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Foreword

It is always a special honor to chair the European Dependable Computing Con-
ference (EDCC). EDCC has become one of the well-established conferences in
the field of dependability in the European research area. Budapest was selected
as the host of this conference due to its traditions in organizing international
scientific events and its traditional role of serving as a meeting point between
East and West.

EDCC-5 was the fifth in the series of these high-quality scientific confer-
ences. In addition to the overall significance of such a pan-European event, this
year’s conference was a special one due to historic reasons. The roots of EDCC
date back to the moment when the Iron Curtain fell. Originally, two groups of
scientists from different European countries in Western and Eastern Europe
who were active in research and education related to dependability created a
joint forum in order to merge their communities as early as in 1989. This trend
has continued up to today. This year’s conference was the first one where the
overwhelming majority of the research groups belong to the family of European
nations united in the European Union. During the past 16 years we observed
that the same roots in all the professional, cultural and scientific senses led to
a seamless integration of these research communities previously separated arti-
ficially for a long time.

EDCC has become one of the main European platforms to exchange new re-
search ideas in the field of dependability. Its pillars are three national groups: the
SEE Working Group “Dependable Computing” in France, the GI/ITG/GMA
Technical Committee on Dependability and Fault Tolerance in Germany, and
the AICA Working Group on Dependability of Computer Systems in Italy. Ad-
ditionally, several professional international organizations of worldwide scope,
like IEEE and IFIP, graciously supported this conference from the very begin-
ning.

Obviously, a conference has to follow the development of its focus area. This
year, the trend to incorporate new topics was observable in the number of sub-
missions and in the variety of topics. At the same time, a main objective of the
organizers was to strengthen the pan-European nature of this scientific event
according to the tradition of EDCC. An additional objective was as defined
in the guidelines of the Steering Committee to attract more young people to
contribute to the conference not only through the presentation of their research
work but also through organizing important events. This objective was served
by inviting new members to the Program Committee who had already proven
their scientific abilities but previously did not take an active part in organizing
EDCC.

In addition to the traditional forms of presentations such as fast abstracts
and invited speakers presenting the state of the art in industrial practice, new
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– 

– 
– 



VI Foreword

forums were introduced to this year’s conference. Special attention was paid to
educational aspects. A panel was organized to identify future challenges in re-
search and harmonize the evolution of dependability-related education with the
ongoing Bologna process. A special track for student papers was organized in
order to support young researchers in contributing to one of the major interna-
tional conferences. Representative projects from all over Europe were invited to
present their work in progress and to provide a forum for discussing their results
and help the dissemination of the main achievements.

The large number of contributions necessitated that, for the first time in the
EDCC series, EDCC-5 was held in two tracks. We hope that the impact of this
splitting will be that everybody in the audience will find a topic that best fits
his or her personal professional interests.

The preparation of such an important international conference requires al-
ways enthusiastic support from supporting teams. We had the full support offered
by excellent teams. We hope that the conference chairs helped not only to share
the wide spectrum of responsibility but also to reach a synergetic effect between
their particular fields. The organizing teams including their Chairs, Wolfgang
Hohl, Tamás Bartha and Dániel Varró, and numerous members were extremely
helpful; their work contributed to the success of the conference. The website was
maintained by László Gönczy. Their enthusiastic work is acknowledged.

Our special thanks goes to Mohamed Kaâniche, the Program Chair, for his
thoughtful planning of the Program Committee Meeting. His efforts were instru-
mental in setting up an excellent scientific program. A large number of referees
helped the Program Committee in evaluating the papers and special thanks
should be dedicated to all of them, not only for carefully judging the quality of
the papers but also for providing the authors with feedback which will hopefully
help in their future work as well.

We would also like to thank the Education and Perspectives Chair, Henrique
Madeira, and the Student Forum Chair, Miroslaw Malek, for their work.

The host institutions of the Chairs offered valuable help for the conference.
LAAS-CNRS helped us to organize the Program Committee Meeting held in
Toulouse; the Friedrich-Alexander-Universität in Erlangen and the Budapest
University of Technology and Economics helped us in every imaginable way.
Without their general support the conference would not have been as successful
as we hoped it would be. The Budapest University of Technology and Economics,
as host institution, was supported by Öt Évszak Ltd., a conference organizing
enterprise, in all the preparations of the conference, including the management
of finances.

For us to organize this conference was a challenge and we hope that the
participants were satisfied with both the scientific quality and the organization
of the conference.

February 2005 Mario Dal Cin
András Pataricza



Preface

On behalf of the Program Committee of the fifth edition of the European De-
pendable Computing Conference (EDCC-5), it was my pleasure to welcome at-
tendees to Budapest, Hungary.

EDCC aims to provide a European venue for researchers and practitioners
from all over the world to present and discuss their latest research results and
developments. The conference aims to cover the many dimensions of depend-
ability and fault tolerance, encompassing fundamental theoretical approaches,
practical experimental projects, and commercial components and systems.

In recent years, the importance of dependability has been increasing beyond
the classical critical application domains (telecommunications, transportation,
space, etc.) as many other domains of the economy (commerce, finance, en-
ergy distribution) are recognizing the dependability of worldwide information
and communication infrastructures to be one of their top problems. Besides
traditional hardware and software faults, concerns include human interaction
faults, they being accidental or malicious. The contributions received this year
aim at addressing these problems and challenges, and cover various dimensions
of dependable computing, including architecture design, protocols, verification,
measurement and evaluation.

I express my thanks to the 33 Program Committee members for their hard
work and continual involvement, starting with their assistance in advertising the
conference. This resulted in the second largest number of submissions, from a
broad range of institutions from academia and industry, since the conference was
established. Overall, we received 90 submissions, originating from 27 countries;
58 submissions were from Europe, 19 from USA and North and South America,
and the other submissions were from Asia.

All the submissions were thoroughly reviewed and discussed by the PC mem-
bers with the support of 147 external reviewers. The entire process was handled
electronically. This greatly helped in reducing delays while allowing good infor-
mation exchange among the reviewers and the Program Committee. A total of
317 reviews were received and all papers were reviewed by at least 3 referees. I
am very thankful to all the reviewers for their help and valuable inputs.

The Program Committee met in Toulouse on December 16–17, 2004 at LAAS-
CNRS to select those papers judged to be of sufficiently high standard to be
presented at the conference and to be included in the proceedings. Among the
90 submissions, we selected 30 contributions, corresponding to 21 regular papers,
5 practical experience reports and 4 prototype description tools. The selected
papers cover many different areas of dependable computing, including fault tol-
erance, verification, analysis and evaluation, in both hardware and software.

In addition to regular sessions organized into two parallel tracks, the confer-
ence offered various opportunities for interaction and discussion through the or-
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ganization of a Student Forum, Fast Abstracts sessions, and an invited session for
presenting ongoing dependability-related projects. Two keynote addresses and a
panel on dependability challenges and education perspectives complemented the
technical program.

EDCC-5 would not have been possible without support and participation
from numerous individuals and organizations. I would like to thank all authors
who submitted their work to the conference, the EDCC-5 Program Committee
members, and the external reviewers for their outstanding help, support and
effort in elaborating this year’s program. I would like to express my apprecia-
tion to the Steering Committee and the Organizing Committee members whose
support was essential for making EDCC-5 a success.

Special thanks go to Mario Dal Cin and András Pataricza, the General Chairs,
and to Luca Simoncini, the Steering Committee Chair, for their constructive con-
tributions and helpful advice. Also, I want to explicitly thank Tamás Bartha,
Wolfgang Hohl, Henrique Madeira, Miroslaw Malek for their dedication in han-
dling the Fast Abstracts, the Proceedings, the Panel and the Student Forum.
Finally, I would like to express my gratitude to several people at LAAS-CNRS
for their efficient help and support: Jean Arlat, Yves Crouzet, Karama Kanoun,
Jean-Claude Laprie, Joëlle Penavayre and Jean-Michel Pons.

I hope that the participants benefited from the conference, and that the
exchange of information that took place will help the dependable computing
community to advance the engineering practice, research and standards.

Toulouse, February 2005 Mohamed Kaâniche
Program Chair
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José Rufino
Juan-Carlos Ruiz
Elena Troubitsyna
Hélène Waeselynck



Organization XI

External Referees

Agbaria, Adnan
Almeida, Carlos
Alvisi, Lorenzo
Anceaume, Emmanuelle
Andrews, Anneliese A.
Arief, L.B.
Arlat, Jean
Avizienis, Algirdas
Bade, R.
Bagchi, Saurabh
Bernardeschi, Cinzia
Bernardi, Simona
Bertolino, Antonia
Bieber, Pierre
Blanc Clavero, Sara
Bloomfield, Robin
Bobbio, Andrea
Botaschajan, Jewgenij
Brooke, Phil
Cachin, Christian
Cai, Xia
Cancela, Héctor
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A Process Toward Total  
Dependability – Airbus Fly-by-Wire Paradigm 

Pascal Traverse, Isabelle Lacaze, and Jean Souyris 

AIRBUS, 316 route de Bayonne, 31060 Toulouse cedex 03, France 
{Pascal.Traverse, Isabelle.Lacaze, Jean.Souyris}@airbus.com 

The presentation deals with digital electrical flight control system of the Airbus air-
planes. This system is built to very stringent dependability requirements both in term 
of safety (the system must not output erroneous signals) and availability. System 
safety and availability principles along with assessment process are presented with an 
emphasis on their evolution and on future challenges. 
     The purpose of a flight control system is to link the pilot to the control surfaces of 
the airplane. A fly-by-wire system replaces mechanical transmission of signal to the 
actuators by a set of computers and electrical wires. Main impairments to such a sys-
tem are erroneous positioning of control surfaces (safety) and loss of control (system 
availability). 
     With respect to physical faults, safety is ensured basically by the use of command 
and monitoring computers, such that in case of failure, the outputs are forced in a safe 
state. Redundancy provides the needed availability. 
     With respect to design and manufacturing errors, error avoidance and removal are 
applied with a stringent development process. Error tolerance is used as well. 
     Particular risks are a concern in the sense that they can be single events that could 
affect several redundancies. Segregation between redundant elements when they are 
installed is a key precaution. 
     Airbus flight control system offers piloting aids such as flight envelope protec-
tions, some of them are available on non fly-by-wire aircraft while others are specific, 
along with maintainability helping devices. 
     Safety assessment process allows for both qualitative and quantitative assessment, 
proceedings from aircraft top-level events. 

Reference 

1. Traverse, P., Lacaze, I., Souyris, J.: Airbus fly-by-wire: a total approach to dependability. 
18th IFIP World Computer Congress – Topical session “fault tolerance for trustworthy and 
dependable information infrastructure” (Toulouse, France), Kluwer Academic Press, 2004, 
pp.191-212. 
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Building and Using Quorums
Despite Any Number of Process of Crashes

Roy Friedman1, Achour Mostefaoui2, and Michel Raynal2

1 Computer Science Department, Technion, Haifa 32000, Israel

2 IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
roy@cs.technion.ac.il

Abstract. Failure detectors of the class denoted Pt eventually suspect all crashed
processes in a permanent way (completeness) and ensure that, at any time, no
more than n − t − 1 alive processes are falsely suspected (accuracy), n being
the total number of processes. This paper  rst shows that a simple combination
of such a failure detector with a two-step communication pattern can provide the
processes with an interesting intersection property on sets of values. As an exam-
ple illustrating the bene t and the property that such a combination can provide
when designing protocols, a leader-based consensus protocol whose design relies
on its systematic use is presented. Then the paper presents a Pt-based protocol
that builds quorums in systems where up to t processes can crash with t < n.

Keywords: Asynchronous system, Consensus, Distributed algorithm, Fault tol-
erance, Leader oracle, Quorum, Process crash, Unreliable failure detector.

1 Introduction

Context of the study Quorums have been used for a long time in distributed systems
[23]. A quorum is a set of processes satisfying some minimal requirements. A classical
quorum example is the set of processes that have the last copy of a  le; another example
of quorum is the set of processes from which a process has received messages. To
be useful, quorums are usually de ned as intersecting sets. When it is satis ed, this
intersection property allows ensuring consistency requirements. One of the most known
examples is the sets of read/write quorums used to ensure that any read operation always
gets the last value of a replicated data. Quorums have also been used in communication
protocols to ensure dissemination of data with a low message cost [3, 17]. Instead of
broadcasting data from all to all (that would require n2 messages where n is the total
number of processes), each process sends its data only to a quorum of processes that
aggregate the received data to compose a single (bigger) message, forward it to another
quorum, etc., until all processes get a copy of each data. In this example, the tradeoff
relating the number of forwarding steps (d) and the total number of messages used to
implement such a communication pattern is investigated in [3] (where it is shown that
“regular” systems allow a pattern of d communication steps with a O(nd d

√
n) message

complexity, where n is the total number of processes).
In addition to data consistency and data dissemination, quorums have also been

used (in conjunction with appropriate mechanisms) to solve agreement problems in
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asynchronous distributed systems prone to process crashes. The two most studied such
problems are consensus and non-blocking atomic commit. Namely, in consensus, each
process proposes a value, and the non-faulty processes have to decide a value (termi-
nation), such that no two different values are decided (uniform agreement), and the
decided value is a proposed value (validity). The non-blocking atomic commit problem
is de ned similarly, except for the validity property that is more involved. Namely, a
process initially votes (i.e., it proposes the value yes or no), and the set of decided val-
ues is restricted to commit and abort. The validity requirements is then the following:
commit can be decided only if all the processes have voted yes; however, even in such
cases, if at least one process crashes, it is then allowed to decide abort.

As these problems have no solution in pure asynchronous systems [11], these sys-
tems have to be appropriately enriched in order to solve consensus or non-blocking
atomic commit. A very attractive approach to enrich an asynchronous system is the
failure detector approach [5]. A failure detector class is de ned by two properties: a
completeness property that is on the actual detection of crashes, and an accuracy prop-
erty that restricts the erroneous suspicions that a failure detector can make. For example,
the failure detector class denoted �S includes all the failure detectors that (1) eventu-
ally suspect all crashed processes (strong completeness), and (2) ensure that eventually
there is a correct process that is no longer suspected (eventual weak accuracy). This
class is particularly interesting for the following reason. Despite the fact that the prop-
erties that de ne it are very weak (namely, except for one correct process that is no
longer suspected after some unknown but  nite time, the other correct processes can be
arbitrarily suspected), it is the weakest class of failure detectors that allows to solve the
consensus problem in asynchronous systems prone to up to t < n/2 process crashes [4].

The methodological construction of the �S-based consensus protocol described in
[20] shows explicitly how quorums and �S can be combined to solve consensus: �S is
used to provide the consensus termination property, while majority quorums (that, due
to the majority of correct processes assumption, can effectively be built) are used to en-
sure that the uniform agreement property is never violated. For the non-blocking atomic
commit problem, it was shown that ?P+�S is the weakest class of timeless failure de-
tectors that allow it to be solved when a majority of processes do not crash [14], where
?P is a failure detector that returns true when at least one process has already crashed,
and false otherwise [13]. A �S-based solution to a somewhat weaker version of the
atomic commit problem that relies on quorums and a majority of correct processes has
been presented in [16] (extending the more limited solution described in [22]). An in-
vestigation of the weakest class of failure detectors to solve the non-blocking atomic
commit problem when t < n and there is no constraint (such as timeliness) on failure
detectors can be found in [10].

Content of the paper It has recently been shown that the failure detector class denoted
Pt + �S allows solving the consensus problem in asynchronous message-passing dis-
tributed systems prone to up to t < n process crashes [8]. This means that the additional
failure detection power provided by Pt allows suppressing the constraint t < n/2 (i.e.,

A timeless failure detector does not provide information on when failures have occurred [14].
All the failure detectors considered in this paper are timeless.
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the majority of correct processes assumption) to get t < n (i.e., no constraint on t). Pt

includes the failure detectors that eventually suspect the crashed processes, but at any
time suspects at most (n− t− 1) alive processes.

To show it, Delporte-Gallet, Fauconnier and Guerraoui have  rst shown in [8] that
Pt allows solving the atomic register problem. This problem consists of implementing
an atomic shared variable in a message-passing system prone to process crashes. While
an atomic shared variable is implementable without a failure detector when t < n/2
(i.e., when a majority of processes never crash) [2], it is impossible to realize it with-
out additional assumptions when n/2 ≤ t < n. Furthermore, it has been shown that
�S is the weakest class of failure detectors to solve consensus in asynchronous shared
memory systems, and this lower bound holds for any value of t < n [19]. So, combin-
ing a �S-based shared memory consensus protocol with a Pt-based protocol building
shared registers on top of a message-passing system, provides a Pt + �S-based pro-
tocol solving consensus in an asynchronous message-passing system prone to up to t
process crashes (t < n). This is the construction described in [8].

We have recently designed a Pt + �S-based consensus protocol that provides a
“direct” solution to the problem in the sense that it does not stack protocol layers [12].
The protocol is similar to the consensus protocol of [20], which assumes a majority
of correct processes, except that in [12] we use three communication phases in each
round instead of only two as in [20]. In fact, when considering these two protocols,
the main difference, and in particular the added communication step in the latter one,
is due to the way the intersection property, required to ensure agreement, is obtained.
Speci cally , in [20], due to the majority of correct processes assumption, it is possible
to rely on majority quorums, and obtain the intersection by a simple exchange in which
each process waits to hear from a majority of other processes. On the other hand, such
an exchange is not suf cient to obtain intersection with Pt when n/2 ≤ t < n, and
therefore an extra communication step is needed.

This paper focuses on how to obtain an intersection property with Pt when n/2 ≤
t < n. It is made of two parts. The  rst part generalizes the result of [12] by identifying a
general two-step Pt-based communication pattern and showing that this pattern is nec-
essary and suf cient in order to obtain an intersection property. This pattern is demon-
strated by providing a Pt + Ω-based consensus protocol for asynchronous message-
passing systems where t < n. Ω is the class of leader oracles. It has been shown that
Ω and �S have the same computational power as far as process crash detection is
concerned [4, 6]. This round-based consensus protocol is designed in a methodological
manner, namely, the intersection property is used twice in each round of the protocol.
It is  rst used for the processes to have a weak agreement on a leader value, and then
used a second time for the processes to ensure that the consensus agreement property
cannot be violated. In that sense, this protocol is exemplary in the way a combination of
Pt with a two-step communication pattern provides a noteworthy intersection property.

The second part of the paper focuses on the class of quorum failure detectors (de-
noted Σ) that has been introduced in [9]. These failure detectors provide each process
with a set of trusted processes such that every two sets intersect (whatever the time at
which each of them is obtained), and eventually these sets contain only correct pro-
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cesses. It is shown in [9], that Σ is the weakest class of failure detectors (be them
realistic or not ) that allow solving the atomic register problem in asynchronous mes-
sage passing systems where up to t < n processes can crash. Σ can easily be built in
systems with a majority of correct processes, i.e., when t < n/2. Building Σ when
n/2 ≤ t < n requires additional power. We present in this paper a simple protocol
based on Pt that builds such quorums while sending only constant size messages and
assuming only the eventual delivery of messages sent by correct processes (yet, it does
not require FIFO delivery). As Pt is a class of realistic failure detectors, this protocol
provides a way to build realistic failure detectors of the class Σ. The protocol is de-
signed in a methodological way from the previously identi ed two-step communication
pattern. Interestingly, by showing that quorum failure detectors can be built from Pt,
this protocol participates in the proof described in [9] showing that Pt is the weakest
class among the realistic failure detectors needed to implement an atomic register in the
asynchronous distributed systems where n/2 ≤ t < n.

Roadmap The paper is made up of six sections. Section 2 de nes the computational
model. Section 3 shows that a Pt-based two-step communication pattern is necessary
and suf cient to get the required intersection property. Section 4 then illustrates the use
of the previous intersection property by presenting a Pt + Ω-based consensus protocol
for asynchronous message-passing systems where t < n. Section 5 presents a Pt-based
protocol providing general quorums. Section 6 provides concluding remarks.

2 Computation Model

2.1 Asynchronous Distributed System with Process Crashes

The computation model follows the one described in [5, 11]. The system consists of
a  nite set Π of n > 1 processes, namely, Π = {p1, . . . , pn}. A process can fail
by crashing, i.e., by prematurely halting. At most t processes can fail by crashing. A
process behaves correctly (i.e., according to its speci cation) until it (possibly) crashes.
By de nition, a correct process is a process that does not crash. A faulty process is one
that is not correct. Until it (possibly) crashes, a process is alive.

Processes communicate and synchronize by sending and receiving messages through
channels. Every pair of processes is connected by a channel. Channels are assumed to
be reliable. We say that a process “broadcasts a message” as a shortcut saying that it
sends a message to each other process. This means that, while the sending of a message
is atomic (a message is either sent or not sent with respect to a destination process), a
broadcast is not atomic; if a process crashes while it is broadcasting a message, it is pos-
sible that some destination processes receive the message, while other processes never
receive it. There is no assumption about the relative speed of processes nor on message
transfer delays, i.e., the system is asynchronous. Let An,t denote such an asynchronous
message-passing system.

The notion of realistic failure detector has been introduced in [7]. Informally, a failure detector
is realistic if it can be implemented in a synchronous system. Among other features, such a
failure detector cannot guess the future.
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(1) broadcast PHASE1 (di, pi);
(2) wait until (PHASE1 (−) messages have been received from at least (n − t)

processes and all non suspected processes);
(3) let rec1i be the set of pairs received by pi at line 2

Fig. 1. A Pt-Based One-Step Communication Pattern

2.2 The Failure Detector Class Pt

As already mentioned in the Introduction, the failure detector class Pt has been intro-
duced in [8] to solve the atomic register problem in An,t when n/2 ≤ t < n. The class
Px includes all the failure detectors that satisfy the following properties:

– Strong Completeness: Eventually, every process that crashes is permanently sus-
pected by every correct process.

– x-Accuracy: At any time, no more than n− x− 1 alive processes are suspected.

The reader can check that Pn−1 is the class of perfect failure detectors (as de ned in
[5]), i.e., the class of failure detectors that make no mistakes. Let us notice that Pt can
be trivially implemented in An,t when t < n/2. In that sense, it is only interesting to ex-
plore the properties offered by Pt when n/2 ≤ t < n. Consequently, in the following,
we mainly focus on asynchronous message-passing systems An,t where n/2 ≤ t < n
and equipped with a failure detector of the class Pt.

Note that the x-Accuracy property de nes a perpetual property, while the Strong
Completeness property only de nes an eventual property. This suggests that in order
to implement a failure detector from the class Pt, some form of synchrony must con-
tinuously hold in the system. For example, consider a standard heartbeat protocol for
implementing Pt. Such a protocol would work correctly if during every time interval
that is equivalent to the failure suspicion timeouts, the communication links connect-
ing any process with at least x other processes must be timely (synchronous). Clearly,
this ensures that at any given moment, no process suspects more than n − x − 1 alive
processes.

3 Implementing an Intersection Property with Pt

3.1 Pt Alone Cannot Provide Set Intersection

Let us consider the one communication step protocol described in Figure 1. Each pro-
cess pi  rst sends a pair (di, pi) where di is the value it wants to disseminate, and then
waits until it has received a message from all the processes it does not currently suspect
and from at least (n − t) processes. The set rec1i is made up of the pairs that pi has
received at the end of this communication step (i.e., when it advances to line 3).

Theorem 1. The Pt-based one-step communication pattern described in Figure 1 does
not ensure rec1i ∩ rec1j �= ∅, where pi and pj are any pair of processes not crashed at
the end of the communication phase.
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(1) broadcast PHASE1 (di, pi);
(2) wait until (PHASE1 (−) messages have been received from at least (n − t)

processes and all non suspected processes);
(3) let rec1i be the set of pairs received by pi at line 2;

————————————————————————————————-
(4) broadcast PHASE2 (rec1i);
(5) wait until (PHASE2 (−) messages received from at least (n − t) processes);
(6) let rec2i be the set of (dx, px) pairs union of the sets received at line 5;

% We have ∀i, j : rec2i ∩ rec2j �= ∅ %

Fig. 2. A Pt-Based Two-Step Communication Pattern

Proof Let us consider a system where n = 2t, and partition it into two subsets P and
Q, each made up of t processes (i.e., P ∩Q = ∅ and P ∪Q = Π). Let us consider the
following run where pi ∈ P and pj ∈ Q are two correct processes.

– Let px be a process of P that crashes after it sent (dx, px). Moreover, px is the only
process of P that crashes. Similarly, let py be a process of Q that crashes after it
send (dy, py), and py is the only process of Q that crashes.

– While the messages within each set of processes (P and Q) arrive “quickly”, the
messages from each set to the other set take an arbitrarily long time to arrive (this
is possible due to asynchrony).

Due to asynchrony and the t-accuracy property of Pt, any pi ∈ P receives messages
from all the (n− t) processes in P , and suspects all the processes in Q. This is possible
because Pt allows pi to suspect the (n− t− 1) alive processes of Q. We have the same
for any pj ∈ Q. It follows that ∀ pi ∈ P and ∀ pj ∈ Q we have rec1i ∩ rec1j = ∅.

�Theorem 1

This theorem shows that, in asynchronous message-passing systems An,t (where
n/2 ≤ t < n) equipped with Pt, a one-step message exchange pattern is insuf cient to
provide the intersection property on the sets of values received by the processes.

3.2 A Pt-Based Two-Step Communication Pattern

This section shows that combining Pt with two consecutive full information exchange
phases provides the desired set intersection property. This combination is described in
the protocol depicted in Figure 2 that simply adds a full information exchange phase to
the one-step protocol described in Figure 1.

Theorem 2. The Pt-based two-step communication pattern described in Figure 2 en-
sures ∀ pi, pj: rec2i∩rec2j �= ∅, where pi and pj are any pair of processes not crashed
at the end of the second communication phase.

Proof Let Qi (resp., Qj) be the set of processes from which pi (resp., pj) has received
a PHASE2() message (line 5). Let px be any process of Qi (resp., py any process of
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Qj). As px (resp., py) has sent a PHASE2() message to pi (resp., pj), it has executed the
 rst phase (lines 1-3). Moreover, as a process waits at line 5 for messages from at least
(n− t) processes, we have |Qi| ≥ n− t and |Qj | ≥ n− t. Let crashk denote the event
“crash of pk”.

Assume (by way of contradiction) that rec2i∩ rec2j = ∅. We show that this cannot
occur. Let ex be the event “px terminates the  rst phase” (i.e., the event “px stops
waiting at line 2”). Let us observe that such an event does exist, since (by de nition)
each process px ∈ Qi starts the second phase. Similarly, let py be any process of Qj

and ey the event “py terminates the  rst phase”.
Due to the t-accuracy property ofPt, when ex occurs, px suspects at most (n−t−1)

processes that are currently alive. If px has received a PHASE1() message from a process
py ∈ Qj , we have rec2i∩rec2j �= ∅ and the theorem follows. So, let us assume that px

has not received messages from any process py ∈ Qj when ex occurs. As (1) px falsely
suspects at most (n − t − 1) processes when ex occurs, and (2) Qj contains at least
(n− t) processes, we conclude that at least one process py′ ∈ Qj has crashed when ex

occurs. So, there is py′ ∈ Qj such that crashy′ happened before ex.
Similarly, if, for any process py ∈ Qj , py has not received messages from any

process in Qi, we can conclude that there is at least one process px′ ∈ Qi that has
crashed before the event ey , and crashx′ happened before ey.

As (1) px′ ∈ Qi, (2) py′ ∈ Qj , and (3) all the processes in Qi and Qj start the sec-
ond communication phase, we have (from the previous observations): crashx′ happens
before ey′ and crashy′ happens before ex′ . Since ex′ happens before crashx′ , and ey′

happens before crashy′ , we get the following cycle: ey′ happens before crashy′ that
happens before ex′ , that happens before crashx′ , that happens before ey′ . A contradic-
tion. �Theorem 2

Theorem 3. In a system An,t (n/2 ≤ t < n) equipped with Pt, two consecutive com-
munication steps are necessary and sufficient to have rec2i ∩ rec2j �= ∅ where pi and
pj are any pair of processes not crashed at the end of the second communication phase.

Proof Immediate consequence of Theorem 1 and Theorem 2. �Theorem 3

4 Consensus in Asynchronous Systems Where t < n with Pt + Ω

4.1 The Consensus Problem

As already indicated in the Introduction, in the Consensus problem, every correct pro-
cess pi proposes a value vi and all correct processes have to decide on the same value
v, that has to be one of the proposed values. More precisely, the Consensus problem is
de ned by two safety properties (Validity and Agreement) and a Termination Property
[5, 11]:

– Validity: If a process decides v, then v was proposed by some process.
– Agreement: No two processes decide differently .

This property is sometimes called Uniform Agreement as it requires that a faulty process that
decides, decides as a correct process.
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4.2 A Leader Oracle

The failure detector class Ω is the class of eventual leader oracles. This class has been
introduced in [4] where it is shown that it is the weakest class of failure detectors that
allow solving the consensus problem in asynchronous distributed with a majority of cor-
rect processes, i.e., in An,t where t < n/2. Ω-based consensus protocols are described
in [15, 18, 21]. (Let us notice that the leader-based consensus protocol described in [18]
is not explicitly expressed in terms of an underlying oracle.)

An oracle of the class Ω is a distributed device providing the processes with a func-
tion leader() whose invocations satisfy the following properties:

– Validity: Each time leader() is invoked, it returns a process name.
– Eventual Leadership: There is a time τ and a correct process p such that, after τ ,

every invocation of leader() by a correct process returns p.

It is important to notice that, while a leader oracle ensures that a correct leader is
eventually elected, there is no knowledge of when the leader is elected. Several leaders
can coexist during an arbitrary long period of time, and there is no way for the processes
to learn when this “anarchy” period is over.

4.3 A (Pt + Ω)- ased Consensus Protocol

This section presents a Pt × Ω-based protocol (Figure 3) that solves the consensus
problem in asynchronous distributed systems without constraint on t (i.e., where t < n).
A process pi starts a consensus execution by invoking Consensus(vi) where vi is the
value it proposes. This function is made up of two tasks, T1 (the main task) and T2.
The statement return(v) terminates the consensus execution (as far as pi is concerned)
and returns the decided value v to pi.

The processes proceed by consecutive asynchronous rounds. As a process that de-
cides stops participating in the sequence of rounds and processes do not necessarily
terminate in the same round, it is possible that processes proceeding to round r + 1
wait forever for messages from processes that decided during r. The aim of the task T2
is to prevent such a deadlock possibility by directing a process that decides to reliably
disseminate the decided value.

As noticed in the Introduction, this protocol is designed in a methodological manner,
namely, the intersection property is systematically used in each round of the protocol. It
is  rst used for the processes to have a weak agreement on a leader value, and then used
a second time for the processes to ensure that the consensus agreement property cannot
be violated. In that sense, this protocol is exemplary in the way a Pt-based two-step
communication pattern can bene t to protocol designers.

Each process pi manages two local variables whose scope is the whole execution,
namely, ri (current round number) and esti (current estimate of the decision value). A
process pi manages also  ve local variables whose scope is the current round, namely,
auxi, and the sets of value pairs rec1 1i, recc1 2i, rec2 1i and rec2 2i. ⊥ denotes a
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Function Consensus(vi)

Task T1:
(1) ri ← 0; esti ← vi;
(2) while true do
(3) ri ← ri + 1; ldi ← leader(); let di = (esti, ldi);

———————— Phase 1 of round r ———————————————-
(4) broadcast PHASE1 1(ri, (di, pi));
(5) wait until (PHASE1 1(ri, (−,−)) messages have been received from at least n − t

processes and from all non suspected processes);
(6) wait until (PHASE1 1(ri, (−,−)) received from pldi ∨ ldi �= leader());
(7) let rec1 1i be the set of (d, p) pairs previously received;
(8) broadcast PHASE1 2(ri, (rec1 1i, pi));
(9) wait until (PHASE1 2(ri, (−,−)) received from at least n − t processes);
(10) let rec1 2i be the set union of the sets of pairs previously received;

% Theorem 2 ⇒ ∀i, j : rec1 2i ∩ rec1 2j �= ∅ %
(11) if

( ∃� :
(∀(d, p) ∈ rec1 2i : d = (−, �)

) ∧ (
((v,−), p�) ∈ rec1 2i

) )
(12) then auxi ← v else auxi ← ⊥ endif;

% We have ∀i, j :
(

(auxi �= ⊥) ∧ (auxj �= ⊥)
) ⇒ (auxi = auxj = v) %

———————— Phase 2 of round r ———————————————-
(13) broadcast PHASE2 1(ri, (auxi, pi));
(14) wait until (PHASE2 1(ri, (−,−)) messages have been received from at least n − t

processes and from all non suspected processes);
(15) let rec2 1i be the set of (aux, p) pairs previously received by pi;
(16) broadcast PHASE2 2(ri, rec2 1i);
(17) wait until (PHASE2 2(ri,−) messages received from at least n − t processes);
(18) let rec2 2i be the set union of the sets previously received by pi;

% Theorem 2 ⇒ ∀i, j : rec2 2i ∩ rec2 2j �= ∅ %
(19) let RECi be the set such that w ∈ RECi ⇔ (∃(w,−) ∈ rec2 2i);

% We have RECi = {v}, or RECi = {v,⊥}, or RECi = {⊥} %
% Moreover, RECi = {v} and RECj = {⊥} are mutually exclusive %

(20) case RECi = {v} then esti ← v; broadcast DECISION(esti); return (esti)
(21) RECi = {v,⊥}then esti ← v
(22) RECi = {⊥} then skip
(23) endcase
(24) endwhile

Task T2: when DECISION(est) is received:
do broadcast DECISION(esti); return (esti) enddo

Fig. 3. A Pt + Ω-Based Consensus (t < n)
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default value which cannot be proposed by processes. Moreover, each message carries
the round number during which it is sent.

A round is made up of two phases. The protocol is methodologically designed: to
get the intersection properties that eventually allow converging and prevent agreement
violation, each phase is made up of two communication steps. More precisely, we have:

– The  rst phase is a prepare phase. Its aim is to allow the processes to have a “quasi-
agreement” on the value v of the estimate of the “current” leader. Quasi-agreement
means that if two processes disagree, then at least one of them considers ⊥ as
the value of the estimate of the “current” leader. (⊥ can be interpreted as “I don’t
know”.) So, the issue is for the processes to  rst agree on a leader, and then adopt
its value in their auxi variables. Quasi-agreement is then

∀i, j :
(

(auxi �= ⊥) ∧ (auxj �= ⊥)
) ⇒ (auxi = auxj = v).

As several leaders can coexist, the protocol has to prevent processes to consider dif-
ferent leaders. This is obtained with the Pt-based two-step communication pattern
described in Figure 1. During the  rst step (lines 4-5) each process pi sends a data
di = (esti, ldi) where ldi is the process it currently considers as the leader.
At the end of the second communication step (line 10), we have (Theorem 2)
∀i, j : rec1 2i ∩ rec1 2j �= ∅. This allows pi to look if there is (possibly) a
common leader, i.e., a process p� such that ∀(d, p) ∈ rec1 2i : d = (−, �). If
this predicate is true, due to the intersection property, no other process can be con-
sidered as a common leader by another process pj . If additionally, pi knows the
value v of the current estimate of p� (predicate ((v,−), p�) ∈ rec1 2i), it adopts
and keeps it in auxi (lines 11-12).
Hence, at the end of the  rst phase, there are at most two values (namely, the current
estimate v of some process and ⊥) in the auxi variables of the processes.

– The second phase is a try-to-decide phase. Its aim is to direct the processes to
decide the estimate v of the common leader (if there is one), while ensuring that the
consensus uniform agreement property cannot be violated when processes decide
during different rounds.
Observe that, due to the quasi-agreement provided by the  rst phase, the non-⊥
auxi variables are equal to the same value v. So, if two processes decide it, they
trivially decide the same value. So, the main point of this phase is to prevent con-
sensus agreement violation. This is done by ensuring that, if processes decide v
during the current round, then all the processes that start the next round, do it with
their estimates equal to v (hence, no value different from v can be decided in the
future). This is obtained by using the intersection property once again.
As the initial data of each process pi is the value of auxi, the two-step communi-
cation pattern (lines 13-19) ensures that (1) a set RECi can be equal only to {v},
{v,⊥} or {⊥}, and (2) (intersection property) RECi∩RECj �= ∅, from which we
can conclude that, during a round, RECi = {v} and RECj = {⊥} are mutually
exclusive.
It is then easy to see that if, during a round, a process pi decides v (line 20), then
any process pj (that neither crashes nor decides) executes line 21 and starts the next
round with estj = v.

Building and Using Quorums Despite Any Number of Process of Crashes 11



4.4 Proof of the Protocol

The proof of the validity property is left to the reader.

Lemma 1. [No deadlock] If no process decides during a round r′ ≤ r, then all correct
processes start r + 1.

Proof Let us assume, by way of contradiction, that no process decided during a round
r′ < r where r is the smallest round number during which a correct process pi blocks
forever. So, pi blocks at line 5, 6, 9, 14 or 17.

Due to the assumption on the upper bound (t) on the number of crashes, and the
strong completeness property of the failure detector, it follows that no process can block
forever at line 5, 9, 14 or 17.

Let us now consider line 6, and assume that pi does not receive a PHASE1 1(r, (−))
message from pldi

(the process it considers as the leader). In that case, pldi
has neces-

sarily crashed before or while it was executing line 4 (otherwise, pi would eventually
receive its PHASE1 1(r, (−,−)) message). Due, to eventual leadership property of the
Ω oracle, there is a time after which the predicate ldi �= leader() will become true. It
follows that pi cannot block forever at line 6. �Lemma 1

Theorem 4. [Termination] If a process pi is correct, then it decides.

Proof Let us  rst observe that if a (correct or not) process decides, then due to the
fact that it broadcasts a DECISION() message before deciding (line 20 and Task T2) and
since channels are reliable, it follows that all correct processes receive this message and
decide.

So, let us assume that no process decides. The proof is by contradiction. Due to the
eventual leadership property of Ω, it follows that there is a time τ after which (1) there
is a correct process (say p�) such that its name � is the output of all the invocations of
leader(), and (2) no process crashes (i.e., all processes that execute after τ are correct).
Let r be the  rst round that starts after τ . As by assumption no process decides, due to
Lemma 1, such a round does exist and each correct process executes it.

Let pi be any correct process. As we are after τ , it sets di = (−, �) when it starts
r. Moreover, after line 6, it has received the current estimate v of p�. It follows that
the predicate at line 11 is satis ed for pi, and consequently pi adopts v in auxi. As
during the second phase, the only value v is exchanged, it follows that each correct pi

has RECi = {v}, and consequently decides. �Theorem 4

Lemma 2. [Quasi-agreement] Let pi and pj be any pair of processes not crashed
at the end of the fir st phase of round r. We have

(
(auxi �= ⊥) ∧ (auxj �= ⊥)

) ⇒
(auxi = auxj = v). Moreover, if auxi = v �= ⊥, v is the value of the current estimate
of a process that started round r.

Proof Let us  rst observe that, as an immediate consequence of Theorem 2, we have
rec1 2i ∩ rec1 2j �= ∅ after line 10 of round r. If both processes set auxi and auxj to
⊥, the lemma trivially follows. So, let us consider that pi sets auxi to v �= ⊥. We show
that pj cannot set auxj to a value different from v or ⊥.

12 R. Friedman, A. Mostefaoui, and M. Raynal
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As pi sets auxi to v, the predicate it has evaluated at line 11 is true, which means that
there is a process p� such that ∀(d, p) ∈ rec1 2i : d = (−, �). As rec1 2i ∩ rec1 2j �=
∅, we conclude that ∃(d, p) ∈ rec1 2j : d = (−, �). It follows that it is not possible
for pj to have ∀(d, p) ∈ rec1 2i : d = (−, �′) with �′ �= �. Consequently, due to the
predicate of line 11, pj cannot set auxj to a value different from v or ⊥.

The fact, if auxi = v �= ⊥, v is the value of the current estimate of a process that
started round r follows from the predicate evaluated at line 11. If auxi is set to v, a pair
((v,−), p�) has necessarily been received during that round, and consequently has been
sent at the beginning of the round. �Lemma 2

Lemma 3. [Mutual exclusion] Let pi and pj be any pair of processes not crashed at
line 19 of the second phase of round r. We have RECi = {v} ⇔ RECj �= {⊥}.

Proof As in the previous lemma,let us  rst observe that,as an immediate consequence
of Theorem 2, we have rec2 2i ∩ rec2 2j �= ∅ after line 18 of round r. Moreover, due
to Lemma 2, the values sent by the processes during the  rst communication step of
this phase are v, or v and ⊥, or ⊥. It follows that the sets rec2 2i and rec2 2j can only
contain pairs such as (v,−) and (⊥,−). Finally, due to their de nition, the sets RECi

and RECj can only contain v, or v and ⊥, or ⊥.
Let us assume that RECi = {v}. Due to the de nition of RECi, this means that

∀(w, p) ∈ rec2 2i : w = v. As rec2 2i ∩ rec2 2j �= ∅, we conclude that ∃(w, p) ∈
rec2 2j : w = v, which implies that v ∈ RECj . �Lemma 3

Theorem 5. [Agreement] No two processes decide differently.

Proof Let us  rst observe that a value decided by a process when executing task T2
comes from a process that sent it at line 20. So, we only consider values decided at line
20. Moreover, a value decided at line 20 during a round r is the value of the current
estimate est� of a process that executed line 4 of r (this follows from Lemmas 2 and 3).

Let r be the smallest round during which a process pi decides, and let v be the value
it decides. This means that RECi = {v}. Due to Lemma 3, we have, for any process pj

that executes line 19 of r, RECi∩RECj �= ∅, which means that v ∈ RECj . It follows
that if pj decides during r it decides v. If pj does not decide, it sets its estimate estj
to v. It follows that the estimates of all the processes that proceeds to r + 1 are equal
to v. As a value decided during a round r′ > r is the value of the current estimate of a
process that executed line 4 of r′, and as these processes have v as estimate value since
the end of r, they can decide only v, and uniform agreement follows. �Theorem 5

5 Implementing Quorum Failure Detectors

5.1 The Class of Quorum Failure Detectors

The class of quorum failure detectors (denoted Σ) has been introduced in [9]. At any
time τ , such a failure detector provides each process pi with a subset of processes
(trustedi) such that the following properties are satis ed. Let trustedτ

i denote the
value of trustedi when read by pi at τ .
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(1) trustedi ← {p1, . . . , pn}; reci ← {p1, . . . , pn}; ri ← 0;
(2) repeat forever
(3) ri ← ri + 1;
(4) broadcast ALIVE (ri, reci);
(5) wait until (ALIVE (ri, rec) messages have been received from at least (n − t)

processes and all non suspected processes);
(6) trustedi ← union of the rec sets received by pi at line 5;
(7) reci ← the set of proceeses from which pi received messages at line 5
(8) end repeat

Fig. 4. From Pt to Σ: A Sequence Number-Based Protocol

– Intersection: ∀pi, pj : ∀τ, τ ′ : trustedτ
i ∩ trustedτ ′

j �= ∅.
– Completeness: Eventually, every set trustedi contains only correct processes.

Among other results, [9] presents the following theorem on the minimal failure detec-
tion requirement to implement an atomic register (this theorem considers all possible
failure detectors, not only the ones that are realistic).

Theorem 6. [9] ∀t < n, Σ is the weakest class of failure detectors ASn,t has to be
equipped with in order to implement an atomic register.

5.2 From Pt to Σ

This section gives a protocol that builds a failure detector of the class Σ in asynchronous
distributed systems ASn,t with n/2 ≤ t < n and equipped with Pt. (Σ can easily be
built without any additional assumptions when t < n/2.) This protocol is constructed
in an incremental way from the two step communication pattern described in Figure 2.

An incremental design The processes need to permanently exchange messages to obtain
the required intersection property. Such a permanent exchange can be realized by a
repeated use of the two step communication pattern de ned in Figure 2.

Let us observe that the data part di is irrelevant for building quorums made up of
process names. So it can be suppressed from messages. Let us now consider consecutive
instances (r, r+1 and r+2) of the two step pattern. They involve the following messages
(carrying their sequence number):

during r PHASE1 (r, pi) and PHASE2 (r, reci)
during r + 1 PHASE1 (r + 1, pi) and PHASE2 (r + 1, reci)
during r + 2 PHASE1 (r + 2, pi) and PHASE2 (r + 2, reci)

We can additionally observe that a process always knows the identi er of the sender
of a message it receives and that the only information carried in PHASE1(r, pi) mes-
sages is the sender’s id. Thus, for any r, each pair of messages PHASE2(r, reci) and
PHASE1(r + 1, pi) can be merged into a single message ALIVE(r, reci) carrying im-
plicitly a double “PHASE1/PHASE2” semantics. When such a message is received, it is
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(1) trustedi ← {p1, . . . , pn}; reci ← {p1, . . . , pn};
(2) repeat forever
(3) broadcast ALIVE (reci);
(4) wait until (new ALIVE (rec) messages have been received from at least (n − t)

processes and all non suspected processes);
(5) trustedi ← union of the rec sets received by pi at line 4;
(6) reci ← the set of processes from which pi received messages at line 4
(7) end repeat

Fig. 5. From Pt to Σ: An Ef cient Protocol

processed according to its double semantics. In that way, we get the protocol described
in Figure 4 that implements Σ from Pt.

Note that each iteration in the protocol of Figure 4 consists of only one message
exchange, which at  rst glance appears to contradict the necessity of having two com-
munication steps. A closer look, however, reveals that there in no contradiction. Essen-
tially, the value of trustedi is only valid after the second iteration of the protocol. Thus,
consider any implementation of the application interface of Pt, which returns the list
of trusted processes to an application or higher level protocol. Such an interface imple-
mentation must report all processes as trusted until at least the second iteration of the
protocol in Figure 4 terminates. Only after the second iteration terminates it can return
the variable trustedi.

The final protocol A close look at the previous protocol reveals that the sequence num-
bers are actually useless. Intuitively, this “comes” from the fact that the intersection
property we want to obtain states that any two sets of trusted processes have to intersect
whatever the time at which they have been computed (e.g., even if one has been com-
puted at the very begining of the computation, while the other has been computed much
later). The suppression of sequence numbers provides a more concise protocol in which
all messages have a bounded size. The ef cient protocol resulting from this observation
is described in Figure 5. Let us notice that this protocol only requires eventual delivery
of messages sent by correct processes, yet it does not rely on FIFO.

5.3 Proof of the Protocol

While the protocol described in Figure 5 does not associate sequence numbers with iter-
ation steps, for the sake of the proof, we identify each iteration executed by a process by
an iteration number. Moreover, the proof uses the following notation. For any iteration
number k and process pi not crashed at the end of k:

- rk
i denotes the execution of the k-th iteration of pi,

- trustedk
i denotes the value of the set trustedi computed by pi at the end of its k-th

iteration.
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Proof Assume, by way of contradiction, that some correct process blocks during the
execution of one of its protocol’s iterations. Without loss of generality, let pi be the
process that blocks on the smallest iteration number (if there are several such processes,
then pi is the one with smallest id), and denote this iteration number by k.

By examining the code of the protocol, the only place where a process could block
is the wait statement of line 4. In this statement a process waits until is received mes-
sages from all unsuspected processes and from at least n− t processes. Yet, due to the
completeness property of Pt, all crashed processes are eventually detected, and thus, a
process cannot wait forever due to a failed process.

Moreover, by the assumption on the minimality of k, then all correct processes
eventually start their k-th iteration, and in particular, each of them sends at least k
distinct ALIVE(−) messages. Thus, as there are at most t failures, at least n − f new
messages should be received by pi during rk

i . Therefore, pi cannot block at line 4, and
consequently proceeds to the next iteration and starts rk+1

i . A contradiction. �Lemma 4

Lemma 5. [Completeness] The protocol described in Figure 5 ensures Σ complete-
ness property.

Proof When a process pi crashes, it stops sending new messages. Let τ be the time
after which all the messages it has sent have been received. Clearly, no new messages
from pi are received after τ . By Lemma 4, each correct process executes the protocol’s
iterations in nitely often. Thus, it follows from the code of Lines 5 and 6 (and the strong
completeness property of Pt) that every correct process will permanently suspect pi

some  nite time after τ . �Lemma 5

Lemma 6. [Intersection] Let pi (resp., pj) be a process that executes iteration number
k (resp., number l). The protocol described in Fig. 5 ensures trustedk

i ∩ trustedl
j �= ∅.

Proof Let us  rst observe that we can conclude from the protocol’s code that,for any px

and any iteration �, the set trusted�
x cannot be empty. Let us also notice that if, during

its k-th iteration, pi receives a message that its sender px sent during its  rst iteration,
it follows from the initial value of recx and line 5 that trustedk

i = {p1, . . . , pn}, and
consequently trustedk

i ∩trustedl
j �= ∅. Thus, for the rest of the proof, we only consider

cases where neither pi nor pj receives any message that was sent by a process in its  rst
protocol’s iteration.

Assume, by way of contradiction, that there are two processes pi and pj and two
respective iteration numbers k and l for which trustedk

i ∩ trustedl
j = ∅. Let Qk

i (resp.,
Ql

j) be the set of processes from which pi (resp., pj) has received an ALIVE(−) message
(line 4) during rk

i (resp., rl
j). Let px be a process of Qk

i (resp., py a process of Ql
j), and

consider the iteration number kx (resp., ly) in which px (resp., py) sent this message.
Moreover, without loss of generality, let us assume that, among the processes in Qk

i ,
px is the  rst that terminated the iteration (here kx − 1) just before the one (namely,
kx) during which it sent the ALIVE(−) message that pi has received during its k-th
iteration. Similarly, let us assume that, among the processes in Ql

j , py is the  rst that
terminated the iteration (here kl − 1) just before the one (namely, kl) during which it
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sent the ALIVE(−) message that pj has received during its l-th iteration. Note that the
values of k, l, kx, and ly can be completely distinct from each other, but can also be the
same; the proof does not depend on this.

As px (resp., py) has sent an ALIVE(−) message to pi (resp., pj) during rkx
x (resp.,

r
ly
y ), it has  nished executing its iteration number kx − 1 (resp., number ly − 1) by

the time it sends this ALIVE(−) message. Moreover, as a process waits at line 4 for
messages from at least (n− t) processes, we have |Qk

i | ≥ n− t and |Ql
j | ≥ n− t.

Let crashq denote the event “crash of pq” for any process pq . Also, let ex be the
event “px terminates the iteration kx − 1”, and, similarly, ey be the event “py terminates
its iteration ly − 1”.

Due to the t-accuracy property ofPt, when ex occurs, px suspects at most (n−t−1)
processes that are currently alive. If px has received an ALIVE(−) message from a
process py ∈ Ql

j during rkx
x , then by the code we have trustedk

i ∩ trustedl
j �= ∅ and

the theorem follows. So, let us assume that px has not received messages from any
process py ∈ Ql

j during rkx−1
x , (the iteration at the end of which the event ex occurs).

As (1) px falsely suspects at most (n − t − 1) processes when ex occurs, and (2) Ql
j

contains at least (n − t) processes, it follows that at least one process py′ ∈ Ql
j has

crashed when ex occurs. So, there is py′ ∈ Ql
j such that crashy′ happened before ex.

Similarly, if, for any process py ∈ Ql
j , py has not received messages from any

process in Qk
i during r

ly−1
y , we can conclude that there is at least one process px′ ∈ Qk

i

that has crashed before the event ey , or in other words, crashx′ happened before ey .
As px′ ∈ Qk

i and py′ ∈ Ql
j , we have the following “happened before” ordering

from the previous observations.

– crashx′ happens before ey that happens before ey′ (ey happens before ey′ because,
by assumption, py is the  rst process of Ql

j that  nished executing its iteration
preceding the one during which it sent the ALIVE() message received by pj during
rl
j).

– crashy′ happens before ex that happens before ex′ (similarly, ex happens before
ex′ because, by assumption, px is the  rst process of Qk

i that  nished executing its
iteration preceding the one during which it sent the ALIVE() message received by
pi during rk

i ).

Since ex′ happens before crashx′ , and ey′ happens before crashy′ , we get the follow-
ing cycle: ey′ happens before crashy′ , which happens before ex′ , which happens before
crashx′ , which happens before ey′ . A contradiction. �Lemma 6

Theorem 7. The protocol described in Figure 5 builds a failure detector of the class
Σ in any asynchronous distributed system made up of n processes where up to t can
crash, equipped with a failure detector of the class Pt.

Proof The theorem follows directly from the Lemmas 5 and 6. �Theorem 7

6 Concluding Remarks

On weakest realistic failure detectors The theorem below complements the results of
[9] on the weakest class of realistic failure detectors for the atomic register problem.
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Theorem 8. Pt is the weakest class of realistic failure detectors that allows solving the
atomic register problem in ASn,t where t < n.

Proof The theorem follows from the following three facts. (1) It is shown in [9] that
any realistic failure detector in Σ is in Pt. (2) The previous theorem 7 has shown that
Pt allows the construction of realistic failure detectors of Σ. (3) It is shown in [9] that
Σ is the weakest class of failure detectors ASn,t has to be equipped with in order to
implement an atomic register (theorem 6). �Theorem 8

On failure detector reduction protocols We have designed in [1] a protocol that builds a
failure detector of the class �S from an underlying failure detector denoted �Sk whose
accuracy property is “weaker” than the one of �S in the following sense. Accuracy of
�S requires that there is a correct process that is eventually not suspected by the other
processes. Hence, the scope of the accuracy property is n as it is a priori on all the
processes. The accuracy of �Sk requires that there is a correct process that is eventually
not suspected by a set of k other processes. When k = n, both properties are the same.

We have shown in [1] that there is a protocol building �S from �Sk if an only if
k > t. It is noteworthy to notice that although it was derived from different principles,
the structure of the protocol proposed in [1] that reduces �S to �Sk when k > t is the
same as the  nal structure of the protocol described in Figure 5 (but, of course, with
different inputs and different outputs). This shows that some failure detector reduction
protocols exhibit an interesting unity that may merit additional investigation.

Communication vs failure detection As a  nal remark, while quorums are used to con-
vey data and communicate values among the processes, they provide no information on
failures. Differently, a failure detector provides (sometimes unreliable) information on
failures but does not allow the processes to communicate information. Yet, combining
failure detectors with quorums allows the processes to progress and terminate in a con-
sistent way (i.e., while ensuring uniform agreement). More precisely, in the approach
followed in the consensus protocol we have presented:

– Consensus termination is ensured thanks to the Ω/�S part of the failure detector.
– Uniform agreement is ensured thanks to the quorum intersection property, that is

realized by a Pt-based two-step communication pattern.

The second item indicates that a failure detector such as Pt provides enough synchro-
nization power to enable a communication pattern that can convey information among
processes whatever the value of t. This means that some failure detectors can be used
to augment the power of communication primitives.
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Abstract. Unreliable failure detectors are a well known means to enrich
asynchronous distributed systems with time-free semantics that allow to
solve consensus in the presence of crash failures. Implementing unreli-
able failure detectors requires a system that provides some synchrony,
typically an upper bound on end-to-end message delays. Recently, we
introduced an implementation of the perfect failure detector in a novel
partially synchronous model, referred to as the Θ-Model, where only the
ratio Θ of maximum vs. minimum end-to-end delay of messages that
are simultaneously in transit must be known a priori (while the actual
delays need not be known and not even be bounded). In this paper, we
present an alternative failure detector algorithm, which is based on a
clock synchronization algorithm for the Θ-Model. It not only surpasses
our first implementation with respect to failure detection time, but also
works during the system booting phase.

1 Introduction

Asynchronous distributed algorithms maximize systems coverage, i.e., the prob-
ability that a fault-tolerant distributed real-time system works as required dur-
ing its lifetime. In particular, systems coverage is known to be higher with
asynchronous algorithms than with synchronous algorithms, for identical per-
formance figures (e.g., response times) [1, 2]. Due to the well-known FLP impos-
sibility result [3], however, important generic problems like consensus cannot be
solved deterministically in purely asynchronous systems if just a single process
may crash. Solving such generic problems hence requires a purely asynchronous
system augmented with some semantics.

Dolev, Dwork and Stockmeyer [4] investigated how much synchronism is re-
quired in order to solve consensus. They identified five synchrony parameters
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(processors, communication, message order, broadcast facilities and atomicity
of actions), which can be varied into 32 different partially synchronous models.
For each of those, they investigated whether consensus is solvable. A different —
more abstract — approach was taken by Chandra and Toueg [5, 6], who intro-
duced the concept of unreliable failure detectors (FDs). A local failure detector
module is associated with every process, which provides the consensus algorithm
with hints about processes that (seem to) have crashed. Several different classes
of unreliable failure detectors sufficient for solving consensus have been identi-
fied in [5]. In this paper we focus on the perfect FD P. Informally, this FD has
the semantics that (1) all correct processes will detect all crashes and (2) no
processes will be falsely suspected of having crashed.

Failure detectors are particularly attractive, since they encapsulate synchrony
assumptions in a time-free manner. Consensus algorithms using FDs are hence
time-free in the sense that no local clocks are needed and no real-time variables
show up in the algorithm’s code. Therefore such algorithms share the cover-
age maximization property proper to purely asynchronous algorithms. Never-
theless, the question of coverage arises also when implementing an FD, which of
course requires the underlying system to satisfy some synchrony assumptions. In
fact, existing implementations of the perfect FD P (see [7] for a comprehensive
overview of existing work) rest upon knowing an upper bound on the end-to-end
transmission delays of messages and hence require a synchronous system [8]. In
[7] and [2], we introduced a novel system model, referred to as Θ-Model1, which
is essentially the purely asynchronous FLP model [3] augmented with a bound
upon the ratio Θ of maximum vs. minimum end-to-end computation + trans-
mission delay between correct processes. Since just a bound upon the ratio Θ —
but not on the maximum delay itself —must be known, this type of partial syn-
chrony is not covered in the classic literature on synchrony [4, 9, 8]: The existing
models require both an upper bound upon (1) the relative speed Φ of any two
correct processes and (2) the absolute message transmission delay Δ. In sharp
contrast, the Θ-Model does not incorporate any absolute bound on delays and
works even in situations where actual delays are unbounded. (This is formalized
in [10].) Unlike the global stabilization time model of [9], which assumes that
the system is synchronous from some unknown point in time on, it belongs to
the class of models where bounds on transmission and computation delays are
unknown but are always assumed to hold.

Another issue where the Θ-Model differs from the partially synchronous mod-
els of [4, 9, 8] is the fact that it allows message-driven algorithms only, where every
computation event at a process is a direct response to some (remote) message
reception. In [7] we showed that spontaneous local events — e.g. due to clocks
or timers — are in fact not necessary for solving generic agreement problems.
Θ-algorithms are hence time-free in that they do not rely upon local time in-
formation (no clocks, no a priori bounds on the duration of computation steps)
and can only make decisions based on and triggered by received messages.

1 Visit http://www.ecs.tuwien.ac.at/projects/Theta/ for our papers on the Θ-Model.
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In [7], we also introduced an algorithm for implementing P in the Θ-Model.
By definition, this algorithm circumvents both the impossibility of implementing
P in the presence of unknown delay bounds of [11] and the impossibility of
consensus in presence of unbounded delays of [4], by resorting to the assumption
of an a priori known ratio between largest and shortest end-to-end delays.

This paper presents an alternative implementation of P in the Θ-Model,
which surpasses the failure detector implementation [7] with respect to detec-
tion time. The new solution is based upon a clock synchronization algorithm in-
troduced in [12, 13], which employs an extension of the non-authenticated clock
synchronization algorithm by Srikanth and Toueg [14]. Among its particularly
attractive features is its ability to properly handle system booting: Given that
the Θ-Model allows just message-driven algorithms, Θ-algorithms must imple-
ment any required functionality without resorting to time or timers. This also
constrains the solution space for the important — but often neglected — system
startup problem considerably: Since our FD algorithm requires a quorum of pro-
cesses in order to achieve its properties, we cannot simply assume that it works
also during the booting phase, where processes get up independently of each
other at unpredictable times. After all, processes that get up late typically miss
at least some of the messages sent by earlier started ones.

Straightforward system startup solutions (see [12] for an overview of existing
approaches) either constrain the maximum allowed duration of the booting phase
via timeouts, or considerably increase the system size n for a given number of
failures to be tolerated. Both deficiencies are avoided by the clock synchroniza-
tion algorithm of [12], which in fact guarantees some of its properties (including
precision) also during system startup. Using this algorithm, we provide an imple-
mentation of P for the Θ-Model which behaves like an eventually perfect failure
detector �P during system startup and becomes P when sufficiently many pro-
cesses have completed booting.

Organization of the paper: After an overview and a short discussion of the Θ-
Model in Section 2 and Section 3, respectively, we provide some required results
related to the clock synchronization algorithm of [12, 13] in Section 4. Section 5
starts with the presentation of the new FD algorithm for the simplified case where
all processes boot simultaneously, which is then extended to handle realistic
system startup scenarios. A short discussion of our results and some remarks on
coverage issues in Section 6 complete the paper.

2 System Model

We consider an asynchronous distributed system of n processes denoted by
p, q, . . ., which communicate through a reliable, error-free and fully connected
point-to-point network. Even under the perfect communication assumption, mes-
sages that reach a process that is not booted are lost. The communication chan-
nels do not necessarily provide FIFO delivery of messages. We assume that every
(non-faulty) receiver of a message knows its sender, which is actually ensured by
our point-to-point assumption. Our algorithms do not require an authentication
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service. (Except when our algorithms have to be implemented in systems where
a point-to-point network must be simulated via a shared channel like Ethernet,
since authentication is required to prevent masquerading here.)

Failure model: Among the n processes, there is a maximum of f faulty ones.
When considering just the clock synchronization algorithm in Section 4, no re-
striction is put on the behavior of faulty processes; they may exhibit Byzantine
failures. Since the existing work on muteness detector specifications [15, 16, 17,
18, 19] suggests to also consider more severe types of failures in FD-based appli-
cations, we decided to retain the Byzantine failure model for the implementation
of our FD as well. More advanced hybrid versions of our algorithm, which tol-
erate hybrid processor and link failures, can be found in [2, 13]. Note that the
perfect communications assumption could also be dropped in favor of fair lossy
links by using the simulation of reliable links proposed by Basu, Charron-Bost
and Toueg [20]. Since we also investigate system startup, correct processes that
have not booted yet are not counted as faulty.

Despite of using the Byzantine failure model for implementing our FD, it
is nevertheless true that the classic perfect failure detector specification is only
meaningful for crash failures. When our FD is used in conjunction with a classic
FD-based consensus algorithm [5], the f faulty processes should hence exhibit
crash failures only. Actually, even a classic FD-based consensus algorithm using
our FD would also tolerate early timing failures, i.e., up to f processes that
inconsistently output correct messages too early.

Computational model: Let FD-level be the abstraction/implementation level of
our FD and the underlying clock synchronization algorithm. Following the fast
failure detector approach of [1], this level should typically be thought of as a
level fairly close to the raw computing and communication facilities. In contrast,
such algorithms as consensus or atomic broadcast are typically thought of as
middleware-level algorithms. Combining this with appropriate scheduling algo-
rithms, it follows that FD-level end-to-end delays are significantly smaller than
those end-to-end delays proper to consensus or atomic broadcast algorithms —
typically, one order of magnitude smaller (see [1]). This feature is of particular
interest with the Θ-Model [7], which is the computational model employed in this
paper. For simplicity, we employ the basic version of the Θ-Model [7] here: As-
sume that the FD-level end-to-end delay δpq between any two correct processes p
and q satisfies τ− ≤ δpq ≤ τ+, where the maximum and minimum τ+ < ∞ and
τ− > 0, respectively, are not known a priori. δpq includes computation delays at
sender and receiver, communication delays, and sojourn times in waiting queues.
Note that τ− > 0 must also capture the case p = q here; τ+ < ∞ secures that
every message is eventually delivered. The timing uncertainty is determined by
the transmission delay uncertainty ε = τ+−τ− and the transmission delay ratio
Θ = τ+/τ−. Note that neither τ− nor τ+ show up in our algorithm’s code, but
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only Ξ, which is a function of an a priori given2 upper bound Θ̄ upon Θ. (We
discuss some consequences of the fact that just Θ̄ needs to be known a priori in
Section 3.)

In [10], it has been shown formally that for ensuring safety and liveness prop-
erties of Θ-algorithms, τ+ and τ− need not even be invariant, i.e., that they may
vary during operation. The only requirement is that they increase and decrease
together such that Θ always holds. Note that this time-variance prohibits to
compute a valid upper bound on τ+ as the product of some measured message
delay and Θ, since this bound may already be invalid when it is eventually ap-
plied. A general theorem allows algorithms to be analyzed for constant τ+ and
τ− (like it is done in this paper), however, and the results — e.g. Theorem 5 and
Theorem 7 —to be translated directly into the variable timing model of [10].

Note finally that there are more advanced versions of the Θ-Model, which
allow a more accurate (i.e., less pessimistic e.g. w.r.t. detection time) modeling
of the behavior of our FD algorithm in real systems. Lacking space does not
allow us to elaborate on those extensions here.

Model of the Initialization Phase: Initially, all correct processes are down, i.e.,
do not send or receive messages. Every message that arrives at a correct process
while it is down is lost. A correct process decides independently when it wishes
to participate in the system (or is just switched on). As faulty processes may be
Byzantine, we can safely assume that faulty processes are always up or at least
booted before the first correct one. Correct processes go through the following
operation modes:

1. down: A process is down when it has not been started yet or has not com-
pleted booting.

2. up: A process is up if it has completed booting. To get a clean distinction
of up and down, we assume that a process flushes the input queues of its
network interface as first action after booting is completed. Hence, it receives
messages only if they have arrived when it was up.

3 Discussion of the Θ-Model

In this section, we provide a short justification and discussion of the Θ-Model
taken from [7]. Our arguments will show why a timing model where a bound
on message delays is replaced by a bound on the ratio of largest and shortest
end-to-end message delays makes sense for distributed fault-tolerant real-time
systems.

In real systems, the end-to-end message delay δpq consists not only of phys-
ical data transmission and processing times. Rather, queuing delays due to the
inevitable scheduling of the concurrent execution of multiple processes and mes-
sage arrival interrupts/threads on every processor must be added to the picture.

2 Overbars are used for given bounds (Θ̄) on actual values (Θ). Such bounds must be
derived from worst case and best case schedulability analyses.
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Fig. 1. A simple queuing system representation of a fully connected distributed system

Figure 1 shows a simple queuing system model of a fully connected distributed
system: All messages that drop in over one of the n−1 incoming links of a proces-
sor must eventually be processed by the single CPU. Every message that arrives
while the CPU processes former ones must hence be put into the CPU queue for
later processing. In addition, all messages produced by the CPU must be sched-
uled for transmission over every outgoing link. Messages that find an outgoing
link busy must hence be put into the send queue of the link’s communication
controller for later transmission.

Consequently, the end-to-end delay δpq = dpq + ωpq between sender p and
receiver q consists of a “fixed” part dpq and a “variable” part ωpq. The fixed
part dpq > 0 is solely determined by the processing speeds of p and q and the
data transmission characteristics (distance, speed, etc.) of the interconnecting
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link. It determines the minimal conceivable δpq and is easily determined from
the physical characteristics of the system. The real challenge is the variable part
ωpq ≥ 0 which captures all scheduling-related variations of the end-to-end delay:

– Precedences, resource sharing and contention, with or without resource pre-
emption, which creates waiting queues,

– Varying (application-induced) load,
– Varying process execution times (which may depend on actual values of

process variables and message contents),
– Occurrence of failures.

It is apparent that ωpq and thus δpq depend critically upon (1) the schedul-
ing strategy employed (determining which message is put at which place in a
queue), and (2) the particular distributed algorithm(s) executed in the system:
If the usual FIFO scheduling is replaced by head-of-the-line scheduling favor-
ing FD-level messages and computations over all application-level ones, as done
with the fast failure detectors of [1], the variability of ωpq at the FD-level can be
decreased by orders of magnitude, see Table 1. That the queue sizes and hence
the end-to-end delays δpq increase with the number and processing requirements
of the messages sent by the particular distributed algorithm that is run atop of
the system is immediately evident. Interestingly, however, fast FDs diminish the
effect of the latter upon FD-level end-to-end delays as well, as the highest pri-
ority processing and communication activities involved with FDs are essentially
“adversary immune” (the “adversary” being all activities other than FD-level
related ones, in particular, application-level ones) here. This reduces both the
order of magnitude of δpq and the complexity of schedulability analyses (see
below) very significantly.

The above queuing system model thus reveals that the popular synchronous
and partially synchronous models rest upon a very strong assumption: That an a
priori given upper bound B exists which is —as part of the model — essentially
independent of the particular algorithm or service under consideration, indepen-
dent of the scheduling algorithm(s) used, as well as independent of the “loads”
generated by algorithms or services other than the one being considered. Since
the distinction between FD-level and application level is almost never made, it
is almost always the case that B � τ̄+ ≥ δpq.

In reality, such a bound B can only be determined by a detailed worst-case
schedulability analysis3 [21, 22]. In order to deal with all the causes of delays
listed above, this schedulability analysis requires complete knowledge of the un-
derlying system, the scheduling strategies, the failure models, the failure occur-
rence models and, last but not least, the particular algorithms that are to be

3 Measurement-based approaches are a posteriori solutions. Asserting a priori knowl-
edge of an upper bound implies predictability, which is achievable only via worst-case
schedulability analysis. With measurement-based approaches, the actual bounds re-
main unknown (even “a posteriori”), which might suffice for non-critical systems,
but is out of question with many real-time embedded systems, safety-critical systems
in particular.
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executed in the system. Compiling B into the latter algorithms, as required by so-
lutions that rest upon timing assumptions, hence generates a cyclic dependency.
Moreover, conducting a detailed worst-case schedulability analysis for a solution
that is not “adversary immune” is notoriously difficult. Almost inevitably, it
rests on simplified models of reality (environments, technology) that may not
always hold. As a consequence, B and hence any non time-free solution’s basic
assumptions might be violated at run time in certain situations.

The actual value of Θ̄, which obviously depends upon many system parame-
ters, can only be determined by a detailed schedulability analysis as well. Note,
however, that τ̄+ has a coverage which can only be greater than the coverage
of B, since our design for FDs is “adversary immune”. Note also that τ̄− which
is the result of a best case analysis (just dpq) can be considered to have an
assumption coverage higher than τ̄+.

Values for Θ̄ depend of the physical properties of the system considered. They
may range from values close to 1 in systems based on satellite broadcast chan-
nels to higher values in systems where processing and queuing delays dominate
propagation delays.

To get an idea of how Θ(t) behaves in a real system (Θ(t) is the relation of
longest and shortest end-to-end delays just of the messages that are simultane-
ously in transit at time t), we conducted some experiments [23] on a network
of Linux workstation running our FD algorithm. A custom monitoring software
was used to determine bounds τ̄− ≤ τ−(t) and τ̄+ ≥ τ+(t) as well as Θ̄ ≥ Θ(t)
under a variety of operating conditions. The FD algorithm was run at the appli-
cation level (AL-FD), as an ordinary Linux process, and as a fast failure detector
(F-FD) using high-priority threads and head-of-the-line scheduling [1]. Table 1
shows some measurement data for 5 machines (with at most f = 1 arbitrary
faulty one) under low (5 % network load) and medium (0–60 % network load,
varying in steps) application-induced load.

Table 1. Some typical experimental data from a small network of Linux workstations

running our FD algorithm

FD Load τ̄ − (μs) τ̄ + (μs) Θ̄ τ̄ +

τ̄ − : Θ̄

AL-FD low 55 15080 228.1 1.20
F-FD low 54 648 9.5 1.26
F-FD med 56 780 10.9 1.27

Our experimental data thus reveal that a considerable correlation between
τ+(t) and τ−(t) indeed exists: The last column in Table 1 shows that Θ̄ is nearly
30 % smaller than τ̄+/τ̄−. Hence, when τ+ increases, τ− goes up to some extent
as well. Note that τ− must in fact only increase by α/Θ to compensate an
increase of τ+ by α without violating the Θ-assumption.

Informally, this correlation between τ+ and τ− for systems where all com-
munication is by (real or simulated) broadcasting can be explained as follows:
If some message m experiences a delay greater than τ+, this is due to messages
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scheduled ahead of it in the queues along the path from sender p to q. Due to
broadcast communication, those messages must also show up somewhere in the
path from p to r, however. The copy of m dedicated to receiver r will hence see
at least some of those messages also ahead of it. In other words, this message
cannot take on the smallest possible delay value in this case, as it does not arrive
in an “empty” system. Hence, the smallest delays must be larger than τ−, at
least for some messages.

4 Clock Synchronization in the Θ-Model

In [13, 12], we introduced and analyzed a clock synchronization algorithm that
can be employed in the Θ-Model which will be the core of the novel failure
detector algorithm of Section 5. It assumes that every process p is equipped
with an adjustable integer-valued clock Cp(t), which can be read at arbitrary
real-times t. The clock synchronization algorithm at p is in charge of maintaining
Cp(t), in a way that guarantees the following system-wide properties:

(P) Precision: There is some constant precision Dmax > 0 such that

|Cp(t)− Cq(t)| ≤ Dmax (1)

for any two processes p and q that are correct up to real-time t.
(A) Accuracy: There are some constants R−, O−, R+, O+ > 0 such that

O−(t2 − t1)−R− ≤ Cp(t2)− Cp(t1) ≤ O+(t2 − t1) + R+ (2)

for any process p that is correct up to real-time t2 ≥ t1.

Informally, (P) states that the difference of any two correct clocks in the
system must be bounded, whereas (A) guarantees some relation of the progress
of clock time with respect to the progress of real-time; (A) is also called envelope
requirement in the literature. Note that (P) and (A) are uniform [24], in the
sense that they hold also for processes that crash or become otherwise faulty
later on.

Figure 2 shows a simplified version of the clock synchronization algorithm
in [13].4 Based upon the number of processes that have completed booting, two
modes of operation must be distinguished here: In degraded mode, less than n−f
correct processes are up and running. Our algorithm maintains both precision
(P) and the upper envelope bound (i.e., fastest progress) in (A) here for all
processes. Soon after the n − f -th correct process gets up, the system makes
the transition to normal mode, where it also guarantees the lower envelope (i.e.,
slowest progress). This holds for all processes that got synchronized (termed
active in [13]) by executing line 19 in Figure 2 at least once.

In this section, we review some results of our detailed analysis in [13], as far
as they are required for this paper. We start with some useful definitions.

4 Additionally to the algorithm, [13] presents a full analysis of the algorithm under
the perception-based hybrid failure model of [25].
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0 VAR k : integer := 0;
1

2 /* Initialization */
3 send (init, 0) to all [once];
4

5 if received (init, 0) from process p
6 → if an (echo) was already sent
7 → re-send last (echo) to p
8 else → re-send (init, 0) to p
9 fi
10 fi
11

12 if received (init, k) from at least f + 1 distinct processes
13 → send (echo, k) to all [once];
14 fi
15

16 if received (echo, k) or (echo, k + 1) from at least f + 1 distinct
processes

17 → send (echo, k) to all [once];
18 fi
19 if received (echo, k) or (echo, k + 1) from at least n − f distinct

processes
20 → C := k + 1; /* update clock */
21 k := k + 1;
22 send (init, k) to all [once]; /* start next round */
23 fi
24 if received (echo, �) or (echo, � + 1) from at least f + 1 distinct

processes with � > k
25 → C := �; /* update clock */
26 k := �; /* jump to new round */
27 send (echo, k) to all [once];
28 fi

Fig. 2. Clock Synchronization Algorithm

Definition 1 (Local Clock Value). Cp(t) denotes the local clock value of a
correct process p at real-time t; σk

p , where k ≥ 0, is the sequence of real-times
when process p sets its local clock value to k + 1.

Definition 2 (Maximum Local Clock Value). Cmax(t) denotes the max-
imum of all local clock values of correct processes that are up at real-time t.
Further, let σk

first = σk
p ≤ t be the real-time when the first correct process p sets

its local clock to k + 1 = Cmax(t).

We proceed with the properties that can be guaranteed during both degraded
mode and normal mode. The following Lemma 1 gives the maximum rate at
which clock values of correct processes could increase.
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Lemma 1 (Fastest Progress). Let p be the first correct process that sets its
clock to k at time t. Then no correct process can reach a larger clock value k′ > k
before t + 2τ−(k′ − k).

Theorem 1 specifies the precision DMCB that is eventually achieved by all
correct clocks. For processes that boot simultaneously, it holds right from the
start. Late starting processes could suffer from a larger precision Dmax = �Θ + 2�
during a short time interval (duration at most 2τ+) after getting up, but are
guaranteed to also reach precision DMCB after that time.

Theorem 1 (Precision). Let an arbitrary number nup ≤ n of initially syn-
chronized processes and/or processes that are up sufficiently long participate in
the algorithm of Figure 2 for n ≥ 3f +1. Then, |Cp(t)−Cq(t)| ≤ DMCB for any
two processes p and q that are correct up to real-time t. DMCB =

⌊
1
2Θ + 3

2

⌋
.

The properties stated so far can be achieved during degraded mode, with
any number nup of participating processes. Unfortunately, they do not guaran-
tee progress of clock values. In normal mode, however, the following additional
properties can be guaranteed:

Lemma 2 (Slowest Progress). Let p be the last correct process that sets its
clock to k at time t. In normal mode, no correct process can have a smaller clock
value than k′ > k at time t + 2τ+(k′ − k).

Theorem 2 (Simultaneity). If some correct process sets its clock to k at
time t, then every correct process that is up sufficiently long sets its clock at
least to k by time t + τ+ + ε.

Theorem 3 (Precision in Normal Mode). During normal mode, the algo-
rithm of Figure 2 satisfies |Cp(t)−Cq(t)| ≤ D′

MCB for any two processes p and
q that are correct up to time t and D′

MCB =
⌊
Θ + 1

2

⌋
.

Finally, the following Theorem 4 shows that normal mode is entered within
bounded time after the n− f -th correct process got up.

Theorem 4 (Progress into System). Let t be the time when n − f correct
processes have completed booting and started the algorithm of Figure 2 for n ≥
3f +1. Then, normal mode is entered by time t+5τ++ε and all booted processes
that are correctly up by then are within min{DMCB , D′

MCB} of each other.

5 Perfect Failure Detection in the Θ-Model

In this section, we show how to extend the clock synchronization algorithm of
Section 4 in order to obtain a perfect failure detector P. We first recall the
properties that must be provided by P [5]:

(SC) Strong completeness: Eventually every process that crashes is permanently
suspected by every correct process.

(SA) Strong accuracy: No process is suspected before it crashes.
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0 VAR suspect[∀q] : boolean := false;
1 VAR saw max[∀q] : integer := 0;

2 Execute Clock Synchronization from Figure 2

3 if received (init, �) or (echo, �) from q
4 → saw msg[q] := max(�, saw msg[q]);
5 fi

6 whenever clock C is updated do (after updating)
7 → ∀q suspect[q] := (C − Ξ) > saw msg[q];

Fig. 3. Failure Detector Implementation

Our failure detector exploits the fact that correct processes always send their
clock values — via (init, k) or (echo, k) messages — to all. Due to bounded pre-
cision, a correct process p can determine a minimal clock value that it must have
seen from every process by some specific time. Consequently, if appropriate mes-
sages are missing, p must have crashed. Like the algorithm of [7], our solution
needs a priori knowledge of an integer constant Ξ only, which is a function of Θ̄
(see Theorem 5). No a priori knowledge of a bound for τ+ is required here.

5.1 A Simple Perfect FD Algorithm

In order to properly introduce the details of our clock synchronization-based
failure detector, we first ignore system startup: We assume in this subsection
that all correct processes are initially up and listening simultaneously, i.e., that
they cannot miss each others’ messages. Faulty processes may be initially dead
or may crash at arbitrary times during operation.

The algorithm given in Figure 3 is a simple extension of the clock synchro-
nization algorithm of Figure 2; note that it could dispose of the join-protocol
(line 5-10 in Figure 2) since we consider simultaneous booting in this section.
The first addition is the vector saw max[∀q] that stores, for every process q, the
maximum clock tick k received via (init, k) or (echo, k). It is written upon every
message reception. Whenever a process updates its clock to k (compare line 19
and line 24 in Figure 2), it checks saw max[∀q] to find out which processes
failed to send messages for tick k−Ξ at least. All those processes are entered into
the vector suspect[∀q], which is the interface to upper layer programs that use
the failure detector module. We will now show that, if Ξ is chosen appropriately,
the algorithm given in Figure 3 implements indeed the perfect failure detector.

Theorem 5. Let Ξ ≥ min
{⌈

3
2 Θ̄ + 1

2

⌉
,
⌈
Θ̄ + 3

2

⌉}
, where Θ̄ is a given upper

bound upon Θ. In a system with n ≥ 3f + 1 processes, the algorithm given in
Figure 3 implements the perfect failure detector.

Proof. We have to show that (SC) and (SA) are satisfied.
For showing (SC), it is sufficient to notice that a process that crashes before

it updates its clock to � + 1 will be suspected by every correct process p when
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p reaches clock value k ≥ � + Ξ. Since progress of clock values is guaranteed by
Lemma 2, every correct process will eventually reach clock value k (in systems
with bounded τ+ such clock value is reached within bounded time —the exact
time bound is derived below in Theorem 6).

To prove (SA), we have to show that Ξ is chosen sufficiently large such that
every correct process that reaches a clock value k at time t has already received
messages for ticks at least k − Ξ by every correct process. In the worst case
setting, a correct process p sets its clock to k at instant σk−1

p = σk−1
first; hence

k = Cmax(σk−1
p ). From Lemma 1, it follows that Cmax(σk−1

p − τ+) ≥ k− � 1
2Θ�.

Assuming a maximum precision Dmax, a bound for the smallest possible clock
value of a correct process reads Cmin(σk−1

p − τ+) ≥ Cmax(σk−1
p − τ+)−Dmax =

k−� 1
2Θ�−Dmax. Consequently, every correct process must have sent a message

for tick Cmin(σk−1
p −τ+) by time σk−1

p −τ+ that arrives at p by time σk−1
p . Thus,

choosing Ξ ≥ � 1
2Θ� + Dmax is sufficient to ensure that p does not incorrectly

suspect any correct process.
Since �x�+�y� ≥ �x+y� and �−x� = −�x�, it follows from setting x = z +w

and y = −w that �z + w� ≥ �z� + �w�. By setting z = 1
2Θ and �w� = Dmax

we employ �z + w� to choose Ξ. Depending on Θ, precision D′
MCB or DMCB

is smaller and can be used to calculate Ξ (by replacing Dmax). Hence, using
D′

MCB = �Θ + 1
2�, we get Ξ ≥ � 3

2 Θ̄ + 1
2�. Performing the same calculation for

DMCB = � 1
2Θ + 3

2�, we get Ξ ≥ �Θ̄ + 3
2�. ��

To find the worst case detection time of our FD algorithm, we have to deter-
mine how long it may take from the time a process p crashed with clock value k
until all correct processes reach a clock value of k+Ξ and hence suspect p. In the
worst case setting, the process p with maximum clock value crashes immediately
after reaching it. All other processes must first catch up to the maximum value,
and then make progress for Ξ ticks until correctly suspecting p.

Theorem 6 (Detection Time). The algorithm of Figure 3 with the value Ξ
chosen according to Theorem 5 implements a perfect failure detector. Its detec-
tion time is bounded by (2Ξ + 2)τ+ − τ−.

Proof. Assume the worst case: A process p is crashing at time tc where k =
Cp(tc) = Cmax(tc). By Theorem 2 every correct process must reach clock value k
by time t′ = tc + τ+ + ε. When a correct process reaches clock value k + Ξ it
will suspect p. By Lemma 2 every correct process must reach that clock value
by time t = t′ + 2Ξτ+ = tc + τ+ + ε + 2Ξτ+ = tc + (2Ξ + 2)τ+ − τ−. ��

Theorem 6 reveals that the detection time depends upon the actual τ+,
i.e., adapts automatically to the current system load. Nevertheless, following
the design immersion principle [1, 26], a bound on the detection time can be
computed when our algorithm is immersed in some real system. By conducting
a worst-case schedulability analysis of our FD, a bound for τ+ can be established.
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5.2 A Failure Detector Algorithm with Startup

In this subsection, we will add system startup to the picture: All processes are
assumed to be initially down here, and correct processes get up one after the
other at arbitrary times. Faulty processes either remain down or get up before
they finally crash. Note that this setting is stricter than the crash-recovery model
of [27], since there are no unstable5 processes allowed in this paper.

Recalling the semantics of P, the properties of our clock synchronization al-
gorithm suggest two approaches for adding system startup to our FD. First,
we noted already in Section 4 that our algorithm maintains some precision
Dmax > DMCB during the whole system lifetime. Hence, if we based Ξ upon
Dmax = �Θ + 2�, most of the proof of Theorem 5 would apply also during system
startup: (SC) is guaranteed, since progress of clock values is eventually guaran-
teed, namely, when normal mode is entered. The major part of the proof of (SA)
is also valid, provided that DMCB is replaced by Dmax.

There is one remaining problem with this approach, however: During system
startup, the resulting algorithm could suspect a correct process that simply
had not started yet. When this process eventually starts, it is of course removed
from the list of suspects —but this must not happen in case of the perfect failure
detector. Note that not suspecting processes that never sent any message until
transition to normal mode does not work either, since a process cannot reliably
detect when the transition to normal mode happens. Consequently, unless the
perfect FD specification is extended by the notion of “not yet started” processes,
there is no hope of implementing P also during system startup.

The alternative is to accept degraded failure detection properties during sys-
tem startup: We will show below that the failure detector of Figure 3 imple-
ments actually an eventually perfect failure detector �P. This FD is weaker than
P, since it assumes that there is some time t after which (SA) must hold. In
our case, t is the time when the last correct process has completed booting and
normal mode is entered. Nevertheless, viewed over the whole system lifetime,
our FD algorithm only provides eventual semantics.

Theorem 7 (Eventually Perfect FD). The algorithm given in Figure 3 im-
plements a failure detector of class �P.

Proof. We have to show that (SC) and (SA) are eventually satisfied. Let tup be
the time when the last correct process gets up. Theorem 4 shows that progress of
clock values comes into the system and all correct processes are within precision
min{DMCB , D′

MCB} by time tup + 5τ+ + ε. Hence, after that time, the proof
of Theorem 5 applies literally and reveals that our algorithm implements P and
hence belongs to the class �P during the whole system lifetime. ��

Theorem 7 reveals that any consensus algorithm that uses �P under the
generalized partially synchronous system model of [5] solves the booting problem
if used in conjunction with our FD implementation. After all, the model of [5]

5 Unstable processes change between up and down infinitely often.
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allows arbitrary message losses to occur until the (unknown) global stabilization
time GST. �P-based consensus algorithms that work with eventually reliable
links can also be used immediately. Such solutions are useful even in the context
of real-time systems, since we can bound the time until �P becomes P. Even
if the consensus algorithm is designed to work with �P it is possible to give
termination times when the FD in fact provides the semantics of P.

6 Discussion

It has been taken for granted for many years that fault-tolerant distributed
real-time computing problems admit solutions designed in synchronous compu-
tational models only. Unfortunately, given the difficulty of ensuring that stip-
ulated bounds on computation times and transmission delays are always met
(which is notoriously difficult with many systems, especially those built out of
COTS products), the safety/liveness/timeliness properties achieved with such
systems may have a poor coverage. This holds true for any design that rests
upon (some) timed semantics, including timed asynchronous systems [28] and
the Timely Computing Base [29]. With such solutions, the core questions are:
How do you set your timers? How do you know your response times?

Some safety properties (e.g. agreement in consensus), and liveness proper-
ties, can be guaranteed in purely asynchronous computational models, however.
Since asynchronous algorithms do not depend upon timing assumptions, those
properties hold regardless of the underlying system’s actual timing conditions.
The coverage of such time-free solutions is hence necessarily higher than that of
a solution involving some timing assumptions. The apparent contradiction be-
tween time-free algorithms and timeliness properties can be resolved by following
the design immersion principle, which was introduced in [26] and referred to as
the late binding principle in [1]. Design immersion permits to consider time-free
algorithms for implementing system or application level services in real-time
systems, by enforcing that timing-related conditions (like “delay for time X”)
are expressed as time-free logical conditions (like “delay for x round-trips” or
“delay for x events”). Safety and liveness properties can hence be proved inde-
pendently of the timing properties of the system where the time-free algorithm
will eventually be run. Timeliness properties are established only late in the de-
sign process, by conducting a worst-case schedulability analysis, when a time-free
solution is immersed in a real system with its specific low-level timing proper-
ties.

Design immersion can of course be applied to FD-based consensus algorithms,
which are purely asynchronous algorithms, and to our partially synchronous
time-free FD algorithms (this paper, as well as [7]). Immersion of the Θ-Model
into some synchronous model permits to conduct schedulability analyses strictly
identical to the analysis given in [1]. The FD algorithm presented in this paper
surpasses the one from [7] with respect to detection time: The former algorithm’s
detection time is bounded by (3Θ+3)τ+−τ−, whereas our clock synchronization-
based solution achieves (2Θ + 5)τ+− τ−. The latter is hence at least as good as
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the former one, and even better when Θ > 2. Note that the detection time can
hence be bounded a priori if a priori bounds τ̄+, τ̄− and Θ̄ are available.

In sharp contrast to the solution of [7], our new FD algorithm properly han-
dles system startup as well, without requiring undue additional assumptions or
an increased number of processes. Due to the uncertainty introduced by initially
down correct processes, however, it can only provide the semantics of �P. In
conjunction with a �P-based consensus algorithm that can handle eventually
reliable links, our FD hence allows to solve consensus even during system boot-
ing. Since we can bound the time until �P becomes P, this solution can even be
employed in real-time systems.

As said before, our failure detector has advantageous properties regarding
assumption coverage. Compared to solutions where timeouts are increased during
periods of high system/network load, our approach has the advantage that during
overload no increase of timeout values has to be effected. This is due to the fact
that, in real systems, there is typically some sufficient correlation between τ+

and τ− such that Θ is always maintained. Note that it suffices to have this
correlation property holding at least once in a system’s lifetime for making the
coverage of the Θ-Model greater than the coverage of a non time-free model.
(See [10] for a more detailed discussion on the Θ assumption.)

It follows that our failure detector provides the required (time-free) proper-
ties (SC) and (SA) while just the detection time possibly increases. Note care-
fully that the detection time is always as good as provided by the underlying
system/network, i.e., the FD timing properties “emerge” naturally from the sys-
tem/network capabilities [1, 26]. Moreover, if the system/network load returns
to expected behavior, our algorithm is still as exact and fast as predicted, while
algorithms that adapt their timeouts would have larger detection latencies then.

Since failure detection is often considered as a system service provided to
application-level algorithms, the overhead of the failure detector implementation
is an important issue. It might seem that this paper’s algorithm induces an
excessive overhead as there are always FD-level messages in transit. This is not
true, however, since one must distinguish between message delay (in time units)
and the throughput of a link (in messages per time unit).

A logical link in real distributed systems consists of various outbound message
queues, the physical link and the inbound message queues. If a message m is in
transit for δ real-time units, obviously not all resources belonging to a logical
links are used by m during the whole interval δ but only at most one at a time
(assuming m is in some queue, waiting for being chosen by the scheduler to be
processed next, one could say no resource is allocated to m at this time); thus the
overhead is never 100%. In systems with a reasonably large delay×bandwidth
product, the overhead is in fact quite small.

Consider the extreme case of a satellite broadcast communication link, for
example, where the end-to-end propagation delay typically is in the order of
300 ms. With up to n = 10 processors, 1,000 bit long FD messages, and a
link throughput of 2 megabit/second, the link occupancy time for this paper’s
algorithm would be 5 ms per round, entailing a communication overhead smaller
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than 2%. Moreover, the overhead can be reduced further by introducing local
pauses between rounds (which does not even need timers as it can be done by
counting suitable local events), see [2] for details.

References

1. Hermant, J.F., Le Lann, G.: Fast asynchronous uniform consensus in real-time
distributed systems. IEEE Transactions on Computers 51 (2002) 931–944

2. Le Lann, G., Schmid, U.: How to maximize computing systems coverage. Technical
Report 183/1-128, Department of Automation, Technische Universität Wien (2003)

3. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty processor. Journal of the ACM 32 (1985) 374–382

4. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34 (1987) 77–97

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225–267

6. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43 (1996) 685–722

7. Le Lann, G., Schmid, U.: How to implement a timer-free perfect failure detector
in partially synchronous systems. Technical Report 183/1-127, Department of
Automation, Technische Universität Wien (2003)

8. Larrea, M., Fernandez, A., Arevalo, S.: On the implementation of unreliable failure
detectors in partially synchronous systems. IEEE Transactions on Computers 53
(2004) 815–828

9. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35 (1988) 288–323

10. Widder, J.: Distributed Computing in the Presence of Bounded Asynchrony. PhD
thesis, Vienna University of Technology, Fakultät für Informatik (2004)
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Abstract. Total Order (TO) broadcast is a widely used communication
abstraction that has been deeply investigated during the last decade. As
such, the amount of relevant works may leave practitioners wondering
how to select the TO implementation that best fits the requirements
of their applications. Different implementations are indeed available,
each providing distinct safety guarantees and performance. These as-
pects must be considered together in order to build a correct and suffi-
ciently performing application. To this end, this paper analyzes six TO
implementations embedded in three freely-distributed group communi-
cation systems, namely Ensemble, Spread and JavaGroups. Implementa-
tions are first classified according to the enforced specifications, which is
given using a framework for specification tailored to total order commu-
nications. Then, implementations are compared under the performance
viewpoint in a simple yet meaningful deployment scenario. In our opin-
ion, this structured information should assist practitioners (i) in deeply
understanding the ways in which implementations may differ (specifi-
cations, performance) and (ii) in quickly relating a set of total order
algorithms to their specifications, implementations and performance.

1 Introduction

Total Order (TO) is a widely investigated communication abstraction imple-
mented in several distributed systems. Intuitively, a TO primitive ensures that
processes of a message-passing distributed system deliver the same sequence of
messages. This property is extremely useful for implementing several applica-
tions, e.g active software replication [1].

However, there are several subtleties that still deserve clarification, especially
among practitioners that can get confused by the relevant amount of work done
in this area. A first issue is to understand the guarantees of a TO primitive,
as distinct primitives and implementations enforce distinct specifications that
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have to be matched against application correctness requirements. To achieve
this, in this paper we first present six existing TO specifications organized into
a hierarchy, and then we identify how specifications differ in terms of the possi-
ble behavior of faulty processes. Then, we classify into the hierarchy both fixed
sequencer and privilege-based TO protocols given in the context of primary
component group communications [2, 3], by also pointing out real systems im-
plementing these primitives. These are the results of a formal analysis available
in a companion paper [4].

A further issue we deem relevant for practitioners is performance. Several
works present performance analysis of TO primitives, e.g. [5, 6]. Some other
works discuss the correlation between the guarantees and the achievable perfor-
mance of a TO implementation, e.g. [7]. These works mainly focus on intrin-
sic characteristics of the analyzed primitives, and not on the overall system in
which a primitive is typically implemented. Therefore in this paper, in order to
assist practitioners in finding the TO implementation that best matches both
applications’ correctness and performance requirements, we present a simple yet
meaningful performance analysis of the implementations in real systems of the
discussed TO primitives.The results show that the performance of a TO primitive
depends on the combination of three factors, (i) the enforced TO specification,
(ii) the TO protocol used to implement that specification, and (iii) the way the
protocol is implemented.

The remainder of this paper is organized as follows. Section 2 introduces
total order broadcast. In particular, it describes the system model, the proper-
ties defining the TO problem, a hierarchy of TO specifications, and highlights
their differences in terms of the admitted behavior of faulty processes. Then,
Section 3 presents fixed-sequencer and privilege-based TO implementations pro-
vided by group communication systems. Section 4 describes some real systems
implementing TO primitives and compares them from a performance point of
view (Appendix A gives further details about the configuration of these systems).
Finally, Section 5 concludes the paper.

2 Total Order Broadcast

2.1 System Model

Asynchronous Distributed System. We consider a system composed by a finite
set of processes Π = {p1 . . . pn} communicating by message passing. Each pro-
cess behaves according to its specification until it possibly crashes. A process
that never crashes is correct, while a process that eventually crashes is faulty.
The system is asynchronous, i.e. there is no bound known or unknown on mes-
sage transfer delays and on processes’ relative speeds. In order to broadcast a
message m, a process invokes the TOcast(m) primitive. Upon receiving a message
m, the underlying layer of a process invokes the TOdeliver(m) primitive, which is
an upcall used to deliver m to the process. We say that a process p ∈ Π tocasts a
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message m iff it executes TOcast(m). Analogously, we say that a process p ∈ Π
todelivers a message m iff it executes TOdeliver(m).

Properties and Specifications. Each process p ∈ Π can experience the occurrence
of three kinds of events, namely TOcast(m), TOdeliver(m) and crash. An his-
tory hp is the sequence of events occurred at p during its lifetime. A system
run is a set of histories hpi , one for each process pi ∈ Π. Informally speak-
ing, a property P is a predicate defining a set RP of system runs, composed
by all system runs whose process histories satisfy P . A specification, denoted
S(P1 . . . Pm) (with m ≥ 1) is the conjunction of m properties, thus defining a
set RS of system runs, composed by those runs satisfying all properties in S.
Given two specifications S(P1 . . . Pm) and S′(P ′

1 . . . P ′
�), we say that S is stronger

than S′, denoted S → S′, iff RS ⊂ RS′ . In this case we also say that S′ is weaker
than S. Finally, two specifications S and S′ are said to be equivalent, denoted
S ≡ S′, iff RS ≡ RS′ .

2.2 Total Order Properties

Total order broadcast is specified by means of four properties, namely Valid-
ity, Integrity, Agreement, and Order. Informally speaking, a Validity property
guarantees that messages sent by correct processes are eventually delivered at
least by correct processes; an Integrity property guarantees that no spurious or
duplicate messages are delivered; an Agreement property ensures that (at least
correct) processes deliver the same set of messages; an Order property constrains
(at least correct) processes delivering the same messages to deliver them in the
same order. Each property can be formally defined in distinct ways, thus gener-
ating distinct specifications. As an example, properties can be defined as uniform
or non-uniform, being non-uniform ones less restrictive, as they allow arbitrary
behavior for faulty processes.1

Order properties can be further distinguished on the basis of the possibility
to have gaps in the sequence of messages delivered by processes, and are thus
classified into strong and weak properties. A weak Order property requires a pair
of processes delivering the same pair of messages to deliver them in the same
order. This restriction does not prevent a process p to skip the delivery of some
messages. Therefore, it allows the occurrence of gaps in the sequence of messages
delivered by p with respect to those delivered by other processes. In contrast, a
strong Order property avoids gaps in the sequence of delivered messages as it
requires that two processes delivering a message m have delivered exactly the
same ordered sequence of messages before delivering m.

Table 1 reports the definition of each property. In particular, we consider both
uniform and non-uniform formulations for Agreement, i.e. Uniform Agreement
(UA) and Non-uniform Agreement (NUA), and the four Order properties arising

1 It is worth noting that uniform properties are meaningful only in certain environ-
ments. For instance, uniform properties are not enforceable assuming malicious fault
models.



Total Order Communications: A Practical Analysis 41

Table 1. Definition of the properties defining TO specifications

Validity and Integrity properties
NUV � If a correct process tocasts a message m, then it eventually todelivers m

UI � For any message m, every process p todelivers m at most once, and only if m was
previously tocast by some process

Agreement properties
UA � If a process todelivers a message m, then all correct processes eventually todeliver m

NUA � If a correct process todelivers a message m, then all correct processes eventually
todeliver m

Order properties
SUTO � If some process todelivers message m before message m′, then a process todelivers

m′ only after it has todelivered m

SNUTO � If some correct process todelivers message m before message m′, then a correct
process todelivers m′ only after it has todelivered m

WUTO � If processes p and q both deliver messages m and m′, then p delivers m before m′

if and only if q delivers m before m′

WNUTO � If correct processes p and q both todeliver messages m and m′, then p todelivers m
before m′ if and only if q todelivers m before m′

from the combination of uniform and non-uniform with strong and weak formu-
lations, i.e. Strong Uniform Total Order (SUTO), Strong Non-uniform Total
Order (SNUTO), Weak Uniform Total Order (WUTO) and Weak Non-uniform
Total Order (WNUTO). Finally, we consider Non-uniform Validity (NUV ) and
Uniform Integrity (UI), as the latter can be easily implemented, thus appearing
in almost all TO specifications, while the former is the only Validity property
meaningful in our system model (i.e. Uniform Validity cannot be implemented).
Interested readers can refer to [4] for deeper explanations of differences and
relations among these properties.

2.3 A Hierarchy of Total Order Specifications

Assuming NUV and UI, it is possible to combine Agreement and Order proper-
ties to obtain six significant TO specifications. We denote TO(A, O) the TO spec-
ification S(NUV, UI, A, O), where A ∈ {UA, NUA} and O ∈ {SUTO, WUTO,
WNUTO}.2

It is possible to identify several → relations among these TO specifications
[4]. Figure 1 shows that these specifications represent a hierarchy by depicting
the transitive reduction of the → relation among TO specifications.

Let us note that the root of the hierarchy, i.e. TO(UA, SUTO), is the specifi-
cation closest to the intuitive notion of total order broadcast, as it imposes that
the set of messages delivered by each process is a prefix of the ordered set of mes-
sages that is delivered by all correct processes. In contrast, weaker specifications
admit runs in which faulty processes may exhibit a larger set of behaviors, as
discussed in the following section. It is worth noting that weaker specifications
are implemented in several real systems, e.g. Ensemble [8], JavaGroups [9].

2 In [4] we show that TO(NUA, SNUTO) ≡ TO(NUA, WNUTO) and that
TO(UA, SNUTO) ≡ TO(UA, WNUTO).
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Fig. 1. A hierarchy of TO specifications

2.4 On the Behavior of Faulty Processes

Each TO specification constrains all correct processes to deliver exactly the same
ordered set of messages. Differences among the sequences of messages
by faulty and correct processes can be characterized using the following patterns.

EP1: a faulty process p delivers a prefix of the ordered set of messages
delivered by correct processes;

EP2: a faulty process p delivers some messages not delivered by correct
processes;

EP3: a faulty process p skips the delivery of some messages delivered by
correct processes;

EP4: a faulty process p delivers some messages in an order different from
correct processes.

Table 2. Possible differences between the behavior of faulty and correct processes

TO specification Admitted execution patterns

TO(UA, SUTO) EP1

TO(UA, WUTO) EP1 or EP3

TO(UA, WNUTO) EP1 or EP3 or EP4

TO(NUA, SUTO) EP1 or EP2

TO(NUA, WUTO) EP1 or EP2 or EP3

TO(NUA, WNUTO) EP1 or EP2 or EP3 or EP4

delivered
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Each specification allows the occurrence of one or more of the above execution
patterns. Moreover, from the definition of the → relation, it follows that for each
pair of specifications S, S′ : S → S′, S′ allows at least all execution patterns ad-
mitted by S. For example, TO(UA, SUTO) allows EP1 while TO(UA, WUTO)
allows EP1 and EP3. Table 2 shows for each specification the admitted execution
patterns. Let us note that these execution patterns are formally derived from
specifications [4].

3 TO Implementations in Group Communication
Systems

Group communication systems are one of the most successful class of systems
implementing TO primitives. These systems adopt several distinct architectures
[10]. For the sake of clarity, in the remainder of this paper we use a simplified
architecture depicted in Figure 2, in which a Total Order layer implements a
TO specification by relying on another layer, namely VSC, which provides vir-
tually synchronous communications [11].3 According to the virtual synchrony
programming model, processes are organized into groups. Groups are dynamic,
i.e. processes are allowed to join and voluntarily leave a group using appropriate
primitives. Furthermore, faulty processes are excluded by groups after crashing.
A group membership service provides each process of a group with a consis-
tent view vi composed by the identifiers of all non-crashed processes currently
belonging to the group. Upon a membership change, processes agree on a new
view through a view change protocol. At the end of this protocol, group members
are provided with a view vi+1 that (i) is delivered to all the members of vi+1

through a view change event, and (ii) contains the identifier of all the mem-
bers that deliver vi+1. We consider a primary component membership service,
e.g. [13], guaranteeing that all members of the same group observe the same se-
quence of views as long as they stay in the group. In this context, the VSC layer
guarantees (i) that membership changes of a group occur in the same order in
all the members that stay within the group, and (ii) that membership changes
are totally ordered with respect to all messages sent by members. It is worth
noting that the primary component membership service is not implementable in
a non-blocking manner in asynchronous systems [14].4

The VSC layer also provides basic communication services. We consider two
primitives, namely Rcast and URcast, which resembles non-uniform and uniform

3 Let us remark that other approaches incorporating the implementation of Order and
Agreement properties into a single protocol are possible, e.g. [12].

4 In partitionable systems, groups may partition into subgroups (or components), e.g.
due to network failures, and members of distinct subgroups can deliver distinct se-
quences of views. In this setting, specifying a total order primitive can drive to
complex specifications, e.g. [2], whose usefulness has still to be verified [15]. How-
ever, non-blocking implementations of partitionable group membership services are
feasible in asynchronous systems.
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Fig. 2. Reference architecture of a group communication system
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Fig. 3. A run of a system supporting dynamic process joins

reliable broadcast in the context of dynamic groups, respectively. These primi-
tives ensure agreement of message deliveries for processes belonging to a view vi

and installing vi+1, thus enforcing virtual synchrony. URcast also prevent faulty
processes to deliver messages that will not be delivered by correct processes (i.e.,
it prevents the occurrence of EP2, in a way similar to UA). Interested readers
can refer to [4] for a formal definition of these primitives.

3.1 Static Versus Dynamic Group Communications

Following the model proposed by Hadzilacos and Toueg in [16], the properties
introduced in Section 2.2 are based on a system model that does not take process
joins into account. We now show how the TO specifications introduced in Section
2.3 can be used to classify also dynamic TO implementations, as the one given
in the context of group communications. To this aim, we introduce the notion of
static sub-run, i.e. a portion of the overall computation of a system supporting
dynamic groups in which join events may only appear at the beginning of the
sub-run. Consider the computation depicted in Figure 3: it can be decomposed
in three static sub-runs, namely sr1, sr2, sr3. A sub-run can be described with
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events and process histories as those introduced in Section 2.1, i.e. TOcast(m),
TOdeliver(m), and crash. As an example the sub-run sr2 depicted in Figure 3
is composed by the histories of processes p1, p2 and p4 containing the message
delivery events of m4 and m5. Moreover, p1 is correct in sr1 and sr2 while it is
faulty in sr3.

In this dynamic context, the TO specification enforced by a TO implemen-
tation I can be defined as follows.

Definition 1. Let I be a TO implementation and let RI be the set of
static sub-runs that I can generate. I enforces a TO specification S iff :
1. RI ⊆ RS , and
2. ∀S′ S′ → S ⇒ RI � RS′ .

Therefore the problem of finding the TO specification enforced by a TO
implementation I boils down to find a TO specification S defining the smallest
superset of RI .

As an example, in the run depicted in Figure 3, sub-runs sr1 and sr2 satisfy
TO(UA, SUTO), while sr3 only satisfies TO(NUA, SUTO) (due to p5 delivering
m9). Therefore, an implementation I that may generate this run enforces at most
TO(NUA, SUTO) (i.e. I does not enforce TO(UA, SUTO)).

3.2 TO Protocols

In this section we analyze the implementation of TO primitives offered by group
communication systems. The most widely used protocols implementing the Total
Order layer can be classified in fixed sequencer and privilege-based [7]. Interested
readers can refer to [7] for a description of several other classes of TO implemen-
tations.

Fixed Sequencer Protocols. In fixed sequencer protocols a particular pro-
cess, i.e. the sequencer, is responsible for defining message ordering. This pro-
cess is elected after each view change, usually on the basis of a deterministic
rule applied to the current view, and defines a total order of messages by assign-
ing to each message a unique and consecutive sequencer number. The sequence
number assigned to a message is sent to all members, which deliver messages ac-
cording to these numbers. These steps can be implemented using the following
communication patterns.

– Broadcast-Broadcast(BB). The sender broadcasts message m to all mem-
bers. Upon receiving m, the sequencer assigns a sequence number seq to m
and then broadcasts seq to all members. As an example, the Ensemble sys-
tem [8] implements this pattern;

– Send-Broadcast(SB). The sender sends message m to the sequencer, which
assigns a sequence number seq and then broadcasts the pair 〈m, seq〉 to
all members. This pattern is implemented, for example, by the Ensemble
system [8];
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Table 3. TO specification enforced by each ordering protocol

Ordering protocol Communication primitive TO specification

Broadcast-broadcast sequencer Rcast/Rcast TO(NUA, WNUTO)
URcast/URcast TO(UA, SUTO)
Rcast/URcast TO(NUA, WUTO)
URcast/Rcast TO(UA, WNUTO)

Send-broadcast sequencer Rcast TO(NUA, WNUTO)
URcast TO(UA, SUTO)

Ask-broadcast sequencer Rcast TO(NUA, WUTO)
URcast TO(UA, SUTO)

Privilege-based Rcast TO(NUA, WUTO)
URcast TO(UA, SUTO)

– Ask-Broadcast(AB). The sender first gets a sequence number from the
sequencer via a simple rendezvous, then it broadcasts the pair 〈m, seq〉 to
all members. JavaGroups [9] is an example of a system implementing this
pattern.

Privilege-Based Protocols. In privilege-based protocols, a single logical to-
ken circulates among processes and grants to its holder the privilege to send
messages. Each message is sent along with a sequence number derived from a
value carried by the token which is increased after each message sent. Receiver
processes deliver messages according to their sequence numbers. As only one to-
ken may circulate, and only the token holder may send messages, messages are
delivered in a total order. Totem [17] and Spread [18] are examples of systems
implementing this protocol.

In several privilege-based protocols, e.g. [17, 18, 9], processes are organized in
a logical ring, and a process passes the token to the next process upon the occur-
rence of the first of the following internal events: (i) no more messages to send,
or (ii) maximum use of some resources achieved (e.g. maximum token-holding
interval, maximum number of messages sent by the process). These kind of pro-
tocols usually can be configured to implement URcast at the Total Order layer,
augmenting Rcast with additional mechanisms thanks to the token passing. An
example of such protocols is the one implemented by Spread [18].

Table 3 shows the TO specification enforced by each ordering protocol ac-
cording to Definition 1 given in Section 3.1. In particular, for each protocol,
we report the enforced TO specification depending on the used communica-
tion primitive, either Rcast or URcast. Note that BB protocols are based on
two broadcasts, which can be performed using different primitives of the VSC
layer. The used communication primitives are reported in Table 3 in the form
first broadcast/second broadcast. These results have been formally derived in
[4], which also includes the pseudo-code of each algorithm.
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4 Performance Analysis

Typically, the cost in terms of performance of implementing a property increases
with the strenght of the same property. For instance, implementing UA costs
more than implementing NUA, as this requires to delay the delivery of mes-
sages within processes in order to be sure that they will be delivered by all
correct processes. As a consequence, implementations of TO(NUA, WNUTO)
are likely to perform better than implementations of other specifications. In the
remainder of this section we present a simple performance analysis of some TO
implementations of real systems. To this end, we first introduce the group toolk-
its chosen for evaluation, namely Ensemble [8], Spread [18] and JavaGroups [9].
Then we report the experimental analysis we carried out on such systems.

4.1 Group Communication Toolkits

In this section we exploit the framework defined in the previous sections in
order to identify the specifications enforced by TO primitives implemented in
the considered group communication systems.

Spread. Spread is a toolkit designed for large scale networks based on a client-
daemon architecture. It offers several communication abstraction, enabled by se-
lecting the so-called “service type”. Spread implements a partitionable member-
ship service based on the extended virtual synchrony model [19], which extends
virtual synchrony to partitionable environments. To comply with the reference
architecture of Figure 2, it is thus necessary to assume either absence of network
partitioning or the presence of a software filter implementing a primary com-
ponent membership service and virtual synchrony on top of extended virtual
synchrony [19]. In these cases, the privilege-based protocol embedded by Spread
(enabled by selecting the Agreed service type) implements TO(NUA, WUTO).
In contrast, selecting the Safe service type, the protocol implements URcast
on top of Rcast (see Section 3.2) and thus the implemented TO specification is
TO(UA, SUTO).

Ensemble. Ensemble provides fine-grained control over its functionality, which
can be selected simply layering micro-protocols, i.e. well-defined stackable com-
ponents implementing simple and specific functions. In particular, Ensemble can
be configured to implement virtual synchrony and a primary component mem-
bership service. A TO primitive is obtained layering a micro-protocol resembling
the Total Order layer into a virtually synchronous stack. In the following we con-
sider the micro-protocols named Seqbb and Sequencer, which correspond to BB
and SB fixed sequencer protocols using Rcast, respectively (see Section 3.2). As
shown in [4], layering one of these protocols in a virtually synchronous stack
allows us to enforce TO(NUA, WNUTO).

JavaGroups. JavaGroups is a Java group communication system based on the
concept of micro-protocols (as Ensemble). As for Spread, JavaGroups does not
exactly comply with our reference architecture, as it does not provide a primary
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Table 4. Main characteristics of the group toolkits with respect to their TO imple-

mentations

Toolkit TO implementation Protocol type TO specification

Spread Safe PB(URcast) TO(UA, SUTO)
Agreed PB(Rcast) TO(NUA, WUTO)

Ensemble Seqbb BB(Rcast/Rcast) TO(NUA, WNUTO)
Sequencer SB(Rcast) TO(NUA, WNUTO)

JavaGroups TOTAL TOKEN PB(URcast) TO(UA, SUTO)
TOTAL AB(Rcast) TO(NUA, WUTO)

component membership service. However, this can be implemented by coding a
simple specific micro-protocol [19]. JavaGroups offers two micro-protocols im-
plementing the Total Order layer, namely TOTAL, which embeds an AB fixed
sequencer protocol using Rcast, and TOTAL TOKEN, which embeds a privilege-
based protocol enabled to implement URcast on top of Rcast. As proven in [4],
these protocols enforce TO(NUA, WUTO) and TO(UA, SUTO), respectively, if
JavaGroups is provided with the primary component membership service micro-
protocol.

Tables 3 and 4 summarize the previous discussion. Let us remark that infor-
mation given by Table 4 hold as long as systems are configured to implement
the virtual synchrony model (and not the extended virtual synchrony model),
which in some cases requires to extend the toolkit with additional software com-
ponents, as discussed above (see Appendix A for further details on systems’
configurations).

Let us finally note that none of the analyzed toolkit implements all six TO
specifications (Ensemble supports other ordering protocols, but they are not able
to enforce all remaining specifications).

4.2 Experimental Settings

Testbed Environment. The testbed environment consists of four Intel Pentium
2.5GHz workstations that run Windows 2000 Professional. On each workstation
Spread 3.17.0, JavaGroups 2.0.6 and Ensemble 1.40 have been installed and
configured. The workstations are interconnected by a 100Mbit Switched Ethernet
LAN.

Testbed Application. All the experiments involve a static group of four processes,
each running on a distinct workstation.5

We run a distinct experiment for each row of Table 4, in order to evaluate
the performance of each TO implementation. Every experiment consists of ten
failure-free rounds. During each round, every process sends a burst of B messages

5 In the case of Spread, which adopts a daemon-based architecture, we run both a
daemon and a client on each workstation.
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using the TO protocol under examination. Each message has a payload composed
by the sender identifier and a local timestamp. The size of the payload is thus
very small, i.e. about 8 bytes. After sending the burst, each process waits to
deliver all of its messages and those sent by other members (i.e. it waits to deliver
T = 4×B messages). Each time a process delivers one of the messages sent by
itself, it evaluates the message latency exploiting the timestamp contained in
the payload. At the end of the experiment, each process evaluates the average
message latency. Per-process average message latencies are further averaged to
obtain a system message latency. Furthermore, we evaluate the overall system
throughput, which is obtained as the sum of the throughput experienced by
each process in the experiment. This is in turn calculated as the average number
of messages delivered per second during each round. Results were obtained by
letting the burst size B vary in {1, 10, . . . 100}, repeating each experiment 10
times and averaging the results.

We decided to test group toolkits under bursty traffic as developers usually
encounter problems in these settings [5].

4.3 Experimental Results

Figure 4 and 5 show the overall comparison. In particular, Figure 4 depicts the
average message latency, and Figure 5 presents the overall system throughput
as a function of B.

The results can be evaluated under several aspects. In particular, the differ-
ent behavior of the tested configurations depends on (i) the TO specification
implemented by the configuration, (ii) the TO protocol used to implement that
specification, and (iii) the way the protocol is implemented, which accounts for
different architectures, optimizations, implementation language, etc.

Let us first analyze implementations enforcing the same specifications. Con-
cerning JavaGroups (TOTAL TOKEN) and Spread (Safe), which enforce TO(UA,
SUTO), this two configurations exploit a similar privilege-based protocol. Spread
(Safe) outperforms JavaGroups (TOTAL TOKEN), as the average message latency
experienced with the latter configuration is about 2 to 3 times the one obtained
with the former, while the overall system throughput suffers from a reduction
of about 30% to 60%. A similar argument applies to JavaGroups (TOTAL) and
Spread (Agreed), both implementing TO(NUA, WUTO). In this case, the per-
formance gain obtained with Spread’s configuration is even more evident. For
example, the latency experienced with JavaGroups is about 4 to 6 times the
one obtained with Spread. Finally, the two Ensemble configurations, both im-
plementing TO(NUA, WNUTO), perform almost the same.

From the above discussion, it is evident that the performance of a TO prim-
itive enforcing a given TO specification substantially depends on the overall
characteristics of the system implementing it. In fact, in spite of implement-
ing the same protocol (and thus the same TO specification), Spread (Safe) and
JavaGroups (TOTAL TOKEN) gives substantially different performance. This is due
to several factors, e.g. implementation language (C++ vs. Java), architectural
design and optimizations.
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A second step is therefore to compare different configurations of the same
system, in order to avoid biases stemming from implementation issues. Concern-
ing Spread’s configurations, Agreed outperforms Safe. Differences are due to
the increased amount of synchronization required by Spread (Safe) to enforce
TO(UA, SUTO). Very interestingly, the performance penalty paid by Spread
(Safe) is small, both in terms of additional message latency (1.2 times the
one of Spread (Agreed)) and in terms of throughput reduction (15% on aver-
age). In contrast, JavaGroups (TOTAL TOKEN) outperforms JavaGroups (TOTAL),
with the latter experiencing twice the average message latency and an aver-
age throughput reduction of 30% with respect to the former. These results are
unexpected, as JavaGroups (TOTAL) implements a TO specification weaker than
the one implemented by JavaGroups (TOTAL TOKEN) (i.e. TO(NUA, WUTO) vs.
TO(UA, SUTO)). We argue that these results are due to JavaGroups (TOTAL)
embedding an AB fixed sequencer protocol, which is not well suited for con-
figurations in which processes frequently generate bursts of messages of small
size. Furthermore, this algorithm suffers from the load to which the sequencer is
subject during the experiments. In other words, the experimental settings seem
to favor the privilege-based algorithm of JavaGroups (TOTAL TOKEN), which is
thus able to perform better, even though implementing a stronger specification.

A final note is on the two Ensemble configurations. In a setting providing
hardware broadcast, as the one used for the experiments, BB and SB algorithms
perform very similarly. Furthermore, these two configurations exhibit the best
results, having the lowest message latency and the highest throughput. In partic-
ular, the average message latency experienced with Spread is about 2 to 5 times
the one obtained with the two Ensemble configurations. This ratio roughly in-
creases up to 15, if we consider JavaGroups. Concerning throughput, Spread’s
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configurations exhibit a reduction of about 50% with respect to Ensemble’s con-
figurations. Considering JavaGroups, the throughput reduction is about 80%.
These results can be explained noting that Ensemble’s configurations implement
the weakest TO specifications, i.e. TO(NUA, WNUTO).

4.4 Discussion

The main contributions regarding performance of TO implementations either
compare protocols using simulations and/or analytical studies, e.g. [20, 6] or
deal with experiments done comparing several algorithms embedded into a sin-
gle framework, e.g. [5]. We deem that this information does not fully enable
immediate comparison of real systems, which is important from a developer’s
point of view. Upon building an application and thus having to match correct-
ness and performance requirements, a comparison of TO protocols in a simulated
environment or in a single real framework is not sufficient, especially in case the
developer wishes to select the best TO implementation choosing from a set of
available ones. This set of experiments is aimed to complement the available
information in order to facilitate this selection. Our plan is to provide a practi-
tioner with a largest set of experiments in the near future, to cope with a larger
set of application scenarios including actual failures.

5 Concluding Remarks

This paper provided practitioners with a comprehensive yet quick and easy to
understand reference for dealing with total order communications. Existing TO
specifications have been classified into an hierarchy which actually models their
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differences in terms of admitted scenarios. Furthermore, six TO implementa-
tions provided by three freely-available systems have been analyzed, matching
them against the hierarchy and comparing them from a performance point of
view. On the basis of this information complemented with the one provided
by simulations [20, 6, 5], practitioners will be able (i) to understand which TO
specification meets their application’s safety requirements, and (ii) to select the
available TO implementation enforcing that TO specification while yielding the
best performance. Concerning the latter issue, our experiments point out that
the performance of a TO primitive is clearly dependent on the enforced specifi-
cation, other than the employed algorithm and implementation specific details.
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7. Dèfago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. Technical Report IC/2003/56, École Polytechnique Fédérale
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Appendix A: Group Toolkit Configuration

This appendix gives additional details on how to configure the systems ana-
lyzed in the paper to use their TO primitives (see Table 5). For further details,
interested readers are referred to systems’ reference manuals.

Table 5. Configurations and additional mechanisms necessary to achieve TO specifi-

cations supported by each of the examined group toolkits

Toolkit Configuration Additional mechanisms

Spread (Safe) Safe service type VS + PC GMS filters

Spread (Agreed) Agreed service type VS + PC GMS filters

Ensemble (BB) VS + PC GMS + Seqbb -

Ensemble (SB) VS + PC GMS + Sequencer -

JavaGroups (TB) VS + TOTAL TOKEN PC GMS filter

JavaGroups (AB) VS + TOTAL PC GMS filter

Spread. Developers must simply label messages to enact Spread’s services. In
particular, the Agreed label enables the Spread (Agreed) configuration, whereas
the Safe label triggers the Spread Safe configuration. There is no need for
further configurations. However, developers must provide an implementation of
virtual synchrony and primary component membership service filters to achieve
the TO specifications described in Table 5.

Ensemble. In Ensemble each process has to specify the stack to use upon joining
the group. This can be done either by specifying desired properties (which iden-
tify portions of protocol stacks), or by directly selecting the micro-protocols. In
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both cases, it is necessary to set a particular field in the data structure repre-
senting the so-called join options. In the first case, the properties string should
be set. The string

Gmp:Sync:Heal:Frag:Suspect:Flow:Slander:Total:Primary

allows to achieve a TO primitive enforcing TO(NUA, WNUTO) by means of
an ordering protocol in a stack also providing virtual synchrony and a primary
component membership service. This configuration automatically selects Seqbb
as the ordering protocol. To use a different protocol, it is necessary to explicitly
select all the protocols of the stack. In this case, the protocol string should be
set, e.g. to

Top:Heal:Primary:Present:Leave:Inter:Intra:Elect:Merge:Slander:Sync:Suspect:Stable:Vsync:
Frag Abv:Partial appl:Seqbb:Collect:Frag:Pt2ptw:Mflow:Pt2pt:Mnak:Bottom

which corresponds to the previous string of properties. To use other TO pro-
tocols, it is necessary to substitute Seqbb with the protocol to be used, e.g.
Sequencer, in the string above.

JavaGroups. Also in JavaGroups the protocols composing the stack can be spec-
ified through a string. As an example, the string

UDP:PING:FD SOCK:VERIFY SUSPECT:STABLE:NACKACK:UNICAST:FRAG:TOTAL TOKEN:FLUSH:GMS:QUEUE

represents a stack providing a total order through the TOTAL TOKEN protocol.
Instead, the string

UDP:PING:FD SOCK:VERIFY SUSPECT:STABLE:NACKACK:UNICAST:FRAG:FLUSH:GMS:TOTAL:QUEUE

can be used to exploit the TOTAL protocol. However, developers have to imple-
ment a primary component membership service filter, which has to be inserted
into the stack in order to achieve TO primitives compliant with TO(UA, SUTO)
and TO(NUA, WUTO), respectively.



Gracefully Degrading Fair Exchange with
Security Modules
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1 Security and Cryptography Laboratory, EPFL, Switzerland
2 Dependable Distributed Systems Laboratory,

RWTH Aachen University, Germany
3 Distributed Programming Laboratory, EPFL, Switzerland

Abstract. The fair exchange problem is key to trading electronic items
in systems of mutually untrusted parties. In modern variants of such sys-
tems, each party is equipped with a security module. The security mod-
ules trust each other but can only communicate by exchanging messages
through their untrusted host parties, that could drop those messages.

We describe a synchronous algorithm that ensures deterministic fair
exchange if a majority of parties are honest, which is optimal in terms of
resilience. If there is no honest majority, our algorithm degrades grace-
fully: it ensures that the probability of unfairness can be made arbitrarily
low.

Our algorithm uses, as an underlying building block, an early-stopping
subprotocol that solves, in a general omission failure model, a specific
variant of consensus we call biased consensus. Interestingly, this modu-
lar approach combines concepts from both cryptography and distributed
computing, to derive new results on the classical fair exchange problem.

1 Introduction

1.1 Motivation

Fair exchange (see e.g. [5, 6, 7, 10, 11, 12, 14, 31]) is a fundamental problem in
systems with electronic business transactions. In fair exchange, the participating
parties start with an item they want to trade for another item. They possess an
executable description of the desired item, typically a boolean function with
which an arbitrary item can be checked for the desired properties. Furthermore,
they know from which party to expect the desired item and which party is
expecting their own item. An algorithm that solves fair exchange must ensure
that every honest party eventually either delivers its desired item or aborts the
exchange (termination property). The abort option however is excluded if no
party misbehaves and all items match their descriptions (effectiveness property).
The algorithm should also guarantee that, if the desired item of any party does
not match its description, then no party can obtain any (useful) information
about any other item (fairness property).

Fair exchange is easily solvable using a trusted third party through which all
items can be exchanged [13]. The involvement of the trusted third party can be
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Fig. 1. Hosts and security modules

reduced using optimistic schemes where participation of the trusted third party
is only necessary if something goes wrong [1]. The context of this paper is one
where the trusted third party is a virtual entity, distributed within all untrusted
parties, as we explain below.

We consider in this paper a system where each party hosts a security mod-
ule that is tamper proof (Fig. 1). Recently, manufacturers have begun to equip
hardware with such modules: these include for instance the “Embedded Secu-
rity Subsystem” within the recent IBM Thinkpad, or the IBM 4758 secure co-
processor board [15]. In fact, a large body of computer and device manufacturers
has founded the Trusted Computing Group (TCG) [32] to promote this idea.
Besides security modules being tamper proof, the software running within the
security modules is certified and they can communicate through secure channels.
In certain settings, the overall system can even assumed to be synchronous, i.e.,
it is reasonable to assume an upper bound on the relative speeds of honest parties
(and their security modules) as well as on the communication delays between
them. However, dishonest parties can still drop messages exchanged between the
underlying security modules in order to violate the fairness of the exchange in
their favor, i.e., obtain an item without giving away their own.

The contribution of this paper is a synchronous distributed algorithm aimed at
exchanging electronic items among multiple untrusted parties, each hosting a se-
curity module. The algorithm provides the two following complementary features:

1. If a majority of parties is honest, then the algorithm deterministically guar-
antees the termination, effectiveness and fairness properties of fair exchange.
This is optimal in terms of resilience: we indeed show that, even in a syn-
chronous model with security modules, no deterministic algorithm solves fair
exchange if half of the parties are dishonest.

2. If at least half of the parties turn out to be dishonest, then our algorithm
degrades gracefully in the following sense. It still guarantees the termina-
tion and effectiveness properties of fair exchange, as well as ensures that the
probability of violating fairness can be made arbitrarily low. We supply the
probability distribution that optimizes the average complexity of the algo-
rithm, in terms of its number of communication rounds, and we show that
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the probability of violating fairness is inversely proportional to the average
algorithm complexity.

Our algorithm is made of three phases, and we give the intuition underlying each
phase below.

1. In the first phase, which we call the initialization phase, the security mod-
ules exchange the items that are supposed to be traded by their untrusted
hosts. These items are not delivered by the security modules to their un-
trusted hosts: this is only performed if the third phase (below) terminates
successfully. Any security module can decide here to abort the exchange if
some item is missing or does not match its expected description. The secu-
rity module hosted by the party that initiates the exchange also selects here
a random number k that it disseminates to all other security modules. The
role of this random number is crucial in the second phase of the algorithm.

2. In the second phase, which we call the fake phase, all security modules ex-
change messages during k rounds; each round following the same commu-
nication pattern as in the third phase (below). The fact that the random
number k, determined in the first phase, is not accessible to the untrusted
parties is fundamental here. Roughly speaking, the goal of the fake phase is
to make the probability, for any number of dishonest parties to successfully
guess when the actual agreement phase is taking place (third phase below),
arbitrarily low. If any dishonest party drops a message towards a honest
party in this fake phase, the security module hosted by the latter simply
aborts the exchange and forces other modules to abort the exchange as well,
thus penalizing any dishonest host that might try to bias the exchange in its
favor.

3. In the third phase, which we call the agreement phase, the security modules
solve a problem we call biased consensus. In this problem, the processes (in
our case the security modules) start from an initial binary value (a proposal)
and need to decide on a final binary value: either to abort the exchange or
commit it (and deliver the items to their untrusted hosts). Unlike in consen-
sus [17], but like in NBAC (non-blocking atomic commit) [30,9], the problem
is biased towards 0: no process can decide 1 if some process proposes 0 (to
avoid trivial solutions, the processes are supposed to decide 1 if no process
fails or proposes 0). The agreement aspect of this problem is however differ-
ent from consensus and NBAC; we simply require here that, if some process
decides 1, then no correct process decides 0. We consider an early stopping
algorithm that solves this problem in a model with general omissions, along
the lines of [28].

Underlying our main contribution, i.e., a new gracefully degrading fair ex-
change algorithm, we contribute in bridging the gap between security problems
(fair exchange) and traditional distributed computing problems (consensus-like
problems). We show indeed that deterministic fair exchange in a model with secu-
rity modules is equivalent to biased consensus. By proving that biased consensus
is impossible in a synchronous model [24] with general omission failures [29] if
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half of the processes can be faulty, we establish a lower bound for fair exchange
in a model with tamper proof modules.

1.2 Roadmap

Section 2 defines our system model. Section 3 recalls the fair exchange prob-
lem, introduces biased consensus, and shows their equivalence in a model with
security modules. We also state the impossibility of deterministic fair exchange
without a honest majority, which motivates our notion of gracefully degrading
fair exchange. Section 4 describes our gracefully degrading fair exchange algo-
rithm and states its correctness. Section 5 concludes the paper by discussing
related work.

2 Model

The system we consider is composed of a set of processes, some modeling un-
trusted hosts and the other modeling security modules. These processes commu-
nicate by exchanging messages.

2.1 Untrusted Hosts and Security Modules

More precisely, the set of processes we consider is divided into two disjoint classes:
untrusted hosts (or simply hosts) and security modules. Two processes connected
by a physical channel are said to be adjacent. We assume that there exists a
fully connected communication topology between the hosts, i.e., any two hosts
are adjacent. Furthermore, we assume that every host process PA is adjacent
to exactly one security module process GA (i.e., there is a bijective mapping
between security modules and hosts): we say that PA is associated with GA. No
two security modules are adjacent. In other words, for any two security modules
GA and GB to communicate, they need to do so through their hosts PA and PB .
This indirection provides the abstraction of an overlay network at the level of
security modules. We call the part of the system consisting of security modules,
and the virtual communication links between them, the security subsystem. We
also assume that every host (resp. security module) has the knowledge about the
entire set of other hosts (resp. security modules) that participate in the protocol.
We call the part of the system consisting of hosts and the communication links
between them the untrusted system. The notion of association can be extended
to systems, meaning that, for any given untrusted system, the associated security
subsystem is the system consisting of all security modules associated to any host
in that untrusted system.

2.2 Security Modules and Virtual Channels

Security modules are interconnected by a virtual communication network with
bidirectional channels over the physical communication network among the hosts.
For simplicity, we denote the participants processes (the security modules) by
G1, . . . ,Gn. We assume that between any two security modules Gi and Gj , the
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following properties are guaranteed: (1) Message contents remain secret from
unauthorized entities; (2) If a message is delivered at Gj , then it was previously
sent by Gi; (3) Replayed messages are detected; (4) Message contents are not
tampered with during transmission, i.e., any change during transmission will be
detected and the message will be discarded; (5) If a message is sent by Gi to Gj

and Gj is ready to receive the message, then the message will be delivered at Gj

within some known bound Δ on the waiting time.

2.3 Trust and Adversary Model

Security modules can be trusted by other security modules or hosts, and hosts
cannot be trusted by anybody. Hosts may be malicious, i.e., they may actively
try to fool a protocol by not sending any message, sending wrong messages, or
even sending the right messages at the wrong time. We assume however that
hosts are computationally bounded, i.e., brute force attacks on secure channels
are not possible. A malicious host may inhibit all communication between its
associated security module and the outside world, yielding a channel in which
messages can be lost.

A host misbehaves if it does not correctly follow the prescribed algorithm and
we say that the host is dishonest. Otherwise it is said to be honest. Misbehavior
is unrestricted (but computationally bounded as we pointed out). Security mod-
ules always follow their protocol, but since their associated hosts can inhibit all
communication, this results in a system model of security modules with unreli-
able channels (the model of general omission [29], i.e., where messages may not
be sent or received). In such systems, misbehavior (i.e., failing to send or receive
a message) is sometimes termed failure. We call security modules associated
with honest hosts correct, whereas those associated with dishonest hosts faulty.
In a set of n hosts, we use t to denote a bound on the number of hosts which
are allowed to misbehave and f the number of hosts which actually do misbe-
have (f ≤ t). Sometimes we restrict our attention to the case where t < n/2,
i.e., where a majority of hosts is assumed to be honest. We call this the hon-
est/correct majority assumption. Our model of the adversary is based on the
strongest possible attack, the case in which all of the f dishonest hosts collude.
We assume that adversary knows all the algorithms and probability distributions
used.

3 Variations on Fair Exchange and Impossibility Results

In this section we recall the definition of fair exchange (FE), and we show that
this problem, at the level of untrusted hosts, is in a precise sense equivalent to
a problem that we call biased consensus (BC), at the level of the underlying
security modules. Then, we state that biased consensus is impossible if half of
the processes can be faulty and derive the impossibility of fair exchange if half
(or more) of the hosts are dishonest. This motivates our definition of a weaker
variant of fair exchange, the gracefully degrading FE.
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3.1 Fair Exchange

Definition 1 (Fair Exchange). An algorithm solves fair exchange (FE) if it
satisfies the following properties [1, 27]

– (Timeliness) Every honest host eventually terminates.
– (Effectiveness) If no host misbehaves and if all items match their descriptions

then, upon termination, every host has the expected item.
– (Fairness) If the desired item of any host does not match its description, or

any honest host does not obtain any (useful) information about the expected
item, then no host can obtain any (useful) information about any other host’s
item.

In case a host terminates without receiving the expected item, that host
receives an abort indication (denoted ⊥). The Timeliness property ensures that
every honest host can be sure that at some point in time the algorithm will
terminate. The Effectiveness property states what should happen if all goes
well. Finally, the Fairness property postulates restrictions on the information
flow for the case where something goes wrong in the protocol.1 Note that the
first precondition of the Fairness property (“if the desired item of any host does
not match the description . . . ”) is very important. Without this condition, a
“successful” outcome of the exchange would be possible even if an item does not
match the expected description, which should clearly be considered unfair.

3.2 Biased Consensus

Consider the following variant of consensus, we call biased consensus in a model
where processes can fail by general omissions [29].

Definition 2 (Biased Consensus). An algorithm solves biased consensus (BC)
if it satisfies the following properties:

– (Termination) Every correct process eventually decides.
– (Non-Triviality) If no process is faulty or proposes 0, then no correct pro-

cess decides 0.
– (Validity) No process decides 1 if some process proposes 0.
– (Biased Agreement) If any process decides 1, then no correct process de-

cides 0.

Processes invoke biased consensus using primitive BCpropose(vote), vote be-
ing a binary value, 0 or 1. Possible decisions are also 0 (abort) and 1 (commit).
Termination, Non-Triviality and Validity are the same as in NBAC, whereas the
Biased Agreement is weaker than the Agreement property of NBAC [30].

We show below that FE and BC are equivalent in our model.

1 We use here the concept of information flow to define fairness in a way that cleanly
separates the distinct classes of safety, liveness, and security properties in the spec-
ification of the problem [26].
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FairExchange(myitem, description, source, destination) returns item {
〈send myitem to destination over secure channel〉
timed wait for 〈expected item i from source over secure channel〉
〈check description on i〉
if 〈check succeeds and no timeout〉
then vote := 1 else vote := 0 endif
result := BCpropose(vote)
if result = 1 then return i else return 〈abort〉 endif

}

Fig. 2. Using biased consensus to implement fair exchange: code of every host

Theorem 1. Biased consensus is solvable in the security subsystem, iff fair ex-
change is solvable in the associated untrusted system.

Proof. (1) Assume that we have a solution to BC in the security subsystem
consisting of security modules G1, . . . ,Gn. Now consider the algorithm depicted
in Fig. 2. This is a wrapper around the BC solution that solves FE at the level
of the hosts. In other words, it is a reduction of FE into BC in our model.
In the algorithm, a host hands to the associated security module its item and
the executable description of the desired item, as well as identifiers of the hosts
with which items should be exchanged. The security module exchanges the item
with its partners, then checks the received item (initialization phase). Finally
all security modules agree on the outcome using BC (agreement phase). The
proposal value for BC is 1 if the check was successful and no abort was requested
by the host in the meantime. If BC terminates with the process deciding 1,
then the security module releases the item to the host. We now discuss each of
the properties of fair exchange. The Timeliness property of FE is guaranteed
by the Termination property of BC and the synchronous model assumption.
Consider Effectiveness and assume that all participating hosts are honest and
all items match their descriptions. All votes for BC will be 1. Now the Non-
Triviality property of BC guarantees that all processes (recall that every process
is correct) will decide 1 and subsequently return the item to their hosts. Consider
now Fairness and observe that, in our adversary model, no dishonest host can
derive any useful information from merely observing messages exchanged over
the secure channels. The only way to receive information is through the interface
of the FairExchange procedure. If one item does not match the description at
some process, then this process will engage in BC with a vote = 0 (note that
this will happen even if the associated host is dishonest). Validity of BC implies
that the exchange results in no process deciding 1, so none of the hosts receives
anything from the exchange. Additionally, if some honest host receives nothing
through the exchange, then the Biased Agreement property of BC implies that
no host can receive anything.
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(2) Conversely, BC can be implemented using FE by invoking at every pro-
cess Gi.2:

BCpropose(votei) = FairExchange(votei, 1,Gi−1,Gi+1).

Here we assume that if FE returns 〈abort〉 instead of the item, BC returns 0. So
the votes, being exchange items in this case, are exchanged in a circular fashion
among security modules. It is not difficult to see that FE properties guarantee
the properties of BC. This is immediate for Termination and Non-Triviality.
Consider now Validity and assume that Gj proposes 0 to BC. The item descrip-
tion checking at Gj+1 will fail and the first part of FE Fairness (“If the desired
item of any host does not match its description . . . ”) guarantees that every
process that decides in BC decides 0. The second part of Fairness guarantees
Biased Agreement.3 ��
Theorem 2. Consider a synchronous system where processes can fail by general
omissions. No algorithm solves biased consensus if �n

2 � processes can be faulty.

We omit the proof of the Theorem 2 due to the lack of space. The proof can
be found in the full version of the paper [2].

A direct corollary of the Theorems 1 and 2 leads to derive the following result:

Theorem 3. Consider our model of untrusted hosts and security modules. No
algorithm solves fair exchange if half of the hosts can be dishonest.

3.3 Early Stopping Biased Consensus Algorithm

The BC algorithm we give here (in Fig. 3) is an adaptation of the early-stopping
synchronous consensus algorithm of [28]. This algorithm solves BC if there is a
majority of correct processes (t < n/2). It is early stopping in the sense that
every process terminates in at most min(f + 2, t + 1) rounds. There are mainly
two differences with the consensus algorithm of [28]: (1) the processes agree on
a vector of initially proposed values rather then on a set of those (in the case
of consensus); (2) we also introduce dummy messages to have a full information
protocol [24], i.e., to have a uniform communication pattern in every round. In
other words, where in the original algorithm of [28] process Gi did not send a
message to process Gj in round r, in our algorithm process Gi sends a dummy
message m to process Gj , but process Gj disregards m. Our solution assumes
that all BC protocol messages have the same size.4 The motivation for having a
full information protocol and uniform message size, will be explained in Section 4.

2 To be precise, G1 invokes FairExchange(vote1, 1, Gn, G2) and Gn invokes
FairExchange(voten, 1, Gn−1, G1).

3 Note that, in contrast to BC, FE satisfies an information-flow (i.e., security) property
[26]. This is why it was necessary to argue about the special properties of security
modules when reducing FE to BC and not vice versa.

4 This could be implemented by meeting the maximal size of BC message by padding
all message of BC algorithm to reach this size.
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BCpropose(votei) returns decision {
1: V otei := ⊥n; V otei[i] := votei; newi := ⊥n; newi[i] := votei;
2: lockedi := ∅; suspectedi := ∅; % r=0 %
3: for r := 1, 2, ..., t + 1 do % r: round number %
4: begin round
5: foreach pj do
6: if pj ∈ suspectedi then dummy := 1 else dummy := 0 endif
7: send (newi, lockedi, dummy) to Gj

8: enddo
9: newi := ⊥n

10: foreach Gj /∈ suspectedi do
11: if (newj , lockedj , dummy = 0) has been received from Gj then
12: foreach m ∈ [1 . . . n] do
13: if (newj [m] �= ⊥) and (V otei[m] = ⊥) then
14: V otei[m] := newj [m]; newi[m] := newj [m]
15: lockedi := lockedi ∪ lockedj

16: endif
17: enddo
18: else
19: if (Gj /∈ lockedi) then suspectedi := suspectedi ∪ {Gj} endif
20: endif
21: enddo
22: if (|suspectedi| > t) then return (0) endif
23: if (Gi /∈ lockedi) then
24: if (r > |suspectedi|) or (lockedi �= ∅) then lockedi := lockedi ∪ {Gi} endif
25: else
26: if (|lockedi| > t) then decide(V otei) endif
27: endif
28: end round
29: decide(V otei)
}

Procedure decide(V ote) returns decision {

30: if (∃m, 1 ≤ m ≤ n, s.t.(V ote[m] = ⊥) or (V ote[m] = 0)) then
31: return (0)
32: else
33: return (1)
34: end
}

Fig. 3. Pseudocode of a synchronous, early stopping Biased Consensus algorithm: code

of process Gi

The changes we make to the algorithm of [28] do not affect the correctness of
the algorithm. The difference is that we introduce the procedure decide(V ote)
(lines 30-34, Fig. 3), where V ote is a vector of initially proposed values processes
agree on. Basically, every process Gi stores information about the value initially
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proposed by some process Gj at V otei[j]. If the process Gi does not know the
value that process Gj proposed, then V otei[j] = ⊥. Roughly, a correct process
does not learn the value proposed by process Gj , if Gj is faulty. 5

We now give and prove the properties of our BC algorithm. We do not prove
here that all processes that invoke decide() function (lines 30-34) agree on the
vector V ote (this includes all correct processes, if t < n/2). Reader interested
in this proof should refer to [28]. As discussed above, our algorithm inherently
satisfies this property, given t < n/2. To summarize, our algorithm satisfies
Non Triviality, Validity and Biased Agreement properties of BC. Furthermore,
it satisfies the Early Stopping property:

– (Early Stopping) Every correct process decides in at most min(f + 2, t + 1)
rounds.

Early Stopping property is inherited from the original algorithm. Consider
Non Triviality. Assume that all processes are correct and all propose 1. In this
case, all processes agree on vector V ote = 1n. Therefore decide() returns 1 at
every process. Consider now Biased Agreement and note that, if any process
decides 1 it must have invoked decide() and V ote = 1n. This implies that
every correct process invokes decide(), evaluates the same vector V ote that
processes agreed on and, therefore, returns 1. Consider now Validity. If some
process Gj proposed votej = 0 every process Gi that invokes decide() (if any)
has V otei[j] = 0 or V otei[j] = ⊥ , as processes agree on the vector V ote and
the coordinate j of V ote is either ⊥ or votej . Therefore no process can decide
1. Note that Validity holds for any t.

3.4 Gracefully Degrading Fair Exchange

The impossibility of solving FE (deterministically) if half of the processes can
be dishonest, motivates the introduction of the following variant of the
problem.

Definition 3 (Gracefully Degrading Fair Exchange). An algorithm solves
gracefully degrading fair exchange (GDFE) if it satisfies the following properties:

– The algorithm always satisfies the Timeliness and Effectiveness properties of
fair exchange.

– If a majority of hosts are honest, then the algorithm also satisfies the Fairness
property of fair exchange.

– Otherwise (if there is no honest majority), the algorithm satisfies Fairness
with a probability p (0 < p < 1) such that the probability of unfairness (1−p)
can be made arbitrarily low.

5 With different implementations of the decide() procedure, the algorithm solves dif-
ferent problems. For example, if decide(V ote) would return a minimum of all (non-
⊥) coordinates, the algorithm would solve consensus, which is precisely the case
in [28].
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4 A Gracefully Degrading Fair Exchange Algorithm

4.1 Description

Our GDFE algorithm is described in Figure 4. We assume that all processes
involved in the algorithm know each other. The process with the lowest number
is the initiator. We also assume a synchronous communication model [24] in
the security subsystem. Basically, our algorithm can be viewed as an extension
of the algorithm of Figure 2, i.e., our reduction of deterministic fair exchange
to biased consensus. However, whereas the algorithm of Figure 2 is made of
an initialization phase followed by an agreement (BC) phase, the algorithm of
Figure 4 introduces a fake phase between these two phases. This is the key to
graceful degradation, i.e., to minimizing the probability of unfairness in the case
when t ≥ n/2. Basically, we do not run the BC algorithm immediately after the
exchange of items (i.e., unlike in Fig. 2), but at some randomly picked round. In
the meantime the processes exchange fake messages and, if necessary, react to
the behavior of hosts. If any process detects a host misbehavior, i.e., a message
omission, it aborts the algorithm immediately (line 15) and does not participate
in BC.6 It is important to notice that the underlying BC algorithm guarantees
that no process decides 1 if some process does not participate in the algorithm
(this missing process might have proposed 0). This is the way of penalizing any
host that misbehaves in the first two phases of the algorithm.

The Early Stopping property of the underlying BC algorithm is essential for
minimizing the probability for the adversary to violate fairness (as we discuss in
the next subsection): in short, the early stoping BC algorithm we consider has
two vulnerable rounds: if the adversary misses them, BC and the corresponding
exchange terminate successfully. In addition, the introduction of dummy mes-
sages within the BC algorithm is necessary to solve the security requirement of
our gracefully degrading fair exchange algorithm.

In our BC algorithm of Fig. 3, every process in every round sends exactly one
message to every other process, but some (dummy) messages are tagged to be
disregarded by the receiving process. This is necessary in order to make sure that
the adversary has no means to distinguish the fake phase from the agreement
phase (i.e., the BC algorithm), we make use of the same communication pattern
in both phases, i.e., the same distribution and sizes of the exchanged messages:
Every process sends a fixed-size message to every other process in every round,
both in the fake phase and in the BC algorithm. Messages in fake phase are,
therefore, padded before sending, to the size of BC message. Hence, the ad-
versary is not able to determine when BC starts, neither by observing when
security modules send and receive messages, nor by observing the size of these
messages.

6 [25] uses a similar idea of choosing a random number of rounds and hiding it
from the adversary to solve probabilistic non-repudiation (which is a special form of
probabilistic fair exchange).
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GDFairExchange(myitem, description, source, destination) returns item {
01: if 〈Gi is initiator〉 then % initialization phase - round 0
02: 〈pick a random number k according to a given distribution〉
03: foreach Gj �= destination do send (⊥, k) to Gj enddo
04: send (myitem, k) to destination
05: else
06: send (myitem,⊥) to destination
07: endif
08: if ((item, ∗) has been received from source) and

(item matches description) and ((∗, k) has been received from initiator) then
09: votei := 1; ki := k; itemi := item
10: else
11: return (⊥)
12: endif
13: for round := 1, 2, . . . , ki do % fake phase - k rounds
14: send 〈padded votei〉 to all
15: if not((vote) has been received from all processes) then return (⊥) endif
16: enddo
17: votei := BCpropose(votei) % agreement phase - Biased Consensus
18: if (votei = 1) then return (itemi) else return (⊥) endif
}

Fig. 4. Pseudocode of the Gracefully Degrading Fair Exchange algorithm: code of

process Gi

4.2 Correctness of GDFE Algorithm

Theorem 4. The algorithm of Figure 4 solves gracefully degrading fair exchange.

Proof. The Timeliness property is guaranteed by the fact that we consider a
synchronous system and the Termination property of BC. Consider Effective-
ness and assume that all participating hosts are honest and all items match
their descriptions. All security modules will enter and exit the fake phase having
vote = 1, so all security modules will BCpropose 1. By the Non Triviality prop-
erty of BC every module returns 1 and subsequently returns the expected item
to its host. Now we consider Fairness. It is important here to recall that the
security modules are tamper-proof and no information leaks from them apart
from what is explicitly released through their interface. We first prove a prelim-
inary lemma. For convenience, if the security module returns ⊥ to its host, we
say that security module aborts the GDFE algorithm.

Lemma 1. If the first round in which some security module Gj aborts the GDFE
algorithm is round i (0 ≤ i < k), then at the end of round i + 1 every security
module has aborted the GDFE algorithm.

Proof. Because Gj has aborted the GDFE algorithm at the end of round i, no
security module will receive Gj ’s vote in round i+1. From line 15, it can be seen
that every security module will abort the algorithm at latest at the end of round
i + 1 (some modules might have aborted the algorithm in round i, like Gj). ��
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Consider the case in which the first misbehavior of some of the dishonest hosts
occurs in the round i where 0 ≤ i < k (misbehavior in round 0 includes the ini-
tiator’s misbehavior or some dishonest host sending the wrong item). According
to Lemma 1, by the end of the round i + 1 ≤ k, all security modules will abort
the algorithm, so Fairness is preserved.

Note that Lemma 1 does not hold for the k-th round. Some dishonest hosts
can cut the channels for the first time in that round in such way that some security
modules receive all messages and some do not. Hence some modules will BCpropose
1 and others will abort the algorithm at the end of round k and will not participate
in BC. Because the modules that invoked consensus cannot distinguish this run
from the run in which some faulty module proposed 0 and failed immediately in
such way that it did not send or receive any message, all security modules that had
invoked BC will return 0. At the end, none of the hosts gets the item.

The last possibility is that the first misbehavior occurs during the execution
of the BC. This means that every security module has proposed 1 to BC. If there
is a majority of honest hosts, the Biased Agreement property of BC guarantees
Fairness. Indeed, Fairness can be violated only if some security module returns
the expected item to its host, while some correct security module returns ⊥ to its
honest host. From line 18, it is obvious that this would be possible only if some
security module returns 1 from BC, while some correct security module returns 0
which contradicts the Biased Agreement property. If the adversary controls half
or more of the hosts Fairness could be violated if, and only if, the adversary cuts
one of the first two rounds of BC. However, this could occur only if the adversary
successfully guesses in which round BC starts. Indeed, because our BC algorithm
is early stopping, in order to succeed, the adversary must cut one of the first two
rounds of BC and this has to be its first misbehavior in a particular algorithm
run. In the following, we prove that if this case occurs, i.e., if there is no honest
majority, probability of unfairness can be made arbitrarily low by choosing an
appropriate distribution of the random number of fake rounds.

The number k of rounds in the second phase of the algorithm is chosen
randomly by the initiator of the exchange according to a given distribution
(β0,β1, . . . ) i.e., Pr(k = i) = βi. We assume this distribution to be public. The
adversary performs the attack in a given round by dropping a certain subset
of messages sent to, or received by, the hosts it controls, i.e., by cutting the
channels. When the adversary cuts channels at more than n/2 hosts in the same
round, we say that he cuts the round. Since the adversary does not know in which
round BC starts, the best attack consists in choosing a value i according to the
distribution (β0,β1, . . . ), starting from which adversary cuts all the rounds until
the end of the exchange. Cutting messages at less that n/2 hosts, or cutting non-
consecutive rounds, cannot improve the probability of success of the adversary.

We define the probability of unfairness Γ(β0,β1,... ) as the maximum probability
that an adversary succeeds, given the distribution (β0,β1, . . . ), and the average
complexity in terms of number of fake rounds as Λ(β0,β1,... ) =

∑
i≥1 iβi.

Lemma 2. Let (β0,β1, . . . ) denote the probability distribution of the value k.
The probability of unfairness (for the algorithm of Figure 4) is
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Γ(β0,β1,... ) = max
i≥0

(βi + βi+1).

Proof. Let γi be the probability that the attack succeeds if it starts at round i
(i > 0). We already know that γi≤k = 0 and that γi>k+2 = 0. We have therefore:

γ1 = β0, γ2 = β0 + β1, γ3 = β1 + β2, . . . , γi = βi−2 + βi−1, . . .

According to the probability distribution (β0,β1, . . . ), the maximum probability
of unfairness Γ(β0,β1,... ) is therefore Γ(β0,β1,... ) = maxi>0(γi) = maxi≥2(β0,βi−2+
βi−1) = maxi≥0(βi + βi+1). ��

We define the probability distribution that we call bi-uniform, as well as the
optimal probability distribution for the algorithm of Figure 4.

Definition 4. We say that (β0,β1, . . . ) is a bi-uniform probability distribution
of parameter t on the interval [0,κ] if ∀i ≥ 0, βi + βi+1 = 1

�κ+1
2 � and β1 = t if

κ is odd, and β1 = 0 if κ is even.

Definition 5. We say that a probability distribution (β0,β1, . . . ) is optimal (for
the algorithm of Figure 4) if there is no other probability distribution (β′

0,β
′
1, . . . )

such that ∃Γ > 0, ∀i ≥ 0, βi + βi+1 ≤ Γ, β′
i + β′

i+1 ≤ Γ and Λ(β′
0,β′

1,... ) <
Λ(β0,β1,... ).

The following lemma states our optimality result in terms of probability of un-
fairness.

Lemma 3. The optimal probability distribution (for the algorithm of Figure 4)
is the bi-uniform probability distribution of parameter 0. Moreover, if the distri-
bution is defined on [0,κ] with κ even, the probability of unfairness is Γbi-uniform =

2
κ+2 and the average complexity, in terms of the number of fake rounds, is
Λbi-uniform = κ

2 .7

Due to the lack of space, we omit here the formal proof of Lemma 3. The proof
can be found in the full version of the paper [2]. ��

5 Concluding Remarks

It was shown in [16] that deterministic two-party fair exchange is impossible
without a trusted third party. Published results on multi-party protocols focus

7 It can be shown that our GDFE algorithm satisfies Γbi-uniform/Ξbi-uniform ≈
2/Λbi-uniform, where Ξ is the probability that all processes successfully terminate
the algorithm; rephrasing the result of [33] in our context would mean that the op-
timal for a randomized biased consensus is Γ/Ξ ≥ 1/Λ (instead of 2/Λ). We claim
that the factor 2 in our case is due to the fact that we ensure biased agreement with
a correct majority.
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on reducing the necessary trust in the third party [20, 7], or on contract sign-
ing [21, 8], a special form of fair exchange. In [22] it was shown that, in a syn-
chronous system with computational security, a majority of honest processes can
simulate a centralized trusted third party (and hence solve fair exchange) using
cryptography. In a somewhat stronger model, [18] gives the solution for secure
multi-party computation in a synchronous system with unconditional security,
that also assumes a majority of honest processes. The use of security modules in
fair exchange was already explored in the two-party context: in particular, [34]
employs smart cards as security modules to solve two-party fair exchange in an
optimistic way, whereas [3] describes a probabilistic solution to two-party fair
exchange.8 Idea of using a distributed trusted third party in solving two-party
fair exchange was exploited in [4].

Recent works [23, 19] have solved various forms of secure multi-party com-
putation (SMPC) for any number of dishonest parties (t < n). As fair ex-
change is usually considered as a special case of a SMPC, it can be tempting
to conclude that these results also apply to fair exchange. However, in the re-
laxed definitions of SMPC considered in [23] and, implicitly in [19], fairness
is not always required, as discussed in [23]. We consider in this paper con-
texts where fairness is mandatory. In this sense, results shown in this paper are
rather complementary to those that establish the possibility of solving SMPC
for any t < n.
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Abstract. We present a hybrid synthesis method for automatic addition
of fault-tolerance to distributed programs. In particular, we automatically
specify and add pre-synthesized fault-tolerance components to programs
in the cases where existing heuristics fail to add fault-tolerance. Such
addition of pre-synthesized components has the advantage of reusing
pre-synthesized fault-tolerance components in the synthesis of different
programs, and as a result, reusing the effort put in the synthesis of one
program for the synthesis of another program. Our synthesis method is
sound in that the synthesized fault-tolerant program satisfies its spec-
ification in the absence of faults, and provides desired level of fault-
tolerance in the presence of faults. We illustrate our synthesis method
by adding pre-synthesized components with linear topology to a token
ring program that tolerates the corruption of all processes. Also, we have
reused the same component in the synthesis of a fault-tolerant alternat-
ing bit protocol. Elsewhere, we have applied this method for adding
presynthesized components with hierarchical topology.

Keywords: Automatic addition of fault-tolerance, Formal methods, De-
tectors, Correctors, Distributed programs.

1 Introduction

Automatic synthesis of fault-tolerant distributed programs from their fault-
intolerant versions is desirable in variety of disciplines (e.g., safety-critical sys-
tems, embedded systems, network protocols) since such automated synthesis (i)
generates a program that is correct by construction, and (ii) has the potential to
preserve the properties of the fault-intolerant program. However, the exponen-
tial complexity of synthesis is one of the important obstacles in such automated
synthesis. Thus, it is desirable to reuse the effort put in the synthesis of one pro-
gram for the synthesis of another program. In this paper, we concentrate on the
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identification and the addition of pre-synthesized fault-tolerance components to
fault-intolerant programs so that we can reuse those components in the synthesis
of different programs.

In the previous work on automatic transformation of fault-intolerant pro-
grams to fault-tolerant programs, Kulkarni and Arora [1] present polynomial
time algorithms (in the state space of the fault-intolerant program) for the syn-
thesis of fault-tolerant programs in the high atomicity model – where each pro-
cess of the program can read/write all program variables in an atomic step. How-
ever, for the synthesis of fault-tolerant distributed programs, they show that the
complexity of synthesis is exponential. Techniques presented in [2, 3, 4] reduce
the complexity of synthesis by using heuristics and by identifying classes of pro-
grams and specifications for which efficient synthesis is possible. However, these
approaches cannot apply the lessons learnt in synthesizing one fault-tolerant pro-
gram while synthesizing another fault-tolerant program. As we encounter new
problems, it is desirable to reuse synthesis techniques that we have already used
during the synthesis of other problems. Hence, if we recognize the patterns that
we often apply in the synthesis of fault-tolerant distributed programs then we
can organize those patterns in terms of fault-tolerance components and reuse
them in the synthesis of new problems.

To investigate the use of pre-synthesized fault-tolerance components in the
synthesis of fault-tolerant distributed programs, we use detectors and correctors
identified in [5]. Specifically, in [5], it is shown that detectors and correctors
suffice in the manual design of a rich class of masking fault-tolerant programs
– where the fault-tolerant program satisfies its safety and liveness specification
even in the presence of faults. To achieve our goal, we present a synthesis method
that adds pre-synthesized detectors and correctors to a given fault-intolerant
program in order to synthesize its fault-tolerant version. Using our synthesis
method, we identify (i) the representation of the pre-synthesized detectors and
correctors; (ii) when and where the synthesis algorithm should use a detector or
a corrector, and (iii) how to ensure the correctness of the fault-tolerant program
and pre-synthesized detectors and correctors in the presence of each other.

Contributions. The contributions of this paper are as follows: (i) we develop a
synthesis method for reusing pre-synthesized fault-tolerance components in the
synthesis of different programs; (ii) we reduce the chance of failure of the synthe-
sis algorithm by using pre-synthesized fault-tolerance components in the cases
where existing heuristics fail; (iii) we present a systematic approach for expand-
ing the state space of the program being synthesized in the cases where synthesis
fails in the original state space, and finally (iv) we present a systematic method
for adding new variables to programs for the sake of adding fault-tolerance.

As an illustration of our synthesis method, we add pre-synthesized compo-
nents with linear topology to a token ring program that is subject to process-
restart faults. The masking fault-tolerant (token ring) program can recover even
from the situation where every process is corrupted. We note that the previ-
ous approaches that added fault-tolerance to the token ring program presented
in this paper fail to synthesize a fault-tolerant program when all processes are
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corrupted. We have also synthesized a fault-tolerant alternating bit protocol by
reusing the same pre-synthesized fault-tolerance component used in the synthe-
sis of the token ring program (cf. [6] for this synthesis). Elsewhere [7], we have
used this method for synthesizing a fault-tolerant diffusing computation where
the added component is hierarchical in nature. This example also demonstrates
the addition of multiple components. Thus, the synthesis method presented in
this paper can be used for adding fault-tolerance components (i) on different
topologies, and (ii) for different types of faults.
Note. The notion of program in this paper refers to the abstract structure of a
program. The abstract structure of a program is an abstraction of the parts of
the program code that execute inter-process synchronization tasks.

The Organization of the Paper. In Section 2, we present preliminary con-
cepts. In Section 3, we formally state the problem of adding fault-tolerance com-
ponents to fault-intolerant programs. Then, in Section 4, we present a synthesis
method that identifies when and how the synthesis algorithm decides to add a
component. Subsequently, in Section 5, we describe how we formally represent a
fault-tolerance component. In Section 6, we show how we automatically specify
a required component and add it to a program. We discuss issues related to our
synthesis method in Section 7. Finally, we make concluding remarks and discuss
future work in Section 8.

2 Preliminaries

In this section, we give formal definitions of programs, problem specifications,
faults, and fault-tolerance. The programs are specified in terms of their state
space and their transitions. We have adapted the definition of (i) specifications
from Alpern and Schneider [8], and (ii) faults and fault-tolerance from Arora
and Gouda [9] and Kulkarni and Arora [10]. The issues of modeling distributed
programs is adapted from [1, 11].

Program. A program p is a finite set of variables and a finite set of processes.
Each variable is associated with a finite domain of values. A state of p is obtained
by assigning each variable a value from its respective domain. The state space
of p, Sp, is the set of all possible states of p.

A process, say Pj , in p is associated with a set of program variables, say rj ,
that Pj can read and a set of variables, say wj , that Pj can write. Also, process
Pj consists of a set of transitions of the form (s0, s1) where s0, s1 ∈ Sp. The set
of the transitions of p is the union of the transitions of its processes.

A state predicate of p is any subset of Sp. A state predicate S is closed in the
program p iff (if and only if) ∀s0, s1 : (s0, s1)∈p : (s0∈S ⇒ s1∈S). A sequence
of states, 〈s0, s1, ...〉, is a computation of p iff the following two conditions are
satisfied: (1) ∀j : j > 0 : (sj−1, sj)∈p, and (2) if 〈s0, s1, ...〉 is finite and terminates
in state sl then there does not exist state s such that (sl, s)∈ p. A sequence of
states, 〈s0, s1, ..., sn〉, is a computation prefix of p iff ∀j : 0 < j ≤ n : (sj−1, sj)∈p
, i.e., a computation prefix need not be maximal. The projection of program p
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on state predicate S, denoted as p|S, consists of transitions {(s0, s1) : (s0, s1)∈
p ∧ s0, s1∈S}.
Distribution Issues. We model distribution by identifying how read/write re-
strictions on a process affect its transitions. A process Pj cannot include transi-
tions that write a variable x, where x /∈ wj . In other words, the write restrictions
identify the set of transitions that a process Pj can execute. Given a single tran-
sition (s0, s1), it appears that all the variables must be read to execute that
transition. For this reason, read restrictions require us to group transitions and
ensure that the entire group is included or the entire group is excluded. As an
example, consider a program consisting of two variables a and b, with domains
{0, 1}. Suppose that we have a process that cannot read b. Now, observe that
the transition from the state 〈a = 0, b = 0〉 to 〈a = 1, b = 0〉 can be included
iff the transition from 〈a = 0, b = 1〉 to 〈a = 1, b = 1〉 is also included. If we
were to include only one of these transitions, we would need to read both a and
b. However, when these two transitions are grouped, the value of b is irrelevant,
and we do not need read it.

Specification. A specification is a set of infinite sequences of states that is suffix
closed and fusion closed. Suffix closure of the set means that if a state sequence
σ is in that set then so are all the suffixes of σ. Fusion closure of the set means
that if state sequences 〈α, s, γ〉 and 〈β, s, δ〉 are in that set then so are the
state sequences 〈α, s, δ〉 and 〈β, s, γ〉, where α and β are finite prefixes of state
sequences, γ and δ are suffixes of state sequences, and s is a program state.

Following Alpern and Schneider [8], we rewrite the specification as the in-
tersection of a safety specification and a liveness specification. For a suffix-closed
and fusion-closed specification, the safety specification can be specified [10] as a
set of bad transitions that must not occur in program computations, that is, for
program p, its safety specification is a subset of Sp × Sp.

Given a program p, a state predicate S, and a specification spec, we say that
p satisfies spec from S iff (1) S is closed in p, and (2) every computation of p
that starts in a state in S is in spec. If p satisfies spec from S and S �= {}, we
say that S is an invariant of p for spec.

We do not explicitly specify the liveness specification in our algorithm; the
liveness requirements for the synthesis is that the fault-tolerant program eventu-
ally recovers to states from where it satisfies its safety and liveness specification.

Faults. The faults that a program is subject to are systematically represented
by transitions. A fault f for a program p with state space Sp, is a subset of
the set Sp × Sp. A sequence of states, σ = 〈s0, s1, ...〉, is a computation of p in
the presence of f (denoted p[]f) iff the following three conditions are satisfied:
(1) every transition t ∈ σ is a fault or program transition; (2) if σ is finite and
terminates in sl then there exists no program transition originating at sl, and
(3) the number of fault occurrences in σ is finite.

We say that a state predicate T is an f -span (read as fault-span) of p from S
iff the following two conditions are satisfied: (1) S ⇒ T and (2) T is closed in
p[]f . Observe that for all computations of p that start at states where S is true,
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T is a boundary in the state space of p up to which (but not beyond which) the
state of p may be perturbed by the occurrence of the transitions in f .

Fault-Tolerance. Given a program p, its invariant, S, its specification, spec,
and a class of faults, f , we say p is masking f -tolerant for spec from S iff the
following two conditions hold: (i) p satisfies spec from S; (ii) there exists a state
predicate T such that T is an f -span of p from S, p[]f satisfies spec from T , and
every computation of p[]f that starts from a state in T has a state in S.

Program Representation. We use Dijkstra’s guarded commands [12] to represent
the set of program transitions. A guarded command (action) is of the form
grd → st, where grd is a state predicate and st is a statement that updates
the program variables. The guarded command grd → st includes all program
transitions {(s0, s1) : grd holds at s0 and the atomic execution of st at s0 takes
the program to state s1}.

3 Problem Statement

In this section, we formally define the problem of adding fault-tolerance compo-
nents to a fault-intolerant program. We identify the conditions of the addition
problem by which we can verify the correctness of the synthesized fault-tolerant
program after adding fault-tolerance components.

Given a fault-intolerant program p, its state space Sp, its invariant S, its
specification spec, and a class of faults f , we add pre-synthesized fault-tolerance
components to p in order to synthesize a fault-tolerant program p′ with the new
invariant S′. When we add a fault-tolerance component to p, we also add the
variables associated with that component. As a result, we expand the state space
of p. The new state space, say Sp′ , is actually the state space of the synthesized
fault-tolerant program p′.

After the addition, we require the fault-tolerant program p′ to behave similar
to p in the absence of faults f . In the presence of faults f , p′ should satisfy mask-
ing fault-tolerance. To ensure the correctness of the synthesized fault-tolerant
program in the new state space, we need to identify the conditions that have to
be met by the synthesized program, p′. Towards this end, we define a projec-
tion from Sp′ to Sp using onto function H : Sp′ → Sp. We apply H on states,
state predicates, transitions, and groups of transitions in Sp′ to identify their
corresponding entities in Sp.

Let the invariant of the synthesized program be S′ ⊆ Sp′ . If there exists a
state s′0 ∈ S′ where H(s′0) /∈ S then in the absence of faults p′ can start at s′0
whose image, H(s′0), is outside S. As a result, in the absence of faults, p′ will
include computations in the new state space Sp′ that do not have correspond-
ing computations in p. These new computations resemble new behaviors in the
absence of faults, which is not desirable. Therefore, we require that H(S′) ⊆ S.
Also, if p′ contains a transition (s′0, s

′
1) in p′|S′ that does not have a correspond-

ing transition (s0, s1) in p|H(S′) (where H(s′0) = s0 and H(s′1) = s1) then p′

can take this transition and create a new way for satisfying spec in the absence
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of faults. Therefore, we require that H(p′|S′) ⊆ p|H(S′). Now, we present the
problem of adding fault-tolerance components to p.

The Addition Problem.
Given p, S, spec, f , with state space Sp such that p satisfies spec from S,

Sp′ is the new state space due to adding fault-tolerance components to p,
H : Sp′ → Sp is an onto function,

Identify p′ and S′ ⊆ Sp′ such that
H(S′) ⊆ S,
H(p′|S′) ⊆ p|H(S′), and
p′ is masking f -tolerant for spec from S′. ��

4 The Synthesis Method

In this section, we present a synthesis method to solve the addition problem.
In Section 4.1, we present a high level description of our synthesis method and
express our approach for combining heuristics from [2] (cf. Section 4.2 for an
example heuristic) with pre-synthesized components. Then, in Section 4.2, we
illustrate our synthesis method using a simple example, a token ring program
with 4 processes. We use the token ring program as a running example in the
rest of the paper, where we synthesize a token ring program that is masking
fault-tolerant to process-restart faults.

4.1 Overview of Synthesis Method

Our synthesis method takes as its input a fault-intolerant program p with a set
of processes P0 · · ·Pn (n > 1), its specification spec, its invariant S, a set of
read/write restrictions r0 · · · rn and w0 · · ·wn, and a class of faults f to which
we intend to add fault-tolerance. The synthesis method outputs a fault-tolerant
program p′ and its invariant S′.

The heuristics in [2] (i) add safety to ensure that the masking fault-tolerant
program never violates its safety specification, and (ii) add recovery to ensure
that the masking fault-tolerant program never deadlocks (respectively, livelocks).
Moreover, while adding recovery transitions, it is necessary to ensure that all the
groups of transitions included along that recovery transition are safe unless it
can be guaranteed (with the help from heuristics) that those transitions cannot
be executed. Thus, adding recovery transitions from deadlock states is one of the
important issues in adding fault-tolerance. Hence, the method presented in this
paper, focuses on adding pre-synthesized components for resolving such deadlock
states, say sd.

Now, in order to resolve sd using our hybrid approach, we proceed as follows:
First, for each process Pi in the given fault-intolerant program, we introduce a
high atomicity pseudo process PSi. Initially, PSi has no action to execute, how-
ever, we allow PSi to read all program variables and write only those variables
that Pi can write. Using these special processes, we present the ResolveDeadlock
routine (cf. Figure 1) that is the core of our synthesis method. The input of
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ResolveDeadlock consists of the deadlock state that needs to be resolved, sd,
and the set of high atomicity pseudo processes PSi (0 ≤ i ≤ n).

First, in Step 1, we invoke a heuristic-based routine Add Recovery to add
recovery from sd under the distribution restrictions (i.e., in the low atomic-
ity model) – where program processes have read/write restrictions with respect
to the program variables. Add Recovery explores the ability of each process
Pi to add recovery transition from sd under the distribution restrictions. If
Add Recovery fails then we will choose to add a fault-tolerance component in
Steps 2 and 3.

In Steps 2 and 3, we identify a fault-tolerance component and then add it
to p in order to resolve sd. To add a fault-tolerance component, the synthesis
algorithm should (i) specify the required component; (ii) retrieve the specified
component from a given library of components; (iii) ensure the interference free-
dom of the component and the program, and finally (iv) add the extracted
component to the program. As a result, adding a pre-synthesized component is
a costly operation. Hence, we prefer to add a component during the synthesis
only when available heuristics for adding recovery fail in Step 1.

Resolve Deadlock(sd: state, PS0, · · · , PSn: high atomicity pseudo process)
{
Step 1. If Add Recovery (sd) then return true.
Step 2. Else non-deterministically choose a PSindex, where 0 ≤ index ≤ n and PSindex

adds a high atomicity recovery action grd → st
Step 3. If (there exists a PSindex) and (there exists a detector d in the component

library that suffices to refine grd → st without interfering with the program)
then add d to the program, and return true.
else return false.

// Subsequently, we remove some transitions to make sd unreachable.
}

Fig. 1. Overview of the synthesis method

To identify the required fault-tolerance components, we use pseudo process
PSi that can read all program variables and write wi (i.e., the set of variables
that Pi can write). In other words, we check the ability of each PSi to add high
atomicity recovery – where we have no read restrictions – from sd. If no PSi can
add recovery from sd then our algorithm fails to resolve sd. If there exist one or
more pseudo processes that add recovery from sd then we non-deterministically
choose a process PSindex with high atomicity action ac : grd → st. Since we give
PSindex the permission to read all program variables for adding recovery from
sd, the guard grd is a global state predicate that we need to refine. If there exists
a detector that can refine grd without interfering with the program execution
then we will add that detector to the program. (The discussion about how to
specify the required detector d and how to add d to the fault-intolerant program
is in Sections 5 and 6.)

In cases where Resolve Deadlock returns false, we remove some transitions
to make sd unreachable. If we fail to make sd unreachable then we will declare
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failure in the synthesis of the masking fault-tolerant program p′. Observe that
by using pre-synthesized components, we increase the chance of adding recovery
from sd, and as a result, we reduce the chance of reaching a point where we
declare failure to synthesize a fault-tolerant program.

4.2 Token Ring Example

Using our synthesis method (cf. Figure 1), we synthesize a token ring program
that is masking fault-tolerant for the case where all processes are corrupted.

The Token Ring Program. The fault-intolerant program consists of four
processes P0, P1, P2, and P3 arranged in a ring. Each process Pi has a variable
xi (0 ≤ i ≤ 3) with the domain {⊥, 0, 1}. Due to distribution restrictions, process
Pi can read xi and xi−1 and can only write xi (1 ≤ i ≤ 3). P0 can read x0 and
x3 and can only write x0. We say, a process Pi (1 ≤ i ≤ 3) has the token iff
xi �= xi−1 and fault transitions have not corrupted Pi and Pi−1. And, P0 has the
token iff x3 =x0 and fault transitions have not corrupted P0 and P3. A process
Pi (1 ≤ i ≤ 3) copies xi−1 to xi if the value of xi is different from xi−1. Also, if
x0 =x3 then process P0 copies the value of (x3 ⊕ 1) to x0, where ⊕ is addition
in modulo 2. This way, a process passes the token to the next process.

We denote a state s of the token ring program by a 4-tuple 〈x0, x1, x2, x3〉.
Each element of the 4-tuple 〈x0, x1, x2, x3〉 represents the value of xi in s (0 ≤
i ≤ 3). Thus, if we start from initial state 〈0, 0, 0, 0〉 then process P0 has the
token and the token circulates along the ring. We represent the transitions of
the fault-intolerant program TR by the following actions (1 ≤ i ≤ 3).

TR0 : (x0 = 1) ∧ (x3 = 1) −→ x0 := 0;
TR′

0 : (x0 = 0) ∧ (x3 = 0) −→ x0 := 1;
TRi : (xi = 0) ∧ (xi−1 = 1) −→ xi := 1;
TR′

i : (xi = 1) ∧ (xi−1 = 0) −→ xi := 0;

Faults. Faults can restart a process Pi. Thus, the value of xi becomes unknown.
We use ⊥ to model the unknown value of xi.

Specification. The problem specification requires that the corrupted value of one
process does not affect a non-corrupted process, and there is only one process
that has the token.

Invariant. The invariant of the above program includes states 〈0, 0, 0, 0〉,
〈1, 0, 0, 0〉, 〈1, 1, 0, 0〉, 〈1, 1, 1, 0〉, 〈1, 1, 1, 1〉, 〈0, 1, 1, 1〉, 〈0, 0, 1, 1〉, and 〈0, 0, 0, 1〉.
A Heuristic for Adding Recovery. In the presence of faults, the program TR
may reach states where there exists at least a process Pi (0 ≤ i ≤ 3) whose xi

is corrupted (i.e., xi = ⊥). In such cases, processes Pi and P((i+1) mod 4) cannot
take any transition, and as a result, the propagation of the token stops (i.e., the
whole program deadlocks).

In order to recover from the states where there exist some corrupted processes,
we apply the heuristic for single-step recovery from [2] in an iterative fashion.
Specifically, we identify states from where single-step recovery to a set of states
RecoverySet is possible. The initial value of RecoverySet is equal to the program
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invariant. At each iteration, we include a set of states in RecoverySet from where
single-step recovery to RecoverySet is possible.

In the first iteration, we search for deadlock states where there is only one
corrupted process in the ring. For example, consider a state s0 = 〈1,⊥, 1, 0〉. In
the state s0, P1 and P2 cannot take any transitions. However, P3 can copy the
value of x2 and reach s2 = 〈1,⊥, 1, 1〉. Subsequently, P0 changes x0 to 0, and as
a result, the program reaches state s3 = 〈0,⊥, 1, 1〉. The state s3 is a deadlock
state since no process can take any transition at s3. To add recovery from s3, we
allow P1 to correct itself by copying the value of x0, which is equal to 0. Thus,
by copying the value of x0, P1 adds a recovery transition to an invariant state
〈0, 0, 1, 1〉. Therefore, we include s3 in the set of states RecoverySet in the first
iteration. Note that this recovery transition is added in low atomicity in that all
the transitions included in action (x0 = 0)∧(x1 = ⊥) → x1 := 0 can be included
in the fault-tolerant program without violating safety.

In the second and third iterations, we follow the same approach and add
recovery from states where there are two or three corrupted processes to states
that we have already resolved in the previous iterations. Adding recovery up to
the fourth iteration of our heuristic results in the intermediate program ITR
(1 ≤ i ≤ 3).

ITR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;
ITR′

0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;
ITRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1;
ITR′

i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0;

Using above heuristic, we can only add recovery from the states where there
exists at least one uncorrupted process. If there exists at least one uncorrupted
process Pj (0 ≤ j ≤ 3) then P((j+1) mod 4) will initiate the token circulation
throughout the ring, and as a result, the program recovers to its invariant.
However, in the fourth iteration of the above heuristic, we reach a point where
we need to add recovery from the state where all processes are corrupted; i.e.,
sd = 〈⊥,⊥,⊥,⊥〉. In such a state, the program ITR deadlocks as an action of
the form (x0 = ⊥)∧(x1 = ⊥) → x1 := 0 cannot be included in the fault-tolerant
program. Such an action can violate safety if x2 and x3 are not corrupted. In fact,
no process can add safe recovery from sd in low atomicity. Thus, Add Recovery
returns false for 〈⊥,⊥,⊥,⊥〉.
Adding the Actions of the High Atomicity Pseudo Process. In order to
add masking fault-tolerance to the program ITR, a process Pindex (0 ≤ index ≤
3) should set its x value to 0 (respectively, 1) when all processes are corrupted.
Hence, we follow our synthesis method (cf. Figure 1), where the pseudo process
PS0 takes the high atomicity action HTR and recovers from sd. Thus, the actions
of the masking program MTR are as follows (1 ≤ i ≤ 3).

MTR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;
MTR′

0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;
MTRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1;
MTR′

i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0;
HTR : (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥) −→ x0 := 0;
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In order to refine the high atomicity action HTR, we need to add a detector
that detects the state predicate (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥).
In Section 5, we describe the specification of fault-tolerance components, and we
show how we use a distributed detector to refine high atomicity actions.
Remark. Had we non-deterministically chosen to use PSi (i �= 0) as the process
that adds the high atomicity recovery action then the high atomicity action
HTR would have been different in that HTR would write xi. (We refer the
reader to [13] for a discussion about this issue.)

5 Specifying Pre-synthesized Components

In this section, we describe the specification of fault-tolerance components (i.e.,
detectors and correctors). Specifically, we concentrate on detectors and we con-
sider a special subclass of correctors where a corrector consists of a detector and
a write action on the local variables of a single process.

5.1 The Specification of Detectors

We recall the specification of a detector component presented in [14,10]. Towards
this end, we describe detection predicates, and witness predicates. A detector,
say d, identifies whether or not a global state predicate, X, holds. The global
state predicate X is called a detection predicate in the global state space of a
distributed program [14, 10].

It is often difficult to evaluate the truth value of X in an atomic action.
Thus, we (i) decompose the detection predicate X into a set of smaller detection
predicates X0 · · ·Xn where the compositional detection of X0 · · ·Xn leads us to
the detection of X, and (ii) provide a state predicate, say Z, whose value leads
the detector to the conclusion that X holds. Since when Z becomes true its value
witnesses that X is true, we call Z a witness predicate. If Z holds then X will
have to hold as well. If X holds then Z will eventually hold and continuously
remain true. Hence, corresponding to each detection predicate Xi, we identify a
witness predicate Zi such that if Zi is true then Xi will be true.

The detection predicate X is either the conjunction of Xi (0 ≤ i ≤ n) or the
disjunction of Xi. Since the detection predicates that we encounter represent
deadlock states, they are inherently in conjunctive form where each conjunct
represents the valuation to program variables at some process. Hence, in the
rest of the paper, we consider the case where X is a conjunction of Xi, for
0 ≤ i ≤ n.

Specification. Let X and Z be state predicates. Let ‘Z detects X’ be the
problem specification. Then, ‘Z detects X’ stipulates that

– (Safety) When Z holds, X must hold as well.
– (Liveness) When the predicate X holds and continuously remains true, Z

will eventually hold and continuously remain true. ��
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We represent the safety specification of a detector as a set of transitions that
a detector is not allowed to take. Thus, the following set of transitions represents
the safety specification of a detector.

specd = {(s0, s1) : (Z(s1) ∧ ¬X(s1))}
Notation. The predicate Z(s1) denotes the truth value of Z at state s1.

5.2 The Representation of Detectors

In this section, we describe how we formally represent a distributed detector.
While our method allows one to use detectors of different topologies (cf. Section
6.1), in this section, we comprehensively describe the representation of a linear
(sequential) detector as such a detector will be used in our token ring example.

The Composition of Detectors. A detector, say d, with the detection pred-
icate X ≡ X0 ∧ . . . ∧ Xn is obtained by composing di, 0 ≤ i ≤ n, where di is
responsible for the detection of Xi using a witness predicate Zi (0 ≤ i ≤ n). The
elements of d can execute in parallel or in sequence. More specifically, parallel
detection of X requires d0 · · · dn to execute concurrently. As a result, the state
predicate (Z0 ∧ · · · ∧ Zn) is the witness predicate for detecting X.

A sequential detector requires the detectors d0 · · · dn to execute one after
another. For example, given a linear arrangement dn · · · d0, a detector di (0 ≤
i < n) detects its detection predicate, using Zi, after di+1 witnesses. Thus, when
Zi becomes true, it shows that Zi+1 already holds. Since when Zi becomes true
Xi must be also true, it follows that the detection predicates Xn · · ·Xi hold.
Therefore, we can atomically check the witness predicate Z0 in order to identify
whether or not X ≡ (Xn ∧ · · · ∧X0) holds.

The detection of global state predicates of programs that have a hierarchical
topology (e.g., tree-like structures) requires parallel and sequential detectors. For
brevity, we demonstrate our method in the context of a linear detector. As such
a detector suffices for the example considered in this paper, we refer the reader
to [7] for an illustration of this method for hierarchical components.

A Linear Detector. We consider a detector d with linear topology. The detec-
tor d consists of n+1 elements (n > 0), its specification specd, its variables, and
its invariant U . Since the structure of the detector is linear, without loss of gen-
erality, we consider an arrangement dn · · · d0 for the elements of the distributed
detector, where the left-most element is dn and the right-most element is d0.

Component Variables. Each element di, 0 ≤ i ≤ n, of the detector has a
Boolean variable yi.

Read/Write Restrictions. Element di can read yi and yi+1, and can only
write yi (0 ≤ i < n). dn reads and writes yn. Also, di is allowed to read ri; i.e.,
the set of variables that are readable for a process Pi with which di is composed.
Witness Predicates. The witness predicate of each di, say Zi, is equal to
(yi = true).

The Detector Actions. The actions of the linear detector are as follows (0 ≤
i < n).
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DAn : (LCn) ∧ (yn = false) −→ yn := true;
DAi : (LCi) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;

Using action DAi (0 ≤ i < n), each element di of the linear detector witnesses
(i.e., sets the value of yi to true) whenever (i) the condition LCi becomes true,
where LCi represents a local condition that di atomically checks (by reading the
variables of Pi), and (ii) its neighbor di+1 has already witnessed. The detector
dn witnesses (using action DAn) when LCn becomes true.

Detection Predicates. The detection predicate Xi for element di is equal to
(LCn ∧ · · · ∧ LCi) (0 ≤ i ≤ n). Therefore, d0 detects the global detection
predicate LCn ∧ · · · ∧ LC0.

Invariant. During the detection, when an element di sets yi to true, the elements
dj , for i < j ≤ n, have already set their y values to true. Hence, we represent
the invariant of the linear detector by the predicate U , where

U = {s : (∀i : (0 ≤ i ≤ n) : (yi(s) ⇒ (∀j : (0 ≤ j ≤ n) ∧ (j > i) : LCj))}

Faults. We model the fault transitions that affect the linear detector using
the following action (cf. Section 7 for a discussion about the way that we have
modeled the faults).

F : true −→ yi := false;

Theorem 5.1 The linear detector is masking F -tolerant for ‘Z detects X’ from
U . (cf. [13] for proof.) ��

5.3 Token Ring Example Continued

In Section 4.2, we added the following high atomicity action to the token ring
program ITR that is executed by the pseudo process PS0.

HTR : (x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 = ⊥) ∧ (x3 = ⊥) −→ x0 := 0

In order to synthesize a distributed program (that includes low atomicity
actions), we need to refine the guard of the above action. The read/write restric-
tions of the processes in the token ring program identify the underlying communi-
cation topology of the fault-intolerant program, which is a ring. Hence, we select
a linear detector, d, so that we can organize its elements, d3, d2, d1, d0, in the ring.
Each detector di is responsible to detect whether or not the local conditions LC3

to LCi hold (LCi ≡ (xi = ⊥)), for 0 ≤ i ≤ 3. Thus, the detection predicate Xi is
equal to ((x3 = ⊥)∧· · ·∧(xi = ⊥)), for 0 ≤ i ≤ 3. As a result, the global detection
predicate of the linear detector is ((x3 = ⊥) ∧ (x2 = ⊥) ∧ (x1 = ⊥) ∧ (x0 = ⊥)).
The witness predicate of each di, say Zi, is equal to (yi = true), and the actions
of the sequential detector are as follows (0 ≤ i ≤ 2).

DA3 : (x3 = ⊥) ∧ (y3 = false) −→ y3 := true;
DAi : (xi = ⊥) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;

Note that we replace (LCi) with (xi = ⊥) in the above actions. During
the synthesis, after the synthesis algorithm acquires the actions of its required
component, it replaces each (LCi) with the appropriate condition in order to
create the transition groups corresponding to each action of the component.
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6 Using Pre-synthesized Components

In this section, we describe how we perform the second and the third step of our
synthesis method presented in Figure 1. In particular, in Section 6.1, we show
how we automatically specify the required components during the synthesis.
Then, in Section 6.3, we show how we ensure that no interference exists between
the program and the fault-tolerance component. Afterwards, we present an algo-
rithm for the addition of fault-tolerance components. In Sections 6.2 and 6.4, we
respectively present the algorithmic specification and the algorithmic addition
of a linear detector to the token ring program.

6.1 Algorithmic Specification of the Fault-Tolerance Components

We present the Component Specification algorithm (cf. Figure 2) that takes a
deadlock state sd, the distribution restrictions (i.e., the read/write restrictions)
of the program being synthesized, and the set of high atomicity pseudo processes
PSi (0 ≤ i ≤ n). First, the algorithm searches for a high atomicity process
PSindex that is able to add a high atomicity recovery action, ac : grd → st, from
sd to a state in the state predicate Srec, where Srec represents the set of states
from where there exists a safe recovery path to the invariant. Also, we verify the
closure of Srec ∪ sd in the computations of p[]f . If there exists such a process
PSindex then the algorithm returns a triple 〈X, R, index〉, where (i) X is the
detection predicate that should be refined in the refinement of the action ac; (ii)
R is a relation that represents the topology of the program, and (iii) the index
is an integer that identifies the process that should detect grd and execute st.

The Component Specification algorithm constructs the state predicate X us-
ing the LCi conditions. Each LCi condition is by itself a conjunction that consists
of the program variables readable for process Pi. Therefore, the predicate X will
be the conjunction of LCi conditions (0 ≤ i ≤ n).

The relation R ⊆ (P × P ) identifies the communication topology of the
distributed program, where P is the set of program processes. We represent R
by a finite set {〈i, j〉 : (0 ≤ i ≤ n) ∧ (0 ≤ j ≤ n) : wi ⊆ rj} that we create using
the read/write restrictions among the processes. The presence of a pair 〈i, j〉 in
R shows that there exists a communication link between Pi and Pj . Since we
internally represent R by an undirected graph, we consider the pair 〈i, j〉 as an
unordered pair.

The Interface of the Fault-Tolerance Components.The format of the inter-
face of each component is the same as the output of the Component Specification
algorithm, which is a triple 〈X, R, index〉 as described above. We use this in-
terface to extract a component from the component library using a pattern-
matching algorithm. Towards this end, we use existing specification-matching
techniques [15]. For reasons of space, we omit the details of the component ex-
traction from the library of components.

The Output of the Component Library. Given the interface 〈X, R, index〉
of a required component, the component library returns the witness predicate,
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Component Specification(sd: state, Srec: state predicate, PS0, · · · , PSn: high atomicity
pseudo process, spec: safety specification, r0, · · · , rn: read restrictions,

w0, · · · , wn: write restrictions)
{ // n is the number of processes.
if ( ∃index : 0 ≤ index ≤ n : (∃s : s ∈ Srec : (sd, s) ∈ PSindex ∧

((sd, s) does not violate spec) ∧ (∀x : (x(sd) �= x(s)) : x ∈ windex)) )
then X := ∧n

i=0(LCi), where LCi = (∧|ri|(x = x(sd)));
R = {〈i, j〉 : (0 ≤ i ≤ n) ∧ (0 ≤ j ≤ n) : wi ⊆ rj};
return X , R, index;

else return false, ∅, -1;
}

Fig. 2. Automatic specification of a component

Z, the invariant, U , and the set of transition groups, gd0∪· · ·∪gdk∪gindex, of the
pre-synthesized component (k ≥ 0). The group of transitions gindex represents
the low atomicity write action that should be executed by process Pindex.

Complexity. Since the algorithm Component Specification checks the possibility
of adding a high atomicity recovery action to each state of Srec, its complexity
is polynomial in the number of states of Srec.

6.2 Token Ring Example Continued

We trace the algorithm of Figure 2 for the case of token ring program. First, we
non-deterministically identify PS0 as the process that can read every program
variable and can add a high atomicity recovery transition from the deadlock
state sd = 〈⊥,⊥,⊥,⊥〉. Thus, the value of index will be equal to 0. Second, we
construct the detection predicate X, where X ≡ ((x0 = ⊥) ∧ (x1 = ⊥) ∧ (x2 =
⊥)∧ (x3 = ⊥)). Finally, using the read/write restrictions of the processes in the
token ring program, the relation R will be equal to {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 0〉}.

6.3 Algorithmic Addition of The Fault-Tolerance Components

In this section, we present an algorithm for adding a fault-tolerance component
to a fault-intolerant distributed program to resolve a deadlock state sd. Before
the addition, we ensure that no interference exists between the program and the
fault-tolerance component; i.e., the execution of one of them does not violate
the (safety or liveness) specification of the other one. We show that our addition
algorithm is sound; i.e., the synthesized program satisfies the requirement of the
addition problem (cf. Section 3).

We represent the transitions of p by the union of its groups of transitions (i.e.,
∪m

i=0gi). We also assume that we have extracted the required pre-synthesized
component, c, as described in Section 6.1. The component c consists of a detector
d that includes a set of transition groups ∪k

i=0gdi, and the write action of the
pseudo process PSindex represented by a group of transitions gindex in the low
atomicity.
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The state space of the composition of p and d is the new state space Sp′ . We
introduce an onto function H1 : Sp′ → Sp (respectively, H2 : Sp′ → Sd) that
maps the states in the new state space Sp′ to the states in the old state space Sp

(respectively, Sd where Sd is the state space of the detector d). Now, we show
how we verify the interference-freedom of the composition of c and p.

Interference-Freedom. In order to ensure that no interference exists between p
and c, we have to ensure the following three conditions hold in the new state space
Sp′ : (i) transitions of p do not interfere with the execution of d; (ii) transitions
of d do not interfere with the execution of p, and (iii) the low atomicity write
action associated with c does not interfere with the execution of p and d.

First, we ensure that the set of transitions of p do not interfere with the
execution of d by constructing the set of groups of transitions I1, where I1

contains those groups of transitions in the new state space Sp′ that violate either
the safety of d or the closure of its invariant U .

I1 = {g : (∃gj : (gj ∈ p) ∧ (0 ≤ j ≤ m) : (H1(g) = gj) ∧
(∃(s′0, s′1) : (s′0, s

′
1) ∈ g : ((s′0, s

′
1) violates specd)∨
(H2(s′0) ∈ U ∧ H2(s′1) /∈ U))}

The transitions of p do not interfere with the liveness of d because d need
not execute when p is not in the deadlock state sd. Thus, p does not affect the
liveness of d. Hence, we are only concerned with the safety of the detector d
and the closure of U . When we map the transitions of p to the new state space,
the mapped transitions should preserve the safety of d. Moreover, if the image
of a transition (s′0, s

′
1) starts in U (i.e., H2(s′0) ∈ U) then the image of (s′0, s

′
1)

will have to end in U (i.e., H2(s′1) ∈ U). The emptiness of I1 shows that the
transitions of p do not interfere with the execution of d.

Likewise, we construct the set of groups of transitions I2 and I3 in the new
state space Sp′ to verify the second and the third conditions of interference-
freedom. Since I2 and I3 are structurally similar to I1, we skip their presentation
(cf. [13] for details). Thus, if I1, I2, and I3 are empty then we declare that no
interference will happen due to the addition of c to p.

Addition. We present the Add Component algorithm for an interference-free
addition of the fault-tolerance component c to p. In the new state space Sp′ ,
we construct a set of transition groups pH1 (respectively, dH2) that includes
all groups of transitions, g, whose images in Sp (respectively, Sd) belong to p
(respectively, d). Besides, no transition of (s′0, s

′
1) ∈ g violates the safety specifi-

cation of d (respectively, p) or the closure of the invariant of d (respectively, p),
i.e., U (respectively, S). Note that in the set dH2 , the image of every group g in
d and p must belong to the same process.

The set pc includes all groups of transitions, g, whose every transition has
an image in gindex under the mapping H2. Further, no transition (s′0, s

′
1) ∈ g

violates the safety of spec or the closure of S.
The set of states of the invariant of the synthesized program, S′, consists of

those states whose images in Sp belong to the program invariant S and whose
images in the state space of the detector, Sd, belong to the detector invariant U .



Adding Fault-Tolerance Using Pre-synthesized Components 87

Add Component(S, Srec, U : state predicate, H1, H2: onto mapping function,
spec, specd: safety specification, g0, · · · , gm, gd0, · · · , gdk, gindex: groups of transitions)

{ // p = g0 ∪ · · · ∪ gm, and d = gd0 ∪ · · · ∪ gdk ∪ gindex

// P0 · · ·Pn are the processes of p, and d0 · · ·dn are the elements of d

pH1 = {g : (∃gj : (gj ∈ p) ∧ (0 ≤ j ≤ m) : (H1(g) = gj) ∧
(∀(s′0, s′1) : (s′0, s

′
1) ∈ g : ((s′0, s

′
1) does not violate specd) ∧ (H2(s′0) ∈ U ⇒ H2(s′1) ∈ U))}

dH2 = {gd : (∃gdj : (gdj ∈ d) ∧ (0 ≤ j ≤ k) : (H2(gd) = gdj) ∧
(∃di, Pl : (0 ≤ i ≤ n) ∧ (0 ≤ l ≤ n) : (H2(gd) ∈ di) ∧ (H1(gd) ∈ Pl) ∧ (l = i)) ∧
(∀(s′0, s′1) : (s′0, s

′
1) ∈ gd : ((s′0, s

′
1) does not violate spec) ∧ (H1(s′0) ∈ S ⇒ H1(s′1) ∈ S))}

pc := {g : (H2(g) = gindex) ∧ (∀(s′0, s′1) : (s′0, s′1) ∈ g : ((s′0, s′1) does not violate spec)∧
(H1(s′1) ∈ Srec) ∧ (H2(s′0) ∈ U ⇒ H2(s′1) ∈ U) ∧ ((s′0, s

′
1) does not violate specd))}

S′ := {s : s ∈ Sp′ : H1(s) ∈ S ∧ H2(s) ∈ U}
p′ := pH1 ∪ dH2 ∪ pc;
return p′, S′;

}

Fig. 3. The automatic addition of a component

Theorem 6.1 The algorithm Add Component is sound. (cf. [13] for proof.) ��
Theorem 6.2 The complexity of Add Component is polynomial in Sp′ . (cf. [13]
for proof.) ��
6.4 Token Ring Example Continued

Using Add Component, we add the detector specified in Section 6.2 to the token
ring program MTR introduced in Section 4.2. The resulting program, consisting
of the processes P0 · · ·P3 arranged in a ring, is masking fault-tolerant to process-
restart faults. We represent the transitions of P0 by the following actions.

MTR0 : ((x0 = 1) ∨ (x0 = ⊥)) ∧ (x3 = 1) −→ x0 := 0;
MTR′

0 : ((x0 = 0) ∨ (x0 = ⊥)) ∧ (x3 = 0) −→ x0 := 1;
D0 : (x0 = ⊥) ∧ (y0 = false) ∧ (y1 = true) −→ y0 := true;
C0 : (y0 = true) −→ x0 := 0; y0 := false;

The actions MTR0 and MTR′
0 are the same as the actions of the MTR pro-

gram presented in Section 4.2. The action D0 belongs to the sequential detector
that sets the witness predicate Z0 to true. The action C0 is the recovery action
that P0 executes whenever the witness predicate (y0 = true) becomes true. Now,
we present the actions of P3.

MTR3 : ((x3 = 0) ∨ (x3 = ⊥)) ∧ (x2 = 1) −→ x3 := 1; y3 := false;
MTR′

3 : ((x3 = 1) ∨ (x3 = ⊥)) ∧ (x2 = 0) −→ x3 := 0; y3 := false;
D3 : (x3 = ⊥) ∧ (y3 = false) −→ y3 := true;

The action D3 belongs to the detector d3 that sets Z3 to true. We represent
the transitions of P1 and P2 as the following parameterized actions (for i = 1, 2).

MTRi : ((xi = 0) ∨ (xi = ⊥)) ∧ (xi−1 = 1) −→ xi := 1; yi := false;
MTR′

i : ((xi = 1) ∨ (xi = ⊥)) ∧ (xi−1 = 0) −→ xi := 0; yi := false;
Di : (xi = ⊥) ∧ (yi = false) ∧ (yi+1 = true) −→ yi := true;
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The above program is masking fault-tolerant for the faults that corrupt one
or more processes. Note that when a process Pi (1 ≤ i ≤ 3) changes the value
of xi to a non-corrupted value, it falsifies Zi (i.e., yi). The falsification of Zi

is important during the recovery from sd = 〈⊥,⊥,⊥,⊥〉 in that when xi takes
a non-corrupted value, the detection predicate Xi no longer holds. Thus, if Zi

remains true then the detector di witnesses incorrectly, and as a result, violates
the safety of the detector. However, P0 does not need to falsify its witness predi-
cate Z0 in actions MTR0 and MTR′

0 because the action C0 has already falsified
Z0 during a recovery from sd.

7 Discussion

In this section, we address some of the questions raised by our synthesis method.
Specifically, we discuss the following issues: the model of faults considered in
this paper, the fault-tolerance of the components, the choice of detectors and
correctors, and pre-synthesized components with non-linear topologies.
Does the fault model used in this paper enable us to capture different types of
faults?

Yes. The notion of state perturbation is general enough to model different types
of faults (namely, stuck-at, crash, fail-stop, omission, timing, or Byzantine) with
different natures (intermittent, transient, and permanent faults). As an illustra-
tion, we modeled the process-restart faults that affect the token ring program, pre-
sented in this paper, by state perturbation. This model has also been used in de-
signing fault-tolerance to (i) fail-stop, omission faults (e.g., [9]), (ii) transient faults
and improper initialization (e.g., [16]), and (iii) input corruption (e.g., [9]).
Can the synthesis method deal with the faults that affect the fault-tolerance com-
ponents?

Yes. The added component may itself be perturbed by the fault to which
fault-tolerance is added. Hence, the added component must itself be fault-tolerant.
For example, in our token ring program, we modeled the effect of the process
restart on the added component and ensured that the component is fault-tolerant
to that fault (cf. Theorem 5.1). For the fault-classes that are commonly used, e.g.,
process failure, process restart, input corruption, Byzantine faults, such model-
ing is always possible. For arbitrary fault-classes, however, some validation may
be required to ensure that the modeling is appropriate for that fault.
How does the choice of detectors and correctors help in the synthesis of fault-
tolerant programs?

While there are several approaches (e.g., [17]) that manually transform a
fault-intolerant program into a fault-tolerant program, we use detectors and cor-
rectors in this paper, based on their necessity and sufficiency for manual addition
of fault-tolerance [5]. The authors of [5] have also shown that detectors and cor-
rectors are abstract enough to generalize other components (e.g., comparators
and voters used in replication-based approaches) for the design of fault-tolerant
programs. Hence, we expect that the synthesis method in this paper can benefit
from the generality of detectors and correctors in the automated synthesis of
fault-tolerant programs as there is a potential to provide a rich library of fault-
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tolerance components. Moreover, pre-synthesized detectors provide the kind of
abstraction by which we can integrate efficient existing detections approaches
(e.g., [18, 19]) in pre-synthesized fault-tolerance components.
Does the synthesis method support pre-synthesized components with non-linear
topologies?

Yes. Using the synthesis method of this paper, we have added presynthesized
components with tree-like structure to a diffusing computation program [7] where
we synthesize a program that is fault-tolerant to the faults that perturb the state
of the diffusing computation and the program topology.

8 Conclusion and Future Work

In this paper, we identified an approach for the synthesis of fault-tolerant pro-
grams from their fault-intolerant versions using pre-synthesized fault-tolerance
components. Our approach differs from the synthesis method presented in [20]
where one has to synthesize a fault-tolerant program from its temporal logic
specification. Specifically, we demonstrated a hybrid synthesis method that com-
bines heuristics presented in [2, 3, 4] with pre-synthesized detectors and correc-
tors. We presented a sound algorithm for automatic specification and addition of
pre-synthesized detectors/correctors to a distributed program. We showed how
one could verify the interference-freedom of the fault-intolerant program and
the added components. Using our synthesis algorithm, we showed how mask-
ing fault-tolerance is added to a token-ring program where all processes may
be corrupted. By contrast, the previous synthesis algorithms fail to synthesize a
fault-tolerant program when all processes are corrupted.

We also extended the problem of adding fault-tolerance to the case where
new variables can be introduced while synthesizing fault-tolerant programs. By
contrast, previous algorithms required that the state space of the fault-tolerant
program is the same as that of the fault-intolerant program. Moreover, our syn-
thesis method controls the way new variables are introduced; new variables are
determined based on the added components. Hence, the synthesis method con-
trols the way in which the state space is expanded.
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Abstract. Several existing TDMA-based solutions, which allow dynamic
allocation of slots, are using minislotting strategies. Because of this ap-
proach they tend to loose bandwidth under some circumstances. More-
over, they cannot guarantee fault tolerance together with dynamic al-
location. In [13] the Teaprotocol was introduced, which achieves both
flexibility and fault tolerance of a TDMA-based protocol using dynamic
media access. This paper shows, that the extension method of Teais also
an efficient solution compared to two other arbitration strategies which
are implemented in real-world protocols. The agreement-based media al-
location in Teaexhibits better utilization of the extra bandwidth which
is reserved for dynamic arbitration. Moreover, this paper presents an ex-
tension of Teawhich allows for flexible message length which contributes
further to efficiency.

1 Motivation

In the past few years different protocols for use in automotive real-time appli-
cations have been developed. Fault tolerance and realtime requirements induced
the need for deterministic behavior of the protocol. This was realized by us-
ing static length slots with pre-configured scheduling which made it possible to
use guardians for avoiding “babbling idiot” faults, and distributed fault-tolerant
clock synchronization. These concepts are implemented in TTP/C and parts of
FlexRay. On the other side there is also a need for dynamic media access. In the
mixed-mode protocol FlexRay, there are separate segments with static slotting
and dynamic minislotting, respectively.

The minislotting approach allows to send messages without fixed length, or
sending nothing at all. The slot size is adjusted to the message length, or to
minislot size if there is no media access. The drawback of this method is the
waiting time for incoming transmission in every minislot between messages costs
efficiency. The time needed for this process cannot be used, even if there is data
to transmit. Moreover it is not possible to protect slots with dynamic length by
guardians. A single faulty node can cause collisions on the bus.

The guardian approach protects the channels by denying access to the bus
if the controller tries to send outside its slots. Therefore the guardian requires
the same time-base as the controller. Moreover, for fault tolerance reasons the
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guardian’s time-base should be independent from the controller’s clock. Different
solutions have been developed to overcome this problem. Every guardian could
have an own clock, and its own clock synchronization. This is a nearly perfect
solution for static schedules, but too expensive. Another popular solution re-
quires a centralized guardian ([1]), which resides on a star coupler. A guardian
fault (e.g. in the protocol node) therefore can make the whole channel useless,
while a controller fault can be tolerated. A proposal is made in [5] to use a time
base which is loosely based on the controllers clock. This is a cheap solution
that makes it possible to detect the major timing problems. However, it cannot
assure that minor changes cause errors over longer periods of time.

The Tea1 protocol as introduced in [13] overcomes this limitations. Teais a
mixed-mode protocol like FlexRay, but exhibits substantially changes in dynamic
arbitration. There is a static “regular” part, and a dynamically allocated “ex-
tension” part. In the regular part it is possible for each controller to request one
slot for the extension part. Therefore the regular part itself is splitted into two
phases of equal length: a request and a confirmation phase. In opposite to most
time-triggered protocols, Tearequires that two different controllers are sharing
one time-slot on two different channels. This way, it is possible that every con-
troller sends once on both phases. A controller sends on different channels in
the request and extension phases. Controllers which want to send messages in
the extension part can send a request in the request phase. The requests are
piggybacked to normal messages. In the confirmation phase, the schedule for the
extension part is build through majority voting. The controllers have to send a
vector with the received requests (piggybacked to normal messages as well). At
the end of the regular part the schedule for the extension part is known. It is
not more necessary to wait for transmission in minislots.

Teais able to tolerate controller together with channel faults. Both faulty
controller and faulty channel can behave arbitrarily at any time. This means
in the case of a faulty controller, that it can send correctly coded or corrupted
messages, or no messages at all. A faulty channel can corrupt messages, deliver
messages only to a subset of all connected controllers, or no signals at all. Only
the spontaneous generation of correctly coded messages is excluded.

To protect the channels, Teaintroduces a new node architecture with two
independent controllers which guard each other (see Fig. 1). Each controller can
grant or deny its neighbor access to the bus, by opening or closing the appropriate
switches. Aside from the access control, both controllers are independent in
function, and can be used by different hosts, or to build up a duplex-system as
shown in Fig. 1. During runtime, the role of the controllers as guard and sender
changes when following the current schedule.

The advantage is, that there are no timing problems with respect to differ-
ences in the distributed time base used by different controllers. This eliminates
the need for synchronization with dumb components as used in architectures
with local bus guardian components. It is also assured, that there is no direct

1 Time-triggered efficiency by agreement
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Host 1

Node

Controller 2Controller 1

B

A

Switches

Host 2

Fig. 1. Architecture of a Teanode. Two different communication controllers are guard-

ing each other in one node. Each controller offers communication services for one host.

As a side effect it is possible to build up a duplex-system, if the hosts can use both

controllers (see dashed lines)

dependency between a controller and its neighbor. The time bases are depend-
ing both on the global time, which is shared by any fault-free controllers in the
network. The global time base is normally the result of a fault-tolerant clock
synchronization algorithm. As a result, timing faults of a neighbor controller
are tolerated. The disadvantage is, that a faulty controller can deny a fault-free
neighbor controller access to the channels at any time. In any case fail-silent
behavior is guaranteed in the presence of timing faults.

This paper focusses on efficiency of different arbitration methods. First the
known strategies with assigned slots as used in FlexRay and byteflight2 and the
agreement method in Teaare presented. Example calculations will be given in
section 3.

2 Strategies for Dynamic Media Access in TDMA-Based
Protocols

This section discusses three different arbitration methods in a TDMA-context.
For analysis, an accurate time model is developed in section 2.1. In section 2.2 the
arbitration schemes are presented and the possible overhead is investigated for
each method. Section 2.3 discusses the impact of possible channel and controller

2 byteflight is a lightweight protocol without guardians and static segments. It is not
designed under the aspect of fault-tolerance.
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faults in the agreement-based method, which is the only fault-tolerant method
of the methods presented here.

2.1 The Time Model

For all protocols there are restrictions through the limited precision of the clocks
of the controllers. It is assumed that the values for the maximum clock rate
deviation is given, by rf for the fastest and rs for the slowest controller.3 Both
should be the maximum values. Furthermore there may be an offset of,s between
two clocks f and s, which can be given in real time.

In TDMA-based protocols it must be assured that the distance between two
events (transmission of messages) is large enough, that all fault-free controllers
see them in the same slot. Otherwise there will be collisions. To get comparable
results, the calculations below are based on the same time model, which puts a
minimum constraint on timing parameters.

For the local clock time values the real time (e.g. measured in ns) can be
calculated. The real time is given by Tj (c) = γj c + o, where c is the local time
of controller j, and γj = 1 + rj the rate of its clock.

At a specific local time c, the difference in real time between the slowest con-
troller s and the fastest controller f is Δ (c) = Tf (c)−Ts (c) = (γf − γs) c+of,s,
where of,s is the initial offset between clocks f and s. Of importance is the max-
imum clock difference, because in time-triggered protocols it must be assured,
that two clocks reached finally a local clock time c. Otherwise synchronous slot
counting cannot be achieved. The maximum difference is reached at the end of
the cycle just before the clocks are synchronized again. Given the length of the
cycle is L, then Δmax = Δ(L). This value is used in a minislot to assure that
all controllers are in the same minislot. The calculation of Δmax is illustrated in
Fig. 2.

nominal cycle start
nominal clock

nominal cycle end

t

slowest
fastest

initial offset
Δmax

Fig. 2. The time model is based on the maximum allowed deviation between the clocks

of the controllers. Assuming that clock synchronization is done at the end of the cycle,

the distance between the slowest and the fastest clock Δmax is highest

2.2 Media Access Methods

This section presents two media access methods. The first one assigns controllers
to different slot of dynamic length at configuration time, while the Teamethod is

3 In the following, the “clock i” should mean “clock of controller i.”
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based upon agreement during runtime. Since the minislotting approach with pre-
assigned slots has no fault-tolerance capabilities, possible influences on efficiency
for the prevention of faults are discussed in section 2.3.

Minislotting with Assigned Slots. If the order is pre-configured, but it is not
known who will send, it is possible to count up short slots, until some controller
starts to send in its minislot. After transmission has stopped, minislot accounting
is continued until a further controller sends eventually.

The shortest possible slot, that is needed to wait for a possible transmission
to start, is a minislot. In contrast to the priority based method, a minislot has
constant length and must be pre-configured. Then a slot of dynamic length is
inserted. It lasts for the duration of the sent message.

For calculation of the length of a minislot it must be taken into account
that a sender must have enough time to start sending his packet before the
fastest controller passes to the next minislot. A controller needs to assure, that
all controllers passed to the next minislot. From this point on the controller has
to wait until the slowest controller were able to send (see Fig. 3). This means
that for a minislot length λminislot > 2 Δmax holds.

d

A

Slot of controller s

Slot of controller f earliest possible sending time of f

max maxΔ Δ

max

Fig. 3. Timing of a minislot. The controller f sends earliest at point A

The maximum delay caused by the transmission will be estimated by dmax.
Additionally a small error ε will be taken into account, that subsumed possible
effects such as discretization or rounding error through clock measurement or
clock correction term calculation, that are not covered otherwise, and serves as
a “safety margin”. Finally the minislot length is λminislot ≥ 2 Δmax + dmax + ε.

When a message is sent, the slot becomes a multiple of a minislot, which
depend on the size of the message. A message cannot end in the same minislot it
was started. Otherwise the transmission would not stop in the same slot, because
the fastest controller passed to the next slot after the (possible) start of a trans-
mission of the slowest one. The message must fit into a sequence of two or more
minislots. If λmessage (i) is the length of the message in real-time, then the trans-

mission length can be estimated by λslot (i) =
(⌈

λmessage(i)
λminislot

⌉
+ 1

)
λminislot ≥

2 λminislot. The ceiling operator assures that the slot length is an integer multi-
ple of the minislot length.
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Slot Counter (f)

1 2 3 4 5 6

1 2 3 4 5 6

Slot Counter (s)

Fig. 4. Assigned slots: The fastest controller f is assigned to slot 3, the slowest s to

slot 6. Slots 1,2 and 4, 5 are left unused

To calculate the amount of time Tas in minislots that gets lost by the arbi-
tration method, let mlast be the last minislot of the cycle which is needed by a
transmission. It must be taken into account, that a controller has to wait Δmax

until it is allowed to send. On the other side, there must be at least the same
time available at the end of the message. Then, if k is the number of messages
in the dynamic part, Tas is given by the following equation.

Tas = mlast λminislot −
k∑

i=1

λslot (i) + k 2 Δmax (1)

As mentioned above, a controller can only start sending within a slot, if it is
configured to do so. This schedule is important for the efficiency of a protocol.
The consequence is that there can be gaps between two messages if a controller
leaves the slot it is assigned to empty. These gaps are at least λminislot long.
Additionally, the order of controllers in the schedule works as some kind of
priority. Controllers who are scheduled for higher slots may not be able to send,
if the maximum cycle length is filled up with messages from other controllers.

Minislotting with Relaxed Timing. A more general method does not re-
strict the slot length to be an integer multiple of minislot length, if a controller
is sending. The slot timing restarts after an idle state has been detected. After
the end of the message has been received, the idle state can be detected by a
timeout of duration δfinal + dmax + ε.

Thereafter each controller advances to the next minislot. Then the normal
minislotting scheme is continued until a controller starts sending in its minislot.
The overall overhead Tls where k is the last index of the used slots and h is the
number of used slots is given by

Tls = (k − h) λminislot + h (δfinal + dmax + ε) . (2)

Agreement-Based Scheduling. If a schedule can be build up dynamically,
before the dynamic part of the cycle starts, then the time between two messages
reduces to a minimum. This done in the preceding regular part which has fixed
scheduling by an agreement algorithm, as realized in the Teaprotocol in [13]
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receiver

max finalδmessage end idle detected

Slot n+1Slot n

sender

d

Fig. 5. Relaxed slot timing

(see section 1). The schedule contains only the sender who really wants to send.
Consequently no special arbitration technique is necessary. The controller simply
sent in the order of the prebuilt schedule.

In contrast to the variant presented in [13], the method described here should
allow variable length messages. To achieve this a timeout δfinal for the detection
of the end of the transmission is introduced. The value depends on the encoding
of the messages, and is the time, the controller needs to detect an idle bus. Then
the neighbor controller of the former sender must close the access to the bus,
while the neighbor of the next sender has to grant the access. For both actions
a small time interval dswitch has to be taken into account. Finally the necessary
distance between two messages is given by λnext = δfinal + dmax + dswitch + ε.
At the beginning of the extension part or when the message receives maximum
length, δfinal is not necessary. In this case the switches can be set immediately
according to the schedule.

As tribute to the agreement algorithm, piggybacking of requests and request
vectors (see 1) costs overhead in the regular part. This depends on the total
number of controllers m, and the duration of a bit in real time dbit. The overhead
for the request phase is given by m dbit. In the confirmation phase, each vector
elements represents one of the states requested, not requested or unknown, so
that the vector would be 2m bits long. This vector can be packed, since the
eight combinations of states of two controllers can be represented by three bits.
Thus the overhead due to piggybacking in the regular part is given by Treg =
m dbit + 3 m

2 dbit.
For calculating the complete amount of time Tts that is left unused for pay-

load data, h is considered to be the total number of controllers sending in the
extension, and k the number of controllers which do not utilize the maximum
message length.

Tts =
∑

h

(dmax + dswitch + ε) +
∑

k

δfinal + Treg (3)

While the minislot approach needs at least a slot for detection of the begin-
ning of a message, and the end of the message, the gaps between two messages can
be significant smaller in agreement-based scheduling. The way how the senders
are selected leaves many possibilities for scheduling including priorities, deadline
scheduling, etc. This is not possible with pre-assigned schedules. The arbitration
method enforces no restrictions.
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2.3 Fault-Tolerance of Dynamic Media Access Methods

A novelty in the agreement-based approach is that the dynamic part can be
implemented in a fault-tolerant way. This is achieved through the new node
architecture as presented in section 1. It has a guaranteed fail-silent behavior,
and can tolerate faults in the dynamic case, which is not possible with the classic
guardian approach.

If the channels are known to be fault-free, then faults are seen by any con-
troller the same way. On timeouts or errors during decoding on one of the chan-
nels, the reception can be stopped and all controllers can recalibrate the switches
according to the schedule. This happens also if the maximum length of a mes-
sage is reached. In the case when the controllers do not send at all, there is no
additional cost, because the timeout mechanism shown in section 2.2 works as
expected. Otherwise the time, left from start of sending until the reception is
cancelled, has to be added. The prerequisite is that blocking causes a controller
to detect either a CRC error, or sets the bus to an idle state.

In addition to a faulty controller one channel can be faulty. A faulty channel
behaves arbitrary throughout the whole cycle. It could be reasonable to assume
that a corruption of a message can be seen by any controller, so that the following
condition holds: If one controller gets a correct message, then all others get a
correct message, too. This is always the case if the sender is fault-free. Further,
if a faulty, or blocked controller sends a corrupted message on the fault-free
channel, all controllers see either a correct or a corrupted message (depending
on what the controller did send on that channel). Under this circumstances it
is possible to ignore the corrupted channel. The case of message corruption on
both channels can be handled the same way as described above.

When a faulty channel acts asymmetrically, then two controllers could see two
completely different behaviors on the channels. In Fig. 6, j sees a message from
the faulty controller f on the faulty channel. Due to the asymmetric behavior
of the faulty channel, k recognizes an idle channel. As f does not send on the
fault-free channel, k sees an empty slot, while j receives a message in that slot.
Now two cases are possible.

corrupted message
max δfinalCH A

CH A
k

CH B

CH B

j

n denies access

(no transmission)

(no transmission)

(no transmission)

maximum slot length

(1)

(2)

d

Fig. 6. In case of an asymmetric fault the further activities depend on the next sender.

In case (1), j receives a transmission on the faulty channel A. If the neighbor of the

faulty sender denies access to the bus, j can start immediately. In case (2) k has to

wait until the slot ends by reaching the maximum length
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1. The neighbor n of f sees an idle transmission. Since the extension method
does not allow idle slots, there must be a fault, so n denies further access to
the bus. Now any controller sees an idle or aborted transmission. The next
controller in the schedule can wait to the maximum slot length, and start
sending. This case is also possible if n receives a corrupted message.

2. The neighbor sees a correct message. If the next sender saw this correct
message, too, it starts sending. All controllers are receiving now the new
transmission, and therefore pass to the next slot. Otherwise the next sender
waits until maximum slot length expires.

In any case, the faulty controller cannot disturb the communication. If faults
occur, then a maximum slot length may left unused.

3 Examples

In the following two scenarios are investigated. The first one assumes maximum
utilization. This means that there are no empty slots in the extension. Note that
this is the only possible scenario for agreement-based scheduling in the fault-free
case. To preserve comparability, the worst-case scenario consisting of controller
and channel faults is excluded. The second scenario shows the overhead in the
context of slot usage. The calculations for the assigned slots and agreement-based
methods are using the same reference architecture, which is defined by the values
dmax = 0.44 μs and δfinal = 1.1 μs (see Figs. 7 and 8). In the following, k is the
maximum number of slots in the dynamic parts.

In the minislotting approach with pre-assigned slots, both for the start and
the end of a message a full slot must be reserved. Using (1), this gives Tas =
k 2 Δmax.
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Fig. 9. The overhead in context of a message. Note that the agreement-based method

is independent of the number of empty slots

Minislotting with relaxed timing depends on the additional parameter δfinal

and the distance to the point in the next slot, where the next sender is allowed to
send in real time. Therefore the overhead is Tls = k (δfinal + dmax + ε + Δmax).

With agreement-based scheduling, maximum utilization is granted in the
fault-free case, where all senders send messages of maximum length. This means
that h = k holds in (3). The total number of controllers should be the same than
the number of slots. This allows every controller to get one slot in the extension
part. Because the timeout δfinal can be left out at the start of the extension part,
the overhead is given by Tts = k (dmax + dswitch + ε + δfinal)− δfinal + Treq.
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Figure 7 shows the maximum utilization for different total number of slots. In
Fig. 8 the same calculation is shown with a smaller cycle length, which leads to
lower values of Δmax and ε. The value dswitch is set to 0.25 μs and dbit = 0.1 μs.

As one can see, relaxed timing costs lower overhead with long cycles than the
assigned slots method. The reason is, that each slot in the assigned slots method
must at least as long as twice the maximum offset between the slowest and the
fastest clock, which increases with the cycle length depending on the maximum
allowed clock deviation. In Fig. 8 this value this value is significantly smaller,
so that the impact of the network parameters dmax and δfinal is dominating.
This is possible in the case of a shorter cycle or better clock synchronization.
In the agreement-based method the arbitration is based on the agreed schedule
and the timeout δfinal. Clock synchronization issues doesn’t play a role here,
because the receivers are synchronized with the messages.

In Fig. 9 the overhead of a sequence of k empty and one non-empty slot is
shown. Here, the parameter values of Fig. 7 are used again. For the agreement-
based method the worst case is assumed (no assumption of maximum message
length). The total number of slots is set to m = 64.

The figure shows, that the overhead of the relaxed timing and assigned slots
methods are rising with the number of preceding empty slots as expected. The
agreement-based method doesn’t need to take this into account, because the
scheduling is build up before the beginning of the extension part. Since the next
sender is already known, it is not necessary to take any arbitration decisions. So
there is no reason to introduce additional space.

4 Conclusion

Efficient solutions exist for dynamic arbitration in TDMA-based protocols. While
current implementations of strategies with minislotting and pre-assigned slots are
able to provide the ability of sending messages of dynamic length, they suffer
from their need for bandwidth, because it is never known if the next controller
may send or not. Pre-build schedules can bring the need for bandwidth for
arbitration purposes to a constant value. Moreover this value could be minimized
by enhancing the method for handling messages of dynamic length. However, it
is necessary to give away bandwidth in the regular part. In addition, the network
remains fully protected during the whole cycle.

References

1. Bauer, G., Frenning, T., Jonsson, A.-K., Kopetz, H., “A Centralized Approach for
Avoiding the Babbling-Idiot Failure in the Time-Triggered Architecture”, ICDSN
2000, New York, NY, USA

2. Bauer, G., Kopetz, H., Steiner, W., “Byzantine Fault Containment in TTP/C”
Proceedings 2002 Intl. Workshop on Real-Time LANs in the Internet Age (RTLIA
2002), pages 13–16



102 J.C. Lisner

3. M. Peller, J. Berwanger, and R. Griebach. “Byteflight – A New High-Performance
Data Bus System for Safety-Related Applications.” BMW AG, EE-211 Develop-
ment Safety Systems Electronics, 2000

4. The FlexRay Consortium, “FlexRay Communications System – Protocol Specifi-
cation V2.0” www.flexray.com

5. The FlexRay Consortium, “Bus Guardian Specification V2.0” www.flexray.com
6. Führer T., et al, “Time-triggered Communication on CAN (Time-triggered CAN

– TTCAN)” Proceedings of ICC’2000, Amsterdam, The Netherlands, 2000.
7. Heiner, G., Thurner, T., “Time-Triggered Architecture for Safety-Related Dis-

tributed Real-Time Systems in Transportation Systems”, In Digest of Papers, The
28th IEEE Int’l Symp. on Fault-Tolerant Computing Systems, Munich, Germany.

8. Kopetz, H., Gruensteidl, G., “TTP – A time-triggered protocol for fault-tolerant
real-time systems.” Proceedings 23rd International Symposium on Fault-Tolerant
Computing, pages 524–532, 1993.

9. Kopetz, H., “The Time-Triggered Approach to Real-Time System Design” In Pre-
dictably Dependable Computing Systems (B. Randell, J.-C. Laprie, H. Kopetz and
B. Littlewood, Eds.), Basic Research Series, pp.53-66, Springer, 1995.

10. Kopetz, H., “Real Time Systems – Design Principles for Distributed Embedded
Applications”, Kluwer Academic Publishers, 1997

11. Kopetz, H., “A Comparison of TTP/C and FlexRay” Research Report 10/2001
Institut für Technische Informatik, Technische Universität Wien, Austria

12. Kopetz, H., Bauer, G., Poledna, S., “Tolerating Arbitrary Node Failures in the
Time-Triggered Architecture” SAE 2001 World Congress, March 2001, Detroit,
MI, USA

13. Jens Chr. Lisner, “A Flexible Slotting Scheme for TDMA-Based Protocols” Work-
shop Proceedings, ARCS 2004, Augsburg, March 26th 2004, pp. 54–65

14. Müller, B., et al, Proceedings 8th International CAN Conference; 2002; Las Vegas,
Nv

15. Peller, M., Berwanger, J., Griessbach, R. “The byteflight specification”, V.0.5,
10/29/1999, BMW AG., www.byteflight.com

16. Pease, M., Shostak, R., Lamport L., “Reaching agreement in the presence of
faults.” Journal of the ACM, 27(2):228-234, April 1980.

17. Rushby, J., “Systematic Formal Verification for Fault-Tolerant Time-Triggered Al-
gorithms” Proc. DCCA 6, Garmisch, Germany. IEEE Press. pp. (Preprints) 191-
210.

18. Rushby, J., “A Comparison of Bus Architectures for Safety-Critical Embedded
Systems” CSL Technical Report, SRI International, 2001

19. Temple, C., “Avoiding the Babbling-Idiot Failure in a Time-Triggered Commu-
nication System.” Fault Tolerant Computing Symposium 28, Munich, Germany,
June 1998, IEEE Computer Society, pp. 218-227

20. Temple, C., “Enforcing Error Containment in Distributed Time-Triggered Systems:
The Bus Guardian Approach” PhD Thesis, Inst. f. Techn. Informatik, Vienna
University of Technology.

21. TTTech, “Time-Triggered Protocol TTP/C – High Level Specification Document
– Protocol Version 1.1” www.tttech.com, ed.1.4.3, November 19th 2003



 

 pp. 103 – 121, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Architectural Framework for Detecting Process 
Hangs/Crashes 

Nithin Nakka, Giacinto Paolo Saggese, Zbigniew Kalbarczyk,  
and Ravishankar K. Iyer 

Center for Reliable and High Performance Computing, 
Coordinated Science Laboratory, 

University of Illinois at Urbana-Champaign, 
1308 West Main St., Urbana IL 61801 

{nakka, saggese, kalbar, iyer}@crhc.uiuc.edu 

Abstract. This paper addresses the challenges faced in practical implementa-
tion of heartbeat-based process/crash and hang detection. We propose an in-
processor hardware module to reduce error detection latency and instrumenta-
tion overhead. Three hardware techniques integrated into the main pipeline of a 
superscalar processor are presented. The techniques discussed in this work are: 
(i) Instruction Count Heartbeat (ICH), which detects process crashes and a class 
of hangs where the process exists but is not executing any instructions, (ii) Infi-
nite Loop Hang Detector (ILHD), which captures process hangs in infinite exe-
cution of legitimate loops, and (iii) Sequential Code Hang Detector (SCHD), 
which detects process hangs in illegal loops. The proposed design has the fol-
lowing unique features: 1) operating system neutral detection techniques, 2) 
elimination of any instrumentation for detection of all application crashes and 
OS hangs, and 3) an automated and light-weight compile-time instrumentation 
methodology to detect all process hangs (including infinite loops), the detection 
being performed in the hardware module at runtime. The proposed techniques 
can support heartbeat protocols to detect operating system/process crashes and 
hangs in distributed systems. Evaluation of the techniques for hang detection 
show a low 1.6% performance overhead and 6% memory overhead for the in-
strumentation. The crash detection technique does not incur any performance 
overhead and has a latency of a few instructions. 

1   Introduction 

Usually, a process is said to have crashed if it encounters an exceptional condition 
such that it is no longer able to continue execution. We say a system or process is 
hung if:  

a) it simply does not respond to external inputs, makes no progress, and there is no noti-
fication of a failure except as observed by a user or an external monitoring entity,  

   M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.): EDCC 2005, LNCS 3463,  
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b) the process or system goes into an infinite loop1, detectable only by a dedicated 
monitor. 

The use of heartbeats (HB) to detect failed or hung processes or processors is a 
common baseline technique [ 3][ 18][ 17], frequently employed in commercial systems. 
The operating system (OS) can detect most process crashes and detect OS crashes by 
capturing a wide variety of OS exception conditions and kernel panics, but it is usu-
ally unable to detect process hangs and its own hangs. Current approaches detect ap-
plication/OS hangs by either instrumenting the monitored application to provide an 
acknowledgment or an “I am alive” message, or via a subordinate thread added to the 
application to enable proactive generation of heartbeats (e.g. Tandem GUARDIAN 
[ 26]). The detection of infinite loop conditions is more problematic (without resorting 
to duplication or self checking mechanisms) since most often the HB thread or the 
process itself continues to send the “I am alive” message even though the application 
does not make any progress. 

An alternative approach to detect OS crashes/hangs that does not require OS in-
strumentation uses watchdog timers. A simple user process is employed to periodi-
cally reset the watchdog timer, otherwise the OS is considered to be crashed or hung. 
A limitation of this technique is that an OS crash/hang is indistinguishable from the 
case where the user-level process that resets the timer abnormally terminates. Another 
approach used in custom high availability operating systems is to modify the operat-
ing system to generate its own heartbeats, again in a separate thread or function [ 26]. 
Thus, while it is conceptually simple to assure the existence of a HB mechanism, the 
design and implementation of a comprehensive HB mechanism is nontrivial. There 
are three issues which pose significant challenges to HB designers: 

Application Intrusiveness. Conventional heartbeat mechanisms detect hangs via 
augmentation/instrumentation of an application in the form of: (i) a subordinate 
thread – It is possible that the subordinate thread sends heartbeats even if the main 
process is no longer functional or executes in an infinite loop, or (ii) progress indica-
tors (e.g. [ 21]) – a detailed knowledge of the application and access to the application 
source code may be required. 

Detection Latency. It is essential to have a HB mechanism that detects both process 
or OS crash/hang with as small a latency as possible. An undetected crash or hang can 
result in unpredictable behavior of a system and, as a consequence, have a significant 
negative impact on application or system availability. Since the detection latency de-
pends on a timeout period employed by the HB mechanism, a careful tuning (usually 
an ad hoc and arbitrary procedure) of the timeout mechanism is required to suit par-
ticular application environments and to ensure rapid failure detection. 

                                                           
1 In our recent study on fault injection based characterization of error sensitivity of Linux ker-

nel on Intel platform (Pentium4 running Linux Kernel 2.4.22), we found that approximately 
75% of the manifested errors lead to a crash (easily detectable via heartbeats).  Of the remain-
ing 25% of the manifested errors, in about two-thirds of the cases (16%) the processor 
stopped executing instructions, i.e., processor was frozen. In the remaining one third of the 
cases (8.3%), the processor continued to execute instructions without doing any useful work 
e.g., executing in an infinite loop [ 20]. 
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Determining Timeouts. The problem of determining the timeout values for heart-
beats can be addressed using adaptive timeout mechanisms [ 14][ 17], although the 
practical efficiency of these approaches is yet to be determined. Commercial operat-
ing systems and distributed or networked environments use an empirical approach to 
arrive at a fixed timeout value. Timeout values so obtained typically use worst case 
scenarios, leading to over design and excessive error detection latency. Other solu-
tions used in modern operating systems poll for resource usage [ 11]; these solutions 
fail in cases where the process is in an infinite loop without excessively draining any 
resources. The hardware and performance overhead of self-checking components, as 
used in the Tandem Guardian system [ 22] where each of the processes in the process 
pair heartbeats one another to detect potential hangs, is cost-effective only in high-end 
server systems (or in switching systems, e.g. AT&T 5ESS Switch [ 25]). 

In overcoming the limitations of the current approaches and addressing the above-
mentioned challenges, this paper presents a hardware solution in the form of an in-
processor hardware module to support low latency crash and hang detection that has 
the following unique features: 

1. It is operating system neutral. 
2. It eliminates the need for any instrumentation to detect all OS Hangs. 
3. It provides an automated and lightweight compile-time instrumentation method-

ology to detect all process hangs (including infinite loops), the detection being 
performed in the hardware module at runtime. 

2   Overview of the Approach 

We propose in-processor hardware based techniques to provide low latency crash and 
hang detection with minimal intrusion to application and low hardware overhead. 
Three hardware modules are introduced: 

The Instruction Count Heartbeat (ICH), which uses existing processor-level fea-
tures (i.e., performance counters) to monitor whether a processor continues to execute 
instructions in the context of a specific process. This enables detecting abnormal 
process termination (i.e., process crashes) and also the detection of process/processor 
hangs where the process still exists but no more instructions are executed. The ICH 
does this by monitoring whether a fixed number of instructions of the process are 
executed within a constant time. It exploits existing performance counters in modern 
processors and eliminates any OS and application level instrumentation. While in-
formation regarding the abnormal process termination is available at the OS level, it 
will be seen that the per-process data collected in the ICH has value in the broader 
context of locally detecting OS hangs. 

The Infinite Loop Hang Detector (ILHD) module detects a process hang due to in-
finite execution in a legitimate loop. In order to enable this, entry and exit points of 
loops in the application are instrumented via a compiler (i.e., most compilers are 
geared to detect loops and can be modified to instrument the application at determi-
nistic points that correspond to the entry and exit points of loops). In addition, an ap-
plication profiling methodology is employed to determine the timeout values for the 
heartbeats on a per-loop basis, rather than the usual approach of using a fixed timeout 
for the entire application. 
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The Sequential Code Hang Detector (SCHD) module is employed to detect process 
hang due to infinite execution in illegal loops. An illegal loop can occur when the tar-
get address of the terminating branch in the basic block is corrupted and, as a result, 
the control flow can be subverted to an instruction within the block creating an illegal 
loop. SCHD detects this scenario by maintaining a log of recently committed instruc-
tions and searching for a repetition of an instruction sequence.  

The ILHD and the SCHD require lightweight application instrumentation and 
achieve high accuracy in determining timeouts. Since the technique automatically in-
struments the application at loop entry and exit points, it does not require knowledge 
of the source code. 

Fig. 1 depicts: (i) the block diagram of the system with the discussed hardware 
modules, (ii) the inputs to the modules from the processor pipeline, and (iii) opera-
tions performed by the modules on receiving the inputs. Fig. 1 also shows details of 
an implementation of the ICH Module. The ICH contains multiple sets of counters 
(Curr Process Cntr i and Prev Process Cntr i), so as to monitor multiple processes 
simultaneously (each set of counters being associated with a single process). The Curr 
Process Cntr for a process is incremented when the processor completes execution of 
a fixed number of instructions (as measured by in-processor performance counters) on 
behalf of that process. The ICH periodically checks if the Curr Process Cntr has been 
incremented since the previous check. After checking for updates the value in the 
Curr Process Cntr is written to the Prev Process Cntr, which is used as a reference 
for the next check. A separate set of counters, (Curr OS Counter and Prev OS 
Counter) are allocated for the OS when it is executing a kernel thread or performing 
some bookkeeping functions. In addition, a Counter Array Scan logic is provided to 
scan all the process counters and to check for updates on any one of them. 
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Fig. 1. Block Diagram of Processor with Process Crash/Hang Detection Modules 

2.1   Detection of Failure Scenarios 

Fig. 2 shows how various failure scenarios can be detected using the techniques intro-
duced in the previous section. 
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1. Hang when executing user thread 

• Application Infinite Loop due to, for instance, design and implementation errors 
in the application, illegal inputs, or hardware errors that cause the condition for 
the execution of the loop to be always true – detection is performed by the 
ILHD or SCHD modules. 

• System call issued by process never completes – the detection is performed by 
the ILHD module, which times out due to the excessive execution time taken by 
the loop enclosing the system call. 

In both cases the module can raise an exception to force the OS to crash/terminate 
the unresponsive application process. 

2. Hang when executing kernel thread. 

• Processor/Process Frozen means that the processor/process is not committing 
any instructions, for instance due to a stuck-at-0 fault on the commit line – the 
detection is performed by ICH module, which checks the dedicated OS counter 
to determine lack of progress in executing instructions by the processor. 

• Kernel Infinite Loop – the detection can be performed using the Counter Array 
Scan mechanism, which scans all the process counters, at a reasonably long 
timeout interval, to detect whether the processor stopped executing instructions 
on behalf of user-level processes. Presence of such conditions indicates that the 
OS holds on to the processor and the control is never transferred to any user-
level process2. 

In the above two cases, resulting in a successful detection, a system reboot is initi-
ated. 

Fig. 2. Hierarchical application of Hang Detection Techniques 
                                                           
2 If the interrupts are enabled when the OS is in an infinite loop, the detection can also be done 

by a technique such as the Kernel Health Monitor (KHM) described in [ 23]. The KHM is a 
software implemented timer-interrupt driven monitor to detect OS hangs and to initiate a sys-
tem reboot on successful detection. 
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At this point one may ask whether the same goals could be achieved by extending 
the exception handling mechanism of the operating system with corresponding soft-
ware implementations of the hardware techniques proposed in this paper. While con-
ceptually this might be possible, there are several disadvantages in taking this ap-
proach: 1) each change to the exception handling mechanism is OS specific, whereas 
the hardware approach is OS neutral, and 2) even if the OS mechanism is used to de-
tect process crashes and hangs, a separate support is still needed to detect OS hangs 
and crashes. The hardware approach is uniquely suited for achieving this goal 

Support for Distributed Systems. While the crash/hang detection has value in the 
context of a single processor, it can also be leveraged to provide efficient failure de-
tection in a clustered or distributed environment. Fig. 3 shows the logic to provide this 
support (nodes in Fig. 3 correspond to processors). When a distributed application 
(consisting of a group of processes) initiates a process p on a node A, it associates a 
memory mapped I/O port, P, (a location in the node A’s memory that can be read by a 
remote process) with the process and initializes the port. The ICH module in node A 
maintains the information of the process-port pair. On detecting a crash of a process 
p, the module raises an exception. The OS handles this exception and writes the id of 
the crashed process to the corresponding port P. Remote processes (members of the 
initial application process group) can read from this port and, hence, detect the crash 
of process p. In case of an application or OS hang, the hang can be detected and trans-
formed into a crash using the procedure described in Section  0. 

Fig. 3. Crash/Hang detection support for distributed systems 

• It is hardware implemented and for crash and hang detection requires minimal 
or no application level instrumentation.  

• The crash detection latency can be as small as a few instructions. 
• Heartbeats checked concurrently with normal process execution:  Since the moni-

toring entity is a hardware module, the heartbeats from a process p are checked 
concurrently with the execution of p. This not only reduces detection latency, but 
also minimizes the impact of heartbeat on the application performance. 

In Summary, the Key Characteristics of the Proposed Approach Are: 
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• The scheme provides support in a distributed or networked environment to make 
failure detectors efficient by a) reducing the latency of detection, and b) improv-
ing the coverage. 

• OS neutral: An added advantage of the hardware-based approach over an OS-
based one is that it is OS neutral and hence can be leveraged by any OS execut-
ing on the hardware. 

3   Modifications Needed for the System and Application 

All the modules are implemented in hardware and thereby incur hardware overhead. 
The Infinite Loop Hang Detector (ILHD) and Sequential Code Hang Detector 
(SCHD) modules require application instrumentation. The aim is to minimize these 
overheads. 

To support the ILHD technique, the application is instrumented with special 
CHECK instructions to notify the monitoring mechanism of the entry and exit points 
of a loop. Two means of instrumenting the application are explored: (i) use of an en-
hanced compiler – if the application source code is available, a compiler augmented 
with an additional pass that detects the entry and exit points of loops can be used to 
embed the CHECK instructions, and (ii) use of a specialized preprocessor – if the 
source code is unavailable, a dedicated preprocessor can be employed to embed the 
CHECK instructions directly into the application binary (here we leverage our experi-
ence using a similar methodology to instrument application binaries with control flow 
assertion checks [ 8]). The determination of the timeouts for the loops is done using 
off-line application profiling. The OS level modifications include support for saving 
and restoring the state of the modules (timeout values) during a context switch of a 
process. Fig. 4 shows a flow diagram of the operations to be performed to deploy the 
ILHD technique. 

The implementation of the Instruction Count Heartbeat (ICH) module constitutes a 
set of timers and counters to wait for heartbeats on completion of execution of a fixed 
number of instructions. Use of multiple counters enables monitoring multiple proc-
esses simultaneously in a multiprogramming environment. Also, since there is no 
feedback from the module to the processor pipeline, the presence of the module does 
not affect the instruction execution in the pipeline, hence introducing no performance 
overhead. 

The ICH mechanism requires access to performance counters in the processor that 
count the number of executed instructions. These performance counters need to be 
part of the process context state. The application can enable the ICH module from the 
command line by specifying a predefined option (handled by the OS loader during 
application invocation). Fig. 5 shows the operations needed at application launch time 
to apply the ICH technique. 

The SCHD module requires instrumentation of the application to parameterize the 
module for the maximum length of illegitimate loops to be checked. This is explained 
in greater detail in the following section. The instrumentation can be performed using 
similar techniques as used for the instrumentation for the ILHD module. The SCHD 
module requires a set of registers, operating as a queue to log the addresses of the 
committed instructions. It also requires logic to analyze the log and detect a repetition 
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of an instruction. This module has been described in VHDL, implemented on an 
FPGA, and detailed hardware overhead analysis performed. As shown in Section  0, 
the SCHD design shows a hardware overhead of about 5%. 

4   Description of Modules for Detection of Process Hangs/Crashes 

It is assumed that at the processor level we can distinguish between the processes in 
the system. Current processors provide registers that allow obtaining a pointer to the 
process descriptor. For instance, the Intel processor running a Linux Kernel maintains 
this information in the 13 least significant bits of the esp register. This can be used to 
extract the process id of the current process and, thus, distinguish between the proc-
esses in the system. 

Fig. 5. Operations for ICH at 
process launch 

Fig. 4. Flow Chart for Deployment of Infinite Loop Hang 
Detector Module 

4.1   Detecting Process Crash Using an Instruction Count Heartbeat (ICH) 

ICH is a generic technique, applicable throughout the application (irrespective of 
whether it is executing inside or outside a loop), to detect a process hangs using an es-
timated time for the application to execute a fixed number of instructions. It does not 
require any instrumentation of the application. A hardware implementation of the mod-
ule at the processor level allows monitoring the process for progress at the granularity of 
number of instructions executed. Thus the detection latency for a process crash would 
be very low, a multiple of the average estimated instruction execution time. 
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On modern microprocessors like the Pentium and PowerPC, performance registers 
can be used to count the number of instructions being committed in the processor. On 
execution of a certain number of instructions, the processor sends a heartbeat to the 
ICH module by updating a counter. It checks for updates on this counter, and if the 
counter is not updated before a timeout occurs, the application is declared to be not 
executing any instructions or in other words, the application is crashed. 

Current generation microprocessors (e.g., Pentium) have a built-in mechanism that 
monitors the commit sequence of the processor. If the processor has not committed 
any instructions for a certain time, the pipeline is flushed and restarted. However, this 
mechanism is not application-specific. Using a separate timer for each process, in 
which the timer and the instruction counter performance register are part of the proc-
ess state, makes the technique application-specific. ICH can monitor multiple proc-
esses simultaneously and does not require modification of the application itself. The 
only modification required is to associate the process with a timer and to enable the 
timer. This can be implemented as a wrapper function executed at invocation, requir-
ing no intrusion into the application. 

Although this paper describes the crash/hang detection techniques implemented in 
hardware, the ICH module can be implemented either as a processor-level hardware 
module or an OS-level software module. The processor updates the Instruction 
Counter and the Heartbeat Counter on completion of instruction execution. The ICH 
module, can be implemented either in the hardware or in the OS layers and check the 
Heartbeat counter periodically for updates. 

Timeout for the Heartbeat. The maximum time required by an application to exe-
cute a fixed number of instructions depends on the instruction set architecture of the 
processor. Events such as cache misses or I/O and networking delays are intercepted, 
and the timer is disabled for the duration of the event. 

The following rules determine the timeout policy: 

1. If the heartbeat is received before the timer expires, then the timer is reset and 
execution continues normally. 

2. If the timer expires before the heartbeat is received, the module does not imme-
diately declare the process to be hung/crashed. Instead, the module resets the 
timer to twice the previous timeout value and waits for the heartbeat. 

3. On failure to receive the heartbeat for a threshold (t) number of such exponen-
tially backed-off intervals, the module declares the process to be crashed. 

Let T be the average estimated time required to execute an instruction of the proc-
essor. Then, 

The total time waited before declaring a process crash 

= τ = T + 2 × T + 22 × T + … + 2t × T = T × (2t+1 – 1) 

A limitation of using a timeout of a fixed number of cycles is that the execution 
time varies widely from one run to another due to cache misses and different instruc-
tion execution latencies. To reduce the effect of cache misses, the timer in the module 
is disabled while a cache-miss is being serviced. In the other cases, a judicious choice 
of t and T needs to be made. Next we propose a possible hardware implementation for 
the ICH module. 
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Hardware Implementation. For each process being monitored, the module contains 
two registers, estTime (T) and threshold (t), to store, respectively, the estimated time 
for the execution of the fixed number of instructions and the threshold for the number 
of exponentially backed-off intervals before which an application is declared hung. 
The total time waited τ is calculated using a shift operation on estTime. A timer is ini-
tialized with this value, and the module waits for the Instruction Counter heartbeat 
signal from the processor. If the heartbeat is received before the timer expires, then 
the timer is reset. If the timer expires before the heartbeat is received, the process is 
assumed to have crashed/hung or entered a deadlocked state. 

4.2   Detecting Program Hang Using Infinite Loop Hang Detector (ILHD) 

Previous subsections describe hardware-based modules for detecting process crashes 
that do not require instrumentation of the application. Detection of process hangs on 
the other hand requires application instrumentation to monitor the application pro-
gress. In proposing the Infinite Loop Hang Detector technique we address the two 
main problems that arise in application instrumentation: (i) placement of instrumented 
code, (ii) determination of appropriate timeouts. A profiling methodology is em-
ployed to monitor the entry and exit points of the loop and derive timeout values on 
per-loop basis using a profiling methodology. This section describes in detail how the 
ILHD module achieves these goals. 

The problem of finding a program’s worst-case execution time is in general unde-
cidable and is equivalent to the halting problem. Significant research work has been 
done to estimate the loop execution time, since this is a fundamental problem in real 
time systems. For a program with bounded loops and no recursive or dynamic func-
tion calls the loop estimation has been proven to be decidable [ 9]. Research is in pro-
gress for analyzing application with unbounded loops. To detect an application hang, 
it is assumed that during normal, error-free execution of the program, the execution 
time for a loop be within a fixed multiple of the execution time in a profile run. If the 
loop executes for more than this expected time then the application is deemed hung. 

Basic Technique. Loop execution time is estimated using static instrumentation to 
detect loop entry and exit, and dynamic profile information to measure the time 
elapsed between the arrival of the loop entry and exit signals. During the normal exe-
cution of a program, when a loop is entered, a timer is set to the expected execution 
time of the loop. If the loop is not exited, i.e., the instruction at one of the exit points 
of the loop is not encountered, before the timer expires, the timer is reset to twice the 
previous value, waiting for the loop exit condition. If the loop is not exited after a 
threshold number of such exponentially backed-off intervals, the application is de-
clared to be hung. 

Application Instrumentation Through Profiling. In this description, we use termi-
nology for the C programming language to describe loop constructs. The executable 
dump of the application is statically analyzed to identify all back edges in the program 
control-flow graph. These are branch or jump instructions with their target address 
less than or equal to their own address. Each back edge in the program graph is attrib-
uted to a loop. There can be more than one exit point for a loop due to a break or a re-
turn statement. Each loop is assigned a loop identifier (loop_id). 
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Before each instruction that is the start of a loop or an exit point of the loop, a 
CHECK instruction (CHECK Loop Start or CHECK Loop End) is inserted to 
signal the ILHD module of the appropriate event, start of the loop or exit of the loop 
respectively. Note that a single instruction can be the target for multiple back edges in 
a program (due to continue statements within the loop or due to the loop being 
executed when one of multiple conditions is true).  Similarly, a single instruction may 
be the exit point for more than one loop. 

From the profile run, we obtain samples for the execution times of the loops in the 
program. The mean (μi) and standard deviation (σi) for the execution times for loop 
with loop_id i are calculated from this data and stored. Expected execution time for 
loop i is set to be (μi + n ×σi), where n is a fixed prespecified number to account for 
the fact that loop execution times for different inputs can be different. 

Runtime Monitoring of Loops in the Application. For the normal run of the pro-
gram, on encountering the start of a loop, the CHECK Loop Start signal is sent to 
the module. The estimated execution time for the loop is sent through an input register 
in the module. For loops starting at the same instruction, the execution time for the 
longest loop (the one with the maximum expected execution time) is sent to the mod-
ule. One drawback of this approach is that it increases the latency of detecting a hang 
in the loop. On receiving the CHECK Loop Start signal, the module sets a timer 
with the expected execution time for the loop and waits for the CHECK Loop End 
signal. On failure to receive a CHECK Loop End signal after a threshold number of 
exponential backed-off time intervals, the application is declared hung. To handle a 
set of nested loops, the technique employs multiple timers. 

Fig. 6(a) shows the hardware for detecting an application hang in a loop. The mod-
ule consists of d timers, each associated with a set of two registers, estTime and 
threshold, holding the estimated loop execution times and thresholds for the number 
of exponentially backed-off intervals. Therefore, 2d registers are needed. The shifter. 
block is used to calculate the wait time for the loop, which is stored in the register τi. 
The Load Timeri signal is used to initialize the timer, Timeri, with the wait time for 
the loop. Start Timeri is used to start the timer. Fig. 6(b) shows the finite state ma-
chine controlling the d timers. The technique can only check for loops to a nested 
depth of d. The state of the FSM denotes the nesting depth of the current loop being 

Fig. 6. Infinite Loop Hang Detector Hardware 
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checked for hangs. It is a Mealy machine, whose transitions are triggered by the 
CHECK Loop Start and CHECK Loop End signals. The actions taken by the 
module on receiving these signals is as explained above 

4.3   Detecting Program Hang Using Sequential Code Hang Detector (SCHD) 

Apart from causing the application to execute in an infinite loop, an error may also 
lead to the creation of an illegitimate loop created in sequential code of the applica-
tion. This may possibly lead to a hang. Repeated execution of a sequence of instruc-
tions, while the application is executing sequential code, can be used as a trigger for 
error detection. The SCHD module detects this scenario minimizing the impact on 
application performance. This section describes different implementations of the 
SCHD module of progressively increasing complexity while providing a lower over-
head in terms of hardware and performance. 

To detect repetition of a sequence of instructions, we maintain a log of the previ-
ously committed instructions. If a sequence of instructions at the tail of this log of ad-
dresses of committed instructions is repeated, then there is a loop. The coverage of the 
technique or its ability to detect a program hang depends on the number of previously 
committed instructions being logged. Currently, it is assumed that the processor can 
commit at most one instruction per clock cycle. This assumption will be relaxed later 
in the paper. Consider the sequence of instruction addresses where increasing indices 
refer to instructions issued later in time: 

… ak, ak+1, …, ak+L-1, ak+L, ak+L+1, …, ak+2L-1 

In this sequence, there is a repetition of a sequence of instructions of length L, 
starting from position k if and only if: 

ak+i = ak+i+L for i = 0, 1, 2, …, L-1 (1) 

A queue is maintained to keep track of the addresses of previously committed in-
structions. Let W be the width of the address expressed in binary format. Let the num-
ber of entries in the queue be D. It is necessary that the depth of the queue D be at 
least 2L. Letting k = 0, the contents of the queue are: 

b0, b1, …, bL-1, bL, bL+1, …, b2L-1 where bi = ak+i for each i ranging from 0 to 2L-1 
b2L-1 is the last entry in the queue, b2L-2 is the second last entry and so on. 
The condition (1) becomes:  

bi = bi+L    for i = 0, 1, 2, …, L-1 (2) 

Consequently, the problem of recognizing a repetition becomes simply one of 
evaluating condition (2).  

Efficient Detection of Sequence Repetition in a Single-Issue Processor. In this sec-
tion, we detail detection of a sequence repetition that improves upon the previous ap-
proach by requiring the minimum queue length to be L+1 instead of 2L. The tech-
nique described here detects a repetition of a sequence of length L (or a factor of L). 
Fig. 7 depicts the hardware used to detect the sequence repetition. It shows a queue 
that contains the addresses of the instructions most recently committed by the pipe-
line. The number of entries of the queue is ≥ L+1. The queue is implemented as a shift 
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register. To insert an element at the tail of the queue, all entries of the queue are 
shifted up by 1 position: (i+1)st entry = ith entry for i = 1, 2, 3, ... , n-1. The incoming 
element (address of the committed instruction) is placed in the 1st entry. 

A comparator is introduced with its 2 inputs connected to the 1st and the (L+1)st en-
tries in the queue. The output of the comparator is '1' if the inputs are equal, '0' other-
wise. The output of the comparator drives the increment and reset inputs of a counter. 
When a new instruction is added to the queue and the output of the comparator is '1', 
the counter is incremented (which means the instructions at the 1st and (L+1)st entries 
match). Otherwise, the counter is reset. 

Initially the counter is reset to the value '0'. If a sequence of instructions of length L 
repeats, the counter would be incremented when each instruction of the repeated se-
quence is added to the queue and hence the counter would be incremented to a value 
L. When the counter reaches the value L, the repetition of the sequence is noted and 
the counter is reset.  
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Fig. 7. Basic Sequence Detection Hardware 

Detection of Sequence Repetition in a Multiple-Issue Processor. A point to note is 
that the method described above works only in a single-issue processor. In the case of 
a superscalar processor that can commit multiple instructions per clock cycle, multi-
ple addresses need to be added to the queue in a single clock, and the pipeline may 
need to be stalled in order to match the logging of instructions in the module with the 
committing of instructions in the pipeline. An improved method that can handle mul-
tiple committed instructions per clock cycle is presented here. Due to space limita-
tions, we present only the hardware implementation of the technique. Detailed formal-
ization of the technique can be found in [ 19]. 

Hardware Architecture of the SCHD Module. We refer to the module detecting a 
loop of length L as an L-Loop Searcher (LLS). Fig. 8 shows the schematic of the 
Queue and of the generic LLS module. Let C be the maximum number of instructions 
that the pipeline can commit in a clock cycle. A SCHD Module detecting any loop 
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whose length is between [Lmin, Lmax], requires the following hardware components: (1) 
a Queue module with length (number of entries) D = Lmax + C, (2) (Lmax–Lmin+1) LLS 
modules, and (3) an L’-input OR-gate, whose inputs are the detect signals, DetectL, 
coming from the LLS modules. All the modules composing the SCHD Module are 
clocked by the global clock signal (clk in Fig. 8). The enable (en), and the reset (reset) 
signals control the memory elements of the design. 

The Queue module contains D registers, each W-bit wide and a Shifter block. The 
queue can be dynamically configured, through the Shifter block, to enable shifting of 
N positions, where N is the number of instructions committed in the current clock cy-
cle by the processor, and ranges from 0 to C. The addresses of the committed instruc-
tions in a given clock cycle are passed to the queue through the signals in0, in1, …, 
inC-1 where the vector Mask = (MaskC-1,  …, Mask1 , Mask0) represents which instruc-
tions have been committed. The Shifter block is a multiplexer with C-1 input ports, 
each with a width of D×W bits, controlled by the Mask signal. It shifts the contents of 
the queue by N positions and appends the instructions that have been committed in the 
current clock cycle. Note that the output of the shifter is forwarded to the LLS mod-
ules in order to detect a loop in the same clock cycle as it occurs. Another possibility 
is that the output of the Queue component can be the output, u, of the register file. 
This breaks the propagation path of the new instructions from the processor to the 
SCHD module by using the queue as a buffer. This trades off a shorter clock period 
with a latency of one clock cycle in the detection of a loop. An LLS module is mainly 
composed of C W-wide comparators, a log2(L)-bit wide register, and some other 
sparse logic. 
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Fig. 8. Hardware Architecture for SCHD Module for Superscalar Processors 

5   Implementation and Experimental Results 

Two types of experiments have been performed to estimate the overhead in terms of 
the silicon area for the hardware modules and the overhead for execution time and 
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memory occupation. (1) The ILHD and ICH modules require counters for the timers 
and registers for holding the execution time parameters. In general, the hardware 
overhead can be assumed to be negligible, since the modules require simple counters. 
The SCHD module on the other hand is more complicated, and hence a detailed 
analysis has been performed. The SCHD module was described in VHDL and synthe-
sized to determine the area overhead. (2) The performance overhead of the ILHD 
module due to additional CHECK Loop Start and CHECK Loop End instruc-
tions inserted into the instruction stream is calculated in terms of the number of dy-
namic instructions executed and the execution time. 

Area Occupation for the SCHD Module. The area overhead of the SCHD module is 
evaluated as a percentage of the area required by the processor. In performing this 
evaluation, we consider a SuperScalar version of the DLX processor [ 1][ 7], and im-
plement it using a Xilinx FPGA (VirtexE2000-8) as the target.  

The area occupation of the SuperScalar DLX processor is 49% of the overall num-
ber of available FPGA slices. The minimum clock period of the synthesized system is 
about 60 ns. The area occupation of the SCHD is a function of several parameters: (i) 
the width W of the address of the instructions, (ii) the depth D of the queue, (iii) the 
width of the loop range [Lmin, Lmax] to search for, and (iv) the number C of instructions 
that the processor can commit in each clock cycle. After the Place-&-Route phase of 
the design process, we evaluate the area overhead of the Queue, and LLS varying the 
above mentioned parameters. 

We observe that the number of flip-flops required by the Queue module is inde-
pendent of C, while the LUT count increases, since a more complicated Shifter block 
able to shift a larger range of positions (0 to C-1) is needed when C increases. Over-
all, the number of slices required is a small percentage of the overall area available in 
the device. 

The area occupation of the LLS slightly increases as a function of L, with W and C 
fixed. This is due to the fact that only the Adder, the Comparator, the register and the 
mux (in the lower part of schematic of the LLS module of Fig. 8) depends logarithmi-
cally on L. 

The area ATOT of a SCHD module is given by the formula: 
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where AQUEUE(W, D, C) and ALOOP(W, L, C) is the area required by the queue and 
the LLS modules respectively. For instance, the area occupation of a SCHD module 
checking for loops of length ranging between 4 and 32 instructions, for a processor 
with C = 2, and W = 8 is about 424 flip-flops, 904 LUTs, and hence an overall area 
requirement of 526 slices (since we are looking for repetition of a sequence shorter 
than 32 instructions, the last 8 bits of the address word are sufficient). The area over-
head with respect to a SuperScalar DLX processor (which can commit C = 2 instruc-
tions) is about 5%. Lmax = 32 is a reasonable number since the module is used to check 
for loops shorter than the number of instructions in a basic block and is usually 10-20 
instructions. The minimum clock period of the module is less than 15ns, which is 
much smaller than the minimum period of the checked processor, so the time over-
head can be considered negligible. 
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Performance Evaluation. The heartbeat modules are implemented as an augmenta-
tion to the sim-outorder simulator of the SimpleScalar Tool Suite [ 2]. The simulator 
has been modified to support multiple processes executing in a time-sharing manner. 
In the experiment multiple processes executing the same application are executed in 
the simulator. The simulator is modified to provide a heartbeat to the ICH module af-
ter a process executes a fixed number of instructions. The application is instrumented 
with CHECK Loop Start and CHECK Loop End instructions before each entry 
and exit of a loop to notify the module of the appropriate event. In the profile mode 
these signals are used to collect execution time data for the loops and calculate an es-
timate for execution time for each loop is calculated. The overhead due the CHECK 
instructions in terms of time taken (in number of cycles) is 0.82% and in terms of the 
number of instructions executed is 2.93%. Noting that we parameterize the SCHD 
module (for the length of the loop to be detected) using a CHECK instruction at the en-
try and exit of every loop (when it enters straight line code), we conclude that the 
overhead due to of the SCHD module would be the same as the overhead of the ILHD 
module amounting to a combined overhead of is 1.6% and 6% with respect to execu-
tion time and memory occupation respectively. The ICH module polls the instruction 
count performance counter in the processor periodically. It does not provide any feed-
back to the processor and therefore does not affect the instruction execution in the 
pipeline, incurring no performance overhead. 

6   Related Work 

Extensive research has been performed in distributed systems to deal with process 
hang/crash failures (e.g., [ 11][ 12][ 16]). Starting from Chandra and Toeug’s seminal 
paper [ 3] on characterizing the properties of failure detectors for solving important 
problems such as Consensus and Atomic Broadcast, failure detectors have been used 
in distributed systems to detect process crashes in order to circumvent the Fischer-
Lynch-Paterson impossibility result [ 18]. Felber et al. [ 10] have classified failure de-
tectors into two categories based on their implementation: push and pull. Though an 
object framework for interaction between the different entities has been provided, this 
work does not address the problem of placement of the heartbeat code in the applica-
tion code of the objects. 

Most previous work, specifically commercially implemented heartbeat mecha-
nisms, have used an empirically derived static value of timeout. For example, in the 
AIX operating system [ 11], at fixed intervals, a daemon polls the kernel to check if 
low priority processes are being starved by higher priority processes. In the Microsoft 
DCOM Architecture [ 12], clients send periodic “I am alive” messages to servers. If 
the message is not received within a fixed amount of time, the client is assumed to 
have crashed and all its resources are de-allocated. In the Sun HA cluster [ 13] a hier-
archy of heartbeat techniques are used to ensure operation of various entities, (servers, 
nodes, links in private networks, links with public networks). All these mechanisms 
use empirically derived timeout mechanisms. Heartbeat protocols using adaptive 
timeouts try to dynamically adapt to the behavior of the application, the system, and 
the network. Chen [ 14], Bertier [ 15], each improving upon the earlier by a slight 
modification, propose adaptive timeouts that use a linear combination of the previous 
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n arrival times as the current timeout. Being implemented in software, these timeouts 
do not adapt with the changes in the system very well.  

A number of heartbeat protocols have been studied, analyzed, and implemented by 
Gouda and McGuire [ 4]. The goals of the approach were to decrease the number of 
heartbeat messages exchanged and the detection latency. Heartbeats have been im-
plemented in both in software and hardware. The heartbeat mechanism is a standard 
way of detecting node and application failures in most software-implemented mid-
dleware, for example the ARMOR Framework [ 5]. Murphy [ 6] gives an informal 
analysis of the use of watchdog timers for monitoring processes. PCI Bus-based 
watchdog timers can be used to detect system crash [ 24]. The watchdog timer is reset 
by a user process that calls a kernel driver. If the timer is not reset for a configurable 
period of time the system is rebooted. The watchdog timer cannot distinguish between 
the failure of the user process and a system crash and can only be associated to a sin-
gle process and cannot detect crashes/hangs of other processes. Table 1 summarizes 
some of the related work in this area and discusses their limitations. 

Table 1. Summary of Related Heartbeat Work 

Technique & Description Questions/Limitations 
AIX [ 11]: Priority Hang Detection 
Polling to check lowest priority proc-
ess 
Detects starvation of low priority 
processes 

Does not detect incorrect control flow (an error in the branch 
that tests the exit condition of the loop) that leads to process 
hang in an infinite loop or process crashes. 
Uses fixed static timeout chosen by the system designer, either 
empirically or arbitrarily 

Microsoft DCOM Architecture [ 12]: 
Pinging mechanism to detect Client 
crash  

Cannot detect a client which is hung. Leads to wasted re-
sources that are allocated to the client. 
Timeout is fixed at 3 × 120 seconds  

PVM [ 16]: PVM daemons notified of 
task or host failure, host addition. 

Does not detect a process hang. 

Chen et al.[ 14]:  Estimates the arrival 
time for the next heartbeat from the 
previous n heartbeat arrival times. 
Optimizes detection latency and 
wrong suspicions 

The actual triggers to send heartbeat or to reply to a “Are you 
alive?” ping message are not dealt with. 
Timeout mechanism is not application specific. 

Accrual failure Detector [ 17]: Output 
indicates probability that a process 
has crashed. 

Does not interpret the monitoring information. 
Other limitations same as Chen’s technique described above. 

7   Conclusions 

This paper has explored hardware-implemented techniques for detecting application 
hang/crash. These techniques are implemented as processor-level hardware modules 
in order to decrease detection latency. The Instruction Count Heartbeat (ICH) module 
is a non-intrusive technique for detecting process crashes using instruction count per-
formance counters. For detecting processor hangs, we proposed two techniques that 
require application instrumentation. The Infinite Loop Hang Detector (ILHD) module 
detects application hangs within a loop by monitoring the execution time of the appli-
cation in a loop with respect to an estimated value, derived from profiling. It provides 
a deterministic methodology for instrumenting the application and determining time-
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out values. The Sequential Code Hang Detector (SCHD) module detects application 
hangs due to illegal loops created in sequential code due to errors. The CHECK in-
struction, a special extension of the instruction set architecture of the processor, is the 
interface of the application with these modules. In hardware on an FPGA device, we 
implemented the most complex of the modules, the SCHD module, which showed an 
area overhead of about 5% with respect to a DLX double-issue superscalar processor. 
Results for the overhead to support both the ILHD and the SCHD modules simultane-
ously show low execution time overheads of 1.6% and 6% extra memory occupation. 
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Abstract. Redundancy is the traditional technique used to increase sys-
tem reliability. With modern technology, in addition to being used as
temporal redundancy, slack time can also be used by energy manage-
ment schemes to scale down system processing speed and supply voltage
to save energy. In this paper, we consider a system that consists of mul-
tiple servers for providing reliable service. Assuming that servers have
self-detection mechanisms to detect faults, we first propose an efficient
parallel recovery scheme that processes service requests in parallel to in-
crease the number of faults that can be tolerated and thus the system
reliability. Then, for a given request arrival rate, we explore the optimal
number of active severs needed for minimizing system energy consump-
tion while achieving k-fault tolerance or for maximizing the number of
faults to be tolerated with limited energy budget. Analytical results are
presented to show the trade-off between the energy savings and the num-
ber of faults being tolerated.

1 Introduction

The performance of modern computing systems has increased at the expense
of drastically increased power consumption. For large systems that consist of
multiple processing units (e.g., complex satellite and surveillance systems, data
warehouses or web server farms), the increased power consumption causes heat
dissipation problems and requires more expensive packaging and cooling tech-
nologies. If the generated heat cannot be properly removed, it will increase the
temperature and thus decrease system reliability.

Traditionally, energy management has focused on portable and handheld de-
vices that have limited energy budget to extend their operation time. However,
the energy management for servers in data centers, where heat generated and
cooling costs are big problems, have caught people’s attention recently. In [1],
Bohrer et al. presented a case of managing power consumption in web servers.
Elnozahy et al. evaluated a few policies that combine dynamic voltage scaling
(DVS) [24, 25] on individual server and turning on/off servers for cluster-wide
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power management in server farms [5, 14]. Sharma et al. investigated adaptive
algorithms for voltage scaling in QoS-enabled web servers to minimize energy
consumption subject to service delay constraints [19]. Although fault tolerance
through redundancy [11, 13, 16, 20] has also been well studied, there is relatively
less work addressing the problem of combining fault tolerance and energy man-
agement [26, 27]. For systems where both lower levels of energy consumption
and higher levels of reliability are important, managing the system reliability
and energy consumption together is desired.

Modular redundancy and temporal redundancy have been explored for fault
tolerance. Modular redundancy detects and/or masks fault(s) by executing an
application on several processing units in parallel and temporal redundancy can
be used to re-execute an application to increase system reliability [16]. To effi-
ciently use temporal redundancy, checkpointing techniques have been proposed
by inserting checkpoints within an application and rolling back to the last check-
point when there is a fault [11, 13]. In addition to being used for temporal re-
dundancy, slack time can also be used by DVS techniques to scale down system
processing speed and supply voltage to save energy [24, 25]. Therefore, there is
an interesting trade-off between system reliability and energy savings.

For independent periodic tasks, using the primary/backup model, Unsal et
al. proposed an energy-aware software-based fault tolerance scheme which post-
pones as much as possible the execution of backup tasks to minimize the overlap
of primary and backup execution and thus to minimize energy consumption
[23]. For Duplex systems, the optimal number of checkpoints, uniformly or non-
uniformly distributed, to achieve minimum energy consumption was explored in
[15]. Elnozahy et al. proposed an Optimistic-TMR (OTMR) scheme to reduce
the energy consumption for traditional TMR systems by allowing one processing
unit to slow down provided that it can catch up and finish the computation be-
fore the deadline if there is a fault [6]. The optimal frequency setting for OTMR
is further explored in [28]. Combined with voltage scaling techniques, an adap-
tive checkpointing scheme was proposed to tolerate a fixed number of transient
faults and save energy for serial applications [26]. The work was further extended
to periodic real-time tasks in [27].

In this paper, we consider the execution of event-driven applications on par-
allel servers. Assuming that self-detection mechanisms are deployed in servers
to detect faults, for a given system load (i.e., the number of requests in a fixed
interval), we explore the optimal number of active servers needed for minimizing
system energy consumption while achieving k-fault tolerance. We also explore
maximizing the number of faults to be tolerated with limited energy budget. An
efficient parallel recovery scheme is proposed, which processes service requests in
parallel to increase the number of faults that can be tolerated within the interval
considered and thus system performability (defined as the probability of finishing
an application correctly within its deadline in the presence of faults [10]).

This paper is organized as follows: the energy model and the application and
problem description are presented in Section 2. The recovery schemes are dis-
cussed in Section 3. Section 4 presents two schemes to find the optimal number
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of active servers needed for energy minimization and performability maximiza-
tion, respectively. The analysis results are presented and discussed in Section 5
and Section 6 concludes the paper.

2 Models and Problem Description

2.1 Power Model

The power in a server is mainly consumed by its processor, memory and the
underlying circuits. For CMOS based variable frequency processors, power con-
sumption is dominated by dynamic power dissipation, which is cubicly related
to the supply voltage and the processing speed [2]. As for memory, it can be put
into different power states with different response times [12]. For servers that em-
ploy variable frequency processors [7, 8] and low power memory [17], the power
consumption can be adjusted to satisfy different performance requirements. Al-
though dynamic power dominates in most components, the static leakage power
increases much faster than dynamic power with technology advancements and
thus cannot be ignored [21, 22].

To incorporate all power consuming components in a server and keep the
power model simple, we assume that a server has three different states: active,
sleep and off. The system is in the active state when it is serving a request.
All static power is consumed in the active state. However, a request may be
processed at different frequencies and consume different dynamic power. The
sleep state is a power saving state that removes all dynamic power and most of
the static power. Servers in sleep state can react quickly (e.g., in a few cycles) to
new requests and the time to transit from sleep state to active state is assumed
to be negligible. A server is assumed to consume no power in the off state.

Considering the almost linear relation between processing frequency and sup-
ply voltage [2], voltage scaling techniques reduce the supply voltage for lower
frequencies [24, 25]. In what follows, we use frequency scaling to stand for chang-
ing both processing frequency and supply voltage. Thus, the power consumption
of a server at processing frequency f can be modeled as [28]:

P (f) = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceffm) (1)

where Ps is the sleep power; Pind and Pd are the active powers that are frequency-
independent and frequency-dependent, respectively. h̄ equals 1 if a server is ac-
tive and 0 otherwise. Cef and m are system dependent constants. The maximum
frequency-dependent active power corresponds to the maximum processing fre-
quency fmax and is given by Pmax

d = Ceffm
max. For convenience, the values

of Ps and Pind are assumed to be αPmax
d and βPmax

d , respectively. Moreover,
we assume that continuous frequency is used. For systems that have discrete
frequencies, two adjacent frequencies can be used to emulate any frequency as
discussed in [9].

Notice that, less frequency-dependent energy is consumed at lower frequen-
cies; however, it takes more time to process a request and thus more sleep and
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frequency-independent energy is consumed. Therefore, due to the sleep power
and frequency-independent active power, there is an energy efficient processing
frequency at which the energy consumption to process a request is minimized
[28]. Since the overhead of turning on/off a server is large [1], we assume in this
paper that the deployed servers are always on and the sleep power Ps is not
manageable (i.e., always consumed). Thus, the energy efficient frequency can be
easily found as:

fee = m

√
β

m− 1
· fmax (2)

If fee > fmax, that is, β > m− 1, all requests should be processed at the max-
imum frequency fmax to minimize their energy consumption and no frequency
scaling is necessary. Notice that fee is solely determined by the system’s power
characteristics and is independent of requests to be processed. Given that flow

is the lowest supported processing frequency, we define the minimum energy ef-
ficient frequency as fmin = max{flow, fee}. That is, we may be forced to run at
a frequency higher than fee to meet an application’s deadline or to comply with
the lowest frequency limitation. However, for energy efficiency, we should never
run at a frequency below fee. For simplicity, we assume that fee ≥ flow, that is,
fee = κfmax, where κ = fee

fmax
.

2.2 Application Model and Problem Description

In general, the system load of an event-driven application is specified by service
request1 arrival rates. That is, the number of requests within a given interval.
Although the service time for each individual request may vary, we can employ
the law of large numbers and use a mean service time for all requests, which can
be justified in the case of high performance servers where the number of requests
is large and each individual request has relatively short service time [19]. That is,
we assume that requests have the same size and need C cycles to be processed.
For the case of large variations in request size, checkpointing techniques can be
employed to break requests into smaller sections of the same size [15].

Given that we are considering variable frequency processors, the number of
cycles needed to process a request may also depend on the processing frequency
[18]. However, with a reasonable size cache, C has been shown to have very small
variations with different frequencies [15]. For simplicity, we assume that C is a
constant2 and is the mean number of cycles needed to process a request at the
maximum frequency fmax. Without loss of generality, the service time needed
for each request at fmax is assumed to be c = C

fmax
= 1 time unit. Moreover, to

ensure responsiveness, we consider time intervals of length equal to D time units.
All requests arriving in an interval will be processed during the next interval.
That is, the response time for each request is no more than 2D.

1 Without causing confusion, we use events and service requests interchangeably.
2 Notice that, this is a conservative model. With fixed memory cycle time, the number

of CPU cycles needed to execute a task actually decreases with reduced frequencies
and the execution time will be less than the modeled time.
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During the processing of a request, a fault may occur. To simplify the dis-
cussion, we limit our analysis to the case where faults are detected through a
self-detection mechanism on each server [16]. Since transient and intermittent
faults occur much more frequently than permanent faults [3], in this paper, we
focus on transient and intermittent faults and assume that such faults can be
recovered by re-processing the faulty request.

For a system that consists of M servers, due to energy consideration, suppose
that p (p ≤ M) servers are used to implement a k-fault tolerant system, which
is defined as a system that can tolerate k faults within any interval D under all
circumstances. Let w be the number of requests arriving within an interval D.
Recall that the processing of one request needs one time unit. Hence, n = �w

p �
time units are needed to process all the requests. Define a section as the execution
of one request on one server. If faults occur during the processing of one request,
the request becomes faulty and a recovery section of one time unit is needed to
re-process the faulty request. To tolerate k faults in the worst case, a number of
time units, b, have to be reserved as backup slots, where each backup slot has p
parallel recovery sections. For a faulty request, the processing during a recovery
section may also encounter faults. If all the recovery sections that process a given
faulty request fail, then we say that there is a recovery failure.

Dslack

p

b: backup time unitsn: primary time units

Fig. 1. To achieve a k-fault tolerant system, p servers are used to process w requests

within a time interval of D. Here, b time units are reserved as backup slots

The schedule for processing all requests within the interval of D is shown in
Figure 1. In the figure, each white rectangle represents a section that is used
to process one request on a server and the shadowed rectangles represent the
recovery sections reserved for processing the faulty requests. For ease of presen-
tation, the first n time units are referred to as primary time units and all white
rectangles are referred as primary execution. After scheduling the primary time
units and backup slots, the amount of slack left is D − (n + b), which can be
used to scale down the processing frequency of servers and save energy.

For a given request arrival rate and a fixed time interval in an event-driven
system that consists of M servers, we focus on exploring the optimal number of
active servers needed to minimize energy consumption while achieving a k-fault
tolerant system or to maximize the number of faults that can be tolerated with
limited energy budget.
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3 Recovery with Parallel Backup Slots

In this section, we calculate the worst case maximum number of faults that can
be tolerated during the processing of w requests by p servers with b backup slots.
The addition of one more fault could cause an additional faulty request that can
not be recovered and thus leads to a system failure. As a first step, we assume
that the number of requests w is a multiple of p (i.e., w = n · p, n ≥ 1). The
case of w being not a multiple of p will be discussed in Section 3.4. For different
strategies of using backup slots, we consider three recovery schemes: restricted
serial recovery, parallel recovery and adaptive parallel recovery.
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Fig. 2. Different recovery schemes

Consider the example shown in Figure 2 where 9 requests are processed on
three servers. The requests are labeled T1 to T9 and there are two backup slots
(i.e., six recovery sections). Suppose that requests T3 and T8 become faulty on
the top server during the third time unit and the bottom server during the
second time unit, respectively. Request T8 is recovered immediately during the
third time unit (R8) and the processing of request T9 is postponed. Therefore,
before using backup slots, there are two requests to be processed/re-processed;
the original request T9 and the recovery request R3.

3.1 Restricted Serial Recovery

The restricted serial recovery scheme limits the re-processing of a faulty request
to the same server. For example, Figure 2a shows that T3 is recovered by R3 on
the top server while T8 is recovered by R8 on the bottom server.
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Fig. 3. The maximum number of faults that can be tolerated by different recovery

schemes in the worst case

It is easy to see that, with b backup slots, the restricted serial recovery scheme
can only recover from b faults in the worst case (either during primary or backup
execution). For example, as shown in Figure 3a, if there is a fault that causes
request T3 to be faulty during primary execution, we can only tolerate one more
fault in the worst case when the fault causes T3’s recovery, R3, to be faulty. One
additional fault could cause the second recovery RR3 of request T3 to be faulty
and lead to system failure since the recovery of the faulty requests is restricted
to the same server.
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3.2 Parallel Recovery

If faulty requests can be re-processed on multiple servers in parallel, we can
allocate multiple recovery sections to recover one faulty request concurrently.
The parallel recovery scheme considers all recovery sections at the beginning of
backup slots and equally allocates them to the remaining requests. For the above
example, there are 6 recovery sections in total and each of the remaining requests
R3 and T9 gets three recovery sections. The schedule is shown in Figure 2b.

Suppose that there are i faults during primary execution and i requests re-
main to be processed/re-processed at the beginning of the backup slots. With b·p
recovery sections in total, each remaining request will get at least � b·p

i � recovery
sections. That is, at most � b·p

i �−1 additional faults can be tolerated. Therefore,
when there are i faults during primary execution, the number of additional faults
during the backup execution that can be tolerated by parallel recovery is:

PR(b, p, i) =
⌊

b · p
i

⌋
− 1 (3)

Let PRb,p represents the maximum number of faults that can be tolerated by p
servers with b backup slots in the worst case. Hence:

PRb,p = min
1≤i≤min{b·p,n·p}

{i + PR(b, p, i)} (4)

Notice that, w (= n·p) is the maximum number of faults that could occur during
the n primary time units. That is, i ≤ n·p. Furthermore, we have i ≤ b·p because
it is not feasible for b·p recovery sections to recover more than b·p faulty requests.
Algebraic manipulations show that the value of PRb,p is obtained when:

i = min
{

n · p,
⌊√

b · p
⌋

+ u
}

. (5)

where u equals 0 or 1 depending on the floor operation in Equation 3. For the
example in Figure 2, we have PR2,3 = 4 when i = 2 (illustrated in Figure 3b) or
i = 3. That is, for the case shown in Figure 3b, two more faults can be tolerated
in the worst case and we can achieve a 4-fault tolerant system. One additional
fault could cause the third recovery section for R3 to be faulty and lead to a
system failure. Notice that, although T9 is processed successfully during the first
backup slot, the other two recovery sections in the second backup slot that are
allocated to T9 can not be used by R3 due to the fixed recovery schedule.

3.3 Adaptive Parallel Recovery

Instead of considering all recovery sections together, we can use one backup slot
at a time and adaptively allocate the recovery sections to improve the perfor-
mance and tolerate more faults. For example, as shown in Figure 2c, we first
use the three recovery sections in the first backup slot to process/re-process the
remaining two requests. The recovery R3 is processed on two servers and re-
quest T9 on one server. If the server that processes T9 happens to encounter a
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fault, the recovery R9 can be processed using all recovery sections in the second
backup slot on all three servers, thus allowing two additional faults as shown
in Figure 3c. Therefore, a 5-fault tolerant system is achieved. Compared to the
simple parallel recovery scheme, one more fault could be tolerated.

In general, suppose that there are i requests remaining to be processed/re-
processed before using backup slots. Since there are p recovery sections within
one backup slot, we can use the first backup slot to process up to p remaining
requests. If i > p, the remaining requests and any new faulty requests during
the first backup slot will be processed on the following b − 1 backup slots. If
i ≤ p, requests are processed redundantly using a round-robin scheduler. In
other words, p − i

⌊
p
i

⌋
requests are processed with the redundancy of

⌊
p
i

⌋
+ 1

and the other requests are processed with the redundancy of
⌊

p
i

⌋
.

Assuming that z requests need to be processed/re-processed after the first
backup slot, then the same recovery algorithm that is used in the first backup
slot to process i requests is used in the second backup slot to process z requests;
and the process is repeated for all b backup slots.

With the adaptive parallel recovery scheme, suppose that APRb,p is the worst
case maximum number of faults that can be tolerated using b backup slots on p
servers. We have:

APRb,p = min
1≤i≤min{b·p,n·p}

{i + APR(b, p, i)} (6)

where i is the number of faults during the primary execution and APR(b, p, i) is
the maximum number of additional faults that can be tolerated during b backup
slots in the worst case distribution of the faults.

In Equation 6, APRb,p is calculated by considering different number of faults,
i, occurred in the primary execution and estimating the corresponding number
of faults allowed in the worst case in backup slots, APR(b, p, i), and then taking
the minimum over all values of i. Notice that at most w = n · p faults can
occur during the primary execution of w requests and at most b · p faults can be
recovered with b backup slots. That is i ≤ min{n · p, b · p}. Hence, APR(b, p, i)
can be found iteratively as shown below:

APR(1, p, i) =
⌊p

i

⌋
− 1 (7)

APR(b, p, i) = min
x(i)≤J≤y(i)

{J + APR(b− 1, p, z(i, J))} (8)

When b = 1 (i.e., i ≤ p), Equation 7 says that the maximum number of additional
faults that can be tolerated in the worst case is

⌊
p
i

⌋− 1. That is, one more fault
could cause a recovery failure that leads to a system failure since at least one
request is recovered with redundancy

⌊
p
i

⌋
.

For the case of b > 1, in Equation 8, J is the number of faults during the first
backup slot and z(i, J) is the number of requests that still need to be processed
during the remaining b− 1 backup slots. We search all possible values of J and
the minimum value of J + APR(b − 1, p, z(i, J)) is the worst case maximum
number of additional faults that can be tolerated during b backup slots.
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The bounds on J , x(i) and y(i), depend on i, the number of requests that
need to be processed during b backup slots. When i > p, we have enough requests
to be processed and the first backup slot is used to process p requests (each on
one server). When J (0 ≤ J ≤ p) faults happen during the first backup slot and
the total number of requests that remain to be processed during the remaining
b− 1 backup slots is z(i, J) = i− p + J . Since we should have z(i, J) ≤ (b− 1)p,
then J should not be larger than b · p− i. That is, when i > p, we have x(i) = 0,
y(i) = min{p, b · p− i} and z(i, J) = i− p + J .

When i ≤ p, all requests are processed during the first backup slot with the
least redundancy being

⌊
p
i

⌋
. To get the maximum number of faults that can

be tolerated, at least one recovery failure is needed during the first backup slot
such that the remaining b − 1 backup slots can be utilized. Thus, the lower
bound for J , the number of faults during the first backup slot, is x(i) =

⌊
p
i

⌋
.

Therefore,
⌊

p
i

⌋
= x(i) ≤ J ≤ y(i) = p. When there are J faults during the

first backup slot, the maximum number of recovery failures in the worst case is
z(i, J), which is also the number of requests that need to be processed during
the remaining b − 1 backup slots. From the adaptive parallel recovery scheme,
it is not hard to get z(i, J) =

⌊
J

�p/i�
⌋

when
⌊

p
i

⌋ ≤ J ≤ (i − p + i�p
i �)�p

i � and

z(i, J) = (i− p + i�p
i �) +

⌊
J−(i−p+i� p

i �)� p
i �

�p/i�+1

⌋
when (i− p + i�p

i �)�p
i � < J ≤ p.

For the example in Figure 2, applying Equations 7 and 8, we get APR(2, 3, 1) =
5. That is, if there is only one fault during the primary execution, it can tol-
erate up to 5 faults since all 6 recovery sections will be redundant. Similarly,
APR(2, 3, 2) = 3 (illustrated in Figure 3c), APR(2, 3, 3) = 2, APR(2, 3, 4) = 1,
APR(2, 3, 5) = 0 and APR(2, 3, 6) = 0. Thus, from Equation 6, APR2,3 =
min6

i=1{i + APR(2, 3, i)} = 5.

3.4 Arbitrary Number of Requests

We have discussed the case where the number of requests, w, in an interval is a
multiple of p, the number of working servers. Next, we focus on extending the
results to the case where w is not a multiple of p.

Without loss of generality, suppose that w = n · p + d, where n ≥ 1 and
0 < d < p. Thus, processing all requests will need (n + 1) primary time units.
However, the last primary time unit is not fully scheduled with requests. If we
consider the last primary time unit as a backup slot, there will be at least d
requests that need to be processed after finishing the execution in the first n
time units.

Therefore, similar to Equations 3 and 6, the worst case maximum number of
faults that can be tolerated with b backup slots can be obtained as:

PRb+1,p = min
d≤i≤min{w,(b+1)·p}

{i + PR(b + 1, p, i)} (9)

APRb+1,p = min
d≤i≤min{w,(b+1)·p}

{i + APR(b + 1, p, i)} (10)

where i is the number of requests to be processed/re-processed on b + 1 backup
slots. PR(b + 1, p, i) and APR(b + 1, p, i) are defined as in Equations 3 and 8,
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respectively. That is, we pretend to have b + 1 backup slots and treat the last d
requests that are not scheduled within the first n time units as faulty requests.
Therefore, the minimum number of faulty requests to be processed/re-processed
is d and the maximum number of faulty requests is min{w, (b+1) ·p}, which are
shown as the range of i in Equations 9 and 10.

3.5 Maximum Number of Tolerated Faults

To illustrate the performance of different recovery schemes, we calculate the
worst case maximum number of faults that can be recovered by p servers with
b backup slots under different recovery schemes. Recall that, for the restricted
serial recovery scheme, the number of faults that can be tolerated in the worst
case is the number of available backup slots b and is independent of the number
of servers that work in parallel.

Table 1. The worst case maximum number of faults that can be tolerated by p servers

with b backup slots

b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

p = 4 parallel 3 4 6 7 8 8 9 10 11 11 12 12 13 14 14 16
adaptive 3 6 10 14 18 22 26 30 34 38 42 46 50 54 58 78

p = 8 parallel 4 7 8 10 11 12 14 15 16 16 17 18 19 20 20 24
adaptive 4 10 17 24 31 39 47 55 63 71 79 87 95 103 111 151

Assuming that the number of requests w is a multiple of p and is more
than the number of available recovery sections, Table 1 gives the worst case
maximum number of faults that can be tolerated by a given number of servers
with different numbers of backup slots under the parallel and adaptive parallel
recovery schemes. From the table, we can see that the number of faults that
can be tolerated by the parallel recovery scheme may be less than what can
be tolerated by the restricted serial recovery scheme. For example, with p = 4,
restricted serial recovery scheme can tolerated 15 and 20 faults when b = 15 and
b = 20, respectively. However, parallel recovery can only tolerate 14 and 16 faults
respectively. The reason comes from the unwise decision of fixing allocation of all
recovery slots, especially for larger number of backup slots. When the number of
backup slots equals 1, the two parallel recovery schemes have the same behavior
and can tolerate the same number of faults.

From Table 1, we can also see that the adaptive parallel recovery scheme is
much more efficient than the restricted serial recovery and the simple parallel
recovery schemes, especially for higher levels of parallelism and larger number of
backup slots. Interestingly, for the adaptive parallel recovery scheme, the number
of faults that can be tolerated by p servers increases linearly with the number
of backup slots b when b is greater than a certain value that depends on p. For
example, with p = 8, after b is greater than 5, the number of faults that can
be tolerated using adaptive parallel recovery scheme increases by 8 when b is
incremented. However, for p = 4, when b > 2, the number of faults increases by
4 when b is incremented.
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4 Optimal Number of Active Servers

In what follows, we consider two optimization problems. First, for a given per-
formability goal (e.g., k-fault tolerance), what is the optimal number of active
servers needed to minimize system energy consumption? Second, for a limited
energy budget, what is the optimal number of active servers needed to maximize
system performability (e.g., in terms of number of faults to be tolerated)? In
either case, we assume that the number of available servers is M and that after
determining the optimal number of servers p, the remaining M − p servers are
turned off to save energy.

4.1 Minimize Energy with Fixed Performability Goal

To achieve a k-fault tolerant system, we may use different number of servers that
consume different amount of energy. In the last section we have shown how to
compute the maximum number of faults, k, that can be tolerated by p servers
with b backup slots in the worst case. Here, we use the same analysis for the
inverse problem. That is, finding the least number of backup slots, b, needed by
p servers to tolerate k faults.

For a given recovery scheme, let b be the number of backup slots needed
by p servers (p ≤ M) to guarantee that any k faults can be tolerated. If b is
more than the available slack units (i.e., b > D −

⌈
w
p

⌉
), it is not feasible for

p servers to tolerate k faults during the processing of all requests within the
interval considered. Suppose that b ≤ D −

⌈
w
p

⌉
, the amount of remaining slack

time on each server is slack = D−
⌈

w
p

⌉
− b. Expecting that no faults will occur

(i.e., being optimistic), the slack can be used to scale down the primary execution
of requests while the recoveries are executed at the maximum frequency fmax if
needed. Alternatively, expecting that all faults will occur (i.e., being pessimistic),
we can use the slack to scale down the primary execution as well as all recovery
execution to minimize the expected energy consumption.

Expecting that ke (≤ k) faults will occur (i.e., ke-pessimism) and assuming
that be (≤ b) is the least number of backup slots needed to tolerate ke faults,
the slack time is used to scale down the primary execution as well as the re-
covery execution during the first be backup slots. The recovery execution during
the remaining backup slots is executed at the maximum frequency fmax if more
than ke faults occur. Here, optimistic analysis corresponds to ke = 0 and pes-
simistic analysis corresponds to ke = k. Thus, the ke-pessimism expected energy
consumption is:

E(ke) = p ·
[
PsD + (Pind + Ceffm(ke))

�w/p�+ be

f(ke)

]
(11)

where

f(ke) = min
{ �w/p�+ be

D − (b− be)
, fee

}
(12)
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is the frequency to process all original requests and the recovery requests during
the first be backup slots. Recall that fee is the minimum energy efficient frequency
(see Section 2).

Searching through all feasible number of servers, we can get the optimal
number of servers to minimize the expected energy consumption while tolerating
k faults during the processing of all requests within the interval of D. Notice that,
finding the least number of backup slots b to tolerate k faults has a complexity
of O(k) and checking the feasibility of all possible numbers of servers has a
complexity of O(M). Therefore, the complexity of finding the optimal number
of servers to minimize the expected energy consumption is O(kM).

4.2 Maximize Performability with Fixed Energy Budget

When the energy budget is limited, we may not be able to power up all M
servers at the maximum frequency. The more servers are employed, the lower
the frequency at which the servers can run. Different numbers of active servers
will run at different frequencies and thus lead to different maximum number of
faults that can be tolerated within the interval considered. In this section, we
consider the optimal number of servers to maximize the number of faults that
can be tolerated with fixed energy budget.

Notice that, from the power model discussed in Section 2, it is the most
energy efficient to scale down all the employed servers uniformly within the
interval. With the length of the interval considered being D and with limited
energy budget, Ebudget, the maximum power level that a system can consume is:

Pbudget =
Ebudget

D
(13)

For active servers, the minimum power level is obtained when every server
runs at the minimum energy efficient frequency fee. Thus, the minimum power
level for p servers is:

Pmin(p) = p(Ps + Pind + Ceffm
ee) = p(α + β + κm)Pmax

d (14)

If Pmin(p) > Pbudget, p servers are not feasible in terms of power consumption.
Suppose that Pmin(p) ≤ Pbudget, which means that the servers may run at a
higher frequency than fee. Assuming that the frequency is fbudget(p), we have:

fbudget(p) = m

√
Pbudget

p · Pmax
d

− α− β (15)

The total time needed for executing all requests at frequency fbudget(p) is:

tprimary =
�w/p�

fbudget(p)
(16)

If tprimary > D, p servers cannot finish processing all requests within the
interval considered under the energy budget. Suppose that tprimary ≤ D. We
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have D − tprimary units of slack time and the number of backup slots that can
be scheduled at frequency fbudget(p) is:

bbudget(p) = (D − tprimary)fbudget(p) = D · fbudget(p)−
⌈

w

p

⌉
(17)

From Section 3, the worst case maximum number of faults that can be tol-
erated by p servers using restricted recovery scheme is bbudget(p). For parallel
recovery schemes, from Equations 9 and 10, the maximum number of faults that
can be tolerated within the interval considered is either PRp,bbudget(p) (for the
parallel recovery scheme) or APRp,bbudget(p) (for the adaptive parallel recovery
scheme).

For a given recovery scheme, by searching all feasible numbers of servers, we
can get the optimal number of servers that maximizes the worst case maximum
number of faults to be tolerated within the interval D.

5 Analytical Results and Discussion

Generally, the exponent m for frequency-dependent power is between 2 and 3
[2]. We use m = 3 in our analysis. The maximum frequency is assumed to be
fmax = 1 and the maximum frequency-dependent power is Pmax

d = Ceffm
max =

1. Considering that processor and memory power can be reduced by up to 98%
of their active power when hibernating [4, 12], the values of α and β are assumed
to be 0.1 and 0.3 respectively. These values are justified by observing that the
Intel Pentium M processor consumes 25W peak power with sleep power around
1W [4] and a RAMBUS memory chip consumes 300mW active power with sleep
power of 3mW [17].

In our analysis, we focus on varying the size of requests, request arrival rate
(i.e., system load), the number of faults to be tolerated (k) and the recovery
schemes to see how they affect the optimal number of active servers. We consider
a system that consists of 6 servers. The interval considered is 1 second (i.e., worst
case response time is 2 seconds) and three different request sizes are considered:
1ms, 10ms and 50ms. The number of expected faults is assumed to be ke = �k

2 �.
5.1 Optimal Number of Servers for Energy Minimization

Define system load as the ratio of the total number of requests arrived in one
interval over the number of requests that can be handled by one server within
one interval. With 6 servers, the maximum system load that can be handled is
6. To get enough slack for illustrating the variation of the optimal number of
servers, we consider a system load of 2.6. Recall that the interval considered is
1 second, different request arrival rates are used for different request sizes to
obtain the system load of 2.6.

The left figures in Figure 4abc show the optimal number of active servers
used (the remaining servers are turned off for energy efficiency) to tolerate a
given number of faults, k, under different recovery schemes. The two numbers in
the legends stand for request size and request arrival rate (in terms of number of
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Fig. 4. The optimal number of active servers and the corresponding expected minimum

energy consumption

requests per second), respectively. From the figure, we can see that the optimal
number of servers generally increases with the number of faults to be tolerated.
However, due to the effect of sleep power, the optimal number of servers does
not increase monotonically when the number of faults to be tolerated increases,
especially for the case of large request size where more slack time is needed as
temporal redundancy for the same number of backup slots. Moreover, for the
case of request size being 50ms, restricted serial recovery can only tolerate 12
faults and parallel recovery can tolerate 13 faults within the interval considered,
while adaptive parallel recovery can tolerate at least 15 faults.

The right figures in Figure 4abc show the corresponding expected energy
consumption when the optimal number of servers are employed. Recall that the
normalized power is used. For each server, the maximum frequency-dependent
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Fig. 5. The minimum expected energy consumption under different system load for

different request sizes to tolerate given numbers of faults. The adaptive parallel recovery

scheme is used and ke = k
2

power is Pmax
d = 1, sleep power is Ps = 0.1 and frequency-independent power

is Pind = 0.3. From the figure, we can see that, when the request size is 1ms,
the minimum expected energy consumption is almost the same for different
numbers of faults to be tolerated. The reason is that, to tolerate up to 15 faults,
the amount of slack time used by the backup slots is almost negligible and the
amount of slack time used for energy management is more or less the same when
each backup slot is only 1ms. However, when the request size is 50ms, the size
of one backup slot is also 50ms and the minimum expected energy consumption
increases significantly when the number of faults to be tolerated increases. This
comes from the fact that each additional backup slot needs relatively more slack
time and less slack is left for energy management when the number of faults
to be tolerated increases. Compared with restricted serial recovery and parallel
recovery, to tolerate the same number of faults, the adaptive parallel recovery
scheme needs fewer backup slots and leaves more slack for energy management.
From the figure, we can also see that the adaptive parallel recovery scheme
consumes the least amount of energy, especially for larger requests.

For different sizes of requests under adaptive parallel recovery scheme, Fig-
ure 5 further shows the expected energy consumption to tolerate given numbers
of faults under different system loads. For different request sizes, different re-
quest arrival rates are used to obtain a certain system load. When system load
increases, more requests need to be processed within one interval and the ex-
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pected energy consumption to tolerate given numbers (e.g., 4, 8 and 16) of faults
increases. As before, when the request size is 1ms, the expected energy consump-
tion is almost the same to tolerate 4, 8 or 16 faults within the interval of 1 second.
The difference in the expected energy consumption increases for larger size of
requests.

5.2 Optimal Number of Servers for Performability Maximization

Assume that the maximum power, Pmax, corresponds to running all servers with
the maximum processing frequency fmax. When the energy budget for each inter-
val is limited, we can only consume a fraction of Pmax when processing requests
during a given interval. For different energy budgets (i.e., different fraction of
Pmax), Figure 6 shows the worst case maximum number of faults that can be
tolerated when the optimal number of active servers are used. The optimal num-
ber of active servers increases when energy budget increases but we did not show
the results due to space limitation. Here, we consider fixed system load of 2.6.
From the figure, we can see that the number of faults that can be tolerated
increases with increased energy budget. When the request size increases, there
are less available backup slots due to the large slot size and fewer faults can be
tolerated. When the number of backup slots is very large (e.g., for the case of
10ms with 260 requests/second), the same as shown in Section 3, parallel re-
covery performs worse than restricted serial recovery. Adaptive parallel recovery
performs the best and can tolerate many more faults than the other two recovery
schemes at the expense of more complex management of backup slots.

Fig. 6. The worst case maximum number of faults that can be tolerated with limited

energy budget for different sizes of requests

6 Conclusions

In this work, we consider an event-driven application and a system that consists
of a fixed number of servers. To efficiently use slack time as temporal redundancy
for providing reliable service, we first propose an adaptive scheme that recovers
requests from faults in parallel. Furthermore, we show that this scheme leads to
higher reliability than serial or non-adaptive parallel recovery schemes.
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Assuming self-detection mechanisms in each server, we consider two problems
that exhibit trade-offs between energy consumption and system performability.
The first problem is to determine the optimal number of servers that minimizes
the expected energy consumption while guaranteeing k-fault tolerance. The sec-
ond problem is to maximize the number of faults that can be tolerated with
limited energy budget. As expected, our analysis results show that more energy
is needed if more faults are to be tolerated. Due to static power consumption
in servers, the optimal number of servers needed for k-fault tolerance does not
increase monotonically when the number of faults to be tolerated increases.
For the same number of faults, large requests will need more slack for recovery
and thus is expected to consume more energy. Parallel recovery schemes with a
fixed recovery schedule may perform worse than serial recovery. However, adding
adaptivity to the parallel recovery process requires less slack to tolerate a given
number of faults, leaving more slack for energy management and thus results in
less energy being consumed.

When self-detection mechanisms are not available in the system considered,
we can further combine modular redundancy and parallel recovery to obtain
reliable service. In our future work, we will explore the optimal combination of
modular redundancy and parallel recovery to minimize energy consumption for
a given performability goal or to maximize performability for a given energy
budget.
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real-time systems. In Proc. of The IEEE Real-Time Systems Symposium, 2002.

7. http://developer.intel.com/design/intelxscale/.
8. http://www.transmeta.com.
9. T. Ishihara and H. Yauura. Voltage scheduling problem for dynamically variable

voltage processors. In Proc. of The 1998 International Symposium on Low Power
Electronics and Design, Aug. 1998.

10. K. M. Kavi, H. Y. Youn, and B. Shirazi. A performability model for soft real-
time systems. In Proc. of the Hawaii International Conference on System Sciences
(HICSS), Jan. 1994.

11. R. Koo and S. Toueg. Checkpointing and rollback recovery for distributed systems.
IEEE Trans. on Software Engineering, 13(1):23–31, 1987.



Energy Efficient Configuration for QoS in Reliable Parallel Servers 139

12. A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation. In
Proc. of the 9th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Nov. 2000.

13. H. Lee, H. Shin, and S. Min. Worst case timing requirement of real-time tasks with
time redundancy. In Proc. of Real-Time Computing Systems and Applications,
1999.

14. C. Lefurgy, K. Rajamani, Freeman Rawson, W. Felter, M. Kistler, and T. W.
Keller. Energy management for commercial servers. IEEE Computer, 36(12):39–
48, 2003.
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Abstract. The A3M project aimed to define basic building blocks of a middle-
ware meeting both dependability and real-time requirements for a wide range of 
space systems and applications. The developed middleware includes Uniform 
Consensus (UCS) and Uniform Coordination (UCN) protocols and two services 
implemented to solve two recurring problems of space applications: “distributed 
consistent processing under active redundancy” and “distributed replicated data 
consistency, program serialization and program atomicity”. The protocols have 
been verified through extensive and accurate testing under the Real Time OS 
simulator RTSim supporting fault injections. The performances measured on a 
representative platform based on three LEON SPARC microprocessors inter-
connected with point-to-point SpaceWire links show that A3M solution may be 
applied to very different fields, from high performance distributed computing to 
satellite formation flying coordination. 

1   Introduction and Motivations 

The complexity of the satellite and launcher on-board data management systems tends 
to increase rapidly, as well as the strictness of their performance requirements. The 
efficiency of their development depends on the availability and integration of standard 
software products (e.g. COTS) solving recurrent problems in space vehicle avionics 
systems. To address these problems, our objective in this project was to define a basic 
middleware support for a wide range of space systems and applications. Indeed, the 
evolution of space platforms is nowadays faced with the inherent distribution of re-
sources and must meet strong real-time and dependability requirements. The handling 
of combined real-time constraints and fault tolerance strategies raises new problems 
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and calls for new approaches. The A3M (Advanced Avionics Architecture and Mod-
ules) project was launched to address these issues. The objective was to develop a 
new generation of space platforms for a wide range of infrastructures, providing ge-
neric components as basic building blocks for the development of ad hoc middleware 
targeting various on-board space applications. The core components of this middle-
ware enable real-time fault tolerant applications to be developed and reused without 
experiencing the traditional limitations of existing approaches. 

The major components of the architecture rely on distributed fault-tolerant consen-
sus and coordination protocols developed at INRIA [1]. These are based on an asyn-
chronous computational model, thus making no assumption about underlying timing 
properties at design time. Therefore, the logical safety and liveness properties always 
hold without assuming the availability of a global time in the system. The interest of 
asynchronous solutions for safety-critical systems – choice made by ESA/ESTEC and 
EADS Astrium – is examined in [2] and explored in details in [3].  

These facilities are key features from a dependability viewpoint, as most distrib-
uted fault tolerance strategies rely, in one way or another, on this kind of protocols. 
Their role is essential as far as replicated processing is concerned. For instance, they 
ensure that all replicas of a given software task receive the same inputs in the same 
order. Assuming that replicas are deterministic, the processing of the same inputs 
leads to the same results in the absence of faults. In addition, they are used to ensure 
that distributed scheduling decisions are consistent in a distributed system as a whole. 
For instance, in systems where tasks cannot be rolled back (our case), tasks must be 
granted access to shared persistent resources (updating data in particular) in some 
total ordering that must be unique system-wide.  

In other words, concurrent accesses to shared resources can be serialized by relying 
on scheduling algorithms based on these protocols. This is a significant benefit, since 
avoiding uncontrolled conflicts enables real-time deadlines to be met despite failures. 
One essential assumption regarding failure modes is that nodes in the system fail by 
crashing, this being a conventional assumption in distributed dependable systems. 
Note however that the proposed solution may tackle more severe failure modes. Con-
sequently, we assumed a very high coverage of this assumption [4], the means to 
achieve this being out of the scope of this paper (e.g. evaluation of failure modes as in 
[5,6]). As usual, it was assumed that no more than f crash failures could be experi-
enced during the execution of a service – middleware-level service in our case. 

Application problems are most conveniently tackled at the middleware layer. Such 
a layer provides appropriate generic services for the development of fault tolerant 
applications, independently from the underlying runtime support, namely COTS 
operating system kernel. The core components mentioned earlier constitute the basic 
layer of this middleware architecture, on top of which standard personalities (e.g. 
CORBA or better a microCORBA, Java) could be developed. The focus in A3M 
Phase 2 was the development and the validation (incl. real time characterisation) of 
this basic layer. The development standard personalities such as CORBA or POSIX 
are long term objectives not covered by the work reported here. 

The paper is organized as follows. Section 2 sketches the A3M architectural frame-
work. In Section 3, we describe the basic principles of the core components, namely 
UCS and UCN protocols and their variants developed in the project. In Section 4 we 
describe two key problems in space applications and their corresponding solutions 
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solutions based on these protocols. Section 5 focuses on the development strategy and 
justifies its interest from a validation viewpoint. Section 6 addresses the final platform 
used for the implementation and gives an overview of the A3M results in term of 
performance. Section 7 draws conclusions of this work. 

2   Architectural Framework 

The architectural framework of the middleware comprises a basic layer implementing 
core components for the development of fault tolerant and real-time applications. This 
basic layer was designed and developed in A3M phase 2 on top of an off-the-shelf 
Real-Time Operating System kernel (RTOS), namely VxWorks [7], and a protocol 
stack specific to space platforms (COM). The design was such that no particular as-
sumption was made regarding the selected candidates for RTOS or COM. The mid-
dleware itself has two facets. On top of the basic layer (facet 1) providing key algo-
rithms, some additional services and personalities can be developed (facet 2) for tar-
geting new problems and new application contexts. The work done until now was to 
develop the basic layer, i.e. the first facet of the A3M middleware. The overall archi-
tecture of the middleware is depicted in Fig. 1. 

(COTS) RTOS COM

FDM
UCS UCN

Additional services and personalities

Basic layer
(core components)

A3M
middleware

 

Fig. 1. Architectural framework 

The basic A3M middleware layer comprises two major algorithms [1], Uniform 
Consensus (UCS) and Uniform Coordination (UCN), both relying on a Failure Detec-
tion Module (FDM). The A3M middleware layer is also populated with some specific 
services to tackle problems specific to space applications (see Sect. 4). 

3   Basic Components and Protocols 

3.1   Uniform ConsensuS (UCS): Basic Principles 

UCS is the name of the protocol that solves the Uniform Consensus problem, in the 
presence of processor crashes and arbitrarily variable delays. UCS comprises two 
algorithms, one which consists of a single round of message broadcasting, accessible 
to application programs via a UCS primitive, another called MiniSeq, that runs at a 
low level (above the physical link protocol level). Both algorithms run in parallel.  

UCS works as follows. Upon the occurrence of some event, every processor runs 
UCS by (1) invoking a best effort broadcasting (BEB) algorithm, which broadcasts a 
message containing its Proposal to every other processor, (2) invoking MiniSeq. A 
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Proposal may be anything (the name of a processor to be shut down, a list of pending 
requests to be scheduled system-wide, the name of a processor chosen as the “leader”, 
etc.). Upon termination, UCS delivers a Decision. A Decision must be (1) unique and 
(2) one of the initial Proposals. Uniformity requires that even those processors that are 
about to crash cannot Decide differently (than correct processors) before crashing. 
Note that, in practice, Consensus without the Uniformity property is useless. 

The MiniSeq election algorithm, which is sequential, is run by processors accord-
ing to their relative orderings (based upon their names, from 1 to n, every processor 
having known predecessors and known successors in set [1, n]). It is via MiniSeq that 
the Decision is made. MiniSeq uses a Failure Detector, denoted FD. Every processor 
is equipped with a Strong FD [10]. An FD periodically (every τ) broadcasts FD-
messages meaning “I am alive”. When processor p has not been heard by processor q 
“in due time”, q puts p on its local list of “suspects”. Analytical formulae (see [1]) 
which express an upper bound (denoted Γ) on FD-message delays are used for setting 
timers. An interesting feature (F) of Strong FDs is that it suffices to have just one 
correct processor never suspected by any other processor for solving the Uniform 
Consensus problem (even though lists of suspects are inconsistent).  

Sequentially, every processor waits until some condition fires (namely, its Proposal 
has been sent out), and then, it broadcasts a Failure Manager message (FM-message), 
which is an FD-message that contains the name of the processor proposed as the 
“winner”. This name is the name received from the nearest predecessor or its own 
name if all predecessors are “suspected”. The winning value is the value heard last in 
set [1, n]. The condition for running MiniSeq locally is that every predecessor has 
been heard of (or is suspected). Thanks to (F), the “winner” is unique system-wide. 
The Proposal sent by the “winner” is the Decision. Note that we do not assume that 
broadcasts are reliable (a processor may crash while broadcasting). 

The rationale for decoupling BEB and MiniSeq (parallel algorithms) simply is to 
minimize the execution time of UCS. Indeed, the upper bound B on middleware-level 
messages that carry Proposals (BEB) is very often much larger than bound Γ on FD-
message delays. The execution time of MiniSeq is “masked” by the execution time of 
BEB whenever some analytical condition is met (see [1]). A simplified condition is as 
follows: B > (f+1) d, d given in Sect. 4. There is no a priori ordering of invocations of 
the UCS primitive (they may be truly concurrent). This above is referred to as the 
regular UCS invocation mode.  

Another invocation mode of UCS, called the Rooted UCS invocation mode is avail-
able. R-UCS serves to make a particular kind of unique Decision, namely whether to 
abort or to commit a set of updates computed for data variables that may be distrib-
uted and/or replicated across a number of processors. R-UCS implements Atomic 
Commit. The major difference with the regular mode is that instead of having proces-
sor number 1 in charge of starting MiniSeq, it is the processor that actually runs the 
updating task – called the root processor – that is in charge of starting MiniSeq. 

3.2   Uniform CoordinatioN (UCN): Basic Principles 

The objective UCN is to reach distributed agreement on a collection of data items, 
each item (a Proposal) being sent by some or all processors. UCN makes use of UCS, 
starting with a round where every processor broadcasts a message containing a Con-
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tribution (to some calculus). At the end of that round, having collected all Contribu-
tions sent (up to f Contributions may be missing), every processor runs some compu-
tation (called “filters” – see below). The result of that computation is a Proposal. UCS 
is then run to select one unique result that becomes the Decision.  

UCN may serve many purposes and can be customized on a case-by-case basis. 
The algorithm used to establish the final result is called a filter. Such filter determines 
the final result from a collection of input values, namely the proposals. Examples of 
typical filtering algorithms are: majority voting on input values, aggregation of input 
values, logical and/or arithmetic expressions on input values, etc. This has many mer-
its since it enables solving several problems such as distributed scheduling. 

3.3   Real-Time and Asynchrony 

Another innovative feature of the work presented is the use of algorithms designed in 
the pure asynchronous model of computation augmented with Strong (or Perfect) FDs 
[10] aimed at “hard” real-time systems. The apparent contradiction between asyn-
chrony and timeliness is in fact unreal, and can be easily circumvented by resorting to 
the “design immersion” principle (see [2] for a detailed exposition). Very briefly, let 
us explain the general ideas. With “hard” real-time systems, worst-case schedulability 
analyses should be conducted. It is customary to do this considering algorithms de-
signed in some synchronous model, running in a system S conformant to some syn-
chronous model of computation (S-Mod). It is less customary to do this considering 
algorithms designed in some asynchronous model, running in S, i.e. “immersed” in S-
Mod. Within S-Mod, every computation/communication step “inherits” some delay 
bound proper to S-Mod, this holding true for any kind of algorithm. Hence, the fact 
that asynchronous algorithms are timer-free does not make worst-case schedulability 
analyses more complex. One lesson learned has been that the analytical formu-
lae/predictions regarding bounded response times for UCS and UCN were matched 
with the measurements performed on the A3M platform. 

4   Case Studies 

A major objective of the A3M study was to assess the interest of UCS/UCN algo-
rithms for space applications. For this purpose, the following two generic and recur-
rent problems have been selected: 

- Problem 1: distributed consistent processing under active redundancy, 
- Problem 2: distributed replicated data consistency, program serialization and 

program atomicity. 

This section describes each problem and its solution based on the UCS and UCN 
algorithms.  

Every processor is equipped with a Failure Detection & Management (FDM) mod-
ule, which consists of an FD module – which broadcasts FD-messages periodically, 
every τ – and a failure manager (FM), which runs MiniSeq. Locally, at every proces-
sor, an FDM module maintains a list of suspected/crashed processors. 
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Table 1. Hypothesis common to both problems 

(F1) Application level programs are denoted Pk. An instance of every such program 
is mapped and run, fully, on exactly 1 processor. Programs are assumed to be de-
terministic. 

(F2) Application level programs, or instances of such programs, can be invoked, ac-
tivated and run at any time. This means that triggering events can be aperiodic, 
sporadic or periodic, that programs can be suspended and resumed later, and speed 
of execution of a program need not be know in advance (asynchronous computa-
tional model) 

(F3) There should be no restriction regarding the programming models. In other 
words, there is no restriction regarding which variable can be accessed by any 
given program, nor is there any restriction regarding which variables happen to be 
shared by which program, 

(F4) Neither application level programs nor the system’s environment can tolerate 
the rolling back of a program execution. When a program has begun its execution, 
it should terminate – in the absence of failure – without replaying some portions of 
its code. 

(F5) A processor is unambiguously identified by a unique name; names are positive 
integers; the total ordering of integers induces a total ordering on the set of proces-
sors, 

(F6) The system includes n processors. Up to f processors can fail by stopping (crash, 
no side-effect) while executing some A3M middleware algorithm (UCS, UCN). 
This number obeys the following condition: 0<f<n. 

 “Good” clocks are such that their relative drift is null – or infinitesimal – over 
“short” time interval, equal to d, the worst-case latency for detecting the occurrence of 
a processor failure. We have d = τ + 2Γ − γ, where Γ is a (tight) upper bound on FD-
messages transit delays and γ a lower bound on such delays. It is important to note 
that the processors do not share a common clock (i.e. a common absolute time scale). 

In addition, the following assumptions are made about the failures: 

- Failures at software level: the software (application software and middleware) is 
supposed to be “perfect”, or monitored by application level failure detectors that 
halt the processor in case of unrecoverable software error. The middleware is not 
in charge of application software internal failures detection and recovery. Never-
theless, in the particular case of problem 1, the proposed solution is able to mask 
a software failure that generates an incorrect result, provided that a majority of 
processors compute the correct result. Other software failures are not tolerated by 
the middleware (e.g. common mode failures and Byzantine failures). 

- Failures at processor hardware level: the hardware is supposed to have only one 
failure mode, “crash” having the same effect as a processor halt. Like a halted 
processor, a crashed processor is no longer able to send any message to the other 
processors. This implies that the processors have built-in failure detection mecha-
nisms, which is generally the case with space computers. 

Failures at communication link or network level: the communication network is 
supposed to be reliable. This assumption can be “enforced” via classic retransmission-
based protocols. For any message the maximum number of retransmissions (denoted 
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R) needed for delivery is finite and bounded. A message can be lost (and recovered), 
but not corrupted. With the SpaceWire protocol, this assumption is valid concerning 
the demonstration platform. If the reliability of the SpaceWire error detection mecha-
nism is not considered as acceptable for a real application, some higher level protocol 
can be added. If a processor halts or crashes during the transmission of a message, the 
receiver ignores the partially received message. If the error is only transient, the sub-
sequent messages are transmitted correctly. Of course, analytical formulae for delay 
bounds such as B or Γ are established taking into account variable R (conventional 
worst-case schedulability analysis). Recall that we do not assume a reliable broadcast 
service for neither the BEB nor the MiniSeq algorithms. 

4.1   Problem 1: Replicated Processing 

The computer system is made of n identical computers linked by a network or point-
to-point links. The application software can be described as sets of programs, with 
causal dependencies, i.e. the output of programs are the input of other programs (i.e. a 
“chain” of application programs – see Fig. 2). External data acquisition comes first in 
the chain. Two cases are possible for implementing data acquisition (in both cases, the 
commands are sent by only one processor): only one processor performs the data 
acquisition or each processor performs the data acquisition in parallel with the others, 
via its own data acquisition interface. 
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Fig. 2. Replicated processing framework 

The same set of programs run in parallel on each computer, exactly in the same 
way: the output result of each program instance must be validated with respect to 
those produced by the other replicas, before delivering them as inputs to the next 
programs in the chain. The middleware allows each Pi replica to make an agreement 
on input or outputs values by calling dedicated functions. For example, in the case 
depicted in Fig. 2, P0 calls a function to validate the data produced by the acquisition 
manager. The measurement may be identical or different on the three processors, but 
in any case, all the P0 replicas will use as inputs exactly the same values. 

The same mechanism is activated after execution of P0, in order to ensure that all 
the P1 replicas will run with the same inputs, and so on … The use of this agreement 
service is not limited to a single sequential chain of applications. For example, if P0 
and P0’ are running “in parallel” replicated on each processor, both can use the agree-
ment service without having to be synchronized. 
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UCN with a “max filter” solves problem 1. This filter performs a majority selection 
on contributions. If no majority can be decided, the result is any of the contributions.  

Application-level programmers can insert calls for agreement in their code wher-
ever this seems appropriate. The consistency of these calls within application pro-
grams must be verified beforehand during the development process of the software. 

4.2   Problem 2: Distributed Access to Shared Objects 

The second problem consists in replacing the existing “Data-Pool” mechanism used in 
the current Astrium mono-processor software by an equivalent compatible with the 
distribution of the processes on several processors – see Fig. 3. 

The existing Data-Pool is a collection of data issued from software applications 
(“software data”) or from equipments connected to avionics buses like MIL1553B 
(“hardware acquisitions”). In addition to inter process communication, the data pool is 
used by the periodic housekeeping data reporting applications, by the spy application, 
and by the monitoring library. Its main purpose is to provide to data consumers con-
sistent data generated from various producers at various frequencies. Concurrent 
processes running on different processors perform update operations in a pool of data 
items, called variables. These variables are shared by all processes and replicated for 
availability reasons. The objective here is to solve the mutual exclusion problem by 
means of consistent distributed scheduling among competing processes. 
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Fig. 3.  Distributed access to shared objects 

The application tasks use middleware services to ensure the consistency of opera-
tions performed on data pool variables sets. The programming model selected for 
these services is based on the notion of “critical section”. The critical section of an 
application shall be considered as atomic by all the other applications with respect to 
the data-pool contents. There is no limitation on the number of read and write  
accesses performed on data-pool variables in a single critical section. Obviously, the 
duration of the critical sections should be kept as small as possible, in order to avoid a 
significant degradation of the overall system performance. 
In order to reach this objective, we have introduced two additional services: 

− The monitoring service receives from local and remote applications the requests 
for operations to the distributed data-pool. Using the UCN with a “total ordering 
filter”, it ensures the system-wide serialization of the conflicting operations on 
shared variables. 
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− The guardian service executes the write operation on the replicated data pool, en-
suring that any operation is executed on all the copies or on none of the copies. 
This property is ensured by a variant of UCS, called R-UCS, ensuring atomic pro-
gram termination (Atomic Commit). 
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Fig. 4. Process entering a critical section 

Fig. 4 illustrates the mechanism in the simple case where only one process wants to 
enter into a critical section. This process sends a request to the monitoring process 
that performs an UCN call to agree on which process must run first. Obviously, in this 
simple case, the requesting process wins, as there are no other competing processes. 
More generally, thanks to UCN, concurrent requests to enter a critical section are 
sorted out in the same order on all processors, i.e. all requesting processes will be 
triggered by the monitoring process in the same order on every processor. The first in 
the list (according to any urgency criteria) is elected as the next process to be run.  

It is worth noting however that, as processes are not replicated here (problem 2), 
only one processor P will host the active application process, say p. When the elected 
process p terminates its critical section on processor P, it signals the guardian process, 
which then calls R-UCS to perform a consistent update of the replicated copies of 
shared variables in the data-pool. However, as process p was running on processor P 
only, R-UCS must also be triggered on other processors different from P (those not 
running a copy of process p). This is done via the monitoring process, which directly 
signals the guardian process, which in turn activates a R-UCS call. 

5   Development and Validation 

The main originality of the development was to fully develop (in C) the building 
blocks (BBs) and validate their behavior by simulation, including in the presence of 
faults. This approach was possible thanks to RTSim, a real-time executive simulator 
[8]. A distributed framework enabled us to execute complex scenarios, including the 
creation of an architecture, the setting of a network model, various ways of algorithms 
stimulation, and temporal and logic fault injection mechanism [9]. 

5.1   RTSim Overview 

RTSim is a product developed by AXLOG. It aims at the development, in host-based 
environment, of real-time software based on various real-time executives of the  
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market (pSOS+m, VXWORKS, Chorus, ARINC653, etc.), and their running under 
simulation without any target hardware. By creating nodes, which are the representa-
tion of a hardware module running a real-time executive, RTSim could manage simu-
lated architecture from a tiny application running on a single-target system to com-
plex multi-node architecture running a complex distributed application. 

One of the main interests of this tool is that it is the real (final) code which is used 
in the simulation runs, which avoids the problem of abstraction mapping. Moreover, 
this tool offers advanced debugging, monitoring, controlling and instrumentation 
facilities over the application. In addition, RTSim has its own internal simulation 
clock, which enables us to replay a given simulation indefinitely with the same behav-
ior, permitting a fast and reliable way to track defects. 

5.2   Development and Simulation Environment 

The first phase – the development of the BBs – followed a test-driven development 
approach (TDD), where each function described by the application programming 
interface (API) is unitary tested. The main advantages of this approach are: 

− a use of the API in tests as in the future user code, giving possible refactoring en-
hancements before effective coding; 

− a test database provides indicators on the current development velocity; 
− non-regression tests could be passed easily in case of future implementation. 

The second phase was the integrated testing of the BBs (to pass functional valida-
tion). 

The architecture of the distributed simulation framework used for that purpose, 
shown in Fig. 5, consists of a multi-node architecture composed of a set of Processor 
under Test (PuT) representing the target hosting the module to be validated and a 
special node, the Processor of Test (PoT), responsible for the network simulation, 
scenarios execution and reporting. All these nodes are connected to a perfect link. 

The PoT is in charge of stimulating and controlling the distributed applications, 
simulating the network, and archiving all actions taken by the system. The PuT hosts 
the algorithm module, a synthetic applicative workload, and a network service. 
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Fig. 5. Simulation framework 

5.3   Test Scenarios 

After integration of the building blocks in the distributed simulation framework, test 
scenarios must be identified to cover the entire range of the application use and failure 
modes. Since UCS and UCN are asynchronous algorithms, time has no effect on their 
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safety and liveliness properties, thus failure occurrence is the only parameter we have 
to handle (which reduces the complexity of integrated testing very significantly). The 
algorithms being described by state-machine diagrams, the only concern was to place 
the failure occurrences in these state diagrams, to derive the scenarios. An analysis of 
the state diagrams and the effects of a failure have led to simplifying the state dia-
grams, since the effect of a failure on some contiguous states was unique. The number 
of test scenarios is a solution to a combinatorial problem, i.e. the assignment of a 
number of failures varying from 0 to k (k = 2 in our case). 

Crash faults have been injected according to this abstract behavioral model, in such 
a way that all possible states of the protocol are covered. The experiments showed 
that the implementation was correct according to the considered failure model. 

6   Demonstration and Evaluation 

The demonstration and evaluation of the middleware has been performed on a plat-
form representative of the next generation of on-board computer platform.  
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Fig. 6. The A3M Platform 

This platform (fully operational at ESA/ESTEC) mainly consists in three double 
Europe Blade boards plugged in a CompactPCI cabinet. Each Blade board includes a 
FPGA programmed with a LEON processor and is connected to the two others by a 
SpaceWire link, and its two serial ports are connected to a RS232/Ethernet adapter. 
The SpaceWire communication software has been tested, and its performance meas-
ured. The raw performance of the hardware is pretty good (30 Mbits/s from memory 
to memory with a bit rate equal to 40 Mbit/s, which correspond to 99.5% of practical 
data rate), but the software mechanisms required at communication level by the mid-
dleware algorithms decrease the data transfer rate. 

The test software consists in several tasks that can run either fully replicated on, or 
distributed across, the three processors. The objectives of the tests were to perform 
accurate performance measurements and check the behavior of the system in nominal 
conditions and in the presence of failures. To match these objectives, the duration of 
the different services of the middleware and operating system was measured with a 
great precision, i.e. less than 4μs. Computation errors and failures could be generated 
at predefined times. 

To obtain a trustworthy characterization of the middleware, the tests have been 
executed on different platform configurations, with diverse parameters for FD algo-
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rithms (τ, γ and Γ) to be representative of existing spaceborne networks and with 
different size of exchanged data. The analysis of the measurements also had to take 
into account the resolution of the operating system timer, which has an negative im-
pact on the worst-case latency for detecting the occurrence of a processor failure. 
These parameters are summarized in Table . 

Table 2. Test configuration parameters (time expressed in milliseconds and size in bytes) 

Test parameters Set 1 Set 2 Set 3 Set 4 
Processor number  1 to 3 
Variable size 40 272 
Variable set size (2 variables) 80 544 
Maximum number of tasks 16 
τ (FD messages period) 1000 100 50 1000 

γ (min. transmission time of the FD mes-
sage): 

100 0 0 100 

Γ (max. transmission time of the FD mes-
sage) 

1000 18 18 1000 

ε (operating system timer resolution) 17 

The measures performed during the tests are compared with the theoretical maxi-
mum delay d for the detection of a failure on a processor given by the formula: 

d = τ + 2.Γ − γ + 2.ε . (1) 

Test of Service 1: Distributed Consistent Processing Under Active Redundancy. 
This service is supported by a single function belonging to the middleware API, “int 
dp1_check(dp_varset_id varset_id)”. Several processes running on the processors call 
the service to make a consensus on a set of values to use at the next step of a compu-
tation. The duration of the computation may vary from a processor to another to simu-
late a diversified programming. 

Table 3. Measures performed during test executions of service 1 

At failure
Best Worst Worst

3 1 7.5 14.5 1300
2 1 5.5 7.8 1200
1 1 0.5 0.6 N/A
3 2 8 12 222
2 2 5.9 6.8 528
1 2 1.4 1.5 N/A
3 2 8 10 -
3 3 7.6 12.8 82.5
2 3 5.7 9.2 92.5
3 4 11 16 -

Service duration (ms)
Without failure

Nb of 
Proc.

Param. 
set

2
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The results of the tests show the correct behaviour and performances of the mid-
dleware that are in accordance with the underlying theory. The WCET for the failure 
detection delay is never reached and errors are corrected without overhead. Moreover, 
the size of the exchanged data is not the main factor of service duration. By exchang-
ing nearly 700% more data, the service duration only increases by 35%. 

Test of Service 2: Distributed Replicated Data Consistency. This service is sup-
ported by a couple of functions belonging to the middleware API, “int 
dp2_begin(dp_task_id task_id, dp_varset_id varset_id)” and “int dp2_end(dp_task_id 
task_id)” respectively used to enter and leave a critical section associated to a set of 
variables. Several processes running on the processors call the service to access 
shared variables. The duration of the reservation may vary. The next table shows 
some of the measures performed during test executions. 

Table 4. Measures performed during test executions of service 2 

At failure
Best Worst Worst

begin 10,5 12 1805
end 6 7,2 1929

begin 10,5 11 130,5
end 6,2 10 240

begin 9,5 10,5 1921
end 5,8 6,8 1628

begin 9,25 11,1 786,5
end 6,3 7,5 404

begin 9,5 11,5 93
end 6,3 7,6 59,8

begin 10,6 11,8 786,5
end 7,6 10 404

3 4

2 2

3 3

3 2

2 1

Without failure

3 1

Nb of 
Proc.

Param. 
Set

Operation
Service duration (ms)

In all the tests, the service fulfils its specifications. The data consistency is ensured 
on all processors and the priority for accessing them is respected. The WCET for the 
failure detection delay is never reached. As for service 1, the duration of the proce-
dures is weakly tight to the size of the exchanged variables. 

In additional tests, not presented here, the two middleware services have run con-
currently and the results obtained were totally consistent. 

7   Conclusion and Perspectives 

The aim of the A3M project is to investigate and develop a new generation middle-
ware for space applications. The distributed nature of the space platforms, the real-
time requirements of the on-board applications together with stringent dependability 
constraints call for novel architectural frameworks and core services. The full picture 
also includes development processes and tools at various stages of the design and the 
implementation of a system. As far as real-time constraints are concerned, a detailed 
specification of the application organization, the shared resources (variables, critical 
sections, etc.) and their timing behavior must be built first. Then, a detailed analysis 
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aimed at establishing timeliness properties must be conducted a priori. This entails 
analyzing middleware-level algorithms, such as schedulers, and how they cope with 
concurrency, failures and timing constraints. 

The work carried out in A3M Phase 2 led to the development of the basic sub-layer 
of the middleware. The core components rely on UCS and UCN-based modules de-
voted to solving conventional problems in space applications, ensuring fault-tolerance 
and real-time behavior in a distributed environment. 

This work is the starting point for the development of middleware-based platforms 
for space applications. It demonstrates the benefits of advanced research results in this 
context and calls for further development of middleware-based systems for depend-
able modular avionics systems. It also shows the significant interest of simulation-
based approaches for the development of basic middleware services and their valida-
tion, including in the presence of faults using fault injection techniques. This work 
should be continued, possibly with other industrial partners and targeting different 
application contexts. The results obtained are very promising and the development of 
additional middleware capabilities should be very attractive for the space industry at 
large. 
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Abstract. Fault tolerance and load balancing middleware can increase the quality
of service seen by the users of distributed systems. Fault tolerance makes the
applications more robust, available and reliable, while load balancing provides
better scalability, response time and throughput. This paper describes a software
infrastructure that integrates fault tolerance and load balancing within a distributed
system based on CORBA. The software infrastructure employs Eternal’s FTORB,
which replicates CORBA applications and thus makes them fault tolerant, and
TAO’s Load Balancer, which balances the load of the clients’ connections across
multiple instances of a CORBA server.

1 Introduction

As distributed applications are deployed more widely, the need for improved scalability,
response time and throughput becomes more important. An effective way to address
this need is to employ a load balancer, based on distributed object middleware, such
as the Common Object Request Broker Architecture (CORBA). Also important is the
availability, reliability and robustness of the services that the applications provide and,
thus, fault tolerance is essential. Fault tolerance employs replication to mask faults and
provide continuous service to the users.

Fault tolerance and load balancing can be thought of as orthogonal aspects of quality
of service. Both fault tolerance and load balancing require the availability of multiple
computers, which distributed systems provide. Many industries with mission-critical
applications, such as telecommunications, financial, aerospace and defense, need both
fault tolerance and load balancing within a single integrated infrastructure.

The Object Management Group has developed specifications for fault tolerance [7]
and load balancing [8] based on CORBA. In this paper, we describe a software infras-
tructure that integrates fault tolerance and load balancing for CORBA-based distributed
systems. We discuss challenges that we had to address in the integration, and present
performance results that we obtained for the integrated infrastructure.
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2 The Fault Tolerance and Load Balancing Infrastructure

Our fault tolerance and load balancing infrastructure is based on Eternal Systems’
FTORB and TAO’s Load Balancer, both of which support the industry-standard CORBA
distributed object computing standard. First, we describe each of those middleware com-
ponents and, then, we describe our fault tolerance and load balancing infrastructure,
which integrates those components.

2.1 Eternal’s FTORB

Eternal’s FTORB [6] provides fault tolerance by replicating servers, clients and infras-
tructure components (e.g., the Load Balancer) that are implemented as CORBA objects,
using active or semi-active replication. FTORB replicates the state of an object in volatile
memory, rather than on stable storage, to eliminate the time required to write (read) that
state to (from) disk. Research on integrating replication with transactions and databases,
where state is persisted to disk, can be found in [13].

FTORB is not itself an ORB but is middleware that works with CORBA ORBs that
support the Internet Inter-ORB Protocol (IIOP) running over TCP/IP, with no modi-
fication to the ORB. IIOP allows clients and servers that run over different ORBs to
communicate with each other. Fig. 1 shows the components of Eternal’s FTORB mid-
dleware. The functionality of each component is described below:

– Interceptor: The Interceptor Library, coupled with each client or server in a fault
tolerance domain, intercepts messages and diverts them to the Eternal Replication
Engine and the Totem Multicast Protocol, instead of sending them over TCP/IP.

– Replication Engine: The Replication Engine maintains groups of client and server
replicas, and interacts with the Interceptor Library.

– Totem Multicast Protocol: The Totem Multicast Protocol [5] interacts with the
Replication Engine and multicasts the clients’ requests and servers’ replies to the
client and server groups, using a logical token-passing ring. Totem can be replaced
with any other reliable totally-ordered multicast protocol, such as the Rose rotating
sequencer protocol which is also deployed with FTORB.
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Fig. 1. The components of Eternal’s FTORB
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The FTORB components interwork as follows. A client group, inside the fault toler-
ance domain, issues a request to a server group inside the same fault tolerance domain.
The Interceptor Library intercepts the request and passes it to the Replication Engine.
The Replication Engine receives the request and, instead of forwarding it to the desig-
nated server via TCP/IP, forwards the request to Totem, which multicasts it to the server
group. The replicas in the server group process the client’s request and forward the reply
to Totem, which multicasts the reply to the client group. FTORB detects and suppresses
duplicate requests and replies from the replicas of the clients and the servers.

2.2 TAO’s Load Balancer

TAO’s Load Balancer uses a middleware load balancing approach that works with the
TAO CORBA ORB [11]. TAO uses the terms Replica Locator and Replica Proxy for two
of its modules. If the server that is being load balanced is stateless, those terms are fine.
If the server is stateful, the instances of the server that serve different clients are typically
not replicas and, thus, we refer to them as peers, instead of replicas. Correspondingly, we
use the terms Peer Group, Peer Locator and Peer Proxy for the instances of the server that
provide load balancing (see Fig. 2). Use of this terminology avoids confusion between
the instances (replicas) of an object that provide fault tolerance and the instances (peers)
of an object that provide load balancing.

– Peer Locator: The Peer Locator identifies which peer server will receive a client’s
request and binds the client to the identified peer server. The Peer Locator forwards
each request it receives to the peer server selected by the Load Analyzer.

– Load Analyzer: The Load Analyzer determines which peer server will receive a
client’s request and decides when to switch loads between peer servers.

– Load Monitor: For a given peer server, a Load Monitor monitors the load on that
peer, reports peer loads to the LoadAnalyzer and responds to load advisory messages
from the Load Analyzer.

– Peer Proxy: Each object managed by the Load Balancer communicates with the
Load Balancer via a Peer Proxy. The Load Balancer uses the Peer Proxies to distin-
guish between different peer servers.

– Load Balancer: A collective term for all of the above components.

Client

Load Balancer
POA

Peer Locator

Peer Proxy

Load Analyzer

Peer Server

POA Load Monitor

Fig. 2. The components of TAO’s Load Balancer
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The TAO Load Balancer components interwork as follows. A client obtains an object
reference to what appears to be a peer server and issues a request. In actuality, the client
invokes the request on the Load Balancer. The Portable Object Adapter (POA) of TAO
dispatches the request to the Peer Locator. The Peer Locator queries the Load Analyzer
for an appropriate peer server and sends back a LOCATION FORWARD to the client to
redirect the client to the selected peer server. From then on, the client sends its requests
directly to that peer server. The LoadAnalyzer continuously communicates with the Load
Monitor for the peer server. If the Load Analyzer finds the peer server to be overloaded,
it issues a load advisory to the Load Monitor for that peer server. On receiving the load
advisory from the Load Analyzer, the Load Monitor issues a message to the peer server,
telling it to accept or redirect the next request.

2.3 Integration of Eternal’s FTORB and TAO’s Load Balancer

Fault tolerance and load balancing are two orthogonal aspects of quality of service. We
consider the composition of these two non-functional properties and the product of peer
groups (used for load balancing) and replica groups (used for fault tolerance) in the
integrated infrastructure, as shown in Fig. 3.

A peer group, maintained by the Load Balancer, consists of one or more peer servers.
Different peer servers handle different clients’ requests. The Load Balancer distributes
the requests of the different clients across the peer servers in a peer group, in order to
balance the load across the peer servers. Each peer server in a peer group has one or
more replicas for fault tolerance.

A replica group, created by the FTORB fault tolerance infrastructure, consists of one
or more replicas that provide protection against faults. Each peer server is a member of
a distinct replica group. With active replication, the replicas of a particular peer server
handle the same clients’ requests and have the same load.
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Fig. 3. The product of the peer groups, used for load balancing, and the replica groups, used for
fault tolerance, in the integrated infrastructure
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Fig. 4. Interfaces of our Load Balancer

In the integrated infrastructure, not only the peer servers but also the Load Balancer
and the clients can be replicated using Eternal’s FTORB to provide fault tolerance, so
as to avoid a single point of failure. If, during the execution, one of the replicas fails,
another replica continues the operations. FTORB then obtains the application state from
an existing replica (i.e., takes a checkpoint), and supplies that state to a new or recovering
replica, in order to maintain the required level of redundancy.

When a stateful server serves multiple clients, and maintains different state or shared
state between them, static load balancing (i.e., directing a client’s requests to a particular
peer server for an entire session) is appropriate. Dynamic load balancing (i.e., transferring
a client’s connection from one peer server to another in the midst of a session) is more
challenging, because the state of the particular client held by the peer server (rather than
the entire state of the peer server) must be transferred from one peer server to another. Our
infrastructure provides fault tolerance for stateful servers and uses static load balancing.

In our infrastructure, the Load Balancer has two interfaces, the Server Interface and
the Client Interface, as shown in Fig. 4 and described below.

– Server Interface: The server interface exposes methods that are invoked by the
servers. These methods include create object group() and register servant(), which
enable the peer servers to create a peer group and register with the Load Balancer.
After the peer servers have created a peer group and registered with the Load Bal-
ancer, the Load Balancer has a clear view of the peer servers that are available. The
Load Balancer is then ready to balance the loads across the peer servers within the
peer group, on receiving requests from the clients.

– Client Interface: The client interface exposes methods that are invoked by the
clients. These methods include the return objectid() method, which enables a client
to obtain an object group reference for a peer server’s replica group. On receiving
a request from a client for an object group reference corresponding to a particular
object id, the Load Balancer looks in its table to find an appropriate reference,
using its particular load balancing policy to select a peer server, and then returns the
object group reference of the peer server’s replica group to the client. On obtaining
the reference, the client issues requests to the peer server, which are multicast to the
peer server’s replica group.
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Fig. 5 shows the use of our infrastructure in an example configuration consisting of
the Load Balancer with two replicas each, two peer servers with two replicas each, and
three clients with one replica each. The dashed boxes represent the replica groups. Each
request (reply), instead of being sent to a single server (client), is multicast to a server
(client) replica group. For each peer group, the load balancing takes place across the two
peer servers that constitute that peer group.

First, the replicas of the Load Balancer are brought up on different processors. The
first replica invokes FTORB to create a replica group with itself as a member, and then
the second replica adds itself to the replica group.

Next, the replicas of the peer servers are brought up on different processors. Each
peer server invokes FTORB to create a replica group with itself as a member and registers
with the Load Balancer, using a multicast request (arrows 1 and 2). The Load Balancer
creates a peer group, and adds each peer server to the peer group. The subsequent replicas
of each peer server add themselves to the replica group of that peer server.

Then, the clients are brought up on different processors. Each client invokes FTORB
to create a client replica group, consisting of one member each. In the example, client 2
invokes the Load Balancer’s return objectid() method to request a reference for a peer
server, using a multicast request (arrow 3). Depending on its load balancing policy, the
Load Balancer replies with the object group reference of the replica group of one of the
peer servers, using a multicast reply (arrow 4), in this case, peer server 1.
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Fig. 5. The Load Balancer and the two peer servers are actively replicated, with two replicas each,
using FTORB to provide fault tolerance. For each peer group, the load balancing takes place across
the two peer servers that constitute that peer group
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After receiving the peer server reference, client 2 invokes methods directly on peer
server 1, using the object group reference of that peer server’s replica group and a
multicast request (arrow 5). The replicas of peer server 1 generate the response and
multicast the reply to client 2, using a multicast reply (arrow 6).

3 Challenges and Their Solutions

Now we discuss the challenges that we faced in designing and implementing the inte-
grated infrastructure and our solutions to those challenges. The challenges can be divided
into two categories:

– Challenges faced in designing the Load Balancer
– Challenges faced in designing the client and server applications.

3.1 Challenges in Designing the Load Balancer

First we discuss challenges that we faced in designing the Load Balancer.

Challenge 1: TAO’s Load Balancer provides load balancing by intercepting the clients’
requests and returning a LOCATION FORWARD, which contains the reference to the
selected peer server. When the client receives the LOCATION FORWARD, it sends its
subsequent requests to that peer server.

To intercept requests, the Load Balancer uses the Servant Manager in a Portable Ob-
ject Adapter (POA) that has USE SERVANT MANAGER and NON RETAIN policies.
Servant Managers are used to activate servants dynamically. Servant Managers have two
interfaces, the ServantActivator and ServantLocator interfaces. TAO’s Load Balancer
uses the ServantLocator interface to intercept a client’s request and instantiate a servant
for it on the fly.

This approach works fine for load balancing, but does not work when integrated with
fault tolerance. The reason is that Eternal’s FTORB recognizes replicas only if they have
the same object ids. Because the POA’s policy is set to NON RETAIN, the object ids of
the activated server objects are not persistent and, hence, are not recognized as replicas
by FTORB.

Rejected Strategies: It was not possible to solve this problem by changing the POA’s
policies, because the USE SERVANT MANAGER and NON RETAIN policies were
required to use the ServantLocator interface.

First, we considered dividing the functionality of TAO’s Load Balancer into two
parts. One part would interact with the servers and the other part with the clients. This
solution was not feasible for the reason that it required that one POA exposes methods
for the servers and has the PortableServer::PERSISTENT and PortableServer::USED ID
policies, and the other POA exposes methods for the clients and has the USE SERVANT
MANAGER and NON RETAIN policies. However, the POA with the ServantLocator
interface is unaware of server objects that are active inside the other POA. Moreover,
this solution would misuse the ServantLocator, as servant objects are already active and,
thus, do not require the services of the ServantLocator.
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Another possible solution was to write our own interceptors using CORBA’s portable
interceptors, which replace the ServantLocator interface in the Servant Manager. Portable
interceptors expose pre-defined interception points, at both the client and the server,
which make the requests and replies accessible. In TAO’s Load Balancer, we intercepted
the client’s request, so the interception points are receive request service contexts() and
receive requests() on the server-side. The problem was that, when the request was in-
tercepted at the receive request service contexts() interception point, we did not have
access to the object id, as operation parameters were not available. Thus, it was impossi-
ble to determine the server group to which the request was addressed. Before the request
reached the receive requests() interception point, where the parameters were accessible,
it was too late. The reason is that, after receive request service contexts(), the servant
manager was invoked, but as the servant manager was not activated, a system exception
was raised. Thus, using CORBA’s portable interceptors did not work.

Solution: The solution to this problem is to have the clients and servers communicate
directly with the Load Balancer. The clients and servers are responsible for resolving
the reference to the Load Balancer, and issue explicit requests to it. By adopting this
solution, we avoided using both the ServantLocator and CORBA’s portable interceptors.

In this approach, the servers are activated inside a POA, having the PortableServer::
PERSISTENT and PortableServer:: USED ID policies. Because these policies are set,
the object group references, which are written to IOR files, are persistent. As their object
ids are persistent, FTORB can recognize the server replicas. The client does not send
its first request to the Load Balancer, but resolves the reference to the Load Balancer
and queries the Load Balancer for the peer server to which to connect. In the previous
approach, the Load Balancer returns the object group reference for the peer server’s
replica group to the client, which also happens with this approach. The difference is that
now the client explicitly requests the object group reference for the peer server’s replica
group from the Load Balancer.

Challenge 2: Eternal’s FTORB uses two methods, get state() and set state(), for check-
pointing and recovery. When a new replica is added to a group, FTORB invokes the
get state() method of an existing replica to obtain the state of that replica. It then in-
vokes the set state() method of the new replica to initialize its state and replays the
messages from the message log. The new replica begins processing requests, from that
point onwards in the message sequence.

The Load Balancer is a stateful server and, thus, the challenge is to identify the state
of the Load Balancer and to implement the get state() and set state() methods for it.

Solution: We identified the state of the Load Balancer, in particular the state that was
stored in its table when the peer servers registered with the Load Balancer and that
associate the object ids of the peer servers with their object group references. The Load
Balancer uses this state to identify different peer servers, select a peer server to process
a client’s request, and supply object group references to the clients.

We then coded the get state() and set state() methods for the Load Balancer, which
retrieve the state from one replica of the Load Balancer and set it within another replica
of the Load Balancer, respectively.
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3.2 Challenges in Designing the Client and Server Applications

Next we discuss some of the challenges that we faced in designing the client and server
applications.

Challenge 3: The get state() and set state() methods must be coded for the client and
server applications to make them fault tolerant, as described above. The challenge is to
identify the state of the client and server applications.

Solution: For each client and server application in our examples, we identified the
state and coded the get state() and set state() methods for that client and server. Global
variables and data structures that are retained from one request to the next must be
recorded, but local variables, such as loop indices, need not be.

Challenge 4: Only one peer server per peer group invokes the create object group()
method of the Load Balancer to create a peer group. Once the Load Balancer has created
the peer group, the other peer servers first obtain the object group reference of the peer
group and then invoke the register servant() method to add themselves to the peer group.
TAO’s Load Balancer does not provide this functionally. The challenge is to incorporate
it within our integrated infrastructure.

Solution: One possible solution to this challenge was to recode the method create object
group() in the TAO Load Balancer. Another possible solution was to make the necessary
changes within the server to obtain the object group reference of the peer group that was
created.

Because create object group() is part of TAO’s Load Balancer, we adopted the second
solution. Thus, whenever we create a peer group, we write its object group reference to
an IOR file. Other peer servers that wish to add themselves to the peer group read the
object group reference from the IOR file.

4 Performance Measurements

We describe three of the experiments that we performed for the integrated infrastructure
and give the corresponding performance measurements.

The experiments were performed on up to nine Pentium III 1 GHz computers, con-
nected by a 100 Mbps Ethernet switch. The computers ran the Linux Red Hat 8.0
operating system and the TAO CORBA ORB [11].

The applications consisted of a client that invokes a server remotely across the net-
work. The client incurs a random delay (think time) between requests. The server per-
forms a nominal processing operation of 30000 microseconds before responding to the
client. Request and reply messages are 1kByte each.

We measured the response time seen by a client (i.e., the time interval in microseconds
betweenaclient’s issuingarequestandreceivingareplyfromtheserver)andthethroughput
of a peer server (i.e., the number of requests per second handled by the peer server).

4.1 Experiment 1: Decrease in Response Time with Load Balancing

Fig. 6 shows the testbed for this experiment, which consists of the Load Balancer, three
clients and three peer servers, each having one replica. Each of the objects ran on a
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different processor, with FTORB running on all of the processors. First, we performed
the experiment with one peer server serving the three clients. Next, we performed the
experiment with three peer servers serving the three clients.

The graph in Fig. 6 shows the two configuration setups on the horizontal axis and the
responsetimeforaclient’srequestontheverticalaxis.PointArepresents thesetupwithone
peerserverservingthe threeclients,andpointBrepresents thesetupwith threepeerservers
serving the three clients. The experimental results show that the response time improved
by 32%, when the clients’requests are load balanced across the three peer servers.
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Fig. 6. Experiment 1. Testbed setup and response time for a client’s request with load balancing:
(A) one peer server and (B) three peer servers

4.2 Experiment 2: Increase in Throughput with Load Balancing

Fig. 7 shows the testbed for this experiment, which consisted of the Load Balancer, five
clients and two peer servers, each having one replica. Each of the objects was hosted on
a different computer, and FTORB was running on all of the computers.

The graph in Fig. 7 shows the server throughput curves without load balancing
(bottom curve) and with load balancing (top curve). The vertical axis represents the
throughput in requests per second. The horizontal axis represents decreasing random
delays (think times) between requests at the clients. Initially, both of the throughput
curves increase and there is no queuing at the peer server. After the peer server reaches
its maximum processing capacity, the throughput curves flatten out and arriving requests
from the clients are queued.

With load balancing across the two peer servers, we observed that the clients are
distributed in groups of two and three between the two peer servers. This division resulted
in higher throughput and decreased load on the single peer server without load balancing.
When we decreased the number of clients communicating with the single server without
load balancing from five to three, the throughput of the server increased by 15%. Thus,
integrating load balancing resulted in a 15% increase in throughput.

4.3 Experiment 3: Increase in Response Time with Replication

Fig. 8 shows the testbed for this experiment, with the Load Balancer, one client and one
peer server, having one, two or three replicas. Each of the objects ran on a different pro-
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Load Balancer
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Fig. 7. Experiment 2. Testbed setup and throughput of a peer server: (A) bottom curve without
load balancing and (B) top curve with load balancing
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Fig. 8. Experiment 3. Testbed setup and response time: (A) one server replica, (B) two server
replicas and (C) three server replicas

cessor, with FTORB running on all of the processors. In this experiment, we investigated
the response time as the number of replicas of a peer server is increased.

The graph in Fig. 8 shows the results of the experiment. The vertical axis shows the
response time in microseconds. Points A, B and C on the horizontal axis represent the
three configurations when one, two and three server replicas are running. The results
show that there is a 37% overhead when the number of replicas is increased from one
to two and a 20% overhead when the number of replicas is increased from two to three.
The primary cause of the increased overhead is the Totem multicast protocol, the latency
of which increases linearly with the number of processors on the ring [12].

5 Related Work

Research on load balancing for distributed systems typically focuses on dynamic strate-
gies and algorithms that maximize throughput and minimize overhead, and does not also
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deal with fault tolerance. Likewise, research on fault tolerance for distributed systems
focuses primarily on strategies and mechanisms that achieve a high quality of fault tol-
erance, and does not also address load balancing or other quality of service issues. A
few infrastructures have been developed that provide both fault tolerance and load bal-
ancing. Generally, they do not provide fault tolerance transparently but, rather, depend
on modifications to the application programs.

Beowulf is a parallel processing environment that provides dynamic, on-board, adap-
tive distribution of processing tasks across a heterogeneous network of processors. It allo-
cates processing to off-board resources as appropriate and as resources become available.
In [2] Bennett, Davis and Kunau describe ParaSort, a distributed parallel data allocation
sorting algorithm with automatic load balancing and fault tolerance that operates in the
Beowulf environment. The fault tolerance is explicitly programmed into the application,
in contrast to our more transparent fault tolerance approach.

AQuA [10] is a dependability framework that provides object replication and fault
tolerance for CORBA applications. AQuA exploits the group communication facilities
and message ordering guarantees of the Ensemble and Maestro toolkits to ensure replica
consistency. AQuA supports both active and passive replication, with state transfer to
synchronize the states of the backup and primary replicas for passive replication. AQuA
also addresses resource management and other quality of services issues, but not load
balancing based on the CORBA standard like our infrastructure does.

Ho and Leong [3] have extended the CORBA Event Service with load balancing
and fault tolerance in a transparent manner. Their framework replicates event channels
and shares the load among the replicas, using both static and dynamic load balancing,
to improve scalability. It monitors the event channel replicas and, if an event channel
replica becomes faulty, it transfers the consumers of the faulty event channel replica to
another event channel replica and restarts the faulty event channel replica. Unlike our
infrastructure which replicates stateful application objects, their framework replicates
stateless event channels.

JBoss [4] is an open-source Java EJB/J2EE application server and, as such, it uses
CORBA’s IIOP protocol. JBoss has been extended with the JavaGroups group commu-
nication toolkit [1], a Java implementation of the Ensemble toolkit, to provide clustering,
including load balancing, session state replication, and failover. JBoss uses an abstraction
framework to isolate communication layers and, thus, like our infrastructure, achieves
transparency to the applications and other middleware.

Petri, Bolz and Langendorfer [9] have developed a system that provides load balanc-
ing and fault tolerance for compute-intensive scientific applications. Their system uses a
global virtual name space for groups of processes distributed across a workstation clus-
ter. Applications use the same virtual names for operating system objects, independent
of their location. System calls are interposed via the debugging interface, and parame-
ters are translated between name spaces. Thus, like our infrastructure, their system uses
library interpositioning to achieve transparency to the applications.

6 Conclusion

We have presented an integrated software infrastructure, based on Eternal’s FTORB and
TAO’s Load Balancer, that renders distributed applications, based on CORBA, both fault
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tolerant and load balanced. We have discussed challenges that we faced in the integration
and solutions to those challenges. We have also presented performance measurements,
which show that the integrated infrastructure resulted in some overhead, as one would
expect. However, the integrated infrastructure increases the robustness of the services
that the applications provide to the clients and results in improved response time for the
clients and throughput of the servers. Our work has shown that integrating middleware
components, such as TAO’s Load Balancer and Eternal’s FTORB, that provide orthog-
onal non-functional properties might require modifications to one or both components,
because each makes assumptions that the other might not satisfy.
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Abstract. This paper presents an implementation of several consistent
recovery protocols at the abstract device level and their performance
comparison. We have performed experiments using three NAS Parallel
Benchmark applications with class C datasets on state of the art equip-
ment. The interesting result is that causal message logging protocol has
the most expensive recovery cost with communication intensive applica-
tions since it suffers from concentrated overload of simultaneous message
replaying. Receiver-based optimistic message logging has the least recov-
ery cost with drawback of extensive disk access overhead in failure-free
executions. Coordinated checkpointing seems the most practical choice
among them.

1 Introduction

Fault-tolerance issues are gaining considerable attention from cluster researchers
as the scale of distributed system increases since the distributed systems are
not so reliable to guarantee the completion of jobs in a determinate time for
their inherent failure factors. Even a single local failure could nullify all of the
computation mid-results, so it is indispensable to provide fault-tolerance in order
to increase the reliability of the whole system.

Checkpointing/rollback-recovery is a well-known fault-tolerance technique for
parallel processes. Checkpointing is an operation to store the states of processes
into the stable storage for the purpose of recovery or migration. Periodic check-
pointing minimizes the computation loss incurred by failures. For parallel pro-
cesses to recover from failures, it is important to keep the consistency among
them since their states have causal relationship with one another by exchang-
ing messages [5]. Over two decades, many researches have conducted to provide
consistent rollback-recovery algorithms for parallel processes [6]. Recovery al-
gorithms are categorized mainly into three groups: coordinated checkpointing,
communication-induced checkpointing or message logging. Coordinated check-
pointing protocols force all processes to coordinate before checkpointing, so that
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M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.): EDCC 2005, LNCS 3463,



168 N. Woo et al.

every global checkpoint is consistent. Communication-induced checkpointing al-
lows a process to checkpoint independently, but also forces a process to check-
point if some conditions are satisfied to prevent useless checkpoints. The main
drawback is that it could generate large number of forced checkpoints unpre-
dictably [1]. Message logging protocols allow each process to checkpoint indepen-
dently with recording all the messages exchanged. When a process fails acciden-
tally, it restores its state by rolling back to the latest checkpoint and by replaying
all the messages in the same order as they were processed before. Message log-
ging protocols can be categorized further into sender-based, receiver-based, or
causal message logging.

There have been several efforts to make theories practical and to compare these
protocols [4, 10, 11, 15, 17, 18, 20]. The previous works employed some subset of re-
covery protocols, and evaluated their performance using applications running on
small datasets. Most of them agree that coordinated checkpointing performs bet-
ter than message logging, but still doubt its scalability. They recommend message-
logging protocols for fast recovery. However, it is still unsure which message logging
protocol is superior to the others. The purpose of this article is to evaluate the per-
formance of consistent recovery protocols in practical environment.

This paper describes how we have implemented the recovery protocols and
how they perform with applications of large datasets. We integrate fault tol-
erance module to Message Passing Interface (MPI) implementation that is the
de-facto standard specification for parallel programming [7]. Our framework,
MPICH-GF is a fault-tolerant MPI implementation, which has been developed
for the use under grid. MPICH-GF provides total user-transparency so that ap-
plication codes do not have to be re-written or users do not have to be aware of
its existence. Current MPICH-GF version employs three protocols: coordinated
checkpointing, receiver-based optimistic message logging, and causal message
logging. We measure their performance by running NAS Parallel Benchmark
suites (NPB) [9] with class C datasets. Our observation is that message log-
ging protocols do not seem practical for their excessive resource consumption.
The recovery of causal message logging is not as fast as expected. Even with
the enhanced industrial technology in disks, checkpointing into disks is still the
dominant source of total overhead.

The rest of this paper is organized as follows. In Section 2, we present the
related works in fault-tolerance area. Section 3 introduces MPICH-GF system
that is the framework in this paper. Section 4 describes how we have implemented
consistent-recovery protocols, and how we have modified the original protocols.
The experimental results are shown in Section 5. We conclude this paper in the
final section.

2 Related Works

RENEW [10] is the fault-tolerant MPI that supports coordinated checkpointing,
communication-induced checkpointing, and sender-based message logging. They
conclude that while sender-based message logging shows poor performance on
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failure-free execution, all protocols have the almost same recovery costs. Egida
[16] researchers have shown the performance comparison of some message log-
ging protocols in their literature [15]. Their conclusion is that receiver-based
message logging recovers faster than sender-based logging especially on concur-
rent failures, but it faces a complex implementation task. The experiments in
RENEW and Egida have been performed with only four processes.

Manetho [20] researchers assert that logging messages at the sender is preferred
to logging at the receiver and that the cost of running the recovery protocol is neg-
ligible in comparison. They performed tests with small datasets where the sizes of
checkpoint files were at most 37 Mbytes and the communication rates were low.

MPICH-V2 [4] is the most recent fault-tolerant MPI implementation that
supports coordinated checkpointing and sender-based pessimistic message log-
ging. The unique feature is that it uses remote event loggers that store message
reception orders. Since checkpoint files are stored at the remote storage server,
coordinated checkpointing suffers from network contention on checkpointing as
well as on recovery. In their literature, they assert that sender-based message
logging is recommendable on the system of high failure frequency, since sender-
based message logging has the small recovery cost.

CoCheck [18] is a thin library over PVM, supporting coordinated checkpoint-
ing. Legion MPI-FT [11] is the first effort to build the fault-tolerance system on
the grid. It also supports a coordinated checkpointing protocol. Starfish [3] is a
heterogeneous checkpointing toolkit based on Java virtual machine, which en-
ables processes to migrate among heterogeneous platforms. Hector [17] exists as
a movable MPI library and several executables. It supports coordinated check-
pointing; before checkpointing, every process closes its channel connection to
ensure that there are no in-transit messages left in the network. Processes have
to reconstruct their channels after checkpointing.

3 MPICH-GF

Our framework consists of MPICH-GF library and a few executables. MPICH-GF
is a fault-tolerant MPI implementation of our own, which originates from MPICH-
G2 [8]. MPICH-G2 uses a lightweight abstract device that operates on grid archi-
tectures1. MPICH-GF is completely user-transparent, so that application codes do
not have to be re-written or the users need not be aware of its existence.

3.1 MPICH-GF Library

Figure 1 describes the MPICH-GF library structure. It contains a checkpoint
toolkit, an atomic message transfer module, a channel re-establishment mod-

1 This research is part of Korean National Grid Projects that require participating re-
searchers to agree to MPICH-G2. However, we believe that our methods in building
fault tolerance module would be valid still with ch p4 device, since the areas above the
atomicity of message transfer implementation are fundamentally same.
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Fig. 1. The architecture of MPICH-GF library

ule, and a message logging / replaying module. MPICH upper layer contains
blocking/non-blocking point-to-point (p2p) operations as well as collective op-
erations that exist on p2p operations. In the abstract device, a blocking operation
is a combination of a non-blocking operation and a probe operation. Message
transfer of MPICH-GF is polling-driven. Our device is based on the TCP socket
so that FIFO property is kept for channels. There are two kinds of receive queues
in the device; the posted queue contains receive requests of which the correspond-
ing messages have not arrived yet, while the unexpected queue contains received
messages of which the corresponding requests from the upper layer have not
been issued yet.

As a checkpoint toolkit, we adopted Zandy’s checkpoint library [19] that
dumps the user-level memory of a target process into the file system. On recovery,
some processes may have to rollback to the previous checkpoint for consistency,
in which case each process overwrites its user memory with the corresponding
checkpoint file. However, channels in kernel are still available, so the processes
that rolled back do not have to re-initialize their channel information.

The thick dashed line in the figure stands for the atomicity of message trans-
fer, which means the message transfer operation is mutually exclusive to the
checkpointing procedure. This atomicity is for two purposes; one purpose is to
keep the message state either ‘completed’ or ‘not-delivered at all’ in checkpoint
files since it is troublesome on recovery to handle the messages that are recorded
as in-transit in checkpoint files. The other purpose is to prevent message transfer
codes from being interrupted by checkpointing request. The interrupted message
transfer codes may be re-entered by recovery protocols for sending coordination
messages or for replaying message logs, which is not safe at all. In MPICH-GF,
if the messages are under delivery, the request for checkpointing is delayed until
the delivery completion. We have designed code-areas that should be exclusive
as narrow as possible for fine-grain checkpointing. The mutually exclusive oper-



Performance Evaluation of Consistent Recovery Protocols 171

ations are the non-blocking send (MPID IsendDatatype), and send/recv probe
operations (MPID sendIcomplete / MPID recvIcomplete).

3.2 Hierarchical Job Managers

Figure 2 describes how managers launch and manage MPI processes on the
globus middleware. There are three main components: a central manager, a clus-
ter manager, and a local manager. We have implemented the central manager
in the DUROC (Dynamic Updated Request Online Co-allocator) component of
Globus toolkit that handles job-submission, job-monitoring, and channel initial-
ization for MPI processes. We have added the dynamic process management for
failed MPI processes, and the management of consistent recovery.

Cluster
Manager

Local
Manager

MPI
app.

Local
Manager

MPI
app.

Gate
keeper

Checkpoint
Storage
Server

MPI
app.

...

Central
Manager

(DUROC)
User

Internet

Job
Submission

Fig. 2. The hierarchical job manager system

The cluster manager relays control messages between the central manager and
local managers in order to moderate the communication overhead concentrated
on a single point. It detects and handles node failures with a heartbeat technique.
The cluster manager runs at the front end of cluster system. Therefore, there
are as many cluster managers as the number of clusters.

Each local manager forks and monitors a MPI process. It receives a SIGCHLD
signal when its forked process terminates, then it checks with the help of wait-
pid() system call whether the termination was through normal exit() system call.
If not, it regards the event as a process failure, and reports the failure event to
the central manager.

4 Implementation

4.1 Coordinated Checkpointing

Our coordinated checkpointing protocol is straightforward: The central manager
initiates global checkpointing periodically, then local managers signal processes
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to be ready for checkpointing. On receipt of the signal, the signal handler in an
MPI process executes a barrier-like function before checkpointing. This barrier
procedure guarantees two things: One is that any pair of processes is not depen-
dent on each other, and the other is that no messages exist in network because
barrier messages push all the previously issued messages. After barrier, each pro-
cess generates its checkpoint file, and informs the local manager of the successful
completion. The central manager confirms a new version of global checkpoint af-
ter collecting all completion reports. In the sense that barrier messages are used,
our protocol may look like Chandy-Lamport style [5], but barrier messages do not
play the role of checkpoint-request. It is rather a kind of blocking coordinated
checkpointing protocol.

On failure, the central manger determines what version of global checkpoint
to use for recovery, and requests all the other survived processes to rollback. The
recovered process rejoins the MPI process group by informing its new channel
information. After all processes get the new channel information of the recovered
process, the computation resumes.

4.2 Causal Message Logging

Our causal message logging is based on Family-based logging protocol [2] where
the message body is logged at the sender’s memory. The receiver generates the
causality information - determinants -, and then piggybacks them on the next
sent message. The determinant consists of three integers: a send sequential num-
ber, a reception sequential number, and a global rank of the sender process.

In causal message logging(CML), checkpoint files include message logs, so
CML has larger size of checkpoint files than the checkpoint size of the other pro-
tocols. After checkpointing, each process performs a garbage collection procedure
asynchronously in order to remove old logs from memory.

The recovery procedure is as follows: (1) After rejoining, (2) the recovered
process broadcasts its causal relation status. The other processes also report
the latest message ID received from the recovered process, and send the cor-
responding determinants to the recovered process. (3) The recovered process
collects determinants, and determines the delivery order of replayed messages.
The survived processes re-send the message logs, if any, to the recovered process.
(4) During re-execution of the lost computation, the recovered process does not
send any messages that are sent already in the previous instance.

MPICH-GF does not record the reception order for the messages that cor-
respond to the receive function calls with the specific sender ID, since they are
deterministic events. However, an application may specify MPI ANY SOURCE op-
tion in a receive function call, which is bound to the earliest message, so it is
non-deterministic. MPICH-GF records the message delivery order for receive
functions with MPI ANY SOURCE option only. Then, how can we know whether
a message would be bound to a receive function with MPI ANY SOURCE or not?
It is determined at the queue lookup module as shown in Figure 1: when a re-
ceive request looks up the unexpected queue and when an arrived message looks
up the posted queue for the matching request. If this logging management ex-
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ists out of the abstract device, like MPICH-V2 [4], it would be impossible to
tell whether a message would be delivered in a deterministic order or not. In
such a case, there is no choice but to record all messages’ arrival. On recovery,
if the recovered process calls a receive function with MPI ANY SOURCE option,
and if there is the corresponding information of delivery-order, MPICH-GF re-
places MPI ANY SOURCE with the rank of the sender process. The receive request
is bound to the exactly same message as it was in the previous execution.

4.3 Optimistic Message Logging

In our optimistic message logging (OML), the message body is stored at the re-
ceiver’s disk asynchronously on its arrival. Each message log is stored sequentially
in its arrival order. While the procedure in failure-free execution is simple, the
recovery procedure is rather complex. In the previous literatures, the recovery
protocol operates in a distributed way, and a cascade of rollbacks may happen
to some degree for the lost state. We want to do the whole recovery procedure
in one phase in order to simplify the procedure, so we adopt the centralized way.
On recovery, each process reports its causal relationship status to its manager,
the central manager collects them, calculates the recovery line, and determines
which processes to rollback. Recovered/rolled-back processes read the message
logs from disk, and put them into the receive queue. Finally, the recovered pro-
cess rejoins into the process group. We place rejoining at the last in the recovery
procedure in order to finish the message replay before the other processes send
normal messages.

5 Performance

5.1 Experimental Conditions

All experiments have been performed on a 32-node cluster where each node is
equipped with dual Intel Xeon processors running at 2.4 GHz, with 2 GB main
memory, and a 140 GB SCSI hard disk. A Gigabit network switch connects all
nodes. The operating system is Linux 2.4, and Globus toolkit v2.2 is installed
at the front node.

Table 1. Characteristics of the NPB applications used in the experiments

Appl. name Comm. Num. of Memory Total Num. of Num. of Total mesg. Num. of
(iter.) pattern proc. Usage /proc received mesg. MPI ANY size (MB) ckpts.

(MB) SOURCE

bt.c 9 477 3666 0 1513.4
(200) 3D cube 16 263 4885 0 1265.9 5

25 173 6101 0 1089.9
cg.c Multiple 8 155 13999 0 1696.1
(75) chains 16 89 14004 0 1696.1 5

32 48 20013 0 939.0
lu.c 8 101 120796 759 939.0

(250) 2D mesh 16 55 161051 1010 666.2 10
32 32 161063 1010 463.5



174 N. Woo et al.

Fig. 3. The size of single checkpoint and message logs within a checkpoint period

To evaluate the performance of each protocol, we ran the experiment using
three applications of the NAS Parallel Benchmark suite [9] with class C dataset:
BT, CG, and LU. Their execution times are a few tens of minutes, which are
adequate for our repeated experiments. 2 The profile of each application is shown
in Table 1. BT solves Navier-Stokes equation consuming the largest memory
among three applications. CG is a conjugate gradient method, which has the
largest total message size. LU decomposition application consumes relatively
small amount of memory, and exchanges many small messages. Only LU issues
receive function calls with MPI ANY SOURCE option, which are about 0.6% of
the total number of receive calls. Therefore, the total amount of determinants
piggybacked on messages by causal message logging is negligible.

Figure 3 shows the size of single checkpoint and the size of accumulated
message log within a checkpoint period. Specially, the checkpoint size of causal
message logging is the sum of checkpoint size and log size in the figure. Since
the checkpoint toolkit dumps the user memory that a target process occupies,
the size of checkpoint file is the same as the amount of used memory. In all
cases, the memory usage does not exceed the size of the equipped main memory
(2GB), so there have been no swapping effects in our experiments. The memory
usage decreases as the more processes participate, since the dataset are more
distributed in proportion to the degree of parallelism. Checkpoint files are stored
at the local disk of each node.

5.2 The Overhead in Failure-Free Execution

Figure 4 compares the total execution time for each application with coordinated
checkpointing (CC), receiver-based optimistic message logging (OML), causal
message logging (CML), and without any consistent recovery protocol (none).
Coordinated checkpointing shows the best performance among three protocols
as expected. The communication frequency and the message size influence the
performance of logging protocols significantly. The performance difference of
OML and CML is small with BT application that has the smallest frequency

2 The execution times of NPB with class D were from an hour to days on the system
that we rented. It was impossible to complete the experiments with class D datasets
in permitted time. Anyhow, the tendency in the results of class C seemed to appear
again with class D.
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Fig. 4. The comparison of total execution time for consistent-recovery protocols

of communication, while it is large with LU, the most communication intensive
application. The reason why OML is inferior to CML is that OML accesses
disks more frequently than CML. CML stores the chunk of message log into disk
at checkpointing time, while OML stores each message into disk on its arrival.
What is worse with OML, the kernel flushes buffers into disks too often even with
asynchronous disk access, for the huge message size of class C NPB applications.

Table 2 shows the composition of single checkpointing overhead. The ‘channel
flush’ in the table means the procedure to make un-finished message transfer
completed before checkpointing in order to handle in-transit messages. Besides
flushing channel, OML completes the asynchronous message logging by flushing
the disk write stream before checkpointing (‘logging check’.) In CC, it is hard
to find any scalability issues on barrier performance. In all cases, disk write
operation is dominant in the whole overhead.

Table 2. The composition of single checkpointing overhead (unit = seconds)

Applications bt.c cg.c lu.c
Protocols 9 16 32 8 16 32 8 16 32

channel 0.16 0.13 0.13 0.06 0.04 0.06 0.02 0.02 0.02
flush (0.7%) (1.0%) (1.8%) (0.8%) (0.9%) (3.0%) (0.4%) (0.7%) (1.5%)

CC 0.19 0.20 0.19 0.15 0.10 0.12 0.04 0.09 0.10
barrier (0.9%) (1.6%) (2.6%) (2.0%) (2.2%) (5.9%) (0.8%) (3.2%) (7.3%)
disk 21.43 12.35 6.93 7.48 4.32 1.85 4.90 2.70 1.24
write (98.4%) (97.4%) (95.6%) (97.2%) (96.9%) (91.1%) (98.8%) (96.1%) (91.2%)

channel 0.18 0.16 0.14 0.03 0.02 0.09 0.02 0.02 0.02
flush (0.8%) (1.2%) (1.8%) (0.4%) (0.4%) (3.9%) (0.3%) (0.6%) (1.0%)

OML logging 0.18 0.16 0.17 0.41 0.30 0.19 0.16 0.16 0.11
check (0.8%) (1.2%) (2.2%) (5.1%) (6.2%) (8.3%) (2.9%) (4.7%) (5.4%)
disk 21.83 13.11 7.33 7.6 4.51 2.01 5.41 3.22 1.91
write (87.8%) (98.4%) (97.6%) (96.0%) (94.5%) (93.4%) (96.8%) (94.7%) (93.6%)

channel 0.18 0.17 0.12 0.11 0.12 0.10 0.01 0.01 0.01
flush (0.5%) (0.7%) (0.8%) (0.5%) (0.6%) (1.0%) (0.1%) (0.2%) (0.3%)

CML disk 35.60 23.33 14.66 19.94 18.35 9.54 9.15 6.3 3.72
write (99.3%) (99.1%) (98.9%) (99.2%) (99.0%) (98.5%) (99.7%) (99.5%) (99.2%)

garbage 0.06 0.05 0.04 0.06 0.07 0.05 0.02 0.02 0.02
col. (0.2%) (0.2%) (0.3%) (0.3%) (0.4%) (0.5%) (0.2%) (0.3%) (0.5%)
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Fig. 5. The normalized re-execution time for the lost computation

5.3 Recovery Cost

To measure the recovery cost, we killed a certain process once at the middle
between two consecutive checkpoints. The failed process recovered on the same
node where it previously had run.

Figure 5 shows the re-execution time for the lost computation, that is to say,
from the latest checkpointed state to the state right before it failed. We normalize
each result to the normal execution time for the lost computation, therefore the
value for coordinated checkpoint is naturally one. Message replaying usually
makes re-execution faster than normal execution, since processes do not suffer
from message delay. However, it is interesting that CML recovers the slowest in
case of BT.C.9 and CG applications that transfer the huge amount of messages.
It is due to the network congestion for re-sending large amount of message logs
simultaneously. Although the amounts of logs for BT and CG are almost the
same, BT recovers faster than CG, since the load of replaying is distributed
further in BT; every process of BT has six neighbors, and a process of CG has
two to four neighbors. In the other cases, CML and OML recover faster than
CC protocol because replaying smaller amount of logs does not burden network
load as much.

6 Conclusions

This paper presents the integration of consistent-recovery protocols into the
industry-endorsed MPI programming model, and the performance comparison
among those protocols. Few researches have compared coordinated checkpoint-
ing, causal message logging, and optimistic message logging altogether.

The results in this paper show that the coordinated checkpointing protocol
outperforms in failure-free execution. Causal message logging is not suitable
for communication intensive applications with large message amounts since it
consumes memory exhaustively and it suffers from converging message replay on
recovery time. Optimistic message logging suffers from disk access overhead even
with asynchronous disk writes in our experiment, because disk buffer in kernel
flushes frequently. Although it is superior in re-executing the lost computation
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and it is quite reliable, its excessive disk access is not favorable at all. Ironically,
it makes the system unstable by overheating disk drives.

The main overhead in checkpointing/logging protocol is due to storing the
checkpoint files into disks. There have been several efforts to reduce this over-
head. Incremental checkpointing [13] stores only the changed portion of memory
from the previous checkpoint, but it may not be so effective with the applications
that calculate a huge matrix like NPB since the whole matrix changes every sin-
gle iteration. Diskless checkpointing [14] transfers checkpoint files to the memory
of neighbor nodes, but it is effectual only with small size of checkpoint files. Us-
ing application-level approach, developers can optimize the checkpoint content
[12], but it does not seem to be a general solution. High degree of parallelization
might help decreasing the checkpoint overhead since it divides and distributes
the datasets, but the synchronization cost may increase.

In this paper, we let checkpoints be stored at the local disk. It is possible
to transfer checkpoint/log files to remote stable storage server after local check-
pointing. If each transfer is scheduled, we can avoid the congestion at the storage
server.
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Abstract. Jgroup/ARM is a middleware framework for operating de-
pendable distributed applications based on Java. Jgroup integrates the
distributed object models of Java RMI and Jini with the object group
communication paradigm, enabling the construction of groups of repli-
cated server objects that provide dependable services to clients. ARM
provides automated mechanisms for distributing replicas to host proces-
sors and recovering from replica failures.

This paper describes an approach based on stratified sampling com-
bined with fault injections for estimating the dependability attributes
of a service deployed using the Jgroup/ARM middleware framework. A
first experimental evaluation is performed focusing on a service provided
by a triplicated server, and indicative predictions of various dependabil-
ity attributes of the service are obtained. The evaluation shows that a
very high availability and MTBF may be achieved for services based on
Jgroup/ARM.

Keywords: Fault Injection, Probabilistic Modeling and Evaluation,
Measurement-based Evaluation, Failure Recovery, System Fault Toler-
ance, FT Middleware.

1 Introduction

The group communication paradigm for the development of dependable dis-
tributed applications has received considerable attention in recent years [19,
10, 20, 1]. Middleware frameworks based on this paradigm have been integrated
with modern distributed object models like Java RMI and Jini [19, 6], and are
currently being deployed in web-based business applications. Assessing and eval-
uating the dependability characteristics of such frameworks, however, have not
received an equal amount of attention.
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To fill this void, this paper presents an extensive evaluation of Jgroup/ARM
[19, 5, 17], one such framework. Jgroup enables the construction of dependable
applications based on groups of replicated server objects, that cooperate in order
to provide dependable services to their clients. Communication inside a group,
as well as communication between clients and server objects, is based on group
method invocations that are executed by all members of the group. ARM builds
on Jgroup, providing mechanisms for the automated management of groups, by
distributing replicas to host processors and recovering from replica failures.

In the evaluation, dependability attributes are predicted through a stratified
sampling [14] approach. A series of experiments are performed; in each of them,
one or more faults are injected according to an accelerated homogeneous Poisson
process. The approach defines strata in terms of the number of near-coincident
failure events that occur in a fault injection experiment. By near-coincident
is meant failures occurring before the previous is handled. Hence, a posteriori
stratification is performed where experiments are allocated to strata after they
are carried out. This as opposed to the more common prior stratification where
strata are defined before the experiment. Three strata are considered, i.e., single
failures, and double and triple near-coincident failures. The system under study
is assumed to follow a crash failure semantics. For the duration of an experiment,
the events of interest are monitored, and post-experiment analysis is performed
to construct a single global timeline of fault injections and other relevant events.
The timeline is used to compute trajectories on a predefined state machine.

Depending on the number of injected faults, each experiment is classified
into one of the strata, and various statistics for the experiments are obtained.
These statistical measures are then used as input to an estimator of dependability
attributes, including unavailability, system failure intensity and down times. The
approach may also be used to find periods with reduced performance due to
fault handling. An additional benefit of this thorough evaluation is that the
fault handling capability of Jgroup/ARM has been tested extensively, enabling
the discovery of rarely occurring implementation faults of both the distributed
service under study and the Jgroup/ARM framework itself.

Fault injection is a valuable and widely used means for the assessment of
fault tolerant systems, see for instance [2, 3, 11]. Previously, stratified sampling
has been used in combination with fault injection experiments to estimate fault
tolerance coverage, as presented in [9]. Furthermore, for testing specific parts of
a system, fault injection triggers has been used on a subset of the global state
space [8]. These approaches are very useful in testing and evaluating specific
aspects of a system. However, our objective is to perform an overall evaluation
of the system and its ability to handle processor failures and hence, random
injections of crash failures in a operational system and post stratification is
applied.

Delta-4 provide fault treatment mechanisms similar to those of ARM [21].
Fault injections were also used in Delta-4 [4], focusing on removal of design/
implementation faults in fault tolerance mechanisms. However, we are not aware
of reports on the evaluation of the fault treatment mechanisms in Delta-4, com-
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parable to those presented herein. The fault injection scheme used in this work,
combined with post-experiment analysis also facilitate detection of implementa-
tion faults, and in addition allows for systematic regression testing.

The AQuA [23, 22] framework is based on CORBA and also support failure
recovery. Unlike Jgroup/ARM, it does not deal with partition failures and relies
on the open group model [13] which limits its scalability with respect to support-
ing a large number of groups. The evaluation of AQuA presented in [22] only
provide the various delays involved in the recovery time. In this paper, focus is
on estimating dependability attributes of services deployed through ARM.

Organization. Section 2 provides an overview of the features of the Jgroup/ARM
framework relevant to this paper. Section 3 describes the target system for our
measurements, while Section 4 presents the measurement setup and strategy,
together with the associated estimators. Experimental results are given in Sec-
tion 5, and Section 6 concludes the paper.

2 The Jgroup/ARM Middleware

2.1 Jgroup

Jgroup [5] integrates the Java RMI and Jini distributed object models with the
group communication paradigm and includes numerous innovative features that
make it suitable for developing modern network applications. In Jgroup, appli-
cations are based on collections of replicated server objects that cooperate to
provide a dependable service. For increased flexibility, the group composition
is allowed to vary dynamically as new servers join and existing servers leave
the group, either voluntarily or by crashing. Members of the group are kept in-
formed about the current group composition through a group membership service
(GMS).

Communication facilities for the object group are provided by the group
method invocation service (GMIS), that enables the execution of remote method
invocations on all members of an object group. Jgroup is unique in providing
such uniform object-oriented programming interface to govern all object interac-
tions, including those within an object group as well as interactions with external
objects (clients). Both the GMS and the GMIS have been formally specified, ad-
mitting formal reasoning about the correctness of applications based on these
services [5, 19]. Due to space constraints, however, in the following only a short
informal description is provided, focusing on the properties that are needed to
understand this paper.

At any time, the membership of a group includes those servers that are op-
erational and have joined, but have not yet left the group. Asynchrony of the
system and failures may cause each member to have a different perception of the
group’s current membership. The task of the GMS is to notify members about
variation in the group membership. These notification are called view changes;
we say that a node installs a view when such notification is delivered to it. A
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view consists of a list of nodes along with a unique identifier, and corresponds to
the group’s current composition as perceived by members included in the view.

View changes must satisfy the following requirements [5]. First, the service
must track changes in the group membership accurately and in a timely manner
such that installed views indeed convey recent information about the group’s
composition. Next, a view can be installed only after agreement is reached on its
composition among the servers included in the view. Finally, GMS must guar-
antee that two views installed by two different servers be installed in the same
order. Note that the GMS defined for Jgroup admits coexistence of concurrent
views, each corresponding to a different partition of the communication network,
thus making it suitable for partition-aware applications.

Group method invocations must satisfy a variant of view synchrony, that has
proven to be an important property for reasoning about reliability in message-
based systems [7]. Informally, view synchrony requires that two servers that
install the same pair of consecutive views agree to complete the same set of
invocations during the first view of the pair. In other words, before a new view
can be installed, all servers belonging to both the current and the new view have
to agree on the set of invocations they have completed in the current view.

The agreement properties of Jgroup (on view composition and invocation
execution) enable a server to reason about the state of other servers in the
group using only local information such the history of installed views and the
set of completed group method invocations.

2.2 Autonomous Replication Management (ARM)

Most existing object group systems do not include mechanisms for distribut-
ing replicas to host processors or recovering from replica failures. Yet, these
mechanisms are essential for satisfying application dependability requirements
such as maintaining a fixed redundancy level. The ARM framework provides a
replicated dependability manager that enables the autonomic management of
complex applications based on object groups [15, 17]. When installed, an object
group becomes an “autonomous” entity being maintained by ARM, until it is
explicitly removed. During its life, an object group provides service to clients
completely decoupled from the ARM infrastructure.

ARM handles both replica distribution, according to an extensible distribu-
tion policy, as well as replica recovery, based on a replication policy. The repli-
cation policy is group-specific, and allows the creation of object groups with
varying dependability requirements and recovery needs. The distribution policy
is specific to each ARM deployment, and requires configuration of the set of
processors on which replicas can be created.

The ARM framework consists of several components: a system-wide replication
manager (RM), recovery modules deployed at each of the managed replicas, and ob-
ject factories deployed at each of the processors. Recovery modules are responsible
of forwarding view change notifications to the RM, that will interpret this informa-
tion, potentially triggering group-specific actions like replica creation or removal.
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Fig. 1. The Jgroup/ARM architecture

Together, these components form a failure monitoring facility, whose goal is to re-
establish desired system dependability properties after failures.

Fig. 1 gives a simplified overview of a typical ARM-based deployment, and
associated communication patterns. The system contains a single replicated ser-
vice, named MS, that is managed by ARM. In each of the groups, a leader
replica is elected. Every view change event generated by the group communi-
cation system is reported by the recovery module of the MS leader to the RM
using notifyEvent(). The RM interprets the received event, and the leader issues
a createReplica() or removeReplica() call to the object factories of a selected set of
processors, depending on the distribution policy. The RM provides an external
interface, composed of method createGroup() and removeGroup(), that enables the
management client to start or stop services. Fig. 1 also illustrates how servers
bind their reference in the dependable registry (DR) service, and how clients
query this naming service to obtain information required to communicate with
the server group through method invocations. Note that replicas of the RM and
DR groups are co-located on the same set of nodes. For simplicity, the illustration
of the target system (see Fig. 2) depict only the RM group.

In addition to the above, there is also a mechanism embedded in the recovery
module for recovering from scenarios in which the whole application group has
failed. This is accomplished using a lease renewal technique, requiring that the
leader of each deployed group issues a renew event periodically to prevent the
RM group from triggering recovery.

The RM group provides self-recovery by reusing the same mechanisms that
are in place to track other applications, except for the lease renewal. Another
important feature of ARM is its ability to handle multiple concurrent failures,
even failures of the ARM framework itself, as long as at least one RM replica
remains.
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3 Target System

Fig. 2 shows the target system for our measurements. It consists of a cluster
with a total of n = 8 identical processors, initially hosting a single server replica
as shown. In the experiments, ARM uses a distribution policy that will avoid
co-locating two replicas of the same type, and at the same time it will try to
keep the replica count per processor to a minimum. Different services may share
the same processor.

The ARM infrastructure (i.e., the RM group) is located on processors (1-3).
Processors 5-7 host the monitored service (MS), while processors 4 and 8 host the
additional service (AS). The latter was added to assess ARM’s ability to handle
multiple concurrent failure recoveries at different groups, and to provide a more
realistic scenario. Finally, an external machine hosts the experiment engine that
is used to run the experiments; for a description of the experiment engine, please
refer to Section 4.2. The replication policy for all the deployed services requires
that ARM tries to maintain a fixed redundancy level (RM:=3, MS:=3, AS:=2),
with the RM group being at least as fault-tolerant as the remaining components
of the system.

Fig. 2. Target system illustrated

The measurement engine enables the simultaneous observations of all ser-
vices in the target system, including the ARM infrastructure. In the following,
however, we will focus our attention on the MS service, that constitutes our
subsystem of interest. This subsystem will be the subject of our observations
and measurements, with the aim of predicting its dependability attributes. Note
that focusing on a particular subsystem of interest is for simplifying presenta-
tion. Observations of several subsystems could be done simultaneously and esti-
mates/predictions of all services and the ARM infrastructure may be obtained
during the same experiment.
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3.1 The State Machine

There is a set of states which we can observe and which are sufficient to determine
the dependability characteristics of the service(s) regarded. Note that these are
not necessarily all the operational states of the complete system, but the set of
states associated with the MS service. Thus, the failure-recovery behavior of the
MS service can be modeled according to the state diagram in Fig. 3, irrespective
of the states of the ARM and AS subsystems. The state diagram is not used to
control fault injections based on triggers on a subset of the global state space as
in [8]; instead it is only used during offline, a posteriori analysis of fault injection
experiments based on random sampling. In the analysis, the trajectories on the
state model, and the time spent in each state is used together with mathematical
tools to determine the dependability characteristics of the MS service.

We define a service to be unavailable (squared states) if none of the group
members have installed a view, and available (circular states) if at least one
member has installed a view. Each state is identified by X� and a tuple (xr, yv),
were x is the number of installed replicas (r), and y is the number of mem-
bers in the current view (v) of the server group. In the diagram, we consider
only events that may affect the availability of the service, such as view changes,
replica creations as seen from the perspective of ARM, and replica failures as
perceived by the corresponding MS nodes that fails. View changes, in particular,
are denoted by view-i, where i is the cardinality of the view. In addition, fault
injection events may occur in any of the states, however for readability they are
not included in the figure.

As a sample failure-recovery behavior, consider the trajectory composed of
the state transitions with dashed lines, starting and ending in X0. This is the
most common trajectory. For simplicity the view-i events in the diagram reflect
the series of views as seen by ARM, and do not consider the existence of con-
current views. So, after recovering from a failure (moving from state X4 to state
X3), the newly created member will install a singleton view and thus be the
leader of that view, sending a view-1 event to ARM (from state X3 to state
X6). Only after this installation (required by the view synchrony property) a
view-3 event will be delivered to ARM, causing a transition from state X6 to
X0. The above simplification does not affect the availability of the service. It is
assumed that client requests are only delayed during failure-recovery cycles as
long as the service is in an operational state [16]. Such delays are not considered
part of the availability measure as opposed to [12]. Further analysis of these
client perceived delays is in preparation and will be included in a future paper.

Notice that some of the states have self-referring transitions on view change
events. These are needed for several reasons, one being that the ARM frame-
work may see view change notifications from several replicas, before they have
formed a common view. In addition, ARM will on rare occasions receive what
we call outdated views, that are due to minor inaccuracies in our measurements.
For instance, a view-3 event may occur while in state X7. This can occur if at
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Fig. 3. State diagram illustrating a sample of the possible state changes of the MS

service being measured

some point we are in the X6 state, when a group member sends out a notification
of a view-3 event, and shortly after another member of that group fails and
logs a ReplicaFailed event. However, given that the view-3 event is still in the
“air”, and has not yet been logged, the ReplicaFailed event will appear to have
occurred before the view-3 event in the trace. To compensate for this behavior,
we have inserted additional view-i transitions, prefixed by OD, in some of the
states.

Notice also the view-2 transition from X2 to X5. This is also due to an
outdated view, and can occur if ARM triggers recovery on a view-2 event before
receiving a view-1 event. Note that the state transitions in the diagram may
not be complete as presented, however, no other transitions have been observed
during our experiments. In the following, we will assume that the service has
been initialized correctly into state X0, and thus we do not consider the initial
transitions leading to this state.
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4 Measurements

This section give motivation for our measurement approach. Furthermore, we
discuss in detail the sampling scheme used to assess the fault handling capa-
bility of the Jgroup/ARM framework and to provide input to the prediction of
dependability attributes.

4.1 Experiment Outline

In each experiment run, one or more faults are injected. The failure insertion
pattern is as if it emerged from a Poisson process. There may be multiple near-
coincident failures before the system stabilizes, i.e., a new failure may be inserted
before the previous has been completely handled. This will “simulate” the rare
occurrence of nearly coincident failures which may bring the service down. The
Poissonian character of the inserted failures is achieved through generation of
fault injection times and the selection of the set of processors in which to in-
ject faults, according to a uniform distribution. See the Sampling Scheme in
Section 4.3 on how this yields a Poisson fault process. Processors to crash are
drawn from the entire target system. Hence, the injected faults may affect the
ARM infrastructure itself, the monitored subsystem (MS) or the additional ser-
vice (AS), all of which are being managed by the ARM framework. However,
only state trajectories for the monitored subsystem are computed, and these are
used for predicting various dependability attributes of MS. A beneficial “side-
affect” of this sampling scheme is that it has shown to be very useful with
respect to performing extensive testing of the fault handling capabilities of the
Jgroup/ARM. During previous experiments several design and implementation
faults have been revealed. In the experiments, we perform at most k = 3 fault
injections during a run. Since initially all processors in the target system have
allocated replicas, failures will cause ARM to reuse processors as shown in Fig. 2
where the replica of processor 7 is recreated at processor 3.

Time Constants Considered. Assuming services are deployed using the ARM
framework, the crashed processors will have a processor recovery time (tPR) which
is much longer than the service recovery time (tSR). Further, we assume that
the processors will stay crashed for the remaining part of the experiment. In
other words, a service replica will typically be restarted on a different processor
as soon as ARM concludes that a processor crash has occurred. However, the
time until the processors are recovered, is assumed to be negligible compared
to the time between failures (tBF) in a real system. Thus in the predictions it
is assumed that the occurrence intensity of new trajectories (i.e. first failure in
a fully recovered system) is nλ, neglecting the short interval with a reduced
number of processors between tSR and tPR. Fig. 4 shows these relations, starting
with the first failure event ti1 . Furthermore, there will be no resource exhaustion,
i.e., there are sufficient processors to execute all deployed services, including the
ARM infrastructure.
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Fig. 4. The relation between the service and processor recovery periods and the time

between failures

The Failure Trajectory. A failure trajectory is the series of events and states
of the monitored subsystem following the first processor failure and until all the
concurrent failure activities have concluded and all subsystems are recovered
and fully replicated. The trajectory will always start and end in state X0 (see
Fig. 3). If the first processor failure affects the monitored service, it causes it to
leave its steady operational state X0 and if it is the last service to recover, we
will see a return to the same state like in Fig. 5.

Fig. 5. Sample failure trajectory, where all but failure event ti3 affects the subsystem

of interest. This is the most common failure trajectory

We denote the jth event in the ith trajectory by ij , the time it takes place
by tij

and the state after the event by Xij
(corresponds to the states in Fig. 3).

Note that all relevant events in the system are included, and a failure or another
event does not necessarily cause a change of state in the monitored subsystem.
For instance, the failure of a processor which supports only the ARM or AS
subsystems, will not necessarily result in a change of state in the MS service,
but it is likely that it will influence the handling of immediately preceding or
succeeding failures affecting the service. Let Xi(t) denote the state of the MS
service at time t in the ith failure trajectory,

Xi(t) =
{

Xij
tij

< t ≤ tij+1 , j = 1, . . . , mi

X0 Otherwise

were mi is the last event of the ith trajectory before all concurrent failure activ-
ities have concluded, and all subsystems are fully replicated. During the mea-
surements a trajectory sample is recorded as the list
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Xi =
{
X0, ti1 , Xi1 , ti2 , Xi2 , ti3 , . . . , timi

, X0
}

.

Note that we record also trajectories for which the MS service does not leave
the X0 state.

Characteristics Obtained from a Failure Trajectory. The unknown prob-
ability of failure trajectory i is pi. For brevity we denote the duration of trajec-
tory i by Ti = timi

− ti1 , and its expectation Θ = E(T ) =
∑

∀i piTi.
In the following, let Yi denote a sample from the experiment. The sample

may be obtained from the trajectory by some function g, i.e., Yi = g(Xi). The
duration of a trajectory presented above may serve as an example. Determining
the dependability attributes of the system are other possible samples that can be
extracted from the experiment data. To determine these, it is assumed that the
failure rate in the X0 state is nλ, that the expected sojourn time in this state
is much longer than the expected trajectory duration, and that a particular
trajectory is independent of the previous trajectory.

Unavailability. The time spent in a down state during a trajectory is given by

Y d
i = g(Xi) =

mi∑
j=1

I(Xij
∈ F)(tij+1 − tij

), (1)

where I(· · ·) is the indicator function and F is the set of down states (the squared
states in Fig. 3). Given that the periods in state X0 (the OK-periods) alternate
with the failure trajectories, and are independent and much longer than the
failure trajectory periods, we can obtain a measure for the service unavailability

Û =
E(Y d)

E(Y d) + (nλ)−1
≈ E(Y d)nλ.

Note that the collective failure intensity of all processors when there are no faults
in the system, is only marginally different from the intensity of trajectories. The
difference is due to the restoration of failed processors during a trajectory, and
is negligible.

Probability of failure, reliability. In this case, let Y f
i = 1 if trajectory i visits one

or more down states, otherwise let Y f
i = 0.

Y f
i = g(Xi) = I(∃Xij

∈ F)j=1,....,mi
. (2)

Disregarding multiple down periods in the same trajectory and assuming that
system failures are rare, it is found that the system failure intensity is approxi-
mately

Λ̂ =
1

MTBF
≈ E(Y f )

E(Y d) + (nλ)−1
≈ E(Y f )nλ.

In addition, the predicted reliability function R(t) = exp(−Λ̂t) as well as the
mean down time MDT = Û/Λ̂ may be obtained. MDT and the down time
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distribution may of course also be measured directly from the trajectories visiting
the set of down states.

The above examples are chosen for illustration and the assumptions made for
simplicity. By introducing rewards associated with the states and transitions, we
may obtain predictions of far more comprehensive performability measures of the
system.

4.2 The Experiment Engine

The experiment engine is used to perform repeated experiment runs. At each
run, numerous tasks are executed; (1) bootstrap the object factories onto the
processors in the target system, (2) bootstrap the ARM infrastructure, (3) deploy
the initial MS and AS replicas, (4) perform fault injections, according to the
scheme described in Section 4.3, (5) shutdown the experiment run, and finally,
(6) collect and remove log files from the target system.

To be able to compute a trajectory of states and the time spent in each state,
Jgroup/ARM and the MS service has been instrumented with a simple event log-
ging mechanism to be able to generate a local trace of events occurring at each of
the processors in the target system. The events in a trace correspond to the events
of the state diagram in Fig. 3. Each event trace contains the set of events and their
occurrence time (in milliseconds), in addition to various details associated with
the event. This level of accuracy is sufficient for our evaluation, as the time values
considered (tSR) are in the range 7-30 seconds. The occurrence time of an event
correspond to the local clock of the processor at which the event occurred. The
processor clocks in the target system are synchronized using NTP [18].

After each experiment, the log files generated are collected from the target
system and stored at the experiment engine machine, for the offline analysis. In
this analysis, the independent event traces collected from different machines are
merged into a single global timeline of events, that correspond to an approx-
imation of the actual state transitions of the whole system. Given this global
event trace, we can compute the trajectory of visited states and the time spent
in each of the states. These trajectories allow us to classify the experiments, and
to predict a number of dependability attributes for the monitored service, as
discussed previously.

4.3 Experimental Strategy

The experimental strategy is based on a post stratified random sampling ap-
proach. For an introduction to stratified sampling see for instance [14]. This
section elaborates on how the experiments are classified in different strata, and
how the sampling is performed.

Stratification. Only some of the events along a failure trajectory will actually
be failure events. The first event of each trajectory will always be a failure, and
in a typical operational environment usually the only one. However, in the ex-
periments we consider also multiple near-coincident failures which may require
concurrent failure handling. In considering such failure scenarios, our experimen-
tal strategy is based upon subdividing the trajectories into strata Sk based on
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Fig. 6. Sample failure trajectory reaching stratum S3 plotted on an approximate time

scale. Only two of three injected faults affect the MS service. The second fault injection

affect the RM service

the number of failure events k in each of the trajectories. Each of the strata are
sampled separately, and the number of samples in each stratum are random vari-
ables determined a posteriori. This is different from previous work [9] in which
the number of samples in each stratum is fixed in advance.

An example failure trajectory reaching stratum S3 drawn from the experi-
ment data is shown in Fig. 6. Three near-coincident fault injections were per-
formed in this particular experiment. The first and last failure affect the MS
service, while the second affect the RM service. The RM failure and its related
events, as indicated on the curve, do not cause state transitions in the state
diagram (Fig. 3) of the MS service.

The collected samples for each stratum are used to obtain statistics for the
system in that stratum, e.g., the expectation E(Y |Sk). The expectation and the
variance of the length of the trajectory within a stratum Sk are denoted Θk =
E(T |Sk) and σk = V ar(T |Sk), respectively. Estimates may then be obtained by

E(Y ) =
∞∑

k=1

E(Y |Sk)πk ≈
3∑

k=1

E(Y |Sk)πk, (3)

where πk =
∑

∀i∈Sk
pi is the probability of a trajectory in stratum Sk. Recall

that k represents the number of possible concurrent failure events, and in (3), we
replace ∞ in the summation with 3, since we only consider up to 3 concurrent
failure events. Expressions for πk are derived in Section 4.4.

If upper and lower bounds for Y exist, and we are able to determine πk, k > 3,
we may also determine bounds for E(Y ) without sampling the higher-order
strata, i.e.,

3∑
k=1

E(Y |Sk)πk + inf(Y )
∑
k>3

πk ≤ E(Y ) ≤
3∑

k=1

E(Y |Sk)πk + sup(Y )
∑
k>3

πk.
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Since the probability of k concurrent failures is much greater than k +1 failures,
πk � πk+1, the bounds will be tight, and for the estimated quantities the effect
of estimation errors are expected to be far larger than these bounds. The effect
of estimation errors is discussed in Section 4.4.

Sampling Scheme. Under the assumption of a homogeneous Poisson fault
process with intensity λ per processor, it is known that if we have k − 1 faults
(after the first failure starting a trajectory) of n processors during a fixed interval
[0, Tmax〉, these will occur

– uniformly distributed over the set of processors, and
– each of the faults will occur uniformly over the interval [0, Tmax〉.

Note that, all injected faults will manifest itself as a failure, and thus the two
terms are used interchangeably. In performing experiments, the value Tmax is
chosen to be longer than any foreseen trajectory of stratum Sk. However, it
should not be chosen excessively long, since this may result in too rare observa-
tions of higher-order strata.

Fig. 7. Sample failure trajectories with different fault injection times

In the following, let (T |k = l) denote the duration of a trajectory if it com-
pletes in stratum Sl, as illustrated in Fig. 7(a), and let fil

denote time of the
lth failure, relative to the first failure event in the ith failure trajectory. That is,
we assume the first failure occur at fi1 = 0 and that fil

> fi1 , l > 1. To obtain
dependability characteristics for the system, we inject k failures over the interval
[0, Tmax〉. This leads to the following failure injection scheme for trajectory i,
which may reach stratum Sk. However, not all trajectories obtained for experi-
ments with k > 1 failure injections will reach stratum Sk, since a trajectory may
reach (T |k = 1) before the second failure (fi2) is injected. That is, recovery from
the first failure may complete before the second failure injection, as illustrated
in Fig. 7(b). Such experiments contain multiple trajectories, however, only the
first trajectory is considered in the analysis to avoid introducing a bias in the
results.
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1. The first failure, starting a failure trajectory i, is at fi1 = 0. The following k−
1 failure instants are drawn uniformly distributed over the interval [0, Tmax〉
and sorted such that fiq

≤ fiq+1 yielding the set {fi1 , fi2 , . . . , fik
}. Let k∗

denote the reached stratum, and l is the index denoting the number of failures
injected so far. Initially, set k∗ := 0 and l := 1.

2. Fault l ≤ k is (tentatively) injected at fil
in processor zl ∈ [1, n] with

probability 1/n.

(a) If trajectory i has not yet completed, i.e., fil
< Ti, then set l := l + 1

and
i. If the selected processor has not already failed zl /∈ {zw|w < l}: Inject

fault at fil
and set k∗ := k∗ + 1

ii. Prepare for next fault injection, i.e., goto 2.
(b) Otherwise the experiment ended “prematurely”.

3. Conclude and classify as a stratum Sk∗ measurement.

The already failed processors are kept in the set to maintain the time and space
uniformity corresponding to the constant rate Poisson process. Although k fail-
ures are not injected in a trajectory, the pattern of injected failures will be as if
they came from a Poisson process with a specific number (k∗) of failures during
Tmax. Hence, the failure injections will be representative for a trajectory lasting
only a fraction of this time.

4.4 Estimators

Strata Probabilities. In a real system, the failure intensity λ will be very low,
i.e., λ−1 � Tmax. Hence, we may assume the probability of a failure occurring
while the system is on trajectory i ∈ S1 is Ti(n − 1)λ. Hence, the probability
that a trajectory (sample) belonging to a stratum Sk, k > 1 occurs, given that
a stratum S1 cycle has started is∑

∀i∈S1
piTi(n− 1)λ∑
∀i∈S1

pi
=

∑
k>1 πk

π1
.

Due to the small failure intensity, we have that
∑

k>1 πk ≈ π2 and the uncondi-
tional probability of a sample in stratum S2 is approximately

π2 = (n− 1)λΘ1π1. (4)

This line of argument also applies for the probability of trajectories in stratum
S3. However, in this case we must take into account the first failure occurrence.
Let i ∈ Sk ∧Xi(tx) �� f denote a trajectory of stratum Sk, where a failure occurs
at tx. The probability that a trajectory belonging to stratum Sk, k > 2 occurs,
given that a stratum S2 cycle has started is, cf. Fig. 7(a):∫ ∑

∀i∈S2∧Xi(tx)��f pi(Ti − tx)(n− 2)λdtx∑
∀i∈S2

pi
=

∑
k>2 πk

π2
. (5)
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Ignoring the constant part of (5) for now; the first term on the left hand side of
(5) is not depending on tx and may be reduced as follows:∫ ∑

∀i∈S2∧Xi(tx)��f piTidtx∑
∀i∈S2

pi
=

∑
∀i∈S2

piTi∑
∀i∈S2

pi
= Θ2.

For the second term we have, slightly rearranged:∫
tx
∑

∀i∈S2∧Xi(tx)��fpidtx.

The probability of having a stratum S2 trajectory experiencing its third failure
at tx is the probability that the first (and second) failure has not been dealt
with by tx, i.e., the duration Tj > tx, j ∈ S1 and that a new failure occurs at tx.
These two events are independent. Up to the failure time tx, the trajectories of
strata S1 and S2 passing this point are identical. Hence,

∑
∀i∈S2∧Xi(tx)��fpi =

Pr{Tj > tx}π1(n− 1)λ and by partial integration,∫
tx Pr{Tj > tx}dtx =

1
2
E(T 2

j |j ∈ S1) =
1
2
(Θ2

1 + σ1).

Combining the above, inserting it into (5), using that
∑

∀i∈S2
pi = π2 and that

due to the small failure intensity
∑

k>2 πk ≈ π3, the unconditional probability
of a trajectory in stratum S3 approximately becomes:

π3 = (n− 2)λ(Θ2π2 − 1
2
(Θ2

1 + σ1)π1(n− 1)λ)

= (n− 1)(n− 2)λ2(Θ2Θ1 − 1
2
(Θ2

1 + σ1))π1. (6)

Since we have that 1 > π1 > 1 − π2 − π3 and as argued above, a sufficiently
accurate estimate for π1 may be obtained from the lower bound since 1 ≈ π1 ≈
1 − π2 − π3, or slightly more accurately by solving πi from (4), (6) and 1 =
π1 + π2 + π3.

Estimation Errors. The estimation errors or the uncertainty in the obtained
result is computed using the sectioning approach [14]. The experiments are sub-
divided into N ∼ 10 independent runs of the same size. Let Êl(Y ) be the estimate
from the lth of these; then:

Ê(Y ) =
1
N

N∑
l=1

Êl(Y ), V̂ar(Y ) =
1

(N − 1)

N∑
l=1

(Êl(Y 2)− Ê2(Y )).

5 Experimental Results

This section presents experimental results of fault injections on the target sys-
tem. A total of 3000 experiment runs were performed, aiming at 1000 per stra-
tum. Each experiment is classified as being of stratum Sk, if exactly k fault in-
jections occur before the experiment completes (all services are fully recovered).
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The results of the experiments are presented in Table 1. Some runs “trying to
achieve higher order strata” (S3 and S2) fall into lower order due to injections
being far apart, cf. Fig. 7(b), or addressing the same processor.

Table 1. Results obtained from the experiments (in milliseconds)

Classification Count Θk = E(T |Sk) sd=
√

σk Θk, 95% conf.int.

Stratum S1 1781 8461.77 185.64 (8328.98, 8594.56)

Stratum S2 793 12783.91 1002.22 (12067.01, 13500.80)

Stratum S3 407 17396.55 924.90 (16734.96, 18058.13)

Of the 3000 runs performed, 19 (0.63%) were classified as inadequate. In these
runs one or more of the services failed to recover (16 runs), or they behaved
in an otherwise unintended manner. In the latter three runs, the services did
actually recover successfully, but the runs were classified as inadequate, because
an additional (not intended) failure occurred. The inadequate runs are dispersed
with respect to experiments seeking to obtain the various strata as follows; two
for S1, 6 for S2, and 11 for stratum S3. One experiment resulted in a complete
failure of the ARM infrastructure, caused by three fault injections occurring
within 4.2 seconds leaving no time for ARM to perform self-recovery. Of the
remaining, 13 were due to problems with synchronizing the states between the
RM replicas, and 2 were due to problems with the Jgroup membership service.
Even though none of the inadequate runs reached the down state, D0, for the
MS service, it is likely that additional failures would have caused a transition
to D0. To be conservative in the predictions below, all the inadequate runs are
considered to have trajectories visiting down states, and causing a fixed down
time of 5 minutes.

Fig. 8 shows the probability density function (pdf) of the recovery periods
for each of the strata. The data for stratum S1 cycles indicate that it has a small
variance. However, 7 runs have a duration above 10 seconds. These durations
are likely due to external influence (CPU/IO starvation) on the machines in
the target system. This was confirmed by examining the cron job scheduling
times, and the running time of those particular runs. Similar observations can be
identified in stratum S2 cycles, while it is difficult to identify such observations
in S3 cycles. The pdf for stratum S2 in Fig. 8(b) is bimodal, with a top at
approx. 10 and another at approx. 15. The density of the left-most part is due to
runs with injections that are close, while the right-most part is due to injections
that are more than 5-6 seconds apart. The behavior causing this bimodality is
due to the combined effect of the delay induced by the view agreement protocol,
and a 3 second delay before ARM triggers recovery. Those injections that are
close tend to be recovered almost simultaneously. The pdf for stratum S3 has
indications of being multimodal. However, the distinctions are not as clear in
this case.
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Fig. 8. Probability density function of trajectory durations for the various strata

Given the results of the experiments, we are able to compute the expected
trajectory durations, Θ1, Θ2 and the variance σ1 as shown in Table 1, and the
unconditional probabilities π2 and π3 given in (4) and (6) for various processor
mean time between failures (MTBF=λ−1), as shown in Table 2. The low proba-
bilities of a second and third near-coincident failure is due to the relatively short
recovery time (trajectory durations) for strata S1 and S2. Table 2 compares these
values with a typical processor recovery (reboot) time of 5 minutes and manual
recovery time of 2 hours.

Of the 407 stratum S3 runs, only 3 reached a down state. However, we include
also the 19 inadequate runs as reaching a down state. Thus, Table 2 provides
only indicative results of the unavailability (Û) and MTBF (Λ̂−1) of the MS ser-
vice, and hence confidence intervals for these estimates are omitted. The results
show as expected, that the two inadequate runs from stratum S1 included with
a service down time of 5 minutes, completely dominates the unavailability of the
service. However, accounting for near-coincident failures may still prove impor-
tant once the remaining deficiencies in the platform have be resolved. Although
the results are indicative, it seems that very high availability and MTBF may
be obtained for services deployed with Jgroup/ARM.
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Table 2. Computed probabilities, unavailability metric and the system MTBF

Experiment Recovery Period Processor Recovery (5 min.) Manual Processor Recovery (2 hrs.)

Processor Mean Time Between Failure (MTBF=λ−1) (in days)

100 200 100 200 100 200

π1 0.99999314 0.99999657 0.99975688 0.99987845 0.99412200 0.99707216

π2 6.855602 · 10−6 3.427801 · 10−6 2.430555 · 10−4 1.215278 · 10−4 5.833333 · 10−3 2.916667 · 10−3

π3 4.072921 · 10−11 1.018230 · 10−11 5.595341 · 10−8 1.398835 · 10−8 4.466146 · 10−5 1.116536 · 10−5

Û 4.671318 · 10−7 2.335617 · 10−7 2.777102 · 10−4 1.388720 · 10−4 6.627480 · 10−3 3.323574 · 10−3

Λ̂−1 20.3367 yrs 40.6741 yrs - - - -

6 Conclusions

This paper has presented an approach for the estimation of dependability at-
tributes based on the combined use of fault injection and a novel post stratified
sampling scheme. The approach has been used to assess and evaluate a service
deployed with the Jgroup/ARM framework. The results of the experimental
evaluation indicate that services deployed with Jgroup/ARM can obtain very
high availability and MTBF.

Thus far, our automated fault injection tool has proved exceptionally useful
in uncovering at least a dozen subtle bugs, allowing systematic stress and regres-
sion testing. In future work, we intend to improve the Jgroup/ARM framework
further to reduce the number of service failures due to platform deficiencies.
The approach may also be extended to provide unbiased estimators, allowing us
to determine confidence intervals also for dependability attributes given enough
samples visiting the down states.
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1 Introduction

The central question of safety analysis is to determine what components of a
safety-critical system must fail to allow the system to cause damage. Most safety
analysis techniques rely only on informal reasoning which depends heavily on
skill and knowledge of the safety engineer. Some of these techniques have been
formalized.

In this paper we present a new safety analysis technique: Deductive Cause-
Consequence Analysis (DCCA). This technique is a formal generalization of
well-known safety analysis methods like FMEA [10], FMECA [4] and FTA [3].
The logical framework of DCCA may be used to rigorously verify the results
of these informal safety analysis techniques. It is also strictly more expressive
(in terms of what can by analyzed) than traditional FMEA. We show, that the
results of DCCA have the same semantics as those of formal FTA [11]. Because
of this DCCA may be used to verify fault trees without formalizing inner nodes
of the tree.
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In Sect. 2 the semantics of DCCA is presented. A comparison to FMEA and
FTA is done in Sect. 3. We illustrate the application of DCCA and report on
practical experiences in Sect. 4. In Sect. 5 some related approaches are discussed
and Sect. 6 summarizes the results and concludes the paper.

2 DCCA

In this section we describe the formal semantics of DCCA. The formalization
is done with Computational Tree Logic(CTL) [5]. We use finite automata as
system models. The use of CTL and finite automata allows to use powerful
model checkers like SMV [8] to verify the proof obligations.

In the following we assume that a list of hazards on system level and a list of
possible basic component failures modes is given. Both data may be collected by
other safety analysis techniques like failure-sensitive specification [9] or HazOp
[6]. We assume that system hazards H and primary failures δ are described by
predicate logic formula. This is true for most practical problems. We call the set
of all failure predicates Δ.

2.1 Failure/ azard utomata

For formal safety analysis failure modes must be explicitly modeled. We divide
the modeling into two steps. First we model the occurrence pattern of the failure
mode and second we model the failure mode itself. By “occurrence pattern” we
understand how and when the failure mode occurs. For example does the failure
mode occur indeterministically (like packet loss in IP traffic) or does it occur
once and forever (like a broken switch) or does it occur only during certain
time intervals (like until the next maintenance). To model this we use failure
automata. Figure 1 shows two such failure automata.

Fig. 1. Failure automata for transient and persistent failures

The left automaton models a transient failure which can indeterministically
occur and disappear. The right one models a persistent failure, which happens
once and stays forever (e.g. a broken relay). Maintenance etc. may be modeled
analogously. Failure predicates δ are then defined as “failure automaton for fail-
ure mode δ̃ in state yes”. For readability the symbol δ is used for both the
predicate and the automaton describing the occurrence pattern.

AH
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The second step is to model the direct effects of failure modes. This is usually
done by adding transitions to the model with conditions of the form ϕ ∧ δ. This
mean these additional transitions – which reflect erroneous behavior – may only
be taken, when a failure automaton is in state yes i.e. when a failure occurs.

A similar approach may be used to define predicates for system hazards. If
the system hazard can not be describe by a predicate logic formula directly,
then often an observer automaton may be implemented such that whenever the
automaton is in an accepting state, the hazard has occurred before [12]. This
allows to describe the hazard as predicate logic formula on the states of the
observer automaton. However in practical applications hazards may usually be
described by predicate logic formulas.

2.2 Critical ets

The next step is to define a temporal logic property which says, whether a certain
combination of failure modes may lead to the hazard or not. This property is
called criticality of a set of failure modes.

Definition 1. critical set / minimal critical set
For a system SYS and a set of failure modes Δ a subset of component failures
Γ ⊆ Δ is called critical for a system hazard, which is described by a predicate
logic formula H if

SY S |= E(λ until H) where λ :=
∧

δ∈(Δ\Γ )

¬ δ

We call Γ a minimal critical set if Γ is critical and no proper subset of Γ is
critical.

Here, E(ϕ until ψ) denotes the existential CTL-UNTIL-operator. It means
there exists a path in the model, such that ϕ holds until the property ψ holds.
The property critical set translates into natural language as follows: there exists
a path such that the system hazard occurs without the previous occurrence of
any failures except those which are in the critical set. In other words this means,
it is possible that the systems fails, if only the component failures in the critical
set occur. Intuitively, criticality is not sufficient to define a cause-consequence
relationship. It is possible that a critical set includes failure modes, which have
nothing to do with the hazard.

Therefore, the notion minimal critical set also requires that no proper subset
of is critical. Minimal critical sets really describe what one would expect for a
cause-consequence relationship in safety analysis to hold: the causes may - but
not necessarily - lead to the consequence and second all causes are necessary
to allow the consequence to happen. So the goal of DCCA is to find minimal
critical sets of failure modes. Testing all sets by brute force would require an
effort exponential in the number of failure modes. However, DCCA may be used
to formally verify the results of informal safety analysis techniques. This reduces
the effort of DCCA a lot, because the informal techniques often yield good “initial

S
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guesses” for solutions. Note that the property critical is monotone with respect to
set inclusion i.e. ∀Γ1, Γ2 ⊆ Δ : Γ1 ⊆ Γ2 ⇒ (Γ1 is critical set ⇒ Γ2 is critical set).
This helps to reduce proof efforts a lot.

3 Comparison to ther afety nalysis ethods

DCCA formalizes different methods of formal safety analysis in a generic way.
We can identify different cases according to the number of elements in the set of
failure modes being analyzed and relate them to other existing safety analysis
techniques.

|Γ | = 0
If the empty set of failure modes is examined, then the proof obligation of min-
imal criticality corresponds to the verification of functional incorrectness. Min-
imality is of course satisfied (the empty set does not have real subsets). The
property of criticality states that there “exists a path where no component fails
but eventually the hazard occurs” (in CTL: EF H). This is the negation of the
standard property of functional correctness “on all paths where no component
fails, the hazard will globally not occur” (in CTL: AG ¬H). In other words, if
the empty set can be proven to be a critical set, then the system has design
errors and is functionally incorrect.

|Γ | = 1
The analysis of single failure modes corresponds to traditional FMEA. Tradi-
tional FMEA analyzes the effects of a component failure mode on the total
system in an informal manner. If the failure modes appears to be safety criti-
cal than this cause-consequence relationship is noted as one row of a (FMEA)
spreadsheet. If a singleton set is minimal critical for a hazard H, then a correct
FMEA must list the hazard H as effect of the analyzed failure mode. Note that
functional correctness is a pre-condition for formal FMEA. If the system is not
functionally correct, then there will be no singleton sets of failure modes which
are minimal critical.

|Γ | > 1

This is a true improvement to FMEA. Combinations of component failure modes
are traditionally only examined by FTA. FTA analyzes top-down the reasons of
system failure. Cause and consequence are linked by certain gates. The gates of
a fault tree state if all causes (AND-gate C ) or any of the causes (OR-gate
C ) are necessary to allow the consequence to occur. Iteration builds a tree

like structure where the root is the system hazard and the leaves are component
failures.

The result of FTA is a set of so called minimal cut sets. These sets may be
generated automatically from the structure of the tree. Each minimal cut set
describes a set of failure modes, which together may make the hazard happen.
This corresponds to the definition of minimal critical sets obtained by DCCA.
So FTA may be seen as a special case of DCCA. An introduction to FTA may
be found in [3].

MS AO
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FTA has been enhanced with formal semantics. Formal FTA [12] allows to
decide whether failure modes have been forgotten or not. The idea is to assign
a temporal logic formula to each gate. If this formula is proven correct for the
system, then the gate is complete. This means no causes have been forgotten.
An example is given in figure 2.

ϕ2ϕ1

C

ψ

A ((ϕ1∧ϕ2) P ψ)

Fig. 2. Fault tree gate and formalization

The figure shows a synchronous cause-consequence AND-gate. The seman-
tics is that both reasons ϕ1 and ϕ2 must occur simultaneously, before the conse-
quence ψ may occur. Here, A(ϕ P ψ) denotes the derived CTL-operator PRE-
CEDES, which is defined as ¬E(¬ϕ until (ψ ∧ ¬ϕ)). Informally PRECEDES
means that whenever ψ holds, ϕ must have happened before.

Altogether formal FTA distinguishes 7 different types of gates, which reflect
temporal ordering, environment constraints and synchronous vs. asynchronous
dependencies between cause and consequence. A detailed description of formal
FTA may be found in [13].

One of the main results of FTA is the minimal cut set theorem. This theorem
states that for a complete fault tree the prevention of only one failure mode of
every minimal cut set, assures that the system hazard will never occur. A fault
tree is called complete, if all its gates have been proven to be complete.

DCCA may be used to verify the completeness of a fault tree analysis as well.
To apply DCCA to FTA we must first introduce the notion of a complete DCCA.
We call a DCCA complete if all minimal critical sets have been identified.

If a DCCA has been shown to be complete, then it is proven that the minimal
critical sets of the DCCA have the same meaning as the minimal cut sets of a
fault tree done with formal FTA. In particular the following theorem holds:

Theorem 1. Minimal critical sets
For a complete DCCA prevention of one element of every minimal critical set
will prevent the hazard H from occurring.

The proof of this theorem is very easy. The statement may be directly derived
from the definition of minimal critical sets and the semantics of CTL. In the
following SY S denotes a CTL model, s0 is the initial state of the model, minimal
critical sets are called Γ , the set of all minimal critical sets is Ω and individual
failure modes are labeled with δ. We define (CTL*-) formulas [Γ ] for “there exist
a path in the system, such that eventually a critical set of failures Γ occurs” and
[[Ω]] for “there does not exist a path, such that any of the minimal critical sets
Γ ∈ Ω occurs”.
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[Γ ] := E
∧
δ∈Γ

Fδ

[[Ω]] :=
∧

Γ∈Ω

¬[Γ ] =
∧

Γ∈Ω

¬E
∧
δ∈Γ

Fδ

With this abbreviations theorem 1 rewrites to SY S |= [[Ω]] ⇒ SY S |=
AG¬H. In the following traces of system SYS are called σ and states si. The
proof for theorem 1 is then as follows:

Proof.

Assume : SY S �|= AG¬H

⇔ SY S, s0 �|= AG¬H

⇔ SY S, s0 �|= ¬EF¬¬H

⇔ SY S, s0 |= EFH

⇔ SY S, s0 |= E(trueUH)
⇔ ∃σ = (s0, s1, ...) ∈ SY S : SY S, σ |= (trueUH)
⇔ ∃i : SY S, si |= H ∧ ∀j < i : SY S, sj |= true

Let Γ† := {δ ∈ Ω | ∃ j < i : SY S, sj |= δ}

⇒ SY S, σ |= (Γ†UH)
⇔ Γ† is critical set

⇒ ∃Γ̃† ⊆ Γ† : Γ̃† is minimal critical set

Furthermore SY S, σ |=
∧

δj∈Γ†

Fδj

⇒ SY S, σ |=
∧

δj∈Γ̃†

Fδj

⇒ SY S, s0 |= E
∧

δj∈Γ̃†

Fδj

⇔ SY S |= [Γ̃†]

⇒ SY S �|= [[Ω]], as Γ̃† ∈ Ω, because DCCA is complete

⇒ � �

For a complete DCCA even the following, stronger result holds:

SY S, s0 |= A((
∧

Γi∈Ω

¬
∧

δj∈Γi

Fδj) → G¬H)

This is the same property that holds for formal fault tree analysis with the
semantics of [12]. However there is a difference as DCCA is more precise. Formal
FTA may yield weaker cut sets than DCCA. For example, assume a systems
SYS has two redundant units A and B. The hazard H may only occur if both
units fail. So the system has only one minimal critical set of failures: “A fails
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AND B fails”. As an intuitively consequence the fault tree in figure 3 is correct
and the fault tree in figure 4 is incorrect.

BfailsAfails

C

H

A ((Afails ∧Bfails) P H)

Fig. 3. Correct fault tree

BfailsAfails

C

H

A ((Afails ∨Bfails) P H)

Fig. 4. Incorrect fault tree

With formal FTA both fault trees may be proven to be complete, as both
formulas may be proven correct for this system. But the fault tree of figure 3 will
yield only one minimal cut set Γ = {Afails, Bfails} while the fault tree of figure
4 will yield two singleton minimal cut sets Γ1 = {Afails} and Γ2 = {Bfails}. It
is not possible to distinguish the two fault trees with formal FTA. On the other
hand DCCA will discover that {Afails} resp. {Bfails} is not critical, because the
formula correspondind DCCA formula evaluates to false and thus the sets are
not critical. The set Γ = {Afails, Bfails} can be proven to be minimal critical.

The reason for this difference is that formal fault tree semantics does NOT
require that all causes must occur before the consequence, but only that pre-
vention of causes prevents the consequence. Here, DCCA yields more precise
results than formal FTA. A second advantage is that DCCA does not require
inner nodes to be formalized. This is a big advantage in practical applications.
Inner nodes are often very hard to formalize. For example an inner node of the
fault tree of the example of Sect. 4 is “Release sent and barriers opening”. Since
“Release sent” refers to the past, this is not directly expressible in CTL. This
problem was discovered in many case studies and was one of the motivating
factors that led to the development of DCCA.

A problem of showing completeness of DCCA is of course the exponential
growth of the number of proof obligations. However, only big minimal critical sets
will result in a lot of proof effort. In many real applications minimal critical sets
are rather small. In addition, informal safety analysis helps to find candidates
for minimal cut sets in advance. FTA is one possibility, FMEA is another. This
reduces the combinatorial effort of checking all possible sets of failure modes a lot.
Finally, monotony of the property critical may be exploited; if e.g. a singleton
set is minimal critical, then other minimal critical sets must not contain this
element.

4 Application

As an example for the application of DCCA we present an analysis of a radio-
based railroad crossing. This case study is the reference case study of the german
research councils (DFG) priority program 1064. This programs aims at bringing
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together field-tested engineering techniques with modern methods of the domain
of software engineering.

The German railway organization, Deutsche Bahn, prepares a novel technique
to control railroad crossings: the decentralized, radio-based railroad crossing con-
trol. This technique aims at medium speed routes, i.e. routes with maximum
speed of 160 km/h. An overview is given in [7].

Fig. 5. Radio-based railroad crossing

The main difference between this technology and the traditional control of
railroad crossings is that signals and sensors on the route are replaced by radio
communication and software computations in the train and railroad crossing.
This offers cheaper and more flexible solutions, but also shifts safety critical
functionality from hardware to software.

Instead of detecting an approaching train by a sensor, the train computes the
position where it has to send a signal to secure the level crossing. To calculate the
activation point the train uses data about its position, maximum deceleration
and the position of the crossing. Therefore the train has to know the position
of the railroad crossing, the time needed to secure the railroad crossing, and
its current speed and position. The first two items are memorized in a data
store and the last two items are measured by an odometer. For safety reasons
a safety margin is added to the activation distance. This allows compensating
some deviations in the odometer. The system works as follows:

The train continuously computes its position. When it approaches a cross-
ing, it broadcasts a ‘secure’-request to the crossing. When the railroad crossing
receives the command ‘secure’, it switches on the traffic lights, first the ‘yellow’
light, then the ‘red’ light, and finally closes the barriers. When they are closed,
the railroad crossing is ‘secured’ for a certain period of time. The ‘stop’ signal
on the train route, indicating an insecure crossing, is also substituted by compu-
tation and communication. Shortly before the train reaches the ‘latest braking
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point’ (latest point, where it is possible for the train to stop in front of the cross-
ing), it requests the status of the railroad crossing. When the crossing is secured,
it responds with a ‘release’ signal which indicates, that the train may pass the
crossing. Otherwise the train has to brake and stop before the crossing. The
railroad crossing periodically performs self-diagnosis and automatically informs
the central office about defects and problems. The central office is responsible for
repair and provides route descriptions for trains. These descriptions indicate the
positions of railroad crossings and maximum speed on the route. The safety goal
of the system is clear: it must never happen, that the train is on the crossing and
a car is passing the crossing at the same time. A well designed control system
must assure this property at least as long as no component failures occur. The
corresponding hazard H is “a train passes the crossing and the crossing is not
secured”. This is the only hazard which we will consider in this case study

4.1 Formal odel

We now give a brief description of the formal system model. We used SMV [8]
as model checker. Altogether the system consists of 16 automata: two automata
modeling the control of the crossing and the train, five timer automata, six failure
automata and three automata modeling the physics of the train. Altogether the
model has roughly 1100 states. In the following we give brief descriptions of the
most interesting automata. For better readability - we use a graphical notation
instead of SMV input language.

Primary ailure and azards We will now briefly explain the analyzed failure
modes and hazards and how they are modeled. The modeling of failure modes
generally splits into two different tasks: the modeling of the occurrence pattern
and the direct effect of the failure mode. The occurrence pattern describes, when
and how the failure occurs resp. when it does not occur. We model occurrence
patterns with failure automata (see Sect. 2.1).

In the following we give a summary of the failure modes, which we analyzed.
In this example only one hazard is interesting i.e. the train passes an insecure
crossing. We call this hazard collision HCol. This is modeled by the following
formula:

HCol := Pos ≤ Posds ∧ Pos + Speed > Posds ∧ ¬Crossing = closed

In this formula Posds is an abbreviation for the position of the crossing (ds =
danger spot). It describes the location of the crossing. HCol evaluates to true,
iff the train passes the crossing and the barriers are not closed. We investigated
the following six different types of component failures:

– Failure of the brakes: error brake -This error describes the failure of the
brakes. It has direct effects on automaton Dec.

– Failure of the communication: error comm - This error describes the
failure of the radio communication. It has direct effects on automata
timerclosercv

, timerstatusrcv
, timerackrcv

.

M
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– Failure of the barriers closed sensor: error closed - This error describes
that the crossing signals closed, although it is not closed. It has direct effects
on automaton crossing.

– Failure of the barriers’ actuator: error actuator - This error describes
that the actuator of the crossing fails. It has direct effects on automaton
crossing.

– Failure of the train passed sensor: error passed - This error describes
that the sensor detecting trains which passed the crossing fails. It has direct
effects on automaton crossing.

– Deviation in the odometer: error odo - This error describes that the
odometer does not give 100% precise data. It has direct effects on automaton
train control.

The occurrence of each of these failure modes is modeled by a failure automa-
ton. All failure modes - except error actuator - are assumed to be transient. As
abbreviation we write error brake for error brake = yes.

Model of the rossing The automaton in figure 6 shows the model of the
crossing. Initially the barriers are opened. When the crossing receives a close
request from an arriving train - i.e. condition comm close rcv becomes true, the
barriers start closing. This process takes some time. This is modeled by timer
automaton timer closing. After a certain amount of time the barriers are closed.
They will remain closed until the train has passed the crossing (detected by a
sensor). The barriers reopen automatically after a defined time interval. This is a
standard procedure in railroad organization, as car drivers tend to ignore closed
barriers at a railroad crossing if the barriers are closed too long. So it is better
to reopen the barriers, than having car drivers slowly driving around the closed
barriers. The reopening is modeled using another timer automaton timer closed.

A faulty signal from the sensor, which detects when the train has passed the
crossing will also open the crossing. This is modeled by error passed = true. The
barriers may get stuck, if the actuator fails (error actuator).

Model of the rain ontrol The train control supervises the position of the
train, issues closing requests to the crossing and ultimately decides, if an emer-
gency stop is necessary or not. The train control is implemented in software
on-board the train. The formal model is given in figure 7. Starting from its ini-
tial state idle the automaton goes into state wfc (‘wait for close’), if the train
approaches the crossing (pos close reached). Simultaneously the train sends a
signal requesting to close the barriers.

Some time later the train sends a status request message to the crossing and
waits for an answer (state wfs - ‘wait for status answer’). If the positive answer
reaches the train in time, then the control allows passing the crossing and enters
state finish. If no acknowledge is received, the control issues an emergency stop
(state brake). In this case the crossing must be secured manually, before the
train may pass the crossing.

C

C .

.T
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Fig. 6. Model of the crossing

Fig. 7. Model of the train control

The three important predicates pos close reached, pos status reached and
pos brake reached are computed from position and speed data. Possible errors
result by deviation of the speed sensor of the train (called odometer). This means
the control might calculate braking distances etc. wrongly.

Model of the ommunication It is part of the case study to take communica-
tion delay explicitly into account. To model this three additional timer automata
(timerclosercv

, timerstatusrcv
, timerackrcv

) are built. Timer automata allow to de-
lay certain transitions for n steps and have respectively n states. If, for example,
the train sends a close signal to the crossing, timer timerclosercv

starts a count-
down (in every step it makes transition from state n to state n-1). When finally
timerclosercv

reaches state 0, the condition comm close rcv becomes true which
means close signal is received by the crossing. Failure of communication pre-
vents the signal comm close rcv from being received. The others communication
request are modeled analogously.

Model of the rain The physical train is modeled by three important prop-
erties: position, speed and acceleration. To improve readability, we give textual
representation of these automata.

C .

.T
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The position of the train is given as an integer value between 0 and PosMax.
The automaton modeling the position of the train is defined as follows:

Pos : 0..PosMax

Post=0 := 0

Post=n+1 :=

⎧⎨
⎩

0 or 1, if Post=n = 0
Post=n + Speedt=n, if Post=n + Speedt=n ≤ PosMax

PosMax, otherwise

This automaton models monotone movement of the train. State Pos = 0 is
an abstraction for “the train has not reached the crossing”. At every step in time
it is possible that the train either stays absent Pos = 0 or enters the region in
front of the crossing Pos = 1. Between 1 and Posmax the train moves according
to its speed. When the train reaches the upper bound of PosMax, we abstract
this state to “train has passed the crossing”.

The speed of the train is assumed to be constant, unless an emergency break
is signaled. This is modeled as follows:

Speed : 0..SpeedMax

Speedt=0 := SpeedMax

Speedt=n+1 :=
{

Speedt=n − dect=n, if Speedt=n − Dect=n ≥ 0
0, otherwise

For the case study only deceleration is analyzed. The model can however easily
extended to acceleration as well. Deceleration is controlled by TrainControl. It
is by default 0 unless TrainControl is in state brake. Error brake may prevent
braking.

Dec : 0..DecMax

Dect=0 := 0

Dect=n+1 :=
{

DecMax, if TrainControl = brake ∧ ¬error actuator

0, otherwise

4.2 DCCA

This model was used to analyze the system with DCCA as described in Sect. 2.
All proofs were done using the SMV model checker tool. The proofs took less
than 1 minute (for PosMax = 1000 and SpeedMax = 16).

First we proved that the system is functionally correct. We showed that
the empty set of failure modes is not critical. The next step was to examine
the singleton sets. We found that {error passed} and {error odo} were the only
critical sets. Because the system is functional correct, these two are also minimal
critical. To find minimal critical sets with two elements, we had to check only
those sets, which do not include {error passed} or {error odo}. So 6 proofs
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of criticality were needed. Four of the examined sets them were found to be
critical. No more sets of failure modes existed, which not already included on of
the minimal critical sets. Altogether DCCA yielded the following complete list
of minimal critical sets:

– {error passed}
– {error odo}1

– {error comm, error close}
– {error comm, error brake}
– {error close, error actuator}
– {error brake, error actuator}

This example shows that the effort for a complete DCCA does not grow expo-
nentially in real applications, if monotony is used and an adequate methodology
is used. This can be quickly computed with set algorithms. In conclusion, by
use of monotony instead of 26 proof obligations only 13 proofs were necessary
to determine all minimal, critical sets.

The results were very surprising for us. We already did a formal FTA with the
semantics of [12] for this system using the interactive theorem prover KIV [1].
The fault tree we have proven to be complete consisted of only OR-gates. This
means all leaves of the fault tree are single point of failures. DCCA now shows
that only error passed and error odo are single points of failure. Other failure
modes, which seem to be very safety critical - like for e.g error brake - are only
critical in conjunction with other failures. But this result is also intuitively cor-
rect. For example if only the brakes fail and everything else works correctly, then
the crossing will be secured in time and there will be no need for an emergency
stop at all. This means failure of the brakes is NOT a single-point-of-failure for
this system. So this example is a proof of concept that the results of DCCA are
not only in theory more precise than formal FTA but also in practice.

5 Related Work

There exist some other methods of formally verifying dependencies between com-
ponent failures and system failure modes. One such technique is formal FTA [12].
Formal FTA requires, that all inner nodes of a fault tree are formalized. This
can be very time consuming and difficult (see the example in Sect. 4). A second
problem with formal FTA is, that it relies on universal theorems. But, proof

1 This failure mode is only critical, if the safety margin in the calculation of
pos closed reached is to small.

obligations for gates must be universal, since only universal properties can tran-
sitively lead to properties for the whole system. DCCA uses existential proof
obligations. This allows to distinguish whether an (failure) event is a necessary
or sufficient condition.
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Another related approach has been developed in the ESACS project [2]. Here
again model checking and FTA is used as basis. The ESACS approach does not
require inner nodes of the fault tree to be formalized. However, the approach
requires to adjust the model for different proofs. This can be time consuming
(building BDDs for model checking is expensive) and

6 Conclusion

We presented a general formal safety analysis technique: DCCA. DCCA is a
generalization of the most widely spread safety analysis techniques: FMEA and
FTA. In the formal world, verification of functional correctness, formal FMEA
and formal FTA may be found as special cases of DCCA. So DCCA may be used
to verify different types of safety analysis techniques in a standardized way. The
proof obligations of DCCA may be constructed automatically and the proofs
can be done - for finite state systems - by model checking.

DCCA formalization is strictly more precise, than other formal formal safety
analysis techniques like formal FTA. Theoretically, the effort for DCCA grows
exponentially. But we have not found this case to happen in real world applica-
tions. The costs are more likely to grow linear (for non redundant systems) or
polynomial by n (for systems with n-times redundancy), if monotony is used.

We showed the application of DCCA to a real world case study: the refer-
ence case study “radio-based railroad crossing” of german research foundations
priority program 1064. DCCA has rigorously identified critical sets of failure
modes and the results of the analysis were much more precise than what can be
achieved with informal or formal FTA.
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Our society is increasingly dependent on computer systems that play a vital role in 
practically all aspects of our economy and daily lives. The question about the limits of 
computer dependability and about the challenges raised by those limits is more acute 
than ever. These challenges are not merely technological, as the complex facets of the 
dependability equation also touch methodological aspects, attitudes, and educational 
issues more and more. 

In the past, the terms high dependability, fault tolerance, and safety critical had 
connotations to high demanding and specific applications such as flight control and 
nuclear power plants. Today, the networked information society has created an in-
credible complex pattern of interconnected computer systems, from small embedded 
systems to very large transactional servers, that interact with users in a huge variety of 
ways and scenarios. This complex structure of computes, networks, and people com-
prises the most demanding challenges in computer dependability.  

In spite of the significant advances that have been achieved in computer depend-
ability in the past, the situation today requires a resetting of the research effort on 
computer dependability, in tight connection with other disciplines such as human 
behavior or sociological sciences. In addition to this interdisciplinary research effort, 
the educational issues related to computer dependability deserve particular attention, 
as there is a clear gap between what is known and what is being taught, not only at the 
system design course syllabuses but also in a more sense of creating a dependability-
aware culture. 

In the panel we bring to discussion the two complementary aspects mentioned 
above:  

 new challenging problems on computer dependability, as applied to the hardware, 
software, or human elements, either focusing on specific application domains or 
addressing future scenarios and visions for the information society and for the 
computer industry, and 

 new ideas on how to promote a dependability-aware culture in all the play-
ers/institutions (education, research, industry, research funding, and users), attract 
new researchers to the field, and highlight the fundamental role of the research on 
new dependability technologies in the information and communication systems 
and infrastructures.  
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Abstract. Despite the continuous stressing of security and safety aspects in IT 
systems, the deployment of highly available services or secure applications is 
still low. Very often, the economic aspects for the adoption of new technologies 
are ignored at their conception. New mobility and mobile services will revolu-
tionize our everyday life – only if they come with adequate quality. Standards 
are an important means to drive the wide adoption of new technology – if 
backed by industry and research. A good example for such a combined ap-
proach is the Service Availability Forum. 

1   Where to Start? 

Security and safety have been focus areas of computer science from the beginning and 
a wide range of methods, technologies and products have been developed and are 
being developed as of today. Fault tolerant computer systems, certified operating 
systems, processes for the development of safety critical software and associated tools 
are available.  

With a few notable exceptions (e.g. security gateways or cluster systems) all these 
technologies have one thing in common: their business potential is limited and they 
have not been adopted on a broad scale. 

A number of reasons may be responsible for this effect: technology, cost, know-
how, interest, insufficient ease of use or access and many more. In the rest of this 
paper, we will look at these issues using mobile services and their availability as an 
example, and show how these issues can be overcome. Although this does offer a 
very focused view on the wide area of dependability we think that the following 
thoughts can be broadened to most if not all aspects of security and safety. 

We will use a relatively intuitive understanding of the terms availability and mobil-
ity in the rest of the paper. For detailed definitions, the readers are referred to more 
technical papers such as [1]. 

2   Availability – The Market and Complexities Are Growing 

Although it has been said over and over again - our society’s dependency upon In-
formation Technology (IT) is still growing. This trend will continue into the foresee-
able future. The effects of this growing dependency are felt in everyday life: 
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- Chaos rules if baggage cannot be delivered at the airport, 
- millions of working hours are lost due to computer viruses, 
- billions of dollars are spent to fix bugs in automotive applications. 

But: the business potential and the positive effects on life of the increased use of IT 
for mobile services and for mobility services are far beyond today’s imagination: 

- ad hoc networks in car to car communication will reduce the time spent in 
traffic jams, 

- remote service using mobile networks will save millions of hours waiting at 
the car dealer. 

At the same time, the technological complexity and the service complexity will in-
crease tremendously. Networks of networks will be formed, speed of communication 
will multiply, services will be cross connected. New services need to be implemented 
fast to achieve a short time to market and to create RoI (Return of Investment) 
quickly.  

And there is a high risk that the quality of these services will not be sufficient to be 
widely adopted. Until now, standards for high-availability components or develop-
ment environments, though evolving, are not yet widely adopted by the industry. 
Missing standards means that independent software vendors (ISVs) cannot take ad-
vantage of large scale deployments of their high-quality solutions on a number of 
architectures. Therefore they will only use such tools and methods which do not hin-
der the easy deployment of their applications.  

Without standard availability components and platforms, the implementation of 
highly available mobile services becomes much more complex and therefore expen-
sive than writing standard quality solutions. And the time to market will increase 
considerably, binding resources in the development of platforms features. Their pro-
prietary high-availability implementations need to be maintained over the lifetime of a 
project or product, again making it extremely expensive and taking resources away 
from the development of value generating service features. 

The support for availability features is very limited in standard and widely used 
development environments such as Java beans or UML. Therefore the integration of 
high-availability features requires additional efforts, often not spent in the initial 
phases of a product and extremely difficult to add after a product has been released. 

Overall, the know-how about availability and fault-tolerance functions and their 
implementation is posing a major obstacle to the wide use and deployment of high-
quality new services fulfilling the availability requirements of successful, highly scal-
able mobility and mobile solutions for millions of users. 

3   Industry Initiatives Are Under Way, But… 

A number of initiatives are ongoing, which address high-availability and reliability 
aspects in industrial environments. The W3C is specifying web concepts for reliable 
messaging and transaction support. The PICMG consortium is specifying hardware 
architectures (Advanced TCA) for the use in so-called carrier-grade environments, i.e. 
environments showing the same high-availability as traditional telecommunications 
networks.  
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The approach, the Service Availability™ Forum (SAForum, www.saforum.org, 
[2]) has taken, is an excellent example for a focused, but standards based approach to 
achieve availability levels only known in proprietary telecommunications systems. 
The initiative was started in 2001 when it became clear that proprietary telecommuni-
cations equipments will be more and more replaced by standard IT components. A 
whole new ecosystem of hardware, middleware and solutions is developed around 
standards and commercial off-the-shelf IT components. SAForum members are all 
major IT manufacturers, most major network equipment manufacturers and a number 
of ISVs. The standards are driven on a marketing level and on a technical level. 

The SAForum marketing group promotes the wide adoption of SAForum standards 
through publications, fair participation, conferences (International Service Availabil-
ity Symposium), analysts and press briefings. The SAForum technical work group 
specifies standards for high-availability middleware interfaces, functionality which is 
in use in legacy telecommunications solutions for a number of years already. The 
interface categories are: 

- HPI (hardware platform interface): specifications for the management of re-
dundant hardware components, 

- AIS (application interface specification): interfaces for application develop-
ers to create applications with the highest levels of availability, 

- SMS (software management specification): interfaces and data structures 
for the management of redundant, highly available software and hardware 
structures. 

Also on EU level, high-availability is a focus area of research with IST-2004-2.4.3 - 
Towards a global dependability and security framework. This Strategic Objective aims 
at building technical and scientific excellence, as well as European industrial strength in 
security, dependability and resilience of systems, services and infrastructures. 

Also, the aspects of critical infrastructures have gained a lot of attention recently. 
The complex interplay between the use of IT and critical infrastructures such as 
communications networks, finance, air traffic or water supplies are addressed on na-
tional and international levels. 

4   Integrated Research Is a Must 

It should be clear from the above that research needs to take an integrated look at 
dependability. Of course, a technologically sound basis is indispensable. But to over-
come the critical inhibitors of highly dependable mobile services, economic and us-
ability aspects need to be addressed simultaneously. 

For each high-availability technology its economic implications need to be dis-
cussed. Aspects of adoption, integration with current or new applications, usability 
are decisive for the success of a new or improved technology.  

Key elements of high-availability research need to be: 

- Working with standards and industry bodies 
- Integration with widely used tools and products 
- Dissemination of know-how and expertise 
- Economic evaluation of new or updated technologies 
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- Providing adequate development tools, again with an eye on their integration 
with widely accepted technologies (Java, UML) 

- Supporting the reuse of existing code 
- Scalability of solution development as in many cases the acceptance of mo-

bility services is not known in the initial project phases. 

The SAForum supports an academic affiliation program to foster a closer coopera-
tion between research and industry. Researchers are invited to participate actively. 
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Abstract. Mission critical systems are computer-based control systems that 
people depend on, often for their livelihoods, sometimes for their lives. As the 
integration scale of VLSI increases, computer-based systems are more prone to 
be affected by Single Event Upsets (SEUs). FPGAs have proven to be very use-
ful devices for the injection of SEUs in order to assess the dependability of 
those systems. The conventional approach for injecting SEUs following the 
Run-Time Reconfiguration methodology involves reconfiguration times de-
pendent on the complexity of the model. In case of complex models, it will 
greatly increase the execution time of fault injection experiments. This paper 
presents a new approach for the injection of SEUs into the memory elements of 
the system under test by means of FPGAs. This approach takes benefit of the 
FPGA architecture to minimise the reconfiguration time for SEU injection, ob-
taining an speed-up of near two orders of magnitude. 

1   Introduction 

In recent years, there has been a great increase in the use of computer-based systems 
in mission critical systems, such as automotive systems, aircrafts, telecommunication, 
etc. The occurrence of a failure in this kind of systems can cause the loss of huge 
amounts of money or even worst the loss of human lives. Therefore, there has been a 
great interest in developing different techniques to validate the fault tolerance capa-
bilities of these systems and evaluate their dependability. 

At the same time, the integration level of electronic circuits is experiencing a con-
tinuous increase. The complexity of these new systems is making it difficult to guar-
antee a certain level of dependability due to the increasing rates of occurrence of tran-
sient (also known as soft errors or single event upsets (SEU)), intermittent and 
permanent faults [1]. 

Fault injection appears as a suitable means to evaluate the dependability of this 
kind of systems. The main aim of fault injection is to enable the analysis of the behav-
iour of the systems in the presence of faults. The process of introducing such faults 
into the system in a controlled way is named injection. It is well known that the analy-
sis of the results obtained from these experiments is useful to assess the dependability 
of the system under study. 

   M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.):



 Fast Run-Time Reconfiguration for SEU Injection 231 

 

Fault injection techniques are usually divided into three main groups[2][3]: 

 Hardware Implemented Fault Injection (HWIFI)[4], which consists in the injec-
tion of faults into the real system (or a prototype) by means of physical mecha-
nisms. 

 Software Implemented Fault Injection (SWIFI)[5], which is also applied to the real 
system (or a prototype), performs the fault injection by means of logic mecha-
nisms, such as programs, the operating system, etc. 

 Simulation-Based Fault Injection (SBFI)[6], which consists in the injection of 
faults in a model of the system. 

Although the execution of fault injection experiments by using HWIFI and SWIFI 
techniques is very fast, these techniques can only be applied on the last stages of the 
design cycle, since they require the final system or a prototype to be available. Fixing 
a design fault can be very costly, both in time and money, since it is necessary to iter-
ate again through the design cycle. 

On the other hand, SBFI techniques can be applied to a model of the system in the 
first stages of the design cycle. This allows design faults to be corrected earlier in the 
design cycle, saving time and money. However, at that time, there is little knowledge 
about the final implementation of the system. Therefore, it is necessary to develop 
very detailed and complex models of the system to achieve a desired level of repre-
sentativeness. Since simulations are performed on a computer system, the time de-
voted to the simulation of these complex models is very long. Thus, the community is 
in need of solutions to reduce this simulation time. 

The evolution of the FPGAs (Field Programmable Gate Array) architecture and the 
development of hardware emulators provided a solution for fulfilling the previous re-
quirement by exploiting the reconfigurable capabilities of FPGAs with fault injection 
purposes [7][8][9]. Reconfiguring the FPGA involves the manipulation of the logic 
within the device at run-time. The basic idea consists in reconfiguring the device to 
emulate the behaviour of the system in the presence of faults. This technique has two 
main advantages: 1) it can be applied in the first stages of the design cycle since it 
only requires a model of the system and 2) it is executed very fast since it runs on real 
hardware (there is not any simulation process). In this way, the complex models can 
be executed on an FPGA at a speed very close to the speed of the final prototype. 

Generally, FPGAs lack of the level of observability available in SBFI, but they can 
be very useful at quickly locating the source of error. After that, an SBFI tool can per-
form a fault injection focused on these areas previously located by the FPGA-based 
fault injection. 

As previously stated, the appearance of SEU faults into new complex systems is an 
important issue the community must deal with. The main drawback of FPGA-based 
fault injection techniques is the need of reconfiguring the system for each fault that 
must be injected. In fact, the internal architecture of FPGAs makes the injection of 
SEUs to be a very time consuming process. Thus, it is mandatory to develop new ap-
proaches to minimise the time devoted to reconfigure the system for fault injection 
purposes. 

This paper presents a novel approach for the injection of SEUs into the model of a 
system by means of FPGAs. This approach minimises the amount of bits required for 
reconfiguring the device and, therefore, greatly decreases the time devoted to the fault 
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injection process. Moreover, the reconfiguration time for this approach is nearly  
constant and does not depend on the complexity of the system under study. 

The structure of this paper is the following. Section 2 presents an overview of the 
existing FPGA-based fault injection techniques. The conventional and the novel  
approaches for SEU injection following the run-time reconfiguration methodology are 
detailed in Section 3. A timing analysis for the SEU injection following each  
approach is presented in Section 4. Results from practical experimentation are presented 
in Section 5. Finally, the conclusions and future work can be found in Section 6. 

2   FPGA-Based Fault Injection Techniques 

Two different methodologies have been developed to inject faults by means of 
FPGAs. Each one of these methodologies is based on a different approach for the de-
velopment of reconfigurable applications (see Fig. 1): compile-time reconfiguration 
(CTR) and run-time reconfiguration (RTR). 
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Fig. 1. FPGA-based fault injection methodologies: Compile-Time Reconfiguration (left); Run-
Time Reconfiguration (right) 

2.1   Compile-Time Reconfiguration 

The CTR technique relies on the instrumentation of the model to make it injectable 
[10][11][12]: the original model is modified to include the logic that emulates the be-
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haviour of the system in the presence of faults. This logic is controlled by the activa-
tion of some external signals that are used to perform the fault injection. Usually, this 
control logic is implemented by means of a mask-chain, which allows the user to per-
form the fault injection and to get the internal state of the system by using this mask-
chain as a shift register. 

Obviously, the instrumented model needs more FPGA internal resources than the 
original model. In the case of complex systems, the instrumentation of the whole 
model does not fit into the selected device, requiring several partial instrumentations 
of the model. Since the synthesis and implementation are very timing consuming 
processes, it seems clear that other solutions must be applied for injecting faults into 
complex systems. 

2.2   Run-Time Reconfiguration 

The RTR technique relies on the dynamic and partial reconfiguration capabilities of 
programmable devices. In that case, reasoning is made in terms of how to reconfigure 
the internal resources of the device to emulate the behaviour of the system in the pres-
ence of faults [13][14][15][16]. 

The main advantage of this technique is that the original model of the system is not 
instrumented and, therefore, only one implementation is needed: the fault-free one. 
Therefore, it does not require any additional resource and appears as a suitable tech-
nique for fault injection in very complex systems, which will require several partial 
instrumentations otherwise. 

In this approach, the configuration port of the device is used with fault injection 
purposes. The reconfiguration of the programmable device, i.e. the fault injection, re-
quires the transfer of a reconfiguration file between the host and the FPGA through 
this port. Thus, each injection increases the time devoted to the execution of the injec-
tion experiment. In the same way, the host can obtain the internal state of the recon-
figurable device. Therefore, it is necessary to develop different approaches that mini-
mise the amount of bits to be transferred in order to reconfigure the device for fault 
injection. 

3   Fast Run-Time Reconfiguration for SEU Injection 

RTR has been presented as a well suited methodology for the speed-up of SBFI ex-
periments. The fault injection is performed by means of some reconfiguration files 
that are transferred between the host and the programmable device. In order to  
minimise the injection time, the amount of bits to be transferred must be kept to a 
minimum. 

The size of the reconfiguration files when using the conventional approach for 
SEUs injection is dependent on the number of flip-flops (FF) in the system. There-
fore, as the models become more complex, these files become larger and the injection 
process takes longer. 

This paper presents a novel approach for the fast injection of SEUs following the 
RTR methodology. This new approach greatly reduces the time devoted to the fault 
injection process since the size of the reconfiguration files has been minimised to a 
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large extent. Moreover, the size of these files is no longer dependent on the complex-
ity of the model, making this approach very suitable for any kind of system. 

In order to show the mechanisms that are followed by the conventional and the 
proposed approach in order to perform a SEU injection, it is necessary to provide a 
model of a basic configurable block for a generic FPGA. The basic configurable 
block of the main FPGAs in current use, such as Virtex-II [17] from Xilinx and 
Stratix II [18] from Altera, can be modelled as shown in Fig. 2. 
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Fig. 2. Schematic view of a basic configurable block of a generic FPGA 

As can be seen on Fig. 2, the FF is fed directly from the FFin input or from a Look-
Up Table (LUT) that implements some combinational logic. It is possible to asyn-
chronously apply a set or reset to the FF by means of the Global Set Reset (GSR) and 
the Local Set Reset (LSR) lines. The GSR line drives all the FF of the FPGA and can 
pulsed via the configuration port of the device. The LSR line only drives one FF and 
it is mainly used to implement the clear signal for components such as counters. This 
line can not be externally pulsed. The logic value being driven onto the signals can be 
inverted by means of the suitable switch. 

This model will be used in the following points to present the conventional and the 
proposed approach for the injection of SEUs following the RTR methodology. 

3.1   Conventional Approach 

The injection of SEUs involves that the state of a memory element changes to the op-
posite. The approach proposed in [13][14] focuses on SEUs in the flip-flops (FFs) of 
the FPGA used as functional memory elements.  

As seen in Fig. 2, the only way of changing asynchronously the state of a FF is to 
apply a set or reset to it. Since it is possible to pulse the GSR line, it can be used to 
asynchronously change the state of the FF. Whether a set or a reset will be performed 
depends on the state of the PRsw and CLRsw switches respectively. 

Since pulsing the GSR line causes all the FFs of the FPGA to be set/reset, it is nec-
essary to read the state of these FFs previously. Depending on the state of the FF and 
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the SRsw/CLRsw, these switches must be reconfigured to maintain the state of the FF 
or to flip it. 

The SEU injection under this approach consists of the following steps: 

1. Start the execution of the application. 
--- Begin the fault injection process --- 

2. Stop the execution. A time trigger is used for fault injection. 
3. Read the state of all FFs. 
4. Change the state of any required PRsw/CLRsw according to the state of its FF. 
5. Pulse the GSR line. This will change the state of the desired FF. 
6. Change the state of any previously modified PRsw/CLRsw to its original state. 
7. Resume the execution. 

--- End the fault injection process --- 
8. End the execution. Record the observations and perform their analysis if required. 

It is to note that the SEU injection involves two different operations: 1) read the 
state of all FFs; 2) reconfigure the state of some switches. The time devoted to both 
operations is dependent on the number of FFs in the system and their state: more FFs 
means more information to be transferred between the host and the FPGA. 

According to this result, the injection of SEUs in complex systems will greatly in-
crease the execution time of experiments. Thus, the necessity of reducing the recon-
figuration time for the injection of SEUs arises. 

3.2   Novel Approach 

The main problem of the conventional approach is that the GSR line drives the 
set/reset lines of all the FFs of the device. This leads to large reconfiguration files for 
complex systems: read the state of all the FFs and reconfigure almost all the related 
switches. 

The generic architecture shown in Fig. 2 presents a LSR line that enables to asyn-
chronously set/reset the state of just one FF. The use of this line would dramatically 
reduce the size of the reconfiguration files: read the state of just one FF and reconfig-
ure a couple of switches. 

As previously explained, the LSR line is mainly used for the implementation of 
components such as counters. Therefore, there is no means to pulse the LSR line ex-
ternally since it will be driven by the logic of the design. The evolution of the state of 
the system will determine when to apply a set/reset to the FF via the LSR line. 

However, a deeper look at Fig. 2 will provide solution for this problem. It shows 
that the LSR line has a switch (InvertLSR) that is in charge of inverting the logic 
value of the driven signal if required. There is no way to tell whether a high or low 
logic level is being driven into the line, but both levels can be obtained just by chang-
ing the state of InvertLSR. 

Let us assume that, after reconfiguring PRsw/CLRsw properly and activating the 
LSRsw switch, a low logic level is being driven into the LSR line and the InvertLSR 
switch is not inverting this value. Changing the state of InvertLSR will drive a high 
logic level into the line and, therefore, will set/reset the FF. In case the InvertLSR 
switch was already inverting the logic level of the line, the FF will already be set/reset 
before changing the state of InvertLSR and, therefore, the goal will already be 
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achieved. The same reasoning can be applied to the case when a high logic level is be-
ing applied into the line. Thus, this approach assures that the FF will change its state. 

The steps this approach involves are: 

1. Start the execution of the application. 
--- Begin the fault injection process --- 

2. Stop the execution. A time trigger is used for fault injection. 
3. Read the state of the FF that is to be affected by the SEU. 
4. Change the state of the PRsw/CLRsw according to the state of its FF. 
5. Change the state of the LSRsw to enable the LSR line to set/reset the FF. 
6. Change the state of the InvertLSR to assure that the FF will be set/reset. 
7. Change the state of the InvertLSR to its previous value. 
8. Change the state of the LSRsw to disable the LSR line to set/reset the FF. 
9. Change the state of the PRsw/CLRsw previously modified to their original state. 
10.Resume the execution. 

--- End the fault injection process --- 
11.End the execution. Record the observations and perform their analysis if required. 

This approach involves the transfer of fewer bits than the conventional one. How-
ever, it assumes that the logic value of the LSR line is being driven by the logic. It 
could seem that in case the LSR line is not being used for a particular FF this ap-
proach could not be used. This special case that, instead of being a problem, is a faster 
approach is presented on the following section. 

Special Case. The proposed approach relies on the LSR line to be driven by the logic 
of the design. If this line is not routed in the design, no logic value will be driven into 
the line and, therefore, this approach will not be feasible.  

However, it is to note that the unrouted lines, i.e. those that are not being used by 
the design, are not left as open lines. Usually, to avoid any kind of problem arising 
from this fact, all the unrouted lines are bound to a high logic level. According to this, 
just the simple activation of the LSRsw will allow the LSR line, if unrouted, to 
change the state of the FF. 

This special case reduces the number of steps required to inject a SEU: 

1. Start the execution of the application. 
--- Begin the fault injection process --- 

2. Stop the execution. A time trigger is used for fault injection. 
3. Read the state of the FF that is to be affected by the SEU. 
4. Change the state of the PRsw/CLRsw according to the state of its FF. 
5. Change the state of the LSRsw to enable the set/reset of the FF. 
6. Change the state of the LSRsw to its previous value. 
7. Change the state of the PRsw/CLRsw previously modified to their original state. 
8. Resume the execution. 

--- End the fault injection process --- 
9. End the execution. Record the observations and perform their analysis if required. 
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This is the simplest possible approach: the LSR line is not being used so it is 
bounded to a high logic level. It greatly reduces the amount of bits to be transferred in 
order to reconfigure the device. 

4   Theoretical Analysis 

At first sight, it seems that this novel approach is faster than the conventional one. 
However, in order to validate the feasibility of this approach, an estimation of the 
time devoted to the SEU injection has been carried out. 

Since this approach relies on the RTR capabilities of the device, the platform that 
has been selected to carry out the experiments is a prototype board from Celoxica [19] 
(RC1000PP with a Virtex XCV1000 FPGA from Xilinx). The SelectMap interface of 
Virtex FPGAs [20] enables the partial reconfiguration of the device [21] and the read-
back of its internal state. The minimum reconfiguration unit is called a frame and it 
consists of 1248 bits for a XCV1000 FPGA. This device contains 96 columns and 64 
rows of configurable logic blocks (see Fig. 3) that hold 4 FFs each, for a total of 
24576 FFs. 
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Fig. 3. Schematic view of a basic configurable block of Virtex architecture 

A software package named JBits [22] has been used to make easier the modifica-
tion of the configuration file and the RTR of the FPGA. This Java API allows the user 
to develop applications that are able to analyse the configuration file of the FPGA and 
to read/write contents from/to the configuration memory of the device. A typical 
Readback command (see Table 1) consists of seven 32-bit words (224 bits) and ob-
taining the state of one FF involves the transfer of two frames (2496 bits). 
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Table 1. Typical Readback command of Virtex FPGA 

AA995566 ;Synchronisation Word 

30002001 ;Packet Header: Write to Frame Address 
00B40400 ;Packet Data: CLB, MJA = 90, MNA = 2 (Location to read from) 

30008001 ;Packet Header: Write to Command 
00000004 ;Packet Data: Read Configuration Data 
2800604E ;Packet Header: Read Frame Data Output (Word Count=2 frames) 
00000000 ;Dummy Word 

The selected prototype board is connected to a PCI slot of the host computer. The 
PCI interface allows for transfer rates up to 33 MHz and the SelectMap interface of 
Virtex FPGAs can transfer 8 bits in parallel. Thus, the maximum bandwidth between 
the host and the board is of 264000 bits per second. 

The next sections detail the timing analysis for the injection of SEUs following the 
conventional and the novel approaches. 

4.1   Conventional Approach 

This approach relies on the use of the GSR line to asynchronously change the state of 
the selected FF. Since this is a global line for all the FFs of the device, it is necessary 
to readback the state of these FFs. In the worst case, the state of all the FFs of the 
FPGA must be read. The total number of bits involved in this operation is carried out 
in Equation 1: 

Readback all FFs (allFF)= 

(readback 1 FF + readback command) * #FFs per column * #columns = 

(2496 + 224) * 4 * 96 = 1044480 bits . 

(1) 

Facing once more the worst case, all the SRsw1 and SRsw2 must be reconfigured 
in order to maintain or invert the state of each FF. The number of bits involved in this 
operation is carried out by analysing the partial reconfiguration file provided by JBits. 
This file contains 1022080 bits. The GSR line is automatically pulsed after download-
ing the reconfiguration file into the FPGA. After that it is necessary to revert the con-
figuration of the device to the original one by downloading an equally sized file. 

The time devoted to the injection of one SEU using this approach is obtained by 
dividing the number of bits to be transferred by the number of bits transferred at a 
time and the transfer rate. The final result is shown in Equation 2. 

Time to inject one SEU = Number of bits / (transfer rate * bits in parallel) = 

(allFF +bits to reconfigure all switches * 2) / (transfer rate * bits in parallel) = 

(1044480 + 1022080 * 2) / (33000 * 8) = 11.699 milliseconds . 

(2) 
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4.2   Novel Approach 

This approach assumes that the LSR line can be used to change the state of the FF that 
is driven by this line. Since we are dealing with the Virtex architecture this line con-
trols de set/reset logic of two FFs [21] (see Fig. 3). 

Thus, it is necessary to readback the state of only two FFs, not of all the FFs of the 
FPGA. The number of bits involved in this operation is shown in Equation 3. 

Readback of two FFs (2FF) = (readback 1 FF + readback command) * 2 FFs= 

(2496 + 224) * 2 = 5440 bits . 
(3) 

In the worst case four elements must be reconfigured to flip the state of the se-
lected FF and keep the state of the other (SRsw1, SRsw2, LSRsw and InvertLSR). 
The required reconfiguration file has 10144 bits. 

After that, the state of the InvertLSR is restored to assure that the target FF is 
set/reset. Then, the rest of the elements must be reconfigured to their original state. In 
the first step, the state of the LSRsw is changed by transferring 4832 bits. In the sec-
ond phase, the remaining two elements are reconfigured via 7488 bits. 

In this way, the time required to inject a SEU in a FF can be seen in Equation 4. 

Time to inject a SEU = Number of bits / (transfer rate * bits in parallel) = 

(2FF + bits to reconfigure 4, 1, 1, 2 elements)/(transfer rate * bits in parallel)= 

(5440 + 10144 + 4832 + 4832 + 7488) / (33000 * 8) = 0.124 milliseconds . 

(4) 

Special Case. As stated previously, this special case assumes that the LSR line has 
not been routed (it is not being used by the design). In that case, the injection of a 
SEU is similar to the previous one, but it is not necessary modify the configuration of 
the InvertLSR. 

Following the same reasoning as in Equation 4, the time required to inject a SEU in 
this special case is presented in Equation 5. 

Time to inject a SEU = Number of bits / (transfer rate * bits in parallel) = 

(2FF + bits to reconfigure 3, 1, 2 elements) / (transfer rate * bits in parallel) = 

(5440 + 10144 + 4832 + 7488) / (33000 * 8) = 0.10569 milliseconds . 

(5) 

4.3   Comparison 

As it can be seen in Table 2, the two proposed approaches greatly speed-up the SEU 
injection process compared to the conventional approach for the RTR methodology. 
The theoretical speed-up obtained is about two orders of magnitude. 
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Table 2. Estimated comparison of injection times in the worst case 

Run-time reconfiguration Time to inject a SEU Speed-up 
Conventional approach 11.699 ms - 

Novel approach 0.124 ms 94 
Novel approach: special case 0.10569 ms 110 
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Fig. 4. Estimated injection times for the conventional approach depending on the number of 
FFs of the system. The best case (solid line) assumes that all the switches are properly config-
ured and the SEU injection can be performed without reconfiguring any of them. The worst 
case (dashed-dotted line) takes place when the FFs are spread throughout the FPGA taking as 
many frames as they can and all the switches must be reconfigured. An optimistic case (dotted 
line) assumes that, although the switches must be reconfigured, they all take the same frames 
and therefore it minimises the number of frames to be downloaded. On the other hand, a more 
realistic case (dashed line) takes into account an estimation of the distribution of the FFs and 
switches configuration 

Since the worst case is quite extreme, Fig. 4 shows an estimation of the time de-
voted to the SEU injection for designs ranging from 1 to 24576 FFs. 

The same reasoning can be followed for the novel approach and a comparison 
against the conventional approach estimation can be found in Fig. 5. 

Taking a reasonable estimation, although a little optimistic, the conventional ap-
proach can be used with good results up to 73 FFs (it assumes that nearly all the FFs 
are in the same frame and very few switches must change its configuration). The 
novel approach takes always the same time and, therefore, can be used with very good 
results for the SEU injection in complex systems. 



 Fast Run-Time Reconfiguration for SEU Injection 241 

 

0

0,1

0,2

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

#FFs

T
im

e
(m

s
)

 

Fig. 5. Comparison between the timing estimation for the conventional (dashed lines) and the 
novel (dotted lines) approaches. The three different lines for each of the approaches are, from 
bottom to top, the optimistic, the more realistic and the worst case respectively 

The following section focuses on the implementation of these approaches onto the 
prototyping board in order to validate the results of the theoretical analysis. 

5   Experimental Results 

The experimental platform that has been considered is the RC1000PP board from Ce-
loxica [19]. Two systems of different complexity (number of FFs) have been consid-
ered to validate the correctness of previous results. 

The simplest system consists of an structural model of a PIC16C5X microcontrol-
ler [23] running the bubblesort algorithm to sort ten numbers. The implementation of 
this system takes 287 FFs, occupying the 1% of the configurable logic blocks of the 
FPGA. In order to increase the complexity of the system under analysis, a different 
model that includes several replicas of the PIC core has been developed. This little 
more complex system takes 2967 FFs, occupying the 12% of the available configur-
able logic blocks. 

Several fault injection experiments have been conducted on the two systems: 1000 
SEUs have been injected using the conventional approach and another 1000 SEUs 
have been injected following the novel approach. The FFs affected by the SEU were 
selected among the FFs used in the design following a uniform distribution. The in-
jection time also follows a uniform distribution along the workload duration. The 
summary of these campaigns can be found in Table 3 and Table 4.  
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Table 3. Mean time to inject one SEU in a XCV1000 device for a simple system 

Simple system (1% of total FFs) 
 Conventional 

approach 
Novel 

approach 
Novel approach: 

special case 
#Experiments 1000 935 65 
State readback 51.319 ms 1.008 ms 0.927 ms 

Reconfiguration 2.146 ms 0.450 ms 0.242 ms 
State restoring 2133 ms 0.463 ms 0.435 ms 
SEU injection 55.599 ms 1.922 ms 1.606 ms 

Table 4. Mean time to inject one SEU in a XCV1000 device for a more complex system 

More complex system (12% of total FFs) 
 Conventional 

approach 
Novel 

approach 
Novel approach: 

special case 
#Experiments 1000 946 55 
State readback 170.515 ms 0.977 ms 0.922 ms 

Reconfiguration 6.337 ms 0.448 ms 0.236 ms 
State restoring 6.2963 ms 0.434 ms 0.433 ms 
SEU injection 183.149 ms 1.861 ms 1.593 ms 

As it was expected from the previous analysis, the injection time for the conven-
tional approach increases as the number of FFs in the design does. The injection  
process took a mean of 55.599ms in the simple system and 183.149ms in the more 
complex one. Nearly the 55% of the execution time was devoted to perform the injec-
tion process in this approach. 

On the other hand, the SEU injection time for the novel proposal keeps nearly con-
stant regardless of the system complexity. As previously estimated, the injection time 
decreases when the LSR line is unrouted (special case). However, this special case 
can only be applied in a reduced number of FFs since the LSR line is usually used by 
the logic of the system to control the set/reset of the FF. In the system that is being 
considered, the special case could only be applied to the 6% of the FFs. 

Surprisingly, the injection times for both approaches were between 15 and 20 times 
greater than expected. In [13], this problem was due to both the bandwidth of the in-
terface between the board and the host (parallel port with 50Kbps in read mode) and 
the configuration clock of the FPGA (4KHz). In our case, the prototyping board has a 
PCI8090 interface that achieves a throughput of 122MB/s. The problem here may be 
related to the configuration clock of the FPGA, which is being driven by the applica-
tion running in the host. The software is only providing a clock rate of near 2 MHz. 
Furthermore, the PCI bus is an arbitrated bus, which means that the prototyping board 
must contend with the rest of PCI boards to gain control on the bus. For instance, the 
mean time for reading back the state of 2 FFs for the novel approach is about 
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0.997ms. However, there appear eight experiments with readback times ranging from 
6.834ms to 11.063ms. It is obviously necessary to improve these issues to obtain  
better results. 

These results show the great speed-up that can be achieved when using the pro-
posed approach to perform SEU injection into the FFs of FPGAs. Not only it is faster 
method, but it does not depend on the complexity of the system under analysis. 

6   Conclusions and Future Work 

FPGAs have proven to be very suitable devices for fault injection purposes: these de-
vices provide quick execution times and enable the validation of the system in the 
first stages of the design cycle. 

The two main FPGA-based fault injection methodologies rely on compile-time and 
run-time reconfiguration respectively. The former technique requires the model to be 
instrumented. Complex models may not fit into the FPGA device once instrumented. 
This leads to the implementation of several partial instrumentations and, therefore, to 
very long previous phases. The latter technique requires the reconfiguration of the 
programmable device on the fly. This is the best approach for very complex models 
(current models of real systems) since it only requires one implementation. Its main 
drawback is that the reconfiguration of the FPGA increases the execution time of fault 
injection experiments. 

This paper presents a novel approach for the fast injection of SEUs following the 
RTR methodology. In [13], it was stated that the only way of injecting SEUs with this 
methodology was by pulsing the line that globally sets/resets all the FFs in the FPGA. 
The steps involved in this operation greatly increase the execution time of the fault in-
jection experiments and, moreover, this time is proportional to the number of FFs in the 
design. Therefore, it is necessary to study new approaches for the injection of SEUs. 

The approach that has been proposed in this paper makes use of the lines that are in 
charge of asynchronously setting/resetting the FFs of the system individually. Follow-
ing this approach, the amount of information that must be transferred between the 
host and the programmable device is greatly reduced. The speed-up that can be 
achieved in the fault injection process is, theoretically, of nearly two orders of magni-
tude. What is more, the time devoted to the injection process is not dependent on the 
complexity of the system. 

Our future work will focus on the following issues: 

 New complex systems will require applying not only SEUs, but also some other 
fault models such as stuck-at, bridging, short, open, etc, and even multiple faults. 
How these fault models can be emulated by means of FPGAs is an important issue. 

 The amount of bits required to reconfigure the device must be minimise in all 
cases. The analysis of other approaches must be addressed to decrease as much as 
possible the time devoted to the fault injection process when applying the RTR 
methodology. 

 RTR not only speeds-up SBFI experiments but it can also be used to evaluate the 
dependability of FPGA-based systems. Nowadays, more and more systems are be-
ing implemented on programmable devices. The assessment of the dependability 
of these systems is a very important topic and must be studied in depth. 
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The improvement of the interface between the board and the host, including higher 
bandwidth and higher configuration clock rate, is also a subject of further work. 
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Abstract. This paper describes a fully automated pre-injection analysis tech-
nique aimed at reducing the cost of fault injection campaigns. The technique 
optimizes the fault-space by utilizing assembly-level knowledge of the target 
system in order to place single bit-flips in registers and memory locations only 
immediately before these are read by the executed instructions. This way, faults 
(time-location pairs) that are overwritten or have identical impact on program 
execution are removed. Experimental results obtained by random sampling of 
the optimized fault-space and the complete (non-optimized) fault-space are 
compared for two different workloads running on a MPC565 microcontroller. 
The pre-injection analysis yields an increase of one order of magnitude in the 
effectiveness of faults, a reduction of the fault-space of two orders of magnitude 
in the case of CPU-registers and four to five orders of magnitude in the case of 
memory locations, while preserving a similar estimation of the error detection 
coverage. 

1   Introduction 

Computer systems are increasingly being used in safety-critical applications such as 
aerospace or vehicular systems. To achieve the high safety integrity levels required by 
these applications, systems are designed with fault tolerance mechanisms in order to 
deliver correct service even in the presence of faults. Faults may, for instance, occur 
when processors are disturbed by high energy particles such as neutrons or heavy-
ions. Such particles may sometimes interfere with the processor and cause a single 
event upset (SEU) – an error that typically changes the state of a single bit in the  
system. 

In order to validate the correctness and efficiency of their fault tolerance features, 
safety-critical systems must be thoroughly tested. Fault injection has become an effec-
tive technique for the experimental dependability validation of computer systems. The 
objective of fault injection is to test fault tolerance mechanisms and measure system 
dependability by introducing artificial faults and errors. 

A problem commonly observed during fault injection campaigns is that not all 
faults fulfil the purpose of disturbing the system [1]. Often 80-90% of randomly in-
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jected faults are not activated [1, 2]. A fault placed in a register just before the register 
is written or faults that are injected into unused memory locations are examples of 
faults with no possibility of activation. In most tools the location and the time for fault 
injection are chosen randomly from the complete fault-space, which is typically ex-
tremely large. The statistical implication of this is that the cost of obtaining appropri-
ate confidence levels of the dependability measures becomes unnecessarily high. 

To deal with this and similar problems and to reduce the cost of validation through 
fault injection, two main classes of analysis techniques have been proposed: pre-
injection and post-injection analysis [3]. Post-injection analysis aims at predicting de-
pendability measures using the results of fault injection experiments. Pre-injection 
analysis, in its turn, uses knowledge of program flow and resource usage to choose 
the location and time where faults should be injected, before any experiment is per-
formed mean. 

This paper presents a pre-injection analysis technique that is applicable to injection 
of transient bit-flips into CPU user registers and memory locations. The bit-flip fault 
model is often used in fault injection experiments to emulate the effects of single 
event upsets and other transient disturbances usual. 

The objective of the pre-injection analysis is to optimize1 the fault-space from 
which the injected faults are sampled. The analysis uses program execution informa-
tion to (i) eliminate faults that have no possibility of activation and (ii) find equiva-
lence classes among faults and insert only one of these into the optimized fault-space. 
This is achieved by applying the following rule: faults should only be placed in re-
sources immediately before these are read by each instruction. A bit-flip in any re-
source2 will only manifest itself once this resource is read to perform an operation. 
Delaying the injection of the fault until the moment just before the targeted resource 
is read accomplishes the two objectives stated above. It should be noted that collaps-
ing all faults in a given class into a single fault in the optimized fault-space may cause 
a bias in the estimated dependability measures (e.g. error detection coverage). One of 
the objectives of this research is therefore to investigate the magnitude of this bias. 

The pre-injection analysis technique was implemented in the GOOFI (Generic Ob-
ject-Oriented Fault Injection) [4] tool, for Nexus-based fault injection [2, 5, 6], and is 
also suitable for implementation in other platforms. The effectiveness of the technique 
was assessed by comparing fault injection results with results obtained by non-
optimized fault injection on the same target system. The system is based on the Mo-
torola MPC565 [7] – a microcontroller aimed at the automotive and other control-
intensive applications based on the PowerPC architecture. By applying assembly-
level knowledge of this architecture it is possible to identify which resources are read 
by each executed instruction. This information, along with the time of the fault injec-
tions, is used to define the optimized fault-space, which is stored in a database. The 
fault injection experiments are then conducted by random sampling of faults from the 
optimized fault-space. 

                                                           
1 The word optimize should not suggest that the optimal fault-space is found but rather an im-

provement on the usual random approach. Further optimization is therefore achievable. 
2 In this paper we use the word resource as a common term for CPU-register, main memory lo-

cations and otherstate-elements where bit-flips may occur. 
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2   Related Research 

The resources available in computers are, usually, greater than the needs of the appli-
cations executed. This fact motivates a first optimization by injecting faults only in 
used resources. P. Yuste et al. [2] take, in their experiments, special care to avoid 
placing faults in empty (i.e. not used) memory regions. They obtained 12% of effec-
tive faults and pointed out that a random sampling from an unrestricted fault-space 
consisting of all possible fault locations (bits) and all time points is not a time-
effective approach. 

Avoiding unused memory regions might be done manually by analyzing the mem-
ory map of the application and choosing the segments (stack, heap, etc.) as valid loca-
tions for fault injection. This approach is quite simple but does not consider the dy-
namical usage of resources along the time dimension. 

Studies conducted in the past have shown that error manifestation (rate and effects) 
is affected by workload [8, 9, 10]. In [11] the concept of failure acceleration was in-
troduced by R. Chillarege and N. Bowen. They achieve fault acceleration by injecting 
faults only on pages that are currently in use and by using a workload pushing to-
wards the limits in CPU and I/O capacity. 

J. Güthoff and V. Sieh presented in [12] the operational-profile-based fault injec-
tion. They state that the number of fault injections into a specific system component 
should be proportional to its utilization. Register utilization is defined as the measure 
of the probability that an injected fault manifests itself as an error. Additionally, the 
times for fault injection are selected based on the data life-cycles. A data life-cycle 
starts with the initialization of a register (write access) and ends with the last read ac-
cess before the next write access. Under the single bit-flip fault model, faults need to 
be injected only within the data life-cycles, just before each read access. 

A. Benso et al. presented in [13] a set of rules with the purpose of collapsing fault-
lists. The rules reduce the fault-list without affecting the accuracy of the results of 
fault injection campaigns by avoiding the injection of faults for which the behavior 
can be foreseen.  

In [14] T. Tsai et al. introduced a technique named path-based injection. With this 
technique a fault is injected into a resource that will be used by the test program, 
given a particular input set. After the manual derivation of the input sets, the path of 
execution is described in terms of a list of executed basic blocks. For each path, faults 
are only injected in the utilized resources. 

Working in fault injection for the test of fault-tolerant circuits, using VHDL mod-
els, a set of techniques for speeding up campaigns is described by L. Berrojo et al. in 
[15]. One of these techniques is workload dependent fault collapsing. During the ref-
erence run (a fault-free execution in order to store the program’s normal behavior) all 
read and write operations on memory elements are tracked with bit granularity. Hav-
ing this log of read and write operations on each bit of each signal, at the circuit level, 
all possible bit-flips are then collapsed by (i) marking as silent all bit-flips between an 
operation (either read or write) and a write operation, and (ii) marking as equivalent all 
bit-flips between an operation (either read or write) and the subsequent read operation. 

J. Arlat et al. [16] increased the efficiency of their fault injection experiments tar-
geting the code segment by logging the control flow activated by the workload proc-
esses. If the randomly selected address for fault injection is not part of the log (in-
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struction trace), then the corresponding experiment can simply be skipped (as the out-
come is already known). 

3   Fault-Space Optimization Method 

For single bit-flip fault injection, we define a fault-space to be a set of time-location 
pairs that determines where and when the bit-flip is injected. The time is selected 
from an interval during the execution of the workload selected for the experiment. 
The time granularity is based on the execution of machine instructions, i.e. bit-flips 
can only be injected between the execution of two machine instructions. The complete 
(non-optimized) fault-space consists of all possible time-location pairs.  

The fault-space optimization method presented in this paper states that faults 
should only be placed in a resource immediately before the resource is read by an in-
struction. The following sections describe the input needed for the analysis, the output 
created and the optimization procedure. 

3.1   Optimization Input 

In order to determine the optimized fault-space it is necessary to gather information 
about the code of the application and the computer system executing it: 

 Assembly code of the application; 
 The Program Counter (PC) trace over time; 
 The effective address of each memory read access; 
 The definition of which resources are read by each assembly instruction. 

In our experimental setup, the assembly code is textual information obtained by 
disassembling the executable binaries of the application, processed automatically by 
the optimization program. The Program Counter trace and the values of the General 
Purpose Registers are stored during the execution of the reference run. The effective 
address of each memory read access is calculated with these values. The definitions of 
which resources are read by each assembly instruction are built into the optimization 
program. These were obtained from Motorola’s RISC CPU Reference Manual [17] 
and are available in [18]. 

3.2   Optimization Output 

The resulting output (the optimized fault-space) consists of a list of possible locations 
and times for fault injection. The optimization procedure has been adapted to both 
one-shot applications and control applications executing in loops. Each element on 
the optimized fault-space contains the following information: 

 Control loop index; 
 Breakpoint address; 
 Number of breakpoint invocations within the control loop; 
 The fault injection location. 
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The control loop index is specific for control applications which execute in cycles. 
It defines the cycle during which a fault should be injected. For applications that do 
not execute in loops, the control loop index is always set to one. The breakpoint ad-
dress specifies the breakpoint position inside the control loop and the number of 
breakpoint invocations specifies the number of times this breakpoint should be 
reached before fault injection. 

3.3   Performing the Optimization 

Using the Program Counter trace over time, the disassembled code of the application 
is parsed to obtain the sequence of assembly instructions executed. Each of the in-
structions is then analyzed in order to determine which resources the instruction reads. 
The pseudo-code for this procedure is presented in Figure 1. 

FOREACH pc_value IN program_counter_trace DO 

control_loop_index  current_control_loop () 

breakpoint_invocation  breakpoint_invocations_count (pc_value) 

instruction  instruction_at_code_address (pc_value) 

instruction_read_list  resources_read_by_instruction (instruction) 

FOREACH resource IN instruction_read_list DO 

useful_fault  [control_loop_index, pc_value, breakpoint_invocation, resource] 

store_in_database (useful_fault) 

ENDFOREACH 

ENDFOREACH 

Fig. 1. Pseudo-code for the optimization procedure 

The most important stage (shown in bold in the pseudo-code) is the identification 
of the resources read by each instruction. To accomplish this, the first step is to find 
the definition on the list matching the given instruction. This is done by matching the 
opcode and the operands. Then, by examining the possible assembly constructs, the 
symbols available in the read list of the definition are replaced by the resources actu-
ally read by the given instruction. Figure 2 illustrates this process. 

The instruction at address 39DE8 adds R10 to R11 and stores the result in R5. The 
definition for this instruction is found in the table and the read list contains rA and rB, 
respectively, R10 and R11. Since these are the two resources read by this instruction, 
two new lines are inserted into the fault locations for code address 39DE8 (the control 
loop index and the breakpoint invocation are assumed to hold the specified values). 

The second instruction, at address 39DEC, fetches the memory word addressed by 
the effective address (R6) + 24 and stores it in R7. Its definition in the table specifies 
rA and MEM32(d+rA), respectively, R6 and the 32-bit word at 1000+24, as being 
read. The value 1000 of R6 is obtained during the reference run. The two resources 
along with the timings are then inserted into the fault-space. 
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Fig. 2. Example of the optimization procedure 

4   Experimental Setup 

Figure 3 describes the evaluation platform used to evaluate the effectiveness of the 
optimization technique for experiments performed on the jet engine control software, 
which is one of two workloads investigated in this paper. The GOOFI fault injection 
  

 

Fig. 3. Evaluation platform for the jet engine application 
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tool controls the experiments by using the winIDEA debugging environment [19] in 
conjunction with the iC3000 debugger. Faults are injected into the MPC565 micro-
controller running the control software. In the case of the jet engine controller one 
computer board was used to run the jet engine control software and one board to exe-
cute the model of the jet engine. The experimental setup used for the other workload 
(an implementation of the quicksort algorithm) used only one computer board. 

4.1   Fault Injection Tool 

GOOFI is a fault injection tool developed at the Department of Computer Engineer-
ing, Chalmers University of Technology. It provides the ability to define and conduct 
fault injection campaigns on a variety of microprocessors. During each campaign 
GOOFI is responsible for controlling all the necessary software and hardware, and 
storing the acquired data into a database. 

A plug-in [6] has recently been developed in GOOFI which uses the Nexus [5] port 
to inject faults on Motorola’s MPC565. Nexus is an attempt to create a standard on-
chip debug interface for embedded applications. This standard is suitable to be used 
for fault injection [2] since it provides read/write access to the processor’s resources 
and code execution trace capture. 

The pre-injection analysis technique was implemented to enhance the existing 
Nexus fault injection plug-in. The target platform for the current implementation is 
therefore the MPC565 microcontroller. The technique may however be implemented 
for any microprocessor. 

4.2   MPC565 Microcontroller 

The MPC565 is a microcontroller developed by Motorola that implements the 
PowerPC instruction standard architecture. It is aimed at the high performance auto-
motive market as well as other control-intensive applications. The complete computer 
system was based on the phyCORE-MPC565 [20] development board. It includes a 
32-bit Motorola MPC565 processor, which offers a Nexus debug port enabling real-
time trace of program and data flow. 

To establish a connection through this port the iSYSTEM iC3000 Active Emulator 
[21, 22] was used to access the Nexus working environment. The iC3000 emulator was, 
in its turn, controlled by GOOFI via winIDEA – an integrated development environ-
ment offered by iSYSTEM. GOOFI and winIDEA are executing on the same host PC. 

4.3   Workloads 

Fault injection campaigns were conducted to evaluate the optimization technique us-
ing two different workloads: a sort program using the quicksort algorithm and a jet 
engine controller. Different campaigns targeting registers and data memory, using 
both optimized and non-optimized fault selection, were carried out. The technique is 
fully implemented in the sense that all the assembly instructions executed by the 
workloads are analysed and all registers and data memory locations where optimiza-
tion is achievable with this method are considered. The outcome of each fault injec-
tion experiment was classified into one of the following categories: 
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 Detected Error – All effective errors that are signalled by hardware error de-
tection mechanisms included in the processor. 

 Wrong Output – All effective errors that are not detected by the processor 
but lead to the production of wrong results. 

 Non-effective Error – Errors that do not affect the system execution during 
the chosen experiment time frame. 

4.3.1   Quicksort 
The quicksort workload is a recursive implementation of the well-known sorting algo-
rithm. It sorts an array containing seven double-precision floats. 

The reference run execution takes two minutes during which the processor is being 
stepped and all the required data is obtained. The optimization procedure takes 20 
seconds to complete. Each fault injection experiment takes less than half a minute to 
perform. During the execution of the reference run for this application, the MPC565 
processor executed 34 distinct assembly instructions (opcodes) and a total of 815 in-
structions. 

4.3.2   Jet Engine Controller 
This workload is a control application that executes in loops in order to control a jet 
engine. At the end of each loop the controller has to produce results and exchange in-
formation with the engine (sensor values from the engine and actuator commands 
from the controller). It is significantly more complex than the quicksort program, al-
lowing the fault-space optimization technique to be evaluated using a 
real-world application. 

The execution of the reference run takes almost 12 hours. The optimization proce-
dure takes 10 minutes to complete. Each fault injection experiment is then performed 
in less than two minutes for the selected configuration (number of control loops and 
memory locations to be logged). 

Forty control loops of execution were logged during each experiment. From these, 
ten loops (21 to 30) were chosen as possible temporal locations for fault injection 
(corresponding to 50ms of real-time execution of the controller). During these ten 
control loops, in the reference run, the MPC565 processor executed 231.097 instruc-
tions. A total of 88 different assembly instructions (opcodes) were executed.  

4.4   Fault Model and Fault Selection 

The fault model applied is the single bit-flip model of the effects of transient faults. 
The technique assumes this model as the basis for optimization. 

The faults in the non-optimized campaigns were chosen using a uniform distribu-
tion. In the case of the optimized campaigns the faults are selected randomly from the 
optimized fault-space itself (the list of temporal and spatial locations for fault injec-
tion described in Section 3.2). This implies that the distribution of faults in resources 
is proportional to the representation of each resource in the optimized fault-space. 

Microprocessor registers were selected as spatial locations for fault injection both in 
the quicksort and in the jet-engine controller campaigns. Memory locations were only 
targeted using the jet-engine controller. The registers targeted in the non-optimized 
campaigns are the ones considered by the optimization method and shown in Table 1. 
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Table 1. Registers targeted for optimization 

General Purpose Registers (32 registers of 32 bits) Condition Register (32 bits) 

Floating Point Registers (32 registers of 64 bits) Integer Exception Register (32 bits) 

Link Register (32 bits) Count Register (32 bits) 

These registers constitute the User Instruction Set Architecture (UISA) Register 
Set. User-level instructions are limited to this register set while supervisor-level in-
structions have access to other, special purpose registers (SPRs). 

Two limitations of winIDEA (the debugging environment) are important to men-
tion. The floating point registers are only allowed to be injected with faults in the least 
significant 32 bits. These are the least significant bits of the 52-bit mantissa. The 
Floating Point Status And Control Register (FPSCR), targeted by the optimization, is 
also not available for fault injection. 

The fault injection campaigns in memory targeted the stack, heap and all other 
read/write and read-only data segments of the controller. A total of 100KB of memory 
were targeted as spatial locations.  

The analysis of faults in the code segment was still not implemented and was there-
fore not studied. The optimization is easily extendable to support faults in the code 
segment by targeting, in each instruction, the 32-bit memory contents addressed by 
the Program Counter. This would be equivalent to the analysis performed in [16] by 
using the instruction trace. 

5   Experimental Results 

5.1   Fault Injection in Registers 

Table 2 shows the distribution of the outcomes of faults in the fault injection cam-
paigns targeting microprocessor registers for both the quicksort and the jet engine 
controller workloads. The quicksort campaigns include approximately the same num-
ber of experiments. For the non-optimized jet engine controller campaign, a much 
higher number of experiments had to be performed in order to increase the confidence 
in the results. 

Table 2. Distribution of outcomes of fault injection in registers 

Campaign # Exp. Non-effective Detected Wrong Output 
Random 2739 2603 (95.0%) 83 (3.0%) 53 (2.0%) 

Quicksort 
Optimized 2791 1461 (52.3%) 744 (26.7%) 586 (21.0%) 
Random 5708 5457 (95.6%) 200 (3.5%) 51 (0.9%) Jet Engine 

Controller Optimized 1559 964 (61.8%) 466 (29.9%) 129 (8.3%) 
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The percentage of effective faults (detected or wrong output) increases from 5.0% 
using non-optimized fault selection to 47.7% choosing faults from the optimized 
fault-space when targeting the quicksort workload. In the jet engine controller this in-
crease is from 4.4% to 38.2%. The improvement in the effectiveness of faults is, 
therefore, one order of magnitude. 

Table 3 shows the estimated error detection coverage obtained in each campaign. 
We here define error detection coverage as the quotient between the number of de-
tected and the number of effective faults. 

Table 3. Error detection coverage estimations (registers) 

Campaign Estimated error detection coverage (95% confidence) 
Random 61.0 ± 8.2% 

Quicksort 
Optimized 55.9 ± 2.7% 
Random 79.7 ± 5.0% Jet Engine 

Controller Optimized 78.3 ± 3.3% 

The values of the error detection coverage estimations are quite similar whether 
applying non-optimized or optimized fault selection. In the optimized campaigns the 
faults are only injected in the location that will activate them (at the time that the reg-
ister is read). Since no weights are applied to reflect the length of the data life-cycle 
on the outcomes of faults, it could be expected that the error detection coverage would 
be skewed. 

The detected errors were signalled by the exceptions provided in the MPC565 
processor. The distribution among these exceptions is presented in Figures 4 and 5 for 
the quicksort campaigns, and in Figures 6 and 7 for the jet engine controller cam-
paigns. 

 

 

Fig. 4. Exceptions in the quicksort non-optimized campaign (83 faults in registers) 
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Fig. 5. Exceptions in the quicksort optimized campaign (744 faults in registers) 

 

Fig. 6. Exceptions in the jet engine controller non-optimized campaign (200 faults in registers) 

It is possible to observe that the detection mechanisms are activated in a similar but 
not identical way for the non-optimized and the optimized campaigns. Figures 4 to 7 
provide an insight on the magnitude of the differences between non-optimized and 
optimized fault selection. A brief description follows of the most frequently activated 
exceptions. 

Checkstop (CHSTP) – The processor was configured to enter the checkstop state in-
stead of taking the Machine Check Exception (MCE) itself when the MCE occurs. 
CHSTP does not represent an actual exception, but rather a state of the processor. The 
processor may also be configured to take the MCE handling routine or enter debug 
mode. The MCE, which, in this case, leads to the checkstop state, is caused, for in-
stance, when the accessed memory address does not exist. 
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Fig. 7. Exceptions in the jet engine controller optimized campaign (466 faults in registers) 

Alignment Exception (ALE) – The alignment exception is triggered under the fol-
lowing conditions: 

 The operand of a floating-point load or store instruction is not word-aligned; 
 The operand of a load or store multiple instruction is not word-aligned; 
 The operand of lwarx or stwcx. is not word-aligned; 
 The operand of a load or store instruction is not naturally aligned; 
 The processor attempts to execute a multiple or string instruction. 

Floating-Point Assist Exception (FPASE) – This exception occurs in the following 
cases: 

 A floating-point enabled exception condition is detected, the corresponding 
floating-point enable bit in the Floating Point Status And Control Register 
(FPSCR) is set (exception enabled); 

 A tiny result is detected and the floating point underflow exception is dis-
abled; 

 In some cases when at least one of the source operands is denormalized. 

Software Emulation Exception (SEE) – An implementation-dependent software 
emulation exception occurs in the following cases: 

 An attempt is made to execute an instruction that is not implemented; 
 An attempt is made to execute an mtspr or mfspr instruction that specifies an 

unimplemented Special Puspose Register (SPR). 

External Breakpoint Exception (EBRK) – This exception occurs when an external 
breakpoint is asserted. 

 
Figure 8 shows the distribution of faults per register for the optimized campaign. 

The figure clearly demonstrates the non-uniform distribution caused by the optimiza-
tion. The number of faults per register is directly proportional to the number of times 
the register is read. 
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Fig. 8. Number of faults injected per register 

5.2   Fault Injection in Memory 

Fault injection in memory locations was performed only for the jet engine controller. 
Table 4 shows the distribution of the outcomes of faults for both non-optimized and 
optimized fault selection. 

Table 4. Distribution of outcomes of fault injection in memory 

Campaign # Exp. Non-effective Detected Wrong Output 
Random 6666 6532 (98.0%) 40 (0.6%) 94 (1.4%) Jet Engine 

Controller Optimized 2658 2150 (80.9%) 166 (6.3%) 342 (12.8%) 

The effectiveness of faults increases from 2.0% using non-optimized fault selection 
to 19.1% choosing faults from the optimized fault-space. The improvement in the ef-
fectiveness of faults is one order of magnitude, similar to one obtained for faults in 
microprocessor registers. 

Table 5 shows the error detection coverage estimations obtained with non-
optimized and optimized fault selection. 

Table 5. Error detection coverage estimations (memory) 

Campaign Estimated error detection coverage (95% confidence) 
Random 29.9 ± 7.7% Jet Engine 

Controller Optimized 32.7 ± 4.1% 

We here observe a similar pattern to that observed for microprocessor registers, 
where the error detection coverage estimation using non-optimized or optimized fault 
selection is quite similar. In this case the estimation from the non-optimized campaign 
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is not very accurate since the 95% confidence interval is still wide due to the small 
number of effective faults (2%).  

Figures 9 and 10 show the distribution of detected errors among the exception 
mechanisms for the two campaigns. 

 

Fig. 9. Exceptions in the jet engine controller non-optimized campaign (40 faults in memory) 

 

Fig. 10. Exceptions in the jet engine controller optimized campaign (166 faults in memory) 

Again, it is possible to observe that the detection mechanisms are activated in a 
similar but not identical way for the non-optimized and the optimized campaigns. 

5.3   Fault-Space Considerations 

Applying the optimization method to the fault-space of registers for the jet engine 
controller resulted in the determination of 7.7×106 distinct time-location pairs for bit-
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flips. All the targeted registers are 32 bit registers3. The complete non-optimized 
fault-space of these registers is obtained by flipping each bit of each register, for each 
instruction executed. This results in a set containing over 500 million bit-flips. Table 
6 summarizes these results. 

Table 6. Comparison between fault-space sizes (registers) 

Campaign 
Size of the fault-space 

(time-location pairs for bit-flips) 
Random 5.0 × 108 Jet Engine 

Controller Optimized 7.7 × 106 
Ratio 1.5% 

In the case of the memory fault-space 3.3×106 possible time-location pairs for bit-
flips were determined using optimized fault selection. The complete fault-space of 
memory is obtained by flipping each bit of each memory location used by the pro-
gram, for each instruction executed. Considering a memory usage of 100KB for data 
by the jet engine controller, the size of the complete fault-space is near 200 billion bit-
flips. 

Table 7. Comparison between fault-space sizes (memory) 

Campaign 
Size of the fault-space 

(time-location pairs for bit-flips) 
Random 1.9 × 1011 Jet Engine 

Controller Optimized 3.3 × 106 
Ratio 0.0017% 

6   Conclusions and Future Work 

The study presented in this paper shows the efficiency of eliminating faults with no 
possibility of activation and determining equivalence classes among faults. A com-
parison with traditional non-optimized fault selection in the complete fault-space 
shows an order of magnitude increase in the effectiveness of faults. The fault-space it-
self is reduced two orders of magnitude for the registers and four to five orders of 
magnitude for the memory. Even though these fault-spaces are still quite large when 
targeting the complete execution of programs, the exhaustive evaluation of small 
enough sub-routines against all possible bit-flips becomes possible. 

All faults targeting the same bit of a given resource, before this resource is read, 
are considered equivalent. This way, only one representative of these faults is in-
jected. To obtain an accurate estimation of the error detection coverage (or any other 
dependability measure) it would be necessary to apply a weight corresponding to the 

                                                           
3 Floating Point Registers are 64-bits long limited by winIDEA to the least significant 32-bits. 
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number of faults in each equivalence class. However, the error detection coverage es-
timated by the optimized fault selection is found to be quite similar to the coverage 
estimated by non-optimized fault selection. 

The analysis of assembly constructors limits the technique to the UISA Register 
Set. Using a debugger/debugging environment that supports tracing of all read opera-
tions on all registers during the reference run would allow the fault-space of all regis-
ters to be optimized. 

Even though activation of faults is ensured by the optimization technique (activa-
tion in the sense that the faulty resources are always utilized) not all faults result in ef-
fective errors. This occurs when the data is used in a non-sensitive way by the code 
(regarding the single bit-flip model). An interesting topic for further studies would be 
to investigate which activated faults are non-effective and why. 

The outcome of a fault is highly dependent on the targeted resource. Faults in some 
registers were observed to have a greater tendency to cause wrong output while faults 
in other registers cause detected errors more frequently. This motivates a possible 
evolution in fault selection by using the results of previous fault injection experiments 
to select the faults that should be injected next (a combination of pre-injection and 
post-injection analysis). It would be possible to achieve a faster evaluation of specific 
error detection mechanisms by injecting faults in the resources that are more likely to 
activate them. 

In the future of fault injection the multiple bit-flip fault model may become more 
important. Microprocessor technology is employing smaller transistors, with lower 
power voltages, where a single charged particle is likely to change the state of several 
bits. It would be appealing to extend the method presented in this paper to improve 
the selection of multiple bit-flip faults. 

A research line orthogonal to the optimization of fault-spaces is the improvement 
of the path coverage obtained during fault injection campaigns (i.e. consider different 
control flow decisions and the associated fault-spaces). The presented pre-injection 
analysis and such a path coverage analysis are complementary and could eventually 
be combined. 

There is still room for further optimization by analyzing the error propagation. 
When a bit-flip is copied from one resource onto another and the first resource is 
overwritten, the fault in the new location is equivalent to the fault in the first location. 
The implementation of an analysis taking advantage of this has been started and pre-
liminary results show additional improvement. 
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Abstract. Our paper presents a novel approach for identifying the key infra-
structural factors determining the behavior of systems in the presence of faults 
by the application of intelligent data processing methods on data sets obtained 
from dependability benchmarking experiments.  Our approach does not rely on 
a-priori assumptions or human intuition about the dominant aspects enabling 
this way the investigation of highly complex COTS-based systems. The pro-
posed approach is demonstrated using a commercial data mining tool from IBM 
on the data obtained from experiments conducted using the DBench-OLTP de-
pendability benchmark. Results obtained with the proposed technique identified 
important key factors impacting performance and dependability that could not 
have been revealed by the dependability benchmark measures. 

1   Introduction 

It is widely recognized that the evaluation of dependability features in computer sys-
tems is a complex task.  Traditional techniques based on analytical and simulation 
models have to be complemented with experimental approaches based on measure-
ments taken from prototypes and (when possible) from real systems in the field.  
These experimental techniques, including fault injection, robustness testing, and field 
measurements, have been extensively used to evaluate specific fault tolerance mecha-
nisms, validate robustness of software components, or to assess the general impact of 
faults in systems. 

In spite of the big diversity of techniques and tools now available, all the experi-
mental dependability evaluation approaches share a common problem: they tend to 
produce a large amount of raw data that have to be processed to obtain the desired de-
pendability measures or to get useful information on how the target systems behave in 
the presence of faults.  Very often the analysis of the experimental data is quite com-
plex, as it has to take into account many aspects of the experimental setup such as the 
target system architecture and configuration, the workload, the type of faults in-
volved, the environmental aspects, etc.  Surprisingly, the problem of coping with the 
large size of the experimental data sets and the high complexity of the data analysis 
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has received less attention in the dependability research effort.  Researchers have fo-
cused on the development of fault injection and robustness testing tools and on the 
mitigation of problems such as experiment representativeness, intrusiveness and port-
ability of tools, just to name some of them, and only a few papers deal with experi-
mental data analysis, e.g. [Pataricza 2001, Pintér 2003, Madeira 2003]. 

In fact, many dependability evaluation tools such as fault injection and robustness 
testing tools have been proposed (e.g., Ferrari [Kanawati 92], Mafalda [Rodríguez 
99], Xception [Carreira 98], Balista [Koopman 97], NFTAPE [Stott 00], GOOFI 
[Aidemark 01]) but all these tools either provide rudimentary means to analyze data 
or, more frequently, just store the raw results in a spreadsheet format.  Although this 
approach can be acceptable for very specific (and simple) analysis, it is clearly not 
enough when the analysis required is complex or when the amount of raw data is very 
large. 

A recent newcomer to the bag of experimental dependability evaluation techniques 
is the dependability benchmarking family.  This new approach actually represents an 
attempt to standardize experimental techniques with the goal of comparing depend-
ability features of different systems or components.  This research effort has already 
caught the attention of companies such as Sun Microsystems [Zhu 2003a], IBM 
[Lightstone 2003] and Intel [Constantinescu 2003], and lead to many dependability 
benchmark proposals, covering domains such as transactional systems [Vieira 2003b, 
Buchacker 2003, Mauro 2004], web servers [Durães 2004b], and operating systems 
[Kalakech 2004].  Even topics such as human faults [Brown 2004] or hardware main-
tenance [Zhu 2003] have already been subject of dependability benchmark proposals. 

Dependability benchmarks represent a new and important source of raw experi-
mental data but the problem of analyzing that data has been even more neglected than 
in traditional fault injection and robustness testing.  In fact, dependability benchmarks 
rely on a typically small set of measures and the data collected during the benchmark 
runs is just used to calculate the measures defined in the benchmark specification. 

Furthermore, dependability benchmarking (and traditional fault injection as well) 
relies on a-priori assumptions about what are the measures we would like to improve 
(response time, throughput, availability etc.) and the benchmark performer should 
know what are the infrastructural attributes that determine these measures (e.g., CPU 
performance, disk bandwidth, operating system), as her/his goal is to tune the system 
under benchmark to deliver the best performance and dependability. Although this 
approach has been beneficially applied for improving systems of relatively low com-
plexity it does not scale well to complex systems actually used in real applications.  

In order to overcome this issue an automated mechanism is needed that supports 
the identification of key infrastructural factors by highlighting the potentially interest-
ing phenomena in the large experiment database.  On one hand this approach elimi-
nates the need for a-priori human knowledge; on the other hand it avoids some bias 
coming from some human belief. 

Our paper proposes a novel approach for identifying the key infrastructural factors 
determining the behavior of systems in the presence of faults by the application of in-
telligent data processing methods that have already been successfully applied in the 
business field for extracting previously unknown knowledge from large databases.  
The key idea of our approach is to perform benchmarking experiments on multiple 
configurations by applying different implementations of the same COTS component 



 A Data Mining Approach to Identify Key Factors in Dependability Experiments 265 

 

(e.g., different hardware setups, operating systems) and record as much information as 
possible about the infrastructure and the delivered performance and dependability at-
tributes. On the basis of this information data mining experiments are carried out to 
identify which infrastructural factors were really relevant enabling the developers to 
improve the system without a-priori assumptions. 

The structure of the paper is as follows: after providing an overview about data 
mining (Sect. 2) we briefly describe the experiment setup and the key benchmark 
components acting as the source of experimental data investigated in our work (Sect. 
3).  Sect. 4 discusses how to apply data mining for identifying the key factors that de-
termine the behavior of systems in the presence of faults.  Our observations in case of 
the DBench-OLTP experiment are discussed in Sect. 5.  Finally Sect. 6 concludes the 
paper and outlines the directions of future research. 

2   Background on Data Mining 

Data mining is usually defined as an interdisciplinary field bringing together tech-
niques from machine learning, pattern recognition, statistics, databases, and visualiza-
tion to address the issue of extracting previously unknown, valid and actionable in-
formation from large databases to be used for making crucial business decisions 
[IBM 1999].  Our approach aims at porting data mining from the business field to the 
dependable computing domain for exploiting its benefits for automatic identification 
of key factors that determine specific performance and dependability attributes of sys-
tems in presence of faults. 

Methods of data mining can be grouped in three families: 

• Predictive modeling resembles the human learning experience, where we learn how 
to classify real-world objects into abstract categories by identifying the essential 
underlying characteristics of phenomena amongst the possibly high number of less 
important attributes.  For example young children learn how to classify animals as 
cats and dogs by realizing that however animals are characterized by very large 
number of attributes (size, color, body structure, etc.) and many of them are not 
specific to any classes (e.g., there are cats and dogs of the same color, size) there 
are some key factors that can be used for assigning them to classes (e.g., the voice, 
body structure).  The goal of predictive modeling is to build similar models by ana-
lyzing a teaching data set and identifying the attributes and their relations that rep-
resent the key factors for classifying database records using statistical methods.  A 
typical business situation for building predictive models is when a company is in-
terested in understanding the key aspects of customer behavior (e.g., which cus-
tomers are going to leave the company) by identifying the dominant attributes (age, 
purchased products etc.) [IBM 1999]. 

• Database segmentation aims at partitioning a database in segments of similar re-
cords i.e., ones that share a number of properties and so are considered to be ho-
mogeneous. A typical business application of database segmentation is the identifi-
cation of typical customer groups (e.g., highly paid urban women, male university 
students) to be addressed appropriately. 
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• The goal of link analysis is to establish links (associations) between individual re-
cords or sets of records in the database.  In business applications link analysis is 
typically used for identifying products that tend to be sold together (market basket 
analysis) or for understanding long-term customer behavior for planning timely 
promotions etc. 

Since our goal is to automatically identify key factors that determine specific at-
tributes of systems in presence of faults, we selected the classification method, which 
is an implementation of the predictive modeling technique. 

Classification aims at establishing a specific class for each record in a database.  
The class must be one from a finite set of possible and predetermined class values.  
The input of the method is a teaching data set that presents the correct answer for 
some already solved cases; the output is a decision tree where leaves are the predicted 
classes and the internal nodes are atomic decisions (i.e., very simple predicates in-
volving a single attribute e.g., “the color of the persons hair is black”, “the age of the 
person is below 14”).  The key attributes identified by the algorithm are this way in 
the predicates of the atomic decision nodes. 

A typical business application example [IBM 1999] is depicted in Fig. 1. an insur-
ance company interested in understanding the increasing rates of customer attrition.  
A predictive model has determined that the two attributes of interest are: the length of 
time the client has been with the company (Tenure) and the number of services that 
the client uses (Services).  The decision tree presents the analysis in an intuitive way. 
Having built the decision tree on the basis of previously experienced behavior, the 
company can use it to predict the future behavior of its current customers and try to 
convince the ones who are likely to leave to stay with the company with special ad-
vertisement campaigns etc. 

It is important to highlight that although the usual business application of the clas-
sification method is to predict future behavior, our goal is somewhat different: we 
don’t want to predict anything (i.e., to use the algorithm built by the method) but we 
are interested in the classification algorithm itself.  We will use the tree built by the 
method to recognize dominant factors (i.e., the attributes in the decision nodes). 

 

Fig. 1. Decision tree built by the classification method 
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Technically speaking a decision tree corresponds to a graph of SQL SELECT 
commands on the teaching set. Each SELECT divides the actual data set in two sub-
sets.  Classes are assigned to the resulting subsets by identifying the most frequently 
occurring value of the predicted attribute (e.g., performing the SELECT correspond-
ing to the “Services < 3” predicate on the data set selected by the “Tenure <= 2.5” 
predicate results in two subsets i.e., the one where the customers use less than three 
services and the one where use three or more; since most of the customers in the first 
subset left the company, the data miner assigned the subset to the LEAVE class etc. 
(Fig. 1). The quality of the classification can be measured by the homogeneity of the 
subsets i.e., how many records are in the subset that do not belong to the majority. 
The data miner tool uses statistical methods to find the SELECTs that result in as  
homogeneous subsets as possible with respect to the predicted attribute, identifying this 
way the attributes that play key role in determining the value of the predicted attribute. 

The maximal depth of the tree can be restricted by the data analyst.  Specifying 
high maximal depth enables the data miner to define more complex queries resulting 
in more homogeneous subsets (but representing smaller subsets of the teaching data 
set).  This feature can be used as a zooming facility: when restricting the maximal 
depth to a low value only the most important factors are visible enabling the data ana-
lyst to draw general conclusions, while building a sophisticated tree allows an in-
depth investigation into the relations of attributes. 

Since the data miner does not understand the semantics of the attributes care 
should be taken on the appropriate selection of the teaching set: 

• When two attributes (columns) are semantically related that may represent redun-
dant information that may become misleading for the analysis (for simplicity rea-
sons we call this misleading information in the paper).  This typically arises when 
two columns represent some kind of refinement relation e.g., the car manufacturer 
and the model (e.g., “VW” and “Golf”, “VW” and “Passat”, “Renault” and “Clio”).  
In this situation the model typically determines the manufacturer, since manufac-
turers do not copy model names (i.e., the model “Golf” determines that the manu-
facturer of the car is “VW”).  From the database point of view selecting all VW 
products can be carried out by simply selecting the “VW” value of the manufac-
turer column or by selecting all VW models (Golf, Passat etc.) using the model 
column.  Note that the selected subsets are totally the same in both cases, but the 
second query is more difficult to understand: if you do not recognize that all the 
models are from VW you will not realize that essentially we were focusing on the 
manufacturer.  Since the data miner does not understand the semantics of columns 
it is subject to defining this kind of hard to understand queries i.e., defining hard to 
understand atomic decisions. 

• When the teaching set is statistically inappropriate the decisions drawn by the data 
miner may be wrong (with the human learning analogy when a child sees only 
black cats and white dogs she/he may get to the wrong conclusion that the most 
important attribute for classifying animals as dogs or cats is the color).  This miss-
ing information situation can arise when processing data obtained from a non-
exhaustive experiment campaign. 
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3   Experiment Setup 

We used a data set obtained during the DBench1 project for the data-mining experi-
ments presented here. The experimental data set used in our study comes from ex-
periments conducted with a specific dependability benchmark (the DBench-OLTP) 
developed to On-Line Transaction Processing (OLTP) systems. DBench-OLTP 
[Vieira 2003a, Vieira 2003b] uses the workload and the general approach of the in-
dustry standard TPC-C performance benchmark [TPC-C] and adds two new compo-
nents: (1) a faultload to emulate faults and upsets experienced by OLTP systems in 
the field (in the experiments used in our study the faultload includes operator faults) 
and (2) a set of new measures meant to characterize the behavior of the system in the 
presence of the artificially introduced faults. These new measures include service 
(TPC-C transactions per minute) in the presence of faults, TPC-C cost related meas-
ures in the presence of faults and availability measures. 

 

Fig. 2. DBench-OLTP experiment setup 

The most important components of the DBench-OLTP benchmark are the experi-
ment setup, the workload, the faultload, the measures obtained and the benchmark 
procedure: 

• The main elements of the experiment setup (Fig. 2) are the System Under Bench-
mark (SUB) and the Benchmark Management System (BMS)2 that emulates the 
client applications and records the data needed for calculating the benchmark 
measures. Several hardware-software configurations have been benchmarked with 
the DBench-OLTP: multiple hardware platforms, various operating systems (Win-

                                                           
1 See: http://www.criticalsoftware.com/DBench and http://www.laas.fr/DBench 
2  In the TPC-C terminology, the SUB is the System Under Test and the BMS includes the 

driver system (and some more features). 
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dows 2000, Windows XP, SuSE Linux 7.3) and database management systems 
(DBMS) (Oracle 8i, 9i, and PostgreSQL). 

• The workload represents the work that the system must perform during the bench-
mark run.  In the DBench-OLTP approach the workload of the TPC-C performance 
benchmark was used.  TPC-C represents a business where a wholesale supplier has 
a number of warehouses and their associated sale districts and where users submit 
transactions that include entering and delivering orders, recording payments, 
checking the status of orders etc. 

• The faultload represents the set of faults and stressful conditions that emulate real 
faults experienced by OLTP systems in the field.  The DBench-OLTP approach fo-
cused on operator faults (i.e., mistakes of the DBMS administrator).  The fault 
types injected during the experiments were as follows: abrupt operating system 
shutdown, abrupt DBMS shutdown, killing a set of user sessions, dropping a data-
base table used by the workload, deleting the entire user schema, removing single 
data files from disk, removing sets of files from disk and removing all files from 
the disk.  Since in several cases operator faults can only be detected by the system 
administrator (i.e., another operator) the fault detection time is not related to a sys-
tem feature but an attribute of the faultload in this case.  In DBench-OLTP experi-
ments typical fault detection times were estimated taking into account the nature of 
the fault and field experience in OLTP system administration. 

• The measures obtained characterize the performance and dependability of the SUB 
in presence of the faultload while executing the workload.  The performance re-
lated measures include (1) the TPMC value (transactions executed per minute) cal-
culated according to TPC-C (i.e., the total number of transactions per slot divided 
by the elapsed time) and (2) the price per transaction (€/TPMC, a ratio between 
the price and the performance of the SUB calculated according to TPC-C pricing 
rules). The dependability related measures include (1) the TPMC and €/TPMC in 
the presence of the faultload (measure the impact of the faults on the service pro-
vided by the OLTP system, (2) the number of data errors detected by consistency 
checking mechanisms measuring the impact of faults on the data integrity, (3) the 
unavailability from the SUB point of view (the SUB is considered to be available 
from its own point of view if it is able to respond to at least one client within the 
maximal response time), and (4) the aggregated unavailability from the clients’ 
point of view (the SUB is considered to be unavailable from the clients’ point of 
view if it is unable to respond within the maximal response time or returns an er-
ror). The data mining analysis presented in this paper focuses on two measures: the 
number of transactions executed during a slot (this raw performance attribute is the 
input for calculating the TPMC) and the aggregated unavailability from the cli-
ents’ point of view. 

• The benchmark procedure (Fig. 3) consists of fault injection slots.  At the begin-
ning of a slot the state of the SUB is explicitly restored.  Measurements are per-
formed with the system in a steady state condition i.e., after a given time (steady 
state time) that is enough for the system to achieve its maximum throughput (e.g., 
filling data caches).  Having achieved the steady state the fault is injected after a 
certain amount of time (injection time).  As discussed above the fault detection 
time is artificially defined (taking into account the nature of the fault and field ex-
perience in OLTP system administration).  After detecting the fault diagnostic and 
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recovery procedures are initiated (the time needed for this is the recovery time).  
Having completed the recovery the workload is continued for a while (keep time) 
to measure the system’s speedup after recovery.  At the end of the slot data integ-
rity test are performed. 

 

Fig. 3. Fault injection slot 

4   Applying Data Mining to Identify Dominant Factors 

This section discusses how to exploit the benefits of data mining for identifying 
dominant factors that determine the behavior of the system under benchmarking in 
presence of faults.  The idea of our approach is to process important performance and 
dependability measures obtained during the fault injection experiments by building 
classification trees and identifying the key factors by investigating the tree built by the 
data miner.  The steps of our approach are as follows: 

1. Preparing the input data set for making it appropriate to be analyzed by the data 
miner. 

2. Running the data miner for building decision trees (i.e., applying the classification 
method). 

3. Analyzing the trees for collecting the dominant factors and explaining the  
phenomena. 

This section walks through these steps for the case of the DBench-OLTP data set 
processed in our experiments; finally the last subsection presents a short evaluation of 
our approach. 

4.1   Preparing Input Data 

The goal of the data preparation is to transform the legacy data obtained during the 
experiments of the DBench project to a format that is appropriate for using as a teach-
ing set in data mining.  This process involves (1) the re-organization of individual ta-
bles where the experimental data is stored for eliminating column correlations that 
may represent misleading information, and joining tables into a single view (required 
by the data miner tool), (2) eliminating the effects of missing information and (3) de-
fining classes for the classification.  Although the discussion below describes these 
steps as a human process for simplicity reasons, most of the steps may be facilitated 
by an automatic process. 
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Re-organization of Individual Tables and Defining a Flat View 
The goal of re-organizing the individual tables is to eliminate the semantic relation of 
attributes (columns) that may represent misleading information.  In case of the 
DBench-OLTP data we identified some attribute pairs that represent some kind of re-
finement relation, e.g., the version of the operating system (e.g., “2000”, “XP”, “7.3”) 
can be considered as a refinement of the OS family (“Windows”, “SuSE”): e.g., since 
SuSE has never released “SuSE 2000” the version attribute determines the family.  
The misleading information was eliminated by introducing a new operating system at-
tribute instead of the individual family and version attributes containing the valid 
combinations (i.e., “Windows 2000”, “Windows XP” and “SuSE 7.3”). 

Technically speaking, when re-organizing the individual tables we have to answer 
the following question: “Are there two columns A and B that we can define a 
SELECT operation above A and one above B resulting in the same subsets?”  If there 
are ones, these columns may represent misleading information and should be reor-
ganized e.g., by merging them as presented above.  Note that this step requires exper-
tise neither in database management nor in data mining: the question can be answered 
by the designer of the experiments (i.e., the benchmark expert) on the basis of a-priori 
knowledge about the semantics of the columns. 

Since the data miner expects the teaching set as a single database table or view the 
tables of the legacy table structure of the DBench data was joined into a single view. 

Dealing with Missing Information 
Since we are using a legacy data set that was not collected for data mining purposes 
we have to take care of the statistical relevance of the teaching set, i.e., we should 
avoid drawing wrong conclusions resulting from missing information.  For example 
the original goal of DBench-OLTP was to compare DBMSs in a benchmarking style 
(e.g., compare the two Oracle versions 8i and 9i on a Windows platform, compare 
Oracle and PostgreSQL on the SuSE platform) this way experiments were not carried 
out on some operating system – DBMS-OLTP combinations (e.g., PostgreSQL was 
not benchmarked on Windows).  This way, considering the entire data set as a whole 
it should not be used as a teaching set since the missing information may obscure the 
observations. 

Obviously the best solution would be to provide information by carrying out the 
missing experiments, but unfortunately this approach is not viable in several cases 
e.g., since the PostgreSQL is available for the Linux platform only. In order to elimi-
nate the effect of the missing information we focused on a subset of data that was ex-
haustive with respect to some restriction (e.g., by focusing on different DBMSs on the 
SuSE platform).  

Technically speaking, when searching for missing information we have to answer 
the following question: “Are there experiments that were not carried out on specific 
platforms?”  If there are ones, the missing experiments should be performed or data 
subsets have to be selected that are exhaustive with respect to some restrictions, e.g., 
focusing only on those platforms where all experiments were carried out.  Note that 
this step requires expertise neither in database management nor in data mining: the 
question can be answered by the expert who performed the experiments on the basis 
of a-priori knowledge about the experiments loaded into the database. 
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Defining Classes for Numeric Measures 
Since the measures obtained in the experiments were numeric variables (e.g., server 
unavailability experienced by the clients in seconds) and the classification method re-
quires that the predicted attribute is from a finite set of possible predetermined class 
values we had to define classes and assign numeric values to the corresponding 
classes in the teaching set.  This was carried out by dividing the intervals of the ob-
tained measure in sub-intervals (i.e., corresponding to classes like “very low unavail-
ability”, “low unavailability”). For example, in case of a data subset selected in the 
previous step the attribute ”total number of transactions executed per slot in presence 
of faults” was between 0 and 70000, this way we introduced seven sub-intervals of 
the width of 10000 (e.g., [0-9999], [10000-19999]…) for classification purposes.  
Since the chosen class granularity (i.e., the number of sub-intervals) was mainly in-
tuitive we carried out a validation experiment to identify the impact of class granular-
ity to the trees (see the discussion at the end of this section). 

4.2   Mining Data 

Having prepared the input data configuring the data miner3 is a few steps: 

1. Selecting the data mining method (classification from the predictive modeling  
family). 

2. Defining the data source to be processed (i.e., selecting the view containing the 
prepared data). 

3. Configuring the classification: (1) selecting the input columns (i.e., the ones that 
possibly contain interesting factors: all columns should be selected that describe 
some aspects of the measurement setup, hardware-software infrastructure, work-
load, faultload etc.) and (2) the attribute to be predicted (i.e., the performance or 
dependability measure to be analyzed e.g., “server unavailability experienced by 
the clients in seconds”, “TPMC in presence of faults”).  Analyzing our aggregated 
data sets containing some thousand records by the classification method took a few 
seconds on an ordinary desktop PC.  The result of the operation is presented as an 
interactive decision tree: sub-trees can be closed and opened, leaf data distribution 
can be displayed etc.  Although interactivity supports the analysis, screenshots are 
not suitable for being inserted into a paper (because they miss some details and oc-
cupy a lot of space), thus the figures presented here were redrawn and annotated in 
a drawing tool. 

5   Result Discussion and Analysis 

This subsection presents how to identify interesting phenomena by the classification 
method and how to explain the phenomena by field expertise.  The discussion is or-
ganized as follows: 

• Data mining aims at automatically identifying phenomena.  In this discussion we 
will (1) first textually formulize a question, (2) configure the data miner accord-

                                                           
3  We used IBM DB2 Intelligent Miner for Data 6.1 for the data mining experiments and IBM 

DB2 Universal Database Version 8 for storing the experiment data. 
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ingly (3) explain the notation of the figures (decision trees) and (4) textually for-
mulize the atomic decisions chosen by the miner and identify the key factors deter-
mining the value of the specific predicted attribute. 

• Having automatically identified the phenomena the explanation requires field ex-
pertise i.e., in our case knowledge about the internal operation of databases, fault 
injection etc.  In this discussion we present the explanation of some phenomena 
identified by the data miner that probably would not have been identified when re-
lying barely on human intuition. 

5.1   Identifying Phenomena by Classification Tree Analysis 

In cases of the two experiments presented here we were using a data subset that was 
exhaustive with respect to restricting the operating system to Microsoft Windows 
2000.  Since the PostgreSQL was not available for the Windows platform we had data 
about two Oracle versions (8i and 9i) set up according to two inherently different con-
figurations this way we could investigate the effects of the DBMS version (8i and 9i), 
the DBMS configuration and the fault-load on the performance and dependability 
measures. 

In the first experiment presented here (Fig. 4) we aimed at identifying the key fac-
tors determining the total number of transactions per slot successfully performed dur-
ing a fault injection slot.  Informally, we asked the data miner to answer the following 
question: “What are the dominant factors that determine the performance of Oracle 
databases running on Windows 2000 as expressed by the total number of successful 
transactions per slot?”  Obviously questions like that naturally emerge when planning 
databases that should deliver high performance even in presence of faults.  Answering 
this question will suggest which DBMS version is to be used, how to configure it and 
which faults are the most serious ones in performance aspects. 

The data miner was configured according to the discussion above: the input col-
umns were the version and configuration of the DBMS and the attributes of the fault-
load (type, injection and detection time, etc.).  The predicted attribute was the class of 
the “total number of successful transactions per slot” measure.  Since the total number 
of transactions per slot fall in the [0-70000] interval in this subset of the teaching set 
we defined seven classes ([0-9999], [10000-19999]… etc.). 

The notation of Fig. 4 is quite straightforward: the predicted classes are visualized 
by highlighting the appropriate sub-interval in the small graphs in the leaves (where 
the class homogeneity was considered to be low multiple sub-intervals were high-
lighted).  The numbers under the small graphs in the leaves indicate the size of the 
corresponding data subsets (e.g., “When using configuration Conf-A and the fault in-
jection time is above 870 (stepping always to the No edge from the root) the total 
number of transactions per slot was between 40000 and 70000 (very high) and this se-
lection corresponds to 54 records in the teaching set.”). 

The atomic decisions are textually formalized in the callout texts in Fig. 4.  The key 
factors that determine the total number of successful transactions per slot in presence 
of faults can be easily identified since the most important one is in the root of the tree; 
the less important ones are ever closer to the leaves.  This way the data miner deter-
mined that the most important factor determining the total number of successful 
transactions per slot in presence of faults in case of the Oracle databases running on 
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the Windows 2000 platform was the configuration (Conf-A was found to deliver 
higher performance); another attribute of high impact is the time of fault injection (the 
later we inject the fault, the higher the total number of transactions per slot), and the 
actual fault load has somewhat smaller impact (dropping a table is a more serious 
fault in this aspect than removing files from the disk or abruptly shutdown).  Note that 
these observations were drawn only by investigating the tree without a-priori knowl-
edge about the system under benchmarking—we have only identified some phenom-
ena until now, but we have not yet explained them.  The explanation of the phenom-
ena requires the knowledge of an OLTP expert. 

 

 

Fig. 4. Total number of transactions per slot in the presence of faults performed by Oracle data-
bases running on Windows 2000 

In the second experiment presented here (Fig. 5) we aimed at identifying the key 
factors determining the server unavailability experienced by the clients (i.e., the sum 
of seconds while the individual clients found the server to be unavailable).  Infor-
mally, we asked the data miner to answer the following question: “What are the 
dominant factors that determine the unavailability of Oracle databases running on 
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Windows 2000 from the clients’ point of view?” Obviously questions like that  
naturally emerge when planning databases that should be highly available even in 
presence of faults.  Answering this question will suggest which DBMS version is to 
be used, how to configure it and which faults are the most serious ones in availability 
aspects. 
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Fig. 5. Unavailability of Oracle databases running on Windows 2000 experienced by clients 

The data miner was configured similarly to the previous experiment but the pre-
dicted attribute was obviously the class of the “number of seconds clients experienced 
server unavailability” measure.  Since the number of seconds fall in the [0-80000] in-
terval in this subset of the teaching set we defined eight classes ([0-9999], [10000-
19999]… etc.). 

The atomic decisions are textually formalized in the callout texts in Fig. 5.  The 
data miner determined that the most important factor that determines the unavailabil-
ity of Oracle databases running on Windows 2000 in presence of faults is the type of 
the faults injected.  The tree highlights that there are less serious faults like abruptly 
shutting down the DBMS or the operating system or killing the user session, while in-
advertently dropping tables results in high unavailability time.  Configuration of the 
DBMS is also an important attribute: we can achieve higher availability by using 
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Conf-A under the same circumstances.  Note that although there were experiments 
where the newer Oracle DBMS (version 9i) was proven to deliver higher performance 
and expose better dependability characteristics, in case of the two experiments pre-
sented here there were no important differences between the two versions.  This ob-
servation can also be important when considering software upgrade for improving 
system performance or availability. 

5.2   Explaining the Phenomena by Field Expertise 

Although data mining provides a powerful support by automatically identifying key 
factors determining the values of performance and dependability attributes, the phe-
nomena should be explained by a field expert for turning the observations into finan-
cial, performance or dependability benefits.  The following points provide explanation 
examples (for space reasons only some of the identified phenomena were selected): 

• The impact of the configuration can be explained by the fact that Conf-A is an ef-
fective well-tuned configuration while Conf-B restricts the size of the redo log files 
to 1MB (very low size preventing the DBMS from exploiting the performance 
benefits of postponed write operations and buffering) and sets the checkpoint in-
terval to 4 seconds (very low time forcing the DBMS to synchronize the memory 
image and the data files uselessly often). The performance benefits (higher number 
of successful transactions per slot in case of Conf-A) are this way obvious.  Con-
cerning availability, although Conf-B should favor fast recovery (because the high 
checkpointing rate) this is true for some types of faults only. Globally, the best per-
formance of the well tuned Conf-A also favors availability. 

• Both experiments highlighted the important impact of the faultload: dropping ta-
bles proved to be more serious than other faults (removing files, abrupt shutdown 
etc.) in both performance and availability aspects (i.e., results in serious degrada-
tion of the total number of successful transactions per slot and availability).  These 
phenomena can be explained by the recovery mechanism of the DBMS: removed 
data files can be restored by copying back the latest backup file and re-executing 
the transactions involving the data file that were performed until the creation of the 
backup. Since during the reconstruction of files the DBMS can accept transactions 
that are not related to the file deleted (note that, in some cases a single table was 
partitioned by four files) the clients may not experience unavailability at all.  Re-
storing inadvertently dropped tables is more complicated since dropping a table is a 
valid database operation.  This way the only solution is to restore the latest backups 
of all the data files and re-execute all the transactions that were performed be-
tween creating the backup and dropping the table.  This way restoring dropped ta-
bles is not only more time consuming but prevents the DBMS from accepting 
transactions during the recovery process resulting in serious degradation of the 
availability. 

• The impact of the fault injection time is probably one of the most interesting obser-
vations.  The two phenomena identified by the miner may seem to be contradictory 
for the first sight: the later we inject the fault the higher the total number of suc-
cessful transactions per slot but the lower the availability.  In order to explain 
these phenomena we have to take into consideration the performance graph of the 
DBMS (Fig. 6).  Before injecting the fault the server is operating at the baseline 
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performance; obviously the later we inject the faults the greater the total number 
of transactions per slot performed during this period.  After the fault injection the 
server may be unavailable during the fault detection and recovery time (depending 
on the fault type).  Although the function is probably not linear it is quite obvious 
that the greater the total number of transactions per slot executed before the fault 
injection the longer the time needed for recovery this way we transitively explained 
the observation that the later we inject the fault the lower the availability.  Having 
finished the recovery the DBMS is fully functional again but the situation is similar 
to the one during the steady state time: the DBMS needs some time to achieve its 
maximum throughput again, this way the delivered performance is below the base-
line performance for a while.  If this time is high, the total number of successful 
transactions per slot is dominated by the ones performed before the fault injection 
(the total number of transactions per slot is proportional to the size of the area un-
der the performance graphs marked gray in Fig. 6).  This explains the observation 
that the later we inject the fault the higher the number of successful transactions. 

The phenomena identified by the miner and explained by field experts can be used 
for improving the performance and the dependability of the systems: e.g., by config-
uring the DBMS effectively, introducing fault tolerance measures against the most se-
rious faults. 

 

 

Fig. 6. Comparison of early and late fault injections 

5.3   Evaluating the Impact of Class Granularity 

Since the definition of classes (sub-intervals) enabling the classification tree analysis 
was mainly intuitive (i.e., how many sub-intervals to be introduced) we were inter-
ested in evaluating the impact of the class granularity (number of classes) on the re-
sulting decision trees.  We set up different experiments focusing on the same measure 
but defining classes of different granularity.  For example the “TPMC in presence of 
faults” performability attribute fall in the [0-2000] interval in the case of selecting all 
database managers (two Oracle versions and PostgreSQL) running on the SuSE plat-
form; this way we set up experiments with classes corresponding to sub intervals of 
width of 1000, 500, and 250 respectively (the trees corresponding to the first two 
granularity levels are presented in Fig. 7).  According to our observations the role of 
class granularity is similar to restricting the dept of the classification tree i.e., can be 
seen as a zooming facility: 
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• Low interval granularity (wide sub-intervals, low number of classes) results in 
small trees that enable general observations: in case of the “TPMC in presence of 
faults” attribute the tree built after dividing the entire interval into two sub-
intervals highlights the DBMS in use to be the most important factor determining 
the performance of the system and indicates Oracle versions more performable 
(Fig. 7 left side). 

• Choosing ever higher granularity (narrower sub-intervals, higher number of 
classes) the tree will get ever larger enabling in-depth investigation of the phe-
nomena (Fig. 7 right side): in case of the “TPMC in presence of faults” attribute 
the tree built after dividing the entire interval into four sub-intervals still highlights 
the DBMS in use to be the most important factor determining the performance but 
also indicates that Oracles are not only faster but are better in fault-tolerance as-
pects: while in case of PostgreSQL only the “killing the user session” fault can be 
considered as less serious (i.e., resulting in low degradation of the performance) in 
case of Oracles all the “killing the user session”, “abruptly shutting down the 
DBMS” and “removing single files” can be considered as less serious. 

 

 

Fig. 7. Impact of class granularity on the decision trees in case of TPMC delivered by Oracle 
and PostgreSQL databases on SuSE 7.3 in presence of faults 

6   Conclusions and Future Work 

Our paper has presented a novel approach for automatically identifying the key fac-
tors determining the behavior of systems in the presence of faults by intelligent data 
processing methods.  We have discussed how to exploit the benefits of automated 
tools enabling this way the application of most advanced data processing intelligence 
for analyzing experiment results by the dependability community.  We have proven 
the viability of our approach by analyzing a data set obtained during a standard  
dependability benchmarking experiment. In the near future we would like to investi-
gate the benefits of the combined application of data mining and on-line analytical 
processing (OLAP, [Madeira 2003]). Furthermore we would like to apply data mining 
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for validating benchmarks by proposing a method for ensuring that the measures de-
livered by the benchmark are really determined by the infrastructural attributes they 
are meant to characterize. 

Acknowledgment 

Funding for this paper was provided, in part, by the Portuguese Govern-
ment/European Union through the R&D Unit 326/94 (CISUC) and GRICES, by the 
Hungarian-Portuguese Intergovernmental S&T Cooperation Programme P-19/03, by 
OTKA T038027 from the Hungarian NSF, and by an IBM Faculty Award.  The au-
thors also acknowledge the software licenses used for this research offered by the 
IBM Scholars Program. 

References 

[Aidemark 01]  J. Aidemark, J. Vitter, P. Folkesson, and J.  Karlsson, “GOOFI : Ge-
neric Object-Oriented Fault Injection Tool”, Int. Conference on De-
pendable Systems and Networks (DSN-2001), (Göteborg, Sweden), pp. 
B102-B103, Chalmers University of Technology, Göteborg, Sweden, 
July 1-4, 2001. 

[Brown 2004]  A. Brown, L. Chung, W. Kakes, C. Ling, D. A. Patterson, "Dependabil-
ity Benchmarking of Human-Assisted Recovery Processes", Depend-
able Computing and Communications, DSN 2004, Florence, Italy, 2004 

[Buchacker 2003]  K. Buchacker, M. Dal Cin, H.-J. Hoexer, R. Karch, V. Sieh, and O. 
Tschaeche, “Reproducible Dependability Benchmarking Experiments 
Based on Unambiguous Benchmark Setup Descriptions”, The Int. Con-
ference on Dependable Systems and Networks, DSN-PDS2003, San 
Francisco, CA, June 22 - 25, 2003. 

[Carreira 98]  J. Carreira, H. Madeira, and J. G. Silva, “Xception: Software Fault In-
jection and Monitoring in Processor Functional Units", IEEE Transac-
tions on Software Engineering, vol. 24, no. 2, February 1998. 

[Constantinescu 2003] C. Constantinescu, "Experimental Evaluation of Error-Detection 
Mechanisms", IEEE Transactions on Reliability, Vol. 52, No. 1, March, 
2003, pp. 53-57. 

[Durães 2002]  J. Durães and H. Madeira, “Characterization of Operating Systems Be-
haviour in the Presence of Faulty Drivers Through Software Fault Emu-
lation”, in Proc. 2002 Pacific Rim Int. Symp. on Dependable Comput-
ing (PRDC-2002), Tsukuba, Japan, 2002. 

[Durães 2004]  J. Durães, V. Marco. and H. Madeira, “Dependability Benchmarking of 
Web-Servers”, The 23rd International Conference of Computer Safety, 
Reliability and Security, SAFECOMP 2004, Potsdam, Germany, 2004. 

[IBM 1999]  IBM, “Intelligent Miner for Data, Applications Guide”, 1999. 
[Kalakech 2004]  A. Kalakech, T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun, “Bench-

marking Operating System Dependability: Windows 2000 as A Case 
Study”, The 10th Intl. Symp. Pacific Rim Depend. Computing, 
PRDC2004, Tahiti, French Polynesia, March 03-05, 2004. 



280 G. Pintér et al. 

 

[Kanawati 92]  G. Kanawati, N. Kanawati, and J. Abraham, “FERRARI: A Tool for the 
Validation of System Dependability Properties”, Proc. of the 22th IEEE 
Fault Tolerant Computing Symp., FTCS-22, pp. 336-344, June 1992. 

[Koopman97]  P. Koopman, J. Sung, C. Dingman, D. Siewiorek, T. Marz, “Comparing 
Operating Systems using Robustness Benchmarks”, in Proc. 16th Int. 
Symp. on Reliable Distributed Systems, SRDS-16, Durham, NC, USA, 
1997. 

[Lightstone 2003]  S. Lightstone, J. Hellerstein, W. Tetzlaff, P. Janson, E. Lassettre, C. 
Norton, B. Rajaraman, and L. Spainhower. "Towards Benchmarking 
Autonomic Computing Maturity.", 1st IEEE Conf. on Industrial Auto-
matics (INDIN-2003), Banff, Canada, August 2003. 

[Madeira 2003]  H. Madeira, J. Costa and M. Vieira, "The OLAP and Data Warehousing 
Approaches for Analysis and Sharing of Results from Dependability 
Evaluation Experiments", IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN2003, San Francisco, USA, June 
22-25, 2003. 

[Mauro 2004]  J. Mauro, J. Zhu and I. Pramanick. “The System Recovery Benchmark,” 
in Proc. 2004 Pacific Rim International Symposium on Dependable 
Computing (PRDC 2004), Papeete, Polynesia, IEEE CS Press, 2004. 

[Pataricza 2001]  A. Pataricza and B. Tolvaj. “Data mining techniques in the experimen-
tal analysis of dependability”, in Proc. IEEE Workshop on Design and 
Diagnostics of Electronic Circuits and Systems (DDECS 2001),, pp. 
273-280, Gy r, Hungary, 2001. 

[Pintér 2003]  G. Pintér and A. Pataricza. “Data Mining in Fault Injection”, in Proc. 
IEEE Workshop on Design and Diagnostics of Electronic Circuits and 
Systems (DDECS 2003), pp. 307-308, Poznan, Poland, 2003. 

[Rodríguez 99]   M. Rodríguez, F. Salles, J.-C. Fabre and J. Arlat, “MAFALDA: Mi-
crokernel Assessment by Fault Injection and Design Aid”, in Proc. 3rd 
European Dependable Computing Conf. (EDCC-3), (J. Hlavicka, E. 
Maehle, A. Pataricza, Eds.), Prague, Czech Republic, LNCS, 1667, 
pp.143-60, Springer, 1999. 

[Stott 00]  D.T. Stott, B. Floering, Z. Kalbarczyk, R.K. Iyer, "Dependability As-
sessment in Distributed Systems with Lightweight Fault Injectors in 
NFTAPE," Proc. IEEE Int'l Computer Performance and Dependability 
Symp. (IPDS 2000), pp.91-100, March 2000. 

[Vieira 2003a]  M. Vieira and H. Madeira, "Benchmarking the Dependability of Differ-
ent OLTP Systems", IEEE/IFIP Int. Conference on Dependable Sys-
tems and Networks, DSN2003, San Francisco, USA, June 22-25, 2003. 

[Vieira 2003b]  M. Vieira, and H. Madeira, “A Dependability Benchmark for OLTP 
Application Environments”, 29th International Conference on Very 
Large Databases, VLDB 2003, Berlin, Germany, Sept. 9-12, 2003. 

[Zhu 2003a]  J. Zhu, J. Mauro, and I. Pramanick, “Robustness Benchmarking for 
Hardware Maintenance Events”, in Proc. Int. Conf. on Dependable Sys-
tems and Networks (DSN 2003), pp. 115-122, San Francisco, CA, IEEE 
CS Press, 2003. 

[Zhu 2003b]  J. Zhu, J. Mauro and I. Pramanick. “R3 - A Framework for Availability 
Benchmarking,” in Proc. Int. Conf. on Dependable Systems and Net-
works (DSN 2003), pp. B-86-87, San Francisco, CA, USA, 2003. 



PathCrawler:
Automatic Generation of Path Tests

by Combining Static and Dynamic Analysis

Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger

CEA/Saclay, DRT/LIST/SOL/LSL,91191 Gif sur Yvette, France
{Nicky.Williams, Bruno.Marre, Patricia.Mouy, Muriel.Roger}@cea.fr

Abstract. We present the PathCrawler prototype tool for the auto-
matic generation of test-cases satisfying the rigorous all-paths criterion,
with a user-defined limit on the number of loop iterations in the covered
paths. The prototype treats C code and we illustrate the test-case gen-
eration process on a representative example of a C function containing
data-structures of variable dimensions, loops with variable numbers of
iterations and many infeasible paths. PathCrawler is based on a novel
combination of code instrumentation and constraint solving which makes
it both efficient and open to extension. It suffers neither from the ap-
proximations and complexity of static analysis, nor from the number of
executions demanded by the use of heuristic algorithms in function min-
imisation and the possibility that they fail to find a solution. We believe
that it demonstrates the feasibility of rigorous and systematic testing of
sequential programs coded in imperative languages.

1 Introduction

Rigorous testing of delivered software, by its implementers or by external cer-
tifiers, is increasingly demanded, along with some quantification of the degree
of confidence in the software implied by the test results. The reasons for this
include the increase in the deployment of embedded software systems and the
re-use of off-the-shelf components. This sort of testing cannot be based on a
restricted set of hand-crafted test objectives or use-cases, which may have to be
manually updated if the software requirements change. Testing must be made as
automatic as possible, with automatic generation of a large number of test-cases
according to a well-justified selection criterion.

2 Related Work

There has been much research on the automatic generation of structural test-
cases but most of it addresses the Test Data Generation Problem (TDGP) of
finding data to cover a test objective in the form of given node, branch or path
of the control flow graph.

EDCC 2005, LNCS 3463, pp. 281–292, 2005.M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.):

c© Springer-Verlag Berlin Heidelberg 2005



282 N. Williams et al.

void Merge (int t1[],int t2[],int t3[],int l1,int l2){ (1

int i = 0; int j = 0; int k = 0; (2

while (i < l1 && j < l2) { (3

if (t1[i] < t2[j]) { (4

t3[k] = t1[i]; (5

i++; } (6

else { (7

t3[k] = t2[j]; (8

j++; } (9

k++; } (10

while (i < l1) { (11

t3[k] = t1[i]; (12

i++; (13

k++; } (14

while (j < l2) { (15

t3[k] = t2[j]; (16

j++; (17

k++; } (18

} (19

Fig. 1. Source code of the function Merge

Static approaches to test-case generation [2, 3, 15] typically select a path from
the control flow graph covering the test objective, derive the path predicate as a
set of constraints on the input values and then solve these constraints to find a
test-case which activates the path. In theory, symbolic execution can be used to
construct the path predicate. However, in practice symbolic execution encounters
problems in the detection of infeasible paths (notably in the case of loops with
a variable number of iterations), the treatment of aliases and the complexity of
the formulae which are gradually built up.

Dynamic approaches [1, 5, 9] avoid the problems of symbolic execution by
dispensing with the path predicate and using general heuristic function minimi-
sation techniques to modify the input data so that the test objective is covered.
The first set of input data is arbitrarily selected and the program is instrumented
so as to indicate the branches taken and evaluate their “distance” from the test
objective. Function minimisation must reduce this distance to zero. The disad-
vantages of these techniques are that they may need a great many executions
before a test-case is found, they may fail to find a test-case even when one exists
and they do not terminate if the desired path is actually infeasible.

We address a different problem to that of most previous work, and adopt
a different solution. We believe that rigorous testing is possible if sufficiently
automated and we therefore base our work on a rigorous test criterion: 100%
coverage of feasible execution paths. The TDGP is not the best formulation of
this problem. We do not need to construct the control flow graph, enumerate all
the paths in the graph, many of which will be infeasible, and search for a test
for each. Instead, we iteratively cover “on the fly” the whole input space of the
program under test. This is an extension of the idea sketched out in [14].
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Like the dynamic approaches to test data generation, PathCrawler is based
on dynamic analysis, but instead of heuristic function minimisation, it uses con-
straint logic programming to solve a (partial) path predicate and find the next
test-case, as in the approaches based on static analysis. It suffers neither from
the approximations and complexity of static analysis, nor from the number of
executions demanded by heuristic algorithms used in function minimisation and
the possibility that they fail to find a solution.

3 Our Approach

Our approach is applicable to all sequential programs coded in an imperative
language and the prototype has been implemented for C. This paper extends [8],
notably by illustrating the test generation process step-by-step on an example:
the C function Merge, whose source code is shown in Fig. 1. Merge takes as input
two arrays, t1 and t2, of ordered integers and their effective lengths, l1 and l2,
and outputs, in array t3, all their elements, in order. Merge is representative
of many of the problems posed by C code: it contains arrays of variable length,
loops with a variable number of iterations and many infeasible paths and only
produces the correct result if the input arrays are sorted. In this section we give
an overview of our approach and in the following sections we describe its principal
stages: Instrumentation, Substitution and Constraint Solving. We then describe
the results of applying PathCrawler to the function Merge, before concluding
with a discussion of further work.

Our approach (see Fig. 2) starts with the instrumentation of the source code
so as to recover the symbolic execution path each time that the program under
test is executed. The instrumented code is executed for the first time using a
“test-case” which can be any set of inputs from the domain of legitimate values.
The symbolic path which we recover is transformed into a path predicate which
defines the “domain” of the path covered by the first test-case, i.e. the set of input
values which cause the same path to be followed. The next test-case is found by
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Fig. 2. Our approach
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solving the constraints defining the legitimate input values outside the domain
of the path which is already covered. The instrumented code is then executed
on this test-case and so on, until all the feasible paths have been covered.

Loops with a variable number of iterations, such as the three loops in our
example function Merge, can cause a combinatorial explosion in the number
of execution paths. The all-paths criterion is therefore often relaxed to impose
coverage of only those paths containing numbers of iterations within a user-
defined limit, k. In our example, k is set to 2 so only the feasible paths containing
combinations of 0, 1 or 2 loop iterations are covered. In order to implement this
k-path criterion, we have extended the instrumentation of the source code so as
to annotate the conditions which determine loop entry or exit. Our constraint
solving strategy uses these annotations.

4 Instrumentation

The instrumentation stage is an automatic transformation of the source code
so as to print out the symbolic execution path, i.e. a sequence of assignments
and satisfied conditions on C variables or access paths. A trace instruction is
therefore inserted after each assignment and each branch of the source code.
The instrumentation is implemented using the CIL library [12]. Certain source-
code statements are decomposed, notably multiple conditions which reinforces
our test criterion, bringing it close to all-paths combined with MC/DC. Note
that in the C language, variable values may be referenced using “data access
paths” involving not only the operators to access array elements or structure
fields, but also pointer de-references. In our trace instructions, all data access
paths are rewritten, in a purely syntactic transformation, to a canonical form,
so as to simplify the substitution stage.

5 Substitution

A path predicate is a conjunction of constraints expressed in terms of the values
(at input) of the input variables. However, the symbolic conditions output by
the instrumentation of the conditional statements in the source code may be
expressed in terms of local variables (or intermediate values of input variables).
The substitution stage of our approach carries out the projection of these con-
ditions onto the values of the inputs. The sequence of statements output by the
execution of the instrumented program is traversed and each assignment is used
to update a “memory map” which stores the current symbolic value of local
variables in terms of the input values. When a condition is encountered, all oc-
currences of local variables are replaced by their current symbolic values. The
resulting list of conditions is the path predicate. Because we analyse a single, un-
rolled, path, we do not need to use the SSA form used in [2] and can treat aliases
(two or more ways of denoting the same memory location) with relative ease.
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6 Test Selection and Constraint Solving

The first test-case t1 is generated from a selection domain SD0 which is the input
domain, ID, of the program under test. ¿From the execution of t1, we derive
the corresponding path predicate PP1. In order to cover a new path, we have to
generate test inputs from the difference, SD1, of SD0 and the domain of PP1

(see Fig. 3). If SD1 is empty, this means that there are no more paths to cover.
Otherwise, we can generate a new test-case t2, from SD1, which exercises a new
path whose predicate is PP2. This process is repeated until an empty selection
domain SDn is reached, in which case we have covered every feasible path of the
program under test.

Each path predicate PPi is the ordered conjunction of the number pi of
successive conditions Ci,j encountered along the corresponding path:

PPi = Ci,1 ∧ . . . ∧ Ci,pi (1)

The negation of PPi is just the disjunction of all the prefixes of PPi with the
last condition negated :

¬ PPi = ¬ Ci,1 ∨
∨

m=2.....pi

(Ci,1 ∧ . . . ∧ Ci,m−1 ∧ ¬ Ci,m) (2)

Note that each term of this disjunction is a conjunction of conditions corre-
sponding to a (possibly infeasible) path prefix which is unexplored at the ith step
of our selection strategy. To find a solution in each selection domain SDi, we
choose to solve the longest feasible conjunction in ¬ PPi, which we call MaxCi.
If all the conjunctions in ¬ PPi are infeasible, the longest unsolved feasible con-
junction in ¬ PPi−1, MaxCi−1, is tried, and so on. Our strategy corresponds in
this sense to a depth-first construction of the tree of feasible execution paths, as
we will illustrate below on our example function.

To respect the k-paths criterion, the definition of MaxCi must be modified
to take into account the annotations of conditions from the heads of loops with a
variable number of iterations. If the negation of a condition would result in loop
re-entry after k or more iterations, then it is not explored. This way, we ensure

Fig. 3. Input domains
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that we never generate any new path predicate prefixes containing too many
loop iterations. However, we cannot prevent constraint solving of some path
predicate prefix occasionally resulting in a “superfluous” test, i.e. one covering
a path which - after the prefix - executes more than k iterations of a loop.

Test selection and constraint solving are implemented in the Eclipse con-
straint logic programming environment [17]. Note that solving non-linear con-
straints is decidable only for data types with finite domains, such as integers.
However, current research [10, 15] holds the promise of decidable and precise
constraint solving for floating-point numbers too. Solving constraints over finite
domains is NP-complete in the worst case but we base our work on heuristics
developed for test-case generation problems [3, 7] which display low complexity
in practice. In the case of data-structures whose size may not be the same in
all the test cases, constrained variables representing the elements of the data-
structure are defined only as needed. Our “labelling” heuristic (used to generate
and test values after constraint propagation) is to choose dimension values as low
as possible. This has the advantage that we are sure to generate tests for empty
data-structures (where they are allowed), whose treatment is often a source of
bugs. Moreover, as there is often a link between data-structure dimensions and
the number of loop iterations, smaller data-structures can result in fewer super-
fluous test cases for the k-path criterion. For variables other than dimensions,
labelling uses a random generator which starts by generating values in the me-
dian third of the variable’s domain after constraint propagation. If all these
values have been tried without success, randomly generated values outside the
median third are tried.

An advantage of our test generation strategy is that we only analyse feasible
path predicates. Of course during the search for MaxCi, we may construct other
path predicate prefixes which turn out to be unsatisfiable, but this is always due
to the negation of the last condition. This kind of unsatisfiability is easier to
detect than that due to the structural construction of arbitrary path predicates.
Moreover, when a path predicate prefix has no solution, the strategy does not
construct or explore any path predicates starting with this prefix.

7 Example

Now let us follow step by step what happens when we run the PathCrawler on
our example. The first step is to define the input domain, ID, of Merge. Note
that the formal parameters of a C function may not all be input parameters and
that some global variables may also be input parameters. The parameters may
be accessed via pointers or belong to structured data types of possibly unknown
dimensions. In our example, t3 is not an input parameter and the sizes of t1 and
t2 are variable. PathCrawler can treat functions with pointers and structured
data, including arrays with variable dimensions, as input parameters. However,
as the input parameters of a C function cannot be automatically identified with-
out static analysis, the user is currently asked to pick out the input parameters
from the list of all the scalar formal parameters and global variables visible to
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dim(t1) ∈ 0 . . . 10000
l1 ∈ 0 . . . 10000
forall i ∈ 0. . . dim(t1). t1[i] ∈ -100 . . . 100
dim(t1) = l1
forall i ∈ 1. . .l1. t1[i] ≥ t1[i - 1]
and similarly for t2

Fig. 4. Merge domains and preconditions

Fig. 5. Selection strategy

the function, and of all the components (elements, fields, de-referenced values,)
of structured formal parameters and visible global variables, or those in the form
of pointers. The user is also asked to replace the default domain (based on its
declared C type) of each input parameter by a smaller interval, when applicable.
Similarly, the user must give the upper limit of any variable dimensions of arrays
containing input parameters. Finally the user must define any other input pa-
rameter dependencies (precondition). The forall operator, which iterates over
all elements of an array, can currently be used in the precondition definitions
and we are studying the use of a richer language to specify the precondition. In
our example (see Fig. 4), the value of l1 (resp. l2) must be less than or equal
to the length of t1 (resp. t2) (and in fact, we set them as equal). Furthermore,
t1 and t2 must be ordered.

In the first test-case of our example, generated from the domains and con-
straints of Fig. 4, the sizes of t1 and t2 are set to zero. This test-case is shown in
Table 1, in which the arcs of the execution path are denoted by the line-number
of the corresponding condition in the source code (in Fig. 1), preceded by a mi-
nus sign if the condition is not satisfied and, in the case of composite conditions,
followed by a letter indicating the sub-condition concerned. The predicate PP1

of the path covered by the first test encounters the following conditions (also
numbered according to their origin in the source code), shown in Fig. 5:

C1,1 = ¬ Cond3a : ¬ 0 < l1 (exit 1st loop after 0 iterations)
C1,2 = ¬ Cond11 : ¬ 0 < l1 (exit 2nd loop after 0 iterations)
C1,3 = ¬ Cond15 : ¬ 0 < l2 (exit 3rd loop after 0 iterations)
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Table 1. Tests generated for Merge

no. l1 l2 t1[0] t1[1] t1[2] t2[0] t2[1] t2[2] path covered (with selected prefix underlined)

1 0 0 -3a,-11,-15
2 0 1 -3 -3a,-11, 15,-15

3 0 2 -52 30 -3a,-11, 15, 15,-15

4 1 0 -5 3a,-3b, 11,-11,-15
5 2 0 -41 -8 3a,-3b, 11, 11,-11,-15

6 1 1 -17 16 3a, 3b, 4,-3a,-11, 15,-15

7 1 2 24 67 88 3a, 3b, 4,-3a,-11, 15, 15,-15

8 2 1 -67 14 -22 3a, 3b, 4, 3a, 3b,-4, 3a,-3b, 11,-11,-15

9 3 1 -77 -27 0 -61 3a, 3b, 4, 3a, 3b,-4, 3a,-3b, 11, 11,-11,-15

10 2 1 -1 23 46 3a, 3b, 4, 3a, 3b, 4,-3a,-11, 15,-15

11 2 2 -68 -37 -14 29 3a, 3b, 4, 3a, 3b, 4,-3a,-11, 15, 15,-15

12 3 1 -69 -36 28 -5 3a, 3b, 4, 3a, 3b, 4, 3a, 3b,-4, 3a,-3b, 11,-11,-15

13 1 1 -23 -50 3a, 3b,-4, 3a,-3b, 11,-11,-15

14 2 1 41 73 9 3a, 3b,-4, 3a,-3b, 11, 11,-11,-15

15 1 2 -30 -69 24 3a, 3b,-4, 3a, 3b, 4,-3a,-11, 15,-15

16 1 3 -30 -73 -13 15 3a, 3b,-4, 3a, 3b, 4,-3a,-11, 15, 15,-15

17 2 2 31 56 -17 64 3a, 3b,-4, 3a, 3b, 4, 3a, 3b, 4,-3a,-11, 15,-15

18 1 2 27 -54 -26 3a, 3b,-4, 3a, 3b,-4, 3a,-3b, 11,-11,-15

19 2 2 -52 -26 -79 -65 3a, 3b,-4, 3a, 3b,-4, 3a,-3b, 11, 11,-11,-15

Solution of MaxC2 = ¬ Cond3a∧¬ Cond11∧Cond15 generates the second
test-case shown in Table 1, in which there is one iteration of the third loop. The
third test, covering two iterations of the third loop, is generated in a similar way.
With no limit on loop iterations, MaxC4 would be:

C3,1 = ¬ Cond3a : ¬ 0 < l1 (exit 1st loop after 0 iterations)
C3,2 = ¬ Cond11 : ¬ 0 < l1 (exit 2nd loop after 0 iterations)
C3,3 = Cond15 : 0 < l2 (entry 1st iteration of 3rd loop)
C3,4 = Cond15 : 1 < l2 (entry 2nd iteration of 3rd loop)

¬ C3,5 = Cond15 : 2 < l2 (entry 3rd iteration of 3rd loop)

This is where the modification of our strategy to limit loop iterations takes
effect: this conjunction is not solved because it would entail more than 2 itera-
tions of the third loop. Our strategy thus backtracks to the lowest unexplored
branch of Fig. 5 and constructs the path prefix ¬ Cond3a ∧ Cond11. However,
this is unsatisfiable, so MaxC4 is in fact Cond3a.

Of the 19 tests generated in our example, only the 12th and 17th are super-
fluous (contain more than 2 iterations of the same loop) and we only need to
discover the infeasibility of 25 path predicate prefixes. In comparison, Merge’s
control-flow graph contains 109 infeasible paths if k is set to 2.

To test the efficiency and stability of our implementation, we ran our proto-
type ten times on Merge with k set to 5 and maximal domains for the elements
of t1 and t2. For this value of k, the control-flow graph contains 4536 paths, of
which 321 are feasible. In each run, 337 tests were generated and 317 infeasible
path predicate prefixes found in order to eliminate the 4215 infeasible paths,
i.e. 654 predicate prefixes were generated and solved or rejected. The CPU exe-
cution time on a 2GHz PC running under Linux varied between 0.75 and 0.81
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seconds, with an average of 0.785. In conclusion, all k-paths were tested (and 20
superfluous tests generated) in under 1 second and our random labelling heuris-
tic did not cause much variation in execution time. For k = 10, 20993 tests are
generated and 15357 infeasible paths eliminated in around 116 seconds.

8 Other Examples

We have also tried our prototype on some well-known examples from the testing
literature: the programs TriType, Bsort and Sample (see Appendix). Given the
lengths of the sides of a triangle, Tritype carries out a series of tests on them to
classify the triangle. It has no loops and only 14 execution paths but is interesting
because the path predicates include simple arithmetical expressions and not just
inequalities as in the other examples. Bsort is a bubble sort containing two nested
loops, one iterating over all the elements of the array to be sorted and the other
over the elements after the current one. This example demonstrates the limits of
our current implementation of the k-paths strategy : the number of superfluous
tests grows exponentially with k due to PathCrawler’s attempts to find paths
with k executions of both loops. The best way to limit the number of paths in
this case is therefore by reducing the length of the array to be sorted. Sample
compares the contents of two arrays to a reference value in two successive loops,
each with a fixed number of iterations of the length of the array. For array lengths
n and m, the number of paths is 1+ (2n -1) * 2m. The k-path strategy cannot be
used for this example because the number of iterations is fixed but the number
of paths can be kept reasonable by limiting n and m, which is justified by the
total lack of dependence between successive loop iterations. The number of tests,
number of infeasible prefixes, mean execution time in seconds and variation in
the execution times over 10 runs are shown in Table 2

Table 2. Results for other examples

—

program k
array
dimn.

tests
infeasible
prefixes

mean exec.
time

min exec.
time

max exec.
time

TriType - - 14 3 0.01 0.01 0.02
Bsort 10000 0 - 5 153 349 1.16 1.14 1.17
Sample - 4 241 0 0.27 0.22 0.29

9 Further Work

Our first priority is to apply PathCrawler to a wide range of larger examples.
However, our results so far suggest that our approach is efficient enough to scale
up to the treatment of larger programs providing that we limit the combinato-
rial explosion of the number of execution paths. We have shown how we easily
adapted our test selection strategy to limit the number of iterations of certain
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loops. Our current topics of investigation [11] include strategies to avoid test-
ing all the paths in each call to another function. Our method is open to such
modulations in the test strategy. Firstly, constraints other than those from a
path predicate can be taken into account, as is already done for the treatment
of the precondition on the input values of the program under test. Integration
test scenarios could be used in the same way. Secondly, information collected
during execution of the program under test can also influence test selection, as
illustrated by the use of annotations of loop-head conditions to implement the k-
path criterion. By annotating the conditions in called functions, the exploration
of different paths in these functions could be restricted.

However, the effectiveness of our test generation strategy is limited by the
selection of a single test for each path. It could be easily modified to select tests
at the limits of the path domain boundaries [4], where bugs are often found.
The chances of detecting coincidental correctness would be improved if we also
extended our random generation of variable values to the random generation
of several tests for each path, in a similar way to statistical structural testing
[16, 3].

Finally, the applicability of PathCrawler depends on a high degree of automa-
tion of the test process. In the current prototype, the oracle must be hand-coded
but by taking certain forms of post-condition on the C variables into account,
we could automatically generate the oracle as in [6, 13].
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Appendix

int tritype(int i, int j, int k){
int trityp;
if ((i == 0) || (j == 0) || (k == 0)) trityp = 4;
else {

trityp = 0;
if (i == j) trityp = trityp + 1;
if (i == k) trityp = trityp + 2;
if (j == k) trityp = trityp + 3;
if (trityp == 0){

if ((i+j <= k) || (j+k <= i) || (i+k <= j)) trityp = 4;
else trityp = 1;

}
else if (trityp > 3) trityp = 3;
else if ((trityp == 1) && (i+j > k)) trityp = 2;
else if ((trityp == 2) && (i+k > j)) trityp = 2;
else if ((trityp == 3) && (j+k > i)) trityp = 2;
else trityp = 4;

}
return trityp;

}

void bsort (int * tableau, int l)
{

int i, temp, nb;
char fini;
fini = 0;
nb = 0;
while ( !fini && (nb < l-1)){

fini = 1;
for (i=0 ; i<l-1 ; i++)

if (tableau[i] < tableau[i+1]){
fini = 0;
temp = tableau[i];
tableau[i] = tableau[i + 1];
tableau[i + 1] = temp;

}
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nb++;
}

}

int sample(int a[4], int b[4], int target)
{

int i, fa, fb;
i=0;
fa=0;
fb=0;
while(i<=3){

if(a[i]==target) fa=1;
++i;

};
if(fa==1){

i=0;
fb=1;
while(i<=3){

if(b[i]!=target) fb=0;
++i;

}
}
if(fb==1) return 0;
else return 1;

}
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Abstract. CENELEC norms identify four testing phases for the verification and 
validation of real-time safety-critical software for railway control and protection 
systems (Module, Integration, Hardware/Software Integration and System 
testing). The RAMS team of Ansaldo Segnalamento Ferroviario (ASF) 
designed a methodology that allows executing simultaneously these four 
phases, also allowing performing code coverage measurements. Several 
proprietary tools are needed to apply this methodology to perform test directly 
on the target system and to record coverage measures during normal operation, 
with negligible intrusion in system performances. The commercial tools do not 
allow test execution on real prototypes without affecting performances. The 
proposed tool set will aid the test engineer from the test specification to the 
results checking, including the test documentation, regression analysis and 
reports archiving. By using this environment, the application of the 
methodology will be optimized, and the verification and validation process will 
be managed in a harmonized and standardized way. 

1   Introduction 

Recent years have seen the demand for a huge increase in the reliability and 
performance of control systems in railway and metro lines. This demand has required 
the transition from relay to computer-based systems, stressing the need for the design 
and assessment of the safety of completely new systems. The safety of railway 
systems is based on the fail-safe behavior of their components. This concept is well 
assessed for relays, which are characterized by defined failure modes, but it is hardly 
applicable to modern computer-based systems. 

CENELEC norms [1, 2, 3], approved as European standards, require the use of 
verification and validation processes in all phases of the life cycle of the system. 
These recommendations coupled with the availability of microprocessor devices and 
with strong competition in the railway field have brought about the definition and 
development of new methodologies for safety design and assessment. 

   M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.):
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CENELEC norms identify four testing phases for the verification and validation of real-
time safety-critical software for railway control and protection systems: Module Testing, 
Integration Testing, Hardware/Software Integration Testing, and System Testing. 

In recent past, the RAMS team of Ansaldo Segnalamento Ferroviario designed a 
methodology that allows executing simultaneously these four phases, also allowing 
performing code coverage measurements.  This methodology was successfully 
applied in the verification and validation of newer microprocessor based systems 
realized by Ansaldo Segnalamento Ferroviario (ACS Roma-Termini interlocking, 
SCMT ATP) and US&S (Copenhagen driverless Metro), and was approved by several 
assessors. The introduction of this methodology allowed a remarkable reduction of 
the verification and validation costs. 

The methodology identified and adopted by the RAMS team of Ansaldo 
Segnalamento Ferroviario relies on proprietary tools, as available commercial tools do 
not allow test execution on real prototypes without affecting performances: i.e., with 
the low level of intrusion required by Real-Time Safety-Critical Systems. 

CENELEC norms require exhaustive documentation of all the phases of the V&V 
software process, to allow an external assessor to precisely understand completeness 
and consistence of the verification and validation activities, and eventually to rerun 
some of the tests in order to ascertain the repeatability of their results. 

The RAMS team of Ansaldo Segnalamento Ferroviario developed a tool set to 
standardize and automate the various phases of the V&V software process and to 
automatically generate the documentation requested by the norms. 

This paper aims to describe the methodology adopted by RAMS group of Ansaldo 
Segnalamento Ferroviario and relevant proprietary tools implemented to apply this 
methodology and to optimize several phases of the V&V process. The work is 
organized as follows: Section 2 presents the methodology adopted by RAMS group of 
ASF (Description of methodology), in Section 3 it is described the tool used to 
monitor software I/O variables (Monitoring of software I/O variables and coverage 
measurement); in Section 4 it is described the tool used to manage the automation and 
standardization of V&V process (Manage code instrumentation and documentation). 
Section 5 presents the Conclusions and future works. 

2   Description of the Methodology 

CENELEC norms do not specify what techniques must be used to test real-time 
safety-critical software, but the methodology, the tools, the results and more generally 
the entire design and verification and validation process have to be approved by an 
independent safety Assessor. 

Different methodologies can be used to execute different test categories; in 
particular the methodology described in this paper is applied to execute functional 
tests and coverage measures on hard real time systems (low intrusion is required) [5]. 

By using the methodology adopted by the RAMS group of ASF, the tests required 
by the CENELEC norms are executed directly on the target system. 

The V&V process is executed after the software development phase, therefore an 
environment simulator and a prototype of the target system, as well as stable software 
version, are normally available. 
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In order to execute software integration testing and to get coverage measures on the 
functions (debug testing was executed in development phase) it is required to monitor 
interfaces of functions and to trace the executed paths. 

The aim of ASF methodology is to perform module testing, software integration 
testing, hardware/software integration testing and system testing at the same time. To 
make this possible it is required to monitor the interfaces of software functions and to 
measure the code coverage on the target system, without affecting performances, 
while the environment simulator runs the system test scenarios. 

To ensure the required low intrusion, several proprietary tools are needed. 
Available commercial tools (e.g., CANTATA) perform at best offline execution of 

module and integration tests, but drivers and stubs are required to test the code slice. 
Moreover when execution of the tests on target system is supported by commercial 
tool, it is affected by high level of intrusion (tracing data are generally sent through 
serial ports) making it unusable in hard real time context. Our methodology and 
related tools work at best on target systems and the obtained level of intrusion allows 
the respect of hard real time constrains. They are not suitable only to monitor low-
level functions (e.g., interrupt handlers) and to get timing measures. Logic Analyzer is 
recommended in those cases, that impact on 10% of testing at most [4], [5]. 

3   Monitoring Software I/O Variables and Coverage 
     Measurements 

As anticipated in previous section, even if several off-the-shelf tools are available to 
monitor system behavior, ASF decided to develop a proprietary tool set to overcome 
their limitations. 

In fact, off-the-shelf testing environments can be distinguished in two main 
categories: 

• Hardware-level testing environments (e.g., Logic Analyzer, debug monitor, 
JTAG/BScan); 

• Software-level testing environments (e.g., CANTATA, LogiScope). 

Hardware-level testing environments guarantee a very low intrusion, but it is 
generally hard to trace low-level information provided by these tools with the high-
level ones (e.g., software interfaces behavior) needed during software/system V&V 
activities. As a consequence of this a very small amount of test is executable with 
those environments.  When needed (e.g., to monitor low level drivers or interrupt 
handlers), ASF prefers using Logic Analyzers [4], as others environments such as debug 
monitors usually use a set of procedures in order to inhibit (partially or totally) the use 
of some resources (e.g., MMU, interrupt handler) by the software under test [6]. 

Software-level testing environments usually run in an emulated environment on a 
workstation, so time evaluations are not accurate and the simulation of Input/Output 
resources behavior is imprecise.  Obviously such environments cannot be used to test 
real-time systems (ASF uses them for module level debugging, during the design 
phase).  Some of these environments (e.g., CANTATA) also allow performing the tests 
on the target system. Anyway Stubs and Drivers usually need to be designed to execute 
tests on a set of functions.  Stubs and drivers simulate the system “surrounding” the 
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tested functions, in this way only integration test is executed on the functions under 
test. This is not needed when a prototype the whole system is available. Furthermore 
interfaces visibility often is limited to the functions under test. Finally ASF usually 
encountered problems in letting such environments run when the complexity of the 
system increases. 

As a consequence of these limitations, ASF decided to design proprietary tools 
capable to work in hard-real-time contexts (several optimizations were realized to 
minimize time execution of monitoring task) and to limit the source code 
instrumentation just on the functions under test, as described below.  

To verify that the software satisfies its requirement specifications (at any level: 
module or integration), it is required to monitor the function Input/Output parameters 
and global variables while executing software tests. The tool IntMon (Interface 
Monitoring) supports such task. 

IntMon instruments the code, with a negligible intrusion level, to store 
Input/Output data of the functions under test in system RAM.  

The tool automatically generates the functions to print in RAM the input data 
(MyFuncPInput ()) and output data (MyFuncPOutput ()). It needs information about 
name, type and typology (input, output or input-output) of parameters and global 
variables used by the function under test. Such data are expected in function headers 
(code comment before function definition) as required by our coding standard. 

During the test execution, this sequence is followed: 

1. print of the input variables (call of the function MyFuncPInput ()); 
2. execution of the function under test (call of the function MyFunc ()); 
3. print of the output variables (call of the function MyFuncPOutput ()); 

/*Standard function header

*/

MyFunc{

:

}

/*Standard function header

*/

ORG_MyFunc{

:

}

:

#include “Testfile.c”

/*Standard function header

*/

#define NumMyFunc 0x00

#ifndef PC

MyFunc{

:

}

#endif

MyFuncPInput{

}

MyFuncPOutput{

}

#ifdef PC

main{

}

#endif

.C File

.C File

TestFile.c

Intmon

TypeDef definitions used in
.C File

.Eh File

/*Standard function header

*/

MyFunc{

:

}

/*Standard function header

*/

ORG_MyFunc{

:

}

:

#include “Testfile.c”

/*Standard function header

*/

#define NumMyFunc 0x00

#ifndef PC

MyFunc{

:

}

#endif

MyFuncPInput{

}

MyFuncPOutput{

}

#ifdef PC

main{

}

#endif

.C File

.C File

TestFile.c

Intmon

TypeDef definitions used in
.C File

.Eh File

 

Fig. 1 
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In order to force this sequence the source code is slightly modified: the function 
under test (MyFunc()) is renamed adding "ORG_" to its name (ORG_MyFunc()) (see 
fig. 1). A new file is added to the project (TestMyFunc.c) and included at the end of 
the .c file; TestMyFunc.c contains a new version of MyFunc() and the printing 
functions (see fig. 1). 

During the normal execution of the software on target system, the new function 
MyFunc() is called instead of the original ORG_MyFunc(). The new MyFunc() forces 
the execution sequence described before calling the three functions: MyFuncPInput(), 
ORG_MyFunc() and MyFuncPOutput(). 

The new MyFunc() function needs some changes in order to execute tests (before 
the development of the tool CIRO described in the following section those changes 
were executed manually by the test engineer): 

• The function under test must be identified univocally therefore a symbolic 
constant NUM_MyFunc is defined in the testMyFunc.c file with default value 
equal to zero. The test engineer has to modify this value ensuring a unique 
value for each function. 

• A global variable (testNmbrVV) is used to activate the monitoring of the 
interfaces of the function. The source code of MyFunc() contains a switch 
statement to enable (flagTest=1) or disable (flagTest=0) the monitoring, 
depending on the value of TestNmbrVV. The test engineer has to edit the 
template cases produced by the tool as appropriate (see examples of tuned 
switch statements in Figures 6 and 7). 

As examples of execution sequence consider the following original code where 
function func1() in the file1.c file calls function func2() contained in the file2.c file: 

Type func1(parameters)

{ :

:

func2(parameters);

:

:

}

.c File1

Type func2(parameters)

{ :

:

:

:

:

}

.c File2
Type func1(parameters)

{ :

:

func2(parameters);

:

:

}

.c File1

Type func2(parameters)

{ :

:

:

:

:

}

.c File2

  

Fig. 2 

After tool execution, on the instrumented func2 it is possible to perform or not the 
monitoring, with respect to the value of flagTest. The following cases can be 
identified: 

1. If flagTest = 0 we get the following execution sequence: 

Type func1(parameters)

{ :

:

func2(parameters);

:

:

}

:

Type func2(parameters)

{ :

ORG_func2(parameters);

:

}

.c File1
TestFile.c

Type ORG_func2(parameters)

{ :

:

:

:

:

}

.c File2
Type func1(parameters)

{ :

:

func2(parameters);

:

:

}

:

Type func2(parameters)

{ :

ORG_func2(parameters);

:

}

.c File1
TestFile.c

Type ORG_func2(parameters)

{ :

:

:

:

:

}

.c File2

 

Fig. 3 
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2. If flagTest = 1 we get the following execution sequence: 

Type func1(parameters)

{ :

:

func2(parameters);

:

:

}

:

Type func2(parameters)

{ :

func2PInput(parameters);

ORG_func2(parameters);

func2POutput(parameters);

:

}

.c File1
TestFile.c

Type ORG_func2(parameters)

{ :

:

:

:

}

.c File2

:

Type func2PInput(parameters)

{ :

Print NumFunc

Print input data

:

}

TestFile.c

:

Type func2POutput(parameters)

{ :

Print NumFunc

Print output data

:

}

TestFile.c

Type func1(parameters)

{ :

:

func2(parameters);

:

:

}

:

Type func2(parameters)

{ :

func2PInput(parameters);

ORG_func2(parameters);

func2POutput(parameters);

:

}

.c File1
TestFile.c

Type ORG_func2(parameters)

{ :

:

:

:

}

.c File2

:

Type func2PInput(parameters)

{ :

Print NumFunc

Print input data

:

}

TestFile.c

:

Type func2POutput(parameters)

{ :

Print NumFunc

Print output data

:

}

TestFile.c

  

Fig. 4 

The TestMyFunc.c file produced by IntMon is compiled and linked to the original 
software. The instrumented code is loaded and executed directly on target system 
(fig.5). 

 

Fig. 5 

To set the value of testNmbrVV a command is sent via serial port. During the 
execution of the test the functions MyFuncPInput() and MyFuncPOutput() write, in a 
reserved RAM area on target system, interface data of the function under test. At the 
end of the test, those values are downloaded  via serial port on the PC and stored in a 
file (report file). 

The data download is executed at the end of the test, the system isn't operative and 
it is possible to use the serial port to download data, even if it was used as system 
resource during the operative phase. 

.

System 
  Files 

 Test 
Files 

 Compiler 
   Linker .binFile.

 Target 
System 
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.. 
#define NUM_TsDiag 0xd0 
static void TsDiag(tacu_table *pt) { 
int flagTest; 
 flagTest=0;  
 switch(testNmbrVV) { 
               case 1: 
                    connection=1 
                    flagTest=1;  
                    break; 
 

case 2: 
                    if (connection==2) { 
                    flagTest=1;  

                    break; 
  default: 
    flagTest=0;  

The test engineer can build several tests using IntMon, compiling and loading the 
code on target system just once. In fact, it is possible to add various branches to the 
switch contained in the function MyFunc() produced by the IntMon. During execution 
phase, the test engineer executes the various tests planned by setting, for each test, the 
appropriate value of the variable testNmbrVV. 

In the case statement contained in the function MyFunc() it is possible to insert 
some trigger conditions to enable the monitoring of the interfaces only when specified 
events happen or force the value of one or more variables (fig.6). Test engineer 
executes those changes with the aid of the tool CIRO described in the following 
section. 

Forcing the values of some variables during tests can be done: 

1) To simulate faults (software fault-injection) in order to verify the behavior of the 
system (error condition detected or not). 

2) To simulate two synchronous external events (when it is very hard to create the 
real situation by acting on the boundaries of the whole system): When the first event 
happen the second one is simulated by software fault-injection. 

 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

Fig. 6 

Several functions can be observed in the same test. For each function, a test file 
(TestMy_X_Func.c) containing the functions My_X_Func() and the two functions to 
store the Input/Output variables will be produced. The test engineer has to insert the 
same case statement contained in the files produced by the tool to activate the 
monitoring of all functions under test (those operations are completely automated by 
using the tool CIRO described in the following section). 

TestFile.c

if(flagTest==1) {  
      MErrPInput(err);  
      ORG_ MErr(err); 
    MErrPOutput(err);  
 } else {   

   ORG_ MErr(err); 
 } 

..

Test1: force the value of variable 
"connection" to 1;

Test2: wait until the value of variable 
"connection" is 2;
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The sequence of data in the report file corresponds exactly to the activation 
sequence of the functions under test. If a function func1() calls a function func2(), in 
the report the data will be presented in the following order: 

input func1() => input func2() => output func2() => output func1(). 
In some cases it is necessary to monitor function func2(), called by several 

functions, only when it is called by a specific function func1(). In this case the test 
engineer has to modify (with the aid of the tool CIRO described in the following 
section) the switch contained in the test files related to the functions under test in 
order to create a "chain" as shown in (fig.7). 

 

Fig. 7 

The test engineer can obviously realize more complex "chains" to involve several 
functions. 

IntMon makes use of a commercial tool, called LogicScope, to get coverage 
measurement. LogicScope normally works on PC changing the function under test in 
order to store in a file the list of branches covered during the execution of the code. 
To get coverage measures on target system the LogicScope libraries have been 
substituted by proprietary ones in order to store data in a reserved RAM area. IntMon 
instruments the code in such a way to minimize intrusion (also allowing to limit 
coverage measures to a single function within a module), as LogiScope 
instrumentation is incompatible with real-time systems. After execution of the test, 
IntMon generates the coverage data in a format compatible with LogiScope, so to 
allow use of graphic analysis capabilities provided by the commercial tool. 

IntMon allows coverage measures on the target system by calling the function 
created offline by LogicScope (COV_MyFunc()) instead of the original function 
(ORG_MyFunc()). 

.. 
#define NUM_TsDiag 0xd0 
static void TsDiag(tacu_table *pt) { 
int flagTest; 
 flagTest=0;  
 switch(testNmbrVV) { 
  case 1: 
      flagTest=1;  
      testNmbrVV=2; 
      break; 
  default: 
    flagTest=0;  
 } 

 if(flagTest==1) {  
      TsDiagPInput(pt);  
      ORG_TsDiag(pt); 
    TsDiagPOutput(pt);  
 } else {   

   ORG_TsDiag(pt); 
 } 
}  

.. 

.. 
#define NUM_MErr 0xe0 
static void MErr(int err) { 
int flagTest; 
 flagTest=0;  
 switch(testNmbrVV) { 
  case 2: 
      flagTest=1;  
      testNmbrVV=0; 
      break; 
  default: 
    flagTest=0;  
 } 

 if(flagTest==1) {  
      MErrPInput(err);  
      ORG_ MErr(err); 
    MErrPOutput(err);  
 } else {   

   ORG_ MErr(err); 
 } 
}  

.. 
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To execute coverage measurements on the target system, the test engineer has to: 

• Execute LogicScope to create COV_MyFunc() on PC. 
• Execute IntMon to create test file as described above (COV_ instead of ORG_). 
• Compile the instrumented code and load it on target system. 
• Execute the test. 

Coverage measures and interface data are stored in independent RAM areas of the 
target system. 

When coverage is measured the intrusion can highly increase depending on the 
number of instrumented functions. For complex systems it is almost impossible to 
measure coverage on the whole software, so a partitioning of the system software is 
needed in order not to impact too much on real-time properties. 

4   Managing Code Instrumentation and Documentation 

In order to standardize and automate the various phases of the software V&V process 
an additional tool was implemented. It calls IntMon and supports the activity of the 
test engineer by managing the instrumentation of the code and the generation of the 
documentation requested by the international norms for the V&V activity. 

Through the tool IntMon it is possible to monitor the variables representing the 
software interfaces as well as the code branches exercised during the execution of the 
test cases. 

Before the development of the tool described in this section, a series of manual and 
not standardized operations had to be performed. First of all, in accordance with the 
scope of each designed test case, it was necessary to modify the code under test by 
manually inserting the probes for the interfaces monitoring and the code coverage 
recording.  Specific instructions could be used to “trigger” the acquisition of 
information when specific operational conditions happen. Then, after execution of the 
test on the target system, the recorded data had to be manually compared with the 
expected ones. 

All these operation have to be exhaustively documented. 
The tool CIRO (Code Instrumentation & Report Organizer) is a PC based 

environment able to manage the set of operations needed to prepare the tests. The tool 
CIRO aids the test engineer from the test specification to the results checking, 
including the test documentation and the reports archiving. 

By using this environment, the application of the methodology described in section 
2 is optimized, and several additional functionalities are introduced to manage the 
verification and validation process in a harmonized and standardized way. 

First of all, the tool parses the source code in order to recover information on all 
interfaces and symbols in the software under test. The test engineer will specify the 
test cases directly in this computer-based environment, with a reduced effort and 
minimizing the risk to commit errors. 

The tool records in a database all the test specifications generated by the test 
engineer to validate the code against its requirements and – automatically and in a 
standardized way – performs on the software under test all needed modifications (to 
monitor the interfaces dealing with each test case, to record the code paths covered 
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during the test execution, and to “trigger” all this data storing just when it is the case, 
in accordance with the scope of the test case). 

After execution of the test cases on the target system, the test engineer will load the 
recorded data in the tool, which will automatically compare the test results with the 
expected ones. This will lighten the test engineer from the task to manually compare 
tenths of values for every test case, also getting rid of any chance of human mistakes. 

The availability of all information in the database allows the tool to automatically 
produce the test specifications documents (hundreds of pages for a medium size 
software component), to ensure complete traceability for every test case 
(specification, setup, execution logs and result), as well as to produce detailed 
statistics on the test set (exercised functions, monitored variables, and so on). 

As complex software projects, such as the ones designed for railway control and 
protection systems, always go through a certain number of reviews (also due to the 
results of the verification and validation activities), it is very important that the tool is 
able to help the test engineer in the task of performing the regression analysis and 
testing. By comparing the newest software revisions with respect to the previously 
tested ones, the tool is able to recover those tests which are not influenced by the 
changes, to identify the tests that have to be re-executed, and to help the test engineer 
in re-design tests related with parts of the code whose interfaces did change or with 
modified functional requirements. This can be done after a comparison of the code 
versions, as in the database it is possible to identify all parts of the software and all 
requirements involved in a certain test case. All test cases related with unchanged 
code and requirements can be still considered valid, also for the new software version, 
as far as the test engineers correctly identified and tested independent software 
modules.  

By collecting all information for each tested software version, the tool also will 
improve the traceability of all verification and validation activities during the whole 
project lifecycle. 

The automation of all the manual activities required by the described methodology 
allows the test engineer to save time during testing, to speed up the training of new 
test engineer and to increase the level of quality due to the application of a 
standardized process, to minimize typing errors during test specification phase, to 
avoid errors while comparing test outcomes with expected values, and to ensure 
alignment and traceability between test specifications and the code version. 

Keeping test data in a database allows to make analyses on the testing activity 
(e.g., reduction in the number of SW bugs among new SW releases) required by some 
assessment process and to provide quantitative statistics on testing process as required 
by the application of the ISO9000:2000 and CMMI level 4. 

Going into details, the following phases characterize the selected testing process: 

• Test Engineer deeply analyzes software requirements and other software design 
documentation (and, if it is necessary, the source code); 

• If it is not the first software release, he/she performs a difference and impact 
analysis between the previous and current version of code under test; 

• He/she specifies the test against the software requirements; 
• He/she prepares the test specification document as required by the CENELEC 

norms; 
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• He/she instruments the source code to record the data and coverage 
measurement on the target system; 

• He/she executes tests on target system; 
• He/she analyses and verifies the results; 
• He/she prepares the test report document. 

A safety critical system project, executed in the years 2002/2004, is used as case 
study to evaluate the effort and the benefit of a fully automated testing environment. 
The previously described phases required the following effort: 

Table 1 

V&V Phase Men-months
Phase 1 – Analysis 
Phase 2 - Comparison 
Phase 3 – Test specification 
Phase 4 – Test specifications documentation
Phase 5 – Code instrumentation 
Phase 6 – Test execution 
Phase 7 – Test results checking 
Phase 8 - Test reports documentation 

    23.33%    
    6.67%    
    15.56%    
    12.22%    
    8.89%    
    16.67%    
    7.78%    
    8.88%    

Total    100%   

Using the tool CIRO phases 5 and 7 are totally automated and effort in phases 2, 4 
and 8 is reduced by the 50 ÷ 70 % (evaluation of those reductions was obtained by 
comparing the effort spent in the latest project, when the tool CIRO was available, 
with the V&V effort spent on previously validated systems, when all activities had to 
be manually performed). 

Table 2 refers to an hypothetical project that would require a V&V effort of 100 
men-months to evaluate the time reduction using the tool CIRO: 

Table 2 

V&V Phase Men-months 
Without      
CIRO 

Reduction Men-
months Using 

CIRO 
Phase 1 – Analysis 
Phase 2 - Comparison 
Phase 3 – Test specification 
Phase 4 – Test specifications documentation 
Phase 5 – Code instrumentation 
Phase 6 – Test execution 
Phase 7 – Test results checking 
Phase 8 - Test reports documentation 

23.33 
6.67 

15.56 
12.22 
8.89 

16.67 
7.78 
8.88 

 
50% 

 
75% 

100% 
 

100% 
62.5% 

23.33 
3.33 

15.56 
4.44 

0 
16.67 

0 
3.33 

 Total 100  66.66 

The use of the tool allows reduction of one third in men-months required by testing 
activities. 
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5   Conclusions and Future Work 

This paper describes a methodology and relevant tools used by the RAMS team of 
Ansaldo Segnalamento Ferroviario to test modern computer based railway control 
systems.The described methodology is applied to functional testing and coverage 
measurement of real-time safety-critical systems. 

Ansaldo Segnalamento Ferroviario developed a tool, named IntMon, to monitor 
input and output variables, to perform software fault-injection, and to evaluate code 
coverage with controllable intrusion. 

To support the analysis of input and output variables and to standardize the V&V 
process a tool called CIRO was developed. It allows the test engineer to specify the 
test cases (automatically producing the test plan document), to generate the 
instrumented code ready to be uploaded to the target system, to analyze the 
downloaded results, and to verify their correspondence with expected ones. CIRO 
calls IntMon to get instrumented code.Regression analysis is supported by the tool 
CIRO, allowing to identify the tests affected by software changes. 

To improve the tool set (IntMon/CIRO) in order to automatically generate the 
required headers of the functions under test a new tool is being developed. The tool 
will parse the source code in order to get information on all variables and symbols 
used in the software under test, those information will be used by the tool to 
build/check the header of each function of the source code as required by our coding 
standard. 
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Abstract. Systematic functional testing is a fundamental step of embedded 
control systems development cycle, as it allows to verify and validate their final 
implementation. Various approaches to black-box testing have been proposed, 
however they either involve test-case explosion or do not ensure the correctness 
of system behaviour in scenarios not covered by system specifications. To cope 
with such issues, a methodology which better suits both complexity and safety-
criticality of the target system is needed. This paper describes the ASF 
functional testing methodology, based on a grey-box approach aimed at 
generating and reducing an extensive set of influence variables and test-cases. 
The methodology, embracing different aspects of system test process (code 
coverage verification, regression testing, etc.), was successfully applied to 
validate ASF implementation of SCMT (an Italian project for an Automatic 
Train Protection System). The results obtained in our testing experience proved 
the time effectiveness and extensive coverage of the proposed approach. 

1   Introduction 

Safety-critical real-time systems require a thorough testing activity [1], regulated by 
international standards [ 2]. The verification of system implementation against its 
functional requirements is usually pursued by means of black-box testing approaches 
[ 4]. Partition testing [ 5] is the most spread functional testing technique. It consists in 
dividing the input domain of the target system into properly chosen subsets and 
selecting only a test-case for each of them. Equivalence partitioning, cause-effect 
graphing [ 3], category-partition testing [ 6] and classification-tree method [ 7] are all 
specializations of the partition testing technique. 

Functional testing techniques are based on application specifications; when these 
specifications are expressed through natural language, they often prove to be 
incorrect, incoherent, and incomplete. Functional  testing, moreover, does not allow to 
estimate the achievable level of accuracy. For this reason, white-box (i.e. structural) 
testing methods can integrate functional techniques in order to check effectiveness of 
the test set through the code coverage measure [ 8]. In this case, however, especially 

   M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.):
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for complex dependable systems, it is very difficult to cover all code structures, 
because of the great amount of defensive programming, and identify the tests that are 
needed to exercise the uncovered pieces of software. 

Starting from this background, Ansaldo Segnalamento Ferroviario (ASF), with the 
aim of performing both the verification and the validation of the SCMT1 system, that 
is a complex Automatic Train Protection System (ATPS), developed the hybrid 
approach described in this paper. The ASF approach to functional testing had the aim 
to overcome the problems of traditional functional testing approaches, by integrating 
some of the advantages of the white box methodologies. 

The approach we are going to describe, though empiric, has strong theoretical 
basis, and has proven to be very effective during our testing experience, achieving all 
the objectives we needed to pursue, that is: 

• Validating system implementation against its specifications (traditional 
functional testing objective); 

• Validating the completeness and coherence of the specifications, by selecting 
an extensive set of input sequences and checking corresponding outputs; 

• Reducing the number of needed test-cases; 
• Checking code coverage; 
• Performing non regression tests on modified software versions. 

We could define our methodology as a grey-box hybrid approach to functional 
testing, because: 

• The aim is not only verifying system implementation against its specification, 
but also validating system behaviour against unpredicted input sequences; 

• System is decomposed in order to reduce the complexity of the testing phase, 
and such a decomposition is validated by means of static code independence 
checking; 

• Output checking is performed sometimes on the internal state of the system and 
not on its “visible” outputs; 

• Code coverage analysis is used to check test effectiveness. 

This paper is organised as follows: Section 2 describes the system under test, in 
terms of working principles and hardware architecture; Section 3 provides an in depth 
description of the grey-box testing approach, based on a multi-level orthogonal 
decomposition of the target system which, together with other test-case reduction 
techniques, allows to dramatically reduce the complexity of the testing phase; Section 
4 contains a brief discussion about the results and the future applications of the 
proposed methodology. 

2   Description of the System Under Test 

SCMT is the name of the Italian ATPS to be used on traditional rail lines. SCMT is 
made up by two principal sub-systems: an on-board part, physically installed in train 
                                                           
1  SCMT is the acronym of  “Sistema Controllo Marcia Treno”, that is the Italian for “Train 

Movement Control System”. 
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cockpit, and a ground part, distributed near the rail-lines. Two different types of 
devices are used in the ground sub-system to interact with the on-board sub-system. 
The first type of ground apparels consists in the track-circuits, which are devices 
using rail-lines to transmit data to the on-board sub-system, allowing a semi-
continuous signalling system. Track-circuits are meant to send to the on-board system 
the status of the signals which the train is going to reach. Such information is constant 
during the time the train takes to travel along the loop made up by the rail-lines 
(typically, 1350 meters long). The second type of device is named balise, which is a 
transmitting antenna energized by trains passing over it, constituting a discontinuous 
communication system. Balises can be static or dynamic and they are able to provide 
the on-board system with more data respect to track-circuits. To be able to update 
their data, according to track status, dynamic balises must be connected to a proper 
encoder system. To get the information it needs from the ground sub-system, the on-
board sub-system has to be connected to the TCTM (Track Circuit Transmission 
Module), which receives data transmitted by track-circuits 2 , and BTM (Balise 
Transmission Module), which energises balises and reads their messages. Finally, a 
Man Machine Interface (MMI) is used to allow train driver interaction with the on-
board sub-system. All these information are managed by the on-board sub-system 
which has to ensure train safety by elaborating the allowed speed profiles (i.e. 
dynamic protection curves) and activating service or emergency brakes in case of 
dangerous situations. The described architecture is depicted in Fig. 1. 

  

Fig. 1. SCMT Architecture Diagram 

The whole SCMT system had to be tested in order to be validated against safety 
related requirements in both nominal and degraded operating conditions. In particular, 
to reduce testing complexity, it has been chosen to test separately the ground sub-
system by verifying the correctness of both installation and data transmitted by 
balises. Therefore, SCMT system functional testing only regarded the on-board sub-
system. However, as aforementioned, the main issue was that we could not 
completely rely on system requirements specification as it often did not extensively 
cover degraded conditions which constituted critical scenarios for system safety. 

In the following, we will refer to the on-board sub-system as “SCMT on-board”. In 
order to accurately select target system’s input-output ports, we represent them 
                                                           
2 Data transmitted by track-circuits is often referred to as “codes”. 
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through a class diagram describing structural relationships involved in system 
architecture (see Fig. 2). 

 

Fig. 2. Class diagram for SCMT on-board 

Testing the on-board system for an exhaustive set of input sequences would be 
unfeasible for the exponential growth of test-cases. Such a problem, known in the 
literature as “test-case explosion”, depends on the number of input variables and on 
the set of possible values for each variable. Next section will show how to contain 
test-case explosion applying proper reduction rules. 

3   Description of the Testing Approach 

A modular approach is commonly used when dealing with complex system 
development activities. In our approach there is a transposition of such a 
compositional  methodology to functional testing issues: the decomposition of the 
system in distinct logic modules is made “a posteriori” and without knowing real 
system implementation. Logic modules have been separated whenever they could be 
proven to be independent and/or to interact with each other in a well defined way, 
according to system specification. Such a decomposition was then validated by 
analyzing structural dependencies within software modules and verifying that it 
respected the “a priori” assumptions. Function call-graphs based techniques have been 
adopted, together with traditional structural tests, to validate system decomposition 
[ 12,  13]. After this step, each module (or macro-function) had to be fed with extensive 
input sequences in order to check its output behaviour. Outputs had to be accessed by 
acting on system hardware by means of proper diagnostic instruments (hardware and 
software tools). It was important to ensure that such instruments were the less 
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intrusive as possible, in order not to influence in any way system behaviour. This was 
achieved equipping the system under test with built-in hardware diagnostic sub-
systems and standard output communication facilities, in order to interface with 
software diagnostics. The followed approach is briefly summarized in Fig. 3. 

Fig. 3. Operational steps of the testing process 

Step 1. The decomposition of the system into macro-functions (i.e. logic blocks) to be 
separately tested followed two directions (see Fig. 4): 

• Horizontal decomposition, which was based on input-output relations; 
• Vertical decomposition, by superposition of progressive complexity levels. 

In the horizontal decomposition it was supposed that there was a well defined data 
path from inputs to outputs, i.e. a generic block was influenced only by external 
inputs and output of the previous block, but not by the above, below and following 
blocks. Vertical decomposition consisted in considering the system as the 
superposition of different working levels, from the simplest to the most complex, in a 
bottom-up way. The upper levels introduced new functionalities relying on a new set 
of external influence variables. In such a way, the system was divided in distinct logic 
blocks, for instance Braking Curve Elaboration (horizontal level) for Complete SCMT 
(vertical level). Each logic block was influenced by a well defined set of inputs and 
reacted with outputs that could be either accessible or not at the system’s output 
interfaces. In case the output was not visible, internal probes had to be used to access 
the part of the system state we were interested in. 

 

Fig. 4. SCMT decomposition into logic blocks 
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Therefore, a test-case classification according to the introduced logic blocks became 
possible. In other words, each block was associated with its own test suite. In 
particular, the first level horizontal decomposition of SCMT was constituted by the 
following blocks (see Fig. 5): 

1. SCMT System Logic, which had the aim to apply the correct “work plane”; 
2. Braking Model Elaboration, aimed at building the proper protection curves; 
3. Braking Model Application, which had to control the braking distance. 

Even by not explaining the meaning of the variables exchanged between blocks 
(shown in Fig. 5), for the sake of simplicity, we would like to highlight that internal 
variables had to be assigned values, for testing purposes, acting on the corresponding 
external input variables. In order to perform this operation, we needed to know the 
functional behaviour of the previous block (obtainable by the specification) and to test 
it previously to ensure its correct implementation. For instance, having already tested 
the first horizontal block, it was straightforward to obtain the corresponding external 
inputs by means of a backward analysis from “internal” outputs (i.e. D0, V0, etc.) to 
external inputs (i.e. the real influence variables). This process could be iterated for 
every block. 

 

Fig. 5. First-level horizontal decomposition of SCMT in detail 

SCMT vertical working levels are related to the completeness of the information 
received from the ground sub-system. At the Basic SCMT level, on-board sub-system 
only reads codes from track-circuits. At the Partial SCMT level, only information  
from static balises are added to the codes. Finally, in Complete SCMT level all 
ground transmission devices are used to collect data. It is important to underline that 
while real SCMT working levels contain incremental functionalities (e.g Partial 
SCMT comprises Basic SCMT), vertical levels shown in Fig. 4 feature differential 
functionalities (e.g. Partial SCMT contains all the functions not already contained in 
the lower level). Such a distinction allowed us to reduce test redundancies, by 
verifying only the new functionalities at each working level, in a bottom-up way. 

Finally, we were able to divide the target system into 15 blocks, with an influence 
variable average reduction factor of 2 for each block (further augmentable with other 
techniques). To estimate the achieved reduction factor, we considered a system 
characterized by the following parameters: N, total number of input variables; m, 
average number of possible values for each input variable; s, number of logic blocks 
in which the system has been divided; r, average reduction factor in the number of 
input variable for each logic block. For such system the reduction factor R in the total 

Sn,Sa,Sc Do,Vo,VT 
Braking Model Elaboration 

SCMT 
System 
Logic 

Braking 
Model 

Application 



 A Grey-Box Approach to the Functional Testing 311 

 

number of test-cases (and thus in the time required for their execution) is easily 
obtainable as follows:  

)/11(
/

1

iondecompositafter   testsof #

iondecomposit before  testsof # rN
rN

N

m
sms

m
R −⋅=

⋅
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This expression proves that, as r > 1, the overall reduction factor grows with N in 
an exponential way. Thus, the effectiveness of the presented technique is particularly 
high when dealing with large systems, featuring a big amount of influence variables. 
For SCMT we achieved an overall reduction factor, at this stage, of more than 100. 

Step 2. An influence variable is a variable which is able to influence the behaviour of 
the system under test. SCMT influence variables could be divided into the following 
two main groups: 

• Scenario variables, which represented operating conditions (e.g. track circuit 
length and transmitted codes or code sequences, balises messages, etc); 

• Test-Case variables, which represented specific inputs for a given scenario (e.g. 
train speed, key pressures, etc.). 

At a first step, we identified all the possible influence-variables. Then, in order to 
reduce the number of influence variables for each logic block, we developed a simple 
procedure of variable-selection, with a step-by-step independence checking: if the 
value of a certain variable was directly deductible from the others, then it was 
excluded from the set of influence variables because it would have led to define 
further test-cases which, however, would have revealed equivalent to at least one of 
the already developed. For instance, for the proper working of the “SCMT System 
Logic” blocks, it was necessary to define a set of variables needed to express at least 
the following information: the completeness of the ground equipment (only track-
circuits, track-circuits and static balises or track-circuits and dynamic balises), the 
type of installed balises and the consistency of the information contained in balises. 
On the basis of the requirements contained in system specification, we found out that 
the variable expressing that data consistency of balises was always dependant on the 
first two variables. Thus, such a variable was excluded from the set of influence 
variables, being redundant. Another simple example of a redundant variable consists 
in the one expressing the “Train Stopped” condition. Such a variable was always used 
in combination with “Train Speed”, and its value was dependant on “Train Speed” 
value, because the train was considered stopped if and only if train speed was less 
than 2 Km/h. 

Output variables classification was performed starting from the logic block(s) they 
influenced. In particular, to access “hidden outputs”, that is outputs that were not 
normally accessible from the interacting entities (see Fig. 2), we needed to know the 
system physical structure. For instance, let us refer to the first level horizontal 
decomposition shown in Fig. 5. In such a case, the stimulating variables were Do, Vo, 
VT, while the output variables to be probed were Sn, Sa, Sc. The former variables were 
assigned values by properly acting on external accessible inputs, while the latter could 
be read from the log-files generated by the diagnostic software managing hardware 
probes. The diagnostic environment used for SCMT is depicted in Fig. 6. 
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Step 3. A tree-based test-case generation technique was applied to every logic block. 
At each level, only one influence variable, among the ones not already instantiated, 
was assigned all the significant values of its variation range, according to the 
reduction criteria that will be described later in this section. Influence variable 
instantiation could be divided into two macro-levels: scenario variables and test-case 
variables. In fact, test-cases were introduced only when all the significant operating 
scenarios had been defined. Such a process is represented in Fig. 7. The combination 
of the instances of the variables was performed automatically by a tool meant to apply 
a set of pre-determined reduction rules (described later on in this section), for an “a 
priori” pruning of pleonastic tree branches. With such an approach, tree leaves 
represented the test-cases which had to be actually executed. 

 
Fig. 6. Diagnostic environment 

The main reduction criteria adopted have been: 

• Incompatible combination of scenario or test-case variables; 
• Not realistic operating conditions (for scenario variables); 
• Equivalence class based reduction (considering scenario parameters or input 

variation ranges); 
• Context specific reductions (i.e. context-specific dependencies, code-based static 

independence checking, mapping on test-cases already defined for a different 
logic block, etc.). 

For scenario variables, the conditions to assess “incompatibility” were usually 
based on constraints coming from the physical environment, while “realistic operating 
conditions” refer to the railway national or international norms prescribing a set of 
requirements that must be necessarily respected [ 11]. Some of these norms are about 
track circuit length, balise positioning, signalling rules, and so on. 

For test-case variables, context specific dependencies were very frequent and could 
be found when the assignment of some particular values or ranges of values to a 
specific set of variables implied a fixed value assignment for another distinct set of 
variables. Also code-based independence checking was used in order to avoid repetition 
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of simple tests (e.g. key pressure failures) in different SCMT operating modes, when it 
could be proven that the called managing procedure was the same. Finally, as test-cases 
stimulated different logic-blocks, often only one execution was performed for multiple 
defined tests (what increased was the output checking time for the same test). 

The most complex and efficient technique was based, both for scenario and test-
case variables, on equivalence class based reductions. An equivalence class represents 
a set of valid or invalid states for a condition on input variables. The domain of input 
data is partitioned in equivalence classes such that if the output is correct for a test-
case corresponding to an input class, then it can be reasonably deducted that it is 
correct for any test-case of that class. By tree-generating the combinations of 
influence variables and reducing them with an equivalence class based approach, we 
implemented what is called an extended SECT coverage criterion. SECT is the 
acronym of “Strong Equivalence Class Testing”, which represents the verification of 
system behaviour against all kinds of class interactions (it can be extended with 
robustness checking by also considering  non valid input classes). In our case, SECT 
was feasible because each logic block had a quite small number of influential 
variables, each one assuming a small number of classes of values. 

 

Fig. 7. Tree-based test-case generation 

Generally speaking, when we had to select input values for influence variables we 
chose at least one test-case for each of the following classes: internal values, high-
boundary values, low-boundary values, near high-boundary values, near low-
boundary values, over high-boundary values, below low-boundary values, special 
values (only for discrete variables). The last three classes were very important to test 
robustness (and thus to ensure system-level safety). All in all, a non Boolean variable 
assumed, in the final set of test-cases, at least three different values, belonging to the 
first three categories. The followed general approach included “Boundary Analysis”, 
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“Robustness Testing” and “Worst Case Testing” (WCT) techniques3. In some cases, 
according to system specifications, we merged the three techniques by adopting 
nearness, robustness and worst-case conditions. For instance, train speed ranges have 
been first partitioned into sub-sets, according to the specified speed limits, that is: 
V<2 Km/h, 2Km/h<V<15Km/h, 15Km/h<V<30Km/h, etc. The obtained sub-sets 
represented all the significant train speed ranges used in the entire system 
specification. However, for all tests in which we were testing a function which only 
required the train to be under a maximum speed limit (VMAX), train speed values were 
chosen as follows: V=1/2 VMAX; V=VMAX - δV; V=VMAX + δV (where δV is a small 
positive speed value, for instance 1Km/h). The so defined speed values were 
combined with all the remaining influence variable values, even in the worst-case 
conditions. 

The next stage consisted in determining expected outputs for each test-case. 
Examples of measured output variables are: leds (on/off), icons, text messages, brake 
intervention, train position, etc. System behaviour was modelled in terms of 
significantly varying outputs and their expected values. The correct behaviour was 
directly obtainable from system specifications, but, in some cases, it had to be derived 
by means of a parallel independent model. Comparison of the results was then made 
manually. For instance, we used a parallel independent model for the braking curve 
prediction based on a human comparator. When the described approach was able to 
highlight incompleteness or incoherence in system specifications, it was necessary 
that the responsible for system specifications assessed the correct system behaviour 
corresponding to the identified input conditions. Finally, as an operational tool, we 
made use of a spreadsheet in order to represent Test Case Specification in terms of: 
operating scenario, represented by instantiated scenario variables (e.g. TC code 
sequence: CODE1 CODE2); input sequences, represented by test-case variable 
values and their associated time-line (e.g. key X pressed within time T); expected 
outputs and optional measurement instructions (e.g. icon Y appearing on the MMI 
display and recorded as variable Vy in log-file L). 

Step 4. A relevant amount of tests had to be executed on the SCMT system, so it was 
useful to identify priority levels for test classes. The main criterion was the safety 
criticality of functions/blocks, identified by the hazard-analysis processes [ 9], used to 
validate system specification against the most critical causes of dangerous failures. 
For instance, correctness of system behaviour was first tested against the so called 
“restrictive input sequences”, that is track-circuit code sequences that should activate 
one or more train protection mechanisms. Moreover, in testing the system for any new 
software version, we adopted a “width-first” coverage strategy, that consisted in 
executing the most significant test-cases for each block and category, in order to 
quickly discover and notify macroscopic non conformities or dangerous behaviours. 

Test-cases have been executed in a simulation environment made up by: the system 
prototype under test; hardware devices simulating external interactions (i.e. system 
inputs); software tools aimed at simulating the operating environment (i.e. the 
scenario) and allowing the automation of the test process through batch-files. To 
                                                           
3  Such techniques are based on empirical studies. For instance, it has been noted that most 

errors generate in correspondence of extreme values of input variables. 
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speed up test process, preparation, execution and output verification activities have 
been pipelined, in order to allow more test-engineers work in parallel. Comparison of 
the output log-files with the expected outputs had to proceed manually in the first 
phase of test execution, because Pass/Fail criteria were often based on time/speed 
ranges, very difficult to validate in a complete automatic environment. In all cases a 
faulty behaviour has been observed, a proper notification (i.e. System Problem 
Report) was sent to the development division. Such a notification could regard, as 
aforementioned, implementation errors as well as specification errors. The testing 
environment used for SCMT has been depicted in Fig. 8. 

 

Fig. 8. Test execution pipeline 

In order to verify the correct implementation of needed modifications and to ensure 
the absence of regression errors, the whole set of tests had to be repeated at any new 
software version. This is the most simple and safe non-regression testing technique, 
known in literature as “Retest-All” [ 14]. A regression testing technique consists in 
selecting a sub-set of the entire set of test-cases to be repeated on modified software 
versions. We chose not to implement other safe techniques for the following reasons: 

• Any safe technique requires a relevant amount of time to identify the set of test-
cases to be repeated, while the test-suite reduction can be often very small, if any 
(see [14]). So there is a risk of over-estimating cost-effectiveness of safe 
techniques; 

• As test-execution was automated, test-suite reduction was not a fundamental 
concern. 

Of course, it did remain the problem of checking the correctness of output log-
files. We overcame the problem by implementing a so called Gold-Run technique 
[15]. A Gold-Run (or Gold-Standard) log-file contains the results of a test which 
showed no unconformities. While the comparison with expected outputs, as 
aforementioned, had to proceed manually, the verification of log-files corresponding 
to repeated test-cases could be automated by means of a software comparator tool. 
The building of the tool was complicated by non deterministic outputs (such as time 
delays or non rigid output sequences). Comparison on stochastic values was based on 
confidence ranges calculated by estimating the variance of the results obtained in 
more test runs (typically three runs were enough). This implied some more test runs 
and manual verifications, but ensured a better level of automation, with a reduced 
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error rate. Of course, a manual control had to be pursued in case of failures, in order 
to ensure the absence of positive faults, that is faults caused by the automatic 
comparator tool and not by systematic errors in the target system. 

4   Conclusions and Future Work 

The validation of the SCMT system implementation has been a multi-month activity 
involving several highly specialised resources. The approach described in this paper 
allowed to define and execute more than 2500 test-cases, covering all the 
functionalities of the system in normal as well as in degraded states of operation. With 
this activity a number of errors were revealed, and this contributed to improve system 
specifications in terms of both correctness and completeness. While specification 
completeness verification was among the objectives of the methodology, correctness 
checking constituted an important collateral activity. By describing our industrial 
experience, we showed how a hybrid functional testing methodology can be adopted 
in order to achieve different testing objectives. In fact, a combination of different 
techniques have been used during the entire SCMT test process. In particular, the 
developed grey-box approach has proven to be able to improve test coverage while 
reducing the number of required test-cases. Test process has been accompanied by an 
extensive documentation activity (test plan, test design specification, test case 
specification, etc.) that revealed the importance of test organization in speeding up 
execution and in allowing easy test reproducibility. The verification of coverage by 
code instrumentation is still in progress, but so far it showed a coverage (using a 
Decision to Decision Path technique [13]) of nearly 90%, which did highlight the 
effectiveness of the followed testing approach. The uncovered parts of software are 
going to be tested by adding the necessary system-level tests. They gave us an 
important feedback on potential errors in classifying influence variables or in defining 
and applying some of the reduction rules. We are continuously developing techniques 
and tools to further automate the testing process, above all by optimizing the output 
checker. The presented testing methodology, with the necessary customizations, is 
now being applied to validate the new ERTMS/ETCS [ 10] compliant systems 
developed by ASF. 
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Abstract. Test data compression and on-chip decompression using an embed-
ded processor has already been proposed for test data volume and test time re-
duction as well as for use of slower testers without decreasing test quality. On 
the other hand, scan cell reordering methods have been proposed to overcome 
the problem of high average power dissipation during scan based external test-
ing. In this paper we propose a scan cell ordering based test vector compression 
method, which reduces test data volume up to 87.3%. The decompression of the 
test data is based on the use of an embedded processor.  

1   Introduction 

Shrinking process technologies and increasing design sizes have led to highly com-
plex, billion-transistor integrated circuits. The latest System-on-Chip, SoC, designs 
integrate multiple ICs (microprocessors, memories, DSPs and I/O controllers) on a 
single piece of silicon. Each one of them must be exercised by a large number of 
precomputed test patterns. One of the increasingly difficult challenges in testing SoCs 
is dealing with the large amount of test data that must be transferred between the 
tester and the chip [1]. The large amount of test data is not only exceeding the mem-
ory and I/O channel capacity of commercial automatic test equipment (ATE) but is 
also leading to excessively high testing times. 

Several techniques have been proposed for test data volume reduction. Test data 
compression is achieved by using techniques such as statistical coding, run-length 
coding, Golomb coding, Huffman coding and frequency directed coding [2-9]. The 
test data decompression is performed on chip using a decoder. Test data compression 
is also achieved by statistical coding combined with LFSR reseeding [10], by decom-
pression network based on linear equations [11], by SISR combined with spreading 
logic [12] and by ring generators combined with phase shifters [13].  TestKompress® is 
a commercial tool by Mentor Graphics Corp., which implements the work presented 
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in [13]. The methods proposed in [10-13] take advantage of the presence of don’t care 
bits in order to achieve significant compression ratios. Another approach of reducing 
the amount of test data that needs to be transferred to the SoC is by using the process-
ing power already present in most of the contemporary systems [14-19]. Some tech-
niques have been proposed for testing embedded memories [14, 15]. In [16] an em-
bedded processor is used to simulate multiple-polynomial multiple-seed LFSRs in 
order to detect as many faults as possible before switching to deterministic vector 
application. In [17] an accumulator based BIST is proposed that achieves less mem-
ory requirements than that of [16]. The basic approach of how an embedded processor 
is used for testing core-based SoCs is presented in [18]. An external tester is used to 
download test data to the memory of the SoC and then the embedded processor acts as 
a controller assuming the tasks of coordinating the test data download, accessing the 
appropriate core and applying the test data.  The authors of [19] present a specific 
compression/decompression algorithm, which gives good results, and show how an 
embedded processor is used to decompress and apply the test data on the cores of the 
SoC. An external tester loads a program along with compressed test data into the 
processor’s on chip memory. The processor executes the program, which decom-
presses the test data and applies it to scan chains in the other components of the SoC 
to test them. The decompression process requires very few processor instructions and 
thus can be done very quickly. This approach reduces both the amount of data that 
must be stored on the tester and reduces the test time. Moreover, even if a slow tester 
can be used to download the test data to the memory, the test data can be shifted in at-
speed during the testing of the cores.  

Test data compressed using one of the techniques presented in [2-13] could also be 
decompressed by an embedded processor. However, the delay imposed by the execu-
tion of the required processor instructions would diminish the advantage of reduced 
test application time that these techniques offer. 

In this work we propose a more efficient algorithm than the one proposed in [19] 
for compressing test data. The compression algorithm is based on test vector ordering, 
rearranging of the columns of the vector table and don’t care bit assignment. The 
decompression process can be performed easily and fast by an embedded processor. 
In Section 2 we briefly describe the scheme that is used for data representation and 
how the embedded processor is used for decompression of the test data. Section 3 
presents the proposed algorithm while Section 4 provides experimental results. Fi-
nally Section 5 concludes. 

2   Previous Work 

In the method proposed in [19] the embedded processor generates the next vector 
from the previous one using test data downloaded from ATE. This is based on the 
differences of the current test vector with respect to the previous one. If, however, the 
differences of the two vectors are expressed in the form of the bit place where the two 
vectors differ then this will lead to an excessive amount of information, which will 
surpass the amount of information saved by the common bits. In order to overcome 
this problem the test vector is divided in blocks of fixed length w, each of which re-
fers to the same bit positions in each test vector. Therefore, one only needs to know 
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which blocks of the next vector are different from the corresponding blocks of the 
previous vector and the next vector is produced by replacing these blocks, as shown in 
Figure 1. The shaded blocks indicate the blocks that were replaced in vector n in order 
to produce vector n+1. 

Block Address:       0          1           2           3           4        5

Test Vector n:

Test Vector n+1:
 

Fig. 1. Test vector generation principle 

In order to achieve large savings we need to have the least possible number of dif-
ferent blocks between pairs of successive test vectors. In [19] this is achieved by or-
dering the test vectors in such a way that successive test vectors differ in a rather low 
number of blocks. Since the faults in the circuit are structurally related, there are test 
vectors that have large common parts and thus the ordering of the test vectors can 
significantly reduce the number of different blocks needed for the generation of the 
test set. The ordering procedure used, was based on using a nearest neighbor algo-
rithm and the criterion for choosing the next vector was the number of blocks the two 
vectors differ.  

last flag block number

1 bit log2N bits

block

w bits
 

Fig. 2. Replacement word structure 

After the ordering of the vectors the useful information of the test set is comprised 
of the different blocks each two successive vectors exhibit. These blocks will be used 
by the embedded processor in order to reproduce the given test vectors. Each such 
block is accompanied by two fields. The first, denoted as last flag, is a single bit field, 
which indicates whether the block is the last block of the test vector. The second, 
denoted as block number, holds the position in the test vector where the block must be 
placed. If a vector is divided in N blocks then the latter field requires ⎡ ⎤N2log  bits, 

where ⎡ ⎤x  denotes the upper integer of x. The block together with the two extra fields 

is denoted as a “replacement word” (Figure 2) and the total amount of data required to 
encode the initial test set is equal to the number of replacement words multiplied by 
the size of the replacement word. As an example, consider that the test vector width is 
equal to 50 bits and that we want to divide it in blocks of 10 bits each. Therefore the 
vector is divided in 5 blocks which in turn dictates that the block number field is equal 
to ⎡ ⎤5log2  = 3 bits. Considering also that the last flag field is equal to 1 bit we get 

that the replacement word is equal to 14 bits. 
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The total number of the replacement words will probably be quite large and thus it 
is not possible to store it on chip in a ROM. However the embedded RAM can be 
used to store some of the replacement words, which will be processed by the embed-
ded processor at a latter stage. In order to provide the appropriate data to the proces-
sor an external tester is used to download replacement words to the on-chip memory. 
These words are then processed by the embedded processor during the procedure of 
test generation. Care needs to be taken so as to avoid memory overflow, that is, not to 
download test data at a rate that the processor cannot handle. 

3   Proposed Scheme 

The scheme for compression/decompression of test data proposed in this work is 
based on the transformation of the test data to a desirable form via a number of steps 
and the use of an embedded processor as in [19]. The goal is to reduce the amount of 
test data transferred to the embedded processor through the use of ATE. The test data 
is organized as a vector table T containing n vectors of w bits each. The transforma-
tion of vector table T aims to produce a new version of T that can be efficiently en-
coded by the use of the information representation proposed in [19]. The algorithm 
that achieves this goal is comprised from the following three steps: 

1. Test vector ordering, which is equivalent to the Traveling Salesman Problem 
(TSP), known to be NP-complete. 

2. Rearrangement of the columns of the table, which represent the bit values each 
circuit input receives. These columns will be henceforth denoted as bit columns. 

3. Proper assignment of the don’t care bits. 

3.1   Test Vector Ordering 

The rearrangement of the bit columns, which follows the test vector ordering step in 
the proposed scheme, does not permit the ordering of the vectors using the same crite-
rion as in [19], since the number of different blocks between two vectors may not be 
equal to the number of different blocks after the rearrangement of the bit columns. 
The criterion used instead is the number of different bits a vector pair has, i.e. the 
Hamming distance of the test vector pair. The computation of the Hamming distance 
of a test vector pair takes into account the existence of don’t care bits. In this case the 
don’t care bit is assumed to have the same value as the corresponding bit of the other 
vector. For example, the Hamming distance of vectors w = 1x011xx1 and z = 
x0101100 is equal to 3. Assignment of specific values to the encountered don’t care 
bits is not applied at this point, since we don’t know where the vectors containing the 
don’t care bits will be placed after the ordering procedure. For example if a don’t care 
bit is assigned value 1 and after the vector ordering process this bit has two neighbor-
ing bits of value 0 then two changes of value are encountered in that bit column which 
may cause a succession of 3 different blocks.  

Using the computed Hamming distances we construct an undirected weighted tran-
sition graph TG(V, E), where each vertex v∈V represents a test vector and each edge 
e∈E has a weight equal to the Hamming distance of the two test vectors it connects in 
the graph. The Greedy algorithm uses graph TG as input and starts from an empty set 
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of edges denoted as Order. At first, the edge with the lowest weight is added to Or-
der. Then, the edge (i, j) with the lowest weight is chosen from the remaining edges 
and it is checked if it fulfills two criteria. The first one is that the addition of edge (i, j) 
does not make neither i nor j obtain a degree larger than 2, that is the number of edges 
starting from each of the two nodes must be strictly less than or equal to 2. The sec-
ond criterion is that the addition of edge (i, j) does not create a cycle in Order. The 
two criteria assure that we will eventually construct a path starting from a vertex of 
TG and ending at another vertex of TG while visiting all vertices. The edge selection 
ends if the edges of Order cover all vertices of graph TG or equivalently if Order 
contains n-1 edges, with n being the number of test vectors. Finally using set Order 
the algorithm creates a sequence of vectors that still contain don’t care bits, since no 
don’t care bit assignment is performed.  

For example, consider the graph of Figure 3.  Edge (a,c) has the lowest weight and 
thus is the first edge added to Order. Then edges (b, c) and (b, e) are added. Edge (c, 
d) cannot be added since it violates the first criterion. The next edge examined is (b, 
d) which cannot be added since it violates the second criterion. The same applies for 
edge (a, e). Edge (e, d) is considered next and since it fulfills both criteria it is added 
to Order. With this addition we cover all vertices of TG and thus the final state of 
Order is {(a, c), (b, c), (b, e), (d, e)}. Using Order and starting from the first inserted 
edge, we create the following sequence of vectors: {a, c, b, e, d} 

a b

cd

e
1

2

3

4

5

5

9

8
6

7

 

Fig. 3. Graph used in the Greedy ordering example 

The significance of postponing the assignment of specific values to the don’t care 
bits will be outlined in the third step of the algorithm. Obviously since we haven’t 
rearranged the bit columns we have no knowledge of where the don’t care bits will be 
placed and therefore assigning specific values is not appropriate. Once the bit col-
umns are located in the desired positions we can cleverly assign specific values that 
will lead to the reduction of the blocks needed to reproduce the given test set. 

Assume that we have the test vector table T shown in Figure 4.a. Consider also that 
each test vector is divided into two blocks of 4 bits each, as indicated by the vertical 
dotted line. With the present vector order in mind, the number of blocks that need to 
be downloaded from the tester to the SoC’s memory so as to reproduce the test set is 
equal to 10. According to the test vector ordering procedure we construct a weighted 
transition graph by computing the Hamming distances of all possible pairs of test 
vectors. We then use the Greedy algorithm to order the test vectors, which results in 
table T’of Figure 4.b. If we proceeded with don’t care bit assignment at this point we 



 Deterministic Test Vector Compression / Decompression 323 

 

would require 9 blocks for the reproduction of the test set of Figure 4.b. However, as 
we have already reported, the don’t care bit assignment to specific values is post-
poned until the completion of the bit column rearrangement step. 

 c1 c2 c3 c4 c5  c7 c8   c1 c2 c3 c4 c5 c6 c7 c8 

v1 1 x 1 1 0 0 1 0  v1 1 x 1 1 0 0 1 0 

v2 0 0 1 0 1 1 0 1  v3 1 x 1 0 0 x 1 0 

v3 1 x 1 0 0 x 1 0  v5 1 0 0 0 0 x 0 0 

v4 1 0 0 1 0 x 0 1  v4 1 0 0 1 0 x 0 1 

v5 1 0 0 0 0 0 0  v2 0 0 1 0 1 1 0 1 

 a) Initial Table T b) Table T’ after vector ordering 

Fig. 4. Test vector ordering step 

3.2   Rearrangement of the Bit Columns 

Having ordered the test vectors we can now proceed with the step that rearranges the 
bit columns of the new vector table T′. The goal is to reduce the number of different 
blocks between two successive test vectors. Some bit columns of T′ will have a small 
number of changes, i.e. transitions, from 0 to 1 and 1 to 0, while other bit columns 
will have a lot of changes from 0 to 1 and 1 to 0. Let us consider one of the latter 
columns, denoted as cp. Since we have divided each test vector in blocks of bits we 
consider the blocks of the vectors that bit column cp participates in. Obviously if this 
bit column has different values in test vectors i and i+1 then the two blocks this bit 
column participates in are different. Therefore if the column exhibits l changes in its 
values it will yield l different blocks in the n test vectors of T′. If another bit column 
cq of the blocks has m changes in its values then the two columns will be responsible 
for at most l+m different blocks, since there may be changes of values in some com-
mon places for each of the two columns. With the above observation in mind we can 
group the columns in blocks of fixed width according to the number of value changes 
each column exhibits. This increases the possibility of forming groups of correspond-
ing blocks, that is blocks that belong at the same position in different test vectors, 
where there are a lot of different blocks and a lot of groups where the majority of 
blocks are the same and in consecutive test vectors, thus leading to an overall de-
crease in the number of different blocks required for the reproduction of the test set. 
Although the rearrangement of the bit columns is based on the number of changes in 
each column and ignores where the changes actually occur, we will see in the experi-
mental results that it works quite well.  

The procedure that rearranges the columns is comprised from two parts. The first is 
to compute the number of changes of value between successive bits in each column 
and assign it as a weight to the corresponding column. Since don’t care bits are pre-
sent, the computation of the weight of each column needs to consider them also. In 
the case where don’t care bits exist between different values, that is 0x…x1 or 
1x…x0, we add one to the weight of the column and we leave the bits unassigned. In 
all other cases the don’t care bits are assumed to have the same value with their 

c6 

x
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neighboring defined bits and the weight of the column remains unchanged. The sec-
ond part sorts the columns of the test set in descending order according to their re-
spective weights.  

During the decompression phase the bits of the test vectors must be rearranged so 
that they can be loaded into the scan chains in the correct order. The embedded proc-
essor could also undertake the task of placing the bits in their correct positions before 
shifting in the test vectors to the scan chains, however this would result in large de-
compression time, since the use of time consuming bit manipulation functions com-
bined with lookup up tables would be required. A solution to this problem is to suita-
bly order the scan cells of each core of the SoC, so that the downloaded vectors are 
properly loaded in the scan cells. Scan cell ordering has been already proposed for 
average power dissipation and energy consumption minimization during the shift-
in/shift-out phase of scan based testing [20-23]. In this work we use scan cell ordering 
to target test data compression.  

However, rearranging the scan cells may lead to area overhead and/or violation in 
timing constraints due to increase in routing. In order to exclude or alleviate these 
consequences, we examine also the following bit column rearrangement policies:  

a) Only a percentage of the bit columns, namely the ones with the largest weight, is 
sorted. The rest bit columns keep their relative positions, that is, if column p appears 
before q in the original test set then it also appears before q in the rearranged test set. 
This policy leads to a small increase in routing, which in turn implies small area and 
delay overhead but does not guarantee avoiding timing constraint violation.  

b) Some bit columns are required to remain at their original position while we can sort 
the rest bit columns in descending order. The sorted bit columns are placed in the 
positions that are not allocated for the bit columns that cannot be moved. By select-
ing the cells that belong to the critical paths so that they remain in their original posi-
tion, we guarantee that the design meets the desired timing constraints. 

c) Sorting of the columns is performed only within clusters of consecutive bit col-
umns. The size of each cluster is equal to k*w, where k = 2, 3, … N. Obviously 
some of the bit columns can stay at the same position within the cluster. This pol-
icy reduces the area and delay overhead imposed. 

Using the new order of the bit columns we group them in blocks of the length w.  
Applying the bit column rearrangement step on test set T’of Figure 4.b we get the 

table depicted in Figure 5. The bit columns were rearranged considering that all col-
umns can be moved and that all columns are sorted in descending order. Thus the 
leftmost (rightmost) bit column exhibits the largest (smallest) number of transitions. 

 c4 c3 c1 c5 c6 c7 c8 c2

v1 1 1 1 0 0 1 0 x 

v3 0 1 1 0 x 1 0 x 

v5 0 0 1 0 x 0 0 0 

v4 1 0 1 0 x 0 1 0 

v2 0 1 0 1 1 0 1 0 

Fig. 5. Bit column rearrangement 
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3.3   Proper Assignment of the Don’t Care Bits 

The above two steps have altered the arrangement of the test vectors and the arrange-
ment of the bit columns in the test vector table. They were based on assumptions 
made about the values of the don’t care bits without, however, assigning a specific 
value to each one of them. Upon completion of both the above steps we can now 
assign specific values to the don’t care bits. The don’t care bits are divided into two 
categories. The first category contains the don’t care bits that reside in between de-
fined bits of the same value or are located at the start or the finish of a column, while 
the second category contains all the remaining don’t care bits. The bits of the first 
category are assigned the value of the bit that is either before the beginning or after 
the end of the sequence of the don’t care bits. The don’t care bits of the second cate-
gory, that is, those that reside in between defined bits of different value, must be tack-
led carefully since a change from 1 to 0 or vice versa will occur somewhere in the 
sequence of the don’t care bits. This change in values must be carefully placed so as 
not to change two identical neighboring blocks. Therefore we search for the first oc-
currence of two consecutive blocks that are already different in their defined bits. The 
don’t care bits up to the first block are assigned to the value of the defined bit that 
resides before the beginning of the don’t care bits sequence while the rest are assigned 
the value of the defined bit that resides after the end of the don’t care bit sequence.  

In order to illustrate the impact of the don’t care bit assignment consider the test set 
table of Figure 5. The goal is to remove the don’t care bits so as to obtain the least 
possible different blocks present. Column c6 has 3 don’t care bits at vectors v3, v5 and 
v4 between bits of different value. An assignment of values as the one of Figure 6.a 
would yield a test set that would require 9 blocks to be downloaded. However, we can 
observe that vectors v3 and v5 already have different defined bits in the rightmost 
block and therefore their corresponding don’t care bits can be assigned to different 
values. In this way the number of required blocks is reduced to 8 (Figure 6.b). Obvi-
ously the don’t care bits of column c2 are assigned to value 0. 

 c4 c1 c5 c6 c7 c8 c2   c4 c3 c1 c5 c6 c7 c8 c2 

v1 1 1 1 0 0 1 0 0  v1 1 1 1 0 0 1 0 0 
v3 0 1 1 0 1 1 0 0  v3 0 1 1 0 0 1 0 0 
v5 0 0 1 0 1 0 0 0  v5 0 0 1 0 1 0 0 0 

v4 1 0 1 0 1 0 1 0  v4 1 0 1 0 1 0 1 0 

v2 0 1 0 1 1 0 1 0  v2 0 1 0 1 1 0 1 0 

 a) Improper bit assignment b) Proper bit assignment 

Fig. 6. Test data transformation example 

4   Experimental Results 

Several experiments were performed for evaluating the proposed method using the 
largest ISCAS ’89 benchmark circuits. The proposed scheme was used to compress 
the test sets of some of the ISCAS ‘89 benchmark circuits. We used the ATALANTA 
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ATPG tool [24] to generate test cubes that provide 100% fault coverage. Then a sim-
ple static compaction procedure was used in order to reduce the number of test cubes. 
The resulting test set T was then fed to the vector ordering, bit columns arrangement 
and don’t care bit assignment procedures, which produced the number of replacement 
words needed for the compression of T. For all the test sets we have used a replace-
ment word size of 32 and 64 bits, which in turn determined the size of the blocks each 
test vector was divided into.  

Table 1 contains experimental results for replacement words of 32 and 64 bit 
width. Column 1 shows the circuit name while columns 2 – 4 show respectively the 
number of test vectors, the number of scan cells and the number of the initial test data 
bits. Columns 5 and 8 show the requirements in replacement words and columns 6 
and 9 show the size in bits of the compressed test set for 32 and 64 bit replacement 
words respectively. Finally columns 7 and 10 show the attained compression ratio for 
32 and 64 bit replacement words, which is calculated as: 

(1 - Compressed Bits/Initial Bits) * 100% 

Table 1. Compression ratio attained with the proposed work for the ISCAS’89 circuits 

    32 bit replacement words 64 bit replacement words 

Circuit Vectors
Scan 
Cells 

Initial 
Test Bits 

Replacement 
Words 

Compressed
bits 

Savings
Replacement

Words 
Compressed 

bits 
Savings 

s5378 131 214 28034 382 12224 56.4% 227 14528 48.2% 

s9234 188 247 46436 653 20896 55.0% 387 24768 46.7% 

s13207 263 700 184100 732 23424 87.3% 515 32960 82.1% 

s15850 169 611 103259 880 28160 72.8% 544 34816 66.3% 

s38417 184 1664 306176 3740 119680 60.9% 1999 127936 58.2% 

s38584 165 1464 241560 2542 81344 66.3% 1387 88768 63.3% 

We can observe that the proposed scheme achieves significant reduction in storage 
requirements, which for the case of s13207 reach up to 87.3% and 82.1% for 32 and 
64 bit replacement words respectively. It is also notable that the increase in replace-
ment word size and consequently in the block size reduces the compression ratio 
achieved. This is due to the fact that when the block size increases it becomes more 
difficult to find identical blocks in the test data. 

Table 2. Comparison against compacted test set obtained from Mintest [25] 

  32 bit replacement words 64 bit replacement words 

Circuit Mintest bits Bits Reduction Bits Reduction 

s5378 20758 12224 41.1% 14528 30.0% 

s9234 25935 20896 19.4% 24768 4.5% 

s13207 163100 23424 85.6% 32960 79.8% 

s15850 57434 28160 51.9% 34816 39.4% 

s38417 113152 119680 -5.8% 127936 -13.1% 

s38584 161040 81344 49.5% 88768 44.9% 
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We have also examined how the proposed method fares against the smallest 
ATPG-compacted test set known for the circuits we have considered. We compare the 
test data volume attained with the proposed method against the compacted test sets 
that were obtained using the Mintest ATPG tool [25]. As it can be seen from Table 2 
in all, but one, cases the proposed method achieves significant savings in test data 
volume requirements that can reach up to 85.6% and 79.8% when the replacement 
word size is equal to 32 and 64 bits respectively. 

In order to evaluate the effectiveness of the proposed scheme we compared it 
against the scheme proposed in [19]. Experimental results are listed in Table 3. Col-
umns 2 and 3 show the replacement word requirements for the scheme proposed in 
[19] and the proposed scheme respectively when 32 bit replacement words are used. 
As it can be seen the proposed scheme that combines vector ordering and bit columns 
rearrangement can significantly reduce the storage requirements when compared with 
the scheme proposed in [19] which only performs vector ordering. The reduction 
reaches up to 39.6% for the case of the s5378 benchmark circuit. For replacement 
word size equal to 64 bits the savings reach up to 42.2% for the case of the s38584 
benchmark circuit. Therefore the proposed scheme alleviates to a certain degree the 
negative effect of the increase in replacement word size that was observed in [19]. 

Table 3. Test data volume comparison 

 32 bit replacement words 64 bit replacement words 

Circuit [19] Proposed Savings [19] Proposed Savings 

s5378 632 382 39.6% 374 227 39.3% 

s9234 914 653 28.6% 575 387 32.7% 

s13207 986 732 25.8% 711 515 27.6% 

s15850 1163 880 24.3% 761 544 28.5% 

s38417 5556 3740 32.7% 3252 1999 38.5% 

s38584 3995 2542 36.4% 2398 1387 42.2% 

Rearranging the scan cells may lead to area overhead and/or violation in timing 
constraints due to increase in routing. Therefore, we carried out experiments follow-
ing the policies a, b and c, which where described in subsection 3.2. According to 
policy a only a percentage of the scan cells is rearranged with respect to the number 
of transitions, while according to policy b a percentage of the scan cells cannot move 
from the position it resides in the original scan chain arrangement. In the first case we 
rearrange the scan cells whose respective bit columns exhibit the largest number of 
transitions. Rearranging only a small portion of the scan cells will leave the largest 
part of the scan chain intact and will alleviate the problem of excessive routing. The 
second case considers the fact that moving certain cells from their original position 
may cause violation timing constraints and therefore it is best to leave them in tact.  

Tables 4 and 5 show the replacement words required for policy a when 10%, 20% 
and 40% of the scan cells are rearranged for 32 bit and 64 bit replacement word size. 
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As it can be seen, even for the case where only 10% of the scan cells are rearranged 
the reduction in replacement word requirements can reach up to 28.6% for 32 bit 
replacement words and up to 31.7% for 64 bit replacement words when compared 
with the scheme proposed in [19]. Furthermore if we compare Tables 4 and 5 we can 
observe that the reduction achieved for a given percentage of rearranged scan cells is 
in the general case larger when the replacement word is increased to 64 bits and reaches 
up to 42.2% when all the scan cells are rearranged. As the replacement word size in-
creases the proposed method becomes even more efficient than that proposed in [19]. 

Table 4. 32 bit replacement word requirements when arranging a percentage of the scan cells 

  Proposed Scheme with 32 bit replacement words 

Circuit [19] 10% Savings 20% Savings 40% Savings 100% Savings 

s5378 632 474 25.0% 420 33.5% 405 35.9% 382 39.6% 

s9234 914 750 17.9% 697 23.7% 686 25.0% 653 28.6% 

s13207 986 821 16.7% 773 21.6% 743 24.7% 732 25.8% 

s15850 1163 975 16.2% 922 20.7% 904 22.3% 880 24.3% 

s38417 5556 3969 28.6% 3920 29.5% 3829 31.1% 3740 32.7% 

s38584 3995 2862 28.4% 2672 33.1% 2617 34.5% 2542 36.4% 

Table 5. 64 bit replacement word requirements when arranging a percentage of the scan cells 

  Proposed Scheme with 64 bit replacement words 

Circuit [19] 10% Savings 20% Savings 40% Savings 100% Savings 

s5378 374 298 20.3% 248 33.7% 242 35.3% 227 39.3% 

s9234 575 511 11.1% 461 19.8% 423 26.4% 387 32.7% 

s13207 711 563 20.8% 547 23.1% 511 28.1% 515 27.6% 

s15850 761 610 19.8% 582 23.5% 562 26.2% 544 28.5% 

s38417 3252 2354 27.6% 2241 31.1% 2132 34.4% 1999 38.5% 

s38584 2398 1639 31.7% 1502 37.4% 1441 39.9% 1387 42.2% 

Tables 6 and 7 show the replacement word requirements for policy b when 10%, 
20% and 40% of the scan cells are left in their original positions for 32 and 64 bit 
replacement word size respectively. For our experiments we randomly chose a num-
ber of different combinations of scan cells that are left in their original positions so as 
to examine how our method behaves in this case. When the constraint is rather re-
laxed, that is just 10% of the scan cells remain at their original positions the test data 
volume savings are comparable with the case where all scan cells are rearranged. 
Even if the constraint becomes more stringent, i.e. 40% of the scan cells are not 
moved from their original positions, the proposed method provides considerable sav-
ings in test data volume when compared with the method proposed in [19]. If we 
compare Tables 6 and 7 we observe the same behavior in terms of test data volume 
savings when the replacement word size increases as in the case of Tables 4 and 5. 
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Table 6. 32 bit replacement word requirements when a percentage of the scan cells is not 
moved 

  32 bit replacement words with percentage of cells not moved 

Circuit [19] 10% Savings 20% Savings 40% Savings 

s5378 632 399 36.9% 419 33.7% 486 23.1% 

s9234 914 679 25.7% 736 19.5% 780 14.7% 

s13207 986 786 20.3% 848 14.0% 880 10.8% 

s15850 1163 954 18.0% 999 14.1% 1062 8.7% 

s38417 5556 4061 26.9% 4434 20.2% 4703 15.4% 

s38584 3995 2813 29.6% 3011 24.6% 3226 19.2% 

Table 7. 64 bit replacement word requirements when a percentage of the scan cells is not 
moved 

  32 bit replacement words with percentage of cells not moved 

Circuit [19] 10% Reduction 20% Reduction 40% Reduction 

s5378 374 246 34.2% 269 28.1% 293 21.7% 

s9234 575 432 24.9% 470 18.3% 518 9.9% 

s13207 711 545 23.3% 562 21.0% 597 16.0% 

s15850 761 592 22.2% 623 18.1% 678 10.9% 

s38417 3252 2302 29.2% 2529 22.2% 2719 16.4% 

s38584 2398 1534 36.0% 1687 29.6% 1924 19.8% 

Finally we studied the case where the scan chain is considered as a succession of 
clusters of scan cells where we can rearrange the scan cells within each cluster but we 
cannot move a scan cell from one cluster to another (policy c). We can thus alleviate 
the negative effect of the scan cell rearrangement on area and/or timing constraints. 
We assumed that each cluster contains the scan cells whose respective bit columns are 
contained in two successive blocks of the test vector. Within each cluster we ordered  
 

Table 8. Test data volume savings when column ordering happens in clusters of scan cells 

 32 bit replacement words 64 bit replacement words 

Circuit [19] Proposed Savings [19] Proposed Savings 

s5378 632 447 29.3% 374 282 24.6% 

s9234 914 707 22.6% 575 429 25.4% 

s13207 986 797 19.2% 711 555 21.9% 

s15850 1163 953 18.1% 761 581 23.7% 

s38417 5556 4179 24.8% 3252 2437 25.1% 

s38584 3995 3050 23.7% 2398 1734 27.7% 
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the scan cells according to the number of transitions observed in the respective bit 
columns. Obviously some of the scan cells may have the constraint of staying in the 
same position in the cluster and therefore the ordering process must take this con-
straint into account. In the results presented in Table 8 we assumed that all the scan 
cells of each cluster can be moved anywhere in the cluster. Table 8 shows that con-
siderable savings in test data volume can be obtained which reach up to 29.3% and 
27.7% for replacement word size equal to 32 and 64 bits.  

5   Conclusions 

We have presented a new embedded processor based technique using test vector or-
dering and scan cell rearrangement for achieving significant reduction in the test data 
storage requirements of the tester with respect to already proposed techniques. The 
reduction in test data storage can reach up to 87.3% when compared with the initial 
test data size and up to 42.2% when compared with an already existing scheme. We 
also assessed the impact on test data volume reduction of different policies for the 
rearrangement of the scan cells. Furthermore since the proposed scheme uses the 
same approach for generating and applying test vectors as [19] it exhibits the same 
advantages, namely reduction in test time and the possibility of using already existing 
ATE equipment. The use of an existing processor in conjunction with ATE equipment 
can tackle with the increasing test demands posed by recent advances in the silicon 
manufacturing process.  
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Abstract. Current paper proposes an efficient alternative for traditional gate-
level fault simulation. The authors explain how Structurally Synthesized Binary 
Decision Diagrams (SSBDD) can be used for representation, simulation and 
fault modeling of digital circuits. It is shown how the first phase of any fault 
simulation algorithm:  the fault-free simulation can be accelerated using this 
model. Moreover, it is pointed out that simultaneous to simulation on SSBDDs, 
the set of potential fault locations can be significantly reduced. In addition, al-
gorithms for deductive and concurrent fault simulation on SSBDD models are 
introduced in the paper. While full implementation of the new SSBDD based 
algorithms needs to be carried out, the paper presents experimental data reveal-
ing the advantages of the proposed data structure in the fault simulation process. 

1   Introduction 

Fault simulation is a widely used procedure in the digital circuit design flow. Most of 
the dependable computing and test design tasks (fault injection, test pattern generation, 
built-in self-test, etc.) rely on it. Thus, accelerating the subtask of fault simulation would 
consequently improve all the above-mentioned applications. In this paper we consider 
speeding up single-pattern fault simulation, for cases where pattern parallelism cannot 
be exploited (e.g. fault simulation with fault dropping). Traditionally, single-pattern 
fault simulation has been based on concurrent [1] or deductive [2] approaches. 

The research topic of fault simulation is very mature. A lot of approaches and effi-
cient circuit models have been proposed in the past. In [3], the logic netlist is partitioned 
into supergates. In other works, fault simulation is carried out for circuit lines corre-
sponding to the fanouts [4]. Current paper combines the two above ideas and goes much 
further by introducing the circuit model of Structurally Synthesized Binary Decision 
Diagrams (SSBDD) for fault simulation. SSBDD models allow considerably coarser 
partitioning than supergates. Furthermore, the approach allows to restrict the number of 
considered circuit lines to the fanout points while allowing to work on the higher level 
of abstraction, without any need to descend to simulation at the gate-level. 

Additional benefit of SSBDDs lies in the fact that it provides for a fault collapsing 
in the model itself without a need to specify the list of collapsed faults explicitly. In 
all the nodes of an SSBDD, both, stuck-at 0 and stuck-at 1 faults have to be covered 

   M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.):
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in order to guarantee 100 % fault coverage of the corresponding gate-level circuit. 
This means that, contrary to traditional gate-level collapsing techniques, it is not nec-
essary to check if a fault at a circuit line is included to the collapsed list. This in turn 
results in time savings during the simulation process. 

The paper is organized as follows. Section 2 introduces the circuit model of 
SSBDDs for representing logic circuits.  Section 3 explains how logic circuit simula-
tion can be accelerated using SSBDDs. It is also shown how, simultaneously with 
SSBDD simulation, a restricted set of circuit lines with potential fault positions is 
extracted. In Section 4, SSBDDs are categorized by the nature of reconvergent fanout 
paths. Sections 5 and 6 present new, efficient fault simulation algorithms based on the 
deductive and concurrent approaches, respectively. Section 8 provides preliminary 
experimental results and Section 8 concludes the paper. 

 
 
 
 
 
 
 
 
 
 

 
 
a)     b) 

Fig. 1. a) Logic circuit and b) its SSBDD 

2   Structurally Synthesized BDDs 

Structurally Synthesized Binary Decision Diagram (SSBDD) [5-7] is a planar, acyclic 
BDD that is obtained by superposition of elementary BDDs for logic gates. SSBDDs 
were first introduced in [5]. The most significant difference between the traditional 
BDD and the SSBDD representations  is the method how they are generated. While 
traditional BDDs are generated by Shannon's expansions, which extracts the function 
of the logic circuit, SSBDD models are generated by a superposition procedure that 
extracts both, function and data about structural paths of the circuit. Another differ-
ence between the classical and the SSBDD approach is that in SSBDDs we represent 
a digital circuit as a system of BDDs, where for each fanout-free region (FFR) of the 
circuit a separate SSBDD is generated. 

An SSBDD G is a triple (M, X, ), where M is a set of nodes, X(m) is a function, 
which defines line variables labeling the node m and  (m, e) is a function, which 
gives the successor node of m with X(m)=e, e∈{0, 1}. The set of nodes M is divided 
into a set of nonterminal nodes MN={m0,..,mk-1} and to a set of terminals MT including 
0- and 1-terminals, where M = MN ∪ MT. 
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SSBDD models for gate-level digital circuits are created as follows. Starting from 
the output of the FFR (i.e. primary output or a fanout stem), logic gates are recur-
sively substituted by their respective elementary BDDs. The procedure of superposi-
tion terminates in those nodes, which represent a primary input or a fanout branch. 

Figure 1 shows an FFR of a logic circuit with an output line y and its correspond-
ing SSBDD. Note, that in the Figure 1 we have omitted the 0- and 1-labels at the 
edges, since their direction (down or right) replaces the corresponding label. Down-
ward edges correspond to 0-edges and rightward edges correspond to 1-edges. 0- and 
1-terminal nodes are illustrated by dashed lines and can be also omitted. In the latter 
case, exiting the BDD downwards corresponds to y=0 and rightwards to y=1, respec-
tively. In addition, SSBDD nodes can also be labeled by inverted variables (e.g. 

27 and ,5 ,1  in Figure 1). 
In order to consider simulation on SSBDD models, let us introduce some basic 

definitions. Let us denote (m, e) by me. Then m0 is the successor of m for the value 
X(m) = 0 and m1 is the successor of m for the value X(m) = 1. By the value assignment 
X(m) = e,  e ∈ {0,1}, we say that the edge between nodes m  and me is activated. Con-
sider a situation where all the variables X(m) are assigned by a Boolean vector Xt ∈ 
{0,1}n  to some value. The edges activated by Xt form an activated path l = (m0, …, mT) 
from the root node m0 to one of the terminal nodes mT∈ MT.  

In [7], it has been proved that Gy represents a Boolean function y=f(X), and for all 
the possible vectors Xt∈{0,1}n a path l = (m0, …, mT) is activated so that y=f(Xt)= 
x(mT).  

Definition. High-path (low-path) is the path l = (m1, … , mL), where mi+1 = mi
1 (mi+1 = 

mi
0) for every i : 1 ≤ i < L. 

Definition. Node m in the SSBDD is a final node if m1 = 1-terminal and m0 = 0-
terminal.  

The following theorem characterizes some simple properties of SSBDDs. The 
proof for the properties is provided in [7]. 

Theorem 1. If G is an SSBDD, then: 

1. G is a planar graph. 
2. There exists a high-path from every node to the 1-terminal. 
3. There exists a low-path from every node to the 0-terminal. 
4. G has exactly one final node. 
5. There exists a directed path through all nonterminal nodes. 
6. For every pair of nonterminal nodes m1, m2 there exists a directed path from m1 

to m2 or from m2 to m1. 

The above properties are the basis of the fault simulation acceleration ideas pre-
sented in Sections 3 to 5. Proof for the theorem has been published in [7]. 

Differently from traditional BDDs, SSBDDs support test generation for gate-level 
structural faults in terms of signal paths without representing these faults explicitly. 
Furthermore, the worst case complexity and memory requirements for generating 
SSBDD models for FFRs are linear in respect to the number of logic gates in the 
circuit, while for traditional BDDs the total storage space exceeds 2n bits for an n-
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input combinational circuit [8]. Hence, SSBDDs for an arbitrary realistic-sized digital 
circuit can be generated very rapidly using only a small amount of computer memory. 

3   Simulation on SSBDD Representations 

The main contributions of the paper is the study of fault-free simulation on SSBDD 
models. Fault-free simulation is the initial step of any fault simulation algorithm. 

The proposed algorithm is based on two basic properties of SSBDD models: 

1) We previously saw that any Boolean vector Xt ∈ {0,1}n activates a path l = (m0, 
…, mT) from the root node m0 to one of the terminal nodes mT∈ MT in an SSBDD 
Gy. Thus, faults at nodes which do not belong to the main activated path l cannot in-
fluence the value of y calculated by Gy with the selected vector Xt. Furthermore, it 
can be shown that faults at only those nodes mi, where X(mi)=f(Xt) can potentially 
influence the output. We call such faults fault candidates or potential fault loca-
tions. 

2) Logic value for every primary output line yO of a circuit  with a Boolean vector Xt 
{0,1}n can be calculated by activating a path l = (m0, …, mT), where values X(mi) 
that do not correspond to primary outputs are calculated recursively. Obviously, 
faults in SSBDDs that are not traversed in such a recursion cannot change the value 
of yO. 

Properties 1 and 2 are illustratedin Figure 2. SSBDD model in that figure decribes 
a combinational circuit that consists of 7 FFRs, thus, represented by a model of 7 
SSBDDs. The bold arrows indicate activated edges in each SSBDD simulated in a 
recursive manner starting from the SSBDD corresponding to the output line y. 
Recursive simulation starts from SSBDD Gy, traverses nodes a, c, d, f and then 
recursively simulates corresponding SSBDDs Ga, Gc, Gd and Gf. As a result, basing 
on the above properties, only 8 nodes out of 17 are identified as potential fault 
locations in this recursive simulation example. Note, that there was no need to 
simulate SSBDDs for b and e for finding the fault locations. However, in order to 
carry out fault propagation these graphs have to be simulated as well. 

These simple properties are also applied in Algorithm 1, which both, marks the 
nodes containing potential faults, and performs full fault-free simulation. As the first 
step of the algorithm, primary outputs of the design are recursively simulated on the 
SSBDD representation in order to identify SSBDDs in which faults could be 
activated. Then, the rest of the SSBDDs will be simulated. 

As the experiments carried out in Section 7 show, recursive simulation on SSBDDs 
is generally faster than simulation on the gate-level representations. What is more 
important, SSBDD simulation allows to considerably minimize the list of circuit lines 
to be regarded as potential faults in further fault simulation. The improvement 
achievable by the proposed SSBDD simulation is twofold: 

1) SSBDD models provide implicit fault collapsing. The list of potential fault 
locations is reduced in average to 66 % of the uncollapsed one (See Section 7). 
While there exist more agressive fault collapsing approaches, this reduction has to 
be taken into account. 



336 J. Raik et al. 

 

2) As experiments in Section 7 show, Algorithm 1 narrows the circuit lines with 
potential fault locations to less than 40 % 

Algorithm 1. Fault-free simulation and identification of potential faults 

 FaultfreeSimulation() 
{ for each primary output yO  

   RecursivelySimulate(yO) 
  end for 

  for each SSBDD G 
   if G is not marked as simulated then 
    simulate G 
    end if 
  end for 
 } 

 RecursivelySimulate(y) 
{ if y is a primary input then 

   return the value of y. 
  else 
   mark Gy as simulated 
   m = m0  
   while m ∉ MT  
    if GX(m)  is marked as simulated then 
     m = mX(m)  
    else 
     e = RecursivelySimulate(X(m)) 
     m = me 
    end if 
   end while 
  end if 
 } 

 

y  a 

d

b

 c e 

f

a  x1 x2

b  x1 x3

x2

c  x3 x4 

d  x1

f  x2

e  x2 

 x4 

y – primary output; 
a,b,c,d,e,f – internal signals (fanout stems); 
x1…x4 – primary inputs.  

Fig. 2. Recursive simulation and fault candidate identification on SSBDDs 
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In addition to that, only one of two stuck-at faults per location can be active at a 
time. Thus, the SSBDD simulation proposed in Algorithm 1 reduces the set of faults 
to be simulated to 0.66 . 0.4  . 0.5 = 0.13. In other words, in the fault simulation phase 
we have to operate with only 13 percent (!) of faults from the entire fault list.  

4   Circuit Structure Analysis for SSBDD Fault Propagation 

Efficient fault simulation methods carry out fault simulation for the list of faults 
within a Fanout-Free Region (FFR) of a circuit and subsequently replace this list by 
the fault at the output of the FFR [4]. The fault at the fanout stem will then represent 
all the faults inside the corresponding FFR. This approach is very well supported in 
SSBDD models, where FFRs and SSBDDs have one-to-one correspondence. It 
provides for minimization of the size of the fault list, which is crucial in accelerating 
single-pattern fault simulation, since the speed of deductive and concurrent fault 
simulation algorithms greatly depends on the speed of set operations on fault lists. 

Current paper introduces additional means for improving fault simulation by 
applying structural analysis. We propose that the FFRs (i.e. SSBDDs) of the circuit 
should be categorized into three categories by the nature of reconverging fanout paths 
in them: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
a)           b)    c) 
 

Fig. 3. SSBDDs a) w/o reconvergencies, b) with reconvergencies of depth 1 and c) with 
complex reconvergencies of depth > 1 

1. FFRs with no reconvergent paths; 
2. FFRs with reconvergent paths with directly preceding FFRs (i.e. maximum 

reconvergence depth = 1); 
3. FFRs with arbitrary reconvergencies (i.e. max. reconvergence depth > 1). 

Figure 3 explains that concept for an SSBDD Gy containing nodes with variables 
x1, ...., xn. 
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Table 1. Distribution of SSBDDs according to reconvergencies 

circuit total SSBDDs 
SSBDDs w/o 

reconv. 
max reconv. 

depth = 1 
max reconv. 

depth > 1 
c17 5 5 0 0 

c432 96 95 1 0 
c499 187 123 64 0 
c880 151 133 18 0 

c1355 291 187 40 64 
c1908 248 180 68 0 
c2670 430 391 24 15 
c3540 378 344 31 3 
c5315 633 529 91 13 
c6288 1488 1488 0 0 
c7552 920 736 160 24 

In the following Sections we will present a fault simulation algorithm that takes 
advantage of the above-mentioned classification. Fault propagation through an 
SSBDD with no reconvergencies can be done simultaneously to fault activation. In 
order to propagate faults through an SSBDD with reconvergent paths with maximum 
depth 1, faults in variable values of X(m) have to be additionally simulated (See 
Algorithm 2). Finally, for SSBDDs with a more complex reconvergency structure we 
can resort to the deductive fault propagation method described in Algorithm 3.  

Table 1 shows such classification of SSBDDs according to reconvergency 
properties for the ISCAS’85 circuits. As we can see, in most of the circuits there are 
no reconvergencies with depths exceeding one FFR. The average percentage of such 
FFRs is only 2.5 %. The only circuit with a large portion of complex reconvergencies 
is c1355, where 22 % of all the FFRs fall to the third category.  

5   Concurrent Fault Simulation 

Concurrent fault simulation [1] can be viewed as an extension to event-driven fault 
simulation. Lists of activated faults are propagated concurrently through the circuit 
and faulty circuit events are simulated. In the following, a concurrent fault simulation 
algorithm for SSBDD representations is proposed. Let us start with notations. 

For each SSBDD Gy the following fault simulation algorithm is implemented. 
First, all the nodes belonging to M1 are traversed. If a node corresponds to a line of 
fanout reconvergence then the variable labeling the node is changed to a faulty value 
and Gy is simulated. Otherwise, fault is injected at the node and simulation is 
performed. Fault injection and simulation is used also for determining the faults 
activated in Gy in order to compute the set A. If A will be an nonempty set then after 
the simulation y stuck-at-  f(Xt) will represent all the faults in A because it is domina-  
ted by them for the vector Xt. 
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Algorithm 2. Concurrent fault simulation on SSBDDs. 

ConcurrentFaultSimulation() 
{ 
  R = ∅, A = ∅ 

for each m ∈ M1  
 FaultSimulateNode(m) 
  if S(m) contains faults reconverging in m then 

  X(m) =  X(m) 
  simulate Gy 
  if the faulty value of y differs from the fault-free one then 
   R = R ∪ S(m) 
  end if 
  X(m) =  X(m) 
  else 
  if fault at node m is mrked as active inside the FFR 
   R = R ∪ S(m) 
  end if 

  end if 
end for 

} 
 
FaultSimulateNode(m) 
{ 
 follow the activated path l = (m  X(m), ..., mT) 

 if(X(mT) =  f(Xt)) then 
  A = A ∪ { m-stuck-at-  X(m) } 
  mark fault at node m as active inside the FFR 
 end if  

} 

Notations: 
• MT - set of terminal nodes (i.e. 0-terminal and 1-terminal). 

• MN - set of nonterminal nodes. 

• M1 - set of nonterminal nodes at the main activated path lmain, where { m∈M1⏐ 
X(m)=f(Xt) } 

• m’= mX(m)  m”= m  X(m) 

• S(m) – fault list propagated to m from previous SSBDDs. 

• A – the set of faults active in the FFR.  

• R – the set of faults propagated to circuit line corresponding to the FFR output y. 
 

Note, that the method described by Algorithm 2 can only be applied to graphs, 
whose reconvergencies are of depth 1 or less (See Section 3). For SSBDD graphs with 
no reconvergent fanout paths, the check for reconvergencies can be omitted. 
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6   Deductive Fault Effect Propagation 

In deductive fault simulation [2], signal values for the fault-free circuit are computed 
and faults that will cause each line to have a value different from its fault-free value 
are deduced. In the following algorithm the computation is performed on SSBDDs 
based on the properties stated by theorems 1 and 2. 
 
Notations: 
• MT - set of terminal nodes (i.e. 0-terminal and 1-terminal). 
• MN - set of nonterminal nodes. 
• M1 - set of nonterminal nodes at the main activated path lmain, where { m∈M1⏐ 

X(m)=f(Xt) } 
• m’= mX(m)  m”= m  X(m) 
• S(m) – fault list propagated to m from previous SSBDDs. 
• L(m) – temporary fault list for calculating the propagated faults R. 
• R – the set of faults propagated to circuit line corresponding to the FFR output y. 

 
Algorithm 3. Deductive fault propagation on an SSBDD. 

 
 DeductivePropagation() 
 { 

R =Ø 
for each m∈MN 
    L(m)=Ø 
end for 
for each m∈MN 
    if m∈M1 then 
        if m”∉ MT then  
             L(m”)= L(m”) ∪ S(m) 
        else 
             R=R ∪ L(m) 
        end if 
    else    
        if m’∉ MT then  
             L(m’)=L(m’) ∪ (S(m) \ L(m)) 
        else if X(m)=  f(Xt) then 
             R= R ∪ L(m)  
        end if 
        if m” ∉ MT then 
             L(m”) =L(m”) ∪ (S(m)  L(m)) 
        else if x(m)=  f(Xt) then  
             R= R ∪ L(m) 
        end if 
    end if 
end for 

 } 
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The task of the presented deductive fault propagation algorithm is to calculate the 
set of faults R propagated through the SSBDD Gy by a given input vector Xt and S(m).  
Note, that the proposed algorithm does not include fault activation. This can be 
carried out in the similar manner as described in Algorithm 2. 

One of the main shortcomings of the deductive approach is relatively time-
consuming set operations on long fault lists. However, as experiments show, SSBDD 
models allow to significantly reduce the list of faults to be considered. Furthermore, 
as circuit structure analysis presented in Section 4 showed the number of graphs 
where deductive fault simulation is usually very small. 

Finally, Algorithm 4 combines the ideas proposed in this paper into a single fault 
simulation approach. 

7   Experimental Results 

A useful property of SSBDDs is its ability to provide fault collapsing in the model. 
While in the gate-level descriptions we model stuck-at faults at the interconnections 
between the gates, in SSBDD representations the faults are present at nodes. For 
example, stuck-at-0 fault at a node is modeled with the 0-edge of the node being 
constantly activated, regardless of the value of the variable labeling this node. Each 
SSBDD node represents a distinct path in the corresponding fanout-free circuit. By 
testing all the SSBDD node faults we will consequently test all the signal paths in the 
circuit and thus all the single stuck-at faults. This ability of SSBDDs to implicitly 
model logic level stuck-at faults is a very important property, which distinguishes it 
from other classes of BDDs. 

 
Algorithm 4. Fault simulation on SSBDD models. 

 
SSBDDfaultSimulation() 
{ 
 Recursively simulate SSBDD model and  
  identify the list of potential faults    // Algorithm 1 
 
 for each SSBDD G 
  if G has no reconvergent paths then 
   Simultaneous fault activation and fault propagation  
   // See Algorithm 2! 
  else if G has reconvergent paths with max. depth = 1 
   ConcurrentFaultSimulation()  // Algorithm 2 
    else 
   Fault activation in SSBDD // FaultSimulateNode in Alg. 2 
   DeductivePropagation()  // Algorithm 3 
  end if 
 end for 
} 
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Table 2 compares the number of uncollapsed faults, the number of standard 
collapsed faults and the number of SSBDD faults in the ISCAS’85 benchmark set. As 
we can see that reduction provided by collapsing in the SSBDD model is about 1.5 
times. 

While there exist more aggressive fault collapsing approaches the advantage of the 
SSBDD based collapsing over the traditional one is that it allows us at the same time 
to rise to a higher abstraction level of circuit modeling. In the traditional case we 
would only minimize the number of faults but would still be working at the level of 
logic gates. 

Table 3 presents the fault-free simulation results, which were carried out to 
evaluate the speed of SSBDD simulation and its ability to restrict the number of 
simulated faults (See Algorithm 1). The simulation algorithms were compiled by 
GNU C compiler using –O option and experiments were run on a 366MHz SUN 
Ultra60 server using SUN Solaris 2.8 operating system. 

Table 2. Number of collapsed and SSBDD faults in ISCAS85 circuits 
 

Table 3. SSBDD simulation experiments 

Gate SSBDD 

circuit vectors 
simulation, 

s 
simulation, 

s 
recursive, 

s 
SSBDD den-

sity, % 
node 

density, % 

c432 100000 3.76 1.56 2.12 66.45 30.80 
c499 10000 1.06 0.33 0.55 94.74 46.84 
c880 10000 0.70 0.27 0.44 89.83 44.74 

c1355 10000 0.97 0.58 0.89 93.73 52.33 
c1908 10000 1.28 0.50 0.75 81.13 37.54 
c2670 10000 2.13 0.85 1.16 80.55 38.09 
c3540 10000 2.74 0.87 1.21 76.38 30.27 
c5315 1000 0.42 0.17 0.21 67.45 27.92 
c6288 1000 0.49 0.34 0.52 100 58.30 
c7552 1000 0.57 0.25 0.34 79.82 37.37 

circuit Faults collapsed SSBDD 
c880 1550 942 994 

c1355 2194 1574 1618 
c1908 2788 1879 1732 
c2670 4150 2747 2626 
c3540 5568 3428 3296 
c5315 8638 5350 5424 
c6288 9728 7744 7744 
c7552 11590 7550 7104 
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The second column of the table shows the number of simulated vectors. The third 

column shows the time spent by gate-level simulation, in seconds. The fourth column 
presents the time needed to simulate all the SSBDDs in the model. The fifth column 
shows the time for recursive SSBDD based simulation as shown in Algorithm 1. The 
run times in the fifth column include identification of the potential faults to be 
simulated. 

 

 

Fig. 4. Fault simulation speed-up and average SSBDD/gate ratio 

The two last columns reflect the ability of recursive SSBDD simulation to reduce 
the set of considered faults. ‚SSBDD density’ shows the percentage of SSBDDs 
traversed by recursive simulation from the total number of FFRs.  The column ‚Node 
density’ the percentage of SSBDD nodes identified as fault candidates by Algorithm 
1. The average SSBDD density was 80 % and node density 40 %. In the worst case, 
c6288 (a parallel multiplier), SSBDD density was 100 %, i.e. all the SSBDDs were 
traversed by recursive simulation, and the node density was 58.3 %. For all the 
benchmarks except c6288 Algorithm 1 performed faster than the fault-free simulation 
at the gate-level. 

Figure 4 presents comparison of implementation of the event-driven fault simulation 
algorithms on SSBDDs and logic gates. We can see from the Figure that the speedup of 
SSBDD fault simulation (‘Fault Simulation’) ranges from 2 to 7 times and that it is well 
correlated with the average number of logic gates in an FFR (‘g/m ratio’). 

8   Conclusions and Future Work 

The paper proposes an efficient alternative for traditional gate-level fault simulation 
based on Structurally Synthesized Binary Decision Diagrams (SSBDD). It is shown 
how fault-free simulation can be accelerated using this model. Moreover, it is pointed 
out that simultaneous to simulation on SSBDDs, the set of potential fault locations 
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can be significantly reduced. Experiments show that this reduction is in average 13.3 
% from the total fault list (i.e. 26.6 % of the circuit lines). In addition, new algorithms 
for deductive and concurrent fault simulation on SSBDD models are introduced in the 
paper and structural analysis allowing a trade-off of these algorithms is performed. 

As a future work we plan to compare the speed of the proposed algorithm to exist-
ing state-of-the-art commercial software. For additional speed-up we plan to imple-
ment dynamic node reordering [9] to the SSBDD models to be simulated. 
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Abstract. Many governmental agencies and businesses organizations
use networked systems to provide a number of services. Such a service-
oriented network can be implemented as an overlay on top of the phys-
ical network. It is well recognized that the performance of many of the
networked computer systems is severely degraded under node and edge
failures. The focus of our work is on the resilience of service-oriented net-
works. We develop a graph theoretic model for service-oriented networks.
Using this model, we propose metrics that quantify the resilience of such
networks under node and edge failures. These metrics are based on the
topological structure of the network and the manner in which services
are distributed over the network. Based on this framework, we address
two types of problems. The first type involves the analysis of a given
network to determine its resilience parameters. The second type involves
the design of networks with a given degree of resilience. We present ef-
ficient algorithms for both types of problems. Our approach for solving
analysis problems relies on known algorithms for computing minimum
cuts in graphs. Our algorithms for the design problem are based on a
careful analysis of the decomposition of the given graph into appropriate
types of connected components.

1 Introduction

1.1 Motivation

Federal and state governmental agencies, businesses and other organizations use
networked systems to provide a number of services. Private networks maintained
by organizations allow one component of the organization (such as the Emer-
gency Management Agency) to access services provided by other components
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(such as Transportation Agency, Health Services, etc.). In these situations, fast
and reliable access to information is needed. Several papers in the literature
have proposed architectures for service-oriented networks (see for example
[6, 7, 8, 13]). In such an architecture, each node is associated with two sets of ser-
vices, namely local and non-local services. When a user requests a service that
is locally available at a node, the node provides the service directly. When the
requested service is non-local, the node forwards the user’s request to another
node in the network where the service is available, and relays the response to the
user. Different approaches for implementing service-oriented networks are avail-
able in the literature (e.g. [5, 8, 12, 13, 14, 18, 22, 26]). Typically, such networks
are implemented as overlay networks on top of the physical network.

It is well recognized that many of the networked computer systems used
by various government agencies and organizations are not resilient enough to
withstand failures and attacks. The performance of these networks is severely
degraded by failures. Thus, it is important to develop techniques for designing
and implementing resilient service-oriented networks which can not only survive
attacks and failures but also continue to provide a reasonable level of service to
support critical infrastructure and activities of governmental agencies and or-
ganizations. Methods for implementing networks that can continue to function
under node and link failures are known (see for example [12, 16, 22]). Also, tech-
niques for data replication to ensure availability of data in the event of network
failures are available (see for example [4, 9, 11, 16, 27]). In the context of resilient
service-oriented networks, services must also be replicated. Further, when a fail-
ure or anomalous behavior is sensed by the network, it must have the ability to
migrate services to other nodes across the network, taking into consideration the
resource constraints at the nodes along the migration path. Such a feature is nec-
essary to allow critical services to be maintained on the network during duress
and is especially useful for state and federal agencies in handling crisis situations.
Thus, effective methods for the design and analysis of resilient service-oriented
networks must accommodate a variety of features and resource constraints.

1.2 Our Contributions

Much of the work in the literature on service-oriented and overlay networks
has addressed issues such as the maintenance of routing tables at nodes and
reliable transmission of service requests and network status information across
the network. Our work considers the resilience of service-oriented networks at
a higher level of abstraction, assuming that lower level mechanisms for basic
network functions such as routing and service discovery are supported by the
system. The focus of our work is on the identification of suitable metrics that
can be used to quantify the resilience of service-oriented networks under node
and edge failures. Such metrics are useful in assessing the reliability of a given
network (i.e., in analyzing a given network) as well as in choosing an appropriate
network topology and/or an optimal distribution of services over the network
(i.e., in designing the network).
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We propose a graph theoretic model for service-oriented networks and use
this model to identify some resilience metrics. These metrics are based on the
topology of the network and the manner in which services are distributed over
the network. An example of such a metric is node resilience, which specifies
the maximum number of node failures that a service-oriented network can tol-
erate and still continue to provide services to users. (Precise definitions of this
and other metrics are given in Section 2.) These metrics are different from other
notions of network resilience (e.g. the minimum number of nodes or edges whose
failure will disconnect the network) studied in the literature (see for example
[2, 15, 17, 19, 23, 24, 25]). In particular, our metrics for service-oriented networks
explicitly consider the distribution of services over the nodes of a network. Ad-
ditional discussion regarding these metrics is provided in Section 2.

Having identified some resilience metrics, we develop algorithms for analysis
and design problems arising in the context of resilient service-oriented networks.
Given a service-oriented network, the goal of the analysis problem is to compute
the node and edge resilience parameters of the network. We develop polynomial
time algorithms for these problems. These algorithms are derived through a
transformation to the problem of computing minimal cutsets in graphs. The
design problem addressed in this paper concerns the placement of services at the
nodes of a given network so that the cost of placing the services is minimized and
the resulting network has a specified level of resilience. We consider this problem
for single node and single edge failures, and develop polynomial algorithms.
These algorithms are based on a careful analysis of the decomposition of the
given graph into appropriate types of connected components.

2 Formal Model and Structure-Based Resilience Metrics

2.1 Graph Model and Definitions of Metrics

Following standard practice [19, 25], we model a network as an undirected con-
nected graph. Each node represents a computer system and each edge represents
a bidirectional link between the corresponding pair of systems. To model service-
oriented networks, we associate two sets of services with each node. For a node v,
A(v) denotes the set of services available locally at v, and N(v) denotes the set
of nonlocal services needed at v. In other words, node v supports each service
in N(v) by forwarding requests for such a service to one or more nodes that
offers it as a local service. Thus, the sets A(v) and N(v) are disjoint. A user
connected to node v may request any service in A(v) ∪ N(v). For a node v, if
service s ∈ N(v), we say that v is a demand point for service s.

The nodes and/or links of a network may fail either because of an attack or
because of equipment failure. We assume that node failures correspond to system
crashes. Thus, we do not consider Byzantine node failures. In general, a system
that has crashed cannot communicate with any of its neighbors. Thus, each node
failure can be modeled by deleting the failed node and all the edges incident on
the failed node from the underlying graph of the network. When a link fails, it
is assumed that no communication across the link is possible in either direction.
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Thus, each link failure may be modeled by the deletion of the corresponding
edge from the underlying graph. Using such models of node and edge failures,
several network resilience metrics have been considered in the literature (see
for example [1, 2, 15, 17, 19, 20, 21, 23, 24, 25]). Examples of such metrics include
node and edge connectivity parameters of a graph (i.e., the minimum number
of nodes or edges that must be removed to disconnect the graph). Such metrics
characterize the ability of a network to remain connected when nodes and edges
fail. They do not take into account the distribution of services across a network.
As will be seen, a service-oriented network may continue to function even when
the underlying graph is disconnected. Thus, new metrics are needed to capture
the notion of resilience in service-oriented networks.

Node and link failures may partition a network into a collection of two or more
connected components or subnetworks. In such a case, nodes in one subnetwork
cannot access the services provided by the nodes in another subnetwork. We
say that a subnetwork is self-sufficient if each service needed by a node in
that subnetwork is provided by some node in the same subnetwork; otherwise,
the subnetwork is said to be deficient. Thus, a self-sufficient subnetwork can
continue to process requests from users even though it has been sequestered from
the rest of the network due to node and link failures. Given a network G(V,E)
and a subset S ⊆ V ∪ E of nodes and/or edges, we say that the network G is
resilient with respect to the failure set S if each of the subnetworks that results
when all the nodes/edges in S fail is self-sufficient.

We can now define the structure-based resilience metrics proposed in this
paper. To do this, we consider failure sets under two separate categories, namely
node failures and edge failures. In the former, each failure set consists only of
nodes, and in the latter, each failure set consists only of edges.

Definition 1. (a) A service-oriented network is k-edge-failure-resilient if
no matter which subset of k or fewer edges fails, each resulting subnetwork
is self-sufficient. The edge resilience of a network is the largest integer k
such that the network is k-edge-failure-resilient.

(b) A service-oriented network is k-node-failure-resilient if no matter which
subset of k or fewer nodes fails, each resulting subnetwork is self-sufficient.
The node resilience of a network is the largest integer k such that the
network is k-node-failure-resilient.

Example: Consider the eight node network shown in Figure 1. The eight services
provided by the network are denoted by s1 through s8. For each node vi , the
figure also shows the sets Ai (the set of services available at vi) and Ni (the set of
services needed at vi), 1 ≤ i ≤ 8. Note that the node connectivity and the edge
connectivity of the network are both one, since the network can be disconnected
by removing one node (for example, the node v3) or one edge (the edge {v3, v5}).
However, the node and edge resilience parameters of the network are both two.
In particular, the subnetworks obtained by deleting the edge {v3, v5} or one
of the nodes v3 and v5 are all self-sufficient. It can be verified that no matter
which pair of vertices or which pair of edges is deleted, each of the resulting
subnetworks is self-sufficient. However, when the three edges {v1, v2}, {v1, v3}
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A1 = {s1, s2, s3} N1 = {s4}
A2 = {s1, s2, s4} N2 = {s3}
A3 = {s1, s3, s4} N3 = {s2}
A4 = {s2, s3, s4} N4 = {s1}
A5 = {s5, s6, s7} N5 = {s8}
A6 = {s5, s6, s8} N6 = {s7}
A7 = {s5, s7, s8} N7 = {s6}
A8 = {s6, s7, s8} N8 = {s5}

v1 v3

v4

v5

v7

v8

v2 v6

Fig. 1. Example to Illustrate Resilience Metrics

and {v1, v4} are deleted, the subnetwork containing only the node v1 is deficient,
since it does not have access to service s4. Likewise, when the three nodes v1,
v2 and v3 are deleted, the subnetwork containing only the node v4 is deficient,
since it does not have access to service s1.

2.2 Problem Formulation

We now provide precise formulations of the analysis and design problems con-
sidered in this paper. We start with a specification of analysis problems.

Edge Resilience Problem (Erp)
Instance: A service oriented network consisting of an undirected graph G(V,E)
and the sets Av and Nv for each node v ∈ V .
Requirement: Compute the edge resilience of the network.

The formulation of Node Resilience Problem (Nrp) is similar to that of
Erp. Section 3 presents efficient algorithms for these two problems.

Many versions of design problems for resilient service-oriented networks can
be formulated. We focus on design problems where the goal is to choose an
optimal distribution of services over a given network. In other words, we assume
that the network topology and the set of services needed at each node are given,
and the objective is to find the set of services to be provided by each node so
as to achieve a desired degree of node or edge resilience. In the absence of cost
considerations, such problems can be solved trivially by having all the services
at each node. In general, such solutions are economically infeasible. Moreover,
some of the nodes in the network may not have the computational resources
needed to support a certain service. Therefore, we assume that there is a cost
associated with placing services at nodes and that the total cost of placing the
services must be minimized. We can now provide a precise formulation of the
design problems considered in this paper.

Design for Edge Resilience (Der)
Instance: An undirected graph G(V,E), with V = {v1, v2, . . . , vn}, a set S =
{s1, s2, . . . , sp} of services, a set N(vi) ⊆ S for each node vi ∈ V , an n × p cost
matrix C = [cij ], where cij ≥ 0 is a real number that denotes the cost of placing
service pj at node vi , 1 ≤ i ≤ n and 1 ≤ j ≤ p, and integer K.
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Requirement: For each node vi ∈ V , compute a set A(vi) ⊆ S of services to
be placed at vi , such that the edge resilience of the resulting service-oriented
network is at least K and the total cost of placing the services is minimized.

A solution to the Der problem may place a service sj at a node vi when
sj ∈ N(vi). In such a case, the sets A(vi) and N(vi) for node vi are no longer
disjoint. To ensure that the two sets remain disjoint, one can modify the set
N(vi) into a new need set N ′(vi) by deleting the services in N(vi) ∩ A(vi).

The formulation of the Design for Node Resilience (Dnr) problem is similar,
except that the parameter K represents the required level of node resilience.

In Section 4, we present polynomial algorithms for the Der and Dnr prob-
lems, assuming that the value of K is 1. Even for K = 1, the algorithms involve
careful analyses of certain types of decompositions of undirected graphs. For
larger values of node and edge resilience parameters, developing properties of
appropriate graph decompositions appears to be a nontrivial task. So, we leave
the design problems for higher resilience values as directions for future work.

3 Algorithms for Analyzing a Given Network

3.1 An Algorithm for Computing Edge Resilience

In this section, we present our algorithm for computing the edge resilience of a
given service-oriented network. We begin with some definitions.

Let G(V,E) denote the underlying graph of the given network. We use the
term subnetwork to mean a connected subgraph of G. (Subnetworks may con-
tain just a single node.) For each node v in a subnetwork H, the sets A(v) and
N(v) are the same as those in G. For any subnetwork H and any service sj ∈ S,
we say that H is deficient with respect to sj if there is a node in H that
needs sj and no node in H provides sj . Thus, a subnetwork H is deficient1 if
there is a service sj with respect to which H is deficient.

Definition 2. Let G(V,E) denote the underlying graph of a service-oriented
network. Let S denote the set of all services available in the network.

(a) Given a service sj ∈ S, a set of edges Q ⊆ E is called a deficiency
inducing edge (Die) set for G with respect to service sj if at least
one of the connected components of the graph G′(V,E −Q) is deficient with
respect to sj.

(b) A set of edges Q ⊆ E is a deficiency inducing edge set for G if at least
one of the connected components of the graph G′(V,E − Q) is deficient.

A direct consequence of the above definitions is that if Q∗ is a Die set of
minimum cardinality for G, then the edge resilience of G is equal to |Q∗| − 1.
Therefore, we focus on computing |Q∗|. Our approach for finding |Q∗| relies on
the following observation.

1 The definition of a deficient subnetwork was presented in Section 2.1.
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Observation 1. Let G(V,E) denote the underlying graph of a service-oriented
network. Let S denote the set of all services available in the network. For each
service sj ∈ S, let σj denote the minimum cardinality of a Die set for G with
respect to service sj. Let σ∗ denote the minimum cardinality of a Die set for G.
Then, σ∗ = min {σj : 1 ≤ j ≤ |S| }. �	

The above observation points out that the cardinality of a smallest Die set
for G can be computed by considering each service separately. We now show that
for any service sj , the problem of computing a minimum cardinality Die set with
respect to sj can be solved by a transformation to the problem of computing
minimum weight edge cutsets in undirected graphs. The relevant definitions are
given below.

Definition 3. Let G(V,E) be an undirected graph with a nonnegative weight
w(e) for each edge e ∈ E. Let s and t be two distinct vertices in V . An s-t edge
cutset for G is a subset E′ ⊆ E such that in the graph G′(V,E − E′), there is
no path between s and t. A minimum weight s-t edge cutset for G is an edge
cutset whose total weight is minimum.

The following well known result shows that minimum weight edge cutsets can
be found efficiently (see for example [28]).

Theorem 1. Given an undirected graph G(V,E) with a nonnegative weight w(e)
for each edge e ∈ E and two distinct vertices s and t in V , a minimum weight
s-t edge cutset for G can be computed in O(|E| + |V | log |V |) time. �	

We now explain how an algorithm for the minimum weight s-t edge cutset
problem can be used to solve the problem of computing a minimum cardinality
Die set for a given service sj . We need the following definition.

Definition 4. Let G(V,E) be the given service-oriented network and let sj be
a given service. Let Pj ⊆ V denote the set of nodes that provide service sj.
The auxiliary graph Gj(Vj , Ej) for sj is an undirected edge weighted graph
constructed as follows.

(a) Vj = V ∪ {s}, where s is a new node that does not appear in V .
(b) Ej = E1

j ∪ E2
j , where

(i) E1
j = E − {{x, y} : x and y are both in Pj} and

(ii) E2
j = {{s, y} : y ∈ Pj}.

(c) The weight of each edge in E1
j is 1 and that of each edge in E2

j is ∞.

As an example, the auxiliary graph of the network of Figure 1 with respect
to service s1 is shown in Figure 2. The usefulness of the auxiliary graph is shown
in the following lemma.

Lemma 1. Let G(V,E) be the given service-oriented network and let sj be a
given service. Suppose Gj(Vj , Ej) denotes the auxiliary graph for sj and v is a
node of G that needs service sj.



352 D.J. Rosenkrantz et al.

v1 v3

v4

v5

v7

v8

v2 v6s

Note: Nodes v1, v2 and v3 provide service s1. Each dotted edge has weight = ∞;
other edges have a weight of 1.

Fig. 2. Auxiliary Graph with respect to Service s1 of the Network in Figure 1

(a) If there is a set Ev ⊆ E such that there is no path in G′(V,E−Ev) between
v and any node that provides service sj, then Gj has an s-v edge cutset of
weight at most |Ev|.

(b) For any finite integer α, if Gj has an s-v edge cutset of weight α, then there
is a set Ev ⊆ E such that |Ev| = α, and there is no path in G′(V,E − Ev)
between v and any node that provides service sj.

Proof:
Part (a): Suppose Ev is a set of edges such that there is no path in the graph
G′(V,E −Ev) between v and any node that provides service sj . Let E1

v ⊆ Ev be
the set of edges obtained by deleting from Ev each edge {x, y} such that both
x and y are nodes that provide service sj . Note that each edge in E1

v is also an
edge in Gj and the total weight of the edges in E1

v is at most |Ev|. Using the fact
that there is no path in G′(V,E − Ev) between v and any node that provides
service sj , it can be verified that E1

v is an s-v edge cutset for Gj .
Part (b): For some finite α, suppose Qv ⊆ Ej is an s-v edge cutset with weight
α for Gj . Since α is finite, Qv cannot contain any edge incident on node s. Thus,
each edge in Qv is also in G(V,E). Using the fact that Qv is an s-v edge cutset
for Gj , it can be verified that there is no path in G′(V,E − Qv) between v and
any node that provides service sj . This completes the proof. �	

The following lemma is a direct consequence of Lemma 1.

Lemma 2. Let G(V,E) be the given service-oriented network and let sj be a
given service. Let Gj(Vj , Ej) denote the auxiliary graph for sj. For any node
v ∈ V , the minimum number of edges to be deleted from G so that there is no
path between v and any node that provides service sj is equal to the weight of a
minimum weight s-v edge cutset in Gj. �	
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Input: A service-oriented network G(V, E), the set S of all services, the sets A(v) and

N(v) for each node v ∈ V .

Requirement: Find the edge resilience of G.

Algorithm:

1. for each service sj ∈ S do
(a) Construct auxiliary graph Gj(Vj , Ej) for service sj .
(b) Find the set Dj ⊆ Vj of the demand points for service sj (i.e., the set of
nodes that need service sj).

(c) for each node v ∈ Dj do
Compute αv,j , the minimum weight of an s-v edge cutset in Gj .

(d) Let σj = min {αv,j : v ∈ Dj }.
2. Edge resilience of G = min {σj : sj ∈ S} − 1.

Fig. 3. Algorithm for Computing Edge Resilience

From Lemma 2, it follows that the cardinality of a minimum Die set with
respect to a service sj can be obtained by computing the minimum weight edge
cutset in the auxiliary graph Gj for each pair s-v, where v is a node that needs
service sj . Once we find the cardinality of a minimum Die set with respect
to each service sj , the edge resilience of the given network G can be found by
taking the minimum over all services (Observation 1). These observations lead
to the algorithm shown in Figure 3 for computing the edge resilience of a given
service-oriented network.

We now estimate the running time of the algorithm. Suppose the given net-
work has n nodes, m edges and a total of p services. The running time of the
algorithm in Figure 3 is dominated by the minimum weight edge cutset computa-
tions. For each service sj , the algorithm uses O(n) cutset computations. So, the
total number of such computations is O(pn). Since each cutset computation can
be done in O(m + n log n) time (Theorem 1), the running time of the algorithm
is O(pn(m + n log n)). The following theorem summarizes the above discussion.

Theorem 2. Given a service-oriented network G(V,E) and the set of service S,
the edge resilience of the network can be computed in O(pn(m + n log n)) time,
where n = |V |, m = |E| and p = |S|. �	

3.2 An Algorithm for Computing Node Resilience

Our algorithm for computing the node resilience of a service-oriented network
follows the same approach as that of edge resilience. The main difference is that
we need to work with node cutsets instead of edge cutsets.

When a subset X of nodes is deleted from a graph G(V,E), each edge inci-
dent on a node in X is also deleted. Keeping this in mind, it is straightforward
to modify the definition of a deficiency inducing edge (Die) set to obtain the
definition of a deficiency inducing node (Din) set.
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Definition 5. Let G(V,E) denote the underlying graph of a service-oriented
network. Let S denote the set of all services available in the network. For any
subset of nodes X, let GX(V − X,EX) denote the subgraph of G obtained by
deleting the nodes in X.
(a) Given a service sj ∈ S, a set of nodes X ⊆ V is called a deficiency

inducing node (Din) set for G with respect to service sj if at least
one of the connected components of the graph GX(V − X,EX) is deficient
with respect to sj.

(b) A set of nodes X ⊆ E is a deficiency inducing node set for G if at least
one of the connected components of the graph GX(V − X,EX) is deficient.

As in the case of edge resilience, it can be seen that a minimum cardinality
Din set for G can be computed by considering each service separately. To com-
pute that value, we use a transformation to the problem of computing minimum
weight node cutsets in graphs. The following definition is the node cutset analog
of Definition 3.

Definition 6. Let G(V,E) be an undirected graph with a nonnegative weight
w(v) for each node v ∈ V . Let s and t be two distinct vertices in V such that
{s, t} �∈ E. An s-t node cutset for G is a subset V ′ ⊆ V − {s, t} such that
when the nodes in V ′ are deleted from G, there is no path between s and t. A
minimum weight s-t node cutset for G is a node cutset whose total weight
is minimum.

As indicated by the following result from [10], minimum weight node cutsets
can be found efficiently.

Theorem 3. Given an undirected graph G(V,E) with a nonnegative weight w(v)
for each node v ∈ V and two distinct vertices s and t in V such that {s, t} �∈ E,
a minimum weight s-t node cutset for G can be computed in O(|E| |V |1/2) time.

�	
The definition of the auxiliary graph used for computing node resilience is the

same as that given in Definition 4, except that edge weights are not used, and
the weight of each node is 1. The usefulness of the auxiliary graph is indicated
in the following lemma, whose proof is analogous to that of Lemma 2.

Lemma 3. Let G(V,E) be the given service-oriented network and let sj be a
given service. Let Gj(Vj , Ej) denote the auxiliary graph (with node weights) for
sj. For any node v ∈ V , the minimum number of nodes to be deleted from G so
that there is no path between v and any node that provides service sj is equal to
the weight of a minimum weight s-v node cutset in Gj. �	

The rest of the computation is similar to that of edge resilience. The resulting
algorithm for computing node resilience is shown in Figure 4. It can be verified
that the running time of the algorithm is O(pmn3/2)). The following theorem
summarizes the above discussion.

Theorem 4. Given a service-oriented network G(V,E) and the set of service
S, the node resilience of the network can be computed in O(pmn3/2) time, where
n = |V |, m = |E| and p = |S|. �	
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Input: A service-oriented network G(V, E), the set S of all services, the sets A(v) and

N(v) for each node v ∈ V .
Requirement: Find the node resilience of G.

Algorithm:

1. for each service sj ∈ S do
(a) Construct auxiliary graph (with node weights instead of edge weights)
Gj(Vj , Ej) for service sj .

(b) Compute Dj ⊆ Vj , the set of demand points for service sj .
(c) for each node v ∈ Dj do

Compute γv,j , the minimum weight of an s-v node cutset in Gj .
(d) Let Γj = min {γv,j : v ∈ Dj }.

2. Node resilience of G = min {Γj : sj ∈ S} − 1.

Fig. 4. Algorithm for Computing Node Resilience

4 Algorithms for Designing Resilient Networks

4.1 Preliminary Definitions

As mentioned in Section 2.2, the design problem for 1-node or 1-edge resilience
assumes that we are given the underlying graph G(V,E), and for each node
vi ∈ V , the set N(vi) of services needed at vi. In addition, a nonnegative cost
matrix C = [cij ], where cij is the cost of placing service sj at node vi is also
given. The goal is to select a set of services to be placed at each node so that
the resulting network has the required level of edge or node resilience, and the
total cost of placing the services is minimized.

We saw in Section 3 that the analysis problems for edge and node resilience
can be solved by considering each service separately. This idea extends to the
design problems as well since the placement of one service has no impact on the
placement of other services. So, our approach for solving the design problems
also considers one service at a time.

Consider any service sj . Recall that each node vi such that sj ∈ N(vi) is
a demand point for sj . Each node at which service sj is placed is called a
service point. A set of service points for sj is called a placement for sj . Given
a connected graph G(V,E) and a placement P for service sj , we say that the
placement is 1-edge-resilient with respect to service sj if for every edge
e ∈ E, the graph G′(V,E−{e}) contains a path from each demand point for sj to
a service point for sj . The definition of a 1-node-resilient placement can be given
in a similar manner. Thus, an equivalent way of posing the design problems is the
following: find a placement for each service so that the resulting service-oriented
network is 1-edge-resilient (or 1-node-resilient) and the total cost of placement
is minimized. This formulation is used in the remainder of this paper.

The next two subsections consider the design problem for 1-edge resilience
and 1-node resilience respectively. For reasons of space, we will assume uniform
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cost values for services in this version; that is, we assume that cij = 1 for all i and
j. Our algorithms can be extended to nonuniform cost values. These extensions
will be included in a longer version of this paper.

4.2 Designing a 1-Edge-Resilient Network

In this section, we develop our algorithm for the design problem for 1-edge
resilience. As mentioned above, each service can be considered separately in
solving this problem. So, we will focus our attention on one service, say sj . We
say that a placement P for service sj is optimal if P provides 1-edge-resilience
with respect to sj , and |P | is the smallest among all placements which have the
resilience property.

To develop our algorithm for this problem, we recall a standard definition
from graph theory [29].

Definition 7. Let G(V,E) be a connected undirected graph. A bridge of G is
an edge {x, y} whose removal disconnects G. If G has no bridges, then G is called
a bridgeless graph.

The following is a well known result in graph theory [29].

Lemma 4. Let G(V,E) be a connected undirected graph. Suppose G has b bridges
given by E′ = {e1, e2, . . . , eb}. Then, the graph G′(V,E − E′) has exactly b + 1
connected components and each of these components is a bridgeless graph. �	

The bridgeless components (BLCs) of the underlying graph G(V,E) play an
important role in solving the design problem. To show this connection, we define
another auxiliary graph for G as follows.

Definition 8. Let G(V,E) be a connected undirected graph and let E′ = {e1,
e2, . . . , eb} denote the set of bridges of G. The BLC graph of G, denoted by
GB(VB , EB), is defined as follows.

(a) Each node of VB corresponds to a BLC of G.
(b) For nodes x and y in VB, the edge {x, y} is in EB if and only if there is

a bridge in G that joins a node in the BLC corresponding to x to a node in
the BLC corresponding to y.

Intuitively, the BLC graph of G is constructed from G by collapsing each BLC
of G into a single super node; the edges of the BLC graph are in one-to-one
correspondence with the bridges of G.

Example: The service-oriented network of Figure 1 has one bridge, namely
the edge {v3, v5}. One bridgeless component of G is formed by the node set
{v1, v2, v3, v4} and the other is formed by {v5, v6, v7, v8}. The BLC graph corre-
sponding to this network has two nodes joined by a single edge.

The following is an easy observation concerning the BLC graph of a connected
graph G.
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Observation 2. Suppose G is a connected undirected graph. The BLC graph of
G is a tree. �	

We need some additional definitions to point out the role played by the BLC
graph in solving the 1-edge-resilient design problem. It should be noted that the
following definitions are all with respect to the service sj under consideration.

Definition 9. Let G(V,E) be a connected graph and let GB denote the BLC
graph of G. Let sj be a service.

(a) A demand component of G is a BLC of G that has at least one demand
point for sj.

(b) The demand subgraph Gj
D of G consists of nodes vH corresponding to

the demand components of G, and all edges and nodes of GB that lie along
some path connecting two such nodes.

Since the BLC graph GB is a tree (Observation 2), the demand subgraph Gj
D

is a subtree of GB . We call each leaf of Gj
D (i.e., a node of degree 1 in Gj

D) a
demand leaf. Each BLC of G corresponding to a leaf of Gj

D is called a demand
leaf component. The importance of demand leaf components of G in finding
an optimal placements is shown in the following lemma whose proof is omitted
because of space limitations.

Lemma 5. Let G be a connected graph. Let GB denote the BLC graph of G,
and let Gj

D denote the demand subgraph of GB for service sj.

(a) Let δ denote the number of demand leaves of Gj
D. If P ∗ denote an optimal

placement for sj, then |P ∗| ≥ δ.
(b) Let P be a placement for sj obtained by choosing an arbitrary node from

each demand leaf component of G. Then, P is 1-edge-resilient. �	
Lemma 5 points out that an optimal placement for service sj can be found

by choosing an arbitrary node from each demand leaf component of G. When
this process is repeated for each service, we obtain an optimal placement that
achieves 1-edge-resilience. The steps of the resulting algorithm are shown in
Figure 5.

We now analyze the running time of the algorithm in Figure 5. As in Section 3,
let |V | = n, |E| = m and |S| = p. Finding the BLCs of G can be done in O(m+n)
time [3]. Then, constructing the BLC graph GB can be done in O(n) time, since
GB is a tree. Using a bit vector representation of length p for the set N(vi) for
each node vi, it can be seen that time used to find the placement for all services
is O(np). Therefore, the overall running time of the algorithm is O(m+np). The
following theorem summarizes the main result of this section.

Theorem 5. Given a connected graph G(V,E), the set of services S and the set
N(vi) for each vi ∈ V , the design problem for 1-edge-resilience under uniform
service costs can be solved in O(m + np) time, where n = |V |, m = |E| and
p = |S|. �	
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Input: A connected graph G(V, E), the set S of all services, the set N(vi) for each

node vi ∈ V .

Requirement: For each service sj , find a service point set Pj (i.e., the subset of V
at which service sj will be placed) so that the resulting network is 1-edge-resilient and
|Pj | is the smallest among all placements that provide 1-edge-resilience.

Algorithm:

1. Find the bridgeless components (BLCs) of G and construct the BLC graph GB .
2. for each service sj ∈ S do

(a) Compute the demand point set Dj for sj .
(b) Initialize service point set Pj to ∅.
(c) Construct the demand subgraph Gj

D and find its leaf nodes.
(d) for each leaf v of Gj

D do
Choose an arbitrary node w from the BLC of G corresponding to v, and
add w to Pj .

3. Output the sets Pj , 1 ≤ j ≤ |S|.

Fig. 5. Algorithm for Designing a 1-Edge-Resilient Network

4.3 Designing a 1-Node-Resilient Network

We now address the problem of computing an optimal placement for achieving
1-node-resilience. The approach is similar to that of the design problem for 1-
edge-resilience. We start with some standard graph theoretic definitions [29].

Definition 10. Let G(V,E) be a connected undirected graph.

(a) A node v ∈ V is a cut point (or articulation point) if the removal of v
disconnects G.

(b) A block is maximal subgraph G′ of G such that G′ does not have a cut
point.

Example: Consider the graph G(V,E) shown in Figure 1. It has two cut
points, namely nodes v3 and v5. G has three blocks: the subgraph induced on
the set {v1, v2, v3, v4}, the edge {v3, v5} and the subgraph induced on the set
{v5, v6, v7, v8}.
Definition 11. Let G(V,E) be a connected undirected graph. The block-cut
point graph (BC graph) of G, denoted by GB(VB , EB), is the bipartite graph
defined as follows.

(a) VB has one node corresponding to each block and one node corresponding
to each cut point of G.

(b) Each edge {x, y} in EB joins a block node x to a cut point y if the block
corresponding to x contains the cut point node corresponding to y.

The following is a known result about blocks and block-cut point graphs [29].
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Lemma 6. Let G(V,E) be a connected undirected graph.

(a) Each pair of blocks of G share at most one node, and that node is a cutpoint.
(b) The BC graph of G is a tree in which each leaf node corresponds to a block

of G. �	
As before, we focus on obtaining an optimal placement for one service sj .

The role of the BC graph of G in the node resilience design problem is similar
to that of BLC graph in the edge resilience design problem. To explain this, we
need a few more definitions. A node v of G is an interior demand point, if
v is a demand point (for service sj) and v is not a cut point. Note that each
interior demand point appears in only one block of G.

Definition 12. Let G(V,E) be a connected undirected graph and let GB denote
the BC graph of G. Consider a service sj.

(a) The demand subgraph of G with respect to service sj, denoted by Gj
D,

is the subgraph of GB consisting of nodes that correspond to blocks of G
containing an interior demand point, cut nodes that are also demand points
and all edges and nodes of GB that lie along some path connecting two such
nodes.

(b) The pruned demand subgraph of G with respect to service sj, denoted
by Gj

PD, is the subgraph of Gj
D, constructed as follows. If Gj

D consists of a
single node, then Gj

PD is identical to Gj
D. Otherwise, Gj

PD is constructed by
removing from Gj

D each leaf node that is a cut point.
(c) A demand point v of G is a generalized interior demand point if v

does not have a corresponding cut point node in Gj
PD.

Since the BC graph GB of G is a tree (Lemma 6), Gj
D and Gj

PD are subtrees
of GB . The following lemma shows the relationship between an optimal 1-node-
resilient placement for G and the pruned demand graph Gj

PD.

Lemma 7. Let G(V,E) be a connected undirected graph and let GB denote the
BC graph of G. Let Gj

PD denote the pruned demand subgraph of G with respect
to service sj. Let P ∗ be an optimal placement for sj.

(1) Suppose Gj
PD consists of a single node.

(a) If G has only one demand point for sj, then |P ∗| = 1.
(b) If G has two or more demand points for sj, then |P ∗| = 2.

(2) Suppose Gj
PD consists of two or more nodes. Let δ denote the number of

leaves of Gj
PD. Then, |P ∗| = δ.

Proof sketch: Below, we will indicate how a placement P is constructed. The
proof that the placement is optimal and that it provides 1-node-resilience is
omitted in this version due to lack of space.

Suppose Gj
PD consists of a single node. There are two possibilities here, as

indicated in the statement of the lemma. If G has only one demand point v for
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Input: A connected graph G(V, E), the set S of all services, the set N(vi) for each

node vi ∈ V .

Requirement: For each service sj , find a service point set Pj so that the resulting
network is 1-node-resilient and |Pj | is the smallest among all placements that provide
1-node-resilience.

Algorithm:

1. Find the cut points and blocks of G and construct the BC graph GB .
2. for each service sj ∈ S do

(a) Compute the demand point set Dj for sj .
(b) Construct the pruned demand subgraph Gj

PD.
(c) Construct the service point set Pj by considering the following cases.

Case 1: Gj
PD has only one node.

If G has only one demand point v for sj , then let Pj = {v}. If G has
two or more demand points for sj , choose any two nodes x and y of
G, and let let Pj = {x, y}.

Case 2: Gj
PD has two or more nodes.

(i) Find the leaf nodes of Gj
PD and the corresponding leaf blocks of G.

(ii) for each leaf block H of G do
Choose an arbitrary generalized interior demand point x of H
and add x to Pj .

3. Output the sets Pj , 1 ≤ j ≤ |S|.

Fig. 6. Algorithm for Designing a 1-Node-Resilient Network

service sj , then P consists of just the node v. If G has two or more demand
points, then P consists of two arbitrary nodes from G.

Suppose Gj
PD consists of two or more nodes. In this case, we identify the

blocks of G corresponding to the leaves of Gj
PD. Placement P is obtained by

choosing from each such block H, an arbitrary generalized interior demand point.
�	

An algorithm for finding an optimal placement for 1-node-resilience can be
constructed from the proof sketch given for Lemma 7. The steps of the resulting
algorithm are shown in Figure 6. To estimate the running time of the algorithm,
let n = |V |, m = |E| and let p = |S|. The blocks and cut points of a connected
graph G(V,E) can be found in O(|V | + |E|) time [3]. Thus, the BC graph GB

of G can be constructed in O(n + m) time. Consider any service sj . Using the
fact that the pruned demand subgraph Gj

PD is a tree, it can be seen that an
optimal placement for each service can be found in O(n) time. Hence, the time
over all services is O(pn). Therefore, the overall running time of the algorithm
is O(pn + m). The following theorem summarizes the above discussion.

Theorem 6. Given a connected graph G(V,E), the set of services S and the set
N(vi) for each vi ∈ V , the design problem for 1-node-resilience under uniform
service costs can be solved in O(m + np) time, where n = |V |, m = |E| and
p = |S|. �	
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5 Summary and Concluding Remarks

We identified some resilience metrics for service-oriented networks. These metrics
take into account both the underlying topology of the network and the manner
in which services are distributed over the network. We presented polynomial
algorithms for determining the edge and node resilience of a given network. We
also presented efficient algorithms for optimally distributing services over a given
network so that the resulting service-oriented network achieves 1-edge-resilience
or 1-node-resilience.

We close by pointing out some directions for future research. First, it would
be useful to study the analysis and design problems under Byzantine node and
edge failures (instead of passive crash failures). Second, it is of interest to in-
vestigate design problems when the placement of one service has an impact on
the placement of other services. Finally, it is also important to study other ver-
sions of design problems (e.g. adding links of minimum cost to enhance edge or
node resilience) to understand the tradeoffs involved in the design of resilient
service-oriented networks.

Acknowledgments. We thank the EDCC-5 reviewers for their helpful sugges-
tions.
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Abstract. The dependability of a network is its ability to cope with
failures, i.e., to maintain established connections even in case of failures.
IP routing protocols (such as OSPF and RIP) do not fit the dependabil-
ity objectives of today applications. Usual forwarding techniques based
on destination address (like IP) induce many-to-one connections. Thus,
if a dependable connection is needed, all primary paths and protections
having the same destination must be established in a coordinated way.
Otherwise, loops may be established. In this paper, we propose a fault
recovery for many-to-one connections based on a cold (preplanned) pro-
tection. The main advantage of our approach is that the recovery in case
of failures is achieved within a short delay. Additionally, with respect to
other approaches, the dependability of the routing scheme is increased
in the way that it statistically copes with many failures. The algorithm
we propose computes an efficient backup for an arbitrary primary tree
using an improved multi-tree algorithm.

Keywords: network, fault-tolerant routing, many-to-one, cold protec-
tion, multi-tree algorithm.

1 Introduction

High-speed networks are becoming increasingly important and allows the devel-
opment of applications with real-time constraints, such as multi-media services,
cooperative systems, distributed computing. These applications often rely on
the survivability of the network: communications should not be interrupted for
a long time by a failure of a link or of a router. Indeed, the longer the communica-
tion is interrupted, the more packets are dropped. The problem of fast recovery
has been well studied for several types of communications, including broadcast
(one-to-all), unicast (one-to-one) and multicast (one-to-many). However, there
is no efficient proposition for dependable incast (many-to-one) communications.

Incast connections are many-to-one, i.e., several sources send data to a single
destination. An incast connection can be the support of homogeneous or hetero-
geneous communications. Examples of applications inducing homogeneous com-
munications include log collection, data gathering in sensor networks, auction
sales and massive submissions. Data gathering, routing and congestion control
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problems of many-to-one communications have been analyzed in meshed network
for parallel computation cases (cf. [1, 2]) and in sensor networks (cf. [3]). To the
best of our knowledge, there is no analysis for the dependability and the efficient
protection of many-to-one communications. In networks where the forwarding
of packets is based on their destination address (such as IP networks), all the
communications toward the same destination form an incast connection. In this
case, the connection is heterogeneous since it is composed of communications
having different requirements and protocols. For example, a FTP communica-
tion from a host A to a host C and a HTTP communication from a host B to
the same host C form an incast connection. Incast connections are traditionally
realized using a tree1 (sometimes, the tree is implicit, like in IP).

Implementing dependable communications is a major thread for current net-
works. Indeed, the network is supposed to be survivable, i.e., it should withstand
failures of links or routers. Two measures of the dependability of a network can
be considered: the recovery delay and the number of failures managed [4]. It
is therefore critical to reduce the recovery delay as much as possible. Classi-
cal recovery delays of IP protocols such as OSPF or RIP reach tens of seconds
(see [5] for OSPF and [6] for the slow convergence problem of RIP). The other
measure, the number of failures managed by a recovery mechanism, impacts on
the reliability of the network. In our model, we consider two types of failures:
independent failures and highly correlated failures. Our proposition supplies a
recovery mechanism that protects efficiently against both types of failures.

Our objective is to recover quickly from failures on an incast communication
while coping with as much failures as possible. In this paper, we propose a cold
preplanned protection that allows local recovery using arc-disjoint trees. Our
proposition is a general framework: it can be applied to various networks and
layers, e.g., IP networks or switched networks.

Section 2 gives a state of the art on dependable communications. Section 3
describes our protection construction based on arc-disjoint trees. Section 4 de-
scribes our local recovery mechanism. Section 5 analyzes the capability of pro-
tecting independent failures and highly correlated failures. Finally, we conclude
our work in Section 6.

2 State of the Art of Dependable Connections

Several ways to cope with failures exist. In this section, we briefly survey the
existing approaches to realize dependable connections while focusing on our main
concern: the fastness of the recovery. A detailed survey on survivability can be
found in [7] (in the case of WDM networks).

1 Multicast connections are also realized using a tree, but incast connections and mul-
ticast connections are not symmetric: multicast connections and multicast routing
protocols require a particular mechanism in routers, the duplication mechanism,
while incast connections do not require any.
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Hot and Cold Redundancy. Hot redundancy, denoted 1+1 redundancy, con-
sists in sending each message on two disjoint paths simultaneously (cf. [8] for
an example). Hot redundancy allows fast recovery since the destination receives
the packet from one of the paths even if a failure on the other path has occurred
and has not yet been detected. However, hot redundancy wastes a lot of band-
width. This major drawback and the necessity of a selecting algorithm at the
destination make hot redundancy not very used.

Cold redundancy, denoted 1:1 redundancy, consists in raising a recovery
mechanism once a failure is detected (cf. [8] again for an example). Although 1:1
redundancies are slower than 1+1 redundancies because of the failure detection
delay, they are often preferred since they save bandwidth. The restoration and
protection are the two main types of cold redundancy.

Restoration and Protection. Restoration is a reactive approach to cope with
failures. At the time a failure is detected, the router that detected the failure
searches for a new path to reroute the traffic to the destination [9]. The advantage
of restoration is that it adapts to the current state of the network. This kind
of solutions can be applied both in the case of highly correlated and multiple
independent failures. However, intensive computations are required for the router
to find a new path, which increases the recovery delay. Usual Internet routing
protocols use this approach.

Protection is a proactive approach to cope with failures. The behavior of the
routers in case of a failure is preplanned [10]. At the time the failure is detected,
the router reroutes the traffic to the preplanned protection path. This approach
has the advantage of being very fast, since the recovery is raised without any
additional computation of the router [11]. However, less failures can be managed
compared to restoration since protection is proactive. Classic protections are
end-to-end or local.

End-to-End and Local. End-to-end recovery consists in rerouting the traffic
at the source on an arc-disjoint path, once a failure is detected. A typical exam-
ple of end-to-end protection is the path-based protection. The delay induced by
the end-to-end recovery is high because the source has first to be informed that a
failure occurred on the primary path before raising the recovery. Another draw-
back of path-based protection is that it cannot cope with two successive failures:
if a failure occurs on the primary path and another occurs on the alternate path,
the connection is interrupted.

Local recovery consists in rerouting the traffic at the router that detected
a failure. A typical example of local recovery is the link-based protection. The
delay induced by the local recovery is low because the recovery is raised locally.
Using link-based recovery, several successive failures on the primary path can
be managed, as long as they concern different links. A drawback of link-based
protection (but not of local recovery approach) is that node failures are not
managed. A comparison of link-based protection and path-based protection can
be found in [12].

Typically, local preplanned recovery mechanisms provide protection for mul-
tiple independent failures but do not resist highly correlated failures. End-to-end
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solution can supply a protection in the cases of highly correlated failures if the
alternative path is not involved by the failure.

In this paper, we propose a new local cold protection to recover from failures
on incast connections within a short delay, and without the drawback of the
link-based protection. The specificity of incast connections is the large number
of sources; therefore, traditional end-to-end recovery mechanisms are not suited
to incast, where all the sources have to be informed of the failures that occurred.

3 Proposed Protection of Incast Trees

Our proposition aims at the construction of dependable incast connections. The
dependability of our routing scheme is reinforced since the proposed protection
statistically withstands many failures.

Many-to-one connections require the establishment of the primary paths in
a coordinated way. The backup paths should be synchronized together and also
with the primary paths. We call primary tree the union of primary paths.

For basic incast connections, the primary tree is usually a shortest path tree.
However, QoS aware incast connections may use different partial spanning trees
depending on the network management policy. For this reason, we assume that
the primary incast tree is given to our algorithm either by the application or
by the network management. Often, this primary tree spans only a sub-graph
of the given network. The objectives of the protection are: (i) it should work on
any topology and (ii) it should protect any given (partial or not) primary tree.
Let us denote Tp this given primary tree.

In this section we present how our protection solution can achieve these
objectives. Our solution, based on a directed 2-connected structure, builds the
backup of a given incast primary tree. We decided to use multi-tree as the
directed 2-connected structure. Two questions remain. (i) How to build a multi-
tree given a primary tree? How to build a backup from a multi-tree?

Sections 3.1 and 3.2 describe the construction of a multi-tree. Section 3.3
answers the first question and Section 3.3 answers the second.

3.1 Basic Multi-tree Construction

A multi-tree is a set of two directed trees that are arc-disjoints and that share the
same root. The algorithm presented in [13] describes a way to compute such two
trees. It works only in undirected, edge-redundant topologies, i.e., networks that
do not have articulation edges. By definition, the deletion of an articulation edge
increases the number of connected components. The two directed trees spans all
the nodes of the network. We assume that all links are bidirectional.

The multi-tree is built by adding successively external paths, as specified by
Algorithm 1. An external path is a path starting in a spanned node u, ending
in a spanned node v containing at least one intermediate node and such that
all intermediate nodes are out of the multi-tree. An external path is shown
on Figure 1. Generally, u �= v (except at the first iteration or in the case of
an articulation node). From each external path, two arc-disjoint branches are

(ii)
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extracted such that one of them ends at u while the other ends at v. Each
branch starts at the neighbor of u (or v) on the external path and is connected
to one of the directed trees. The directions and the connections of these directed
branches are determined in a way to ensure the consistency of the trees (cf. [13]).

u v

r

destination

multi-tree

arc of one tree

arc of the other tree

Fig. 1. An external path from u to v

In a node-redundant graph (without articulation node), a multi-tree contains
two disjoint paths from any node to the root. Therefore, in the case of a single
failure, any node is still connected to the root in the multi-tree.

Algorithm 1 Multi-tree construction
Require: a destination node r, an edge-redundant graph
Ensure: a multi-tree M

initialize the multi-tree M with node r
while there is an external path of M do

select an external path p
extract two arc-disjoint directed paths from p
add the two directed paths to M

end while

Figure 2 shows the successive steps of the algorithm. In this example, the
external path is chosen arbitrarily at each step. The corresponding two arc-
disjoint branches are shown on the figure. One of the tree of the multi-tree is
represented in solid lines (and is referred to as the blue tree in [13]) while the
other is represented in dashed lines (and is referred to as the red tree in [13]).

Advantages. With the help of the multi-tree, tree-based communications can
be protected against node and link failures in node-redundant or edge-redundant
graphs respectively. The multi-tree is relatively easy to compute and it can be
applied to realize hot-redundancy for broadcast or incast communications or to
realized cold-redundancy with a preplanned protection.

Drawbacks. One of the drawbacks of the described multi-tree protection is that
the algorithm does not deal with arbitrary topologies, only with edge-redundant
topologies.
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Fig. 2. The multi-tree construction

A more important drawback follows from the fact that the selection of suc-
cessive external paths is not determined. Thus, the diameter of the trees (and
as a consequence, the length of the primary paths) can be arbitrary large (for
example, it can be seen on Figure 2 that the distance in the solid tree from node
v5 to the destination r is very long). The QoS requirement of the applications or
the network management often impose the use of particular primary trees (e.g.,
shortest path or QoS aware trees).

In most incast communications, only a sub-set of nodes belongs to the set
of the sources and so the incast tree is a partial spanning tree. The algorithm
should be adapted to partial spanning trees.

Last but not least, [13] does not present an effective protection mechanism.
Our protection mechanism is presented in Section 4.

In the following, we will specify how the different drawbacks of the multi-tree
based protection can be eliminated.

3.2 Extension to Arbitrary Topologies

Often, in real networks, articulation edges exist. Even in initially redundant
networks, articulations can be produced due to persistent failures. The protection
construction should work also in these cases.

To build a multi-tree in an arbitrary connected network, we propose to add
to the previous algorithm a particular case when articulation edges are found. In
this case, we propose the creation of two directed arcs on the articulation edge
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toward the destination. So, the two trees of the multi-tree are not arc-disjoints
anymore but it tolerates failures on the redundant edges.

Algorithm 2 gives a formal version of this algorithm. The most important
improvements are explained deeply in Section 3.3.

Algorithm 2 Special multi-tree construction
Require: a destination node r, an arbitrary graph
Ensure: a multi-tree M

initialize the multi-tree M with the destination node r
while there remains unspanned nodes in the component connected of r do

while an external path exists do
select the optimal external path p according to Subsection 3.3
extract two arc-disjoint directed paths from p
add these two paths to M

end while
if an articulation node a is detected then

select an external path from a to a
else

if an articulation edge e is detected then
add the arc of e directed to r to each tree of M

end if
end if

end while

3.3 Protection of a Total Incast Spanning Tree

In a first time, let us suppose here that all nodes of the network participate
to the incast communication. The case of partial participation is discussed in
Section 3.4.

Remember that Tp denotes the given primary tree used to transmit data if
no failures occur. In networks, failures are rare events. Therefore, the primary
tree has to ensure an efficient delivery of data packets and to satisfy certain QoS
criterion. Generally, none of the directed trees built by the multi-tree algorithm
corresponds to a good primary tree. However, it will be possible to extract from
the multi-tree the primary tree Tp (e.g., a shortest path tree) and to use the
remains of the multi-tree as the backup of Tp. We will see that this backup is a
forest.

To adapt the protection to a given (total) primary tree (for example to the
shortest-path tree), we propose the construction of a multi-tree spanning all of
the arcs of the given primary tree. This is done using a special external path
selection.

Special External Path Selection. To ensure that a given primary tree Tp is
covered by the multi-tree, we have to ensure that Tp is covered by the union of
the external paths selected during the multi-tree construction. In other words,
we have to ensure that every arc of Tp is covered by an arc of the multi-tree.
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Let us denote by dist(Tp, r, n) the hop distance from the root r of Tp to a
node n in Tp. At each iteration, the algorithm selects an external path containing
exactly one edge (n1, n2) that is not in the primary tree Tp and with at least one
node of {n1, n2} not spanned by the multi-tree. Such an external path exists if
the topology is redundant and if the primary tree is total. If there are several
candidates, the one minimizing dist(Tp, r, n1)+dist(Tp, n2, r) is chosen. Figure 3
shows the selection of an external path, where Tp is a shortest-path tree.

rrr

uu vv

n1n1 n2n2

[3+3]

Fig. 3. Selection of the external path p = {(u, n1), (n1, n2), (n2, v)}

Having chosen the edge (n1, n2), not spanned yet and not on Tp, the external
path p can be found as follows: u is the first successor on Tp of n1 which is
covered by the multi-tree, v is the first successor on Tp of n2 which is covered by
the multi-tree. Then, p contains the path on Tp from u to n1, the edge (n1, n2)
and the path on Tp from n2 to v.

Property 1 shows that our selection of external paths ensures that the primary
tree Tp is covered by the multi-tree.

Property 1. The arcs of the directed primary tree Tp are in the multi-tree built
by our algorithm.

Proof. There is exactly one outgoing arc from each node of the tree Tp to the
root r. To prove the property, it is sufficient to show that nodes are added to the
multi-tree together with their outgoing arc. Let p be an external path from the
node u to v selected at any iteration of the algorithm. In a first time, we show
that the outgoing arc of any node n ∈ p is in p and in a second time we show
that there is an arc directed to the same direction in the multi-tree.

1. Let us assume that the outgoing arc of n on Tp is not contained in the path
p. In this case, the two adjacent edges of n contained in p are not in Tp. This
is impossible by construction, because there is only one edge in p that is not
in Tp.

2. The external path maps two outgoing arcs (one in each tree of the multi-
tree) to each node, except to u and v. The outgoing arc on Tp of any node
n, different from u and v, corresponds to one of the two arcs. ��
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Minimizing the hop distance dist(Tp, r, n1) + dist(Tp, n2, r) allows the pro-
tection to be dense. A dense protection is more robust in the case of multiple
failures than a sparse protection.

Remember that the outline of the multi-tree construction algorithm with our
external path selection is given on Algorithm 2.

Backup Forest Construction. Our improved multi-tree algorithm builds a
multi-tree M = (T1, T2) that covers the primary tree Tp. To obtain the backup
support of the primary tree, Algorithm 3 is proposed.

Algorithm 3 Backup forest construction
Require: Tp a primary tree, M = (T1, T2) a multi-tree covering Tp

Ensure: F is the backup of Tp

F ← arcs(T1) ∪ arcs(T2)
F ← F\arcs(Tp)

The first step of the algorithm merges the arcs of T1 and T2 into a set of
directed arcs F . The second step of the algorithm removes in F the arcs of the
primary tree Tp. The remaining arcs are the backup protection of Tp. F is a
forest. The way the arcs of F are used to protect Tp is described in Section 4.

3.4 Protection of a Partial Incast Spanning Tree

Generally, few nodes participate to an incast communication. Since our pre-
planned protection scheme is based on a multi-tree, the construction has to take
into account the cases where only a sub-set of the nodes are sources of the incast
communication. In these cases the resulting preplanned scheme should contain
the partial primary tree and an appropriate backup structure, which is com-
patible with the protection and fault recovery mechanism proposed for total
protection cases. For this reason, we propose to build a partial multi-tree which
covers the partial primary tree. To create such a partial multi-tree, we propose
two algorithms in the next two sections.

Construction Based on the Total Primary Tree. A first way to take partial
primary trees into account is (i) to construct the total primary tree for all nodes
of the given topology, (ii) to compute the total multi-tree spanning all the nodes
and (iii) to prune the parts of the total multi-tree that are not used neither by
the partial primary tree nor by its protection. More precisely, an arc of the total
multi-tree must be kept if it belongs to the partial primary tree or to a directed
path that protects a part of the primary tree, and if this primary tree can not
be protected with the help of a shortest path.

Figure 4 illustrates the construction of two partial (and protected) spanning
trees based on a total multi-tree. The first figure shows the total multi-tree for the
given topology (to simplify the shortest path tree is considered as primary tree).
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Fig. 4. Partial tree protection resulting from an total multi-tree based scheme

The two following figures present the result of pruning for two different cases.
Only the shortest paths and the needed backup arcs are kept. All the arcs not
belonging to the primary tree or to its protection must be deleted from the total
multi-tree based protection scheme (so the arc (b, a) must be deleted, but the arc
(a, b) participating to the protection of (a, r) should be kept in the first case).
A new partial primary tree needs the recomputation of the protection scheme.
Note that the reconfiguration of the total multi-tree is not necessary; this multi-
tree calculated at a first time can be stored and used for ulterior computations.
However, this proposition requires an important computation when few nodes
are sources of the incast communication.

Partial Construction of the Multi-tree. A more efficient way to take partial
primary trees into account is to compute only the required part of the multi-tree
and the protected scheme if needed. The most typical case corresponds to the
add of a new source to the existing incast protection scheme (the first source
being added to an empty scheme). Any partial tree with its protection can be
built with successive adds of the sources.

A partial multi-tree covering a primary path can be built by adding successive
shortest external paths (loops in the case of the root and articulation nodes)
from the destination to the sources by following the primary paths in the reverse
direction. If a part of the new primary path belongs to the existing partial
primary tree, the construction starts with the last node of the new path belonging
to the tree (see Fig. 5). Each external path should cover the next edge of the
primary path. The external path selection and the stop condition of the multi-
tree algorithm should be modified accordingly. Note that nodes which are in the
partial multi-tree but not in the primary tree have two directed paths to the
destination. The arcs belonging neither to the primary tree nor to its protection
can be deleted. Figure 5 illustrates the successive partial multi-tree construction
and the obtained protection scheme for two sources. The left upper part and
the left bottom part of the figure shows the partial multi-tree construction for
the given source and primary path. The right part of the figure, the obtained
protection scheme, shows the established partial primary tree Tp in solid lines
and its backup forest F in dashed lines.
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Fig. 5. Successive constructions of a protected partial incast tree

Property 2. If the graph is edge-redundant, the proposed backup forest F insures
that there are two arc-disjoint paths from all of the router nodes of the primary
tree to the destination.

Proof. Trivially, one of the directed paths is the primary path. Let us suppose
that the topology is edge-redundant. In the case of a multi-tree spanning the
entire network graph, there are two arc-disjoint paths from all of the nodes to
the destination.

In the case of a partial spanning tree, the primary path is covered by suc-
cessive external paths (the first path containing the destination is a loop). The
partial multi-tree is built by creating two arc-disjoint directed paths on the se-
lected external paths. If there is no articulation edge in the primary path, then
in the partial multi-tree there are two arc-disjoint paths from all of the nodes
to the destination. Since only the non used arcs (which are not included to the
primary tree nor to its simple protection) are deleted, there are always two-arc-
disjoint paths from nodes of the primary tree to the destination. ��

4 Proposed Recovery Mechanism

This section deals with our recovery mechanism. This mechanism uses the arcs
of the backup forest to protect against failures. Once the protection has been
configured, a local recovery has to be implemented in routers to protect the
incast connection against failures.
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Our mechanism is not specific to a network: it can be applied to several
networks, including IP and switched networks and is not related to a specific
layer. It may be implemented in layers such as Layer 2 (e.g., Ethernet), Layer 3
(e.g., IP) or Layer 7 (application) networks. Our hypotheses are the following:

– the network topology has to be undirected,
– the protection computation and the configuration: (i) are centralized in a

manager and (ii) the manager has to know the topology.
– (i) routers have to store an alternative table in addition to their forwarding

table and (ii) their forwarding algorithm is slightly modified.

If the router has only one outgoing arc in the protected scheme, then this
next hop should be in the primary forwarding table for the given destination.
If there is a second (backup) outgoing arc, then this latter should be in the
alternative forwarding table of the router. If a router detects a failure on the
primary entry of a destination r, it switches its primary entry to its alternative
entry. This failure detection algorithm is described by Algorithm 4. Note that
the way the failure is detected is out of scope of this paper.

Algorithm 4 Failure detection
Require: an interface i
Ensure: all primary entries corresponding to i are switched

if a failure is detected on interface i then
for all primary entries pointing to i do

switch on the alternative entry (the primary entry is replaced by the alternative
entry and the alternative entry is dropped)

end for
end if

A router n detects the need for a route modification when it receives a packet
for a destination r on an interface i which corresponds to the next hop for r on
the primary path: a loop appears between n and its next hop. In this case, n
switches its primary entry to its alternate entry to avoid the loop. This failure
propagation occurs only when the backup path uses the edges of the primary
path in the reverse direction. For example, if node a of Figure 5 detects that the
link (a, r) failed, it switches to its alternate entry (failure detection). Then, the
next packets toward r reaching a are forwarded to b. When receiving a packet
from a for r, b detects that a is the next hop to r on its primary path. Thus, b
switches to its alternate entry (failure propagation). The next packets will follow
the backup path up to r. Algorithm 5 describes the forwarding algorithm of the
routers.

Of course, the failure of the destination node or of an articulation node or
edge may disconnect the incast connection. In this case, there is obviously no
way to maintain the connectivity. However, our recovery mechanism ensures that
there is no infinite loop of the traffic in any connected component of the network.
Figure 6 shows that loop can occur during the recovery, but their duration is
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Algorithm 5 Forwarding and failure propagation
Require: a packet p for a destination r is received on an interface i
Ensure: p is sent to the right interface

if the primary entry for r is equal to i then
switch on the alternative entry (the primary entry is replaced by the alternative
entry and the alternative entry is dropped)

end if
if the primary entry exists then

send p according to the primary entry
end if

very short: the packets are forwarded by a node at most twice before a stable
state is reached. On Figure 6, the configuration (A) is before the failure, (B) is
during the (limited) unstable state and (C) is the configuration obtained at the
stable state.

(A) (B) (C)

Fig. 6. A failure may disconnect the network, but the traffic will not enter into an

infinite loop

5 Analysis of the Dependability in the Case of Multiple
Failures

In this section, we analyze the dependability of several protections in case of
multiple failures. The number of failures that can be managed by a protection
greatly depends on the network topology and on the incast connection. To study
the dependability of a protection in the case of multiple failures, we propose to
discuss on the number of failures that do not interrupt communications. In the
following our proposition is compared to the two well-known cold protection
schemes: the path-based and the link-based protections.

5.1 Independent Failures

In our model of independent failures, we assume that failures occur successively
on the primary path. Indeed, failures that do not occur on a primary path do
not impact communications.
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Path-Based Protection. When the first failure occurs on the primary path
and the source is informed, the traffic is swapped to the backup path at the
source. Then, if a second independent failure touches the backup path, the com-
munication is interrupted.

Link-Based Protection. Link-based protections do not cope with node fail-
ures. In the case of a link failure, the bypass is used to reach the next node while
the rest of the primary path is used. If an ulterior link failure occurs on the
primary path, another bypass can be used if and even if the second bypass is
link-disjoint with the first bypass. The link-based protection allows independent
link failures if the bypasses are independent. However, it does not cope with
failures which occurs on the bypasses.

Our Protection. The proposed incast tree protection copes with a link or
a node failure. Similarly to the link-based protection, ulterior failures on the
primary path can be recovered. If a second failure touches the backup used to
recover from a first failure, there are two possibilities. If this backup corresponds
to a primary path of another communication and its backup is different from
the first primary path, then the local recovery is possible. If the failed part of
the backup does not correspond to a primary path of another communication
or if the backup of this failed point uses the first failed primary path, then the
mechanism cannot cope with the failure. The mechanism is illustrated on Figure
7 (A) and (B) in the case of link and node failures.

V

(C)(B)(A)

rrr

s

recovery path
failure of a subgraph

Fig. 7. Recovery capability of our mechanism

5.2 Highly Correlated Failures

In our model of highly correlated failures, the failures occur simultaneously on
adjacent links or nodes of the network: a connected subgraph of the network
fails. The higher the protection resists to highly correlated failures, the higher
can be the diameter of the failed subgraph without interrupting communications.
In the same way than previously, we assume that at least a link or a node of
primary tree fails.
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Path-Based Protection. Simultaneous failures can occur on the links and
nodes of a primary path. The path based protection copes with large diameter
of failures when all internal nodes and edges of the primary path failed. However,
the alternate path should be intact.

Link-Based Protection. Since link-based protection does not cope with node
failures, the maximal diameter of a recovered failure is one link.

Our Protection. In redundant topologies, the proposed tree-based protection
gives a link-disjoint alternate path from all the nodes of the primary path to the
destination. Highly correlated failures on a primary path with large diameter
can be recovered. Moreover in the case of dense incast communications, the
mechanism copes with failures which occur on the alternate paths. Figure 7 (C)
shows the maximal sub-set of the network which can fail with recovery from a
source s.

6 Conclusion

In this paper, we presented a cold protection for many-to-one communications.
The protection computation is based on the construction of a backup forest,
given an arbitrary primary tree. The recovery uses a simple failure propagation
mechanism and can be realized by a local switch operation in the concerned
routers. Thus, it produces low failure recovery delay. We studied the impact
on the protection of two scenarios of failures: independent failures and highly
correlated failures. We were able to show that our method can manage efficiently
independent failures and highly correlated failures. In the future, we intend to
evaluate quantitatively our protection through simulations.
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Abstract. This work shows that faults affecting the combinational logic 
embedded in a microcontroller can propagate to register elements and may have 
an important impact over applications, even in the most favourable case of short 
transient faults. Using VHDL-based fault injection techniques, we have 
experienced that the percentage of propagated faults, and thus their influence in 
the microcontroller upper layers, increases as clock frequencies rise. 
Experiments confirm that single faults can corrupt a number of registers at a 
time, this number being greater as the duration of the fault increases. From the 
application viewpoint, results show that, in some cases, faults can lead 
applications to fail in more than 80% of the cases, which suggests the need of 
improving the error detection and recovery mechanisms of existing commercial 
microcontrollers. 

1   Introduction 

The ever decreasing price/performance ratio of microcontrollers makes them today a 
suitable choice for assuming the role traditionally played in many embedded systems 
by other mechanical or electronic components. This motivates an increasing 
importance of studying the dependability of embedded systems. An approach for 
characterising the behaviour of microprocessors and microcontrollers in presence of 
faults relies on the consideration of hardware faults affecting registers and memory 
elements [1], [2], [3]. Nevertheless, as well as VLSI ICs integration density and 
frequencies rise, so the incidence of faults in combinational logic (due to causes such 
as cosmic radiation, electromagnetic interference, transients in power supply, etc.) 
increases [4], [5]. 

The goal of this work has been to study of the effects of faults in combinational 
logic of commercial microcontrollers. To verify the impact of these faults, a broad set 
of permanent and transient faults has been injected into the models of two real 
microcontrollers, using a VHDL-based fault injection tool called VFIT [6]. Faults 
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have been injected into the ALU and the general clock line of the microcontrollers. 
The propagation of faults to CPU registers and the failures provoked have been 
studied (see Fig. 1). 

 

Fig. 1. Propagation of faults from combinational logic to CPU registers, and failures provoked 

Fault injection experiments have been carried out with the specific purpose of 
obtaining answers to the following questions: 

− Which percentage of faults do corrupt the CPU registers? 
− How many registers are corrupted in average by each propagated fault? That’s to 

say, is there a single or a multiple corruption? 
− Which is the percentage of failures provoked by injected and propagated faults? 
− Which is the influence of the frequency of the system clock in the impact of the 

faults? 

Our results show that, as theoretically pointed by other authors [4], the presence of 
multiple faults in registers and the influence of the frequency are two key effects 
related to the impact of faults in deep submicron technologies. The study of fault 
propagation also gives useful information to common fault injection techniques at 
register level, such as SWIFI (Software Implemented Fault Injection) and FPGA-
based fault injection [7]. 

The paper is organised as follows. Section 2 describes briefly the target systems. 
Section 3 discuses the fault models injected. Section 4  depicts  the  fault injection 
environment. Section 5 describes the experiments carried out, and Section 6 explains the 
results obtained. Finally, Section 7 presents some conclusions and future work paths. 

2   Target Microcontrollers 

We have considered two typical commercial 8-bit microcontrollers: PIC16C5X [8] 
and MC8051 [9], frequently used in simple embedded computer systems. The former 
has a RISC architecture with two-stage pipeline and a reduced set of register oriented 
instructions. The later presents a more conventional Harvard architecture. 

In the VHDL model of the microcontrollers, the larger part of the combinational 
logic belongs to the ALU. So this is the main target chosen to inject the faults. Also, 
we have injected faults in the general clock line of the microcontrollers, which is a 
critical point of failure in the system. 

s
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Injected faults propagate to the microcontroller registers, and in some cases they 
provoke the failure of the application. 

3   Fault Models 

As far as fault models are concerned, our intention has been to use models that would 
represent real physical faults that occur in ICs. As VLSI ICs integration density and 
frequencies rises, the most frequently used models (stuck-at (0, 1) for permanent 
faults, and bit-flip for transient faults) have been observed to be insufficient [10]. 
Table 1 summarises the fault models selected in this work to be injected with the fault 
injection tool. This table shows the fault models for combinational logic in CPU. 
Fault models have been deduced from the physical causes and mechanisms implied in 
the occurrence of faults, at technological and electronic level [11], [12]. The final 
selection has been determined by the capabilities of the fault injection technique 
employed: simulator commands. 

Table 1. Fault models selected for fault injection experiments 

Transient Faults Permanent Faults 
Delay, Pulse, Indetermination Stuck-at (0,1), Delay, Open-line, 

Indetermination 

Next we explain briefly the meaning of the fault models used: 

− Pulse: provoked by soft errors1 in combinational logic. It is different from bit-flip 
because after the fault disappears, the output value returns to its correct value. That 
is, it behaves as a pulse. 

− Delay: The transmission delay of the signal is modified. It is related to transients in 
power supply and crosstalk. 

− Indetermination: Signal value changes to an indeterminate logic value, between ‘0’ 
and ‘1’. It is related to intermediate voltage values and crosstalk. 

− Stuck-at (0,1): Signal value is fixed to ‘0’, ‘1’. 
− Open-line: Signal value is high impedance (open2). 

There are some other fault mechanisms related with permanent faults shown in 
Table 1: oxide damage (mainly oxide breakdown, hot carrier injection and plasma 
damage), metallization damage (such as electromigration, stress voiding, contact 
migration, via migration and microcracks) and package and assembly faults. 

                                                           
1  When a charged particle hits the combinational logic block, it generates a transient current 

pulse that provokes a transient voltage pulse in the combinational nodes. This phenomenon 
is called Single Event Transient (SET) [13]. 

2  Short faults, traditionally applied togheter with open faults in fault modelling, cannot be 
injected with the fault injection technique used (simulator commands). Anyway, 
intermetallic shorts lead at higher abstraction level to indetermination, stuck-at and delay 
faults in CMOS technology. 
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4   Fault Injection Environment 

The injection experiments shown in this work have been carried out using VFIT, a 
VHDL-based fault injection tool developed by our group. In this Section, both the 
tool and the injection technique are described. 

4.1   The Fault Injection Tool 

As mentioned, to perform the injection experiments we have used VFIT [6], [14] 
whose main features are: 

− It has been developed to be used in PC platforms or compatible. 
− VFIT has been built around a commercial simulator, Modelsim  [15], by Model 

Technology . 
− It can inject faults automatically applying simulator-commands, saboteurs and 

mutants techniques. 
− It is able to inject permanent, transient and intermittent faults. 
− It has a wide set of fault models, surpassing the classical stuck-at (for permanent 

faults) and bit-flip (for transient faults). 
− VFIT can inject faults into the VHDL model of a system and analyse their effects. 

The analysis can be either the study of the Error Syndrome of the system or the 
Validation of the system fault tolerance mechanisms. 

− It has a complete graphic interface to allow the user to configure the injection 
campaigns specifying multiple parameters, related to the model, the injection of the 
faults, and the type of study carried out. 

Fig. 2 shows the block diagram of VFIT. The main components of the tool are: 

− The Syntactical and Lexicographical Analyser generates the syntactical tree of the 
model.  

− The Graphic Interface, whose mission is to help the user to specify all the 
parameters needed to perform the injection campaign, and stores the parameters in 
two files. To show the injection targets, it makes use of the syntactical tree of the 
model. 

− The Injection Manager performs two important tasks: 

• First, it generates (from the configuration files) the set of parameters required in 
every injection experiment: fault place, fault model, injection instant, fault 
duration, etc. 

• Second, using the parameters generated previously, it creates a script file (see 
Section 4.2) containing the simulator commands needed to perform each 
particular fault, and sends it to the commercial simulator to be executed. After 
each simulation, a trace file is generated. 

− The Result Analyser compares every trace file to a golden run, and according to the 
type of analysis to be carried out, it extracts and calculates a number of parameters 
and measurements. 
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Fig. 2. Block diagram of the fault injection tool 

4.2   Fault Injection Using Simulator Commands Technique 

This technique is based on using at simulation time the commands of the simulator to 
modify the value or timing of the signals and variables of the model [16]. 

The way that faults are injected depends on the injection place. To inject faults on 
signals, the following sequence of pseudo-commands must be performed: 

Simulate_Until [injection instant] 
Modify_Signal [name] [faulty value] 
Simulate_For [fault duration] 
Restore_Signal [name] 
Simulate_For [observation time] 

This sequence is thought to inject transient faults, which are the most common and 
difficult to detect. To inject permanent faults, the sequence is the same, but omitting 
steps 3 and 4. To inject intermittent faults, the sequence consists in repeating the five 
steps, with random separation intervals. 
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The sequence of pseudo-commands to inject faults on variables is: 

Simulate_Until [injection instant] 
Assign_Variable [variable name] [faulty value] 
Simulate_For [observation time] 

The operation is similar to the injection on signals, but there is no control of the 
fault duration in variables. 

Usually, the sequence of real simulator commands can be written in a script file 
that the simulator can execute. 

5   VHDL-Based Fault Injection Experiments 

The objective of the work presented in this paper can be framed as the study of Error 
Syndrome. In the experiments, faults have been injected into the combinational logic 
of PIC and 8051 microcontrollers, and their propagation to the CPU registers and the 
failures provoked have been studied. 

The general conditions of the different experiments are described below: 

− Fault injection technique: We have used the simulator commands technique, 
because it is easy to apply, provides excellent controllability and observability, and 
its temporal cost is the lowest of all the techniques. 

− Number of injected faults: 3000 or 5000 single faults per experiment. This gives 
acceptable values for confidence intervals. 

− Workload: We have chosen two simple algorithms in order to limit the simulation 
time. Also, the objective has been to sensitise a big part of CPU registers. These 
algorithms are Arithmetic Series and Bubblesort. 

− Injection place: Faults have been randomly injected into any atomic combi- 
national signal of the ALU, as well as into the general clock line of the processor. 

− Fault models: For each single fault, the fault model has been selected randomly 
among the models shown in Table 1. 

− Injection instant: It is generated randomly in the range [0, tworkload], where tworkload 

is the duration of the simulation of the workload without faults. 

− Simulation duration: The simulation duration time is the execution time of the 
workload plus a short period of observation. 

− Fault duration (for transient faults): It has been generated randomly in the 
ranges [0.1T-1.0T], [1.0T-10.0T] and [10.0T-20.0T], where T is the CPU clock 
cycle duration. Also, in some experiments, we have injected transient faults of 
fixed duration: 10 ns, 100 ns and 1000 ns. It has been intended to inject short-
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duration faults, whose duration is equal to a fraction of the clock cycle as well as 
“long” faults, which will ensure in excess the propagation of faults. 

− Measures: In order to quantify the study of fault propagation and the provoked 
failures, we have defined the following measures and calculations to be obtained: 

• Number of corrupted registers (Ncorrupted). A register is considered corrupted if it 
has at least a faulty bit. 

• Number of propagated faults (Npropagated). A fault is considered propagated if at 
least one register is corrupted. 

• Percentage of propagated faults: 

( ) 100% ×=
injected

propagated
P N

N
P  , (1) 

 where Ninjected is the number of injected faults. 
• Number of failures provoked by propagated faults (Npropagated-failure). We consider 

a failure as a deviation of the delivered service of the workload from the 
compliance with the specification. 

• Percentage of failures provoked by propagated faults: 

( ) 100% ×= −

propagated

failurepropagated
PF N

N
P  . (2) 

• Multiplicity, or average number of corrupted registers per propagated fault: 

propagated

corrupted

N

N
tyMultiplici =  . (3) 

6   Results and Discussion 

Next we show some significant results derived from the experiments. 

6.1   Percentage of Propagated Faults 

Fig. 3(a) shows the percentage of propagated faults for the PIC (calculated with Eq. 
1). It can be observed that the percentage increases with the fault duration. As 
expected, long-duration faults produce a higher perturbation in the system. Also, not 
negligible differences between the two workloads are observed, particularly in long-
duration faults. 

If we consider short-duration faults and Arithmetic Series workload, 15% of 
injected faults are propagated to CPU registers and provoke the corruption of one or 
more registers. This means that if we inject 5000 faults, an average of 750 faults 
propagate to registers. And this occurs in the best case, because the fault impact 
increases notably as fault duration augments. 
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Fig. 3(b) repeats the results for the 8051. The general trends are the same, although 
we can observe higher differences between the two workloads. 

15

23 26
32

10

23

31

48

0

10

20

30

40

50

60

  Transient  
[0.1T, 1.0T]

  Transient  
[1.0T, 10.0T]

Transient
[10.0T, 20.0T]

Permanent

Fault Duration

P
er

ce
n

ta
g

e 
o

f 
P

ro
p

ag
at

ed
 

F
au

lt
s 

(%
)

Arithmetic Series Bubblesort

(a) 

 

17

46

59 61

9

22

38

47

0

10

20

30

40

50

60

70

  Transient  
[0.1T, 1.0T]

  Transient  
[1.0T, 10.0T]

Transient
[10.0T, 20.0T]

Permanent

Fault Duration

P
er

ce
n

ta
g

e 
o

f 
P

ro
p

ag
at

ed
 

F
au

lt
s 

(%
)

Arithmetic Series Bubblesort

 
(b) 

Fig. 3. Percentage of propagated faults. (a) PIC. (b) 8051 

6.2   Corruption of Multiple Registers 

To analyse in more detail the sensitivity of CPU registers to faults injected in 
combinational logic, we have calculated (using Eq. 3) the average number of 
corrupted registers per propagated fault, for all the previous cases. We have defined 
this as multiplicity (of corrupted registers). 

Fig. 4 shows some results related to this matter. Here, Dur1, Dur2 and Dur3 
represent the transient fault duration cases previously considered in Fig. 3. 

Fig. 4(a) shows the values of multiplicity for PIC, considering both workloads. 
Values between 2 and 5 corrupted registers are observed for Arithmetic Series. In 
Bubblesort case, the multiplicity is quite higher, with values between 4 and 18 
corrupted registers. In this case, long-duration faults increase notably the multiplicity. 
It seems that more complex workloads (like Bubblesort) can lead to higher values of 
multiplicity, because they sensitise more registers. 

Fig. 4(b) repeats the results for the 8051. The general trend is the same, although 
we can observe even higher values of multiplicity than in the PIC (up to 28 
registers!). 
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Fig. 4. Multiplicity of faults in registers. (a) PIC. (b) 8051 
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In summary, simulations have shown that a single fault in combinational logic can 
perturb several registers at a time. Moreover, we have found quite high values of 
multiplicity for the two microcontrollers. 

6.3   Provoked Failures 

In order to verify the impact of corrupted registers on the application results, the 
percentage of failures provoked by faults propagated to registers (PPF) has been 
calculated (see Eq. 2). Fig. 5(a) shows this information for the PIC. It can be seen that 
the percentage of failures increases with fault duration for both workloads, with 
values from 32% to 70% in Arithmetic Series case and from 13% to 88% in 
Bubblesort case. 

For instance, in case of short-duration transient faults and Arithmetic Series, 32% 
of propagated faults cause failures. This corresponds to approximately 5% of injected 
faults, as can be easily calculated from the expression: 

PFP
injected

failurepropagated PP
N

N
×=_

 , (4) 

taking data from Fig. 3(a) and Fig. 5(a). This means that if we inject 5000 faults, 
approximately 250 of them will provoke a failure. 

In case of short-duration transient faults and Bubblesort, 13% of propagated faults 
produce failures. This corresponds to approximately 1.3% of injected faults. 

Fig. 5(b) shows the same information for 8051. In this case, the impact of faults is 
higher. Values from 33% to 69% for Arithmetic Series, and from 33% to 89% for 
Bubblesort, are observed. In case of short-duration transient faults, 33% of propagated 
faults produce failures. This corresponds to approximately 6% of injected faults for 
Arithmetic Series workload and 3% for Bubblesort workload. 

We can conclude that the percentage of failures provoked by faults in 
combinational logic is not negligible, even when having short duration. Moreover, 
this percentage increases strongly for long-duration faults. This fact suggests the need  
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Fig. 5. Percentage of failures provoked by propagated faults. (a) PIC. (b) 8051 
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of improving the error detection and recovery mechanisms to tolerate these faults in 
reliable embedded systems. Some low-cost techniques, in addition to the typical 
internal exceptions of the processor are: Parity codes for error detection in CPU 
registers, Hamming codes for error correction in CPU registers and integrated 
watchdog timers to detect control-flow errors. 

6.4   Influence of the Processor Frequency 

Finally, we have carried out some experiments to study the influence of the clock 
frequency of the processor. The results come from a representative case: the 8051 
microcontroller running Bubblesort. The main conclusions obtained are: 

− When injecting transient faults, the increase of the frequency provokes a raise of 
the percentages of propagated faults in registers. In fact, higher frequencies will 
increase the probability of storing in flip-flops the transient erroneous data 
generated at combinational logic. 
Fig. 6(a) shows this situation for different fault durations. Long-duration faults 
produce higher differences between frequencies. As expected, no dependency on 
frequency for permanent faults is observed. 

− The percentage of failures also increases with the clock frequency, as Fig. 6(b) 

reflects. In this case, the percentage 100×−

injected

failurepropagated

N

N
 has been calculated. It 

is similar to PPF, but normalised to Ninjected instead of Npropagated. As it was seen 
before, long-duration faults produce higher differences between frequencies. As 
before, no dependency on frequency is observed for permanent faults. 

In conclusion, we have verified the influence of the clock frequency on the impact 
of faults produced in combinational logic. As the clock frequency increases, the 
impact is also higher. Even, it seems that the dependency is not linear, with bigger 
raises for higher frequencies. This is very important in VLSI integrated circuits, 
where frequencies rise continuously. 
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Fig. 6. Influence of the clock frequency (8051 running Bubblesort). (a) In the percentage of 
propagated faults. (b) In the percentage of failures 
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7   Conclusions and Future Work 

In this work, a study of the impact of faults in commercial microcontrollers has been 
performed. We have carried out a set of fault injection experiments using VFIT, a 
general VHDL-based fault injection tool. Faults have been injected into the 
combinational logic of two real microcontrollers, PIC16C5X and MC8051. The fault 
propagation to register elements, and the failures provoked, have been studied. It has 
been also verified the influence of the frequency of the clock system on the impact of 
faults. 

Some significant conclusions extracted from experiments are: 

− The percentage of propagated faults is important, even for short-duration faults 
(between 9% and 17% of injected faults). This is the best case, because the impact 
of faults increases notably for long-duration faults. 

− Simulations have shown that a single fault in combinational logic can corrupt 
several registers at a time. Moreover, we have found quite high values of 
multiplicity varying in a wide range according to various factors: the workload, the 
fault duration and the microcontroller. Roughly, the values are between 2 and 10 in 
short-duration faults, and between 15 and 30 in long-duration faults. This suggests 
the need of taking into account multiple faults when injecting faults at register 
level by means of techniques such as SWIFI. 

− The percentage of failures provoked by faults in combinational logic is important. 
In fact, we have obtained values of up to 33% of propagated faults for short-
duration faults. This percentage increases strongly for long-duration faults, 
reaching up to 80% in some cases. 

− As the clock frequency increases, the impact of faults is also higher. Even, it seems 
that the dependency is not linear, with bigger raises for higher frequencies. This 
can be important for VLSI integrated circuits, where frequencies rise continuously. 

In summary, results show that faults in combinational logic have a notable effect 
on the system behaviour, even in the most favourable case of short-duration transient 
faults. This fact suggests the need of improving the error detection and recovery 
mechanisms to tolerate these faults in reliable embedded systems. 

On the other hand, the present work claims for a more detailed study of the effect 
of multiple faults in registers. In addition, it is also interesting to investigate to what 
extend our conclusions are applicable to other microcontrollers (such as those with 
more complex RISC pipelined architectures). Finally, analysing fault models at higher 
abstraction levels in order to deduce more pertinent faults applicable to behavioural 
VHDL models, seems necessary as well. 
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Abstract. This paper presents a software tool for test pattern compaction 
combined with compression of the test patterns to further reduce test data 
volume and time requirement. Usually the test set compaction is performed 
independently on test compression. We have implemented a test compaction 
and compression scheme that reorders test patterns previously generated in an 
ATPG in such a way that they are well suited for decompression. The 
compressed test sequence is decompressed in a scan chain. No design changes 
are required to be done in the functional part of the circuit. The tool is called 
COMPAS and it finds a sequence of overlapping patterns; each pattern detects a 
maximum number of circuit faults. Each pattern differs from the contiguous one 
in the first bit only, the remaining pattern bits are shifted for one position 
towards the last bit. The pattern first bits are stored in an external tester 
memory. The volume of stored data is substantially lower than in other 
comparable test pattern compression methods. The algorithm can be used for 
test data reduction in System on Chip testing using the IEEE P 1500 Standard 
extended by the RESPIN diagnostic access. Using this architecture the 
compressed test data are transmitted through a narrow test access mechanism 
from a tester to the tested SoC and the high volume decompressed test patterns 
are shifted through the high speed scan chains between the System on Chip 
(SoC) cores. 

1   Introduction 

Due to increased IC design complexity, utilization of sequential test patterns is almost 
completely abandoned and the full scan methodologies have become to be a standard. 
Nowadays we can see that these methodologies are not sufficiently effective. Higher 
circuit densities, larger number of embedded cores and long scan chains lead to non 
acceptable test data volume and testing time. New techniques are needed to reduce 
test data volume and testing time, as well as to overcome tester (ATE) bandwidth 
limitation. 

Built-in pseudorandom or weighted random testing can be a solution of the above 
mentioned problems but still there remain random resistant faults, which should be 
tested from an ATE with deterministic patterns. Mixed-mode testing uses built-in 
pseudorandom pattern generators, which are usually used for generating first several 
thousands of test patterns (typically 10 000 patterns) and after the pseudorandom 
testing phase deterministic patterns are applied in order to test the random resistant 
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faults. The deterministic patterns can be compressed, the decompression is usually 
done in the automaton that was used for pseudorandom test sequence generation; the 
seeds are stored in an ATE. Linear feedback shift register (LFSR) reseeding or output 
modification methods [ 11,  14,  18,  26, 30] assume that a large portion of the bits in the 
test patterns are unspecified. The on-chip LFSR is seeded with such seeds that the bit 
sequence generated by the LFSR matches the deterministic patterns at the specified 
positions. The number of bits stored in a tester memory is then relatively small but the 
number of clock cycles, which is needed for testing, may be high. Random part of 
mixed-mode test is time and energy consuming. The hardware overhead may be also 
high because of difficult controlling the two test sessions. 

As the ATPG test pattern generation has been able to keep up with increasing 
number of transistor counts for scan-based circuits, testing with deterministic patterns 
without any random test session is still actual. It spares testing time and the on chip 
hardware overhead is low. However the test sizes have been pushing test costs up due 
to the necessity of using more powerful ATEs and if the test access mechanism 
(TAM) is narrow the test application time becomes critical, too. In order to minimize 
the data transfer through the TAM, compacted and compressed test sets are used [ 9, 
 10]. By the term compact test set we mean a test set, which is created in the automatic 
test pattern generator (ATPG) from test patterns by merging as many as possible 
patterns. An original test pattern usually detects one or more possible circuit faults 
and contains several don’t care bits. The original patterns are merged in such a way 
that resulting patterns detect multiple faults and do not contain don’t care bits while 
the test set fault coverage remains unchanged. 

Test data compression is a non-intrusive method that can be used to compress the 
pre-computed test set to a much smaller test set, which is then stored in the ATE 
memory. An on-chip decoder is used to generate the original test set from the 
compressed one. Many contributions containing different decompression mechanisms 
were published; let us mention the most recent ones: [ 1,  3,  5,  6,  8,  12,  17,  21,  22,  24 
 25,  28,  29]. It is not straightforward to compare the compression methods because 
some authors demonstrate the efficiency on decompression of random resistant faults 
only and other authors compress and decompress the whole ATPG deterministic test 
sequence. The usefulness of compressing algorithms and decompressing automata is 
influenced not only by the compression ratios but also by the complexities of the 
decompressing automata and by the computational complexities of the algorithms for 
finding the compressed test sequences. 

In this paper, we present a software tool that prepares a sequence of pattern seeds 
to be stored in an ATE memory and decompressed with the help of a scan chain. The 
main idea is to maximally overlap the non compacted ATPG patterns. An example of 
decoding the test patterns from the ATE sequence is given in Fig. 1. The mentioned 
approach was firstly described in [ 7]. The compression method uses an algorithm for 
finding contiguous and consecutive scan chain vectors for the actual scan chain 
vector. These vectors are checked, whether they match with one or more remaining 
test patterns, which were previously generated and compacted with a help of some 
ATPG and which were not employed in the scan chain sequence yet. In [ 27] the 
compacted test vectors were reordered by a heuristic algorithm to attain maximal 
overlapping.  
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Fig. 1. Reusing of the scan chain flip-flops for test pattern decompression 

We have performed several experiments with the above mentioned pattern 
compression principles. It was found that overlapping the compacted test patterns 
leads to longer test sequences then using non compacted test patterns with don’t care 
bits. Further it was found that the algorithm for constructing the test sequence is 
extremely CPU time consuming for large circuits. Those observations have led us to 
propose an algorithm, which speeds up the computation by searching for the 
successors of the all zero seed only. The number of backtracks was reduced by 
application of this principle. The compression efficiency was improved by using non 
compacted test patterns and by fault simulation after every original ATPG test pattern 
application. In order to farther reduce the CPU time and to improve the efficiency, so 
called Future Array (FA) was introduced. In the FA those bits that are supposed to be 
generated later in the test sequence are remembered. Using this mechanism the 
number of computations needed for application of the patterns was reduced. The 
proposed algorithm spares a part of the CPU time, which is needed for test pattern 
generation, because the ATPG does not need to perform any fault simulation. The 
fault simulation is postponed and it is performed during test pattern overlapping. This 
improves the compression efficiency because of exploiting the interleaving patterns 
for testing the random testable faults.  

The software tool that is based on the presented algorithm is called COMPAS 
(Compressed test Pattern Sequencer). It speeds up and improves the earlier algorithm 
[ 20] by taking into account possible future conflicts between overlapping patterns, it 
uses more efficient pattern coding and it remembers all information that could be 
useful in future algorithm loops. COMPAS is able to prepare test sequences for 
complex circuits in relatively short time. COMPAS can be also used for preparing test 
sequences for sequential cores under test (CUT) that are designed according the IEEE 
P1500 standard [ 18]. Test data can be effectively decompressed with the RESPIN test 
architecture [ 8]. This architecture reuses scan chains of different cores for updating 
the tested core scan chain content.  

The rest of the paper is organized as follows. In Section 2 the test pattern 
compaction a compression algorithm is described. In Section 3 we demonstrate results 
of experiments with COMPAS and we compare the memory, time and clock cycles 
requirements with other methods. Finally, Section 4 concludes the paper. 
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2   Test Pattern Compaction and Compression in COMPAS 

Let us suppose that we want to test a core under test (CUT), which is combinational 
and which is equipped with the boundary scan chain (SC) at first. The first part of the 
scan chain is formed by the input cells, the second part by the output cells. The 
primary outputs are connected to a space compactor and-or to a multiple input 
signature analyzer (MISR) so that it enables checking the test responses after every 
clock cycle. This arrangement enables us to test the CUT in the test-per-clock mode, 
the contiguous patterns are overlapped. Let us consider two contiguous patterns. Then 
the second pattern has the same content as the first pattern with the exception of the 
leftmost bit, which is obtained from the ATE. The remaining bits are shifted for one 
position to right. The algorithm calculates a sequence of the most left pattern bits that 
can be decompressed into patterns in the input part of the scan chain. The sequence 
should be as short as possible and the patterns should cover all faults of the CUT. 

A Test Pattern List (TPL) together with the corresponding Undetected Fault List 
(UFL) should be prepared before running COMPAS. An ATPG tool that enables 
generating non-compacted test patterns should be used for this. At least one three 
state test vector with bit values 0, 1 and X (X means don’t care value) should 
correspond with each considered fault. In this way it can be distinguished, which 
pattern should be deleted from the TPL after covering a fault from the UFL. 

The main loop of the algorithm of finding the ATE memory bits is described in 
Fig.2. Let us suppose that the SC is reset before testing, which means that the all zero 
pattern is considered to be used as the first one. The fault coverage of this pattern is 
simulated and the detected faults are deleted from the UFL, test patterns 
corresponding to the detected faults are deleted from the TPL. Then the algorithm 
tries to compact the test set by overlapping  remaining patterns with the actual vector. 
The algorithm searches, whether log 0 or log 1 is better to be used as the next actual 
(most left) chain bit. To do this, the algorithm finds positions of all patterns, in which 
the scan chain vector maximally overlaps the pattern and for which the actual bit to be 
introduced into the SC does not have a don’t care value (see an example in Fig. 3). 
After finding the position the algorithm should count the usefulness U of the treated 
pattern. The pattern usefulness U is calculated according to the following formula: 

 
U =c*(near_to_init + no_dontcares)*inputs/2 + global_dontcares 

 
where: 
near_to_init –  the number of clock cycles that should be performed before placing 
the pattern into the scan chain 
no_dontcares – the number of the don’t care bits that are in the part of the pattern 
overlapping the scan chain 
inputs –  the number of CUT inputs 
global_dontcare s– the total number of the pattern don’t care bits  
c –experimentally fixed parameter (implicitly c = 1) 

 
The algorithm selects k patterns with minimum U (typically k = 50). Then the 

algorithm compares the number of the selected patterns with logical 1 on the actual 
position with the number of patterns with logical 0 on this position. 
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Fig. 2. Algorithm of finding the input scan chain sequence 
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    If the number of ones is greater than the number of zeros the patterns with logical 
one on the actual position are preferred in the future bit searching. (Application of this 
rule causes that the probability of more fault covering patterns construction is higher.) 
Starting with the first pattern the algorithm checks whether the patterns from the list 
of the best patterns matches with bits which will be necessary to be generated in the 
future clock cycles because of some previously selected patterns. These bits are stored 
in the Future Array (FA) together with their effectiveness and pattern identification 
information. If some position of FA is reserved for a logical value that is in conflict 
with the exercised pattern bit value, the algorithm compares the usefulness of both 
patterns and the winner is used in the future content of the FA, the other bit is deleted 
from the FA but the corresponding pattern is kept in the TPL. If no new test pattern 
can be applied a random value of the actual bit is set. 
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 of SC 
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no match 

test vector, 1st placement
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scan chain bit values  
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Fig. 3. Example of a test pattern matching: The SC initial value = (0,0,0,0,0,0). The test pattern 
(1,x,x,1,x,x,0) can be overlapped with the SC on the 4th placement. The possible final  FA = 
(x,x,1,x,x) and SC = (1,0,0,0,0,0) 

The fault simulation is performed after each new actual bit setting that causes that 
at least one original test pattern from the TPL is decompressed. The faults and 
patterns, which correspond to the covered faults, are removed from the lists. If there 
are no more faults in the UFL the algorithm terminates. 

COMPAS system translates input test vectors into run length code format which 
minimizes the CPU time because of simpler manipulation with don’t care bits. Great 
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acceleration was obtained due to saving all intermediate results that could be used in 
the future computations. In the current version of COMPAS we use test patterns 
generated by the Atalanta ATPG tool [ 15] and the Hope fault simulation tool [ 16]. It 
runs either on the Unix or Windows platform. COMPAS is written in C++, consists of 
several routines, which can be run in parallel. The source code has approx. 2000 lines. 

COMPAS can be used also for testing the scan based sequential circuits. It is 
necessary to avoid pattern overwriting by the previous test step responses. This can be 
done either by an additional hardware or by testing the scan chain in the test-per-scan 
mode, in which one test pattern is applied after n shifts, where n is equal to the scan 
chain length. In the test-per-scan mode we can use an auxiliary feedback shift register 
in which test patterns are kept during the previous test step response capturing. The 
next pattern can be reconstructed from the register content and one new bit from the 
memory with pattern seeds. This decompression mechanism can be done by the 
RESPIN architecture [ 8] that uses the scan chains of cores that are not under test for 
keeping the test patterns.  

The COMPAS tool is on-line available on the http://iko.kes.vslib.cz/ web page. It 
compresses the test sets for the benchmark circuits and for user defined circuits 
described in the ISCAS89 format. The circuit should be described without the scan 
chain flip-flops, the scan chain flip-flops should be replaced by the primary outputs 
and inputs. 

Table 1. Comparison of different test pattern compression techniques 

3   Experimental Results 

We have performed experiments with compaction and compression of the ISCAS89 
circuits [ 1] test sequence by the COMPAS system. We have used a Pentium IV 
processor PC, 2.8 GHz, running under MS Windows XP. We have found that 
COMPAS is substantially less CPU time consuming than the previous versions of the 
compressing programs. 

The most CPU time consuming circuit was the S38417 circuit. The compressed 
test sequence for this circuit was generated within 34 minutes. We have performed 
also several experiments with the ITC 99 benchmark circuits [ 12]. The largest circuit 
that was accepted by the ATPG Atalanta was the circuit b_17_opt_C; the CPU time 
spent by COMPAS was 5 hours for this circuit. 

Circuit name: s13207 s15850 s38417 s38584 
MinTest [ 3 ] # of bits 163,100 58,656 113,152 161,040 
Stat. Coding of Test Cubes [ 1] # of bits 52,741 49,163 172,216 128,046 
LFSR Reseeding [ 13] # of bits 11,285 12,438 34,767 29,397 
Illinois Scan Arch.[ 21] # of bits 109,772 32,758 96,269 96,056 
FDR Codes [ 6] # of bits 30,880 26,000 93,466 77,812 
Linear Decompressors [ 2] # of bits 19,608 12,024 54,207 28,120 
RESPIN ++ [ 26] # of bits 26,004 32,226 89,132 63,232 
COMPAS (proposed) # of bits 4,024 7,737 21,798 6,675 



410 O. Novák, J. Zahrádka, and Z. Plíva 

 

Table 1 shows the resulting numbers of stored bits for some well known test 
pattern compression methods and for the proposed algorithm. In the second column 
we plotted the test data volume for ATPG vectors, which were compacted only [ 3]. 
The third column shows the number of stored bits for statistical coding of the test 
patterns from the previous column [ 1]. Next results correspond to a combination of 
statistical coding and LFSR reseeding [ 13], compression with parallel/serial scan 
chains [ 21], frequency directed codes [ 6] and combinational linear decompression [ 2]. 
The column RESPIN++ shows the number of necessary bits given in [ 26]. These 
results correspond to mixed/mode testing scheme, 400 random test vectors generated 
within the RESPIN++ feedback registers were applied before decompression of 
deterministic patterns detecting the remaining faults. We have not included those 
methods of mixed-mode testing methods that use larger number of random patterns 
before testing by deterministic patterns as the resulting numbers of stored bits are not 
simply comparable. 

Fig. 4. An example of the RESPIN architecture with one scan chain in each core only. The 3 bit 
Embedded Tester Core (ETC) SC is connected by the wide TAM with the 3 bit Core under Test 
(CUT) SC. A narrow TAM connects a tester (ATE) memory, in which the compressed test 
sequence is stored, with the ETC. For decoding one pattern the following operations should be 
done: The multiplexer is switched so that the input from the ATE is active. The first bit of the 
ETC chain is loaded with the ATE bit; the rest of the ETC scan chain is shifted for one position. 
The ATE multiplexer is switched so that the feedback tap is active. Then two shifts are 
performed in the SCs. By performing the shifts a new test pattern is loaded into the CUT SC 
simultaneously with shifting the previous test step responses to the Signature Analyser (SA). 
After loading a pattern into the CUT SA the functional clock cycle is performed and the CUT 
flip-flops capture the test step responses 

The table indicates that the number of bits, which are stored in a memory, could be 
substantially lower for the proposed method than for other pattern compressing 
methods. We have to admit that a fair comparison is conditioned by application of the 

CUT SC 

CUT

ETC SC 

3 1

2

3

4

S
A

from ATE test 

 ETC 

2



 COMPAS – Compressed Test Pattern Sequencer for Scan Based Circuits 411 

 

same original test set. This was not the case of the presented table as we were not able 
to implement all other compression algorithms. Nevertheless considering that the 
ATPG tools could provide similar results, we can see that COMPAS provides 
extremely short test sequences. In order to enable more detailed comparison, we 
propose to all possible authors of compression algorithms to use the tools from the 
COMPAS web site. 

We should note that the majority of the pattern compression methods do not use a 
fault simulation after encoding each new test pattern. In these methods the fault 
coverage was simulated during test pattern generation in the ATPG in the process of 
pattern compaction. The number of fault simulations in these cases corresponds to the 
total number of non compacted test patterns. 
In case of COMPAS the ATPG patterns were generated without any simulation, fault 
simulation is performed after the pattern encoding. The number of fault simulations 
(No. of execute HOPE) and the CPU time spent on that (elapsed HOPE) can be 
checked for every circuit on the COMPAS Web page.  

Another question is whether the test time of the proposed method is acceptable. For 
this reason we have compared the test time, which is necessary for testing the circuit 
designed with the RESPIN architecture with the COMPAS test sequence and the 
mixed-mode testing method [ 11] (Folding Counters).  

In Fig. 4 we demonstrate an example of a simplified RESPIN architecture and the 
way of decompressing test patterns. The number of clock cycles that are needed for 
decompressing a test pattern is equal to the number of the CUT SC flip-flops, total 
number of clock cycles consists of clock cycles for decompression and a functional 
clock cycle. Usually the number of SCs is greater then one and the number of clock 
cycles for a pattern decompression is equal to the length of the longest SC in the CUT. 

The method of Folding Counters uses a random pattern generator that generates 
10,000 random test patterns that are pattern by pattern serially shifted into the scan 
chain and then the random resistant faults are tested by an output sequence of the 
Folding Counter. The counter is reseeded several times, in order to pass through the 
states that correspond to the deterministic test vectors. In order to keep a 
comparability of the Folding Counters with COMPAS, we consider that no pseudo 
input reduction is applied in both methods (no additional CUT dependent hardware is 
used inside the scan chain) and only one scan chain is used in one core.  

Fig. 5 shows the results of the comparison for several ISCAS circuits. In case of 
Folding Counters we have added the number of clock cycles, which are necessary for 
random testing, with the clock cycles, which are necessary for rotating the folding 
counter after each reseeding, we obtain numbers of test clock cycles that are given in 
the graph. 

The corresponding COMPAS curves show the number of clock cycles that should 
be performed in order to decompress the patterns if we consider one scan chain in one 
core only. We can see that COMPAS has lower numbers of clock cycles than the 
mixed mode testing approach [ 11]. Method [ 11] provides better results if additional 
CUT dependent SC branching and reconfiguration is accepted, COMPAS provides 
shorter tests for multiple scan chains. Other mixed-mode testing approaches have 
similar requirements on the number of clock cycles, so we may conclude that the 
proposed method is less time consuming than mixed-mode testing approaches. 
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Fig. 5. Time for test application (given in number of clock cycles, which are necessary for test 
pattern loading and application) 

4   Conclusion 

The COMPAS compression tool demonstrates that it is possible to apply the method 
of test pattern compression through pattern overlapping for relatively large circuits 
and that the resulting test data volume is kept very low. COMPAS uses as input test 
patterns non compacted original ATPG test vectors with don’t care bits. The patterns 
are overlapped and the resulting test sequence can be decompressed by the scan chain 
only. The decompressed patterns are simulated by the fault simulator whether they 
cover any other additional fault. This mechanism reduces the number of test patterns 
that should be used for testing since the interleaving patterns that appear in the scan 
chain between the original patterns cover the random testable faults. These faults are 
usually tested by the random pattern sequence in mixed-mode testing algorithms and 
the proposed method avoids using this random testing phase.  

The proposed method of compression and compaction of test patterns is very well 
suited for testing combinational circuits with Boundary Scan because it does not 
require any additional diagnostic hardware for test pattern decompression. It can be 
used also for testing sequential cores with multiple scan chains. To do this we can use 
the RESPIN architecture. Following the IEEE P1500 standard [ 18] we do not require 
extra hardware with the exception of one multiplexer and a feedback wire in every 
core. The sequence generated by COMPAS can be used for less time consuming 
sequential core testing than it is possible by using known mixed-mode testing 
approaches. 
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Abstract. Fault links represent relationships between the types of mistakes 
made and the type of module being developed or modified.  The existence of 
such fault links can be used to guide code reviews, walkthroughs, allocation of 
verification and validation resources, testing of new code development, as well 
as code maintenance.  We present an approach for categorizing code faults and 
code modules, and a means for examining relationships between the two. We 
successfully applied our approach to two case studies.    

1   Introduction 

As we seek to develop ever more complex systems, some with grave consequences of 
failure, we must strive to improve our technologies for developing and ensuring ro-
bust, reliable software.  Fault-based analysis and fault-based testing are related tech-
nologies that seek to address this challenge. 

Fault-based testing generates test data to demonstrate the absence of a set of pre-
specified faults.  Similarly, fault-based analysis identifies static techniques (such as 
traceability analysis that should be performed to ensure that a set of pre-specified 
faults do not exist.  As part of fault-based analysis, a project manager can use histori-
cal data to determine what fault types are most likely to be introduced or can perform 
a risk analysis to determine what fault types would be most devastating if overlooked.   
Note that fault-based analysis is an early lifecycle approach that can be applied prior 
to implementation [15].  For example, developers of version 10 of a software system 
could use information on the number and type of faults from versions 8 and 9 to guide 
their code walkthroughs. 

Based on our work on a semantic model of faults [30], Offutt’s work on testing 
coupling [29], our work on traceability [16], and on requirement faults [15], we de-
veloped a conjecture about faults:  The types of mistakes made by programmers 
largely depend on the type of module that is being developed or modified.  We refer 
to this as a “fault link”. A fault link is a relationship between the type of module being 
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developed or changed and the fault type.  For example, we posit that if a developer is 
writing a Computational-centric module, it is more likely that a computational fault 
will be introduced. Though this may seem intuitive or “not surprising,” note that cur-
rently there are no empirical results to confirm it. 

If we can demonstrate that fault links exist and if we can codify them, we can im-
prove the development, testing, and maintenance of complex computer systems in 
several ways. We can offer preventative items for walkthrough checklists for newly 
developed code. We can recommend that exit criteria be added to walkthrough check-
lists for maintained code. For example, if a computational-centric module is being ex-
amined, do not exit the walkthrough until an extra check has been made to ensure that 
no computational errors exist.  We can offer a list of fault-based tests that should be 
conducted based on the fault links.  We can guide the allocation of verification and 
validation resources to best reduce risk. 

The remainder of the paper is organized as follows. Section 2 presents related 
work. Sections 3 and 4 will present the module taxonomy and fault taxonomy, respec-
tively. Section 5 discusses the research conjectures.  Section 6 discusses two open 
source software case studies. We found evidence in favor of four of the conjectured 
fault links (as well as weak evidence for an additional two), such as Data-centric 
modules having many Data faults.  We also found evidence of six unexpected fault 
links. Conclusions and future work are presented in Section 7. 

2   Related Work 

Faults have traditionally been characterized by syntactic categories [4, 22, 19], includ-
ing where in the program the faults appear [17], which software development phase 
generated the faults [25, 20], what testing phase found the faults [30], and what type 
of statement or language feature the faults occur on [12].  As part of a NASA-funded 
project, Hayes has developed a taxonomy of requirements faults that is based on syn-
tactic problems in the requirements [15]. 

A few attempts have been made to classify faults based on the mental mistakes that 
programmers make. IBM's ODC is one such scheme [18].  It assigns mental mistakes 
as part of a larger classification scheme. 

Researchers have also examined change patterns of modules.  Gall et al [13] used 
information about changes covering a sizeable number of releases to uncover logical 
dependencies and change patterns among modules.  This was used to identify logical 
coupling among modules to uncover structural shortcomings.  The work does not dis-
criminate between corrective maintenance or enhancement related changes, thus did 
not attempt to classify faults. Similarly, Bieman et al [5] identified change-proneness 
of C++ code based on intentional use of patterns (or lack thereof).  While this analysis 
found that some patterns are more change-prone in different categories of mainte-
nance (corrective versus enhancement related changes), these faults were not classi-
fied. Bieman et al [6] found a strong relationship between class size and number of 
changes; larger classes changed more frequently.  Also, classes that participate in de-
sign patterns and/or are reused through inheritance are more change-prone.  They did 
not identify the type of change or fault in these studies. 
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Ohlsson et al [31] modeled fault proneness statistically over a series of releases.  
This included a variety of change measures at various levels of analysis, such as the 
number of defect fix reports attributed to a module, an interaction measure of defect re-
pairs that involved more than one module, and impact of change measures (how many 
files affected, how many changes for each, various size of change measures by type of 
file). The analysis of the case study data showed that fault-prone modules showed 
higher system impact across four releases, where system impact is defined as total num-
ber of changes to .c and .h files in a release per module.  This motivated construction of 
a fault architecture [24], which determines fault coupling and cohesion measures at the 
module and subsystem levels, within a release and across releases.  Nikora and Munson 
presented a predictor for fault prone modules.  They used a set of metrics and a reduced 
set of domains to build their predictor.  They did not classify faults though and did not 
classify modules beyond “fault prone” or not “fault prone [28].” 

Ostrand et al [32], with the aim of aiding organizations to determine the optimal 
use of their testing resources, have identified various file characteristics. These char-
acteristics can serve as predictors of fault-proneness. By examining a series of 13 re-
leases of a large evolving industrial software system, they observed that: (i) faults are 
concentrated in small numbers of files and in small percentages of code mass, (ii) 
shortchanging the testing efforts for previously high-fault files is a mistake, and (iii) 
“all late-pre-release faults always appeared in under 5% of the files”[32].  

However, no effort was made to classify modules and faults. Fenton et al [11] have 
quantitatively analyzed the faults and failures of a major commercial system. Some of 
their observations were identical to those made by Ostrand et al [32]. Fenton et al 
provided strong evidence to suggest that software systems that are developed under 
the same environment result in similar fault densities, when tested in similar testing 
phases. 

3   Module Taxonomy 

Any simple or complex program can be viewed as a combination of various modules. 
A module is just a part of a program, which aids in performing some action or in mak-
ing decisions to perform actions. A module can be a single statement or a single func-
tion or procedure that contributes to the purpose of the program. 
We identified two methods for categorizing modules by type: 

• Method one: Program modules are classified based on their main purpose. We con-
sidered allowing modules to have a second category based on their secondary pur-
pose, but decided against it for the present.  This represents a possible area for fu-
ture work.  This method is easy to comprehend and apply and is also faster than 
method two. However, it does not easily lend itself to automation. 

• Method two: Modules are classified based on the percentage of lines of code that 
perform specific functions, such as computation, data manipulations, etc. We count 
the number of lines that belong to a particular category in a module, select the 
category with the highest Lines Of Code, and assign the module to that category. 
For example, “IF (salary > 1000)” is a controller statement. This method provides 
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information about the statements used in a program and is easily automated with 
some standard guidelines. Unfortunately, there are drawbacks including: (i) diffi-
cult to perform categorization, (ii) time consuming, (iii) tedious when performed 
manually, and (iv) not easy to understand. 

This paper classifies modules using method one. We followed a subset of the steps 
in [15] to develop module and code fault taxonomies: select a fault taxonomy as the 
basis for the work, examine sample code faults, adopt or build a method for extending 
the fault taxonomy, and implement the method for tailoring a taxonomy. 

Our original module and fault taxonomy was influenced by the prior work dis-
cussed in Sections 2 and 4.  We also performed a pilot study on an industrial partner’s 
project as well as on student programming assignments to further construct the tax-
onomies.  We applied the two taxonomies to categorize the faults and modules in two 
open source web-based projects, and detected new categories for both the fault and 
module taxonomies. Two new module categories were added including error handling 
and environmental setup. Fig. 1 shows the resulting generic module taxonomy.  It is 
applicable to most programs and domains, but could be tailored to a specific domain 
or application using the process in [15]. Each module category is described below. 

D a ta -c e n t r ic

V ie w

C o n t r o l le r

C o m p u ta t io n a l -
c e n t r ic

In te ra c t io n

C o m p o n e n t

E r r o r  H a n d lin g

E n v iro n m e n ta l 
S e tu p /

C o n f ig u ra t io n  

Fig. 1. Taxonomy of program modules 

• Data-centric: Modules that deal with data definition and handling fall under this 
category. Access to database is also classified under data centric module. 

• Error Handling: The main purpose of modules in this category is to handle excep-
tions or errors that are likely to occur. 

• Computational-centric: Modules whose main purpose is to calculate or compute re-
sults belong in this category. At the statement level, any statement that changes any 
variable or state of the program falls under this category. 

• Controller: Any module whose main purpose is to control the sequence of program 
execution falls under this category.  
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• Environmental setup/configuration:  The main purpose of the modules is to set up 
an appropriate environment for the software to function efficiently. 

• View: Any module that designs or handles graphical user-interface controls or ma-
nipulates the attributes of the controls is part of this category. Also, the statements 
used for displaying information belong to this category. 

• Interaction: Any module or statement that performs a function call or passes pa-
rameters to other modules or tries to access the data structures outside the module 
falls under this category. 

4   Fault Taxonomy 

Our fault taxonomy does not include errors that can be caught by the compiler at 
compile time. We attempted to make the module and fault taxonomies generic enough 
to be language independent and method independent. Fig. 3 presents a graphical de-
piction of the taxonomy. The branches of the tree represent fault categories that are 
language independent, but the leaves may be language dependent. For example, the 
control/logic fault type applies to any language but register reuse will only be appli-
cable for languages such as C or assembly languages. 

The fault taxonomy also takes practical realities into account.  Specifically, the 
taxonomy only relies on bug reports or problem reports and does not assume that (up 
to date) specifications or design are available for analysis. The following fault types 
are significant and have been included because they have been shown to be important 
fault categories in the past [3, 9, 10, 14, 21, 23, 35, 36]. 

Data: Incorrect data definition. Data definition involves assigning a name, type, and 
size for a data item.  Since some data types are compatible with others (e.g., float can 
take an integer value), misuse can result in errors that are not detected at compile 
time. Improper data initialization is caused by the failure to initialize or reinitialize a 
data structure properly upon module entry or exit [3]. Examples of this include con-
trol blocks, registers, or switches not cleared or reset before transition [10]. Improper 
data representation. By representation we mean the ways in which the data is stored, 
i.e., data structure. The information or data can be stored in different ways, e.g., struc-
tured as a database or unstructured in flat files. Program statements that don’t properly 
account for data representation may compile, but could result in runtime problems. 

Computational: Errors that lead to a wrong value being calculated for a variable or 
register or switch belong in this class. 

Control/logic: “Errors that cause an incorrect path in a module to be taken are consid-
ered control errors [3].” We group logic errors here also. Statement logic [36] faults 
cause the executable statements to be executed in the wrong order or not at all.  For 
example, a program may fail to perform validation before returning the data. Se-
quence errors [36] exist when the order in which messages and control information 
are sent is erroneous. For example, the server program in a client-server environment 
may send an acknowledgment without receiving any request from the client. Un-
reachable code [25] occurs due to errors in control or logic statements.  Performance 
faults may affect the overall performance of the software. 
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Interface: Here we include “errors associated with structures existing outside the 
module’s local environment but which the module used” [3] and errors in the com-
munications between modules. For example, incorrect subroutine or module call,  
insufficient data transfer [25], “incorrect declaration of COMMON segment” [3] all 
fall under this category. 

User interface: Faults that interfere with the efficiency, performance and appearance 
of the user interface of the software. Large response time [23, 35] causes the  
interface controls to respond with delay.  Lack of naturalness [21] is caused by a 
number of factors such as illogical grouping of information, use of uppercase, use of 
arbitrary abbreviations, etc. A natural interface does not cause the user to significantly 
alter his or her approach to the task in order to interact with the system.  Inconsistency 
[35, 21, 14] refers to the lack of a pattern of familiarity designed throughout a  
product. Redundancy [21] in a user interface requires the user to enter unnecessary in-
formation for an operation. For example, a user should never have to supply leading 
zeros (“00090.45” instead of “90.45”).  Complexity [35] leads to interfaces that are 
not simple and easy to work with. The interface must be simple. The complexity of a 
user interface is based on the following factors: ease of use, ease of learning and un-
derstanding, and ease of navigation. Lack of support [21] refers to the limited amount 
of assistance the interface provides to the user. Not flexible [21, 14] refers to a user  
interface that narrows the types of users that can work on the software. The user inter-
face must be able to tolerate different levels of user familiarity and performance. Un-
predictable flow is when the flow of control in the user-interface gets beyond the 
scope of the user. An example of unpredictable flow is when the user tries to perform 
a spell check on her document and the software also performs a thesaurus function, 
despite not being invoked by the user. Visual stimulation [35, 21] refers to faults  
dealing with the improper use of color, fonts, graphics, control layout, etc.  The de-
termination that a fault exists is based on a bug report. Thus, we do not need to define 
metrics to measure attributes like “ease of use” or “ease of navigation”. 

Framework [9]: There are certain languages that make use of the concept of packages 
or reusable code. In such a language, a particular program imports or includes some 
of the packages to avoid unnecessary work. The set of statements used for this pur-
pose is classified as “framework.” Missing framework elements are caused when, 
upon integration, some modules might not have included required setup files.  When 
all the modules are compiled together or individually, the compiler does not show any 
errors. However, at run time when the module calls or tries to communicate with  
another module, an error occurs. As mentioned before, only the leaves of the classifi-
cation tree may be language dependent. Thus the fact that a framework element is 
missing is language independent, while the specifics of element mismatch will be lan-
guage dependent. 

5   Research Conjectures 

After developing the fault taxonomy and module taxonomy, we noticed a strong cor-
respondence between the categories, resulting in the following research question:  
“Does the module type drive the fault type one encounters?”  We developed several 
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research conjectures about fault links based on this. They are justified by prior work 
and the pilot studies mentioned earlier. The following 10 fault links were posited: 

C1.1 – Data-centric modules will have a higher percentage of Data faults. 
C1.2 - Data faults will occur more frequently in Data-centric modules. 
C2.1 – Controller modules will have a higher percentage of Control/Logic faults. 
C2.2 - Control/Logic faults will occur more frequently in Controller modules. 
C3.1 – Computational-centric modules show a high percentage of Computation faults. 
C3.2 – Computation faults occur more frequently in Computational-centric modules. 
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Fig. 3. Fault Taxonomy 

C4.1 -  Interaction modules will have a higher percentage of Interface faults. 
C4.2 – Interface faults will occur more frequently in Interaction modules. 
C5.1 – View modules will have a higher percentage of User Interface faults. 
C5.2 – User Interface faults will occur more frequently in View modules. 
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We also posited secondary research conjectures.  These are not as intuitive as the 
above, and some counter the above conjectures. 
 
C6.1 – Interaction modules will have a higher percentage of User Interface faults. 
C6.2 – User Interface faults will occur more frequently in Interaction modules. 
C7.1 – View modules will have a higher percentage of Framework faults. 
C7.2 – Framework faults will occur more frequently in View modules. 
C8.1 – Error Handling modules will have a higher percentage of Data faults. 
C8.2 – Data faults will occur more frequently in Error Handling modules. 
C9.1 – Environmental Setup/Configuration modules will have a higher percentage of 

framework faults. 
C9.2 – Framework fault occur more frequently in Environmental Setup/Configuration 

modules. 

6   Case Studies 

We applied the taxonomy to two open source software systems, Apache and Mozilla, 
to evaluate whether this taxonomy can be applied to common types of software and to 
see whether bug reports typical for such applications are able to reveal enough infor-
mation. Both systems are largely written in C/C++. The Apache sever is a powerful, 
flexible, HTTP/1.1-compliant web server [2]. Mozilla is an open-source web browser, 
designed for standards compliance, performance, and portability [26].  Bugzilla is a 
"Bug-Tracking Systems" used in the Mozilla project. It allows individual or groups of 
developers to effectively keep track of outstanding bugs in their product. 

6.1   Apache Case Study (Modules and Faults) 

We examined all 30 modules that existed at the time of the study (100%). The size of 
the modules ranged from 250 LOC to 4500 LOC. We randomly selected two releases 
for which to examine bug reports, releases for the years 1999 and 2000. For those 
years, there were 2300 bug reports.  Of these, we examined 300 (13%).  Of these 300, 
only 177 bug reports provided enough information for fault categorization. 

We classified all modules of the Apache 1.3.24 server [2] based on module pur-
pose (method one). Table 1 presents the distribution of the Apache module classifica-
tion.  In this table, the percentage column denotes the percent number of modules of a 
particular type. For example, 10% of the 30 (3) modules were categorized as View 
modules. The largest module categories were Controller and Computational-centric, 
at 26.7% each. 

Next, we applied method two to classify a subset of the Apache modules. Though 
many modules were categorized as belonging to the same categories when using 
method one and method two, some modules were not. For example, the following 
module was categorized as Computational-centric using method one, but was typed as 
Controller using method two. 

Module:  mod_unique_id 
Main purpose: generate unique request identifier for every request 
Method one: classified as computational module 
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Method two: As you can see from Table 2, the number of lines of code performing 
control/logic (Controller) functions is greater than the number of lines 
performing other functions.  Therefore it is categorized as Controller. 

The advantage of method two is that categorization can be automated. However, 
the results of method two are not always intuitive. Method one is more subjective than 
method two. While subjective measurement can and should be systematic, it lacks the 
rigor of objectively measurable and quantitative scales [38]. To account for this, one 
normally develops reliability indicators for such scales (for example, inter-rater reli-
ability) [1]. To that end, we performed an inter-rater reliability survey. We had five 
software engineers apply method one to this same module.  The engineers were given 
the code for the module (including in-line documentation) and a list of and definitions 
for the module types in our taxonomy.  All five engineers labeled the module as 
“computational.” This convinced us that our subjective method exhibits reliability, so 
we continued using the results from method one.  

Because of our interest in the relationship between module type and fault type, we 
performed a second step for the Apache case study.  We went back to the 30 modules 
we had categorized and attempted to locate bug reports or problem reports for each. 
The problem reports provide information on identified faults.  These have not neces-
sarily been fixed.  Several hundred bug reports were listed for each module. We ex-
amined a subset of these bug reports for a subset of the 30 modules (cf. Table 3). 

Some general observations can be made. Many bug reports did not document bugs. 
Some bug reports represented enhancement requests. Bug reports had been generated 
by users who were “just trying out the bug tracking system.” Many bug reports did 
not relate to code faults, but to poor documentation.  Some bug reports did not relate 
to the version of Apache that we were examining or did not state the version number. 
Bug reports were duplicated or not deemed errors by the Apache developers. Finally, 
many bug reports documented more than one code fault and should have been sepa-
rated into multiple bug reports. On average there were 1.5 faults per bug report.  

We adjusted our approach to accommodate these findings.  We first weeded out the 
“non-bug reports.” Next, we disregarded bug reports not related to code. We then 
eliminated bug reports that did not relate to version 1.3.24 of Apache or were not ac-
tual errors per the Apache engineers. We then examined each fault in isolation, even 
if several had been grouped in one bug report. As we did not examine the same num-
ber of modules of each type (e.g., we examined eight Computational-centric, but only 
two Interaction modules), we looked at the faults as a function of the number of faults 
per module. That is, we examined 33 faults for four Data-centric modules. The 33 
faults were categorized according to the fault taxonomy. The resulting values were 
scaled to reflect 8.25 faults per module. 

Table 3 shows the module and fault classification for the Apache study. Module 
types are shown in the rows. The columns indicate: the total number of modules of 
different types that were examined; the number of faults, by fault type, for each mod-
ule type; the total number of faults for the module type; and the percentage of faults 
found in a particular module type. For example, the Controller module row indicates 
that six such modules were examined, that 28 Control/Logic faults were found in the 
Controller modules, that a total of 47 faults were found in controller modules account-
ing for 26.6% of all faults classified.  The highest value in each row has been bolded, 
and the highest value in each column has been italicized. In the above example, the 
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value “28” has been bolded and italicized as it is the highest value for both the row and 
column. The bottom row indicates the percentage of each fault type classified. For ex-
ample, 91 Control/Logic faults were found and they accounted for 51.5% of all faults. 

 It is clear that control/logic faults dominate this case study, regardless of module 
type. Though we had not conjectured this, it is not such a surprising result. In our own 
experience as programmers, teachers, and lab assistants for junior level programming 
courses, we have also noticed that these errors dominate. 

Table 1. Classification of Apache Modules by Type 

Module Number Percentage 
Data-centric 6 20 % 

Controller 8 26.7% 
Computational-

centric 
8 26.7% 

View 3 10% 
Interaction 3 10% 
Error Handling 1 3.3% 
Environmental 

Setup/Configuration 
1 3.3% 

Total 30 100% 

Table 2. Mod_Unique_ID Categorization-Method Two 

Module LOC (Lines Of Code) 
Data-centric 62 
Controller 68 
Computational-centric 12 
View 0 
Interaction 11 
Error Handling 0 
Environmental 

Setup/Configuration 
0 

Total 153 

Table 4 illustrates the “have” relationship that exists between the module and fault 
types.  For example, a Data-centric module has more Control/Logic faults than any 
other type of fault, and these account for 48% of the faults typically found in a  
Data-centric module. The module types are listed in the rows of the table.  For ease of 
illustration, two columns (the total number of modules of different types that were ex-
amined and the total number of faults grouped by the module in which they occur) 
have been repeated here from Table 3. We also show the total faults per module,  
followed by the percentage of faults found in a particular module type. Note that 
changes have been made to the values in the module-fault cells. Each cell has two 
values, a percentage value and a fault-per-module value. The percentage value repre-
sents the “have” relationship. The fault-per-module value indicates that out of N total 
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faults in a module of a particular type, X of them belongs to a particular fault type. For 
example, let us examine the row for the Data-centric module.  The number of data-
centric modules examined was four, the total number of faults from the four modules 
was 33, and therefore the total faults per module (33/4) is 8.25 per module. This total 
fault-per-module value is distributed across the fault types based on their count from 
Table 1. As far as the fault distribution across different fault types is concerned, the 
data-centric module had about 18% data faults, 48% C/L faults, 6% computational 
faults, 9% interface faults, 18% framework faults, and zero percent GUI faults. As be-
fore, the highest value in each row and column is bolded and italicized respectively. 

Table 5 illustrates the “occurs-in” relationship that exists between the fault and 
module types. For example, Data faults tend to occur in Data-centric modules most 
frequently (46%). The table is very similar to Table 4 except that it illustrates the “oc-
curs-in” relationship from the fault type to the module type. The cells have the same 
two types of values as before, the percentage value and fault-per-module value. The 
fault-per-module value has the as meaning as before, but the percentage value in this 
case represents the “occurs-in” relationship. For example, let us examine the row for 
the Control/Logic fault. We can see that 16.8% of the C/L faults occur in data-centric 
modules, 19.6% of the C/L faults occur in controller modules, 11% of the C/L faults 
occur in computational-centric modules, 14.7% of the C/L faults occur in interaction 
modules, 21% of the C/L faults occur in view modules, 12.6% of the C/L faults occur 
in error-handling modules, and 4% of the C/L faults occur in environmental setup 
modules. The total faults-per-module and faults-per-module values of each are calcu-
lated as before.  

Next, we assess the “have” relationship (from Table 4). The most frequently occur-
ring fault type in Data-centric modules was Control/Logic at 48% (no close second). 
This does not support C1.1. The most frequently occurring fault type in Controller 
modules was Control/Logic at 59.6% with no close second. This does strongly sup-
port C2.1. The most frequently occurring fault type in Computational-centric modules 
was Control/Logic at 48% with no close second. This does not support C3.1. The 
most frequently occurring fault type in Interaction modules was Control/Logic at 41% 
with no close second.  This does not support C4.1 or C6.1.  The most frequently oc-
curring fault type in View modules was Control/Logic at 50% with no close second. 
This does not support C5.1 or C7.1. The most frequently occurring fault type in Error 
Handling modules was Control/Logic at 75%. This does not support C8.1.  There was 
a tie for most frequently occurring fault type in Environmental Setup/Configuration 
modules, 50% for both Control/Logic and Computational (no support for C9.1). 

Table 5 illustrates the “occurs-in” relationship that exists between the fault and 
module types. For example, Data faults tend to occur in Data-centric modules most 
frequently (46%). The table is very similar to Table 4 except that it illustrates the “oc-
curs-in” relationship from the fault type to the module type. The cells have the same 
two types of values as before, the percentage value and fault-per-module value. The 
fault-per-module value has the as meaning as before, but the percentage value in this 
case represents the “occurs-in” relationship. For example, let us examine the row for 
the Control/Logic fault. We can see that 16.8% of the C/L faults occur in data-centric 
modules, 19.6% of the C/L faults occur in controller modules, 11% of the C/L faults 
occur in computational-centric modules, 14.7% of the C/L faults occur in interaction 
modules, 21% of the C/L faults occur in view modules, 12.6% of the C/L faults occur 
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in error-handling modules, and 4% of the C/L faults occur in environmental setup 
modules. The total faults-per-module and faults-per-module values of each are calcu-
lated as before.  

Next, we assess the “have” relationship (from Table 4). The most frequently occur-
ring fault type in Data-centric modules was Control/Logic at 48% (no close second). 
This does not support C1.1. The most frequently occurring fault type in Con troller 
modules was Control/Logic at 59.6% with no close second.  This does strongly sup-
port C2.1.  The most frequently occurring fault type in Computational-centric mod-
ules was Control/Logic at 48% with no close second.  This does not support C3.1. 
The most frequently occurring fault type in Interaction modules was Control/Logic at 
41% with no close second. This does not support C4.1 or C6.1.  The most frequently 
occurring fault type in View modules was Control/Logic at 50% with no close sec-
ond.  This does not support C5.1 or C7.1. The most frequently occurring fault type in 
Error Handling modules was Control/Logic at 75%.  This does not support C8.1.  

There was a tie for most frequently occurring fault type in Environmental 
Setup/Configuration modules, 50% for both Control/Logic and Computational. This 
does not support C9.1. 

Table 3. Module and Fault Type Classification for Apache Study 

Fault type Module 
type 

# mod-
ules 

Dat
a 

C/L Comput. Interface Framework GUI 

Total 
Faults 

% 

Data-centric 4 6 16 2 3 6 0 33 18.7% 

Controller 6 3 28 5 4 5 2 47 26.6% 

Computational-
centric 

8 2 21 7 7 6 1 44 24.8% 

Interaction 2 0 7 3 3 2 2 17 9.6% 

View 3 3 15 4 1 5 2 30 17% 

Error Handling 1 0 3 1 0 0 0 4 2.2% 

Environ. Setup 1 0 1 1 0 0 0 2 1.1% 

Total 25 14 91 23 18 24 7 177 100% 

Percentage  8% 51.5% 13% 10% 13.5%     4% 100%  

As can be seen from Table 5 (the “occurs-in” relationship), the majority of the 
Data faults occur in the Data-centric modules (46%).  The next highest value is 30.7% 
for View modules. This finding provides support for C1.2, but not for C8.2.  The ma-
jority of Control/Logic faults occur in View modules (21%) with Controller modules 
bringing up a close second at 19.6%. This finding lends some support to C2.2, but not 
as strong as for C1.2. Computation faults occur 36% of the time in Interaction mod-
ules followed by View modules at 19%. This does not support C3.2. Interface faults 
accounted for 36% of the Interaction module faults with no close second. This 
strongly supports C4.2. The majority of Framework faults occurred in View modules 
(29%) with Data-centric modules close behind at 26%.  This provides some support 
for C7.2, but not C9.2. 47% of the User Interface faults occur in Interaction modules 
(supports C6.2, but not C5.2). 
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Our findings are summarized in Table 6. The basic question was: “Does the module 
type drive the fault type?” Six conjectured fault links were supported, at least weakly. 
Thus we found evidence for answering “yes.” A fault link that appeared universally, 
though not conjectured, was Control/Logic faults being the most prominent fault type 
for all module types. One could view this as an additional six fault links (data modules 
have Control/Logic (C/L) faults, computational-centric modules have C/L faults, Inter-
action modules have C/L faults, View, Error Handling, and Environment Setup/ 
Configuration modules have C/L faults). This finding would lead one to answer the 
overarching question “no.” Our results are still inconclusive, but appear to hold promise. 

6.2   Mozilla Case Study (Faults and Modules) 

Next, we examined problem reports for the open source software product Mozilla 
(web browser) using the bug tracking system  Bugzilla [26].  Mozilla is a very large 
software system and provided a plethora of problem reports for sampling. We exam-
ined 70 bug reports, selected randomly using Bugzilla.  From these, 75 faults were 
identified that were code-related.  Note that the “fault per problem report” ratio was 
only 1.07 as compared to 1.5 for Apache.  These faults were categorized using our 
fault taxonomy. Table 7 presents the high level distribution of the faults found in 
Mozilla. 53.4% of faults reported for the open source software Mozilla fall under the 
category of Control/Logic faults, reinforcing findings from the first case study. 

We were not able to find the modules that tied to specific bug reports or vice versa, 
as we were able to do in Apache.  So we next randomly selected 30 modules in the 
Mozilla directories and categorized them.  As can be seen from Table 8, the majority 
of the modules fell under the category of Computational-centric (26.7%), with Con-
troller just behind at 20%.  This is consistent with our findings for the Apache study. 

 6.3   Comparison of Case Study 

Both case studies exhibit strong similarities with regard to fault types and module 
types. For both systems, Control/Logic faults occurred most frequently: 50% for 
Apache and 53.4% for Mozilla.  The next most frequent fault type for Apache was a 
tie between Interface and Framework at 14%. For Mozilla, it was Data at 17.3%.  The 
fourth most frequent fault type for Apache was Data at 10%, and it was a three-way 
tie for Mozilla between Computational, Interface, and User Interface, all at 8%.  A 
striking result was the dominance of the Control/Logic fault type, in both systems. 

The most frequent module type for Mozilla was Computational-centric at 26.7%. 
Computational-centric was tied for most frequent with Controller at 26.7% for Apache.  
The next most frequent module type for Apache was Data-centric at 20%. For Mozilla, 
it was Controller at 20%. The third most frequent module type for Apache was a tie be-
tween View and Interaction, both at 10%.  For Mozilla, Data-centric and View tied for 
16.7%. Computational-centric and Controller occurred most frequently in both systems. 
A comparison of fault type percentages is shown in Fig. 2. In each category, the percent 
of faults in the two applications are similar (note that Apache does not report user inter-
face bugs, since it is not interactive). For the common fault types, correlation analysis 
found a correlation value of 0.94 between the faults percentages. This is not surprising, 
as these applications share common characteristics: open source, web related. The result 
also confirms that our fault taxonomy is reasonable and applicable.   
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Table 6. Conjecture Results 

Conjecture Conjectured Fault Link Supported? 
C1.1 Data modules have 

Data faults 
No 

C1.2 Data faults occur in 
Data modules 

Yes 

C2.1 Controller modules 
have C/L faults 

Yes 

C2.2 C/L faults occur in 
Controller modules 

Weak 

C3.1 Comp. modules have 
computational faults 

No 

C3.2 Comput. faults occur in 
Comput. modules 

No 

C4.1 Interaction modules 
have Interface faults 

No 

C4.2 Interface faults occur 
in Interaction modules 

Yes 

C5.1 View modules have 
User Interface faults 

No 

C5.2 User Interface faults 
occur in View modules 

No 

C6.1 Interaction modules 
have User Interface faults 

No 

C6.2 User Interface faults 
occur in Interaction 
modules 

Yes 

C7.1 View modules have 
Framework faults 

No 

C7.2 Framework faults oc-
cur in View modules 

Weak 

C8.1 Error handling modules 
have Data faults 

No 

C8.2 Data faults occur in Er-
ror Handling modules 

No 

C9.1 Environ. Setup/Config. 
Modules have framework 
faults 

No 

C9.2 Framework faults occur in 
Environ. Modules 

No 

We conclude with some remarks about threats to validity of our case studies. As 
with any case study, there are unavoidable threats to validity. First, we cannot gener-
alize the results to other application domains, systems, or languages. What we can 
say, however, is that we found support for our taxonomy in both the Apache and 
Mozilla systems. Second, a case study is limited in the amount of control over what 
data can be collected. We were limited by the available bug reports. While the ran-
dom selection of defect reports for both systems does not bias the results, the quality 
and information content of the bug reports possibly could. Given the nature of case 

4 J.H. Hayes et al. 30
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studies, we had no control over how bugs were reported. The analysis depends on the 
quality of the bug reports. They have to contain enough information for fault classifi-
cation. While we have not performed a large scale inter-rater reliability analysis of the 
module classification, we used a team to classify them, in line with guidelines in [1]. 
The analysis is based on a theory about a fault link taxonomy that is based on existing 
knowledge and empirical studies as explained in section 4. It is thus possible that new 
fault links may be found, and, of course, some applications may not have certain 
faults. We consider our work a step towards building a more comprehensive theory.   

7   Conclusions and Future Work 

We have developed two taxonomies, one for modules and one for code faults. We  
introduced the notion of a fault link.  We presented two methods for module classifi-
cation along with their advantages and disadvantages. We classified modules and 
code faults of two open source, web-based software products using our approach. 

We found evidence in favor of the existence of four conjectured fault links (and an 
additional two with weak evidence) and six fault links that were not conjectured (all re-
lated to Control/Logic faults).  We have already capitalized upon the discovery of the 
Control/Logic fault links (for every module type) by augmenting our FTR checklists. 

Table 7. Mozilla Fault Types 

Fault Number Percentage 
Data 13 17.3% 
Computational 6 8% 
Control/Logic 40 53.4% 
Interface 6 8% 
User interface 6 8% 
Framework 4 5.3% 
Total 75 100% 

Table 8. Mozilla Module Types 

Module Types Number Percentage 
Data-centric 5 16.7% 
Computational-
centric 

8 26.7% 

Controller 6 20% 
View 5 16.7% 
Interaction 1 3.3% 
Error Handling 1 3.3% 
Environmental 
setup 

4 13.3% 

Total 30 100% 
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Fig. 2. Comparison of Fault Type Percentages 

We continue work on the fault taxonomy and the module taxonomy and hope that 
others will assist us in validating and improving them. We plan to examine the tax-
onomies with respect to the object-oriented methodology. We plan to examine lan-
guages such as Lisp that provide control abstraction.  We also are not convinced that 
the fault taxonomy is orthogonal. Specifically, we plan to evaluate mixed-purpose 
modules in the context of the fault link taxonomy. Our taxonomies might require tai-
loring to a specific domain or application, such as real-time or embedded systems, as 
discussed in [15].  We also plan to expand the fault link concept to fault chains.  
Faults rarely occur in isolation. They may be related longitudinally within a release 
(e.g., a design fault leads to a code fault) or across releases (e.g., incomplete fault re-
pair). We refer to these relationships as fault chains. We have identified several types 
of fault chains, and will continue our work in this area. The ultimate goal of this work 
is to identify evaluation techniques that can take advantage of our knowledge of fault 
chains to prevent or detect faults as early as possible. That will assist us in developing 
reliable, though complex, software systems. 
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Abstract. The validation and verification of software is typically a
costly part of the development. A possibility to reduce costs is to con-
centrate these activities on the fault-prone components of the system.
A classification approach is proposed that identifies these components
based on detailed UML models. For this mainly existing code metrics
are tailored to be applicable to models and are combined to a suite. Two
industrial case studies confirm the ability of the approach to identify
fault-prone components.

1 Introduction

The whole area of testing and quality assurance constitutes a significant part of
the total development costs for software, often up to 50% [1]. Especially formal
verification is frequently perceived as rather costly. Therefore there is a possi-
bility for optimizing costs by concentrating on the fault-prone components and
thereby exploiting the existing resources as efficiently as possible. Detailed de-
sign models offer the possibility to analyse the system early in the development
life-cycle. One of the possibilities is to measure the complexity of the models to
predict fault-proneness assuming that a high complexity leads to a high number
of defects.

The complexity of software code has been studied to a large extent. It is often
stated that complexity is related to and a good indicator for the fault-proneness
of software [2, 3, 4]. There are two different approaches to the identification of
fault-prone components. In the estimative approach models are used to predict
the number of faults that are contained in each component. The classification
approach categorizes components into fault-prone classes, often simply low-fault
and high-fault. We use the latter approach in the following because it is more
suitable for the model metrics.
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M. Dal Cin, M. Kaâniche, and A. Pataricza (Eds.):



436 S. Wagner and J. Jürjens

Although the traditional complexity metrics are not directly applicable to
design models because of different means of structuring and abstractions, there
are already a number of approaches that propose design metrics, e.g. [5, 6, 7, 8].
Most of the metrics in [8] were found to be good estimators of fault-prone classes
in [9] and are used in our approach as well. However, they concentrate mainly
on the structure of the designs. Since the system structure is not sufficient as
a source for the complexity of its components, which largely depends on their
behavior, we will also propose a metric for behavioral models.

Contribution. This paper contains an adaption of complexity metrics to measure
design complexity of UML 2.0 models. Based on these metrics an approach is
proposed for deriving the fault-proneness of classes. Furthermore the metrics
and the approach are validated by two industrial case studies.

Outline. In Sec. 2 complexity metrics for models built with a subset of UML 2.0
are defined and an approach for using the metrics to derive fault- and failure-
prone components is explained. Two case studies are provided in Sec. 3. Finally,
related work and conclusions are discussed in Sec. 4 and Sec. 5, respectively.

2 Analyzing Fault-Proneness

This section describes the possibilities to identify fault-prone components based
on models built with UML 2.0 [10]. We introduce a design complexity metrics
suite for a subset of model elements of the UML 2.0 and explain how to identify
fault-prone components.

The basis of our metrics suite forms the suite from [8] for object-oriented code
and the cyclomatic metric from [11]. In using a suite of metrics we follow [12, 13]
stating that a single measure is usually inappropriate to measure complexity.

In [14] the correlation of metrics of design specifications and code metrics
was analyzed. One of the main results was that the code metrics such as the
cyclomatic complexity are strongly dependent on the level of refinement of the
specification, i.e. the metric has a lower value the more abstract the specification
is. Models of software can be based on various different abstractions, such as
functional or temporal abstractions [15]. Depending on the abstractions chosen
for the model, various aspects may be omitted, which may have an effect on
the metrics. Therefore, it is prudent to consider a suite of metrics rather than
a single metric when measuring design complexity to assess fault-proneness of
system components.

Development Process. The metric suite described below is generally appli-
cable in all kinds of development processes. It does not need specific phases or
sequences of phases to work. However, we need detailed design models of the
software to which we apply the metrics. This is most rewarding in the early
phases as the models then can serve various purposes.

We adjust metrics to parts of UML 2.0 based on the design approach taken
in AutoFocus [16], ROOM [17], or UML-RT [18], respectively. This means that
we model the architecture of the software with structured classes (called actors
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in ROOM, capsules in UML-RT) that are connected by ports and connectors
and which have associated state machines that describe their behavior.

The metrics defined in this section are applicable to components as well as
classes. However, we will concentrate on structured classes following the usage
of classes in ROOM. The particular usage should nevertheless be determined by
the actual development process.

2.1 Measures of the Static Structure

We start introducing the new measures with the ones that analyze the static
structure of models. These are important because the interrelations and depen-
dencies among model elements contribute significantly to their complexity.

Structured Classes. The concept of structured classes introduces composite
structures that represent a composition of run-time instances collaborating over
communication links. This allows UML classes to have an internal structure
consisting of other classes that are bound by connectors. Furthermore ports are
used as a defined entry point to a class. A port can group various interfaces that
are provided or required. A connection between two classes through ports can
also be denoted by a connector. The parts of a class work together to achieve its
behavior. A state machine can also be defined to describe behavior additional
to the behavior provided by the parts.

We start with three metrics, Number of Parts, Number of Required Interfaces,
and Number of Provided Interfaces, which concern structural aspects of a system
model. The metrics consider composite structure diagrams of single classes with
their parts, interfaces, connectors, and possibly state machines. A corresponding
example is given in Fig. 1.

Number of Parts (NOP). The number of parts of a structured class contributes
obviously to its structural complexity. The more parts it has, the more coor-
dination is necessary and the more dependencies there are, all of which may
contribute to a fault. Therefore, we define NOP as the number of direct parts
Cp of a class.

Number of Required Interfaces (NRI). This metric is (together with the NPI
metric below) a substitute for the old Coupling Between Objects (CBO) that
was criticized in [19] in that it does not represent the concept of coupling ap-
propriately. It reduces ambiguity by giving a clear direction of the coupling. We
use the required interfaces of a class to represent the usage of other classes. This
is another increase of complexity which may as well lead to a fault, for example
if the interfaces are not correctly defined. Therefore we count the number of
required interfaces Ir for this metric. Coupling metric as predictors of run-time
failures were investigated in [20]. It shows that coupling metrics are suitable
predictors of failures.

Number of Provided Interfaces (NPI). Very similar but not as important as NRI
is the number of provided interfaces Ip. This is similarly a structural complexity
measure that expresses the usage of a class by other entities in the system.
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NOP = 3
NRI = 2
NPI = 2

C1

C1class

P1 P2

P3

Fig. 1. An example structured class with three parts and the corresponding metrics

Example. The example in Figure 1 shows the composite structure diagram
of a class with three ports, two required and two provided interfaces. It has
three parts which have in turn ports, interfaces and connectors. However, these
connecting elements are not counted in the metrics for the class itself because
they are counted by the metrics for the parts, and these can later be summed
up to consider the complexity of a class including its parts.

2.2 Measure of Behavior

We proceed with a complexity metric for behavioral models because the behavior
determines the complexity of a component to a large extent.

State Machines. State machines are used to describe the behavior of classes
of a system. They describe the actions and state changes based on a parti-
tioning of the state space of the class. Therefore the associated state machine
is also an indicator of the complexity of a class and hence its fault-proneness.
State machines consist of states and transitions where states can be hierarchical.
Transitions carry event triggers, guard conditions, and actions.

We use cyclomatic complexity [11] to measure the complexity of behavioral
models represented as state machines because it fits most naturally to these
models as well as to code. This makes the lifting of the concepts from code to
model straightforward.

To find the cyclomatic complexity of a state machine we build a control flow
graph similar to the one for a program in [11]. This is a digraph that represents
the flow of control in a piece of software. For source code, a vertex is added for
each statement in the program and arcs if there is a change in control, e.g. an if-
or while-statement. This can be adjusted to state machines by considering the
code implementation. The code transformation that we use as a basis for the
metrics can be found in [17]. However, different implementation strategies could
be used [21].

Example. An example of a state machine and its control flow graph is depicted
in Fig. 2. At first we need an entry point as the first vertex. The second vertex
starts the loop over the automata because we need to loop until the final state is
reached or infinitely if there is no final state. The next vertices represent transi-
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Fig. 2. (a) A simple state machine with one hierarchical state, event trigger, guard

conditions, and actions. (b) Its corresponding control flow graph. The black vertices

are predicate nodes. On the right the transitions for the respective part of the flowgraph

are noted

tions, atomic expressions1 of guard conditions, and event triggers of transitions.
These vertices have two outgoing arcs each because of the two possibilities of the
control flow, i.e. an evaluation to true or false. Such a branching flow is always
joined in an additional vertex. The last vertex goes back to the loop vertex from
the start and the loop vertex has an additional arc to one vertex at the end that
represents the end of the loop. This vertex finally has an arc to the last vertex,
the exit point.

If we have such a graph we can calculate the cyclomatic complexity using
the formula v(G) = e − n + 2, where v is the complexity, G the control graph,
e the number of arcs, and n the number of vertices (nodes). There is also an
alternative formula, v(G) = p+1, which can also be used, where p is the number
of binary predicate nodes. Predicate nodes are vertices where the flow of control
branches.

Hierarchical states in state machines are not incorporated in the metric.
Therefore the state machine must be transformed into an equivalent state ma-

1 A guard condition can consist of several boolean expressions that are connected
by conjunctions and disjunctions. An atomic expression is an expression only using
other logical operators such as equivalence. For a more thorough definition see [11].

S4

S3

S2

S1

Cyclomatic Complexity = 14

v(G) = e − n + 2
v(G) = 46 − 34 + 2

Number of Nodes: 34
Number of Edges: 46

e3 [g2] e4

e2 [g1] / a1

e5 [g3 && g4] / a2

(b)(a)

e2 [g1] / a1

e3 [g2]

e4

e5 [g3 && g4]
/ a2
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chine with simple states. This appears to be preferable to handling hierarchy
separately because we are not looking at understandability and we do not have
to deal with hierarchy crossing transitions. Furthermore internal transitions are
counted equally to normal transitions. Pseudo states are not counted themselves,
but their triggers and guard conditions. Usage of the InState construct in guards
is not considered.

Cyclomatic Complexity of State machine (CCS). Having explained the concepts
based on the example flow graph above, the metric can be calculated directly
from the state machine with a simplified complexity calculation. We count the
atomic expressions and event triggers for each transition. Furthermore we need
to add 1 for each transition because we have the implicit condition that the
corresponding source state is active. This results in the formula

CCS = |T | + |E| + |AG| + 2. (1)

where T is the multi-set of transitions, E is the multi-set of event triggers, and
AG is the multi-set of atomic expressions in the guard conditions. This formula
yields exactly the same results as the longer version above but has the advantage
that it is easier to calculate.

For this metric we have to consider two abstraction layers. First, we transform
the state machine into its code representation2 and second use the control flow
graph of the code representation to measure structural complexity. The first
“abstraction” is needed to establish the relationship to the corresponding code
complexity because it is a good indicator of the fault-proneness of a program. The
proposition is that the state machine reflects the major complexity attributes of
the code that implements it. The second abstraction to the control flow graph
was established in [11] and is needed for the determination of paths through the
program which reflect the complexity of the behavior.

2.3 Metrics Suite

In addition to the metrics which we defined above, we complete our metrics suite
by adding two existing metrics from [8] that can be adjusted to be applicable to
UML models. The metrics chosen are from the ones that were found to be good
indicators of fault-prone classes in [9]. We omit Response For a Class (RFC)
and Coupling Between Objects (CBO)3 because they cannot be determined on
the model level. The two adapted metrics are described in the following. The
complete metrics suite can be found in Tab. 1.

Depth of Inheritance Tree (DIT). This is the maximum depth of the inheritance
graph T to a class c. This can be determined in any class diagram that includes
inheritance.

2 Note that this is done only for measuring purposes; our approach also applies if
the actual implementation is not automatically generated from the UML model but
manually implemented.

3 RFC counts all methods of a class and all methods recursively called by the methods.
CBO counts all references of a class to methods or fields of other classes.
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Number of Children (NOC). This is the number of direct descendants Cd in the
inheritance graph. This can again be counted in a class diagram.

Table 1. A summary of the metrics suite with its calculation

Name Abbr. Calculation

Depth of Inheritance Tree DIT max(depth(T, c))
Number of Children NOC |Cd|
Number of Parts NOP |Cp|
Number of Required Interfaces NRI |Ir|
Number of Provided Interfaces NPI |Ip|
Cyclomatic Complexity of State machine CCS |T | + |E| + |AG| + 2

We analyze whether our metrics are structural complexity measures by the
definition in [12]. The definition says that for a set D of documents with a pre-
order ≤D and the usual ordering ≤R on the real numbers R, a structural com-
plexity measure is an order preserving function m : (D,≤D) −→ (R,≤R). This
means that any structural complexity metric needs to be at least pre-ordered be-
cause this is necessary for comparing different documents. Each metric from the
suite fulfills this definition with respect to a suitable pre-order on the relevant
set of documents. The document set D under consideration is depending on the
metric: either a class diagram that shows inheritance and possibly interfaces, a
composite structure diagram showing parts and possibly interfaces, or a state
machine diagram. All the metrics use specific model elements in these diagrams
as a measure. Therefore there is a pre-order ≤D between the documents of each
type based on the metrics: We define d1 ≤D d2 for two diagrams d1, d2 in D if
d1 has fewer of the model elements specific to the metric under consideration
than d2. The mapping function m maps a diagram to its metric, which is the
number of these elements. Hence m is order preserving and the metrics in the
suite qualify as structural complexity measures.

Fault Proneness. As mentioned before, complexity metrics are good predictors
for the reliability of components [2, 3]. Furthermore the experiments in [9] show
that most metrics from [8] are good estimators of fault-proneness. We adopted
DIT and NOC from these metrics unchanged, therefore this relationship still
holds. The cyclomatic complexity is also a good indicator for reliability [2] and
this concept is used for CCS to be able to keep this relationship. The remaining
three metrics were modeled similarly to existing metrics. NOP resembles NOC,
NRI and NPI are similar to CBO. NOC and CBO are estimators for fault-
proneness, therefore it is expected that the new metrics behave accordingly.

The metrics suite is used to determine the most fault-prone classes in a
system. Different metrics are important for different components. Therefore one
cannot just take the sum over all metrics to find the most critical component.
We propose to use the metrics so that we compute the metric values for each
component and class and consider the ones that have the highest measures for
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each single metric. This way we can for example determine the components with
complex behavior or coupling.

We suggest to use complexity levels LC = {high, low}. We assign each com-
ponent such a complexity level by looking at the extreme values in the metrics
results. Each component that exhibits a high value in at least one of the metrics
is considered of having the complexity level high, all other components have the
level low. It depends on the actual distribution of values to determine what is
to be considered a high value. These complexity levels show the high-fault and
low-fault components.

Failure Proneness. The following constitutes an extension to the analysis of
fault proneness towards failure proneness. The fault-proneness of a component
does not directly imply low reliability because a high number of faults does not
mean that there is a high number of failures [22]. However, a direct reliability
measurement is in general not possible on the model level. Nevertheless, we can
get close by analysing the failure-proneness of a component, i.e. the probability
that a fault leads to a failure that occurs during software execution.

It is not possible to express the probability of failures with exact figures based
on the design models. We propose therefore to use more coarse-grained failure
levels, e.g. LF = {high,medium, low}, where LF is the set of failure levels. This
allows an abstract assessment of the failure probability. It is still not reliability
as generally defined but the best estimate that we can get in early phases.

To determine the failure level of a component we use the complexity lev-
els from above. Having assigned these complexity levels to the components, we
know which components are highly fault-prone. The operational profile [23] is
a description of the usage of the system, showing which functions are mostly
used. We use this information to assign usage levels LU to the components. This
can be of various granularity. An example would be LU = {high,medium, low}.
When we know the usage of each component we can analyze the probability that
the faults in the component lead to a failure.

The combination of complexity level and usage level leads us to the failure
level LF of the component. It expresses the probability that the component fails
during software execution. We describe the mapping of the complexity level and
usage level to the failure level with the function fp:

fp = LC × LU −→ LF ,where LF = LU ∪ {low} (2)

What the function does is simply to map all components with a high com-
plexity level to its usage level and all component with a low complexity level to
low. However, this is only one possibility how fp can look like.

fp(x, y) =
{

y if x = high
low otherwise (3)

This means that a component with high fault-proneness has a failure probabil-
ity that depends on its usage and a component with low fault-proneness has
generally a low failure probability.
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Having these failure levels for each component we can use that information
to guide the verification efforts in the project, e.g. assign the most amount of
inspection and testing on the components with a high failure level. Parts of
critical systems such as an exception handler still need thorough testing although
its failure level might be low. However, this is not part of this work.

3 Case Studies

This section presents two industrial case studies that use the classification ap-
proach based on the metrics suite and contains a discussion of the results and
observations. Both case studies do not analyze the DIT and NOC metrics be-
cause the models do not contain inheritance.

3.1 Automatic Collision Notification

The first case study we used to validate our proposed fault-proneness analysis is
an automatic collision notification system as used in cars to provide automatic
emergency calls. First, the system is described and designed using UML, then
we analyze the model and present the results.

Description. The case study was done in cooperation with a car manufacturer.
The problem to be solved is that many accidents of automobiles only involve a
single vehicle. Therefore it is possible that no or only a delayed emergency call is
made. The chances for successful help for the casualties are significantly higher
if an accurate call is made quickly. This has lead to the development of so called
Automatic Collision Notification (ACN) systems, sometimes also called mayday
systems. They automatically notify an emergency call response center when a
crash occurs. In addition, manual notification using the location data from a
GPS device can be made. We used the public specification from the Enterprise
program [24, 25] as a basis for the design model. Details of the implementation
technology are not available. In this case study, we concentrate on the built-in
device of the car and ignore the obviously necessary infrastructure such as the
call center.

Device Design. Following [24] we call the built-in device MaydayDevice and
divide it into five components. The architecture is illustrated in Fig. 3 using a
composite structure diagram of the device.

The device is a processing unit that is built into the vehicle and has the
ability to communicate with an emergency call center using a mobile telephone
connection and retrieving position data using a GPS device. The components
that constitute the mayday device are:

– ProcessorModule: This is the central component of the device. It controls
the other components, retrieves data from them and stores it if necessary.

– AutomaticNotification: This component is responsible for notifying a serious
crash to the processor module. It gets notified itself if an airbag is activated.
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class MaydayDevice

AutomaticNotificationButtonBox

ProcessorModule

LocationModule CommunicationsModule

Fig. 3. The composite structure diagram of the mayday device

idle retrieving

calling

cancelCall() / cancel()

failure() / lightLED(red)

success() / lightLED(green)

testCall() / makeCall(callData)

Processorsm

notify() / acknowledge(), getGps()

gpsData() / location=gpsData,
makeCall(callData)

cancelCall() / lightLED(red)

startCall() / getGps()

Fig. 4. The state machine diagram of the ProcessorModule

– LocationModule: The processor module request the current position data
from the location module that gathers the data from a GPS device.

– CommunicationsModule: The communications module is called from the pro-
cessor module to send the location information to an emergency call center.
It uses a mobile communications device and is responsible for automatic
retry if a connection fails.

– ButtonBox : This is finally the user interface that can be used to manually
initiate an emergency call. It also controls a display that provides feedback
to the user.

Each of the components of the mayday device has an associated state machine
to describe its behavior. We do not show all of the state machines because of
space reasons but explain the two most interesting in more detail. This is, firstly,
the state machine of the ProcessorModule called Processor in Fig. 4. It has three
control states: idle, retrieving, and calling. The idle state is also the initial state.
On request of an emergency call, either by startCall from the ButtonBox or
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notify from the AutomaticNotification, it changes to the retrieving state. This
means that it waits for the GPS data. Having received this data, the state
changes to calling because the CommunicationsModule is invoked to make the
call. In case of success, it returns to the idle state and lights the green LED on
the ButtonBox. Furthermore, the state machine can handle cancel requests and
making a test call.

dialing opening line

data sent
do / sendData(data)

sending data

calling

lineFree / dialNumber(number)

noConnection() / offHook(),
retries = retries + 1

[finished] / onHook()

connected()
offHook(),
retries = retries + 1

connectionAborted() /

lineBusy() /
retries = retries + 1

idle

retries = 0,
success()

done() / 

makeCall(data) / callData = data, offHook()

cancel() / retries = 0, failure()

[retries >= 5] / retries = 0, failure()

sm Communications

Fig. 5. The state machine diagram of the CommunicationsModule

The second state machine is Communications in Fig. 5, the behavior specifi-
cation of CommunicationsModule. One of the main complicating factors here is
the handling of four automatic retries until a failure is reported. The state ma-
chine starts in an idle state and changes to the calling state after the invocation
of makeCall. The offHook signal is sent to the mobile communications device.
Inside the calling state, we start in the state opening line. If the line is free, the
dialing state is reached by dialing the emergency number. After the connected
signal is received, the state is changed to sending data and the emergency data
is sent. After all data is sent, the finished flag is set which leads to the data sent
state after the onHook signal was sent to the mobile. After the mobile sends the
done signal, the state machine reports success and returns to the idle state. In
case of problems, the state is changed to opening line and the retries counter is
incremented. After four retries the guard [retries >= 5] evaluates to true and
the call fails. It is also always possible to cancel the call which leads to a failure
signal as well.

Results. The components of MaydayDevice are further analyzed in the follow-
ing. At first we use our metrics suite from Sec. 2 to gather data about the model.
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The results can be found in Tab. 2. It shows that we have no inheritance in the
current abstraction level of our model and also that the considered classes have
no parts apart from MaydayDevice itself. Therefore the metrics regarding these
aspects are not helpful for this analysis.

Table 2. The results of the metrics suite for the components of MaydayDevice

Class DIT NOC NOP NRI NPI CCS

MaydayDevice 0 0 5 4 2 0
ProcessorModule 0 0 0 4 4 16
AutomaticNotification 0 0 0 2 1 4
LocationModule 0 0 0 1 2 4
CommunicationsModule 0 0 0 2 2 32
ButtonBox 0 0 0 2 2 8

More interesting are the metrics for the provided and required interfaces and
their associated state machines. The class with the highest values for NRI and
NPI is ProcessorModule. This shows that it has a high coupling and is therefore
fault-prone. The same module has a high value for CCS but Communications-
Module has a higher one and is also fault-prone.

In [25] there are detailed descriptions of acceptance and performance tests
with the developed system. The system was tested by 14 volunteers. The usage
of the system in the tests was mainly to provoke an emergency call by pressing
the button on the button box.

The documentation in [25] shows that the main failures that occurred were
failures in connecting to the call center (even when cellular strength was good),
no voice connect to the call center, inability to clear the system after usage, and
failures of the cancel function. These main failures can be attributed to the com-
ponent ProcessorModule that is responsible for controlling the other components
and CommunicationsModule that is responsible for the wireless communication.
Therefore our analysis identified the correct components. The types of the cor-
responding faults of the failures are not available.

3.2 MOST NetworkMaster

We further validated our approach on the basis of the project results of an
evaluation of model-based testing [26]. A network controller of an infotainment
bus in the automotive domain, the MOST R© NetworkMaster [27], was modeled
with the case tool AutoFocus and test cases were generated from that model and
compared with traditional tests. An implementation in C running on a standard
PC was tested. We use all found faults from all test suites in the following. The
AutoFocus notation is quite similar to UML 2.0 which allows straight-forward
application of the metrics defined earlier.
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Device Design. The composite structure diagram of the network master is
shown in Figure 6. It contains two components Divide and Merge that are only
responsible for the correct distribution of messages. The MonitoringMgr checks
the status of devices in the network but has no behavior in the model, i.e. was
functionally abstracted. The RegistryMgr is the main component. All devices
need to register with it on startup and it manages this register. Finally, the
RequestMgr answers requests about the addresses of other devices.

class NetworkMaster

RegistryMgr
RequestMgr

Merge

MonitoringMgr

Divide

Fig. 6. The composite structure diagram of the MOST network master

We omit further parts of the design, especially the associated state machines,
because of space and confidentiality reasons. The corresponding metrics are sum-
marized in Table 3.

Table 3. The results of the metrics suite for the NetworkMaster

Class DIT NOC NOP NRI NPI CCS

NetworkMaster 0 0 5 4 4 0
Divide 0 0 0 1 3 11
Merge 0 0 0 3 1 8
MonitoringMgr 0 0 0 2 1 0
RequestMgr 0 0 0 2 1 14
RegistryMgr 0 0 0 4 7 197

Results. The data from the table shows that the RegistryMgr has the high-
est complexity in most of the metrics. Therefore we classify it as being highly
fault-prone. As described in [26], several test suites were executed against an



448 S. Wagner and J. Jürjens

implementation of the network master. Some of which were developed manually,
other based on existing Message Sequence Charts, and the remaining ones were
automatically derived from an AutoFocus model. There were 24 faults identified
by the test activities of which 13 are programming faults, 9 requirements defects,
and 2 model faults. Of these faults 21 can be attributed to the RegistryMgr and
3 to the RequestMgr. There were no faults revealed in the other components.
Hence, the high fault-proneness of the RegistryMgr did indeed result in a high
number of faults revealed during testing.

3.3 Discussion

The two case studies confirmed our approach for identifying fault-prone com-
ponents using model metrics. In both cases the suite ranked the components
as high-fault that had code implementations which actually contained the most
faults. Both models were developed completely independent of the implemen-
tations. Hence, model faults that lead to implementation faults cannot have an
influence. Unfortunately, inheritance was not used in the studies. Therefore the
validity of these metrics remains to be shown. It holds for the whole approach
that the the external validity of the results of the case studies is limited as the
small sample size does not allow a thorough statistical analysis.

Correlation of Metrics. A main problem of software metrics is that different
metrics are often not independent. We analyse our proposed metrics suite con-
cerning the correlation of the different metrics based on the data from the case
studies. The sample size is small therefore the validity is limited but may give
first indications.

We cannot analyse DIT and NOC because they were not used in the case
studies. Also it does not make sense to analyse NOP with only two non-null
data points. Therefore we concentrate on NRI, NPI, and CCS. The correlation
between NRI / CCS and NPI / CCS is low with a a correlation coefficient
r = −0.17 and r = −0, 13, respectively. Only the correlation between NRI and
NPI is more interesting. The correlation coefficient is 0.55 but the Chi-test and
F-test only yielded probabilities of 0.35 and 0.17, respectively, for both data rows
coming from the same population. Hence, we have a good indication that the
metrics of our suite are not interdependent.

Correlation of Metrics and Faults. As we use the classification approach
with our metrics, we cannot estimate numbers of faults and therefore a corre-
lation between estimated and actual faults is not possible. Also a correlation
analysis between the single metrics and the number of found faults is not helpful
because only the combined suite can provide a complete picture of the complex-
ity of the component. However, the statistical correlation between the metrics
and the number of faults is not as low as expected. For NRI the coefficient is
0.35, for NPI 0.58, and for CCS 0.53 but chi- and f-tests showed a very low
significance probably because of the small sample size.
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Observations. By looking at the case studies it seems that the CCS metric has
the most influence on the fault-proneness. However, there are components that
do not have a state machine but their behavior is described by its parts and still
might contain several faults. It also can be rather trivial to see that a specific
component is fault-prone as in the case of the RegistryMgr of the NetworkMaster.
This component has such a large state machine that it is obvious that it has to
contain several faults. In larger models with a large number of components this
might not be that obvious. Finally, there is no evident influence of the application
type on the metrics visible from the case studies as both have components with
a rather small number of interfaces and parts and a few components with quite
large state machines.

4 Related Work

There have been few approaches that consider reliability metrics on the model
level: In [7] an approach is proposed that includes a reliability model that is based
only on the static software architecture. A complexity metric that is in principle
applicable to models as well as to code is discussed in [5], but it also only involves
static structure as well. In [6] the cyclomatic complexity is suggested for most
aspects of a design metric but not further elaborated.

In et al. describe in [28] an automatic metrics counter for UML. They classify
their metrics into various categories including fault proneness. The metrics in
this category are WMC, NOC, and DIT. The latter two are the same as in our
approach. The calculation of WMC is given as the sum of the complexities of
the methods but no further explanation is given how this complexity should
be calculated from the model. State machines and structured classes are not
analysed.

A white paper from Douglass [29] contains numerous proposals of model
metrics for all types of UML models. Therefore this work has several metrics
that are not comparable to ours. Moreover, detailed explanations of the metrics
is not available for all of them. Our DIT metric is similar to the Class Inheritance
Depth (CID), and NOC is comparable to Number of Children (NC). The Class
Coupling (CC) aims at a similar target as the NRI and NPI metrics but does not
consider the interfaces but the associations. Finally, there is a complexity metric
for state machines called Douglass Cyclomatic Complexity (DCC) that is also
based on the metric from McCabe but handles nesting and and-states differently.
Also triggers and guards are ignored. The whole intention of DCC is different
to our CCS metric. Douglass considers more the aspect of the complexity in
terms of comprehensibility whereas we want to capture the inherent complexity
of the behavior of the component. Douglass gives rough guidelines for values
that indicate “good” models but does not relate the metrics to fault proneness.

Other approaches have been used for dependability analysis based on UML
models, although these do not consider complexity metrics: In [30] an approach
to automatic dependability analysis using UML is explained where automatic
transformations are defined for the generation of models to capture systems de-
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pendability attributes such as reliability. The transformation concentrates on
structural UML views and aims to capture only the information relevant for de-
pendability. Critical parts can be selected to avoid explosion of the state space.
A method is presented in [31] in which design tools based on UML are aug-
mented with validation and analysis techniques that provide useful information
in the early phases of system design. Automatic transformations are defined for
the generation of models to capture system behavioral properties, dependability
and performance. There is a method for quantitative dependability analysis of
systems modeled using UML statechart diagrams in [32]. The UML models are
transformed to stochastic reward nets, which allows performance-related mea-
sures using available tools, while dependability analysis requires explicit model-
ing of erroneous states and faulty behavior.

5 Conclusions

We propose an approach to determine fault-prone components of a software
system in the design phase already by complexity analysis of the design models.
We use the concept of the cyclomatic complexity of code, lift it to the model
level and combine it with adjusted object-oriented metrics originally from [8] to a
metrics suite for UML 2.0. The metrics from [8] and [11] have undergone several
experimental validations, e.g. [2, 9, 4, 3]. Because we used these metrics as a basis
for our metrics suite we believe that it is a good indicator for fault-proneness.
This was confirmed in two industrial case studies.

The metrics can also be used in conjunction with static analyses of the model
concerning reliability [33].

For future work, we plan further experimental work to validate the approach.
Furthermore, as soon as more data is available a discriminant analysis similar
to [34] will be used to get a more solid mathematical foundation for the classifi-
cation.
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Abstract. A reusable class must be tested many times: each time modifications 
are applied to it or its base classes; when a subclass is created, in which case the 
inherited and redefined features must be retested in the new context. Therefore, 
a class should be easy to test, specifically for test execution and results analysis, 
since these activities must be repeated often. Inspired by R. Binder’s self-
testing class concept [4] we defined, in a previous work, a testable class as a 3-
tuple: class implementation, class behavior model and built-in test (BIT) 
mechanisms. In this work we present how to use this information when a class 
is changed. Regression testing is necessary each time a software is changed, to 
assure that the modifications do not adversely affect the unchanged parts. It is 
assumed that the test suite applied when testing the old version is available for 
reuse. However, test suites can be large and require too much effort to be 
reapplied in their totality. In such cases, a subset of the tests must be selected. 
This selection usually requires extra information besides the source code. This 
work aims at answering the following question:  how to use test information 
contained in a testable class to do regression testing? The answer involves, 
among other aspects, the definition of an approach to select tests for reuse. The 
approach can be fully automated and does not need the source code for 
regression-test selection. 

1   Introduction 

Regression testing is applied to modified software to make sure that modified parts 
behave as intended and do not propagate unintended side effects to unmodified parts 
of the software [21]. 

Regression testing is required each time a software changes, which can occur in 
several situations [5, ch.15.1.2]: when a bug fix has been completed, when a new 
increment is generated and has to be integrated with previous increments, when a new 
system build is generated, just to mention a few. 

With the widespread use of object-oriented development and the emphasis on code 
reuse, the need for regression testing increases. For example, when a new subclass is 
created, the base class tests must be rerun on the new subclass. Also, when a base 
class is changed, it must be retested as well as all its subclasses.  

Regression testing assumes the existence of the test suite applied to the old version. 
Reuse of existing test suites can reduce regression testing efforts, but these suites can 
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be large, and one may not have enough time to rerun all tests in such suites. In this 
case, efforts must be restricted to a subset of the existing tests. The problem of 
choosing an appropriate subset of an existing test suite is called the selective retest 
problem and the techniques for solving this problem, selective retest techniques [21].  

In this paper we present a selective retest technique to be applied when a class is 
modified. Our technique uses a specification-based approach, based on a class 
behavior model, to select tests in an existing test suite. Besides, the method is based 
on information added to a class to improve its testability. Software testability 
encompasses all aspects that ease software testing, from the quality of its 
specification, design, code, and tests, to the availability of test support [4]. Since a 
reusable class must be retested each time it is modified or reused in a new context, 
test activities, in special, test execution and results analysis should not require too 
much effort. In a previous work we have proposed an approach for the construction of 
a testable class [17]. This approach was based on the concept of self-testing class [4], 
in which a class is augmented with built-in test (BIT) capabilities and a test 
specification. BIT capabilities include the means to observe an object’s state as well 
as monitor intermediate results by the use of assertions. The test specification, in our 
approach, is a behavior model for the objects of the class. This model is used for test 
case generation purposes, and in this paper we show how it can also be used for 
selective regression testing. 

Therefore, this paper addresses the regression test selection (RTS) problem at the 
class level. In other words, we want to answer the following question: given a testable 
class C which has been tested with a test suite T, how can we use its additional 
information to build a test suite T’, a subset of T, which can reveal faults in a 
modified version of C?  

To answer this question we have to consider several problems. First, we need to 
adapt existing RTS techniques to incorporate the use of the testable class information. 
More precisely, given that we have a class behavior model, we need a specification-
based selective regression test method. Second, we need information about which 
parts of the model are covered by each test case of T. Finally, we need information 
about the changes made to the class.  

The main contributions of this study are the following: (i) regression test selection 
based on a behavioral model instead of a structural model (based on source code), 
which is useful when testing black-box components; (ii) mapping of an UML Activity 
Diagram to the model used for regression test analysis; (iii) use of design for 
testability information added to a class to guide regression testing. 

In the next section we provide background information about regression testing 
and existing selection techniques. Section 3 addresses testability issues and shows our 
approach to build a testable class. In Section 4 we briefly describe the test model. 
Section 5 contains a description of the specification-based selective testing technique 
at the class level. Section 6 presents results of the application on a case study and 
Section 7 concludes the paper. 
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2   Regression Testing 

2.1   Terminology 

As already stated, regression testing is the re-execution of tests that have already been 
applied to an old version of a program  P. A regression test case is a test case that P 
has passed (i.e., for which P terminated successfully), and which is expected to pass 
when is rerun on a modified version P’. A test case that causes P’ to behave 
differently than P, reveals the presence of faults, designated as regression faults. A 
regression test suite is composed by regression test cases [5, ch.15.1].  

One regression testing strategy consists of reruning all tests in a regression test 
suite (from now on referred to as test suite), in a so called retest-all strategy. Another 
strategy consists of selecting a subset of the test suite for re-execution. Based on 
information stored with the test, together with information about the changes, relevant 
test cases are identified [16]. This is designated as selective strategy. Both strategies 
perform the same activities, namely, test re-execution, results analysis and test 
generation for the parts added to the software.  However, the retest-all strategy does 
not do any analysis before re-running the tests. If the effort to select a subset of tests 
to run is less than the effort to execute and analyze results of the tests that are omitted, 
the selective regression testing is economically more interesting than the retest-all 
strategy [16].  

Regression testing is typically accomplished in two phases [21]: preliminary and 
critical. In the preliminary phase, programmers enhance and/or correct the software; 
in the meantime, test analysts can be developing test plans for the modified parts. 
When modifications are completed, the critical phase begins. Efforts to reduce 
regression testing costs aim at confining expensive activities on the preliminary 
phase. 

2.2   Selective Regression Techniques 

When using a selective regression technique, one wishes that the reduced test suite 
does not omit test cases that can reveal a regression fault. A regression test suite is 
safe when it consists of all test cases that can reveal faults in the modified component 
(or system).  

A number of selective regression testing techniques have been proposed in the 
literature. Most of them are based on source code control flow or data flow analysis 
[11, 12, 22, 23].  Based on information about code modification of the two versions of 
a program (or class), as well as the parts of the program exercised by the tests when 
running on the old version, test cases are selected. These techniques can be safer and 
more precise in selecting test cases that cover the modifications than those based on 
requirements or design changes, as ours. A drawback is that they require that the 
changes be already implemented, which means that much of the regression testing 
effort is left to the critical phase. There are a few techniques that use specification 
information. One of these works presents an RTS technique based on an Activity 
Diagram [7], just like ours. Their work, however, do not address class testing 
specifically. Briand et al present an RTS technique based on OO design that uses 
UML class and case/sequence diagrams [6]. Our work also considers design changes 
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as theirs, but uses the Activity Diagram instead. Besides, their work considers more 
than one class whereas ours considers a single class. None of the aforementioned 
works consider the use of design for testability information to help in regression 
testing as ours does. 

3   Testable Class 

Design for testability techniques and the self-testing concept have been used in 
hardware for a long time; however, only recently this subject has earned more 
attention in the software community.  

As pointed out by different authors [4, 9], a testable software might possess a set of 
attributes such as observability, controllability and understandability. Roughly 
speaking, the more we can observe the states and outputs of a component, the more 
we can control it during testing; and the more information we have about a 
component, the easier it is to effectively test it. 

A pioneering work in software testability is the approach proposed by D. Hoffman, 
which adds a test interface to a module in order to achieve the necessary control and 
observation during test execution [13]. Integrating assertions in the source code is also 
proposed in his work. An assertion is a Boolean expression that defines necessary 
conditions for correct execution of the software [5, ch.17]. Besides, he proposes that 
test suites be described in a specific notation from which drivers1 are automatically 
generated.  

R. Binder adapts this approach to the OO context, proposing the construction of 
self-testing classes [4]. A self-testing class is composed by the class (or component) 
under test (CUT) augmented with built-in test (BIT) capabilities and a test 
specification. On one hand, with the BIT capabilities it is possible to access, control 
and observe an object’s internal state as well as monitor intermediate results by the 
use of assertions. On the other hand, the test specification is a detailed description 
about how to execute the tests cases, and can be used for test generation and also as a 
test oracle.  

Several approaches have been proposed since then. In some of them, test cases 
generated during development are delivered with the component [4, 14, 24]. An 
advantage of these approaches is that effort is reduced in the re-execution of those test 
cases. 

Other approaches can augment the component with information that component 
users might require for analysis and testing tasks. In the Self-Testing COTS 
Component (STECC) strategy, for example, components are augmented with analysis 
and testing functions [3]. Another approach proposes the use of a component 
metacontent, which consists of information (metadata) about components and utilities 
(metamethods) for computing and retrieving such information [19]. Metacontents are 
not restricted to testing information; instead, they can support some of software 
engineering tasks that depend on and can benefit from information about external 
components. 

                                                           
1 A driver is a class, main program or external software that applies test cases to the software 

under test [4, ch.13.1]. 
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In a previous work we proposed an approach inspired by the self-testing class 
concept mentioned above to build a testable class [17]. Differently from that 
approach, a test model is used instead of a test specification, representing the class 
objects behavior. A tool retrieves this test model for test case generation purposes.  
Since this model is the core of the RTS technique we propose, it is described in more 
detail in Section 4. 

The embedded test information or built-in test (BIT) capabilities comprises: 
assertions, a reporter method and a BIT access control. The assertions implement the 
class contract, according to the Design by Contract concept [18]. A contract describes 
the relationship between an object’s interface and a client. This contract can be 
guaranteed by implementing certain runtime checks, which are the preconditions, 
post-conditions and invariants. A precondition checks whether the object’s clients 
have fulfilled their part of the contract. This usually means that input parameters are 
checked before a method is executed, to make sure that these parameters are 
appropriate for use in the method. A post-condition checks the results of the 
processing performed by the method. It is checked at the end of the method, just 
before its return. An invariant checks whether the state of the object is maintained 
between method calls. It is usually checked just after an object’s construction, upon 
entry to a method and before leaving the method. In the C++ version used in this 
study, macros were used to implement these checks. Except for invariant checking 
which is performed by the Invariant( ) method because this checking can be very 
complex. Therefore, the testable class interface comprises the Invariant( ) and Report 
( ) methods, the latter being responsible for reporting an object’s state. 

The BIT features can only be accessed if the class is in test mode, which is set by 
the user through BIT access control capability. This control capability prevents the 
misuse of BIT services and for the moment it consists of a compiler directive, which 
includes or excludes these capabilities. More details about our approach for 
constructing and using a testable class can be found on [17]. 

4   The Class Behavioral Model 

The model used to represent the class behavior shows the sequential constraints (or 
precedence relation) among the messages the class can accept.This model is simpler 
than a state transition or a sequence diagram, in which it specifies what can be done, 
and in what order, but it is neither concerned with object states nor with the events 
that cause them to change. Our purpose was to have a simple model, quite similar to 
the control-flow graph model that represents the code structure of a program. The 
reason is that this model was the one used by Rothermel and Harrold regression test 
selection algorithm [20] which is used in this study.  

The UML Activity Diagram (AD) fits our purposes, but some constraints must be 
made about the way it can be used. First of all, each activity represents processing of 
a message that can be sent to a class object. A transition from A to B in this diagram 
indicates that A must be sent before B, but sending A does not imply the sending of 
B.  Second, we use a subset of the AD, as illustrated in Figure 1. This subset is based 
on an UML version 1.3 described in [8, ch.9]. The descriptions given below are based 
on this reference. 
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Fig. 1. Elements of the Activity Diagram considered in this study 

The AD can support conditional behavior, which is delineated by branches and 
merges. A branch is a single incoming transition and several guarded outgoing 
transitions. A guard is a condition that must be true in order to traverse a transition. 
Only one of the outgoing edges can be taken, so the guards must be mutually 
exclusive. Using “[else]” as a guard in a transition indicates that this transition should 
be taken only if all other guards from the branch are false. A merge marks the end of a 
conditional behavior started by a branch. It has various incoming transitions and only 
one outgoing. Branches and merges can be represented using decision points (the 
diamonds shown in the figure). 

An AD may be divided into sub-activities which allow the hierarchical 
organization of the diagram. Sub-activities may be detailed in a separate diagram for 
the sake of readability.  

An AD also allows dynamic concurrency, which is useful to represent interactions 
without the use of loops in the diagram. A multiplicity mark (*) is used to indicate 
that a (sub-) activity can be executed many times. 

It is also worth noting that a class being modeled may interact with other entities 
(for instance human beings, components, other objects) to accomplish a task. For the 
purpose of this study, all external references (databases, files, methods and others) are 
considered as part of a method’s internal processing and, for those reasons, do not 
appear in the diagrams. Of course, stubs2 may have to be constructed for testing 
purposes but this is beyond the scope of this text. 

Activity Diagrams can also represent parallel behavior, in which various activities 
can be executed concurrently. This means that for these activities, the precedence 
relation does not hold, i.e., they can be executed in any order.  For that reason, 
concurrent behavior is not being considered in this study. One way to overcome this 

                                                           
2 A stub is a partial, temporary implementation of a component, serving as a placeholder for the 

parts of the software that are not tested but are used by the software under test. 
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situation is to encapsulate concurrent activities in sub-activities, the latter being 
executed according to the precedence relation in the diagram containing it. 

Swim lanes, which allow the organization of activities among a group, are also not 
considered because our focus is on a single class. 

5   Selective Regression Test Approach 

Our RTS analysis is accomplished according to the following steps: (i) trace test cases 
to the elements of the behavioral model that are covered during the old version 
testing; (ii) perform change analysis to identify the modifications between the old and 
new versions of the behavioral model; (iii) identify the model elements affected by 
the changes and (iv) select test cases from the original test suite to reapply on the new 
version. These steps are detailed in the rest of this section, but first we formalize the 
behavioral model and introduce some notation and terminology necessary to explain 
the analysis approach. 

5.1   The Test Model 

A test model, which is a directed graph, is derived from the AD constructed according 
to what is described in Section 4, in the following way: each vertex in the graph 
corresponds to an activity or sub-activity, as well as the start and exit marks of the 
AD. The edges correspond to transitions in the AD, including branches and merges. 
In this way we obtain a control flow graph that represents the behavior instead of the 
source code structure of a class. It is designated as behavioral control flow 
graph(BCFG) [2, ch.3]. 

We now formalize this model, presenting the terminology and notation that will be 
used in the sequel. Most of the notation used here is based on [1]. 

The class BCFG is represented by a graph, G= (V, E, s, x) with vertices V, edges 
E, a unique entry vertex s and an exit vertex x. We assume that all vertices are 
reachable from s, and x is reachable from all vertices. Each vertex has a label, which 
is the signature of an interface method, containing method name, arguments’ names 
and types, and return value type. A sub-activity is considered as a method without 
parameters. Entry vertex s has the label “start” and exit vertex has the label “exit”. 
The notation S(v) designates the label of a vertex v. 

Edges are also labeled. Labels are in the form of [condition] or [else], according to 
the corresponding guard in the AD. If a vertex has only one outgoing edge, its label is 
“ε”, not shown in the figures to avoid cluttering them. An edge is designated as e = 
(v, w, l), where v is the source vertex, w is the target vertex and l is the edge label. 
Labels uniquely identify the outgoing edges of a vertex.  

A path in G is a sequence of edges: p = [e1, …, en], where the target vertex of ei is 
the source vertex of ei+1 for 1 ≤ i ≤ n. A path can also be represented as a sequence of 
vertices and edge labels: p = [v1, l1, …, ln,vn+1], The ith vertex of p is denoted pv[i], 
and the ith edge label, pl[i]. 

A path from s to x is called a complete path. In a class BCFG, it represents a 
possible life history of an object, from creation to destruction. In this study, since the 
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graph is acyclic, paths are loop-free, i.e., no edge is repeated in the sequence that 
constitutes the path. 

A test case traverses (or covers) a complete path in G. Since G can be considered 
as an executable model, we refer to the execution of a test case t on G, denoted by 
G(t). It is worth noting that differently from a structural control flow graph, which is 
obtained from the program source code, a path in a BCFG may not correspond to a 
path in the implementation, since this one is considered as a black-box. Hence, unless 
explicitly stated, each time we refer to a path traversed by a test case we mean a path 
in the model, not in the implementation. 

Various test cases can traverse the same path p in G with different test data or 
having a different configuration. Test case design is not our concern in this paper, as 
this was the subject of another study [17]. The focus here is on regression testing, so 
we assume that test cases are already available for reuse. They may have been 
generated using the test strategy described in the aforementioned reference or not. 
What interests us here is to determine the paths traversed by each test case, as it will 
be shown in the next section. 

5.2   Tracing Test Cases to the Behavioral Model 

Every test case design method implies a coverage metric that measures the extent to 
which the elements required by the test method have been exercised by a given test 
suite [5, ch.3.2]. For example, for a test method based on a control-flow graph, 
coverage metrics can be the percentage of vertices covered or the percentage of edges 
covered at least once by a test suite. 

There are several tools that support control-flow coverage metric for source code. 
Basically, they add instrumentation statements to the code that then will be executed 
and the coverage metrics will be recorded. In this study, where the behavioral model 
is of concern rather than the source code, to measure coverage we need to implement 
the model. As suggested by B. Beizer, the model can be programmed in a language 
such as C/C++, Java, or any other supported by a coverage tool [2, ch.3.5]. As this 
author points out, implementing the model and the real software are distinct things. 
The model implementation does not include details such as I/O, operating system 
interfaces or anything else. Also, it does not need to run on the target platform, 
efficiency is not a concern either and finally, it does not have to be integrated with the 
rest of the software. 

Having stated that, let us consider the path p covered by a test case t when running 
on G, the behavioral model of the old version of a class C. Since the elements of 
interest to the control-flow analysis are the edges, we obtain the edges covered by 
each test case when running on G. We denote this set of covered edges by Ep. 

5.3   Change Analysis 

In this step one has to consider the changes to be applied to the class and how to map 
them to the BCFG.  

Modifications to a class can be considered as either contract changes or 
implementation changes [5, ch.15.2]. A contract change is a consequence of 
requirements or design changes that affect the class external interfaces. Examples of 
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such a modification are: addition or removal of interface methods, alteration of 
method signature or changes that alter the external visible contract of the class, that is, 
alteration of pre- and post-condition methods, or class invariant. 

An implementation change comprises all changes to a class that are not visible to 
its clients. In other words, this kind of change does not alter the class external 
behavior. 

The class behavior model must be updated to reflect the changes to a class. Some 
changes affect the control-flow, causing addition or removal of vertices or edges. It is 
worth noting that a change in a vertex or edge label is considered as a removal of old 
vertex/edge and an addition of new ones. However, other changes do not affect the 
BCFG. For example, if a method maintains the same signature but its post-condition 
changes, or when it accesses an attribute that has changed, the BCFG, built as 
explained in section 5.1, is not affected. Since our analysis is based on this model, we 
need some way to identify the vertices whose changes are not “visible” to the BCFG. 

Let v ∈ V designate a vertex in the old version of the graph G with signature S(v). 
Let v’ ∈ V’ designate a vertex in the new version, and in the new version G’ with 
signature S(v’). We define a set Vc ⊆ V as follows: if v and v’ are such that S(v) = 
S(v’) but v and v’ differ in some way, then v ∈ Vc.  

It is worth noting that Vc comprises any changes, including implementation 
changes. However, the latter are not the focus of this study because we are interested 
in changes that can be determined before the implementation phase. This does not 
mean that these changes do not deserve regression testing. Of course, the analysis 
presented here can be used in this case too, but the only point is that this analysis must 
be postponed to the implementation phase, which can have an impact on regression 
test schedules. 

5.4   Identification of the Affected Edges 

To identify the edges affected by the changes we use the graph walk algorithm as 
presented in [1, 20]. Some assumptions must be established in order to apply this 
algorithm. The first one, which is a concern of our approach, is that G’ is an updated 
version of G, according to the changes made to the class. Second, which is also our 
concern, the set Vc is also defined. 

A third assumption is that every complete path through G is potentially executable 
[1]. A path p in G is executable when it is possible to find input parameter values that 
will cause p to be traversed when running t on G. As mentioned earlier, we consider 
the path to be executable on the model, and not in the implementation. Although this 
is highly desirable, it is in practice very difficult to verify in black-box testing. One 
way to determine whether a behavioral control flow path is executed is to check 
intermediate processing results [2, ch.3]. In this way, the BIT capabilities (c.f. Section 
3) can be very helpful. 

Before defining the fourth assumption, let us first introduce some definitions. The 
graph walk algorithm mentioned usually determines the equivalence between two 
vertices of G and G’. Like in the other studies based on this algorithm, we use textual 
equivalence, i.e., two vertices v and v’ are equivalent if their signatures, S(v) and 
S(v’) are lexicographically identical. Let Equiv(v, v’) be true if v is equivalent to v’. 
Using this definition, one can also establish the equivalence between two paths. The 
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paths p and q are identical if [1]: (i) p and q have the same length (same number of 
edges); (ii) Equiv (pv[i], qv[i]) for all i, and (iii) pl[i] = ql[i]) for all i. 

 
Begin 
De = ∅ 
Re = ∅ 
Vvis = ∅       // set of visited vertices  
Classify_edges (s, s’) 
End 
 
Procedure Classify_edges (v, v’) 
Begin 
if v∉ Vvis then 

Vvis = Vvis ∪ {v} 
foreach edge e = (v, w, l) ∈E do 

w’ = succ(v’, l) 
if w’ is null then     // the edge has been removed 

De = De ∪ {e}      
    else 

if Equiv(w, w’) then 
if w ≠ x then 

if w ∈ Vc then      // w changed but  S(w) is unchanged  
Re = Re ∪ {e} 

fi 
    Classify_edge (w, w’) 

     fi 
     else           // S(w) has changed or w has been removed  

      De = De ∪ {e}   
    fi 
fi 

    od 
 fi 
end 

Fig. 2. Algorithm that obtains affected edges 

Then we can define the fourth assumption, also called Controlled Regression 
Testing Assumption [20], which states the following: if G(t) traverses complete path 
p and G’ contains a complete path p’ equivalent to p, then G’(t) will traverse p’ and 
have the same observable behavior as G(t).  

For this assumption to hold, it must be ensured that regression testing for C’ occurs 
in the same context (operating system, runtime system, compiler, etc) used for testing 
C. This is not a restrictive assumption either because this is common use in testing, in 
case of failure occurrence, so that the same behavior can be reproduced [12]. 

Under these four assumptions, the algorithm presented in Fig. 2 is applied to G and 
G’ to obtain the affected edges. As the graph walk algorithm from Rothermel and 
Harrold [20], it consists of a synchronous depth-first search of the two graphs, with 



 Regression Test Selection for Testable Classes 463 

some modifications. Instead of having only one set containing the affected edges, we 
have two sets: De (set of deleted edges) and Re (set of retestable edges). As it will be 
shown in the next section, these sets will drive test case selections. 

The algorithm is always called with equivalent vertices v and v’. If v has already 
been visited, the algorithm returns. Otherwise, v is inserted in the set of visited 
vertices, Vvis, and each of its outgoing edges, e, are considered in turn. The function 
succ(v, l) returns the vertex w which is the successor of v achieved through an 
outgoing edge e with label l. If succ(v’, l) returns null, this means e no longer exists 
in G’, and then it is inserted in the set of deleted edges. Otherwise, if there is such a 
vertex, w’, the algorithm checks whether w and w’ are equivalent. If they are 
equivalent and w is not the exit vertex3, the algorithm then checks whether w has a 
modification that do not alter the control flow, in which case the edge e is inserted in 
the set of retestable edges. Then the procedure Classify-edges is called recursively 
to continue the search. 

s

m 0 m 1

m 2 m 3

m 4 m 5

m 6

x

l1

l2
l
3

l1 l2

 
 

s'

m0' m1'

m2' m3'

m4' m5'

m6'

x'

l1

l2
l3 l1 l2

l1

m7

l2

l1

l2
l3

 

Fig. 3. Example graphs G and G’ 

To illustrate how the algorithm works, let us consider the two example graphs 
shown in Fig. 3. 

In this example we suppose that m1’ and m5’ have the same signature as m1 and 
m5, respectively, but they are modifications of these two methods in the new version. 
In other words, Vc = {m1, m5}. The new vertex, m7, as well as the new edges, are 
represented as dotted lines in the figure. By applying the procedure Classify-edge to 
G and G’, the results are the following sets: 

 De = {(m1, m3, ε)} 
 Re = {(m3, m5, l2), (m2, m5, l3), (s, m1, l2)} 

                                                           
3 The start vertices s and s’ are considered as equivalent, as well as the exit vertices. 

G G’ 
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5.5   Test Case Selection 

Now it is time to select T’⊆ T, the reduced regression test suite. Using the sets De and 
Re obtained in the previous step, we can classify the test cases in the following 
categories [7, 11, 15]: 

− Reusable test cases (TU): contains test cases whose paths p in G(t) and p’ in G’(t) 
are equivalent and pv[i] ∉ Vc for all i. In terms of the sets De and Re, the set TU ⊆ T 
can be defined as follows: for a given test case t, if De ∩ Ep = ∅ and Re ∩ Ep = ∅ 
then t ∈ TU. These test cases are still valid and need not be rerun. 

− Retestable test cases (T’): contains test cases whose paths p in G(t) and p’ in G’(t) 
are equivalent and ∃i | pv[i] ∈ Vc. These test cases are still valid and should be 
reapplied, maybe with some modifications, e.g., adjusting parameter values due to 
changes in a precondition. In terms of the De and Re, the set T’ ⊆ T can be defined 
as follows: for a given test case t, if De ∩ Ep = ∅ and Re ∩ Ep ≠ ∅ then t ∈ T’.  

− Obsolete test cases (TO): a test case that traverses a path p in G that has no 
equivalent in G’. These test cases are no longer in accordance with the class 
specification and hence can no longer be reapplied. In other words, if De ∩ Ep ≠ ∅ 
then t ∈ TO. 
 

Test Edges covered (Ep) 
t1 {(s, m0, ε), (m0, m2, ε), (m2, m3, l1), (m3, m4, 

l1), (m4, m6, ε), (m6, x, ε)} 
 

t2 {(s, m0, ε), (m0, m2, ε), (m2, m3, l1), (m3, m5, 
l2), (m5, m6, ε), (m6, x, ε)} 

 

t3 {(s, m0, ε), (m0, m2, ε), (m2, m4, l2), (m4, m6, 
ε), (m6, x, ε)} 

 

t4 {(s, m0, ε), (m0, m2, ε), (m2, m5, l3), (m5, m6, 
ε), (m6, x, ε)} 

 

t5 {(s, m1, ε), (m1, m3, ε), (m3, m4, l1), (m4, m6, 
ε), (m6, x, ε)} 

 

t6 {(s, m1, ε), (m1, m3, ε),(m3, m5, l2), (m5, m6, 
ε), (m6, x, ε)} 

 

 
 
De = {(m1, m3, ε)} 
 
Re = {(m3, m5, l2),  
(m2, m5, l3), (s, 
m1, l2)} 
 
TO = {t5, t6} 
 
T’ = {t2, t4} 
 
TU = {t1, t3} 

 (a)  (b) 

Fig. 4. Available test cases and regression-test-selection analysis results 

As it can be deduced from the definitions above, the categories are pairwise 
mutually exclusive, i.e., TU ∩ T’∩ TO = ∅. 

To illustrate that, we use the example shown in Fig. 3.  Fig. 4(a) shows the Ep sets 
for each test case of T, whereas Fig. 4(b) contains the defined sets. 

5.6   Evaluation of the RTS Approach 

RTS techniques can be compared on the basis of four criteria proposed by Rothermel 
and Harrold [20]. Their criteria are intended for code-based techniques, but with some 
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adaptation they can also be used in our approach. The criteria are inclusiveness, 
precision, efficiency and generality. 

Inclusiveness is the percentage of the test cases that may cause two versions of a 
program P and P’ to behave differently. Inclusiveness is related to safety [1]: a safe 
RTS technique never eliminates a test t if the two versions behave differently on t. 
Under the assumptions in Section 5.4, our technique can be considered as inclusive, 
from which all test cases that exercise behavioral control flow modifications are 
selected. Besides, another assumption mentioned by Rothermel and Harrold, that the 
test suite should not contain obsolete test cases [21] is assured in our technique once 
obsolete test cases are identified and removed. However, implementation changes 
(c.f. Section 5.3) may not be “visible” to our technique, in which case certain test 
cases that exercise such modifications may not be selected. In that sense, the 
technique cannot be considered as safe. Nevertheless, there is a solution already 
pointed out in another research [6]: the expected implementation changes are 
informed to the test analyst in advance, so that they can be taken into account when 
constructing the Vc set, before code changes are implemented. With this information, 
all tests that exercise the modified method are selected, even some that could be 
eliminated, i.e, those which do not traverse the modified code. In this way, our RTS 
technique can be safe, but not precise. Precision is the percentage of selected test 
cases that do not produce different behavior in the new version.  

Efficiency is relative to the space and time requirements of the RTS technique. 
Because test selection is based on a behavioral model rather than on source code, the 
analysis does not need the source code to obtain the structural control-flow graph or 
test coverage information. In addition to that, the analysis can be performed during 
the preliminary phase of regression testing (c.f. section 2), before any code change is 
implemented. However, an executable version of the behavioral model is necessary to 
perform the analysis. 

Generality refers to the range of application of the RTS approach. Our technique 
applies when a behavioral model of the class exists, and it must be updated when the 
class changes. Although the testable class approach presumes a C++ implementation, 
the analysis is based on a behavioral model, so the technique is code-independent. 

6   Case Studies 

In this section we present the results of the application of our methodology on a case 
study, which is a real library developed by a research community, available at GNU 
site [10]. The CommonC++ is a C++ framework offering portable support for 
threading, sockets, file access, daemons, persistence, serial I/O and system services. 

6.1   Subjects 

Two classes of the CommonC++ library have been used as case studies: Socket and 
its derived class UDPSocket. The first one is an abstract class and its methods were 
only tested in the derived class context. The classes implement the datagram 
transmission protocol - UDP (User Datagram Protocol) through a socket 
implementation.  
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Table 1. Summary of the subjects used in the case study 

   Public Interface Test model (BCFG) 
Class Version LOC Methods Attributes Vertices Edges 

1 668 16 0 15 34 
2 662 16 0 15 34 
3 703 16 0 15 34 
4 864 16 0 15 34 
5 864 16 0 15 34 

Socket 

6 902 17 0 16 36 
1 127 8 0 23 49 
2 128 8 0 23 49 
3 152 8 0 23 49 
4 154 8 0 23 49 
5 154 8 0 23 49 

UDPSocket 

6 154 8 0 24 51 

Table 1 gives a summary of the characteristics of the six versions of both classes 
used in this study. The methods were small, the shortest one having 2 LOC and the 
biggest one, 78 LOC. 

6.2   Change Analysis 

The differences between each pair of versions were obtained using the Unix utility, 
“diff”. Table 2 shows the kind of information extracted from the comparison of 
classes Socket (C1) and UDPSocket (C2). The modifications were classified 
according to the categories presented in Section 5.3. The table shows the total number 
of methods and attributes changed (added, changed or deleted). The last two rows 
present the total number of contract and implementation changes. As it can be 
noticed, the second version contains only contract modifications. In fact, the 
modifications consisted of changing the method’s signature, which in our analysis 
corresponds to a removal of an old method and an addition of a new one. 

Table 2. Impact Analysis Results 

 Total v.1 Added Changed Deleted Total v.2 
 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 
Attributes 5 1 0 0 1 0 0 0 5 1 
Methods 16 8 3 4 4 0 3 4 16 8 
Contract 16 8 0 0 4 0 0 0 16 8 
Implementatio
n 

0 0 0 0 4 4 0 0 0 0 

6.3   Test Case Selection 

The bar charts in Fig. 5 and 6 summarize the results of the RTS analysis for the two 
classes. The Y-axis shows the amount of test cases. The X-axis contains for each 
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version: the size of the test suite (including new test cases), as well as the number of 
reusable (RE), retestable (RT) and obsolete (O) test cases. 

As it can be observed, the size of the test suite did not vary from one version to 
another – it remained constant for the Socket class. From the regression testing point 
of view, version 2 was the worst because the number of obsolete test cases was the 
highest (68% for UDPSocket). However, this was expected according to the report 
shown in Table 2. 
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Fig. 5. The graph of the test suite for each version of class Socket 

Fig. 6. The graph of the test suite for each version of class UDPSocket 

It is also worth noting that for all versions except the second, the number of 
reusable test cases is high, meaning that most modifications did not affect the class 
behavior. Moreover, for versions 5 and 6 no tests needed to be reapplied, as the 
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change consisted of the addition of a new method to the interface of the class Socket. 
New test cases were generated to test this new method though. 

Finally, to determine whether the selected test cases really traversed a modification 
in the code, we inserted, at each modified location, a statement that writes “>>> 
method name: modification_id” to a log file. The result was that all the 
modifications were traversed by the retestable test cases. We repeated the same 
experiments with the reusable test cases and the result was that no modifications were 
traversed.  

Results are promising, in which savings in retesting efforts were achieved without 
compromising the safety of the technique. Of course, further experiments are 
necessary with more diverse subjects to generalize the results obtained here. 

7   Conclusions and Future Works 

This paper has presented an approach for selecting regression tests for testable 
classes. The technique is specification-based, in which a behavior model of a class is 
considered.  This model represents the different ways to create an object, the different 
tasks it starts and the different ways to destroy it. The technique selects test cases 
from existing test suites that traverse the different paths in the class behavior model. 
The approach adapts an algorithm already proposed in the literature by Rothermel and 
Harrold, to use a behavioral instead of a source code-based model. The technique is 
not safe as theirs in selecting test cases that effectively exercise the modifications, 
unless implementation changes are taken into account. However, since it is not 
source-code dependent, it presents the following advantages: (i) it can be applied in 
the preliminary phase of regression testing, when the implementation of the changes 
is not yet complete. The test and the development analysts can then work in parallel, 
which saves time; (ii) it can be applied by users who may not have access to the class 
source code. 

In addition to that, the regression testing activity can also benefit from the use of a 
testable class because, besides the behavioral model, the class also contains built-in 
testing capabilities that are helpful during testing. One of these capabilities is the 
implementation of the class contract that can help in the results’ analysis.  

Although the current work addressed C++ software, it can be applied to classes 
written in other languages, once the selection of test cases is not source code 
dependent. 

An empirical study using a real world class library was performed to show the 
applicability of the technique. Of course, further experimentations are being 
envisaged. In the short term, a comparison with other techniques, even white-box 
ones, is being considered. 

In the long term, we envisage the integration of our RTS technique to a test case 
generation tool developed in a previous work. In this way, users can have a unique 
tool to develop new test cases as well as to select tests from an existing test suite. 

Additional future works consider loops and concurrence. Besides, the proposed 
technique considers a class and its subclasses, but does not consider the interaction 
among classes. This will also be the subject of another study. 
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