the conveyed message, the origin of a message is unknown. This abstraction of a
real network is very appealing, as it avoids having us to model explicitly an anonymiser
service. However, we stress that a real implementation needs to treat anonymous channels
with care.

Most of our proofs rely directly on Blanchet’s ProVerif tool. The input for the tool
is given in an ascii version of the applied pi calculus. To be as precise as possible, the
processes described below are directly extracted out of the input files and are given in
a pretty-printed version of the ascii input. The minor changes with the usual applied pi
calculus notation should be clear.

4.2 Signature and Equational Theory

The signature and equational theory are represented in Process 1.We model cryptography
in a Dolev-Yao style as being perfect. In this model we can note that bit commitment
(modeled by the functions commit and open) is identical to classical symmetric-key
encryption. The functions and equations that handle public keys and hostnames should be
clear. Digital signatures are modeled as being signatures with message recovery, i.e. the
signature itself contains the signed message which can be extracted using the checksign
function. To model blind signatures we add a pair of functions blind and unblind. These
functions are again similar to perfect symmetric key encryption and bit commitment.
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process
ν ska . ν skv . (* private keys *)
ν pr ivCh . (* channel for registering legimitate voters *)
l e t pka=pk ( ska ) in
l e t hosta = host ( pka ) in
l e t pkv=pk ( skv ) in
l e t hostv=host ( pkv ) in
(* publish host names and public keys *)
out ( ch , pka ) . out ( ch , hosta ) .
out ( ch , pkv ) . out ( ch , hostv ) .
(* register legimitate voters *)
( ( out ( privCh , pkv ) . out ( privCh , pk ( s k i ) ) ) |
( ! processV ) | ( ! processA ) | ( ! processC ) )

Process 2. Environment process

However, we add a second equation which permits us to extract a signature out of a
blinded signature, when the blinding factor is known. The ProVerif tool also implicitly
handles pairing: pair(x,y) is abbreviated as (x,y). We also consider the functions fst
and snd to extract the first, respectively second element of a pair. Note that because
of the property that unblind(sign(blind(m,r),sk),r) = sign(unblind(blind(m,r),r),sk) =
sign(m,sk), our theory is not a subterm theory. Therefore the results for deciding static
equivalence from [2] do not apply. However, an extension of [2] presents new results that
seem to cover a more general family of theories, including the one considered here [9].

4.3 The Environment Process

The main process is specified in Process 2. Here we model the environment and specify
how the other processes (detailed below) are combined. First, fresh secret keys for the
voters and the administrator are generated using the restriction operator. For simplicity,
all legitimate voters share the same secret key in our model (and therefore the same public
key). The public keys and hostnames corresponding to the secret keys are then sent on a
public channels, i.e. they are made available to the intruder. The list of legitimate voters
is modeled by sending the public key of the voters to the administrator on a private
communication channel. We also register the intruder as being a legitimate voter by
sending his public key pk(ski) where ski is a free variable: this enables the intruder
to introduce votes of his choice and models that some voters may be corrupted. Then
we combine an unbounded number of each of the processes (voter, administrator and
collector). An unbounded number of administrators and collectors models that these
processes are servers, creating a separate instance of the server process (e.g. by “forking”)
for each client.

4.4 The Voter Process

The voter process given in Process 3 models the role of a voter. At the beginning two
fresh random numbers are generated for blinding, respectively bit commitment of the
vote. Note that the vote is not modeled as a fresh nonce. This is because generally the
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l e t processV =
ν b l i n d e r . ν r .
l e t bl indedcommitedvote= b l i n d ( commit ( v , r ) , b l i n d e r ) in
out ( ch , ( hostv , s ign ( bl indedcommitedvote , skv ) ) ) .
in ( ch ,m2) .
l e t bl indedcommitedvote0=checksign (m2, pka ) in
i f bl indedcommitedvote0=bl indedcommitedvote then
l e t signedcommitedvote=unb l ind (m2, b l i n d e r ) in
phase 1 .
out ( ch , signedcommitedvote ) .
in ( ch , ( l ,= signedcommitedvote ) ) .
phase 2 .
out ( ch , ( l , r ) )

Process 3. Voter process

l e t processA =
in ( privCh , pubkv ) . (* register legimitate voters *)
in ( ch ,m1) .
l e t ( hv , s ig )=m1 in
l e t pubkeyv=getpk ( hv ) in
i f pubkeyv = pubkv then
out ( ch , s ign ( checksign ( s ig , pubkeyv ) , ska ) )

Process 4. Administrator process

domain of values of the votes are known. For instance this domain could be {yes, no},
a finite number of candidates, etc. Hence, vulnerability to guessing attacks is an impor-
tant topic. We will discuss this issue in more detail in section 5. The remainder of the
specification follows directly the informal description given in section 2. The command
in(ch,(l,=s)) means the process inputs not any pair but a pair whose second argument
is s. Note that we use phase separation commands, introduced by the ProVerif tool as
global synchronization commands. The process first executes all instructions of a given
phase before moving to the next phase. The separation of the protocol in phases is useful
when analyzing fairness and the synchronization is even crucial for privacy to hold.

4.5 The Administrator Process

The administrator is modeled by the process represented in Process 4. In order to verify
that a voter is a legitimate voter, the administrator first receives a public key on a private
channel. Legitimate voters have been registered on this private channel in the environ-
ment process described above. The received public key has to match the voter who is
trying to get a signed ballot from the administrator. If the public key indeed matches,
then the administrator signs the received message which he supposes to be a blinded
ballot.
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l e t processC =
phase 1 .
in ( ch ,m3) .
ν l . out ( ch , ( l ,m3) ) .
phase 2 .
in ( ch , ( = l , rand ) ) .
l e t voteV=open ( checksign (m3, pka ) , rand ) in
out ( ch , voteV )

Process 5. Collector process

4.6 The Collector Process

In Process 5 we model the collector. When the collector receives a committed vote, he
associates a fresh label ’l’with this vote. Publishing the list of votes and labels is modeled
by sending those values on a public channel. Then the voter can send back the random
number which served as a key in the commitment scheme together with the label. The
collector receives the key matching the label and opens the vote which he then publishes.
Note that in this model the collector immediately publishes the vote without waiting that
all voters have committed to their vote. In order to verify in section 5 that no early
votes can be revealed we simply omit the last steps in the voter and collector process
corresponding to the opening and publishing of the results.

5 Analysis

We have analysed three major properties of electronic voting protocols: fairness, eligi-
bility and privacy. Most of the properties can be directly verified using ProVerif. The tool
allows us to verify standard secrecy properties as well as resistance against guessing at-
tacks, defined in terms of equivalences. For all but one property, privacy, the tool directly
succeeds its proofs. When analysing privacy, we need to rely on the proof techniques
introduced in [3]. Although the results are positive results, we believe that the way we
verify the properties increases the understanding of the properties themselves and also
the way to model them.

5.1 Fairness

Fairness is the property that ensures that no early results can be obtained and influence
the vote. Of course, when we state that no early results can be obtained, we mean that
the protocol does not leak any votes before the opening phase. It is impossible to prevent
“exit polls”, i.e. people revealing their vote when asked.

We model fairness as a secrecy property: it should be impossible for an attacker to
learn a vote before the opening phase, i.e. before the beginning of phase 2.

Standard Secrecy. Checking standard secrecy, i.e. secrecy based on reachability, is the
most basic property ProVerif can check. We request ProVerif to check that the private
free variable v representing the vote cannot be deduced by the attacker. ProVerif directly
succeeds to prove this result.
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Resistance Against Guessing Attacks. In the previous paragraph we deduce that a stan-
dard attacker cannot learn a legitimate voter’s vote. However, voting protocols are par-
ticularly vulnerable to guessing attacks because the values of the votes are taken from
a small domain of possible values. Intuitively, in a guessing attack, an attacker guesses
a possible value for the secret vote and then tries to verify his guess. A trivial example
of a guessing attack is when the voter encrypts his vote with the collector’s public key
(using deterministic encryption). Then the attacker just needs to encrypt his guess and
compare the result with the observed encrypted vote. Guessing attacks have been for-
malized by Lowe [15] and later by Delaune and Jacquemard [10]. A definition in terms
of equivalences has been proposed by Corin et al. in [8]:

Definition 2. Let φ be a frame in which v is free. Then we say that φ verifies a guess of
v if φ�≈sνv.φ. Conversely, we say that φ is secure wrt v if φ≈sνv.φ.

Intuitively, if φ and νv.φ can be distinguished then an adversary can verify his guess
using φ. This is also the definition checked by ProVerif. ProVerif succeeds in proving
this stronger version of secrecy for the commitment phase of the FOO 92 protocol. Note
that verification of guessing attacks does not support considering the protocol up to a
given phase. Therefore, we slightly change the processes presented in section 4: we omit
the last sending of the voter process which allows the opening of the commitment.

Strong Secrecy. We also verified strong secrecy in the sense of [5]. Intuitively, strong
secrecy is verified if the intruder cannot distinguish between two processes where the
secret changes. For the precise definition, we refer the reader to [5]. The main difference
with guessing attacks is that strong secrecy relies on observational equivalence rather
than static equivalence. ProVerif directly succeeds to prove strong secrecy.

Corrupt Administrator. We have also verified standard secrecy, resistance against guess-
ing attacks and strong secrecy in the presence of a corrupt administrator. A corrupt ad-
ministrator is modeled by outputting the administrator’s secret key on a public channel.
Hence, the intruder can perform any actions the administrator could have done. Again,
the result is positive: the administrator cannot learn the votes of a honest voter, before
the committed votes are opened. Note that we do not need to model a corrupt collector,
as the collector never uses his secret key, i.e. the collector could anyway be replaced by
the attacker.

5.2 Eligibility

Eligibility is the property verifying that only legitimate voters can vote, and only once.
The way we verify the first part of this property is by giving the attacker a challenge vote.
We modify the processes in two ways: (i) the attacker is not registered as a legitimate
voter; (ii) the collector tests whether the received vote is the challenge vote and outputs
the restricted name attack if the test succeeds. The modified collector process is given
in Process 6. Verifying eligibility is now reduced to secrecy of the name attack. ProVerif
succeeds in proving that attack cannot be deduced by the attacker.

If we register the attacker as a legitimate voter, the tool finds the trivial attack, where
the intruder votes challenge vote. Similarly, if a corrupt administrator is modeled then
the intruder can generate a signed commitment to the challenge vote and insert it.
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l e t processC =
phase 1 .
in ( ch ,m3) .
ν l . out ( ch , ( l ,m3) ) .
phase 2 .
in ( ch , ( = l , rand ) ) .
l e t voteV=open ( checksign (m3, pka ) , rand ) in
ν a t tack .

i f voteV=chal lengeVote then
out ( ch , a t t ack )

else
out ( ch , voteV )

Process 6. Modified collector process for checking the eligibility properties

The second part of the eligibility property (that a voter can vote only once) cannot
be verified in our model, because of our simplifying assumption that all voters share the
same key.

5.3 Privacy

The privacy property aims to guarantee that the link between a given voter V and his
vote v remains hidden.Anonymity and privacy properties have been successfully studied
using equivalences. However, the definition of privacy in the context of voting protocols
is rather subtle. While generally most security properties should hold against an arbitrary
number of dishonest participants, arbitrary coalitions do not make sense here. Consider
for instance the case where all but one voter are dishonest: as the results of the vote are
published at the end, the dishonest voter can collude and determine the vote of the honest
voter. A classical trick for modeling anonymity is to ask whether two processes, one in
which V1 votes and one in which V2 votes, are equivalent. However, such an equivalence
does not hold here as the voters’ identities are revealed (and they need to be revealed at
least to the administrator to verify eligibility). In a similar way, an equivalence of two
processes where only the vote is changed does not hold, because the votes are published
at the end of the protocol. To ensure privacy we need to hide the link between the voter
and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we need to suppose that at least
two voters are honest. We denote the voters V1 and V2 and their votes vote1, respectively
vote2. We say that a voting protocol respects privacy whenever a process where V1 votes
vote1 and V2 votes vote2 is observationally equivalent to a process where V1 votes vote2
and V2 votes vote1.

With respect to the modeling given in section 4 we explicitly add a second voter.
However, the equivalence that is checked by ProVerif is strictly finer than observational
equivalence. Therefore the tool does not succeed in proving the above given privacy
property. In Process 7, we illustrate a simple process that is observationally equivalent
(it is actually structurally equivalent), but cannot be proven so by ProVerif. This example
also illustrates ProVerif’s choice operator used to define two processes that should be



196 S. Kremer and M. Ryan

process
l e t x=choice [ v1 , v2 ] in
l e t y=choice [ v2 , v1 ] in
( ( out ( ch , x ) ) | ( out ( ch , y ) ) )

Process 7. Limitation of the ProVerif tool to prove observational equivalence

proven observationally equivalent. The choice operator is a binary operator that defines
two processes P1 and P2 such that choice(x1,x2) evaluates to x1 in P1 and to x2 in P2.
Although the two processes are structurally equivalent, the current version of ProVerif
does not succeed in proving observational equivalence.

As ProVerif takes as input processes in the applied pi calculus, we can rely on hand
proof techniques to show privacy. The processes modeling the two voters are shown
in Process 8. The main process is adapted accordingly to publish public keys and host
names.

Proposition 1. The FOO 92 protocol respects privacy, i.e. P [vote1/v1, vote2/v2] ≈
P [vote2/v1, vote1/v2], where P is given in Process 9.

The proof can be sketched as follows. First note that the only difference between
P [vote1/v1, vote2/v2] and P [vote2/v1, vote1/v2] lies in the two voter processes. We
therefore first show that

(processV 1|processV 2)[vote1/v1, vote2/v2]
≈

(processV 1|processV 2)[vote2/v1, vote1/v2].

To prove this we show labelled bisimilarity. We denote the left-hand process as P1 and
the right-hand process as P2. The labelled transition of P1

P1
νx1.c̄h〈x1〉−→ νblinder1.νr1.νblinder2.νr2.

(P ′
1|{(hostv1,sign(blind(commit(v1,r1),blinder1),skv1)/x1})

νx2.c̄h〈x2〉−→ νblinder1.νr1.νblinder2.νr2.
(P ′′

1 |{(hostv1,sign(blind(commit(v1,r1),blinder1),skv1)/x1}
|{(hostv2,sign(blind(commit(v2,r2),blinder1),skv2)/x2})

can be simulated by P2 as

P2
νx1.c̄h〈x1〉−→ νblinder1.νr1.νblinder2.νr2.

(P ′
2|{(hostv1,sign(blind(commit(v2,r1),blinder1),skv1)/x1})

νx2.c̄h〈x2〉−→ νblinder1.νr1.νblinder2.νr2.
(P ′′

2 |{(hostv1,sign(blind(commit(v2,r1),blinder1),skv1)/x1}
|{(hostv2,sign(blind(commit(v1,r2),blinder1),skv2)/x2})

For the first input of both voters, we need to consider two cases: either the input of
both voters corresponds to the expected messages from the administrator or any other
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(* Voter1 *)
l e t processV1 =

ν b l i nde r1 . ν r1 .
l e t bl indedcommitedvote1= b l i n d ( commit ( v1 , r1 ) , b l i nde r1 ) in
out ( ch , ( hostv1 , s ign ( bl indedcommitedvote1 , skv1 ) ) ) .
in ( ch ,m21) .
l e t bl indedcommitedvote01=checksign (m21, pka ) in
i f bl indedcommitedvote01=bl indedcommitedvote1 then
l e t signedcommitedvote1=unb l ind (m21, b l i nde r1 ) in
phase 1 .
out ( ch , signedcommitedvote1 ) .
in ( ch , ( l1 ,= signedcommitedvote1 ) ) .
phase 2 .
out ( ch , ( l1 , r1 ) )

(* Voter2 *)
l e t processV2 =

ν b l i nde r2 . ν r2 .
l e t bl indedcommitedvote2= b l i n d ( commit ( v2 , r2 ) , b l i nde r2 ) in
out ( ch , ( hostv2 , s ign ( bl indedcommitedvote2 , skv2 ) ) ) .
in ( ch ,m22) .
l e t bl indedcommitedvote02=checksign (m22, pka ) in
i f bl indedcommitedvote02=bl indedcommitedvote2 then
l e t signedcommitedvote2=unb l ind (m22, b l i nde r2 ) in
phase 1 .
out ( ch , signedcommitedvote2 ) .
in ( ch , ( l2 ,= signedcommitedvote2 ) ) .
phase 2 .
out ( ch , ( l2 , r2 ) )

Process 8. Two voters for checking the privacy property

message has been introduced by the attacker. In the first case, both voters synchronize
at phase 1 and the frames of P1, respectively P2 are

φ1 = νblinder1.νr1.νblinder2.νr2.
(hostv1,sign(blind(commit(v1,r1),blinder1),v1))/x1,
(hostv2,sign(blind(commit(v2,r2),blinder2),v2))/x2,
sign(blind(commit(v1,r1),blinder1),skva)/x3,
sign(blind(commit(v2,r2),blinder2),skva)/x4}

φ2 = νblinder1.νr1.νblinder2.νr2.
{(hostv1,sign(blind(commit(v2,r1),blinder1),v1))/x1,
(hostv2,sign(blind(commit(v1,r2),blinder2),v2))/x2,
sign(blind(commit(v2,r1),blinder1),skva)/x3,
sign(blind(commit(v1,r2),blinder2),skva)/x4}
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process
ν ska . ν skv1 . ν skv2 . (* private keys *)
ν pr ivCh . (* channel for registrating legimitate voters *)
l e t pka=pk ( ska ) in
l e t hosta = host ( pka ) in
l e t pkv1=pk ( skv1 ) in
l e t hostv1=host ( pkv1 ) in
l e t pkv2=pk ( skv2 ) in
l e t hostv2=host ( pkv2 ) in
(* publish host names and public keys *)
out ( ch , pka ) . out ( ch , hosta ) .
out ( ch , pkv1 ) . out ( ch , hostv1 ) .
out ( ch , pkv2 ) . out ( ch , hostv2 ) .
l e t v1=choice [ vote1 , vote2 ] in
l e t v2=choice [ vote2 , vote1 ] in
( ( out ( privCh , pkv1 ) . out ( privCh , pkv2 ) . out ( privCh , pk ( s k i ) ) ) |
( processV1 ) | ( processV2 ) | ( ! processA ) | ( ! processC ) )

Process 9. Main process with two voters

Given our equational theory and the fact that the blinding factors are restricted, these
frames are statically equivalent. In the second case, if at least one input does not corre-
spond to the correct administrator’s signature, both voter processes will block, as testing
correctness of the message fails and hence they cannot synchronize.

After the synchronization at phase 1, the remaining of the voter processes are struc-
turally equivalent: the remaining of the first voter’s process of P1 is equivalent to the
remaining of the second voter’s process of P2 and vice-versa. Due to this structural
equivalence, P2 can always simulate P1 (and vice-versa). Moreover static equivalence
will be ensured: with respect to frames φ1 and φ2 no other difference will be introduced
and the blinding factors are never divulged.

Given observational equivalence of the voter processes, we can conclude observa-
tional equivalence of the the whole process, as observational equivalence is closed under
application of closed evaluation contexts.

Note also that the use of phases is crucial for privacy to be respected. Surprisingly,
when we omit the synchronization after the registration phase with the administrator,
privacy is violated. Consider the following scenario. Voter 1 contacts the administrator.
As no synchronization is considered, voter 1 can send his commited vote to the col-
lector before voter 2 contacts the administrator. As voter 2 could not have submitted
the commited vote, the attacker can link this commitment to the first voter’s identity.
This problem was found during a first attempt to prove the protocol where the phase
instructions were omitted. The original paper divides the protocol into three phases but
does not explain the crucial importance of the synchronization after the first phase. Our
analysis emphasizes this need and we believe that it increases the understanding of some
subtle details of the privacy property in this protocol.
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6 Conclusion

We have modelled the FOO 92 electronic voting scheme in the applied pi calculus, and
proved three kinds of property. Each property is checked either by reachability analysis
or by checking observational equivalence:

Fairness. F1: the vote of a particular voter is not leaked to an attacker (reachability). F2:
a guess of a vote cannot be verified by the attacker and strong secrecy is guaranteed
(observational equivalence). These properties are also proved in the presence of a
corrupt administrator.

Eligibility. E1: an attacker cannot trick the system into accepting his vote (reachability).
Privacy. P1: the attacker cannot distinguish the actual situation from one in which two

voters have swapped their votes (observational equivalence).

The reachability properties (F1, E1) and the first observational equivalence property (F2)
can be proved by ProVerif. The other observational equivalence property (P1) is more
delecate, both in the way it is formulated and in the way that it is proved. ProVerif cannot
prove this observational equivalence automatically. Therefore we proved it manually, by
showing that the two processes are labelled-bisimilar.

In proving P1 manually, we noticed a feature of the protocol which is not much
stressed in the descriptions (e.g. [12, 16]) but is vital for the proof: every participant
must finish the registration stage before proceeding to the voting stage, and every par-
ticipant must finish the voting stage before the collector can begin opening the votes.
Otherwise, some attacks are possible. For example, if voting could begin before everyone
has registered, the attacker could break privacy by temporarily blocking all registrations
but V ’s. If V then votes, the attacker can establish a link between V and V ’s vote. We
used the phase construct of ProVerif to prevent this.
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Abstract. When an infinite sequence contains a bottom cell, we can-
not access the rest of the sequence with the ordinary stream access. On
the other hand, when we consider an extended stream access with two
heads, we can read or write 1⊥-sequences, which are infinite sequences
with at most one bottom cell. In this paper, we present a way of extend-
ing a lazy functional language with such an extended stream access in
the realm of sequential computation. It has an application in real number
computation in that the set of real numbers is topologically embedded
in the set of 1⊥-sequences [16], and therefore we can consider a program
with such an extended stream access as directly manipulating real num-
bers. We implemented this mechanism by modifying the runtime of the
Hugs system, which is a graph-reduction based implementation of the
Haskell language. We present programming examples like addition and
multiplication on real numbers in this extended Haskell.

For this implementation, we extended Haskell with the gamb opera-
tor, which works just as McCarthy’s bottom-avoiding nondeterministic
choice operator “amb”. The difference is that it is realized in the realm
of sequential computation, and that it is applicable only when the graph
representations of the arguments share the same redex. In order to show
that programs corresponding to two-head stream accesses satisfy this
condition, we introduce a PCF-based calculus of term-graphs and define
a data-type of 1⊥-streams as a subtype of [Bool].

1 Introduction

Stream is a useful data structure used in expressing, for example, process com-
munication, and can be manipulated easily in functional languages. We are inter-
ested in boolean streams, so a stream in this paper means an infinite sequence
of 0 and 1, which is accessed from left to right. One way of representing a
stream in a functional language is to use the list type [Bool]. However, the type
[Bool] includes infinite sequences with bottoms and if a program tries to make
a stream access to input such an infinite sequence, it will be stuck at the bottom
cell because the computation to obtain the value of the cell will not terminate.
Therefore, with stream access, the part of the sequence after the first bottom is
discarded, though the rest of the sequence may have valuable information.
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The first author has found that streams with bottoms are useful in represent-
ing continuous topological spaces like R, and performing computation over them.
We will call an infinite sequence which may contain at most n copies of bottom
an n⊥-sequence, and denote by Σω

⊥,n the set of n⊥-sequences. It is shown in [15]
that any n-dimensional separable metric space can be topologically embedded
in Σω

⊥,n, and in particular, R can be topologically embedded in Σω
⊥,1 by what

we call the Gray-code embedding. It means that each real number has a unique
representation as a 1⊥-sequence, and through this representation, the approx-
imation structures of Σω

⊥,1 and R coincide. Note that R cannot be embedded
in Σω and therefore the existence of ⊥ is essential; R is a 1-dimensional con-
nected space whereas Σω is a 0-dimensional totally disconnected space. Thus,
if we have a computation which fills (or reads) a 1⊥-sequence infinitely, then
we can consider that it is outputting (or inputting) a real number. As such, he
considered a machine called an IM2-machine. This machine has two heads on
each input/output tape to make an extended stream access on 1⊥-sequences. It
is shown that the induced computability notion of the real functions coincides
with the standard one [19].

In this paper, we present a way of extending a functional language with the
two-head stream access of an IM2-machine in the realm of sequential computa-
tion. In [17], it is shown that we can express the behavior of an IM2-machine
naturally with a logic programming language with guarded clauses and com-
mitted choice, such as Concurrent Prolog, PARLOG, and GHC (Guarded Horn
Clauses). Therefore, we can already execute our real-number computation al-
gorithms on ordinary computers. However, since what we are expressing are
“functions” over the reals like addition and multiplication, it is more desirable
that we can express them as functions in functional programming languages.
In addition, if they are implemented in functional languages, we can also apply
higher-order functions like “map” and “foldr” to real number functions, which
is impossible with the above logic programming languages.

It is easy to show that the two-head stream access of an IM2-machine can
be implemented if we consider parallel computation and use McCarthy’s “amb”
operator [11]. The amb operator is a bottom-avoiding nondeterministic choice
operator, defined so that amb M N is reduced to V if M has the value V , V ′ if
N has the value V ′, and its computation does not terminate only when both M
and N do not have normal forms. Note that if the computations of both of the
arguments are terminating, amb M N has two possibilities. Therefore, amb is a
nondeterministic multi-valued function. In order to compute amb M N , we need
to compute the values of M and N in parallel, and we can express the “parallel
or” operator with “amb.” There are some researches extending parallel func-
tional languages with the amb operator [2]. However, such an implementation
requires complicated control and scheduling over threads. Moreover, the moti-
vation and goal of such parallel operator is different from ours. Nondeterminism
and multi-valuedness are known to be essential in real-number computation,
and, correspondingly, IM2-machines are defining nondeterministic multi-valued
functions. However, IM2-machines are performing sequential computation, and
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Fig. 1. The binary expansion and the Gray-code expansion of real numbers. Here,
horizontal line means that the corresponding bit has value 1 [16]

real-number computation is not related with parallelism in this context. There-
fore, it is more natural to implement it in the realm of sequential computation,
and see what causes nondeterminism and multi-valuedness without using paral-
lelism.

Thus, we consider our extension to sequential functional languages, and in-
troduce a variant gamb of the amb operator to a graph-reduction based functional
language. It is defined as an extension of the Haskell language and implemented
by modifying the runtime system of the Hugs system, which is based on the
notion of G-machines[7, 6, 8]. This implementation is available from the author’s
homepage[18], with some programming examples like addition and multiplica-
tion on real numbers.

Our gamb operator is a partial sequential realization of the amb operator.
The difference is that gamb works sequentially, and that it works only for the
case that the two term-graphs M and N given as the arguments share the same
subgraph L as a redex and the normal form of one of M and N is composed
from the weak head normal form of L only by list and boolean operations. In
order to show that programs corresponding to two-head stream accesses satisfy
this condition, we introduce a PCF-based calculus of term-graphs and define a
datatype of 1⊥-streams as a subtype of [Bool]. This datatype also brings out
a set of primitive operators to manipulate 1⊥-streams.

In Section 2, we overview Gray-code based real-number computation and
IM2-machines, and show how it is expressed with McCarthy’s “amb” operator.
In Section 3, we introduce the operator gamb and explain how it works on term-
graphs. In Section 4, we define GPCFω

⊥,1 and study its type system. In Section
5, we explain how gamb is implemented as an extension of Haskell. In Section
6, we explain programming examples of real number functions and higher order
functions which use the gamb operator.

Notations: We consider the unit closed interval I = [0, 1] instead of the whole
real line. We use 0 and 1 for the boolean values false and true, for simplicity. We
fix the alphabet Σ = {0, 1}, and denote by Σω the set of infinite sequences of
Σ. We call an infinite sequence of {0, 1,⊥} which may include at most one copy
of ⊥ an 1⊥-sequence, and denote by Σω

⊥,1 the set of 1⊥-sequences. Except for
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section 4, we use the word term-graph informally for a graph representation of
a (lambda) term.

2 Gray-Code and Real-Number Computation

2.1 Gray-Code Embedding

Gray-code expansion is an expansion of I = [0, 1] as infinite sequences of {0, 1},
which is different from the ordinary binary expansion. Figure 1 shows the binary
and Gray-code expansion of I. In the binary expansion of x, the head h of
the expansion indicates whether x is in [0, 1/2] or [1/2, 1], and the tail is the
expansion of f(x, h) for f the following function:

f(x, h) =
{

2x (when h = 0)
2x− 1 (when h = 1) .

Note that the rest of the expansion depends on the choice of the head character
h when x = 1/2. On the other hand, the head of the Gray-code expansion is the
same as that of the binary expansion, whereas the tail is the expansion of t(x)
for t the so-called tent function:

t(x) =
{

2x (0 ≤ x ≤ 1/2)
2(1 − x) (1/2 < x ≤ 1) .

This expansion is based on Gray code[5], which is a binary coding of natural
numbers different from the ordinary one.

We have two binary expansions for a dyadic number (a rational number of the
form m/2k). For example, 3/4 has two expansions 110000... and 101111.... It is
also the case for the Gray-code expansion, and 3/4 has two expansions 111000...
and 101000.... Note that they differ only at one bit. It means that the second bit
does not contribute to the fact that the value is 3/4, and it is more natural to
leave it undefined (⊥). Thus, we define the expansion of 3/4 as 1⊥1000 . . . , and
define the modified Gray-code expansion as follows.

Definition 1 ([16], [4]). Let Σ = {0, 1} and P : I → Σ⊥ be the map

P (x) =




0 (x < 1/2)
⊥ (x = 1/2)
1 (x > 1/2)

.

Gray-code embedding G is a function from I to Σω
⊥,1 defined as G(x)[n] =

P (tn(x)) (n = 0, 1, . . .). We call G(x) the modified Gray-code expansion of x.

Note that ⊥ appears only once in each modified gray-code expansion. G is a
topological embedding of I in Σω

⊥,1, where the topology of Σω
⊥,1 is given as the

subspace topology of the Scott topology of Σ⊥ω.
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Fig. 2. The process of outputting streams

2.2 IM2-Machine

We study how the ordinary stream access can be extended to input/output 1⊥-
sequences. We explain it with the way the Gray-code of a real number is input
or output by a program.

For the output, we consider that a program (effectively) computes a real num-
ber x when it executes infinitely and produces better and better approximations
of x as shrinking intervals. Therefore, we study how the Gray-code of x is output
on a tape based on such information. When the information x < 1/2 or 1/2 < x
is obtained by such a shrinking interval, a machine can write 0 or 1 on the first
cell, respectively. However, when x = 1/2, neither information is given however
long it waits and therefore it cannot fill the first cell forever. However, in this
case, it obtains the information 1/4 < x < 3/4 at some time, and it can write 1
on the second cell skipping the first one if it is allowed to write a character not
only on the leftmost unfilled cell but also on the next unfilled cell. After that, if
the information 1/4 < x < 1/2 or 1/2 < x < 3/4 is given, it can write 0 or 1 on
the skipped cell, respectively, and if it has the information 3/8 < x < 5/8, it can
write 0 on the third (i.e., the second unfilled) cell. After that, the computation
of x will have the possibility to fill the first or the 4th cell of the string as Figure
2 shows. In this way, when x = 1/2, the first cell is left unfilled and the sequence
1000 . . . is written from the second cell. Thus, if the output tape is filled with ⊥
at the beginning, we can output the modified Gray-code expansion on the tape.

We can formulate this mechanism as an output with two heads. We consider
two heads H1 and H2 on each tape. They are located at the first two cells at the
beginning, and only H2 moves to the next cell after an output from H2, and H1
moves to the position of H2 and H2 moves to the next cell after an output from
H1. In this way, the two heads are always located at the first and the second
unfilled cell of the string. This is a generalization of the ordinary stream access
with one head, which is located at the first unfilled cell and moves to the next
cell after an output.

As for the input, when the value of a cell is ⊥, a machine cannot wait for it to
be filled. Therefore, in order to skip a bottom cell and continue the input, we need
two heads also on input tapes, which move the same way as output-tape heads.
Then, when both of the cells under the two heads are filled, a machine has two
possible inputs which may cause two different computations. Therefore, it has
nondeterministic behavior and both of the computational paths must produce
valid results.
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In this way, we define a machine, called an IM2-machine (Indeterministic
Multi-head Type2-machine), which has two heads on each input/output tape
and which has nondeterministic behavior depending on the order it inputs. See
[16] for the detailed definition of an IM2-machine.

2.3 IM2-Machine Outputs with Functional Languages

Ordinary stream access can be expressed in a lazy functional language as a re-
cursively defined function of type [Bool] → [Bool]. As for the stream access with
two heads, it is trivially impossible to express it in functional languages because
multi-valued functions are not definable in functional languages. It is also shown
in [17] that some IM2-computable single valued functions are not expressible in
functional languages when 1⊥-sequences are implemented as [Bool]. Therefore,
for such an implementation, we need some extension to the language.

For the output, we need no extension and we can express the output of a
1⊥-sequence with two heads in a functional language.

The output from the first head is expressed as c:foo() with c the character
0 or 1 and foo() the recursive call to produce the rest of the output. The output
from the second head is written as x:c:xs where x:xs=foo(), with the same
meanings for c and foo(). Note that the new head positions (i.e. x and the head
of xs) comes to be the first two positions of the output of the recursive call of
foo(). Therefore, we can consider that the tape is composed only of unfilled
cells and the two heads are always located at the first two cells of the output.
Note that c is a constant and therefore, when a term denoting a 1⊥-stream is
reduced to a weak head normal form (i.e., a cons cell), it must have one of the
four forms 0 : M ′, 1 : M ′, x : 0 : M ′, and x : 1 : M ′.

As for the recursive call, the recursive function may have additional argu-
ments to convey the internal state of the computation. However, in some cases,
we can simplify (or even omit) such arguments by allowing the function to mod-
ify the result of the recursive call. As such a modification on 1⊥-sequences, we
consider inversion of boolean values. We use the function nh to invert the first
character of a string defined as follows:

not 0 = 1
not 1 = 0
nh c:a = not c:a

and allow expressions like c:nh foo() and not x:c:nh xs where x:xs=foo()
for the programs in the above paragraph.

As an example, we consider the function stog which converts the signed-digit
representation to the Gray-code representation. The signed-digit representation
is an expansion of [−1, 1] as an infinite sequence of Γ = {0, 1,−1}, defined as

δsn(a1a2. . .) = Σ∞
i=1{ai2−i}.

It is equal to the ordinary binary expansion if we do not use −1, and highly
redundant in that every real number has infinitely many representations. For
our purpose of writing the conversion with Gray-code, we fix the first character
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as 1 and discard it from the sequence so that every sequence denotes a real
number in I. We also change the definition of the Gray-code representation so
that when G(x) contains a bottom, then the two sequences obtained by filling
the bottom cell with 0 and 1 are also representing x.

When the first digit of a signed-digit representation is −1, 1 and 0, it means
that the number is in the intervals [0, 1/2], [1/2, 1], and [1/4, 3/4], respectively.
Note that these three intervals are expressed in Gray-code representation as the
output of 0 and 1 from the first head, and the output of 1 from the second
head, respectively. We can write in Haskell the conversion from signed-digit to
Gray-code representations as follows considering the recursive structures of both
representations [16].

stog(1:xs) = 1:nh(stog xs)
stog(-1:xs) = 0:stog xs
stog(0:xs) = c:1:nh ds where c:ds= stog xs

When we execute stog([0,0..]), it will have no output on the display because
the result is [⊥,1,0,0..], but when we execute tail(stog([0,0..])), it will
produce [1,0,0,0... infinitely.

2.4 IM2-Machine Inputs with the Amb Operator

As for the input, we can express it if we can use McCarthy’s “amb” operator[11],
as follows. In this paper, we consider a variant of the amb operator of type

amb:: a -> a -> Amb a

where the datatype Amb a is defined as data Amb a = Left a | Right a. The
term amb M N is reduced to Left V if M has the normal form V , Right V ′ if
N has the normal form V ′, and its computation does not terminate only when
both M and N do not have normal forms. When both M and N have normal
forms, we have two possibilities and thus it is a nondeterministic operator.

Since an IM2-machine waits for one of the two cells to be filled, we can express
it with the amb operator of type Bool -> Bool -> Amb Bool as follows.

foo(a:b:xs) = case (amb a b) of
Left 0 -> ... foo(b:xs) ...
Left 1 -> ... foo(b:xs) ...
Right 0 -> ... foo(a:xs) ...
Right 1 -> ... foo(a:xs) ... .

Note again that the argument of the recursive call is an infinite list without
the cells we have read in. Also for this case, we allow the modification of the
argument of the recursive calls with nh and not such as foo (not b:nh xs).

As an example, we consider the gtos function which converts the Gray-
code representation to the signed-digit representation. This program is also con-
structed from the recursive structures of both representations.
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amb

head head

tail

M

(a) (b)

Fig. 3. The sharing structure of the term-graph of amb

gtos(a:b:xs) = case (amb a b) of
Left 0 -> -1:(gtos (b:xs))
Left 1 -> 1:(gtos (nh (b:xs)))
Right 1 -> 0:(gtos (a:nh xs))
Right 0 -> case a of 0 -> -1: -1:(gtos xs)

1 -> 1:1:(gtos (nh xs))

3 Partial Sequential Realization of the Amb Operator

As we showed in the previous section, we can express the two-head stream access
of an IM2-machine with the amb operator. However, in order to implement this
operator, we need to execute two threads for both arguments in parallel. Parallel
execution is a heavy mechanism, which is not easy to implement.

When we are implementing the two-head stream access of an IM2-machine,
we always use the amb operator in the form

amb a b where a:b:x = M.

Here, M represents a “producer process” which makes the two-head output
access to an 1⊥-stream. The point is that the calculation of the two arguments
of amb share the same redex M and therefore we do not need to compute them
in parallel. If a functional language is implemented based on graph reduction [7],
the above term is represented as shown in Figure 3. Here, an application node
is labelled with a combinator name when it is an application of a combinator,
for simplicity. In this way, the two term-graphs representing the two arguments
share the same subgraph as a redex. Therefore, if we can reduce this term using
this sharing structure, it is expected that we can implement the partial amb
operator we need for 1⊥-stream access in the realm of sequential computation.
As such an operator, we introduce gamb, which has the type

gamb:: Bool -> Bool -> Amb Bool.

We explain how gamb works with an example of the reduction of gtos(stog
[0,0..]), where the program gtos is modified so that it uses the gamb operator
instead of amb. From the definition of gtos, the evaluation of gamb a b in the
definition of gtos will produce the term-graph Figure 4(A). The arguments a b
of gtos are marked with (a) and (b), respectively. In this graph, there is only
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Fig. 4. The evaluation of gtos(stog([0,0..]))

one redex node stog, which is shared by both of the arguments. Therefore, it
is evaluated and we have the term-graph (B). It has three redexes, two of them
are put the marks (*) and (**) and the other one is stog. If we use the leftmost
outermost reduction strategy as usual functional languages do, the redex (*)
is reduced and then the redex stog is reduced. After that, it starts a non-
terminating computation of the node (a).

However, since the term-graph stog is the producer process of an 1⊥-stream,
it is reduced to one of the four forms 0 : M ′, 1 : M ′, x : 0 : M ′, and x : 1 : M ′

as we noted in Section 2.3. Therefore, we can obtain one of the normal forms
of (a) and (b) by applying only the reduction rules head (B : L) → B and
tail (B : L) → L. Thus, we consider the reduction strategy of gamb MN
to reduce both M and N with these two rules as long as they are applicable.
Therefore, the redex (**) is reduced before stog, and we obtain the term-graph
(C). Then, the redex (***) is reduced and we have (D). In this way, the argument
(b) is reduced to a normal form 1 and gamb will return the value Right 1. As the
result, the whole program gtos(stog [0,0..]) is reduced to the term-graph
Figure 4(E), which is a head normal form.

Next, consider the reduction of gtos in (E), which is a bit more complicated.
Note that subgraphs of (xs) are reduced through the reduction of (**) in (B)
because of the sharing, and we can use this simplified graph from the beginning.
As we noted in Section 2.3 and 2.4, a function to output (input) a 1⊥-stream
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can modify the result (arguments) of the recursive call by inserting not and nh.
Correspondingly, the argument-subgraphs (a’) and (b’) of the term-graph (F)
have nodes with labels not and nh, above their shared redex stog. Thus, we
modify the reduction strategy of amb MN we mentioned above, so that M and
N are reduced with the following reduction rules (I).

Reduction rules (I)

head (B : L) → B (R-head)
tail (B : L) → L (R-tail)
not 0 → 1 (R-not0)
not 1 → 0 (R-not1)
nh (B : L) → not B : L (R-nh)

This is the minimum list of rules which works. We had better also use the rules
nh nh L → L and not not B → B in practice so that the term-graphs do not
become significantly large.

Thus, the term-graph (F) is reduced to (G), and then, the two arguments
of gamb share the same subgraph stog, and thus it is reduced and after that,
reduction rules (I) become applicable, and thus it is also reduced to Right 1. In
this way, if we continue the reduction, we obtain an infinite graph (H).

To summarize, the term-graph gamb M N is reduced as follows.

(1) Rules in (I) are applied to subgraphs of M and N which are reachable from
the root through nodes labelled with cons, head, tail, not, and nh until no more
rules are applicable. Rules are applied in some fixed order; in our implementation,
the leftmost outermost reduction order on M , and then on N .
(2) If one of them become a normal form (that is, 0 or 1), then gamb returns the
corresponding value. For example, if M is reduced to 0, gamb M N is reduced
to Left 0. If both are normal forms, gamb returns the left value.
(3) Compare the leftmost outermost redexes of M and N . If they are not iden-
tical, then raise a runtime error.
(4) Reduce the shared redex in (3) to a weak head normal form.
(5) Repeat (1) to (4) until it returns in (2) or it raises an error in (3).

We need the repetition (5) because the shared redex can be reduced to a
shared redex again by rules in (I). Rules in (I) are graph reductions imple-
mented as follows. When (R-not0) or (R-not1) is applied, the not node is simply
overwritten with 1 or 0. It is also the case for the (R-nh) rule; the nh node is
overwritten with a new not node. However, in (R-head) and (R-tail) rules, we
cannot overwrite the head node with the node B because the node B already
exists. Instead, we overwrite head with a new indirection node which points to
B. This is actually the way term-graphs are reduced in graph-based functional
language implementations [9, 7, 6]. We omit an indirection node in the figures.

The gamb operator is a partial realization of amb. That is, (1) when gambM N
is reduced to L, amb M N can also be reduced to L, and (2) when the reduction
of gambM N does not terminate, the reduction of ambM N does not terminate.
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4 A Term-Graph Calculus of 1⊥-Streams

In the previous section, we defined the reduction of gamb MN for arbitrary
terms M and N of type Bool, and therefore gamb MN may cause a runtime
error in (3) depending on the ways graph implementations of M and N share a
subgraph. In this section, we define a term-graph calculus GPCFω

⊥,1 which has
the type of 1⊥-streams as a subtype of [Bool], and show that such a runtime
error does not happen when gamb is used for 1⊥-stream access.

We start with defining a term-graph. Let Γ be a set of labels with arity in
N. A term-graph over a signature Γ is a quadruple g = 〈N, symb, args, r〉 such
that (1) N is a finite set of nodes, (2) symb : N → Γ is a function which assigns
a label to a node, (3) args : N → N∗ is the list of successor nodes such that
length(args(n)) = arity(symb(n)), (4) r ∈ N is the root of g, and (5) g is acyclic
as a graph. Note that we only consider acyclic term-graphs in this paper.

GPCFω
⊥ is a PCF-like term-graph calculus with Stream and AmbBool type

(Figure 5). We consider the minimal set of types for our explanation and omit
the integer type, for example. We consider typed variables to simplify the type
system and let Xτ be a set of variables of type τ . The set Γ of labels (with arity)
is defined as {0(0), 1(0), head(1), tail(1), :(2), not(1), nh(1), xτ (0), λxτ (1),
@(2)(application), if then else (3), µxτ (1), gambr(1), Left(1), Right(1),
||(2)(destructor for AmbBool)}. Here, a variable xτ is a member of Xτ . We
have the condition that for each λxτ and µxτ , there exists at most one bounded
variable node with label xτ .

We sometimes omit the type τ when it is obvious from the context. Though
not and nh are λ-expressible, we list them as primitives because we need special
treatment. Note that the µ constructor does not produce a cyclic graph, and
µxτ is a label of a node for each xτ .

When we express a term-graph in text, we use infix notation for :, ||, and @,
and we omit the operator symbol @. We consider that multiple occurrences of
the same bounded variable are expressing the same variable node.

In order to express sharing of nodes, we assign a variable to each node which
has more than one parents, and use the notation M where xτ = N for the
graph M with the variable node xτ substituted for N of type τ . We also use a
notation with pattern matching for the Stream type; we write M where y1 :
... : yn : x = N for M where x = tail zn where yn = head zn . . . where z2 =
tail z1where y1 = head z1where z1 = N . It is close to the call-by-need calculus
in [1], but they consider a term-calculus which simulates graph-based reduction,
whereas the objects of the calculus are term-graphs themselves in our calculus.
We also write notn M for the n-times successive application of not to M .

In this type system, all the graphs are directed acyclic graphs, and therefore
the type of a term-graph is uniquely defined inductively. Reduction rules are
graph-reduction rules. Note that M where xτ = N , which is the right hand
side of (R-app) is obtained by copying M so that edges pointing to xτ are
redirected to N . It is also the case for the (R-mu) rule. The set of reduction
rules is composed of the (I)-reduction and rules in (II) and (III). The reduction
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GPCFω
⊥,1

Types: σ, τ ::= Bool | Stream | σ → τ | AmbBool
Variables(of type τ): xτ , yτ , zτ

Term-Graphs: B,L,M,N ::= 0 | 1 | head L | tail L | B : L | not B | nh B
| λxτ .M | M N | µxτ .M | if B then M else N
| gambr L | Left B | Right B | M ||N

Typesystem : xσ :: σ 0 :: Bool 1 :: Bool
B :: Bool

not B :: Bool

L :: Stream
head L :: Bool

L :: Stream
tail L :: Stream

L :: Stream
nh L :: Stream

M :: τ
λxσ.M :: σ → τ

B :: Bool,M :: σ,N :: σ
if B then M else N :: σ

M :: σ → τ ,N :: σ
MN :: τ

(T-tail)

M :: σ
µxσ.M :: σ

(T-mu)
L :: Stream

notn c : L :: Stream
(n ≥ 0, c = 0 or c = 1) (T-cons)

L :: Stream
notl y : c1 : . . . : cm : nhn x where y : z1 : . . . : zk : x = L :: Stream

(ci = 0 or ci = 1(i = 1, . . . ,m), l,m, n, k ≥ 0) (T-b01)

L :: Stream
gambr L :: AmbBool

L :: AmbBool, M :: Bool→ σ, N :: Bool→ σ

(M ||N) L :: σ
B :: Bool

Left B :: AmbBool
B :: Bool

Right B :: AmbBool

(I)-reduction: applying the following rules to subgraphs reachable from the root
through nodes labelled with :, head, tail, not, and nh until no more rules are applicable.

head (B : L) → B (R-head)
tail (B : L) → L (R-tail)
not 0 → 1 (R-not0)
not 1 → 0 (R-not1)
nh (B : L) → not B : L (R-nh)

Reduction rules (II):

(λxτ .M) N →M where xτ = N (R-app)
µxτ .M →M where xτ = µxτ .M (R-mu)
if 1 then M else N →M (R-if0)
if 0 then M else N → N (R-if1)
f ||g (Left B) → f B (R-L)
f ||g (Right B) → g B (R-R)

Reduction rules (III):

gambr (0 : M) → Left 0
gambr (1 : M) → Left 1

gambr (M : 0 : N) → Right 0
gambr (M : 1 : N) → Right 1

Fig. 5. The term-graph calculus of 1⊥-streams GPCFω
⊥,1
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rules are parallel to the evaluation rules of gamb in Section 3. We have defined
the (I)-reduction in this form for two reasons. One is to provide the subject-
reduction property, and the other one is to reduce B2 to a (I)-normal form when
gambr(B1 : B2 : L) is given. We consider leftmost outermost reduction order.

As operations to construct Stream term-graphs, we consider insertion of a
constant to the head or next to the head of a Stream element. This is par-
allel to the constructor of ordinary streams to insert a constant to the head.
We also allow the operation to remove the first or the second element from a
Stream element to form a new 1⊥-stream. The (T-cons) and (T-tail) rules are
for the operations to the first element, and (T-b01) rule with m = 1, k = 0 (or
m = 0, k = 1) is for the insertion (or removal, respectively) operation to the sec-
ond element. The (T-b01) rule is applicable to terms-graphs obtained through
successive applications of these operators. As for destructors, we use the gambr
operator which corresponds to the following program.

gambr(M) = gamb a b where a:b:x = M.

Note that this is the way gamb is used to input from a 1⊥-stream. By structural
induction on M , we can prove the following.

Proposition 1. Suppose that M :: σ and M is reduced to N in GPCFω
⊥,1. Then

N is typable and N :: σ.

Corollary 1. Suppose that M is a term of type Stream and M is reduced to
L = N1 : N2. Then, after applying (I)-reduction, one of the followings hold,
(1) N1 is a constant (i.e. 0 or 1),
(2) N2 is c : N3 for c a constant,
(3) L has the form notl y : nhn x where y : z1 : . . . : zm : x = G for l,m, n ≥ 0.

Corollary 1 shows that reduction of gambr M with the leftmost outermost
reduction will produce a value (case (1) or (2)), or continue the reduction of
G. For the latter case, when G is reduced to a cons cell, L is reduced by (I)-
reduction to one of the forms (1), (2), and (3). Thus, the reduction of gambr M
will produce a value Left c or Right c (c = 0 or 1) or it does not terminate.

Thus, we can say that runtime error does not occur for a typable program
when gamb is added to a graph-reduction based lazy functional language with
this kind of graph-representations. However, most implementations of Haskell use
cyclic graphs for the representation of recursive structures. For this case, typing
rules presented here do not have such good properties. We consider a variant
GPCFω,c

⊥,1 of GPCFω
⊥,1 in which term-graphs are allowed to be cyclic, µxτ .M

is not a term-graph but a textual representation of a cyclic graph, and (T-mu)
and (R-mu) do not exit. To see the difference, consider the term-graph K =µx.
a:1:y where a:y = x of type Stream. In GPCFω

⊥,1, it is reduced to Stream-
type terms of the form a:1:1:1:...:1:y where a:y = K. On the other hand,
in GPCFω,c

⊥,1, it is reduced by (I)-reduction to the term-graph (µx.x):(µy.1:y)
which does not belong to Stream type. Here, µx.x is an indirection node point-
ing itself. Roughly speaking, GPCFω

⊥,1 step by step simulates two-head stream
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output of an IM2-machine, whereas cyclic graph representation enables us to
make all the infinite outputs at a time and realizes the result of infinite-time
computation, which our type system does not deal with. In the same way, the re-
duction of the term-graph gambr(µx. a:y where a:y = x) of type AmbBool
does not terminate in GPCFω

⊥,1 whereas it is reduced to gambr((µa.a):(µy.y))

by (I)-reduction and stops (i.e., causing a runtime error) in GPCFω,c
⊥,1. Our im-

plementation in the next section is close to GPCFω,c
⊥,1 and has this behavior.

5 Implementation

We have implemented our gamb operator as an extension of the Hugs system,
which is a graph-reduction based implementation of the Haskell language. First,
we implemented it as an extension of Gofer ver2.30 which is an ancestor of the
Hugs system. Because Gofer ver2.30 has a good documentation [6], in particular
of the G-machine structure of the runtime system [7], it is not difficult to put a
hook on the eval operator of the G-machine of the Gofer system so that when
it is a function application and the function is gamb, then reduce it as listed in
Section 3. This implementation is available from the author’s web page[18].

6 Some Algorithms with Gamb

As we explained in the introduction, the main application area of 1⊥-stream
programming is real number computation. We list two programs to compute
real-functions over the unit interval [0,1] in [18]. One is the average function pl
to compute (x + y)/2, and the other one is multiplication. They can also be
expressed as GPCFω

⊥,1-terms of type Stream → Stream → Stream.
We can also apply higher-order functions “map” and “foldr1” to real functions

like pl. Therefore, for example, we can write and execute

sum a = gtos (foldr1 pl (map stog (map (code a))))

which calculates the sum of the elements of the finite list a. Here, the code
function maps a real number with decimal representation to the binary repre-
sentation. This time again, it can also be expressed in GPCFω

⊥,1.

7 Conclusion

We extended the notion of a stream to a stream with at most one bottom and
implemented, as an extension of Haskell, input/output of such extended streams.
This mechanism can be used for real number computation because the set of real
numbers is topologically embedded in Σω

⊥,1.
We defined a datatype corresponding to a 1⊥-stream as a subtype of the

infinite list type [Bool]. There is another way of implementing computation
over 1⊥-streams. That is, to assign a name to each constructor and represent
a 1⊥-stream as an ordinary stream. However, because of the several ways of
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constructing the same 1⊥-stream, such representation is not canonical. From
the authors experience, the existence of multiple-representation complicates 1⊥-
stream programs. In addition, if we accept this approach, we need to consider
the relation between the denotation as a 1⊥-stream and its representation as an
ordinary stream. Since a 1⊥-stream itself is directly expressible in a programming
language, the author thinks it natural to try to write a program which directly
manipulates them, as we did in this paper.

We have two goals in this study of 1⊥-stream calculi. One is to actually imple-
ment it and write and execute real-number programs. The other one is to study
the computational structure of 1⊥-streams and relate it to that of real num-
bers. One observation here is that, the nondeterminism and multi-valuedness of
functions over 1⊥-streams appear not because we perform parallel computation
but because we access the intensional information how the arguments are repre-
sented as term-graphs. We need to investigate it with non-sequentiality feature
of real number computation studied in [3].

In this paper, we have only presented the operational side of GPCFω
⊥,1. It is

expected that, through the investigation of the denotational side of GPCFω
⊥,1, we

can study the structure of 1⊥-streams from many aspects, including algebraic,
domain-theoretic, and category-theoretic point of view. The author is interested
in applying the semantics of a sequential nondeterministic language in [10] to
our language. It is left as a future work.

Acknowledgments. The authors thanks Martin Escardo for discussions about
the use of amb operator for Gray-code computation. The first author was sup-
ported in part by Kayamori Foundation of Informatical Science Advancement.
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Bottom-Up β-Reduction:
Uplinks and λ-DAGs

Olin Shivers1 and Mitchell Wand2

1 Georgia Institute of Technology
2 Northeastern University

Abstract. Representing a λ-calculus term as a DAG rather than a tree allows
us to represent the sharing that arises from β-reduction, thus avoiding combina-
torial explosion in space. By adding uplinks from a child to its parents, we can
efficiently implement β-reduction in a bottom-up manner, thus avoiding combi-
natorial explosion in time required to search the term in a top-down fashion. We
present an algorithm for performing β-reduction on λ-terms represented as up-
linked DAGs; discuss its relation to alternate techniques such as Lamping graphs,
explicit-substitution calculi and director strings; and present some timings of an
implementation. Besides being both fast and parsimonious of space, the algorithm
is particularly suited to applications such as compilers, theorem provers, and type-
manipulation systems that may need to examine terms in-between reductions—
i.e., the “readback” problem for our representation is trivial. Like Lamping graphs,
and unlike director strings or the suspension λ-calculus, the algorithm functions
by side-effecting the term containing the redex; the representation is not a “per-
sistent” one. The algorithm additionally has the charm of being quite simple: a
complete implementation of the core data structures and algorithms is 180 lines
of SML.

1 Introduction

The λ-calculus [2, 5] is a simple language with far-reaching use in the programming-
languages and formal-methods communities, where it is frequently employed to repre-
sent, among other objects, functional programs, formal proofs, and types drawn from
sophisticated type systems. Here, our particular interest is in the needs of client appli-
cations such as compilers, which may use λ-terms to represent both program terms as
well as complex types. We are somewhat less focussed on the needs of graph-reduction
engines, where there is greater representational license—a graph reducer can represent
a particular λ-term as a chunk of machine code (e.g., by means of supercombinator ex-
traction), because its sole focus is on executing the term. A compiler, in contrast, needs
to examine, analyse and transform the term in-between reductions, which requires the
actual syntactic form of the term be available at the intermediate steps.

Of the three basic operations on terms in the λ-calculus—α-conversion, β-reduction,
and η-reduction—it is β-reduction that accomplishes the “heavy lifting” of term ma-
nipulation. (The other two operations are simple to implement.) Unfortunately, naı̈ve
implementations of β-reduction can lead to exponential time and space blowup.

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 217–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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There are only three forms in the basic language: λ expressions, variable references,
and applications of a function to an argument:

t ∈ Term ::= λx.t | x | tf ta

where “x” stands for a member of some infinite set of variables.
β-reduction is the operation of taking an application term whose function subterm

is a λ-expression, and substituting the argument term for occurrences of the λ’s bound
variable in the function body. The result, called the contractum, can be used in place of
the original application, called the redex. We write

(λx.b) a ⇒ [x �→a]b

to express the idea that the redex applying function λx.b to argument a reduces to the
contractum [x �→ a]b, by which we mean term b, with free occurrences of x replaced
with term a.

We can define the core substitution function with a simple recursion:

[y �→ t][[x]] = t x = y
[y �→ t][[x]] = x x �= y
[x �→ t][[tf ta]] = ([x �→ t]tf )([x �→ t]ta)
[x �→ t][[λy.b]] = λy′.([x �→ t][y �→y′]b) y′ fresh in b and t.

Note that, in the final case above, when we substitute a term t under a λ-expression λy.b,
we must first replace the λ-expression’s variable y with a fresh, unused variable y′ to
ensure that any occurrence of y in t isn’t “captured” by the [x �→ t] substitution. If we
know that there are no free occurrences of y in t, this step is unnecessary—which is the
case if we adopt the convention that every λ-expression binds a unique variable.

It is a straightforward matter to translate the recursive substitution function defined
above into a recursive procedure. Consider the case of performing a substitution [y �→ t]
on an application tf ta. Our procedure will recurse on both subterms of the applica-
tion. . . but we could also use a less positive term in place of “recurse” to indicate the
trouble with the algorithmic handling of this case: search. In the case of an application,
the procedure will blindly search both subterms, even though one or both may have no
occurrences of the variable for which we search. Suppose, for example, that the function
subterm tf , is very large—perhaps millions of nodes—but contains no occurrences of
the substituted variable y. The recursive substitution will needlessly search out the en-
tire subterm, constructing an identical copy of tf . What we want is some way to direct
our recursion so that we don’t waste time searching into subterms that do not contain
occurrences of the variable being replaced.

2 Guided Tree Substitution

Let’s turn to a simpler task to develop some intuition. Consider inserting an integer into
a set kept as an ordered binary tree (Fig. 1). There are three things about this simple
algorithm worth noting:
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Procedure addItem(node, i)
if node = nil then

new := NewNode()
new.val := i
new.left := nil
new.right := nil

else if node.val < i then
new := NewNode()
new.val := node.val
new.left := node.left
new.right := addItem(node.right,i)

else if node.val > i then
new := NewNode()
new.val := node.val
new.right := node.right
new.left := addItem(node.left,i)

else new := node
return new

Fig. 1. Make a copy of ordered binary tree node, with added entry i. The original tree is not altered

– No search
The pleasant property of ordered binary trees is that we have enough information as
we recurse down into the tree to proceed only into subtrees that require copying.

– Steer down; build up
The algorithm’s recursive control structure splits decision-making and the actual
work of tree construction: the downward recursion makes the decisions about which
nodes need to be copied, and the upward return path assembles the new tree.

– Shared structure
We copy only nodes along the spine leading from targeted node to the root; the result
tree shares as much structure as possible with the original tree.

3 Guiding Tree Search with Uplinks

Unfortunately, in the case of β-reduction, there’s no simple, compact way of determin-
ing, as we recurse downwards into a tree, which way to go at application nodes—an
application has two children, and we might need to recurse into one, the other, both,
or neither. Suppose, however, that we represent our tree using not only down-links that
allow us to go from a parent to its children, but also with redundant up-links that allow
us to go from a child to its parent. If we can (easily) find the leaf node in the original tree
we wish to replace, we can chase uplinks along the spine from the old leaf to the tree
root, copying as we go (Fig. 2). The core iteration of this algorithm is the c �→c′ upcopy:

�� ��
p

c c’ o
⇒ �� ����

p

c c’ o

p’
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d fe hgba c x

Fig. 2. Replacing a single leaf in a binary tree by following uplinks. Here, we make a copy of the
original tree, replacing leaf c with x

We take a child c and its intended replacement c′, and replicate the parent p of c, making
the c �→c′ substitution. This produces freshly-created node p′; we can now iterate, doing
a p �→p′ upcopy into the parent of p at the next step, and so on, moving up through the
original tree until we reach the root.

Note the similar properties this upcopy algorithm has with the previous algorithm: no
search required; we build as we move upwards; we share as much structure as possible
with the old tree, copying only the nodes along the “spine” leading from the leaf back to
the root. For a balanced tree, the amount of copying is logarithmic in the total number of
nodes. If we can somehow get our hands on the leaf node to be replaced in the old tree,
the construction phase just follows uplinks to the root, instead of using a path saved in
the recursion stack by the downwards search.

4 Upcopy with DAGs

We can avoid space blowup when performing β-reduction on λ-calculus terms if we can
represent them as directed acyclic graphs (DAGs), not trees. Allowing sharing means
that when we substitute a large term for a variable that has five or six references inside
its binding λ-expression, we don’t have to create five or six distinct copies of the term
(that is, one for each place it occurs in the result). We can just have five or six references
to the same term. This has the potential to provide logarithmic compression on the
simple representation of λ-calculus terms as trees. These term DAGs can be thought of
as essentially a space-saving way to represent term trees, so we can require them, like
trees, to have a single top or root node, from which all other nodes can be reached.

When we shift from trees to DAGs, however, our simple functional upcopy algorithm
no longer suffices: we have to deal with the fact that there may be multiple paths from a
leaf node (a variable reference) of our DAG up to the root of the DAG. That is, any term
can have multiple parents. However, we can modify our upwards-copying algorithm in
the standard way one operates on DAGs: we search upwards along all possible paths,
marking nodes as we encounter them. The first time we copy up into a noden, we replicate
it, as in the previous tree algorithm, and continue propagating the copy operation up the
tree to the (possibly multiple) parents of n. However, before we move upwards from
n, we first store the copy n′ away in a “cache” field of n. If we later copy up into n
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Procedure upcopy(childcopy, parent, relation)
if parent.cache is empty then

parcopy := NewNode()
if relation is "left child" then
parcopy.left := childcopy
parcopy.right := parent.right
else
parcopy.right := childcopy
parcopy.left := parent.left
parent.cache := parcopy
for-each <grandp,gprel> in parent.uplinks do

upcopy(parcopy, grandp, gprel)
else

parcopy := parent.cache
if relation is "left child"
then parcopy.left := childcopy
else parcopy.right := childcopy

Fig. 3. Procedure upcopy makes a copy of a binary DAG, replacing the relation child (left or
right) of parent with childcopy

via its other child, the presence of the copy n′ in the cache slot of n will signal the
algorithm that it should not make a second copy of n, and should not proceed upwards
from n—that has already been handled. Instead, it mutates the existing copy, n′, and
returns immediately.

The code to copy a binary DAG, replacing a single leaf, is shown in Fig. 3. Every node
in the DAG maintains a set of its uplinks; each uplink is represented as a 〈parent, relation〉
pair. For example, if node c is the left child of node p, then the pair 〈p, left-child〉 will
be one of the elements in c’s uplink set.

The upcopy algorithm explores each edge on all the paths from the root of the
DAG to the copied leaf exactly once; marking parent nodes by depositing copies in
their cache slots prevents the algorithm from redundant exploration. Hence this graph-
marking algorithm runs in time proportional to the number of edges, not the number
of paths (which can be exponential in the number of edges). Were we to “unfold” the
DAG into its equivalent tree, we would realise this exponential blowup in the size of the
tree, and, consequently, also in the time to operate upon it. Note that, analogously to the
tree-copying algorithm, the new DAG shares as much structure as possible with the old
DAG, only copying nodes along the spine (in the DAG case, spines) from the copied
leaf to the root.

After an upcopy has been performed, we can fetch the result DAG from the cache slot
of the original DAG’s root. We must then do another upwards search along the same paths
to clear out the cache fields of the original nodes that were copied, thus resetting the DAG
for future upcopy operations. This cache-clearing pass, again, takes time linear in the
number of edges occurring on the paths from the copied leaf to the root. (Alternatively,
we can keep counter fields on the nodes to discriminate distinct upcopy operations, and
perform a global reset on the term when the current-counter value overflows.)
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5 Operating on λ-DAGs

We now have the core idea of our DAG-based β-reduction algorithm in place, and can
fill in the details specific to our λ-expression domain.

Basic representation. We will represent a λ-calculus term as a rooted DAG.

Sharing. Sharing will be generally allowed, and sharing will be required of variable-
reference terms. That is, any given variable will have no more than one node in the DAG
representing it. If one variable is referenced by (is the child of) multiple parent nodes in
the graph, these nodes will simply all contain pointers to the same data structure.

Bound-variable short-cuts. Every λ-expression node will, in addition to having a ref-
erence to its body node, also have a reference to the variable node that it binds. This, of
course, is how we navigate directly to the leaf node to replace when we begin the upcopy
for a β-reduction operation. Note that this amounts to an α-uniqueness condition—we
require that every λ-expression bind a unique variable.

Cache fields. Every application node has a cache field that may either be empty or
contain another application node. λ-expression nodes do not need cache fields—they
only have one child (the body of the λ-expression), so the upcopy algorithm can only
copy up through a λ-expression once during a β-reduction.

Uplinks. Uplinks are represented by 〈parent, relation〉 pairs, where the three possible
relations are “λ body,” “application function,” and “application argument.” For example,
if a node n has an uplink 〈l, λ-body〉, then l is a λ-expression, and n is its body.

Copying λ-expressions. With all the above structure in place, the algorithm takes shape.
To perform a β-reduction of redex (λx.b) a, where b and a are arbitrary subterms, we
simply initiate an x �→a upcopy. This will copy up through all the paths connecting top
node b and leaf node x, building a copy of the DAG with a in place of x, just as we
desire.

Application nodes, having two children, are handled just as binary-tree nodes in the
general DAG-copy algorithm discussed earlier: copy, cache & continue on the first visit;
mutate the cached copy on a second visit. λ-expression nodes, however, require different
treatment. Suppose, while we are in the midst of performing the reduction above, we
find ourselves performing a c �→ c′ upcopy, for some internal node c, into a λ parent
of c: λy.c. The general structure of the algorithm calls for us to make a copy of the
λ-expression, with body c′. But we must also allocate a fresh variable, y′, for our new
λ-expression, since we require all λ-expressions to bind distinct variables. This gives
us λy′.c′. Unfortunately, if old body c contains references to y, these will also occur in
c′—not y′. We can be sure c′ contains no references to y′, since y′ was created after c′!
We need to fix up body c′ by replacing all its references to y with references to y′.

Luckily, we already have the mechanism to do this: before progressing upwards to
the parents of λy.c, we simply initiate a y �→y′ upcopy through the existing DAG. This
upcopy will proceed along the paths leading from the y reference, up through the DAG,
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to the λy.c node. If there are such paths, they must terminate on a previously-copied
application node, at which point the upcopy algorithm will mutate the cached copy and
return.

Why must these paths all terminate on some previously copied application node?
Because we have already traversed a path from x up to λy.c, copying and caching as we
went. Any path upwards from the y reference must eventually encounter λy.c, as well—
this is guaranteed by lexical scope. The two paths must, then, converge on a common
application node—the only nodes that have two children. That node was copied and
cached by the original x-to-λy.c traversal.

When the y �→ y′ upcopy finishes updating the new DAG structure and returns, the
algorithm resumes processing the original c �→c′ upcopy, whose next step is to proceed
upwards with a (λy.c) �→ (λy′.c′) upcopy to all of the parents of λy.c, secure that the
c′ sub-DAG is now correct.

The single-DAG requirement. We’ve glossed over a limitation of the uplink represen-
tation, which is that a certain kind of sharing is not allowed: after a β-reduction, the
original redex must die. That is, the model we have is that we start with a λ-calculus
term, represented as a DAG. We choose a redex node somewhere within this DAG,
reduce it, and alter the original DAG to replace the redex with the contractum. When
done, the original term has been changed—where the redex used to be, we now find the
contractum. What we can’t do is to choose a redex, reduce it, and then continue to refer to
the redex or maintain an original, unreduced copy of the DAG. Contracting a redex kills
the redex; the term data structure is not “pure functional” or “persistent” in the sense of
the old values being unchanged. (We can, however, first “clone” a multiply-referenced
redex, splitting the parents between the original and the clone, and then contract only
one of the redex nodes.)

This limitation is due to the presence of the uplinks. They mean that a subterm can
belong to only one rooted DAG, in much the same way that the backpointers in a doubly-
linked list mean that a list element can belong to only one list (unlike a singly-linked list,
where multiple lists can share a common tail). The upcopy algorithm assumes that the
uplinks exactly mirror the parent→child downlinks, and traces up through all of them.
This rules out the possibility of having a node belong to multiple distinct rooted DAGs,
such as a “before” and “after” pair related by the β-reduction of some redex occurring
within the “before” term.

Hence the algorithm, once it has finished the copying phase, takes the final step
of disconnecting the redex from its parents, and replacing it with the contractum. The
redex application node is now considered dead, since it has no parents, and can be
removed from the parent/uplink sets of its children and deallocated. Should one of its
two children thus have its parent set become empty, it, too, can be removed from the
parent sets of its children and deallocated, and so forth. Thus we follow our upwards-
recursive construction phase with a downwards-recursive deallocation phase.

It’s important to stress, again, that this deallocation phase is not optional. A dead
node must be removed from the parent sets of its children, lest we subsequently waste
time doing an upcopy from a child up into a dead parent during a later reduction.
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Termination and the top application. Another detail we’ve not yet treated is termination
of the upcopy phase. One way to handle this is simply to check as we move up through the
DAG to see if we’ve arrived at the λ-expression being reduced, at which point we could
save away the new term in some location and return without further upward copying.
But there is an alternate way to handle this. Suppose we are contracting redex(λx.b)n,
for arbitrary sub-terms b and n. At the beginning of the reduction operation, we first
check to see if x has no references (an easy check: is its uplink set empty?). If so, the
answer is b; we are done.

Otherwise, we begin at the λ-expression being reduced and scan downwards from λ-
expression to body, until we encounter a non-λ-expression node—either a variable or an
application. If we halt at a variable, it must be x—otherwise xwould have no references,
and we’ve already ruled that out. This case can also be handled easily: we simply scan
back through this chain of nested λ-expressions, wrapping fresh λ-expressions around
n as we go.

Finally, we arrive at the general case: the downward scan halts at the topmost appli-
cation node a of sub-term b. We make an identical copy a′ of a, i.e. one that shares both
the function and argument children, and install a′ in the cache slot of a.

Now we can initiate an x �→ n upcopy, knowing that all upwards copying must
terminate on a previously-copied application node. This is guaranteed by the critical,
key invariant of the DAG: all paths from a variable reference upward to the root must
encounter the λ-node binding that variable—this is simply lexical-scoping in the DAG
context. The presence of a′ in the cache slot of a will prevent upward copying from
proceeding above a. Node a acts as a sentinel for the search; we can eliminate the root
check from the upcopy code, for time savings.

When the upcopy phase finishes, we pass a′ back up through the nested chain of
λ-expressions leading from a back to the top λx.b term. As we pass back up through
each λ-expression λy.t, we allocate a fresh λ-expression term and a fresh variable y′ to
wrap around the value t′ passed up, then perform a y �→y′ upcopy to fix up any variable
references in the new body, and then pass the freshly-created λy′.t′ term on up the chain.
(Note that the extended example shown in Sec. 7 omits this technique to simplify the
presentation.)

6 Fine Points

These fine points of the algorithm can be skipped on a first reading.

Representing uplinks. A node keeps its uplinks chained together in a doubly-linked list,
which allows us to remove an uplink from a node’s uplink set in constant time. We will
need to do this, for example, when we mutate a previously copied node n to change one
of its children—the old child’s uplink to n must be removed from its uplink set.

We simplify the allocation of uplinks by observing that each parent node has a fixed
number of uplinks pointing to it: two in the case of an application and one in the case
of a λ-expression. Therefore, we allocate the uplink nodes along with the parent, and
thread the doubly-linked uplink lists through these pre-allocated nodes.
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An uplink doubly-linked list element appears in the uplink list of the child, but
the element belongs to the parent. For example, when we allocate a new application
node, we simultaneously allocate two uplink items: one for the function-child uplink to
the application, and one for the argument-child uplink to the application. These three
data structures have identical lifetimes; the uplinks live as long as the parent node they
reference. We stash them in fields of the application node for convenient retrieval as
needed. When we mutate the application node to change one of its children, we also
shift the corresponding uplink structure from the old child’s uplink list to the new child’s
uplink list, thus keeping the uplink pointer information consistent with the downlink
pointer information.

The single-reference fast path. Consider a redex (λx.b)n, where the λ-expression being
reduced has exactly one parent. We know what that parent must be: the redex application
itself. This application node is about to die, when all references to it in the term DAG are
replaced by references to the contractum. So the λ-expression itself is about to become
completely parentless—i.e., it, too, is about to die. This means that any node on a path
from x up to the λ-expression will also die. Again, this is the key invariant provided by
lexical scope: all paths from a variable reference upward to the root must encounter the
λ-expression binding that variable. So if the λ-expression has no parents, then all paths
upwards from its variable must terminate at the λ-expression itself.

This opens up the possibility of an alternate, fast way to produce the contractum:
when the λ-expression being reduced has only one parent, mutate the λ-expression’s
body, altering all of x’s parents to refer instead to n. We do no copying at all, and may
immediately take the λ-expression’s body as our answer, discarding the λ-expression
and its variable x (in general, a λ-expression and its variable are always allocated and
deallocated together).

Opportunistic iteration. The algorithm can be implemented so that when a node is
sequencing through its list of uplinks, performing a recursive upcopy on each one, the
final upcopy can be done with a tail recursion (or, if coded in a language like C, as a
straight iteration). This means that when there is no sharing of nodes by parents, the
algorithm tends to iteratively zip up chains of single-parent links without pushing stack
frames.

7 Extended Example

We can see the sequences of steps taken by the algorithm on a complete example in Fig. 4.
Part 4(a) shows the initial redex, which is (λx.(x(λy.x(uy)))(λy.x(uy))) t, where the
(λy.x(uy)) subterm is shared, and t and u are arbitrary, unspecified subterms with no
free occurrences of x or y. To help motivate the point of the algorithm, imagine that the
sub-terms t and u are enormous—things we’d like to avoid copying or searching—and
that the λx node has other parents besides application 1—so we cannot blindly mutate it
at will, without corrupting what the other parents see. (If the λx node doesn’t have other
parents, then the single-reference fast-path described in the previous section applies, and
we are allowed to mutate the term, for a very fast reduction.)
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Fig. 4. A trace of a bottom-up reduction of the term (λx.(x(λy.x(uy)))(λy.x(uy)))t, where the
(λy.x(uy)) term is shared, and sub-terms t and u are not specified

In the following subfigure, 4(b), we focus in on the body of the λ-expression being
reduced. We iterate over the parents of its variable-reference x, doing an x �→ t upcopy;
this is the redex-mandated substitution that kicks off the entire reduction. The first parent
of x is application 3, which is copied, producing application 3′, which has function child
t instead of the variable reference x, but has the same argument child as the original
application 3, namely the λy term. The copy 3′ is saved away in 3’s cache slot, in case
we upcopy into 3 from its argument child in the future.

Once we’ve made a copy of a parent node, we must recursively perform an upcopy
for it. That is, we propagate a 3 �→ 3′ upcopy to the parents of application 3. There is
only one such parent, application 2. In subfigure 4(c), we see the result of this upcopy:
the application 2′ is created, with function child 3′ instead of 3; the argument child, λy,
is carried over from the original application 2. Again, application 2′ is saved away in the
cache slot of application 2.

Application 2 is the root of the upcopy DAG, so once it has been copied, control
returns to application 3 and its 3 �→3′ upcopy. Application 3 has only one parent, so it is
done. Control returns to x and its x �→ t upcopy, which proceeds to propagate upwards
to the second parent of x, application 4.
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We see the result of copying application 4 in subfigure 4(d). The new node is 4′,
which has function child t where 4 has x; 4′ shares its argument child, application 5,
with application 4. Once again, the copy 4′ is saved away in the cache slot of application 4.

Having copied application 4, we recursively trigger a 4 �→4′ upcopy, which proceeds
upwards to the sole parent of application 4. We make a copy of λy, allocating a fresh
variable y′, with the new body 4′. This is shown in subfigure 4(e).

Since the new λy′ term binds a fresh variable, while processing the λy term we must
recursively trigger a y �→ y′ upcopy, which begins in subfigure 4(f). We iterate through
the parents of variable-reference y, of which there is only one: application 5. This is
copied, mapping child y to replacement y′ and sharing function child u. The result, 5′,
is saved away in the cache slot of application 5.

We then recursively trigger a 5 �→ 5′ upcopy through the parents of application 5;
there is only one, application 4. Upon examining this parent (subfigure 4(g)), we discover
that 4 already has a copy, 4′, occupying its cache slot. Rather than create a second, new
copy of 4, we simply mutate the existing copy so that its argument child is the new
term 5′. Mutating rather than freshly allocating means the upcopy proceeds no further;
responsibility for proceeding upwards from 4 was handled by the thread of computation
that first encountered it and created 4′. So control returns to application 5, which has no
more parents, and then to y, who also has no more parents, so control finally returns to
the λy term that kicked off the y �→y′ copy back in subfigure 4(f).

In subfigure 4(h), the λy term, having produced its copy λy′, continues the upcopy
by iterating across its parents, recursively doing a λy �→ λy′ upcopy. The first such
parent is application 3, which has already been copied, so it simply mutates its copy to
have argument child λy′ and returns immediately.

The second parent is application 2, which is handled in exactly the same way in
subfigure 4(i). The λy term has no more parents, so it returns control to application 4,
who has no more parents, and so returns control to variable reference x. Since x has no
more parents, we are done. The answer is application 2′, which is shown in subfigure 4(j).
We can change all references to application 1 in the DAG to point, instead, to application
2′, and then deallocate 1. Depending on whether or not the children of application 1
have other parents in the DAG, they may also be eligible for deallocation. This is easily
performed with a downwards deallocation pass, removing dead nodes from the parent
lists of their children, and then recursing if any child thus becomes completely parentless.

8 Experiments

To gain experience with the algorithm, a pair of Georgia Tech undergraduates imple-
mented three β-reduction algorithms: the bottom-up algorithm (BUBS), a reducer based
on the suspension λ-calculus (SLC, see Sec. 9.1), and a simple, base-line reducer, based
on the simple top-down, blind-search recursive procedure described in Sec. 1. For a toy
client application that would generate many requests for reduction, we then built a pair
of simple normalisers (one total and one weak-head) on top of the reducers. We did two
independent implementations, the first in SML, and a second, in C; the C implementa-
tion gave us tighter control over the algorithm and data structures for the purposes of
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CPU time (ms) # reductions
BUBS SLC Simple BUBS Tree

(fact 2) 0 10 10 123 180
(fact 3) 0 20 20 188 388
(fact 4) 0 40 ∞ 286 827
(fact 5) 0 160 ∞ 509 2045
(fact 6) 10 860 ∞ 1439 7082
(fact 7) 20 5620 ∞ 7300 36180
(fact 8) 190 48600 ∞ 52772 245469
nasty-I 30 740 ∞ 7300 8664
pearl10 0 N/A N/A 10 N/A
pearl18 0 N/A N/A 18 N/A
tree10 0 0 0 1023 1023
tree18 740 2530 1980 262143 262143

Fig. 5. Timings for three different implementations of reduction. The system gave us a measure-
ment precision of 10 ms; an entry of 0ms means below the resolution of the timer—i.e., less than
10ms; a measurement of∞ means the measurement was halted after several cpu-minutes

measurement. The SLC and simple reducers managed storage in the C implementation
with the Boehm-Demers-Weiser garbage collector, version 6.2; the BUBS algorithm
requires no garbage collector.

Space limitations restrict us to presenting a single set of comparisons from these tests
(Fig. 5). The “fact” entries are factorial computations, with Church-numeral encodings.
“Nasty-I” is a 20,152-node tree of S and K combinators that reduces to I. A “tree i” entry
is a full binary tree of applications, i deep, with I combinators at the leaves; a “pearl i”
is this tree collapsed to a DAG—a linear sequence of i application nodes with a single I
leaf. We compiled the code with gcc 2.95.4 -g -O2 -Wall and performed the test runs on
an 800 MHz PIII (256 KB cache), 128 MB RAM, Debian GNU/Linux 3.0 system. These
measurements are fairly minimal; we are currently porting Shao’s Flint [14] system to
BUBS to get a more realistic test of the algorithm in actual practice.

One of the striking characteristics of the bottom-up algorithm is not only how fast
it is, but how well-behaved it seems to be. The other algorithms we’ve tried have fast
cases, but also other cases that cause them to blow up fairly badly. The bottom-up
algorithm reliably turns in good numbers. We conjecture this is the benefit of being able
to exploit both sharing and non-sharing as they arise in the DAG. If there’s sharing, we
benefit from re-using work. If there’s no sharing, we can exploit the single-parent fast
path. These complementary techniques may combine to help protect the algorithm from
being susceptible to particular inputs.

9 Related Work

A tremendous amount of prior work has been carried out exploring different ways to
implement β-reduction efficiently. In large part, this is due to β-reduction lying at the
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heart of the graph-reduction engines that are used to execute lazy functional languages.
The text by Peyton Jones et al. [13] summarises this whole area very well.

However, the focus of the lazy-language community is on representations tuned for
execution, and the technology they have developed is cleverly specialised to serve this
need. This means, for example, that it’s fair game to fix on a particular reduction order. For
example, graph reducers that overwrite nodes rely on their normalisation order to keep
the necessary indirection nodes from stacking up pathologically. A compiler, in contrast,
is a λ-calculus client that makes reductions in a less predictable order, as analyses reveal
opportunities for transformation.

Also, an implementation tuned for execution has license to encode terms, or parts of
terms, in a form not available for examination, but, rather, purely for execution. This is
precisely what the technique of supercombinator compilation does. Our primary interest
at the beginning of this whole effort was instead to work in a setting where the term
being reduced is always directly available for examination—again, serving the needs of
a compiler, which wants to manipulate and examine terms, not execute them.

9.1 Explicit-Substitution Calculi

One approach to constructing efficient λ-term manipulators is to shift to a language
that syntactically encodes environments. The “suspension λ-calculus” developed by
Nadathur et al. [12] is one such example that has been used with success in theorem
provers and compilers. However, these implementations are quite complex, inflict de
Bruijn encodings on the client, and their “constant-time” reductions simply shift the
burden of the reduction to readback time. In the terms we’ve defined, these technologies
use “blind search” to find the variables being substituted. Also, their use of de Bruijn
encodings is a barrier to sharing internal structure: de Bruijn-index references are context
dependent. E.g., if a term λx.y appears multiple times underneath a λy parent, the index
used for the y reference can vary.

One of the major algorithmic payoffs of these representations, lazy reduction, is not
so useful for compilers, which typically must examine all the nodes of a term in the
course of processing a program. SLC has been successfully employed inside a compiler
to represent Shao’s Flint typed intermediate language [14], but the report on this work
makes clear the impressive, if not heroic, degree of engineering required to exploit this
technology for compiler internals—the path to good performance couples the core SLC
representation with hash consing as well as memoisation of term reductions.

The charm of the bottom-up technique presented here is its simplicity. The data
structure is essentially just a simple description of the basic syntax as a datatype, with
the single addition of child→parent backpointers. It generalises easily to the richer
languages used by real compilers and other language-manipulation systems. It’s very
simple to examine this data structure during processing; very easy to debug the reduction
engine itself. In contrast to more sophisticated and complex representations such as SLC,
there are really only two important invariants on the structure: (1) all variables are in scope
(any path upwards from a variable reference to the root must go through the variable’s
binding λ-expression), and (2) uplink backpointers mirror downlink references.
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9.2 Director Strings

Director strings [7] are a representation driven by the same core issue that motivates
our uplink-DAG representation: they provide a way to guide search when performing
β-reduction. In the case of director strings, however, one can do the search top-down.
Unfortunately, director strings can impose a quadratic space penalty on our trees. Up-
linked λ-DAGs are guaranteed to have linear space requirements. Whether or not the
space requirements for a director strings representation will blow up in practice de-
pends, of course, on the terms being manipulated. But the attraction of a linear-space
representation is knowing that blow-up is completely impossible.

Like the suspension λ-calculus, director strings have the disadvantage of not being a
direct representation of the original term; there is some translation involved in converting
a λ-calculus term into a director strings.

Director strings can be an excellent representation choice for graph-reducing nor-
malising engines. Again, we are instead primarily focussed on applications that require
fine-grained inter-reduction access to the term structure, such as compilers.

9.3 Optimal λ Reduction

The theory of “optimal λ reduction” [10, 9, 6] (or, OLR), originated by Lévy and Lamp-
ing, and developed by Abadi, Asperti, Gonthier, Guerrini, Lawall, Mairson et al., is a
body of work that shares much with bottom-up β-reduction. Both represent λ-terms
using graph structure, and the key idea of connecting variable-binders directly to value-
consumers of the bound variable is present in both frameworks—and for the same reason,
namely, from a desire that substitution should be proportional to the number of refer-
ences to the bound variable, removing the need to blindly search a term looking for these
references.

However, the two systems are quite different in their details, in fairly deep ways.
Lamping graphs allow incremental reduction by means of adding extra “croissant,”
“bracket” and “fan” nodes to the graph. This exciting alternative model of computation,
however, comes with a cost: the greatly increased complexity of the graph structure and
its associated operations. In particular, in actual use, the croissant and bracket marks can
frequently pile up uselessly along an edge, tying up storage and processing steps. It also
makes it difficult to “read” information from the graph structure. As Gonthier, Abadi
and Lévy state [6], “it seems fair to say that Lamping’s algorithm is rather complicated
and obscure.” The details of this complexity have prevented OLR-based systems from
widespread adoption.

9.4 Two Key Issues: Persistence and Readback

Our comparisons with other techniques have repeatedly invoked the key issues of persis-
tence and readback. Our data structure is not a “persistent” one—performing a reduction
inside a term changes the term. If an application needs to keep the old term around, then
our algorithm is not a candidate (or, at least, not without some serious surgery). So per-
haps it is unfair to compare our algorithm’s run times to those of persistent algorithms,
such as SLC or director strings.
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However, we can turn this around, and claim that the interesting feature of our
algorithm is that it exploits lack of persistence. If an application doesn’t need persistence,
it shouldn’t have to pay for it. The standard set of choices are invariably persistent; our
algorithm provides an alternative design point. (Note that reduction on Lamping graphs is
also not persistent, which is, again, either a limitation or a source of efficiency, depending
on your point of view.)

The other key, cross-cutting issue is readback. An application that doesn’t need to
examine term structure in-between reductions has greater flexibility in its requirements.
If readback is a requirement, however, then Lamping graphs and the SLC are much less
attractive. Readback with our representation is free: one of the pleasant properties of a
DAG is that it can be viewed just as easily as a tree; there is no need to convert it.

Thus, bottom-up β-reduction is a technology which is well suited to applications
which (1) don’t need persistence, but (2) do need fine-grained readback.

10 Conclusion

We certainly are not the first to consider using graph structure to represent terms of the
λ-calculus; the ideas go back at least to 1954 [4, 15]. The key point we are making is
that two of these ideas work together:

– representing λ-terms as DAGS to allow sharing induced by β-reduction, and
– introducing child→parent backpointers and λ→variable links to efficiently direct

search and construction.

The first idea allows sharing within a term, while the second allows sharing across a
reduction, but they are, in fact, mutually enabling: in order to exploit the backpointers,
we need the DAG representation to allow us to build terms without having to replicate
the subterm being substituted for the variable. This is the source of speed and space
efficiency.

The algorithm is simple and directly represents the term without any obscuring
transform, such as combinators, de Bruijn indices or suspensions, a pleasant feature
for λ-calculus clients who need to examine the terms. It is also, in the parlance of the
graph-reduction community, fully lazy.
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Abstract. We present a precise correspondence between separation logic
and a new simple notion of predicate BI, extending the earlier correspon-
dence given between part of separation logic and propositional BI [14].
Moreover, we introduce the notion of a BI hyperdoctrine and show that
it soundly models classical and intuitionistic first- and higher-order pred-
icate BI, and use it to show that we may easily extend separation logic to
higher-order. We argue that the given correspondence may be of import
for formalizations of separation logic.

1 Introduction

Separation logic [20, 19, 5, 6, 22, 9, 2] is a Hoare-style program logic, and variants
of it have been applied to prove correct interesting pointer algorithms such as
copying a dag, disposing a graph, the Schorr-Waite graph algorithm, and Ch-
eney’s copying garbage collector. Different extensions of core separation logic
were employed to conduct these proofs. For example, Yang [21] extended the
core logic with lists and trees, and in [2] the logic included finite sets and re-
lations. Thus it is natural to ask whether one has to make a new extension of
separation logic for every proof one wants to make [17]. This would be unfortu-
nate for formal verification of proofs in separation logic since it would make the
enterprise of formal verification burdensome and dubious. We argue that there
is a natural single underlying logic in which it is possible to define the various
extensions and prove the expected properties thereof; this is then the single logic
that should be employed for formal verification.

Part of the pointer model of separation logic, namely that given by heaps
(but not stacks), has been related to propositional BI, the logic of bunched
implications introduced by O’Hearn and Pym [12]. In this paper we show how
the correspondence may be extended to a precise correspondence between all
of the pointer model (including stacks) and a simple notion of predicate BI. We
introduce the notion of a BI hyperdoctrine, a simple extension of Lawvere’s notion
of hyperdoctrine [8], and show that it soundly models predicate BI. We consider
a different notion of predicate BI than that of [15, 16], which has a BI structure
on contexts. However, we believe that our notion of predicate BI with its class
of BI hyperdoctrine models is the right one for separation logic (Pym aimed to
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model mulitiplicative quantifiers; separation logic only uses additive quantifiers).
To make this point, we show that the pointer model of separation logic exactly
corresponds to the interpretation of predicate BI in a simple BI hyperdoctrine.
This correspondence also allows us to see that it is simple to extend separation
logic to higher-order separation logic. We explain this extension and suggest that
it may be useful for program proving.

Before proceeding with the technical development we give an intuitive jus-
tification of the use of BI hyperdoctrines to model higher-order predicate BI.
A powerful way of obtaining models of BI is by means of functor categories
(presheaves), using Day’s construction to obtain a doubly-closed structure on
the functor category [14]. Such functor categories can be used to model propo-
sitional BI in two different senses: In the first sense, one models provability,
entailment between propositions, and it works because the lattice of subobjects
of the terminal object in such functor categories form a BI algebra (a doubly
cartesian closed preorder). In the second sense, one models proofs, and it works
because the whole functor category is doubly cartesian closed. Here we seek
models of provability of predicate BI. Since the considered functor categories are
toposes and hence model higher-order predicate logic, one might think that a
straightforward extension is possible. But, alas, it is not the case. In general,
for this to work, every lattice of subobjects (for any object, not only for the
terminal object) should be a BI algebra and, moreover, to model substitution
correctly the BI algebra structure should be preserved by pulling back along any
morphism. We show that this can only be the case if the BI algebra structure is
trivial, that is, coincides with the cartesian structure (see Theorem 7). Our the-
orem holds for any topos, not just for the functor categories considered earlier.
Hence we need to consider a wider class of models for predicate BI than just
toposes and this justifies the notion of a BI hyperdoctrine. The intuitive reason
that BI hyperdoctrines work, is that predicates are not required to be modeled
by subobjects, they can be something more general. Another important point
of BI hyperdoctrines is that they are easy to come by: given any complete BI
algebra B, we can define a canonical BI hyperdoctrine in which predicates are
modeled as B-valued functions; we explain this in detail in Example 6.

The remainder of this paper is organized as follows. In Section 2 we recall
the notion of a (first-order) hyperdoctrine and explain how it soundly models
predicate logic. We then define the concept of a (first-order) BI hyperdoctrine
and explain how it soundly models predicate BI. In Section 3 we briefly recall the
standard pointer model of separation logic and show how it can be construed
as a first-order BI hyperdoctrine. In Section 4 we discuss some consequences
for separation logic, and in particular, we use the higher-order logic to give
logical characterizations of interesting classes of predicates. Finally, we conclude
in Section 5.

2 BI Hyperdoctrines

In this section we introduce Lawvere’s notion of a hyperdoctrine [8] and briefly
recall how it can be used to model intuitionistic and classical first- and higher-
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order predicate logic (see, for example, [13] and [7] for more explanations than
can be included here). We then define the notion of a BI hyperdoctrine, which is
a straightforward extension of the standard notion of hyperdoctrine, and explain
how it can be used to model predicate BI logic.

Hyperdoctrines. A first-order hyperdoctrine is a categorical structure tailored to
model first-order predicate logic with equality. The structure has a base category
C for modeling the types and terms, and a C-indexed category P for modeling
formulas.

Definition 1 (First-order hyperdoctrines). Let C be a category with finite
products. A first-order hyperdoctrine P over C is a contravariant functor P :
Cop → Poset from C into the category of partially ordered sets and monotone
functions, with the following properties.

1. For each object X, the partially ordered set P(X) is a Heyting algebra.
2. For each morphism f : X → Y in C, the monotone function P(f) : P(Y ) →

P(X) is a Heyting algebra homomorphism.
3. For each diagonal morphism ∆X : X → X × X in C, the left adjoint to

P(∆X) at the top element � ∈ P(X) exists. In other words, there is an
element =X of P(X ×X) satisfying that for all A ∈ P(X ×X),

� ≤ P(∆X)(A) iff =X≤ A.

4. For each product projection π : Γ × X → Γ in C, the monotone function
P(π) : P(Γ ) → P(Γ ×X) has both a left adjoint (∃X)Γ and a right adjoint
(∀X)Γ :

A ≤ P(π)(A′) if and only if (∃X)Γ (A) ≤ A′

P(π)(A′) ≤ A if and only if A′ ≤ (∀X)Γ (A).

Moreover, these adjoints are natural in Γ , i.e., given s : Γ → Γ ′ in C, we
have

P(Γ ′ ×X)
P(s×idX) ��

(∃X)Γ ′
��

P(Γ ×X)

(∃X)Γ

��

P(Γ ′ ×X)
P(s×idX) ��

(∀X)Γ ′
��

P(Γ ×X)

(∀X)Γ

��
P(Γ ′) P(s)

�� P(Γ ) P(Γ ′) P(s)
�� P(Γ ).

The elements of P(X), where X ranges over objects of C, will be referred to
as P-predicates.

Interpretation of First-Order Logic in a First-Order Hyperdoctrine. Given a
(first order) signature with types X, function symbols f : X1, . . . , Xn → X, and
relation symbols R ⊂ X1, . . . , Xn, a structure for the signature in a first-order
hyperdoctrine P over C assigns an object [[X]] in C to each type, a morphism
[[f ]] : [[X1]] × · · · × [[Xn]] → [[X]] to each function symbol, and a P-predicate
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[[R]] ∈ P([[X1]] × · · · × [[Xn]]) to each relation symbol. Any term t over the sig-
nature, with free variables in Γ = {x1 : X1, . . . , xn : Xn} and of type X say,
is interpreted as a morphism [[t]] : [[Γ ]] → [[X]], where [[Γ ]] = [[X1]] × · · · × [[Xn]],
by induction on the structure of t (in the standard manner in which terms are
interpreted in categories).

Each formula φ with free variables in Γ is interpreted as a P-predicate
[[φ]] ∈ P([[Γ ]]) by induction on the structure of φ using the properties given
in Definition 1. For atomic formulas R(t1, . . . , tn), the interpretation is given by
P(〈[[t1]], . . . , [[tn]]〉)([[R]]). In particular, the atomic formula t =X t′ is interpreted
by the P-predicate P(〈[[t]], [[t′]]〉)(=[[X]]). The interpretation of other formulas is
given by structural induction. Assume φ, φ′ are formulas with free variables in
Γ and that ψ is a formula with free variables in Γ ∪ {x : X}. Then,

[[�]] = �H

[[⊥]] = ⊥H

[[φ ∧ φ′]] = [[φ]] ∧H [[φ′]]
[[φ ∨ φ′]] = [[φ]] ∨H [[φ′]]
[[φ → φ′]] = [[φ]] →H [[φ′]]

[[∀x : X.ψ]] = (∀[[X]])[[Γ ]]([[ψ]]) ∈ P([[Γ ]])
[[∃x : X.ψ]] = (∃[[X]])[[Γ ]]([[ψ]]) ∈ P([[Γ ]]),

where ∧H ,∨H , etc., is the Heyting algebra structure on P([[Γ ]]).
We say that a formula φ with free variables in Γ is satisfied if [[φ]] is the

top element of P([[Γ ]]). This notion of satisfaction is sound for intuitionistic
predicate logic, in the sense that all provable formulas are satisfied. Moreover,
it is also complete in the sense that a formula is provable if it is satisfied in all
structures in first-order hyperdoctrines. A first-order hyperdoctrine P is sound
for classical predicate logic in case all the fibres P(X) are Boolean algebras and
all the reindexing functions P(f) are Boolean algebra homomorphisms.

Definition 2 (Hyperdoctrines). A (general) hyperdoctrine is a first-order
hyperdoctrine with the following additional properties: C is cartesian closed, and
there is a Heyting algebra H and a natural bijection ΘX : Obj(P(X)) + C(X,H).

A hyperdoctrine is sound for higher-order intuitionistic predicate logic: the
Heyting algebra H is used to interpret the type, call it prop, of propositions
and higher types (e.g., propX , the type for predicates over X), are interpreted
by exponentials in C. The natural bijection ΘX is used to interpret substitution
of formulas in formulas: Suppose φ is a formula with a free variable q of type
prop and with remaining free variables in Γ , and that ψ is a formula with free
variables in Γ . Then [[ψ]] ∈ P([[Γ ]]), [[φ]] ∈ P([[Γ ]] × H), and φ[ψ/q] (φ with ψ
substituted in for q) is interpreted by P(〈id, Θ([[ψ]])〉)([[φ]]). For more details see,
e.g., [13].

Again it is the case that a hyperdoctrine P is sound for classical higher-
order predicate logic in case all the fibres P(X) are Boolean algebras and all the
reindexing functions P(f) are Boolean algebra homomorphisms.

Example 3 (Canonical hyperdoctrine over a topos). Let E be a topos. It
is well-known that E models higher-order predicate logic, by interpreting types as
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objects in E, terms as morphisms in E and predicates as subobjects in E. The
topos E induces a canonical E-indexed hyperdoctrine SubE : Eop → Poset, which
maps an object X in E to the poset of subobjects of X in E and a morphisms
f : X → Y to the pullback functor f∗ : Sub(Y ) → Sub(X). Then the standard
interpretation of predicate logic in E coincides with the interpretation of predi-
cate logic in the hyperdoctrine SubE . Compared to the standard interpretation in
toposes, however, hyperdoctrines allow that predicates are not always modeled by
subobjects but can come from some other universe. Thus hyperdoctrines describe
a wider class of models than toposes do.

BI Hyperdoctrines. Recall that a Heyting algebra is a bi-cartesian closed partial
order, i.e., a partial order, which, when considered as a category, is cartesian
closed (�, ∧, →) and has finite coproducts (⊥, ∨). Further recall that a BI
algebra is a Heyting algebra, which has an additional symmetric monoidal closed
structure (I, ∗, −−∗) [15].

We now present a straightforward extension of (first-order) hyperdoctrines,
which models first and higher-order predicate BI.

Definition 4 (BI Hyperdoctrines).

– A first-order hyperdoctrine P over C is a first-order BI hyperdoctrine in case
all the fibres P(X) are BI algebras and all the reindexing functions P(f) are
BI algebra homomorphisms.

– A BI hyperdoctrine is a first-order BI hyperdoctrine with the additional prop-
erties that C is cartesian closed, and there is a BI algebra B and a natural
bijection ΘX : Obj(P(X)) + C(X,B).

First-order predicate BI is first-order predicate logic with equality, extended
with formulas I, φ ∗ ψ, φ −−∗ ψ satisfying the following rules (in any context Γ
including the free variables of the formulas):

(φ ∗ ψ) ∗ θ 'Γ φ ∗ (ψ ∗ θ) φ ∗ (ψ ∗ θ) 'Γ (φ ∗ ψ) ∗ θ 'Γ φ ↔ φ ∗ I

φ ∗ ψ 'Γ ψ ∗ φ
φ 'Γ ψ θ 'Γ ω

φ ∗ θ 'Γ ψ ∗ ω
φ ∗ ψ 'Γ θ

φ 'Γ ψ −−∗ θ
Our notion of predicate BI should not be confused with the one presented

in [15]; the latter seeks to also include a BI structure on contexts but we do not
attempt to do that here, since that is not what is used in separation logic. In
particular, weakening at the level of variables is always allowed:

φ 'Γ ψ

φ 'Γ∪{x:X} ψ

We can interpret first-order predicate BI in a first-order BI hyperdoctrine
simply by extending the interpretation of first-order logic in first-order hyper-
doctrine given above by:

[[I]] = IB
[[φ ∗ ψ]] = [[φ]] ∗B [[ψ]]
[[φ −−∗ ψ]] = [[φ]] −−∗B [[ψ]],
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where IB , ∗B and −−∗B is the monoidal closed structure in the BI algebra P([[Γ ]]).
We then have:

Theorem 5. The interpretation of first-order predicate BI given above is sound
and complete.

Likewise, BI hyperdoctrines form sound and complete models for higher-order
predicate BI. Of course, a (first-order) BI hyperdoctrine is sound for classical
BI in case all the fibres P(X) are Boolean BI algebras and all the reindexing
functions P(f) are Boolean BI algebra homomorphisms. Here is a canonical
example of a BI hyperdoctrine.

Example 6 (BI hyperdoctrine over a complete BI algebra). Let B be a
complete BI algebra, i.e., it has all joins and meets. It determines a BI hyperdoc-
trine over the category Set as follows. For each set X, let P(X) = BX , the set of
functions from X to B, ordered pointwise. Given f : X → Y , P(f) : BY → BX

is the BI algebra homomorphism given by composition with f . For example if
s, t ∈ P(Y ), i.e., s, t : Y → B, then P(f)(s) = s ◦ f : X → B and s ∗ t is defined
pointwise as (s ∗ t)(y) = s(y) ∗ t(y). Equality predicates =X in BX×X are given
by

=X (x, x′)
def
=
{

� if x = x′

⊥ if x �= x′

where � and ⊥ are the greatest and least elements of B, respectively. The quan-
tifiers use set-indexed joins (

∨
) and meets (

∧
). Specifically, given A ∈ BΓ×X

one has

(∃X)Γ (A)
def
= λi ∈ Γ.

∨
x∈X

A(i, x) (∀X)Γ (A)
def
= λi ∈ Γ.

∧
x∈X

A(i, x)

in BΓ . The conditions in Definition 2 are trivially satisfied (Θ is the identity).

There are plenty of examples of complete BI algebras: for any Grothendieck
topos E with an additional symmetric monoidal closed structure, SubE(1) is a
complete BI algebra, and for any monoidal category C such that the monoid is
cover preserving w.r.t. the Grothendieck topology J , SubSh(C,J)(1) is a complete
BI algebra [1, 14].

The following theorem shows that to get interesting models of higher-order
predicate BI, it does not suffice to consider BI hyperdoctrines arising as the
canoncial hyperdoctrine over a topos (as in Example 3). Indeed this is the reason
for introducing the more general BI hyperdoctrines. For reasons of space, we omit
the proof in this exposition.

Theorem 7. Let E be a topos and suppose SubE : Eop → Poset is a BI hyper-
doctrine. Then the BI structure on each lattice SubE(X) is trivial, i.e., for all
ϕ,ψ ∈ SubE(X), ϕ ∗ ψ ↔ ϕ ∧ ψ.
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3 Separation Logic Modeled by BI-Hyperdoctrines

We briefly recall the standard pointer model of separation logic (for a more thor-
ough presentation see, for instance, [20]) and then show how it can be construed
as a BI hyperdoctrine over Set.

The core assertion language of separation logic (which we will henceforth
also call separation logic) is often defined as follows. There is a single type Val
of values. Terms t are defined by a grammar

t ::= x | n | t+ t | t− t | · · · ,

where n : Val are constants for all integers n. Formulas, also called assertions,
are defined by

φ ::= � | ⊥ | t = t | t �→ t | φ∧φ | φ∨φ | φ → φ | φ∗φ | φ −−∗ φ | emp | ∀x.φ | ∃x.φ

The symbol emp is used in separation logic for the unit of BI.
Note that the above is just another way of defining a signature (specification

of types, function symbols and predicate symbols) for first-order predicate BI
with a single type Val, function symbols +,−, . . . : Val,Val → Val, constants
n : Val, and relation symbol �→ ⊆ Val,Val.

The Pointer Model. The standard pointer model of separation logic is usually
presented as follows. It consists of a set [[Val]] interpreting the type Val and a
set [[Loc]] of locations such that [[Loc]] ⊆ [[Val]] and binary functions on [[Val]]
interpreting the function symbols +,−. The set H = [[Loc]] ⇀fin [[Val]] of finite
partial functions from [[Loc]] to [[Val]], ordered discretely, is referred to as the set
of heaps. The set of heaps has a partial binary operation ∗ defined by

h1 ∗ h2 =
{
h1 ∪ h2 if h1#h2
undefined otherwise,

where # is the binary relation on heaps defined by h1#h2 iff dom(h1)∩dom(h2) =
∅. The interpretation of the relation �→ ⊆ [[Val]]× [[Val]] is the subset of singleton
heaps, that is, for h ∈ H, h ∈ �→ iff h = {(v1, v2)} for some values v1, v2. To
define the standard interpretation of terms and formulas, one assumes a partial
function s : Var ⇀fin [[Val]], called a stack (also called a store in the literature).
The interpretation of terms depends on the stack and is defined by

[[x]]s = s(x)
[[n]]s = [[n]]
[[t1 ± t2]]s = [[t1]]s± [[t2]]s

The interpretation of formulas is standardly given by a forcing relation s, h �
φ, where FV(φ) ⊆ dom(s), as follows
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s, h � t1 = t2 iff [[t1]]s = [[t2]]s
s, h � t1 �→ t2 iff dom(h) = {[[t1]]s} and h([[t1]]s) = [[t2]]s
s, h � emp iff h = ∅
s, h � � always
s, h � ⊥ never
s, h � φ ∗ ψ iff there exists h1, h2 ∈ H.h1 ∗ h2 = h and

s, h1 � φ and s, h2 � ψ
s, h � φ −−∗ ψ iff for all h′, h′#h and s, h′ � φ implies s, h ∗ h′ � ψ
s, h � φ ∨ ψ iff s, h � φ or s, h � ψ
s, h � φ ∧ ψ iff s, h � φ and s, h � ψ
s, h � φ → ψ iff s, h � φ implies s, h � ψ
s, h � ∀x.φ iff for all v ∈ [[Val]].s[x �→ v], h � φ
s, h � ∃x.φ iff there exists v ∈ [[Val]].s[x �→ v], h � φ

We now show how this pointer model is an instance of a BI-hyperdoctrine of
a complete Boolean BI algebra (cf. Example 6).

The Pointer Model as a BI Hyperdoctrine. Let (H⊥, ∗) be the discretely ordered
set of heaps with a bottom element added to represent undefined, and let ∗ :
H⊥ × H⊥ → H⊥ be the total extension of ∗ : H × H ⇀ H satisfying ⊥ ∗ h =
h ∗ ⊥ = ⊥, for all h ∈ H⊥. This defines a partially ordered commutative monoid
with the empty heap {} as the unit for ∗. The powerset of H, P(H) (without
⊥) is a complete Boolean BI algebra, ordered by inclusion and with monoidal
closed structure given by (for U, V ∈ P(H)):

– I is {∅}
– U ∗ V := {h ∗ h′ | h ∈ U ∧ h′ ∈ V } \ {⊥}
– U −−∗ V :=

⋃
{W ⊆ H | (W ∗ U) ⊆ V }.

It can easily be verified directly that this defines a complete Boolean BI algebra;
it also follows from more abstract arguments in [14, 1].

Let S be the BI hyperdoctrine induced by the complete Boolean BI algebra
P(H) as in Example 6. To show that the interpretation of separation logic in this
BI hyperdoctrine exactly corresponds to the standard pointer model presented
above we spell out the interpretation of separation logic in S.

A term t in a context Γ = {x1 : Val, . . . , xn : Val} is interpreted as a mor-
phism between sets:

– [[xi : Val]] = πi, where πi : Valn → Val is the i’th projection,
– [[n]] is the map [[n]] : [[Γ ]] → 1 → [[Val]] which sends the unique element of the

one-point set 1 to [[n]],
– [[t1±t2]] = [[t1]]±[[t2]] : [[Γ ]] → [[Val]]×[[Val]] → [[Val]], where [[ti]] : [[Γ ]] → [[Val]],

for i = 1, 2.

The interpretation of a formula φ in a context Γ = {x1 : Val, . . . , xn : Val} is
given inductively as follows. Let I = [[Val]] × · · · × [[Val]]=[[Val]]n and write v for
elements of I. Then φ is interpreted as an element of P(I) as follows:
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[[t1 �→ t2]](v) = {h | dom(h) = {[[t1]](v)} and h([[t1]](v)) = [[t2]](v)}
[[t1 = t2]](v) = H if [[t1]](v) = [[t2]](v), ∅ otherwise
[[�]](∗) = H
[[⊥]](∗) = ∅
[[emp]](∗) = {h | dom(h) = ∅}
[[φ ∧ ψ]](v) = [[φ]](v) ∩ [[ψ]](v)
[[φ ∨ ψ]](v) = [[φ]](v) ∪ [[ψ]](v)
[[φ → ψ]](v) = {h | h ∈ [[φ]](v) implies h ∈ [[ψ]](v)}
[[φ ∗ ψ]](v) = [[φ]](v) ∗ [[ψ]](v)

= {h1 ∗ h2 | h1 ∈ [[φ]](v) and h2 ∈ [[ψ]](v)} \ {⊥}
[[φ −−∗ ψ]](v) = [[φ]](v) −−∗ [[ψ]](v)

= {h | [[φ]](v) ∗ {h} ⊆ [[ψ]](v)}
[[∀x : Val .φ]](v) =

⋂
vx∈[[Val]]([[φ]](vx, v))

[[∃x : Val .φ]](v) =
⋃

vx∈[[Val]]([[φ]](vx, v))

Now it is easy to verify by structural induction on formulas φ that the inter-
pretation given in the BI hyperdoctrine S corresponds exactly to the forcing
semantics given earlier:

Theorem 8. h ∈ [[φ]](v1, . . . , vn) iff [x1 �→ v1, . . . , xn �→ vn], h � φ.

As a consequence, we of course obtain the well-known result that separation logic
is sound for classical first-order BI. But, more interestingly, the correspondence
also shows that we may easily extend separation logic to higher-order since the BI
hyperdoctrine S soundly models higher-order BI. We expand on this in the next
section, which also discusses other consequences of the above correspondence.
First, however, we explain that one can also obtain such a correspondence for
other versions of separation logic.

An Intuitionistic Model. Consider again the set of heaps (H⊥, ∗) with an added
bottom ⊥, as above. We now define the order by

h1 , h2 iff dom(h1) ⊆ dom(h2) and for all x ∈ dom(h1). h1(x) = h2(x).

Let I be the set of sieves on H, i.e., downwards closed subsets of H, ordered
by inclusion. This is a complete BI algebra, as can be verified directly or by an
abstract argument [1, 14].

Now let T be the BI hyperdoctrine induced by the complete BI algebra I
as in Example 6. The interpretation of predicate BI in this BI hyperdoctrine
corresponds exactly to the intuitionistic pointer model of separation logic, which
is presented using a forcing style semantics in [6].

The Permissions Model. It is also possible to fit the permissions model of sepa-
ration logic from [4] into the framework presented here. The main point is that
the set of heaps, which in that model map locations to values and permissions,
has a binary operation ∗, which makes (H⊥, ∗) a partially ordered commutative
monoid.
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Remark 9. The correspondences between separation logic and BI hyperdoctrines
given above illustrate that what matters for the interpretation of separation logic
is the choice of BI algebra. Indeed, the main relevance of the topos-theoretic
constructions in [14] for models of separation logic is that they can be used to
construct suitable BI-algebras (as subobject lattices in categories of sheaves).

4 Consequences for Separation Logic

We have shown above that it is completely natural and straightforward to in-
terpret first-order predicate BI in first-order BI-hyperdoctrines and that the
standard pointer model of separation logic corresponds to a particular case of
BI-hyperdoctrine. Based on this correspondence, in this section we draw some
further consequences for separation logic.

4.1 Formalizing Separation Logic

The strength of separation logic has been demonstrated in numerous papers
before. In the early days of separation logic, it was shown that it could handle
simple programs for copying trees, deleting lists, etc. The first proof of a more
realistic program appeared in Yang’s thesis [21], in which he showed correctness
of the Schorr-Waite graph marking algorithm. Later, a proof of correctness of
Cheney’s garbage collection algorithm was published in [2], and other examples
of correctness proofs of non-trivial algorithms may be found in [3]. In all of
these papers, different simple extensions of core separation logic were used. For
example, Yang used lists and binary trees as parts of his term language, and
Birkedal et. al. introduced expression forms for finite sets and relations. It would
seem that it is a weakness of separation logic that one has to come up with
suitable extensions of it every time one has to prove a new program correct. In
particular, it would make machine-verifiable formalizations of such proofs more
burdensome and dubious if one would have to alter the underlying logic for every
new proof.

We argue that the right way to look at these “extensions” is that they are
really trivial definitional extensions of one and the same logic, namely the inter-
nal logic of the classical BI hyperdoctrine S presented in Section 3. The internal
language of a BI hyperdoctrine P over C is formed as follows: to each object of C
one associates a type, to each morphism of C one associates a function symbol,
and to each predicate in P(X) one associates a relation symbol. The terms and
formulas over this signature (considered as a higher-order signature [7]) form the
internal language of the BI hyperdoctrine. There is an obvious structure for this
language in P.

Let 2 = {⊥,�} be a two-element set (the subobject classifier of Set). There
is a canonical map ι : 2 → P(H) that maps ⊥ to {} (the bottom element of the
BI algebra P(H)) and � to H (the top element of P(H)).

Definition 10. Let φ be an S-predicate over a set X, i.e., a function φ : X →
P(H). Call φ pure if φ factors through ι.
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Thus φ : X → P(H) is pure if there exists a map χφ : X → 2 such that

X
φ ��

χφ
���

��
��

��
� P(H)

2
ι

����������

commutes. This corresponds to the notion of pure predicate traditionally used
in separation logic [20].

The sub-logic of pure predicates is simply the standard classical higher-order
logic of Set, and thus it is sound for classical higher-order logic. Hence one can
use classical higher-order logic for defining lists, trees, finite sets and relations
in the standard manner using pure predicates and prove the standard properties
of these structures, as needed for the proofs presented in the papers referred
to above. In particular, notice that recursive definitions of predicates, which in
[21, 2, 3] are defined at the meta level, can be defined inside the higher-order
logic itself. For machine verification one would thus only need to formalize one
and the same logic, namely a sufficient fragment of the internal logic of the
BI hyperdoctrine (with obvious syntactic rules for when a formula is pure).
The internal logic itself is “too big” (it can have class-many types and function
symbols, e.g.); hence the need for a fragment thereof, say classical higher-order
logic with natural numbers.

4.2 Higher-Order Separation Logic

As mentioned in Section 3, the interpretation of separation logic in BI hyperdoc-
trines shows that we may extend separation logic to higher-order. Specifically,
we may quantify over any set X in ∀x : X.φ and ∃x : X.φ, including “pure sets”
of trees, lists, etc., but also including propositions — the BI algebra P(H) —
and predicates — sets of the form (P(H))Y , for some set Y . The quantification
over “pure sets” has been usefully applied in program proving with separation
logic, as mentioned in the previous section (it has also been usefully applied in
Hoare logic, as pointed out to us by John Reynolds, see [18]). It remains to be
seen to what extent quantification over general propositions and predicates is
useful in actual program proving. But let us consider a simple example, which
indicates that it may be useful. Consider the assertion ∃P : prop . P −−∗ Q. In-
tuitively, is says that for some extension of the current heap, described by P ,
the combined heap will satisfy Q. Consider a canonical algorithm for copying a

Fig. 1. Copying a tree
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tree. To describe the invariant, we look at the snapshot in Fig. 1. Suppose the
predicate tree τ asserts that “the tree on the left in Fig. 1 is represented in the
heap” (we are a bit informal here, but a formal presentation would clutter the
point). Then the following assertion describes the situation in Fig. 1:

tree τ ∗ ((∃l1, l2, v1, v2. l1 �→ v1 ∗ l2 �→ v2) −−∗ tree τ).

However, we might not care about the number of actual values and locations
that are missing in the “new” tree in the heap, but just wish to express that
some of the original tree has been copied, and that the original tree has not been
manipulated. This can be done with the assertion

tree τ ∗ (∃P : prop. P −−∗ tree τ).

Future research will show how useful higher-order separation logic is in actual
proofs of programs.

4.3 Logical Characterizations of Classes of Assertions

Different classes of assertions, precise, monotone, and pure, were introduced
in [20], and it was noted that special axioms for these classes of assertions are
valid. Such special axioms were further exploited in [2], where pure assertions
were moved in and out of the scope of iterated separating conjunctions, and
in [11], where precise assertions were crucially used to verify soundness of the
hypothetical frame rule. The different classes of assertions were defined seman-
tically and the special axioms were also validated using the semantics. We now
show how the higher-order features of higher-order separation logic may be used
to logically characterize the classes of assertions and logically prove the proper-
ties earlier taken as axioms. This is, of course, important for machine verification,
since it means that the special classes of assertions and their properties can be
expressed in the logic.

To simplify notation we just present the characterizations for closed asser-
tions, the extension to open assertions is straightforward. Recall that closed
assertions are interpreted in S as functions from 1 to P(H), i.e., as subsets of H.

In the proofs below, we use assertions which describe heaps in a canonical
way. Since a heap h has finite domain, there is a unique (up to permutation)
way to write an assertion ph ≡ l1 �→ n1 ∗ . . . ∗ lk �→ nk such that [[ph]] = {h}.

Precise Assertions. The traditional definition of a precise assertion is semantic,
in that an assertion q is precise if, and only if, for all states s, h, there is at
most one subheap h0 of h such that s, h0 � q. The following proposition logically
characterizes closed precise assertions (at the semantic level, this characterization
of precise predicates was mentioned in [10]).

Proposition 11. The closed assertion q is precise if, and only if, the assertion

∀p1, p2 : prop . (p1 ∗ q) ∧ (p2 ∗ q) → (p1 ∧ p2) ∗ q (1)

is valid in the BI hyperdoctrine S.
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Proof: The “only-if” direction is trivial, so we focus on the other implication.
Thus suppose (1) holds for q, and let h be a heap with two different subheaps
h1, h2 for which hi ∈ [[q]]. Let p1, p2 be canonical assertions that describe the
heaps h \ h1 and h \ h2, respectively. Then h ∈ [[(p1 ∗ q) ∧ (p2 ∗ p)]], so h ∈
[[(p1 ∧ p2) ∗ q]], whence there is a subheap h′ ⊆ h with h′ ∈ [[p1 ∧ p2]]. This is a
contradiction. ��

One can verify properties that hold for precise assertions in the logic without
using semantical arguments. For example, one can show that q1 ∗ q2 is precise
if q1 and q2 are by the following logical argument: Suppose (1) holds for q1, q2.
Then,

(p1 ∗ (q1 ∗ q2)) ∧ (p2 ∗ (q1 ∗ q2)) ⇒ ((p1 ∗ q1) ∗ q2) ∧ ((p2 ∗ q1) ∗ q2))
⇒ ((p1 ∗ q1) ∧ (p2 ∗ q1)) ∗ q2 ⇒ ((p1 ∧ p2) ∗ q1) ∗ q2
⇒ (p1 ∧ p2) ∗ (q1 ∗ q2),

as desired.

Monotone Assertions. A closed assertion q is defined to be monotone if, and
only if, whenever h ∈ [[q]] then also h′ ∈ [[q]], for all extensions h′ ⊇ h.

Proposition 12. The closed assertion q is monotone if, and only if, the asser-
tion ∀p : prop . p ∗ q → q is valid in the BI hyperdoctrine S.

This is also easy to verify, and again, one can show the usual rules for monotone
assertions in the logic (without semantical arguments) using this characteriza-
tion.

Pure Assertions. Recall from above that an assertion q is pure iff its interpre-
tation factors through 2. Thus a closed assertion is pure iff its interpretation is
either ∅ or H.

Proposition 13. The closed assertion q is pure if, and only if, the assertion

∀p1, p2 : prop . (q ∧ p1) ∗ p2 ↔ q ∧ (p1 ∗ p2) (2)

is valid in the BI hyperdoctrine S.

Proof: Again, the interesting direction here is the “if” implication. Hence, sup-
pose (2) holds for the assertion q, and that h ∈ [[q]]. For any heap h0, we must
then show that h0 ∈ [[q]]. This is done via the verification of two claims.

Fact 1: For all h′ ⊆ h, h′ ∈ [[q]]. Proof: Let p1 be a canonical description of h′, and
p2 a canonical description of h\h′. Then h ∈ [[q∧ (p1 ∗p2)]], so h ∈ [[(q∧p1)∗p2]].
This means that there is a split h1 ∗ h2 = h with h1 ∈ [[q ∧ p1]] and h2 ∈ [[p2]].
But then, h2 = h \ h′, so h1 = h′, and thus, h′ ∈ [[q]].

Fact 2: For all h′ ⊇ h, h′ ∈ [[q]]. Proof: Let p1 and p2 be canonical descriptions
of h and h′ \ h, respectively. Then, h′ ∈ [[(q ∧ p1) ∗ p2]], so h′ ∈ [[q ∧ (p1 ∗ p2)]],
and in particular, h′ ∈ [[q]], as desired.

Using Facts 1 and 2, we deduce h ∈ [[q]] ⇒ ∅ ∈ [[q]] ⇒ h0 ∈ [[q]]. ��
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4.4 Separation Logic for Richer Languages

Separation logic has mostly been used for low-level languages with a simple set-
theoretic operational semantics. Yang [21–Ch. 9] has made some initial work on
separation logic for richer languages such as Idealized Algol with heaps. For such
richer languages, the semantics is typically given using more involved semantic
structures such as functor categories and domains. We emphasize that all the de-
velopments in the present paper easily generalize to such more involved settings.
Specifically, given any cartesian closed category C with an internal complete BI
algebra B, one may construct a C-indexed BI hyperdoctrine just as in Example 6.

5 Conclusion

We have introduced the notion of a (first-order) BI hyperdoctrine and shown that
it soundly models classical and intuitionistic first- and higher-order predicate
BI, thus connecting models of prediate BI with standard categorical notions of
models of predicate logic. Moreover, we have shown that the standard pointer
model of separation logic exactly corresponds to the interpretation of predicate
BI in a BI hyperdoctrine. Finally, we have argued that this correspondence is of
import for formalizations of separation logic, and that one can extend separation
logic to higher-order.

Acknowledgements. The authors wish to thank Carsten Butz and the anonymous
referees for their helpful comments and suggestions.
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Abstract. Mobile Ambients has been proposed by Cardelli and Gordon
as a foundational calculus for mobile computing. Since its introduction,
the computational strength as well as the decidability of properties have
been investigated for several fragments and variants of the standard cal-
culus. We tackle the problem of reachability and we characterize a public
(i.e., restriction free) fragment for which it is decidable. This fragment
is obtained by removing the open capability and restricting the use of
replication to guarded processes. Quite surprisingly, this fragment has
been shown to be Turing complete by Maffeis and Phillips.

1 Introduction

Mobile Ambients (MA) [5] is a well known formalism exploited to describe dis-
tributed and mobile systems in terms of ambients. An ambient is a named col-
lection of active processes and nested sub-ambients. In the pure (i.e., without
communication) version of MA only three mobility primitives are used to permit
ambient and process interaction: in and out for ambient movement, and open
to dissolve ambient boundaries.

Following the tradition of process calculi, Mobile Ambients and its dialects
have been equipped with a rich variety of formal tools useful for reasoning about
and verifying properties of systems specified with these calculi (see, e.g., [9, 4, 6]).
Another line of research regards the analysis of the expressiveness of these calculi
in order to investigate the boundary between redundant and necessary features
as well as the decidability of properties. For example, the Turing completeness
of several variants and fragments of Mobile Ambients is investigated in [8], while
the decidability of process termination (i.e. the existence of a finite computation)
is investigated for fragments of the pure version of Mobile Ambients in [2].

Besides termination, an even more interesting property is process reachabil-
ity: the reachability problem consists of verifying whether a target process can
be reached from a source process. As an example of the relevance of reachability
analysis, consider the system

intruder[P ] | firewall[Q]
where an intruder running the program P attacks a firewall executing the
program Q. It is relevant to check whether the system

firewall[ intruder[P ′] | Q′]

can be reached, where the intruder has succeeded.

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 248–262, 2005.
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The unique work, to the best of our knowledge, devoted to the investigation
of reachability in Mobile Ambients is by Boneva and Talbot [1]. They prove that
reachability is undecidable even in a minimal fragment of pure Mobile Ambients
in which both the restriction operator (used to limit the scope of ambient names)
and the open capability are removed.

Let us consider the above example of the intruder and the firewall. Tradi-
tional reachability consists of checking whether the target process is reachable
for some instantiated processes P ′ and Q′. In general, one may be interested in
concentrating only on the structure of the target process (i.e. the intruder is in-
side the firewall) abstracting away from the specific programs that run inside the
ambients (i.e. abstracting away from P ′ and Q′). Exploiting classical reachability
one should universally quantify on every possible processes P ′ and Q′.

To solve this problem we introduce spatial reachability permitting to specify
a class of target processes. This class is characterized by a common structure
of ambient nesting and a minimal number of processes that should be hosted
inside those ambients. As an example of the use of spatial reachability consider
the system

trojan[virus|P ]|notebook[Q]

in which a trojan containing a virus program, and running program P , attacks
a notebook running the program Q. One may be interested in checking whether
the process

notebook[ trojan[virus|P ′] | Q′]

can be reached for any possible P ′ and Q′ not containing ambients. Observe
that virus is a program for which it is necessary to check the actual presence
inside the ambient trojan in the target process (a trojan that does not contain
a virus is not dangerous).

We investigate the decidability of (spatial) reachability for fragments of the
public, i.e. restriction free, version of the ambient calculus. We focus our analysis
on calculi without restriction in order to concentrate on ambient nesting as the
unique way for structuring processes. The relevance of restriction, as a mecha-
nism for organizing processes inside name scopes, has been deeply investigated
in the context of other process calculi such as the π–calculus [10].

The fragment that we characterize does not contain the open capability and
limits the use of replication to guarded processes only (e.g., !n[] is not a valid pro-
cess for this fragment). This decidability result is proved by reducing reachability
of processes to reachability in Petri nets (and spatial reachability to coverability).
We prove the minimality of this fragment by showing that reachability becomes
undecidable when relaxing at least one of the two restrictions imposed on the
fragment. The undecidability for the open -free fragment has been proved by
Boneva and Talbot [1]. For the fragment with guarded replication, we show how
to reduce the halting problem for Random Access Machines [15] (a well known
Turing powerful formalism) to the (spatial) reachability problem.
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2 Pure Public Mobile Ambients

Pure public mobile ambients, that we denote with pMA, corresponds to the
restriction-free fragment of the version of Mobile Ambients without communica-
tion defined by Cardelli and Gordon in [5].

Definition 1. – pMA – Let Name, ranged over by n, m, . . ., be a denumerable
set of ambient names. The terms of pMA are defined by the following grammar:

P ::= 0 | M.P | n[P ] | P |P | !P
M ::= inn | outn | openn

We use
∏

k P to denote the parallel composition of k instances of the process P ,
while
∏

i∈1...k Pk denotes the parallel composition of the indexed processes Pi.

The term 0 represents the inactive process (and it is usually omitted). M.P
is a process guarded by one of the three mobility primitives (already discussed in
the Introduction): after the execution of the primitive the process behaves like
P . The processes M.P are referred to as guarded processes in the following. The
term n[P ] denotes an ambient named n containing process P . A process may be
also the parallel composition P |P of two subprocesses. Finally, the replication
operator !P is used to put in parallel an unbounded number of instances of the
process P .

The operational semantics is defined in terms of a structural congruence plus
a reduction relation.

Definition 2. – Structural congruence – The structural congruence ≡ is the
smallest congruence relation satisfying:

P | 0 ≡ P P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R !P ≡ P | !P

Definition 3. – Reduction relation – The reduction relation is the smallest
relation → satisfying the following axioms and rules:

(1) n[inm.P | Q] | m[R] → m[n[P | Q] | R]

(2) m[n[outm.P | Q] | R] → n[P | Q] | m[R]

(3) openn.P | n[Q] → P | Q

(4)
P → Q

P | R → Q | R

(5)
P → Q

n[P ] → n[Q]

(6)
P ′ ≡ P P → Q Q′ ≡ Q

P ′ → Q′
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As usual, we use →∗ to denote the reflexive and transitive closure of →. If
P →∗ Q we say that Q is a derivative of P . The reachability problem consists
in checking, given two processes P and Q, whether Q is a derivative of P , i.e.
checking if P →∗ Q.

Axioms (1), (2) and (3) describe the semantics of the three primitives in ,
out and open , respectively. A process inside an ambient n can perform an inm
operation in presence of a sibling ambient m; if the operation is executed then
the ambient n moves inside m. If inside an ambient m there is an ambient n
with a process performing an outm action, this results in moving the ambient
n outside the ambient m. Finally, a process performing an openn operation has
the ability to remove the boundary of an ambient n[Q] composed in parallel
with it.

Rules (4) and (5) are the contextual rules that respectively indicate that a
process can move also when it is in parallel with another process and when it
is inside an ambient. Finally, rule (6) is used to ensure that two structurally
congruent terms have the same reductions.

In the paper we consider three fragments of pMA; pMAg! and pMA−open for
which we show that reachability is undecidable and pMA−open

g! for which it turns
out to be decidable.

Definition 4.
pMAg! permits only guarded replication, i.e. it restricts the application of the
replication operator to guarded processes:1

P ::= 0 | M.P | n[P ] | P |P | !M.P
M ::= inn | outn | openn

pMA−open removes the open capability:

P ::= 0 | M.P | n[P ] | P |P | !P
M ::= inn | outn

pMA−open
g! combines the restrictions imposed by the previous fragments:

P ::= 0 | M.P | n[P ] | P |P | !M.P
M ::= inn | outn

3 Deciding Reachability in pMA−open
g!

In this Section we show that reachability is decidable in pMA−open
g! . We re-

duce reachability on pMA−open
g! to reachability on Place/Transition Petri nets.

1 The structural congruence for pMAg! is obtained by replacing the axiom for repli-
cation with !M.P ≡ M.P | !M.P , and the the congruence rule for the replication
operator with the congruence rule for the operator of restricted replication.
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As reachability is decidable on such class of Petri nets [13], we get the decidabil-
ity result for reachability on pMA−open

g! .
Another interesting property is spatial reachability. Given two processes, P

and R, the spatial reachability problem roughly consists in checking if, starting
from P , it is possible to reach a process R′ “greater” than R, in the following
sense: the ambients in R and R′ have the same structure of ambient nesting,
and the (sequential and replicated) active subprocesses inside an R ambient are
a subset of the subprocesses inside the corresponding ambient in R′. The Petri
net constructed for the solution of the reachability problem can be exploited to
reduce the spatial reachability problem for pMA−open

g! processes to the coverabil-
ity problem for Petri nets, which is a decidable problem [14].

We start recalling Place/Transition nets with unweigthed flow arcs (see, e.g.,
[14]).

Definition 5. Given a set S, a finite multiset over S is a function m : S → IN
such that the set dom(m) = {s ∈ S |m(s) �= 0} is finite. The set of all finite
multisets over S, denoted by Mfin(S), is ranged over by m. We write m ⊆ m′ if
m(s) ≤ m′(s) for all s ∈ S. With ⊕ and \ we denote multiset union and multiset
difference, respectively.

Definition 6. A P/T net is a pair (S, T ) where S is the set of places and
T ⊆ Mfin(S) × Mfin(S) is the set of transitions.

Finite multisets over the set S of places are called markings. Given a marking
m and a place s, we say that the place s contains m(s) tokens.

A P/T net is finite if both S and T are finite.
A P/T system is a triple N = (S, T,m0) where (S, T ) is a P/T net and m0

is the initial marking.
A transition t = (c, p) is usually written in the form c → p. A transition

t = (c, p) is enabled at m if c ⊆ m. The execution of a transition t enabled at
m produces the marking m′ = (m \ c) ⊕ p. This is written as m t→ m′ or simply
m → m′ when the transition t is not relevant.

We say that m′ is reachable from m if there exists σ such that m σ→ m′.
We say that m′ covers m if m ⊆ m′.

Definition 7. Let N = (S, T,m0) be a P/T system.
The reachability problem for marking m consists of checking if m0 →∗ m.
The coverability problem for marking m consists of checking if there exists

m′ such that m0 →∗ m′ and m′ covers m.

3.1 Reducing Reachability on Processes to Reachability on Petri
Nets

Now we show that reachability on processes can be reduced to reachability on
Petri nets; by decidability of reachability on Petri nets, we get the following:

Theorem 1. Let P,R be pMA−open
g! processes. The reachability problem P →∗ R

is decidable.
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Given two processes P and R, we outline construction of a (finite) Petri sys-
tem SysP,R satisfying the following property: the check of P →∗ R is equivalent
to check reachability of a finite set of markings on SysP,R. Because of the lack
of space, the technical details concerning the construction of the net, as well as
the auxiliary results needed to prove Theorem 1 are omitted; they can be found
in [3].

The intuition behind this result relies on a monotonicity property of pMA−open
g! :

because of the absence of the open capability, the number of “active” ambients
in a process (i.e., ambients that are not guarded by any capability) cannot de-
crease during the computation. Moreover, as the applicability of replication is
restricted to guarded processes, the number of “active” ambients in a set of
structurally equivalent processes is finite (while this is not the case in , e.g.,
the pMA process !n[0]). Thanks to the property explained above, in order to
check if R is reachable from P it is sufficient to take into account a subset of the
derivatives of P : namely, the P -derivatives whose number of active ambients is
not greater than the number of active ambients in R.

Unfortunately, this subset of P -derivatives is, in general, not finite, as the
processes inside an ambient can grow unlimitedly. Consider, e.g., the process P =
m[!inn.outn.Q] | n[]: it is easy to see that, for any k,m[

∏
k Q | !inn.outn.Q] | n[]

is a derivative of P .
On the other hand, we note that the set of sequential and replicated terms

that can occur as subprocesses of (the derivatives of) a process P (namely, the
subterms of kind M.P or !M.P ) is finite. The idea is to borrow a technique used
to map (the public fragment of) a process algebra on Petri nets. A process P
is decomposed in the (finite) multiset of its sequential subprocesses that appear
at top-level (i.e., occur unguarded in P ); this multiset is then considered as the
marking of a Place/Transition Petri net. The execution of a computational step
in a process will correspond to the firing (execution) of a transition in the corre-
sponding net. Thus, we reduce the reachability problem for pMA−open

g! processes
to reachability of a finite set of markings in a Place/Transition Petri net, which
is a decidable problem. However, differently from what happens in process alge-
bras, where processes can be faithfully represented by a multiset of subprocesses,
pMA−open

g! processes have a tree-like structure that hardly fits in a flat model such
as a multiset.

The solution is to consider pMA−open
g! processes as composed of two kinds

of components; the tree-like structure of ambients and the family of multisets
of sequential subterms contained in each ambient. As an example, consider the
process

inn.P | m[inn.P | outn.Q | n[0] | k[0] | inn.P ] | n[inn.P ]

having the tree-like structure m[n[] | k[]] | n[]. Moreover, there is a multiset
corresponding to each “node” of the tree: the multiset {inn.P} is associated
to the root, the same multiset is associated to the n-labelled son of the root,
the multiset {inn.P, inn.P, outn.Q} is associated to the n-labelled son of the
m-labelled son of the root, and so on.
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Fig. 1. A portion of the net corresponding to process n[outm] | m[inn.k[!out k]]

The Petri net we construct is composed of the following two parts: the first
part is basically a finite state automaton, where the marked place represents the
current tree-like structure of the process; the second part is a set of identical
subnets: the marking of each subnet represents the multiset associated to a
particular node of the tree. To keep the correspondence between the nodes of
the tree and the multiset associated to that node, we make use of labels. A
distinct label is associated to each subnet; this label will be used in the tree-like
structure to label the node whose contents (i.e., the set of sequential subprocesses
contained in the ambient corresponding to the node) is represented by the subnet.

The set of possible tree-like structures we need to consider is finite, for the
following reasons. First of all, the set of ambient names in a process is finite.
Moreover, to verify reachability we need to take into account only those processes
whose number of active ambients is limited by the number of ambients in the
process we want to reach.

The upper bound on the number of nodes in the tree-like structures also
provides an upper bound to the number of identical subnets we need to decide
reachability (at most one for each active ambient). In general, the number of
active ambients grows during the computation; hence, we need a mechanism to
remember which subnets are currently in use and which ones are not used. When
a new ambient is created, a correspondence between the node representing such
a new ambient in the tree-like structure and a not yet used subnet is established,
and the places of the “fresh” subnet are filled with the marking corresponding
to the sequential subprocesses contained in the newly created ambient. To this
aim, each subnet is equipped with a place called unused, that contains a token
as long as the subnet does not correspond to any node in the tree-like structure.

For example, consider the process n[outm] | m[inn.k[!out k]]. The relevant
part of the net is depicted in Figure 1: a subset of the places, representing the
tree-like structure, is depicted in the left-hand part of the figure, while the sub-
nets are depicted in the right-hand part. We only report the subnets labelled
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with l2 and l3, and omit the two subnets labelled with l0 (with empty marking)
and with l1 (whose marking consists of a token in place l1 : outm). The com-
putation step n[outm] | m[inn.k[!out k]] → n[outm | m[k[!out k]]] corresponds
to the firing of transition t in the net.

A last remark is concerned with structural congruence: because of the struc-
tural congruence rule (6), the reachability of a process R actually correspond
to decide if it is possible to reach a process that is structurally congruent to
R. As we are reducing the reachability in pMA−open

g! to marking reachability
in Petri nets, it is necessary that the set of markings, corresponding to the
set of processes structurally congruent to R, is finite. We concentrate on the
markings of the subnets. The top-level applications of the monoidal laws for
parallel composition are automatically dealt with, as processes that are struc-
turally congruent because of such laws are mapped on the same marking. Un-
fortunately, the application of the replication law permits to produce an infinite
set of markings corresponding to structurally congruent processes. Take, e.g.,
!inn.P ≡ inn.P | !inn.P ≡ inn.P | inn.P | !inn.P ≡ . . . and the correspond-
ing set of markings {!inn.P}, {inn.P, !inn.P}, {inn.P, inn.P, !inn.P} . . ..

To solve this problem, we make use of the following two techniques.
The top-level application of the law for replication can be easily dealt with by

adding the transitions !inn.P → !inn.P | inn.P and !inn.P | inn.P →!inn.P ,
respectively permitting to spawn a new copy of a replicated process and to
absorbe a process that also appears in a replicated form in the marking. An
instance of such transitions is depicted in the subnet l2 of Figure 1.

The last problem to be dealt with is the application of the laws in combination
with the congruence law for prefix and ambient. Consider, e.g., the reachability
of process R = m[!inn.!inm.0]; concerning the subnet corresponding to the m-
labelled son of the root, we must check reachability of an infinite set of markings,
namely,

{!inn.!inm.0}, {!inn.(inm.0 | !inm.0)}, {!inn.(inm.0 | inm.0 | !inm.0)}, . . . .

To this aim, we introduce canonical representations of the equivalence classes of
structural congruence, roughly consisting in nested multisets where the presence
of a replicated version of a sequential term forbids the presence of any occurrence
of the nonreplicated version of the same term. For example, the normal form
of process inn.(!outm.0) | !inn.(outm.0 | !outm.0) | n[inn.0] is the nested
multiset !inn.(!outm.0) | n[inn.0].

Now we are ready to describe the net that will be used to decide reachability
of a process R starting from a process P .

The set of places of the net is constructed as follows. The part of the net
representing the tree-like structure contains a place for each tree of size not
greater than the number of active ambients in R. Each of the subnets contains
a place for each sequential and replicated subprocess of process P , and a place
named “unused”, that remains filled as long as the subnet does not correspond
to any node in the tree-like structure. Moreover, we associate a distinct label to
each subnet, and all the places of the subnet will be decorated with such a label.
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The net has two sets of transitions: the first set permits to model the execution
of the in and out capabilities, while the second set is used to cope with the
structural congruence rule for replication.

We concentrate on the first set of transitions. A capability, say, e.g., inn, can
be executed when the following conditions are fulfilled: the tree-like structure
must have a specific structure and a place corresponding to a sequential subpro-
cess inn.Q is marked in a subnet whose label appears in the right position in
the tree-like structure. Moreover, the number of active ambients created by the
execution of the capability, added to the number of currently active ambients,
must not exceed the number of active ambients in the process R we want to
reach. This condition is checked by requiring that there exist a sufficient number
of “unused” places that are currently marked. The execution of the capability
causes the following changes to the marking of the net: the place correspond-
ing to the new tree-like structure is now filled and the marking of the subnet
performing the inn operation is updated (by adding the tokens in the places
corresponding to the active sequential and replicated subprocesses in the contin-
uationQ). Moreover, a number of subnets equal to the number of active ambients
in the continuation Q become active: their places will be filled with the tokens
corresponding to the active sequential and replicated subprocesses contained in
the corresponding ambient, and the tree-like structure is updated accordingly.

Besides deciding reachability, the net system described above can be used to
check the weaker property of spatial reachability.

3.2 Spatial Reachability

The spatial reachability problem for processes P and R roughly consists in check-
ing if, starting from P , it is possible to reach a process R′ “greater than” R, in
the following sense:

– R′ has the same spatial ambient structure of R, and
– the sequential and replicated active subprocesses contained in each ambient

of R are also present in the corresponding ambient of R′.

The �s relation is a formalization of the “greater than” concept:

Definition 8. Let P and Q be pMA−open
g! processes.

P �s Q iff

– either Q ≡ P |
∏

i Mi.Pi |
∏

j !M
′
j .P

′
j,

– or P ≡ P1 | n[P2], Q ≡ Q1 | n[Q2] and Pi �s Qi for i = 1, 2

The spatial reachability problem for processes P and R consists in checking
if there exists R′ such that P →∗ R′ and R �s R

′.
The mapping of processes to Petri nets markings outlined above satisfies the

following property: if P1 �s P2 then the marking corresponding to P2 covers the
marking corresponding to P1. Hence, the Petri net constructed in the previous
section permits to reduce the spatial reachability problem for processes P and
R to a coverability problem. As coverability is decidable in P/T nets, we obtain
the following:
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Theorem 2. Let P,R be pMA−open
g! processes. The spatial reachability problem

for P and R is decidable.

4 Undecidability Results

In this section we discuss the undecidability of reachability for the two fragments
pMA−open and pMAg!.

As far as pMA−open is concerned, we resort to an equivalent result proved by
Boneva and Talbot in [1] for a slightly different calculus. That calculus, proposed
in [6, 7], differs from pMA−open only for three extra rules in the definition of the
structural congruence relation: 0 ≡ 0, !!P ≡ !P , !(P | Q) ≡ !P | !Q. These rules
are added by Boneva and Talbot to guarantee that the congruence relation is
confluent, thus decidable.

The undecidability of reachability is proved by Boneva and Talbot showing
how to encode two-counters machines [11], a well known Turing powerful formal-
ism. The encoding preserves the one-step property: if the two-counters machine
2CM moves in one step to 2CM ′ then [[2CM ]] →∗ [[2CM ′]], where [[ ]] is the con-
sidered encoding. Even if the calculus in [1] is slightly different from pMA−open ,
the encoding of two-counters presented in that paper applies also to our calcu-
lus; this because the encoding does not apply the replication operator to the
empty process, to replicated processes and to parallel composition of processes
(i.e. the cases in which the three extra structural congruence rules come into
play, respectively).

As far as pMAg! is concerned, we present a modeling of Random Access
Machines (RAMs) [15], a formalism similar to two-counters machines. The en-
coding that we present is an enhancement of the RAM modeling in [2]: the main
novelties are concerned with a more restricted use of replication and a reshaping
of the garbage processes.

4.1 Random Access Machines

RAMs are a computational model based on finite programs acting on a finite
set of registers. More precisely, a RAM R is composed of the registers r1, . . . , rn,
that can hold arbitrary large natural numbers, and by a sequence of indexed
instructions (1 : I1), . . . , (m : Im). In [12] it is shown that the following two
instructions are sufficient to model every recursive function:

– (i : Succ(rj)): adds 1 to the contents of register rj and goes to the next
instruction;

– (i : DecJump(rj , s)): if the contents of the register rj is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to the
instruction s.

The computation starts from the first instruction and it continues by execut-
ing the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when an instruction number higher than the length of the
program is reached. It is not restrictive to assume that the instruction number
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reached at the end of the computation is always m+ 1, and to assume that the
computation starts and terminates with all the registers empty.

4.2 Modelling RAMs in pMAg!

We model instructions and registers independently. As far as the instructions and
the program counter are concerned, we model the program counter i with an am-
bient pci[]. Each instruction Ii is represented with a replicated process guarded
by the capability open pci able to open the corresponding program counter am-
bient pci[]. The processes modeling the instructions are replicated because each
instruction could be performed an unbounded amount of times during the com-
putation.

The key idea underlying the modeling of the registers is to represent natural
numbers with a corresponding nesting of ambients. We use an ambient named zj

to represent the register rj when it is empty; when the register is incremented we
move the ambient zj inside an ambient named sj , while on register decrement we
dissolve the outer sj ambient boundary. In this way, for instance, the resister rj

with content 2 is modeled by the nesting sj [sj [zj []]] (plus other processes hosted
in these ambients that are discussed in the following).

Definition 9. Given the RAM R with instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn we define [[R]] as the following process

pc1[] |
∏

i∈1...m!open pci.Ci |
∏

j∈1...n R
0
j |

open pcm+1.GC | !openmsg | garbage[open gc]

where Ci (modeling the i− th instruction), R0
j (modeling the empty register rj)

and GC (the garbage collector which is started at the end of the computation)
are shorthand notations defined in the following.

Note the use of two extra processes: !openmsg used to open ambients contain-
ing messages produced during the computation and the ambient garbage[open gc]
which is a container for the produced garbage. The process open gc is used at the
end of the computation to allow the garbage collector to act inside the ambient
garbage as detailed in the following.

The register rj with content l is represented by the process Rl
j defined induc-

tively as follows

R0
j = zj [ !open incj .

( msg[ out zj .sj [ REGj ] ] |
in sj .ackij [ out zj .!out sj ] ) |

!open zeroj .ackzj [ out zj .in djj ] |
open gc ]

Rl+1
j = sj [ REGj | Rl

j ]

where REGj is a shorthand notation defined as follows

REGj = open decj .ackdj [ out sj .in djj ] | !openmsg
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Also in this case, the process open gc is used to allow the garbage collector to
act inside the ambient zj . We will discuss the behaviour of the term REGj , and
of the other processes inside the ambient zj , after having discussed the encoding
for the instructions.

Before formalizing the modeling of the instructions we anticipate that the
names incj , zeroj and decj are used to model requests for increment, test for
zero and decrement of register rj , respectively; the names ackij , ackzj and ackdj

models the corresponding acknowledgements produced by the registers to notify
that a request has been managed.

The instructions are modeled as follows. If the i-th instruction is Succ(rj),
its encoding is

Ci = increqj [ !in sj | in zj .incj [out increqj ] ] |
open ackij .pci+1[]

This modeling is based on two processes. The first one is the ambient increqj
that represents a request for increment of the register rj . The second process
blocks waiting for an acknowledgement that will be produced after the actual
increment of the register; when the acknowledgement is received, this process
increments the program counter spawning pci+1[].

The ambient increqj has the ability to enter the boundary of the ambient
modelling the register rj , to move through the nesting of ambients, and finally
to enter the inner ambient zj . After that, a new ambient incj exits the ambient
increqj becoming in parallel with the processes of the ambient zj . One of these
processes (see the definition of R0

j ) detects the arrival of the new ambient and
reacts by producing sj [REGj ]; the ambient zj then moves inside this new am-
bient. In this way the nesting of ambients sj is incremented by one. After, the
acknowledgement is produced in terms of an ambient named ackij that moves
outside the register boundary.

If the i-th instruction is DecJump(rj , s) the encoding is as follows

Ci = zeroj [in zj ] | decj [in sj ] |
djj [ ACKZjs | ACKDji ]

where
ACKZjs =
open ackzj .in garbage.
msg[ out djj .out garbage.open decj .pcs[] ]

ACKDji =
open ackdj .in garbage.
msg[ out djj .out garbage.open zeroj.open sj .pci+1[] ]

This modeling is based on three processes. The first process is an ambient named
zeroj which represents a request for a test for zero of the register rj ; the second
process is an ambient named decj representing a request for decrement of the
register rj ; the third process is an ambient named djj which is in charge to
manage the acknowledgement produced by the register rj . The acknowledgement
indicates whether the decrement, or the test for zero request, has succeeded.
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Let us consider the test for zero request. The ambient zeroj [in zj ] has the
ability to move inside the ambient zj . This can occur only if the register rj is
currently empty; in fact, if rj is not empty, the ambient zj is not at the outer
level. If the request enters the zj ambient boundary, the processes inside the
ambient zj (see the definition of R0

j ) react by producing an acknowledgement
modelled by an ambient named ackzj which moves inside the ambient djj .

Now, consider the request for decrement. The ambient decj [in sj ] has the
ability to enter the boundary of the process modelling the register rj ; this can
occur only if the register is not empty (otherwise there is no ambient sj). Inside
the ambient sj , the process REGj reacts by producing an acknowledgement
modelled by an ambient named ackdj which moves inside the ambient djj .

The processes inside the ambient djj have the ability to detect which kind
of acknowledgement has been produced, and react accordingly. In case of ackzj ,
the reaction is to move the ambient djj inside the ambient garbage, and to
dissolve the boundary of the outer ambient decj . This is necessary to remove the
decrement request that has failed. In case of ackdj , the process also dissolves
one of the boundaries sj , in order to actually decrement the register. In both
cases, the program counter is finally updated by either jumping to instruction
s, or by activating the next instruction i+ 1, respectively.

This way of modeling RAMs does not guarantee the one-step preservation
property because of the production of garbage, that is processes that are no more
involved in the subsequent computation. More precisely, the following garbage
is produced:

– each increment operation leaves an ambient increqj [!in sj ] inside the ambient
zj , plus the process !out sj at the outer level;

– each decrement operation leaves an ambient djj inside the ambient garbage,
plus the two processes in zj and !openmsg at the outer level;

– each test for zero operation leaves an ambient djj inside the ambient garbage,
plus the process in sj at the outer level.

Clearly, the exact shape of the garbage at the end of the modeling of the
RAM computation is unpredictable because it depends on the exact number
of instructions that are executed. Nevertheless, we use the garbage collector
process GC, activated on program termination, in order to reshape the garbage
in a predefined format.

The key idea underlying the garbage collection process is to exploit the struc-
tural congruence rule !P ≡ P |!P used to unfold (and fold) replication. Consider
an unpredictable amount of processes P in parallel, i.e.

∏
n P with n unknown.

If we add in parallel the process !P we have that
∏

n P | !P ≡ !P , thus reshaping
the process in a known format.

We are now in place for defining the garbage collector process formally

GC = !!out sj | !in zj | !!openmsg | !in sj |∏
j∈1...n(gc[ in zj .(!open increqj | !!in sj) ]) |

gc[ in garbage |∏
j∈1...n( !open djj |

∏
i∈1...m!ACKDji |∏

s∈1...m+1!ACKZjs ) ]
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The undecidability of reachability and spatial reachability is a trivial corollary
of the following theorem. It is worth noting that in the statement of the theorem
the register rj (which is assumed to be empty at the end of the computation)
is represented by a process which is the same as R0

j with the difference that the
process open gc, initially available in the ambient zj (see the definition of R0

j ), is
replaced by the two processes !open increq | !!in sj left by the garbage collector.

Theorem 3. Given the RAM R with instructions (1 : I1), . . . , (m : Im) and
registers r1, . . . , rn we have that R terminates if and only if

∏
i∈1...m!open pci.Ci |∏
j∈1...n( zj [ !open incj .

( msg[ out zj .sj [ REGj ] ] |
in sj .ackij [ out zj .!out sj ] ) |

!open zeroj .ackzj [ out zj .in djj ] |
!open increqj | !!in sj ] ) |

!!out sj | !in zj | !!openmsg | !in sj |
garbage[

∏
j∈1...n( !open djj |

∏
i∈1...m!ACKDji |∏

s∈1...m+1!ACKZjs ) ]

is reachable from the process [[R]] (as defined in Definition 9).
Moreover, we have that the RAM R terminates if and only if the process

pcm+1[] |
∏

j∈1...n zj [] | garbage[]

is spatially reachable from the process [[R]].

5 Conclusion

We have discussed the decidability of reachability in Mobile Ambients. We have
characterized a fragment of the pure and public Mobile Ambients, namely the
open -free fragment with guarded replication, for which reachability is decidable.
We call this fragment pMA−open

g! . Our decidability result also holds for a variant
of reachability, called spatial reachability, that permits to specify a class of target
processes characterized by a common structure of ambient nesting.

The fragment pMA−open
g! has been already investigated by Maffeis and Phillips

in [8] (called Lio in that paper). They show that such a small fragment is indeed
Turing complete, by providing an encoding of RAMs. The encoding they present
permits to conclude that the existence of a terminating computation is an un-
decidable problem, while the decidability of reachability is raised as an open
problem. Our decidability result provides a positive answer to this problem.

In order to prove the minimality of pMA−open
g! we make use of (a slight adap-

tation of) the undecidability result by Boneva and Talbot [1]. They prove that
reachability is undecidable for the open -free fragment, equipped with a struc-
tural congruence slightly different from the standard one (see the discussion in
Section 4). Instead of getting decidability by imposing syntactical restrictions
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(as we do for pMA−open
g! ), they move to a weaker version of the operational

semantics. In particular, they show that reachability becomes decidable when
the structural congruence law !P ≡ P | !P is replaced by the reduction axiom
!P → P | !P .

Acknowledgements. We thank Jean-Marc Talbot and Iain Phillips for their
insightful comments on a preliminary version of this paper.
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Abstract. Abadi-Leino Logic is a Hoare-calculus style logic for a simple
imperative and object-based language where every object comes with its
own method suite. Consequently, methods need to reside in the store
(”higher-order store”). We present a new soundness proof for this logic
using a denotational semantics where object specifications are recursive
predicates on the domain of objects. Our semantics reveals which of the
limitations of Abadi and Leino’s logic are deliberate design decisions and
which follow from the use of higher-order store. We discuss the implica-
tions for the development of other, more expressive, program logics.

1 Introduction

When Hoare presented his seminal work about an axiomatic basis of computer
programming [7], high-level languages had just started to gain broader accep-
tance. Meanwhile programming languages are evolving ever more rapidly, whereas
verification techniques seem to be struggling to keep up. For object-oriented lan-
guages several formal systems have been proposed, e.g. [2, 6, 14, 13, 5, 21, 20]. A
“standard” comparable to the Hoare-calculus for imperative While-languages
[4] has not yet emerged. Nearly all the approaches listed above are designed for
class-based languages (usually a sub-language of sequential Java), where method
code is known statically.

One notable exception is Abadi and Leino’s work [2] where a logic for an
object-based language is introduced that is derived from the imperative object
calculus with first-order types, impς, [1]. In object-based languages, every object
contains its own suite of methods. Operationally speaking, the store for such a
language contains code (and is thus called higher-order store) and modularity
is for free simply by the fact that all programs can depend on the objects’ code
in the store. We therefore consider object-based languages ideal for studying
modularity issues that occur also in class-based languages. Class-based programs
can be compiled into object-based ones (see [1]), and object-based languages can
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naturally deal with classes defined on-the-fly, like inner classes and classes loaded
at run-time (cf. [16, 17]).

Abadi and Leino’s logic is a Hoare-style system, dealing with partial cor-
rectness of object expressions. Their idea was to enrich object types by method
specifications, also called transition relations, relating pre- and post-execution
states of program statements, and result specifications describing the result in
case of program termination. Informally, an object satisfies such a specification

A ≡ [fi:Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]

if it has fields fi satisfying Ai and methods mj that satisfy the transition relation
Tj and, in case of termination of the method invocation, their result satisfies Bj .
However, just as a method can use the self-parameter, we can assume that an
object a itself satisfies A in both Bj and Tj when establishing that A holds for
a. This yields a powerful and convenient proof principle for objects.

We are going to present a new proof using a (untyped) denotational semantics
(of the language and the logic) to define validity. Every program and every
specification have a meaning, a denotation. Those of specifications are simply
predicates on (the domain of) objects. The properties of these predicates provide
a description of inherent limitations of the logic. Such an approach is not new,
it has been used e.g. in LCF, a logic for functional programs [11].

The difficulty in this case is to establish predicates that provide the powerful
reasoning principle for objects. Reus and Streicher have outlined in [19] how
to use some classic domain theory [12] to guarantee existence and uniqueness
of appropriate predicates on (isolated) objects. In an object-calculus program,
however, an object may depend on other objects (and its methods) in the store.
So object specifications must depend on specifications of other objects in the
store which gives rise to “store specifications” (already present in the work of
Abadi and Leino).

For the reasons given above, this paper is not “just” an application of the
ideas in [19]. Much care is needed to establish the important invariance property
of Abadi-Leino logic, namely that proved programs preserve store specifications.
Our main achievement, in a nutshell, is that we have successfully applied the
ideas of [19] to the logic of [2] to obtain a soundness proof that can be used to
analyse this logic and to develop similar but more powerful program logics as
well.

Our soundness proof is not just “yet another proof” either. We consider it
complementary (if not superior) to the one in [2] which relies on the opera-
tional semantics of the object calculus and does not assign proper “meaning” to
specifications. Our claim is backed up by the following reasons:

– By using denotational semantics we can introduce a clear notion of valid-
ity with no reference to derivability. This helps clarifying what the proof is
actually stating in the first place.

– We can extend the logic easily e.g. for recursive specifications. This has been
done for the Abadi-Leino logic in [9] but for a slightly different language
with nominal subtyping.
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– Some essential and unavoidable restrictions of the logic are revealed and
justified.

– Analogously, it is revealed where restrictions have been made for the sake of
simplicity that could be lifted to obtain a more powerful logic. For example,
in [2] transition specifications cannot talk about methods at all.

– Our proof widens the audience for Abadi and Leino’s work to semanticists
and domain theorists.

The outline of this paper is as follows. In the next section, syntax and seman-
tics of the object-calculus are presented. Section 3 introduces the Abadi-Leino
logic and the denotational semantics of its object specifications. A discussion
about store specifications and their semantics follows (Section 4). The main re-
sult is in Section 5 where the logic is proved sound. Of the various extensions
discussed in Section 6, we present recursive specifications in some detail (Sec-
tion 6.2). Section 7 concludes with a brief comparison to the original proof [2].

When presenting the language and logic, we deliberately keep close to the
original presentation [2]. For a full version of this paper containing detailed proofs
we refer to the technical report [18].

2 The Object Calculus

Below, we review the language of [2], which is based on the imperative object cal-
culus of Abadi and Cardelli [1]. Following [19] we give a denotational semantics.
The syntax of terms is defined by

a, b ::= x | true | false | if x then a else b | let x = a in b

| [fi = xi
i=1...n,mj = ς(yj)bj

j=1...m] | x.f | x.f := y | x.m

where f ∈ F and m ∈ M range over countably infinite sets of field and method
names, resp. Object construction [fi = xi,mj = ς(yj)bj ] allocates new storage
and returns (a reference to) an object containing fields fi (with initial value
the value of xi) and methods mj . In a method mj , ς is a binder for the self
parameter yj in the method body bj . During method invocation, the method
body is evaluated with the self parameter bound to the host object.

We extend the syntax with integer constants and operations, and consider
an object-based modelling of a bank account as an example:

acc(x) ≡ [balance = 0,
deposit10 = ς(y) let z = y.balance+10 in y.balance:=z,
interest = ς(y) let r = x.manager.rate in

let z = y.balance∗r/100 in y.balance:=z]

Note how the self parameter y is used in both methods to access the balance
field. Object acc depends on a “managing” object x in the context that provides
the interest rate, through a field manager, for the interest method.
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Semantics of Objects. We work in the category PreDom of predomains (cpos that
do not necessarily contain a least element) and partial continuous functions. Let
A ⇀ B denote the partial continuous function space between predomains A and
B. For f ∈ A ⇀ B and a ∈ A we write f(a) ↓ if f applied to a is defined, and
f(a)↑ otherwise.

If L is a set, then P(L) is its powerset, Pfin(L) denotes the set of its finite
subsets, and AL is the set of all total functions from L to A. For a countable
set L and a predomain A we write RecL(A) =

∑
L∈Pfin(L)A

L for the predomain
of records with entries from A and labels from L. Note that RecL extends to a
locally continuous endofunctor on PreDom.

We write {|l1 = a1, . . . , ln = an|} for a record r = (L, f ∈ AL), with labels
L = {l1, . . . , ln} and corresponding entries f(li) = ai. Update (and extension)
r[l := a] is defined in the obvious way. Selection of labels is written r.l.

The language of the previous section finds its interpretation within the fol-
lowing system of recursively defined predomains in PreDom:

Val = BVal + Loc

St = RecLoc(Ob)
Ob = RecF (Val) × RecM(Cl)
Cl = St ⇀ (Val + {error}) × St

(1)

where Loc is a countably infinite set of locations ranged over by l, and BVal is
the of truth values true and false, considered as flat predomains.

Let Env = Var →fin Val be the set of environments, i.e. maps between Var and
Val with finite domain. Given an environment ρ ∈ Env, the interpretation [[a]]ρ
of an object expression a in St ⇀ (Val + {error}) × St is given in Table 1, where
the (strict) semantic let is also “strict” wrt. error. Note that for o ∈ Ob we just
write o.f and o.m instead of π1(o).f and π2(o).m, respectively. Similarly, we omit
the injections for elements of Val +{error}. Because Loc is assumed to be infinite,
the condition l /∈ dom(σ) in the case for object creation can always be satisfied,
i.e., object creation will never raise error because we run out of memory.

We will also use a projection to the part of the store that contains just data
in Val (no closures), πVal : St → StVal defined by (πVal σ).l.f = σ.l.f, where
StVal = RecLoc(RecF (Val)). We refer to πVal(σ) as the flat part of σ.

3 Abadi-Leino Logic

We briefly recall Abadi and Leino’s logic. For a more detailed presentation see [2,
8] or the technical report [18]. A transition relation T is a first-order formula over
program variables that relates pre- and post-execution states of computations.
There are function symbols σ̀, σ́ and result that refer to the (flat parts of the)
initial and final stores, and the result of a computation, resp. For instance, σ̀(x, f)
denotes the value of x.f in the initial store, and analogously for σ́. Predicate
symbols include Tres, Tupd and Tobj with the following meaning:

– Tres(x) holds if result = x, and the (flat part of the) store remains unchanged
– Tupd(x, f, y) holds if result = x, σ́(x, f) = y, and σ̀ equals σ́ everywhere else
– Tobj(f1 = x1, . . . , fn = xn) holds if result denotes a fresh location such that
xi = σ́(result, fi) for all i, and the store remains unchanged otherwise.
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Table 1. Denotational semantics

[[x]]ρσ =
{

(ρ(x), σ) if x ∈ dom(ρ)
(error, σ) otherwise

[[true]]ρσ = (true, σ)

[[false]]ρσ = (false, σ)

[[if x then b1 else b2]]ρσ =




[[b1]]ρσ′ if [[x]]ρσ = (true, σ′)
[[b2]]ρσ′ if [[x]]ρσ = (false, σ′)
(error, σ′) if [[x]]ρσ = (v, σ′) for v /∈ BVal

[[let x = a in b]]ρσ = let (v, σ′) = [[a]]ρσ in [[b]]ρ[x := v]σ′

[[[fi = xi
i=1...n,mj = ς(yj)bj

j=1...m]]]ρσ =
{

(l, σ[l := (o1, o2)]) if xi∈dom(ρ), 1 ≤ i ≤ n
(error, σ) otherwise

where l /∈ dom(σ)
o1 = {|fi = ρ(xi)|}i=1...n

o2 = {|mj = λσ.[[bj ]]ρ[yj := l]σ|}j=1...m

[[x.f]]ρσ = let (l, σ′) = [[x]]ρσ

in
{

(σ′.l.f, σ′) if l ∈ dom(σ′) and f ∈ dom(σ′.l)
(error, σ′) otherwise

[[x.f := y]]ρσ = let (l, σ′) = [[x]]ρσ, (v, σ′′) = [[y]]ρσ′

in




(l, σ′′[l := σ′′.l[f := v]]) if l ∈ dom(σ′′)
and f ∈ dom(σ′′.l)

(error, σ′′) otherwise

[[x.m]]ρσ = let (l, σ′) = [[x]]ρσ

in
{

σ′.l.m(σ′) if l ∈ dom(σ′) and m ∈ dom(σ′.l)
(error, σ′) otherwise

Specifications combine transition relations for each method as well as the spec-
ifications of their results into a single specification for the whole object. They
generalise the first-order types of [1], and are

A,B ::= Bool | [fi:Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]

where each Tj is a transition relation, and in general both Bj and Tj depend on
the self parameter yj .

Table 2 shows a specification for bank accounts as in the previous example.1

Observe how the specification Tinterest depends not only on the self parameter
y of the host object but also on the statically enclosing object x.

Judgments of the logic are of the form x1:A1, . . . , xn:An ' a : A :: T . Infor-
mally, such a judgment means that if program a terminates when executed in a
context where program variables x1, . . . , xn denote values that satisfy specifica-
tions A1, . . . , An, resp., then A describes properties of the result, and T describes
the dynamic behaviour of a.

1 Note that although we are using UML-like notation, these diagrams actually stand
for individual objects, not classes – in fact there are no classes in the language.
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Table 2. An example of transition and result specifications

Tdeposit(y) ≡ ∃z.z = σ̀(y, balance)
∧Tupd(y, balance, z + 10)

Tinterest(x, y) ≡ ∃z.z = σ̀(y, balance)
∧∃m.m = σ̀(x, manager)
∧∃r.r = σ̀(m, rate)
∧Tupd(y, balance, z ∗ r/100)

Tcreate(x) ≡ Tobj(balance = 0)

AAccount(x) ≡ [balance : Int,
deposit10 : ς(y)[] :: Tdeposit(y),
interest : ς(y)[] :: Tinterest(x, y)]

AAccFactory ≡ [manager : [rate : Int],
create : ς(x)AAccount(x) :: Tcreate(x)]

AManager ≡ [rate : Int,
accFactory : AAccFactory]

Manager

 rate: Int

 accFactory

AccFactory

 manager

 create()

Account

 balance: Int

 deposit10()

 interest()

We can use the proof rules of Abadi and Leino’s logic to derive the judgment

x:AAccFactory ' acc(x) : AAccount(x) :: Tobj(balance = 0) (2)

for the acc object. In the logic there is one rule for each syntactic form of the
language. As indicated in the introduction, the most interesting and powerful
rule of the logic is the object introduction rule,

A ≡ [fi:Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]
Γ ' xi:Ai::Tres(xi)

i=1...n
Γ, yj :A ' bj :Bj ::T

j=1...m
j

Γ ' [fi = xi
i=1...n,mj = ς(yj)bj

j=1...m] : A :: Tobj(fi = xi
i=1...n)

In order to establish that the newly created object satisfies specification A one
has to verify the methods bj . When doing that one can assume that the host
object (through the self parameter yj) already satisfies A. Essentially, this causes
the semantics of store specifications, introduced in the next section, to be defined
by a mixed-variant recursion.

Using the object introduction rule, (2) can be reduced to a trivial proof
obligation for the field balance, a judgment for the method deposit10,

Γ ' let z=(y.balance)+10 in y.balance:=z : [] :: Tdeposit(y) (3)

where Γ is the context x:AAccFactory, y:AAccount(x), and a similar judgment for
the method interest. A proof of (3) involves showing

Γ ' (y.balance)+10 : Int :: Tres(σ̀(y, balance) + 10) (4)
Γ, z:Int ' y.balance:=z : [] :: Tupd(y, balance, z) (5)



Denotational Semantics for Abadi and Leino’s Logic of Objects 269

for the constituents of the let expression. These can be proved from the rules for
field selection and field update, resp., which have the general form

Γ ' x:[f:A]::Tres(x)
Γ ' x.f:A::Tres(σ̀(x, f))

A ≡ [fi:Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]
Γ ' x:A::Tres(x) Γ ' y:Ak::Tres(y)

Γ ' x.fk := y:A::Tupd(x, fk, y)
1≤k≤n

The logic also provides a (structural) notion of subspecification, which gen-
eralises the usual notion of subtyping. So x ' A <: B holds if all fields of B are
also fields of A with the same specification, and hereditarily all methods of B
are methods of A with a stronger transition specification.

For instance, in the example in Tab. 2, ' AManager <: [rate : Int] would be
used in order to prove

m:AManager, x:AAccFactory ' x.manager:=m : AAccFactory :: Tupd(x, manager,m)

when creating the reference to the manager object in the manager field of the
factory object.

Semantics of Specifications. We give a denotational semantics of specifications.
Each transition relation x ' T with free variables contained in x denotes a
predicate

[[x ' T ]]ρ ∈ P(StVal × Val × StVal)

depending on an environment ρ. This can be defined in a straightforward way [18].
Observe that the meaning of a transition relation ' T without free variables does
not depend on the environment, and we sometimes simply write [[T ]] in this case.

Similarly, an object specification x ' A gives rise to a predicate that depends
on values for the free variables (since the underlying logic in the transition rela-
tions is untyped, the specifications of the free variables x are not relevant here).
The interpretation of specifications

[[x ' A]]ρ ∈ P(Val × St)

is given in Table 3. Subspecifications are simply set containment: If x ' A <: B
then [[x ' A]]ρ ⊆ [[x ' B]]ρ.

4 Store Specifications

Object specifications are not sufficient. This is a phenomenon of languages with
higher-order store well known from subject reduction and type soundness proofs
(see [1–Ch. 11], [10]). Since statements may call subprograms residing in the
store it has to be verified as well.

The standard remedy – also used in [2] – is to relativise the typing judgement
such that it only needs to hold for “verified” stores. In other words, judgements
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Table 3. Semantics of specifications

[[x � Bool]]ρ = BVal× St

[[x � [fi:Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]]]ρ =
(l, σ) ∈ Loc× St

∣∣∣∣∣∣∣∣
(F) for all 1 ≤ i ≤ n. σ.l.fi ∈ [[x � Ai]]ρ
(M) for all 1 ≤ j ≤ m, if σ.l.mj(σ) = (v, σ′)↓

then (v, σ′) ∈ [[x, yj � Bj ]]ρ[yj := l]
and (πVal(σ), v, πVal(σ′)) ∈ [[x, yj � Tj ]]ρ[yj := l]




are interpreted wrt. store specifications. A store specification assigns a specifi-
cation to each location in a store. When an object is created, the specification
assigned to it at the time of creation is included in the store specification.

In this section we will interpret such store specifications using the techniques
from [19]. Since their denotations will rely on mixed-variant recursion, it is im-
possible to define a semantic notion of subspecification. Alas, the Abadi-Leino
logic makes essential use of subspecifications. We get around this problem by
only using a subset relationship on (denotations of) object specifications (where
there is no contravariant occurrence of store as the semantics of objects is w.r.t.
one fixed store, cf. Table 3).

Unfortunately, we are restricted by the logic’s requirement that verified state-
ments never break the validity of store specifications. In the case of field update
this implies that subspecifications need to be invariant in their fields. As the
semantic interpretation of the subspecification relation cannot reflect this, we
were forced to sometimes use the syntactic subspecification relation.

Store Specifications and their Semantics. A store specification Σ assigns closed
specifications to (a finite set of) locations:

Definition 1 (Store Specification). A store specification Σ is a record Σ ∈
RecLoc(Spec) s.t. Σ.l = A implies ' A. For store specifications Σ,Σ′ we say Σ′

extends Σ, written Σ′ � Σ, if Σ.l = Σ′.l for all l ∈ dom(Σ).

Because we focus on closed specifications in the following, we need a way to turn
the components Bj of a specification [fi:Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] (recall

that they may depend on yj) into closed specifications. This is done by extending
the syntax of expressions with locations: There is one symbol l for each l ∈ Loc.
When clear from context we will simply write l in place of l. Further we write
A[ρ/Γ ] for the simultaneous substitution of all x ∈ [Γ ] in A by ρ(x).

We can then abstract away from particular stores σ ∈ St, and interpret closed
result specifications ' A with respect to such store specifications:

Definition 2 (Object Specifications). For closed A let ||A||Σ ⊆ Val be

||Bool||Σ = BVal

||A||Σ = {l ∈ Loc | ' Σ.l <: A}
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where A ≡ [fi:Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]. This extends to contexts in the
natural way.

Observe that for all A, if Σ′ � Σ then ||A||Σ ⊆ ||A||Σ′ . We obtain the following
lemma about context extensions.

Lemma 1 (Context Extension). If ρ ∈ ||Γ ||Σ, Γ, x:A is a well-formed con-
text and v ∈ ||A[ρ/Γ ]||Σ then ρ[x := v] ∈ ||Γ, x:A||Σ.

In light of the object introduction rule, we would like to interpret store specifi-
cations as predicates over stores, as follows.

σ ∈ [[Σ]] :⇔
∀l ∈ dom(Σ) where Σ.l = [fi:Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] :

(F) σ.l.fi ∈ ||Ai||Σ for all 1 ≤ i ≤ n, and
(M) ∀Σ′ � Σ ∀σ′ ∈ [[Σ′]] ∀v ∈ Val ∀σ′′ ∈ St, if σ.l.mj(σ′) = (v, σ′′)↓ then

(M1) (πVal(σ′), v, πVal(σ′′)) ∈ [[Tj [l/yj ]]]
(M2) ∃Σ′′ � Σ′ s.t. σ′′ ∈ [[Σ′′]]
(M3) v ∈ ||Bj [l/yj ]||Σ′′ , for all 1 ≤ j ≤ m

The universal quantification over extensions Σ′ in (M) acccounts for (the speci-
fications) of objects allocated between definition time and call time of methods.
The existential quantification over extensions Σ′′ in (M2) and (M3) provides
for objects allocated by the method. In particular, since the result of a method
call may be a freshly allocated object it is not sufficient to simply use Σ′ in
(M2) and (M3). This semantic structure also appears in possible world models
of other languages with dynamic allocation [10, 15].

Note the contravariant occurrence of [[−]] in ∀σ′ ∈ [[Σ′]] in (M). Unfortu-
nately, the usual techniques for establishing the existence of such predicates
involving a mixed-variance recursion [12, 19] do not apply. They require the
functional corresponding to the above recursion to map admissible predicates to
admissible predicates. Due to the existential quantification in (M2) and (M3)
this is not the case here.

We get around this problem by observing that the dynamic behaviour of
programs (wrt. allocation of storage) can in fact be described more exactly,
and the existential quantifier can be replaced: The elements of the (recursively
defined) domain

φ ∈ SF = RecLoc(RecM(St × SF × Spec ⇀ Spec × SF)) (6)

are called choice functions, or Skolem Functions. The intuition is that, given
a store σ ∈ [[Σ]], if σ′ ∈ [[Σ′]] with choice function φ′, for some extension
Σ′ � Σ and the method invocation σ.l.m(σ′) terminates, then φ.l.m(σ′, φ′, Σ′) =
(Σ′′, φ′′) yields a store specification Σ′′ � Σ′ such that σ′′ ∈ [[Σ′′]] (and φ′′ is a
choice function for the extension Σ′′ of Σ).

Using SF in the definition below has the effect of constraining the existential
quantifier to work uniformly on the elements of increasing chains.
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Definition 3 (Store Predicate). Let P = P(St × SF)RecLoc(Spec) denote the
collection of families of subsets of St × SF, indexed by store specifications. We
define a functional Φ : Pop × P → P as follows.

(σ, φ) ∈ Φ(Y,X)Σ :⇔
(1) dom(Σ) = dom(φ) and ∀l ∈ dom(Σ). dom(π2(Σ.l)) = dom(φ.l), and
(2) ∀l ∈ dom(Σ) where Σ.l = [fi:Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] :

(F) σ.l.fi ∈ ||Ai||Σ for all 1 ≤ i ≤ n, and
(M) ∀Σ′ � Σ ∀(σ′, φ′) ∈ YΣ′ . if σ.l.mj(σ′) = (v, σ′′)↓ then

(M1) (πVal(σ′), v, πVal(σ′′)) ∈ [[Tj [l/yj ]]]
(M2) φ.l.mj(σ′, φ′, Σ′) = (Σ′′, φ′′) s.t. Σ′′ � Σ′ and (σ′′, φ′′) ∈ XΣ′′

(M3) v ∈ ||Bj [l/yj ||Σ′′ for all 1 ≤ j ≤ m

We write σ ∈ [[Σ]] if there is some φ ∈ SF s.t. (σ, φ) ∈ fix(Φ)Σ.

Lemma 2. Functional Φ, defined in Def. 3, does have a unique fixpoint.

Proof. Firstly, one shows that Φ is monotonic and maps admissible predicates
to admissible predicates, in the sense that for all X and Y ,

∀Σ. XΣ ⊆ St × SF admissible ⇒ ∀Σ. Φ(Y,X)Σ ⊆ St × SF admissible

Next, define for all admissible X,Y ∈ P, e1 ∈ [St ⇀ St] and e2 ∈ [SF ⇀ SF]:

〈e1, e2〉 : X ⊂ Y iff ∀Σ, σ, φ. (σ, φ) ∈ XΣ ∧ 〈e1, e2〉(σ, φ)↓ ⇒ 〈e1, e2〉(σ, φ) ∈ YΣ

such that e : X ⊂ Y states that e = 〈e1, e2〉 maps pairs of stores and choice
functions that are in XΣ to pairs of stores and choice functions that are in
corresponding component YΣ of Y . Let F be the locally continuous, mixed-
variant functor associated with the domain equations (1) and (6), for which
F ((St,SF), (St,SF)) = (St,SF) is the minimal invariant [12]. According to [12] it
only remains to be shown that

e : X ⊂ X ′ ∧ e : Y ′ ⊂ Y ⇒ F (e, e) : Φ(Y,X) ⊂ Φ(Y ′, X ′) (†)

for all X,Y,X ′, Y ′ ∈ P and e 0 idSt×SF which follows from a similar line of
reasoning as in [19]

Predicates denoting transition specifications must be upward-closed in the
pre-execution store and downward-closed in the post-execution store. This holds
in Abadi-Leino logic as transition specifications are only defined on the flat part
of the store; if they referred to the method part, (†) could not necessarily be
shown.

The next lemma establishes the relation between store and object specifica-
tions.

Lemma 3. For all object specifications A, store specifications Σ, stores σ, and
locations l, if σ ∈ [[Σ]] and l ∈ dom(Σ) such that ' Σ.l <: A then (l, σ) ∈ [[A]].
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5 Soundness

We can now define the semantics of judgements of Abadi-Leino logic and prove
the key lemma.

Definition 4 (Validity). Γ � a : A :: T if and only if for all store specifications
Σ ∈ RecLoc(Spec), for all ρ ∈ ||Γ ||Σ and all σ ∈ [[Σ]], if [[a]]ρσ = (v, σ′) then
(v, σ′) ∈ [[[Γ ] ' A]]ρ and (πVal(σ), v, πVal(σ′)) ∈ [[[Γ ] ' T ]]ρ.

Lemma 4 (Soundness and Invariance). Suppose
(H1) Γ ' a : A :: T
(H2) Σ ∈ RecLoc(Spec) is a store specification
(H3) ρ ∈ ||Γ ||Σ

Then there exists φ ∈ [St × SF × Spec ⇀ Spec × SF] s.t. for all Σ′ � Σ and
for all (σ′, φ′) ∈ fix(Φ)Σ′ , if [[a]]ρσ′ = (v, σ′′)↓ then the following holds:
(S1) there exists Σ′′ � Σ′ and φ′′ ∈ SF s.t. φ(σ′, φ′, Σ′) = (Σ′′, φ′′)
(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′

(S3) v ∈ ||A[ρ/Γ ]||Σ′′

(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[[Γ ] ' T ]]ρ

Note that condition (S1) explicates that store specifications are preserved by the
execution of proved programs, which allows the inductive proof to go through.

Proof. The proof is by induction on the derivation of Γ ' a : A :: T (whereas the
original proof [2] is by induction on the length of the computation). Generally,
we have to distinguish the case of objects, which are stored in the heap, and
Booleans, which are stack allocated.

– Lemma 1 is applied in the cases (let) and (object construction), where an
extended specification context is used in the induction hypothesis.

– Invariance of the field components in subspecifications is needed in the case
for (field update).

– In the cases where the store changes, i.e., (object construction) and (field
update), we must show explicitly that the resulting store satisfies the store
specification, according to Definition 3. This is tedious but not difficult, due
to the definition of σ ∈ [[Σ]].

Lemma 3 and Lemma 4 immediately prove

Theorem 1 (Soundness). If Γ ' a : A :: T then Γ � a : A :: T .

6 Denotational Analysis of Abadi-Leino Logic

For the proof of Theorem 2, establishing the existence of store predicates, it is
necessary that transition relations are upwards and downwards closed in their
first and second store argument, respectively. A sufficient condition is that tran-
sition relations work on the flat part of stores only. This provides an explanation
why the transition relations of the Abadi-Leino do not refer to methods.
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6.1 Extensions

This section contains a list of possible extensions of the Abadi-Leino logic. We
think that the denotational semantics helps to clarify their feasibility.

Invariants of Fields. Abadi and Leino’s logic is peculiar in that verified programs
need to preserve store specifications. Put differently, only properties which are in
fact preserved can be expressed in object specifications. In particular, specifying
fields in object specifications is limited. Invariants like e.g. balance ≥ 0, stating
that an account comes without overdraft, cannot be formulated. The same axiom
in a transition specification would only guarantee that the actual balance is
positive. For “private” (local) fields, invisible to other objects, such invariants
can be easily accommodated.

Method Parameters. Formal method parameters of the form x : A can be at-
tached to method specifications, e.g.,

deposit(x : Int) : ς(y)[] :: ∃z.z = σ̀(y, balance) ∧ Tupd(y, balance, z + x)

by adding an extra assumption to the definition of store specifications. When
σ′ ∈ [[Σ′]] then (M1)–(M3) have to be shown for all v ∈ ||A||Σ′ where v is the
actual parameter replacing formal parameter x in the method call.

Dynamic Loading. Dynamic loading of objects is, in a way, already available in
the object calculus (this is one of its advantages over class-based languages).
Loading an object of which only its specification A ≡ [fi:Ai,mj :ς(xj)Bj ::Tj ] is
known corresponds to using a command of which one only knows its result speci-
fication A. Thus, x : [m : ς(y)A :: ∃z. Tobj(fi = zi)] ' x.m() : A :: ∃z. Tobj(fi = zi)
describes dynamic loading where the load command is x.m(). It can be used to
load any object fulfilling specification A.

Parametric Method Specifications. Transition specifications cannot refer to meth-
ods. While this is adequate when all method specifications are known it prevents
verification of programs that use delegations (similar to the Command pattern).
The flatness of transition relations is sufficient but not necessary for the exis-
tence of store specifications. Therefore “parametric” method specifications may
be possible.

Method Update. Although method update is not allowed in Abadi-Leino logic,
fields can be updated and thus the methods in a field object (similar to the Dec-
orator pattern). By the invariance of object specifications, the object used for
the update must satisfy the specification of the field to be updated. Any extra
conditions that the new object may fulfil are not recorded and cannot be used
later. More useful would be a “behavioural” update where result and transi-
tion specifications of the overriding method are subspecifications of the original
method. This seems to be impossible as there is no notion of subspecification for
store specifications.
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Recursive Specifications. Recursive specifications are necessary when a field of
an object or a result of one of the object’s methods are supposed to satisfy the
same specification as the object itself. They are needed to specify any recursive
datatype. For example, if AManager should include a list of accounts, we would
need a recursive specification µX. [head : AAccount, tail : X].

Below we discuss in more detail how recursive specifications can be dealt with
in the logic.

6.2 Recursive Specifications

Syntax and Proof Rules. We introduce recursive specifications µ(X)A. To pre-
vent meaningless specifications such as µ(X)X we only allow recursion through
object specifications, thereby enforcing “formal contractiveness”.

A ::= � | Bool | [fi:Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m] | µ(X)A
A,B ::= A | X

where X ranges over an infinite set TyVar of specification variables. X is bound
in µ(X)A, and as usual we identify specifications up to the names of bound
variables.

In addition to specification contexts Γ we introduce contexts ∆ that contain
specification variables with an upper bound, X <: A, where A is either another
variable or �. In the rules of the logic we replace Γ ' . . . by Γ ;∆ ' . . . , and the
definitions of well-formed specifications and well-formed specification contexts
are extended, similar to the case of recursive types [1].

Subspecifications for recursive specifications are obtained by the “usual” re-
cursive subtyping rule [3],

Γ ;∆,Y <: �, X <: Y ' A <: B
Γ ;∆ ' µX.A <: µY.B

As will be seen from the semantics below, in our model a recursive specifi-
cation and its unfolding are not just isomorphic but equal, i.e., [[µX.A]] =
[[A[(µX.A)/X]]]. Hence we can add Γ ;∆ ' A[(µX.A)/X] <: µX.A and Γ ;∆ '
µX.A <: A[(µX.A)/X] and do not need to introduce fold and unfold terms.

Semantics of Recursive Specifications. We extend the interpretation of specifi-
cations to the new cases, where η maps type variables to admissible subsets of
Val × St:

[[Γ ;∆ ' �]]ρη = Val × St

[[Γ ;∆ ' X]]ρη = η(X)
[[Γ ;∆ ' µ(X)A]]ρη = gfp(λχ.[[Γ ;∆,X<:� ' A]]ρη[X = χ])

We write η � ∆ if, for all X <: Y in ∆, η(X) ⊆ η(Y ). The set of admissible
subsets of Val×St is closed under arbitrary intersections, hence forms a complete
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lattice when ordered by set inclusion, as do environments η with the point-
wise ordering ≤. Using well-known facts about lattices and monotonic maps one
observes that the semantics preserves meets:

η0 ≥ η1 ≥ . . . ⇒ [[Γ ;∆ ' A]]ρ(
∧

i ηi) =
⋂

i[[Γ ;∆ ' A]]ρηi

In particular, the greatest fixed point in the interpretation above is guaranteed
to exist, as gfp(f) =

⋂
i f

i(�) for monotonic and meet preserving f .

Existence of Store Predicates. Next, we adapt our notion of store specification
to recursive specifications. A store specification is now taken to be a record
Σ ∈ RecLoc(Spec) such that Σ.l = µ(X)[fi:Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] is

a closed (recursive) object specification, for each l ∈ dom(Σ). Because of the
(fold) and (unfold) rules, the requirement that only object specifications with a
µ-binder in head position occur in Σ is no real restriction. The definition of the
functional Φ of Section 4 remains virtually the same apart from an unfolding of
the recursive specification in the cases for field and method result specification:

(σ, φ) ∈ Φ(R,S)Σ :⇔
(1) . . .
(2) ∀l ∈ dom(Σ) where Σ.l = µ(X)[fi:Ai

i=1...n, mj : ς(yj)Bj ::Tj
j=1...m] :

(F) σ.l.fi ∈ ||Ai[Σ.l/X]||Σ
. . .

(M3) v ∈ ||Bj [Σ.l/X, l/yj ]||Σ′′
. . .

The proof of Lemma 2 can be easily adapted to show that this functional also
has a unique fixpoint.

Syntactic Approximations. In Section 5, Lemma 3 was proved by induction on
the structure of A. This inductive proof cannot be extended directly to prove a
corresponding result for recursive specifications: The recursive unfolding in cases
(F) and (M3) of the definition of σ ∈ [[Σ]] would force a similar unfolding of A
in the inductive step. We consider finite approximations as in [3], where we get
rid of recursion by unfolding a finite number of times and replacing all remaining
occurrences of recursion by �.
Definition 5 (Approximations). For each A and k ∈ N, we define A|k as

• A|0 = � • �|k+1 = �
• µ(X)A|k+1 = A[µ(X)A/X]|k+1 • X|k+1 = X

• [fi:Ai
i=1...n, mj : ς(yj)Bj ::Tj

j=1...m]|k+1 = • Bool|k+1 = Bool
[(fi : Ai|k)i=1...n

,mj : ς(yj)Bj |k :: Tj
j=1...m]

Lemma 5. For all Γ ;∆ ' A and η � ∆, [[Γ ;∆ ' A]]ρη =
⋂

k∈N
[[Γ ;∆ ' A|k]]ρη.

Lemma 6. For all σ ∈ [[Σ]], l ∈ dom(Σ) and (possibly recursive) A s.t. '
Σ.l <: A, (l, σ) ∈ [[A]].

Proof. Similar to the proof of Lemma 3 one shows (l, σ) ∈ [[A|k]] for all k. Then
by Lemma 5, (l, σ) ∈

⋂
k∈N

[[A|k]] = [[A]].
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7 Conclusion

Based on a denotational semantics, we have given a soundness proof for Abadi
and Leino’s program logic of an object-based language. Compared to the original
proof, which was carried out wrt. an operational semantics, our techniques al-
lowed us to distinguish the notions of derivability and validity. Further, we used
the denotational framework to extend the logic to recursive object specifications.
In comparison to a similar logic presented in [9] our notion of subspecification
is structural rather than nominal.

Although our proof is very much different from the original one, the nature
of the logic forces us to work with store specifications too. Information for lo-
cations referenced from the environment Γ will be needed for derivations. Since
the Γ cannot reflect the dynamic aspect of the store (which is growing) one
uses store specifications Σ. They do not show up in the Abadi-Leino logic as
they are automatically preserved by programs. By contrast to [2], we can view
store specifications as predicates on stores which need to be defined by mixed-
variant recursion due to the form of the object introduction rule. Unfortunately,
such recursively defined predicates do not directly admit an interpretation of
subsumption (nor weakening).

Conditions (M1) – (M3) in the semantics of store specifications ensure that
methods in the store preserve not only the current store specification but also
arbitrary extensions Σ′ � Σ. Clearly, not every predicate on stores is preserved.
As we lack a semantic characterisation of those specifications that are syntacti-
cally definable (as Σ), specification syntax appears in the definition of σ ∈ [[Σ]]
(Def. 3). More annoyingly, field update requires subspecifications to be invariant
in the field components. We do not know how to express this property of ob-
ject specifications semantically (on the level of predicates) and need to use the
inductively defined subspecification relation instead.

The proof of Lemma 2, establishing the existence of store predicates, pro-
vides an explanation why transition relations of the Abadi-Leino logic express
properties of the flat part of stores only and allows for a quick check whether
extensions are feasible. We have enumerated several extensions in Section 6.1.
Based on this list and the results presented we intend to design a variation of
the Abadi-Leino logic that is more expressive. We hope that this will also shed
some light on modular reasoning for class-based languages.

Acknowledgement. We wish to thank Thomas Streicher for discussions and
comments.
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A Design for a Security-Typed Language with
Certificate-Based Declassification

Stephen Tse and Steve Zdancewic

University of Pennsylvania

Abstract. This paper presents a calculus that supports information-
flow security policies and certificate-based declassification. The decen-
tralized label model and its downgrading mechanisms are concisely ex-
pressed in the polymorphic lambda calculus with subtyping (System F�).
We prove a conditioned version of the noninterference theorem such that
authorization for declassification is justified by digital certificates from
public-key infrastructures.

1 Introduction

Information-flow policies constrain the propagation of confidential data and pro-
vide an end-to-end guarantee of security. Security-typed languages have become
a promising approach for specifying and enforcing such policies with static type
systems [15]. However, designing a safe and secure information-flow type system
is still a challenging problem: programmers want to express fine-grained security
policies with advanced types, but reasoning about security guarantees in such
complex systems is non-trivial.

This paper presents a security-typed language with well-studied constructs
from the polymorphic lambda calculus with subtyping (System F�) [6]. Language
features such as labels and effects are isolated in a monadic style. This design
makes typing and evaluation rules easy to understand and the proofs of type-
safety and noninterference modular.

Another challenge of designing a security-typed language is to provide down-
grading mechanisms that intentionally break the security guarantees, if such
actions can be justified externally. Downgrading mechanisms, such as delegat-
ing to another principal or declassifying secret data, are important in practical
programming [21]. The decentralized label model by Myers and Liskov [10] ad-
dresses this problem and introduces the notions of principals and reader sets to
statically track the authority for downgrading.

One of our design decisions is to treat labels, principals and downgrading priv-
ileges uniformly as types so that the decentralized label model can be integrated
easily into our language. For example, subtyping naturally models principal del-
egation, while intersection and union types give rise to principal groups and
label refinements. A security language with these encodings allows expressive,
decentralized policies, yet the semantics remains easy to understand.

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 279–294, 2005.
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Our previous work [18] connects the static security type system with run-time
security mechanisms such as public-key infrastructures. The language there uses
singleton types such that a principal can be represented as a public key, and the
authority of a principal granting a privilege is represented as a digital certificate.

We improve on our previous work by using monads and subtyping, allowing
us to prove a conditioned version of noninterference even in the presence of
declassification (which was neither stated nor proved before). In particular, we
formalize downgrading mechanisms such as delegation and declassification as
subtyping, and certificate verification as extending the subtyping relation. More
importantly, the conditioned noninterference now captures the intuition that
certificates externally justify the information leaks due to declassification.

The main contributions of our paper are:

1. the design of a safe and secure information-flow type system with bounded
quantification and effects in a monadic style;

2. the integration of the decentralized label model with type constructors and
the use of subtyping to model delegation, declassification, and endorsement;

3. a conditioned version of the noninterference theorem that justifies certificate-
based declassification.

The work here subsumes our previous work [18], adding existential types,
run-time labels and privileges, and a conditioned noninterference theorem for
the full language. We have also built a prototype interpreter called Apollo1.

For brevity, this paper shows only the interesting cases of rules and proof.
Our technical report [17] contains all rules and proofs of type-safety and non-
interference for the full language. The proof of type-safety is also mechanically
formalized and checked with Twelf (a logical framework).

The rest of the paper is organized as follows. Section 2 starts with a core
calculus with labels to study noninterference and extends it with effects. Sec-
tion 3 introduces the decentralized label model and shows how the core calcu-
lus supports the notion of principals, confidentiality and integrity. Furthermore,
downgrading mechanisms are studied as subtyping, and certificate-based declas-
sification is justified using constructs from public-key infrastructures. The paper
then discusses related work in Section 4 and concludes in Section 5.

2 Core Label Calculus

Let us start by introducing a core calculus with monadic labels and effects for
analyzing program dependency. This section proves two important security the-
orems, type-safety and noninterference, for our core calculus.

2.1 Monadic Labels

The first part of our label calculus is based on the dependency core calculus
(DCC) [1] and the polymorphic lambda calculus with subtyping (System F�) [6].

1 The interested reader is invited to visit http://www.cis.upenn.edu/~stse/apollo.
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The motivation behind DCC is to use monadic labels as a unifying framework to
study many important program analyses such as binding time, information flow,
slicing, and function call tracking. DCC uses a lattice of monads and a special
typing rule for their associated bind operations to describe the dependency of
computations in a program.

Unlike DCC, which is based on the call-by-name simply-typed lambda calcu-
lus, our core calculus is based on the call-by-value F�. Our work should apply
also to call-by-name languages; we pick call-by-value semantics simply because
of their familiarity. The features of F� will become essential in later sections:
bounded quantification (∀α � t.t and ∃α � t.t) are used to connect static secu-
rity policies and run-time public-key infrastructures (Sect. 3.3), and subtyping
is used to model principal delegations and policy refinements (Sect. 3.1).

The following grammar defines the syntax for our basic types and terms:

t ::= <> | <t, t> | t + t | t→t | �k | ⊥k | α | ∀α � t.t | ∃α � t.t

m ::= <> | <m, m> | prj1 m | prj2 m | inj1 m | inj2 m | case m m m | x | λx :t.m | m m
| Λα � t.m | m [t] | pack (t, m) as t | open (α, x) = m in m

The types consists of unit, products, sums, functions, top, bottom, variables, uni-
versal and existential quantification, while the terms consists of unit, products,
projections, injections, cases, variables, functions, applications, type abstractions
and instantiations, and package packings and openings. We also encode Booleans
bool using unit and sums.

The types top �k and bottom ⊥k are annotated by a kind k: types T , labels
L, principals P, and privileges J . Principals and privileges will be explained
in Sect. 3 with the decentralized label model. One of our design choices is to
identify these syntactic classes (types t, labels �, principals p, and privileges j):

t ≡ � ≡ p ≡ j k ::= T | L | P | J

This design allows the reuse of type machinery, such as polymorphism and sub-
typing, uniformly for these concepts. We will see this benefit again for intersec-
tion and union types in Sect 3.1, and singleton types in Sect. 3.3.

We use the semantics of Kernel F� [6]. The evaluation judgment is denoted by
m −→ m, the typing judgments by ∆; Γ ' m : t, and the subtyping judgment by
∆ ' t � t, where ∆ is a type context and Γ is a term context. We follow Pottier’s
notation [13] for specifying the subtyping polarities � of type constructors: ⊕
for covariant, 1 for contravariant, and 2 for invariant:

∆ ::= · | ∆,α � t Γ ::= · | Γ, x :t
� ::= <⊕,⊕> | ⊕+⊕ | $→⊕ | ∀α � %.⊕ | ∃α � %.⊕

We omit rules for the standard F� constructs above and focus on the new
types and terms for labels: monadic types t{�} (indexed by labels �), and their
corresponding units m{�} and bind operator.

t ::= . . . | t{�} m ::= . . . | m{�} | bind x = m in m � ::= . . . | ⊕ { ⊕ }

Syntactically, these label constructs have the highest precedence, so that
m1 m2{�} means m1 (m2{�}). We write high and low labels as H = �L and L = ⊥L.
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The subtyping relation of labels∆ ' � � � forms a lattice and hence our language
has a lattice of monads t{�} and m{�}. Since labels and types are in the same
syntactic class, we use a kinding judgment ∆ ' t :: k to rule out ill-formed types
such as bool→H or bool{bool}. We omit the straight-forward kind system here;
our technical report [17] contains the full details.

Now, let us see how the type system prevents low-level computation from
depending on high-level computation:

∆; Γ � m : t ∆ � � :: L
∆; Γ � m{�} : t{�}

∆; Γ � m1 : t1{�} ∆; Γ, x :t1 � m2 : t2 ∆ � �& t2

∆; Γ � bind x = m1 in m2 : t2

The label monad m{�} marks the computation m with the label �, restricting how
it interacts with the rest of the program. The term bind x = m1 in m2 exposes
the computation m1 protected inside the label type t{�} to the scope of m2.

Note that these typings are standard for monadic types, except that the
return type of bind here has type t2, rather than the expected type t2{�}.
Instead, by connecting the subtyping of labels (∆ ' �1 � �2) with the subtyping
of types (∆ ' t1 � t2), the following label protection judgment ∆ ' � 3 t
ensures that the result of bind still protects the data:

∆ � �& <>

∆ � �2 � �1

∆ � �2 & t{�1}
∆ � �2 & t

∆ � �2 & t{�1}

The unit type protects all labels as there is only one term of such type. Sum
types, as information can be leaked by their tags, do not protect any label. The
full set of rules also includes cases for products, functions, and universal types.

Example 1. The term λx : bool{H}. bind y = x in if y then 0 else 1 is
not well-typed, because ∆ ' H �3 int. An integer leaks information just like a
Boolean or a sum. In contrast, λx :bool{H}. bind y = x in if y then 0{H} else
1{H} is well-typed, because ∆ ' H 3 int{H}. ��

Operationally, the label monad m{�} evaluates the term inside until it is a
value v{�}, while bind evaluates m1 to a value v{�} and substitutes v for x in m2.
We specify the dynamic semantics by the following syntactic classes of values
v and evaluation contexts E [20], and by small-step computation rules. We use
m{v/x} to denote the capture-free substitution of v for x in m.

v ::= . . . | v{�}
E ::= . . . | E{�} | bind x = E in m bind x = v{�} in m −→ m{v/x}

DCC also has fixpoints and pointed types. In the technical report, we add such
features to the full language and prove noninterference using a bisimulation-like
technique. For the lack of space, however, such development is left out here.

2.2 Security Theorems

Before we go on to enrich the language with features such as effects and the
decentralized label model, let us state and prove two important theorems that
guarantee the security of programs written in our language. These theorems still
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hold for our full languages (modulo some condition to account for declassifi-
cation, to be explained in Sect. 3.3); however, we prove them here for the core
calculus first to demonstrate the proof techniques. By presenting and proving for
the full language incrementally, we hope to substantiate our claim that monadic
types make the design and proofs more modular.

The first theorem is the type-safety of the language, which we have proved
using the progress and preservation theorems. Type-safety states that a closed,
well-typed program will not get stuck or generate any error. A closed program
means that both the type and term contexts are empty, that is, ∆ = Γ = ·.

Theorem 2 (Progress and Preservation). If ·; · ' m1 : t, then either m1 = v
or m1 −→ m2. And, if ∆; Γ ' m1 : t and m1 −→ m2, then ∆; Γ ' m2 : t.

Proof. By induction on the typing derivation [6, 1]. ��

The second theorem is the noninterference property of the language [15],
which states that if a program is well-typed, a low-level observer cannot distin-
guish between different high-level computations. The theorem requires a model
of observers ζ for specifying what information leaks are possible. Our model here
is that, given an equivalence relation over values of the same type, a well-typed
observer cannot distinguish equivalent values, which are parameterized by the
security label of the observer.

For example, we should have these equivalences for Booleans:

true ∼ζ true : bool true �∼ζ false : bool true{H} ∼L false{H} : bool{H}
The first two say that no observer ζ cannot distinguish true from true, but
an observer can tell the difference between true and false. More interestingly,
the third says that if values are protected inside the high monad, then different
values become indistinguishable to the low-level observer L.

Based on the intuition above, we generalize the equivalence relation in the fol-
lowing ways: (1) extend the relation to be higher-order, to account for functions;
(2) parameterize the relation with arbitrary labels; (3) cover all types and values
in the relation; and, (4) lift the relation from values to terms by evaluation.

Formally, this logical equivalence relation is defined by the following rules. We
denote the equivalence relation for closed values at closed type t by v ∼ζ v : t,
and that for closed terms by m ≈ζ m : t:

m1 −→∗ v1 m2 −→∗ v2 v1 ∼ζ v2 : t
m1 ≈ζ m2 : t

∀(v3 ∼ζ v4 : t1). v1 v3 ≈ζ v2 v4 : t2

v1 ∼ζ v2 : t1→t2

v1 ∼ζ v2 : t
v1{�} ∼ζ v2{�} : t{�}

∀(t2 � t1). v1 [t2] ≈ζ v2 [t2] : t{t2/α}
v1 ∼ζ v2 : ∀α � t1. t

� �� ζ

v1{�} ∼ζ v2{�} : t{�}
v1 ∼ζ v2 : t{t1/α}

pack (t1, v1) ∼ζ pack (t1, v2) : ∃α � t2.t

For reference in proofs later, we name these rules (from top to bottom, left
to right) R-Term, R-Lab1, R-Lab2, R-Fun, R-All, and R-Some (with type anno-
tations inside the pack terms elided). We slightly abuse the notation by using
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∀ both for the object-level quantification types ∀α � t.t and for the meta-level
quantification in logical relations. Note that we do not deal with parametricity
of polymorphic functions [19] nor the behavioral equivalence of existential pack-
ages [12]. That is, our model assumes that an observer can differentiate different
representations of polymorphic functions or different implementations of exis-
tential packages. This assumption simplifies the equivalence relations, and is the
key difference between noninterference and parametricity.

The last step is to model an arbitrary observer as an open term that con-
tains free type variables and term variables, and model observations as type
substitutions δ and term substitutions γ, which are defined as:

δ ::= · | δ, α �→ t γ ::= · | γ, x �→ v

A judgment δ |= ∆ says that a type substitution models a type context: for
all α ∈ dom(δ) = dom(∆), if δ(α) = t1 and α � t2 ∈ ∆, then t1 is closed, has
the same kind as t2, and ∆ ' t1 � t2. Another judgment γ1 ∼ζ γ2 : δ(Γ) says
that two term substitutions are equivalent under a term context of closed types:
for all x ∈ dom(γ1) = dom(γ2) = dom(δ(Γ)), if γ1(x) = v1, γ2(x) = v2 and
x :t ∈ δ(Γ), then v1 ∼ζ v2 : t.

With the logical relations and the substitutions above, we can formally state
the main theorem of the core label calculus: related substitutions preserve the
logical equivalence. In other words, an arbitrary observer cannot distinguish
values higher in the lattice.

Theorem 3 (Noninterference for Terms). If ∆; Γ ' m : t and δ |= ∆ and
γ1 ∼ζ γ2 : δ(Γ), then δγ1(m) ≈ζ δγ2(m) : δ(t).

Proof. By induction on the typing derivation. Case bind: We are given ∆; Γ '
bind x = m1 in m2 : t2. By inversion, we have ∆; Γ ' m1 : t1{�} (*1) and
∆; Γ, x : t1 ' m2 : t2 (*2) and ∆ ' � 3 t2 (*3). By induction hypothesis with
(*1), we have

δγ1(m1) ≈ζ δγ2(m1) : δ(t1{�})
By inversion of R-Term, δγ1(m1) −→∗ v1 (*4) and δγ2(m1) −→∗ v2 (*5) and
v1 ∼ζ v2 : δ(t1{�}). Subcase δ(�) � ζ: By the inversion of R-Lab1, v1 =
v3{δ(�)} and v2 = v4{δ(�)} and v3 ∼ζ v4 : δ(t1) (*6). We then extend the
term substitutions as

γ′
1 = γ1, x �→ v3 γ′

2 = γ2, x �→ v4

such that, by (*6), γ′1 ∼ζ γ′2 : δ(Γ, x : t1) (*7). By induction hypothesis with
(*2,*7),

δγ′
1(m2) ≈ζ δγ′

2(m2) : δ(t2)

which means that δγ1(m2){v3/x} ≈ζ δγ2(m2){v4/x} : δ(t2) (*8). By (*4,*5),

δγ1(bind x = m1 in m2) δγ2(bind x = m1 in m2)
= bind x = δγ1(m1) in δγ1(m2) = bind x = δγ2(m1) in δγ2(m2)
−→∗ bind x = v3{δ(�)} in δγ1(m2) −→∗ bind x = v4{δ(�)} in δγ2(m2)
−→ δγ1(m2){v3/x} −→ δγ2(m2){v4/x}

Therefore, by R-Term and (*8), we conclude that δγ1(bind x = m1 in m2) ≈ζ

δγ2(bind x = m1 in m2) : δ(t2). Subcase δ(�) �� ζ: by Lemma 4 with (*3). ��
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Lemma 4 (Noninterference for Protected Terms). If ∆ ' � 3 t, δ |= ∆
and δ(�) �� ζ, then m1 ≈ζ m2 : t. ��

2.3 Monadic Effects

We now turn to study information flows in the presence of computational effects.
Practical programs interact with external systems and produce effects; observers
can then learn high-security values from those effects. To prevent information
leaks through such channel, we need to refine the type system with effect types.

We again use the monadic style of effect types [9, 5]. The benefit of monads
is that the new feature can be incrementally added to the language we have
shown so far. That is, all the typing and evaluation rules in Section 2.1 remain
unchanged. Traditional approaches, in contrast, require tracking of effects in all
typing rules, spreading the interaction of labels and effects everywhere. Monads
also help in structuring proofs in a modular way, which will be explained for
Theorem 7.

For lazy languages like Haskell, we can simply add the IO monad. For eager
languages like the one here, we need to introduce a new syntactic class e for
effectful expressions to distinguish from pure terms m introduced in Sect. 2.1:

t ::= . . . | t!ε � ::= . . . | ⊕ !$
e ::= return m | run x = m in e m ::= . . . | e!ε

Every top-level program is now an expression, instead of a term. We model
effects as outputs at a given label �, which are visible to an observer of level
ζ if � � ζ. An observer cannot tell the difference between effects of different
labels, but can count the number of visible effects happening in the program.
This treatment gives us a uniform way of modeling language features with effects
and could be extended to effects that carry additional values. Experience with
effectful languages suggests that this technique can be extended to memory
references with reads and writes [5].

Expressions are return m and run x = m in e, which explicitly specify the
order of execution. The term e!ε delays the effects ε in e and thus can be
considered pure, but has the monadic effect type t!ε (indexed by effect labels
ε). Here ε is a lower bound on the labels of observable effects happening in e,
similar to the concept of program counter label in the literature [15].

The typing judgment for expressions is ∆; Γ ' e : t!ε, which says that under
the type context ∆ and term context Γ , the expression e has the monadic effect
type t!ε. The following are the typing rules for the new constructs:

∆; Γ � m : t
∆; Γ � return m : t!H

∆; Γ � m : t1!ε ∆; Γ, x :t1 � e : t2!ε

∆; Γ � run x = m in e : t2!ε

∆; Γ � e : t!ε ∆ � ε :: L
∆; Γ � e!ε : t!ε

∆ � �& t ∆ � � � ε

∆ � �& t!ε

The expression return m has no effect and hence its type is given the empty
effect H. We interpret the effect at H to be visible to no-one, while the effect
at L to be visible to everyone. The expression run x = m in e executes the
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encapsulated effect of m, and then continue with e. Both m and e have the same
effect type ε; otherwise, the subsumption rule of subtyping can be used.

The bottom left rule simply connects the typing judgments of terms and
expressions. The bottom right rule, on the other hand, is an additional label
protection judgment (defined in Sect. 2) for effect types. The rule says that
the underlying type must protect the label and the computation must generate
effects higher than the label. In other words, once the program has bound high-
security data, it may not produce low observable effects.

Example 5. The expression run z = (bind y = x in if y then c!H else c!L) in z,
where c ≡ return <> and x : bool{H}, is insecure. This is a typical example of
implicit information flow through program counter in the literature [15], where
a program leaks information about a high-security Boolean through side effects.

The evaluation judgment for expressions is e ε−→ e, where ε is the side effect
during such step. We use u to denote the values for expressions:

u ::= return v v ::= . . . | e!ε
E ::= . . . | return E | run x = E in e | run x = (return E)!ε in e

run x = (return v)!ε in e
ε−→ e{v/x}

Since the congruence rules for expressions have no computational effects, we can
still use evaluation contexts E to describe the evaluation order of expressions.
The term e!ε is a value because it is a closure that delays computation.

Example 6. The following expression of type bool!L evaluates as:

run x = (run y = (return prj2 <true, false>)!L in return y)!H in return x
−→ run x = (run y = (return false)!L in return y)!H in return x
L−→ run x = (return y){false/y}!H in return x
= run x = (return false)!H in return x
H−→ (return x){false/x}!H
= return false ��

To model that an observer can now distinguish programs due to compu-
tational effects, we need the following new equivalence judgments for effectful
expressions and values: e ≈ζ e : t!ε and u ∼ζ u : t!ε. The rules for expressions

make use of a new evaluation relation, e
ζ

=⇒n u, which is explained below.

e1 ≈ζ e2 : t!ε
e1!ε ∼ζ e2!ε : t!ε

(R-Eff)
v1 ∼ζ v2 : t

return v1 ∼ζ return v2 : t!ε
(R-Ret)

e1
ζ

=⇒n u1 e2
ζ

=⇒n u2 u1 ∼ζ u2 : t!ε
e1 ≈ζ e2 : t!ε

(R-Exp)

The rules on the top simply connect the term equivalence and the expression
equivalence. Expressions are equivalent, the bottom rule says, if they produce
the same number of effects visible to the observer and halt at equivalent values.
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To formalize such equivalence, we first classify evaluation steps into those that
are visible and those that are invisible to the observer. Then, a visible evaluation
step can be prefixed and suffixed with any number of invisible evaluation steps.

�ζ−−−→ ≡ ⋃
ε�ζ

ε−→ 	�ζ−−−→ ≡ ⋃
ε 	�ζ

ε−→ ζ
=⇒ ≡ 	�ζ−−−→∗ ◦ �ζ−−−→ ◦ 	�ζ−−−→∗

The evaluation judgment we want is therefore the n-step closure
ζ

=⇒n of
ζ

=⇒ .
Note that

��ζ−−−→∗ ◦ �ζ−−−→ is the composition of the two relations, while
��ζ−−−→∗ is

the reflexive and transitive closure of
��ζ−−−→.

Having refined our observer model as above, we proceed to proving nonin-
terference for our core calculus with expressions. The main idea is to track the
number of visible effects produced during the evaluation.

Note that the following proof is complete yet short in length. Since the proof
is by induction on the typing derivation, monadic types allow an incremental
proof, because the original proof for Theorem 3 remains valid and requires only
a simple extension for e!ε. Here we can focus merely on the new typing rules for
return e and run x = m in e.

Theorem 7 (Noninterference for Expressions). If ∆; Γ ' e : t!ε and
δ |= ∆ and γ1 ∼ζ γ2 : δ(Γ), then δγ1(e) ≈ζ δγ2(e) : δ(t)!δ(ε).

Proof. By mutual induction with Theorem 3 (extended with e!ε) on the typing
derivation. Case return: We are given ∆; Γ ' return m : t!H. By inversion, we
have∆; Γ ' m : t. By Theorem 3, we have δγ1(m) ≈ζ δγ2(m) : δ(t). By inversion
of R-Term, δγ1(m) −→∗ v1 and δγ2(m) −→∗ v2 and v1 ∼ζ v2 : δ(t). Therefore,
by R-Ret, we conclude that δγ1(return m) ≈ζ δγ2(return m) : δ(t)!δ(ε).

Case run: We are given ∆; Γ ' run x = m in e : t2!ε. By inversion, we have
∆; Γ ' m : t1!ε (*1) and ∆; Γ, x :t1 ' e : t2!ε (*2). By Theorem 3 with (*1),
we have

δγ1(m) ≈ζ δγ2(m) : δ(t1)!δ(ε)

By inversion of R-Term, δγ1(m) −→∗ v1 (*3) and δγ2(m) −→∗ v2 (*4) and
v1 ∼ζ v2 : δ(t1)!δ(ε). By inversion of R-Eff, v1 = e1!δ(ε) and v2 = e2!ε and

e1 ≈ζ e2 : δ(t1)!δ(ε). By inversion of R-Exp, e1
ζ

=⇒n u1 (*5) and e2
ζ

=⇒n u2
(*6) and u1 ∼ζ u2 : δ(t1) : δ(ε). By inversion of R-Ret, u1 = return v3!δ(ε)
and u2 = return v4!δ(ε). We then extend the term substitutions as

γ′
1 = γ1, x �→ v3 γ′

2 = γ2, x �→ v4

such that γ′1 ∼ζ γ
′
2 : δ(Γ, x :t1) (*7). By induction hypothesis with (*2,*7),

δγ′
1(e) ≈ζ δγ′

2(e) : δ(t2)!δ(ε)

which means that δγ1(e){v3/x} ≈ζ δγ2(e){v4/x} : δ(t2)!δ(ε) (*8). By
(*3,*4,*5,*6),

δγ1(run x = m in e) δγ2(run x = m in e)
= run x = δγ1(m) in δγ1(e) = run x = δγ2(m) in δγ2(e)
−→∗ run x = e1!δ(ε) in δγ1(e) −→∗ run x = e2!δ(ε) in δγ2(e)

ζ
=⇒n run x = (return v3)!δ(ε) in δγ1(e)

ζ
=⇒n run x = (return v4)!δ(ε) in δγ2(e)

ε−→ δγ1(e){v3/x} ε−→ δγ2(e){v4/x}
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That means
δγ1(run x = m in e)

ζ
=⇒n+i δγ1(e){v3/x}

δγ2(run x = m in e)
ζ

=⇒n+i δγ2(e){v4/x}
where i = 1 if ε � ζ, or i = 0 otherwise. By R-Exp and (*8), we conclude that
δγ1(run x = m in e) ≈ζ δγ2(run x = m in e) : δ(t2)!δ(ε). ��

3 Decentralized Label Calculus

Having established the security property of our core calculus, we now investigate
how to make the policy sublanguage more expressive. The key challenge is to
extend the policy language in a modular way, reusing the type machinery from
the core as much as possible.

This section shows how the decentralized label model by Myers and Liskov [10]
can be integrated into our core label calculus. Decentralized labels allow different
principals to individually specify fine-grained security policies such as confiden-
tiality and integrity. Combined with singleton types, this extended calculus draws
a connection between compile-time dependency analyses and the run-time infras-
tructure. The benefit is twofold: (1) security policies can now be specified in term
of information not known until execution, such as run-time user identities or file
access permissions; (2) certificates can be used to regulate declassification and
to justify a conditioned version of the noninterference theorem.

3.1 Confidentiality and Integrity

Confidentiality policies specify which principals allow which other principals
to read some data, while integrity policies specify which principals trust some
data [7]. These policy constructors, or label constructors, provide a finer-grained
control of security specification than the label constants introduced in Sect. 2.1.

To model these policies, we treat principals p as abstract types and treat
principal delegation p1 � p2 as subtyping. That is, p1 is a subtype of p2 whenever
p1 delegates to p2 (or, p2 is acting for p1). We also introduce two new label
constructors, R (read) and T (trust), for confidentiality and integrity:

� ::= . . . | R p p | T p | � ∧ � | � ∨ � � ::= . . . | R ⊕ ⊕ | T $ | ⊕ ∧ ⊕ | ⊕ ∨⊕

A label R p1 p2 specifies the policy that a data is owned by p1 and that p1 allows
p2 to read the data, while a label T p specifies that the data is trusted by p.

Moreover, we add intersection �∧� and union types �∨� [3] to precisely model
policy sets. Since labels � and principals p are in the same syntactic class, these
two constructors can also model principal groups as p ∧ p and p ∨ p.

Intersection and union types in this paper are used only for labels, principals,
and privileges, but not for ordinary types; hence, our language does not have
introduction or elimination terms for intersections and unions. This decision
helps keeping the static and the dynamic semantics of our language simple.

We need both intersection and union types because the two label constructors
have different subtyping polarities: R is covariant, while T is contravariant. Having
both intersections and unions gives a natural interpretation of principal sets:
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R [p1, p2, . . . , pn] p = R (p1 ∧ p2 ∧ . . . ∧ pn) p
R p [p1, p2, . . . , pn] = R p (p1 ∧ p2 ∧ . . . ∧ pn)
T [p1, p2, . . . , pn] = T (p1 ∨ p2 ∨ . . . ∨ pn)

Example 8. The data true{R p1 [p2, p3]}{T [p1, p2]} has two security
policies. The first one is a confidentiality policy saying that the data is owned by
p1, and that p1 allows p2 and p3 to read the data. The second one is an integrity
policy saying that both p1 and p2 trust the data. ��

A decentralized label looks like {p1 : p2, p3; p2 : p3 ! p1, p2} traditionally [10,
18], compared to our notation {R p1 [p2, p3]}{R p2 p3}{T [p1 p2]} here. Ours is
slightly more verbose but its semantics can be specified more easily in terms of
subtyping. In addition, new policy constructors can be added in a uniform way
by simply specifying their subtyping polarities.

3.2 Downgrading as Subtyping

The rest of the section discusses various downgrading mechanisms that inten-
tionally leak information [21]. These mechanisms include:

1. declassifying some data to a lower label,
2. a principal delegating to other principals,
3. a principal declassifying some data to other principals for reading, and
4. a principal endorsing the integrity of some data.

The decentralized label model is essential in the last three mechanisms be-
cause each concerns a particular principal. In Sect. 3.3 we will see how a public
key, which represents the concerned principal, can be used to verify a digital
certificate, which represents the authority for downgrading.

The innovation here is to model downgrading as subtyping. The motivation is
that downgrading can be made implicit through the subsumption rule of subtyp-
ing, if the concerned principal explicitly introduces the authority into the context.
This contrasts with the usual approach [10] that uses coercion constructs like
declassifyp m and endorsep m for declassification and endorsement. Both ap-
proaches ensure that the authority of the concerned principal is granted before
declassification. Our implicit approach, however, allows a simple formulation of
certificate-based declassification (to be shown in Sect. 3.3).

Foremost, we extend the type context ∆ to maintain authority, which is a
set of authorizations of the form p ' j (a principal p granting some privilege j):

∆ ::= . . . | ∆, p � j
j ::= . . . | del p | dcls p | endr � ::= . . . | del ⊕ | dcls ⊕ | ⊕ % $ �⊕
t ::= . . . | t % p � j m ::= . . . | grant p � j in m | pass x = m in m

The three predefined privileges are delegation (del p), declassification (dcls p),
and endorsement (endr), corresponding to downgrading for principal subtyping,
confidentiality and integrity, respectively. Now, the downgrading mechanisms
can be concisely expressed using these additional subtyping rules:
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∆ � p1 � del p2

∆ � p1 � p2

∆ � p1 � dcls p

∆ � R p1 p2 � R p1 [p2, p]

∆ � p � endr

∆ � T p1 � T [p1, p]

An authority type t % p ' j (a type t annotated with the authority of a
principal p granting some privilege j) tracks the effects of declassification on the
lattice so that later theorems can be stated in terms of the authority:

∆, p � j; Γ � m : t ∆ � p :: P ∆ � j :: J
∆; Γ � grant p � j in m : t % p � j

∆; Γ � m1 : t1 % p � j
∆, p � j; Γ, x :t1 � m2 : t2

∆; Γ � pass x = m1 in m2 : t2 % p � j

v ::= . . . | grant p � j in v E ::= . . . | grant p � j in E | pass x = E in e

pass x = (grant p � j in v) in m −→ grant p � j in m{v/x}
These rules are very close to the typing and evaluation rules for standard

monadic types, except that the type context ∆ is now extended with p ' j. The
value v in the term grant p' j in v may capture the constraint p' j, and hence,
to ensure type preservation, grant p ' j in v is regarded together as a value.

As a pleasant bonus of monadic analysis, checking the robustness condition
of downgrading reduces to adding one condition in the label protection rule
∆ ' � 3 t in Sect. 2.1. In particular, robust declassification says that the
program context of a declassification operation should be trusted by the owner
of the data [21]. The following rule generalizes the robustness condition to any
downgrading mechanism. The intuition is that, for robust downgrading, when p2
authorizes some privilege j, the program context should have trust (T p1) higher
than p2’s trust (T p2). That is ∆ ' T p2 � T p1, or equivalently, ∆ ' p1 � p2.

∆ � T p1 & t ∆ � p1 � p2

∆ � T p1 & (t % p2 � j)

It is known that noninterference does not hold in the presence of downgrad-
ing [15]. Yet, it is intuitive that if the program does not use any downgrading,
the program should still be secure. In fact, a slightly stronger statement holds:
if no one transitively downgrades to the observer, the program is still secure.

The following modified theorem of noninterference formally captures such
intuition. We write ∆ = ∆α, ∆� to separate the bindings and the authority, and
we write t ⇒ t0 % ∆ to collect all required authority in the value positions of the
type. For example, p1, j, p1' j, p2 ' m : bool→(bool % p1' j) has ∆α = p1, j, p2
and ∆� = p1 ' j and bool→(bool % p1 ' j) ⇒ (bool→bool) % p1 ' j. These
straight-forward rules are defined in our technical report [17].

Theorem 9 (Conditioned Noninterference). Suppose ∆; Γ ' m : t, where
∆ = ∆α, ∆� and t ⇒ t0 % ∆0, and δ |= ∆α and γ1 ∼ζ γ2 : δ(Γ). If ∆,∆0 �'
p � ζ for all p ∈ dom(∆α) such that ∆ �' p � ζ, then δγ1(m) ≈ζ δγ2(m) : δ(t).

Proof. By induction on the typing derivation. Case λx :t1.m: We are given∆; Γ '
λx : t1.m : t1 → t2. By inversion, we have ∆; Γ, x : t1 ' m : t2 (*1). Since
downgrading in the input propagates to the output in a function, we have t2 ⇒
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t3 % ∆0 (*2) for the same ∆0 as in t1 →t2 ⇒ t0 % ∆0. Assume v3 ∼ζ v4 : δ(t1).
We then extend the term substitutions as

γ′
1 = γ1, x �→ v3 γ′

2 = γ2, x �→ v4

such that γ′1 ∼ζ γ
′
2 : δ(Γ, x :t1) (*3). By induction hypothesis with (*1,*2,*3),

δγ′
1(m) ≈ζ δγ′

2(m) : δ(t2)

which, by R-Term, δγ1(m){v3/x} ≈ζ δγ2(m){v4/x} : δ(t2). By R-Term again,

δγ1(λx :t.m) v3 ≈ζ δγ2(λx :t.m) v4 : δ(t2)

Hence, by R-Fun, δγ1(λx :t.m) ≈ζ δγ2(λx :t.m) : δ(t1 →t2). ��

The proof is surprisingly similar to that for standard noninterference, show-
ing that this conditioned version is only a slight generalization. In the next
subsection, however, we will show how combining this theorem with ideas from
public-key infrastructures justifies certificate-based declassification.

3.3 Public Keys and Certificates

Public-key infrastructures provide public keys and digital certificates for dis-
tributed access control. Our motivation here is to connect the type system with
the security infrastructure such that a certificate of authority, when verified with
a principal’s public key, can justify the information leaks due to downgrading.
Certificates are also important for auditing purpose.

In our previous work [18], we presented the language λRP for specifying se-
curity policies with run-time principals. The type system uses singleton types
to represent run-time principals and an abstract type to represent certificates.
Effectively, λRP models public keys and certificate verifications of public-key
infrastructures in a sound type system.

Allowing such run-time principals gives programmers more flexibility in spec-
ifying security policies. Together with universal and existential quantification,
programs can determine the run-time user identity of the system (getuid) and
write functions polymorphic in principals (getenv). Here the type �P represents
the top principal, and ′α is a singleton type to be explained below.

getuid : ()→∃α � �P . ′α
getenv : ∀α � �P . ′α→string{R α α}

Our language readily generalizes the idea of run-time types to run-time labels
and run-time privileges as well. For example, access permissions from the file
system (fstat) can be used as run-time labels to constrain the information flow
of data read from a file.

Let us recap our previous work on run-time principals [18]:

t ::= . . . | ’p | ’j | cert m ::= . . . | ’p | ’j | ’p � ’j | if (m⇒ m � m) m m

The term ’p is the run-time representation of principal p and has the singleton
type ’p, carrying the most precise information about the term in the type system.
Similarly, ’j is the run-time representation of privilege j.
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The term ’p ' ’j represents the authority of principal p granting privilege
j. Such term has the abstract type cert that does not reveal any information
at all at the type level. The reason is that we do not trust the validity of the
certificate unless verified with the term if (m1 ⇒ m2 ' m3) m4 m5. More formally:

∆; Γ � ’p : ’p ∆; Γ � ’j : ’j ∆; Γ � ’p � ’j : cert

∆;Γ � m1 : cert ∆;Γ � m2 : ’p ∆;Γ � m3 : ’j ∆, p � j; Γ � m4 : t ∆; Γ � m5 : t
∆; Γ � if (m1 ⇒ m2 � m3) m4 m5 : t % p � j

� ’p1 � ’j1 ⇒ ’p2 � ’j2

if (’p1 � ’j1 ⇒ ’p2 � ’j2) m1 m2 −→ grant p2 � j2 in m1

The judgment ' ’p1 ' ’j1 ⇒ ’p2 ' ’j2 defines an external verification pro-
cedure of the authority with respect to the principal and the privilege. If the
procedure fails, the term if (’p1 ' ’j1 ⇒ ’p2 ' ’j2) m1 m2 steps to m2.

There exists a direct mapping from the language constructs (’p, ’p ' ’j,
and ' ’p1 ' ’j1 ⇒ ’p2 ' ’j2) to the mechanisms of public-key infrastructures
(public keys and digital certificates). In fact, public-key infrastructures are just
one possible implementation that supports distributed access control [4]. Our
previous work [18] carries out the design and the proof in an abstract setting
and provides constructs for testing delegation and acquiring certificates.

We conclude the development of our language by presenting a modified the-
orem of noninterference. It states that any information leaked by a well-typed
program can be justified by certificates in the environment. In fact, the theorem
is simply the contrapositive of the conditioned noninterference in Sect. 3.2. Our
technical report [17] contains detailed proofs of the type-safety and the following
theorem for the full language.

Theorem 10 (Certified Noninterference). Suppose ∆; Γ ' m : t, where
∆ = ∆α, ∆� and t ⇒ t0 % ∆0, and δ |= ∆α and γ1 ∼ζ γ2 : δ(Γ). If δγ1(m) �≈ζ

δγ2(m) : δ(t), then t = t0 % ∆0 and ∆,∆0 ' p � ζ for some p that satisfies
∆ �' p � ζ.

Proof. By Theorem 9, extended with singletons and certificates.

4 Related Work

The survey by Sabelfeld and Myers [15] on language-based information-flow se-
curity is an excellent introduction to the field. In particular, their paper cites a
long line of research [10, 13, 2] that studies the interactions of security policies
and language features in Java and ML. This paper instead focuses on a smaller
set of interesting features with a modular design and with the goal of justifying
declassification with certificates. Compared to our previous work [18], this paper
concisely expresses the decentralized label model in the polymorphic lambda cal-
culus with subtyping (F�). Various downgrading mechanisms are understood as
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subtyping such that not only type-safety but also a conditioned version of non-
interference can be formulated and proved. We also extensively employ monadic
constructs [9, 1, 5] to keep the design and the proofs modular. As a future work,
one may check if these constructs satisfy some formal monad laws.

Chothia et al. also use public-key infrastructures to model typed crypto-
graphic operations for distributed access control [4]. Strecker [16] formalizes an
analysis of information flow for µ-Java and proves noninterference in Isabelle
by shallow embedding, while Naumann [11] similarly formalizes a core subset of
Java in PVS by deep embedding. Our ongoing work has the same goal of proving
noninterference in a machine-checkable way.

It is known that standard noninterference does not hold in the presence of
declassification [15]. Hence, it has been a challenging problem to formulate and
prove any variant of noninterference with declassification. Various ideas such
as selective declassification [13], delimited release [14], and relaxed noninterfer-
ence [8] are proposed to allow downgrading that can be externally justified.

5 Conclusion

We have presented the design of a safe and secure information-flow type system
with bounded quantification and effects in a monadic style. One of our design
decisions is to treat labels, principals and privileges uniformly, as they are all
abstract types necessary only for compile-time analyses. This treatment allows
reuse of type machinery such as polymorphism, subtyping, and singleton types,
keeping the calculus consistent yet general.

The integration of the decentralized label model with type constructors al-
lows programmers specify expressive policies, while the use of subtyping to model
delegation, declassification, and endorsement simplifies the semantics of down-
grading. More importantly, these simplifications lead to a conditioned version of
the noninterference theorem that justifies certificate-based downgrading.

Formalizing the full language semantics and security theorems is our long-
term goal of building a rigid foundation for security-typed languages. One excit-
ing future work is to use Twelf (a logical framework) to mechanically formalize
and check the various noninterference theorems presented in this paper. We are
also writing larger examples in our language interpreter to gain more experience
of monadic secure programming.
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Abstract. In this paper we prove that attack models and robust declas-
sification in language-based security can be viewed as adjoint transfor-
mations of abstract interpretations. This is achieved by interpreting the
well known Joshi and Leino’s semantic approach to non-interference as
a problem of making an abstraction complete relatively to a program’s
semantics. This observation allows us to prove that the most abstract
property on confidential data which flows, here called private observa-
tion, and the most concrete harmless attacker observing public data,
here called public observable, both modeled as abstractions of the pro-
gram’s semantics, are respectively the adjoint solutions of a completeness
problem in standard abstract interpretation theory. In particular declas-
sification corresponds to refining the given model of an attacker with the
minimal amount of information in order to achieve completeness, which
is non-interference, while the harmless attacker corresponds to remove
this information. This proves an adjunction relation between two basic
approaches to language-based security: declassification and the construc-
tion of suitable attack models, and allows us to apply relevant techniques
for abstract domain transformation in language-based security.

Keywords: Abstract interpretation, language-based security, declassifi-
cation, abstract non-interference, attack models, adjunction, complete-
ness.

1 Introduction

Many security problems in language-based security are problems of confiden-
tiality: If a user wants to keep some information confidential then he/she has
to state a policy stipulating that no data visible from other users is affected by
confidential data. This policy allows programs to manipulate private data, unless
visible/public outputs of those programs do not improperly reveal information
about the data [27]. The usual way used to show confidentiality is to prove that
an attacker cannot observe any difference between the public outputs of any
two executions differing only in their private inputs with the assumption that
an attacker (or unauthorized user) is allowed to view only information that is
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not confidential. In this case the program is said to satisfy non-interference [18],
also referred as secrecy [27, 30]. In standard non-interference, the attacker can
fully analyze concrete computations. In this case, any conservative type/data-
flow/control-flow analysis of information flows would discard all the programs
which may provide any explicit or implicit concrete flows from confidential to
public resources. Standard non-interference is therefore often too strict for practi-
cal use in language-based security. In order to adapt security policies to practical
cases, it would be essential to know how much an attacker may learn from a pro-
gram by (statically) analyzing its input/output behavior. This idea has recently
lead to the definition of the notion of abstract non-interference [13] and robust
declassification [32]. Abstract non-interference provides a method for modeling
attackers as abstract interpretations [7, 8] of the input/output program behav-
ior, in particular it is used for characterizing the most powerful attacker which
is not able to disclose confidential properties, in the following called harmless.
Declassification corresponds to downgrade the sensitivity of data in order to
accommodate with (intentional) information leakage. In [13] and [32] system-
atic methods have been designed for deriving and analyzing respectively attack
models and declassification by characterizing what information flows from confi-
dential to public variables. It is clear that the stronger is the attacker, the more
information can be released by the program. Namely, the more concrete is the
model of the harmless attacker, the more abstract is the confidential informa-
tion that can be kept private. This observation gives an intuitive explanation
of the adjoint relation existing between the actions of weakening attackers and
declassifying private information. In particular, we can note that when we derive
the most concrete attack model, then we are looking for the most concrete pub-
lic observer , while when we derive the most abstract property the flows during
computation, for characterizing abstract declassification, we are looking for the
most abstract private observable. Indeed, the most concrete public observer is the
model of the most powerful attacker that can observe only public data. While,
the most abstract private observable is the minimal amount of information that
a program releases during computation.

In this paper, we prove that this duality corresponds precisely to an adjunc-
tion in the lattice of abstract interpretations. This is achieved by considering
abstract non-interference as a generalization of both declassification for passive
attackers and attack models. In this setting we prove that, under non restrictive
hypotheses, abstract non-interference corresponds precisely to making abstract
interpretation complete (see [17]) relatively to the denotational semantics of pro-
grams. This derives directly from an abstract interpretation-based generalization
of Joshi and Leino’s approach to secure information flows [19], which makes this
approach equivalent to a completeness problem. Abstract interpretation plays
a key role here, providing the adequate framework where program properties
can be compared by considering their relative precision. In particular, we prove
that declassification and attack models are adjoint notions and they correspond
respectively to the minimal complete refinement, providing the most concrete
public observer property of the program and the minimal complete simplifica-
tion, providing the most abstract private observable property of the program.
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2 Basic Notions

If S and T are sets, then ℘(S) denotes the powerset of S, S × T denotes the
Cartesian product of S and T , S�T denotes the set-difference between S and
T , S � T denotes strict inclusion, and for a function f : S → T and X ⊆ T ,
f(X) def= {f(x) | x ∈ X} and f−1(X) def=

{
x
∣∣f(x) ∈ X

}
. We will often denote

f({x}) as f(x) and use lambda notation for functions. Function composition
λx. f(g(x)) is denoted f◦g. 〈P,≤〉 denotes a poset P with ordering relation ≤,
while 〈P,≤,∨,∧,�,⊥〉 denotes a complete lattice P , with ordering ≤, lub ∨, glb
∧, greatest element (top) �, and least element (bottom) ⊥. Often, ≤P will be
used to denote the underlying ordering of a poset P , and ∨P , ∧P , �P and ⊥P

denote the basic operations and elements if P is a complete lattice. id def= λx. x
and T

def= λx. �. If S ⊆ P then ↓S def= {x ∈ P | ∃y ∈ S. x ≤ y}. ↓x is a shorthand
for ↓ {x}. f : C → A is (completely) additive if f preserves lub’s of all subsets
of C (emptyset included). Continuity holds when f preserved lubs’s of chains.
Co-additivity and co-continuity are dually defined.

It is well known that abstract domains can be equivalently formulated ei-
ther in terms of Galois connections or closure operators [8]. A pair of functions
α : C → A and γ : A → C on posets, denoted 〈C,α,A, γ〉, forms an adjunction or
a Galois connection (GC) if for any x ∈ C and y ∈ A: α(x) ≤A y ⇔ x ≤C γ(y).
α (resp. γ) is the left- (right-)adjoint to γ (α) and it is an additive (co-additive)
function. Additive and co-additive functions f admit respectively right and left
adjoint: f+ def= λx.

∨{
y
∣∣f(y) ≤ x

}
and f− def= λx.

∧{
y
∣∣x ≤ f(y)

}
respec-

tively. Remember that (f+)− = (f−)+ = f [2]. If in addition for any a ∈ A:
α(γ(a)) = a, then we call 〈C,α,A, γ〉 a Galois insertion (GI) of A in C. In
GC-based abstract interpretation the concrete and abstract domains, C and A,
are complete lattices [7]. An upper (lower) closure operator ρ : P → P on a
poset P is monotone, idempotent, and extensive: ∀x ∈ P. x ≤P ρ(x) (reductive:
∀x ∈ P. x ≥P ρ(x)). The set of all upper (lower) closure operators on P is
denoted by uco(P ) (lco(P )). Let 〈C,≤,∨,∧,�,⊥〉 be a complete lattice. Closure
operators are uniquely determined by the set of their fix-points ρ(C). For upper
closures, X ⊆ C is the set of fix-points of ρ ∈ uco(C) iff X is a Moore-family
of C, i.e., X = M(X) def= {∧S | S ⊆ X} — where ∧∅ = � ∈ M(X), iff X is
isomorphic to an abstract domain A in a GI (C,α,A, γ), i.e., A ∼= ρ(C) with
ι : ρ(C) → A and ι−1 : A → ρ(C) being an isomorphism, and (C, ι◦ρ,A, ι−1)
is the GI, i.e., ρ = γ◦α. In this case ρ(C) is a complete sub-lattice of C iff ρ
is additive. Dual properties can be derived for lower closures. Therefore uco(C)
is isomorphic to the so called lattice of abstract interpretations of C [8]. If C is
a complete lattice then uco(C) and lco(C) ordered point-wise are also complete
lattices. For upper closures 〈uco(C),0,�,�,T, id〉 where for every ρ, η ∈ uco(C),
{ρi}i∈I ⊆ uco(C) and x ∈ C: ρ 0 η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C);
(�i∈Iρi)(x) = ∧i∈Iρi(x); and (�i∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x. Dual prop-
erties can be derived for 〈lco(C),0,�,�, λx. x, λx. ⊥〉. In the following we will
find particularly convenient to identify closure operators (and therefore abstract
domains) with their sets of fix-points. The disjunctive completion of an abstract
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domain ρ ∈ uco(C) is the most abstract domain able to represent the concrete
disjunction of its objects:

�
(ρ) = �{η ∈ uco(C)|η 0 ρand η is additive}. ρ is

disjunctive iff
�

(ρ) = ρ (cf. [8]). Closure operators and partitions are related
concepts. If π is a partition (viz. an equivalence relation), then [·]π is the cor-
responding equivalence class. A closure η ∈ uco(℘(S)) induces a partition on
S:
{

[x]η
∣∣x ∈ S

}
, where [x]η

def=
{
y
∣∣η(x) = η(y)

}
. The most concrete closure

that induces the same partition of values as η is P(η) def=
�

(
{

[x]η
∣∣x ∈ S

}
). η is

partitioning if η = P(η) [24]. The idea is that P(η) is the most concrete closure
such that for any y ∈ P(η(x)): P(η(x)) = P(η(y)), while in general η(y) ⊆ η(x).

In abstract interpretation there are two equivalent ways to express the sound-
ness of an abstraction [7]. Let C be a complete lattice, f : C → C, (C,α,A, γ)
be a Galois insertion, and f � : A → A. Then (C,α,A, γ) and f � provide a sound
abstraction of f if α◦f ≤ f �◦α, or equivalently (by adjunction) if f◦γ ≤ γ◦f �.
While these two definitions of soundness are equivalent, they are not equivalent
when equality is required, i.e., when we consider completeness [8, 17, 15]. In the
first case α◦f = f �◦α means that no loss of precision is accumulated by approx-
imating the input arguments of a given semantic function; while f◦γ = γ◦f �

means that no loss of precision is accumulated by approximating the result
of computations on abstract objects. We follow [15] where the first is called
backward (B) and the second is called forward (F) completeness. The problem
of making abstract domains B-complete has been solved in [17]. These results
have been extended to F-completeness in [15]. The key point in this construc-
tion is that there exists an either B or F-complete abstract function f � in an
abstract domain A iff the best correct approximation α◦f◦γ of f in A is re-
spectively either B or F complete. This means that both F and B completeness
are properties of the underlying abstract domain A relatively to the concrete
function f . In a more general setting let f : C1 → C2 be a function on complete
lattices C1 and C2, and ρ ∈ uco(C2) and η ∈ uco(C1) be abstract domains.
〈ρ, η〉 is a pair of B(F)-complete abstractions for f if ρ◦f = ρ◦f◦η (f◦η =
ρ◦f◦η). In the following we denote by F(C1, C2, f) def=

{
〈ρ, η〉
∣∣f◦η = ρ◦f◦η

}
and B(C1, C2, f) def=

{
〈ρ, η〉
∣∣ρ◦f = ρ◦f◦η

}
. A pair of domain transformers can

be associated with any completeness problem. We follow [11, 16] by defining a
domain refinement and simplification as any monotone function τ : uco(L) →
uco(L) such that X ⊆ τ(X) and τ(X) ⊆ X respectively. In [17] and [15], a
constructive characterization of the most abstract refinement, called complete
shell , and of the most concrete simplification, called complete core, of any do-
main, making it F or B complete, for a given continuous function f , is given as
a solution of a simple domain equation. Consider the following basic operators
on closures:

RF
f

def= λX.M(f(X)) RB
f

def= λX.M(
⋃

y∈X max(f−1(↓y)))
CF

f
def= λX.

{
y ∈ L
∣∣ f(y) ⊆ X

}
CB

f
def= λX.

{
y ∈ L
∣∣max(f−1(↓y)) ⊆ X

}

Let � ∈ {F ,B}. In [17] the authors proved that the only interesting cases, as
far as the refinement and simplification towards �-completeness are concerned,
are respectively the most concrete β , ρ such that 〈β, η〉 is �-complete and
the most abstract β 0 η such that 〈ρ, β〉 is �-complete. In particular given
ρ ∈ uco(C2) the �-complete shell of η ∈ uco(C1) is R�,ρ

f (η) def= η �R�
f (ρ) and given
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η ∈ uco(C1) the �-complete core of ρ ∈ uco(C2) is C�,η
f (ρ) def= ρ � C�

f (η). Note that,
when f is additive max

{
x
∣∣f(x) ≤ y

}
=
∨{

x
∣∣f(x) ≤ y

}
= f+, and therefore

B(C1, C2, f) = F(C2, C1, f
+) (cf. [15]). Clearly, when we consider f : C → C and

the constraint η = ρ, the above construction requires a fixpoint iteration on ab-
stract domains: R�

f (ρ) = gfp(λX. ρ �R�
f (X)) and C�

f (ρ) = lfp(λX. ρ � C�
f (X))

are called respectively the absolute �-complete shell and core of ρ for f . Note
that R�

f ∈ lco(uco(C)) and C�
f ∈ uco(uco(C)) (see [17]). It is worth noting that

�-complete cores and shells are adjoint abstract domain transformers, i.e., ad-
joint functions on the lattice of abstract interpretations. For any η ∈ uco(C1)
and ρ ∈ uco(C2): C�

f (η) 0 ρ ⇔ η 0 R�
f (ρ), which, by definition, implies that

C�,η
f (ρ) 0 ρ ⇔ η 0 R�,ρ

f (η).

3 Information Flows in Language-Based Security

Confidential data are considered private, labeled with H (high-level of secrecy),
while all other data are public, labeled with L (low-level of secrecy) [10]. Non-
interference can be naturally expressed by using semantic models of program
execution. This idea goes back to Cohen’s work on strong dependency [6], which
uses denotational semantics for modeling how information can be transmitted
among variables during the execution of programs. Therefore non-interference
for programs essentially means that “a variation of confidential (high or private)
input does not cause a variation of public (low) output” [27]. When this happens,
we say that the program has only secure information flows [1, 6, 9, 10, 19, 30].
This situation has been modeled by considering the denotational (input/output)
semantics �P � of the program P . In particular we consider programs where
data are typed as private (H) or public (L). Program states in Σ are functions
(represented as tuples) mapping variables in the set of values V. Finite traces
on Σ are denoted Σ+. If T ∈ {H, L}, n = |{x ∈ Var(P )|x : T}|, and v ∈ V

n, we
abuse notation by denoting v ∈ V

T the fact that v is a possible value for the
variables with security type T. Moreover, we assume that any input s, can be
seen as a pair (h, l), where sH = h is a value for private data and sL = l is a value
for public data. In this case, non-interference can be formulated as follows.

A program P is secure if
∀ input s, t . sL = tL ⇒ (�P �(s))L = (�P �(t))L

This problem has been formulated also as a Partial Equivalence Relation (PER)
[28]. In this case we have that if the input data are equivalent under a given equiv-
alent relation, then also the outputs are equivalent w.r.t. a corresponding output
equivalence relation. The result is a PER on the domain of semantic functions
which can be used to model non-interference as above, where the equality on
public data can be generalized by considering any equivalence relation. McLean
[23] treats possibilistic notions of non-interference for even non-deterministic
programs in the context of trace semantics: A program is secure if the set of its
traces is closed under a function purge, i.e., it is insensible by varying private
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inputs. In [22] the different notions of possibilistic non-interference are modeled
in a odular way. Ryan [25], Focardi and Gorrieri [12] all provide a comprehen-
sive treatment of non-interference for concurrent programs in process algebras,
where attackers are modeled as view relations on computation trees. The stan-
dard methods for checking non-interference are based on security-type systems
and data-flow/control-flow analysis. Type-based approaches are designed in such
a way that well-typed programs do not leak secrets. In a security-typed language,
a type is inductively associated at compile-time with program statements in such
a way that any statement showing a potential flow disclosing secrets is rejected
[29, 31]. Similarly, data-flow/control-flow analysis techniques are devoted to stat-
ically discover flows of secret data into public variables [3, 4, 19, 20, 28]. All these
approaches are characterized by the way they model attackers (or unauthorized
users).

3.1 Joshi and Leino’s Semantic-Based Approach

As we said above, a program is secure if any observation of the initial and final
values of l : L do not provide any information about the initial value of h : H [19].
Assume that the adversary has knowledge of the program text and of the initial
and final values of l. The idea of Joshi and Leino’s semantic-based approach
to language-based security is that of characterizing secure information flow as
program equivalence, denoted by .=. They introduce a program HH

def= “assign to
h an arbitrary value”. Consider a program P for which we want to prove non-
interference. The program HH;P corresponds to run P after having set h to an
arbitrary value; while the program P ; HH discards the final value of h resulting
from the execution of P . Then a program P is said to be secure if

HH ; P ; HH
.= P ; HH (1)

where .= is the relational input/output semantic equality between programs,
namely for each possible input the two programs have to show the same public
output behavior. In order to understand this characterization, note that the
occurence of HH after P on both the sides of the equality indicates that only
the final values of l are of interest, whereas the occurence of HH before P on
the left side of the equality indicates that the program starts with an arbitrary
assignment to h. Clearly, the two programs are input/output equivalent provided
that the final value of l, produced by P , does not depend on the initial value of
h, which is indeed standard non-interference.

3.2 Robust Declassification

Declassifying information means downgrading the sensitivity of data in order
to accommodate with (intentional) information leakage. Robust declassification
has been introduced in [32] as a systematic method to drive declassification by
characterizing what information flows from confidential to public variables. In
particular the observational attacker’s capability is modeled by using equivalence
relations as in PER models, and declassification of private data is obtained by
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Table 1. Narrow and Abstract Non-Interference

[η]P (ρ) if ∀h1, h2 ∈ V
H, ∀l1, l2 ∈ V

L . η(l1) = η(l2) ⇒ ρ(�P �(h1, l1)L) = ρ(�P �(h2, l2)L)

(η)P (φ �[]ρ) if ∀h1, h2 ∈ V
H, ∀l ∈ V

L . ρ(�P �(φ(h1), η(l))L) = ρ(�P �(φ(h2), η(l))L)

manipulating these relations in a semantic-driven way. The semantics considered
is the operational semantics, defined on a transition system. The authors provide
a systematic method for identifying what the attacker could observe of the con-
crete execution traces, by iteratively refining the initial equivalence relation on
the states of the program. At this point they declassify private data in order to
make the attacker blind , i.e., they declassify all the information that the attacker
can get from the execution of the program.

3.3 Abstract Non-interference: Attack Models and Declassification

In [13], we introduced the notion of abstract non-interference modeling weaker
information flows, attack models, and declassification. The idea is that an at-
tacker can observe only some properties, modeled as abstract interpretations of
program semantics, of public concrete values. The model of an attacker , also
called attacker , is therefore a pair of abstractions 〈η, ρ〉, with η, ρ ∈ uco(℘(VL)),
representing what an observer can see about, respectively, the input and output
of a program. The notion of narrow (abstract) non-interference (NNI) represents
the first weakening of standard non-interference relatively to a given model of an
attacker. When a program P satisfies narrow non-interference we write [η]P (ρ),
see Table 1. The problem with this notion is that it introduces deceptive flows
[13]. Consider, for instance, l := l ∗ h2, and consider the public input prop-
erty of being an even number, then we can observe a variation of the output’s
sign due to the existence of both negative and positive even numbers, reveal-
ing flows which does not depend on the private data, here called deceptive.
In order to avoid deceptive interference we introduce a weaker notion of non-
interference, having no deceptive flows, yet modeling properties of informations
flows. Namely, such that, when the attacker is able to observe the property η
of public input, and the property ρ of public output, then no information flow
concerning the property φ of the private input is observable from the public
output. Namely, φ represents the confidentialinformation that we want to keep
secret. We call this notion abstract non-interference (ANI). When a program P
satisfies abstract non-interference we write (η)P (φ �[]ρ), where φ ∈ uco(℘(VH)),
see Table 1. Note that [id]P (id) models exactly (standard) non-interference.
Moreover, we have that abstract non-interference is a weakening of both, stan-
dard and narrow non-interference: ∀η, ρ ∈ uco(℘(VL)), φ ∈ uco(℘(VH)) we have
[id]P (id) ⇒ (η)P (φ �[]ρ) and [η]P (ρ) ⇒ (η)P (φ �[]ρ), while standard non-
interference is not stronger than the narrow one due to deceptive interference.
A proof-system has been introduced, in [14], for checking both narrow and ab-
stract non-interference inductively on program’s syntax. Moreover, in [13], two
methods for deriving the most concrete output observation for a program, given
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the input one, for both narrow and abstract non-interference are provided. In
particular the idea is that of collecting in the same abstract object all the ele-
ments that, if distinguished, would generate a visible flow. These most concrete
output observations that are not able to get information from the program P ,
observing η in input, are, respectively, denoted [η]�P �(id) and (η)�P �(φ �[]id),
both in uco(℘(VL)). The following theorem is proved in [13].

Theorem 1. [η]�P �(id) 0 ρ ⇔ [η]P (ρ), (η)�P �(φ �[]id) 0 ρ ⇔ (η)P (φ �[]ρ).

Example 1. Consider the properties Sign and Par , observing, respectively, the sign
and the parity of integers, and the program fragment: P

def= l := l ∗ h2. with se-
curity typing: h : H and l : L and V = Z. Let us check if (id)P (id �[]Par). Note
that Par(�P �(2, 1)L) = Par(4) = 2Z while Par(�P �(3, 1)L) = Par(9) = 2Z + 1,
which are clearly different, therefore in this case (id)P (id �[]Par) doesn’t hold. Con-
sider (id)P (Sign �[]Par). Note that Par(�P �(Sign(2), 1)L) = Par(�P �(Sign(3), 1)L) =
Par(0+) = Z. In this case it is simple to check that (id)P (Sign �[]Par) holds.

The PER model of non-interference can be easily viewed as a narrow non-
interference, where both input and output closures are partitioning, i.e., equiv-
alence relations. This corresponds to narrow non-interference because in PERs
the equivalence is checked on the program outputs of concrete computations.
Abstract non-interference provides also an abstraction of declassification. The
idea is to find the most abstract property on confidential data which has to be
declassified in order to guarantee secrecy. For this reason we define the set:

ΠP(η, ρ)
def=
{

〈
{
h ∈ V

H
∣∣ρ(�P �(〈h, η(l)〉)L) = A

}
, η(l)〉
∣∣ l ∈ V

L, A ∈ ρ
}

This is the set of all the pairs 〈H,L〉 ∈ ℘(VH)×℘(VL), such that, whenever η(l) =
L, then for any h1, h2 ∈ H, no information flows, from private to public, are
revealed. We use this set for deriving a partition of private data that guarantees
secrecy. For each L ∈ η, we define ΠP(η, ρ)|L

def=
{
H
∣∣ 〈H,L〉 ∈ ΠP(η, ρ)

}
. The

partition on private data corresponds to the most abstract property that flows
when the property observed of the public input is L: P(

�
L∈η M(ΠP(η, ρ)|L)).

In particular, it is the most abstract property that contains all the possible
variations of private inputs that generate insecure information flows, and the
most concrete such that each variation generates a flow. namely it uniquely
represents the confidential information that flows into the public output.

Example 2. Consider the program fragment: P = l := l ∗ h2. ΠP(id,Par) is the
set
{ 〈Z, l〉 ∣∣ l ∈ 2Z

}∪{ 〈2Z, l〉 ∣∣ l ∈ 2Z + 1
}∪{ 〈2Z + 1, l〉 ∣∣ l ∈ 2Z + 1

}
. Therefore by

using the notation above we have that if l ∈ 2Z then ΠP(id,Par)|l = Z and if l ∈ 2Z+1
then ΠP(id,Par)|l = {2Z, 2Z + 1}. Therefore, the most abstract partition on private
data that can be declassified is {2Z, 2Z+1}. In other words we have that by looking at
the low variables the only information that leaks about the high variables is its parity.

In order to adapt robust declassification in [32] to the abstract non-interference
case, we consider passive attackers only and a semantics observing the ini-
tial and the final states of computations. We follow [32] in defining the in-
formation leaked by an equivalence relation transformer S[η, ρ] on Σ for each
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η, ρ ∈ uco(℘(VL)): s1S[η, ρ]s2 iff sL1 ≈η s
L
2 and (∀σ, δ ∈ Σ+ .σ� = s1 ∧ δ� = s2 ⇒

σL� ≈ρ δL�)), where s1, s2 ∈ Σ and given σ ∈ Σ+ such that |σ| = n ∈ N, then
σ�

def= σ0 and σ�
def= σn−1. It is simple to verify that s1S[η, ρ]s2 iff η(sL1) = η(sL2)

and ρ(�P �(s1)L) = ρ(�P �(s2)L). This means that abstract robust declassification
a la [32] characterizes the information leaked in narrow abstract non-interference.

4 Abstract Non-interference as Completeness

Joshi and Leino’s semantic-based approach to information flows [19] provides
a way to interpret abstract non-interference as the problem of making an ab-
straction complete [17]. By considering the denotational semantics of a program
P , �P �, the Equation (1) becomes a backward completeness problem if the se-
mantics of HH could be described as an abstraction. Indeed the program that
associates with private variables an arbitrary value can be interpreted as the
closure that abstracts the private value to the “don’t know” abstract value, i.e.,
the set of all the possible values for private variables. Therefore, we define the
function H : ℘(V) −→ ℘(V) in the following way (recall that ℘(V) = ℘(VH×V

L)):
H = λX. 〈VH, XL〉, where XL def=

{
l
∣∣ 〈h, l〉 ∈ X

}
. It is straightforward to prove

its monotonicity, idepotence and extensivity. So we can finally conclude that

�HH ; P ; HH� = H◦�P �◦H and �P ; HH� = H◦�P �
Hence, non-interference can be equivalentely formalized as H◦�P �◦H = H◦�P �.
The idea is to transform H in order to either refine or simplify the abstraction
in order to get completeness, and therefore, abstract non-interference. This can
be achieved by observing that H = λX.〈T(XH), id(XL)〉 = λX. 〈VH, XL〉 where
XH def=
{
h
∣∣ 〈l, h〉 ∈ X

}
, i.e., H is the product of respectively the top and the

bottom abstractions in the lattice of abstract interpretations. This means that
the private component of H can only be refined as well as we can only abstract
its public one. In this context we prove that shell and core have two different and
precise meanings: The core abstracts the public component, viz. characterizes the
most concrete attacker that cannot disclose private properties; The shell refines
the private component, viz. characterizes the most abstract property that flows.

Example 3. Consider P
def= l := 2∗h, where l : L and h : H. P violates non-interference,

e.g., H◦�P �◦H(〈2, 3〉) = H◦�P �(〈Z, 3〉) = H(〈Z, 2Z〉) = 〈Z, 2Z〉 while H◦�P �(〈2, 3〉) =
H(〈2, 4〉) = 〈Z, 4〉, where 2Z �= 4. We can derive the complete core of H, which
makes the program secure. From [17] we have to keep only those elements whose in-
verse image is a fix-point of H: CB

�P �(H) =
{ 〈Z, L〉 ∣∣ { 〈h, l〉 ∣∣ 〈h, 2h〉 ⊆ 〈Z, L〉 } ⊆ H }.

Note that 〈H,L〉 ∈ H iff H = Z and 〈Z, L′〉 ⊇ 〈Z, 2Z〉 iff L′ ⊇ 2Z. More gen-
erally, if L′ ⊆ 2Z + 1 then 〈h, 2h〉 ∈ 〈Z, L′〉 is false for each possible L′, namely{ 〈h, l〉 ∣∣ �P �(〈h, l〉) ⊆ 〈H ′, L′〉 } = ∅ ⊆ H which means that in this case 〈Z, L′〉 is kept.
Therefore, CB

�P �(H) =
{ 〈Z, L〉 ∣∣L ∩ 2Z ∈ {2Z,∅} }, which corresponds to abstracting

the public output in the domain that is not able to distinguish even numbers. Let
H def= CB

�P �(H), then in the previous case, we have H◦�P �◦H(〈2, 3〉) = H◦�P �(〈Z, 3〉) =
H(〈Z, 2Z〉) = 〈Z, 2Z〉 and H◦�P �(〈2, 3〉) = H(〈2, 4〉) = 〈Z, 2Z〉.
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Example 4. Consider P
def= l := (2h + 1) mod 2, where l : L and h : H. The pro-

gram violates non-interference, since, for instance, H◦�P �◦H(〈2, 3〉) = H◦�P �(〈Z, 3〉) =
H(〈Z, {−1, 1}〉) = 〈Z, {−1, 1}〉 while H◦�P �(〈2, 3〉) = H(〈2, 1〉) = 〈Z, 1〉 and {−1, 1} �=
1. We compute the complete shell of H, characterizing the flowing property of private
information, namely we add all the inverse images of the elements in H.

RB
�P �(H) = H �M(

⋃
L′∈℘(VL)

{ 〈h, l〉 ∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉 })
If −1 /∈ L′, then

{ 〈h, l〉 ∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉 } = 〈Z+
0 ,Z〉, Z

+
0

def= Z
+ ∪ {0}. If

1 /∈ L′, then
{ 〈h, l〉 ∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉 } = 〈Z−,Z〉. Finally, if 1,−1 /∈ L′ we

have
{ 〈h, l〉 ∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉 } = ∅.

Hence
⋃

L′∈℘(VL)

{ 〈h, l〉 ∣∣ 〈h, 2h + 1 mod 2〉 ∈ 〈Z, L′〉 } = {〈Z+
0 ,Z〉, 〈Z−,Z〉,∅}, which

implies RB
�P �(H) = H∪{ 〈H,L〉 ∣∣H ∈ {Z+

0 ,Z−}, L ∈ ℘(VL)
}
. Let H def= RB

�P �(H), then
H◦�P �◦H(〈2, 3〉) = H◦�P �(〈Z+

0 , 3〉) = H(〈Z+
0 , {1}〉) = 〈Z+

0 , {1}〉 and H◦�P �(〈2, 3〉) =
H(〈2, 1〉) = 〈Z+

0 , {1}〉.
The idea is to embed the model of an attacker as given in ANI, i.e., as a pair of
input/output abstractions, in H. Consider 〈℘(VH) × ℘(VL),∅, 〈VH,VL〉,�,∩,⊆〉,
where 〈H1, L1〉�〈H2, L2〉 def= 〈H1 ∪H2, L1 ∪L2〉. It is well known that there exists
an obvious GI of ℘(VH) × ℘(VL) in ℘(VH × V

L), corresponding to the closure:
Split

def= λX.
{

〈x1, x2〉
∣∣∃y. 〈x1, y〉 ∈ X, ∃z. 〈z, x2〉 ∈ X

}
. Consider the closure

ρ ∈ uco(℘(VL)). We define Hρ ∈ uco(℘(VH) × ℘(VL)):

Hρ
def= λX. 〈VH, ρ(XL)〉

Note that H = Hid, Hρ ∈ uco(℘(VH×V
L)), and for any pair of disjunctive closures

η, ρ ∈ uco(VL) and for all 〈h, l〉 ∈ V: Hρ◦�P �◦Hη(〈h, l〉) = Hρ◦�P �(〈h, l〉) ⇔
Hρ◦�P �◦Hη = Hρ◦�P �.
Theorem 2. Let ρ, η ∈ uco(℘(VL)).

1. [η]P (ρ) ⇐ Hρ◦�P �◦Hη = Hρ◦�P �;
2. If ρ is disjunctive and η is partitioning: [η]P (ρ) ⇒ Hρ◦�P �◦Hη = Hρ◦�P �.

This result proves that narrow abstract non-interference is weaker than the gen-
eralization of Joshi and Leino’s semantics-based approach to non-interference,
which is a problem of completeness. Moreover, when both η and ρ are equiva-
lence relations on public data as in the PER model, i.e., partitioning closures,
then the narrow abstract non-interference is equivalent to the PER model of
non-interference, which is in turn an instance of a completeness problem. The-
orem 2 gives a slightly weaker condition, because all partitioning closures (viz.
equivalence relations) are disjunctive, but the converse does not hold in gen-
eral. In order to extend Theorem 2 to model abstract non-interference we have
to modify the program semantics. The idea is to consider an abstract seman-
tics that is applied to abstract (public and private) data. Consider the clo-
sures η ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)). We define the abstract semantics as
�P �η,φ def= λ〈h, l〉. �P �(φ(h), η(l)). Note that, for any pair of disjunctive closures
η, ρ ∈ uco(VL) and for all 〈h, l〉 ∈ V: Hρ◦�P �η,φ◦Hη(〈h, l〉) = Hρ◦�P �η,φ(〈h, l〉) ⇔
Hρ◦�P �η,φ◦Hη = Hρ◦�P �η,φ.
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Theorem 3. Consider η, ρ ∈ uco(℘(VL)) and φ ∈ uco(℘(VH)):

1. (ρ)P (φ �[]η) ⇐ Hρ◦�P �η,φ◦Hη = Hρ◦�P �η,φ;
2. If ρ and η are disjunctive then: (η)P (φ �[]ρ) ⇒ Hρ◦�P �η,φ◦Hη = Hρ◦�P �η,φ.

Once again abstract non-interference is weaker than the generalization of Joshi
and Leino’s approach to non-interference. Additivity is here sufficient in order
to let these two approaches equivalent. Because the only difference in the corre-
sponding completeness problems is due to the program semantics: �P �η,φ in the
case of abstract non-interference and �P �id,id in the narrow case, in the following,
without loss of generality we consider the abstract non-interference case being
more general. In the following we omit the apex B from shells and cores, since
we will consider always backward completeness.

5 The Most Concrete Observer as Completeness Core

In [13] we gave a method for systematically deriving the most concrete harmless
attacker (canonical attacker) associated with a given program. By Theorem 3,
the most concrete public observer, which is the canonical attacker, can be derived
as the most concrete abstraction satisfying the following completeness problem:

H◦�P �η,φ◦Hη = H◦�P �η,φ (2)

Then we have the following result which allows us to specify the canonical at-
tacker as the fix-point of an abstract domain simplification.

Theorem 4. Let η ∈ uco(℘(VL)) be disjunctive and φ ∈ uco(VH). Then we have
CHη

�P �η,φ(H) =
{

〈VH, L〉
∣∣ { 〈h, l〉

∣∣ �P �(〈φ(h), η(l)〉) ⊆ 〈VH, L〉
}

∈ Hη

}
and

{
L ∈ ℘(VL)

∣∣∣ 〈VH, L〉 ∈ CHη

�P �η,φ(H)
}

= (η)�P �(φ �[]id).

Example 5. Consider the following program fragment, with l : L and h : H.

P
def= while h do l := 2l; h := 0 endw �P �(〈h, l〉) =

{ 〈h, l〉 if h = 0
〈h, 2l〉 otherwise

We look for the core in order to make 〈H,H〉 complete for the map �P �id,id = �P �.
CH

�P �(H) =
{ 〈Z, L〉 ∣∣∀l ∈ V

L . l ∈ L ⇔ 2l ∈ L
}

It is straightforward to show that CH
�P �(H) is the domain that abstracts the pub-

lic data in the domain
�

(
{

n{2}N
∣∣n ∈ 2Z + 1

}
), where {2}N def=

{
2k
∣∣ k ∈ N

}
. Let

H def= CH
�P �(H), then, H◦�P �◦H(〈3, 5〉) = H◦�P �(Z, 5) = H(〈Z, {5, 10}〉) = 〈Z, 5{2}N〉,

and H◦�P �(〈3, 5〉) = H(〈Z, {10}〉) = 〈Z, 5{2}N〉 while we have that H◦�P �◦H(〈3, 5〉) =
H◦�P �(Z, 5) = H(〈Z, {5, 10}〉) = 〈Z, {5, 10}〉 and, on the other hand, H◦�P �(〈3, 5〉) =
H(〈Z, {10}〉) = 〈Z, {10}〉.
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6 The Most Abstract Observable as Completeness Shell

We are now interested in applying the same construction for characterizing the
most abstract private observable, used for defining abstract declassification as
a solution of a completeness problem in abstract interpretation. Namely, we
are interested in the most abstract property that can be declassified in order
to guarantee abstract non-interference. By Theorem 3, this information can be
obtained by solving the following completeness problem:

Hρ◦�P �η,id◦Hη = Hρ◦�P �η,id (3)

Lemma 1. Let ρ, η ∈ uco(℘(VL)). Then we have

RHρ

�P �η,id(Hη) = Hη � M(
{ {

〈h, l〉
∣∣ρ(�P �(〈h, η(l)〉)L) ⊆ L

} ∣∣L ∈ ρ
}
.

Moreover, let R def= RHρ

�P �η,id(Hη), then forall l, l′ ∈ V
L, h, h′ ∈ V

H we have

R(〈h, l〉) = R(〈h′, l′〉) iff ρ�P �(〈h, η(l)〉)L = ρ�P �(〈h′, η(l′)〉)L

It is worth noting that, by Lemma 1, the partition induced by the complete
shell of Hη on ℘(VH × V

L) for Equation 3 does not affect the closure η. This
means that the only component which is actually refined is the abstraction on
private data, and this corresponds to the most abstract partitioning of private
data which can be declassified. This means that any change between equivalent
elements does not produce insecure flows, as stated in the following theorem.

Theorem 5. Let ρ, η ∈ uco(℘(VL)) then for each l, l′ ∈ V
L, h, h′ ∈ V

H we have
η(l) = η(l′) = Y ⇒ (R(〈h, l〉) = R(〈h′, l′〉) iff h′ ∈ [h]ΠP(η,ρ)|Y ).

Next examples show how declassification can be obtained as solutions of com-
pleteness problems.

Example 6. Consider the program fragment: P def= l := l ∗ h2, with l : L and
h : H. We want to find the shell in order to make 〈H,HPar 〉 complete for the
map �P �id,id = �P �.

RHPar

�P � (H) = H �
({

〈Z,Z〉, 〈Z, 2Z〉 ∪ 〈2Z, 2Z + 1〉, 〈2Z + 1, 2Z + 1〉,
〈2Z + 1, 2Z〉,∅

})

This means that the reduced product generates also 〈2Z, 2Z + 1〉 and there-
fore 〈2Z, l〉 for each l ∈ 2Z + 1. Let H def= RHPar

�P � (H), then for instance, we have
HPar◦�P �◦H(〈2, 3〉) = HPar◦�P �(〈2Z, 3〉) = 〈Z, 2Z〉, and HPar◦�P �(〈2, 3〉) =
〈Z, 2Z〉, while HPar◦�P �◦H(〈2, 3〉) = HPar◦�P �(Z, 3) = 〈Z,Z〉. As in abstract
desclassification [13], this means that it is the variation of parity of the private
input that generates the flow.
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Example 7. Consider ρ def= {Z, 2Z, 4Z, 2Z+1,∅} and η def= {Z, 2Z, 5Z, 10Z,∅}, and
consider P def= if (h mod 4) = 0 then l := l ∗ h else l := l ∗ (h+ 1) fi. Compute,
first, the abstract robust declassification, as was introduced in [13]:

ΠP(η, ρ) =




〈4Z ∪ 4Z + 3, 10Z〉, 〈4Z + 1 ∪ 4Z + 2, 10Z〉,
〈4Z ∪ 4Z + 3, 5Z〉, 〈4Z + 1, 5Z〉, 〈4Z + 2, 5Z〉,
〈4Z ∪ 4Z + 3, 2Z〉, 〈4Z + 1 ∪ 4Z + 2, 2Z〉,
〈4Z ∪ 4Z + 3,Z〉, 〈4Z + 1,Z〉, 〈4Z + 2,Z〉




Therefore we obtain ΠP(η, ρ)|10Z = ΠP(η, ρ)|2Z = {4Z ∪ 4Z + 3, 4Z + 1 ∪ 4Z + 2}
and ΠP(η, ρ)|5Z = ΠP(η, ρ)|Z = {4Z ∪ 4Z + 3, 4Z + 1, 4Z + 2}. Consider now the
completeness shell:

{
〈h, l〉
∣∣ �P �(〈h, η(l)〉)L ⊆ 4Z

}
= 〈4Z ∪ 4Z + 3,Z〉{

〈h, l〉
∣∣ �P �(〈h, η(l)〉)L ⊆ 2Z

}
= 〈Z � 4Z + 2,Z〉 ∪ 〈4Z + 2, 2Z〉{

〈h, l〉
∣∣ �P �(〈h, η(l)〉)L ⊆ 2Z + 1

}
= ∅

Then we have:

RHρ

�P �(Hη) = Hη ∪




〈Z � 4Z + 2,Z〉 ∪ 〈4Z + 2, 2Z〉, 〈4Z ∪ 4Z + 3,Z〉,
〈Z � 4Z + 2, 5Z〉 ∪ 〈4Z + 2, 10Z〉, 〈4Z ∪ 4Z + 3, 5Z〉,
〈4Z ∪ 4Z + 3, 2Z〉, 〈4Z ∪ 4Z + 3, 10Z〉




For instance, consider 5, 9 ∈ 4Z + 1, 6, 10 ∈ 4Z + 2, and note that η(10) =
η(30) = 10Z, and η(5) = η(15) = 5Z. Note that, 5 and 6 are in the same
equivalence class in the partition induced by ΠP(η, ρ)|10Z, written 5 ∈ [6]10Z,
and indeed R(〈5, 10〉) = R(〈6, 30〉) = 〈Z, 10Z〉 ∈ Hη. While 5 ∈ [9]5Z �= [6]5Z,
namely the partition induced by ΠP(η, ρ)|5Z distinguishes 5 and 6, while 5 is
together with 9 and 6 is together with 10, i.e., 10 ∈ [6]5Z. On the other hand, we
have R(〈5, 5〉) = R(〈9, 15〉) = 〈Z � 4Z + 2, 5Z〉 ∪ 〈4Z + 2, 10Z〉 and R(〈6, 5〉) =
R(〈10, 15〉) = 〈Z, 5Z〉 ∈ Hη.

7 Adjoining Observer and Observable Properties

Modeling attackers means characterizing the maximal power of an harmless at-
tacker, i.e., an attacker which cannot disclose confidential information. Declas-
sification, instead, means characterizing the information revealed to a fixed at-
tacker. As we have seen in the previous sections, the model of the most concrete
harmless attacker corresponds to the most concrete public observer, while ab-
stract declassification is characterized by the most abstract private observable.
Clearly there is a strong relation between these two notions, since the more pow-
erful is the attacker and the less is the confidential information that can be kept
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private. In other words the index of the
partition of private data for declassifica-
tion is proportional to the cardinality of
the abstract domain which models the
precision of the property that the at-
tacker can observe. This phenomenon
can be precisely characterized in the
lattice of abstract interpretations as an
adjunction. In the picture on the right
we provide a graphical representation of
the relation existing between the most
concrete property modeling the public

observer and the most abstract property modeling the private observable. In par-
ticular, this picture represents the fact that the more powerful is the attacker,
i.e., the more concrete is the observer property, the less confidential information
can be kept private, i.e., the more concrete is the private observable. The pic-
ture also shows that, if the arrow represents the most abstract private observable,
then when we declassify a confidential property which lays in the white area we
cannot guarantee the secrecy of the program, since we are declassifying less than
what is released by the semantics. When we declassify a property in the filled
area instead, then we guarantee that no confidential information leakage may
happen. Moreover, note that, even if the attacker is able to observe the value
of public variables, then the observable property can be more abstract then the
identity since the program itself can behave as a firewall for certain confidential
properties, such as the square operation hides the sign. In Section 5 and 6 we
proved that both problems can be viewed as instances of the problem of making
abstractions complete. While the private observable for declassification is ob-
tained by computing the completeness shell, the public observer, modeling the
attacker, is obtained by computing the completeness core in the same complete-
ness problem. These abstract domain transformers have been proved in [17] to
be adjoint functions (see Sect. 2) on the lattice of abstract interpretations. The
following result is therefore a consequence of Theorem 4 and 5.

Theorem 6. Let η ∈ uco(℘(VL)) be a disjunctive property, and P a program.
Then we have that id � (η)�P �(id �[]id) ⇔ P(�L∈ηM(ΠP(η, id)|L)) � T.

This result provides a precise mathematical framework where declassification
and attack models can be systematically derived and compared with each other
in the lattice of abstract interpretations by applying well known methods for
abstract domain design. This framework can be the basis for applying quanti-
tative methods and metrics [5] for measuring the amount of information leaked
relatively to a given attack model, or by adjunction, the precision of an attacker
under the hypothesis that some information can be declassified. Recently, sev-
eral papers treated the problem of defining non-interference for programs where
confidential information can be explicitly declassified [26, 21]. In these cases the
authors define weaker notions of non-interference in order to model confinement

Declassification

Secure

The most abstract observable

The most concrete observer

i d

� id
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problem for programs where there are intentional releases of information. Ab-
stract non-interference, instead does not consider explicit declassification, but
allows to characterize which confidential information should be declassified, at
least, in order to guarantee only secure information flows.
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Abstract. We classify existing approaches to resource-bounds checking as static
or dynamic. Dynamic checking performs checks during program execution, while
static checking performs them before execution. Dynamic checking is easy to im-
plement but incurs runtime cost. Static checking avoids runtime overhead but typ-
ically involves difficult, often incomplete program analyses. In particular, static
checking is hard in the presence of dynamic data and complex program structure.
We propose a new resource management paradigm that offers the best of both
worlds. We present language constructs that let the code producer optimize dy-
namic checks by placing them either before each resource use, or at the start of
the program, or anywhere in between. We show how the code consumer can then
statically verify that the optimized dynamic checks enforce his resource bounds
policy. We present a practical language that is designed to admit decidable yet
efficient verification and prove that our procedure is sound and optimal. We de-
scribe our experience verifying a Java implementation of tar for resource safety.
Finally, we outline how our method can improve the checking of other dynamic
properties.

1 Introduction

Users are downloading code to run on their devices—computers, PDAs, cell phones,
etc.—with increasing frequency. Examples of downloaded code include software up-
dates, applications, games, active web pages, proxies for new protocols, codecs for new
formats, and front-ends for distributed applications. At the same time, viruses, worms,
and other malicious agents have also become common, resulting in attacks that include
data corruption, privacy violation, and denial of service based on overuse of system
resources. The latter problem is particularly relevant for small devices such as PDAs
and cell phones. The state of the practice in mobile code execution includes powerful
techniques that prevent data corruption (e.g., bytecode verification), but the enforcement
of resource usage bounds is comparatively less developed. In this paper, we provide an
efficient and flexible approach to limiting the resource usage of untrusted code. By flex-
ible, we mean that our method applies to all sequential computer programs, including
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those where resource usage is not known until runtime. By efficient, we mean that it per-
forms significantly fewer runtime checks while enforcing resource bounds than previous
methods.

We address the scenario in which a code consumer runs an untrusted program created
by a code producer, who possibly is untrusted. This program communicates with the code
consumer’s computer via a runtime library that provides functions to access resources.
We consider both physical resources such as CPU, memory, disk, and network, as well
as virtual resources such as files, database connections, and processes. Our goal is to
limit resources according to the code consumer’s security policy. This policy specifies
the resources that each program can use, along with the corresponding usage bounds.

Our technique enforces resource usage bounds with a combination of static and
dynamic checks. More precisely, we verify statically that a program’s dynamic checks
are sufficient to enforce the consumer’s safety policy. In order to support such hybrid
checking, we separate the acquire function, which acquires a resource, from the various
functions that consume the resource. For notational simplicity, we use a single, specific
consume function to represent abstractly any library function that consumes resources.

In current libraries, acquire and consume are performed together when a resource is
used. It is easy to automatically replace these calls by pairs of separate calls to acquire
and consume. It is also easy to verify statically that the result of this transformation
never uses more resources than have been acquired.

The advantage of this separation is that the programmer, or appropriate optimization
tools, can combine multiple acquires into one and can hoist acquire out of a loop
whose body consumes resources. In this paper, we describe a static analysis that verifies
that an arbitrary placement of acquires is sufficient. The analysis is decidable and
efficient, and our experiments show that it can validate even aggressive optimizations.
Moving acquire out of a loop can yield an arbitrary improvement in in the number
of dynamic checks. This improvement results in significant performance gains if the
acquire operation consults a complex or remote resource manager. Moving checks
earlier can also guarantee that no resource errors occur in critical code fragments such
as atomic transactions.

We begin this paper by introducing an imperative language with resource-aware
constructs in Section 2, and illustrate the benefits of our method over purely static or
dynamic approaches using a few key examples. In Section 3, we present an operational
semantics for our language, and provide a precise characterization of resource-use safety.
Section 4 describes the two components of the verifier: the safety condition generator
(SCG) (Section 4.1) and the prover (Section 4.4), and presents soundness and optimality
results for our SCG. We describe our experience with the tar program in Section 5.
Section 6 positions this paper with respect to relevant work in a few areas. We mention
ongoing efforts and future work opportunities in Section 7, and conclude in Section 8.

2 Concept

For resource-usage safety, we must ensure that each resource consuming operation,
denoted by consume, has adequate resources available, as specified by a system security
policy. Abstractly, we can refer to this policy as quota, and so the sum of all of the
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consumes must be guaranteed never to exceed quota; we state this goal informally as
consume ≤ quota. In the following, we motivate our approach to the resource-usage
problem with a few examples, and introduce our method over a simple iterative language.

2.1 Examples

Figure 1 shows four programs that use resources. Program Dynamic uses an amount of
resources that depends entirely on its runtime input. Program Static uses a fixed amount
of resources. Program Mixed1 uses a fixed amount of resources, but this amount is
dynamic. Program Mixed2 uses a fixed amount of resources each time through its inner
loop, but it executes this loop a dynamic number of times.

A standard dynamic checker performs one check for each consume. It executes all
four programs safely but adds unnecessary overhead to the static and mixed programs.
A typical static analyzer adds no overhead to the static program but cannot execute the
other three safely.

We present a method that has the advantages of both static and dynamic checkers.
Like the dynamic checker, it safely executes all four programs. Like the static checker,
it uses the static information available in each program to run more efficiently.

Program Dynamic Program Static
while read() �= 0 i := 0
consume 1 while i < 10000

consume 1
i := i + 1

Program Mixed1 Program Mixed2
N := read() while read() �= 0
i := 0 i := 0
while i < N while i < 100
consume 1 consume 1
i := i + 1 i := i + 1

Fig. 1. Example programs

2.2 Language

In order to describe the static checking procedure, we use a simple imperative pro-
gramming language that computes with integer values. Without loss of generality, we
assume that there is one resource of interest whose amount is measured in some arbitrary
unit. We introduce the command consume e to model any operation that uses e units
of the resource, where e is an expression in the language. We introduce the command
acquire e to reserve e resource units from the operating system. This command may
fail, but if it succeeds, we know that e resource units have been reserved for the running
program. The acquire operation is an example of a dynamic reservation instruction,
perhaps realized with a library function, and occurs only in programs created by the
code producer. In contrast, the consume operation acts as a no-op at execution time, and
is used only in the static verification process.
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e ::= x | n | e1 + e2 | n ∗ e | cond(b, e1, e2) Integer expressions
b ::= true | e1 ≥ e2 | e1 = e2 Boolean expressions
c ::= skip | x := e | c1; c2 |

consume e | acquire e
if b then c1 else c2 |
while b do c inv (A, e) Commands

P ::= b | P1 ∧ P2 | A⇒ P |
∀x.P | cond(b, P1, P2) Predicates

A ::= b | A1 ∧A2 Annotations

Fig. 2. Simple imperative language definition

Program Dynamic Program Static
while read() �= 0 acquire 10000
acquire 1 i := 0
consume 1 while i < 10000

inv (true, 0) consume 1
i := i + 1

inv (i ≤ 10000, 10000− i)

Program Mixed1 Program Mixed2
N := read() while read() �= 0
acquire N acquire 100
i := 0 i := 0
while i < N while i < 100
consume 1 consume 1
i := i + 1 i := i + 1

inv (i ≤ N, N − i) inv (i ≤ 100, 100− i)

Fig. 3. Example programs with annotations

Figure 2 shows the syntax of the full language. We assume that the variables x take
only integer values. The expression cond(b, e1, e2) has value e1 if the boolean expression
b has value true and has value e2 otherwise. Similarly, the command cond(b, P1, P2)
is equivalent to the command P1 if b has value true, and command P2 otherwise. The
propositional connectives ∧,∀,⇒ have their usual meaning.

The argument e to acquire and consumemust be non-negative. The safety condition
generator of Section 4.1 statically guarantees this condition.

Note also that we annotate the looping command with an invariant (A, e). During
static checking, we verify that the predicate A holds and there are at least e resource
units available before the looping command is executed. To simplify the task of the static
checker, and to allow for a prover that is complete over safety conditions generated from
programs in this language, we restrict the invariants to a conjunction of boolean equalities
and comparisons between integer expressions and we similarly restrict the left side of
implications in predicates.
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Fig. 4. Partitioning code safety into static and dynamic components

2.3 Annotated Examples

The programmer’s (or automated tool’s) job is to insert enough acquire operations to
make the program safe. It is always possible to insert an acquire before each consume,
so that eachconsumeperforms a runtime check, bringing us to the pure dynamic checking
safety paradigm. The question is whether the programmer or automated tool can insert
fewer acquire operations and thereby reduce the cost of dynamic checking.

Figure 3 shows the same four programs with acquire operations added. Note that
all four programs execute safely. Dynamic performs exactly the same checks that it
would in a dynamic system, acquiring each resource just before using it. Static performs
exactly one check at the very beginning of execution. Mixed1 and Mixed2 perform far
fewer checks than they would in a dynamic system, reserving all resources either at the
beginning or each time through the outer loop; for example, Mixed2 performs two orders
of magnitude fewer checks.

Notice that the new language abstractions provide us with a midpoint in the orig-
inal resource-usage condition consume ≤ quota. That is, we check statically that
consume ≤ acquire, and we check dynamically that acquire ≤ quota. Figure 4
illustrates this concept. Static checking lets us hoist and combine acquires, so that we
can use dynamically fewer of them and thus reduce the cost of checking.

3 Semantics of Annotated Programs

In this section, we formalize the meaning of expressions and commands, and make
explicit the precise ways in which execution can fail, following well-known approaches
to operational specifications of programming language constructs [1].

The execution state is a pair 〈σ, n〉 of an environment σ that maps variable names to
integer values and a natural number n that represents the amount of available resources.
We write [[e]]σ for the value of the integer expression e in the environment σ and [[b]]σ
for the value of the boolean expression b in the environment σ. For example,

[[cond(b, e1, e2)]]σ =
{

[[e1]]σ if [[b]]σ = true
[[e2]]σ if [[b]]σ = false

The other cases of the definition are straightforward. We use the notation σ[x := n] to
denote the environment that is identical to σ except that x is set to n.

3.1 Operational Semantics

We define the operational semantics of our language in terms of the judgment 〈c, σ, n〉 ⇓
R, which means that the evaluation of command c starting in state 〈σ, n〉 terminates
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σ � P

〈while b do c inv (P, e), σ, n〉 ⇓ InvFailure WHILEINVFAILURE

[[b]]σ = false σ |= P n ≥ [[e]]σ

〈while b do c inv (P, e), σ, n〉 ⇓ 〈σ, n〉 WHILEF

σ |= P n ≥ [[e]]σ 〈c, σ, n〉 ⇓ 〈σ′, n′〉 [[b]]σ = true σ′ |= P n′ ≥ [[e]]σ′

〈while b do c inv (P, e), σ′, n′〉 ⇓ R

〈while b do c inv (P, e), σ, n〉 ⇓ R
WHILET

Fig. 5. Operational semantics for while loops

n ≥ [[e]]σ

〈consumee, σ, n〉 ⇓ 〈σ, n− [[e]]σ〉 C-OK
n < [[e]]σ

〈consumee, σ, n〉 ⇓ QuotaExceeded C-FAIL

〈acquiree, σ, n〉 ⇓ 〈σ, n + [[e]]σ〉 A-OK 〈acquiree, σ, n〉 ⇓ AcquireFailed A-FAIL

Fig. 6. Operational semantics for reservations

with result R. If there does not exist an R such that 〈c, σ, n〉 ⇓ R, we write 〈c, σ, n〉 ⇑
(pronounced “diverges”).

The result R can be one of the following types of values. If the command termi-
nates normally, then R is a new state 〈σ′, n′〉. If an acquire fails, then R is the error
AcquireFailed. If the program uses more resources than it has acquired, then R is the
error QuotaExceeded. If the program does not satisfy an invariant annotation, thenR is
the error InvFailure. Thus, from an initial state, a command either diverges, terminates
normally, or terminates with one of three errors.

Figure 5 shows the operational semantics for while loops; the operational semantics
for the other standard constructs is straightforward.

Figure 6 shows the rules for evaluating resource-specific commands, which mod-
ify the amount of resources in the current state. Notice that only acquire replenishes
this state, so that if the program starts with no resources, it must acquire all the re-
sources that it uses. If enough resources are available, consume terminates normally,
consuming resources. If not enough resources are available, it yields a QuotaExceeded
error. The acquire command either increases the amount of available resources or
yields an AcquireFailed error. In this formalization, the acquire command is non-
deterministic. In practice, its behavior is determined by the operating system, which we
do not model here. Alternatively, we could add an explicit dynamic pool to model the
resources available to acquire.

4 Verifier

The verifier has two parts, the safety condition generator (SCG), which computes a
program’s safety condition (SC), and the prover, which actually proves the SC. We
define safety, state a soundness theorem, which says that the SC guarantees safety, and
state an optimality theorem, which says that the SC captures all programs that are safe.
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scg(skip)(P, e) = (P, e)
scg(c1; c2)(P, e) = scg(c1)(scg(c2)(P, e))
scg(x := e′)(P, e) = ([e′/x]P, [e′/x]e)
scg(consumee′)(P, e) = (P ∧ e′ ≥ 0, e′ + cond(e ≥ 0, e, 0)
scg(acquire e′)(P, e) = (P ∧ e′ ≥ 0, e− e′)
scg(if b then c1 else c2)(P, e) = (cond(b, P1, P2), cond(b, e1, e2))

where (P1, e1) = scg(c1)(P, e)
and (P2, e2) = scg(c2)(P, e)

scg(while b do c inv (AI , eI))(P, e) = (AI ∧ ∀x.AI ⇒ cond(b,Q′, Q), eI)
where (P ′, e′) = scg(c)(AI , eI)
and Q′ = P ′ ∧ eI ≥ e′

and Q = P ∧ eI ≥ e
and x are the variables modified in c

Fig. 7. Definition of scg

4.1 Safety Condition Generator

Our verifier uses a variant of Dijkstra’s weakest precondition calculus [2]. We work with
“generalized predicates” (P, e), meaning that P holds and there are at least e resource
units available. Figure 7 shows the definition of the safety condition generator scg. We
define scg by recursion on the syntax of commands. Our definition matches the standard
scg definition for all commands that do not manipulate resources explicitly. For the com-
mands that manipulate resources, we extracted the definition from the soundness proof.
The scg definition also (1) checks the invariant that there are a non-negative amount
of resources available and (2) checks that the arguments to acquire and consume are
non-negative.

Although our language uses structured control (while loops), we can also define
scg for unstructured control (gotos), by associating an invariant with each label, or at
least those at the heads of loops, as determined by a standard dominator-based control
flow analysis.

4.2 Soundness

We writeσ |= P to indicate that predicateP holds in stateσ. Recall thatσ supplies values
for the variables in P , so we define σ |= P as usual by induction over the propositional
connectives.

Definition 1. 〈σ, n〉 |= (P, e) iff n ≥ 0, σ |= P , and σ |= n ≥ e.

That is, n is non-negative, P holds in σ, and at least e resources are available in σ.

Definition 2. A tuple (c, 〈σ, n〉, (P, e)) is safe iff one of the following holds:

1. 〈c, σ, n〉 ⇑, or
2. 〈c, σ, n〉 ⇓ AcquireFailed, or
3. 〈c, σ, n〉 ⇓ 〈σ′, n′〉 where 〈σ′, n′〉 |= (P, e).

That is, the InvFailure and QuotaExceeded errors do not occur, and (P, e) holds if
execution terminates normally.
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Definition 3. A tuple (c, (P0, e0), (P, e)) is safe iff (c, 〈σ, n〉, (P, e)) is safe for all states
〈σ, n〉 such that 〈σ, n〉 |= (P0, e0).

That is, (P0, e0) guarantees safety. We can now state the soundness theorem:

Theorem 1. For all c, P, e, (c, scg(c)(P, e), (P, e)) is safe.

Proof: By structural induction on the derivation 〈c, σ, n〉 ⇓ R.

To check whether a given command is safe to execute, we check whether 〈σ0, 0〉 |=
scg(c)(true, 0). That is, we compute the command’s safety condition and check whether
it holds in the initial execution stateσ0. If it holds, then c cannot produce the InvFailure
or QuotaExceeded errors. Thus, we do not check for them dynamically in actual prac-
tice, and we do not maintain the static resource pool n. Note that we do still check for
dynamic policy violations, which raise the AcquireFailed error.

4.3 Optimality

The soundness theorem shows that our scg prevents c from raising the InvFailure or
QuotaExceeded errors. The scg is also optimal, meaning that it generates the weakest
such condition, in the sense of:

Definition 4. (P0, e0) � (P1, e1) iff P0 ⇒ (P1 ∧ e0 ≥ e1).

That is, whenever (P0, e0) holds, so does (P1, e1). The optimality theorem states:

Theorem 2. For all c, P0, e0, P, e, if (c, (P0, e0), (P, e)) is safe,
then (P0, e0) � scg(c)(P, e).

Proof: By structural induction on the command c.

That is, whenever (P0, e0) guarantees safety, (P0, e0) implies scg(c) (P, e). Thus,
scg(c) (P, e) is the weakest such condition.

4.4 Prover

In this section, we show how to prove the safety conditions. We observe that the grammar
for predicates restricts the left side of implications to annotations, not full predicates.
Annotations are conjunctions of boolean expressions that are equalities or comparisons
between integer expressions.

We also observe that the our definition of scg respects this restriction. In particular,
all formulas on the left side of an implication arise from loop invariants and pre and post
conditions.

Thus, we use a simple theorem prover prove : a × p → Bool where prove(A,P )
holds if and only if A ⇒ P is valid. Valid means that the formula is true for all values
of the global variables and fresh constants introduced by the rule for universal quantifi-
cation. A predicate P is valid if and only if the prove(true, P ) is true. Figure 8 shows
the definition of prove.

To prove A ⇒ P , prove recursively decomposes P until it reaches a boolean
expression b. It then uses a satisfiability procedure sat to check whetherA ⇒ b is valid.
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prove(A, b) = ¬sat(A ∧ ¬b)
prove(A,P1 ∧ P2) = prove(A,P1) ∧ prove(A,P2)
prove(A,A1 ⇒ P ) = prove(A ∧A1, P )
prove(A, ∀x.P ) = prove(A, [a/x]P ) (a is fresh)
prove(A, cond(b, P1, P2)) = prove(A ∧ b, P1) ∧ prove(A ∧ ¬b, P2)

Fig. 8. Definition of prove

As usual, A ⇒ b is valid if and only if its negation A ∧ ¬b is unsatisfiable. Since the
form of A is restricted, we only call sat on a conjunction of (possibly negated) boolean
expressions. Since prove decomposes P using invertible rules, it is sound and complete
if and only if sat is sound and complete.

There are two notable satisfiability procedures that handle the linear inequalities that
scg generates. One is due to Nelson and Oppen [3] and implemented by the Simplify
prover [4] used in ESC/Java [5]. The other is due to Shostak [6] and implemented in PVS
[7]. In our experiments, we used ESC/Java and Simplify to generate and prove safety
conditions from Java code. For our class of conditions, Simplify is sound and complete.

Although we can probably trust our simple recursive prover, we may not want to
trust the more complex satisfiability procedure at its core. To address this problem, we
can use proof-carrying code [8] and require the program producer to send a safety proof
to the program consumer. If the satisfiability procedure generates verifiable proofs, then
the producer can create a safety proof by running the prove procedure and collecting
all the satisfiability proofs. The program consumer can check the proof by running the
prove procedure, just as the producer did, and checking each of the satisfiability proofs.
We may also choose to use PCC if if we enrich the language of invariants and replace
our simple prover with a more complex first-order prover.

4.5 Annotator

As it stands, our approach requires the programmer manually to insert acquires, write
loop invariants, and add function pre and post conditions. We are currently working on
a tool that automatically and correctly adds these assertions, similar in spirit to Houdini
[9]. Although optimal annotation is undecidable, the tool can “fall back” to inserting an
acquire before each consume. This annotation scheme is verifiable using the trivial
loop invariant true, and it removes the need for hand annotation when the programmer
does not care about efficiency. Beyond this “base line” performance, we plan to include
a knowledge base of common loop idioms and their optimal annotations.

One advantage of manual annotation is that the programmer can decide how early
to acquire resources. It is less costly to acquire all resources at once, but it is also “anti-
social” to hold unused resources, preventing other concurrently running programs from
using them. The programmer can also decide whether to acquire exactly the right amount
of resources, which may be difficult to determine, or whether to over-estimate.
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4.6 Renewable Resources

We can easily extend our framework to handle renewable resources, such as memory
and file handles, by allowing acquire and consume to take negative arguments. In
essence, acquire and consume manage two pools, a static pool and a dynamic pool.
With a positive argument, acquire moves resources from the dynamic pool to the
static pool. With a positive argument, consume moves resources out of the static pool.
With negative arguments, acquire and consume transfer resources in the opposite
direction. The consume operation is part of the TCB in that it represents (or annotates)
trusted library functions such as malloc (with positive argument) and free (with
negative argument). The acquire operation is untrusted, and downloaded code is free
to call it to obtain resources from the run-time system, or to release them back to the
run-time system.

5 Tar Example

In this section, we describe our experience with a version of tar written in Java. We
wanted to see how hard it would be to annotate a “real” program, whether we could report
policy violations earlier, and whether we could reduce the cost of dynamic checks. We
chose a security policy that limits the number of bytes that tar reads and writes to the
file system.

We began with a Java tar program from ICE Engineering [10] but revised it to
simplify the annotation process. Although tar contains 1700 lines of code, we only
needed to examine the 577 lines relevant to I/O.

We prototyped our ideas using ESC/Java [5], which checks pre and post conditions
for Java code using the Simplify theorem prover [4]. Using the definitions of acquire
and consume shown in Figure 9, ESC/Java generates essentially the same verification
condition as the function shown in Figure 7. Although ESC/Java has been excellent
for prototyping our ideas, it is not suitable for verifying code safety. First, it is un-
sound, because it does not throughly check loop invariants and side-effect assertions
(modifies). Thus, it cannot form the basis for a secure system. Second, it does not
generate certificates for later verification. Third, it is too large to run on mobile de-
vices. For these reasons, we are developing a lightweight implementation based on a
certificate-generating prover [11].

The implementation of our ideas in ESC/Java is straightforward. We maintain two
pools, a static pool and a dynamic pool. We represent the static pool using a ghost
variable that exists only at verification time. At the start of execution, the user’s security
policy fills the dynamic pool with the program’s resource quota. The acquire operation
transfers resources from the dynamic pool to the static pool. The consume operation
removes resources from the static pool. The invariants ensure that the pools never drop
below empty. Note that ESC/Java verifies each method’s implementation against its
specification using only the specifications, not the implementations, of the methods that
it calls.
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1 private static long dynamicPoolRead = 0;
2 //@ ghost public static long staticPoolRead = 0;
3 //@ invariant staticPoolRead >= 0;
4 //@ invariant dynamicPoolRead >= 0;
5

6 //@ requires n >= 0;
7 //@ ensures staticPoolRead == \old(staticPoolRead) + n;
8 //@ modifies dynamicPoolRead, staticPoolRead;
9 public static void acquireRead (long n) {

10 if (dynamicPoolRead >= n) {
11 dynamicPoolRead -= n;
12 //@ set staticPoolRead = staticPoolRead + n;
13 } else {
14 System.out.println ("Read quota exceeded!\n");
15 System.exit (1);
16 }
17 }
18

19 //@ requires n >= 0 && staticPoolRead >= n;
20 //@ ensures staticPoolRead == \old(staticPoolRead) - n;
21 //@ modifies staticPoolRead;
22 public static void consumeRead (long n) {
23 //@ set staticPoolRead = staticPoolRead - n;
24 }

Fig. 9. Implementation of acquire and consume in ESC/Java

1 long size = file.length ();
2 long q = size / recordSize;
3 long r = size % recordSize;
4 long size2 = q * recordSize;
5 long size3 = size2 + (r > 0) ? recordSize : 0;
6

7 Resources.acquireWrite (size3 + recordSize);
8 Resources.acquireRead (size);
9 out.writeHeaderRecord (entry);

10

11 for (int i = 0; i < q; ++i) {
12 in.read (buffer, 0, recordSize);
13 out.writeRecord (buffer);
14 }
15

16 if (r > 0) {
17 Arrays.fill (buffer, (byte) 0);
18 in.read (buffer, 0, r);
19 out.writeRecord (buffer);
20 }

Fig. 10. Java tar code excerpt
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The naivetar implementation requires two dynamic checks for each 512-byte block,
one for read and one for write. Using reservations, our implementation perform two
checks per file rather than two checks per block. Figure 10 shows the code to write a file
to the archive. We replaced the usual “while not EOF” loop with a for loop that counts
a definite number of blocks. This structure ensures that tar does not exceed its quota
even if a concurrent process lengthens the file.

Ideally, we would like to perform only two checks to create the entire archive. We
haven’t tried this experiment yet, but the code would need to prescan the directories to
build a table of file sizes. The prover would need to connect the loop that sums the file
sizes to the loop that reads the files.

We annotated each I/O method by computing its resource use in terms of the resource
use of its subroutines. If a method’s use was dynamic or difficult to state in closed form,
we added a dynamic check to stop its upward propagation (“the buck stops here”). Al-
though we experimented with annotations that overestimate resource use, we found that
precise annotations were simple enough. In total, tar required 33 lines of annotation.

We tested tar on a directory containing 13.4 mb in 1169 files, for an average file
size of 11.7 kb. The unannotated program performed 57210 I/O operations on 512-byte
blocks. Since each operation requires a dynamic check, it also performed 57210 dynamic
checks. The annotated program also performed 57210 I/O operations. However, since
it performed one dynamic check per file rather than per block, it only performed 2389
dynamic checks. That is, it performed almost 24 times fewer dynamic checks. Of course,
this ratio is the average file size divided by 512.

Because block I/O operations are much more expensive than dynamic checks, we
did not obtain a corresponding decrease in overall run time. However, our technique also
applies to operations where the check is expensive relative to the operation itself, such
as instruction counting and memory reference counting.

6 Related Work

Our work combines ideas from several areas: Dijkstra’s weakest precondition compu-
tation [2], Necula and Lee’s proof-carrying code [8], partial evaluation’s separation of
static and dynamic binding times [12], and standard compiler optimizations such as
hoisting and array bounds check elimination [13].

Since we combine static and dynamic checking, our work is only tangentially related
to purely static approaches such as Crary and Weirich’s resource bound certification [14]
or purely dynamic approaches such as the Java security monitor [15]. The implemen-
tations based on bytecode rewriting [16, 17, 18, 19, 20, 21, 22] are also purely dynamic,
since they add checks without performing significant static analysis.

Our approach is a non-trivial instance of Necula and Lee’s safe kernel extension
method [23]. They show that the OS designer can export an unsafe, low-level API if he
provides a set of rules for its use, and a static analysis that checks whether clients follow
these rules. By contrast, most designers wrap the low-level API in a safe but inefficient
high-level API that clients can call without restriction. For array bounds checking, the
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low-level API is the unguarded reference, while the high-level API guards the reference
with a bounds check. The usage rule is that the index must be in bounds.

In our case, the low-level API is acquire and consume. The high-level API,
which we intentionally avoid, immediately prefixesconsumebyacquire, so that each
consume has enough resources. This high-level API provides pure dynamic checking.
The usage rule is that we acquire some time before we consume, but not necessarily
immediately before. We extricate this useful, low-level API from its high-level wrapper
and provide a flexible but safe set of usage rules, which we show how to statically check
efficiently. The end result is a novel combination of static and dynamic checking.

On the surface, our work seems similar to approaches that place dynamic checks
according to static analysis, such as Wallach’s SAFKASI system [24] and Gupta’s elim-
ination and hoisting of array bounds checks [13]. These systems limit the programmer to
the safe, high-level API, but they inline and optimize calls to it according to the low-level
API’s usage rules and semantics. By contrast, like PCC, we separate verification from
optimization, which is untrusted and can be performed by the programmer or by an au-
tomated tool. The programmer can also ignore the high-level API and call the low-level
API directly.

Like us, Patel and Lepreau [25] describe a hybrid (mixed static and dynamic) ap-
proach to resource accounting. They use static analysis of execution time to reject some
overly expensive active network router extensions. They use dynamic checks to monitor
other, unspecified resources. At this level of detail, their static and dynamic checks are
not tightly coupled. However, they also use static analysis to locate dynamic network
polling operations. They bind their ideas closely to the complex active network setting
and do not extract a simple, reuseable API or a proof system for reasoning about it.

Independently of us, Vanderwaart and Crary proposed the TALT-R system [26].
They place a yield at most every Y instructions. That is, yield is similar to acquire(Y ).
However, since yield does not itself debit a resource quota, it does not enable the fine-
grained combination of static and dynamic checking.

7 Extensions and Future Work

Our approach can already handle (1) function pre and post conditions and (2) reuseable
resources such as memory, but we do not have space to describe these extensions here.

We are currently engaged in future work in several different areas. First, due to
the limitations of existing tools, we are developing an SCG and prover that can prove
resource-use safety for Java bytecode and produce proof witnesses. This effort presents
several engineering challenges, such as scaling our SCG to a larger language, tracking
source level annotations in bytecode, and building an efficient proof checker that per-
forms well on mobile devices. Second, we are designing a tool that automatically and
correctly annotates bytecode with resource reservations. Third, we are applying our tech-
niques to other security mechanisms such as stack inspection and access control. Fourth,
we are investigating situations where the check is expensive relative to the operation
itself, such as instruction counting and memory reference sandboxing.
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8 Conclusion

We have demonstrated a novel API for resource bounds enforcement that combines the
best of static and dynamic approaches, by providing the means to dynamically reserve
resources within programs and statically verify that the reservations are sufficient. Our
soundness theorem gives the code consumer total confidence that statically verified pro-
grams do not exceed the resource bounds specified in his safety policy. Our approach
gives the code producer (programmer or automated tool) complete freedom to optimize
the placement of dynamic checks. Thus, we provide a system for writing statically verifi-
able resource-safe programs that handles dynamic data and complex program structure.

By adapting ideas from weakest preconditions and proof-carrying code, we showed
how the code consumer can statically verify that resource reservations enforce his re-
source bounds policy. We presented a practical language that was carefully designed
to admit decidable yet efficient verification and proved soundness and optimality the-
orems. Finally, we described our experience in successfully annotating and verifying a
Java version of tar for resource safety.

Furthermore, our approach generalizes to APIs other than resource checking. At
present, code consumers hide these APIs in high-level wrappers that are safe but ineffi-
cient. Using our hybrid approach, code consumers can give code producers direct access
to efficient, low-level APIs without sacrificing safety.
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Abstract. We instantiate an Isabelle/HOL framework for proof carry-
ing code to Jinja bytecode, a downsized variant of Java bytecode featur-
ing objects, inheritance, method calls and exceptions. Bytecode anno-
tated in a first order expression language can be certified not to produce
arithmetic overflows. For this purpose we use a generic verification con-
dition generator, which we have proven correct and relatively complete.

1 Proof Carrying Code

In mobile code applications, e.g. applets, grid computing, dynamic drivers, or
ubiquitous computing, safety is a primary concern. Proof carrying code (PCC)
aims at certifying that low level code adheres to some safety policy, such as type
safety [6], bounded array accesses [13], or limited memory consumption [4]. When
such properties are checked statically sandbox mechanisms and error recovery
become obsolete. In classical PCC a verification condition generator (VCG) re-
duces annotated machine code to proof obligations that guarantee safety. Proofs,
usually obtained automatically with a theorem prover, are then shipped to the
code consumer, who checks them. The whole setup is sound if the VCG and
the proof checker can be trusted. In Foundational Proof Carrying Code [3] the
VCG is eliminated by proving safety directly on the machine semantics, typically
assisted by a source level type system. Our approach is to formalize and verify
PCC in a theorem prover. In [19] we present an Isabelle/HOL [15] framework
for PCC. The essential part is a generic, executable and verified VCG. This
turns out to be feasible as only a small part of a VCG needs to be trusted.
Many parts can be outsourced in form of parameters that can be customized
to the programming language, safety policy and safety logic at hand. In this
paper we instantiate a PCC system for Jinja bytecode and a safety policy that
prohibits arithmetic overflow. We verified that this instantiation meets all the
requirements our framework demands for the VCG to be correct and relatively
complete. Verifying programs at the bytecode level has clear advantages. First,
one does not have to trust a compiler. Second, the source code, which is often
kept secret, is not required. Third, many safety policies are influenced by the
machine design. For example verifying sharp runtime bounds even requires going
down to the processor level and considering pipeline and caching activities. In
case of bytecode, we need a safety logic that can adequately model JVM states.
Over the years various logics for object oriented programs have been proposed.
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c© Springer-Verlag Berlin Heidelberg 2005



Asserting Bytecode Safety 327

For instance [2] defines a Hoare Logic based on a combination of a type system
and first order logic with equality. In [16] a shallow embedding of Isabelle/HOL
is used to define a Hoare logic for Java. A very prominent annotation language
for Java is JML [10] or the downsized version of it used in ESC Java [7]. How-
ever, all of the logics have been designed for Java, not its bytecode. This paper
introduces a first order expression language with JVM specific constructs. This
language is expressive enough for weakest preconditions of Jinja instructions
and a safety policy against arithmetic overflow. Although this is undecidable,
many programs produce proof obligations that are easy enough to be handled
by Isabelle/HOL’s decision procedures, such as Cooper’s algorithm [14].

2 Jinja Bytecode

Jinja bytecode is a downsized version of Java bytecode. Although it only has 16
instructions, it covers most object oriented features: object creation, inheritance,
dynamic method calls and exceptions.

datatype instr =
Load nat load from register

| Store nat store into register
| Push val push a constant
| New cname create object on heap
| Getfield vname cname fetch field from object
| Putfield vname cname set field in object
| Checkcast cname check if object is of class cname
| Invoke mname nat invoke instance method with nat parameters
| Return return from method
| Pop remove top element
| IAdd integer addition
| Goto int goto relative address
| CmpEq equality comparison
| IfFalse int branch if top of stack false
| IfIntLeq int take integers a and b from stack, branch if a≤b
| Throw throw exception

Jinja programs are interpreted by the Jinja virtual machine, which closely mod-
els the Java VM. States consist of a flag indicating whether an exception is raised
(if yes, a reference to the exception object), a heap and a method frame stack.

types jvm-state = addr option × heap × frame list

The heap is a partial map from addresses (natural numbers) to objects. We use
the polymorphic type ′a option = None | Some ′a to model partiality in Isa-
belle/HOL, a logic of total functions. Using the one can extract the content,e.g.
the (Some a) = a.

types heap = addr ⇒ obj option
obj = cname × fields
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fields = (vname × cname) ⇒ val option
cname = vname = mname = string

Jinja has values for booleans, e.g. Bool True, integers, e.g. Intg 5, references, e.g.
Addr 3, null pointers, e.g. Null or dummy elements, e.g. Unit. For some values,
we use partially defined extractor functions.

datatype val = Bool bool | Intg int | Addr addr | Null | Unit
the-Intg (Intg i) = i, the-Bool (Bool b) = b, the-Addr (Addr a) = a

Each value has a type associated with it:

datatype ty = Boolean | Integer | Class cname | NT | Void

Whenever a method is called a new frame is allocated on the method frame
stack. This frame contains registers, an operand stack and the program counter.
In the registers the Jinja VM stores the this reference, the method’s arguments
and its local variables. The operand stack is used to evaluate expressions. Both
are modelled as lists, e.g. l = [Null ,Unit ], for which Isabelle/HOL provides many
operators. For example, there is concatenation, e.g. l@[Intg 2 ] = [Null ,Unit ,Intg
2 ], indexed lookup l ! 1 = Unit, head,i.e. hd l = Null and tail, tl l = [Unit ].

types frame = opstack × registers × pos
opstack = val list
registers = val list
pos = cname × mname × nat

Instructions are identified with positions. For example (C ,M ,pc) points to in-
struction number pc in method M of class C. Each method is a tuple of the form
(mxs,mxr ,is,et), where mxs indicates the maximum operand stack height, mxr
the number of used registers, is the method body and et the exception table.

types jvm-method = nat × nat × instr list × ex-table

The exception table is a list of tuples (f , t , C , h, d):

types ex-table = (nat × nat × cname × nat × nat) list

Whenever an intruction within the try block bounded by [f , t) throws an excep-
tion of type C the handler starting at h is executed. The parameter d, which is
always 0 in our case, specifies the size of the stack the handler expects. This is
used in [9] to handle exceptions within expression evaluation, but is not required
for real Java programs. Jinja programs are lists of class declarations. Each class
declaration (C ,S ,fs,ms) consists of the name of the class, the name of its direct
superclass, a list of field declarations, which are pairs of field names and types,
and a list of method declarations. Method declarations consist of the method’s
name, its argument types, its result type and its body.

types jvm-prog = (cname × cname × fdecl list × mdecl list) list
fdecl = vname × ty
mdecl = mname × ty list × ty × jvm-method

Our PCC system requires programs Π with annotations. These are added by
finite maps from positions to logical expressions. Finite maps are lists of pairs,
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e.g. fm = [(1 ,1 ),(3 ,5 ),(3 ,6 )], and have operations for lookup, e.g. fm↓0 = None
or fm↓3 = Some 5, domain, e.g. dom fm = [1 ,3 ,3 ] and range, e.g. ran fm =
[1 ,5 ,5 ]. Note that a pair (x ,y) is overwritten by a pair (x ,y ′) to the left of it.

types jbc-prog = jvm-prog × (pos ( expr)

To specify and verify safety properties we need to reason about Jinja VM states.
A central issue of this paper is to suggest a formula language for this purpose.
For some constructs of this language we require an extended version of the Jinja
VM, one which memorizes additional information in a so called environment
e, in order to define their semantics. In addition our PCC framework requires
positions to be given as the first component of a state.

types jbc-state = pos × jvm-state × env

The environment e contains a virtual stack of call states cs e and a binding lv e
for so called logical variables.

record env =cs:: heap list
lv :: var ⇒ val

Whenever a new frame is allocated on the method call stack, we record the
current heap and register values in a call stack, which acts like a history variable
in Hoare Logics. Whenever a frame is popped, we also pop an entry from the
call stack. The bytecode semantics consists of two rules: One specifies normal,
the other one exceptional execution.

nrml:
[[ P = fst Π; p = (C ,M ,pc); i = instrs-of P C M ! pc;
σ = (None,h,(stk ,loc,p)#frs); check P σ;
exec-instr i P h stk loc C M pc frs = (None,h ′,fr ′#frs ′);
σ ′ = (None,h ′,fr ′ # frs ′); p ′ = snd (snd fr ′);
e ′ = e(|cs:=if ∃ M n. i = Invoke M n then h#(cs e)
else if i = Return then tl (cs e) else cs e|)
]] =⇒ ((p,σ,e),(p ′,σ ′,e ′)) ∈ effS Π

expt:
[[ P = fst Π; p = (C ,M ,pc); i = instrs-of P C M ! pc;
σ = (None,h,(stk ,loc,p)#frs); check P σ;
exec-instr i P h stk loc C M pc frs = (Some xa,-,-);
find-handler P xa h ((stk ,loc,p)#frs) = σ ′;
σ ′ = (None,h,([Addr xa],loc ′,p ′)#frs ′);
e ′ = e(|cs:=drop (length frs − length frs ′) (cs e)|)
]] =⇒ ((p,σ,e),(p ′,σ ′,e ′)) ∈ effS Π

In both rules we use instrs-of to retrieve the instruction list of the current
method. The actual execution for single instructions is delegated to exec-instr,
whose full definition can be found in [9]. Here we only give one example:

exec-instr IAdd P h stk loc C 0 M 0 pc frs =
(let i2 = the-Intg (hd stk); i1 = the-Intg (hd (tl stk))
in (None, h, (Intg (i1+i2)#(tl (tl stk)), loc, C 0, M 0, pc+1 )#frs))
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The function exec-instr returns triples, whose first component indicates whether
an exception occurs. If yes (second rule), we use the function find-handler) to do
exception handling similar to the Java VM: it looks up the exception table in the
current method, and sets the program counter to the first handler that protects
pc and that matches the exception class. If there is no such handler, the topmost
call frame is popped, and the search continues recursively in the invoking frame.
If no exception handler is found, the exception flag remains set and the machine
halts. If this procedure does find an exception handler (f , t , C , h, 0 :: ′e) it sets
the pc to h and empties the operand stack except for reference to the exception
object. Additional safety checks in the semantics, i.e. check P σ, ensure that
arguments of proper type and number are used. This simplifies the verification
of the soundness and completness requirements our PCC framework demands.
As proven in [9] the bytecode verifier only accepts programs for which these
checks hold. Hence, it is sound to work with this defensive version of the Jinja
VM. We require Jinja Bytecode programs to have a main method. For simplicity
we assume that this method is named main, has no arguments, and belongs to
a class called Start. This means we start a program at position (Start ,main,0 ).
The initial operand stack is empty and the registers are initialized with arbitrary
values. The initial heap (start-heap (fst Π)) contains three entries for system
exceptions NullPointer, ClassCast and OutOfMemory. The initial environment
contains an empty call stack. The binding of logical variables is unrestricted.

initS Π ≡ { (p,σ,e). p = (Start ,main,0 ) ∧ cs e = []
∧ σ = (None,start-heap (fst Π),[([],Null # replicate mxr arbitrary ,p)]) }

3 Assertion Logic

Many aspects of Java are identical in the bytecode, but an important concept of
the Java VM cannot be found at the source level: The method frame stack. This
stack is used to store local data of methods in evaluation. Almost all bytecode
instructions affect it. If we want to simulate these effects at a syntactic level, we
need a language that can describe this stack. Fig. 1 shows the assertion language
we use for this purpose. It is a variant of first order arithmetic with special
constructs for adequate modeling of JVM states. All these constructs are used
to express our safety policy (no arithmetic overflow) and weakest preconditions
for Jinja VM instructions. For simplicity this language is untyped. We do not
even distinguish between formulas and expressions. Earlier instantiations [18]
showed that this leads to duplication of functions and lemmas for both types.
The uniform representation avoids this and still allows categorization with type
checking functions. Next, we explain the semantics of all language constructs.
Each expression can be evaluated for a given jbc-state and yields some Jinja
value.

eval :: jbc-state ⇒ expr ⇒ val

The expressions come in two categories. From Rg nat to Catch expr we have
JVM specific constructs. These are needed to access various parts of Jinja states
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datatype expr =
Rg nat register
| St nat operand stack cell
| Cn val constant value
| NewA nat address for nth new object
| Gf vname cname expr get field value
| Ty expr ty type check
| FrNr height of method frame stack
| Pos pos position check
| Call expr evaluation in call state
| Catch cname expr evaluation in catch state
| expr �+� expr | expr �−� expr | expr �∗� expr arithmetic
| �if� expr �then� expr �else� expr conditional
| expr �=� expr | expr ��� expr | expr �<� expr relational
| �¬� expr negation
| expr �⇒� expr implication
| �
∧

� expr list conjunction
| Lv nat logical variable
| 	∀
 nat expr quantification (logical vars)

Fig. 1. Jinja bytecode assertion language

in annotations. The remaining constructs are purely logical and are required to
construct verification conditions.

3.1 JVM Specific Constructs

Since we want to use the annotation language to abstract Jinja states, we need
various constructs to access different parts of such states. Most instructions
only manipulate the topmost method frame. Instead of making the whole frame
stack accessible in the language, which would complicate the evaluation range,
we decided to use constructs for individual parts only. With Rg k and St k we
access the kth register or element on the operand stack.

evalE Π (p,σ,e) (Rg k) = (let (x ,h,fs)=σ; (st ,rg ,p)=hd fs in rg !k)
evalE Π (p,σ,e) (St k) = (let (x ,h,fs)=σ; (st ,rg ,p)=hd fs in st !k)

Constants Cn v evaluate to their values v, i.e. evalE Π s (Cn v) = v. For better
readability we abbreviate constants like Cn (Intg 5 ) or Cn (Bool True) with �5�
or �True�.

The NewA n expression returns the reference that is allocated in the heap
for the nth object. In many cases this operator can be avoided as [5] shows. In
our wpF operation, we will also replace field accesses of newly created objects by
their default values. Eliminating all instances of NewA could be achieved at the
level of formulas. However, this involves complex transformations of formulas
and should be delegated to a post-processing function. In the definition we use
the auxiliary function new-Addr h, which yields either Some a if a is the reference
that is allocated next, or None if the heap is full.
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evalE Π (p,σ,e) (NewA n) = (let (x ,h,frs)=σ in evalNewA h n)
evalNewA h 0 = (case new-Addr h of None ⇒ Null | Some a ⇒ Addr a)
evalNewA h (Suc n) = evalNewA (h(the (new-Addr h):= Some arbitrary)) n

To evaluate Gf F C ex, which corresponds to (C )ex .F in Java, we first check
whether ex evaluates to an address value. If so, we fetch the value of the corre-
sponding object field, otherwise we return Unit.

evalE Π s (Gf F C ex) = ( case (evalE Π s ex )
of Addr a⇒( let (p,σ,e)=s;(x ,h,frs)=σ;(D ,fs)=the (h a)

in the (fs (F ,C ))))
| - ⇒ Unit)

The evaluation of FrNr, Pos p and Ty ex tp is straightforward, hence we skip the
formal definitions. The FrNr expression yields the length of the method frame
stack and Pos p evaluates to �True� only if the current program position is p. To
check the exact type of some expression we use Ty ex tp. Note that this check
does not take the class hierarchy into account. Subtyping can be expressed by a
disjunction of Ty ex stp expressions. With Call and Catch we evaluate formulas
in previous states. The Call ex expression evaluates ex in the call state of the
current method. This helps to specify postconditions of methods modularly.
For example, annotating a Return instruction with Rg 1 �=� Call (Rg 1 ) �+� �1�
means that the returning method has incremented register 1. This techniqe is
related to primed variables in VDM [8], except that we can set entire expressions
into a different temporal context, just like temporal logic operators do. This is
important, as some method postconditions need old values of object fields or
other parts of the heap. Another reason is that we use this operator to restore the
call context when we compute the verification condition of a method return. For
example, if register 1 had value Intg 5 before the method call, the programmer
might annotate the call position with Rg 1 �=� �5� and the return position with Rg
1 �=� �6�. Our VCG would then produce the following proof obligation, where we
have to show that the postcondtion together with the call annotation (evaluated
in the call state!) imply the annotation at the return position: (Rg 1 �=� Call (Rg
1 ) �+� �1� �

∧
� Call (Rg 1 �=� �5�)) �⇒� Rg 1 �=� �6�. Details about this construction

can be found in [19]. We use the auxiliary function call to restore the call state
of the current method. The program counter, registers and operand stack at call
time are taken from the method frame beneath. The heap can be restored from
the recordings in the environment. In case of a main method state (no caller),
Call ex evaluates to arbitrary.

evalE Π s (Call ex ) = (let (p,σ,e)=s; (x ,h,frs)=σ in
(if length frs ≤ 1 then arbitrary else evalE Π (call s) ex ))
call (p,(x ,h,f #(s,r ,p ′)#frs),e) = (p ′,(None,hd (cs e),(s,r ,p ′)#frs),e(|cs:=tl(cs e)|))

Exceptions impose a similar problem than method returns. However, since the
number of frames chopped off the frame stack by exception handling is hard to
determine statically, we need a special operator for this purpose. Just like Call
ex the construct Catch X ex evaluates ex in a previous state. In this case we
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restore the state under which we have last been in the try block that has a
catching handler for exception X. The auxiliary function catch chops off frames
until a catching handler is found. Simultaneously it restores the corresponding
heap from the environment. Note that the resulting state is not the state under
which the handler is entered, because the heap remains the same in this case.

evalE Π s (Catch X ex) = (let (p,σ,e)=s; (x ,h,frs)=σ in
if length frs ≤ 1 then arbitrary else evalE Π (catch (fst Π,X ,s,ex )))

catch (P ,X ,(p,(x ,h,fr#(st ,rg ,p)#frs),e)) =
(let (C ,M ,pc)=p in (case (match-ex-table P X pc (ex-table-of P C M ))
of None ⇒ catch (P ,X ,(p,(None,hd (cs e),(st ,rg ,p)#frs),e(|cs:=tl(cs e)|)))
| Some pc ′ ⇒ (p,(None,hd (cs e),(st ,rg ,p)#frs),e(|cs:=tl (cs e)|))))

3.2 Logical Constructs

The arithmetic, relational, conditional and logical expressions are evaluated re-
cursively. First, we evaluate the argument expressions, then we apply the cor-
responding arithmetic, relational or conditional operator on the results. If any
argument value has not the expected type the result becomes arbitrary. A logi-
cal expression ex is true if it evaluates to Bool True, otherwise it is false. From
Winskel [20] we take the idea of distinguishing program and logical variables.
The first (registers, stack ...) depend on the jvm-state and may be modified by
instructions. The latter are evaluated in a separate binding lv e, which we made
part of the environment e in jbc-state, and are unaffected by instructions. In the
substitutions we use later on to express the effect of instructions, we will neither
transform nor introduce logical variables. Hence, no renaming of bound variables
is required.

evalE Π (p,σ,e) (Lv k) = (lv e) k

Quantification only binds logical variables. The formula 	∀
 v . ex holds, if ex
holds no matter what value v ′ the logical variable Lv v is bound to.

evalE Π (p,σ,e) (	∀
 v ex ) =
Bool (∀ v ′. the-Bool (evalE Π (p,σ,e(|lv :=((lv e)(v :=v ′))|)) ex ))

3.3 Validity and Provability

To use this expresssion language as a logic, we need judgements for validity
and provability. Models of formulas are program states under which a formula
evaluates to Bool True.

Π,s |= ex = the-Bool (evalE Π s ex )

Provabiliy ' is usually defined by giving a set of axioms and inference rules.
However, we can also define provability semantically and use the inference system
of HOL for proofs. We regard a formula as provable if we can prove in HOL that
it holds for all states in the safety closure safeP Π of a program Π. This set
of states is defined relative to some safety policy safeF, which we are going to
instantiate in the next section.
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Π ' ex = ∀ s∈ safeP Π. Π,s |= ex

The safety closure is defined inductively: All initial states are in safeP Π. If a
state (p,σ,e) is in safeP Π, satisfies the safety formula and annotation at p (if
there is any), then every successor state (p ′,σ ′,e ′), i.e. ((p,σ,e),(p ′,σ ′,e ′)) ∈ (effS
Π), that satisfies the safety formula and annotation at p ′ is also in safeP Π.

4 Safety Policy

The assertion language serves three purposes: First, it provides a means to spec-
ify machine states and thus to annotate programs. Second, we use it to express
verification conditions. Third, we use it to specify the safety policy. Our PCC
framework expects the safety policy to be given as a function safeF :: jbc-prog ⇒
pos ⇒ expr, which defines a safety formula for each position p in a given pro-
gram Π. This formula expresses conditions that must hold whenever we reach p
at runtime. In our case we instantiate a safety policy that prohibits arithmetic
overflow. The result of IAdd must not exceed MAXINT, which stands for Java’s
highest 32 bit integer �2147483647�.

safeF Π p = (if cmd Π p = Some IAdd then St 0 �+� St 1 ��� MAXINT
else �True�)

A safety policy can also be lifted to programs. A program is safe if and only
if every reachable state satisfies its safety formula.

isSafe Π = (∀ p0 σ0 e0 p m e. (p0,σ0,e0) ∈ (initS Π) ∧
((p0,σ0,e0),(p,σ,e)) ∈ (effS Π)∗ −→ Π,(p,σ,e) |= safeF Π p)

5 Verification Conditions

Our generic VCG analyses an annotated control flow graph and produces a for-
mula in the assertion language. Details are in [19], here we only sketch the idea.
Assume position p in program Π is annotated with A and has successor p ′,
annotated with A ′. A branch condition B specifies when p ′ is accessible from p.
The verification condition for Π would contain the following proof obligation,
ensuring a safe transition from p to p ′.

(safeF Π p �
∧

� A �
∧

� B) �⇒� wpF Π p p ′ (safeF Π p ′
�
∧

� A ′)

We have to show that the safety formula at p, the annotation A and the branch
condition B imply the weakest precondition for the safety formula and annota-
tion at p ′. The entire verification condition consists of various parts of this form.
Not all positions must be annotated. It suffices if there is at least one annotation
in each loop. For non-annotated positions the VCG constructs proof obligations
by pulling back annotations of further successors using the weakest precondition
function wpF and the successor function succsF. Relying on requirements for the
parameter functions, we show in the PCC framework that the VCG is correct
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and complete. The correctness theorem says that if we can prove the verification
condition of a wellformed program, then this program is safe at runtime.

theorem vcg-correct: wf Π ∧ Π ' vcg Π −→ isSafe Π

Wellformedness means that there are enough annotations in the program. Com-
pleteness means that each wellformed and safe program with valid annotations
yields a provable verification condition.

theorem vcg-complete: wf Π ∧ correctAn Π ∧ isSafe Π −→ Π ' vcg Π

Annotations are valid if they hold whenever the corresponding position is reached
at runtime. For our instantiation to Jinja bytecode, we have proven both theo-
rems by showing all the requirements on the parameter functions. The hardest
part is to show that control flow function and the weakest precondition operator
work correctly and precisely enough.

5.1 Jinja Bytecode Control Flow

To determine the control flow our VCG requires the function succsF, which given
a program position yields a list of all direct successors paired with branch condi-
tions. These specify the situations when a successor is accessible. In the definition
we use separate functions for normal and exceptional successors. The auxiliary
function addPos augments the branch conditions with a position formula Pos p.
This connects verification conditions with the program structure and allows to
weave in other properties (system invariants) in a post-processing step.

succsF Π p = (case cmd Π p of None ⇒ []
| Some c ⇒ addPos p (succsNrm Π p c @ succsExpt Π p c))

addPos p ss = map (λ (p ′,B). (p ′, �
∧

� [B ,Pos p])) ss

The function succsNrm yields the successors for normal execution. For example
IfIntLeq has two successors depending on whether the topmost stack entry St 0
is less than or equal to St 1, the element beneath it.

succsNrm Π (C ,M ,pc) (IfIntLeq t) = [((C ,M ,pc+t),St 0 ��� St 1 ),
((C ,M ,pc+1 ), �¬� (St 0 ��� St 1 ))]

For instructions that might throw exceptions, succsNrm produces a branch con-
dition that excludes this exception. We write incA (C ,M ,pc) to increment posi-
tions, e.g. (C ,M ,pc+1 ). The auxiliary function xcpt-cond generates a condition
that ensures a particular exception.

succsNrm Π p (Getfield F C ex ) = [(incA p,�¬�(xcpt-cond Π NullPointer p))]
cmd Π p = Some (Getfield F C ) −→ xpct-cond Π X p = St 0 �=� �Null�
For Putfield, New and Checkcast the normal successors are determined anal-
ogously, only the type of exception differs. Method calls are more complicated,
because overwriting opens multiple possibilities. It is hard to determine
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statically the real type of the object whose method we are calling. However, we
can ask the programmer or compiler to insert proper type annotations. Then we
can select the corresponding method entry positions and construct sharp branch
conditions.

succsNrm Π p (Invoke M n) = succsInvoke (Π,M ,n,p)

First, succsInvoke analyses the annotation at p to find out the types of the
object reference on top of the stack. It expects this information to be given
in form of a disjunction of Ty ex tp expressions. Then, it constructs exclusive
branch conditions for each type.

succsInvoke (Π,M ,n,p) = (case anF Π p of None ⇒ []
| Some A ⇒ concat (map (λ tp. (case tp

of Class X ⇒ [((X ,M ,0 ),�¬�(xcpt-cond Π NullPointer p) �
∧

� Ty (St n) (Class X ))]
| - ⇒ [])) (extractTy (A,St n))))

For Return instructions we scan the code for all positions from which the current
method could have been called. The name and class of the current method can
be obtained from the position, say (C ,M ,pc), of the Return instruction. Then
we scan the code for all positions p ′ with Invoke M n, which have Ty (St n)
C in its annotation. For each of those call positions p ′ we construct a branch
condition with the annotation, safety formula and position information of p ′.

succsNrm Π p Return =
map (λ p ′. (incA p ′,Call (And [assert Π p ′,Pos p ′]))) (callers Π p)
assert Π p ≡ �

∧
� [safeF Π p]@(case anF Π p of None ⇒[] | Some A ⇒ [A])

For the remaining instructions succsNrm can be defined analogously to the
shown examples. When instructions throw exceptions control flows to an appro-
priate handler. The function succsExpt checks which exceptions each instruction
may throw and invokes succsXpt to find potential handlers. Example:

succsExpt Π p (Getfield F C ) = succsXpt (Π,NullPointer ,[p])

Handlers are searched by recursively climbing up the call tree and inspecting
the exception tables of each call method. In succsXpt we keep a list of visited
positions. When this list becomes too long or empty, succsXpt terminates by
making all program positions potential successors. This means programs with
uncaught exceptions usually yield unprovable verification conditions. However,
adding a global exception handler to the main method always helps to avoid this
problem. When succsXpt finds a handler it constructs a branch condition that
specifies under which situation this handler is selected. When an exception is
caught in the same method as it is thrown (pss = []), we get branch condition
�True�, otherwise we restore the call context using Catch on the annotation and
safety formula of the call point.

succsXpt (Π,X ,ps) = (if length (domC Π) ≤ length ps ∨ ps=[]
then map (λp. (p,�True�)) (domC Π)
else (let p=fst ps; (C ,M ,pc)=p; et=ex-table-of P C M ; A=assert Π p
in (case match-ex-table P X pc et
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of None ⇒ concat (map (λp ′. succsXpt (Π,X ,p ′#ps)) (callers Π p))
Some h ⇒ [((C ,M ,h), �

∧
� (if pss=[] then [] else [Catch X A])@[xcpt-cond Π X

(last ps)])]

5.2 Weakest Preconditions

The purpose of the wpF operator is to express the semantics of the underlying
programming language at the level of formulas. We have proven that our wpF
operator satisfies the following lemma, which implies the requirements we need
for correctness and completeness of our VCG.

lemma wf Π ∧ (p,m,e)∈ safeP Π ∧ ((p, m, e), (p ′, m ′,e ′)) ∈ effS Π

−→ evalE Π (p,m,e) (wpF Π p p ′ Q) = evalE Π (p ′, m ′,e ′) Q

Roughly speaking this lemma says that wpF Π p p ′ Q transforms a postcondi-
tion Q such that it evaluates to the same value as Q does in the successor state.
This can be done by substituting all expressions of a formula Q that change
its value due to the effect of an instruction by another expressions that yields
the same value in the predecessor state. The substitution function substE ::(expr
( expr) ⇒ expr ⇒ expr maintains an expression map em. It traverses a given
formula (not descending into temporal constructs) and simultaneously replaces
all instances of expressions that appear on the left hand side of a maplet in em
by the corresponding right hand side. Example:

substE [(St 0 ,Rg 0 )] (St 0 �=� Call (St 0 )) = Rg 0 �=� Call (St 0 )

Usually substitution only replaces variables. However, Jinja Bytecode instruc-
tions may also change the heap. Hence, we sometimes have to substitute entire
expressions. In the definition of wpF we analyse the postcondition and extract
subexpressions of particular patterns. These are then used to build maplets for
the substitution map.

wpF Π p p ′ Q = (let pm=map (λq . (Pos q ,�q=p ′�)) (getPosEx Q)
in (case cmd Π p of None ⇒ FF | Some ins ⇒ (case handlesEx (fst Π) p ′

of None ⇒ wpFNrm Π p p ′ Q pm ins | Some cn ⇒ wpFExpt Π p p ′ Q pm ins)))

When evaluating wpF Π p p ′ Q we assume that the program counter changes
from p to p ′. This means we can eliminate position expressions Pos q in Q, which
we extract with getPosEx Q. If p ′ is the start address of some handler for an
exception cn, we assume that the transition from p to p ′ is due to an exception
and delegate work to wpFExpt. Otherwise we use wpFNrm, which transforms
Q according to normal execution. For example in case of an IAdd instruction
wpFNrm replaces instances of St 0 with St 0 �+� St 1, which has the same value as
St 0 has in the successor state. Since IAdd reduces the stack, all other instances
of St k, whose indexes are extracted by stkIds, get shifted.

wpFNrm Π p p ′ pm IAdd = substE (pm@
(map (λk . (St k ,if k=0 then St 0 �+� St 1 else St (k+1 ))) (stkIds Q))) Q

In case of Getfield F C we only have to transform St 0.
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wpFNrm Π p p ′ pm (Getfield F C ) ≡ substE (pm@[(St 0 ,Gf F C (St 0 ))]) Q

Like other instructions that affect the heap, Putfield is more tricky to handle.
Apart from shifting the stack, which gets reduced by two elements, we have to
scan Q for all expressions that depend on the heap. These are all expressions of
the form Gf F C ex, which we extract in subterm order with getGfEx. For each
instance, we first transform ex using the maplets we have found so far. Then we
build an expression that checks whether ex ′ equals the reference of the changed
object (in St 1 ). If yes, we replace Gf F C ex with the new object field value,
stored in St 0. Otherwise, we take the transformed version Gf F C ex ′.

wpFNrm Π p p ′ Q pm (Putfield F C ) = (
let em=pm@(map (λk . (St k ,St (k+2 ))) (stkIds Q));

gfe ′=foldl (λmp ex . let x=substE mp ex
in (Gf F C ex ,IF x�=�St 1 THEN St 0 ELSE Gf F C x)#mp)

em (getGfEx F C Q)
in substE gfe ′ Q)

Another tricky instruction is Invoke M n. Since the successor state has one frame
more, we replace FrNr with FrNr �+� �1�. Since the call state of the successor state
is the current state we replace instances of Call ex with ex. In case of Catch X
ex we check wether the current method has an appropriate handler. If so, we
can eliminate the Catch. Otherwise, we replace it with an expression that checks
wether the current state only has one frame. In this case evaluation of Catch X
ex equals ex, hence we eliminate Catch again. Otherwise, we leave it. Finally,
we handle the argument passing. The first n elements of the stack are written
into the registers 1 to n+1 in reversed order. We create maplets that substitute
each register with the corresponding stack position of the predecessor state. The
stack is emptied, which amounts to replacing all references St k with �arbitrary�.

wpFNrm Π p p ′ Q pm (Invoke M n) = substE (pm@(FrNr ,FrNr �+� Cn (Intg 1 ))#
(map (λk . (Rg k ,if k ≤ n then St (n−k) else �arbitrary�)) (rgIds Q))@
(map (λk . (St k ,�arbitrary�)) (stkIds Q))@
(map (λx . (Call x ,x )) (getCallEx Q))@
(concat (map (λ(c,x ).(if catchesEx (fst Π) c p then [(Catch c x ,x )]

else [(Catch c x ,IF FrNr �=� �1� THEN x
ELSE Catch c x)])) (getCatchEx Q))) Q

In case of Return the successor state has one frame less. Hence, the evaluation
of Call and Catch expressions needs to be adjusted again. Adding an additional
Call to such expressions amounts to the same as chopping off the topmost frame
of the current state. We skip the formal defintion for Return and the remaining
instructions, as the same techniques apply as before. It turns out that the in-
structions that affect the heap or the structure of the frame stack are significantly
more difficult to handle. Exception handling works similar for all instructions,
but Throw, which needs to be treated special because we do not know from
the code which exception is thrown. Similarly to Invoke M n we require that
potential classes are annotated in form of Ty ex tp expressions.
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wpFExpt Π p p ′ Q pm cn = (let mp=pm@(map (λk . (St k ,if 1≤k then �arbitrary�
else (if (cmd Π p = Some Throw)
then (IF St 0 �=� �Null� THEN �addr-of-sys-xcpt NullPointer� ELSE St 0 )
else �addr-of-sys-xcpt cn�))) (stkIds Q))@
(let (C ,M ,pc)=p; (C ′,M ′,pc ′)=p ′; (P ,An)=Π

in (if match-ex-table P cn pc (ex-table-of P C M ) = Some pc ′ then [] else
let rgm=map (λk . (Rg k ,Catch cn (Rg k))) (rgIds Q);

om=map (λex . (Call ex ,Catch cn (Call ex ))) (getCallEx Q);
cm=map (λ(c,x ). (Catch c x , Catch cn (Catch c x))) (getCatchEx Q)
in (FrNr ,Catch cn FrNr)#rgm@om@cm))

in substE mp Q)

6 Example Program

This section presents a small example program, which we have proven safe.

Cl ::jvm-method cdecl
Cl ≡ (A, class A {
(Object ,[(n,Integer)],[ int n;
(sum,[],Integer ,(2 ,2 ,[ int sum() {
Push (Intg 0 ) − ′′pre ′′, {int k = 0;
Store k ,
Push (Intg 0 ), int r = 0;
Store r ,
Load k ,
Load this − ′′inv ′′,
Getfield n A,
IfIntLeq 10 , while (k < n)
Load k , {
Push (Intg 1 ),
IAdd,
Store k , k = k + 1;
Load r ,
Load k ,
IAdd,
Store r , r = r + k;
Goto −12 }
Load r ,
Return − ′′post ′′ , return r; }
],[]))])) }

Fig. 2. Example Program

Method sum in class A adds the num-
bers from 0 to field value n. To ver-
ify this program we need annotations.
The precondition says field n has not
changed since call time and ranges be-
tween 0 and 65535, the highest input
for which the sum does not overflow.

pre ≡ �
∧

� [Rg 0 �=� Call (St 0 ),
Gf n A Rg 0 �=� Call (Gf n A St 0 ),
Gf n A Rg 0 ��� �65535�,
�0� ��� Gf n A Rg 0 ]

The invariant contains type restrictions
and the Gaussian summation formula.
It also says that n does not change and
that k ranges between Intg 0 and the
value of n.

inv ≡ �
∧

� [Ty Rg k Integer ,
Ty Rg r Integer ,
�2� �∗� Rg r �=� Rg k �∗� (Rg k �+� �1�),
Gf n A Rg 0 �=� Call (Gf n A St 0 ),
Gf n A Rg 0 ��� �65535�,
�0� ��� Gf n A Rg 0 ,
Rg k ��� Gf n A Rg 0 ,
�0� ��� Rg k ]

The postcondition contains type infor-
mation again, and a formula that relates the result value to the input value n,
which still has the same value as at call time.

post ≡ �
∧

� [St 0 �=� Rg r , Ty Rg r Integer , Gf n A Rg 0 �=� Call (Gf n A St 0 ),
�2� �∗� Rg r �=� Call (Gf n A St 0 ) �∗� (Call (Gf n A St 0 )) �+� �1�]
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Proving the verification condition of this program is automatic using a tactic
for bounded arithmetics. The type annotations are used to trigger simplification
rules that translate the arithmetic expressions of type expr turning up in the
verification conditions to arithmetic expressions in Isabelle/HOL. For the latter
powerful decision procedures, such as Presburger Arithmetics are available. We
have tested Jinja programs that call this method up to the size of 10 .000 in-
structions. Up to this size the decision procedures and the simplifier scale pretty
well. Details can be found online [1].

7 Generating Annotations

The annotations in the example program have been added manually. They have
been designed to make the verification go through automatically with a general
setup of simplification rules and decision procedures. In practice a fully auto-
matic approach would be desirable. In many cases program analysis can help to
find proper annotations. For example the type information of the annotations
above could be directly transferred from the bytecode verifier’s analysis. To find
out upper and lower bounds of expressions, we can employ interval analysis
for Java bytecode [17]. More complex invariants could be gained by advanced
analysis techniques, such as polyhedra or affine relations [12]. For annotations
involving analysis of pointer structures TVLA [11] can help. Since the generation
of annotations need not be trusted, a wide range of options are available at this
point.

8 Conclusion

To our knowledge the literature on Java does not propose a logic to annotate and
verify bytecode. In this paper we tried to fill this gap for a safety policy against
arithmetic overflow and a bytecode subset that covers the essential object ori-
ented features. This and various other instantiations of our PCC framework [1]
show that a PCC system with formally verified trusted components is feasible.
The infrastructure an interactive theorem prover like Isabelle/HOL provides is
very useful. In particular the ability to generate proofs with decision procedures
or interactively with the full power of HOL available, turns out to be a good
strategy in a field where Rice’s theorem shatters the dream of complete automa-
tion.
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Abstract. We present a statically typed, class-based object oriented
language where classes are first class polymorphic values. A main con-
tribution of this work is the design of a type system that combines first
class polymorphic values with structural equirecursive types and admits
a subtyping algorithm which is arguably much simpler than existing al-
ternatives. Our development is modular and can be easily instantiated
for either a Kernel-Fun or a F


≤ style of subtyping discipline.

1 Introduction

When one considers the essence of programming languages and especially of pro-
gramming languages with subtyping and equirecursive types the language that
comes to mind is F≤, the extension with subtypes of the polymorphic lambda
calculus introduced in [7]. When object-oriented programming is at stake, lan-
guages like the object calculus of Abadi and Cardelli [1] and Momi [15] are
good examples of how to express object-oriented mechanisms. However, the sub-
typing relations they use to relate classes, objects and mixins stays far behind
the flexible relation of F≤; both use invariant width subtyping relations and lim-
ited recursive subtyping relations. This expressiveness gap is due to unsoundness
problems when coding the self reference as a generic value parameter of methods.
In FJ [13], for instance, structural equivalence of types is traded by name-based
equivalence, which is convenient to overcome problems with the subtyping of re-
cursive types. In fact, structural equivalence of types, although adopted in some
experimental programming languages such as OCaml and Modula3, does not
seem to have had substantial impact in main-stream object-oriented languages.

Nevertheless, the increasing use of dynamic loading, late binding and mobile
code in general purpose programming frameworks raises the issue of finding more
flexible compatibility criteria between components. One reason is that name-
based extension and subtyping as it is implemented by modern object oriented
languages creates a rigid hierarchy of classes and interfaces based on their names.
This implies the usage of global name spaces and, for instance, disallows the com-
patibility of two classes that separately combine the same set of interfaces. This
problem can of course be diminished by explicitly using wrapper objects that
redirect method calls and therefore make compatible two otherwise incompatible
classes. But, structural equivalence would be the most natural solution to this
kind of problems.

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 342–356, 2005.
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In previous work we have presented an object oriented component calculus
that uses structural equivalence of types [18, 19]. The calculus was ported into
an experimental language that is compiled to run on the Java framework, which
inherits the structural character of calculus’ type relations up to a certain level. In
this paper, we extract the essential aspects of the type system of the component
calculus into a core class-based language that manipulates classes as values and
uses second-order equirecursive types.

One of the main contributions of this paper is the presentation of a subtyp-
ing algorithm for second-order equirecursive types. Our approach is intuitive and
technically much simpler to define and prove correct than previous results, such
as [5]. It builds on the coinductive formulation of first-order type systems with
equirecursive types of Amadio and Cardelli [2], Brandt and Henglein [3], and
Gapeyev, Levin and Pierce [9, 17]. The simplicity of the algorithm is directly
related to the nature of the elements the algorithm manipulates which are com-
plete judgments instead of pairs of types and to the termination conditions of
the coinductive algorithm, which uses permutation-based techniques. Moreover,
our development is modular, in the sense that it can be adapted to either a
Kernel-Fun or a F�

≤ subtyping discipline.
A further contribution is of this paper is the proposal of a simple composition

mechanism for classes that combines the usage of structural equivalence of classes
and objects with class extension mechanisms.

The remainder of the paper is structured as follows: section 2 describes the
class-based language and illustrates it using a small programming example; in
section 3 we define a type system for the language including the subtyping re-
lation and its properties; in section 4 we describe the algorithm that checks the
type of a language expression and enunciate its properties. Finally, in section 5
we propose a new composition mechanism for extending classes that is sound
under structural subtyping of classes and objects.

2 The Programming Language

In this section, we define a core class-based programming language whose val-
ues are classes and objects. Both objects and classes are runtime entities in our
language, the main goal is to study a type system for generic components (as
classes) and objects, where the polymorphic types of classes and equirecursive
types of objects are related structurally. We first introduce its syntax, which
is depicted in Fig. 1. It includes constructs for objects, classes, instantiation of
objects, method calls, local declarations, and recursion. Class expression com-
bines bounded type abstraction, and value abstraction over a name denoting the
object self. All other constructions are interpreted as shown in Fig. 2.

The evaluation relation of the language is defined by a big step semantics
e ⇓ v. Among these rules the evaluation of a new e expression deserves further
explanation: it relies on the evaluation of the subexpression e into a class value,
and closure under recursion of self . All other rules evaluate the corresponding
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Types

τ ::= X (variable)
| Class[Xi ≤ τi

i∈1..n] I (class)
| I (interface)
| Top (top)

I :: = {mi(τji
ji∈1..ni) : τi

i∈1..n} (interface)
| µX.I (recursion)

Terms

e ::= x (variable)
| v (value)
| new e[τi

i∈1..n] (instantiation)
| e.m(ei

i∈1..n) (method call)
| let x = e in e (declaration)
| rec(x : τ) e (recursion)

Values

v ::= { mi(xji : τji
ji∈1..ni) : τi = ei

i∈1..n } (objects)
| class[Xi ≤ τi

i∈1..n](s) e (classes)

Fig. 1. Types and terms

v ⇓ v (Value) e1 ⇓ v1 e2[x←v1] ⇓ v2

let x = e1 in e2 ⇓ v2
(Let) e[x← rec(x : τ) e] ⇓ v

rec(x : τ) e ⇓ v
(Fix)

(
o = {mi(xji : τji

ji∈1..ni) : τi = ei
i∈1..n}

I = {m(xji : τji
ji∈1..ni) : τi

i∈1..n}
)

e ⇓ class[Xi ≤ δi
i∈1..n](s) o rec(s : I) o ⇓ v

new e[τi
i∈1..n] ⇓ v

(New)

e ⇓ { . . . ,m(xi : τi
i∈1..n) : τ = eb, . . . }

e′
i ⇓ vi ∀i∈1..n eb[xi ← vi

i∈1..n] ⇓ v

e.m(e′
i

i∈1..n) ⇓ v
(Call)

Fig. 2. Big step operational semantic rules

expressions as expected. Note that classes and objects are values and hence
evaluate to themselves by means of the rule (Value).

Types already appear in the syntax of expressions, are are also defined in
Fig. 1. We distinguish between two kinds of types: interface types and class
types. Type variables range over types of any kind. A class type Class[X ≤ τ ] σ
is a polymorphic type corresponding to a F≤ bounded type quantification (cf.,
∀X≤τ .σ), but for convenience generalized to a list of type parameters. Interface
types can be defined recursively, using type recursion µX.I; our separation of
types in two categories τ and I is not essential, and only reflects the intended
type usage of the object-oriented language.

We illustrate our language with a very simple example that uses polymorphic
memory cells. Let C be the type defined as Class[X] µY.{set(X) : Y, get() :X},
and cell some class value of type C, and consider
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φ � * (E-φ)
∆ � τ ok

∆,x : τ � * (E-Var) ∆ � τ ok
∆,X ≤ τ � * (E-TVar)

∆ � *
∆ � X ok

(O-TVar) ∆,X ≤ Top � I ok
∆ � µX.I ok

(O-Recursive)

∆,Xj ≤ τj
j∈1..i−1 � τi ok ∀i∈1..n ∆,Xi ≤ τi

i∈1..n � I ok
∆ � Class[Xi ≤ τi

i∈1..n] I ok
(O-Polymorphic)

∆ � τji ok ∀ji∈1..ni ∀i∈1..n ∆ � τi ok ∀i∈1..n

∆ � {mi(τji
ji∈1..ni) : τi

i∈1..n} ok
(O-Interface)

Fig. 3. Well-formed types and environments

let d = class[Y](s){
test(c:C, v:Y):Y =
let o1 = (new c[Y]) in
let o2 = o1.set(v) in o2.get()

}
in let n = (new d[int]).test(cell,1)

Class d defines a method test that accepts two arguments: a class value (a
component) implementing memory cells c and another appropriate value v. The
method instantiates the memory cell class, stores the value v in the resulting
cell object, and finally retrieves the cell contents and returns it.

3 Type System

In this section we define the type system for our language. The type system
has two parts, a typing system for the language expressions, and a subtyping
system expressing the intended subsumption relation on types. Our presentation
will focus on the latter, concentrating on the development of our approach to
polymorphic recursive subtyping.

3.1 Typing Expressions

The typing of the expressions is given by the set of rules in Fig. 4, that proves
judgements of the form ∆ ' e : τ , where ∆ is the typing environment declaring
the types of the free value and type variables relevant for the expression e, and
τ is a type. Well-formed types and environments are also defined in Fig. 3, by
the judgement forms ∆ ' ( and ∆ ' τ ok, as expected.

Most rules follow the usual pattern, we will discuss just the particularities
of our presentation. Although the abstract syntax in Fig. 1 is somewhat more
liberal, notice that rule (T-Class) enforces that only record expressions are ac-
cepted as a class body, consistently with our interpretation of polymorphic types
as polymorphic object-generating classes. The name s, whose scope is the class
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x : τ ∈ ∆

∆ � x : τ
(T-Var) ∆ � e : τ ′ ∆ � τ ′ ≤ τ

∆ � e : τ
(T-Sub)

∆,x : τ � e : τ
∆ � rec(x : τ) e : τ

(T-Fix)

(
c = {mi(xji : τji

ji∈1..ni) : τi = ei
i∈1..n}

I = {mi(τji
ji∈1..ni) : τi

i∈1..n}
)

∆,Xj ≤ δj
j∈1..m, xji : τji

ji∈1..ni , s : I � ei : τi ∀i∈1..n

∆ � class[Xj ≤ δj
j∈1..m](s) c : Class[Xj ≤ δj

j∈1..m] I
(T-Class)

( I = {mi(τji
ji∈1..ni) : τi

i∈1..n} ) ∆,xji : τji
ji∈1..ni � ei : τi ∀i∈1..n

∆ � { mi(xji : τji
ji∈1..ni) : τi = ei

i∈1..n } : I
(T-Object)

∆ � e : Class[Xi ≤ δi
i∈1..n] I ∆ � τi ≤ δi[Xj ← τj

j∈1..i−1] ∀i∈1..n

∆ � new e[τi
i∈1..n] : I[Xi ← τi

i∈1..n]
(T-New)

∆ � e : {. . . ,m(τi
i∈1..n) : τ, . . .}

∆ � ei : τi ∀i∈1..n

∆ � e.m(ei
i∈1..n) : τ

(T-Call) ∆ � e1 : τ ∆, x : τ � e2 : τ ′

∆ � let x = e1 in e2 : τ ′ (T-Let)

Fig. 4. Typing rules

body, typed with the type of the instances of the class, is our notation for self.
In the rule (T-New), the instantiation expression new is typed with a type con-
structed from the type declarations present in the class expression, given the
proper type substitution of the type parameters, and provided that the compat-
ibility of the type arguments with respect to the variable bounds holds.

3.2 Subtyping

Some approaches to the problem of defining a first-order subtyping relation be-
tween recursive types exist for quite a while [2, 3, 17].

Intuitively, the intended subsumption relation between recursive types corre-
sponds to the usual inclusion of infinite (regular) trees, the difficulty in the poly-
morphic case arises due to the presence of binding occurrences of type variables
on types, due to presence of type quantifiers. Usually, even for recursive types,
subtyping relations have been expressed by means of inductive proof systems,
where the coinduction principle appears embedded in various explicit ways [2, 3].
Apart from these, the main proof rules we might expect for such a subtyping
system are the ones depicted in Fig. 5. These include the usual relationships:
maximality of Top, reflexivity, transitivity, width and depth record subtyping,
and unfolding of recursive types. For comparing polymorphic types, we adopt
a Kernel-Fun style rule, since the more general F≤ style subtyping is known to
be undecidable even in the absence of recursion [16]. In any case, our approach
applies equally well to Kernel-Fun and to variants such as F�

≤ .
Unfortunately, the adoption of these rules results in an incomplete type sys-

tem, that does not seem to easily lead to a terminating algorithm, as remarked
in [11], although a rather complex subtyping algorithm following this approach
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∆ � τ ≤ Top ∆ � τ ≤ τ
∆ � τ ≤ σ X ≤ τ ∈ ∆

∆ � X ≤ σ

∆,Xi ≤ δi
i∈1..n � I ≤ I ′

∆ � Class[Xi ≤ δi
i∈1..n] I ≤ Class[Xi ≤ δi

i∈1..n] I ′

n′ ≤ n ∆ � τi ≤ τ ′
i ∀i∈1..n′ ∆ � τ ′

ji
≤ τji ∀ji∈1..ni∀i∈1..n′

∆ � {mi(τji
ji∈1..ni) : τi

i∈1..n} ≤ {mi(τ ′
ji

ji∈1..ni) : τ ′
i

i∈1..n′}

∆ � I ≤ J [α←µα.J ]
∆ � I ≤ µα.J

∆ � I[α←µα.I] ≤ J

∆ � µα.I ≤ J

Fig. 5. Subtyping inductive rules

was already developed in [5]. In fact, our difficulties in getting a clear under-
standing of this work lead us to attempt a different approach, leading to the
presentation in this paper. We then follow essentially the development of [9] for
first-order types, and extend it in a natural way to polymorphic types. There-
fore, we start from a coinductive definition of the subtyping relation, presented
below.

Let D denote the set of all well-formed environments and T the set of all
well-formed types. We also denote by J the set D × T × T of all subtyping
judgements (represented as tuples).

Definition 3.1. The subtyping generating function is the mapping S ∈ P(J )→
P(J ) defined by:

S(R) = {(∆; τ ; τ) | τ ∈ T and FV (τ) ⊆ Dom(∆)}
∪ {(∆; τ ; Top) | τ ∈ T and FV (τ) ⊆ Dom(∆)}
∪ {(∆;X;σ) | (∆; τ ;σ) ∈ R and X ≤ τ ∈ ∆}
∪ {(∆; Class[Xi ≤ δi

i∈1..n] I; Class[Xi ≤ δi
i∈1..n] I ′) |

(∆,Xj ≤ δj
j∈1..n; I; I ′) ∈ R}

∪ {(∆; I;µX.J) | (∆; I;J [X←µX.J ]) ∈ R }
∪ {(∆;µX.I;J) | (∆; I[X←µX.I];J) ∈ R and J �≡ µX.J ′ }
∪ {(∆; {mi(τji

ji∈1..ni) : τi i∈1..n}; {mi(τ ′ji

ji∈1..n′
i) : τ ′i

i∈1..n′}) |
n′ ≤ n and n′

i = ni ∀i∈1..n′ and
(∆; τi; τ ′i) ∈ R ∀i∈1..n′ and (∆; τ ′ji

; τji) ∈ R ∀ji∈1..ni∀i∈1..n′}.

We can verify that the mapping S is monotonic. Therefore, there exists its
greatest fixed point νS ∈ P(J ). We then define the subtyping relation as follows

Definition 3.2. ∆ ' τ ≤ σ � (∆, τ, σ) ∈ νS.

The relation thus defined enjoys the basic properties of weakening, substitution
of type variables, equivariance, narrowing and transitivity which are essential
to prove the type safety of the language (Theorem 3.10) and the correctness of
the subtyping algorithm (Theorem 4.10). In general, these kind of results are
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proved by somewhat involved inductions on derivations; in our setting, due to
the natural definition of subtyping as a greatest fixed point, we may handle
them by quite standard coinductive proof techniques. We start by considering
the weakening property in νS.

Proposition 3.3 (Weakening). For all typing environments ∆,∆′ ∈ D, and
types τ, σ, δ ∈ T , if ∆,∆′ ' τ ≤ σ, X �∈ Dom(∆,∆′), and ∆ ' δ ok then
∆,X ≤ δ,∆′ ' τ ≤ σ.

Proof. Consider the following set:
W � {(∆,X ≤ δ,∆′; τ ;σ) | (∆,∆′; τ ;σ) ∈ νS and

X �∈ Dom(∆,∆′) and FV (δ) ⊆ Dom(∆)}.
By case analysis in the definition of S we prove W to be S-consistent, W ⊆ S(W),
thus by the coinduction principle we have that W ⊆ νS. ♦

We use the same coinductive technique to prove that the substitution of
type variables is sound, and that the subtyping relation is closed under name
permutation.

Proposition 3.4 (Substitution of type variables). For all ∆,∆′ ∈ P(J ),
and τ, σ, δ, δ′ ∈ T , if ∆,X ≤ δ,∆′ ' τ ≤ σ and ∆ ' δ′ ≤ δ then we have
∆,∆′[X←δ′] ' τ [X←δ′] ≤ σ[X←δ′].

Proposition 3.5 (Equivariance). For all ∆ ∈ P(J ), τ, σ ∈ T , if ∆ ' τ ≤ σ
then ∆[X ↔ Y ] ' τ [X ↔ Y ] ≤ σ[X ↔ Y ].

We now prove that νS is transitive by considering a combined property where
transitivity is expressed together with narrowing. We start by defining narrowing
of typing environments, and then closure of νS under narrowing.

Definition 3.6. For all ∆,∆′ ∈ D, we have that ∆ is narrower than ∆′ with
relation to R ∈ P(J ), written ∆ 0R∆

′, where the relation 0R is inductively
defined by letting ∅ 0R ∅ and

Γ,X ≤ γ 0RΓ
′, X ≤ γ′ if Γ 0RΓ

′ and (∆, γ, γ′) ∈ R.

Definition 3.7. For all n ∈ N we inductively define the sets Nn as follows:

N0 � νS

Nn � {(∆, τ, σ) | (Γ, τ, σ) ∈ Nn−1 and ∆ 0Nn−1Γ}.

We then define the transitive closure of νS, and prove that νS is closed under
transitivity. Instead of a more direct definition, for technical convenience we
present the transitivity relation based on chains of tuples with finite length.

Definition 3.8 (Extended Transitive Closure of νS).

T � {(∆,α0, αn) | ∃n∈N.∃α0..αn∈T .∀i∈0..n−1.(∆,αi, αi+1) ∈ Nn }
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Notice that T includes the transitive closure of νS (n = 2), and closure under
narrowing (n = 1). We can then state and prove.

Proposition 3.9 (Transitivity). If ∆ ' τ ≤ σ and ∆ ' σ ≤ γ then ∆ ' τ ≤ γ.

Proof. We show that T ⊆ S(T), using an inner induction on the number of tuples
and by case analysis on the last rule used on the first tuple of a chain in T. We
then conclude T ⊆ νS by the coinduction principle. ♦
An interesting fact about our proof is that it exposes the loss of transitivity
elimination pointed out in Ghelli’s inductive system [11]. In the particular case
of the variable transitivity, a tuple of T supported by a chain of tuples in νS is
supported in S(T) by a longer chain of tuples. Which nevertheless leads to the
conclusion that the tuple is in the greatest fixed point of S.

3.3 Type Safety

We can now state and prove subject reduction for our class based programming
language, that can then be used to show that well typed programs “don’t go
wrong” along usual lines.

Theorem 3.10 (Subject Reduction). If ∆ ' e : τ and e ⇓ v then ∆ ' v : τ ′

where ∆ ' τ ′ ≤ τ .

Proof. By induction on the length of the typing derivations and by case analysis
on the last rule used. We also use in several parts the fact that all valid subtyping
judgments are supported in νS. ♦

As a result of this section we obtain declarative type and subtype systems
whose implementability and decidability is far from being obvious (full detailed
proofs for the results in this paper can be found in [20]). In the next section, we
define and explain two simple algorithms that implement them.

4 Typing Algorithm

We define a type checking algorithm for our type system, thus proving that it
is decidable. The algorithm is composed by two procedures: a typing algorithm
that given an environment and a typable expression returns its the minimal type,
and a subtyping algorithm, that is called by the typing procedure to verify the
subtyping relations.

4.1 Typing Expressions

Typing of expressions is implemented by interpreting a set of rules bottom up:
this defines a procedure that given a typing environment and a language ex-
pression returns a type. The new algorithmic rules are shown in Fig. 6, to these
rules we must add (T-Var), (T-Let), (T-Fix), and (T-New), which are exactly
as in Fig. 4. The resulting proof system is algorithmic because in all rules the
resulting types are constructed either from the expression itself or from the types



350 J.C. Seco and L. Caires

(
c = {mi(xji : τji

ji∈1..ni) : τi = ei
i∈1..n}

I = {mi(τji
ji∈1..ni) : τi

i∈1..n}
)

∆,Xj ≤ δj
j∈1..m, xji : τji

ji∈1..ni , s : I �a ei : τ ′
i ∆ � τ ′

i ≤ τi ∀i∈1..n

∆ �a class[Xj ≤ δj
j∈1..m](s) c : Class[Xj ≤ δj

j∈1..m] I
(A-Class)

∆,xji : τji
ji∈1..ni � ei : τ ′

i ∆ � τ ′
i ≤ τi ∀i∈1..n

∆ � { mi(xji : τji
ji∈1..ni) = ei

i∈1..n } : {mi(τji
ji∈1..ni) : τi

i∈1..n} (A-Object)

∆ �a e : γ ∆ � γ ⇑ γ′ (τ, τi
i∈1..n) = lookup(m, γ′)

∆ �a ei : τ ′
i ∆ � τ ′

i ≤ τi ∀i∈1..n

∆ �a e.m(ei
i∈1..n) : τ

(A-Call)

X ≤ σ ∈ ∆ ∆ � σ ⇑ τ

∆ � X ⇑ τ
(X-Var) τ �∈ Dom(∆)

∆ � τ ⇑ τ
(X-Default)

Fig. 6. Algorithmic typing rules

resulting from typing strictly smaller subexpressions. Notice that not every rule
in Fig. 4 has a corresponding rule here; the (T-Sub) rule is not used in the
algorithm as it depends on an unknown type that cannot be obtained neither
from the expression nor from the types of the subexpressions, we replace it by
subtyping verifications in rules (A-Class), (A-Object), and (A-Call). Moreover,
we use an auxiliary function lookup to find a method in an interface and the
judgment ∆ ' τ ⇑ σ, defined by the rules (X-Var) and (X-Default), to access
the structure of type variables.

4.2 Subtyping Algorithm

We now present and prove correct our subtyping algorithm for deciding member-
ship of a tuple t ∈ J in the greatest fixed point νS. The algorithm is defined by
the recursive procedure shown in Fig. 7, and closely follows existing approaches
for first-order equirecursive types [2, 3, 9]. Briefly, these algorithms progress by
computing, given a pair of types to be checked for subsumption, a consistent
set of pairs that includes it: by the coinduction principle, all the pairs in the
set belong to the greatest fixed point. The consistent set is built by saturating
the current approximation through backward rule application, and accumulat-
ing pairs of types, until a terminal case, corresponding to the application of an
axiom, or an already visited pair is found.

We naturally extend those approaches building on the generating function
in Definition 3.1, by defining an algorithm that manipulates judgments instead
of pairs of types; this turns out to lead to a remarkably simple way of dealing
with the binding information of the type variables. Notice that environments
grow as a result of comparing polymorphic types, and, due to α-equivalence, the
greatest fixed point νS is closed under renaming (Proposition 3.5). Moreover,
in our setting, the number of tuples reachable from a given tuple are finite up
to such renaming and pruning of useless variables (Lemma 4.5). Therefore, our
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Subtyping(A, (∆, τ, σ)) =
if (∆, τ, σ) ∈� A then A
else let A0 = A ∪ {(∆, τ, σ)} in
if τ ≡ σ then A
else if σ ≡ Top then A
else if τ ≡ X then Subtyping(A0, (∆,∆(X), σ))
else if τ ≡ µX.τ ′ then Subtyping(A0, (∆, τ ′[X←τ ], σ))
else if τ �≡ µX.τ ′ and σ ≡ µX.σ′ then Subtyping(A0, (∆, τ, σ′[X←σ]))
else if τ ≡ {mi(τji

ji∈1..ni) : τi
i∈1..n} and σ ≡ {mi(τ ′

ji

ji∈1..ni) : τ ′
i

i∈1..n′} then
A�

n�
where ∀i∈1..n (Ai

0 = Subtyping(Ai−1
mi−1 , (∆, τi, τ

′
i)) and

∀j∈1..ni Ai
j = Subtyping(Ai

j−1, (∆, τ ′
ji
, τji)))

with A0
n0 = A0

else if τ ≡ Class[Xi ≤ δi
i∈1..n] I and σ ≡ Class[Xi ≤ δi

i∈1..n] I ′ then
Subtyping(A0, (∆,Xi ≤ δi

i∈1..n; I; I ′))
else fail

Fig. 7. Subtyping algorithm

algorithm checks for membership of a tuple in the current approximation modulo
a similarity relation on tuples that includes renaming, and allows us to detect
cycles at the level of similarity equivalence classes, instead of expecting the exact
tuple to reappear in the sequence of calls.

Definition 4.1 (Similarity). Similarity is the binary relation + on J defined
by: (∆, τ, σ) + (∆′, τ ′, σ′), if there are two typing environments Γ ⊆ ∆ and
Γ ′ ⊆ ∆′ with Γ ' τ ok, Γ ' σ ok, and Γ ′ ' τ ′ ok, Γ ′ ' σ′ ok, and a bijection
ρ :Dom(Γ ) → Dom(Γ ′) such that ρ(Γ ) = Γ ′, ρ(τ) = τ ′, ρ(σ) = σ′.

In the sequel we will use the following abbreviation t ∈� A � ∃u ∈ A.t + u, in
particular in the first clause of the subtyping algorithm. Notice that similarity
is decidable, it can be checked by matching the structure of the types, modulo
bijective renaming of their free type variables, and recursively checking if the
corresponding bounds are similar. All unused variables are discarded from the
comparison as it goes through the structure of types and bounds of relevant type
variables in the environments. For instance, the following two tuples are similar:
(X ≤ {m(τ):τ}, Y ≤ X;µZ.{m(X):Z};X) + (Z ≤ {m(τ):τ};µX.{m(Z):X};Z)
Notice the redundancy of Y, and that the tuples are similar with the permutation
[X ↔ Z].

An important fact is that the subtyping relation νS is closed under similarity.

Definition 4.2 (Closure under similarity). For any R ∈ P(J ) we define its
closure under similarity, noted R∗, as follows:

R∗ � {t′ | t′ ∈ J and t ∈ R and t′ + t}.

Lemma 4.3. νS is closed under similarity (νS∗ = νS).
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Proof. By substitution of type variables (Proposition 3.4), equivariance (Propo-
sition 3.5) and then by weakening (Proposition 3.3). ♦

We now prove the correctness and decidability of the subtyping algorithm. We
first show that the algorithm terminates on all inputs. This is done by showing
that the search space of the algorithm is finite in some sense. To characterize
such search space we introduce the following reachability relation:

Definition 4.4 (Reachability). Reachability is the binary relation on J , noted
t >> t′, inductively defined as follows:

1. (∆, τ, σ) >> (∆, τ, σ)
2. if (∆, τ, σ) >> (∆′, X, σ′) then (∆, τ, σ) >> (∆′, ∆′(X), σ′)
3. if (∆, τ, σ) >> (∆′,Class[Xi ≤ δi

i∈1..n] I; Class[Xi ≤ δi
i∈1..n] I ′)

then (∆, τ, σ) >> (∆′, Xj ≤ δj
j∈1..n; I; I ′)

4. if (∆, τ, σ) >> (∆′; I;µX.J) then (∆, τ, σ) >> (∆′; I;J [X←µX.J ])
5. if (∆, τ, σ) >> (∆′;µX.I;J) then (∆, τ, σ) >> (∆′; I[X←µX.I];J)
6. if (∆, τ, σ) >> (∆′; {mi(τji

ji∈1..ni) : τi i∈1..n}; {mi(τ ′ji

ji∈1..n′
i) : τ ′i

i∈1..n′})
then (∆, τ, σ) >> (∆′; τi; τ ′i) ∀i∈1..n′

and (∆, τ, σ) >> (∆′; τ ′ji
; τji

) ∀ji∈1..ni
∀i∈1..n′

We let Reach(t) � {t′ | t >> t′}. We have the following

Lemma 4.5. Reach(t)/� is finite.

Proof. We prove by induction on the reachability relation that all types occurring
in reachable tuples are subexpressions of the initial tuple and that the number
of relevant type variables in those tuples, both in the environments and in the
type expressions, decreases with relation to the initial tuple. We then prove by
contradiction that these two results support the fact that the set of reachable
tuples, Reach(t), is finite modulo similarity. ♦
It is important to remark that the finite reachability property of Lemma 4.5
holds both for Kernel-Fun and F�

≤ style subtyping, although in the first case
the proof is slightly more involved (see [20]). The proof also enlightens why the
same result cannot be extended to F≤.

Theorem 4.6. For all A ∈ P(J ), and t ∈ J , Subtyping(A, t) terminates.

Proof. By induction using a measure that represents the number of non-visited
equivalence classes of reachable tuples of t. Since the algorithm always increases
the visited tuples with a tuple reachable from t, the measure decreases in all
cases. Hence, the algorithm terminates. ♦

To prove that our algorithm is sound and complete, it is technically conve-
nient to follow the approach of [9] and introduce a function gfp that allows us to
characterize νS in a form both suitable for the correctness proofs and for estab-
lishing the correspondence between the algorithm and the extensional definition
of the subtyping relation. Moreover, unlike the analogous notion in [9], instead
of accumulating tuples, our gfp function works with + equivalence classes.
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Definition 4.7. Let gfp be the partial function P(J ) × J → P(J ) defined by:

gfp(A, t) = if {t}∗ ⊆ A then A
else if support(t) is undefined then undefined
else let {t1, . . . , tn} = support(t) in
let A0 = A ∪ {t}∗ in
let A1 = gfp(A0, t1) in
. . .
let An = gfp(An−1, tn) in An.

We prove next that gfp indeed characterizes the subtyping relation.

Lemma 4.8 (Correctness of gfp). For all t ∈ J , and A ∈ P(J ),

1. if gfp(∅, t) = A then t ∈ νS.
2. if gfp(∅, t) is undefined then t �∈ νS.

Proof. 1. By induction in the definition of gfp to prove the following more general
property: for all A,A′ ∈ P(J ), and t ∈ J , if A∗ ⊆ A and gfp(A, t) = A′

then A ⊆ A′, A′∗ ⊆ A′, {t}∗ ⊆ A′, and A′ ⊆ S(A′) ∪ A. We then conclude by
considering A = ∅. 2. Also by induction on the definition of gfp. ♦
Knowing that gfp correctly checks if any tuple belongs to the subtyping relation
νS, we prove that gfp and the subtyping algorithm Subtyping are equivalent.
Since the algorithm terminates on all inputs (Theorem 4.6), we can show that
it is sound and complete.

Lemma 4.9 (Correctness of Subtyping). For all t ∈ J , A,A′ ∈ P(J ),

1. Subtyping(A, t) = A′ iff gfp(A∗, t) = A′∗.
2. Subtyping(A, t) = fail iff gfp(A∗, t) is undefined.

Proof. By induction on the recursive calls of Subtyping. ♦

Theorem 4.10 (Correctness of Subtyping). For all ∆ ∈ D, and τ, σ ∈ T ,

Subtyping(∅, (∆, τ, σ)) = A iff ∆ ' τ ≤ σ

Proof. It follows directly from Lemmas 4.8 and 4.9. ♦
To summarize, we conclude that the type system defined in section 3 is de-

cidable and that our typing and subtyping algorithms are sound and complete.

5 Composition of Classes

We have presented a language that treats classes as first class values but that
lacks class composition operations, so that no new class values can be actually
created at runtime. In this section, we discuss an interesting and possible ex-
tension of this object language so to include class manipulation mechanisms,
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Fig. 8. Typing and evaluation for mix

similar to inheritance or mixin application. As an alternative, we propose a gen-
eral mechanism of class composition which combines two classes without any of
them having to be developed with extension in mind. The composition mecha-
nism is expressed as follows:

mix[Xi ≤ δi
i∈1..n](e1[γi

i∈1..n′
] ' e2[γ′i

i∈1..n′′
])

It takes two class values, e1 and e2, and produces a new class value, param-
eterized by a fresh set of type parameters, containing the methods in e1 and e2
and where name clashes are resolved in favor of e2. This is apparent in the rules
in Fig. 8 which must be added to the type and evaluation systems to extend the
initial language. Notice that for a mix to be well typed e1 and e2 must denote
class values, and that the arguments γi

i∈1..n′
and γ′i

i∈1..n′′
must be compatible

with the bounds of each class value.
It is well known that extending a class by simply replacing the methods of one

class with methods of another easily generates type inconsistencies (e.g. see [1,
6]). To avoid this, we maintain the local coherence of the subsumed class, which
in this case is e1, by means of an explicit permutation of method names, e(m↔m′).
This corresponds to the run-time permutation of method names between m and
m′ and τ(m ↔ m′) has the same meaning but for type expressions. The typing
and evaluation rules for this expression are also depicted in 8.

So, whenever s, now replaced by s(mi↔m′
i

i∈I∩J ), is evaluated in the body of
a method of e1, the methods in s are switched back to the subsumed methods
of e1 that were hidden under a different name. The evaluation of such methods
and possibly of other methods using the self reference passed by a method of e1
is type preserving, and thus the core language extended with mix can be shown
to enjoy a subject reduction property [20].

(
π = [X ′

i ← γi
i∈1..n′

] π′ = [X ′′
i ← γ′

i
i∈1..n′′

]

I = {mi(
�
σ π) : τiπ

i∈I−J , mi(
�

σ′ π′) : τ ′
iπ

′ i∈J } )

)

∆ � e1 : Class[X ′
i ≤ δ′

i
i∈1..n′

] {mi(
�
σi) : τi

i∈I} ∆ � γi ≤ δ′
i ∀i∈1..n′

∆ � e2 : Class[X ′′
i ≤ δ′′

i
i∈1..n′′

] {mi(
�

σ′
i) : τ ′

i
i∈J } ∆ � γ′

i ≤ δ′′
i ∀i∈1..n′′

∆ � mix[Xi ≤ δi
i∈1..n](e1[γi

i∈1..n′ ] � e2[γ′
i

i∈1..n′′ ]) : Class[Xi ≤ δi
i∈1..n] I

(
π = [s←s(mi↔m′

i
i∈I∩J )] (m′

i fresh) π′ = [X ′
i ← γi

i∈1..n′
][X ′′

i ← γ′
i

i∈1..n′′
]

v = {mi(
�
σi) : τi = eiπ

i∈I−J , mi(
�

σ′
i) : τ ′

i = e′
i

i∈J , m′
i(

�
σi) : τi = eiπ

i∈I∩J }

)

e1 ⇓ class[X ′
i ≤ δ′

i
i∈1..n′

](s) {mi(
�
σi) : τi = ei

i∈I}
e2 ⇓ class[X ′′

i ≤ δ′′
i

i∈1..n′′
](s) {mi(

�

σ′
i) : τ ′

i = e′
i

i∈J }
mix[Xi ≤ δi

i∈1..n](e1[γi
i∈1..n′ ] � e2[γ′

i
i∈1..n′′ ]) ⇓ class[Xi ≤ δi

i∈1..n](s) vπ′

e ⇓ v

e(m↔m′) ⇓ v(m ↔ m′)
∆ � e : τ

∆ � e(m↔m′) : τ(m ↔ m′)
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6 Related Work and Concluding Remarks

It is known that the type system of F≤ is not decidable [12, 16] and that its
extension with recursive types is non-conservative [11]. Simpler versions were
proposed but even so, not free from problems: system F�

≤ , proposed by Castagna
and Pierce, is decidable revealed to lack the minimal typing property [4] and the
approach to subtyping in Kernel Fun extended with recursive types by Colazzo
and Ghelli [5] results in a fairly complex algorithm; it uses a labeling mechanism
to identify cycles in derivations and stop the unfolding process. The authors show
that the use of renaming of type variables results in an divergent algorithm
and that this labeling technique is sound. However, the algorithm only stops
unfolding a given pair of types the third time it occurs. The reasons for this fact
are far from intuitive. On the contrary, our approach and algorithm are a natural
extension of well known techniques for first-order types. Alan Jeffrey defines
in [14] a notion of simulation for higher order types using a symbolic labeled
transition systems, and uses it to define a (non decidable) subtyping relation
in µF≤, there is then some connection between his approach and the general
coinductive techniques we have presented here. An efficient algorithm to unify
two recursive second-order types was proposed by Gauthier and Pottier in [10].
It relies on an encoding of second-order type expressions into first-order trees,
and on the application of standard first-order unification algorithms for infinite
trees. We have no perspective on how this may be adapted to the subtyping
problem.

On the other hand, we present a subtyping algorithm for second-order systems
with equirecursive types which is an uniform extension of existing work on first-
order equirecursive types by Amadio and Cardelli [2], Brandt and Henglein [3]. In
particular, we build on the coinductive presentations of first-order type systems
with recursive types of Gapeyev, Levin, and Pierce [9, 17]. Our treatment of
reachability modulo a similarity relation that includes equivariance (Lemma 3.5)
is inspired on notions by Gabbay and Pitts [8]. Our definition and correctness
proof is, from our point of view, much simpler than the ones of the algorithms
referred above. Our proofs are modular, in the sense that they can be applied to
any polymorphic type system with recursive types that satisfies a certain finite
reachability condition up to a notion of similarity that includes equivariance.
In particular, they suggest an interesting decidable fragment of F≤, defined by
restricting the subtype rule for ∀X ≤ τ.σ types to just compare bounds with the
same free type variables, we leave this topic for future work.

Given these results, we develop a class based language and discuss a possible
extension of it that allows combination of classes with a mixin like construct,
while avoiding the unsoundness problems of subsumption and class extension
often found in object calculi.

We would like to thank Dario Colazzo and the reviewers for their com-
ments on a preliminary version of this work. This work is partially supported by
FCT/MCES.
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Abstract. Subtype satisfiability is an important problem for designing advanced
subtype systems and subtype-based program analysis algorithms. The problem is
well understood if the atomic types form a lattice. However, little is known about
subtype satisfiability over posets. In this paper, we investigate algorithms for and
the complexity of subtype satisfiability over general posets. We present a uniform
treatment of different flavors of subtyping: simple versus recursive types and
structural versus non-structural subtype orders. Our results are established through
a new connection of subtype constraints and modal logic. As a consequence, we
settle a problem left open by Tiuryn and Wand in 1993.

1 Introduction

Many programming languages have some form of subtyping. The most common use
is in the sub-classing mechanisms in object-oriented languages. Also common is the
notion of “coercion” [17], for example automatic conversion from integers to floating
point numbers.

Type checking and type inference for subtyping systems have been extensively stud-
ied since the original results of Mitchell [18]. The main motivations for investigating
these systems today are more advanced designs for typed languages and program analysis
algorithms based on subtyping.

Subtyping systems invariably involve subtype constraints, inequalities of the form
t1 ≤ t2, to capture that the type t1 is a subtype of t2. For example, the constraint
int ≤ real means that at any place a floating point number is expected, an integer can be
used instead. Besides of type constants, subtype constraints may contain type variables
and type constructors, such as the constraint int × x ≤ x × real that is equivalent to
int ≤ x ≤ real .

Type variables are typically interpreted as trees built from type constants and type
constructors. The trees can be infinite if recursive types are allowed. There are two
choices for the subtype relation. In a system with structural subtyping only types with
the same shape are related. In a system with non-structural subtyping, there is a “least”
type ⊥ and a “largest” type � that can be related to types of arbitrary shape.

Three logical problems for subtype constraints are investigated in the literature:
satisfiability [1,5,9,13,14,18,23,26,32,33], entailment [7,11,12,19,20,24,25,28,34], and
first-order validity [16,31]. In this paper, we close a number of problems on satisfiability.

If the type constants form a lattice then subtype satisfiability is well under-
stood [14, 18, 23]. For general partially-ordered sets (posets), however, there exist only

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 357–373, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Table 1. Summary of complexity results on subtype satisfiability over posets

structural non-structural

finite types
PSPACE (Frey, 1997 [8])

PSPACE-hard (Tiuryn, 1992 [32])
PSPACE-complete (�)

recursive types
DEXPTIME (Tiuryn and Wand, 1993 [33])

DEXPTIME-hard (�)
DEXPTIME-complete (�)

partial answers. Tiuryn and Wand show that recursive structural satisfiability is in DEX-
PTIME [33]. Tiuryn shows that finite structural satisfiability is PSPACE-hard [32], and
subsequently Frey shows that it is in PSPACE and thus PSPACE-complete [8]. Decid-
ability and complexity of non-structural subtype satisfiability are open, for both finite
and recursive types.

We summarize here the main contributions of this paper. We close the open ques-
tions on subtype satisfiability over posets. We consider all combinations of finite versus
recursive types, and structural versus non-structural orders.

We base our results on a new approach, connecting subtype constraints and modal
logic. We introduce uniform subtype constraints and show that their satisfiability problem
is polynomial time equivalent to that of a dialect of propositional dynamic logic [2,4,6],
which is subsumed by the monadic second-order logic SnS of the complete infinite n-
ary tree [27]. With this connection, we completely characterize the exact complexity of
subtype satisfiability over posets in all cases.

Table 1 summarizes complexity results regarding subtype satisfiability over posets.
New results of this paper are marked with “�”. In particular, we show in this paper, that
recursive structural satisfiability is DEXPTIME-hard, finite non-structural satisfiability is
PSPACE-complete, and recursive non-structural satisfiability is DEXPTIME-complete.
This settles a longstanding problem left open by Tiuryn and Wand in 1993 [33].

Due to space limitations, we omit some of the proofs. Interested readers can refer to
the full paper [21] for more details.

2 Subtyping

In this section, we formally define satisfiability problems of subtype constraints.

2.1 Types as Trees

Types can be viewed as trees over some ranked alphabetΣ, the signature of the given type
language. A signature consists of a finite set of function symbols (a.k.a. type constructors
and constants ). Each function symbol f has an associated arity(f) ≥ 0, indicating the
number of arguments that f expects. Symbols with arity zero are type constants. The
signature fixes for all type constructors f and all positions 1 ≤ i ≤ arity(f) a polarity
pol(f, i) ∈ {1,−1}. We call a position i of symbol f covariant if pol(f, i) = 1 and
contravariant otherwise.

We identify nodes π of trees with relative addresses from the root of the tree, i.e.,
with words in (N − {0})∗. A word πi addresses the i-th child of node π, and ππ′ the π′
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descendant of π. The root is represented by the empty word ε. We define a tree τ overΣ
as a partial function: τ : (N − {0})∗ → Σ. Tree domains dom(τ) are prefixed closed,
non-empty, and arity consistent, i.e.: ∀π ∈ dom(τ)∀i ∈ N : πi ∈ dom(τ) ↔ 1 ≤ i ≤
arity(τ(π)). A tree τ is finite if dom(τ) is a finite set, and infinite otherwise. We write
treeΣ for the set of possibly infinite trees over Σ.

Given a function symbol f withn = arity(f) and trees τ1, . . . , τn ∈ treeΣ we define
f(τ1, . . . , τn) as the unique tree τ with f(τ1, . . . , τn)(ε) = f and f(τ1, . . . , τn)(iπ) =
τi(π). We define the polarities of nodes in trees as follows:

polτ (ε) =df 1
polf(τ1,...,τn)(iπ) =df pol(f, i) ∗ polτi

(π)

For partial orders ≤, let ≤1 denote the order ≤ itself and ≤−1 the reversed relation, ≥.
Subtype orders ≤ are partial orders on trees over some signature Σ. Two subtype

orders arise naturally, structural subtyping and non-structural subtyping.

2.2 Structural Subtyping

We investigate structural subtyping with signatures Σ that provide the standard type
constructors × and → and a poset (B,≤B) of type constants, i.e.,Σ = B∪{×,→}. The
product type constructor × is a binary function symbol that is covariant in both positions
(pol(×, 1) = pol(×, 2) = 1), while the function type constructor → is contravariant in
its first and covariant in its second argument (pol(→, 1) = −1 and pol(→, 2) = 1).

Structural subtype orders ≤ are partial orders on trees over structural signatures Σ.
They are obtained by lifting the ordering on constants (B,≤B) in Σ to trees. More
formally, ≤ is the smallest binary relation ≤ on treeΣ such that for all b, b′ ∈ B and
types τ1, τ2, τ ′1, τ ′2 in treeΣ :

– b ≤ b′ iff b ≤B b′;
– τ1 × τ2 ≤ τ ′1 × τ ′2 iff τ1 ≤ τ ′1 and τ2 ≤ τ ′2;
– τ1 → τ2 ≤ τ ′1 → τ ′2 iff τ ′1 ≤ τ1 and τ2 ≤ τ ′2.

Notice that × is monotonic in both of its arguments while → is anti-monotonic in
its first argument and monotonic in its second. For more general signatures, monotonic
arguments are specified by covariant positions of function symbols, and anti-monotonic
arguments by contravariant positions.

For structural subtyping, two types are related only if they have exactly the same
shape, i.e., tree domain. Notice that structural subtype orders are indeed partial orders.
We do not restrict ourselves to lattices (B,≤B) in contrast to most previous work.

2.3 Non-structural Subtyping

In the non-structural subtype order, two distinguished constants are added to structural
type languages, a smallest type ⊥ and a largest type �. The ordering is parametrized
by a poset (B,≤B) and has the signature: Σ = B ∪ {×,→} ∪ {⊥,�}. For the non-
structural subtype order, besides the three structural rules earlier, there is an additional
requirement: ⊥ ≤ τ ≤ � for any τ ∈ treeΣ .



360 J. Niehren, T. Priesnitz, and Z. Su

2.4 Uniform Subtyping

We introduce uniform subtyping as an intermediate ordering for two reasons: (i) to cap-
ture both structural and non-structural subtyping effects and (ii) to bridge from uniform
subtype constraints to modal logic.

We call a signature Σ uniform if all symbols in Σ have the same non-zero arity
and the same polarities. All trees over Σ are complete infinite n-ary trees, where n is
the arity common to all function symbols in Σ. Hence, all trees have the same shape.
Furthermore, the polarities of nodes π ∈ {1, . . . , n}∗ in trees τ over uniform signatures
do not depend on τ . We therefore write pol(π) instead of polτ (π).

The signatures {×} and {→}, for instance, are both uniform, while {×,→} or
{⊥,�,×} are not. The idea to model the non-structural signature {⊥,�,×} uniformly
is to raise the arities of ⊥ and � to 2 and to order them by ⊥ ≤Σ × ≤Σ �.

A uniform subtype order ≤ is defined over a partially-ordered uniform signature
(Σ,≤Σ). It satisfies for all trees τ1, τ2 ∈ treeΣ :

τ1 ≤ τ2 iff ∀π ∈ {1, . . . , n}∗ : τ1(π) ≤pol(π)
Σ τ2(π)

where n is the arity of the function symbols in Σ. For simplicity, we will often write
≤π

Σ instead of ≤pol(π)
Σ .

2.5 Subtype Constraints and Satisfiability

In a subtype system, type variables are used to denote unknown types. We assume that
there are a denumerable set of type variables x, y, z ∈ V . We assume w.l.o.g. that
subtype constraints are flat, and subtype constraints ϕ over a signature Σ satisfy:

ϕ ::= x=f(x1, . . . , xn) | x≤y | ϕ ∧ ϕ

where n is the arity of f ∈ Σ. We call atomic constraints x=f(x1, . . . , xn) and x≤y the
literals. The type variables in a constraint ϕ are called the free variables of ϕ, denoted
by V (ϕ).

We always consider two possible interpretations of subtype constraints, over possibly
infinite tree over Σ, and over finite trees over Σ respectively. A variable assignment α
is a function mapping type variables in V to trees over Σ. A constraint ϕ is satisfiable
over Σ if there is a variable assignment α such that α(ϕ) holds in Σ.

We distinguish three subtype satisfiability problems, each of which has two variants
depending on interpretation over finite or possibly infinite trees.

Structural subtype satisfiability is the problem to decide whether a structural subtype
constraint is satisfiable. The arguments of this problem are a posets (B,≤B) and a
constraint ϕ over the signature B ∪ {×,→}.

Non-structural subtype satisfiability is the problem to decide whether a non-
structural subtype constraint is satisfiable. The arguments are a poset (B,≤B) and
a constraint ϕ over signature B ∪ {×,→} ∪ {⊥,�}.

Uniform subtype satisfiability is the problem to decide whether a uniform subtype
constraint is satisfiable. The arguments are a partially-ordered uniform signature
(Σ,≤Σ) and a subtype constraint ϕ over this signature.
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R ::= i | R ∪R′ | RR′ | R∗ where 1 ≤ i ≤ n
A ::= p | ¬A | A ∧A′ | [R]A

Fig. 1. Syntax of PDLn

3 Propositional Dynamic Logic over Trees

Propositional dynamic logic (PDL) is a modal logic that extends Boolean logic to directed
graphs of possible worlds. The same proposition may hold in some node of the graph
and be wrong in others. Nodes are connected by labeled edges, that can be talked about
modal operators.

In this paper, we consider the modal logic PDLn, the PDL language for the complete
infinite n-ary tree. PDLn is naturally subsumed by the monadic second-order logic SnS
of the complete n-ary tree [27].

3.1 Other PDL Dialects

Propositional dynamic logic (PDL) over directed edge-labeled graphs goes back to Fis-
cher and Ladner [6], who restricted Pratt’s dynamic logic to the propositional fragment.
It is well known that PDL has the tree property: every satisfiable PDL formula can be
satisfied in a rooted edge-labeled tree. Deterministic PDL [2,10,35] restricts the model
class to graphs whose edge labels are functional in that they determine successor nodes.
Deterministic PDL with edge labels {1, . . . , n} is the closest relative to our language
PDLn, due to the tree property.

Besides of PDLn, a large variety of PDL dialects with tree models were proposed in
the literature. These differ in the classes of tree models, the permitted modal operators,
and the logical connectives. Three different dialects of PDL over finite, binary, or n-ary
trees were proposed in [4, 15, 22], see [3] for a comparison. PDL over finite unranked
ordered trees were proposed for computational linguistics applications [4] and found
recent interest for querying XML documents.

3.2 PDLn and Its Fragments

For every n ≥ 1 we define a logic PDLn as the PDL logic, for describing the complete
infinite n-ary tree.

The syntax of PDLn expressions1 A is given in Figure 1. Starting from some infinite
set P of propositional variables p ∈ P , it extends the Boolean logic over these vari-
ables by universal modalities [R]A, where R is a regular expression over the alphabet
{1, . . . , n}.

We frequently use the modality [∗] as an abbreviation of [{1, . . . , n}∗], and sometimes
[+] as a shorthand for [{1, . . . , n}+]. We freely use definable logical connective for
implication →, equivalence ↔, disjunction ∨, exclusive disjunction ∨+ , and the Boolean

1 We could allow for test ?A in regular expressions, which frequently occur in PDL dialects but
we will not need them.
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Table 2. Semantics of PDLn

M,π |= p if M(p, π) = 1
M,π |= A1 ∧A2 if M,π |= A1 and M,π |= A2

M,π |= ¬A if not M,π |= A
M,π |= [R]A if for all π′ ∈ L(R): M,ππ′ |= A

B ::= p1 ∧ p2 | ¬p | [i]p where 1 ≤ i ≤ n
C ::= p | [∗] (p↔ B) | C1 ∧ C2

Fig. 2. Syntax of flat core PDLn

constants true and false. Furthermore, we can define existential modalities 〈R〉A by
¬[R]¬A.

We interpret formulas of PDLn over the complete infinite n-ary trees. Tree nodes
are labeled by the set of propositions that are valid there. Formally, a model M of a
formula in PDLn assigns Boolean values 0, 1 to propositional variables in every node
in {1, . . . , n}∗, i.e., M : P × {1, . . . , n}∗ → {0, 1}. Table 2 defines when a formula A
holds in some node π of some model M , in formulas: M,π |= A. A formula [R]A is
valid for some node π of a tree M if A holds in all R descendants of π in M , i.e., in all
nodes ππ′ where π′ belongs to the language L(R) of R.

Let us recall some logical notations. A formula A is valid in a model M if it holds
in the root of M : M |= A iff M, ε |= A. A formula A is satisfiable if it is valid in some
model; it is valid it is valid in all models: |= A iff ∀M.M |= A. Two formulas A, A′

are equivalent if A ↔ A′ is valid: A |=| A′ iff |= A ↔ A′ . For instance, 〈i〉A |=| [i]A
holds for all 1 ≤ i ≤ n and all A, since all nodes of the n-ary tree have unique i
successors.

Note that PDLn respects the substitution property: whenever A1 |=| A2 then
A[A1/A2] |=| A. To see this note that if A1 |=| A2 then the equivalence A ↔ A′

is valid not only at the root of all models but also at all other nodes of all models. This
is because all subtrees of complete n-ary trees are again complete n-ary trees.

Theorem 1. Satisfiability of PDLn formulas is in DEXPTIME.

A PDLn formula is satisfiable iff it can be satisfied by a deterministic rooted graph
with edge labels in {1, . . . , n}. The theorem thus follows from the DEXPTIME upper
bound for deterministic PDL [2, 10], which follows from the analogous result for PDL.

3.3 Flat Core PDLn

We next investigate lower complexity bounds for PDLn. It is known from Vardi and
Wolper [35] that satisfiability of deterministic PDL is DEXPTIME-complete. This result
clearly carries over to PDLn.

An analysis of Spaan’s proofs [30] reveals that nested [∗] modalities are not needed
for DEXPTIME-hardness. But we can even do better, i.e., restrict the language further.
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We define the fragment flat core PDLn in Figure 2. A formula of flat core PDLn is
a conjunction of propositional variables and expressions of the form [∗] (p ↔ B). Note
that [∗] modalities cannot be nested. Furthermore, all Boolean sub-formulas B are flat
in that Boolean connectives only apply to variables.

Theorem 2. Satisfiability of flat core PDLn formulas is DEXPTIME-complete.

A proof is given in the full paper [21]. It is based on a new idea, by reduction to the
emptiness of intersections of tree automata. This problem was shown DEXPTIME-hard
by Seidl [29].

3.4 Inversion

We now consider a variant of PDLn with inverted modalities [R]−, which
address all nodes π′π reached by prefixing some π′ ∈ L(R) to the actual
node π.

[  ]π

π’

[R]−[  ]π
π π’

[R]
root

π π

M,π |= [R−]A if for all π′ ∈ L(R): M,π′π |= A

Inverted flat core PDLn is defined in analogy to flat core PDLn except that all modalities
are inverted.

B ::= p1 ∧ p2 | ¬p | [i]−p for 1 ≤ i ≤ n
C ::= p | [∗] (p ↔ B) | C1 ∧ C2

We will freely omit inversion for [∗] operators, as these are never nested below modalities.
We can translate flat core PDLn formulas C into formulas C− of the inverted flat core,
and vice versa, by replacing the operators [i] through [i]−. Models can be inverted too:
M−(p, π) = M(p, π−1) where π−1 is the inversion of π.

Lemma 1. M |= C iff M− |= C−.

4 Uniform Subtype Satisfiability

We next investigate the complexity of uniform subtype satisfiability. We first show how
to encode uniform subtype constraints into inverted PDLn. We then give a translation
from inverted flat core PDLn back to uniform subtype satisfiability. Both translations
are in polynomial time and preserve satisfiability (Propositions 2 and 3). The complexity
of PDLn (Theorem 2) thus carries over to uniform subtype satisfiability.

Theorem 3. Uniform subtype satisfiability over possibly infinite trees is DEXPTIME-
complete.

4.1 Uniform Subtype Constraints into PDLn

We encode uniform subtype constraints interpreted over infinite n-ary trees into inverted
PDLn. The translation relies on ideas of Tiuryn and Wand [33], but it is simpler with
modal logics as the target language. We first present our translation for covariant uniform
signatures and then sketch the contravariant case.
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Table 3. Expressing uniform covariant subtype constraints in inverted PDLn

[[x=f(x1, . . . , xn)]] =df px=f ∧
∧

g∈Σ

∧
1≤i≤n[∗] (pxi=g ↔ [i]−px=g)

[[x≤y]] =df [∗] ∨f≤Σg(px=f ∧ py=g)
[[ϕ1 ∧ ϕ2]] =df [[ϕ1]] ∧ [[ϕ2]]

Let Σ be a uniform covariant signature and n > 1 the arity of its function symbols.
We fix a finite set of type variables V and consider subtype constraints ϕ over Σ with
V (ϕ) ⊆ V . For all x ∈ V and f ∈ Σ we introduce propositional variables px=f that
are true at all nodes π ∈ {1, . . . , n}∗ where the label of x is f .

The well-formedness formula wff V states that all nodes of tree values of all x ∈ V
carry a unique label f : wff V =df

∧
x∈V [∗] (

∨+
f∈Σ px=f ) . A polynomial time encod-

ing of subtype constraints is presented in Table 3. Inverted modalities [i]− are needed
to translate x=f(x1, . . . , xn) since α |= x=f(x1, . . . , xn) if and only if α(x)(ε) = f
and α(x)(iπ) = α(xi)(π) for all words iπ ∈ {1, . . . , n}∗.

Proposition 1. A uniform subtype constraint ϕ over a covariant signature Σ with
V (ϕ) ⊆ V is satisfiable if and only if wff V ∧ [[ϕ]] is satisfiable.

Proof. A solution of ϕ is a function α : V → treeΣ . Let n be the arity of function
symbols in Σ, so that all trees in treeΣ are complete n-ary trees with nodes labeled
in Σ, i.e., total functions of type {1, . . . , n}∗ → Σ. A variable assignment α thus
defines a PDLn model Mα : P × {1, . . . , n}∗ → Σ that satisfies for all x ∈ V and
π ∈ {1, . . . , n}∗: Mα(px=f , π) ↔ α(x)(π) = f . We can now show by induction on
the structure of ϕ that α |= ϕ iff Mα, ε |= wff V ∧ [[ϕ]].

Proposition 2. Uniform subtype satisfiability with covariant signatures over possibly
infinite trees is in DEXPTIME.

Proof. It remains to show that our reduction is in polynomial time. This might seem
obvious, but it needs some care. Exclusive disjunctions of the form p1∨+ . . .∨+pn as used
in the well-formedness formula can be encoded in quadratic time through

∨n
i=1(pi ∧∧

1≤j �=i≤n ¬pj). Equivalences p ↔ ¬p′ as used can be encoded in linear time by
(p ∧ ¬p′) ∨ (¬p ∧ p′).

Contravariance. Our approach smoothly extends to uniform subtyping with contravari-
ant signatures. The key idea is that we can express polarities in inverted flat core PDLn

by using a new propositional variable ppol . For example, consider the uniform signature
Σ = {→}, where → is the usual function type constructor. The variable ppol is true in
nodes with polarity 1 and false otherwise:

ppol ∧ [∗] (ppol ↔ [1]−¬ppol) ∧ [∗] (ppol ↔ [2]−ppol ).

Limitation Due to Inversion. Inversion is crucial to our translation and has a number
of consequences. Most importantly, we cannot express the formula [∗](p → [+]p′) in
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Table 4. Boolean operations expressed by subtype constraints

all-c(x) =df x=c(x, . . . , x) for some c ∈ Σ(n)
all-bool(x) =df ∃y∃z. all-0(x) ∧ x≤y≤z ∧ all-1(z)
all-bool(x) =df ∃y∃z. all-1̄(x) ∧ x≤y≤z ∧ all-0̄(z)
upper(x, y) =df ∃z. x≤z ∧ y≤z
lower(x, y) =df ∃z. z≤x ∧ z≤y

y=x =df all-bool(x) ∧ all-bool(y) ∧ upper(x, y) ∧ lower(x, y)
all(p1 ∨ p2 ∨ ¬p3 ∨ ¬p4) =df ∃z.∧1≤i≤4 all-bool(Xpi)

∧lower(z,Xp1) ∧ upper(z,Xp2)
∧lower(z,Xp3) ∧ upper(z,Xp4)

all(p1 ∨ p2) =df ∃Xq. all(p1 ∨ p2 ∨ ¬q ∨ ¬q) ∧ all-1(Xq)

inverted PDLn, which states that whenever p holds at some node then p′ holds in all
proper descendants.

As a consequence, we cannot directly translate subtype constraints over standard
signatures into PDLn (which we consider in Sections 5). The difficulty is to encode tree
domains in the presence of leafs. Suppose we want to define that p holds for all nodes
outside the tree domain. We could do so by imposing [∗](pc → [+]p) for all constants
c, but this is impossible in inverted PDLn.

This is not a problem for uniform signatures where every tree is completely n-ary, so
that we do not need to express tree domains, as long as we are considering satisfiability.
Unfortunately, however, the same technique does not extend to entailment and other
fragments of first-order logic with negation.

4.2 Back Translation

To prove DEXPTIME-hardness of uniform subtype satisfiability, we show how to express
inverted flat core PDLn by uniform subtype constraints, indeed only with covariant
signatures. Our encoding of Boolean logic is inspired by Tiuryn [32], while the idea to
lift this encoding to PDLn is new.

Let C be a formula of inverted flat core PDLn. We aim to find a subtype constraints
[[C]]−1 which preserves satisfiability. The critical point is how to translate PDLn’s nega-
tion since it is absent in our target language of uniform subtype constraints.
We work around by constructing a uniform subtype constraints with function
symbols ordered in a crown: Σ(n) = {0, 0̄, 1, 1̄}.

All function symbolshave arityn andsatisfyx ≤Σ(n)y for all x∈{0, 1̄},

1 0̄

0 1̄

y ∈ {1, 0̄}. The symbols 0 and 1 model PDLn’s underlying boolean lattice bool =
{0 , 1}; the additional two symbols are introduced to define negation by neg(c) = c for
c ∈ bool .

Next, Table 4 shows how to define neg by a subtype constraint. For every proposi-
tional variable p we introduce a new type variables Xp in the subtype constraint we are
constructing to.
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The subtype constraint all-c(x) holds for the unique trees that is completely labeled
by some c ∈ Σ(n). The subtype constraint all-bool(x) holds for trees that are labeled
in bool . The constraints lower(x, y) and upper(x, y) require the existence of lower and
upper bounds respectively for trees x and y. These bounds are used to define the diagonal
pairs y=x in the crown.

Lemma 2. y = x |=| ∀π. (x(π) = 0 ∧ y(π) = 0̄) ∨ (x(π) = 1 ∧ y(π) = 1̄).

Proof. Since x is a tree labeled in bool , all nodes π satisfy α(x)(π)=0 or α(x)(π)=1.
In the first case (the second is analogous) the constraint lower(x, y) entails α(y)(π)�=1̄.
Since y is a bool tree, α(y)(π)=0̄.

Solutions of subtype constraints are variable assignments α : P → {1, . . . , n}∗ →
Σ(n). For variable assignments α into trees over Booleans, we define corresponding
PDLn-models Mα : P × {1, . . . , n}∗ → bool by Mα(p, π) = α(Xp)(π).

Lemma 3. Let A be the Boolean formula p1 ∨ p2 ∨ ¬p3 ∨ ¬p4. For all variable assign-
ments α to trees over Σ(n), α |= all(A) if and only if Mα is defined and Mα |= [∗]A.

The lemma relies on a non-trivial property of the crown poset. For all p1, p2, p3, p4 ∈
bool :

p1 ∨ p2 ∨ ¬p3 ∨ ¬p4 |=| ∃z ∈ {0, 1, 0̄, 1̄}. lower(z, p1) ∧ upper(z, p2)∧
lower(z, p3) ∧ upper(z, p4)

We illustrate the claim for p3 = p4 = 1 where the left hand side is equivalent to p1 ∨p2.
The conjunction of the last two literals becomes lower(z, 1̄) ∧ upper(z, 1) which is
equivalent to z ∈ {1, 1̄}. The first two literals with p1 = p2 = 0 yields:

lower(z, 0) ⇒ z �= 1̄ and upper(z, 0) ⇒ z �= 1

Thus, the complete conjunction is unsatisfiable with p1 = p2 = 0. Conversely, if p1 = 1
then we can choose z = 1̄ since upper(1̄, p2) holds for all p2 ∈ bool . Similarly, if p2 = 1
then we can choose z = 1 since lower(1, p1) for all p1 ∈ bool .

The back translation [[C]]−1 of inverted flat core PDLn into subtype constraints is
shown in Table 5. All Boolean formulas used there can be expressed byp1∧p2∧¬p3∧¬p4
which we know how to encode.

Proposition 3. LetC be a flat core inverted PDLn formula. For all variable assignments
α to trees over Σ(n), α |= [[C]]−1 if and only if Mα is defined and Mα |= C.

For n = 0, subtype constraints become ordering constraints for a poset, while PDL0
satisfiability becomes a Boolean satisfiability problem that is well-known to be NP-
complete. We thus obtain a new NP-completeness proof for ordering constraints inter-
preted over posets [26].

5 Equivalence of Subtype Problems

We next show the equivalence of uniform subtype satisfiability with structural and non-
structural subtype satisfiabilities over possibly infinite trees. Subtype satisfiability over
finite trees will be treated in Section 6.
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Table 5. Inverted core flat PDLn in subtype constraints

[[p]]−1 =df ∃x1 . . . ∃xm. all-bool(Xp) ∧Xp=1(x1, . . . , xm)
[[[∗] (p↔ [i]−q)]]−1 =df all-bool(Xp) ∧ all-bool(Xq)

∧ ∃x1 . . . ∃xm.(0(x1, ..., xm)≤Xq≤1(x1, ...,xm)∧Xp=xi)
[[[∗] (p↔ ¬q)]]−1 =df all(p ∨ q) ∧ all(¬p ∨ ¬q)

[[[∗] (p↔ (q1 ∧ q2))]]−1 =df all(¬p ∨ q1) ∧ all(¬p ∨ q2) ∧ all(p ∨ ¬q1 ∨ ¬q2)
[[C1 ∧ C2]]−1 =df [[C1]]−1 ∧ [[C2]]−1

Theorem 4. Structural, non-structural, and uniform subtype satisfiability over possibly
infinite trees are equivalent and DEXPTIME-complete.

The proof relies on constraints for subtype orders with a single nonconstants type
constructor that we call 1-subtype orders.

1-subtype satisfiability is the satisfiability problem of subtype constraints over 1-
subtype orders. This problem is parametric in the arities and polarities of the unique
type constructor, the partial order on constants (B,≤B), and whether or not {⊥,�}
is included in the signature.

We present the proof in four steps. We first show how to reduce structural subtype
satisfiability to 1-subtype satisfiability (Section 5.1) and then do the same for the non-
structural case (Section 5.2). Next, we reduce 1-subtype satisfiability to uniform subtype
satisfiability (Section 5.3). Finally, we translate uniform subtype satisfiability back to
both structural and non-structural subtype satisfiability (Section 5.4).

5.1 Structural to 1-Subtype Satisfiability

In this part, we show how to reduce structural to 1-subtype satisfiability. We first use a
standard technique to characterize the shapes of solutions to a structural subtype con-
straints. Given a constraint ϕ over Σ, we construct the shape constraint of ϕ, sh(ϕ), by
replacing each constant in ϕwith an arbitrary, fixed constant � ∈ Σ, and each inequality
with an equality:

sh(x=f(x1, x2)) =df x=f(x1, x2), sh(x≤y) =df x=y,
sh(ϕ1∧ϕ2) =df sh(ϕ1)∧sh(ϕ2), sh(x=c) =df x=�

The constraint ϕ is called weakly unifiable iff sh(ϕ) is unifiable.
Next, we handle contravariance. Consider a signatureΣ = B∪{×,→}. We construct

a signature s(Σ) =df B∪{f, c}, where f is function symbol of arity four and c is a fresh
constant. Our approach is to use f to capture both × and →, i.e., all the non-constant
function symbols inΣ. The first two arguments of f are used to model the two arguments
of × and the next two to model the two arguments of →. Thus, f is co-variant in all
arguments except the third one.
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Given a constraint ϕ over Σ, we construct s(ϕ) over s(Σ):

s(x=y×z) =df x=f(y, z, c, c), s(x=y → z) =df x=f(c, c, y, z),
s(ϕ1∧ϕ2) =df s(ϕ1)∧s(ϕ2), s(x≤y) =df x≤y,
s(x=b) =df x=b ∀b∈B

Lemma 4. If ϕ is weakly unifiable, then ϕ is satisfiable over Σ iff s(ϕ) is satisfiable
over s(Σ).

The proof of the above lemma requires the following result. Let ϕ be a constraint
over a structural signature Σ. We have the following result due to Frey [8] that relates
the shape of a solution of ϕ to that of a solution of sh(ϕ).

Lemma 5 (Frey [8]). If ϕ is satisfiable, let α be a solution of sh(ϕ). Then ϕ has
a solution β that is of the same shape as α, i.e., for all x ∈ V (ϕ) = V (sh(ϕ)),
sh(α(x) = β(x)) is unifiable.

5.2 Non-structural to 1-Subtype Satisfiability

We handle non-structural signatures Σ = B ∪ {⊥,�,×,→}, similarly. The new
signature is defined in exactly the same way as for the structural case by s(Σ) =
B ∪ {⊥,�, f, c}. Constraints are also transformed in the same way, except including
two extra rules for ⊥ and �:

s(x=⊥) =df x=⊥, s(x=�) =df x=�

However, weak unifiability is not sufficient for the initial satisfiability check. To see
that, consider, for example, x≤y × z ∧ x≤u → v, which is satisfiable, but not weakly
unifiable. To address this problem, we introduce a notion of weak satisfiability. It is
similar to weak unfiability, except subtype ordering is also retained.

Definition 1. Let ϕ be a constraint over Σ, and c be an arbitrary and fixed constant.
Define the weak satisfiability constraint ws(ϕ) as:

ws(x=f(x1, x2)) =df x=f(x1, x2), ws(x≤y) =df x≤y, ws(x=⊥) =df x=⊥,
ws(ϕ1∧ϕ2) =df ws(ϕ1)∧ws(ϕ2), ws(x=b) =df x=c, ws(x=�) =df x=�

The constraint ϕ is called weakly satisfiable iff ws(ϕ) is satisfiable.

Lemma 6. If ϕ is weakly satisfiable, then ϕ is satisfiable over Σ iff s(ϕ) is satisfiable
over s(Σ).

The proof of this lemma requires the following result. Let ϕ be a constraint over a
non-structural signature Σ. If ws(ϕ) is satisfiable, then ws(ϕ) has a minimum shape
solution α by a simple extension of a theorem of Palsberg, Wand and OKeefe on non-
structural subtype satisfiability over lattices [23]. We claim that if ϕ is satisfiable, then
ϕ also has a minimum shape solution that is of the same shape as α.
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Lemma 7. If ϕ is satisfiable over Σ, let α be a minimum shape solution for ws(ϕ),
and in addition, α is such a solution with the least number of leaves assigned �. Then
ϕ has a solution β that is of the same shape as α, i.e., for all x ∈ V (ϕ) = V (ws(ϕ)),
sh(α(x) = β(x)) is unifiable. Furthermore, β is a minimum shape solution of ϕ.

Lemma 5 and Lemma 7 together imply the following corollary, which is used next
in Section 6 to treat subtype satisfiability interpreted over finite trees.

Corollary 1. A subtype constraint ϕ is satisfiable over finite trees if and only if ϕ is
satisfiable over finite trees of height bounded by |ϕ|. This holds for both structural and
non-structural signatures.

5.3 1-Subtype to Uniform Satisfiability

In this part, we give a reduction from 1-subtype to uniform subtype satisfiability. This
reduction is uniform for subtyping with and without ⊥ and �.

Proposition 4. Over possibly infinite trees, 1-subtype satisfiability is linear time re-
ducible to uniform subtype satisfiability.

Proof. LetΣ be a 1-subtype signature. We define a uniform signature s(Σ ) by extending
the arities of all function symbols to the maximal arity ofΣ (i.e., the arity of the only non-
trivial function symbol), such that: (1) s(Σ ) =df Σ ; (2) ∀f ∈ s(Σ).aritys(Σ)(f) =df
max; and (3) ≤s(Σ)=df≤Σ , where max is the maximal arity of Σ.

We next translate a subtype constraint ϕ over Σ to a constraint s(ϕ) over s(Σ ):

s(x=f (x1 , . . . , xmax)) =df x=f (x1 , . . . , xmax), s(x=b) =df x=b(y1 , . . . , ymax),
s(ϕ1∧ϕ2 ) =df s(ϕ1 )∧s(ϕ2 ), s(x1≤x2 ) =df x1≤x2 ,
s(x=⊥) =df x=⊥(u1 , . . . , umax), s(x=�) =df x=�(v1 , . . . , vmax)

where the yi’s, ui’s, and vi’s are fresh variables, and the last two rules are additional
ones for a non-structural signature.

Lemma 8. A subtype constraint ϕ over a standard signatureΣ is satisfiable if and only
if s(ϕ) is satisfiable over the uniform signature s(Σ ).

5.4 Uniform to (Non-)Structural Satisfiability

In this part, we prove the last step of the equivalence (Theorem 4), namely, how to reduce
uniform satisfiability to structural and non-structural satisfiabilities.

Proposition 5. Uniform subtype satisfiability is linear time reducible to structural and
non-structural subtype satisfiability over possibly infinite trees.

To simplify its proof we assume a uniform subtype problem where all function
symbols have arity three with their first two arguments being contravariant and the last
one covariant. This proof can be easily adapted to uniform signatures with other arities
and polarities.

We construct a reverse translation ¯̄s of s (defined in Section 5.3) in two steps. Let Σ
be a uniform signature with symbols of arity three. We first define a standard signature
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s̄(Σ) by including symbols in Σ as constants and adding →: (1) s̄(Σ) =df Σ ∪ {→};
(2) ∀g ∈ Σ.arity s̄(Σ)(g) =df 0; (3) arity s̄(Σ)(→) =df 2; and (4) ≤s̄(Σ) =df ≤Σ .
We now translate a subtype constraint ϕ over Σ to a constraint s̄(ϕ) over s̄(Σ):

s̄(x=g(x1, x2, x3)) =df x=(x3 → x2) → (x1 → g)
s̄(x1 ≤ x2) =df x1 ≤ x2
s̄(ϕ1 ∧ ϕ2) =df s̄(ϕ1) ∧ s̄(ϕ2)

where we use a non-flat constraint in the first line for a simpler presentation.
The arguments x1, x2 are again contravariant and x3 is covariant in the constraint
s̄(x=g(x1, x2, x3)). Thus, s̄ preserves all polarities.

In our second step, we force every variable to be mapped to a fixed, infinite shape.
We extend s̄(Σ) to ¯̄s(Σ ) with four new constants a1, a2, a3, and a4 with the following
ordering: a1 ≤ c ≤ a3 ∧ a2 ≤ c ≤ a4, for all constants c ∈ s̄(Σ). We define ¯̄s(ϕ) as
the conjunction of s̄(Σ) and the following constraints:

(1) u1 ≤ x ∧ u2 ≤ x ∧ x ≤ u3 ∧ x ≤ u4, for each variable x ∈ V (s̄(Σ));
(2)
∧

i=1,2,3,4 ui=(ui → ui) → (ui → ai)

The constraints (1) and (2) in ¯̄s(ϕ) determine the shape of any variable x ∈ V (s̄(ϕ)).
We claim, in the following lemma, that any solution to ¯̄s(ϕ) must be of a particular shape
and must also map variables x ∈ V (s̄(ϕ)) to trees over s̄(Σ).

Lemma 9. If ¯̄s(ϕ) is interpreted over any (non-)structural signature ¯̄s(Σ ) or ¯̄s(Σ ) ∪
{⊥,�}, any variable assignment α |= ¯̄s(ϕ) satisfies for all paths π ∈ (1(1∪2) ∪ 21)∗:

α(x)(π′) = → if π′ is a prefix of π

α(x)(π22) =
{
ai if x = ui

c ∈ Σ otherwise.

Lemma 10. A subtype constraint ϕ over a uniform signatureΣ is satisfiable if and only
if the constraint ¯̄s(ϕ) over ¯̄s(Σ ) is satisfiable. This statement also holds if we replace
the structural signature ¯̄s(Σ ) by the non-structural signature ¯̄s(Σ ) ∪ {⊥,�}.

Proof. We define a transformation of map : treeΣ → tree¯̄s(Σ) on trees for all g ∈ Σ:

map(g(τ1, τ2, τ3)) =df (map(τ3) → map(τ2))
→ (map(τ1) → g)

With that it can be easily verified that if there exists a solution α |= ϕ over an uniform
signatureΣ thenmap(α) |= ¯̄s(ϕ) holds over ¯̄s(Σ ). For the other direction we assume an
assignment α |= ¯̄s(ϕ). Then there also exists an assignment β = map−1(α) according
to the shape of any solution of ¯̄s(ϕ) stated in Lemma 9. Again, it can be easily verified
that β |= Σ.

The proof also holds in the case where we add ⊥ and � to ¯̄s(Σ ) since both symbols
cannot occur in any node of any solution of ¯̄s(Σ ) (again Lemma 9).
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6 Finite Subtype Satisfiability over Posets

Finite structural subtype satisfiability was shown PSPACE-complete by Tiuryn [32] and
Frey [8]. Here, we establish the same complexity for the non-structural case.

Proposition 6. Non-structural subtype satisfiability over finite trees is PSPACE-hard.

The analogous result for the structural case was shown by Tiuryn [32]). To lift this
result, we show how to reduce non-structural to structural subtype satisfiability.

Lemma 11. Structural subtype satisfiability is polynomial time reducible to non-
structural subtype satisfiability (both for finite and infinite trees).

Proof. Let Σ be a structural signature. We construct a non-structural signature:
s(Σ) =df Σ∪{⊥,�, a1, a2, a3, a4} with the ai’s being four new constants. In addition,
≤s(Σ) =df ≤Σ ∪{(a1, c), (a2, c), (c, a3), (c, a4) | c ∈ Σ0}.

Let ϕ be a constraint over Σ. We construct s(ϕ) over s(Σ). Consider ϕ’s shape
constraint sh(ϕ) (see Section 5.1). If sh(ϕ) is not unifiable, we simply let s(ϕ) =df
�≤⊥. Otherwise, consider the most general unifier (m.g.u.) γ of sh(ϕ). We let sh(ϕ)′

be the same as sh(ϕ) except each occurrence of � is replaced with a fresh variable. We
make two copies of sh(ϕ)′, sh(ϕ)′L and sh(ϕ)′R (for left and right), where each variable
x is distinguished as xL and xR respectively. For each variable x ∈ V (ϕ), if γ(x) is
either � or belongs to V (ϕ), we say x is atomic. For a variable x, let force(x) denote
the constraint: a1≤x ∧ a2≤x ∧ x≤a3 ∧ x≤a4. Notice that Lemma 11 holds both for
finite and infinite trees.

We can now construct s(ϕ), which is the conjunction of the following components:
(1) ϕ itself; (2) sh(ϕ)′L; (3) sh(ϕ)′R; (4) For each atomic x ∈ V (ϕ), force(xL) and
force(xR); (5) For each fresh variable x in sh(ϕ)′L and sh(ϕ)′R, force(x); and (6) For
each variable x ∈ V (ϕ), xL≤x≤xR. One can show that ϕ is satisfiable over Σ iff s(ϕ)
is satisfiable over s(Σ).

By adapting the proof of Frey [8], we can show membership in PSPACE, and thus
we have the following theorem. For an alternative proof of using K-normal modal logic,
please refer to the full paper [21].

Theorem 5. Finite non-structural subtype satisfiability is PSPACE-complete.

7 Conclusions

We have given a complete characterization of the complexity of subtype satisfiability
over posets through a new connection of subtype satisfiability with modal logics, which
have well understood satisfiability problems. Our technique yields a uniform and sys-
tematic treatment of different choices of subtype orderings: finite versus recursive types,
structural versus non-structural subtyping, and considerations of symbols with co- and
contra-variant arguments.

Our technique, however, does not extend beyond satisfiability to other first-order
fragments that require negations, such as subtype entailment, whose decidability is a
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longstanding open problem over non-structural signatures. Negations can certainly be
modeled by our modal logic, but only over uniform signatures. In fact, there must not exist
reductions from standard signatures to uniform ones that preserve subtype entailment,
for example. Otherwise, such a reduction would have implied that the first-order theory
of non-structural subtyping, which is undecidable [31], were a fragment of S2S, which
is decidable [27].
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Abstract. Type systems and model checking are two prevalent ap-
proaches to program verification. A prominent difference between them
is that type systems are typically defined in a syntactic and modular
style whereas model checking is usually performed in a semantic and
whole-program style. This difference between the two approaches lends
them complementary to each other: type systems are good at explaining
why a program was accepted while model checkers are good at explaining
why a program was rejected.

We present a type system that is equivalent to a model checker for
verifying temporal safety properties of imperative programs. The model
checker is natural and may be instantiated with any finite-state abstrac-
tion scheme such as predicate abstraction. The type system which is
also parametric type checks exactly those programs that are accepted by
the model checker. It uses function types to capture flow sensitivity and
intersection and union types to capture context sensitivity. Our result
sheds light on the relationship between the two approaches, provides a
methodology for studying their relative expressiveness, is a step towards
sharing results between them, and motivates synergistic program analy-
ses involving interplay between them.

1 Introduction

1.1 Background

Type systems and model checking are two prevalent approaches to program
verification. It is well known that both approaches are essentially abstract inter-
pretations and are therefore closely related [10, 11]. Despite deep connections,
however, a prominent difference between them is that type systems are typi-
cally defined in a syntactic and modular style, using one type rule per syntactic
construct, whereas model checking is usually performed in a semantic and whole-
program style, by exploring the reachable state-space of a model of the program.
This difference between type systems and model checking has a significant con-
sequence: it lends the approaches complementary to each other, namely, type
systems are better at explaining why a program was accepted whereas model
checkers are better at explaining why a program was rejected.
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A type inference algorithm that accepts a program annotates it with types
(keywords: syntactic, modular) explaining why it was accepted. The benefits of
type annotations are well known: they aid in understanding, modifying, reusing
and certifying the program. However, it is often unnatural to explain why a
program was rejected by a type inference algorithm, and there is a large body
of work on explaining the source of type errors especially in the context of
type inference algorithms for languages with higher-order functions like Haskell,
Miranda, and ML [46, 24, 6, 14, 44, 9, 19] and, more recently, for languages with
concurrency like Java [15, 16].

On the other hand, a model checker that rejects a program provides a coun-
terexample which is a program trace (keywords: semantic, whole-program) that
explains why the program was rejected. The benefits of counterexamples are
well known: they aid in debugging the program. However, it is often unnatural
to explain why a program was accepted by a model checker, and several proof
systems for model checkers have been devised [39, 31, 38, 21, 43, 32].

This complementary nature of type systems and model checking motivates
investigating the relationship between the two approaches, devising a methodol-
ogy for studying their relative expressiveness, sharing results between them, and
designing synergistic program analyses involving an interplay between a type
system and a model checker.

1.2 Our Result

In this paper, we present a type system that is equivalent to a model checker for
verifying temporal safety properties of imperative programs. In model checking
terminology, a safety property is a temporal property whose violation can be
witnessed by a finite program trace or, equivalently, by the failure of an assertion
at a program point. Our model checker is conventional and may be instantiated
with any finite-state abstraction scheme such as predicate abstraction [18]. The
type system which is also parametric type checks exactly those programs that are
accepted by the model checker. It uses function types to capture flow sensitivity
and intersection and union types to capture context sensitivity.

The implications of our result may be summarized as follows:

1. Our work sheds light on the relationship between type systems and model
checking. In particular, it shows that the most straightforward form of model
checking corresponds to the most complex form of typing.
Finite-state model checkers routinely associate with each statement s of the
program a set of the form:

{ 〈ωi, ωj〉 | ωj ∈ δs(ωi) }

where ω ranges over a finite set of abstract contexts Ω and δs : Ω ⇀ 2Ω

is a partial function called the abstract transfer function associated with s.
Intuitively, the above set says that if s begins executing in abstract context
ωi then it will finish executing in an abstract context ωj ∈ δs(ωi). For ex-
ample, in model checkers such as SLAM [4], BLAST [22], and MAGIC [7], Ω
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represents the set of all valuations to the finite set of predicates with respect
to which the predicate abstraction (model) of the program is constructed.

Likewise, our type system assigns to each statement in the program, a
finitary polymorphic type of the form:

∧
i∈A(ωi →

∨
j∈Bi

ωj)

where A and ∀i ∈ A : Bi are finite. This is the most complex form of typing.
Conventional type systems employ restricted cases of this form of typing
such as ones requiring |A| = 1 (no intersection types) or ∀i ∈ A : |Bi| = 1
(no union types).

2. Our work provides a methodology for studying the relative expressiveness of
a type system and a model checker. Our technique for proving the equivalence
is novel and general: we have successfully applied it in two additional settings,
namely, stack-size analysis [25] and deadline analysis [29] for a class of real-
time programs called interrupt-driven programs [35].

3. Our work is a step towards sharing of results between the type systems
and model checking communities. The backward direction of our equivalence
theorem states that if the model checker accepts a program, then the program
is well-typed. We prove this by building a type derivation from the model
constructed by the model checker. We thereby obtain a model-checking-based
type inference algorithm for our type system.

4. Our work motivates synergistic program analyses involving interplay be-
tween a type system and a model checker. The analyses can use types to
document correct programs and counterexamples to explain erroneous pro-
grams. Moreover, they can be implemented efficiently due to the correspon-
dence between types and models: types already existing in the program or
inferred by a type inference algorithm can be used to construct a model for
performing model checking, as illustrated in [12, 8], and conversely, a model
constructed by a model checker can be used to infer types, as shown in this
paper.

1.3 Proof Architecture

We present an overview of our technique for proving the equivalence. A typical
type soundness theorem states that well-typed programs do not go wrong [27].
Usually, going wrong is formalized as getting stuck in the operational semantics.
More formally, for a program s, an initial concrete environment σ, and an initial
abstract environment ω, type soundness states that:

If 〈s, ω〉 is well-typed then 〈s, σ〉 does not go wrong (in the concrete semantics).

Type checking requires a predefined set of abstractions, namely, the types. Then,
the existence of a derivable type judgment implies that the program has the
desired property. Model checking, on the other hand, is not concerned with
types. It works with a model, that is, an abstract semantics, and can answer
questions such as:

〈s, ω〉 does not go wrong (in the abstract semantics).
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Model-checking soundness then states that:

If 〈s, ω〉 does not go wrong (in the abstract semantics) then
〈s, σ〉 does not go wrong (in the concrete semantics).

Our equivalence result states that:

〈s, ω〉 is well-typed iff 〈s, ω〉 does not go wrong (in the abstract semantics).

We prove the forward direction using a variant of type soundness in which the
step relation is the abstract semantics instead of the concrete semantics and
we prove the backward direction constructively by building a type derivation
from the model constructed by the model checker.

It is important to note that we do not prove the soundness of either the type
system or the model checker. Our equivalence result guarantees that the type
system is sound iff the model checker is sound but it does not prevent both
from being unsound. Proving soundness would require us to define a concrete
semantics and to instantiate the type system and the model checker (recall that
both are parametric). This in turn would detract from the generality of our
equivalence result.

1.4 Rest of the Paper

In Section 2, we present an imperative WHILE language and a model checker
for verifying temporal safety properties expressed as assertions in that language.
In Section 3, we present a type system that is equivalent to the model checker.
In Section 4, we prove the equivalence result. In Section 5, we illustrate the
equivalence by means of examples. In Section 6, we discuss related work. Finally,
in Section 7, we conclude with a note on future work.

2 Model Checker

The abstract syntax of our imperative WHILE language is as follows:

(stmt) s ::= p | assume(e) | assert(e) | s1; s2 | if (∗) then s1 else s2 |
while (∗) do s′

A statement s is either a primitive statement p (for instance, an assignment
statement or a skip statement), an assume statement, an assert statement, a
sequential composition of statements, a branching statement, or a looping state-
ment. For the sake of generality, we leave primitive statements p and boolean
expressions e uninterpreted. Our abstract syntax for branching and looping state-
ments is standard in the literature on model checking. It is related to the more
familiar syntax for these statements as follows:

if (e) then s1 else s2 ≡ if (∗) then { assume(e); s1 } else { assume(ē); s2 }
while (e) do s′ ≡ { while (∗) do { assume(e); s′ } }; assume(ē)
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(state) a ::= ω | error | 〈s, ω〉

〈p, ωk〉 ↪→ ωl if l ∈ δp(k) (1)

〈assume(e), ωk〉 ↪→ ωk if k ∈ δe (2)

〈assume(e), ωk〉 ↪→ error if k /∈ δe (3)

〈assert(e), ωk〉 ↪→ ωk if k ∈ δe (4)

〈s1, ω〉 ↪→ ω′

〈s1; s2, ω〉 ↪→ 〈s2, ω′〉 (5)
〈s1, ω〉 ↪→ error
〈s1; s2, ω〉 ↪→ error

(6)
〈s1, ω〉 ↪→ 〈s′

1, ω
′〉

〈s1; s2, ω〉 ↪→ 〈s′
1; s2, ω′〉 (7)

〈if (∗) then s1 else s2, ω〉 ↪→ 〈s1, ω〉 (8)

〈if (∗) then s1 else s2, ω〉 ↪→ 〈s2, ω〉 (9)

〈while (∗) do s′, ω〉 ↪→ 〈s′; while (∗) do s′, ω〉 (10)

〈while (∗) do s′, ω〉 ↪→ ω (11)

Fig. 1. Abstract Semantics

where (∗) denotes non-deterministic choice and ē denotes the negation of e.
We next present a model checker for verifying temporal safety properties of

programs expressed in our language. The class of temporal safety properties is
precisely the class of properties whose violation can be witnessed by a finite pro-
gram trace or, equivalently, by the failure of an assertion at a program point. Our
model checker is conventional and is parameterized by the following components:

– A finite set of abstract contexts Ω.
– An abstract transfer function δp ∈ Ω → 2Ω per primitive statement p de-

scribing the effect of p on abstract contexts. We assume that δp is total and
∀i ∈ Ω : δp(i) �= ∅.

– A predicate δe ⊆ Ω per boolean expression e denoting the set of abstract
contexts in which e is true.

These components may be instantiated by any finite-state abstraction scheme.
For instance, if the scheme is predicate abstraction, then Ω is the set of all
valuations to the finite set of predicates with respect to which the predicate
abstraction of the program is constructed. For convenience, we treat Ω as a
set of indices instead of abstract contexts. We use i, j, ... to range over Ω and
ωi, ωj , ... to denote the corresponding abstract contexts indexed by them.

The abstract semantics of the model checker is presented in Figure 1. State
〈s, ω〉 is stuck if �a : 〈s, ω〉 ↪→ a. The only kind of state that can get stuck
is of the form 〈assert(e), ω〉 such that ω /∈ δe. State 〈s, ω〉 goes wrong if
∃〈s′, ω′〉 : (〈s, ω〉 ↪→∗ 〈s′, ω′〉 and 〈s′, ω′〉 is stuck). Given a program s and an
abstract context ω, the model checker determines whether 〈s, ω〉 goes wrong. If
〈s, ω〉 goes wrong, it reports a counterexample which is a finite trace 〈s, ω〉 ↪→∗
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〈assert(e), ω′〉 where ω′ /∈ δe. Otherwise, it returns the finite set of reachable
abstract states { a | 〈s, ω〉 ↪→∗ a } which serves as a proof that the concrete pro-
gram does not go wrong, provided the model checker is sound. Model checking
soundness is typically proved by showing that the abstract semantics simulates
the concrete semantics (see for example [29, 25]).

3 Type System

Our type system assigns a type of the form
∧

i∈A(ωi →
∨

j∈Bi
ωj) to each state-

ment in the program, where A and ∀i ∈ A : Bi are subsets of Ω. Recall that Ω
is finite whence the type is finitary. Intuitively, the type states that it is safe to
begin executing the statement in one of contexts {ωi | i ∈ A } and, furthermore,
if it begins executing in context ωi (i ∈ A) then it will finish executing in one of
contexts { ωj | j ∈ Bi }. Our type system includes the type � �

∧
∅ to handle

the case in which A is empty, and the type ⊥ �
∨

∅ to handle the case in which
any Bi (i ∈ A) is empty.

The type rules are shown in Figure 2. We say that an abstract state 〈s, ωk〉
is well-typed if statement s can be assigned a type that states that it is safe to
begin executing s in abstract context ωk (see rule (12)).

Rule (13) type checks primitive statement p. The type of p captures the effect
of the abstract transfer function δp associated with p. The side-condition of the
rule states that it is safe to begin executing p in any context in Ω because we
have assumed that δp is a total function.

Rule (14) type checks statement assume(e). The side-condition of the rule
says that it is safe to begin executing assume(e) in any context in Ω and, more-
over, the first conjunct in its type states that it has the effect of a skip statement
if it begins executing in a context in which e is true while the second conjunct in
its type states that there does not exist any context in which it finishes executing
if it begins executing in a context in which e is false.

Rule (15) type checks statement assert(e). The side-condition of the rule
says that it is safe to begin executing assert(e) only in a context in which e is
true, and its type states that it has the effect of a skip statement if it begins
executing in such a context.

Rule (16) type checks sequentially composed statements. The side-condition
says that it is safe to begin executing s1; s2 only in contexts in which it is safe
to begin executing s1 and, moreover, if s1 begins executing in such a context,
then it must be safe to begin executing s2 in each context in which s1 might
finish executing.

Rule (17) type checks branching statements. The side-condition says that it
is safe to begin executing if (∗) then s1 else s2 only in contexts in which it
is safe to begin executing both s1 and s2.

Rule (18) type checks looping statements. The side-condition says that it
is safe to begin executing while (∗) do s′ only in contexts in which it is safe
to begin executing s′ and, moreover, if s′ begins executing in such a context,
then it must be safe to begin executing while (∗) do s′ in each context in which



380 M. Naik and J. Palsberg

s :
∧

i∈A(ωi → ∨
j∈Bi

ωj)
〈s, ωk〉 is well-typed

[k ∈ A] (12)

p :
∧
i∈A

(ωi →
∨

j∈δp(i)

ωj) [A ⊆ Ω] (13)

assume(e) :
∧
i∈A

(ωi → ωi) ∧
∧
i∈B

(ωi → ⊥) [A ⊆ δe ∧B ⊆ Ω \ δe] (14)

assert(e) :
∧
i∈A

(ωi → ωi) [A ⊆ δe] (15)

s1 :
∧

i∈A1
(ωi → ∨

j∈Bi
ωj)

s2 :
∧

i∈A2
(ωi → ∨

j∈B′
i
ωj)

s1; s2 :
∧

i∈A(ωi → ∨
k∈⋃{ B′

j | j∈Bi } ωk)

[
A ⊆ A1 ∧

⋃
i∈A

Bi ⊆ A2

]
(16)

s1 :
∧

i∈A1
(ωi → ∨

j∈Bi
ωj)

s2 :
∧

i∈A2
(ωi → ∨

j∈B′
i
ωj)

if (∗) then s1 else s2 :
∧

i∈A(ωi → ∨
j∈Bi∪B′

i
ωj)

[A ⊆ A1 ∩A2] (17)

s′ :
∧

i∈A′(ωi → ∨
j∈Bi

ωj)
while (∗) do s′ :

∧
i∈A(ωi → ∨

k∈µX.({i}∪{Bj |j∈X}) ωk)

[
A ⊆ A′ ∧

⋃
i∈A

Bi ⊆ A

]

(18)

µX.E denotes the least fixed point of function λX.E : 2Ω → 2Ω

Fig. 2. Type Rules

s′ might finish executing. Let µX.E denote the least fixed point of the function
λX.E : 2Ω → 2Ω . Then, the type of while (∗) do s′ states that if the loop
begins executing in context ωi (i ∈ A), then it will finish executing in one of
contexts {ωk | k ∈ µX . ({i} ∪ {Bj | j ∈ X}) }, that is: (i) in the base case (0
iterations) the loop will finish executing in the context ωi in which it began
executing, and (ii) in the inductive case (n+ 1 iterations where n ≥ 0) the loop
will finish executing in one of contexts {ωk | k ∈ Bj } where ωj is a context
in which the loop might finish executing in n iterations, in which case in the
n+ 1th iteration, s′ will begin executing in context ωj and finish executing in
one of contexts {ωk | k ∈ Bj }.

4 Equivalence

In this section, we prove that a program type checks if and only if the model
checker accepts it.

The proof from type checking to model checking is similar to that of type
soundness, consisting of Progress (Lemma 1) and Type Preservation (Lemma 2),
the key difference being that the step relation is the abstract semantics of the
model checker instead of the concrete semantics of the language.
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Lemma 1. (Progress)
If 〈s, ωm〉 is well-typed then 〈s, ωm〉 is not stuck.

Proof. See Appendix.

Lemma 2. (Type Preservation)
If 〈s, ωm〉 is well-typed and 〈s, ωm〉 ↪→t 〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

Proof. See Appendix.

It is then straightforward to prove that if a program type checks then the model
checker accepts it.

Lemma 3. (From Type Checking to Model Checking)
If 〈s, ωm〉 is well-typed then 〈s, ωm〉 does not go wrong.

Proof. Suppose 〈s, ωm〉 is well-typed. We need to prove that 〈s, ωm〉 ↪→t 〈s′, ωn〉
implies 〈s′, ωn〉 is not stuck. Suppose 〈s, ωm〉 ↪→t 〈s′, ωn〉. From 〈s, ωm〉 is well-
typed and 〈s, ωm〉 ↪→t 〈s′, ωn〉 and lemma (2), we have 〈s′, ωn〉 is well-typed.
From 〈s′, ωn〉 is well-typed and lemma (1), we have 〈s′, ωn〉 is not stuck.

The proof from model checking to type checking is constructive and involves
building a type derivation from the model constructed by the model checker.
The following definitions show how to construct types from the model.

Definition 1. A
s = { i ∈ Ω | 〈s, ωi〉 does not go wrong }

Definition 2. Given statement s and i ∈ Ω, define B
s,i ⊆ Ω as follows:

B
s,i = δp(i) if s = p

B
s,i = {i} if s = assume(e) or assert(e) and i ∈ δe

B
s,i = ∅ if s = assume(e) or assert(e) and i /∈ δe

B
s,i =
⋃

{ B
s2,j | j ∈ B

s1,i } if s = s1; s2
B

s,i = B
s1,i ∪ B

s2,i if s = if (∗) then s1 else s2
B

s,i = µX . ({i} ∪ { B
s′,j | j ∈ X }) if s = while (∗) do s′

The key lemma involves showing that the constructed types yield a valid type
derivation. It is proved by induction on the structure of the program.

Lemma 4. (Typability) s :
∧

i∈As(ωi →
∨

j∈Bs,i ωj).

Proof. See Appendix.

It is then straightforward to prove that if a program is accepted by the model
checker then it type checks.

Lemma 5. (From Model Checking to Type Checking)
If 〈s, ωm〉 does not go wrong then 〈s, ωm〉 is well-typed.
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Proof. From lemma (4), we have s :
∧

i∈As(ωi →
∨

j∈Bs,i ωj). From 〈s, ωm〉 does
not go wrong and defn. (1), we have m ∈ A

s. From s :
∧

i∈As(ωi →
∨

j∈Bs,i ωj)
and m ∈ A

s and rule (12), we have 〈s, ωm〉 is well-typed.

Finally, we present our main result which states that a program type checks if
and only if the model checker accepts it.

Theorem 1. (Equivalence)
〈s, ω〉 is well-typed if and only if 〈s, ω〉 does not go wrong.

Proof. Combine lemma (3) and lemma (5).

5 Examples

In this section, we illustrate our equivalence result by means of three examples.
Example 1. Consider the following program:

s1 � lock1(); lock2() where lock() � assert(s = U); s := L

where U and L denote the unlocked and locked states, respectively. Suppose the
model checker is instantiated with predicate abstraction in which case Ω is a set
of program predicates, say {s=U, s=L}. It is easy to see that state 〈s1, s=U〉
goes wrong in the abstract semantics of Figure 1 and is not well-typed in the
type system of Figure 2. As a result, both the model checker and the type system
reject it.

Notice that although not every state 〈s, ω〉 is well-typed in our type system,
every statement s is typable (see lemma (4)). For instance, although 〈s1, s=U〉
is not well-typed, s1 has the type �. The following example motivates the need
for making every statement typable, namely, the need for the type �.
Example 2. Consider the following program:

s2 � lock1(); assume(false); lock2()

Assuming the same predicate abstraction as in the previous example, it is easy
to see that state 〈s2, s=U〉 does not go wrong in the abstract semantics of
Figure 1. This is because lock2() is rendered unreachable from state 〈s2, s=U〉
in the abstract semantics by the assume(false) statement as a result of which
the model checker does not even analyze lock2(). However, the type system must
type check all code, including code that is dead. In particular, it must assign a
type to lock2(). It uses the type � for this purpose. Then, a type derivation for
s2 illustrating that 〈s2, s=U〉 is well-typed is as follows:

lock1() : s=U → s=L assume(false) : s=L → ⊥
lock1(); assume(false) : s=U → ⊥ lock2() : �

s2 : s=U → ⊥
Example 3. Consider the following program:

s3 � { while (∗) do { assume(i �= 2); i := i+ 1 } }; assume(i = 2)
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Suppose the abstraction scheme is predicate abstraction and suppose Ω = {i=0,
i=1, i=2}. Then, each of states 〈s3, i=0〉, 〈s3, i=1〉, and 〈s3, i=2〉 does not go
wrong in our abstract semantics and, likewise, each of them is well-typed in our
type system since s3 has type i=0 → i=2 ∧ i=1 → i=2 ∧ i=2 → i=2. For
instance, a type derivation for s3 illustrating that state 〈s3, i=0〉 is well-typed
is as follows:

assume(i �= 2) : i=0 → i=0 ∧ i=1 → i=1 ∧ i=2 → ⊥
i := i+ 1 : i=0 → i=1 ∧ i=1 → i=2

assume(i �= 2); i := i+ 1 :
i=0 → i=1 ∧ i=1 → i=2 ∧ i=2 → ⊥

while (∗) do { assume(i �= 2); i := i+ 1 } :
i=0 → (i=0 ∨ i=1 ∨ i=2)

assume(i = 2) :
i=0 → ⊥ ∧
i=1 → ⊥ ∧
i=2 → i=2

s3 : i=0 → i=2

Thus, both the model checker and the type system accept each of states 〈s3, i=0〉,
〈s3, i=1〉, and 〈s3, i=2〉.

6 Related Work

In recent years, there has been a significant surge of interest in type systems for
checking temporal safety properties of imperative programs [47, 13, 17, 23, 26].
For instance, consider program s3 in Example 3 above which has the type i=0 →
i=2 ∧ i=1 → i=2 ∧ i=2 → i=2 in our type system instantiated with the
set of abstract contexts Ω = {i=0, i=1, i=2}. In CQual [17], which supports
references and therefore has a more specialized type system than ours, s3 would
be annotated with a constrained polymorphic type:

s3 : ∀c, c′. (ref(l), [l �→ int(c)]) → (ref(l), [l �→ int(c′)]) /
{(c = 0 ⇒ c′ = 2), (c = 1 ⇒ c′ = 2), (c = 2 ⇒ c′ = 2)}

where ref(l) is a singleton reference type, namely, the type of a reference to the
location l, and int(c) is a singleton integer type, namely, the type of the integer
constant c. Singleton types are not unusual and have also been used in the type
systems of languages such as Xanadu [47] and Vault [13] as well as in the type
systems of alias types [45] and refinement types [26].

There is a large body of work on bridging different approaches to static
analysis, most notably (i) on relating type systems and control-flow analysis for
higher-order functional languages, and (ii) on relating data-flow analysis and
model checking for first-order imperative languages.

Type Systems and Control-Flow Analysis. The Amadio-Cardelli type system [2]
with recursive types and subtyping has been shown to be equivalent to a certain
0-CFA-based safety analysis by Palsberg and O’Keefe [36] and to a certain form
of constrained types by Palsberg and Smith [37], thereby unifying three different
views of typing. Heintze [20] proves that four restrictions of 0-CFA are equivalent
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to four type systems parameterized by recursive types and subtyping. Palsberg
shows that equality-based 0-CFA is equivalent to a type system with recursive
types and an unusual notion of subtyping [34]. Palsberg and Pavlopoulou [33]
and Amtoft and Turbak [3] show that a class of finitary polyvariant control-
flow analyses is equivalent to a type system with finitary polymorphism in the
form of union and intersection types. Mossin [28] presents a sound and complete
type-based flow analysis in that it predicts a redex if and only if there exists a
reduction sequence such that the redex will be reduced. Mossin’s approach uses
intersection types annotated with flow information; a related approach to flow
analysis has been presented by Banerjee [5].

Data-Flow Analysis and Model Checking. Schmidt and Steffen [42, 41, 40] relate
data-flow analysis and model checking for first-order imperative languages. They
show that the information computed by classical iterative data-flow analyses is
the same as that obtained by model checking certain modal mu-calculus formu-
lae on the program’s trace-based abstract interpretation (a.i.), an operational-
semantics-based representation of the program’s a.i. as a computation tree of
traces.

7 Conclusions

We have presented a type system that is equivalent to a model checker for verify-
ing temporal safety properties of imperative programs. Our result highlights the
essence of the relationship between type systems and model checking, provides a
methodology for studying their relative expressiveness, is a step towards sharing
results between them, and motivates synergistic program analyses that can gain
the advantages of both approaches without suffering the drawbacks of either.

Two limitations of our current work are that our language lacks features such
as higher-order functions, objects, and concurrency, and the type information
extracted from the model constructed by our model checker may not be suitable
for human reasoning. We intend to explore these issues in the context of specific
verification problems. For instance, see [1] for an approach that infers lock types
from executions of multithreaded Java programs in the context of verifying race-
freedom.
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Appendix

Lemma 6. (Progress) If 〈s, ωm〉 is well-typed then 〈s, ωm〉 is not stuck.

Proof. By induction on the structure of s. There are 6 cases depending upon
the form of s. (In cases (1), (2), (5), and (6), we do not use the hypothesis that
〈s, ωm〉 is well-typed.)

1. s = p. Immediate from rule (1) and the fact that ∀i ∈ Ω : δp(i) �= ∅.
2. s = assume(e). Immediate from rules (2) and (3).
3. s = assert(e). From 〈s, ωm〉 is well-typed and rule (12), we have s :∧

i∈A(ωi →
∨

j∈Bi
ωj) and m ∈ A. From s :

∧
i∈A(ωi →

∨
j∈Bi

ωj) and
rule (15), we have A ⊆ δe. From m ∈ A and A ⊆ δe, we have m ∈ δe. From
m ∈ δe and rule (4), we have 〈s, ωm〉 ↪→ ωm, whence 〈s, ωm〉 is not stuck.

4. s = s1; s2. From 〈s, ωm〉 is well-typed and rule (12), we have s :
∧

i∈A(ωi →∨
j∈Bi

ωj) and m ∈ A. From s :
∧

i∈A(ωi →
∨

j∈Bi
ωj) and rule (16), we

have s1 :
∧

i∈A′(ωi →
∨

j∈B′
i
ωj) and A ⊆ A′. From m ∈ A and A ⊆ A′, we

have m ∈ A′. From s1 :
∧

i∈A′(ωi →
∨

j∈B′
i
ωj) and m ∈ A′ and rule (12), we

have 〈s1, ωm〉 is well-typed. From 〈s1, ωm〉 is well-typed and the induction
hypothesis, we have 〈s1, ωm〉 is not stuck. From 〈s1, ωm〉 is not stuck, we
have ∃a : 〈s1, ωm〉 ↪→ a. There are 3 cases depending upon the form of a. In
each case, we will prove that 〈s, ωm〉 is not stuck.
– a = ω′. From rule (5), we have 〈s, ωm〉 ↪→ 〈s2, ω′〉.
– a = error. From rule (6), we have 〈s, ωm〉 ↪→ error.
– a = 〈s′1, ω′〉. From rule (7), we have 〈s, ωm〉 ↪→ 〈s′1; s2, ω′〉.

5. s = if (∗) then s1 else s2. Immediate from either of rules (8) and (9).
6. s = while (∗) do s′. Immediate from either of rules (10) and (11).

Lemma 7. If s :
∧

i∈C(ωi →
∨

j∈Di
ωj) and m ∈ C and 〈s, ωm〉 ↪→ 〈s′, ωn〉 then

s′ :
∧

i∈E(ωi →
∨

j∈Fi
ωj) and n ∈ E and Fn ⊆ Dm.

Proof. See technical report [30].

Lemma 8. (Single-step Type Preservation) If 〈s, ωm〉 is well-typed and
〈s, ωm〉 ↪→ 〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

Proof. From 〈s, ωm〉 is well-typed and rule (12), we have s :
∧

i∈A(ωi →
∨

j∈Bi
ωj)

and m ∈ A. From s :
∧

i∈A(ωi →
∨

j∈Bi
ωj) and m ∈ A and 〈s, ωm〉 ↪→ 〈s′, ωn〉

and lemma (7), we have s′ :
∧

i∈A′(ωi →
∨

j∈B′
i
ωj) and n ∈ A′. From s′ :∧

i∈A′(ωi →
∨

j∈B′
i
ωj) and n ∈ A′ and rule (12), we have 〈s′, ωn〉 is well-typed.

Lemma 9. (Multi-step Type Preservation) If 〈s, ωm〉 is well-typed and
〈s, ωm〉 ↪→t 〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

Proof. By induction on t (using lemma (8)).
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Lemma 10. We have:

A
s ⊆




A
s1 if s = s1; s2

A
s1 ∩ A

s2 if s = if (∗) then s1 else s2
A

s′
if s = while (∗) do s′

Proof. See technical report [30].

Lemma 11. If s = s1; s2 then
⋃

i∈As B
s1,i ⊆ A

s2 . If s = while (∗) do s′ then⋃
i∈As B

s′,i ⊆ A
s.

Proof. See technical report [30].

Lemma 12. (Typability) s :
∧

i∈As(ωi →
∨

j∈Bs,i ωj).

Proof. By induction on the structure of s. There are 6 cases depending upon the
form of s:

– s = p. From defn. (1) and rule (1), we have A
s = Ω. From defn. (2), we have

∀i ∈ Ω : B
s,i = δp(i). From A

s = Ω and ∀i ∈ A
s : B

s,i = δp(i) and rule
(13), we have s :

∧
i∈As(ωi →

∨
j∈Bs,i ωj).

– s = assume(e). From defn. (1) and rules (2) and (3), we have A
s = Ω. From

defn. (2), we have ∀i ∈ δe : B
s,i = {i} and ∀i /∈ δe : B

s,i = ∅. From A
s = Ω

and ∀i ∈ δe : B
s,i = {i} and ∀i /∈ δe : B

s,i = ∅ and rule (14), we have
s :
∧

i∈As(ωi →
∨

j∈Bs,i ωj).
– s = assert(e). From defn. (1) and rule (4), we have A

s = δe. From defn.
(2), we have ∀i ∈ δe : B

s,i = {i}. From A
s = δe and ∀i ∈ A

s : B
s,i = {i}

and rule (15), we have s :
∧

i∈As(ωi →
∨

j∈Bs,i ωj).
– s = s1; s2. From the induction hypothesis, we have s1 :

∧
i∈As1 (ωi →∨

j∈Bs1,i ωj). and s2 :
∧

i∈As2 (ωi →
∨

j∈Bs2,i ωj). From lemma (10), we have
A

s ⊆ A
s1 . From lemma (11), we have

⋃
i∈As B

s1,i ⊆ A
s2 . From defn. (2),

we have B
s,i =
⋃

{ B
s2,j | j ∈ B

s1,i }. From s1 :
∧

i∈As1 (ωi →
∨

j∈Bs1,i ωj)
and s2 :

∧
i∈As2 (ωi →

∨
j∈Bs2,i ωj) and A

s ⊆ A
s1 and

⋃
i∈As B

s1,i ⊆ A
s2 and

B
s,i =
⋃

{B
s2,j |j ∈ B

s1,i} and rule (16), we have s :
∧

i∈As(ωi →
∨

j∈Bs,i ωj).
– s = if (∗) then s1 else s2. From the induction hypothesis, we have s1 :∧

i∈As1 (ωi →
∨

j∈Bs1,i ωj) and s2 :
∧

i∈As(ωi →
∨

j∈Bs2,i ωj). From lemma
(10), we have A

s ⊆ A
s1 and A

s ⊆ A
s2 . From defn. (2), we have B

s,i = B
s1,i ∪

B
s2,i. From s1 :

∧
i∈As(ωi →

∨
j∈Bs1,i ωj) and s2 :

∧
i∈As(ωi →

∨
j∈Bs2,i ωj)

and A
s ⊆ A

s1 and A
s ⊆ A

s2 and B
s,i = B

s1,i ∪ B
s2,i and rule (17), we have

s :
∧

i∈As(ωi →
∨

j∈Bs,i ωj).
– s = while (∗) do s′. From the induction hypothesis, we have s′ :

∧
i∈As′ (ωi →∨

j∈Bs′,i ωj). From lemma (10), we have A
s ⊆ A

s′
. From lemma (11), we have⋃

i∈As B
s′,i ⊆ A

s. From defn. (2), we have B
s,i = µX.({i} ∪ {B

s′,j | j ∈ X}).
From s′ :

∧
i∈As(ωi →

∨
j∈Bs′,i ωj) and A

s ⊆ A
s′

and
⋃

i∈As B
s′,i ⊆ A

s and
B

s,i = µX.({i} ∪ {B
s′,j | j ∈ X}) and rule (18), we have s :

∧
i∈As(ωi →∨

j∈Bs,i ωj).
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Calculi: Just Add Reduction Rules and Close�

Henning Makholm and J.B. Wells
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Abstract. Many different mobile process calculi have been invented, and for each
some number of type systems has been developed. Soundness and other proper-
ties must be proved separately for each calculus and type system. We present the
generic polymorphic type system Poly✶ which works for a wide range of mobile
process calculi, including the π-calculus and Mobile Ambients. For any calcu-
lus satisfying some general syntactic conditions, well-formedness rules for types
are derived automatically from the reduction rules and Poly✶ works otherwise
unchanged. The derived type system is automatically sound (i.e., has subject re-
duction) and often more precise than previous type systems for the calculus, due to
Poly✶’s spatial polymorphism. We present an implemented type inference algo-
rithm for Poly✶ which automatically constructs a typing given a set of reduction
rules and a term to be typed. The generated typings are principal with respect to
certain natural type shape constraints.

1 Introduction

Many calculi that intend to capture the essence of mobile and distributed computing
have been invented. The most well-known of these are probably the π-calculus [18] and
the Mobile Ambients calculus (MA) by Cardelli and Gordon [8], but they haveinspired
the subsequent development of a wide variety of variants and alternatives, which are
variously argued to be easier to program in or reason about, and/or closer to some opera-
tional intuition about how programs in a mobile, distributed setting can be implemented.
The field stays productive; new calculi are still being proposed and there is not a clear
consensus about what should be considered the fundamental mobility calculus.

The majority of these calculi share the basic architecture of MA: They borrow from
the π-calculus the syntactic machinery for talking about sets of parallel, communicating
processes, plus its primitive operator ν for generating unique names. To this they add
some kind of spatial structure, usually in the form of a tree of locations where processes
can reside. The tree can generally evolve under program control as the processes in it
execute; the different calculi provide quite different primitives for mutating it. Mobility
calculi also provide for communication between processes that are near each other,
usually modelled on the communication primitive of the π-calculus, but again with
variations and often extended with the possibility to communicate “capabilities”, “paths”,
or other restricted pieces of process syntax, rather than just names.
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Most process calculi have an associated type system, either one that was designed
with the calculus from the beginning, or one that was retrofitted later. These type systems
are closely tied to a specific calculus and its particular primitives. Once a type system has
been designed and its properties (such as soundness or the applicability of a particular
type inference algorithm) have been proved, it is in general not trivial to see whether
these properties will survive changes to the calculus.

1.1 A Generic Type System

In contrast, this paper presents the generic type system Poly✶ which works for a wide
range of mobile process calculi. To use Poly✶, one simply instantiates it with the re-
duction rules that specify the semantics of the target calculus’s primitives. From this, a
set of provably sound well-formedness rules for types can be mechanically produced,
guaranteeing that types that satisfy the rules are sound with respect to the reduction rules,
i.e., subject reduction holds. The reduction rules can also be used to guide an automatic
type inference algorithm for the instantiated type system. The inference algorithm pro-
duces a type which is principal with respect to certain natural constraints on the shape
of types. Our implementation offers several possibilities for tuning the precision of the
type system it implements, but the use of these is optional — it will always produce a
typing even when given only the raw reduction rules of the target calculus.

For this to work, the target calculus must make one small concession to Poly✶,
namely that its syntax is sufficiently regular that the implementation can make sense of
its terms and reduction rules. We define a metacalculus Meta✶ which gives a syntax
that is easy to parse and manipulate, while flexible enough that many calculi can be
viewed as instances of it without deviating much from their native notations. Meta✶
does not include any fixed semantics except for the usual semantics of parallelism and
name restriction, but instead provides a common notion of substitution and a notation
for rewriting rules that fits how semantics for process calculi are usually defined.

1.2 Poly✶’s Relation to Other Reasoning Principles

A long-term goal of Poly✶ is to make it possible to view many previously existing
mobility calculi type systems as instances of Poly✶, at least with regards to using the
type system to statically verify that certain bad behaviours do not occur. The design we
present here does not quite reach that point; there are features of existing type systems
that we have not yet incorporated in Poly✶. We believe it will be particularly important
to express some form of the single-threaded locations introduced by the original type
system for Safe Ambients [16].

We do not expect actual programming environments based on mobility calculi to use
the fully general Poly✶ formalism as their type discipline. Considerations of performance
and integration will generally dictate that production environments instead use hand-
crafted specialised type systems for the language they support, though ideas from Poly✶
may well be employed.

A generic implementation of Poly✶, such as the one we present here, should be a
valuable tool for exploring the design space for mobility calculi in general. It will make
it easy to change some aspect of one’s rewriting rules, try to analyse some terms, and
see which effect the new rules have on, for example, the interference-control properties
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of one’s calculus. At the same time, our Poly✶ implementation makes it easy to exper-
iment with exactly how strong a type system one wants to use in practice, because our
implementation supports tuning the precision of types in very small steps.1

Like every nontrivial type system with an inference algorithm, Poly✶ can be used
as a control/data flow analysis to provide the substratum for more specialised automatic
program analyses.2 (Readers who are uncomfortable about applying the term “type
system” to Poly✶ are invited to think “versatile program analysis framework” each time
we write “type system”.) However, we have no pretension of subsuming all other analysis
techniques for mobility or process calculi in general. Process calculi have provided the
setting for many advanced techniques for reasoning about, for example, behavioural
equivalence of processes. Poly✶ does not claim to compete with these.

1.3 Spatial Polymorphism

The Poly✶ type system descends from (but significantly generalises and enhances) our
earlier work [2] on PolyA, a polymorphic type system specific to Mobile Ambients. It
inherits from PolyA the difference from most other type systems for mobility calculi
that the emphasis is on types for processes rather than types for (ambient or channel)
names.3 In fact, types for names have completely vanished: A name has no intrinsic type
of its own, but is distinguished solely by the way it can be used to form processes.

Poly✶ works by approximating the set of terms a given term can possibly evolve to
using the given reduction rules. Its central concept is that of a shape predicate which is
an automaton that describes a set of process terms. Shape predicates that satisfy certain
well-formedness rules are types. These rules are derived from the reduction rules of the
target calculus and guarantee that the set of terms denoted by a type is closed under the
reduction relation, i.e., subject reduction holds.

This design gives rise to a new (with PolyA) form of polymorphism that we call
spatial polymorphism. The type of a process may depend on where in the spatial
structure it is found. When the process moves, it may come under influence of another
part of the type which allows more reductions. For example, consider a calculus which
has the single reduction rule a[eat b|P]|b[Q] ↪→ a[P|b[Q]]. In this calculus, the term
x[eat z1|eat z2]|y1[eat x|z1[0]]|y2[eat x|z2[0]] has a Poly✶ type, shown in Figure 1,
that says that x[] may contain z1[] when it it inside y1[], or z2[] when it it inside y2[], but
can contain neither when it is found at the top level of the term. Thus Poly✶ can prove
that the term satisfies the safety policy that z1 and z2 may never be found side by side.
To our knowledge, type systems based on earlier paradigms cannot do this.

With spatial polymorphism, movement is what triggers the generation of a poly-
morphic variant of the original analysis for a piece of code. This is different from, and

1 These fine tuning options are omitted from this paper due to lack of space, but they are described
in detail in the implementation’s documentation.

2 Indeed it is well known [20, 3] that the difference between an advanced flow analysis and an
advanced type system is often just a question of different perspectives on the same underlying
machinery. The presentation of Poly✶ is closer to the data-flow viewpoint than is common for
type systems, though this of course does not make Poly✶ any less a type system.

3 There are a number of type systems for process calculi without an explicit notion of locations
which assign types to processes rather than names, for example [4, 14, 27, 11].



392 H. Makholm and J.B. Wells

⇒

active{ P in x[P] }
reduce{ a["eat" b|P] | b[Q] --> a[P|b[Q]] }
analyse{ x[eat z1 | eat z2]

| y1[eat x | z1[] ]
| y2[eat x | z2[] ] }

Fig. 1. Input to our type inference implementation for analysing a term in the fictional “eat calcu-
lus”, and the inferred type graph as rendered by the VCG graph layout tool [23] (the dashed lines
represent subtyping edges)

orthogonal to, the more conventional form of name-parametric polymorphism in the
polymorphic π-calculus [24], where it is communication that causes polymorphic vari-
ants to be created. Poly✶ does not support the latter form of polymorphism (and neither
does any type system for a mobility calculus with explicit locations that we are aware
of); we leave it to future work to try to combine the strengths of these two principles.

1.4 Notation and Preliminaries

X , where X is any metavariable symbol, stands for the set that X ranges over. Pfin(A)
is the set of finite subsets of the set A. A fin→ B is the set of finite partial maps from A
to B. Dom f is the set of x’s such that f (x) is defined. In contexts where a sequence of
similar objects are indexed with indexes up to k, it is to be understood that k can be any
integer ≥ 0. Thus, if the first index is 0, the sequence must have at least one element;
sequences indexed from 1 to k may be empty.

2 Meta✶: A Metacalculus of Concurrent Processes

The metacalculus Meta✶ defined in this section is the syntactic setting for Poly✶. Its
role is to let us present the generic properties of Poly✶ without resorting to handwaving.
Though we define a reduction relation and some other formal properties for Meta✶,
these exist solely as support for making formal statements about Poly✶. We do not
intend Meta✶ to take the place of any existing calculi or frameworks.

As a first approximation, Meta✶ is a “syntax without a semantics” except that it does
give semantics to a few basic constructs, e.g., process replication and substitution.

2.1 Terms

Figure 2 shows the syntax of process terms in Meta✶. The trivial process 0, parallel
composition of processes P|Q, process replication !P, and name restriction ν(x).P are
all well-known from most process calculi, including π-calculus and MA. They are given
their usual behaviour by the structural congruence relation ≡.
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Names: x,y ::= a | b . . . z | aa | ab . . . eas | eat | eau . . . | [] | ^ | : | * | / . . . | •
Sub-forms: f ::= x0 x1 . . .xk
Messages: M,N ::= f | 0 | M.N
Elements: E ::= x | (x1,x1, . . . ,xk) | <M1,M2, . . . ,Mk>
Forms: F ::= E0 E1 . . .Ek
Processes: P,Q,R ::= F.P | !P | ν(x).P | 0 | (P|Q)

Free and bound names in terms are defined thus (the omitted cases being purely structural):

FN(x) = {x} BN(x) = ∅

FN((x1, . . . ,xk)) = ∅ BN((x1, . . . ,xk)) = {x1, . . . ,xk}
FN(F.P) = FN(F)∪ (FN(P)\ BN(F)) BN(F.P) = BN(F)∪ BN(P)

FN(ν(x).P) = FN(P)\ {x} BN(ν(x).P) = BN(P)

P ≡ P P ≡ Q =⇒ Q ≡ P P ≡ Q ∧ Q ≡ R =⇒ P ≡ R P|Q ≡ Q|P

P| (Q|R) ≡ (P|Q)|R P|0 ≡ P !P ≡ P|!P !0 ≡ 0

P ≡ Q =⇒ F.P ≡ F.Q P ≡ Q =⇒ !P ≡ !Q P ≡ Q =⇒ ν(x).P ≡ ν(x).Q

P ≡ Q =⇒ P|R ≡ Q|R x �∈ FN(F)∧ x �∈ BN(F) =⇒ F.ν(x).P ≡ ν(x).F.P

x �∈ FN(P) =⇒ P|ν(x).Q ≡ ν(x).(P|Q)

y �∈ FN(P) =⇒ ν(x).P ≡ ν(y).[x := y]P ν(x).ν(y).P ≡ ν(y).ν(x).P

Fig. 2. Syntax of Meta✶ plus its structural congruence relation

Meta✶ amalgamates all other process constructors into the general concept of a form.
Forms have no intrinsic meaning until a set of reduction rules give them one. Examples
of forms include the communication actions “x<y>” and “x(y)” from the π-calculus, the
movement capabilities “in x”, “out x”, and “open x” from Mobile Ambients, and even
ambient boundaries themselves, which we write as “x[]”. We support the traditional
syntax “x[P]” for ambients by interpreting “E1 . . .Ek[P]E ′

1 . . .E
′
k′” as syntactic sugar for

“E1 . . .Ek[]E ′
1 . . .E

′
k.P”. Except for this syntactic convention, the symbol [] has no

special interpretation in Meta✶ and it is a (single) name just like in and out. The process
F.0 can be abbreviated as F .

A form consists of a nonempty sequence of elements, each of which is either a name,
a binding element, or a message element. Names are used to name channels, ambients,
and so on, but also work as keywords that distinguish forms with different roles in the
calculus. A keyword is simply a free name that is matched explicitly by some reduction
rule. Most non-alphanumeric ASCII characters that do not have any special meaning (^,
:, *, /, etc.) are also names and so can be used as keywords. With these we can encode,
e.g., annotated communication actions like “〈M〉∗” or “(x)y” from Boxed Ambients [5]
using pseudo-TEX notation as the forms “<M>^*” and “(x)^y”.

Binding elements (x1, . . . ,xk) are used to create forms that bind names in the process
they are applied to. The canonical use of this is for constructing receive actions, but again
the meaning of the form is specified only by the reduction rules. Message elements <· · ·>
allow a form to contain other forms, which — given appropriate reduction rules for
communication — can later be substituted into processes. For technical reasons we have
to restrict the forms contained in message elements in that they cannot contain message
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or binding elements themselves. We refer to such restricted forms and their elements as
sub-forms and sub-elements. In future work we hope to be able to handle calculi such
as the spi-calculus [1] which communicate structured messages.

It is not uncommon for calculi to prefer using an explicit recursion construction “P ::=
rec X .P” to express infinite behaviour rather than the process replication operator “!”.
There are certain technical problems with supporting this directly in Meta✶ (which may
however be approachable by novel techniques involving regular grammars developed
by Nielson et al. [19]). In the common case where the target calculus does not allow
location boundaries to come between the rec X binder and the bound X , it can easily
be simulated in Meta✶ by adding the reduction rule spawn a | rec a.P ↪→ P and then
representing rec X . · · · .X as ν(x).(spawn x|!rec x. · · · .spawn x).

2.2 Well-Scoped Terms

The process term P is well scoped iff it contains no nested binding of the same name
and none of its free names also appear bound in the term. Formally, it is required that
(1) BN(P) and FN(P) are disjoint, (2) whenever P contains F.Q, BN(F) and BN(Q) are
disjoint, and (3) whenever P contains ν(x).Q, x �∈ BN(Q).

We generally require that terms are always well scoped. The reduction rules in an
instantiation of Meta✶ must preserve well-scopedness. This simplifies the type analysis
because then we do not have to support α-conversion of ordinary binding elements.

We must still handle α-conversion of private names, which is built into the ≡ relation,
but we will assume that it is not used to create terms that are not well scoped.

2.3 Substitutions

Substitutions in Meta✶ substitute messages for names. The fact that entire processes
cannot be substituted is an important technical premise of Poly✶; it means that substi-
tution can preserve well-scopedness. It is remarkable that mobility calculi in general
refrain from substituting processes; calculi such as Seal [25] and M3 [12] which allow
exchange of entire processes do it by local movement rather than substitution. This prob-
ably reflects the intuition that a running process is harder to distribute across a recipient
process than a mere name or code sequence.

A (term) substitution S is a finite map from names to messages. Figure 3 defines the
action of S on the various syntactic classes of Meta✶. In Mobile Ambients and its descen-
dant calculi, the value exchanged in a communication operation can be either a name or a
(sequence of) capabilities. The former is the case in reduction 〈b〉|(a).outa.0 ↪→ outb.0
and the latter in 〈inb〉| (a).x[a.inc.0] ↪→ x[inb.inc.0]. To support this, Fig. 3 contains
special cases for the syntactic cases M ::= F and P ::= F.P when the form F is a lone
name. In that case the substitution for the name is inserted directly into the message (or
process structure).

In cases like {a �→ b}P x[out a.0] where the substituted name occurs properly inside
a form, the substitution is carried out componentwise for each form element, and the
name is replaced in the rule for SE x. In this context the replacement must be a name
too. This will be false if the term tries to reduce as 〈inb〉| (a).outa.0 ↪→ out(inb).0.
The published formalisms of most ambient-inspired calculi usually regard “out(inb)”
as syntactically possible but semantically meaningless. That this configuration cannot
occur is often the most basic soundness property of type systems for such calculi.



Instant Polymorphic Type Systems for Mobile Process Calculi 395

SE x =




x when x �∈ Dom S

y when S(x) = y for some y

• otherwise

SM x =

{
S(x) when x ∈ Dom S

x otherwise

SP (ν(x).P) = ν(x).SP P SP (x.P) =

{
S(x)∗(SP P) when x ∈ Dom S

x.(SP P) otherwise

(M.N)∗P = M∗(N∗P) 0∗P = P f ∗P = f .P

Fig. 3. The actions of term substitution. SM is the action on messages, SE the action on elements,
SF on (sub)forms, and SP on processes. The omitted cases (including the one for SF ) simply
substitute componentwise into the syntactic element in question. The M∗P helper operator serves
to linearise messages once we do not need to keep track of whether they are composite or not. (In
other systems, this is often done by the structural congruence relation instead)

In Meta✶ such a semantic error becomes a syntactic one: It is simply not possible
to use an entire form as an element (except indirectly through a message element). If,
at runtime, a substitution nevertheless tries to do so, we substitute the special name “•”,
which is to be interpreted as, “an erroneous substitution happened here”. Thus, with
the MA communication rule, Meta✶ reduces <in b>.0 | (a).out a.0 ↪→ out•.0. This
convention is technically convenient because it allows us to bound the nesting depth
of forms (using the sub-form restriction). Because most published calculi attach no
semantics to forms like “out(inb)”, we do not lose any real expressiveness.

Forms that contain • are inert in Meta✶ unless there are reduction rules that explicitly
match on •. The calculus designer can also define reduction rules that create •’s in other
situations to mark reduction results as “erroneous”. For example, in the polyadic π-
calculus, it is usually considered a run-time error if someone tries to send an m-tuple on
a channel where another process is listening for an n-tuple, with n �= m. By writing explicit
rules4 for such situations, they can be handled in parallel with malformed substitutions.
(One cannot straightforwardly write patterns to test for malformed substitutions, which
is one reason for building the generation of • into Meta✶).

In either case, the Poly✶ type system will conservatively estimate whether (and
where) a • can occur. Which conclusions to draw from this (e.g., rejecting the input
program due to “type error”) is up to the designer of the calculus.

The definitions in Figure 3 do not worry about name capture. In general, therefore,
SX X is only intuitively correct if BN(X) is disjoint from the names mentioned in S. In
practise, this will always follow from the assumption that all terms are well scoped.

2.4 Reduction Rules

Figure 4 defines most of the syntax and semantics of reduction rules for Meta✶. Our
full theory (and implementation) allows a slightly more expressive template language

4 E.g., reduce{<M1,M2>.P|(x1,x2,x3).Q ↪→ •.0} for (m,n) = (2,3). Our implementation pro-
vides an extension for writing a single rule that catches all pairs (m,n) at once.
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Name variables: x̊ ::= a | b | c | · · ·
Message variables: m̊ ::= M | N | · · ·
Process variables: p̊ ::= P | Q | R | · · ·
Substitutes: s ::= x̊ | m̊
Element templates: E ::= x̊ | x | (x̊1, . . . , x̊k) | <m̊1, . . . , m̊k>
Forms templates: F ::= E0 E1 . . .Ek
Process templates: P ::= p̊ | F.P | 0 | (P1 |P2)

| {x̊0 := s0, . . . , x̊k := sk} p̊ (R)

Rules: R1 ::= reduce{P1 ↪→ P2} | active{ p̊ in P}
Rulesets: R ∈ Pfin( R1 )

The syntactic choice marked (R) is allowed only in a reduce rule to the right of the arrow.

Let an term instantiation V map x̊ to x \ {•}, m̊ to M , and p̊ to P . It applies to
templates strictly componentwise, except for the case that fills in and applies a substitution:

VP ({. . . , x̊i := si, . . .} p̊) = {. . . ,V(x̊i) �→ V(si), . . .}P (V(p̊))

As a special exception, VP P is considered undefined if V(x̊1) = V(x̊2) for x̊1 �= x̊2 such that
x̊1 occurs in P below a form template containing a binding element (. . . , x̊2, . . .).
For example, {a �→ x,b �→ x,c �→ x} cannot be applied to (a).c.0|(b).c.0, which would
otherwise capture names and produce (x).x.0|(x).x.0.

reduce{P1 ↪→ P2} ∈ R

R ' VP P1 ↪→ VP P2

R ' P ↪→ Q
R ' ν(x).P ↪→ ν(x).Q

active{ p̊ in P} ∈ R R ' P ↪→ Q

R ' (V[ p̊ �→ P])P P ↪→ (V[ p̊ �→ Q])P P

R ' P ↪→ Q
R ' P|R ↪→ Q|R

P ≡ Q R ' Q ↪→ R
R ' P ↪→ R

Fig. 4. Syntax and semantics of reduction rules

to the right of the arrow in reduce rules, but the subset we present here is sufficient to
express the calculi listed in Sect. 2.5.

As an example, with this syntax we can describe Mobile Ambients by the ruleset

RMA =
{

active{P in a[P]},
reduce{a[inb.P|Q]|b[S] ↪→ b[a[P|Q]|S]},
reduce{a[b[outa.P|Q]|S] ↪→ a[S]|b[P|Q]},
reduce{opena.P|a[R] ↪→ P|R},
reduce{<M>.P|(a).Q ↪→ P|{a := M}Q}

}

These five rules are all that is necessary to instantiate Meta✶ to be Mobile Ambients.5

The four reduce rules directly correspond to the reduction axioms of the target calcu-
lus. The rule active{P in a[P]} is the Meta✶ notation for the “evaluation context” rule
P ↪→ P′ =⇒ a[P] ↪→ a[P′]. This is, in fact, the only concrete active rule that we have so

5 The rules are not sufficient to get communication reduction with arbitrary arity. Our imple-
mentation provides a syntax for defining arbitrary-arity communication rules, but for reasons
of space and clarity we omit it in our formal development.
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far needed for encoding existing calculi. We might just have hard-coded something like
this rule into Meta✶, but we find it cleaner not to have any built-in distinction between
“action” forms and “process container” forms in the theory.

The lower half of Figure 4 defines how to derive a reduction relation between process
terms from a ruleset. For example, let Reat be the ruleset for the fictional calculus from
Fig. 1: Reat =

{
active{P in a[P]},reduce{a[eatb|P]|b[Q] ↪→ a[P|b[Q]]}

}
. We can

then instantiate the first inference rule in the bottom third of Fig. 4 to obtain

Reat ' y1[eat x| z1[0]]| x[eat z1| eat z2] ↪→ y1[x[eat z1| eat z2]| z1[0]]
by choosing V to be {a �→ y1, b �→ x, P �→ z1[0], Q �→ (eat z1| eat z2)}.

A reduction rule must not allow a well-scoped term to reduce to a non-well-scoped
one. In order to guarantee this, the process templates in them must satisfy some scoping
restrictions that are not apparent from the syntax. The restrictions will be satisfied by
most rules that are intuitively sensible; because a precise understanding of how the
restrictions work is not important for a high-level understanding of Meta✶, we refer to
this paper’s long version [17] for a precise definition.

2.5 Example Instantiations

We have checked (using machine-readable rulesets for our type inference implementation
for Meta✶/Poly✶) that Meta✶ can handle π-calculus [18]; Mobile Ambients [8]; Safe
Ambients [16] and various variants regarding where the out capability must be found
and which name co-capabilities must refer to (variants with anonymous co-capabilities
also exist [15]); the Seal calculus [25] in the non-duplicating variation of [10]; Boxed
Ambients [5], as well as its “asynchronous” and “Seal-like” variants (the latter being
what later papers most often refer to as BA); Channelled Ambients [21]; NBA [6]; Push
and Pull Ambient Calculus [22]; and M3 [12].

In many of these cases, Meta✶ supports the straightforward way to notate process
terms as flat ASCII text, but in some cases the native punctuation of the target calculus
must be changed superficially to conform to Meta✶ conventions about how a form
looks. For example, the original send action yx from [18] is represented as “y<x>” (but
“/y x” would also have worked), and “enter(x,y)” from [6] becomes “co-enter(x)y”,
because it binds x in its continuation but uses y to handshake with the entering ambient.
The “n[c1, . . . ,ck;P]” construction in Channelled Ambients [21] can be represented as
“n[cs.(c1.0| · · ·|ck.0)|ps.P]”. In our ruleset for Mobile Ambients with Objective Moves
[7], the fact that reduction rules cannot inspect the structure of messages forces us to
represent the original “go M.m[P]” as “go.M.m[P]”.

3 Poly✶: Types for Meta✶

3.1 Shape Predicates

As described in the introduction, shape predicates are the central concept in Poly✶. A
shape predicate denotes a set of process terms; certain shape predicates that are provably
closed under reduction are types. The full language of shape predicates is somewhat
complex, so let us introduce it piecewise. The basic idea of shape predicates can be
explained simply: A shape predicate looks like a process term. It matches any process
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term that can arise by repeatedly duplicating and/or removing sub-terms of the shape
predicate. Here, “duplicating” and “removing” sub-terms means applying the rewriting
rules π � π|π and π � 0 to any syntactic subterm of the shape predicate, in addition
to using the structural congruence relation for terms.

For example, a shape predicate written a[inb | inc] | c[0] would match the terms
a[inb| inc]|c[0] (which is identical to the shape predicate) and a[inb]|a[inc]|c[0]
(which arises by duplicating a[· · · ] and then removing one of the in subterms in each of
the copies). But a[inb] | c[a[0]] does not match, because duplicating subterms cannot
make a[] appear below a c[]. Neither is inb| inc|c[0] allowed — when removing
the a[] form, the entire subterm below it must be removed.

The type in Fig. 1 can be written in term shape as y1
[
eat x|z1[0]|x[z1[0]|eat z1|

eat z2]
]
| x[eat z1| eat z2]| y2

[
x
[
eat z1| eat z2| z2[0]

]
| eat x| z2[0]

]
.

In practice shape predicates cannot be exactly term-shaped, but it pays to keep this
naive idea in mind as an intuition about what shape predicates are. When we introduce
complications in the rest of this subsection, they should all be understood as “whatever
is necessary to make the naive idea work in practice”.

Replication (!P) is ignored when matching shape predicates. This is sensible because
!P behaves like an infinite number of P’s running in parallel, and any finite number of
P’s in parallel match a shape predicate exactly if a single P does.

We want to represent all possible computational future of each term smashed together
in a single shape predicate. This creates problems for the naive idea, because terms such
as !x[eat x] can evolve to arbitrary deep nestings of x[· · · ]. Therefore we need shape
predicates to be infinitely deep trees. We restrict ourselves to infinite shape predicates
with finite representations — in other words, regular trees.

There are several known ways of representing regular trees as linear syntax, but we
have found it easier to work directly with graphs. A shape predicate now has the form
〈G |X〉, where G is a directed (possibly cyclic) graph where each edge is labelled with a
form, and X is a designated root node in the graph. A term matches the shape predicate
if its syntax tree can be “bent into shape” to match a subgraph such that each form in the
term lies atop a corresponding edge in the graph (edges may be used more than once),
and groups of parallel composition, !, and 0 lie within a single node in the graph.

The formal structure of Poly✶ uses graphs where node names are just opaque identi-
fiers and the meaning is given by edge labels. When displaying the graphs (as in Fig. 1)
we have found it useful to put each edge label inside the edge’s target node. Of course
this can’t be done in the rare cases when two edges that share a target disagree.

Graphs alone are not enough to guarantee a finite type for every term. For example,
the term <x> | !(y).<y.y> can (given the reduction rules of MA) evolve into terms
with messages that contain arbitrarily long chains of x’s within a single form. We need
to abstract over messages such that an infinity of forms that look alike except having
messages of different length within them can be described by the same shape graph
label. This is the job of message types µ, which are defined in Figure 5.

The message type { f1, . . . , fk}* describes any message built from the any of forms
fi — except messages that are single names; such a message is matched by the message
type {x} instead. When {x} is the only message type that matches x, we can see unam-
biguously from a message type whether • will result from trying to substitute a message
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Message types: µ ::= { f1, . . . , fk}* | {x}
Element types: ε ::= x | (x1, . . . ,xk) | <µ1, . . . ,µk>
Form types: ϕ ::= ε0 ε1 . . .εk
Node names: X ,Y,Z ::= X | Y | Z | · · ·

Type substitutions: T ∈ x fin→ µ

Edges: η ::= X ϕ→ Y | X −T→Y
Shape graphs: G ∈ Pfin( η )
Shape predicates: π ::= 〈G |X〉

M �∈ x M∗0 = f1. f2 . . . fk.0 { f1, . . . , fk} ⊆ { f ′
1, . . . , f ′

k′ }
' M : { f ′

1, . . . , f ′
k′}* ' x : {x}

' x : x ' (x1, . . . ,xk) : (x1, . . . ,xk)

' M1 : µ1 · · · ' Mk : µk

' <M1, . . . ,Mk> : <µ1, . . . ,µk>

' E0 : ε0 · · · ' Ek : εk

' E0 . . .Ek : ε0 . . .εk

(X ϕ→ Y ) ∈ G ' F : ϕ ' P : 〈G |Y 〉
' F.P : 〈G |X〉

' P : π
' !P : π

' P : π ' Q : π
' P|Q : π ' 0 : π

Fig. 5. The syntax and semantics of shape predicates. Edges of the form X −T→Y do not influence
the semantics of the shape predicate; Sect. 3.2 explains what they are for

it matches into an element position. We use element types ε and form types ϕ to build
form-like structures out of message types and non-message elements.

The syntax and semantics of shape predicates is defined in Figure 5. To save space
and present the basic theory more clearly we do not handle name restriction; how to treat
it is described in [17]. We have also omitted a third form of message types, sequenced
message types, which allow more precise types and are defined in [17–sec. 5.2].

Define the meaning of message/element/form types and of shape predicates by

[[µ]] = {M | ' M : µ} [[ε]] = {E | ' E : ε} [[ϕ]] = {F | ' F : ϕ} [[π]] = {P | ' P : π}
Proposition 3.1. The meanings of shape predicates respect the structural congruence:
If P ≡ Q then ' P : π ⇐⇒ ' Q : π for all π. ��

Let µ1 ∗µ2 be the least message type whose meaning includes M.N for all M ∈
[[µ1]],N ∈ [[µ2]]. With the language of message types presented here (omitting sequenced
message types from [17]), µ1 ∗µ2 always has the form { f1, . . . , fk}*, where the fi’s are
all the sub-forms that appear in either µ1 or µ2 in some canonical order (for this purpose
the sub-form x is considered to appear in µ = {x}). The µ1 ∗µ2 operation is associative.

3.2 Flow Edges and Subtyping

The only part of the shape predicate syntax of Figure 5 that has yet not been explained is
the flow edges X −T→Y . They are not used at all in the above definition of the meaning
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Tf (x0 . . .xk) =

{
T(x0) when k = 0 and x0 ∈ Dom T

{TE x0 . . .T
E xk}* otherwise

TM{ f1, . . . , fk}* = {}*∗Tf f1 ∗· · ·∗Tf fk TM{x} =

{
T(x) if x ∈ Dom T

{x} otherwise

TE x =

{
y when TM{x} = {y} for some y

• otherwise

TE<µ1, . . . ,µk> = <TM µ1, . . . ,T
M µk>

TE(x1, . . . ,xk) = (x1, . . . ,xk)

Fig. 6. The action of type substitutions. Tf f is the action on subforms, TM µ is the action on
message types, and TE ε is the action on element types

of the shape graph, but they will be important for distinguishing between types and non-
types. In brief, the flow edge X −T→Y asserts that there may be a reduction where a
process described by X is moved to Y and in the process incurs a substitution described
by T.

Alternatively, X −T→Y can be viewed as a demand that whenever P ∈ [[〈G |X〉]] and
Q arises by applying a substitution described by T to P, it must hold that Q ∈ [[〈G |Y 〉]].
Because flow edges do not contribute to the meaning of shape predicates, there is no
guarantee that this demand is actually satisfied for a shape predicate that contains the
flow edge. This is a global property of the shape graph, and we will shortly define a class
of flow closed shape graphs where the interpretation of flow edges is always true.

An important special case is when T = ∅, where the process moves without any
substitution. Then X −∅→Y can also be viewed as an assertion that 〈G |X〉 is a subtype of
〈G |Y 〉, or, symbolically, that [[〈G |X〉]] ⊆ [[〈G |Y 〉]]. We therefore also speak of X −∅→Y
as a subtyping edge.

Write ' S : T iff Dom S = Dom T and ' S(x) : T(x) for all x ∈ Dom S.
Define the action of type substitution on subforms and message/element types by the

rules in Figure 6. This definition ensures that [[TM µ]] contains the result of every term
substitution SM M where ' S : T and ' M : µ, and likewise for elements.

Definition 3.2. The shape graph G is flow closed iff whenever G contains X ϕ→ Y and
X −T→ Z such that BN(ϕ) ∩ Dom T = ∅, then there is a W such that G contains
Y −T→W and additionally it holds that

1. If ϕ = x and T(x) = {y}, then G contains Z y→ W.

2. If ϕ = x and T(x) = { f1, . . . , fk}*, then W = Z and G contains Z fi→ Z for 1 ≤ i ≤ k.

3. If none of the above apply and ϕ = ε0 . . .εk, then G contains Z TE ε0...T
E εk→ W.

We call a shape predicate 〈G |X〉 flow closed iff its G component is. ��

Intuitively, a flow-closed graph is one where the intuitive meanings of flow edges are
true. That is the content of the following theorem:

Proposition 3.3. Let G be flow closed and contain X −T→Y . Assume that ' S : T and
that BN(P)∩ Dom T = ∅. Then ' P : 〈G |X〉 implies ' SP P : 〈G |Y 〉 ��
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Let a type instantiation U map x̊ to x \{•}, m̊ to µ , and p̊ to X . It applies to element
and form templates completely componentwise (giving element and form types), just like
term instantiations do. The relation betwen type instantiations and process templates are
given by this inference system:

X = U(p̊)
U �L p̊ : 〈G |X〉

(U(p̊)−∅→ X) ∈ G
U �R p̊ : 〈G |X〉

(U(p̊)−...,U(x̊i)�→US si,...→ X) ∈ G

U �R {. . . , x̊i := si, . . .} p̊ : 〈G |X〉

U �s 0 : π
U �s P1 : π U �s P2 : π

U �s P1 |P2 : π
(X UF F→ Y ) ∈ G U �s P : 〈G |Y 〉

U �s F .P : 〈G |X〉

where US x̊ = {U(x̊)} and US m̊ = U(m̊). The rules for template processes have an L variant
and an R variant; the variable letter s ranges over L and R.

As a special exception, U �s P : π is not considered to hold if U(x̊1) = U(x̊2) for x̊1 �= x̊2
such that x̊1 occurs in P below a form template containing a binding element (. . . , x̊2, . . .).

Fig. 7. Matching of reduction rules to shape graphs

The assumption that BN(P) ∩ Dom T = ∅ will be true in our uses because we are
assuming that all terms are well-scoped.

3.3 Semantic and Syntactic Closure; Types

Call the shape predicate π semantically closed with respect to R iff ' P : π and R '
P ↪→ Q imply ' Q : π.

As described above, we want types to be semantically closed shape predicates. But
it is not easy to recognise semantic closure.6 We will therefore define a restricted, but
easier to decide, class of syntactically closed shape predicates, which will be the types.

Figure 7 defines a way to match process templates directly to type graphs without
going via the process semantics from Fig. 4. A type instantiation applies to message,
element, and form templates much like the V’s in Fig. 4, but the process part is different
because a type instantiation maps process metavariables to nodes in the shape graph
rather than processes. This is best illustrated with an example. Assume we wish to find
out whether 〈G0 |R〉 is closed with respect to Reat, where

G0 =




R t[]→ X p[]→ Y eat q→ Z foo→ T

W V bar→ U

S




q[]

s[]

q[]

Reat has only one reduce rule, and we look for matches of its left-hand side, that is
(X0,U0) such that X0 can be reached from the root by edges with labels of the shape x[]
and U0 �L a[eatb|P]|b[Q] : 〈G0 |X0〉. The only such pair is

6 E.g., let G =
{
Y1 ←c Y0 ←b

b→ X0 (a)<{b}*>→ X1 a→ X2 b→ X3 a→ X4 c→ X5
}

. Then

〈G |X0〉 happens to be semantically closed with respect to
{

reduce{(a)<M>.P ↪→ {a := M}P}
}

,
but it is not trivial to see this in a systematic way.
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X0 = X, U0 = {a �→ p, b �→ q, P �→ Y, Q �→ W}
For the graph to be syntactically closed, the same X and U0 must match the right-hand
side of the rule, i.e. U0 �R a[P|b[Q]] : 〈G0 |X〉. This turns out not to be true; if one tries
to construct at derivation it turns out that the judgement U0 �R Q : 〈G0 |V〉 is needed, and
that can only be true if (U0(Q) = W−∅→V) ∈ G0 which is not the case.

Thus the graph is not syntactically closed for Reat, and indeed it is not semantically
closed either, because P1 = t[p[eat q]|q[s[0]]] is in [[〈G0 |R〉]] but P2 = t[p[q[s[0]]]] is not,
even though Reat ' P1 ↪→ P2. If we add the missing edge, giving G1 = G0 ∪{W−∅→V},
we do get U0 �R a[P|b[Q]] : 〈G1 |X〉, but G1 is not flow closed, and we need to add even
more edges to make it so. In the end we get

G2 =




R t[]→ X p[]→ Y eat q→ Z foo→ T

W V bar→ U

S VV




q[]
q[]

s[]
s[]

where, as in Fig. 1, subtyping edges are shown as dashed lines. The shape predicate
〈G2 |R〉 is syntactically and semantically closed.

We are now ready do define syntactic closure formally:

Definition 3.4. Let the shape predicate π = 〈G |X〉 be given. The set of active nodes for
R, written activeR(π), is the least set A of nodes which contains X and such that for all
Y ∈ A and all active{p̊ in P} ∈ R, it holds that U �L P : 〈G |Y 〉 implies U(p̊) ∈ A. ��

Definition 3.5. G is locally closed at X with respect to R iff whenever R contains
reduce{P1 ↪→ P2} it holds that U �L P1 : 〈G |X〉 implies U �R P2 : 〈G |X〉. ��

Definition 3.6. The shape predicate π = 〈G |X〉 is syntactically closed with respect to
R iff G is flow closed and also locally closed at every X ∈ activeR(π). When this holds,
we call π an (R-)type. ��

Checking that a purported type is really syntactically closed is algorithmically easy;
see [17] for details.

Theorem 3.7 (Subject reduction). If π is syntactically closed with respect to R, then
it is also semantically closed with respect to R. ��

3.4 What to Do with Types

Once we have a type, what can we use it for? An obvious possibility is to check whether
the term may “go wrong”. The user (or, more likely, the designer of a programming
environment that uses Poly✶) specifies what “going wrong” means. It is a clear indication
of error if • turns up in an active position, but opinions may differ about if a • is produced
at a place in process tree that never becomes active.

One can also imagine very application-specific properties to check for, for example
“this process can never evolve to a configuration where an ambient named a is inside
one named b”. This is easy to check for in the shape graph. Alternatively, one may want
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to write this as a rule, to have Poly✶ do the checking: reduce{b[a[P]|Q] ↪→ •.0}. The
ability to write such rules is one of the reasons why Meta✶ does not distinguish strictly
between “names” and “keywords”.

Poly✶ makes it fairly easy to check safety properties like “no unauthorised ambients
(e.g., a) inside secure ambients (e.g., b)”, but there are also questions of safety that
Poly✶ cannot help determine. This includes properties that depend on the order in which
things happen, such as the “correspondence assertions” often used to specify properties
of communication protocols. There are type systems for process calculi that can reason
about such temporal properties (for example, [13] for the π-calculus), but we are aware
of none that also handle locations and ambient-style mobility.

4 Type Inference for Poly✶

Assume now that we are given a process term P and a ruleset R; we want to produce an
R-type for P. It is trivial to construct some type for P – one with a single node and a lot
of edges in the shape graph. However, such a type may need to contain •’s and thus not
prove that P “cannot go wrong”. In this section we discuss how to automatically infer
more informative types.

We do not know how to do type inference that is complete for the full Poly✶ type
system; it allows too many types. Therefore we begin by defining a set of restricted
types, for which we can have complete type inference.

Definition 4.1. Write ϕ1 ≈ ϕ2 iff [[ϕ1]]∩ [[ϕ2]] �= ∅. ��

The ≈ relation is close to being equality. The only way for two non-identical ϕ’s to
be related by ≈ is if they contain message types of the shape { · · ·}*. It is relatively safe
to imagine the ≈ is just a fancy way to write =, at least to a first approximation.

Definition 4.2. G satisfies the width restriction iff whenever it contains X ϕ→ Y and

X ϕ′
→ Y ′ with ϕ ≈ ϕ′, it holds that Y = Y ′. ��

Definition 4.3. G satisfies the depth restriction iff whenever it contains a chain X0
ϕ1→

X1
ϕ2→ ·· · ϕk→ Xk with ϕ1 ≈ ϕk, it holds that X1 = Xk. ��

Our type inference algorithm only produces types that satisfy both restrictions. The
width restriction means that when type inference needs to add an outgoing edge from
a node in the graph, it never has to choose between reusing an existing edge starting
there and creating a new edge with a fresh target node, because the latter is forbidden by
the restriction when there is any reusable edge. The depth restriction bounds the length
of a simple path in a shape graph that can be constructed with a given set of names
and a given maximal form arity, and so also bounds the total number of nodes in the
graph. Therefore the closing operation described below cannot keep adding edges and
nodes to the graph indefinitely and will eventually stop. (These two restrictions replace
the notions of “discrete” and “modest” types in [2], which sometimes admitted slightly
more precise types, but were very complex and hard to understand).
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In [17] we describe a feature of our implementation which allows it to loosen the
two restrictions by tracking the origin of each ϕ in the type graph.

The type inference proceeds in two phases. First we construct a minimal shape
predicate which the term matches. Then we close the shape predicate — that is, rewrite
its shape graph as necessary to make it syntactically closed.

The initial phase is simple. Because shape predicates “look like terms”, we can just
convert the abstract syntax tree of the term to a tree-shaped shape graph. This graph
may or may not satisfy the width and depth restrictions. If it does not, unify the nodes
that must be equal.7 That may cause further violations of the two restrictions; continue
unifying nodes as necessary until the restrictions are satisfied.

The closing of the shape graph is where the real work of type inference happens. It
happens in a series of steps. In each step, check whether the shape graph is syntactically
closed. If it is, the algorithm ends. Otherwise, the lack of closure can only be because
edges already in the graph imply that some other edges ought to exist (by Definitions
3.2 or 3.5) but do not. In that case, add the new nodes and edges required by the failing
rule, and do another round of unifications to enforce the width and depth restrictions.

The width and depth restriction together guarantee that the closure phase terminates.
We do not have any good worst-case complexity bounds for the closure phase; instead
our implementation allows further restrictions on types to be applied in order to quench
blow-ups one might observe with particular calculi and example terms. The tightest
restrictions will enforce polynomial complexity, at the cost of losing the possibility
of spatial polymorphism. Thus restricted, Poly✶ has a strength roughly comparable to
current non-polymorphic type systems for ambient-derived calculi.

Theorem 4.4 (Principal typings). A result of type inference π is a principal typing [26]
for the input term P: For every π′ such that ' P : π′ it holds that [[π′]] ⊇ [[π]]. ��

4.1 Implementation

We have implemented our type inference algorithm. Our implementation is available at
the URL 〈http://www.macs.hw.ac.uk/DART/software/PolyStar/〉, as both a source
download and an interactive web interface.

Beyond the features in this paper, our implementation allows fine-tuning of the
analysis precision, which influences inference speed as well as inferred type size.

5 Conclusion

Poly✶ extends basic properties of our previous system PolyA to a more general setting:

1. Poly✶ has subject reduction. Also, given a process term P and a shape predicate π,
one can decide by checking purely local conditions whether π is a type, and it is
similarly decidable whether P matches π. Thus, it is decidable whether a process
belongs to a specific type.

7 This is the only way to reach a graph that satisfies the restrictions. If the width and depth
restrictions had used = instead of ≈, there might also have been the option of rewriting a ϕ to
something larger but different, but there would not be a unique “best way” of doing that.
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2. Poly✶ supports a notion of spatial polymorphism that achieves what Cardelli and
Wegner [9] called “the purest form of polymorphism: the same object or function
can be used uniformly in different type context without changes, coercions or any
kind of run-time tests or special encodings of representations”.

3. The types of Poly✶ are sufficiently precise that many interesting safety/security
properties can be checked, especially those that can be formulated as questions on
the possible configurations that can arise at run-time.

In addition, this paper makes these completely novel contributions:

4. Meta✶ is a syntactic framework that can be instantiated into a large family of mobile
process calculi by supplying reduction rules.

5. The generic type system Poly✶ works for any instantiation of Meta✶. We have
checked that it works for π-calculus, a large number of ambient calculi, and a version
of the Seal calculus. In [2] we claimed PolyA would be easy to extend to ambient-like
calculi by hand, but extending the proofs for PolyA manually would be tedious. With
Meta✶ we have developed the theory to do such extensions fully automatically.

6. For the subsystem of Poly✶ satisfying the width and depth restrictions, there is a
type inference algorithm (which we have implemented) that always successfully
infers a principal type for any process term. This means that Poly✶ has the potential
for compositional analysis.

7. The width and depth restriction are more natural and intuitive than the “discreteness”
and “modesty” properties with respect to which we showed existence of principal
types for PolyA.

8. Poly✶’s handling of communication and substitution has been redesigned to be more
direct and intuitive than in PolyA.

5.1 Related Work

Another generic type system for process calculi was constructed by Igarashi and Ko-
bayashi [14]. Like the shape predicates in Poly✶, their types look like process terms
and stand for sets of structurally similar processes. Beyond that, however, their focus
is different from ours. Their system is specific to the π-calculus and does not handle
locations or ambient-style mobility. On the other hand, it is considerably more flexible
than Poly✶ within its domain and can be instantiated to do such things as deadlock and
race detection which are beyond the capabilities of Poly✶.

Yoshida [27] used graph types much like our shape predicates to reason about the
order of messages exchanged on each channel in the π-calculus. Since this type system
reasoned about time rather than location, it is not directly comparable to Poly✶, despite
the rather similar type structure.

The spatial analysis of Nielson et al. [19] produces results that somewhat resemble
our shape graphs, but does not have spatial polymorphism.
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Abstract. JavaScript is a popular language for client-side web scripting.
It has a dubious reputation among programmers for two reasons. First,
many JavaScript programs are written against a rapidly evolving API
whose implementations are sometimes contradictory and idiosyncratic.
Second, the language is only weakly typed and comes virtually without
development tools.

The present work is a first attempt to address the second point. It does
so by defining a type system that tracks the possible traits of an object
and flags suspicious type conversions. Because JavaScript is a classless,
object-based language with first-class functions, the type system must
include singleton types, subtyping, and first class record labels. The type
system covers a representative subset of the language and there is a type
soundness proof with respect to an operational semantics.

Keywords: dynamic type systems, program analysis, objects, functions.

1 Introduction

JavaScript has originally been developed by Brendan Eich at Netscape Corp as
a language for client-side web scripting. Judging from the material available, the
language has grown evolutionary by demand of its users. As the language gained
widespread use and with the involvement of several industrial players, a language
definition was published as a standard under the name ECMAScript[4].

JavaScript is a weakly typed object-based language in the sense that it has
objects but no classes. It relies on prototyping instead of inheritance to share
and extend functionality in the tradition of the Self language [14]. In addition to
the usual support for imperative programming, JavaScript has lexically scoped
first-class functions so it may be called a functional programming language, too.

To date, JavaScript has numerous users because it is the primary scripting
language for dynamic HTML and it is supported by virtually all web browsers.
However, programmers do not really appreciate the language. Their main prob-
lem is that programs that work with one brand of browser do not work with
another brand. In fact, numerous (cook-) books and lots of code have been writ-
ten to detect and address these problems. A closer look reveals that this point is
not criticizing the language but rather the differences in the object hierarchies
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provided by different browsers. The language itself is stable since 1999 so that
only obsolete browsers implement the language in a significantly different way.

Another point deplored by JavaScript programmers is the lack of develop-
ment tools. Despite the fact that significant libraries and applications have been
developed, it has taken until very recently that a debugger is available. Taken
together with the differences in the object hierarchies, it can become very hard
to debug and maintain JavaScript programs.

To a large extent, the maintenance problem is caused by the weak type system
of the language. Although every value of the language has a fixed type at runtime,
values are converted automatically from one type to another when the context
of use requires it. While many scripting programmers advocate such weak type
systems because of the convenience they offer, it is easy to find situations where
the automatic conversion leads to surprising results (see Section 2).

We believe that a type-based program analyzer for JavaScript programs
would be of interest to developers and maintainers alike. It would make mainte-
nance easier by automatically inferring a type signature as a minimal interface for
each function. It would make development easier by rejecting programs with type
mismatches outright and by flagging suspicious conversions. It would also make
multi-browser development easier because the differences between browsers can
be modeled by providing different types for the built-in object hierarchies. Last
but not least, it would provide a basis for higher program structuring methods
like module systems.

The present work presents a first step towards the construction of such a
type system. After discussing some motivating examples in Section 2, we define
the syntax of a small, but paradigmatic subset of JavaScript in Section 3. Next,
in Section 4, we define the syntax of a suitable type language and typing rules
along with an informal description of the respective language construct. Section 5
specifies a small-step operational semantics for the language (extracted from the
160+ page verbal specification) and Section 6 presents a type soundness result.
Finally, we discuss related work (Section 7) and conclude.

2 Motivation

The object is the main data structure in JavaScript. Unlike structs in C or
objects in Java, a JavaScript object is not statically fixed to a certain number
of properties (fields) or even to certain names of properties. An object is rather
a finite function from strings to JavaScript values that can be modified in any
conceivable way: properties may be dynamically added, removed, or changed.
Working with objects has a few pitfalls illustrated with the following transcript
(running the JavaScript interpreter Rhino [11]).

js> var obj = { x: 1}
js> obj.x
1
js> obj.y
js> print(obj.y)
undefined



410 P. Thiemann

The first line creates an object with property x and value 1. This property can
be accessed with the usual dot notation. Next, we try to access a non-existent
property. Instead of failing, the result is the value undefined which can even be
converted to a string if required by the context (last line). Our type system
can identify the places where such conversions happen.

Since objects are really functions from strings to values, there is an alternative
notation for object access which looks like array access. That is, if there is an
object access in a program, the actual property name may be statically unknown.

js> var x = "x"
js> obj[x]
1
js> obj["undefined"] = "gotcha"
js> obj[obj.y]

(We leave it to the reader to figure out the answer of the interpreter to the last
input.) Our type system uses singleton types to track the values of
base type variables to increase the precision of property accesses and
updates.

To evaluate the expression a.x = 51 in a sensible way, the value of a must
be an object. This requirement is enforced by JavaScript, but in a potentially
surprising way:

js> var a = "black hole"
js> a.x = 51
51
js> a.x
js>

What is going on? The value in variable a has type string and string happens to
be a base type. Since base type values do not possess properties, the assignment
to property x might just fail. Instead, JavaScript creates a wrapper object for
the string and creates a property x for it. Since a refers directly to the string,
the wrapper object becomes garbage and the evaluation of a.x creates a new
wrapper object which does not know anything about property x. Our type
system flags such silent wrapper conversions.

If we were to start the above script with var a = new String("black
hole") everything would work as expected and a could be used in the same
way as a base type string value.

js> var a = new String("black hole")
js> a.x = 51
51
js> a.x
51
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Auxiliary
str ∈ String Constants
Expressions
e ::= this self reference in method calls

| x variable
| c constant (number, string, boolean)
| {str : e, . . . } object literal
| function x(x, . . .){var x, . . . ; s} function expression
| e[e] property reference
| new e(e, . . .) object creation
| e(e, . . .) function call
| e = e assignment
| p(e, . . .) primitive operators (addition, etc.)

Statements
s ::= skip no operation

| e expression statement
| s;s sequence
| if (e) then {s} else {s} conditional
| while (e) {s} iteration
| return e function return

Fig. 1. Syntax of Core JavaScript

3 Core JavaScript

The starting point of our work is a restricted version of the JavaScript language.
It is still sufficiently rich to expose the important points in the design of a
meaningful type system for the language.

JavaScript is a weakly and dynamically typed, object-based language. The
layout of an object is not fixed, rather an object is a dynamic table that maps
property names (strings) to property values. Although each value possesses a
type, there are exhaustive automatic conversions defined between each pair of
types. As there are no classes, there is instead a prototyping mechanism that
allows to inherit properties from prototype objects. The language includes first-
class functions which also serve as pre-methods. When a function is assigned to
a property of an object, the function becomes a method and each reference to
this in its body resolves to a reference to the object at method invocation time.

Figure 1 summarizes the syntax of Core JavaScript. There are expressions e
and statements s. Expressions comprise the following alternatives
– this is the reference to the object receiving a method call. It only makes

sense in functions used as methods or constructors.
– x variables in the usual way.
– c literals. Each literal has a type given by a function TypeOf.
– An object literal creates a new object with properties given by literal strings

str as property names and their values given by expressions.1

1 JavaScript also allows number literals and identifiers as property names.
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– A function expression function f(x1, . . .){var y1, . . . ; s} defines an anony-
mous function with arguments x1, . . ., local variables y1, . . ., and body s.
The resulting function may be recursive if the function body refers to the
functions identifier f , which is not visible outside the function body.

– e1[e2] is a property reference. e1 should evaluate to an object and e2 to a value
for naming the property. The name of the property is found by converting
the value of e2 to a string. The full language allows the expression e.x where
the identifier x is the property name. However, this expression is equivalent
to e[“x′′].

– new e0(e1, . . .) creates a new object and applies the function value of e0 with
parameters e1, . . . as a method to the object. In general, it returns the newly
constructed object.

– e0(e1, . . .) applies the function value of e0 to the values of e1, . . .. If e0 is a
property reference, i.e., e0 = e01[e02], then the function is called as a method.

– e0 = e1 evaluates e0 as a reference and assigns the value of e1 to it.
– p(e1, . . .) stands for a primitive function call, e.g., an arithmetic operation,

comparison, and so on.

Functions are used in two non-standard ways in JavaScript. First, they play the
role of pre-methods. A function that is assigned to a property becomes a method.
Calling a function via a property reference amounts to a method invocation that
additionally binds this to the receiver object. Second, they become constructor
functions when invoked through the new operator. In a constructor function,
this is bound to the new object and new returns whatever the function returns
(or this if it returns undefined).

The full language has further kinds of expressions. There are array literals
which behave similarly to object literals, assigning primitives like pre- and post-
increment, property deletion, and conditional expressions. We have also “cleaned
up” the syntax of function bodies: all local variable declarations are gathered at
the beginning, whereas the full language allows var declarations everywhere in
the body.

The language of statements comprises the traditional constructs. The full
language includes three further variations of loops, labeled continue and break
statements, a switch statement and a with statement for opening an object
as the innermost scope. They are left out because they are easy to simulate
with the remaining constructs. Exceptions in the style of Java are present in
the full language, but are left out of our consideration because their type-based
analysis adds considerable complication but not much novelty [12, 16]. Finally,
JavaScript has a var statement to declare a variable as local in the current
function. This statement may occur anywhere in the body of a function and
affects all occurrences of the declared variable even in front of the declaration.
Our syntax assumes that a semantic analysis already collected the local variables
at the beginning of each function body.
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Types
τ ::=
∑

i∈T,T⊆{⊥,u,b,s,n,o} ϕi

Rows
� ::= str : τ, �
| δτ

Type environments
Γ ::= Γ (x : τ)
| ∅

Type summands and indices
ϕ⊥ ::= Undef
ϕu ::= Null
ϕb ::= Bool(ξb)
ξb ::= false | true | �
ϕs ::= String(ξs)
ξs ::= str | �
ϕn ::= Number(ξn)
ξn ::= num | �
ϕf ::= Function (this : τ ; �→ τ)
ϕo ::= Obj(

∑
i∈T,T⊆{b,s,n,f,⊥} ϕi)(�)

Fig. 2. Syntax of types

4 Types for Core JavaScript

What is the purpose of a type system for a language like JavaScript? The usual
goal of a type system is to avoid runtime errors due to type mismatches. However,
such runtime errors are fairly rare in JavaScript since most of the time there is a
suitable conversion function to reconcile a type mismatch. But three causes for
runtime errors remain and they must be rejected by our type system.

1. Function calls and the new expression both expect their first operand to
evaluate to a function. If that is not the case, they raise an exception.

2. Applying an arithmetic operator to an object raises an exception unless the
object is a wrapper object for a number.

3. Accessing a property of the null object (available as a literal constant) or
of the value undefined raises an exception.

4. Accessing a non-existent variable causes an exception.

Section 2 has also demonstrated type conversions which are convenient in some
circumstances but may cause unexpected results.

4.1 Syntax of Types

Figure 2 defines the type language. The language definition[4] prescribes a value
structure consisting of the base types undefined, null, boolean, number, and
string as well as different kinds of objects (plain objects, wrapper objects for
boolean, number, and string, function objects, array objects, and regular ex-
pression objects). Hence, the type system is based on discriminative sum types
which are used at two levels. The outer level distinguishes between the different
base types and objects, whereas the inner level distinguishes different features
of objects. The feature component indicates the type of the implicit VALUE
property of an object. Besides this feature component, the object type reflects
the properties of an object by a row type as its second component. Row types
* are slightly unusual because their labels are string constants. However, this
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choice is dictated by the language definition which states that property names
are strings and that every value that is used for addressing a property is first
converted to a string. The δτ at the end of a row provides a default type for all
properties not mentioned explicitly. Rows are considered modulo the equations

str1 : τ1, . . . , strn : τn, δτ = str1 : τ1, . . . , strn : τn, str : τ, δτ
. . . , str i : τi, . . . , str j : τj , . . . = . . . , str j : τj , . . . , str i : τi, . . .

where n ∈ N, str /∈ {str1, . . . , strn}, and all str i are different.
The type syntax clearly shows that there are wrapped and unwrapped ver-

sions of booleans, strings, and numbers. The types for null and objects are
intrinsically wrapped (or unwrapped), and functions are always wrapped into
an object. We write ⊥ for the empty sum. Base types are further refined by type
indices. Our definition allows as index either a constant of the appropriate type
or �. A constant refines the type to a singleton type whereas � does not impose
a restriction. Singleton string types serve to address the properties of an object.

Each function may take this as an implicit parameter if the function is used
as a method or a constructor. Furthermore, the number of formal parameters
in a function definition need not match the number of actual parameters. If
there are too few parameters, the remaining are taken to be undefined. If there
are too many, the excess ones are ignored. Alternatively, the function body can
access the actual parameter list via an array, the object arguments. Hence, the
function type has a special place for this and requires an row type in place of
the argument types.

4.2 Subtyping

It is rather delicate to choose a subtyping relation for Core JavaScript. Our
design keeps subtyping separate from type conversion, which is modeled by a
matching relation. While subtyping is vital to model the dynamically typed
nature of the language, applying a conversion too early may result in rejecting
a perfectly legal program.

The subtyping relation <: consists of the usual subtyping for variants in
the form of type summands, function arguments are dealt with in the usual
contravariant manner, and rows are only subject to depth subtyping.

All elimination rules rely on the matching relation �. This relation makes sure
that a type can be converted to the form desired by the elimination. Matching
is explained with the typing rule for e0[e1] in the next subsection.

4.3 Typing Rules

The type system defines a number of judgments.

– Γ ' e : τ types an expression e in a context where its value is required.
– Γ 'ref e : τ/τ ′ types an expression e in a context where a reference may be

required. In such a context, τ ′ is the type of the base object of the reference.
For example, if e = e1[e2] then e1 is the base object. The type of the base
object is required to provide the type of this for a method call.



Towards a Type System for Analyzing JavaScript Programs 415

– Γ 'lhs e : τ types a left-hand side use in an assignment.
– Γ 'stm s� τ types a statement that may return a value of type τ .
– 'acc *@ τ �→ τ ′ computes the type for an object access.
– 'upd *@ τ ←� τ ′ computes the type for an object update.

There are only two typing rules for expressions in a value context, a subtyping
rule and a rule that delegates the actual work to the 'ref judgment by ignoring
the base type.

Γ ' e : τ τ <: τ ′

Γ ' e : τ ′
Γ 'ref e : τ/τ ′

Γ ' e : τ

The next set of rules considers expressions (potentially) in a reference context.
The rules for variables and constants are standard. Of course, neither of them
provides a base object so the base type is ⊥ in both cases.

(x : τ) ∈ Γ
Γ 'ref x : τ/⊥ Γ 'ref c : TypeOf(c)/⊥

The typing for object literals is similar to the corresponding rule in Abadi
and Cardelli’s object calculus [1]. The main difference is in the choice of literal
strings instead of labels. The object constructed by the object literal has no
special features as indicated by the feature Undef.

Γ ' e1 : τ1 . . . Γ ' en : τn
Γ 'ref {str1 : e1, . . . , strn : en} : Obj(Undef)(str1 : τ1, . . . , strn : τn)/⊥

Function expressions are not as straightforward as usual.

Γ (this : τ0)(f : τ)(x1 : τ1) . . . (xn : τn)(arguments : Obj(⊥)(*))
(y1 : τ ′1) . . . (yn : τ ′n) 'stm s� τ ′

τ0 = Obj(ϕ′)(*′) τ = Obj(Function (this : τ0; * → τ ′))(δ⊥)
* = ”length” : Number(n), 506 : τ1, . . . , 5n− 16 : τn, δ⊥
Γ 'ref function f(x1, . . . , xn){var y1, . . . , ym; s} : τ/⊥

Besides providing the type assumptions for the arguments and the function, it
also establishes the type assumption for this and arguments. The latter is set
up as an array, that is, an object with a length property and numeric properties
where 5n6 stands for the string containing the decimal representation of n.

The next rule concerns property access. It is the only rule that creates a
meaningful reference in the judgment for reference contexts.

Γ ' e1 : τ1 τ1 � Obj(ϕ1)(*1) Γ ' e2 : τ2 'acc *1 @ τ2 �→ τ ′

Γ 'ref e1[e2] : τ ′/τ1

As e1 denotes the base object, τ1 is the required type of the enclosing object.
The auxiliary judgment 'acc * @ τ �→ τ ′ computes the type of a property stored
in an object of type * and accessed with a property name of type τ . Figure 3
contains its definition as well as the definition of its cousin 'upd *@ τ ← � τ ′ which
governs the typing of update operations. Both traverse the row * in one of two
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�acc � @ τ ′ �→ τ ¬(str ∈ τ ′) ¬(str is τ ′)
�acc str : τ2, � @ τ ′ �→ τ

�acc � @ τ ′ �→ τ1 str ∈ τ ′ ¬(str is τ ′)
τ1 <: τ τ2 <: τ

�acc str : τ2, � @ τ ′ �→ τ

str is τ ′

�acc str : τ, � @ τ ′ �→ τ

�acc δτ @ τ ′ �→ τ

�upd � @ τ ′ ←� τ ¬(str ∈ τ ′) ¬(str is τ ′)
�upd str : τ2, � @ τ ′ ←� τ
�upd � @ τ ′ ←� τ

str ∈ τ ′ ¬(str is τ ′) τ <: τ2
�upd str : τ2, � @ τ ′ ←� τ

str is τ ′

�upd str : τ, � @ τ ′ ←� τ
τ <: τ2

�upd δτ2 @ τ ′ ←� τ
str is String(str)

str is Obj(String(str))(�)

-n. is Number(n)

-n. is Obj(Number(n))(�)

-false. is Bool(false)
-true. is Bool(true)

-false. is Obj(Bool(false))(�)
-true. is Obj(Bool(true))(�)

str ∈ String(ξs) + . . . if str ≤ ξs

str ∈ Obj(String(ξs) + . . .)(�) + . . . if str ≤ ξs

-n. ∈ Number(ξn) + . . . if n ≤ ξn

-n. ∈ Obj(Number(ξn) + . . .)(�) + . . . if n ≤ ξn

-false. ∈ Bool(ξb) + . . . if false ≤ ξb

-true. ∈ Bool(ξb) + . . . if true ≤ ξb

where x ≤ x and x ≤ �, for x ∈ ξ.

Fig. 3. Property access

modes: If the type τ contains definite information about the property name,
then τ ′ becomes the type of that property (or the type associated to undefined
properties). If τ does not contain definite information, then the judgment returns
a supertype (subtype for 'upd) of all applicable property types.

The match relation τ � ϕ performs a one-way matching of an arbitrary type
τ to a type summand ϕ. Matching succeeds if τ as a whole can be converted
to a type with single summand ϕ. It acts like a constraint in the sense that it
propagates information from τ to ϕ but not the other way round. Its conversions
correspond to the definition in Chapter 9 of the ECMAScript standard [4].

The next rule deals with function call and method invocation.

τ0 � Obj(Function (this : τ ′; 506 : τ1, . . . , 5n− 16 : τn, * → τ))(*′)
Γ 'ref e0 : τ0/τ ′ Γ ' e1 : τ1 . . . Γ ' en : τn

Γ 'ref e0(e1, . . . , en) : τ/⊥

The rule requires that the function’s argument types coincide with the types of
the actual function arguments. In addition, the 'ref judgment retrieves the type
τ ′ of a suitable base object (τ ′ = ⊥ if no such object exists). For a method
invocation, τ ′ is the type of the receiver object, this.

The rule for new covers the use of a function as a constructor.

τ0 � Obj(Function (this : τ ′′; 506 : τ1, . . . , 5n− 16 : τn, * → τ))(*′)
Γ ' e0 : τ0 Γ ' e1 : τ1 . . . Γ ' en : τn τ ′′ <: τ ′ τ <: τ ′

Γ 'ref new e0(e1, . . . , en) : τ ′/⊥
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Γ �stm skip � τ ′ Γ � e : τ
Γ �stm e � τ ′

Γ �stm s1 � τ Γ �stm s2 � τ

Γ �stm s1;s2 � τ

Γ � e : τ
Γ �stm return e � τ

Γ � e : τ ′ Γ �stm s1 � τ Γ �stm s2 � τ

Γ �stm if (e) then {s1} else {s2} � τ

Γ � e : τ ′ Γ �stm s : τ
Γ �stm while (e) {s} � τ

Fig. 4. Typing rules for statements

A call to a constructor function binds this to the new object. this of type τ ′′ is
also the default return value if the function returns undefined. Otherwise, new
returns whatever the constructor returns (τ). The subtyping built into the rule
allows for both of these possibilities.

The rule for assignment infers the type of e0 as a left-hand side.

Γ 'lhs e0 : τ Γ ' e1 : τ
Γ 'ref e0 = e1 : τ

The typing judgment for left-hand sides has two rules, for variables and for
property references. Property references are dealt with analogously to the rule
for 'ref, however, using the 'upd judgment in place of 'acc. Since assignment writes
to the reference, 'upd forces the type of the written value to be a lower bound for
the type of the stored value. The judgment for 'acc behaves the other way round.

(x : τ) ∈ Γ
Γ 'lhs x : τ

Γ ' e1 : τ1 τ1 � Obj(ϕ1)(*1) Γ ' e2 : τ2 'upd *1 @ τ2 ←� τ ′
Γ 'lhs e1[e2] : τ ′

The typing rules for statements in Figure 4 are entirely standard. There is
no subtyping rule for the return type of a statement because subtyping can be
applied at the expression level before applying the rule for return .

5 Semantics

We specify a small-step operational semantics for Core JavaScript. To that end,
we extend the syntax of expressions by store locations l drawn from a set
Loc, variable references var(l, str), property references prop(l, str), and define
one-step reduction relations for statements Σ, l0, s →s Σ′, s′ and expressions
Σ, l0, e →e Σ

′, e′, where Σ and Σ′ : Loc → Storable are stores, l0 ∈ Loc is the
address of an activation record, e, e′ are expressions, and s, s′ are statements.
These relations are refined by address computation Σ, l0, e →a Σ

′, e and method
access Σ, l0, e →m Σ′, e which rely on further relations →l (left-hand side of as-
signment) and →v (variable access). Storables are defined by

Storable = (String Constants + {VALUE, up, this}) → Value
Value = {undefined, null} + Boolean + Number + String + FValue + Loc
FValue = function f@l(x1, . . . , xn){var y1, . . . , ym; s}
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Expressions (see the appendix for the standard contextual rules)

Σ, l0, this →e Σ, Σ(l0)(this)

Σ, l0, x →v Σ′, var(l, str)
Σ, l0, x →e Σ′, Σ′(l)(str)

Σ, l0, var(l, str) = v →e Σ[l �→ Σ(l)[str �→ v]], v

Σ, l0, prop(l, str) = v →e Σ[l �→ Σ(l)[str �→ v]], v

Σ, l0, {str1 : v1, . . . , strn : vn} →e Σ[l �→ [str1 �→ v1, . . . , strn �→ vn]], l
if l /∈ dom(Σ)

Σ, l0, function f(x1, . . . , xn){var y1, . . . , ym; s}
→e Σ[l �→ [VALUE �→ function f@l0(x1, . . . , xn){var y1, . . . , ym; s}]], l

if l /∈ dom(Σ)

Σ, l0, l[str ] →e Σ, Σ(l)(str)

Σ, l0, l(v1, . . . , vn)
→e Σ[l′ �→ [this �→ null, up �→ l1, f �→ l, x1 �→ v1, . . . , y1 �→ undefined, . . .]], AR(l′, s)

if l′ /∈ dom(Σ), Σ(l)(VALUE) = function f@l1(x1, . . . , xn){var y1, . . . , ym; s}

Σ, l0, prop(l′′, str)(v1, . . . , vn)
→e Σ[l′ �→ [this �→ l′′, up �→ l1, f �→ l, x1 �→ v1, . . . , y1 �→ undefined, . . .]], AR(l′, s)

if l′ /∈ dom(Σ), Σ(Σ(l′′)(str))(VALUE) = function f@l1(x1, . . . , xn){var y1, . . . , ym; s}

Σ, l0, new l(v1, . . . , vn)
→e Σ[l′ �→ [this �→ l′′, up �→ l1, f �→ l, x1 �→ v1, . . . , y1 �→ undefined, . . .], l′′ �→ [ ]], AR(l′, s)

if l′, l′′ /∈ dom(Σ), Σ(l)(VALUE) = function f@l1(x1, . . . , xn){var y1, . . . , ym; s}

Σ, l0, AR(l, return v) →e Σ, v

Σ, l0, AR(l, skip) →e Σ, undefined

Σ, l, s →s Σ′, s′

Σ, l0, AR(l, s) →e Σ′, AR(l, s′)

Σ, l0, e0 →m Σ′, e′
0

Σ, l0, e0(e1, . . .) →e Σ′, e′
0(e1, . . .)

Σ, l0, e0 →l Σ′, e′
0

Σ, l0, e0 = e1 →e Σ′, e′
0 = e1

Addresses (where →l=→v ∪ →a and →m⊇→a where all cases omitted in →a are identical to
expression cases with →e replaced by →a in the conclusion)

Σ, l0, x →v Σ, var(l0, x) if x ∈ dom(Σ(l0))

Σ, Σ(l0)(up), x →v Σ′, v
Σ, l0, x →v Σ′, v

if x /∈ dom(Σ(l0)), up ∈ dom(Σ(l0))

Σ, l0, x →v Σ, var(l0, x) if x /∈ dom(Σ(l0)), up /∈ dom(Σ(l0))

Σ, l0, l[str ] →a Σ, prop(l, str)
Σ, l0, e0 →e Σ′, e′

0
Σ, l0, e0[e1] →a Σ′, e′

0[e1]
Σ, l0, e1 →e Σ′, e′

1
Σ, l0, v0[e1] →a Σ′, v0[e′

1]

Fig. 5. Operational semantics

The elements of Storable are objects. They map property names to values. There
are three special properties, VALUE, up, and this. The VALUE property is used
by wrapper objects for primitive types and to store function closures. The up
property is only used in environment objects that implement lexical scoping. It
always points to the next lexically enclosing environment. The this property
is reserved for the self reference in method calls and constructor functions. We
leave the sets Boolean, Number, and String unspecified. Each element of the set
FValue is a function closure. It registers the function name f for recursive use,
the location l pointing to the lexically enclosing environment of the function’s
definition, the names x1, . . . of the formal parameters, the names y1, . . . of the
local variables, and the statement s implementing the function’s body.
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Each of the reduction relations takes an initial store Σ, a reference to the
current environment object l, and a syntactic object and rewrites it into the next
state and a transformed object. To express the transformed syntactic objects
requires to extend the syntax of expressions by values, which are the results of
computations. They are generated by the grammar

v ::= undefined
| null null reference
| c booleans, numbers, strings
| l location
| var(l, str) variable reference
| prop(l, str) property reference

The last two cases deserve some further explanation. A variable reference
var(l, str) consists of the location l of an environment object and a property
name (variable name) in that environment. Its main use is to serve as an address
in the evaluation of an assignment expression. A property reference prop(l, str)
consists of the location l of a program object and a property name. It serves
as an address for evaluating assignments, but it also plays a role in detecting a
method call.

A further new kind of expression is the activation object AR(l, s). The location
l is the address of an activation record and s is the statement to execute in this
context. Each function application creates a new activation object initialized
with the names and values of the parameters, the this pointer, the up pointer,
and the local variables. On entry to an activation AR(l, s), evaluation replaces
the currently active context with the activation object l and proceeds with s.

Instead of explaining all the evaluation rules in detail, we concentrate on a
few important details. Lookup for this only takes place in the toplevel activation
object, every other variable is accessed through the scope chain (see definition
of →v). As yet unknown variables are allocated in the toplevel activation object,
which is identified by the absence of an up property.

Functions are objects that have a closure stored in the special VALUE prop-
erty. The content of a closure is completely standard.

A function invocation can take three different forms: a function call, a method
invocation, and a constructor call. These three forms differ solely in the way that
this is determined, the rest of the activation object is constructed in the same
way every time. In a function call, this is set to null2. For a method call, this
is the receiving object and in a function called through a new expression, this is
the newly constructed object. The last case is easily identified because its syntax
is different. Distinguishing a method call from an ordinary function call requires
to evaluate the function part to an address if possible (using the relation →m).
If the result is a property reference, then we have a method call. Otherwise, it
is an ordinary function call.3

2 The standard prescribes that this should point to the toplevel activation object.
3 We omit the arguments property to keep the presentation manageable.



420 P. Thiemann

6 Type Soundness

The connection between the semantics and the type system is made in the usual
way by defining a notion of typed configurations and proving type preserva-
tion and progress for that notion. A configuration of Core JavaScript is a triple
Σ, l0, s of a store, a reference to an activation object, and a statement. There
is also the auxiliary notion of an expression configuration Σ, l0, e. The rewrite
relations →s and →e of the operational semantics induce corresponding relations
on configurations in the obvious way.

In addition to the type environment Γ for variables, there is a heap envi-
ronment ∆ for typing references in the store. It maps store locations to object
types of the form Obj(ϕ)(*). This type assignment must be compatible to the
actual store: ∆ 'h Σ. Compatibility means that dom(∆) = dom(Σ) and that,
for each l ∈ dom(Σ) and str ∈ dom(Σ(l)), if ∆(l) = Obj(ϕ)(str : τ, *) then the
value Σ(l)(str) has type τ . If any of the fields in ϕ is defined, then its contents
describe Σ(l)(VALUE).

The typing rules for configurations define two judgments ∆,Γ 'sc Σ, l0, s� τ
and ∆,Γ 'ec Σ, l0, e : τ , for statements and expressions. These judgments are
defined analogously to 'stm and ' but have additional rules for the new expressions
introduced by the rewrite steps. Due to space reasons, we only give a few example
rules.

∆(l) = Obj(ϕ)(str : τ, *)
∆,Γ 'ec Σ, l0, var(l, str) : τ

∆,TE(∆, l) 'sc Σ, l, s� τ
∆, Γ 'ec Σ, l0, AR(l, s) : τ

The second rule for an activation record is particularly interesting because it
reconstructs a typing environment from the address l of the activation object
of the function and from the heap type ∆. It relies on a function TE(∆, l) that
traverses the chain of activation objects beginning with l and constructs an
environment from the properties (and their types) of the activation objects. We
omit its straightforward specification.

Lemma 1 (Type preservation). Suppose that ∆ 'h Σ, ∆,Γ 'sc Σ, l0, s � τ ,
and Σ, l0, s →s Σ

′, s′.
Then exists ∆′ extending ∆ such that ∆′ 'h Σ

′ and ∆′, Γ 'sc Σ′, l0, s′ � τ .

Lemma 2 (Progress). Suppose that ∆ 'h Σ, ∆,Γ 'sc Σ, l0, s� τ .
Then either s = skip, s = return v, or there exist Σ′ and s′ such that

Σ, l0, s →s Σ
′, s′.

7 Related Work

The main influence to this work is the work on soft typing and dynamic typing [3,
15, 6, 7]. These works define static type systems for dynamically typed languages,
Scheme in these cases. The goal of these type systems is to enable compiler
optimizations for Scheme programs. Dynamic typing has a twofold impact on the
performance of a program. First, there is a memory overhead because each value
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must carry with it a representation of its type. In the simplest implementation
each value is boxed, that is, it is represented by a pointer to a heap-allocated
cell. Clearly, there is also a time penalty for manipulating boxed values. Second,
each operation must check that its arguments have the expected type before it
can proceed to do the actual work. A soft typing system is able to identify the
places where the dynamic type checks may be safely omitted and which values
need not carry type information with them. The work by Henglein and Rehof
[7] even specifies a translation into ML, a statically typed language that requires
no type information at runtime.

Another group of works which is closely related to ours is the construction
of type systems for the programming language Erlang [2]. Erlang poses similar
problems as JavaScript, but is simpler in some respects. For example, functions
have fixed arity and there are no structures comparable with JavaScript’s objects.
Two type systems have been constructed for Erlang, one based on standard
type theory [8] and another one which appears more ad-hoc [10]. Both system
work from programmer specified type signatures, whereas our system is targeted
towards performing automatic program analysis.

The rows in our object types are clearly inspired by type systems for records
[13]. The main difference to a traditional record system is the use of strings as
labels, which requires a first-class treatment of labels [5, 9] but in the guise of
singleton types.

8 Conclusion

We have presented a first attempt at defining a type system for analyzing a
weakly typed scripting language, JavaScript. The system is guided by a matching
relation which specifies type convertibility. The matching relation determines
how conservative the system is and which conversions should only be flagged
instead of being rejected (e.g., converting null to an object).

A number of extensions might be considered: the object prototyping mecha-
nism, more general type indices, and polymorphism. However, practical experi-
ence is necessary to select the most urgently needed one. An implementation is
under way to evaluate the type system with typical JavaScript programs.
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Abstract. We introduce an expressive yet semantically clean core Java-like lan-
guage, Java Jr., and provide it with a formal operational semantics based on traces
of observable actions which represent interaction across package boundaries. A
detailed example based on the Observer Pattern is used to demonstrate the intuitive
character of the semantic model. We also show that our semantic trace equiva-
lence is fully-abstract with respect to a natural notion of testing equivalence for
object systems. This is the first such result for a full class-based OO-language with
inheritance.

1 Introduction

Operational semantics as a modelling tool for program behaviour originated in the early
1960s in early work of McCarthy [19] and found some popularity in modelling pro-
gramming languages such as ALGOL and LISP [20, 30, 13] and the lambda-calculus,
[18]. Later, this approach to modelling was championed by Plotkin [25, 26] and has
since been applied extensively and successfully for providing semantic descriptions of
simple programming languages and computational models [31, 21, 22, 15, 29, 1, 11, 8].
As these modelling techniques began to be applied to to larger scale languages, their
semantic descriptions became more complex [27, 28, 4, 9, 6, 3].

There has been a considerable research effort towards formalising operational be-
haviour of Java and Java-like languages, for example [4, 11, 16, 6, 9, 24, 3]. Indeed [3] is
a special volume journal dedicated to semantic techniques for the Java language which
collects together much of the interesting work on this topic to date. None of these, how-
ever, address the issue of program equivalence and extensional descriptions of object
behaviour. The papers cited above tend to analyse subsets of the Java language for is-
sues related to type safety rather than equivalence. Banerjee and Naumann [5] provide
a denotational semantics for a subset of Java, but do not prove a correspondence with
an operational model. With this in mind we propose an experimental class-based Java-
like language, designed to have a straightforward semantic description of the interactive
behaviour of its programs. We call this language Java Jr.
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No. 0430175.
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To address the issue of program equivalence in Java Jr. we make use of Morris’ theory
of testing [23], later refined by Hennessy [15]. It is a robust theory based on observability
of basic events during computation in context and has been applied to many languages,
including models of functional programming such as the λ-calculus [2] and PCF [25],
concurrent languages such as the π-calculus [10], and object-oriented languages such as
the σ-calculus [17].

The definition of testing equivalence involves a universal quantification over all pos-
sible test harnesses for programs, which often makes establishing equivalences difficult.
For this reason it is commonplace to investigate alternative characterisations of semantic
equivalence which offer simpler proof techniques. We provide an alternative character-
isation of testing equivalence in Java Jr. by describing sequences of interactions which
programs may engage in with arbitrary test harnesses. These are defined as traces de-
rived from a labelled transition system [7]. The key result we prove is that programs
which exhibit the same set of traces are exactly those which are testing equivalent. This
property of our trace model is known as full abstraction.

For the remainder of the paper, we will present an overview of the Java Jr. lan-
guage followed by its formal syntax and operational model. We will then discuss issues
of typeability and how well-typed object components can grouped together to form
larger, well-typed systems. In Section 4, we define our notion of testing equivalence for
Java Jr. and in the following section introduce the trace model. The full abstraction result
is outlined in Section 6 and we then close with remarks about future work.

2 The Java Jr. Language

Java Jr. is a small, single threaded, subset of the Java language which allows for the
declaration of classes and interfaces in packages. It includes two extensions of Java:
it allows for packages to contain object declarations (rather than requiring them to be
static fields inside classes), and it allows for explicit specification of the signature of a
package. We shall discuss these in more detail below.

An example Java Jr. program is given in Figure 1: it provides a simple implementation
of the Observer pattern from [12]. Observer objects can register themselves with a
Subject (in this case, we just provide a singleton Subject), and any calls to notify on
the Subject result in update calls on all the registered Observers.

We will use the following terminology throughout this paper: a package consists of
a sequence of declarations and a component consists of a sequence of packages. We
use the metavariables C,P and D to represent components, packages and declarations
respectively. We will also use the overbar notation to denote sequences, for example P̄
refers to a sequence of packages. The metavariable v is used throughout the paper to
refer to a fully specified object reference including the package name and object identity,
using the usual Java p.o syntax. We also use the metavariable t to refer to types of the
language, that is, fully specified class or interface names. For example, in Figure 1,
observer.singleton is a fully specified object reference, and observer.Subject
is a fully specified interface name.

The notion of packages are central to Java Jr. They delimit our semantic descriptions
by identifying the boundaries of observable interactions. Statically, only interfaces and
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{ package observer;
interface Subject extends ε {

System.void addObserver (observer.Observer o);
System.void notify ();

}
interface Observer extends ε {

System.void update ();
}
class SubjectImpl extends Object implements Subject {

observer.List contents;
SubjectImpl (observer.List contents) { super (); this.contents = contents; }
public System.void addObserver (observer.Observer o) {

return (this.contents = new observer.Cons (o, this.contents), System.unit);
}
public System.void notify () { return this.contents.updateAll (); }

}
class List extends Object implements ε {

observer.List () { super (); }
public System.void updateAll () { return System.unit; }

}
class Cons extends List {

observer.Observer hd; observer.List tl;
Cons (observer.Observer hd, observer.List tl) { super (); this.hd = hd; this.tl = tl; }
public System.void updateAll () { return (this.hd.update(), this.tl.updateAll ()); }

}
object observer.SubjectImpl singleton implements observer.Subject {

contents = observer.list_nil;
}
object observer.List list_nil implements ε { }

}

Fig. 1. Definition of the observer package in Java Jr.

public objects (and not classes or private objects) are visible across package boundaries;
dynamically, only publicly visible method calls (and not fields, constructors, or private
methods) are visible across package boundaries. In particular, code placed in a package
p, cannot create instances of objects using classes in a different package q. Nor can this
code access fields of objects created in q directly. In line with software engineering good
practice, each of these operations must be provided by factory, accessor and mutator
methods. Moreover, all packages in Java Jr. are sealed, that is new classes, objects and
interfaces may not be added to existing packages.

Where Java Jr. differs significantly from Java is in the provision for statically available
methods and members. Rather than modelling the intricacies of Java’s static modifier,
we allow packages to contain explicit object declarations of the form:

object t o implements t̄ { f1 = v1; , . . . , fn = vn;}

Such a declaration indicates that an object with identity o is an instance of class t with
initial field assignments fi = vi; which may change during program execution. Object
declarations also contain a list of interface types t̄ which the object is said to implement.
These are the externally visible types for the object, as opposed to the class name t,
which is only internally visible within the package. If the list of interface types is empty,
then the object is considered private to the package. For example, in Figure 1 we have:
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{ package observer;
interface Subject extends ε {

System.void addObserver (observer.Observer o);
System.void notify ();

}
interface Observer {

System.void update ();
}
extern observer.Subject singleton;

}

Fig. 2. External view of of the observer package

– Object singleton is declared as having class SubjectImpl, and implementing
Subject, so within the observer package we have singleton:SubjectImpl
but externally we only have singleton:Subject.

– Object list_nil implements no interfaces, so within the observer package we
have list_nil:List but externally it is inaccessible.

In Java, all packages are export packages, that is they contain both the signature of the
package and its implementation: in contrast, languages like C allow for importation of
externally defined entities, and for the importer to give the signature of the imported
entity. In defining a notion of equivalence for Java programs, we found it necessary to be
formal about the notion of package interface, since the external behaviour of a package
crucially depends on the types of external entities.

For this reason, our other extension of Java is to allow for import packages, which do
not contain class or object declarations, and instead only contain interface declarations
and extern declarations, of the form:

extern t̄ o;

Such an declaration within an import package p declares that any export package which
implements p must provide an object named o with public types t̄. For example, in
Figure 2 we give the external view of the observer package.

2.1 Formal Syntax and Semantics of Java Jr.

We present a formal grammar for the Java Jr. language in Figure 3. For the most part
this syntax is imported directly from Java.

The only novel Java Jr. expression is of the form E in p which has no effect upon
runtime behaviour but is used simply as an annotation to assist typechecking. This
operator is effectively a type coercion of the following form:

If the expression E is well-typed to run in package p with return type t, then
the expression E in p is well-typed to run in any package q with return type t,
as long as t is a visible type in q.

In order to present the dynamic and static semantics of our language we found it useful to
make recourse to a number of auxiliary, syntactically defined functions. The definitions
of these are largely obvious and are too numerous to list here. One of the most important
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Components: C ::= P̄
Packages: P ::= {package p; D̄}
Declarations: D ::= class c extends t implements t̄ {K ḠM̄}

| interface i extends t̄ {N̄}
| object t o implements t̄ {F̄}
| extern t̄ o; (t̄ �= ε)

Constructors: K ::= c(t̄ f̄ , ū ḡ){super ( f̄ ); this.ḡ = ḡ;}
Fields: F ::= f = v;
Field types: G ::= t f ;
Methods: M ::= public t m(t̄ x̄){return E;}
Method types: N ::= t m(t̄ x̄);
Expressions: E ::= v | x | E.m(Ē) | E. f | E. f = E

| new t (Ē) | (E == E ? E : E) | E,E | E in p
Compound names: p, . . . ,w ::= ā

Simple names range over Object, and a, . . . ,o and Variables range over this and x, . . . ,z. We also
assume that sequences of field identifiers and variables, f̄ and x̄, and names in P̄, D̄, F̄, Ḡ,M̄, N̄ are
always pairwise distinct.

Fig. 3. Syntax of the Java Jr. language

of these is the updating function C +C′ which is an asymmetric operator in which each
declaration {package p;D} within C′ overrides any declaration with the same full name
present in C, is included in package p of C if C contains this package, and is simply
appended to C otherwise. We write C.p.n for the declaration {package p;D} where
package p in C declares D with name n. Another crucial definition is

– C.p is an export package if there is a n such that C.p.n = {package p;D} where D
is either a class or an object declaration.

– C.p is an import package if it is not an export package.

2.2 Dynamic Semantics

A Java Jr. component C, will exhibit no dynamic behaviour until a thread of execution is
provided. As Java Jr. is a single threaded language we need not concern ourselves with
thread identities and synchronisation and we may model the single active thread simply
by a Java Jr. expression E. Given this, it is not difficult to define a relation → of the form

(C ' E) → (C′ ' E ′)

to model the evaluation of the thread E with respect to the componentC. In order to define
the reduction relation it is useful to identify what is typically referred to as evaluation
contexts [32]. The grammar of all possible evaluation contexts of the language is given
by

E ::= · | E .m(Ē) | v.m(v̄,E , Ē) | E . f | E . f = E | v. f = E | new t (v̄,E , Ē)
| (E == E ? ET : EF) | (v == E ? ET : EF) | E ,E | E in p

We also list, in Figure 4, the proof rules which define the reduction relation itself. For
the most part, these rules are reasonably straightforward. Two points of interest are:
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C.v = {package p;object t o implements t̄ {F̄}}
public u m(ū x̄){return E;} ∈ C.t.methods

(C ' E [v.m(v̄)]) → (C ' E [E[v/this, v̄/x̄] in p])

C.v = {package p;object t o implements t̄ {F̄}} f = w;∈ F̄
(C ' E [v. f ]) → (C ' E [w])

C.v = {package p;object t o implements t̄ {F̄}} ( f = u;) ∈ F̄
C′ = C +{package p;object t o implements t̄ {F̄ ′}} F̄ ′ = F̄ +( f = w;)

(C ' E [v. f = w]) → (C′ ' E [w])

C.p.c.fields = t̄ f̄ ; p.o /∈ dom(C)
C′ = C +{package p;object p.c o implements ε{ f̄ = v̄;}}

(C ' E [new p.c(v̄)]) → (C′ ' E [p.o]) (C ' E [v in p]) → (C ' E [v])

(C ' E [(v == v ? E : E ′)]) → (C ' E [E])
v �= w

(C ' E [(v == w ? E : E ′)]) → (C ' E [E ′])

Fig. 4. Rules for reductions (C ' E) → (C′ ' E ′)

– In the rule for generating new objects, the new object is always stored within the
same package as the class it is instantiating.

– The result of a method call is to inline the method body E, say, within the current
evaluation context. Note that before doing this E is wrapped with the coercion
E in p where p is the package of the receiver. This facilitates type-safe embedding
of external code within a package at runtime.

Note that the statically defined component C is modified during reduction as it also
models the runtime heap as well as the program class table.

2.3 Static Semantics

As with Java itself, Java Jr. is a statically typed class-based language. It uses the package
mechanism to enforce visibility: in Java Jr., classes are always package protected, and
interfaces are always public, conforming to the common discipline of programming to
an interface. In order to check that a Java Jr. program respects package visibility, the type
system tracks the current package of each class, method and expression, for example the
type judgement for an expression is:

C ' E : t in p

This indicates that the expression E could potentially access all protected fields and
methods in p but cannot access anything outside of p except public methods declared in
interfaces.

We close this section by confirming that Java Jr. satisfies Subject Reduction for the
runtime type system.
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Proposition 1 (Subject Reduction). For any well-typed component ' C : component
such that C ' E : t in p and (C ' E)→∗(C′ ' E ′) we have that ' C′ : component and
C′ ' E ′ : t in p.

3 Linking and Compatibility

A fundamental property of components ought to be that they should be compositional:
it should be possible to replace a subcomponent with an an equivalent subcomponent
without affecting the whole system. In Section 4 we will discuss the dynamic properties
of equivalence, and in this section we will discuss the static properties. Our goal is to
provide a characterisation for when we can replace a subcomponent of a well-typed
system and ensure that the new system is still well-typed.

When first need to discuss what linking means in the context of Java Jr. Consider two
components C1, which contains an import package p, and C2, which contains an export
package p. As long as C1 and C2 are linkable, we should be able to find a component
C1 �C2 where C1’s import of p is satisfied by C2’s export.

We can now define when it is possible to link two declarations. Declarations D1 and
D2 are linkable if one of the following cases holds:

– D1 is object t o implements t̄ {F̄} and D2 is extern t̄ o;
– D2 is object t o implements t̄ {F̄} and D1 is extern t̄ o;
– D1 = D2 and are interface or extern declarations.

We define when it is possible to link two packages of the same name. Given packages
P1 and P2 we say that these are linkable if one of the following cases holds:

– P1 is an export package and P2 is an import package, and for each v such that
P2.v = {package p;D2} we have that P1.v = {package p;D1} where D1 and D2 are
linkable.

– Symmetrically, when P1 is an import package and P2 is an export package.
– P1 and P2 are both import packages, and for each v such that P1.v = {package p;D1}

and P2.v = {package p;D2} we have that D1 = D2.

We define when it is possible to link two components: C1 and C2 are linkable if

– for any P1 ∈ C1 and P2 ∈ C2 with name(P1) = name(P2) we have that P1 and P2 are
linkable.

The above definitions outline the formal requirements for two components C1 and C2 to
be linked to form the larger component C1 �C2 given by:

C1 �C2 = (C1.imports+C2.imports)+(C1.exports+C2.exports)

where C.exports is the component containing all of the export packages of C, and simi-
larly for C.imports.

Proposition 2. If ' C1 : component and ' C2 : component and C1 and C2 are linkable
then ' C1 �C2 : component.
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We can now address our goal of providing a characterisation for when we can replace a
subcomponent C1 of a well-typed system C1 �C by a replacement component C2 and be
sure that C2 �C is still well-typed. We shall call such components C1 and C2 compatible,
defined as:

for all C, C and C1 are linkable
if and only if C and C2 are linkable

This definition, although appealing for its intuitive character, may be a little intractable
due to the use of the quantification over all components C. For this reason we seek to
provide a direct syntactic characterisation of compatibility. Two components C1 and C2

are interface compatible when:

for all t, C1.t = {package p; interface i extends t̄ {N̄}}
if and only if C2.t = {package p; interface i extends t̄ {N̄}}

Two components C1 and C2 are extern compatible when:

for all v, C1.v = {package p;extern t̄ o;}
if and only if C2.v = {package p;extern t̄ o;}

Two components C1 and C2 are object compatible when:

for all v and t̄ �= ε, C1.v = {package p;object t1 o implements t̄ {F̄1}}
if and only if C2.v = {package p;object t2 o implements t̄ {F̄2}}

Two components C1 and C2 are package compatible when:

for all p, p ∈ dom(C1) and C1.p is an export package
if and only if p ∈ dom(C2) and C2.p is an export package

For readers familiar with Java’s notion of binary compatibility [14–Chapter 13], these
are stronger requirements, justified by the following result.

Proposition 3. Components ' C1 : component and ' C2 : component are compatible
if and only if they are interface, extern, object and package compatible.

4 Contextual Equivalence

The question of whether two programs are equal lies at the heart of semantics. An initial
requirement for equivalence clearly should be that the programs, or components, are at
least compatible. Further to this, we adopt an established means of defining equivalence
by making use of contextual testing [15, 23]; programs are considered equal when they
pass exactly the same tests.

In the case of Java Jr., a test is any component which can be linked against the
component being tested, and the resulting system passes a test by printing an appropriate
message using a chosen method System.out.print(Object). The remainder of this
section will now formalise this notion of testing.
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Define a special component System as:

{ package System;
interface Output { Object print(Object msg); }
extern System.Output out;

}

We say that a componentC accepts System ifC and System are linkable andC.System is
not an export package. Note that if System �∈ dom(C) then C trivially accepts System.
For compatible components ' C1 : component and ' C2 : component which accept
System, define C1  C2 as:

for all ' C : component linkable with C1 and C �C1 ' E : Object in ∗ and for all
C ' v : Object in ∗ we have

(C �C1 ' E) →∗ (C′
1 ' E1[System.out.print(v)]) implies

(C �C2 ' E) →∗ (C′
2 ' E2[System.out.print(v)])

We say that well-typed C1 and C2 are contextually equivalent, C1 + C2 whenever both

C1  C2 and C2  C1.

Although this definition is appealing in the sense of being extensional and robust, it is
rather intractable as a means of identifying equivalent programs, due to the quantification
over all well-typed components C. We will now establish a simpler trace-based method
for establishing contextual equivalence for Java Jr.

5 Trace Semantics

We will now discuss the trace semantics of Java Jr., which provides a description of the
external behaviour of a component as a series of method calls and returns. The semantics
of a component describes all possible interactions it could engage in with some unknown
testing component. Each interaction takes the form of a sequence of basic actions α given
by:

γ ::= v.m(v̄) | return v | new(v) . γ
a ::= γ? | γ! α ::= a | τ

Each visible action is either a method call v.m(v̄) or method return v. They are decorated
γ? if the message goes from the environment to the process, or γ! if the message comes
from the process to the environment. Moreover, actions may mention new objects which
have not previously been seen: these are indicated by new(v) . γ. The final action τ is
used to represent interaction internal to the component under test.

We define traces as sequences ā of visible actions, considered up to alpha equiva-
lence, viewing new(v) . ā as a binder of v in ā:

ā .new(v̄) . b̄ ≡ ā .new(w̄) . b̄[w̄/v̄] when w̄ �∈ b̄

We will now describe the rules which generate traces from the component syntax. Before
we can do this though it is useful to present an auxiliary notion.
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The downcasting of imported names C + extern t v; is given by:

C + extern t v; = C (when C ' v : t in ∗)

C + extern t v; = C +{package p;extern t̄, t o;}
(otherwise, where C.v = {package p;extern t̄ o;}
and C.t̄.headers∪C.t.headers are compatible)

Similarly, the downcasting of exported names C +object t v; is given by:

C +object t v; = C (when C ' v : t in ∗)

C +object t v; = C +{package p;object u o implements t̄, t {F̄}}
(otherwise, when C.v = {package p;object u o implements t̄ {F̄}}

and C ' u <: t in p and t̄ �= ε)

Notice that downcasting with t v has no effect in case the object reference v is already
known to the component at the (public) type t. Otherwise, the appropriate import or
export declaration is updated.

In order to generate traces we need to describe all possible interactions of components
with an unknown testing component and unknown thread. We build these interactions
up from sequences of single basic actions which the component can engage in. There
are essentially two modes of interaction we need to consider here. One is the situation
in which the unknown testing component and thread is executing in its code and may
call in to a method of the component under test. The other is the situation in which
the component under test has been called and is executing some of its known code. We
represent these two scenarios using the following states:

Σ ::= (C ' E : t � Ē : t̄ → ū) | (C ' block� Ē : t̄ → ū)

where block represents unknown code being executed by the testing environment and Ē
represents the component C’s view of the evaluation stack. In fact this stack is formed
from a sequence of evaluation contexts as the view of the full evaluation stack is only
partial. The types of these evaluation contexts is also recorded and uses the notation
E : t → u to indicate that the hole in E is to be filled with an expression of type t, and
doing so will yield an expression of type u.

We now define a relation Σ ===
b̄

⇒ Σ′ between (well-typed) states which describes
the sequences of actions a component can engage in. The defining rules for this relation
are presented in Figure 5. From here we are now in a position to define the semantics of
a component as

Traces(C) = {ā | (C ' block� ε : ε) ===
b̄

⇒ Σ and ā ≡ b̄}

In Figure 6, we show an example of our Observer example above. We define a component
Test which contains (an external declaration of) an object which will be registered
with the observer service:
{ package observer.test;

interface Test { void run (); }
extern observer.test.Test test;

}
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(C ' E) → (C′ ' E ′)

(C ' E : t � Ē : t̄ → ū)
τ� (C′ ' E ′ : t � Ē : t̄ → ū)

Silent transitions

C.v is an export C ' v : u in ∗ s m(s̄ x̄);∈ C.u.headers C′ = C + extern s̄ v̄;

(C ' block� Ē : t̄ → ū)
v.m(v̄)?� (C′ ' v.m(v̄) : s� Ē : t̄ → ū)

C′ = C + extern t v;

(C ' block� E , Ē : t → u, t̄ → ū)
return v?� (C′ ' E [v] : u� Ē : t̄)

Input transitions

C.v is an import C ' v : u in ∗ s m(s̄ x̄);∈ C.u.headers C′ = C +object s̄ v̄;

(C ' E [v.m(v̄)] : t � Ē : t̄ → ū)
v.m(v̄)!� (C′ ' block� E , Ē : s → t, t̄ → ū)

C′ = C +object t v;

(C ' v : t � Ē : t̄ → ū)
return v!� (C′ ' block� Ē : t̄ → ū)

Output transitions

C.p is an import package p.o �∈ dom(C) p.o ∈ fn(γ?)
C′′ = C +{package p;extern Object o;}

(C′′ ' block� Ē : t̄ → ū)
γ?� (C′ ' E ′ : t ′ � Ē ′ : t̄ ′ → ū′)

(C ' block� Ē : t̄ → ū)
new(p.o).γ?� (C′ ' E ′ : t ′ � Ē ′ : t̄ ′ → ū′)

C.p.o = {package p;object u o implements ε{F̄}} p.o ∈ fn(γ!)
C′′ = C +{package p;object u o implements Object{F̄}}
(C′′ ' E : t � Ē : t̄ → ū)

γ!� (C′ ' block� Ē ′ : t̄ ′ → ū′)

(C ' E : t � Ē : t̄ → ū)
new(p.o).γ!� (C′ ' block� Ē ′ : t̄ ′ → ū′)

Fresh name transitions

Σ ===
ε

⇒ Σ

Σ ===
ā

⇒ Σ′ ===
ā′

⇒ Σ′′

Σ ===
ā ā′

⇒ Σ′′

Σ
τ� Σ′

Σ ===
ε

⇒ Σ′

Σ
a� Σ′

Σ ===
a

⇒ Σ′

Concatenating actions

Fig. 5. Generating rules for labelled transitions

Note that during this example the type of the test object changes: initially it is just
observer.test.Test, but after the first action it also has type observer.Observer.

6 Full Abstraction

Having built our trace model of components we now need to verify that the notion of
equivalence induced by the model (equality on trace sets), does actually coincide with
the intuitive notion of testing equivalence + defined earlier. This is the content of the
Full Abstraction Theorem.



434 A. Jeffrey and J. Rathke

(C0'block�ε:ε)

=====================
singleton.addObserver(test)?

⇒ (C1'singleton.addObserver(test):void�ε:ε)
===⇒ (C3'unit:void�ε:ε)

========
returnunit!

⇒ (C3'block�ε:ε)

==============
singleton.notify()?

⇒ (C3'singleton.notify():void�ε:ε)
===⇒ (C3'test.update(),list test nil.tl.updateAll():void�ε:ε)

=========
test.update()!

⇒ (C3'block�·,list test nil.tl.updateAll():void→void)

========
returnunit?

⇒ (C3'unit,list test nil.tl.updateAll():void�ε:ε)
===⇒ (C3'unit:void�ε:ε)

========
returnunit!

⇒ (C3'block�ε:ε)

C0 = Components System, Test and that defined in Figure 1.

C1 = C0 +{package observer.test; extern Test, Observer test; }

C2 = C1 +{package observer; object Cons list_test_nil { hd=test; tl=list_nil; }}

C3 = C2 +{package observer; object SubjectImpl singleton ... { contents = list_test_nil; }}

Fig. 6. Example trace of observer

Theorem 1 (Full Abstraction). For all well-typed components C1 and C2, we have

Traces(C1) = Traces(C2) if and only if C1 + C2

The proof of this theorem is non-trivial and unfortunately too long to present in full here. It
breaks in to two parts, soundness and completeness, which together are sufficient to show
full abstraction. For the remainder of this section we will outline the proof technique.

6.1 Soundness of Trace Inclusion for Testing

We show the soundness of our model with respect to testing equivalence, that is,

Traces(C1) ⊆ Traces(C2) implies C1  C2.

To demonstrate this we observe that the traces are defined in such a way as to guarantee
that every (internal) interaction between Ci and a test component can be decomposed in
to complementary traces (traces which are identical except for the reversal of the ! and ?
annotations) and conversely that pairs of complementary traces can also be (re)composed
to obtain an internal reduction. This is a not a straightforward property to express as the
result of an active thread in C1 and C is typically an intertwining of code from each
component. To describe the possible states of the system we overload the notation � to
define how to merge complementary states of the labelled transition system.

Define t̄1 → ū1 and t̄2 → ū2 to be mergeable for t as:

– ε and ε are mergeable for Object.
– If t̄2 → ū2 and t̄1 → ū1 are mergeable for u

then t̄1 → ū1 and t → u, t̄2 → ū2 are mergeable for t.
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Define (C1 ' E : t � Ē1 : t̄1 → ū1) and (C2 ' block� Ē2 : t̄2 → ū2) are mergeable
when

– C1 and C2 are linkable and t̄1 → ū1 and t̄2 → ū2 are mergeable for t

We define the partial merge Ē1 � Ē2 of context stacks as

ε� ε = ·
Ē1 � (E2, Ē2) = (Ē2 � Ē1)[E2]

When Σ1 and Σ2 are mergeable we define Σ1 �Σ2 as the state given by:

(C1 ' E1 : t1 � Ē1 : t̄1 → ū1)� (C2 ' block� Ē2 : t̄2 → ū2)
= (C1 �C2 ' (Ē1 � Ē2)[E1])

Proposition 4. If ' Σ1 : state and ' Σ2 : state are mergeable and Σ1 � Σ2 = (C ' E),
then ' C : component and C ' E : Object in ∗.

We write ā−1 for the trace ā with the input and output annotations reversed. We
also define the external ordering, C 0ext C′ as the preorder on components generated by
C 0ext C +object t v;. Note that whenever C 0ext C′ then C′ differs only in that it may
contain more external interface types for object definitions.

Proposition 5 (Trace Composition/Decomposition). If Σ1 and Σ2 are mergeable such
that Σ1 �Σ2 = (C ' E) then

1. If Σ1 ===
ā

⇒ Σ′
1 and Σ2 ===

ā−1

⇒ Σ′
2 then (C ' E)→∗(C′ ' E ′) where either

– Σ′
1 and Σ′

2 are mergeable such that Σ′
1 �Σ′

2 = (C′′ ' E ′) with C′ 0ext C′′, or
– Σ′

2 and Σ′
1 are mergeable such that Σ′

2 �Σ′
1 = (C′′ ' E ′) with C′ 0ext C′′.

2. If (C ' E)→∗(C′ ' E ′) then there exists ā such that Σ1 ===
ā

⇒ Σ′
1 and Σ2 ===

ā−1

⇒ Σ′
2

where either
– Σ′

1 and Σ′
2 are mergeable such that Σ′

1 �Σ′
2 = (C′′ ' E ′) with C′ 0ext C′′, or

– Σ′
2 and Σ′

1 are mergeable such that Σ′
2 �Σ′

1 = (C′′ ' E ′) with C′ 0ext C′′.

Theorem 2 (Soundness of traces for may testing). For compatible C1 and C2 which
accept System, if Traces(C1) ⊆ Traces(C2) then C1  C2.

Proof: (Sketch) Suppose that Traces(C1) ⊆ Traces(C2) and also suppose that C is
a testing component such that C �C1 prints the message “Hello” during evaluation.
We can use Trace Decomposition on the interaction between C and C1 which caused
this string to be produced. This gives a pair of complementary traces. Now, because
Traces(C1) ⊆ Traces(C2) we also know that C2 must perform the same traces as C1.
Therefore, when we link C with C2, because these components can respectively per-
form the given pair of complementary traces, these may be re-composed using Trace
Composition to give an internal evaluation of C �C2 which will also print the message
“Hello”. This can be done for any testing component and any message. So this serves to
demonstrate that C1  C2. �
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6.2 Completeness

The converse property, completeness,

C1  C2 if and only if Traces(C1) ⊆ Traces(C2)

also relies on the Trace Composition/Decomposition property (Proposition 5). In addi-
tion to this though we also need to show a definability result which states that for every
(odd length) trace from a well-typed component we can find a component and expression
which will exhibit this trace, and only this trace (up to renaming of fresh names).

Proposition 6 (Definability). If we have ' C : component and (for ā of odd length)

(C ' block� ε : ε) ===
ā

⇒ ·· · then we can find C′, E such that ' C′ : component, C and

C′ are linkable, C′ ' E : Object in ∗ and (C′ ' E : Object�ε : ε) ==
b̄
⇒ ·· · (for b̄ of odd

length) if and only if b̄ ≡≤ ā−1.

Theorem 3 (Completeness of traces for may testing). For compatible C1 and C2, if
C1  C2 then Traces(C1) ⊆ Traces(C2).

Proof: (Sketch) Suppose that C1  C2 and also suppose that C1 has a trace ā. We can
suppose (wlog) that ā is even length. We must show that C2 also has this trace. We do this
by first applying our definability result to the complement of ā extended with a visible
action of an outgoing call to System.print with message, “Hello”, say. This yields a
component C def. Given this, we use Trace Composition with ā and its complement by
linking C def and C1 to yield an internal evaluation which will ultimately print “Hello”.
Because, C1  C2 and because C def acts as a test, we know that C def�C2 must
also evaluate and eventually print the message “Hello”. We use Trace Decomposition to
split this internal evaluation into separate traces to see that C2 must perform some trace
complementary to that of C def. But, given that C def performs the unique (up to ≡)
trace ā−1, we must have that C2 has the trace ā also. �

7 Conclusions and Further Work

We have described a novel core Java-like language, Java Jr., which allows package
and class-based definitions of object systems. The language is specifically designed
to be semantically clean by using the packaging system to enforce all cross-package
interaction to be limited to method invocation and return. We provided Java Jr. with
a static type system, whose types act as interfaces to components for building large
systems and we presented a simple notion of linking for plugging well-typed components
together. This notion of linking was also used to give an extensional definition of a
component’s suitability for substitution with other components from a structural, or
static point of view. We proceeded to develop an extensional definition of a component’s
suitability for substitution from a behavioural, or dynamic point of view, drawing on a
body of work in the literature on process testing [15]. Importantly, our trace semantics
for Java Jr. components turn out to capture the notion of behavioural testing precisely.
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This Full Abstraction property is a major result of this work and is the first such result
for a class-based object language with packages and subtyping.

Although the core language only supports a limited number of Java features, it already
has enough power to encode some of the more sophisticated control-flow operations
and, to some extent, is robust enough to allow the addition of extra features without
disrupting the higher-level semantics, as long as these new features do not create new
cross-package interaction. For instance, it is straightforward, but slightly cumbersome
to include primitive types and constants in Java Jr. These would not seriously affect
the validity of the full abstraction theorem. We also anticipate that Java exceptions
could readily be included within our framework, although this would require exception
interfaces in addition to Java’s exception classes, if we want Java Jr. exceptions to be
thrown and caught across package boundaries.

Unfortunately, some of Java’s features have significant impact on our model: in
particular, explicit downwards typecasts and concurrency. Downwards casts affect our
trace semantics in a fairly significant way. At present we maintain strict public interfaces
to classes and only release objects at given interfaces. This type security is maintained in
Java Jr. as there is no possibility for code to use a received object at any lower type. This is
reflected in the trace semantics by recording lists of interface types at which component
and environment object names have been leaked. Allowing downwards casts would
enable code in a given package to receive objects declared in a different package and
discover their private types. This breaks the programming to an interface discipline of
Java Jr.

Similarly, the trace model is built around the notion of a single thread of control. The
straightforward alternation of control between component and environment in the trace
semantics is a direct consequence of this. Fortunately, introducing named threads and
providing an interleaved trace model is achievable. Earlier work of ours [17] provides
such a model for a small concurrent object-based calculus. The extra complications of
classes and subtyping present are unlikely to affect the integration of the concurrent
thread model within Java Jr.
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