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Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 17 satellite workshops (AVIS, BYTECODE, CEES, CLASE, CMSB,
COCV, FAC, FESCA, FINCO, GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP,
TGC, UITP), seven invited lectures (not including those that were specific to
the satellite events), and several tutorials. We received over 550 submissions to
the five conferences this year, giving acceptance rates below 30% for each one.
Congratulations to all the authors who made it to the final program! I hope that
most of the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of
Edinburgh, in cooperation with
– European Association for Theoretical Computer Science (EATCS);
– European Association for Programming Languages and Systems (EAPLS);
– European Association of Software Science and Technology (EASST).

The organizing team comprised:
– Chair: Don Sannella
– Publicity: David Aspinall
– Satellite Events: Massimo Felici
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– Secretariat: Dyane Goodchild
– Local Arrangements: Monika-Jeannette Lekuse
– Tutorials: Alberto Momigliano
– Finances: Ian Stark
– Website: Jennifer Tenzer, Daniel Winterstein
– Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering

Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and
Reykjav́ik), Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn
Duesterwald (IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro
(Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri (Bologna),
Reiko Heckel (Paderborn), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Kim Larsen (Aalborg), Tiziana Margaria (Dortmund), Ugo Mon-
tanari (Pisa), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh),
Vladimiro Sassone (Sussex), Peter Sestoft (Copenhagen), Michel
Wermelinger (Lisbon), Igor Walukiewicz (Bordeaux), Andreas Zeller
(Saarbrücken), Lenore Zuck (Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the program committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizer of ETAPS 2005, Don Sannella. He
has been instrumental in the development of ETAPS since its beginning; it is
quite beyond the limits of what might be expected that, in addition to all the
work he has done as the original ETAPS Steering Committee Chairman and
current ETAPS Treasurer, he has been prepared to take on the task of orga-
nizing this instance of ETAPS. It gives me particular pleasure to thank him for
organizing ETAPS in this wonderful city of Edinburgh in this my first year as
ETAPS Steering Committee Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair



Preface

This volume contains the proceedings of the 11th TACAS, International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS 2005 took place in Edinburgh, UK, April 4–8, 2005. TACAS is a fo-
rum for researchers, developers, and users interested in rigorously based tools
for the construction and analysis of systems. The conference serves to bridge
the gaps among communities that are devoted to formal methods, software and
hardware verification, static analysis, programming languages, software engineer-
ing, real-time systems, and communication protocols. By providing a venue for
the discussion of common problems, heuristics, algorithms, data structures, and
methodologies, TACAS aims to support researchers in their quest to improve
the utility, reliability, flexibility, and efficiency of tools for building systems.

Topics covered by TACAS include specification and verification techniques for
finite and infinite state systems, software and hardware verification,
theorem-proving and model-checking, system construction and transformation
techniques, static and run-time analysis, abstract interpretation, compositional
and refinement-based methodologies, testing and test-case generation, analytical
techniques for security protocols, real-time, hybrid, and safety-critical systems,
integration of formal methods and static analysis in high-level hardware design,
tool environments and tool architectures, and applications and case studies.

Two types of papers are traditionally considered: full-length research papers,
including those describing tools, and short tool-demonstration papers that give
an overview of a particular tool and its applications. TACAS 2005 received 141
research and 20 tool demonstration submissions, and accepted 33 research papers
and 8 tool demonstration papers. We’d like to thank the authors of all submitted
papers.

To carry out the difficult task of selecting a program from the large num-
ber of submissions in a fair and competent manner, we were fortunate to have
highly qualified Program Committee members from diverse geographic and re-
search areas. Each submission was evaluated by at least three reviewers. After
a four-week reviewing process, the program selection was carried out in a two-
week electronic Program Committee meeting. We believe that the result of the
committee deliberations is a very strong scientific program. As this year’s invited
speaker, the Program Committee selected Ken McMillan, who presented work
on applications of Craig interpolation.

Special thanks are due to the Program Committee members and all the ref-
erees for their assistance in selecting the papers, and to Andreas Kuehlmann for
his diligent work as a tool chair. The help of the TACAS Steering Committee,
especially of Bernhard Steffen, was invaluable. Martin Karusseit gave us prompt
support in dealing with the online conference management service.



VIII Preface

TACAS 2005 was part of the 8th European Joint Conference on Theory
and Practice of Software (ETAPS), whose aims, organization, and history are
detailed in the separate foreword by the ETAPS Steering Committee Chair,
Perdita Stevens. In the years since it joined the ETAPS conference federation,
TACAS has been the largest of the ETAPS member conferences in terms of
number of submissions and papers accepted.

We would like to express our appreciation to the ETAPS Steering Committee
and especially to Don Sannella and the wonderful Organizing Committee, for
their efforts in making ETAPS 2005 such a successful event.

We hope to see you all in Vienna in 2006!

April 2005 Nicolas Halbwachs and Lenore Zuck
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Applications of Craig Interpolants in
Model Checking

K.L. McMillan

Cadence Berkeley Labs

Abstract. A Craig interpolant for a mutually inconsistent pair of for-
mulas (A, B) is a formula that is (1) implied by A, (2) inconsistent with
B, and (3) expressed over the common variables of A and B. An inter-
polant can be efficiently derived from a refutation of A ∧ B, for certain
theories and proof systems. We will discuss a number of applications of
this concept in finite- and infinite-state model checking.

1 Introduction

A Craig interpolant for a mutually inconsistent pair of formulas (A,B) is a
formula that is (1) implied by A, (2) inconsistent with B, and (3) expressed
over the common variables of A and B. An interpolant can be efficiently derived
from a refutation of A∧B, for certain theories and proof systems. For example,
interpolants can be derived from resolution proofs in propositional logic, and
for systems of linear inequalities over the reals [8, 14]. These methods have been
recently been extended [10] to combine linear inequalities with uninterpreted
function symbols, and to deal with integer models. One key aspect of these
procedures is that they yield quantifier-free interpolants when the premises A
and B are quantifier-free.

This paper will survey some recent applications of Craig interpolants in model
checking. We will see that, in various contexts, interpolation can be used as a
substitute for image computation, which involves quantifier elimination and is
thus computationally expensive. The idea is to replace the image with a weaker
approximation that is still strong enough to prove some property.

For example, interpolation can be used as an alternative to image compu-
tation in model checking, to construct an inductive invariant. This invariant
contains only information actually deduced by a prover in refuting counterex-
amples to the property of a fixed number of steps. Thus, in a certain sense, this
method abstracts the invariant relative to a given property. This avoids the com-
plexity of computing the strongest inductive invariant (i.e., the reachable states)
as is typically done in model checking, and works well in the the case where a
relatively localized invariant suffices to prove a property of a large system.

This approach gives us a complete procedure for model checking temporal
properties of finite-state systems that allows us to exploit recent advances in SAT
solvers for the proof generation phase. Experimentally, the method is found to
be quite robust for industrial hardware verification problems, relative to other

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 K.L. McMillan

model checking approaches. The same approach can be applied to infinite-state
systems, such as programs and parameterized protocols (although there is no
completeness guarantee in this case). For example, it is possible to verify systems
of timed automata in this way, or simple infinite-state protocols, such as the N -
process “bakery” mutual exclusion protocol.

In addition, interpolants derived from proofs can be mined to obtain predi-
cates that are useful for predicate abstraction, as is done in the Blast software
model checker [7]. This approach has been used to verify properties of C pro-
grams with in excess of 100K lines of code. Finally, interpolation can be used to
approximate the transition relation of a system relative to a given property. This
approach can be applied to finite-state model checking and can also be useful in
predicate abstraction, where constructing the exact abstract transition relation
can be prohibitively costly.

1.1 Outline of the Paper

The next section of the paper introduces the technique of deriving Craig inter-
polants from proofs. Section 3 then describes the method of interpolation-based
model checking, section 4 covers the extraction of predicates for predicate abstrac-
tion from interpolants, and section 5 deals with transition relation abstraction.

2 Interpolants from Proofs

Given a pair of formulas (A,B), such that A ∧B is inconsistent, an interpolant
for (A,B) is a formula Â with the following properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â refers only to the common symbols of A and B.

Here, “symbols” excludes symbols such as ∧ and = that are part of the logic
itself. Craig showed that for first-order formulas, an interpolant always exists
for inconsistent formulas [5]. Of more practical interest is that, for certain proof
systems, an interpolant can be derived from a refutation of A∧B in linear time.
For example, a purely propositional refutation of A∧B using the resolution rule
can be translated to an interpolant in the form of a Boolean circuit having the
same structure as the proof [8, 14].

In [10] it is shown that linear-size interpolants can be derived from refu-
tations in a first-order theory with with uninterpreted function symbols and
linear arithmetic. This translation has the property that whenever A and B
are quantifier-free, the derived interpolant Â is also quantifier-free.1 This prop-
erty will be exploited in the applications of Craig interpolation that we describe
below.

1 Note that the Craig theorem does not guarantee the existence of quantifier-free
interpolants. In general this depends on the choice of interpreted symbols in the
logic.
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Heuristically, the chief advantage of interpolants derived from refutations is
that they capture the facts that the prover derived about A in showing that A
is inconsistent with B. Thus, if the prover tends to ignore irrelevant facts and
focus on relevant ones, we can think of interpolation as a way of filtering out
irrelevant information from A.

3 Model Checking Based on Craig Interpolation

We now consider an application of Craig interpolation as a replacement for the
costly image operator in symbolic model checking. In effect, interpolation allows
us to filter information out of the image that is not relevant to proving the
desired property.

3.1 Representing Systems Symbolically

In symbolic model checking, we represent the transition relation of a system
with a formula. Here, we assume we are given a first-order signature S, consist-
ing of individual variables and uninterpreted n-ary functional and propositional
constants. A state formula is a first-order formula over S, (which may include
various interpreted symbols, such as = and +). We can think of a state formula φ
as representing a set of states, namely, the set of first-order models of φ. We will
express the proposition that an interpretation σ over S models φ by φ[σ]. We
also assume a first-order signature S′, disjoint from S, and containing for every
symbol s ∈ S, a unique symbol s′ of the same type. For any formula or term φ
over S, we will use φ′ to represent the result of replacing every occurrence of a
symbol s in φ with s′. Similarly, for any interpretation σ over S, we will denote
by σ′ the interpretation over S′ such that σ′s′ = σs. A transition formula is a
first-order formula over S∪S′. We think of a transition formula T as representing
a set of state pairs, namely the set of pairs (σ1, σ2), such that σ1 ∪σ′

2 models T .
Will will express the proposition that σ1 ∪ σ′

2 models T by T [σ1, σ2].
Given two state formulas φ and ψ, we will say that ψ is T -reachable from φ

(in k steps) when there exists a sequence of states σ0, . . . , σk, such that φ[σ0]
and for all 0 ≤ i < k, T [σi, σi+1], and ψ[σk].

3.2 Bounded Model Checking

The fact that ψ is reachable from φ for bounded k can be expressed symbolically.
For all integers i, let Si be a first-order signature (representing the state of the
system at time i) such that for every s ∈ S, there is a corresponding symbol si

in Si of the same type. If f is a formula, we will write fi to denote the result of
substituting si for every occurrence of a symbol s, and si+1 for every occurrence
of a symbol s′, in f . Thus, assuming T is total, ψ is T -reachable within k steps
from φ when this formula is consistent:

φ0 ∧ T0 ∧ · · ·Tk−1 ∧ (ψ0 ∨ · · · ∨ ψk)
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We will refer to this as a bounded model checking formula [2], since by testing
satisfiability of such formulas, we can determine the reachability of one condition
from another within a bounded number of steps.

3.3 Symbolic Model Checking

Let us define the strongest postcondition of a state formula φ with respect to
transition formula T , denoted spT (φ), as the strongest proposition ψ such that
φ ∧ T implies ψ′. We will also refer to this as the image of φ with respect to T .

A transition system is a pair (I, T ), where the initial condition I is a state
formula and T is a transition formula. We will say that a state formula ψ is
reachable in (I, T ) when it is T -reachable from I, and it is an invariant of (I, T )
when ¬ψ is not reachable in (I, T ). A state formula φ is an inductive invariant
of (I, T ) when I implies φ and spT (φ) implies φ (note that an inductive invariant
is trivially an invariant).

The strongest invariant of (I, T ) can be expressed as a fixed point of spT , as
follows:

R(I, T ) = μQ. I ∨ spT (Q)

We note that the fixed points with respect to Q are exactly the inductive invari-
ants. To prove the existence of the least fixed point, i.e., the strongest inductive
invariant, we have only to show that the transformer spT is monotonic.

Now, suppose that we have a method of symbolically computing the strongest
postcondition. For example, in the case of propositional logic, the strongest post-
condition is given by

spT (φ)′ = ∃S.(φ ∧ T )

Thus, we can compute it using well-developed methods for Boolean quantifier
elimination [3, 11]. This means that we can compute the strongest inductive
invariant (also known as the reachable state set) by simply iterating this operator
to a semantic fixed point, a procedure known as symbolic reachability analysis.2

To verify that some formula ψ is unreachable in (I, T ), we have only to show
that it is inconsistent with the strongest inductive invariant.

3.4 Approximate Image Based on Interpolation

The disadvantage of the above approach is that it can be quite costly to compute
the strongest inductive invariant, yet this invariant may be much stronger than
what is needed to prove unreachability of ψ. By carefully over-approximating
the image (strongest postcondition), we may simplify the problem while still
proving ψ unreachable. An over-approximate image operator is an operator s̄p,
such that, for all predicates φ, spT (φ) implies s̄pT (φ). Using s̄p, we can compute
an over-approximation R′(I, T ) of the reachable states. We will say that an over-
approximate image operator s̄p is adequate with respect to ψ when, for any φ
that cannot reach ψ, s̄pT (φ) also cannot reach ψ. In other words, an adequate

2 Note, convergence of this iteration is guaranteed for finite- but not infinite-state
systems.
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over-approximation does not add any states to the strongest postcondition that
can reach a bad state. If s̄p is adequate, then ψ is reachable exactly when it is
consistent with R′(I, T ), the over-approximated reachable states. The question,
of course, is how to compute an adequate s̄p. After all, if we knew which states
could reach a bad state, we would not require a model checker.

One answer is to bound our notion of adequacy. Let’s say that a k-adequate
image operator is an s̄p such that, for any φ that cannot reach ψ, s̄pT (φ) cannot
reach ψ within k steps. We note that if k is greater than the diameter of the
state space, then k-adequate is equivalent to adequate, since by definition any
state that can be reached can be reached within the diameter.

The advantage of this notion is that we can use bounded model checking and
interpolation to compute a k-adequate image operator. We set up a bounded
model checking formula to determine whether a given state formula φ can reach ψ
in from 1 to k + 1 steps. However, we break this formula into two parts:

A
.= φ0 ∧ T0

B
.= T1 ∧ · · · ∧ Tk ∧ (ψ1 ∨ · · · ∨ ψk+1)

Now suppose A ∧ B is unsatisfiable and let Â be some interpolant for (A,B)
(which we can derive from the refutation of A ∧ B). Note that the symbols
common to A and B are in S1 (the symbols representing the state at time 1)
thus Â is over S1. Dropping the time subscripts in Â, we obtain a state formula,
which we will take as the over-approximate image of φ. That is, let

s̄pT (φ) .= Â〈S/S1〉
The properties of interpolants guarantee that s̄p defined in this way is a k-
adequate image over-approximation. Note that, since φ0∧T0 implies Â, it follows
that every state in s̄pT (φ) is reachable from φ in one step, hence s̄p is an over-
approximation. Further, since Â is inconsistent with B, it follows that no state
in s̄pT (φ) can reach ψ within k steps. Hence s̄p is k-adequate. 3 One way to
think about this is that the interpolant is an abstraction of A containing just
the information from A that the prover used to prove that φ cannot reach ψ in 1
to k + 1 steps. Thus, it is in a sense an abstraction of the image relative to a
(bounded time) property.

Now suppose we use this k-adequate image operator to compute an over-
approximation R′(I, T ) of the reachable states. If we find that R′(I, T ) ∧ ψ is
inconsistent, we know that ψ is unreachable. If not, it may be that we have over-
approximated too much. In this case, however, we can simply try again with a
larger value of k. Note that if the bounded model checking formula A∧B turns
out to be satisfiable in the first iteration (when φ = I) then ψ is in fact reachable
and we terminate with a counterexample.

It is easy to show that, for finite-state systems, if we keep increasing k, this
procedure must terminate with either a proof or a counterexample. That is, if

3 Note that if A∧B is satisfiable, then φ can reach ψ, so our image operator can yield
any over-approximation, the simplest being the predicate True.
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we keep increasing k, either we will obtain a counterexample, or k will become
greater than the diameter of the state space. In the latter case, our k-adequate
image operator is in fact an adequate image operator, so our reachability answer
must be correct. In practice, we find that the k values at which we terminate
are generally smaller than the diameter. This diameter-based termination bound
contrasts with the termination bound for the k-induction method [16] which is
length of the shortest simple path in the state space (also called the recurrence di-
ameter). The shortest simple path can be exponentially longer than the diameter.

3.5 Practical Experience

In the case of hardware verification, a system is made up of Boolean gates,
hence we can model it with a transition formula T which is purely propositional.
We can therefore use an efficient Boolean satisfiability (SAT) solver [13, 17] to
solve the bounded model checking formulas. Modern SAT solvers use heuristics
designed to focus the proof on relevant facts, and are quite robust against the
addition of irrelevant constraints. The solvers are also easily modified to produce
refutations by resolution in the unsatisfiable case [12].

As an example, the performance of the interpolation-based model checking
procedure using a SAT solver was tested on a set of benchmark problems [12] de-
rived from the PicoJava II microprocessor from Sun Microsystems. The properties
in this benchmark suite are localizable, meaning that only a relatively small subset
of the components of a large design are needed to prove the properties. Thus, the
ability to filter out irrelevant information is crucial to verifying these properties.
In fact, the SMV model checker based on Binary Decision Diagrams is unable to
verify any of the properties, since it performs exact reachability analysis.

On the other hand, the interpolation-based method using a SAT solver can
verify 19 out of the 20 problems. It is also interesting to compare the method
with another abstraction technique that uses refutations from bounded model
checking formulas to identify a subset of system components that are relevant
to the property, and then uses standard BDD-based methods to verify this sub-
set [12]. This method is called proof-based abstraction.

Figure 1 shows a run-time comparison of the interpolation-based method
against the proof-based abstraction method for the PicoJava-II benchmark set.
In the figure, each point represents one benchmark problem, with the value on
the X axis representing the time in seconds required for the earlier proof-based
abstraction method, and the time on the Y axis representing the time in seconds
taken by the interpolation-based method. A time value of 1000 indicates a time-
out after 1000 seconds. Points below the diagonal therefore indicate an advantage
for the interpolation method. We observe 16 wins for interpolation and 3 for
proof-based abstraction, with one problem solved by neither method. In five or
six cases, the interpolation method wins by two orders of magnitude. As it turns
out, the performance bottleneck in both methods is bounded model checking.
The interpolation method, however, tends to terminate at smaller values of k,
and thus runs faster on average. This trend has been verified on a large set
(about 1000 problems) of benchmark problems from industrial applications.
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Fig. 1. Run times on PicoJava II benchmarks

3.6 Infinite-State Systems

It is also possible to apply the interpolation method to infinite-state systems
whose transition formulas are first-order formulas. In this case, we can use a
first-order decision procedure to check satisfiability of the bounded model check-
ing formulas (provided the procedure can produce refutations in a suitable proof
system). In this case, the procedure is not guaranteed to terminate.4 However,
using this approach it is possible to verify safety of some simple infinite-state
protocols, such as Fischer’s timed mutual exclusion protocol, or a simple ver-
sion of Lamport’s “bakery” mutual exclusion algorithm. The method has also
been applied to software model checking, though it is not yet clear whether the
approach is more efficient than methods based on predicate abstraction [1, 18].

One interesting point to note here is that, using the interpolation procedure
of [10], quantifiers occurring in the transition relation T can result in quanti-
fiers in the interpolants (the quantifiers are used to eliminate variables that are
introduced into the interpolants by quantifier instantiation). Thus, the method
provides a way to synthesize invariants that contain quantifiers.

As an example, suppose we have a simple program whose state consists of an
array a, with all elements initialized to 0. At each step, the program inputs a
number x and sets a[x] to 1. We would like to prove that, at all times, a[z] 
= 2.
Thus, our initial condition I is ∀j. a[j] = 0, our transition condition T is

∀j. if j = x then a′[j] = 1 else a′[j] = a[j]

4 However, it seems likely that convergence could be guaranteed given a suitably re-
stricted prover, if the system has a quantifier-free inductive invariant that proves the
property. Convergence can also be guaranteed if the system has a finite bisimulation
quotient, as in timed automata.
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and our final condition ψ is a[z] = 2. Expanding the split bounded model check-
ing formula for k = 1, we have:

A
.= (∀j. a0[j] = 0) ∧ (∀j. if j = x0 then a1[j] = 1 else a1[j] = a0[j])

B
.= (a1[z1] = 2)

In refuting this, the prover instantiates the universal in A with j = z1, yielding:

A
.= a0[z1] = 0 ∧ if z1 = x0 then a1[z1] = 1 else a1[z1] = a0[z1]

B
.= (a1[z1] = 2)

Notice the introduction of the extraneous variable z1 into A. After refuting this
pair, the interpolant Â we obtain is a1[z1] = 0 ∨ a1[z1] = 1. The extraneous
variable z1 is then eliminated using a universal quantifier. This is sound, since Â
is implied by the original A which does not contain z1. This yields the quantified
interpolant ∀j. a1[j] = 0∨a1[j] = 1. Dropping the subscripts, we have ∀j. a[j] =
0∨a[j] = 1, which is in fact an inductive invariant for our program, proving that
a[z] = 2 is not reachable.

This approach makes it possible to verify some parameterized protocols, such
as the “bakery” with an arbitrary number of processes, which requires a quanti-
fied invariant. It should be noted, however, that the technique is not well suited
to protocol verification, since it is based on bounded model checking. Empirically,
bounded model checking of protocols is observed to be fairly inefficient. This can
be explained by the fact that protocols tend not to be localizable (i.e., there is
little state information that can be thrown away without breaking the protocol)
and they tend to have interleaving concurrency, which limits the prover’s ability
to propagate implications across time frames. For such applications, it may be
more effective to combine the approach with predicate abstraction, as described
in the next section.

4 Predicates from Interpolants

Predicate abstraction [15] is a technique commonly used in software model check-
ing in which the state of an infinite-state system is represented abstractly by the
truth values of a chosen set of predicates. In effect, the method computes the
strongest inductive invariant of the program expressible as a Boolean combi-
nation of the predicates. Typically, if this invariant is insufficient to prove the
property in question, the abstraction is refined by adding predicates. For this
purpose, the Blast software model checker uses interpolation in a technique
due to Ranjit Jhala [7].

The basic idea of the technique is as follows. A counterexample is a sequence
of program locations (a path) that leads from the program entry point to an error
location. When the model checker finds a counterexample in the abstraction, it
builds a bounded model checking formula that is satisfiable exactly when the
path is a counterexample in the concrete model. This formula consists of a set of
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Fig. 2. Predicates from interpolants. Figure shows (a) an infeasible program path, (b)
transition constraints, divided into prefix Ak and suffix Bk and (c) an interpolant Âk

for (Ak, Bk)

constraints: equations that define the values of program variables in each location
in the path, and predicates that must be true for execution to continue along the
path from each location (these correspond to program branch conditions). As
an example, Figure 2 shows a program path, and the corresponding transition
constraints.

Now let us divide the path into two parts, at location k. Let Ak be the
set of constraints on transitions preceding location k and let Bk be the set
of constraints on transitions subsequent to location k. Note that the common
variables of A and B represent the values of the program variables at location k.
An interpolant for (Ak, Bk) is a fact about location k that must hold if we take
the given path to location k, but is inconsistent with the remainder of the path.
An example of such a division, and the resulting interpolant, is also shown in 2.

If we derive such interpolants for every location of the path from the same
refutation of the constraint set, we can show that the interpolant for location k
is sufficient to prove the interpolant for location k+1. As a result, if we add the
atomic predicates occurring in the interpolants to the set of predicates defining
the abstraction, we are guaranteed to rule out the given path as a counterex-
ample in the abstract model. Note that it is important here that interpolants
be quantifier-free, since the predicate abstraction method can synthesize any
Boolean combination of atomic predicates, but cannot synthesize quantifiers.
We can guarantee that the interpolants are quantifier-free if the transition con-
straints are quantifier-free.

This interpolation approach to predicate selection has the advantage that it
tells us which predicates are relevant to each program location in the path. By
using at each program location only predicates that are relevant to that loca-
tion, a substantial reduction in the number of abstract states can be achieved,
resulting in greatly increased performance of the model checker [7]. The fact
that the interpolation method can handle both linear inequalities and uninter-
preted functions is useful, since linear arithmetic can represent operations on
index variables, while uninterpreted functions can be used to represent array
lookups or pointer dereferences, or to abstract unsupported operations (such as
multiplication).
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Notice, finally, that the predicate abstraction requires us to solve bounded
model checking instances only for particular program paths, rather than for all
possible paths of a given length. Such problems are much easier for the decision
procedure to solve. Thus, the predicate abstraction approach might be feasible
in cases such as protocols where full bounded model checking tends not to be
practical.

5 Transition Relation Abstraction Using Interpolants

Because of the expense of image computation in symbolic model checking, it is
often beneficial to abstract the transition relation before model checking, remov-
ing information that is not relevant to the property to be proved. Some examples
of techniques for this purpose are [4, 12].

Here, we will consider a method of abstracting the transition relation using
bounded model checking and interpolation. The technique is based on the notion
of a symmetric interpolant. That is, given an inconsistent set of formulas A =
{a1, . . . , an} a symmetric interpolant for A is a set of formulas Â = {â1, . . . , ân}
such that each ai implies âi, and Â is inconsistent, and each âi is over the symbols
common to ai and A\ai. We can construct a symmetric interpolant for A from a
refutation of

∧
A by simply letting âi be the interpolant derived from the given

refutation for the pair (ai,
∧

A \ ai). As long as all the individual interpolants
are derived from the same proof, we are guaranteed that their conjunction is
inconsistent.

Now, given a transition system (I, T ), and a formula ψ, let us consider the
set of formulas:

A = {I0, T0, . . . , Tk−1, (ψ0 ∨ · · ·ψk)}
Note that

∧
A is exactly the bounded model checking formula for k steps. Sup-

pose we refute this formula, and from the refutation, construct a symmetric
interpolant Â. Notice that each T̂i is a formula implied by the transition relation
at time i. If we take the conjunction of these formulas, we have a transition
formula that admits no path up to k steps from I to ψ. That is, let the abstract
transition relation be

T̂ =
∧

T̂i〈S/Si〉〈S′/Si+1〉
If we model check unreachability of ψ in the abstract transition system (I, T̂ ),
we are guaranteed that there is no counterexample of up to k steps. If φ is
in fact unreachable in (I, T̂ ), we know it is unreachable in the stronger (I, T ).
Otherwise, we can refine T̂ using a larger value of k. In the finite-state case, this
method is guaranteed to converge, since we cannot refine T̂ infinitely.

The advantages of T̂ as a transition relation are that (1) it contains only
facts about the transition relation used in resolving the bounded model checking
problem, and (2) it contains only state-holding symbols (those that occur in I
or occur primed in T ). Thus, for example, free variables introduced to represent
inputs of the system are eliminated. This can substantially simplify the image
computation.
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One potential application of this idea is in predicate abstraction. Since the
image computation in predicate abstraction requires in the worst case an expo-
nential number of calls to a decision procedure, software model checkers tend
to avoid an exact computation by using approximate methods that lose correla-
tions between predicates [1]. This approximation can lead to false counterexam-
ples. On the other hand, if we derive the transition relation approximation from
symmetric interpolants (another idea due to Ranjit Jhala) we can guarantee
convergence without using an exact image computation, and at the same time
focus the transition relation approximation on relevant facts. We can improve
the performance by considering only bad program paths found by the model
checker, as opposed to all possible paths of length k. Preliminary experiments
show that this approach converges more rapidly than the approach of [6], which
uses analysis of the predicate state transitions in the abstract counterexamples
to refine the transition relation.

6 Conclusion

We have seen that Craig interpolants derived from proofs have a variety of ap-
plications in model checking, primarily in replacing exact image computations
with approximate ones. Interpolation allows us to exploit the ability of modern
SAT solvers, and decision procedures based on them, to narrow down a proof
to relevant facts. We can extract as an interpolant just the information about
an image or a transition relation that was actually used by the prover to re-
fute a bounded model checking instance. This allows us in turn to weaken our
computation of the strongest invariant, while still proving a given property, or
to extract the building blocks from which a suitable invariant might be con-
structed.

A number of the potential applications of interpolation have yet to be ex-
plored. For example, interpolation-based model checking for software seems a
promising approach, as does interpolation-based transition relation abstraction
for hardware verification. Recently, predicate abstraction methods have been
extended to the synthesis of quantified invariants in a method called indexed
predicate abstraction [9]. It seems plausible that quantified interpolants could be
used in the selection of indexed predicates in this method. It also seems plausible
that interpolation could be used to good effect for transition relation abstraction
in parallel program verification.

Finally, it would be useful to extend the extraction of interpolants from proofs
to other theories, for example, first-order arrays and bit vectors. This would
extend the utility of interpolant extraction as a tool in the verifier’s toolkit.
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Abstract. We address the problem of automatic verification of programs with
dynamic data structures. We consider the case of sequential, non-recursive pro-
grams manipulating 1-selector-linked structures such as traditional linked lists
(possibly sharing their tails) and circular lists. We propose an automata-based
approach for a symbolic verification of such programs using the regular model
checking framework. Given a program, the configurations of the memory are
systematically encoded as words over a suitable finite alphabet, potentially infi-
nite sets of configurations are represented by finite-state automata, and statements
of the program are automatically translated into finite-state transducers defining
regular relations between configurations. Then, abstract regular model checking
techniques are applied in order to automatically check safety properties concern-
ing the shape of the computed configurations or relating the input and output
configurations. For this particular purpose, we introduce new techniques for the
computation of abstractions of the set of reachable configurations and to refine
these abstractions if spurious counterexamples are detected. Finally, we present
experimental results showing the applicability of the approach and its efficiency.

1 Introduction

In this paper, we address the problem of automatic verification of programs with dy-
namic linked data structures. Such programs are in general difficult to write and un-
derstand, and so the possibility of their formal verification is highly desirable. Formal
verification of such programs is, however, a very difficult task too. Dynamic allocation
leads to a necessity of dealing with infinite state spaces. The objects to be dealt with
are in general graphs whose shape is difficult to be restricted in advance. The problem
is that the linked data structures may fulfil some shape invariants at certain program
points, but these invariants may be temporarily broken in various ways while perform-
ing some operations over the data structures.

We consider in this work the case of sequential non-recursive programs manipulat-
ing structures with one next pointer such as traditional singly-linked lists and circular
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lists (possibly sharing their parts) that belong among the most commonly used struc-
tures in practice. We propose an automata-based approach for symbolic verification of
such programs using the regular model checking framework [11, 19, 3]. To the best of
our knowledge, this is the first time regular model checking is systematically used in
this area—so far, there has only been an isolated ad-hoc attempt to do so in [2].

As our first contribution, we provide a systematic encoding of the configurations
of considered programs as words over a suitable finite alphabet. Potentially infinite
sets of configurations can then be represented by finite-state automata. Moreover, we
propose an automatic translation of non-recursive sequential C-like programs (without
pointer arithmetics and with suitably abstracted non-pointer data values) into finite-state
transducers applicable to the sets of program configurations represented by automata
and defining regular relations between these configurations. The translation is done
statement-by-statement, and one can then either take a union of all statement transduc-
ers or use them separately.

By repeatedly applying the transducer (or transducers) representing a program to the
automaton encoding a set of possible initial configurations, one can obtain the sets of
configurations reachable in any finite number of steps. It is, however, usually impossible
to obtain the set of all reachable configurations in this way—the computation will not
stop for most programs with loops. One thus has to consider techniques that will accel-
erate the computation achieving termination as often as possible—a general termination
result cannot be obtained as the verification problem considered is clearly undecidable.

In the literature, several different general-purpose techniques have been proposed
to accelerate the computation of reachable states in regular model checking. They in-
clude, e.g., widening [3, 17], collapsing of automata states based on the history of their
creation by composing transducers [10, 1], abstraction of automata [2], or inference of
languages [6]. In this work, however, as our further contribution, we propose a new set
of acceleration techniques that are more tailored for the given domain and thus promise
much better performance results. These techniques are based on new language abstrac-
tions, which contrary to those introduced in [2], are not defined on the representation
structures (i.e. the automata representing sets of configurations), but defined on words
(corresponding to configurations). Such abstractions are defined by means of finite-state
transducers following different generic schemas. The definitions of these abstractions
are guided by the observation that in the configurations of the programs we consider
there are some repeated patterns for which it is sufficient to remember their number
of repetitions precisely up to some fixed bound. If the number of repetitions is higher,
we abstract it to an arbitrary value. The abstraction schemas we define are refinable
in the sense that they define infinite sequences of abstraction mappings with increas-
ing precision. Therefore, our verification approach is based on computing abstractions
of the sets of reachable configurations, and on refining the abstractions when spurious
counterexamples are detected.

These techniques allow us to fully automatically compute safe overapproximations
of the state space of programs with 1-selector-linked dynamic data structures from
whose elements the non-pointer fields are abstracted away. In this way, we can automat-
ically check many important safety properties related to a correct use of dynamically
allocated memory—absence of null pointer dereferences, working with uninitialized
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pointers, memory leakage (i.e. checking that there does not arise any unfreed and un-
accessible garbage), etc. Furthermore, we can automatically handle the cases where
a finite number of elements of the considered dynamic data structures are allowed to
carry other than pointer fields. Using this fact and a simple technique which we pro-
pose for describing the desired input/output configurations, we can then automatically
verify various properties relating the input and output of the considered programs (e.g.,
that the output of a list reversing procedure is really exactly the reverse of the input
list, etc.). Finally, we show how the techniques can be applied to dealing with linked
dynamic data structures whose elements contain any data fields of finite type too.

We have implemented the proposed techniques in a prototype tool and tried it out
on a number of procedures manipulating classical singly-linked lists as well as cyclic
lists. The results are very encouraging and show the applicability of our approach.

Related Work. Out of the work on verification of programs with dynamic linked data
structures published in the literature, the two approaches that are probably the closest
to our approach are the ones related to the tools Pale [15] and TVLA [16].

Pale (or more precisely its version for singly-linked structures) based on [8] uses
a similar encoding of configurations as the one we propose in the following. The pos-
sibility of sharing parts of the lists is, however, not considered there. Moreover, there
is no translation of the programs to transducers for manipulating sets of configurations
in the Pale approach. The effect of the program is expressed by manipulating a logical
description of the configurations, and automata come into play only when deciding the
resulting WS1S formulae in Mona [12]. The approach of Pale is not as automatic as
ours—only loop-free code can be handled automatically; if there are loops in the code
to be checked, the user has to manually provide their invariants. We adopt a different
methodology based on abstract symbolic reachability analysis which can also be used
to automatically generate invariants.

TVLA is based on abstractions of the arising pointer structures described in a 3-
valued logic [16]. The approach is more automatic than the one of Pale, but still the
user may be required to provide some instrumentation predicates (or simulation invari-
ants in the later approach of [7]) to make the abstraction sufficiently precise. The recent
work [13] presents the first steps towards automatically obtaining the necessary instru-
mentation predicates by an analysis of spurious counterexamples. Moreover, up to very
recently, TVLA had difficulties with cyclic structures that were resolved in a way [14]
which like our approach exploits the observation that singly-linked structures exhibit
some internal repeated structural patterns.

Both Pale and TVLA are extended to handle structures with more than a single next
pointer. We are preparing such an extension of our approach based on tree (or more
general) automata too.

Finally, representations of linked memory structures based on automata were used
in [9, 5, 18, 4] too. In [5, 18], the special problem of may-alias analysis is primarily
considered and a different symbolic representations of memory structures is used—it
is based on tuples of automata (one for each pointer variable) and alias relations (using
linear constraints). In [4], an alias logic with a Hoare-like proof system is introduced. In
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this work, one memory structure is represented as a collection of automata whereas our
representation is based on representing a set of memory structures with one automaton.

Outline. The rest of the paper is organised as follows. In Section 2 we introduce basic
concepts about automata and transducers. In Section 3 we describe our encoding of
pointer programs with automata and transducer. Then, we give our verification method
in Section 4. Finally, we describe our experimental results in Section 5 and conclude.

2 Automata and Transducers

A finite-state automaton is a 5-tuple A = (Q,Σ,δ,qinit ,F) where Q is a finite set of
states, Σ a finite alphabet, δ ⊆ Q×Σ×Q a set of labelled transitions, qinit ∈ Q the initial
state and F ⊆ Q a set of final states.

The transition relation →⊆ Q×Σ∗ ×Q of A is defined as the smallest relation sat-
isfying: (1) ∀q ∈ Q : q

ε−→ q, (2) if (q,a,q′) ∈ δ, then q
a−→ q′, and (3) if q

w−→ q′ and
q′ a−→ q′′, then q

wa−→ q′′. The (regular) language recognised by A from a state q ∈ Q is
L(A,q) = {w : ∃q′ ∈ F. q

w−→ q′}. The language of A is L(A) = L(A,qinit). We suppose
here that automata are manipulated in their canonical (i.e. minimal deterministic) form.

A finite-state transducer over Σ is a 5-tuple τ = (Q,Σε ×Σε,δ,qinit ,F) where Q is
a finite set of states, Σε = Σ∪{ε}, δ ⊆ Q×Σε ×Σε ×Q is a set of transitions, qinit ∈ Q
is the initial state, and F ⊆ Q a set of final states. The transition relation →⊆ Q ×
Σ∗ ×Σ∗ ×Q is defined as the smallest relation satisfying: (1) q

ε,ε−→ q for every q ∈ Q,

(2) if (q,a,b,q′) ∈ δ, then q
a,b−→ q′ and (3) if q

u,v−→ q′ and q′ a,b−→ q′′, then q
ua,vb−−−→ q′′.

A transducer τ defines a (regular) relation Rτ = {(u,v) : ∃q′ ∈ F. qinit
u,v−→ q′}.

Given a language L ⊆ Σ∗ and a relation R ⊆ Σ∗ ×Σ∗, let R(L) be the set {v ∈ Σ∗ :
∃u ∈ L. (u,v) ∈ R}. Sometimes, we abuse the notation by identifying a transducer τ
(resp. an automaton A) with the relation Rτ (resp. the language L(A)). For instance, we
write τ(A) to denote Rτ(L(A)).

Let id ⊆ Σ∗ ×Σ∗ be the identity relation and ◦ the composition of relations. Given
a transducer τ, let τ0 = id, τi+1 = τ ◦ τi, and let τ∗ = ∪∞

i=0τi be the reflexive-transitive
closure of τ.

3 From Programs to Transducers

In this section, we describe the translation we propose for automatic verification of
sequential, non-recursive programs with 1-selector-linked dynamic data structures in
the framework of regular model checking. Our translation is general enough to cover
any program of this kind (not containing pointer arithmetics and not explicitly covering
the possibly necessary abstraction of non-pointer data).

We first describe how to encode as words the so-called program stores, i.e. the dy-
namic memory part of program configurations containing dynamically allocated mem-
ory cells linked by pointers. This encoding is similar to the one used in [8], but extended
with the possibility of lists sharing their parts. Then, we propose an encoding of the stan-
dard C pointer operations (apart from pointer arithmetics) in the form of transducers.
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This is different from [8] where operations are encoded by changing a logical descrip-
tion of the configurations. Some of the pointer operations cannot be translated directly
to a single transducer, therefore we propose to simulate their effect by computing a limit
of a repeated application of certain simple auxiliary transducers.

In the following, we will use as a running example the following procedure reversing
a list l. We suppose the data fields normally present in the elements of the data type List
to be abstracted away and just the next-pointer fields to be preserved.

List x,y,l;
l1: y = null;
l2: while (l != null) { // i.e. if (l!=null) goto l3; else goto l7;
l3: y = l->next;
l4: l->next = x;
l5: x = l;
l6: l = y; } // i.e. l = y; goto l2;
l7: l = x;
l8: // end of program

3.1 Encoding Stores as Words

Basically, a store is encoded as the concatenation of several words (separated by a spe-
cial symbol), each of them representing a list of elements. Successive elements of these
lists are given from the left to the right, with positions of pointer variables marked by
special symbols. We suppose for the moment that list elements contain no data—later
we show that adding data of a finite type is not a problem. We also suppose for the
beginning that the store does not contain cycles nor shared parts (i.e. no two different
next-pointers point to the same list element). To encode such stores as words, we use the
following alphabet Σ: For every pointer variable x used in the program at hand, we have
x ∈ Σ, and Σ further contains the letters | to separate lists (and some special parts of the
configurations), / to separate list elements (i.e. / represents a next-pointer), # to express
that a next-pointer points to null, and ! to denote that the next-pointer value is undefined.

Then, we can encode a store without sharing and cycles as a sequence of three parts
separated by the symbol | as follows:

– The first part contains a sequence of pointer variables whose values are undefined.
In order not to have to consider all their possible orderings, we fix in advance a
certain ordering on Σ that is respected here as well as in similar situations below.

– The second part contains pointer variables pointing to null.
– Finally, the third part contains the list sequences separated again by the symbol |.

Each list sequence is encoded as follows: Every list element is represented by a
(possibly empty) sequence of pointer variables pointing to it, lists elements are sep-
arated by the symbol /, and lists end either with the symbol # (null) or ! (undefined).

For example, the word x y | | l / / # | encodes a possible initial configuration of the
list reversion example: x and y are undefined, no variable points to null, and l points to
a list with two elements.

Now, regular expressions (or alternatively finite-state automata) can be used to de-
scribe sets of stores. For instance, the regular expression (x y | | l /+ # |)+ (x y | l |)
encodes all possible initial stores for our list reversion example.
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Fig. 1. A store with sharing

Notice that in our encoding, we do not allow garbage (parts of the memory not
accessible from pointer variables). As soon as an operation creates garbage, an error is
reported. In fact, such a situation corresponds to a memory leak in C (in Java, on the
other hand, we can always perform “garbage collection” and remove the garbage).

Remark: Clearly, pointer variables appear exactly once in every word. The separator |
and the symbols # and ! appear a bounded number of times since we do not consider
stores with garbage. Finally, the symbol / can appear an unbounded number of times.

Lists with Sharing and/or Loops. To encode sharing of parts of lists as, for example,
in Figure 1, we extend the alphabet Σ by a finite set of pairs of markers (m f , mt , n f , nt ,
etc.). A “from” marker Xf may be used after a next-pointer sign / to indicate that the
given next-pointer points to an element marked by Xt (the corresponding “to” marker).
Then, e.g., the word | | x / m f | y / / n f | nt mt / / # | encodes the store of Figure 1.

As one can easily see, the above store could be encoded in several other ways too
(for instance, as | | x / nt / / # | y / / n f |). Although we partially normalize the
encoding by imposing a certain ordering on the symbols that are attached to the same
memory location, we do not define a canonical representative of the store. However,
our experimental results (see Section 5) show that this is not an obstacle to a practical
applicability of our method. Furthermore, using a canonical form would complicate the
encoding of program statements.

Notice also that markers allow us to encode circular lists (as, e.g., | | x nt / / n f |
corresponding to a circular list of two elements pointed to by x).

It is not difficult to see that given a store with k pointer variables encoded with more
than k pairs of markers, one can encode the same store with at most k markers provided
that no garbage is allowed: If a “to” marker is at the beginning of a sequence of cells that
is not accessible without using markers, we can put these sequence directly in place of
the corresponding “from” marker and save one pair of markers. For example, the store
| | x / m f | y / / n f | nt mt / / # | of Figure 1 can be described with one pair of markers
as | | x / nt / / # | y / / n f | or also as | | x / m f | y / / mt / / #|.

Typically, the number of markers that is really needed is even smaller than k as we
will demonstrate in our experiments.

3.2 Encoding Program Statements as Transducers

We now describe our encoding of program statements as transducers. We consider
non-recursive C programs without pointer arithmetics. Initially, we also suppose all
non-pointer data manipulations to be abstracted away—we briefly return to handling
them later. Such programs may easily be pre-processed to contain only statements of
the form pointer assignment; goto l; or if (pointer test) goto l1; else
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Fig. 2. An example store, the store after the statement l->next=x, and after a rearrangement

goto l2;. Moreover, by introducing auxiliary variables, we can eliminate multiple
pointer dereferences of the form x->next->next and consider single dereferences only.

To encode full configurations of the considered programs, we extend the encoding
of stores by adding a letter for the line of the program the control is currently at (fol-
lowed by a separator |). Moreover, for the needs of our verification procedure, we add a
single letter indicating the so-called computation mode. The mode is either n (normal),
e (error—a null pointer dereference or working with an undefined pointer has been de-
tected), s (shifting, used later for implementing the pointer manipulation statements that
cannot be implemented as a single transducer), and u (unknown result that arises when
an insufficient number of markers is used). For instance, the initial configurations of the
list reversion example are then (n l1 | x y | | l /+ # |)+(n l1 | x y | l |).

Conditional jumps based on tests like x==null or x==y are now quite easy to en-
code. The transducer just checks whether x is in the null section or in the same section as
y (taking / and | as section separators), and according to this changes the letter encoding
the current line. If x or y is in the undefined section, we go to the error mode. Similarly,
assignments of the form x=null or x=y are easy to handle—x is deleted from its current
position (using an x,ε transition) and put to the section of y (using an ε,x transition).

A slightly more involved case is the one of tests based on the x->next construct
and the one of the y=x->next assignment. Apart from generating an error when x is
undefined or null, one has to consider the successor of x, which may involve going from
a “from” marker to the appropriate “to” marker. However, as the number of markers is
finite, the transducer can easily remember from which marker to which it is going and
skip the part of the configuration between these markers.

Adding/Removing Markers. The most difficult case is then the one of the l->next=x
assignment. The transducer first tries to commit the operation by using a pair of unused
markers (say m f /mt) out of the in advance chosen set of marker pairs (an unused marker
pair is one that does not appear in the current configuration word). Then, behind the
section of l, the transducer puts m f , and marks the section of x by mt . For instance, in
the list reversion procedure, n l4 | | | x / / # | l / y / # | is transformed via l->next=x
into n l5 | | | mt x / / # | l / m f | y / # | as shown in Figure 2 (a), (b).

However, there may not be any unused markers left. In such a case, the transducer
tries to reclaim some by re-arranging the configuration. This can be done by moving
some sequence of cells that starts with a “to” marker directly into the place of the
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corresponding “from” marker (provided these markers do not constitute a loop). As
explained in Section 3.1, this is always possible provided the chosen number of pairs
of markers is sufficiently big (more than the number of pointer variables). For example,
n l5 | | | mt x / / # | l / m f | y / # | can be re-arranged to n l5 | | | l / x / / # | y / # | as
sketched in Figure 2 (c).

The above operation, however, cannot be encoded as a single transducer as it may
require an unbounded sequence (such as the list after x in our example) to be shifted to
another place, and a finite-state transducer is incapable of remembering such sequences.
To circumvent this problem, we use a very simple transducer τ which does one step
of the shifting—i.e. it shifts a single element of the sequence by deleting it from its
current location and re-producing it at its required location. The desired result is then
the limit τ∗(Con f ) where Con f is a regular set of configurations on which the operation
is applied. The limit (or an upper approximation of it) is computed using our abstract
reachability analysis techniques. In order not to mix half-shifted sequences with the
ready-to-use ones, the shifting is done in a special computation mode when no other
operations are possible. 3

If some marker has to be eliminated but this cannot be done, we go to the u mode
and stop the computation. Such a situation cannot happen when we use as many markers
as pointer variables. Nevertheless, it may happen when the user tries to use a smaller
number of them with the aim of reducing the verification time (which is often, but
not always possible). If one does not want to use markers at all, the two operations of
introducing and eliminating a pair of markers (including shifting) are done at once.

Finally, the remaining malloc(x) and free(x) operations are again easy to encode.
The malloc(x) operation introduces a sequence of elements with a single element,
pointed to by x, and with an undefined successor. The free(x) operation removes an
element, makes x and all its aliases undefined, and possibly makes undefined the next-
pointer originally leading to x.

Adding Data Values to List Elements. The encoding can easily be extended to handle
list elements containing data of a finite type. Their values are added into Σ and then
every memory cell encoded as a sequence surrounded by / and/or | contains not only
the pointers (markers) pointing to it, but also the appropriate data value. The tests and
assignments on *x may then easily be added by testing whether the appropriate data
letter is in the section of x or changing the data letter in this section.

4 Automatic Verification Techniques

We introduce in this section infinite-state verification techniques based on the
regular model checking framework. These techniques combine automata-based
reachability analysis with abstraction techniques. We concentrate in this work on the
verification of safety properties. In the context of regular model checking, given a trans-
ducer τ modelling some infinite-state system, an initial set of configurations Init, and

3 Let us note that shifting could be implemented as an atomic, special purpose (and rather com-
plex) operation directly on the automata too.
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a set of bad configurations Bad, the safety verification problem consists in deciding
whether

τ∗(Init)∩Bad = /0 (1)

Since the problem is undecidable in general (the transitions of any Turing machine
can be straightforwardly encoded by a finite-state transducer), we adopt an approach
based on computing abstractions of the set τ∗(Init) and refining these abstractions when
spurious counterexamples are detected.

4.1 Abstract Regular Model Checking

A language abstraction is a mapping α : 2Σ∗ → 2Σ∗
such that ∀L ∈ 2Σ∗

. L ⊆ α(L). An
abstraction α′ refines (or is a refinement of) an abstraction α if ∀L ∈ 2Σ∗

. α′(L) ⊆ α(L).
An abstraction α is finite-range if the set {L ∈ 2Σ∗

: ∃L′ ∈ 2Σ∗
. α(L′) = L} is finite. We

say that an abstraction mapping is regular if it can be defined by a finite-state transducer.
Given a transducer τ and a language abstraction α, let τα be the mapping such that

∀L ∈ 2Σ∗
. τα(L) = α(τ(L)).

The first step of our approach is to define a language abstraction α and compute
the set τ∗α(Init). Clearly, if α is a finite-range abstraction, the iterative computation
of τ∗α(Init) as τα(Init)∪ τ2

α(Init)∪ . . . eventually terminates. By definition of α, the
obtained set τ∗α(Init) is an overapproximation of τ∗(Init), and therefore, if τ∗α(Init)∩
Bad = /0, the problem (1) has a positive answer. Otherwise, the answer to the problem
(1) is not necessarily negative since during the computation of τ∗α(Init), the abstraction
α may introduce extra behaviours leading to Bad.

Let us examine this case. Assume that τ∗α(Init)∩Bad 
= /0, which means that there
is a symbolic path:

Init, τα(Init), τ2
α(Init), · · ·τn−1

α (Init), τn
α(Init) (2)

such that τn
α(Init)∩Bad 
= /0. We analyze this path by computing the sets Xn = τn

α(Init)∩
Bad, and for every k ≥ 0, Xk = τk

α(Init)∩ τ−1(Xk+1). Two cases may occur: (i) either
X0 = Init ∩ (τ−1)n(Xn) 
= /0, which means that the problem (1) has a negative answer,
or (ii) there is a k ≥ 0 such that Xk = /0, and this means that the symbolic path (2)
is actually a spurious counterexample due to the fact that α is too coarse. In this last
situation, we need to refine α and iterate the procedure. Therefore, our approach is based
on the definition of abstraction schemas allowing to compute families of (automatically)
refinable abstractions.

In a previous work [2], we have proposed representation-oriented abstractions which
consist in defining finite-range abstractions on automata (used as symbolic representa-
tion structures for sets of configurations). The general principle of these abstractions
is to collapse automata according to some given equivalence relation on their states,
regardless of the kind of the represented configurations or the analyzed system.

In this work, we adopt an alternative approach by considering configuration-oriented
abstractions which are defined on configurations. This approach allows us to define ab-
straction techniques which are more adapted to the application domain we are consid-
ering here. In the next subsections, we propose generic schemas for defining families
of refinable configuration-oriented abstractions. Instances of these schemas have been
implemented in a prototype tool and used in several experiments (see Section 5).
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4.2 Piecewise 0-k Counter Abstractions

The idea behind the first abstraction schema we introduce is to abstract each word by
considering some finite decomposition of it, and by applying 0-k counter abstraction
(which looses the information about the ordering between symbols and only keeps
track of their numbers of occurrences up to k) to each piece of the word in this de-
composition. Formally, for w ∈ Σ∗, let dec(w) = (a1,w1,a2,w2, · · · ,an,wn) such that
w = a1w1a2w2 · · ·anwn, ∀i, j ∈ {1, . . . ,n}. ai ∈ Σ and ai 
= a j, and ∀i ∈ {1, . . . ,n}. wi ∈
{a1, . . . ,ai}∗. Intuitively, dec(w) corresponds to the unique decomposition of w accord-
ing to the first occurrences in w of each of the symbols in Σ.

Given a word w and a symbol a, let |w|a denote the number of occurrences of a
in w. Given k ∈ N>0, we define a mapping αk from words to languages such that for
every w ∈ Σ∗, if dec(w) = (a1,w1,a2,w2, · · · ,an,wn), then αk(w) = a1L1a2L2 · · ·anLn

where ∀i ∈ {1, . . . ,n}. Li = {u ∈ {a1, . . . ,ai}∗ : ∀ j ∈ {1, . . . , i}. |wi|a j < k and |u|a j =
|wi|a j , or |wi|a j ≥ k and |u|a j ≥ k}. We generalize αk from words to languages in the
straightforward way in order to obtain a language abstraction. We can easily prove that:

Proposition 1. For every k ≥ 0, αk is regular and effectively representable by a finite-
state transducer.

Clearly, for every given alphabet Σ, the set of possible 0-k abstractions is finite, and
therefore, the number of piecewise 0-k abstractions is also finite since they consist in
concatenations of a bounded number of symbols and 0-k abstractions.

Proposition 2. For every k ∈ N, the abstraction αk is finite-range.

In fact, below, we consider a generalization of the above schema obtained as follows.
We allow that decompositions may be computed according to the first occurrences of
only a subset of the alphabet, called decomposition symbols. Furthermore, we allow
that the abstraction does not concern some symbols, called strong symbols, i.e. all their
occurrences are preserved at their original positions. Typically, strong symbols are those
which are known to have a bounded number of occurrences in all considered words.
For instance, in words corresponding to encodings of program configurations, strong
symbols correspond to markers, separators, and pointer variables which are known to
have either a fixed or a bounded number of occurrences in all configurations.

Formally, let Σ1,Σ2 ⊆ Σ be two sets of symbols such that Σ1 ∩Σ2 = /0, where Σ1

is the set of decomposition symbols and Σ2 is the set of strong symbols. (Notice that
there may be symbols which are neither in Σ1 nor in Σ2.) Then, given w ∈ Σ∗, we
define dec(w) to be the decomposition (a1,w1,a2,w2, · · · ,an,wn) such that (1) w =
a1w1a2w2 · · ·anwn, (2) ∀i ∈ {1, . . . ,n}. ai ∈ Σ1 ∪Σ2 and, ai ∈ Σ1 ⇒ |a1a2 · · ·an|ai = 1,
and (3) ∀i ∈ {1, . . . ,n}. wi ∈ ({a1, . . . ,ai}\Σ2)∗. Then, for each given k, the abstraction
αk is defined precisely as before.

The previous proposition still holds if the number of occurrences of each strong
symbol is bounded. Let us call p-Σ2-bounded language any set of words L such that
∀w ∈ L. ∀a ∈ Σ2. |w|a ≤ p.

Proposition 3. For every bound p ≥ 0, and for every k ∈N, the abstraction αk is finite-
range when it is applied to p-Σ2-bounded languages.
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As for the abstraction refinement issue, it is easy to see that the abstraction schema
introduced above defines a family of refinable abstractions.

Proposition 4. For every p-Σ2-bounded language L, and for every k ≥ 0, we have
αk+1(L) ⊆ αk(L). Moreover, if L is infinite, then αk+1(L) � αk(L).

4.3 Closure Abstractions

We introduce hereafter another family of regular abstractions. Now, the idea is to apply
iteratively extrapolation rules which may be seen as rewriting rules replacing words of
the form uk, for some given word u and positive integer k, by the language uku∗.

Let u ∈ Σ∗ and let k ∈ N>0 be a strictly positive integer. A relation R ⊆ Σ∗×Σ∗ is an
extrapolation rule wrt. the pair (u,k) if R = {(w,w′) ∈ Σ∗ ×Σ∗ : w = u1uku2 and w′ ∈
u1uku∗u2}. An extrapolation system is a finite union of extrapolation rules.

Clearly, for every language L, we have L ⊆ R(L) (i.e. R defines a language abstrac-
tion). In fact, we are interested in abstractions which are the result of iterating extrapo-
lation systems. Therefore, let us define a closure abstraction as the reflexive-transitive
closure R∗ of some extrapolation system R.

It is easy to see that every extrapolation system corresponds to a regular relation
(i.e. definable by a finite-state transducer). The question is whether closure abstractions
of regular languages are still regular and effectively computable. In the general case,
the answer is not known. However, we provide a reasonable condition on extrapolation
systems which guarantees the effective regularity of closure abstractions.

First of all, we can prove that if we consider a single extrapolation rule, the corre-
sponding closure abstraction if effectively computable.

Lemma 1. For every extrapolation rule R, and for every regular language L, the set
R∗(L) is regular and effectively constructible.

Proof. Let A be an automaton recognizing L. Let B be an automaton recognizing uku∗,
and let qi (resp. q f ) be its initial (resp. final) state. Then, for every pair of states (q,q′)
of A that are related by uk, we extend A by a unique copy of B and two ε transitions
q ε−→qi and q f

ε−→q′ (which can then be removed by the classical algorithms). ��
Now, let R = R1 ∪ ·· · ∪Rn be an extrapolation system where each of the Ri’s is an

extrapolation rule wrt. a pair (ui,ki) ∈ Σ∗ ×N>0. Our idea is to define a condition on
R such that the computation of R∗(L) can be done for every language L by computing
sequentially closures wrt. each of the extrapolation rules Ri in some ordering. Let ≺⊆
Σ∗×Σ∗ be the smallest relation such that for every u,v ∈ Σ∗, u ≺ v if (1) u is not a factor
of v (i.e. u does not appear as a subword of v), and (2) u cannot be written as w1vpw2

for any p ∈ N and two words w1,w2 such that w1 is a suffix of v and w2 is a prefix of v.
We can prove the following lemma which says that if u ≺ v, then u can never appear in
any power of v.

Lemma 2. ∀u,v ∈ Σ∗, if u ≺ v then ∀p ≥ 0. ∀w1,w2 ∈ Σ∗. vp 
= w1uw2

Proof. Immediate from the definition of ≺: The fact that u can appear in some power
of v implies that one of the two conditions defining u ≺ v is false. ��
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We say that the extrapolation system R is serialisable if the reflexive closure of
the relation ≺ (i.e. ≺ ∪id) defines a partial ordering on the set {uk1

1 , . . . ,ukn
n } (i.e. ≺ is

antisymmetric and transitive on this set).

Lemma 3. Let R be a serialisable extrapolation system and let Ri1 Ri2 . . .Rin be a total
ordering of the rules of R which is compatible with ≺. Then, R∗ = R∗

in ◦R∗
in−1

· · · ◦R∗
i1

.

Proof. Follows from Lemma 2: closing by some Ri j never creates new rewriting con-
texts for any of the Ri� with � < j. ��

From the two lemmas 1 and 3 we deduce the following fact:

Theorem 1. For every serialisable extrapolation system R and for every regular lan-
guage L, the set R∗(L) is regular and effectively constructible.

Closure abstractions (even serialisable ones) are not finite-range in general. To see this,
consider the infinite family of (finite) languages Ln = (ab)n for n ≥ 0 and the extrapo-
lation rule R with U = {a} and k = 1. Then, the images of the languages above form an
infinite family of languages defined by R∗(Ln) = (a+b)n for every n ≥ 0.

Therefore, in the verification framework described in Section 4.1, the use of a clo-
sure abstraction α does not guarantee the termination of the computation τ∗α(Init). How-
ever, as our experiments show (see Section 5) the extrapolation principle used in these
abstractions is powerful enough to force termination in many practical cases while pre-
serving the necessary accuracy of the analysis of complex properties.

Let us finally mention that the abstraction schema introduced above defines a family
of refinable abstractions.

Proposition 5. Let R be an extrapolation system wrt. a set of pairs {(u1,k1), ...,(un,kn)},
let k′1, . . . ,k

′
n be integers such that ∀i. k′i ≥ ki, and let S be the extrapolation system wrt.

{(u1,k′1), . . . ,(un,k′n)}. Then, for every language L, we have S∗(L) ⊆ R∗(L). Moreover,
if L is infinite, then S∗(L) � R∗(L).

5 Applications and Experimental Results

We have experimented with a prototype implementation of our techniques on several
procedures manipulating linked lists. We have implemented a prototype compiler trans-
lating programs into transducers as explained in Section 3. As shown in Table 1, we
have considered procedures for reversing a list, inserting an element into a list at a
given position, deleting an element of a list at a given position, merging two lists
element-by-element, and the procedure of Bubblesort over a list. Let us note that al-
though these procedures primarily work with simple linear lists, temporarily they may
yield several lists sharing their tails or create circular links. Moreover, we have consid-
ered working directly with circular lists too, namely a procedure for reversing such lists
and a procedure for removing a segment of a circular list (the motivating example of
[14]).

As remarked in Section 3, a store can have several encodings. Therefore, to perform
correctly the check τ∗α(Init)∩Bad = /0, we require the set Bad to contain all possible
encodings of bad stores. In all properties we consider below, this can be easily achieved.
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5.1 Checking Consistency of Working with the Dynamic Memory

For all the examples, we have firstly checked a basic consistency property that consisted
in checking that there is no null pointer dereference, no work with undefined pointers,
no memory leak (i.e. there does not arise any undeleted and inaccessible garbage), and
that the result is a single list pointed to by the appropriate variable. The specification of
such a property for a given procedure is easy and can be derived automatically. For the
list reversion example, the set of bad states can be specified using the below extended
regular expression4 where V = x? y?:

(((e+u) Σ∗)+(Σ l8 Σ∗)) & ¬(n l8 | V | ((l V |)+(V | l V (/ V )∗ / # |)))
The expression says that it is bad when we try to do a null pointer dereference or work
with an undefined pointer value—this is recognized automatically in the transducers
and signalized by the first letter of the resulting configuration set to e. If the first letter
becomes u (for unknown), the program cannot be verified using the given number of
markers and we have to add some. Finally, it is bad when we reach the final line l8, and
the result is not an empty list (represented by l behind #) nor a single list pointed to by
l. We do not care about the values of x and y.

The above property of course holds for the correct versions of all the considered
procedures. In such a case, our tool provides the user with a safe overapproximation of
all the configurations reachable at every line. In this way, we, e.g., automatically obtain
the following invariant of the loop of the list reversion procedure:

(nl2 | y | lx |)+(nl2 | y | x | l(/)+# |)+(nl2 | | ly | x(/)+# |)+(nl2 | | | x(/)+# | ly(/)+# |)
Roughly, this invariant says that the list is either empty, is pointed to from l, from x, or
partially from x and partially from l.

To try out the ability of our techniques to generate counterexamples, we have also
tried to examine a faulty version of the list reversion procedure where lines 4 and 5
were swapped. In this case, an error is reported and we are told that from a list with
one element (i.e. from a configuration n l1 | x y | | l / # |), we can obtain a circular list
(a configuration n l8 | y | mt l x / m f | where m f and mt represent the “from” and “to”
versions of a marker m). The user can then also trace the program forwards from the
initial configuration or backwards from the erroneous one.

5.2 Checking More Complex Properties

Further, we have tried to verify some more complex properties of the considered pro-
grams. Let us start, e.g., with the Bubblesort procedure. When checking just its basic
consistency property, we have completely abstracted away the data values stored in the
list and made all the conditional jumps fully nondeterministic. To check that the pro-
cedure really sorts, we used a technique inspired by [15]. We considered the values of
the list elements to be abstracted to being either greater or less than or equal than their
successors. The abstracted data values were represented by two special letters (gt and
lte) associated with every list item. We supposed lte and gt to be distributed arbitrarily
in the initial configurations. We then checked that the basic consistency property holds

4 We use “?” to denote zero or one occurrences and “&” to denote intersection.
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and, moreover, the result is a sorted list (i.e. a sequence of elements labelled—up to the
last element—by lte).

In the case of the merge procedure, we let all elements of the first list be labelled as
a elements in the initial configuration and all elements of the other list as b elements.
Then we checked that the output list contains a regular mixture of a and b elements.

Finally, for the list reversion and insertion and circular list reversion procedures, we
did a fully precise verification of their effect. In the case of list reversion, this means
that the output contains exactly the same elements as before, but in a reversed order.
For the insertion procedure, the required property is that the output list is precisely the
input list up to one new element added into the appropriate place.

To check the above rather strong property, we have proposed a simple, yet efficient
technique. Let us explain it on the case of list reversion. In the initial configurations, we
let the first and last element be labelled by special labels bgn and end. Next, we consider
as initial all the configurations that can arise from the original initial configurations by
attaching two further labels—namely f st and snd—to an arbitrary pair of successive
elements. The labels are invisible for the unmodified program—they stay attached to
their initial elements. Then, to check the desired property, it suffices that every reachable
final configuration starts with end, ends with bgn, and contains a sequence snd/ f st.
This guarantees that no element can be dropped (then, there would be a way to obtain
a configuration without some of the labels), no element can be added (either end would
not be the first, bgn the last, or some snd/ f st pair would get separated by another
element), and the elements must be re-arranged in the given way (otherwise the required
resulting ordering of the labels could be broken).

5.3 The Results of the Experiments

For each verification example, we applied one instance of the abstractions presented
in Section 4. For checking the basic consistency properties, we used the piecewise 0-2
counter abstraction with no decomposition symbols (Σ1 = /0) and with strong symbols
Σ2 containing the pointer variables, the separator |, and the symbol #. Therefore, just
the parts of words containing exclusively the / symbols are abstracted. As noticed in
Section 3.1, / is the only symbol which can appear an unbounded number of times
in lists without data. Therefore, our abstraction is finite range by Proposition 3. For
the more complex properties, we used closure abstractions. The extrapolation rules we
applied correspond to the loops one naturally expects to possibly arise in the consid-
ered structures (e.g., (/a,2), (/b,2), (/a/b,2) for the list merge procedure)—providing
such information seems to be easy in many practical situations. In all the cases, the
abstractions we used are defined by serialisable extrapolation systems. Therefore, by
Theorem 1, they are regular and effectively computable.

We tried out both verification over programs described by a single transducer as well
as over programs described by a set of transducers (one per arc of the program control
flow graph). Column T of Table 1 shows the running times obtained in the latter case.
They were about 1.6 to 6 times better than in the former case. The computation times
are presented for the minimum number of markers necessary not to run into the “do not
known” result. In the case of inserting into a list, we, however, indicate that sometimes
it may be advantageous to use more than a necessary number of markers, which is
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Table 1. Some results of experimenting with classical and circular linked lists (obtained at
2.4GHz Intel Pentium 4 from an early prototype tool based on Yap Prolog and the FSA library)

Program Markers |M|max
st.+tr. Tsec Program Markers |M|max

st.+tr. Tsec

Reverse, bas.cons. 0 51+105 0.3 Merge, bas.cons. 0 209+279 2.7
Reverse, full 0 281+369 4.2 Merge, corr.mix. 0 1080+1415 40.4

Faulty reverse 1 61+138 0.2 Bubblesort, bas.cons. 2 2095+2872 305
Insert, bas.cons. 0 81+102 0.5 Bubblesort, full 2 2339+2887 279
Insert, bas.cons. 2 165+577 0.15 Circ.list rev., bas.cons. 3 655+764 5.4

Insert, full 0 755+936 10.8 Circ.list reverse, full 3 2349+2822 50.6
Delete, bas.cons. 0 55+113 0.3 Circ.l. rem.seg., bas.c. 2 116+291 1.0

especially the case of loop-free procedures where it may completely eliminate the need
for the complex operation of shifting. For every experiment, we also indicate the number
of states and transitions of the biggest encountered automaton (or transducer).

We further made a comparison with the abstract regular model checking techniques
based on automata abstraction introduced in [2]. We observed an equal performance on
the faulty reverse example, but on the other examples, the new techniques were about
2.9 to 88 times better (not taking into account the Bubblesort example and checking of
the correct mixture property for the list merge example where we stopped the tool based
on [2] after 2000 seconds).

We believe that the verification times obtained from our prototype are very encour-
aging. Some of the verification times that can be found in the literature for similar
verification experiments (especially the ones obtained from Pale) are lower but that is
partly due to an incomparable degree of automation (especially in Pale where a signif-
icant amount of user intervention is needed) and partly due to the fact that our tool is
just an early Prolog-based prototype. We expect much better times from a more solid
implementation of our tool, which we are now working on.

6 Conclusion

We have proposed a new approach to automatic verification of programs with dynamic
linked structures based on a combination of automata-based symbolic reachability anal-
ysis with abstraction techniques.

Our approach applies to C-like sequential programs with 1-selector linked struc-
tures, for which it allows to verify automatically (safety) properties concerning their
data structures. The same techniques can also be used for automatic invariant genera-
tion for these programs. Notice that our approach is not restricted to C programs but
can be adapted to other languages with similar operations on linked structures too.

The techniques we define are based on simple abstractions of regular sets of config-
urations which, on one hand, are abstract enough to force termination in many practical
cases and, on the other hand, are accurate enough to handle complex properties of the
considered data structures. The experimental results are quite encouraging and show the
applicability of our approach at least to particular pointer-intensive library routines.
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The techniques we propose in this paper are defined in a general way which makes
them not restricted to the application domain we consider here. In fact, they can be used
as efficient acceleration techniques in the generic framework of regular model checking
for the verification of various classes of infinite-state systems as well.

A certain deficiency of the closure abstraction technique as presented above is the
need to manually provide the extrapolation rules when non-pointer data fields are not
abstracted away. However, very recently, we have proposed a heuristic for automatically
deriving such rules based on on-the-fly monitoring of non-looping sequences of states
in the encountered automata and on trying to divide them to a given number of equal
subsequences, which can then be used as a basis for extrapolation. This heuristic was
successful in all the considered examples with a similar time and space efficiency as
presented above (the verification times being sometimes worse but sometimes even
better). A proper theoretical as well practical investigation of this technique is a part of
our future work.

For the future, we plan an extension of our framework to the case of more general
linked data structures using representations based on more general classes of automata.
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Abstract. Regular model checking is the name of a family of techniques
for analyzing infinite-state systems in which states are represented by
words, sets of states by finite automata, and transitions by finite-state
transducers. The central problem is to compute the transitive closure
of a transducer. A main obstacle is that the set of reachable states is
in general not regular. Recently, regular model checking has been ex-
tended to systems with tree-like architectures. In this paper, we provide
a procedure, based on a new implementable acceleration technique, for
computing the transitive closure of a tree transducer. The procedure con-
sists of incrementally adding new transitions while merging states which
are related according to a pre-defined equivalence relation. The equiva-
lence is induced by a downward and an upward simulation relation which
can be efficiently computed. Our technique can also be used to compute
the set of reachable states without computing the transitive closure. We
have implemented and applied our technique to several protocols.

1 Introduction

Regular model checking is the name of a family of techniques for analyzing
infinite-state systems in which states are represented by words, sets of states by
finite automata, and transitions by finite automata operating on pairs of states,
i.e. finite-state transducers. The central problem in regular model checking is to
compute the transitive closure of a finite-state transducer. Such a representation
allows to compute the set of reachable states of the system (which is useful to ver-
ify safety properties) and to detect loops between states (which is useful to verify
liveness properties). However, computing the transitive closure is in general un-
decidable; consequently any method for solving the problem is necessarily incom-
plete. One of the goals of regular model checking is to provide semi-algorithms
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that terminate on many practical applications. Such semi-algorithms have al-
ready been successfully applied to parameterized systems with linear topologies,
and to systems that operate on linear unbounded data structures such as queues,
integers, reals, and hybrid systems [BJNT00, DLS01, BLW03, BHV04, BLW04].

This work aims at extending the paradigm of regular model checking to
verify systems which operate on tree-like architectures. This includes several
interesting protocols such as the Percolate Protocol ([KMM+01]) or the Tree-
arbiter Protocol ([ABH+97]).

To verify such systems, we use the extension of regular model checking called
tree regular model checking, which was introduced in [KMM+01, AJMd02, BT02].
In tree regular model checking, states of the systems are represented by trees, sets
of states by tree automata, and transitions by tree automata operating on pairs
of trees, i.e. tree transducers. As in the case of regular model checking, the central
problem is to provide semi-algorithms for computing the transitive closure of a
tree transducer. This problem was considered in [AJMd02, BT02]; however the
proposed algorithms are most of the time inefficient or non-implementable.

In this work, we provide an efficient and implementable semi-algorithm for
computing the transitive closure of a tree transducer. Starting from a tree trans-
ducer D, describing the set of transitions of the system, we derive a transducer,
called the history transducer whose states are columns (words) of states of D.
The history transducer characterizes the transitive closure of the rewriting rela-
tion corresponding to D. The set of states of the history transducer is infinite
which makes it inappropriate for computational purposes. Therefore, we present
a method for computing a finite-state transducer which is an abstraction of the
history transducer. The abstract transducer is generated on-the-fly by a proce-
dure which starts from the original transducer D, and then incrementally adds
new transitions and merges equivalent states. To compute the abstract trans-
ducer, we define an equivalence relation on columns (states of the history trans-
ducer). We identify good equivalence relations, i.e., equivalence relations which
can be used by our on-the-fly algorithm. An equivalence relation is considered
to be good if it satisfies the following two conditions:

– Soundness and completeness: merging two equivalent columns must not add
any traces which are not present in the history transducer. Consequently,
the abstract transducer accepts the same language as the history transducer
(and therefore characterizes exactly the transitive closure of D).

– Computability of the equivalence relation: This allows on-the-fly merging of
equivalent states during the generation of the abstract transducer.

We present a methodology for deriving good equivalence relations. More pre-
cisely, an equivalence relation is induced by two simulation relations; namely a
downward and an upward simulation relation, both of which are defined on tree
automata. We provide sufficient conditions on the simulation relations which
guarantee that the induced equivalence is good. Furthermore, we give examples
of concrete simulations which satisfy the sufficient conditions. These simulations
can be computed by efficient algorithms derived from those of Henzinger et al.
([HHK95]) for finite words.
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We also show that our technique can be directly adapted in order to compute
the set of reachable states of a system without computing its entire transitive
closure. When checking for safety properties, such an approach is often (but not
always) more efficient.

We have implemented our algorithms in a tool which we have applied to a
number of protocols including a Two-Way Token protocol, the Percolate Protocol
([KMM+01]), a parametrized version of the Tree-arbiter Protocol ([ABH+97]),
and a tree-parametrized version of a Leader Election Protocol.

Related Work: There are several works on efficient computation of transitive
closures for word transducers [DLS01, AJNd03, BLW03, BHV04, BLW04]. How-
ever, all current algorithms devoted to the computation of the transitive closure
of a tree transducer are not efficient or not implementable. In [AJMd02], we
presented a method for computing transitive closures of tree transducers. The
method presented in [AJMd02] is very heavy and relies on several layers of ex-
pensive automata-theoretic constructions. The method of this paper is much
more light-weight and efficient, and can therefore be applied to a larger class of
protocols. The work in [BT02] also considers tree transducers, but it is based
on widening rather than acceleration. The idea is to compute successive powers
of the transducer relation, and detect increments in the produced transducers.
Based on the detected increments, the method makes a guess of the transitive
closure. One of the main disadvantages of this work is that the widening proce-
dure in [BT02] is not implemented. Furthermore, no efficient method is provided
to detect the increments. This indicates that any potential implementation of the
widening technique would be inefficient. In [AJNd03], a technique for computing
the transitive closure of a word transducer is given. This technique is also based
on computing simulations. However, as explained in Section 6, those simulations
cannot be extended to trees, and therefore the technique of [AJNd03] cannot be
applied to tree transducers. In [DLS01], Dams, Lakhnech, and Steffen present
an extension of the word case to trees. However, this is done for top-down tree
automata which are not closed under determinization (and thus many other op-
erations). In [DLS01], the authors consider several definitions of simulations and
bisimulations between top-down tree automata without providing methods for
computing them. Hence, it is not clear how to implement their algorithms.

Outline: In the next Section, we introduce basic concepts related to trees and
tree automata. In Section 3, we describe tree relations and transducers. In Sec-
tion 4, we introduce tree regular model checking. Section 5 introduces history
transducers which characterize the transitive closure of a given transducer. In
Section 6, we introduce downward and upward simulations on tree automata, and
give sufficient conditions which guarantee that the induced equivalence relation
is exact and computable. Section 7 gives an example of simulations which satisfy
the sufficient conditions. In section 8, we describe how to compute the reachable
states. In Section 9 we report on the results of running a prototype on a number
of examples. Finally, in Section 10 we give conclusions and directions for future
work.
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Some proofs had to be omitted due to space constraints. A self-contained
long version of this paper can be obtained from the authors.

2 Tree Automata

In this section, we introduce some preliminaries on trees and tree automata
(more details can be found in [CDG+99]).

A ranked alphabet is a pair (Σ, ρ), where Σ is a finite set of symbols and ρ is
a mapping from Σ to N. For a symbol f ∈ Σ, we call ρ(f) the arity of f . We let
Σp denote the set of symbols in Σ with arity p. Intuitively, each node in a tree
is labeled with a symbol in Σ with the same arity as the out-degree of the node.
Sometimes, we abuse notation and use Σ to denote the ranked alphabet (Σ, ρ).

Following [CDG+99], the nodes in a tree are represented by words over N.
More precisely, the empty word ε represents the root of the tree, while a node
b1b2...bk is a child of the node b1b2...bk−1. Also, nodes are labeled by symbols
from Σ.

Definition 1. [Trees]
A tree T over a ranked alphabet Σ is a pair (S, λ), where

– S, called the tree structure, is a finite set of sequences over N (i.e, a finite
subset of N∗). Each sequence n in S is called a node of T . If S contains a
node n = b1b2...bk, then S will also contain the node n′ = b1b2...bk−1, and
the nodes nr = b1b2...bk−1r, for r : 0 ≤ r < bk. We say that n′ is the parent
of n, and that n is a child of n′. A leaf of T is a node n which does not have
any child, i.e., there is no b ∈ N with nb ∈ S.

– λ is a mapping from S to Σ. The number of children of n is equal to ρ(λ(n)).
Observe that if n is a leaf then λ(n) ∈ Σ0.

We use T (Σ) to denote the set of all trees over Σ.

Sets of trees are recognized using tree automata. There exist various kinds
of tree automata. In this paper, we use bottom-up tree automata since they are
closed under all operations needed by the classical model checking procedure:
intersection, union, minimization, determinization, inclusion test, complementa-
tion, etc. In the sequel, we will omit the term bottom-up.

Definition 2. [Tree Automata and Languages]
A tree language is a set of trees.
A tree automaton [CDG+99, Tho90] over a ranked alphabet Σ is a tuple A =
(Q,F, δ), where Q is a set of states, F ⊆ Q is a set of final states, and δ is the
transition relation, represented by a set of rules each of the form

(q1, . . . , qp)
f−→ q

where f ∈ Σp and q1, . . . , qp, q ∈ Q. Unless stated otherwise, we assume Q and
δ to be finite.
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We say that A is deterministic when δ does not contain two rules of the form
(q1, . . . , qp)

f−→ q and (q1, . . . , qp)
f−→ q′ with q 
= q′.

Intuitively, the automaton A takes a tree T ∈ T (Σ) as input. It proceeds
from the leaves to the root (that explains why it is called bottom-up), annotating
states to the nodes of T . A transition rule of the form shown above tells us that if
the children of a node n are already annotated from left to right with q1, . . . , qp

respectively, and if λ(n) = f , then the node n can be annotated by q. As a

special case, a transition rule of the form
f−→ q implies that a leaf labeled with

f ∈ Σ0 can be annotated by q.
Formally, a run r of A on a tree T = (S, λ) ∈ T (Σ) is a mapping from S to

Q such that for each node n ∈ T with children n1, . . . , nk we have(
(r(n1), . . . , r(nk))

λ(n)−→ r(n)
)

∈ δ.

For a state q, we let T
r=⇒A q denote that r is a run of A on T such

that r(ε) = q. We use T =⇒A q denote that T
r=⇒A q for some r. For a

set S ⊆ Q of states, we let T
r=⇒A S (T =⇒A S) denote that T

r=⇒A q
(T =⇒A q) for some q ∈ S. We say that A accepts T if T =⇒A F . We define
L(A) = {T | T is accepted by A}. A tree language K is said to be regular if there
is a tree automaton A such that K = L(A).

We now define the notion of context. Intuitively, a context is a tree with
“holes” instead of leaves. Formally, we consider a special symbol � 
∈ Σ with
arity 0. A context over Σ is a tree (SC , λC) over Σ ∪ {�} such that for all
leaves nc ∈ SC , we have λC(nc) = �. For a context C = (SC , λC) with holes
at leaves n1, . . . , nk ∈ SC , and trees T1 = (S1, λ1) , . . . , Tk = (Sk, λk), we define
C[T1, . . . , Tk] to be the tree (S, λ), where

– S = SC ∪ ⋃
i∈{1,...,k}

{ni · n′| n′ ∈ Si};

– for each n = ni · n′ with n′ ∈ Si for some 1 ≤ i ≤ k, we have λ(n) = λi(n′);
– for each n ∈ SC − {n1, . . . , nk}, we have λ(n) = λC(n).

Intuitively, C[T1, . . . , Tk] is the result of appending the trees T1, . . . , Tk to the
holes of C. Consider a tree automaton A = (Q,F, δ) over a ranked alphabet Σ.
We extend the notion of runs to contexts. Let C = (SC , λC) be a context with
leaves n1, . . . , nk. A run r of A on C from (q1, . . . , qk) is defined in a similar
manner to a run except that for leaf ni, we have r(ni) = qi. In other words,
each leaf labeled with � is annotated by one qi. We use C [q1, . . . , qk] r=⇒A q
to denote that r is a run of A on C from (q1, . . . , qk) such that r(ε) = q. The
notation C [q1, . . . , qk] =⇒A q and its extension to sets of states are explained in
a similar manner to runs on trees.

Definition 3. [Suffix and Prefix]
For an automaton A = (Q,F, δ), we define the suffix of a tuple of states
(q1, . . . , qn) to be suff(q1, . . . , qn) = {C : context| C [q1, . . . , qn] =⇒A F}. For
a state q ∈ Q, its prefix is the set of trees pref(q) = {T : tree| T =⇒A q}.
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Remark. Our definition of a context coincides with the one of [BT03] where all
leaves are holes. On the other hand, a context in [CDG+99] and [AJMd02] is a
tree with a single hole.

3 Tree Relations and Transducers

In this section we introduce tree relations and transducers.
For a binary relation R, we use R+ to denote the transitive closure of R.
For a ranked alphabet Σ and m ≥ 1, we let Σ•(m) be the ranked alphabet

which contains all tuples (f1, . . . , fm) such that f1, . . . , fm ∈ Σp for some p. We
define ρ((f1, . . . , fm)) = ρ(f1). In other words, the set Σ•(m) contains the m-
tuples, where all the elements in the same tuple have equal arities. Furthermore,
the arity of a tuple in Σ•(m) is equal to the arity of any of its elements. For
trees T1 = (S1, λ1) and T2 = (S2, λ2), we say that T1 and T2 are structurally
equivalent, denoted T1 ∼= T2, if S1 = S2.

Consider structurally equivalent trees T1, . . . , Tm over an alphabet Σ, where
Ti = (S, λi) for i : 1 ≤ i ≤ m. We let T1 × · · · × Tm be the tree T = (S, λ) over
Σ•(m) such that λ(n) = (λ1(n), . . . , λm(n)) for each n ∈ S. An m-ary relation
on the alphabet Σ is a set of tuples of the form (T1, . . . , Tm), where T1, . . . , Tm ∈
T (Σ) and T1 ∼= · · · ∼= Tm. A tree language K over Σ•(m) characterizes an m-ary
tree relation [K] on T (Σ) as follows: (T1, . . . , Tm) ∈ [K] iff T1 × · · · × Tm ∈ K.

We use tree automata also to characterize tree relations: an automaton A over
Σ•(m) characterizes an m-ary relation on T (Σ), namely the relation [L(A)]. A
tree relation is said to be regular if it is equal to [L(A)], for some tree automaton
A. In such as case, we denote this relation by R(A).

Definition 4. [Tree Transducers]
In the special case where D is a tree automaton over Σ•(2), we call D a tree
transducer over Σ.

Remark. Our definition of tree transducers is a restricted version of the one
considered in [BT02] in the sense that we only consider transducers that do not
modify the structure of the tree. In [BT02], such transducers are called relabeling
transducers.

4 Tree Regular Model Checking

We use the following framework known as tree regular model checking
[AJMd02, BT02, KMM+01]:

Definition 5. [Program]
A program is a triple P = (Σ,φI , D) where

– Σ is a ranked alphabet, over which the program configurations are encoded
as trees;
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– φI is a set of initial configurations represented by a tree automaton over Σ;
– D is a transducer over Σ characterizing a transition relation R(D).

In a similar manner to the the case of words (see [BJNT00]), the problems
we are going to consider are the following:

– Computing the transitive closure: The goal is to compute a new tree trans-
ducer D+ representing the transitive closure of D, i.e., R(D+) = (R(D))+.
Such a representation can be used for computing the reachability set of the
program or for finding cycles between reachable program configurations.

– Computing the reachable states: The goal is to compute a tree automaton
representing R (D+) (φI). This set can be used for checking safety properties
of the program.

We will first provide a technique for computing D+. Then, we will show the
modifications needed for computing R (D+) (φI) without computing D+.

5 Computing the Transitive Closure

In this section we introduce the notion of history transducer. With a transducer
D we associate a history transducer H which corresponds to the transitive closure
of D. Each state of H is a word of the form q1 · · · qk where q1, . . . , qk are states
of D. For a word w, we let w(i) denote the i-th symbol of w. Intuitively, for each
(T, T ′) ∈ D+, the history transducer H encodes the successive runs of D needed
to derive T ′ from T . The term “history transducer” reflects the fact that the
transducer encodes the histories of all such derivations.

Definition 6. [History Transducer]
Consider a tree transducer D = (Q,F, δ) over a ranked alphabet Σ. The history
(tree) transducer H for D is an (infinite) transducer (QH , FH , δH), where QH =
Q+, FH = F+, and δH contains all rules of the form

(w1, . . . , wp)
(f,f ′)−→ w

such that there is k ≥ 1 where the following conditions are satisfied

– |w1| = · · · = |wp| = |w| = k;
– there are f1, f2, . . . , fk+1, with f = f1, f ′ = fk+1, and

(w1(i) . . . , wp(i))
(fi,fi+1)−→ w(i) belongs to δ, for each i : 1 ≤ i ≤ k.

Observe that all the symbols f1, . . . , fk+1 are of the same arity p. Also, notice
that if (T × T ′) r=⇒H w, then there is a k ≥ 1 such that |r(n)| = k for each
n ∈ (T × T ′). In other words, any run of the history transducer assigns states
(words) of the same length to the nodes. From the definition of H we derive the
following lemma (proved in [AJMd02]) which states that H characterizes the
transitive closure of the relation of D.
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Lemma 1. For a transducer D and its history transducer H, we have that
R(H) = R (D+).

The problem with H is that it has infinitely many states. Therefore, we define
an equivalence � on the states of H, and construct a new transducer where
equivalent states are merged. This new transducer will hopefully only have a
finite number of states.

Given an equivalence relation �, the symbolic transducer D� obtained by
merging states of H according to � is defined as (Q/ �, F/ �, δ�), where:

– Q/ � is the set of equivalence classes of QH w.r.t. �;
– F/ � is the set of equivalence classes of FH w.r.t. � (this will always be

well-defined, see sufficient condition 5 of Theorem 1);
– δ� contains rules of the form (x1, . . . , xn)

f−→� x iff there are states q1 ∈
x1, . . . , qn ∈ xn, q ∈ x such that there is a rule (q1, . . . , qn)

f−→ q of H.

Since H is infinite we cannot derive D� by first computing H. Instead, we
compute D� on-the-fly collapsing states which are equivalent according to �. In
other words, we perform the following procedure (which need not terminate in
general).

– The procedure computes successive reflexive powers of D: D≤1, D≤2, D≤3, . . .
(where D≤i =

⋃n=i
n=1D

n), and collapses states4 according to �. We thus ob-
tain D≤1

� , D≤2
� , . . .

– The procedure terminates when the relation R+ is accepted by D≤i
� . This

can be tested by checking if the language D≤i
� ◦D is included in D≤i

� .

6 Soundness, Completeness, and Computability

In this section, we describe how to derive equivalence relations on the states of
the history transducer which can be used in the procedure given in Section 5. A
good equivalence relation � satisfies the following two conditions:

– It is sound and complete, i.e., R(D�) = R(H). This means that D� charac-
terizes the same relation as D+.

– It is computable. This turns the procedure of Section 5 into an implementable
algorithm, since it allows on-the-fly merging of equivalent states.

We provide a methodology for deriving good equivalence relations as follows: we
define two simulation relations; namely a downward simulation relation �down

and an upward simulation relation �up, which together induce an equivalence
relation �. Then, we give sufficient conditions of the simulation relations which
guarantee that the induced equivalence � is a good one.

6.1 Downward and Upward Simulation

We start by giving the definitions.

4 The states of D≤i are by construction states of the history transducer.
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Definition 7. [Downward Simulation]
Let A = (Q,F, δ) be a tree automaton. A binary relation �down is a downward
simulation iff for any n ≥ 1 and any symbol f ∈ Σn, for all states q, q1, . . . , qn, r,
the following holds:
Whenever q �down r and (q1, . . . , qn)

f−→ q, then there exist states r1, . . . , rn

such that q1 �down r1, . . . , qn �down rn and (r1, . . . , rn)
f−→ r.

Definition 8. [Upward Simulation]
Let A = (Q,F, δ) be a tree automaton. Given a downward simulation �down, a
binary relation �up is an upward simulation w.r.t. �down iff for any n ≥ 1 and
any symbol f ∈ Σn, for all states q, q1, . . . , qi, . . . , qn, ri ∈ Q, the following holds:
Whenever qi �up ri and (q1, . . . , qn)

f−→ q, then there exist states
r1, . . . , ri−1, ri+1, . . . , rn, r ∈ Q such that q �up r and ∀j 
= i : qj �down rj and

(r1, . . . , rn)
f−→ r.

While the notion of a downward simulation is a straightforward extension
of the word case, the notion of an upward simulation is not as obvious. This
comes from the asymmetric nature of trees. If we follow the execution of a tree
automaton downwards, it is easy to see that all respective children of two nodes
related by simulation should continue to be related pairwise. If we now consider
how a tree automaton executes when going upwards, we are confronted to the
problem that the parent of the current node may have several children. The
question is then how to characterize the behavior of such children. The answer
lies in constraining their prefixes, i.e. using a downward simulation.

We state some elementary properties of the simulation relations.

Lemma 2. The reflexive closure and the transitive closure of a downward sim-
ulation �down are both downward simulations. Furthermore, there is a unique
maximal downward simulation.

Lemma 3. Let �down be a reflexive (transitive) downward simulation. The re-
flexive (transitive) closure of an upward simulation w.r.t to �down is also an
upward simulation w.r.t �down. Furthermore there exists a unique maximal up-
ward simulation w.r.t. any downward simulation.

Observe that both for downward simulations, and upward simulations, maximal-
ity implies transitivity and reflexivity.

We now define an equivalence relation derived from two simulation relations.

Definition 9. [Independence]
Two binary relations �1 and �2 are said to be independent iff whenever q �1 r
and q �2 r′, there exists s such that r �2 s and r′ �1 s.

Definition 10. [Induced Relation]
The relation � induced by two binary relations �1 and �2 is defined as:

�1 ◦ �−1
2 ∩ �2 ◦ �−1

1
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The following Lemma gives sufficient conditions for two relations to induce
an equivalence relation.

Lemma 4. Let �1 and �2 be two binary relations. If �1 and �2 are reflex-
ive, transitive, and independent, then their induced relation � is an equivalence
relation.

6.2 Sufficient Conditions for Soundness and Completeness

We give sufficient conditions for the two simulation relations to induce a sound
and complete equivalence relation on states of a tree automaton.

We assume a tree automaton A = (Q,F, δ). We now define a relation �
induced by the two relations � and �down satisfying the following sufficient
conditions:

1. �down is a downward simulation;
2. � is a reflexive and transitive relation included in �up which is an upward

simulation w.r.t. �down;
3. �down and � are independent;
4. whenever x ∈ F and x �up y, then y ∈ F ;
5. F is a union of equivalence classes w.r.t. �;
6. whenever

f−→ x and x �down y, then
f−→ y.

��
We first obtain the following Lemma which shows that if the simulations sat-

isfy the sufficient conditions, then the induced relation is indeed an equivalence.

Lemma 5. Let A = (Q,F, δ) be a tree automaton. Consider two binary relations
�down and � which satisfies the above sufficient conditions, as well as their
induced relation �. We have that � is an equivalence relation on states of A.

The above Lemma holds since Conditions 1 through 3 imply directly that �down

and � satisfy the premises needed by Lemma 4.
Next, we state that such an equivalence relation is sound and precise.

Theorem 1. Let A = (Q,F, δ) be a tree automaton. Consider two binary re-
lations �down and � satisfying the above sufficient conditions, and let � be
their induced relation. Let A� = (Q/ �, F/ �, δ�) be the automaton obtained by
merging the states of A according to �. Then, L(A�) = L(A).

Theorem 1 can be used to relate the languages of H and D�.
We are now ready to prove the soundness and the completeness of our on-

the-fly algorithm (assuming a computable equivalence relation �).

Theorem 2. Consider two binary relations on the states of H �down and �,
satisfying the hypothesis of Theorem 1. Let � be their induced equivalence rela-
tion. If the algorithm terminates at step i, then the transducer D≤i

� accepts the
same relation as D�.
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6.3 Sufficient Condition for Computability

The next step is to give conditions on the simulations which ensure that the
induced equivalence relation is computable.

Definition 11. [Effective Relation]
A relation � is said to be effective if the image of a regular set w.r.t. � and
w.r.t. �−1 is regular and computable.

Effective relations induce an equivalence relation which is also computable.

Theorem 3. Let �1 and �2 be both reflexive, transitive, effective and indepen-
dent. Let � be their induced equivalence. Then for any state x of H, we can
compute its equivalence class [x] w.r.t. �.

The theorem follows by definition of �, and effectiveness 5 of �1 and �2. �

An equivalence relation that satisfies hypothesis of Theorem 1 and Theorem
3 can be used in the on-the-fly algorithm of Section 5 to compute the transitive
closure of a tree transducer. The next step is to provide a concrete example of
such an equivalence. Because we are not able to compute the infinite represen-
tation of H, the equivalence will be directly computed from the powers of D
provided by the on-the-fly algorithm.

7 Good Equivalence Relation

In this section, we provide concrete relations satisfying Theorem 1 and Theorem
3. We first introduce prefix- and suffix-copying states.

Definition 12. [Prefix-Copying State]
Given a transducer D, and a state q, we say that q is a prefix-copying state if
for any tree T = (S, λ) ∈ pref(q), then for any node n ∈ S, λ(n) = (f, f) for
some symbol f ∈ Σ.

Definition 13. [Suffix-Copying State]
Given a transducer D, and a state q, we say that q is a suffix-copying state if for
any context C = (SC , λC) ∈ suff(q), then for any node n ∈ SC with λC(n) 
= �,
we have λC(n) = (f, f) for some symbol f ∈ Σ.

We let Qpref (resp. Qsuff ) denote the set of prefix-copying states (resp. the
set of suffix-copying states) of D and we assume that Qpref ∩Qsuff = ∅. We let
QN = Q−Qpref ∪Qsuff .

We now define relations by the means of rewriting relation on the states of
the history transducer.

5 A state x of the history transducer is a word. The set {x} is regular.
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Definition 14. [Generated Relation]
Given a set S of pairs of states of H, we define the relation �→ generated by S
to be the smallest reflexive and transitive relation such that �→ contains S, and
�→ is a congruence w.r.t. concatenation (i.e. if x �→ y, then for any w1, w2, we
have w1 · x · w2 �→ w1 · y · w2).

Next, we find relations � and �down that satisfy the sufficient conditions for
computability (Theorem 3) and conditions for exactness of abstraction
(Lemma 6.2).

Definition 15. [Simulation Relations]

– We define �down to be the downward simulation generated by all pairs of the
form (qpref · qpref , qpref ) and (qpref , qpref · qpref ), where qpref ∈ Qpref .

– Let �1
up be the maximal upward simulation computed on D ∪D2. Then, we

define � to be the relation generated by the maximal set S ⊆�1
up such that

• (qsuff · qsuff , qsuff ) ∈ S iff (qsuff , qsuff · qsuff ) ∈ S
• (q · qsuff , q) ∈ S iff (q, q · qsuff ) ∈ S
• (qsuff · q, q) ∈ S iff (q, qsuff · q) ∈ S

where qsuff ∈ Qsuff , and q ∈ QN .

In the full version of the paper, we provide efficient algorithms for computing
the simulations needed for Definition 15. Those algorithms are adapted from
those provided by Henzinger et al. [HHK95] for the case of finite words.

Let us state that the simulations of Definition 15 satisfy the hypothesis needed
by Theorems 1 and 3.

Lemma 6. The following properties of �down hold:

1. �down is a downward simulation;
2. �down is effective.

Lemma 7. The following properties of � hold:

1. � is included in an upward simulation;
2. � is effective.

We now state that � and �down are independent.

Lemma 8. � and �down are independent.

Lemma 9. The following holds:

– whenever x ∈ FH and x �up y, then y ∈ FH ;
– FH is a union of equivalence classes w.r.t. �;
– whenever

f−→ x and x �down y, then
f−→ y.

We conclude that � and �down satisfy the hypothesis of Theorem 1 and The-
orem 3 and can thus be used by the on-the-fly procedure presented in Section 5.
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8 Computing Reachable Configurations

We now sketch the modifications needed to compute R (D+) (φI) without com-
puting D+. When checking for safety properties, such a computation is known
to be sufficient. Computing R (D+) (φI) rather than D+, can simply be done
by lightly modifying the definition of the history transducer. Assume that we
have constructed a tree automaton AφI

for φI , we replace the transducer run in
the first “row” of the history transducer by a transducer that only accept trees
from AφI

in input. Such a transducer can easily by constructed. Let D be the
transducer representing the transition of the system, the restricted transducer is
obtained by taking the intersection between D and AφI

×T (Σ) where Σ is the
ranked alphabet of the system. Computing R (D+) (φI) is often less expensive
than computing D+ because it only considers reachable sets of states (see Sec-
tion 9 for a time comparison). We have an example for which our technique can
compute R (D+) (φI) but cannot compute D+.

9 Experimental Results

The techniques presented in this paper have been applied on several case stud-
ies using a prototype implementation that relies in part on the regular model
checking tool (see www.regularmodelchecking.com).

In Table 1 we report the result of running our implementation on a number of
parametrized protocols for which we have computed the set of reachable states
as well as the transitive closure of their transition relation. A full description of
the protocols is given in the full version of the paper.

In our previous work [AJMd02], we were able to handle the first three pro-
tocols of the table (computation times were very long, however).

The technique of [BT02] was manually applied to compute the set of reachable
states of the tree-arbiter protocol (and of smaller examples). But, the reacha-
bility computation was done by first computing the transitive closure for each
individual action, and then applying a classical forward reachability algorithm
using these results. However, such an approach requires manual intervention: to
make the reachability analysis terminate, it is often necessary to combine actions
in a certain order, or even to accelerate combinations of individual actions. In
our approach, all computations are entirely automatic.

Observe that we are not able to compute the transitive closure of the transi-
tion relation of the tree-arbiter protocol (in fact, we do not know if it is regular

Table 1. Results

Relation |D| |D+| max size |D+(φI)| max size
Simple Token Protocol 3 4 15 3 17

Two-Way Token Protocol 4 6 28 3 26
Percolate Protocol 4 6 40 3 21

Tree-arbiter Protocol 8 - - 10 246
Leader Election Protocol 6 9 105 10 150
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or not). However, we are already able to compute transitive closure of individual
actions for this protocol as well as the reachable set of states with the technique
of Section 8.

10 Conclusions and Future Work

In this paper, we have presented a technique for computing the transitive closure
of a tree transducer.

This technique has been implemented and successfully tested on a number
of protocols, several of which are beyond the capabilities of existing tree regular
model checking techniques.

We believe that substantial efficiency improvement can be achieved by con-
sidering more general equivalence relations than the one defined in Section 7,
and by refining our algorithms for computing simulation relations.

The restriction to structure-preserving tree transducers might be seen as a
weakness of our approach. However, structure-preserving tree transducers can
model the relation of many interesting parametrized network protocols. In the fu-
ture, we plan to investigate the case of non structure-preserving tree transducers.
One possible solution would be to use padding to simulate a structure-preserving
behavior. This would allow us to extend our method to work on such systems as
Process Rewrite Systems (PRS). PRS are useful when modeling systems with a
dynamic behavior [BT03].

Finally, it would also be interesting to see if one can extend our simulations,
as well as the algorithms for computing them, in order to efficiently implement
the technique presented in [BT02] (the detection of an increment can be done
by isolating part of the automaton with the help of (bi)simulations).
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Abstract. A novel machine learning based approach was proposed re-
cently as a complementary technique to the acceleration based meth-
ods for verifying infinite state systems. In this method, the set of states
satisfying a fixpoint property is learnt as opposed to being iteratively
computed. We extend the machine learning based approach to verify-
ing general ω-regular properties that include both safety and liveness.
To achieve this, we first develop a new fixpoint based characterization
for the verification of ω-regular properties. Using this characterization,
we present a general framework for verifying infinite state systems. We
then instantiate our approach to the context of regular model checking
where states are represented as strings over a finite alphabet and the
transition relation of the system is given as a finite state transducer; un-
like previous learning based algorithms, we make no assumption about
the transducer being length-preserving. Using Angluin’s L* algorithm
for learning regular languages, we develop an algorithm for verification
of ω-regular properties of such infinite state systems. The algorithm is
a complete verification procedure for systems for whom the fixpoint can
be represented as a regular set. We have implemented the technique in
a tool called Lever and use it to analyze some examples.

1 Introduction

Automated verification of systems with respect to temporal properties involves
computing fixpoints of functionals on sets of states of the system. This is of-
ten calculated by iteratively computing approximations to the fixpoint, until
the process converges. When verifying infinite state systems, this iterative com-
putation must necessarily be performed symbolically, using a suitably chosen
representation for sets of states. However, since fixpoint computations are no
longer guaranteed to converge within finitely many steps, a variety of accelera-
tion methods, such as widening [15, 4] and abstraction [3], have been proposed.
These methods have been used successfully to verify many practical examples
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and can be used to obtain complete verification procedures for special subclasses
of systems (such as bounded local depth or simple transition relations [10]).

Recently, a complementary, machine learning based approach has been inde-
pendently proposed in [17] and [9]. In this approach, the fixpoint is learnt from
examples of states belonging to the fixpoint and states not belonging to the fix-
point. The advantage of the learning based approach is that termination does
not depend on how long it takes to converge to the fixpoint, and hence this ap-
proach yields a complete verification procedure even when the fixpoint does not
converge within a finite bound. Second, because intermediate approximations to
the fixpoint are never computed, it avoids the space overhead of storing fixpoint
approximations that may have a large symbolic representation. Preliminary ex-
perimental results based on this approach are promising [17, 9, 16].

In this paper, we present a general framework to verify infinite state systems
with respect to specifications presented as non-deterministic Büchi automata.
One of the central requirements of our framework is a learning algorithm that
can learn concepts encoded using a chosen symbolic representation. The learning
algorithm is used to learn the fixpoint of a specific function, such that the initial
state of the system belongs to the learnt set if and only if the system satisfies
the specification. This yields a complete verification procedure, provided the
fixpoint can be represented in the chosen representation. We then instantiate
the framework to the specific context of regular model checking, where states are
encoded as strings over some finite alphabet, and the system’s transition relation
is presented as a transducer over such strings. Unlike previous work in this area,
we do not assume that the transducer is length preserving. If the fixpoint of
our functional can be expressed as a regular language, then our algorithm is
guaranteed to terminate and either prove the system to be correct or demonstrate
that it is faulty. We use Angluin’s L* [2] algorithm to learn the regular set
representation of the fixpoint.

The results presented here significantly advance the state of the art in learning
based verification. First, our method verifies ω-regular properties which can ex-
press safety as well as liveness properties. This generalizes our previous work on
safety properties reported in [17, 16]. Second, our instantiation to regular model
checking is not confined to analyzing systems such as FIFO automata. We also
do not need the transition relation to be restricted to be length-preserving as has
been assumed in some other approaches such as [9]. Moreover, our general frame-
work can potentially be used to verify systems symbolically represented using
polyhedra or ellipsoids, not just regular languages, provided appropriate learning
algorithms can be plugged in. Third, our algorithm for checking containment
of the system’s trace language in the specification automata’s language, is not
based on discovering loops where final states of the automata are visited infinitely
often (as is the case in [9]). Thus, our algorithm will successfully identify faulty
systems, even when there is no ultimately periodic execution that witnesses the
violation. This is important because for general infinite state systems, it is often
the case that there is no such ultimately periodic execution witnessing the viola-
tion of a liveness property. Finally, since we use Angluin’s L* algorithm, we are
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guaranteed to not only learn the smallest automaton representing the fixpoint,
but are also guaranteed to only make polynomially many calls to the learning
algorithm.

The rest of the paper is organized as follows. We first outline results that
are closely related to this paper. In Section 2, we introduce basic concepts and
notation that are used in the paper. The general learning based verification
framework for ω-regular languages is presented in Section 3. We first identify a
functional whose fixpoint helps us verify ω-regular properties (Section 3.1) and
then show how a learning algorithm can be used to compute the fixpoint of this
functional (Section 3.2). In Section 4, we instantiate this general framework to
the specific context of regular model checking, where states are represented as
strings over a finite alphabet and the system’s transition relation is represented
as a transducer. We give detailed algorithms for the various operations that
are needed in the learning based algorithm. Finally, in Section 5 we discuss the
analysis of two examples using the implementation of this verification method
in a tool called Lever and present our conclusions in Section 6.

Related Work. We introduced the learning to verify approach in [17], where we
used RPNI [12] to learn the regular set from positive and negative examples
without active queries. In [16], we improved our learning procedure for FIFO
automata by using a more powerful active learning framework and a better en-
coding for witnesses for membership queries. Concurrently and independently of
our work, Habermehl et al. [9] have also proposed a learning based approach
for verification of systems whose transition can be represented by a length-
preserving transducer. The algorithm presented there crucially depends on the
length-preserving nature of the transition relation for its completeness. An ear-
lier use of regular inference techniques for reachability in parameterized rings
of processes also appears in [8]. Verification of ω-regular properties for infinite
state systems has also been addressed in [4] and [13]. Abdulla et al. [1] present
a “two-dimensional” modal logic called LTL(MSO) for verification of liveness
properties. The above approaches rely on loop detection for checking liveness
and assume that the transition relation is length preserving. Recently, Bouaj-
jani et al. [5] have analyzed liveness properties of non-length preserving systems
using a notion of simulation between states.

2 Preliminaries

In this section, we present the learning framework that we will consider in this
paper and basic definitions of Kripke structures and Büchi automata.

2.1 Learning with Membership and Equivalence Queries

A learning algorithm is usually set in a framework which describes the types
of input data and queries available to the learner. In the framework of active
learning [2]), the learning algorithm is given access to a knowledgeable teacher,
often called a minimally adequate teacher. The knowledgeable teacher can be
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thought of as a pair of oracles: a membership oracle and an equivalence oracle.
The membership oracle provides answers to queries about whether an example
belongs to the concept being learnt or not. The equivalence oracle is a more
powerful oracle which answers question about whether a hypothesis proposed by
the learning algorithm is indeed equivalent to the concept being learnt. If at some
point the learning algorithm’s hypothesis is deemed correct by the equivalence
oracle then the learning process stops. If on the other hand, the learner submits a
hypothesis which is not equivalent to the target concept, the equivalence oracle
not only says no, but also provides a counter-example to demonstrate when
the hypothesis is wrong. The counter-example is either an example belonging
to the hypothesis but not to the target concept, or it is an example belonging
to the target concept but not to the submitted hypothesis. The active learning
framework can be contrasted with the passive learning framework where the
learner is simply provided a set of examples labeled as either belonging to the
target concept or not; there is no knowledgeable teacher involved. The active
learning algorithm is a powerful framework that in many cases admits efficient
learning of concepts which otherwise cannot be learnt passively.

Our learning based verification approach uses a learning algorithm in the
active learning framework. In particular, when we instantiate our learning based
approach to verify a class of infinite state systems, we use a classical algorithm
due to Angluin [2] which learns the smallest automaton recognizing the regular
language, when it is allowed to interact with a knowledgeable teacher. Angluin’s
L* algorithm is also highly efficient; it can be shown that the number of queries
made to the membership and equivalence oracles by the learning algorithm is
bounded by a polynomial in the size of the smallest DFA recognizing the regular
language. The main idea behind Angluin’s L* algorithm is to systematically
explore strings in the alphabet for membership and create a DFA with minimum
number of states to make a conjecture for the target set. If the conjecture is
incorrect, the string returned by the teacher is used to make corrections, possibly
after more membership queries. The algorithm maintains a prefix closed set
S representing different possible states of the target DFA, a set SA for the
transition function consisting of strings from S extended with one letter of the
alphabet, and a suffix closed set E denoting experiments to distinguish between
states. An observation table with rows from (S ∪ SA) and columns from E stores
results of the membership queries for strings in (S ∪ SA).E and is used to create
the DFA for a conjecture.

2.2 Kripke Structures and Büchi Automaton

We use Kripke structure to model the system being verified and Büchi automaton
for the specification. We now formally define these.

Kripke Structure. A Kripke structure K is a quintuple (Sk, Σ,Rk, Sk
0 ,L) where

Sk is the set of (possibly infinite) states, Σ is a finite alphabet, Rk ⊆ Sk × Sk

is the (total) transition relation, Sk
0 ⊆ Sk is the set of initial states and L :

Sk → Σ is the labeling function. We restrict ourselves to Kripke structures that
are finitely branching, i.e., for any state s, the set {s′ | Rk(s, s′)} is finite. We
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say s → s′ iff (s, s′) ∈ Rk. A path starting from state s is an infinite sequence
s0, s1, s2 . . . such that s = s0 and for every i, (si, si+1) ∈ Rk. A path of a Kripke
structure K is just a path starting from some initial state s ∈ Sk

0 . The set of all
paths of K will be denoted by P(K). For a path π = s0, s1, s2, . . ., KTrace(π) is
the sequence of labels �0, �1, �2, . . . such that for every i, L(si) = �i. For a set of
paths Π, KTrace(Π) is taken to be {KTrace(π) | π ∈ Π}.
Büchi Automaton. A Büchi automaton [14] M is a quintuple (Sm, Σ, Sm

0 , δ, Fm)
where Sm is a finite set of states, Sm

0 ⊆ Sm is the set of initial states, δ :
Sm ×Σ → 2Sm

is the transition function, Fm ⊆ Sm is a set of accepting states.
For an infinite word v = v0, v1, v2, . . . ∈ Σω, the run of M on v is a sequence of
states ρ = s0, s1, s2, . . ., such that si+1 ∈ δ(si, vi) for every i. An infinite word v
is accepted by M if there is some run ρ of M on v such that some state s ∈ Fm

appears infinitely often in ρ. The language accepted by M , which we denote by
S(M), is the set of all words v accepted by M . A set of infinite words L is said
to be ω-regular if there is some Büchi automaton such that L = S(M).

CTL∗ Various modal and temporal logics such as CTL∗ are often used for spec-
ifying the acceptable behaviors of a system. For a comprehensive introduction
to this subject, the reader is referred to [7]. In this paper we will be concerned
with only one specific CTL∗ property, namely EGFp. A state s in a Kripke
structure K satisfies EGFp if and only if there exists a path π = s0, s1, s2, . . .
starting from s such that for all i, L(sj) = p for some j ≥ i; in other words, the
path encounters states labelled p infinitely often. When s satisfies EGFp, we
will say s,K |= EGFp; when K is clear from the context we will simply write
this as s |= EGFp. We will denote by [[EGFp]]K the set of all states s, such that
s,K |= EGFp.

Satisfying Specifications. Similar to the traditional approach used in model check-
ing using automata theory, we assume that the system specification is given
in terms of the bad behaviors that the implementation must not exhibit. The
bad behaviors are specified using a Büchi automaton. For a Kripke structure
K and a Büchi automaton M , K is said to be correct with respect to M iff
KTrace(P(K)) ∩ S(M) = ∅. Since Büchi automata are closed under comple-
mentation even if we are given the specification as an automaton Mg specifying
the good behaviors, we can complement Mg to get M which specifies the bad
behaviors.

We will reduce the problem of checking if the system satisfies the specification
to the problem of checking if the CTL∗ formula EGFp is satisfied. In order to
do this, we first define the Kripke structure obtained by taking the cross product
of a Kripke structure and a Büchi automaton.

Definition 1. The cross-product of a Büchi automaton M = (Sm, Σ, Sm
0 , δ, Fm)

and a Kripke structure K = (Sk, Σ,Rk, Sk
0 ,L) is the Kripke structure M ×K =

(Sm × Sk, {f, f̃}, R′, Sm
0 × Sk

0 ,L′). Here, ((sm
1 , sk

1), (sm
2 , sk

2)) ∈ R′ if and only if
(sk

1 , s
k
2) ∈ Rk and sm

2 ∈ δ(sm
1 ,L(sk

1)). A state (sm, sk) in M ×K is labelled by f
if sm ∈ Fm and by f̃ otherwise.
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Lemma 1. There is a path π = (sm
0 , sk

0)(sm
1 , sk

1)(sm
2 , sk

2) . . . in the product Kripke
structure M ×K if and only if sm

0 sm
1 sm

2 . . . is a run in the Büchi automaton M
on KTrace(sk

0s
k
1s

k
2 . . .) where sk

0s
k
1s

k
2 . . . is a path in K.

Proposition 1. For an automaton M , KTrace(P(K)) ∩ S(M) = ∅ if and only
if [[EGFf ]]M×K ∩ (Sm

0 × Sk
0 ) = ∅ (In other words, no initial state of M × K

satisfies EGFf).

Proof. Suppose KTrace(P(K))∩S(M) 
= ∅. Then there is a path π ∈ P(K) such
that KTrace(P(K)) is accepted by M . Let sm

0 sm
1 sm

2 . . . be the accepting run in
M . By Lemma 1, there is a path π = (sm

0 , sk
0)(sm

1 , sk
1)(sm

2 , sk
2) . . . in M ×K. But

since an accepting run of a Büchi automata visits a accepting state infinitely
often, then by the product construction, the path π = (sm

0 , sk
0)(sm

1 , sk
1)(sm

2 , sk
2) . . .

in M ×K visits states labelled f infinitely often. Thus, M ×K satisfies EGFf .
If M×K satisfies EGFf then there is a path π = (sm

0 , sk
0)(sm

1 , sk
1)(sm

2 , sk
2) . . .

which infinitely often visits states labeled f . By Lemma 1, there is a run
sm
0 sm

1 sm
2 . . . in M on KTrace(sk

0s
k
1s

k
2 . . .). This is an accepting run because the

product construction labels a state (sm, sk) ∈ M ×K as f only if sm is an ac-
cepting state. But then M accepts KTrace(sk

0s
k
1s

k
2 . . .). Hence, KTrace(P(K))∩

S(M) 
= ∅.

3 Learning to Verify ω-Regular Properties

In this section, we present a general framework to verify a system described as
a Kripke structure K. We assume that we are given a Büchi automaton M that
describes the set of behaviors that the system K must not exhibit. Recall, that
in Section 2.2, we observed that the problem of checking if KTrace(P(K)) ∩
S(M) = ∅ can be reduced to the problem of checking if an initial state of M×K
satisfies EGFf . We first characterize [[EGFf ]] using fixpoints of a functional
that we define in Section 3.1. Next, we show that the fixpoint is unique and has
certain key properties that we need for our problem. Finally, we will show how
a learning algorithm can be used to learn the fixpoint, and therefore help verify
if K satisfies M .

3.1 Fixpoint Characterization of EGFf

From now on, we assume that we are interested in checking if some initial state
of a Kripke structure K = (S, {f, f̃}, R, S0,L) satisfies EGFf . Traditionally, the
fixpoint characterization of EGFf is given by νZ1.EX(μZ2.Z1 ∧ (f ∨ EXZ2))
(see [6]). Notice that this formula involves nesting of the fixpoint operators which
we wish to avoid in our learning-based technique for technical reasons. Therefore,
we develop a novel characterization of EGFf that does not use nesting. Further,
we also obtain a unique fixpoint which make it possible to answer equivalence
queries exactly. As far as we know, this is a new characterization and may be of
independent interest. We now proceed to describe this fixpoint.

Let X be a set of triples (s, i, j) such that s ∈ S and i, j ∈ N, where N denotes
the set of natural numbers. We define the functional Γ : 2S×N×N → 2S×N×N such
that Γ (X) = Γ1(X) ∪ Γ2(X) ∪ Γ3(X), where
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Γ1(X) = {(s, 0, j) | L(s) = f and j ∈ N}
Γ2(X) = {(s, i, j) | L(s) = f̃ and ∃s′. s → s′ ∃j′ < j. (s′, i, j′) ∈ X}
Γ3(X) = {(s, i, j) | L(s) = f and ∃s′. s → s′ ∃j′ < j. (s′, i− 1, j′) ∈ X}
The intuition behind the definition of Γ is as follows. Consider a property

ηi,j
f such that a state s satisfies ηi,j

f if there is a path of length j such that we
encounter (at least) i+1 states that are labeled f . Formally, s |= ηi,j

f iff there is a
finite path s0, s1, s2, . . . , sj from state s such that there are indices k1, k2, . . . ki+1
such that L(sk�

) = f for every 1 ≤ � ≤ i+1. Now the intuition behind Γ is that
if X is a fixpoint of Γ and (s, i, j) ∈ X then s |= ηi,j

f .
Clearly, Γ is monotonic and hence has fixpoints. In addition, we can show

that Γ has a unique fixpoint. This is the objective of the next few observations.

Lemma 2. Let X be a fixpoint of Γ . The following two facts hold about elements
of X.

1. If L(s) = f̃ then ∀i ≥ 0.∀j. (s, i, j) ∈ X if and only if ∃s′. s → s′ ∃j′ <
j. (s′, i, j′) ∈ X

2. If L(s) = f then ∀i ≥ 1.∀j. (s, i, j) ∈ X if and only if ∃s′. s → s′ ∃j′ <
j. (s′, i− 1, j′) ∈ X

Proof. The results follow from the definition of the fixpoint under Γ . We illus-
trate this for one direction of 1; the proof for other cases is similar. Suppose
L(s) = f̃ and suppose (s, i, j) ∈ X. If ∃s′. s → s′ ∃j′ < j. (s′, i, j′) ∈ X does not
hold then (s, i, j) 
∈ Γ (X) which contradicts the fact that X is a fixpoint.

Proposition 2. If X1 is a fixpoint of Γ and X2 is also a fixpoint of Γ then
X1 ⊆ X2. Hence there is a unique fixpoint of Γ .

Proof. Let (s, i, j) ∈ X1. We show that then (s, i, j) ∈ X2. The proof will proceed
by induction on i and j.

Consider the base case when i = 0. We will prove the claim by induction on
j. Clearly (s, 0, 0) ∈ X1 iff L(s) = f iff (s, 0, 0) ∈ X2. Suppose the claim holds
for (s, 0, j′) for all j′ < j. Consider (s, 0, j) ∈ X1. If L(s) = f then (s, 0, j) ∈ X2
for every j by the definition of Γ1. Now if L(s) = f̃ then by Lemma 2, it must
be the case that there is s′ and j′ such that s → s′, j′ < j and (s′, 0, j′) ∈ X1.
By the induction hypothesis, we know that (s′, 0, j′) ∈ X2. Again, by Lemma 2,
this means that (s, 0, j) ∈ X2.

Assume that for every i′ < i and for every j′, if (s, i′, j′) ∈ X1 then (s, i′, j′) ∈
X2. The induction step for (s, i, j) is proved by induction on j. For the base case
when j = 0, we observe that (s, i, 0) is not a member of any fixpoint of Γ
(Lemma 2). The proof of the induction step is similar to the case of i = 0, and
is skipped in the interests of space.

By symmetry, X2 ⊆ X1, hence X1 = X2 giving the uniqueness of the fixpoint
for Γ .

Henceforth, we use X to denote the unique fixpoint of Γ . We are now ready
to state the proposition that formally proves our intuition behind defining Γ .
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Proposition 3. Suppose X is the fixpoint of Γ . Then, (s, i, j) ∈ X if and only
if s |= ηi,j

f .

Proof. (⇒) We prove this by induction on i and j. For the base case consider
i = 0. We now induct on j. When j = 0, (s, 0, 0) ∈ X iff L(s) = f , which means
that there is a path of length 0 starting from s where we encounter one state
labeled f . Now suppose j > 0. If L(s) = f then it trivially follows that there
is a path of length j > 0 starting from s where we encounter at least one state
labeled f . Suppose L(s) = f̃ . Then by Lemma 2, there is s′ and j′ < j such that
s → s′ and (s′, 0, j′) ∈ X. Then by induction hypothesis, s′ |= η0,j′

f which then
implies that s |= η0,j

f .
Consider i > 0. Once again we induct on j. Observe that since by Lemma 2,

(s, i, 0) is not in any fixpoint when i > 0, the claim holds vacuously. The induc-
tion step goes through in manner similar to the case of i = 0 and the proof is
therefore skipped.

(⇐) We prove the converse direction also by induction. Consider i = 0.
If j = 0 and s |= η0,0

f then it must be the case that L(s) = f . This means
that (s, 0, 0) ∈ X. Suppose j > 0 and s |= η0,j

f . If L(s) = f then once again
(s, 0, j) ∈ X. If L(s) = f̃ then it must be the case that there is some s′ such
that s → s′ and s′ |= η0,j−1

f . Thus by induction hypothesis (s′, 0, j− 1) ∈ X and
therefore by Lemma 2, (s, 0, j) ∈ X.

Consider i > 0 and s |= ηi,j
f . If L(s) = f then it is definitely the case

that there is s′ such that s → s′ and s′ |= ηi−1,j−1
f . By induction hypothesis,

(s′, i− 1, j − 1) ∈ X, and that implies (by Lemma 2) that (s, i, j) ∈ X. On the
other hand, if L(s) = f̃ then we can conclude that there is s′ such that s → s′

and s′ |= ηi,j−1
f . By induction hypothesis this means that (s′, i, j − 1) ∈ X, and

by this we can conclude that (s, i, j) ∈ X because of Lemma 2.

We are now ready to characterize [[EGFf ]] in terms of the fixpoint X of Γ .
This is the formal content of Proposition 4. But before presenting that proposi-
tion, we need a technical definition.

Definition 2. σ(X) = {s | ∀i∃j.(s, i, j) ∈ X}.

Proposition 4. Suppose X is the fixpoint of Γ . Then s ∈ σ(X) if and only if
s |= EGFf .

Proof. (⇐) Suppose s |= EGFf . Then there is a path π = s0, s1, s2, . . . starting
from s, such that for infinitely many k, L(sk) = f . Define ji to be the least
k such that L(sk) = f and there are i + 1 states before sk on π that are also
labeled f . It is clear that s |= ηi,ji

f and therefore by Proposition 3, (s, i, ji) ∈ X.
Hence s ∈ σ(X).

(⇒) Suppose s ∈ σ(X). By definition, for every i, there is some j such that
(s, i, j) ∈ X. Hence, by Proposition 3, s |= ηi,j

f . Construct a tree with root s,
containing edges appearing in all shortest paths that witness s satisfying ηi,j

f . A
few observations about this tree are in order. First, the tree is finite branching; an
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immediate consequence of the Kripke structure being finite branching. Second,
all leaves are labeled f since the tree is constructed using the shortest witnesses.
Third, if s′ is an internal node in the tree then every path from s′ in the tree will
reach a state labeled f . Finally, this tree has infinitely many vertices. By König’s
Lemma, there must be an infinite path in the tree. Let us call this infinite path
π. We claim that this infinite path witnesses EGFf . Consider any state s′ on
path π. Since s′ is an internal node in the tree, it must be the case that on every
path from s′ in the tree we encounter a state labeled f . In particular on the path
π, we encounter a state labeled f beyond s′. Thus π has infinitely many states
labeled f .

3.2 Learning Fixpoints

We are now ready to present our general framework for verifying ω-regular prop-
erties using learning. We make the following assumptions about the system K
being verified.

1. The system K can be simulated from any state.
2. There is a convenient symbolic representation R for sets consisting of triples

(s, i, j), where s is a state and i, j are natural numbers. This means that the
representation is closed under complementation and decision procedures are
available for membership in a set, containment of one set in another, and
emptiness of a set.

3. Given the representation of a set Y of triples (s, i, j) and a state s it is
possible to check if s ∈ σ(Y )

4. Given a representation of a set Y of triples (s, i, j) it is possible to compute
the representation of Γ (Y )

5. There is an active learning algorithm for concepts encoded in the symbolic
representation.

Based on these assumptions, we show how learning can be used to verify ω-
regular properties. The central idea is to use the learning algorithm to learn the
fixpoint X of Γ . After we learn the fixpoint, based on Propositions 1 and 4, we
can reliably answer whether or not the system satisfies the specification. Thus to
verify ω-regular properties using learning, we need to implement the membership
and equivalence oracles that the learning algorithm needs.

Proposition 3 suggests a method to answer membership queries about whether
(s, i, j) belongs to the fixpoint X of Γ . To check if (s, i, j) belongs to X, we will
simulate the system for j steps starting from state s and check if on some path,
we encounter i + 1 states labeled f . Further, given a representation for a set Y ,
we can also answer whether Y is in fact equal to X. Since Γ has a unique fix-
point, all we need to do is check if Γ (Y ) = Y . If Γ (Y ) 
= Y then the equivalence
query must provide a counterexample. In other words, we need to produce an
element in the symmetric difference of Y and X. This can be done as follows for
the different possible cases.

– Γ (Y )\Y 
= ∅. Let l = (s, i, j) be some element in this set. If l = (s, 0, 0) then
l ∈ X, because the only way we can have any (s, 0, 0) in Γ (Y ) is if L(s) = f .
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Is "y" a member?
yes/no

Is hypothesis "Y" the target?

Membership
oracle

LearnerIs "Y" a 
fixpoint?

"Y" is not the target,
as shown by string "l"

no

yes

Equivalence oracle

Any initial 
state in ?

no

System correct

yes

System incorrect

σ(Y )

Fig. 1. Verification procedure

In this case, l is in X and hence in X ⊕ Y . If l = (s, 0, j) and L(s) = f then
once again l ∈ X and hence in X ⊕ Y . If l = (s, i, j) for some j 
= 0, we can
check if l ∈ X using the membership query. If yes, then l is also in X ⊕ Y
and we are done. Otherwise, l ∈ Γ (Y ) because of the existence of some triple
(s′, i′, j′) ∈ Y which satisfies the conditions Γ2 or Γ3. (s′, i′, j′) cannot be in
X otherwise (s, i, j) would have to be in X. Hence (s′, i′, j′) ∈ X ⊕ Y .

– Γ (Y ) � Y . From standard fixpoint theory, since X happens to also be the
least fixpoint under Γ , it must be the intersection of all prefixpoints of Γ (a
set Z is a prefixpoint if it shrinks under the functional Γ , i.e. Γ (Z) ⊆ Z).
Now, Y is clearly a prefixpoint. Applying Γ to both sides of the equation
Γ (Y ) � Y and using monotonicity of Γ , we get Γ (Γ (Y )) � Γ (Y ). Thus,
Γ (Y ) is also a prefixpoint. Let l be some string in the set Y \ Γ (Y ). Since l
is outside the intersection of two prefixpoints, it is not in the least fixpoint
X. Hence, l is in X ⊕ Y .

Once we have learned the fixpoint X, we can verify if the initial states of
the Kripke structure satisfy EGFf using Proposition 4. By Proposition 1, this
provides an answer to the verification problem. The overall procedure is summa-
rized in Figure 1. This procedure yields a complete verification method when the
fixpoint X of Γ can be symbolically represented in the chosen representation.
This is the content of the following theorem.

Theorem 1. If the fixpoint X of Γ can be represented using the chosen sym-
bolic data structure and a learning algorithm using membership and equivalence
queries is available for this data structure, the verification procedure is guaranteed
to terminate and correctly infer whether the system satisfies the specification.

The theorem follows from observations made in this section.

4 Infinite State Systems Using Regular Languages

In Section 3.2 we presented a general set of conditions under which we can use a
learning based approach to verify systems with respect to ω-regular properties.
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In this section, we demonstrate this can be achieved within the context of using
regular languages to represent sets of states.

Regular sets are a popular symbolic representation for sets of states of for
infinite state systems. Regular model checking [4] has been applied to modeling
parameterized systems, FIFO automata, systems with integer variables and push
down stacks. Based on the practical success that has been enjoyed by regular
model checking and the efficient learning algorithms available for regular lan-
guages, we apply our learning technique on regular sets. As mentioned before,
we use Angluin’s L∗ [2] algorithm.

We assume that the states of the system can be encoded as strings over some
finite alphabet ρk. The transition relation is given as a transducer τk which takes
an input string corresponding to some state s and outputs a string for the state
related to s. The transition relation is assumed to be total. The set of initial
states is given by a regular set Sk

0 and the set of states with a label a is given
as regular sets Sk

a . Let K be the Kripke structure defined by the above sets.

4.1 Construction of the Product Kripke Structure

Let M be the Büchi automaton specifying the bad behaviors that must not
be exhibited by the system. Since ω-regular languages are powerful enough to
express fairness constraints, we assume that such constraints, if any, are already
embodied in the Büchi automaton. We now show how to construct the product
Kripke structure M×K. We extend the alphabet ρk to ρM×K with new symbols
bsm , one for each state sm in M . A state (sm, sk) in M×K is encoded as a string
with the first letter as bsm and the remaining part of the string as the original
string encoding sk. Initial states in SM×K

0 are given by concatenating a letter
bs0 for s0 ∈ Sm

0 and a string in Sk
0 . The set of states Sf̃ (resp. Sf ) labelled with

f̃ (resp. f) is given by a DFA which looks at the first letter of the input string
and accepts if this is bsm for some sm 
∈ Fm (resp. sm ∈ Fm). The transducer
τM×K representing the transition relation for M ×K is a bit more tedious but
can be constructed using standard automata operations.

Henceforth, we restrict our attention to the Kripke structure M × K. For
ease of notation, we drop the superscript M ×K in τ , S0, ρ and so on.

4.2 Symbolic Representation for the Fixpoint X

As discussed in Section 3.2, we now need to learn the fixpoint X of the functional
Γ . In general, X is a subset of ρ∗×N×N. To encode X as a regular set we use the
alphabet ρX given by (ρ∪{⊥})×{0,⊥}×{0,⊥}. This is the alphabet that will
be used by Angluin’s L∗ learning algorithm. Here 0 is a unary symbol for natural
numbers and ⊥ is a new “filler” symbol. An element (s, i, j) is encoded as string
over ρX such that projecting the symbols on the first component gives us s (the
⊥ symbols are ignored); and projecting on the second and third components
gives i and j respectively in unary notation.
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4.3 Membership and Equivalence Queries

As discussed before, membership queries for X can be answered using Proposi-
tion 3. For answering equivalence queries, we need a symbolic way to calculate
Γ (X). Apart from the standard operations on regular set we define the following.

Definition 3. Given Y a set of strings in the alphabet of ρX , define

Inci(Y ) = {(s, i, j) | (s, i− 1, j) ∈ Y }
Incj(Y ) = {(s, i, j) | (s, i, j − 1) ∈ Y }

Given a DFA MY for Y , the DFA for Inci(Y ) can be constructed as follows.
Inci(Y ) keeps two copies of MY , with initial states in the first copy and final
states in the second copy. Any transition t with the ⊥ symbol for the i component
in the first copy is changed to a transition to the state corresponding to the target
of t in the second copy and the i component symbol is changed to 0. We also
add a transition from a state in the first copy which used to be final in MY

to the corresponding state in the second copy with symbol (⊥, 0,⊥). A similar
construction can be used for Incj(Y ).

Checking Hypothesis for Upward Closure in j. A property that we will find
useful in answering equivalence queries is that by definition of Γ , its fixpoint X
is upward closed in the j component, i.e., if (s, i, j) in X then for all j′ > j,
(s, i, j′) is also in X. A set Y is upward closed in the j component if and only
if Incj(Y ) ⊆ Y . If Y is not upward closed then let (s, i, j) be the string in
Incj(Y ) \ Y . Clearly, (s, i, j) 
∈ Y . Now we use membership query to check if
(s, i, j) ∈ X. If (s, i, j) is indeed in X then (s, i, j) is in the symmetric difference
X ⊕ Y . Otherwise (s, i, j − 1) is also not in X (since X has the upward closed
property). In this case (s, i, j − 1) ∈ X ⊕ Y .

Symbolic Computation of Γ1. A finite automaton for Γ1(Y ) is obtained by taking
the DFA for f and taking its cross product with a DFA that accepts 0 for the i
component and another DFA which accepts any j.

Symbolic Computation of Γ2. If we always first check for upward closure in j, we
can assume that we would need to compute Γ2 only for sets which are upward
closed. Let τ−1(Y ) be the inverse of τ lifted to the triples (s, i, j) so that it
simply copies the second and the third components. It can be seen that if Y is
upward closed then Γ2(Y ) = Sf̃ ∩ Incj(τ−1(Y )).

Symbolic Computation of Γ3. For Γ3, τ−1(Y ) gives the set of states which have
a successor in Y . It is easy to see that Γ3(Y ) = Sf ∩ Inci(Incj(τ−1(Y ))).

Using the Fixpoint Check. From the previous paragraphs, we have a symbolic
method to compute Γ (Y ) = Γ1(Y )∪Γ2(Y )∪Γ3(Y ). Now, the equivalence oracle
simply needs to check if Y = Γ (Y ). We also need a method of extracting strings
in the symmetric difference of Y and the fixpoint in case Y is not the fixpoint.
It can be seen that the approach outlined in Section 3.2 can be applied to
regular sets.
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4.4 Checking for s0 ∈ σ(X).

Proposition 5. σ(X) = Proj 1(Proj 1,2(X)). Here, Proj 1 is the projection to the
first component and Proj 1,2 the projection to the first and second components.

Proof (Sketch). Recall that σ(X) = {s | ∀i∃j.(s, i, j) ∈ X}. Equivalently, σ(X) =
{s | ¬(∃i¬(∃j.(s, i, j) ∈ X))}. The claim follows from the fact that ∃ can be
eliminated using projection and the ¬ operator corresponds to taking the com-
plement.

Given a regular representation of X we can calculate σ(X) using standard
regular set operations. Then the system is correct if and only if S0 ∩ σ(X) = ∅.

The verification algorithm is summarized in Figure 2.

algorithm learner
begin
Angluin’s L∗ algorithm
end

algorithm isMember
Input: (s, i, j)
Output: is (s, i, j) ∈ X?
begin

From s simulate system for j steps
Does any path in above encounter
at least i + 1 states labelled f?

If yes return true
else return false

end

algorithm Equivalence Check
Input: Hypothesis Y
Output: For fixpoint X, is Y = X?
If not, then some string in Y ⊕ X
begin

If Incj(Y ) \ Y �= ∅ {upward closure check}
let (s, i, j) ∈ Incj(Y ) \ Y
if isMember((s, i, j))

return (no, (s, i, j))
else

return (no, (s, i, j − 1))
else if Γ (Y ) \ Y �= ∅ {fixpoint check}

let (s, i, j) ∈ Γ (Y ) \ Y
Find (s′, i′, j′) which causes (s, i, j) to be

in Γ (Y )
if isMember((s, i, j))

return (no, (s, i, j))
else

return (no, (s′, i′, j′)
else if Γ (Y ) � Y

return (no, l ∈ (Y \ Γ (Y )))
else {found fixpoint}

if S0 ∩ Proj 1(Proj 1,2(X)) �= ∅
print “System incorrect”

else
print “System correct”

end

Fig. 2. Verifying ω-regular properties for regular set based systems

4.5 Complexity Analysis

Let m be the length of the longest string returned by the teacher in a negative
answer to an equivalence query, n be the number of states of the minimal au-
tomaton representing the fixpoint X, k be the size of the alphabet of the learned



58 A. Vardhan et al.

language and t be the number of states of the automaton representing the trans-
ducer for the transition relation. As shown in [2], Angluin’s algorithm makes
O(kmn2) membership queries and O(n) equivalence queries. The worst case for
the equivalence query for a hypothesis Y occurs when we look for a string in
the difference of Y and Γ (Y ). The size of DFA representing Y is bounded by
n. Looking at Γ , it can be seen that the DFA representing the difference of Y
and Γ (Y ) would be O(nt). Thus the length of the longest string returned by an
equivalence query is m = O(nt).

The cost of answering membership queries dominates the total runtime cost of
the algorithm. Using m = O(nt), the number of membership queries is O(ktn3).
For efficiency, given a query for (s, i, j), we build a DFA Dj for Γ j+1(∅) where
Γ j+1 denotes the composition of Γ j + 1 times with itself. Once Dj has been
built, all queries with the same value of j can be answered by checking if the
queried element is accepted by Dj . Thus the cost of the membership queries is
equal to the number of membership queries and the cost of building the DFAs.
The cost for Dj is (O(t))j which leads to the total cost of membership queries
of O(tO(nt) + ktn3) (using maximum value of j to be m = O(nt)).

5 Examples

We have extended our learning based verification tool suite called Lever [11]
with the algorithm presented in this paper and have successfully analyzed live-
ness properties for two examples of infinite state systems. The Büchi automaton
forms the specification and also describes the fairness constraints on the system.
The states of the system considered are encoded as strings over an alphabet as
described in [4]. We now briefly discuss the examples analyzed.

Token passing. We consider a parameterized system of processes in which each
process can send a token to the process to its right. There is a single token in
the system and initially it rests with the leftmost process. The liveness property
that is encoded with the Büchi automaton is, “every process eventually receives
a token”. The fixpoint for Γ is found to be regular and the system shown to be
correct using our verification procedure.

Producer consumer. This consists of a FIFO automata with a single channel,
in which one part of the system constantly produces messages while another part
consumes them. We verify the property, “a message produced by the producer
is eventually consumed”. Again, the fixpoint for Γ is found to be regular and
the system verified to be correct.

Both the examples take just a few seconds to analyze on a 1.5 GHz computer.
We continue to optimize the implementation in Lever, and in future plan on
analyzing more examples of infinite state systems and comparing our running
time with other tools that are available.
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6 Conclusion

In this paper we presented a general learning based verification framework to
verify ω-regular properties of infinite state systems. We instantiated the frame-
work in the context of regular model checking giving detailed algorithms for the
various primitive operations that are needed in order to perform the learning
based verification procedure. The algorithm is a significant improvement in the
current state of the art in learning based verification, as it verifies general ω-
regular properties, while not making restrictive assumptions about the way the
transition relation of the system is represented as a transducer. Furthermore, the
algorithm can detect buggy implementations, even when the implementations do
not have an ultimately periodic counter-example for the property.
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Abstract. Searching the state space of a system using enumerative
and on-the-fly depth-first traversal is an established technique for model
checking finite-state systems. In this paper, we propose algorithms for
on-the-fly exploration of recursive state machines, or equivalently push-
down systems, which are suited for modeling the behavior of procedural
programs. We present algorithms for reachability (is a bad state reach-
able?) as well as for fair cycle detection (is there a reachable cycle with
progress?). We also report on an implementation of these algorithms to
check safety and liveness properties of recursive boolean programs, and
its performance on existing benchmarks.

1 Introduction

Recursive state machines (RSM) can model control flow in typical sequential im-
perative programming languages with recursive procedure calls, and are equiva-
lent to pushdown systems [1]. Even though the state-space of an RSM is infinite
due to recursion, model checking problems for RSMs are decidable [6, 7, 15, 12,
1, 5]. Extended RSMs (ERSM) augment RSMs with global and local variables
that can be tested and updated along the edges of the control structure. Con-
temporary tools for software verification employ abstraction to automatically
extract ERSMs from code written in languages such as C, and then use ERSM
model checking algorithms to check temporal requirements [4, 17]. The complex-
ity of the key analysis problems for ERSMs, such as reachability, is polynomial
in the number of states [12, 1], where a state needs to encode the control location
and the values of all the global and in-scope local variables. To cope with the
state-space explosion due to the variables, existing implementations of ERSM
model checkers such as Bebop [3] and Moped [12] use symbolic encoding using
automata and binary decision diagrams. In this paper, we propose on-the-fly
explicit-state search algorithms as a viable alternative.

An on-the-fly algorithm explores the reachable states starting from initial
states by computing the successors of a state only when needed, typically using
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depth-first traversal, and terminates as soon as it finds a counterexample to the
property being verified. While the effectiveness of this technique is limited by
the number of states that can be stored and processed, it has its own advan-
tages over the symbolic approach. The guards and updates on an edge can be
complex, and can even include calls to library functions. It does not require an
a priori encoding of the states, and hence, can support complex and unbounded
data types and dynamic creation of data. Early termination allows discovery
of shallow bugs rapidly. Finally, the performance is more predictable as more
states are guaranteed to be searched with an increase in the available memory
and time. Consequently, tools such as Spin [18] and Murϕ [10] that rely on
on-the-fly explicit-state search algorithms have been very effective for classical
model checking problems. More recent tools like Zing [2] and Bandera [8] are
also explicit-state, support complex data types, concurrency, and recursion, but
do not offer any termination guarantees.

We first consider the reachability problem for ERSMs: starting from an initial
state, can control reach one of the target locations along some execution of the
ERSM? Our algorithm combines on-the-fly traversal of extended state machines
with early termination used in explicit-state model checkers and a summarization
algorithm used in interprocedural data-flow analysis [20].

We build on our reachability algorithm to arrive at a novel solution to the
fair cycle detection problem for ERSMs: starting from an initial state, is there
an execution of the ERSM that visits one of the target locations infinitely often?
This fair cycle detection problem is central to the algorithmic verification of live-
ness requirements. The known solution to this problem is most naturally viewed
in two phases [1]. In the first phase, all the summary edges are computed, and
the second phase reduces to fair cycle detection in an ordinary graph containing
these summary edges. Since we desire an on-the-fly solution with the possibility
of early termination, we do not want to compute all the summary edges first,
and wish to interleave the two phases. We can view this problem as fair cycle
detection in a graph (second phase) in which the edges, namely, the summary
edges discovered by the first phase, are inserted dynamically. For on-the-fly fair
cycle detection in ordinary graphs, tools such as Spin employ the so-called nested
depth-first-search algorithm [9], but this algorithm relies on the ordering of states
in a depth-first traversal, which fails if we allow dynamic insertion of (summary)
edges. In the proposed solution, we use a path-based algorithm for computing
the strongly-connected-components (SCC) of a graph [16]. Every time the first
phase discovers a summary transition, the SCC discovery algorithm processes
the newly reachable states. As a new SCC is discovered, early termination is
possible if it contains a state with the target location or a summary transition
representing a path through such a state, and if not, all vertices in the SCC can
be collapsed to a single vertex for efficiency. Cycle detection (but not fair cycle
detection) is interesting in program analysis in the context of points-to analysis
and cycle detection in dynamic graphs has been studied [19, 14].

For analysis of worst-case time bounds, let us assume that the ERSM has k
components, has no variables and has total size n (control locations plus tran-
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sitions). Then, the time bounds for non-on-the-fly explicit-state algorithms for
reachability and fair cycle detection are O(n) [1], while the symbolic algorithms
for reachability and fair cycle detection are O(n2) [13]. The newly proposed reach-
ability algorithm is O(n) and the new fair cycle detection algorithm is O(kn).

To test the performance of the proposed algorithms, we implemented them
in the tool Vera. The ERSM model is described in an input language that ex-
tends the boolean programs of Bebop [3] with additional types such as bounded
integers. The specifications can be written as monitors, and the tool performs
on-the-fly reachability and fair cycle detection on the product of the model and
the monitor. The regression test suite of Slam contains boolean programs ob-
tained from abstractions of real-world C code [4], and while Vera performs
well on examples that contain a bug, it performs poorly compared to symbolic
checkers such as Moped [12] when forced to search the entire space. On exam-
ples such as Quicksort from Moped’s benchmarks that need manipulation of
integer variables, Vera performs significantly better than Moped. Finally, we
manually abstracted a Linux driver code in which Metal had found a double
locking error using static analysis [11]. Vera performs well on this example, and
can also prove the liveness requirement that “every lock should eventually be
released.”

2 Extended Recursive State Machines

In this section, we introduce the formalism of extended recursive state machines
(ERSMs). We start with the language we use to specify guarded commands.

Expressions and Assignments. Let us have a set T of types and a domain
Dt associated with each type t ∈ T . In particular, we allow a boolean type with
the domain {T, F}. Let V be a finite set of variables where each variable is
associated with a type, and let Expr(V ) be a set of typed expressions. We refer
to the set of expressions of boolean type as BoolExp(V ).

An interpretation of V is a map σ : v ∈ V �→ d ∈ Dt, where v is of type
t. Every interpretation can be extended to a unique semantic map σ : expr ∈
Expr �→ d ∈ Dt, where expr is of type t.

An assignment over V has the form [x1, x2, . . . , xl] := [exp1, exp2, . . . , expl],
where xj ∈ V are distinct variables, and for all j, expj ∈ Expr(V ) is an ex-
pression of the same type as xj . We refer to the set of assignments over V as
Assgn(V ). The semantics of assignments are defined over pairs (σ1, σ2) of inter-
pretations of V . Given an assignment α of the above form, we say σ2 = α(σ1)
if (1) σ2(xj) = σ1(expj) for all xj , and (2) σ1(y) = σ2(y) for all variables
y ∈ V \ {x1, x2, . . . , xl}.

Syntax of ERSMs. An extended recursive state machine (ERSM) A is a tu-
ple 〈G, γin , p, (A1, A2, . . . , Ak)〉, where G is a finite set of global variables, γin
is an initial interpretation of G, p ∈ {1, . . . , k} is the index of the initial com-
ponent, and each component state machine Ai = 〈Li, Ii, Oi, λiin

, Ni, eni, ex i, δi〉
consists of
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– a finite set Li of local variables, a set Ii ⊆ Li of input variables, and a set
Oi ⊆ Li of output variables. The sets Ii and Oi are totally ordered, the j-th
variables in these orders being given by Ii(j) and Oi(j) respectively. Also,
we require that Ip = ∅;

– an initial interpretation λiin of Li;
– a finite set Ni of nodes;
– two special nodes eni, exi ∈ Ni, known respectively as the entry node and

the exit node; 1

– A set δi of edges, where an edge can be one of two forms:
• Internal edge: A tuple (u, v, g,α). Here u and v are nodes in Ni, g ∈

BoolExp(G ∪ Li) is a guard on the edge, and α ∈ Assgn(G ∪ Li) is an
assignment. Intuitively, such an edge will be taken only if the guard g
is true, and if it is taken, the assignments will be applied to the current
variables. The set of internal edges in component i is denoted by δI

i .
• Call edge: A tuple (u, v, g,m, in, out). Here u and v are nodes in Ni,

g ∈ BoolExp(G ∪ Li) is an edge guard, m ∈ {1, 2, . . . , k} is the index
of the called component, and in ∈ Lr

i and out ∈ Lq
i , for r = |Im| and

q = |Om|, are two lists of local variables. Intuitively, in is the list of
parameters passed to the call, and out is the list of variables where the
outputs of the call are stored on return from the call. We require that
all variables in out are distinct.
The set of call edges in component i is denoted by δC

i . The function
Yi : δC

i → {1, 2, . . . , k} maps call edges to indices of the components
they call, so that, for a call edge e such as above, Yi(e) = m.

We assume that entry nodes eni do not have incoming edges and exit nodes
exi do not have outgoing edges. ��
We designate the component Ap as the initial component. This component,

where runs of A begin, models the “main” procedure in procedural programs.

Example: Figure 1 shows a sample ERSM with one global variable a, and com-
ponents A1 and A2. Component A1 has an input variable i, and an output
variable x. Component A2, also the initial component, has no inputs and one
local/output variable y. All variables are of boolean type, and initially, we have
a = F , x = T , and y = T .

In the diagram, an internal edge (u, v, g,α) is drawn as a solid arrow from
node u to node v annotated by (g ⇒ α) (we will omit the guard g and the
assignment α if, respectively, g is always true and the assignment α is empty). A
call edge (u, v, g,m, in, out) is a dashed arrow annotated by (g ⇒ out := m(in))
(we omit out if it is empty, and leave out the guard g if it is trivially true).

1 The usual definition of RSMs [1] allows components to have multiple entry and exit
nodes. In this paper, we model entries and exits by input and output variables, so
it suffices to let each component have one entry and one exit node.
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A1 A2

bool i
bool y:=Tbool x:=T

en1

n1 n2 ex1
en2

n3

n5 n6

n4
ex2

bool a:=F

x=F
i=T

[x] :=2()

[a] := 2()

y =T−> [y:=F] 

a=F −> [y:=T]n7 n8 [a:=T]

[y]:= 1([y])

Fig. 1. A sample ERSM

Semantics of ERSMs. ERSMs model procedural programs written in C-like
imperative languages and resemble the latter in operational semantics. Compo-
nents, nodes, internal edges, and call edges in ERSMs respectively model proce-
dures, control locations, intraprocedural control flow, and procedure invocations
in procedural programs, and configurations and runs of ERSMs are the equiv-
alents of program states and program executions. A configuration of an ERSM
consists of a call stack, a current node, and a current interpretation of the global
and in-scope local variables. The transition relation on configurations has three
kinds of transitions: internal steps, calls, and returns. At an internal step, control
follows an internal edge, reaches a new node, and applies the assignments on the
edge to the variables in scope, the stack remaining unaffected. During a call, a
call edge and the current interpretation of the local variables in scope are pushed
onto the call stack, control reaches the entry node of the called component, and
a new set of local variables are initialized. At a return, we pop a calling context
off the stack, reinstate the popped local variables (after adjusting for possible
output values), and proceed to the node to which the popped call edge leads.

We now formally define the configuration space Q of an ERSM A. A configu-
ration of A is a tuple ψ = 〈γ, stack ,u, λ〉, where γ is an interpretation of G, and
stack is either of the form 〈(e1, λ1), (e2, λ2), . . . , (er, λr)〉 or the empty list. Here,
e1, e2, . . . , er are call edges of A, λ1 is an interpretation of Lp, e1 is a call edge
in Ap, and, for every i > 1, λi is an interpretation of Lc and ei is a call edge in
Ac, where c = Y (ei−1). Finally, u is a node in Nj and λ is an interpretation of
Lj , where j equals p if stack is empty, and Y (er) otherwise.

In a configuration of the above form, we define the node u to be the current
node in ψ. We refer to this node as Currnode(ψ).

We need some more notation before we can define the transition relation on
these configurations. Let σ1 and σ2 be interpretations of disjoint sets of variables
V1 and V2. Then σ1 � σ2 is the interpretation of (V1 ∪ V2) that agrees with σ1
and σ2 on variables from V1 and V2 respectively.

Now let l1 ∈ Uq
1 and l2 ∈ Uq

2 be two lists of variables such that U1 ∩ U2 = ∅
and members of l2 are all distinct. Let us also have interpretations σ1 and σ2 of
U1 and U2 respectively. Then τ = borrowValues(σ2, l2, σ1, l1) is an interpretation
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of U2 obtained by (1) setting τ(l2(i)) = σ1(l1(i)) for all i, and (2) for all other
v, setting τ(v) = σ2(v). Intuitively, borrowValues replaces the values of those
variables in σ2 that occur in l2, the i-th variable in l2 getting the value that
interpretation σ1 gives to the i-th variable in l1.

The global transition relation Δ of an ERSM is then defined as follows. Let
ψ = 〈γ, stack ,u, λ〉 be a configuration with u ∈ Nj . Then (ψ,ψ′) ∈ Δ iff one of
the following sets of conditions holds:

1. Internal step
(a) (u,u′, g,α) ∈ δI

j for a node u′ of Aj ,
(b) γ � λ satisfies g, and
(c) ψ′ = 〈γ′, stack ,u′, λ′〉, where γ′ � λ′ = α(γ � λ).

2. Call
(a) e = (u,u′, g,m, inm, outm) ∈ δC

j for a node u′ of Aj ,
(b) γ � λ satisfies g, and
(c) ψ′ = 〈γ,〈stack, (e, λ)〉, enm, λ′〉〉, where λ′ = borrowValues(λmin , Im,

λ, inm).
3. Return

(a) u is the exit node exj of Aj ,
(b) stack is of the form 〈stack ′, (er, λr)〉
(c) er = (v,u′, g, j, inj , outj) for some v,u′, g, inj , and outj , and
(d) ψ′ = 〈γ, stack ′,u′, λ′〉〉, where λ′ = borrowValues(λr, outj , λ,Oj).

Note that the configurations Q and the transition relation Δ define an or-
dinary (and in general infinite) transition system TA. A run of A is a (finite or
infinite) sequence ρ = ψ0ψ1ψ2 . . ., where ψ0 = 〈γin ,⊥, enp, λpin 〉 (⊥ being the
empty stack sequence), and for all i, ψi ∈ Q and (ψi, ψi+1) ∈ Δ. The semantics
of A are defined by its set of runs.

Given an ERSM A, we are interested in two central algorithmic questions:

1. Reachability: Given an ERSM A and a set of target nodes T of A, does A
have a run ρ = ψ0ψ1ψ2 . . . such that Currnode(ψj) ∈ T for some j?

2. Fair cycle detection: Given an ERSM A and a set R of repeating nodes of A,
does A have a run ρ = ψ0ψ1ψ2 . . . such that Currnode(ψj) ∈ R for infinitely
many j ∈ N?

In this paper, we present two algorithms that search the set of local states
enumeratively to solve these problems. These algorithms differ from previous
work in two important respects:

1. On-the-fly search: We generate states “on demand”, as we explore the state
space, and only store the visited states.

2. Early termination: Our algorithms terminate as soon as a reachability wit-
ness or a cycle containing a repeating state occurs in the visited state space.
Consequently, our algorithms do not necessarily have to generate the entire
state space in order to terminate.
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3 Reachability

We now describe an on-the-fly, early-terminating algorithm to check if a given
set T of target nodes is reachable in an ERSM A.

A state of an ERSM A is a tuple of the form s = 〈v, γ, λ〉, where v is a
node, and γ and λ are interpretations of global and local variables. Note that a
state is different from a configuration in that it does not include the stack. An
entry state for component Ai is a state s = 〈v, γ, λ〉 where v = eni. Likewise,
s = 〈v, γ, λ〉 is an exit state if v = exi. A summary is a pair (sen, sex), where sen

is an entry state and sex is an exit state in the same component.
Let us now define a state graph S corresponding to A. The vertices of S are

the states of A and the set of transitions of S is the smallest set E of transitions
satisfying the following conditions:

- Internal Transitions. Let s = 〈u, γ, λ〉 be a state. If Ai has an internal edge
(u, v, g,α) and the interpretation γ � λ satisfies g, then E has a internal
transition (s, s′), where s′ = 〈v, γ′, λ′〉, where γ′ � λ′ = α(γ � λ).

- Call and Summary Transitions. Let s = 〈u, γ, λ〉 be a state. Assume Ai

has a call edge (u, v, g,m, inm, outm) and the interpretation γ �λ satisfies g.
Let sen = 〈enm, γ, λen〉, where λen = borrowValues(λmin , Im, λ, inm). Then
(s, sen) is a call transition in E.
If sex = 〈exm, γ′, λex〉 is some exit state in Am and sex is reachable from sen

using only internal and summary transitions, then (s, s′) is a summary tran-
sition in E where s′ = 〈v, γ′, λ′〉 and λ′ = borrowValues(λ, outm, λex, Om).

For a set of repeating nodes R, let us also define SR, which is defined exactly
as S is defined above except that summary transitions can be of two kinds,
fair or not fair. When a summary transition is added, it is set to be fair if the
run from sen to sex goes through a state involving R or uses a fair summary
transition.

The key to checking reachability and cycles in an ERSM is given by the
following lemma:

Lemma 1 ([1]). Let A be an ERSM and let S be its associated state-graph. For
a given set of target nodes T , T is reachable in A iff there is a node of the form
(u, γ, λ) with u ∈ T reachable in S. Similarly, given a set of repeating nodes R,
there is run of A that visits R infinitely often iff there is a path in SR that visits
the set {(u, γ, λ)|u ∈ R} infinitely often or uses fair summary edges infinitely
often.

Note that if local and global variables are finite-domain, then S is finite
as well, and the above lemma shows checking reachability and fair cycles are
decidable. We refer to the subgraph of S induced by the nodes belonging to
Ai, i.e. nodes of the form (u, γ, λ) where u ∈ Ni, as Si; the graphs Si contain
only internal and summary transitions. Our reachability algorithm explores S
on-the-fly looking for a state of the form (u, γ, λ), where u ∈ T . It can be in
fact viewed as an interleaving of k separate depth-first searches, the i-th search
taking place in the transition system Si.
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Reachability(s, sen)
1 Visited ← Visited ∪ {(s, sen)}
2 if Currnode(s) ∈ T
3 then print (“Target reached”) ; break
4 if s is an exit state in component i
5 then VisitedExits[i, sen] ← VisitedExits[i, sen] ∪ {s}
6 for (s′, s′

en) ∈ VisitedCalls[i, sen]
7 do sret = GetReturnState(s′, s)
8 if (sret, s

′
en) /∈ Visited

9 then Reachability(sret, s
′
en)

10 else for e ∈ EdgesI(s)
11 do if s satisfies guard of e
12 then s′ ← Apply(e, s)
13 if (s′, sen) /∈ Visited
14 then Reachability(s′, sen)
15 for e ∈ EdgesC(s)
16 do if s satisfies guard of e
17 then m ← Y (e); s′ ← GetEntryState(e, s)
18 VisitedCalls[m, s′] ← VisitedCalls[m, s′] ∪ {(s, sen)}
19 if (s′, sen) /∈ Visited
20 then Reachability(s′, sen)
21 else for sex ∈ VisitedExits[Y (e), s′]
22 do sret = GetReturnState(s, sex)
23 if (sret, sen)) /∈ Visited
24 then Reachability(sret, sen)

Fig. 2. On-the-fly reachability in ERSMs

Our search begins from the initial state 〈enp, γin, λpin
〉, in the initial compo-

nent Ap. The search proceeds depth-first following edges in Ap. If, during this
search, we are at a state s1 in Sp and find a call edge calling component Aq,
we would need to search along a summary transition in Sp. To discover this
transition, however, we would need to know the reachability relation between
the corresponding entry and exit states in Aq, and to compute this relation, we
must search Sq.

The crux of the algorithm is to view Sp as an incompletely specified transition
system and suspend the search in Sp when such a situation occurs. Given s1 and
the call edge in question, we can compute the entry state s2 in Sq reached follow-
ing the corresponding call transition. If s2 has not been visited so far, we search
Sq starting from s2; if a search from s2 has previously been started, we simply
suspend searching and wait for future “updates”. As we learn more about reach-
ability between entry and exit states in Sq, we may add corresponding summary
transitions in Sp and resume the search in Sp. If all local searches terminate,
then we have explored all of the reachable part of S, and can terminate.

Figure 2 describes the algorithm more formally. Given a state s = 〈v, γ, λ〉,
we refer to the set of internal and call edges going out of v as EdgesI(s) and
EdgesC(s) respectively. If the variables in s satisfy the guard g on an internal
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edge e, the function Apply(e, s) returns the state s′ to which the corresponding
internal transition leads. If s satisfies the guard g on a call edge e, the function
GetEntryState(e, s) returns the entry state s′ that is the target of the corre-
sponding call transition. Finally, suppose s is an exit state in component Am

and s′ is a state with a call transition to component Am; also suppose there ex-
ists a summary transition (s′, s′′) corresponding to s′, e and s. Then the function
GetReturnState(s′, s) returns the state s′′.

The function Reachability has two inputs: a state s in component Ai and
an entry state sen. The pair of states (s, sen) forms a context if s is reachable
from sen. The set VisitedCalls[i, sen] stores the set of “calling contexts”: contexts
(s′, s′en) where control switched to component Ai and entry state sen. Then, if
an exit state sex in Ai is reachable from state sen, a summary transition between
states s′ and s′′ = GetReturnState(s′, sex) has been discovered.

To solve the reachability problem, we call Reachability(sinit , sinit ), where
sinit = 〈enp, γin, λpin

〉. Termination of this algorithm is guaranteed if the set
of states reachable from the initial states is finite; one such special case is when
all types are finite-domain. We omit the detailed proof of correctness.

Theorem 1. Let A be an ERSM, T be a set of target nodes, and sinit =
〈enp, γin, λpin

〉. Then if the algorithm Reachability(sinit, sinit) halts, it prints
“Target reached” iff there is a run of A that reaches a configuration ψ with
Currnode(ψ) ∈ T . Moreover, if the set of states reachable from sen in S is fi-
nite, then Reachability(sinit, sinit) is guaranteed to halt. ��

This algorithm has some of the nicer, “on-the-fly” properties of DFS. We
start with an initial state, only store the “visited” state space, make a switch to
a different component only when a call edge requires it, and, even when such a
switch is made, “discover” entry states only when necessary. Moreover, we can
terminate as soon as we encounter a target state.

If s′en is an entry state of Si reachable in S and s′ is reachable from s′en

using edges in Si only, then when calling Reachability(sinit, sinit), the recursive
procedure Reachability(s′, s′en) will be called at most once. This observation leads
to the following complexity of the reachability algorithm in terms of the number
of discovered states and transitions in S:

Theorem 2. Let Reachability terminate on a given ERSM A. Let n and m be
the number of states and edges in the explored part of S. Let β be a bound on
the maximum number of reachable entry or exit states in any component Si.
Then Reachability(sinit, sinit) takes O(mβ + nβ2) time to terminate and space
O(nβ). ��

4 Fair Cycle Detection

Let us fix an ERSM A and a set of repeating nodes R of A. Let SR be the
associated state-graph of A and R as defined in the previous section. In this
section, we present an on-the-fly fair cycle detection algorithm for ERSMs that



70 R. Alur et al.

searches the transition system SR for a cycle containing a repeating state or a fair
summary edge. If the domains of the types are finite, Lemma 1 guarantees that
A has a run visiting infinitely many repeating states if and only if such a cycle
exists. Our core idea is to view SR as an incomplete transition system to which
edges are added dynamically, and to use an online cycle detection algorithm for
dynamically presented graphs to find such a cycle.

The following are a few ways in which this can be implemented:

– The most naive algorithm would be to search the state-space of A using
Reachability, postponing cycle detection until we know all states and
transitions in SR. At that point, we may detect cycles in SR using an al-
gorithm (such as nested DFS [9]) for cycle detection in finite graphs. This
algorithm, however, is inherently a two-phase algorithm and does not have
the early termination property.

– Another possibility is to adapt the nested DFS algorithm [9] to a setting
where summary transitions are dynamically presented and early termination
is required. This turns out to be difficult. The problem is that in the nested
DFS algorithm, the secondary search follows the DFS order computed by the
primary search: if s and s′ are two states such that s is an ancestor of s′ in
the primary DFS tree, the secondary search from s′ must terminate before
the secondary search from s may start. However, in our context, we may
discover a summary transition from s′ (that can possibly introduce cycles)
while searching a different branch of the primary DFS tree rooted at s.
A conceivable way of adapting this algorithm to our setting would be to start
a new instance of Reachability each time we reach a repeating state sr,
to check if sr is reachable from itself. However, the time complexity of such
an algorithm would be NF times the size of SR, where NF is the number
of repeating states; note that due to data interpretations, NF can be very
large.

– A third option, which is what we follow, is to maintain strongly connected
components (SCCs) in SR dynamically using an incremental algorithm. We
terminate, reporting a cycle, as soon as the explored part of SR starts con-
taining a non-trivial SCC with a repeating state or a fair summary transition
in it. However, linear time incremental algorithms for maintaining SCCs are
not known. While we could use heuristically tuned online algorithms such as
in [19], we have chosen instead to use an adaptation of Gabow’s algorithm
as it uses simpler data-structures.

Our algorithm Fair-Cycle-Detect consists of two subroutines: one ex-
plores the state space of the ERSM and discovers new transitions in SR (includ-
ing summary transitions), while the other updates the SCCs in the discovered
graph. The former algorithm is essentially the algorithm Reachability of the
previous section while the latter is an adaptation of a path-based DFS algorithm
by Gabow [16] that finds SCCs in a graph.

Gabow’s algorithm finds SCCs in a graph via a DFS on it. As soon as a
back edge is identified, it contracts the cycle formed by it into an SCC, and,
finally, outputs the SCCs in a topological order. This algorithm has an early
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termination property, because if an SCC introduced by a back edge contains a
repeating state or a fair summary transition, we can terminate immediately.

Let us now describe an optimization that changes the structure of our algo-
rithm. Since Gabow’s algorithm essentially explores its graph using a depth-first
search and the state-space exploration of the ERSM done by Reachability is
also essentially a DFS, these two can be combined easily. However, in Reach-
ability, when a new summary is discovered, the control shifts to the returns
corresponding to this summary, which can be in an entirely different part of the
graph. Since such a ‘jump’ requires us to restart our SCC algorithm, we prefer
to process the summary transitions later, after the current DFS is over.

Consequently, our search-space exploration algorithm is the same as Reach-
ability, except that when a summary is discovered, the returns corresponding
to it are not pursued and instead the new summary transitions are recorded in a
set Summ. The dynamic SCC algorithm processes these transitions and updates
the SCCs. When the exploration stops (or the current search phase ends), we
add the summary transitions in Summ and run the dynamic SCC algorithm once
more to effect the changes. Then we call the exploration algorithm again and
ask it to proceed from the return states corresponding to the newly discovered
summary transitions in Summ. We terminate, concluding that there is no fair
cycle, if no new summary is found at the end of a search phase. Figure 3 and
Figure 4 give the pseudocode of the entire algorithm Fair-Cycle-Detect.

SCC-search explores the transition system SR recursively, feeding every
new transition to the procedure Update-SCCs, which uses two stacks [16] to
update the data structures it uses to remember the SCCs, and halts if the new
transition introduces a fair cycle. To perform this update, it may have to do a
DFS on the graph of discovered SCCs; however, since the edges fed to it in a
phase are in DFS order, it only needs one cache of “visited” SCCs per phase.

While backtracking from the search, the procedure Create-component,
which marks an SCC to be used in the next phase, is called. Finally, the procedure
Collapse-SCCs takes in a set of summary edges found in the previous search
phase (fair summaries are kept track of using a special bit b) and updates the
current graph G of SCCs with them, terminating if it finds a fair cycle.

The correctness of this algorithm is guaranteed by the following theorem:

Theorem 3. Given an ERSM A, a set R of repeating nodes, and the entry
state sinit = 〈enp, γin, λpin

〉, if the algorithm Fair-Cycle-Detect halts, then
it prints “Fair cycle found” iff there is a run of A that has infinitely many
configurations ψ′ with Currnode(ψ′) ∈ R. Furthermore, if the state-graph SR

corresponding to A is finite, then Fair-Cycle-Detect always halts. ��

Recall that in every search phase, we need to perform a search on the graph
of SCCs. The total number of search phases in Fair-Cycle-Detect is bounded
by the number of possible summaries in SR. Let N be the maximum, over all
component graphs Si, of the number of pairs (sen, sex), where sex is an exit state
in Si and is reachable from entry state sen of Si. Then SR can have at most kN
search phases, where k is the number of components in A. Hence, we have:
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Fair-Cycle-detect()
1 graph G ← ({sin}, ∅);Visited ← ∅; Sin = {(sin, sin, (sin ∈ R))}
2 repeat
3 Summ ← ∅; Initialize-SCC-Update()
4 for (s, sen, b) ∈ Sin

5 do SCC-Search (s, sen, b)
6 Collapse-SCCs (Summ)
7 if Collapse-SCCs finds a fair nontrivial SCC
8 then print (“Fair cycle found”) ; break
9 Sin ← {(sret, s

′, b) : ∃s.(s′
en, (s, sret), b) ∈ Summ}

10 until Summ = ∅
11 print (“No fair cycle”)

Fig. 3. Fair cycle detection algorithm

SCC-Search(s, sen, b)
1 Visited ← Visited ∪ {(s, sen, b)}
2 if s is an exit state in component i
3 then VisitedExits[i, sen] ← VisitedExits[i, sen] ∪ {(s, b)}
4 for (s′, s′

en, b′) ∈ VisitedCalls[i, sen]
5 do sret = GetReturnState(s′, s); bret = b ∨ b′ ∨ (sret ∈ R)
6 if (sret, s

′
en, bret) /∈ Visited

7 then Summ ← Summ ∪ {((s′, sret), s′
en, bret)}

8 else for e ∈ EdgesI(s)
9 do if s satisfies guard of e

10 then s′ ← Apply(e, s); b′ = b ∨ (s′ ∈ R); Update-SCCs(s, s′, b′);
11 if Update-SCCs finds a fair nontrivial SCC
12 then print (“Fair cycle found”) ; break
13 if (s′, sen, b′) /∈ Visited
14 then SCC-Search(s′, sen, b′)
15 for e ∈ EdgesC(s)
16 do if s satisfies guard of e
17 then m ← Y (e); s′ ← GetEntryState(e, s);
18 b′ = (s′ ∈ R); Update-SCCs(s, s′, b′)
19 VisitedCalls[m, s′] ← VisitedCalls[m, s′] ∪ {(s, sen, b)}
20 if (s′, sen, b′) /∈ Visited
21 then SCC-Search(s′, sen, b′)
22 else for (sex, bex) ∈ VisitedExits[Y (e), s′]
23 do sret = GetReturnState(s, sex)
24 bret = bex ∨ b′ ∨ (sret ∈ R)
25 if (sret, sen, bret) /∈ Visited
26 then SCC-Search(sret, sen, bret)
27 Create-Component ()

Fig. 4. Procedure SCC-Search

Theorem 4. Let A be an ERSM, R be a set of repeating nodes and SR be the
associated state graph. Let n and m be the number of states and edges, β be
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a bound on the maximum number of reachable entry states and reachable exit
states in any Si, in the reachable part of SR. Then Fair-Cycle-Detect takes
O(kN(mβ + nβ2)) time to terminate and uses space O(nβ2 + m). ��

Note that N is bounded by β2. While Fair-Cycle-Detect does not run
in time linear in the size of SR, it has the early-termination property and some
“on-the-fly” properties.

5 Vera

Vera is a Java implementation of the algorithms for reachability and fair cycle
detection presented in this paper. In this section, we highlight its main features
and compare it with Moped [13], a popular BDD-based LTL model checker for
pushdown systems.

Input Language. Boolean programs, introduced in [3] and used in the Slam
verification process [4], are abstractions of imperative programs that retain most
of the control structures available in a C-like language but only allow variables
and expressions of boolean type. These abstractions permit procedure calls with
call-by-value parameter passing and recursion; procedures can return vectors
of expressions. Global and local declarations of variables are permitted. Allowed
statements include parallel assignment (where a list of variables may be assigned
in parallel, either by a list of expressions or by a vector returned by a proce-
dure), “goto” jumps, “if-else” branches, and “while” loops. Non-determinism is
permitted both in branches and loops.

Vera accepts boolean programs as inputs; it also admits a bounded-integer
data type and arithmetic expressions on variables declared as such. These ab-
stractions are translated into ERSMs internally before the algorithms for reach-
ability and fair cycle detection are applied.

Specifying Properties. One way to specify target (or repeating) nodes in
Vera is to list a set of target (or repeating) labels along with the input. Any
control location marked by such a label translates into a target or repeating
node. The target (repeating) set may also be specified by a monitor.

A monitor, in our context, is a finite automaton M with edges labeled by
guards on global and local variables in A, and a set of states identified as target
states. The definition of the product P of M and A is standard: a configuration
of P consists of a configuration of A and the current state of M , and progress
along a monitor is allowed only if the current variables satisfy the guard on
it. A target (or repeating) node in P is one where the current state of M is a
target. Given a monitor and the ERSM underlying an input program, Vera can
perform reachability (cycle) analysis for the product ERSM P .

5.1 Experiments

Slam Regression Testing Examples. We ran Vera on the regression test
suite for Slam: a collection of 64 C programs which, after abstraction in Slam,
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Example Lines Globals Locals Reachable Visited Vera time(s) Moped time (s)
n-mutex1 439 3 13 Yes 274 0.06 0.04
p-mutex33 460 6 21 Yes 702 0.21 0.14

n-i2o-simple 347 2 3 Yes 94 0.08 0.01
n-list-22 305 0 15 Yes 316 0.07 0.02

p-mutex34 466 6 21 No 14144 6.17 0.08
p-farray 306 0 8 No 1304 0.18 0.01

p-nbebop-test 239 0 16 No 75524 151.85 0.04
p-srdriver 1454 10 36 No - - 0.29

Fig. 5. Experiments on the Slam regression test suite

N Vera runtime(s) Vera visited states Moped runtime(s) Moped BDD nodes
4 0.08 95 0.16 40880
6 0.08 95 4.01 1.91 ×105

8 0.08 95 260.35 2.12 ×106

10 0.10 95 - -
32 0.15 95 - -

Fig. 6. Buggy quicksort

give boolean programs whose lengths range between 80 and 1450 lines. In each
case, the query was: is the control location labeled as SLIC ERROR reachable?
The experiments were run on a machine with 2GB of RAM and two 1.4 GHz
CPUs. Measurements on a few representative examples are tabulated in Figure 5.
The first three columns show the number of lines of code, the number of global
variables, and the maximum number of local variables in a procedure (recall that
the number of ERSM states is exponential in the last two parameters). The next
column gives the answer to the query. The next two columns give the number
of visited states at termination, and total runtime in seconds. The final column
shows the runtime of the Moped model checker on the same example.

In the first four examples, where the target set is reachable, Vera seems to
find a reachability witness easily. In the next four cases, where it has to gen-
erate the entire reachable state space, it performs much worse than Moped.
Particularly, in the last case, where there there may be as many as 10 unini-
tialized globals and 36 uninitialized locals in any procedure, the state space is
too large for our procedure to terminate. On the other hand, in examples such
as p-mutex34 where Vera works better, there are complex conditions on edges
but the number of uninitialized variables is not very high.

Quicksort. Among the examples that come with Moped is an abstraction of
a buggy quicksort routine (quicksort error.pds). The routine has two non-
deterministically chosen integer inputs and can run into an infinite loop for some
inputvalues.While there exists a shortwitness to this error, it isbynomeans trivial.

We use Moped and Vera to find this witness. To do this in Vera, we write
a simple monitor and run the fair cycle detection module. We find that Vera’s
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early termination capability lets it identify a cycle very fast, even when inputs
have large ranges and, consequently, the set of reachable states is very large.
The symbolic algorithm for Moped, however, becomes prohibitively expensive
as the number of bits in an integer (N) is increases, and does not terminate for
N = 10 or above (see Figure 6).

We also compared Vera and Moped on a trivial reachability property:
whether the program has some terminating run. Vera identifies a witness im-
mediately, whereas in Moped, an effect similar to Figure 6 is observed.

Abstraction of a Linux Driver. Finally, we ran Vera’s reachability and
cycle detection algorithms on a manual abstraction of the Perle Specialix RIO
driver for Linux. This driver, 1100 lines long and previously identified as buggy
by the Stanford metacompilation project [11], contains a double locking error.
We abstract it manually into a 220-line Vera input file, keeping the basic con-
trol structure intact, modeling locks and process id-s by Vera variables, and
replacing many of the control-flow conditions by nondeterminism. We write sim-
ple monitors to answer the following questions:

(1) Is there an execution where the same lock is acquired twice in a row?
(2) Is every lock that is acquired also released?

In the former case, there exists a reachability witness to an error state. For 4-bit
integers, Vera detects the error in 0.18s after visiting 15 states (this figure stays
more or less the same even as the size of the integer type is made larger). In the
second case, our abstraction satisfies the property, and Vera has to generate
the entire state space before it terminates. Because of a few uninitialized integer
variables, this space is quite large. For N = 2, it takes 50.92s. For higher values
of N , Vera does not terminate.

6 Conclusions

We have presented algorithms for on-the-fly reachability and fair cycle detection for
extended recursive state machines. Algorithmically, on-the-fly detection of cycles
deserves further exploration. It is closely related to the problem of dynamic data
structures for graphs where insertions are allowed, and queries check existence
of cycles containing repeating nodes. It is open whether the worst-case quadratic
bound of our cycle-detection algorithms can be improved. It would be interesting
to knowwhether onlineSCCalgorithms are essential todetect fair cycles inERSMs
on-the-fly, i.e. whether faster algorithms for on-the-fly traversal of ERSMs would
necessarilyimply fasteronlinealgorithmsforcycledetection.Our implementationin
Vera and experimentation support the hypothesis that on-the-fly model checking
is a viable, and sometimes more effective, alternative to symbolic checkers for
verifying ERSMs. Future work will focus on optimizations, alternative strategies
for cycle detection, and applications to program analysis problems.

Acknowledgements. We thank Mihalis Yannakakis for useful discussions, Sri-
ram Rajamani and Stefan Schwoon for the Slam regression test suite, and an
anonymous referee for several relevant references in program analysis.
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Empirically Efficient Verification for a Class of
Infinite-State Systems�
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Abstract. Well-structured transition systems (WSTS) are a broad and
well-studied class of infinite-state systems, for which the problem of verifying
the reachability of an upward-closed set of error states is decidable (subject
to some technicalities). Recently, Bingham proposed a new algorithm for this
problem, but applicable only to the special cases of broadcast protocols and
petri nets. The algorithm exploits finite-state symbolic model checking and was
shown to outperform the classical WSTS verification algorithm on a contrived
example family of petri nets.

In this work, we generalize the earlier results to handle a larger class of
WSTS, which we dub nicely sliceable, that includes broadcast protocols, petri
nets, context-free grammars, and lossy channel systems. We also add an opti-
mization to the algorithm that accelerates convergence. In addition, we introduce
a new reduction that soundly converts the verification of parameterized systems
with unbounded conjunctive guards into a verification problem on nicely sliceable
WSTS. The reduction is complete if a certain decidable side condition holds. This
allows us to access industrially relevant challenge problems from parameterized
memory system verification. Our empirical results show that, although our new
method performs worse than the classical approach on small petri net examples, it
performs substantially better on the larger examples based on real, parameterized
protocols (e.g., German’s cache coherence protocol, with data paths).

1 Introduction

The widespread practical success of finite-state model checking [9, 29] has stimulated
interest in the algorithmic verification of infinite-state systems. The goal is to verify
systems that are naturally modelled as infinite state as well as systems that might be
finite-state in practice, but that are too large to be verified via finite-state methods in the
foreseeable future (e.g., pushdown automata to model a program’s call stack, parame-
terized memory system protocols to model a realistically-sized memory system).

Well-structured transition systems (WSTS) [19, 2, 20] are a broad class of infinite-
state systems, for which an extensive and elegant body of research has developed. In
particular, the verification problem of determining the reachability of an upward-closed
set of error states is decidable (provided some side conditions are satisfied) via an algo-
rithmic framework we call the classical approach [2, 20, 18].
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Recently, Bingham proposed a new algorithm for this problem [4]. Unlike the clas-
sical approach, the new algorithm works by computing fix-points over a series of finite-
state systems of increasing size, allowing the leveraging of sophisticated techniques
from finite-state model checking. However, the theory was developed only for a special
case of WSTS, namely, broadcast protocols (which subsume petri nets). Using finite-
state symbolic model checking [7], Bingham demonstrated a contrived family of petri
nets for which the new algorithm substantially outperformed the classical approach.

This paper generalizes and extends the earlier work in several ways. We introduce
a new subclass of WSTS and generalize the earlier theory and algorithms to apply to
the subclass. We show how the new subclass subsumes petri nets, broadcast protocols,
lossy channel systems, and context-free grammars. We introduce an optimization to the
algorithm that accelerates convergence. We also provide a new reduction that allows
soundly applying our verification method to certain protocols with unbounded conjunc-
tive guards, which are not WSTS, as commonly occurs in memory system protocols.
Finally, we give experimental evidence on a variety of infinite-state systems, includ-
ing German’s parameterized cache coherence protocol [23], a widely cited verification
challenge problem.

Because of space constraints, all proofs have relegated to the appendix of the elec-
tronic version of this paper [5].

2 Preliminaries

Let N denote the natural numbers. We use various notations for orderings: � will denote
an arbitrary reflexive and transitive relation (which may satisfy stronger requirements
depending on context), and we write x ≺ y to mean x � y∧y 
� x. The symbol ≤ will de-
note the usual ordering on the reals and subsets thereof, and for any positive dimension
m, we extend ≤ to be the usual point-wise vector ordering over Nm defined by v ≤ u iff
vi ≤ ui for all 1 ≤ i ≤ m. We also employ ≤ as the covering relation between petri net
markings.

The systems we consider are a certain type of well-structured transition system, and
the “bad” states will be characterized by an upward-closed set. These and other relevant
notions are now defined, mostly following the terminology of [20].

Definition 1 Let � be a reflexive and
transitive relation over a set X. For Y ⊆ X, the upward-closure of Y is the set ↑Y =
{x | ∃y ∈ Y : y � x}. When U =↑Y we say that Y is a basis for U. A set U is said to be
�-upward-closed (or simply upward-closed if � is clear from context) if U =↑U.

Definition 2 A well-quasi-ordering (wqo) is a reflexive and
transitive relation � over a set X such that for any infinite sequence x0,x1,x2, . . . over
X, there exists i, j ∈ N such that i < j and xi � x j.

Lemma 1. [25] If � is a wqo, then any �-upward-closed set has a unique finite basis
B such that for all x,y ∈ B we have x 
� y∧ y 
� x.

Given upward-closed U , we let basis(U) denote the unique finite basis of U , the exis-
tence of which is guaranteed by Lemma 1.

(upward-closure,basis,upward-closed set).

(well-quasi-ordering).
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previous reach,reach : finite subset of S
previous reach := /0
reach := gen(U)
while ↑reach 
⊆↑previous reach do

if I∩ ↑reach 
= /0 then
exit with verification failure

previous reach := reach
reach := reach∪Pred(↑reach)

exit with verification success

Fig. 1. The classical algorithm

Definition 3 A well-structured transition sys-
tem (WSTS) is a triple (S,→,�) such that

1. S is a (possibly infinite) state space
2. →⊆ S×S is called the transition relation
3. � is a wqo over S
4. For all x,x′,y ∈ S such that x → x′ and x � y, there exists y′ ∈ S such that y → y′.1

The covering relation ≤ between petri net markings is a wqo. Given a finite set of
markings M, the set ↑M includes all markings that cover at least one m ∈ M. Petri nets
are WSTS (with respect to ≤) [20].

The decision problem regarding WSTS we aim to solve is as follows.

Definition 4 (WSTS Safety Problem). Given a WSTS S = (S,→,�), an �-upward-
closed set U ⊆ S, and a set of initial states I ⊆ S, does there exists a sequence x0 →
·· · → x� such that x0 ∈ I and x� ∈ U? We write Safe(S , I,U) (resp., ¬Safe(S , I,U)) if
the answer is “no” (resp. “yes”).

We have intentionally omitted any restrictions on the initial state set I to avoid need-
lessly complicating this paper. In general I can be infinite, hence a symbolic repre-
sentation is necessary; for example, [2, 4] require that I be a so-called parametric set.
Decidability of the WSTS Safety Problem depends (in part) on the form of I.

The classical approach to this problem is given in Fig. 1 [2, 18, 20]. On the surface,
this algorithm resembles the well-known finite-state backward reachability analysis,
i.e. least fix-point computation, the difference being that the involved sets are upward-
closed (and hence infinite), so a symbolic representation (i.e. finite basis) is necessary.
For the approach to work, the following conditions are necessary:

– Given finite reach ⊆ S, we must be able to compute another finite set X such that
↑X = {x | ∃y ∈↑reach : x → y}. We denote X by Pred(↑reach).

– I must be represented in a form that permits the intersection checks of the if con-
ditional.

1 This requirement is called monotonicity in [2] and strong compatibility in [20]. The latter paper
gives a slightly weaker definition of WSTS, requiring that y′ only satisfy y →∗ y′.

(well-structured transition system).
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Necessary for practical implementation of the classical algorithm is an efficient repre-
sentation of reach, since this set can become very large. Delzanno et al. propose using
a data structure called covering sharing trees (CST) for this purpose [12]. One draw-
back of this technique is that checking for convergence is co-NP hard in the size of the
involved CSTs.

3 Nicely Sliceable WSTS

Our algorithm works on a subclass of WSTS we call nicely sliceable WSTS (NSW).
To be deemed a NSW, a WSTS must satisfy three properties. We first describe each
intuitively and provide some motivation for why they are required, and then we present
the formal definitions.

– Discrete: The wqo must be discrete, meaning that for any element x, there is a
bound on the length of any strictly decreasing sequence starting with x. We call the
length of the longest such sequence x’s weight. Furthermore, discreteness requires
that the number of elements of a given weight be finite. Discreteness allows for
finite-state model checking to be applied to the subsystem formed by bounding the
weight of states.

– Weight-Respecting: When a transition changes the weight, the same change in
weight can be effected by the transition relation for elements greater than the start-
ing state of the transition. Weight-respectfulness is a technical requirement needed
for the proof of the Convergence Theorem, which gives a termination condition for
our algorithm.

– Deflatable: Whenever we have a transition from outside an upward-closed set U to
a state in U , deflatability asserts the existence of a similar transition involving states
of bounded weight. Deflatability is similar to downward compatibility [20], though
the two are incomparable. Deflatability, like weight-respectfulness, is essential in
the proof of our Convergence Theorem.

Definition 5 (dwqo, weight function, base weight). A wqo is a discrete wqo (dwqo)
over X if for all x ∈ X there exists k ∈N such for any sequence x0 ≺ x1 ≺ ·· · ≺ x� = x we
have �≤ k. Associated with a dwqo � is the weight function w : X → N that maps each
x to the minimum such k. We also require that {x ∈ X | w(x) = i} be finite for each i∈N.
For �-upward-closed U, the base weight of U is bw(U) = max({w(x) | x ∈ basis(U)}).
Example 1. For m ≥ 1, the point-wise vector ordering ≤ over Nm is a dwqo, and for
each v ∈ Nm we have w(v) = ∑m

i=1 vi. The set {0,1/2,2/3,3/4, . . .}∪{1} along with ≤
is an example of a wqo that is not a dwqo, since taking x = 1 violates Def. 5.

Definition 6 (discrete WSTS). A discrete WSTS (DWSTS) is a WSTS (S,→,�) where
� is a dwqo.

In a DWSTS, the weight function slices the state space into a countable number of finite
partitions S0,S1,S2, . . ., where Si = {x ∈ S | w(x) = i}.

Example 2. Petri nets along with the marking dominance relation ≤ are an example of
DWSTSs; the induced weight function simply counts the number of tokens.
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x x′

z

y y′

∀

∃
weight ≤ w(z) + δ

weight > w(z) + δ

Fig. 2. A diagrammatic presentation of Def. 8. A DWSTS (S,→,�) is said to be δ-deflatable (for
δ ∈ N) if for all x,x′,z ∈ S that satisfy the depicted relations, there exists y,y′ ∈ S that satisfy the
depicted relations, and also both w(y) and w(y′) are not greater than w(z)+δ

Definition 7 (weight respecting DWSTS). A DWSTS is said to be weight respecting if
we may strengthen condition 4 of Def. 3 to require that w(x′)−w(x) = w(y′)−w(y).

Example 3. Petri nets are weight respecting DWSTSs. Suppose x → x′ by firing transi-
tion t, and x � y. Since firing t always changes the total number of tokens by the same
amount, we can obtain the appropriate y′ by firing t from y.

Definition 8 (δ-deflatable DWSTS). A DWSTS (S,→,�) is said to be δ-deflatable for
δ ∈ N if whenever x → x′ and z � x′, there exists y and y′ such that all of the following
hold: 1) y � x, 2) y → y′, 3) z � y′, 4) w(y) ≤ w(z)+ δ, and 5) w(y′) ≤ w(z)+ δ. (See
Fig. 2.)

Example 4. Petri nets are δ-deflatable, where δ is the maximum over all in-degrees and
out-degrees of the petri net transitions. A suitable y → y′ can be constructed by taking
only the tokens involved in the firing that takes x → x′ and adding them to z.

Definition 9 (NSW). A δ-NSW is a DWSTS that is weight-respecting and δ-deflatable.
A NSW is a δ-NSW for some δ.

We now give three examples of systems that are NSW.

Example 5. Broadcast protocols (BP), which model the composition of identical finite-
state processes, are 2-NSW. Here we roughly follow the definition of [18, 17]. A BP is a
triple (L,Σ,R), where L is the set of local states, Σ is the set of labels, and R⊆ L×Σ×L.
Σ is required to be of the form Σl ∪Σr ×{!,?}∪Σb ×{!!,??}, where Σl , Σr, and Σb are
disjoint sets of actions, respectively called local, rendez-vous, and broadcast actions.
Labels of the form (a,d) are written simply as ad, i.e. (a,??) is written a??. Intuitively,
labels of the form a! and a!!, are outputs, while those of the form a? and a?? are inputs.
We make the following restriction on R: for any a!! ∈ Σ and any s ∈ L, there exists s′ ∈ L
such that (s,a??,s′) ∈ R.

The semantics of a BP (L,Σ,R) is the transition system (S,→) where the state space
S is the set of all nonempty finite words over L, and s → s′ iff s = �1 . . . �n and s′ =
�′1 . . . �

′
n, and one of the following hold.
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– local transition: there exists 1 ≤ i ≤ n and an action a ∈ Σl such that (�i,a, �′i) ∈ R,
and �′j = � j for all j ∈ {1, . . . ,n}\{i}.

– rendez-vous transition: there exists distinct i,k ∈ {1, . . . ,n} and an action a ∈ Σr

such that (�i,a!, �′i)∈ R and (�k,a?, �′k)∈ R, and �′j = � j for all j ∈ {1, . . . ,n}\{i,k}.
– broadcast transition: there exists 1 ≤ i ≤ n and an action a ∈ Σb such that

(�i,a!!, �′i) ∈ R and, for each j ∈ {1, . . . ,n}\{i}, (� j,a??, �′j) ∈ R.

The weight of a BP state is simply its length (i.e. the number of processes involved).
Weight respectfulness of a BP follows from the fact that s → s′ implies that s and s′ are
of the same weight. BPs are 2-deflatable; here 2 arises from the fact that a rendez-vous
transition is guarded by 2 processes.

Example 6. Lossy Channel Systems (LCS) [1] are 1-NSW. The state of a lossy LCS is
a pair2 (s,σ), where s an element in a finite state space, and σ ∈ Σ∗ is a string over the
channel alphabet Σ. The usual wqo defined by (s1,σ1) � (s2,σ2) if s1 = s2 and σ1 is a
(not necessarily contiguous) substring of σ2 is a dwqo3. The associated weight function
is w((s,σ)) = length(σ). A transition of a LCS can manipulate the channel string by
appending a symbol to the tail, removing a symbol from the head, or nondeterministi-
cally deleting a symbol from anywhere in the string. The reader may verify that these
systems are 1-deflatable and weight-respecting.

Example 7. Context-free grammars (CFG) are NSW. A CFG is a triple G = (N,T,R)
where N and T are disjoint, finite sets of nonterminal symbols and terminal symbols,
respectively, and R ⊆ N ×Σ∗ is a finite set of production rules, where Σ = N ∪ T . A
CFG corresponds to the NSW (Σ∗,→,�), where x → y iff there exist x1,x2 ∈ Σ∗
and (α,β) ∈ R such that x = x1αx2 and y = x1βx2. The dwqo �⊆ Σ∗ × Σ∗ is
such that x � y iff x can be obtained by deleting zero or more symbols from3

y. The weight function is w(x) = length(x). The system is δ-deflatable, where
δ = max({length(x) | ∃y ∈ N : (y,x) ∈ R}). Weight respectfulness comes from the fact
that each production rule induces a fixed weight change.

4 Our Algorithm

This section develops our algorithm, which is shown in Fig. 3. The inputs are a δ-NSW
(S,→,�), a set of initial states I, and an �-upward-closed set of target states U . For
each i = i0, i0 +1, i0 +2, . . ., (where i0 = bw(U)) the algorithm computes the backward
reachable set br(U, i), which is the set of states from which U is reachable along a path
that never exceeds weight i. Formally, we have the following definition.

Definition 10 (br). Given a WSTS (S,→,�), an upward closed set U ⊆ S, and i ∈ N

we let br(U, i) denote the set of all x ∈ S such that there exists a sequence x0 → x1 →
·· · → x� such that x0 = x, x� ∈ U, and for all 0 ≤ j ≤ � we have w(x j) ≤ i. We also
define br(U) =

⋃∞
i=0 br(U, i).

2 For simplicity we include only a single channel, the usual definition allows for an arbitrary
(but finite) number of channels.

3 That this relation is a wqo is known as Higman’s Lemma[25].
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Since br(U, i) is necessarily finite for all i ≥ 0, this set can be computed using clas-
sical finite-state symbolic model checking [7] based on BDDs [6]. The algorithm ter-
minates upon either of the following events:

– Convergence occurs. By convergence, we mean that we have reached an n such
that ↑br(U,n) = br(U). How this is done is articulated in our Theorem 1 below.
The existence of such an n is guaranteed by Theorem 2.

– Intersection with the initial states is detected. Since we have left the requirements
of the initial states undefined, we have necessarily left this check undefined in our
algorithm. In general, for this check to be computable, we must be able to decide if
I ∩br(U) = /0, given br(U,n), where n is as in the previous item.

We now present two theorems. Theorem 1 gives us a necessary and sufficient con-
dition for convergence, while Theorem 2 guarantees that our algorithm will always
terminate.

Theorem 1 (Convergence). For a δ-NSW, an upward-closed set U, and n ≥ bw(U),

br(U,n+δ) ⊆↑br(U,n) (1)

if and only if

br(U) =↑br(U,n) (2)

Theorem 2. For any DWSTS and upward-closed set U, there exists an n satisfying (2).

In order to use Theorem 1 in our algorithm, we must have a means to decide (1). Our
approach requires the use of a computable lifting operator, which intuitively “lifts” a set
br(U, i) to a truncated version of its upward-closure. The truncation omits everything
with weight strictly greater than some given d ∈ N; hence finiteness is preserved.

Definition 11 (lifting operator). Given a dwqo � over a set X, the associated lifting
operator is the function Lift : X ×N → 2X defined by

Lift(x,d) = {y | x � y∧w(y) ≤ d}

We extend Lift to act on sets by decreeing Lift(Y,d) =
⋃

y∈Y Lift(y,d).

The following theorem explains how the lifting operator is relevant to deciding contain-
ments along the lines of (1). For a finite set X , let maxw(X) = max({w(x) | x ∈ X})

Theorem 3. Let � be a dwqo over a set X, and let Xi−1 and Xi be finite subsets of
X such that maxw(Xi−1) ≤ i − 1 and maxw(Xi) ≤ i. Then Xi ⊆↑Xi−1 if and only if
Xi ⊆ Lift(Xi−1, i).
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1 i := bw(U)
2 n := i
3 Γi−1 := /0
4 while (n ≥ i−δ) do
5 compute Γi := br(U, i)
6 if intersection(Γi, I) then
7 exit with verification failure
8 if (Γi 
⊆ Lift(Γi−1, i)) then
9 n := i

10 i := i+1
11 exit with verification success

Fig. 3. Our algorithm, which, given a δ-NSW S , an upward-closed set U , and a set of initial states
I, decides Safe(S , I,U) using finite-state model checking. The variable i represents the maximum
weight of the states computed in each iteration of the while-loop. i is initially the base weight
of U and is incremented each iteration. The variable n tracks the last value of i for which “new”
states were found in br(U, i) (see Def. 10), i.e. states x that weren’t already ”covered” by the
existence of y ∈ br(U, i−1) such that y � x. The condition of the while loop (line 4) will only fail
when (1) holds, which by Theorem 1 indicates convergence. Each iteration of the loop involves
computing br(U, i), which is done in a nested backward reachability loop (implicit in line 5). Line
6 tests to see if the initial states have been reached, and line 7 terminates if so. Line 8 determines
if something “new” was found this iteration, if so n is updated to be i. If the condition of line 8
fails δ times consecutively, by Theorem 3 we have Γn+δ ⊆ Γn+δ−1 ⊆ ·· · ⊆ Γn and thus (1) holds
and verification is successful. Theorem 2 guarantees that this will eventually happen

4.1 An Optimization

In this section we propose an optimization to the algorithm of Fig. 3. Note that in Fig 3,
the computation of br(U, i) involves an iterative fix-point computation, starting with set
U≤i = {x ∈U | w(x) ≤ i}. In some sense, much of the work of this computation was
already performed when computing br(U, i− 1); since this is a subset of br(U, i), it is
redundant to “rediscover” these states. Also note that

U≤i ⊆ Lift(br(U, i−1), i) ⊆ br(U)

It follows that we can eliminate the unnecessary overhead by starting the fix-point com-
putation from Lift(br(U, i−1), i), a set which we need to compute anyway for the con-
tainment check of line 8. Our optimization involves replacing lines 3 and 5 of Fig. 3
with the following, respectively:

3′ Γi−1 := basis(U)
5′ compute Γi := br(Lift(Γi−1, i), i)

(3)

This optimization has the potential to greatly reduce the number of iterations performed
in the fix-point computations. As an extreme example, in an iteration of the outer loop
for which br(U, i) ⊆ Lift(br(U, i−1), i) holds, the computation of Γi will involve only
a single backward image computation.

Theorem 4. The optimization (3) preserves correctness of our algorithm.
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5 Implementation Using Symbolic Model Checking

Given an NSW (S,→,�), our algorithm manipulates finite subsets of S, so, in theory,
we can directly apply standard finite-state symbolic model checking. In practice, we
must provide a state encoding for the the finite-state subsets and a way to compute the
tasks needed by our algorithm:

– the fix-point computation of line 5 or 5′
– the intersection check of line 6
– the lifting operation of line 8
– the containment check of line 8

This section sketches how we implemented the algorithm for various types of NSW.
Our current implementation uses a very straightforward BDD-based approach, but our
algorithm should be able to harness the many advances in symbolic model checking.

5.1 Parameterized Protocols

For petri nets and extensions such as broadcast protocols, there is a natural notion of
local state, i.e., the (finite) state of each process in the broadcast protocol, or the place
(out of a finite number) occupied by each token in a petri net. Our encoding follows [4]
and uses concrete global states, i.e. tuples over local states. The weight is simply the
number of processes, so we can represent subsets of Si by sets over Li, where L is the
local state space. It is straightforward to construct a BDD for the transition relation
in this framework, and hence the fix-point computation. The lifting operation is called
existential lifting and can be computed using standard BDD operations. Finally, [4]
shows that when I is a so-called parametric set, the intersection check of line 6 can also
be performed using standard operations.

5.2 Lossy Channel Systems

As explained in Example 6, the infinite state space of a LCS is S = C × Σ∗, where
C is the finite state space of the control, and Σ is the channel alphabet. Let S≤i =
{(c,σ) ∈ S | length(σ) ≤ i}. Similarly to our encoding for parameterized protocols, we
represent a subset of S≤i by a collection of tuples of the form (s,c1,c2, . . . ,ci), where
s ∈ S and each c j ∈ Σ∪{empty}. Here c1, . . . ,ci stores the contents of the channel, and
the new symbol empty indicates that the channel “slot” does not contain a message. The
lifting operator simply inserts an element of Σ∪{empty} nondeterministically into the
channel, hence (possibly) increasing the number of non-empty slots by 1. The intersec-
tion and containment checks are also straightforward in this representation.

5.3 Comparison to Standard Approach

Comparing our approach to the classical approach (i.e., CSTs) provides intuition about
when each approach is likely to perform better.

Convergence. Given two CSTs C1 and C2, the problem of checking if C1 subsumes C2

(i.e. if the upward-closed set represented by C1 is a superset of that of C2) is co-NP
hard in the size of the involved CSTs [12]. Unfortunately, checking subsumption is an
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integral part of the classical algorithm (cf. the while condition in Fig. 1). To combat
this problem, Delzanno et al. develop a sophisticated heuristic solution in which certain
CST simulation relations facilitate pruning of an (exponential time) exact subsumption
check [13]. In contrast, subsumption between two BDDs can be decided in time propor-
tional to the product of their sizes [6]. In fact, we can correctly replace the containment
of line 8 of Fig. 3 with an equality test: Γi 
= Lift(Γi−1, i). This test can be done in
constant time using a reasonable BDD library, such as CUDD [30].

Data Structure Size. The main efficiency difference is likely to derive from the sizes of
the underlying data structures. Predicting the dynamics of the sizes is a complex prob-
lem. Though BDDs compactly represent many practical boolean functions, the worst
case size is exponential in their height (i.e. the number of boolean variables). Simi-
larly, although bounds on the size of CST have not been derived in the literature (to our
knowledge), any such bound is at least exponential in the height of the structure. Here,
we consider data structure height as a coarse measure of worst-case size.

The CST-based approach is applicable to both petri nets and broadcast protocols. Let
L be the set of local states (i.e. petri net places). Then we call |L| the dimensionality of a
parameterized protocol. The height of the CSTs is fixed and equal to the dimensionality,
while the height of the BDDs is at most (n f + δ)!log2 |L|", where n f is the final value
of n in our algorithm. This suggests that our approach might be superior when (n f +
δ)!log2 |L|" is much less than the dimensionality, since under such circumstances the
CSTs are more likely to blow-up.

For other NSW, such as LCS and CFG, we expect our ability to encode large control
states spaces and/or large alphabets compactly using BDDs to provide our approach
with an advantage for systems with these characteristics.

6 Conjunctive Guard Reduction

Though WSTS (and indeed NSW) encompass a broad and important class of infinite
state systems, there are common system attributes that preclude well-structuredness. An
example of such an attribute is the so-called conjunctive guard (CG). CG are used in
parameterized systems of processes when a transition is to be enabled only if the local
states of all processes satisfy some predicate. This contrasts with petri net or broadcast
protocols, in which only a fixed, finite number of processes may guard a transition.
Unfortunately, endowing petri nets or broadcast protocols with CG renders even safety
property verification undecidable [15]. In this section we develop a sound reduction that
reduces a BP with conjunctive guards with to a BP.

Emerson and Kahlon have proposed a sound and complete verification technique for
a class of protocols with CG [16], however it is unclear if the approach will scale beyond
systems with small local state. For example, their subsequent treatment of German’s
protocol requires a nontrivial amount of manual reasoning [14].

BPs were defined formally in Example 5; here we extend that definition to define
conjunctively guarded broadcast protocols (CGBP). A CGBP is a tuple (L,Σ,R,g),
where (L,Σ,R) is a BP, and g : Σl → 2L. For each action a ∈ Σl , g(a) is called the
conjunctive guard. The semantics are changed so that a local transition a may occur
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only if all other processes are in states that satisfy the conjunctive guard of a4. For-
mally, we conjoin the following condition to the local transition semantics presented in
Example 5: � j ∈ g(a) for all j ∈ {1, . . . ,n}\{i}.

Local action a is said to be conjunctively guarded if g(a) 
= L. Hence a BP is a
CGBP in which no action is conjunctively guarded, since in this case the additional
requirement on each local transition is tautological.

Our reduction transforms a CGBP B = (L,Σ,R,g) into a BP B ′ = (L′,Σ′,R′). In-
tuitively B ′ replaces conjunctively guarded local actions with broadcasts. These new
broadcasts allow all processes to check if they would have permitted the transition in B ,
i.e. if their local state satisfies the CG. Whenever a process detects a violation of a CG
in this manner, it refuses to participate in any future actions by “resigning”; resigned
processes are stuck in that state forever.

Formally, we define B ′ as follows. We denote by Σcg the set of conjunctively guarded
actions in B , i.e. Σcg = {a | a ∈ Σl ∧g(a) 
= L}.

– L′ = L∪{resigned}, where resigned is a new local state not in L. A process will
enter resigned if it notices (through a broadcast) that a conjunctive guard was vio-
lated.

– Σ′ is defined by Σ′
l = Σl \Σcg, Σ′

r = Σr, and Σ′
b = Σb ∪Σcg, i.e. all conjunctively

guarded local actions are replaced with broadcasts.
– R′ contains exactly the following transitions

• for each (�,α, �′)∈ R such that α ∈ {a!,a?,a!!,a??}∪Σ′
l we have (�,α, �′)∈ R′.

Hence all rendez-vous, broadcast, and non-conjunctively guarded local actions
are unchanged.

• for each (�,a, �′)∈ R such that a ∈ Σcg we have (�,a!!, �′)∈ R′. Hence conjunc-
tively guarded local actions become broadcasts.

• for each a ∈ Σcg (�,a??, �′) ∈ R′, where �′ = � if � ∈ g(a) otherwise �′ =
resigned. Hence, upon receiving a broadcast corresponding to a CG transition,
a process is unaffected if it satisfied the conjunctive guard, otherwise it enters
resigned.

• for each a ∈ Σ′
b we have (resigned,a??,resigned) ∈ R′. These transitions serve

only to satisfy the restriction that broadcasts must always be received.

The following theorem states that B ′ is a sound reduction of B , and can be proved by
observing that any reachable state of B corresponds to a reachable state of B ′ in which
no process is in local state resigned.

Theorem 5. For CGBP B , Safe(B ′, I,U) implies Safe(B , I,U).

This reduction is “complete” if a certain decidable side condition holds. For each con-
junctively guarded local transition a of B , let ĝ(a) ⊆ L be the set of local states � such
that there exists a sequence of zero or more non-conjunctively guarded local transitions
taking � to a state �′ ∈ g(a); note that g(a) ⊆ ĝ(a). We construct a broadcast protocol

4 Our definition of CGBP allows only local actions to have conjunctive guards. The definition
and the reduction can be generalized to support conjunctively guarded rendez-vous and broad-
casts.
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B ′′ that modifies B ′ as follows. A new local state error is added, and when a process in
local state � receives broadcast a (corresponding to a conjunctively guarded local action
in B), its next state is �′, defined by

�′ =

⎧⎨
⎩

error if � /∈ ĝ(a)
resigned if � ∈ ĝ(a)∧ � 
∈ g(a)
� if � ∈ g(a)

Let Error be the set of all broadcast protocol states such that at least one process is in
local state error. We note that Error is upward-closed. The following theorem states
that if Error is unreachable in B ′′, then the conjunctive guard reduction is both sound
and complete.

Theorem 6. For CGBP B , suppose Safe(B ′′, I,Error). Then Safe(B , I,U) if and only
if Safe(B ′, I,U).

7 Experiments

In this section, we present experimental results for several petri nets, a MESI cache pro-
tocol, a lossy channel system, and a more elaborate caching protocol. All experiments
were run on a machine with an Intel Pentium 4 at 2.6GHz and 4GB total memory. The
implementation of the classical approach we compare against is based on an extension
of CSTs called interval sharing trees [21].

7.1 Petri Nets

In [13], Delzanno et al. run their CST-based implementation of the classical approach
against several petri nets. These nets have small dimensionality, so, as discussed in
Sect. 5.3, we do not expect our approach to perform well. Indeed, Table 1 shows that the
CST-based implementation outperforms our approach by several orders of magnitude.
Recall from Sect. 5.3 that we anticipated that our approach would have an advantage
when the height of our BDDs is dwarfed by the height of the CSTs, which is not the
case here. In fact, for all three petri nets, the CSTs enjoy a shorter height than the BDDs.

7.2 MESI Protocol

MESI is a common variety of cache coherence protocol. In a MESI protocol, each
client has a cache block in one of four states: modified (M), exclusive (E), shared (S), or

Table 1. Experiments involving selected petri nets from [13]. For Mesh(2× 2), our tool spaced
out

Petri net Our runtime CST runtime Max BDD height CST height (dimensionality)

Multipool 3010 2.09 50 18
CSM 95 0.06 36 14
Mesh(2×2) >1300 1.30 >40 32
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Table 2. Results for the MESI protocol with conjunctive guards over multiple blocks. Run times
are in seconds. The column dimension indicates the height of the CST data structures in the CST
approach, and also the width of the real vectors processed by Hytech in Delzanno’s polyhedral
approach

# of blocks Our runtime CST runtime Hytech runtime Max BDD height dimension

1 0.0 0.0 0.0 9 5
2 0.1 0.2 380.0 18 25
3 0.7 131.9 >7989.0 27 125
4 4.6 36 625

invalid (I). Although many MESI protocols are conceivable, here we use the standard
version used by computer architects (e.g., [10]), which has a conjunctive guard, so we
use our reduction from Sect. 6.

We wanted a “knob” that would give us some control over the size of the local state
space. Since cache protocols are typically used to orchestrate the sharing of multiple
blocks, we instantiated the MESI protocol over m blocks5, for m ∈ {1,2,3,4}.

Results are given in Table 2. Our CG reduction allowed the verification to succeed,
so there was no need to verify the side condition. We compare our result against both
the CST-based classical approach and another variant of the classical approach based on
the polyhedral model checker hytech [11, 24]. The results clearly indicate the superior
scalability of our approach as the local state grows. The Hytech-based approach aborts
even for m = 3, reporting “Out of memory”. The parser of the CST tool cannot handle
the size of the description of MESI with 4 blocks, which is 5.9 MBs. This large size
arises because the broadcast matrices used by the classical approach grow quadratically
in the dimension of the problem. This contrasts with the mere 30 KB of SMV that
constitutes our tool’s input.

7.3 Alternating Bit Protocol

As an experiment with lossy channel systems, we selected the alternating bit protocol
(ABP). ABP involves two unbounded, lossy channels, one that carries data and se-
quence bits from the sender to the receiver, and another that carries acknowledgements
from the receiver to the sender. Our ABP model is based on the presentation in [27],
and we verify that whenever the sender receives an acknowledgement, the previously
sent data (a copy of which is saved by the sender) matches the receiver’s data buffer.
As a complexity knob, we vary the number data count, which specifies the number of
different data values that may be sent. Results are shown in Table 3.

5 In this case, since the “sub-protocols” controlling each block are independent, correctness for
m = 1 entails correctness for all m ≥ 1. In practice, however, such a simplification is often not
possible, because real protocols can exhibit nontrivial interactions between different blocks.
This experiment measures how our approach handles the explosive growth in local state re-
sulting from analyzing multiple blocks.
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Table 3. Alternating Bit Protocol Results. As a rough comparison, we ran preliminary experi-
ments with TReX, a state-of-the-art verification tool for lossy channel systems [3]. We do not
intend a direct comparison, because of our inexperience with TReX (e.g., an internal data struc-
ture overflowed when we tried data count = 6). However, the pattern is clear: TReX is faster
when the alphabet (analogous to dimensionality in broadcast protocols) is small, but the run time
is growing exponentially; our tool scales more gracefully

data count our runtime

3 0.2
7 0.6

15 1.9
31 5.7
63 23.1

127 90.0
255 340.7

data count TReX runtime

1 0.01
2 0.02
3 0.05
4 0.08
5 0.15

7.4 German’s Protocol

German’s protocol [23] is a challenge problem for parameterized verification that has
been previously tackled in several papers [28, 26, 8]. As in [8], we include a one bit data
path. The original description [23] is a Murφ model, and is almost a CGBP: the Murφ
description involves a variable of type client ID. We’ve encoded this variable by simply
giving each process an extra bit, which is true iff the original variable would point to
the process. This system is a CGBP, and our CG reduction is applied.

As mentioned in Sect. 7.2, even describing a BP in a format suitable for the classical
approach is problematic when the dimension is large. Due to its various channels and
the presence of data variables, our model of German’s protocol has a dimensionality of
6144. For this reason, we were unable even to run the CST-tool against this example.
The results for our tool are given in Table 4.

Table 4. Results for German’s Protocol. To convert the protocol to a CGBP, we needed to re-
encode the curPtr variable. Although this encoding was straightforward, we verified the encoding
as a sanity check. The main verification task was “data coherence”, which verified that the value
of each read is the most recently written data value. Since the CG reduction is sound and the veri-
fication succeeded, we actually did not need to run the “conjunctive guard reduction” verification
task. We have provided the run time simply to illustrate that the side condition is verifiable in
practice

Property (all passed) Runtime (sec)

Encoding of curPtr 3
Conjunctive guard reduction 214
Data coherence 63
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8 Conclusions and Future Work

We have introduced the concept of NSW and provided a new algorithm for verification
of these transition systems. The algorithm harnesses the power of finite-state symbolic
model checking. We have also introduced a new reduction for systems with unbounded
conjunctive guards. As predicted by our theory, experimental results show that our new
verification algorithm greatly outperforms existing approaches for systems that involve
large local state spaces, control state spaces, channel alphabets, etc. We attribute this to
the ability of BDDs to encode such sets succinctly.

Our current implementation is fairly naive. We believe more sophisticated symbolic
model checking techniques can produce still better results. Other avenues for future
work include computing bounds on BDD sizes, finding additional NSW applications,
and finding ways to apply our method semi-algorithmically to systems that are not NSW.

Veryrecently,Geeraertsetal. [22]haveproposedacompellingapproach toverification
of WSTS based on forward reachability. This is the first sound and complete algorithm
that performs forward analysis of WSTS. Similar to our approach, theirs is based on a
framework in which a sequence of finite-state subsystems of increasing size are examined
until either a counterexample is found, or a certain convergence condition is reached.
Convergence occurs when an abstraction, which becomes more and more precise, is tight
enough to verify non-reachability. Obvious directions for future work include comparing
our approach with that of Geeraerts et al., and investigating the possibility of employing
BDDs as we do for backward reachability in their forward framework.

References

1. P. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In Proceedings of
the Eighth Annual IEEE Symposium on Logic in Computer Science, pages 160–170, 1993.

2. P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability theorems for
infinite-state systems. In 10th Annual IEEE Symp. on Logic in Computer Science (LICS’96),
pages 313–321, 1996.

3. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability analysis of
complex systems. In Proc. 13th Intern. Conf. on Computer Aided Verification (CAV’01),
2001.

4. J. Bingham. A new approach to upward closed set backward reachability analysis. In 6th
International Workshop on Verification of Infinite-State Systems (INFINITY), 2004.

5. J. Bingham and A. J. Hu. Empirically efficient verification for a class of infinite-state sys-
tems. Extended electronic version of this paper, Lecture Notes in Computer Science number
3440, http://www.springerlink.com/.

6. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, August 1986.

7. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2), 1992.

8. C.T. Chou, P. K. Mannava, and S. Park. A simple method for parameterized verification of
cache coherence protocols. In Formal Methods in Computer-Aided Design, 2004.

9. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Dexter Kozen, editor, Workshop on Logics of Programs,
pages 52–71, May 1981. Published 1982 as Lecture Notes in Computer Science Number 131.



92 J. Bingham and A.J. Hu

10. D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, 1998.

11. G. Delzanno. Automatic verification of parameterized cache coherence protocols. In Pro-
ceedings of the 12th International Conference on Computer Aided Verification, July 2000.

12. G. Delzanno and J. F. Raskin. Symbolic representation of upward-closed sets. In 6th Interna-
tional Conference Tools and Algorithms for Construction and Analysis of Systems (TACAS),
pages 426–440, 2000.

13. G. Delzanno, J. F. Raskin, and L. Van Begin. Attacking symbolic state explosion. In Pro-
ceedings of the 13th International Conference on Computer-Aided Verification (CAV), pages
298–310, 2001.

14. E. A. Emerson and V. Kahlon. Exact and efficient verification of parameterized cache coher-
ence protocols. In 12th IFIP Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME), October 2003.

15. E. A. Emerson and V. Kahlon. Model checking guarded protocols. In Eighteenth Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 361–370, June 2003.

16. E. A. Emerson and V. Kahlon. Rapid parameterized model checking of snoopy cache proto-
cols. In 9th International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS), pages 144–159, April 2003.

17. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic infinite-state
systems. In Proceedings of LICS 1998, pages 70–80, 1998.

18. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proceedings
of LICS ’99, pages 352–359, 1999.

19. A. Finkel. Reduction and covering of infinite reachability trees. Information and Computa-
tion, 89(2):144–179, 1990.

20. A. Finkel and Ph. Schnoebelen. Well structured transition systems everywhere! Theoretical
Computer Science, 256(1-2):63–92, 2001.

21. P. Ganty and L. Van Begin. Non deterministic automata for the efficient verification of
infinite-state. presented at: CP+CV Workshop at European Joint Conferences on Theory and
Practice of Software (ETAPS), 2004.

22. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, Enlarge and Check: new algorithms for
the coverability problem of WSTS. In Proceedings of FSTTCS’04, 24th International Con-
ference on Foundations of Software Technology and Theoretical Computer Science, Chennai,
India, pages 287–298, 2004.

23. S. German. Personal correspondence. 2003.
24. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems.

Software Tools for Technology Transfer, 1:110–122, 1997.
25. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Math-

ematical Society (3), 2(7):326–336, 1952.
26. S. K. Lahiri and R. E. Bryant. Constructing quantified invariants via predicate abstraction.

In Proc. of 5th Intl. Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI), pages 267–281, 2004. LNCS 2937.

27. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addision-Wesley, 2002.

28. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invari-
ants. In Proceedings of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 82–97, 2001.

29. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar.
In 5th International Symposium on Programming, pages 337–351. Springer, 1981. Lecture
Notes in Computer Science Number 137.

30. F. Somenzi. Colorado university decision diagram package (CUDD) webpage.
http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.



Context-Bounded Model Checking of
Concurrent Software

Shaz Qadeer and Jakob Rehof

Microsoft Research
{qadeer, rehof}@microsoft.com

Abstract. The interaction among concurrently executing threads of a
program results in insidious programming errors that are difficult to
reproduce and fix. Unfortunately, the problem of verifying a concurrent
boolean program is undecidable [24]. In this paper, we prove that the
problem is decidable, even in the presence of unbounded parallelism, if
the analysis is restricted to executions in which the number of context
switches is bounded by an arbitrary constant. Restricting the analysis
to executions with a bounded number of context switches is unsound.
However, the analysis can still discover intricate bugs and is sound up
to the bound since within each context, a thread is fully explored for
unbounded stack depth. We present an analysis of a real concurrent
system by the zing model checker which demonstrates that the ability
to model check with arbitrary but fixed context bound in the presence
of unbounded parallelism is valuable in practice. Implementing context-
bounded model checking in zing is left for future work.

1 Introduction

The design of concurrent programs is difficult due to interaction between con-
currently executing threads, leading to programming errors that are difficult to
reproduce and fix. Therefore, analysis techniques that can automatically detect
errors in concurrent programs can be invaluable. In this paper, we present a
novel interprocedural static analysis based on model checking [8, 23] for finding
subtle safety errors in concurrent programs with unbounded parallelism.

Algorithms exist for checking assertions in a single-threaded boolean program
with procedures (and consequently an unbounded stack) [28, 25] and form the
basis of a number of efficient static analysis tools [4, 10] for sequential programs.
But the same problem is undecidable for multi-threaded programs [24]. As a
result, most previous analyses for concurrent programs have suffered from two
limitations. Some restrict the synchronization model, which makes the analysis
inapplicable to most common concurrent software applications. Other analyses
are imprecise either because they are flow-insensitive or because they use de-
cidable but coarse abstractions. This limitation makes it extremely difficult to
report errors accurately to programmers. As a result, these analyses have seen
limited use in checking tools for concurrent software. We present a more detailed
discussion of related work in Section 6.
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In this paper, we take a different approach and focus on the following decision
problem:

Given a multithreaded boolean program P and a positive integer k, does
P go wrong by failing an assertion via an execution with at most k
contexts?

A context is an uninterrupted sequence of actions by a single thread. Thus, in an
execution with k contexts execution switches from one thread to another k − 1
times. We prove that this problem is decidable and present an algorithm that is
polynomial in the size of P and exponential in the parameter k.

Our technique, although unsound in general, is both sound and precise for
context-bounded executions of concurrent programs. We believe that it can catch
nontrivial safety errors caused by concurrency. First, even though our analysis
bounds the number of contexts in an execution, it fully explores a thread within
each context. Due to recursion within a thread, the number of stack configura-
tions explored within a context is potentially unbounded. Our analysis considers
each such reachable configuration as a potential point for a context switch and
schedules all other threads from it. Second, our experience analyzing low-level
systems code with the KISS checker [22] indicates that a variety of subtle bugs
caused by concurrency are manifested by executions with few contexts.

Our work is inspired by the KISS project but significantly extends its scope by
employing entirely different techniques. The KISS checker simulates executions of
a concurrent program P with the executions of a sequential program P ′ derived
from P . The various threads in P are scheduled using the single stack of P ′. The
use of a single stack fundamentally limits the number of context switches that
can be explored. KISS is unable to explore more than two context switches for a
concurrent program with two threads and cannot handle an unbounded number
of threads. This paper presents a general algorithm for exploring an arbitrary
number of context switches, even in the presence of unbounded parallelism, in a
way that is sound and precise up to the bound.

The main difficulty with context-bounded model checking is that in each
thread context, an unbounded number of stack configurations could be reach-
able due to recursion. Since a context switch may happen at any time, a precise
analysis must schedule other threads from each of these configurations. To guar-
antee termination, a systematic state exploration algorithm must use a finite
representation of an unbounded set of stack configurations. Our previous algo-
rithm based on transactions and procedure summaries [20] is not guaranteed to
terminate for context-bounded model checking because it keeps an explicit rep-
resentation of the stack of each thread. Summarization [20] may still be useful
as an optimization technique that is complementary to the techniques presented
in this paper.

We achieve a finite representation of an unbounded set of stack configura-
tions by appealing to the result that the reachable configurations (sometimes
called the pushdown store language) of a pushdown system is regular [3, 12, 27]
and consequently representable by a finite automaton. We use this fact to design
an algorithm for context-bounded model checking for a concurrent boolean pro-
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gram with a finite but arbitrary number of threads. We then consider the main
problem of this paper, context-bounded model checking of dynamic concurrent
boolean programs. A dynamic concurrent boolean program is allowed to use two
new operators. The fork operator creates a new thread and returns an integer
identifying the new thread. The join operator blocks until the thread identified
by an argument to the operation has terminated. We assume that fork , join,
and copy from one variable to another are the only operations on thread iden-
tifiers. We show that for any context bound k and for any dynamic concurrent
boolean program P , we can construct a concurrent boolean program Q with k+1
threads such that it suffices to check Q rather than P . Since concurrent software
invariably uses dynamic thread creation, this result significantly increases the
applicability of context-bounded model checking.

Proofs of the theorems in this paper can be found in our report [21].

2 Example

In this section, we present an example of a real concurrency error that requires
four context switches to manifest itself. The error was found by model checking a
large transaction management system written in C# with a bounded number of
threads, using the model checker zing [2] after compiling 10,000 lines of C# code
into zing. Since the error cannot manifest itself with fewer than four context
switches, it could not be discovered by the techniques of KISS [22] which are
inherently limited to two context switches.

The code shown in Figure 1 contains excerpts from two methods of a
hashtable class that is part of the transaction manager implementing the two-

void Remove( LtmInternalTransaction tx )
{

if( !tx.inTimerList )
{

// This transaction is not in the list.
return;

}
POINT 1:

lock( this ) // lock bucket of hash table
{

if( tx.nextLink != null )
{

POINT 3:
tx.nextLink.prevLink = tx.prevLink;

}
if( tx.prevLink != null )
{

// ERROR: null pointer dereference
tx.prevLink.nextLink = tx.nextLink;

}
...

}

bool ProcessList()
{

LtmInternalTransaction tx;
long expirationTime = DateTime.UtcNow.Ticks;

do
{

tx = null;
lock( this ) // lock bucket of hash table
{
... // remove transaction from timeout list
... // tx is made non-null here
}
if( tx != null )
{

tx.prevLink = null;
POINT 2:

tx.nextLink = null;
POINT 4:

...
}

} while( tx != null );
}

Fig. 1. Example
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phase commit protocol. The methods Remove and ProcessList are found within
a class that implements a bucket of the hashtable. When a client thread is reg-
istered with the transaction manager, a reference to the thread is stored in the
hashtable. The error arises when a thread Tc has comitted a transaction tx and
executes in the Remove method in order to remove the finished transaction from
the appropriate bucket of the hashtable. At the same time, a timer thread Tt is
executing in the ProcessList method to determine if any of the transactions
referenced in the bucket of the hashtable has timed out. Thread Tc gets inter-
rupted at POINT 1 in the Remove method, just after it has tested that tx has
not already been removed by the timer and just before it tries to acquire a lock
on the bucket in order to remove the transaction. Thread Tt acquires the lock
on the same bucket inside ProcessList, and it decides that transaction tx has
timed out. It goes on to remove tx by setting the bucket links in tx to null (the
bucket is a doubly-linked list). Just before setting tx.nextLink to null, another
context switch occurs, at POINT 2. Thread Tc resumes execution at POINT 1 and
learns that tx.nextLink is non-null. It gets interrupted by thread Tt at POINT
3 which resumes execution at POINT 2 and sets tx.nextLink to null. It gets
interrupted by thread Tc at POINT 4. Thread Tc resumes execution at POINT
3 and dereferences the null pointer tx.nextLink. The error can be fixed by
extending the scope of the lock statement in the ProcessList method down to
POINT 4.

We have been able to discover several other bugs in the system of the same
nature. However, we have not been able to check the system under scenarios
in which asynchronous calls and dynamically created timers may create new
threads, because zing may not terminate on programs with unbounded paral-
lelism. The results of this paper show that we can achieve a finite abstraction
by bounding the number of contexts to an arbitrary constant, even in the pres-
ence of dynamic thread creation. It is an important problem for future work to
integrate our algorithm in zing, thereby enabling us to find deep errors such as
the one shown above, even in the presence of unbounded parallelism.

3 Pushdown Systems

Domains

γ ∈ Γ Stack alphabet
w ∈ Γ ∗ Stack
g ∈ G Global state
Δ ⊆ (G × Γ ) × (G × Γ ∗) Transition relation
c ∈ G × Γ ∗ Configuration

−→Δ ⊆ (G × Γ ∗) × (G × Γ ∗) Pds transition

Let G and Γ be arbitrary fixed finite sets. We refer to G as the set of global
states, and we refer to Γ as the stack alphabet. We let g range over elements of
G, and we let γ range over elements of Γ . A stack w is an element of Γ ∗, the
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set of finite strings over Γ , including the empty string ε. A configuration c is an
element of G×Γ ∗; we write configurations as c = 〈g, w〉 with g ∈ G and w ∈ Γ ∗.

A transition relation Δ over G and Γ is a finite subset of (G×Γ )× (G×Γ ∗).
A pushdown system P = (G,Γ,Δ, gin , win) is given by G, Γ , a transition relation
Δ over G and Γ , and an initial configuration 〈gin , win〉. The transition relation
Δ determines a transition system on configurations, denoted −→Δ, as follows:
〈g, γw′〉 −→Δ 〈g′, ww′〉 for all w′ ∈ Γ ∗, if and only if (〈g, γ〉, 〈g′, w〉) ∈ Δ. We
write −→∗

Δ to denote the reflexive, transitive closure of −→Δ. Notice that, by
the signature of Δ, there are no transitions −→Δ from a configuration whose
stack is empty. Hence, a pushdown system as defined here halts when the stack
becomes empty.

A configuration c of a pushdown system is called reachable if and only if
cin −→∗

Δ c, where cin is the initial configuration of the pushdown system. In
general, there are inifinitely many reachable configurations of a pushdown sys-
tem, because the stack is unbounded.

The reachability problem for pushdown systems is decidable because the
set of reachable configurations (sometimes called the pushdown store language)
of a pushdown system is regular [3, 12]. A regular pushdown store automaton
A = (Q,Γ, δ, I, F ) is a finite automaton with states Q, alphabet Γ , transition
relation δ ⊆ Q× Γ ×Q, initial states I and final states F . The automaton may
contain ε-transitions. The sets Q and I satisfy G ⊆ Q and I ⊆ G. Such an
automaton defines a language of pushdown configurations by the rule [27]:

- A accepts a pushdown configuration 〈g, w〉, if and only if A accepts the word
w when started in the state g.

A subset S ⊆ G×Γ ∗ of pushdown configurations is called regular, if and only if
there exists a regular pushdown store automaton A such that S = L(A).

For a pushdown system P = (G,Γ,Δ, gin , win) and a set of configurations
S ⊆ G × Γ ∗, let Post∗Δ(S) be the set of configurations reachable from S, i.e.,
Post∗Δ(S) = {c | ∃c′ ∈ S. c′ −→∗

Δ c}. The following theorem [27] shows that
the set of reachable configurations from a regular set of configurations is again
regular. For details on the construction leading to this result we refer the reader
to [27].

Theorem 1 ([27]). Let P = (G,Γ,Δ, gin , win) be a pushdown system, and
let A be a regular pushdown store automaton. There exists a regular pushdown
store automaton A′ such that Post∗Δ(L(A)) = L(A′). The automaton A′ can be
constructed from P and A in time polynomial in the size of P and A.

4 Concurrent Pushdown Systems

A concurrent pushdown system is a tuple P = (G,Γ,Δ0, . . . ,ΔN , gin , win) with
transition relations Δ0, . . . ,ΔN over G and Γ , N ≥ 0, an initial state gin and
an initial stack win . A configuration of a concurrent pushdown system is a tuple
c = 〈g, w0, . . . , wN 〉 with g ∈ G and wi ∈ Γ ∗, that is, a global state g followed by
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Input: Concurrent pushdown system (G, Γ, Δ0, . . . , ΔN , gin , win ) and bound k

0. let Ain = (Q, Γ, δ, {gin}, F ) such that L(Ain) = {〈gin , win〉};

1. WL := {(〈g, Ain , . . . , Ain〉, 0)}; // There are N copies of Ain
2. Reach := {〈g, Ain , . . . , Ain〉};

3. while (WL not empty)
4. let (〈g, A0, . . . , AN 〉, i) = remove(WL) in
5. if (i < k)
6. forall (j = 0 . . . N)
7. let A′

j = Post∗
Δj

(Aj) in
8. forall (g′ ∈ G(A′

j)) {
9. let x = 〈g′, rename(A0, g′), . . . , anonymize(A′

j , g′), . . . ,

rename(AN , g′)〉 in
10. add(WL, (x, i + 1));
11. Reach := Reach ∪ {x};

}
Output : Reach

Fig. 2. Algorithm

a sequence of stacks wi, one for each constituent transition relation. The initial
configuration of P is 〈gin , win , . . . , win〉 where all N + 1 stacks are initialized to
win . The transition system of P , denoted −→P , rewrites configurations of P by
rewriting the global state together with any one of the stacks, according to the
transition relations of the constituent pushdown systems. Formally, we define
〈g, w0, . . . , wi, . . . wN 〉 −→i 〈g′, w0, . . . , w

′
i, . . . wN 〉 if and only if 〈g, wi〉 −→Δi

〈g′, w′
i〉. We define the transition relation −→P on configurations of P by the

union of the −→i, i.e., −→P =
⋃N

i=0 −→i.

4.1 Bounded Reachability

A configuration c is called reachable, if and only if cin −→∗
P c, where cin is the

initial configuration. The reachability problem for concurrent pushdown systems
is undecidable [24]. However, as we will show below, bounding the number of
context switches allowed in a transition leads to a decidable restriction of the
reachability problem.

For a positive natural number k, we define the k-bounded transition relation
k−→ on configurations c inductively, as follows:

c
1−→ c′ iff there exists i such that c −→∗

i c′

c
k+1−→ c′ iff there exist c′′ and i such that c

k−→ c′′ and c′′ −→∗
i c′

Thus, a k-bounded transition contains at most k−1 “context switches” in which
a new relation −→i can be chosen. Notice that the full transitive closure of each
transition relation −→i is applied within each context. We say that a config-
uration c is k-reachable if cin

k−→ c. The k-bounded reachability problem for a
concurrent pushdown system P is: Given configurations c0 and c1, is it the case
that c0

k−→ c1?
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For fixed k, the lengths and state spaces of k-bounded transition sequences
may be unbounded, since each constituent transition relation −→∗

i may generate
infinitely many transitions containing infinitely many distinct configurations.
Therefore, decidability of k-bounded reachability requires an argument. In order
to formulate this argument, we will define a transition relation over aggregate
configurations of the form 〈〈g, R0, . . . , RN 〉〉, where Ri are regular subsets of Γ ∗.

For a global state g ∈ G and a regular subset R ⊆ Γ ∗, we let 〈〈g, R〉〉 denote
the set of configurations {〈g, w〉 | w ∈ R}. Notice that 〈〈g, ∅〉〉 = ∅. For G =
{g1, . . . , gm}, any regular set of configurations S ⊆ G × Γ ∗ can evidently be
written as a disjoint union: (∗) S =

⊎m
i=1〈〈gi, Ri〉〉 for some regular sets of stacks

Ri ⊆ Γ ∗, i = 1 . . .m (if there is no configuration with global state gj in S, then we
take Rj = ∅.) By Theorem 1, the set Post∗Δ(S) for regular S can also be written
in the form (∗), since it is a regular set. We abuse set membership notation to
denote that 〈〈g′, R′〉〉 is a component of the set Post∗Δ(S) as represented in the
form (∗), writing 〈〈g′, R′〉〉 ∈ Post∗Δ(S) if and only if Post∗Δ(S) =

⊎m
i=1〈〈gi, Ri〉〉

with 〈〈g′, R′〉〉 = 〈〈gj , Rj〉〉 for some j ∈ {1, . . . ,m}.
Given a concurrent pushdown system P = (G,Γ,Δ0, . . . ,ΔN , gin , win),

we define relations =⇒i on aggregate configurations, for i = 0 . . . N , by
〈〈g, R0, . . . , Ri, . . . , RN 〉〉 =⇒i 〈〈g′, R0, . . . , R

′
i, . . . , RN 〉〉 if and only if 〈〈g′, R′

i〉〉 ∈
Post∗Δi

(〈〈g, Ri〉〉). Finally, define the transition relation =⇒ on aggregate config-
urations by the union of the =⇒i, i.e., =⇒ = (

⋃N
i=0 =⇒i). For aggregate con-

figurations a1 and a2, we write a1
k=⇒ a2, if and only if there exists a transition

sequence using =⇒ starting at a1 and ending at a2 with at most k transitions.
Notice that each relation =⇒i contains the full transitive closure computed by
the Post∗Δi

operator.
The following theorem reduces k-bounded reachability in a concurrent push-

down system to repeated applications of the sequential Post∗ operator.

Theorem 2. Let P = (G,Γ,Δ0, . . . ,ΔN , gin , win) be a concurrent pushdown
system. Then, for any k, we have 〈g, w0, . . . , wN 〉 k−→ 〈g′, w′

0, . . . , w
′
N 〉 if and

only if 〈〈g, {w0}, . . . , {wN}〉〉 k=⇒ 〈〈g′, R′
0, . . . , R

′
N 〉〉 for some R′

0, . . . , R
′
N such

that w′
i ∈ R′

i for all i ∈ {0, . . . , N}.

4.2 Algorithm

Theorem 1 and Theorem 2 together give rise to an algorithm for solving the
context-bounded reachability problem for concurrent pushdown systems. The
algorithm is shown in Figure 2.

The algorithm processes a worklist WL containing a set of items of the
form (〈g, A0, . . . , AN 〉, i), where g ∈ G is a global state, the Aj are push-
down store automata, and i is an index in the range {0, . . . , k − 1}. The op-
eration remove(WL) removes an item from the worklist and returns the item;
add(WL, item) adds the item to the worklist. The initial pushdown store au-
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constructed according to Theorem 1 so that L(A′
j) = Post∗Δj

(L(Aj)). In line
8, G(A′

j) = {g′ | ∃w.〈g′, w〉 ∈ L(A′
j)}. All pushdown store automata Aj con-

structed by the algorithm have at most one start state g ∈ G. When applied
to such an automaton rename(A, g′) returns the result of renaming the start
state if any of A to g′. The operation anonymize(A, g′) is obtained from A by
renaming all states of A except g′ to fresh states that are not in G.

The algorithm in Figure 2 works by repeatedly applying the Post∗ operator to
regular pushdown store automata that represent components in aggregate con-
figurations. The operations rename and anonymize are necessary for applying
Theorem 1 repeatedly, since the construction of pushdown store automata [27]
uses elements of G as states in these automata. In order to avoid confusion be-
tween such states across iterated applications of Theorem 1, renaming on states
from G is necessary, and hence successive pushdown store automata constructed
by the algorithm in Figure 2 may grow for increasing values of the bound k. This
factunderlies the undecidability of the unbounded reachability problem.

Theorem 3. Let P = (G,Γ,Δ0, . . . ,ΔN , gin , win) be a concurrent pushdown
system. For any k, the algorithm in Figure 2 terminates on input P and k,
and 〈〈gin , {win}, . . . , {win}〉〉 k=⇒ 〈〈g′, R′

0, . . . , R
′
N 〉〉 if and only if the algorithm

outputs Reach with 〈g′, A′
0, . . . , A

′
N 〉 ∈ Reach such that L(A′

i) = 〈〈g′, R′
i〉〉 for all

i ∈ {0, . . . , N}.

Theorem 2 together with Theorem 3 imply that the algorithm in Figure 2 solves
the context-bounded model checking problem, since Theorem 2 shows that ag-
gregate configurations correctly represent reachability in the relation k−→.

For a concurrent pushdown system P = (G,Γ,Δ0, . . . ,ΔN , gin , win) we mea-
sure the size of P by |P | = max(|G|, |Δ0|, |Δ1|, . . . , |ΔN |, |Γ |). For a push-
down store automaton A = (Q,Γ, δ, I, F ) we measure the size of A by |A| =
max(|Q|, |δ|, |Γ |).

Theorem 4. For a concurrent pushdown system P = (G,Γ,Δ0, . . . ,ΔN , gin ,
win) and a bound k, the algorithm in Figure 2 decides the k-bounded reachability
problem in time O(k3(N |G|)k|P |5).

5 Dynamic Concurrent Pushdown Systems

In this section, we define a dynamic concurrent pushdown system with operations
for forking and joining on a thread. To allow for dynamic fork-join parallelism,
we allow program variables in which thread identifiers can be stored. Thread

tomaton Ain = (Q,Γ, δ, {gin}, F ) has initial state gin and accepts exactly the
initial configuration 〈gin , win〉. In the line numbered 7 of the algorithm in Fig-
ure 2, the pushdown store automaton A′

j = Post∗Δj
(Aj) is understood to be
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identifiers are members of the set Tid = {0, 1, 2, . . .}. The identifier of a forked
thread may be stored by the parent thread in such a variable. Later, the parent
thread may perform a join on the thread identifier contained in that variable.

Formally, a dynamic concurrent pushdown system is a tuple

(GBV ,GTV ,LBV ,LTV ,Δ,ΔF ,ΔJ , gin , γin).

The various components of this tuple are described below.

– GBV is the set of global variables containing boolean values and GTV is the
set of global variables containing thread identifiers. Let G be the (infinite)
set of all valuations to the global variables.

– LBV is the set of local variables containing boolean values and LTV is the
set of local variables containing thread identifiers. Let Γ be the (infinite) set
of all valuations to the local variables.

– Δ ⊆ (G×Γ )× (G×Γ ∗) is the transition relation describing a single step of
any thread.

– ΔF ⊆ Tid × (G × Γ ) × (G × Γ ∗) is the fork transition relation. If
(t, 〈g, γ〉, 〈g′, w〉) ∈ ΔF , then in the global store g a thread with γ at the
top of its stack may fork a thread with identifier t modifying the global store
to g′ and replacing γ at the top of the stack with w.

– ΔJ ⊆ LTV × (G × Γ ) × (G × Γ ∗) is the join transition relation. If
(x, 〈g, γ〉, 〈g′, w〉) ∈ ΔJ , then in the global store g a thread with γ at the top
of its stack blocks until the thread with identifier γ(x) finishes execution. On
getting unblocked, this thread modifies the global store to g′ and replaces γ
at the top of the stack with w.

– gin is a fixed valuation to the set of global variables such that gin(x) = 0 for
all x ∈ GTV .

– γin is a fixed valuation to the set of local variables such that γin(x) = 0 for
all x ∈ LTV .

Domains

ss ∈ Stacks = Tid → (Γ ∪ {$})∗

c ∈ C = G × Tid × Stacks Configuration
� ⊆ C × C

Every dynamic concurrent pushdown system is equipped with a special sym-
bol $ 
∈ Γ to mark the bottom of the stack of each thread. A configuration of
the system is a triple 〈g, n, ss〉, where g is the global state, n is the identifier
of the last thread to be forked, and ss(t) is the stack for thread t ∈ Tid . The
execution of the dynamic concurrent pushdown system starts in the configura-
tion 〈gin , 0, ss0〉, where ss0(t) = γin$ for all t ∈ Tid . The rules shown below
define the transitions that may be performed by thread t from a configuration
〈g, n, ss〉.
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Operational Semantics
(seq)
t ≤ n ss(t) = γw′ (〈g, γ〉, 〈g′, w〉) ∈ Δ

〈g, n, ss〉 �t 〈g′, n, ss[t := ww′]〉

(seqend)
t ≤ n ss(t) = $

〈g, n, ss〉 �t 〈g, n, ss[t := ε]〉

(fork)
t ≤ n ss(t) = γw′ (n + 1, 〈g, γ〉, 〈g′, w〉) ∈ ΔF

〈g, n, ss〉 �t 〈g′, n + 1, ss[t := ww′]〉

(join)
t ≤ n ss(t) = γw′ x ∈ LTV (x, 〈g, γ〉, 〈g′, w〉) ∈ ΔJ ss(γ(x)) = ε

〈g, n, ss〉 �t 〈g′, n, ss[t := ww′]〉

All rules are guarded by the condition t ≤ n indicating that thread t must
have already been forked. Thus, only thread 0 can make a move from the initial
configuration 〈gin , 0, ss0〉. The rule (seq) allows thread t to perform a transition
according to the transition relation Δ. The rule (seqend) is enabled if the top
(and the only) symbol on the stack of thread t is $. The transition pops the
$ symbol from the stack of thread t without changing the global state so that
thread t does not perform any more transitions. The rule (fork) creates a new
thread with idenfier n + 1. The rule (join) is enabled if thread γ(x), where γ is
the symbol at the top of the stack of thread t, has terminated. The termination
of a thread is indicated by an empty stack.

5.1 Assumptions

In realistic concurrent programs with fork-join parallelism, the usage of thread
identifiers (and consequently variables containing thread identifiers) is restricted.
A thread identifier is created by a fork operation and stored in a variable. Then,
it may be copied from one variable to another. Finally, a join operation may look
at a thread identifier contained in such a variable. In a nutshell, no control flow
other than that implicit in a join operation depends on thread identifiers. We
exploit the restricted use of thread identifiers in concurrent systems to devise an
algorithm for solving the k-bounded reachability problem.

To formalize the assumptions about the restricted use of thread identifiers,
we need the notion of a renaming function. A renaming function is a partial
function from Tid to Tid . When a renaming function f is applied to a global
store g, it returns another store in which the value of each variable of type Tid is
transformed by an application of f . If f is undefined on the value of some global
variable in g, it is also undefined on g. Similarly, a renaming function can be
applied to a local store as well. A renaming function is extended to a sequence
of local stores by pointwise application to each element of the sequence.
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〈g, γ〉 Δ ��

f

��

〈g′, w〉
f

��
〈f(g), f(γ)〉 Δ �� 〈fg′, fw〉

Fig. 3. Pictorial view of assumption about Δ

Figure 3 presents a pictorial view of assumption about Δ. This view shows
four arrows, two horizontal labeled with the transition relation Δ and two ver-
tical labeled with the renaming function f . The assumption on Δ expresses two
requirement on tuples (g, γ) for which the left vertical arrow holds: (1) If the top
horizontal arrow holds in addition, then the remaining two arrows hold. (2) If
the bottom horizontal arrow holds in addition, then the remaining two arrows
hold. Assumptions about ΔF and ΔJ are similar in spirit to Δ. For lack of space,
we leave the formal statements of these assumptions in our technical report [21].

5.2 Reduction to Concurrent Pushdown Systems

In this section, we show how to reduce the problem of k-bounded reachability on
a dynamic concurrent pushdown system to a concurrent pushdown system with
k + 1 threads. Given a dynamic concurrent pushdown system P and a positive
integer k, our method produces a concurrent pushdown system Pk containing
k+1 threads with identifiers in {0, 1, . . . , k} such that it suffices to verify the k-
bounded executions of Pk. The latter problem can be solved using the algorithm
in Figure 2.

The key insight behind our approach is that in a k-bounded execution, at
most k different threads may perform a transition. We would like to simulate
transitions of these k threads with transitions of threads in Pk with identifiers in
{0, . . . , k−1}. The last thread in Pk with identifier k never performs a transition;
it exists only to simulate the presence of the remaining threads in P .

Let Tidk = {0, 1, . . . , k} be the set of the thread identifiers bounded by k.
Let AbsGk and AbsΓ k be the set of all valuations to global and local variables
respectively, where the variables containing thread identifiers only take values
from Tidk. Note that both AbsGk and AbsΓ k are finite sets.

Given a dynamic concurrent pushdown system

P = (GBV ,GTV ,LBV ,LTV ,Δ,ΔF ,ΔJ , gin , γin)

and a positive integer k, we define a concurrent pushdown system

Pk = (AbsGk × Tidk × P(Tidk),AbsΓ k ∪ {$},Δ0, . . . ,Δk, (gin , 0, ∅), γin$).

The concurrent pushdown system Pk has k + 1 threads. A global state of Pk is
3-tuple (g, n,α), where g is a valuation to the global variables, n is the largest
thread identifier whose corresponding thread is allowed to make a transition, and
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α is the set of thread identifiers whose corresponding threads have terminated.
The initial global state is (gin , 0, ∅), which indicates that initially only thread 0
can perform a transition and no thread has finished execution. The rules below
define the transitions in the transition relation Δt of thread t.

Definition of Δt

(absseq)
t ≤ n (〈g, γ〉, 〈g′, w〉) ∈ Δ

(〈(g, n, α), γ〉 , 〈(g′, n, α), w〉) ∈ Δt

(absseqend)
t ≤ n

(〈(g, n, α), $〉 , 〈(g, n, α ∪ {t}), ε〉) ∈ Δt

(absfork)
t ≤ n n + 1 < k (n + 1, 〈g, γ〉, 〈g′, w〉) ∈ ΔF

(〈(g, n, α), γ〉 , 〈(g′, n + 1, α), w〉) ∈ Δt

(absforknondet)
t ≤ n (k, 〈g, γ〉, 〈g′, w〉) ∈ ΔF

(〈(g, n, α), γ〉 , 〈(g′, n, α), w〉) ∈ Δt

(absjoin)
t ≤ n x ∈ LTV (x, 〈g, γ〉, 〈g′, w〉) ∈ ΔJ γ(x) ∈ α

(〈(g, n, α), γ〉 , 〈(g′, n, α), w〉) ∈ Δt

Note that all rules above are guarded by the condition t ≤ n to indicate that
no transition in thread t is enabled in 〈(g, n,α), γ〉 if t > n. The rule (absseq)
adds transitions in Δ to Δt. The rule (absseqend) adds thread t to the set of
terminated threads. The rules (absfork) and (absforknondet) handle thread
creation in P and are the most crucial part of our transformation. The rule
(absfork) handles the case when the new thread being forked participates in a
k-bounded execution. This rule increments the counter n allowing thread n+1 to
begin simulating the newly forked thread. The rule (absforknondet) handles
the case when the new thread being forked does not pariticipate in a k-bounded
execution. This rule leaves the counter n unchanged thus conserving the precious
resource of thread identifiers in Pk. Both these rules add the transitions of the
forking thread in ΔF to Δ. The rule (absjoin) handles the join operator by using
the fact that the identifiers of all previously terminated threads are present in
α. Again, this rule adds the transitions of the joining thread in ΔJ to Δ.

We can now state the correctness theorems for our transformation. To sim-
plify the notation required to state these theorems, we write a configuration
〈(g′, n′,α), w0, w1, . . . , wk〉 of Pk as 〈(g′, n′,α), ss ′〉, where ss ′ is a map from
Tidk to (AbsΓ k ∪ $)∗.

First, our transformation is sound which means that by verifying Pk, we do
not miss erroneous k-bounded executions of P .

Theorem 5 (Soundness). Let P be a dynamic concurrent pushdown system
and k be a positive integer. Let 〈g, n, ss〉 be a k-reachable configuration of P .
Then there is a total renaming function f : Tid → Tidk and a k-reachable
configuration 〈(g′, n′,α), ss ′〉 of the concurrent pushdown system Pk such that
g′ = f(g) and ss ′(f(j)) = f(ss(j)) for all j ∈ Tid.
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Second, our transformation is precise which means that every erroneous k-
bounded execution of Pk corresponds to an erroneous execution of P .

Theorem 6 (Completeness). Let P be a dynamic concurrent pushdown sys-
tem and k be a positive integer. Let 〈(g′, n′,α), ss ′〉 be a k-reachable configuration
of the concurrent pushdown system Pk. Then there is a total renaming func-
tion f : Tid → Tidk and a k-reachable configuration 〈g, n, ss〉 of P such that
g′ = f(g) and ss ′(f(j)) = f(ss(j)) for all j ∈ Tid.

Thus, with Theorems 5 and 6, we have successfully reduced the problem of k-
bounded reachability on a dynamic concurrent pushdown system to a concurrent
pushdown system with k + 1 threads.

6 Related Work

We are not aware of any previous work that develops a theory of context-bounded
analysis of concurrent software that is sound and complete up to the bound. Our
techniques exploit results from model checking of sequential pushdown systems,
in particular, Schwoon’s generalization [27] of regular representation of sequential
pushdown store languages [3, 12]. We have discussed the relation to our previous
work on procedure summaries [20] and the KISS checker [22] in Section 1.

The notion of bounded-depth model checking, popular in hardware verifi-
cation, can also be used for software verification [7]. These techniques bound
the execution depth resulting in analysis of finite executions. In contrast, due
to unbounded exploration within a thread context, our work allows analysis of
unbounded execution sequences.

A number of model checkers have been developed for concurrent soft-
ware [17, 14, 29, 9, 26, 18, 30]. All of these checkers keep explicit representation of
the thread stacks, which might result in non-termination. Our analysis maintains
a symbolic representation of the thread stacks and is guaranteed to terminate.

A variety of automated compositional techniques for verifying concurrent
software have been developed [6, 16, 13, 15]. These techniques verify each process
separately in an automatically constructed abstraction of the environment. The
constructed abstraction is typically stackless and imprecise. As a result, these
techniques are sound but not complete.

The idea of abstracting an unbounded number of processes into a single
process has been used in verification of cache-coherence protocols [19] and com-
positional verification of software [15].

For restricted models of synchronization, assertion checking is decidable even
with both concurrency and procedure calls. Esparza and Podelski present an
algorithm for this restricted class of programs [11]. Alur and Grosu have studied
the interaction between concurrency and procedure calls in the context of refine-
ment between Statechart programs [1]. At each step of the refinement process,
their system allows either the use of nesting (the equivalent of procedures) or
parallelism, but not both. Also, recursively nested modes are not allowed. In
contrast, we place no restrictions on how parallelism interacts with procedure
calls, and allow recursive procedures.
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Bouajjani, Esparza, and Touili present an analysis that constructs abstrac-
tions of context-free languages [5]. The abstractions are chosen so that the empti-
ness of the intersection of the abstractions is decidable. Their analysis is sound
but incomplete due to overapproximation in the abstractions.

7 Conclusion

In this paper we give for the first time a theory of context-bounded model check-
ing for concurrent software that is sound up to the bound in the sense that it
explores each context to full depth. Our algorithm finds any error that can pos-
sibly manifest itself in an error trace with a number of context switches within
the bound, even in the presence of unbounded parallelism. It is an important
research problem for future work to integrate our algorithm into explicit state
model checking frameworks such as zing [2].
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Abstract. We describe a new tool called Csp-Prover which is an inter-
active theorem prover dedicated to refinement proofs within the process
algebra Csp. It aims specifically at proofs for infinite state systems, which
may also involve infinite non-determinism. Semantically, Csp-Prover sup-
ports both the theory of complete metric spaces as well as the theory of
complete partial orders. Both these theories are implemented for infinite
product spaces. Technically, Csp-Prover is based on the theorem prover
Isabelle. It provides a deep encoding of Csp. The tool’s architecture fol-
lows a generic approach which makes it easy to adapt it for various Csp
models besides those studied here: the stable failures model F and the
traces model T .

1 Introduction

Among the various frameworks for the description and modelling of reactive
systems, process algebra plays a prominent rôle. It has proved to be suitable
at the level of requirement specification, at the level of design specifications,
and also for formal refinement proofs [2]. In this context, the process algebra
Csp [11, 21] has successfully been applied in various areas, ranging from train
control systems [5] over software for the international space station [3, 4] to the
verification of security protocols [23].

Concerning tool support for Csp, the model checker FDR [15] is without
doubt the standard proof tool for Csp. It allows for refinement proofs as well as
for deadlock and livelock analysis. However, in general FDR restricts Csp spec-
ifications to finite state systems1 and allows only the use of concrete data types.
Furthermore, in practical applications it is often hard to deal with the state ex-
plosion problem. In this context, the use of theorem provers has been suggested
e.g. by [26, 25, 8, 24] in order to complement the well-established technique of
model checking.

∗
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In this paper we describe a new tool Csp-Prover. Its generic architecture
makes it suitable for various denotational Csp models. The implemented theories
of complete metric spaces and complete partial orders allow Csp-Prover to deal
with infinite state systems with unbounded non-determinism. Using the theorem
prover Isabelle [16], Csp-Prover can also analyse specifications in Csp based on
abstract data types. We demonstrate the relevance of these properties by proofs
in the context of an industrial case study.

The paper is organised as follows: First, we describe the theorem prover
Isabelle and give a short overview on the process algebra Csp. Then, the generic
architecture of Csp-Prover is discussed in detail. Sect. 5 demonstrates how to
apply Csp-Prover in various settings. Finally, we relate Csp-Prover to similar
tools.

2 The Theorem Prover Isabelle

Isabelle [18] is an interactive theorem prover. Theorems to be proved are entered
as goals. A goal can be manipulated by proof-commands referring to a set of
predefined inference rules producing new goals. Such rules can be combined to
form proof tactics. A proof is completed, if by application of rules and tactics
the only open goal is the truth value True. Successfully proved theorems can be
stored and used later as new rules.

To extend an existing logic, Isabelle offers mechanisms to define new types,
functions, predicates etc. The keyword typedef defines a new type as a non-
empty subset of an existing type:

typedef SubType = {x::SuperType. P(x)}

Here, P is a predicate over the existing type SuperType, and SubType is the
newly defined type by the subset. In addition, the keyword datatype is used
for recursive type definitions with type-constructors, for example,

datatype ’a list = Nil | Cons ’a "’a list"

where Nil and Cons are type constructors, and ’a is a type variable. Type classes
can be defined by

axclass SubClass < SuperClass
name1: (a condition) name2: (a condition) · · ·

where SubClass is included in SuperClass and contains only types which sat-
isfy conditions named name1,2,···. Everything in SuperClass is inherited by
SubClass. Another possibility to use this inheritance is to declare that a type
forms an instance of SubClass by the keyword instance. Such a declaration
requires a proof that the type satisfies the conditions of SubClass and all its
super classes.

Theorems, together with definitions and proof-commands needed for their
proof, can be stored in theory-files. Isabelle organises such files in a rule-database,
to which other theory files may refer. Such a theory-file generally has the format
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theory T = B1 + · · · + Bn: declarations, definitions, and proofs end

where B1, · · · , Bn are names of parent theories of theory T. Everything used in
parent theories is available in their children. This allows for a hierarchical or-
ganisation of theory-files.

3 The CSP Dialect Chosen for CSP-Prover

This section briefly summarises Csp syntax, Csp semantics and how to analyse
process equations in Csp, following closely [21]. It also gives a first overview on
what has been implemented in Csp-Prover.

P ::= SKIP %% successful terminating process
| STOP %% deadlock process
| a -> P %% action prefix
| c ! v -> P %% sending v over channel c (*)
| c ? x : X -> P(x) %% receiving x∈X on channel c (*)
| c !! x : X -> P(x) %% non-deterministic sending x∈X on channel c (*)
| c !! x -> P(x) %% non-deterministic sending x on channel c (*)
| ? x : X -> P(x) %% external prefix choice
| ! x : X -> P(x) %% internal prefix choice (*)
| P [+] P %% external choice
| P |~| P %% internal choice
| ! x : X .. P(x) %% replicated internal choice
| IF b THEN P ELSE P %% conditional
| P |[X]| P %% generalized parallel
| P ||| P %% interleaving (*)
| P || P %% synchronous parallel (*)
| P -- X %% hiding
| P [[r]] %% relational renaming
| P ;; P %% sequential composition
| P [> P %% (untimed) timeout (*)
| <C> %% process name

Fig. 1. Syntax of basic Csp processes in Csp-Prover

3.1 Syntax

The process algebra Csp [11, 21] is defined relative to a given set of commu-
nications. Its basic processes are built from primitive processes like SKIP and
STOP. Csp includes communication primitives like sending and receiving val-
ues over a communication channel, distinguishes between internal and external
choice between two processes, offers a variety of parallel operators, sequen-
tial composition of processes, and various other features like renaming and
hiding. Fig. 1 shows that the Csp dialect implemented by Csp-Prover covers
all these features2. This syntax definition involves certain Isabelle notations:
given a type ’a as set of communications, a:’a is a single communication,
c:(’v⇒’a) denotes a channel name, v:’v is a passed value, b:bool stands

2 The syntactical differences to Csp-M, as e.g. in the sequential composition P ;;
P, avoid overloading of symbols also used by Isabelle.
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for a boolean value, X:’a set is a subset of ’a, and r:(’a * ’a) set de-
notes a binary relation over communications. Derived operators are marked
by (*) . In Csp, recursive processes are either defined by process equations
or by so-called μ-recursion. Here, Csp-Prover currently offers only the former
mechanism. Each recursive process has the form LET df IN P, where the body
process P can contain process names whose behaviours are defined by fixed
points of the function df. The most convenient way to define this function is
to use Isabelle’s keyword primrec for defining recursive functions. For exam-
ple, a process Inc which iteratively sends an increasing natural number n to
a channel c is defined as follows:

primrec df (Loop n) = c ! n -> <Loop (n+1)>
defs "Inc def: Inc == LET df IN <Loop 0>"

Such parametrised process expressions can – on the semantical side of Csp –
give rise to infinite systems of equations.

3.2 Semantics

Csp is a language with many semantics, different in their style as well as in
their ability to distinguish between different reactive behaviour. There are op-
erational, denotational and algebraic approaches, ranging from the simple finite
traces model T to such complex semantics as the infinite traces model with
failures/divergences U . For a general theorem prover on Csp the denotational
semantics are of special interest. Even under the restriction to finitely nondeter-
ministic Csp the algebraic approach does not work quite cleanly for the three
main models: the traces model T , the failure-divergence model N , and the stable
failures model F (see [21] for the details).

The current prototype of Csp-Prover concentrates on the denotational stable-
failures semantics F : This semantics allows for analysis of deadlock-freedom and
of liveness properties (for which the traces model T is too weak). Furthermore,
the semantic domain of F is a complete metric space (cms) as well as complete
partial order (cpo) even in the case of infinite alphabets3. For recursively defined
processes, both approaches, cms and cpo, allow to prove the existence of solutions
and to analyse these solutions by powerful induction principles.

Given a set of communications A, the domain of the stable failures model F
is a set of pairs (T ,F ) satisfying certain healthiness conditions, where T ⊆ A∗�

and F ⊆ A∗� × P(A�)4. In such a pair (T ,F ), T is the set of traces a process
can execute, while the elements (s,X ) ∈ F describe sets of communications X
which a process can fail to accept after executing the trace s. The healthiness
conditions state e.g. that the sets T need to be non-empty and prefix-closed,

3 The semantic domain of the failure-divergence model N is not a cpo on refinement
order for infinite alphabets; however it is a cms independent of the alphabet size.
Another problem is that in N the semantics clauses for hiding work only under
special conditions.

4 A� := A ∪ {�}, A∗� := A∗ ∪ {s � 〈�〉 | s ∈ A∗}.
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that a trace occurring in F needs to be a trace in T , that after termination a
process may refuse to engage in any events.

Typical examples of the semantic clauses of F are:

traces(STOP) = {〈〉}
failures(STOP) = {(〈〉,X ) | X ⊆ A�}

traces(a -> P) = {〈〉} ∪ {〈a〉 � s | s ∈ traces(P)}
failures(a -> P) = {(〈〉,X ) | a �∈ X } ∪ {(〈a〉 � s,X ) | (s,X ) ∈ failures(P)}

Our implementation uses the traces semantics and the stable-failures seman-
tics as they are defined in [21]. As Isabelle allows only for consistent the-
ories, our encoding can also be seen as a proof for the well-formedness of
these semantics5.

3.3 Analysing CSP Recursion

Consider the recursive equations in Csp defined by the following functions:

primrec df1 (P) = a -> <P> |~| b -> SKIP
primrec df2 (Q) = a -> <Q>

For such equations the natural questions are: (1) Do there exist solutions for P
and Q in, say, the Csp model F? (2) Are these solutions uniquely determined?
(3) How to prove properties on these solutions, e.g. that Q refines P? To deal
with these questions, Csp employs two different techniques: complete metric
spaces (cms) and complete partial orders (cpo) which are both implemented
in Csp-Prover. These two approaches follow a similar pattern: the first step
consists of proving that the domain of a given Csp model is a cms or a cpo,
respectively. As a particularity of Csp, metric spaces are introduced in terms
of so-called restriction spaces. The second step consists of proving that the
various Csp operators satisfy the pre-requisite properties, namely contractive-
ness for cms and continuity for cpo. Finally, a fixed point theorem is used to
deal with question (1). In the case of cms this is Banach’s theorem, while it
is Tarski’s theorem within the cpo approach. For question (2) Banach’s theo-
rem leads to a unique fixed point, while Tarski’s theorem does not guarantee
uniqueness. Here, the least fixed point is chosen in the Csp models T and F .
To answer question (3) both the cms and the cpo approach offer as a tech-
nique the so-called fixed point induction.

Up to now the described framework works only for one single equation.
But how about an infinite system of equations like the recursive process
Inc illustrated in Sect. 3.1? For such infinite systems, infinite products of
cms and cpo, respectively, are required. Furthermore, the pre-requisite prop-
erties of the fixed point theorems need to be proved only on the base of
component functions.

5 In an earlier encoding of Csp in Isabelle [26] it was necessary to correct an
up-to-then established Csp semantics.
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Th7:  Domain

Th2:  Trace

Th4:  cms_rs, metric FP induction

Th3:  cms, Banach theorem 

Th5:  cpo, Tarski theorem 

standard FP induction
Th6:  CSP-Syntax

Th1:  CSP-Prover Infrastructure

Isabelle/HOL-Complex

reusable part

Fig. 2. The theory map of Csp-Prover instantiated with the stable-failures model F

4 A Generic Theorem Prover for CSP Refinement

Csp-Prover extends the Isabelle [18] theory HOL-Complex (which is HOL [16]
extended with a definitional development of the real and complex numbers) by a
hierarchy of theory-files encoding Csp, see Fig. 2. The prototype discussed here
supports the stable-failures model F as well as the traces model T . Csp-Prover
has a generic architecture divided into a large reusable part Th1,···,6 independent
of specific Csp models and an instantiated part Th7,8,9 for each specific Csp
model.

The reusable part contains Banach’s fixed point theorem and the metric fixed
point induction rule based on complete metric spaces (cms) as well as Tarski’s
fixed point theorem and the standard fixed point induction rule based on com-
plete partial orders (cpo). Furthermore, it provides infinite product constructions
for these spaces. Thus, when Csp-Prover is instantiated with the domain of a
new Csp model, the fixed point theorems, the induction rules, as well as the
product constructions are available for free, provided the domain is a cms or a
cpo. Additionally, the reusable part provides guidelines in form of proof obli-
gations on how to show that a domain is a cms or a cpo. Here, especially the
theory on restriction spaces plays an important rôle for proofs concerning cms.

Another contribution of the reusable part is the definition of the Csp syn-
tax as a recursive type. Here, instantiating Csp-Prover with a new model re-
quires to provide its semantic clauses defined inductively over this type. This
means that the syntax is deeply encoded, thus structural induction on pro-
cesses is supported.

4.1 Reusable Part

The reusable part consists of a theory of traces (Th2), fixed point theories on
cms and cpo (Th3,4,5), the definitions of the Csp syntax (Th6), and fundamental
theorems on limits and least upper bounds (Th1). In this Section, we concentrate
on how to encode cms and restriction spaces. Trace theory is similar to the data
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type of lists6. The discussion of the syntax definition is postponed to Sect. 4.3,
where it is considered in the context of semantic clauses. For modelling cpos in
Isabelle we refer to [26, 25].

In the theory file Th3, first the class of metric spaces is defined as a type-
class ms which satisfies conditions of diagonal, symmetry, and triangle inequality.
Next, the class of complete metric spaces is defined as a type-subclass cms of
the class ms by adding the completeness condition complete ms, which requires
every Cauchy sequence xs to converge to some point x:

axclass cms < ms
complete ms: "∀xs. cauchy xs−→(∃x. xs convergeTo x)"

Then, Banach’s fixed point theorem is proved, i.e. that any contraction map
f over cms has a unique fixed point and the sequence obtained by iteratively
applying f to any value x0 converges to the fixed point.

theorem Banach thm: "contraction (f::(’a::cms⇒’a))
=⇒ (f hasUFP ∧ (λn. (f^n) x0) convergeTo (UFP f))"

A way for deriving a metric space from a restriction space is given in [21].
Thus, if a space is an instance of the class rs of restriction spaces then the space
is also an instance of ms rs which is the multiple-inheritance from ms and rs.
An important result on ms rs is that the completeness of ms rs is preserved by
the constructors * (binary product) and fun (function space). For example, if
type T is an instance of cms rs, then the function type I⇒ T is also an instance
of cms rs for an arbitrary type I. This theorem is expressed in Isabelle by

instance fun :: (type,cms rs) cms rs

The function type I⇒ T1 is used to deal with infinite product spaces whose index
set is I, which are required to deal with infinite state systems (see Sect. 3.3). Take
for example the Csp model F . Here we need that F I is a cms for any infinite
index set I, which is intuitively the set of (infinitely many) process names. The
above property expresses: if F is an instance of cms rs then F I is also an
instance of cms rs.

Finally, the following metric fixed point induction rule on cms rs is proved
(see [21] on continuity and constructiveness for restriction spaces).

theorem cms fixpoint induction: "[| (R::’a::cms rs⇒bool) x ;
continuous rs R ; constructive rs f ; inductivefun R f |]

=⇒ f hasUFP ∧ R (UFP f)"

6 The event type of Csp consists of communications (Ev a) and the event � for
successful termination. The trace type is defined as the subset of event lists such
that � cannot occur except in the last place of a list.
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4.2 Instantiated Part

The instantiated part consists of instantiated domain theories (Th7 in Fig. 2),
semantic clauses (Th8), and a proof infrastructure (Th9). The proof infrastruc-
ture contains many Csp laws such as step laws, distributive laws, fixed-point
induction rules, etc. Furthermore, it provides a powerful tactic csp hnf tac for
translating any expression to a head normal form. As these rules and tactics are
proved in Isabelle, they are guaranteed to be sound with respect to the chosen
Csp semantics.

In the current Csp-Prover, the domains of the stable-failures model F and the
traces model T are instantiated as types ’a domSF and ’a domT, respectively,
where ’a is the type of communications. Here, the type ’a domT can be reused
for defining ’a domSF:

typedef ’a domT = "{T::(’a trace set). HC T1(T)}"
types ’a failure = "’a trace * ’a event set"
typedef ’a domF = "{F::(’a failure set). HC F2(F)}"
types ’a domTF = "’a domT * ’a domF"
typedef ’a domSF = "{SF::(’a domTF). HC T2(SF) & HC T3(SF)

& HC F3(SF) & HC F4(SF)}"

where HC T1, · · ·, HC F4 are predicates which exactly represent the healthiness
conditions T1, · · ·, F4 given in [21].

In order to apply Banach’s theorem and the metric induction rule to the
model F , it is required to prove that the infinite product (’i,’a) domSF prod
of ’a domSF is an instance of cms rs, where (’i,’a) domSF prod is a synonym
of (’i ⇒ ’a domSF) and the type ’i represents the indexing set of the product
space. This is proved as follows: (1) domT and domF are instances of cms rs, (2)
domTF is also an instance of cms rs, thus there exists a limit of each Cauchy
sequence in domSF (⊂ domTF), (3) the limit is contained in domSF, thus domSF is
also an instance of cms rs, and (4) domSF prod is an instance of cms rs. Here,
the proofs of (2) and (4) follow by preservation of cms rs under the constructors
* and fun as mentioned in Sect. 4.1. This example shows how the provided
infrastructure in terms of restriction spaces discharges certain proof obligations
when a new Csp model is integrated in Csp-Prover.

4.3 Deep Encoding

The Csp syntax is defined as a recursive type (’n,’a) proc by the command
datatype as shown in Fig. 3, where ’n and ’a are type variables for process-
names and communications, respectively. This syntax encoding style implies that
structural induction over processes is available by the Isabelle’s proof command
induct tac. Recursive processes take the form LET:fp df IN P, their type is
(’n,’a) procRC. Here, the function df binds process names to processes, it has
the type (’n,’a) procDF. And fp is a variable instantiated by either Ufp or Lfp,
and specifies which fixed point of df is used for giving the meaning of process
names: i.e. the unique fixed point by Ufp and the least fixed point by Lfp. In
the current Csp-Prover, LET df IN P is an abbreviation of LET:Ufp df IN P.
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datatype (’n,’a) proc = STOP
| SKIP
| Act prefix "’a" "(’n,’a) proc" (" -> ")
| · · ·
| Proc name "’n" ("< >")

type (’n,’a) procDF = "’n ⇒ (’n,’a) proc"

datatype fp type = Ufp | Lfp

datatype
(’n,’a) procRC = Letin "fp type" "(’n,’a) procDF" "(’n,’a) proc" ("LET: IN ")

Fig. 3. Syntax definition of processes

consts
evalT :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domT" ("[[ ]]T")
evalF :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domF" ("[[ ]]F")
evalSF :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domSF" ("[[ ]]SF")

primrec
"[[STOP]]T = (λe. {[]t}t)"
"[[SKIP]]T = (λe. {[]t, [�]t}t)"
"[[a -> P]]T = (λe. {t. t=[]t ∨ (∃s. t=[Ev a]t @t s ∧ s ∈t [[P]]T e) }t)"

...
"[[<C>]]T = (λe. fstSF (e C))" (∗ note: fstSF (T ,, F) = T ∗)

primrec
"[[STOP]]F = (λe. {f. ∃X. f=([]t, X) }f)
"[[SKIP]]F = (λe. {f. (∃X. f=([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f=([�]t, X)) }f)
"[[a -> P]]F = (λe. {f. (∃X. f=([]t,X) ∧ Ev a /∈ X) ∨

(∃s X. f=([Ev a]t @t s, X) ∧ (s, X) ∈f [[P]]F e) }f)
...

"[[<C>]]F = (λe. sndSF (e C))" (∗ note: sndSF (T ,, F) = F ∗)

defs evalSF def :
"[[P]]SF == (λe. ([[P]]T e ,, [[P]]F e))”

consts
evalDF :: "(’n⇒(’m,’a) proc)⇒(’m,’a) domSF prod ⇒(’n,’a) domSF prod" ("[[ ]]DF")
evalRC :: "(’n,’a) procRC⇒’a domSF" ("[[ ]]RC")

defs evalDF def :
"[[df]]DF == (λe. (λC. ([[df C]]SF e)))"

recdef evalRC "measure (λx. 0)"
"[[LET:Ufp df IN P]]RC = [[P]]SF (UFP [[df]]DF)" (∗ based on cms ∗)
"[[LET:Lfp df IN P]]RC = [[P]]SF (LFP [[df]]DF)" (∗ based on cpo ∗)

Fig. 4. Semantics definition of processes

The Csp semantics is defined by translating process-expressions into elements
of the model F by a mapping ([[P]]SF e) as shown in Fig. 4, where e is an
evaluation function for process names in P. The mapping ([[P]]SF e) is a pair
of mappings ([[P]]T e ,, [[P]]F e), where (T ,, F) requires T and F to satisfy
healthiness conditions T1 and F2, respectively, and the pair of them to satisfy
T2, T3, F3, and F4. The mappings ([[P]]T e) and ([[P]]F e) are defined by the



A Generic Theorem Prover of CSP Refinement 117

same semantic clauses of the model F in [21], where subscripts t and f (e.g.
in []t and ∈f) are attached to operators on domT and domF, in order to avoid
conflicts with the operators on Isabelle’s built-in types such as list and set.
Furthermore, the meaning [[df]]DF of each defining function is defined such that
the meaning of each process name C is [[df C]]SF. Finally, the meaning [[LET:fp
df IN P]]RC of each recursive process is defined by [[P]]SF, where the meaning of
each process name in P is given by a suitable fixed point of [[df]]DF.

5 Applications

In this section we demonstrate how Csp-Prover can be used for the verification
of reactive systems. First, we discuss deadlock analysis and a refinement proof
in the context of an industrial case study. Then we study a mutual exclusion
problem arising in the classical example of the dining mathematicians.

5.1 Verification in the Context of an Industrial Case Study

The EP2 system7 is a new industrial standard of electronic payment systems. It
consists of seven autonomous entities centred around the EP2 Terminal : Card-
holder (i.e., customer), Point of Service (i.e., cash register), Attendant, POS
Management System, Acquirer, Service Center, and Card, see Fig. 5. These en-
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SI−Config

COI−Config

EI−ECR

BE−Backend

MI−Subm

MI−Rec

SI−Init FE−FrontEnd
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Merchant
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Fig. 5. Overview of the EP2 System

tities communicate with the Terminal and, to a certain extent, with one another
via XML-messages in a fixed format.

7 EP2 is a joint project established by a number of (mainly Swiss) financial institutes
and companies in order to define infrastructure for credit, debit, and electronic purse
terminals in Switzerland (www.eftpos2000.ch).
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1 (* data part *)
2 typedecl init d typedecl request d
3 typedecl response d typedecl exit d
4 datatype Data = Init init d | Exit exit d | Request request d | Response response d
5 datatype Event = c Data
6
7 (* process part *)
8 datatype ACName = Acquirer | AcConfM | Terminal | TerminalConfM
9 consts ACDef :: "(ACName, Event) procDF"

10 primrec
11 "ACDef (Terminal) = c !! init:(range Init) -> <TerminalConfM>"
12 "ACDef (TerminalConfM) =
13 c ? x -> IF (x:range Request)
14 THEN c !! response:(range Response) -> <TerminalConfM>
15 ELSE IF (x:range Exit) THEN SKIP ELSE STOP"
16 "ACDef (Acquirer) = c ? x:(range Init) -> <AcConfM>"
17 "ACDef (AcConfM) =
18 c !! exit:(range Exit) -> SKIP |~|
19 c !! request:(range Request) -> c ? response:(range Response) -> <AcConfM>"
20
21 constdefs AC :: "(ACName, Event) procRC"
22 "AC == LET ACDef IN (<Acquirer> |[range c]| <Terminal>)"

Fig. 6. EP2 Specification at the Abstract Component Description Level

In [9], major parts of the EP2 system have been formalised in Csp-Casl
[20]. Following the structure of the original EP2 documents, the specifications
presented in [9] can be classified to be e.g. on the Architectural Level, on the
Abstract Component Description Level, or on the Concrete Component Descrip-
tion Level. In this context, tool support is needed to prove deadlock freedom for
the interaction between the various EP2 components.

Translating the data part of the specifications given in [9] into adequate Is-
abelle code, we obtain specifications in the input format of Csp-Prover. Fig. 6
shows the nucleus8 of the initialisation procedure of the EP2 Terminal at the
Abstract Component Description Level. The Terminal starts the initialisation
(line 11) and waits then for data sent by the Acquirer. If this data is of type
Request, the Terminal answers with a value of type Response (line 14). An-
other possibility is that the Acquirer wants to exit the initialisation (line 15).
Any other type of communication sent by the Acquirer will lead to a deadlock
represented by the process STOP (line 15). On the other end of the communica-
tion, after receiving an initialisation request (line 16) the Acquirer internally
decides if it wants to exit the process (line 18) or interact with the Terminal by
sending a request followed by a response of the Terminal (line 19). The system
AC to be analysed here consists of the parallel composition of the Terminal and
the Acquirer synchronised on the channel c (line 22).

It is the defining characteristic of the Abstract Component Description Level
that the data involved is loosely specified. No specific values are defined (lines
2–5). Semantically this means that – depending on the interpretation of e.g. the
type init d – the described systems might involve infinite non-determinism,

8 For the purpose of this paper, the specification text has been simplified. The complete
formalisation and proof can be found in [12].
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1 datatype AbsName = Abstract | Loop
2 consts AbsDef :: "(AbsName, Event) procDF"
3 primrec
4 "AbsDef (Abstract) = c !! init:(range Init) -> <Loop>"
5 "AbsDef (Loop) =
6 c !! exit:(range Exit) -> SKIP |~|
7 c !! request:(range Request) -> c !! response:(range Response) -> <Loop>"
8
9 constdefs Abs :: "(AbsName, Event) procRC"

10 "Abs == LET AbsDef IN <Abstract>"

Fig. 7. An abstraction of the process shown in Fig. 6

e.g. if the type init d has infinitely many values, the Terminal process of
Fig. 6 chooses internally between sending any of these values (line 11). Thus,
Csp-Prover has simultaneously to deal with a class of specifications: it has to
prove that a certain property holds for any possible interpretation of the types
involved.

Using Csp-Prover, we can show the above described process AC to be stable-
failure equivalent to the process Abs of Fig. 7. Note that Abs is a sequential, i.e.
by syntactic characterisation deadlock-free process. As stable failure equivalence
preserves deadlocks, establishing this equivalence proves that the interaction of
Terminal and Acquirer on the Abstract Component Description Level is dead-
lock free9. Fig. 8 shows the complete script to prove the stable-failure equivalence
Abs =F AC (line 14) in Csp-Prover. First, a mapping is defined from the process-
names of Abs to process expressions in AC (line 3-5)10. Next, it is shown that
the involved recursive processes are guarded and do not use the hiding opera-
tor. This is fully automated routine (lines 8–11). After these preparations, Abs
=F AC is given as a goal (line 14). Using the above mapping, now the recursive
processes are unfolded to a base case and step cases by fixed point induction
(line 16). Since a step case is produced for each of the process names of Abs,
the step cases are instantiated by induction on AbsName (line 17). Finally, the
theorem is proven by Isabelle’s tactic auto, Csp-Prover’s tactic csp hnf tac,
which transforms any expression into a head normal form, and csp decompo,
which decomposes Csp-operators (line 18).

5.2 The Dining Mathematicians

The dining mathematicians [7] are a classical mutual exclusion problem: There
are two mathematicians living at the same place, whose life is focused on two
activities, namely thinking (TH0 and TH1, respectively) and eating (EAT0 and
EAT1, respectively). As they have a strong dislike for each other, they want
never to eat at the same time. To ensure this, they agreed to the following
protocol. They both have access to a common variable (VAR n) storing integer

9 In this example, abstraction is convenient to establish deadlock-freedom; in general,
Csp-Prover is capable to support e.g. the various deadlock rules stated in [21].

10 It is hard to automatically derive such correspondences. However, Csp-Prover can
assist users to derive them.
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1 (* expected correspondence of process-names in Abs to AC *)
2 consts Abs to AC :: "AbsName ⇒ (ACName, Event) proc"
3 primrec
4 "Abs to AC (Abstract) = (<Acquirer> |[range c]| <Terminal>)"
5 "Abs to AC (Loop) = (<AcConfM> |[range c]| <TerminalConfM>)"
6
7 (* guarded and no hiding operator *)
8 lemma guard nohide[simp]:
9 "!! C. guard (ACDef C) & nohide (ACDef C)"

10 "!! C. guard (AbsDef C) & nohide (AbsDef C)"
11 by (induct tac C, simp all, induct tac C, simp all)
12
13 (* the main theorem *)
14 theorem ep2: "Abs =F AC"
15 apply (unfold Abs def AC def)
16 apply (rule csp fp induct cms[of "Abs to AC"], simp all)
17 apply (induct tac C)
18 by (auto simp add: image iff | tactic {* csp hnf tac 1 *} | rule csp decompo)+

Fig. 8. The complete proof script for AC =F Abs

datatype Event = Eat0 | Back0 | End0 | RD0 int | WR0 int
| Eat1 | Back1 | End1 | RD1 int | WR1 int | NUM int

syntax " CH0" :: "Event set" ("CH0") " CH1" :: "Event set" ("CH1")
translations "CH0" == "(range RD0) ∪ (range WR0)" "CH1" == "(range RD1) ∪ (range WR1)"

datatype SysName = VAR int | TH0 | EAT0 int | TH1 | EAT1 int
consts SysDef :: "(SysName, Event) procDF"
primrec
"SysDef (TH0) = RD0 ? n -> IF (EVEN n) THEN Eat0 -> <EAT0 n> ELSE Back0 -> <TH0>"
"SysDef (TH1) = RD1 ? n -> IF (ODD n) THEN Eat1 -> <EAT1 n> ELSE Back1 -> <TH1>"
"SysDef (EAT0 n) = End0 -> WR0 ! (n div 2) -> <TH0>
"SysDef (EAT1 n) = End1 -> WR1 ! (3 * n + 1) -> <TH1>
"SysDef (VAR n) = WR0 ? n -> <VAR n> [+] WR1 ? n -> <VAR n>

[+] RD0 ! n -> <VAR n> [+] RD1 ! n -> <VAR n>"
constdefs Sys :: "int ⇒ (SysName, Event) procRC"
"Sys == (λn. LET SysDef IN (<TH0> |[CH0]| <VAR n> |[CH1]| <TH1>) -- (CH0 ∪ CH1))"

Fig. 9. The dining mathematicians: Csp-Prover description of the concrete system

values. If the stored integer (n) is even, the first mathematician is allowed to start
eating. When finished, the first mathematician sets the stored value to (n/2).
A similar procedure holds for the second mathematician, where the check is if
the value of the stored variable is odd, and the value written back after eating is
(3n+1)11. Fig. 9 shows this system described in Csp-Prover. Here, each of the
process definitions (EAT0 n), (EAT1 n), and (VAR n) describes infinitely many
equations. The question is: does this now precisely described system exclude the
situation where both mathematicians eat together? Or, on a more formal level:
has this system a trace where Eat1 appears between consecutive communications
Eat0 and End0 (or vice versa)?

The classical argument in analysing this system is to provide an abstraction of
the dining mathematicians which clearly has the desired exclusion property. This

11 The function involved here is the so-called Collatz function which is studied in the
context of the 3x + 1 problem, see [13] for a survey.
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abstraction Spc consists only of three states, which stand for the situations ‘both
mathematicians think’ TH0 TH1 and ‘one mathematician eats while the other is
thinking’ (EAT0 TH1 and TH0 EAT1, respectively). With Csp-Prover we can show
that (Sys n) is a stable-failures refinement of Spc for any integer n, thus “ALL
n. Spc <=F Sys n”. The respective proof script is substantially longer than the
proof of Abs =F AC shown in Sec. 5.1. But it follows the same strategy: First,
the goal is unfolded by fixed point induction. In a second step the resulting proof
obligations are translated to head normal forms and automatically discharged.
The details are omitted here, the full script as well as the abstraction Spc are
available at [12]. As Spc is again a sequential process, this refinement result also
establishes deadlock-freedom of (Sys n).

6 Related Work

Based on general purpose theorem provers like Isabelle [18], HOL [10] or PVS
[17], various tools for theorem proving over process algebras have been presented.

Closest to our approach are the Csp encodings of Tej/Wolff [26, 25] and
Schneider/Dutertre [8, 24]. Tej/Wolff suggest a shallow encoding of Csp in Is-
abelle/HOL based on the cpo approach. Their encoding HOL-CSP is focused
on the failure-divergence model of Csp. To deal with recursion it introduces a
new process order that implies the standard refinement order. HOL-CSP lacks
the possibility of proofs on the syntactic process structure. Thus, powerful tac-
tics as csp hnf tac in Csp-Prover for transforming process expressions to head
normal form are not available. Schneider/Dutertre’s encoding of the Csp traces
model T in PVS is tailored to the verification of security protocols. Semantically
it uses the cpo approach. It does not consider process termination. Due to its
clear focus, refinement proofs of the nature shown in the previous section are out
of its scope. Compared to these two encodings, a major advantage of Csp-Prover
is its genericity. It is easy to adapt Csp-Prover to any other denotational Csp
model. Furthermore, in offering both, the cms and the cpo approach, it allows
to use the more convenient and the more promising setting for any proof step.

Alternative to encoding a denotational semantics, [6, 19, 1] base their encod-
ings on an axiomatic semantics of the process algebra. As discussed in Sect. 3.2,
such an approach is not an option in the context of Csp.

7 Conclusion and Future Work

We have shown a new tool Csp-Prover which supports refinement proofs over
various Csp models. Thanks to its powerful semi-automatic and automatic tac-
tics, Csp-Prover has successfully been applied in an industrial case study as well
as for a complex example tailored to be a benchmark for refinement proofs.

In the future, we intend to include the failure-divergence model N in Csp-
Prover. Furthermore, we will integrate Csp-Prover with the model checker FDR.
In this context the theory of data independence, see e.g. [14], will play an impor-
tant rôle. Continuing the work on EP2 and applying Csp-Prover to other case
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studies, e.g. of the area of train control systems, will help to develop more proof
infrastructure to further automate refinement proofs.
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Abstract. Fair discrete systems (FDSs) are a computational model of concurrent
programs where fairness assumptions are specified in terms of sets of states. The
analysis of fair discrete systems involves a non-trivial interplay between fairness
and well-foundedness (ranking functions). This interplay has been an obstacle for
automation. The contribution of this paper is a new analysis of temporal properties
of FDSs. The analysis uses a domain of binary relations over states labeled by sets
of indices of fairness requirements. The use of labeled relations separates the
reasoning on well-foundedness and fairness.

1 Introduction

Fair discrete systems provide a computational model of concurrent programs where
fairness assumptions are specified in terms of sets of states [8]. The analysis of fair
discrete systems involves a non-trivial interplay between fairness and well-foundedness
(ranking functions). Its automation is a difficult task. One particular difficulty is the
design of an abstract domain that accounts for well-foundedness and fairness.

We propose an analysis that avoids such an interplay by separating the reasoning
on well-foundedness and fairness. The analysis is based on binary relations over states
that are labeled by sets of indices of fairness requirements. We design an operator FFDS

on a (concrete) domain DFDS of such labeled relations. We use least fixed points of
FFDS to establish the validity of temporal FDS properties. Furthermore, we design an
abstract domain D#

FDS on which approximations of least fixed points of FFDS are effec-
tively computable. The formalization of our analysis follows the framework of abstract
interpretation [3].

The starting point for the design of our analysis is a domain D that consists of binary
relations over states, together with an operator F that composes relations with the transi-
tion relation of the system. This domain allows us to reason about well-foundedness [18],
but it does not account for justice and compassion requirements of FDSs. We extend the
domain D to account for fairness by labeling its elements with sets of indices of fair-
ness requirements. We extend the composition operator F by taking the labeling into
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account, and obtain the operator FFDS, whose least fixed points allow us to reason about
well-foundedness and fairness. Given a set of labeled relations L that constitute the least
fixed point of FFDS, we account for well-foundedness by considering the relations that
appear in the elements of L. We reason about fairness by considering the sets of labels.

We provide an abstract domain D#
FDS on which approximations of least fixed points

of FFDS can be computed. We abstract the part of labeled relations that may cause the
iterative fixed point computation to diverge. This means that the abstract domain D#

FDS
consists of abstractions of binary relations over states labeled by sets of indices of fairness
requirements. We assume that the correspondence between the domain of relations and
their abstractions is given by a Galois connection, which is left as a parameter of our
analysis.

Our analysis accounts for general temporal properties by applying the automata-
theoretic framework for the verification of concurrent programs [23]. We encode the
temporal property into a specification automaton. We translate the acceptance condition
of the product of the automata-theoretic construction into additional fairness require-
ments, which we handle in the same way as the fairness requirements of the FDS. Then,
we apply our analysis on the product FDS.

For proving the soundness and partial completeness [2] of our analysis we develop
a corresponding proof rule whose auxiliary assertions are labeled relations.

We have implemented the analysis in a prototype tool, and applied it on interest-
ing examples of concurrent programs. We proved an eventual reachability property
for a concurrent program that evolves the inter-process communication via an asyn-
chronous, lossy, and corrupting channel. The property relies on the eventual reliability
of the channel, which we model by a compassion requirement. We also considered the
mutual exclusion protocols BAKERY and TICKET. For each protocol, we proved the
non-starvation property, i.e. the accessibility of the critical section, for the first process.
Justice requirements are needed to deal with the process idling in all examples.

Our main contribution is the analysis of temporal properties of fair discrete systems,
and the proof of its soundness and partial completeness. The analysis is based on sepa-
rating the reasoning on well-foundedness and fairness, which facilitates its automation.
We achieve the separation by building the analysis on the domain of binary relations
labeled by sets of indices of fairness requirements.

Related Work. The framework of abstract interpretation provides a basis for the sys-
tematic design of a program analysis [3]. It is difficult to integrate fairness into the
definition of abstract domains.

There exist verification methods for finite-state systems with state-based fairness
requirements that account for justice and compassion on the algorithmic level, e.g. [8, 13].
Experimental evaluation has confirmed the advantage of the direct treatment of fairness
(as opposed to the automata-theoretic translation into a Büchi acceptance condition).

For dealing with infinite-state systems, there exist proof rules for the verification
of termination [12] and general temporal properties [14] under justice and compassion
requirements that account for the fairness requirements without applying the automata-
theoretic encoding. The proof rules rely on well-founded orderings, which must be
supplied by the user. Justice requirements are handled directly by the proof rules; ver-
ification under compassion requirements is done by recursive application of the proof
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rule to a transformed program. Our proof rule treats justice and compassion in a uniform
way, without program transformation.

The uniform liveness-verification of parameterized FDSs [5, 6] requires construction
of auxiliary assertions that account for well-foundedness and fairness. The construction
of such assertions can be effectively automated by applying “instantiate-project-and-
generalize” heuristic, which allows for the treatment of several classes of parameterized
communication protocols. Our approach relies on least fixed point computations, where
heuristics can be applied to find abstractions.

Transition invariants provide a basis for reasoning about well-foundedness [18]. They
can account for the fairness given by a Büchi accepting condition. Labeled relations
extend transition invariant to account for justice and compassion requirements imposed
on sets of states, i.e., for the generalized Büchi and Streett acceptance conditions.

Abstract-transition programs, introduced in [19], provide a basis for an automated
method for the verification of programs with the transition-based fairness requirements.
Its accounting for well-foundedness is similar to the one via labeled relations, whereas
the treatment of fairness is based on graphs underlying abstract-transition programs.

The automata-theoretic framework of [23] is the basis of our analysis for the verifi-
cation of general temporal properties. For infinite-state concurrent programs, the Büchi
and the Streett acceptance conditions are translated to the Wolper (i.e. all states are ac-
cepting) acceptance condition. Thus, a proof of fair termination is reduced to a proof of
termination of a program obtained from the original one by a transformation that encodes
the fairness requirements into the state space. This approach is converse to ours.

The stack assertions based method of [9] for proving fair termination accounts for jus-
tice and compassion requirements directly. The method requires identification of tuples
of well-founded mappings (stacks assertions), one element for each fairness require-
ment, which must by supplied by the user. The method keeps track of fairness through
the tuple structure. No automation is described.

2 Preliminaries

Fair Discrete Systems. Following [8], a fair discrete system (FDS)S = 〈Σ,Θ, T ,J , C〉
consists of:

– Σ: a set of states,
– Θ: a set of initial states such that Θ ⊆ Σ,
– T : a finite set of transitions such that each transition τ ∈ T is associated with a

transition relation ρτ ⊆ Σ ×Σ,
– J = {J1, . . . , Jk}: a set of justice requirements, such that Ji ⊆ Σ for each i ∈
{1, . . . , k},

– C = {〈p1, q1〉, . . . , 〈pm, qm〉}: a set of compassion requirements, such that pi, qi ⊆
Σ for each i ∈ {1, . . . ,m}.

A computation σ is a maximal sequence of states s1, s2, . . . such that s1 is an initial
state, i.e. s1 ∈ Θ, and for each i ≥ 1 there exists a transition τ ∈ T such that si goes to
si+1 under ρτ , i.e. (si, si+1) ∈ ρτ . A finite segment si, si+1, . . . , sj of a computation
where i < j is called a computation segment. The set Acc of accessible states consists
of all states that appear in computations of S.
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A computation σ = s1, s2, . . . satisfies the set of justice requirements J when
for each J ∈ J there exist infinitely many positions i in σ such that si ∈ J . The
computation σ satisfies the set of compassion requirements C when for each 〈p, q〉 ∈ C
either σ contains only finitely many positions i such that si ∈ p, or σ contains infinitely
many positions j such that sj ∈ q.

We observe that justice requirements can be translated into compassion requirements
as follows. For every justice requirement J we extend the set of compassion require-
ments by the pair 〈Σ, J〉. We assume that all justice requirements are translated into the
compassion requirements, and that the set of compassion requirements C contains the
translated justice requirements. A specialization of the analysis presented in this paper
for an explicit treatment of justice requirements is straightforward.

Automata-Theoretic Approach to Temporal Verification. Given a FDS S, we verify
a temporal property Ψ under the compassion requirements C by applying the automata-
theoretic framework [23]. We assume that the property is given by a (possibly infinite-
state) specification automaton AΨ that accepts exactly the infinite sequences of states
that violate the property Ψ . We do not encode the compassion requirements into the
automaton.

Let AΨ be a Büchi automaton with the set of states Q and the acceptance condition
F ⊆ Q. Let the FDS S|||AΨ be the product of the synchronous parallel composition of
S and AΨ .

Remark 1. The FDS S with the compassion requirements C satisfies the property Ψ
given by the Büchi automaton AΨ if and only if the FDS S|||AΨ terminates under the
compassion requirements C||| shown below.

C||| = {〈p×Q, q ×Q〉 | 〈p, q〉 ∈ C} ∪ {〈Σ ×Q,Σ × F 〉}

Domain of Transition Invariants. Following [18], we define a domain D = 2Σ×Σ of
binary relations over states ordered by the subset inclusion ordering ⊆. On this domain,
we define an operatorFτ : D → D, where τ ∈ T and the symbol ◦ denotes the relational
composition (i.e. R1 ◦R2 = {(s, s′′) | (s, s′) ∈ R1 and (s′, s′′) ∈ R2}):

Fτ (T ) = T ◦ ρτ .

We will use the domain D and the operator Fτ as a starting point for the development
our analysis.

3 Analysis

We fix a FDS S with the set of compassion requirements C. We define an analysis
that allows one to prove that S terminates under C. We apply the Galois connection
approach for abstract interpretation [3] as a basis for our analysis. We assume an abstract
domain D#, partially ordered by a relation �, that contains abstractions of elements
(binary relations) from the domain D. Let a Galois connection (α, γ) formalize the
correspondence between the domains D and D#, formally:

∀T ∈ D ∀T# ∈ D#. α(T ) � T# ⇔ T ⊆ γ(T#) .
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Let |C| be the set of the indices of all compassion requirements:

|C| = {1, . . . ,m} .

We obtain a domain DFDS that accounts for compassion requirements by an extension
of D with sets of compassion requirements:

DFDS = D × 2|C| × 2|C| .

We define an ordering ⊆FDS on elements (T1, P1, Q1) and (T2, P2, Q2) of DFDS:

(T1, P1, Q1) ⊆FDS (T2, P2, Q2) = T1 ⊆ T2 and P1 ⊆ P2 and Q1 ⊆ Q2 .

We define the following auxiliary functions that map sets of states into sets of indices
of compassion requirements. For a set of states S ⊆ Σ we have

None(S) = {j ∈ |C| | S ∩ pj = ∅} , Some(S) = {j ∈ |C| | S ∩ qj �= ∅} .

We extend the functions None and Some to binary relations. Given a relationT ⊆ Σ×Σ,
we have

None(T ) =
⋃

(s1,s2)∈T

None({s1, s2}) , Some(T ) =
⋃

(s1,s2)∈T

Some({s1, s2}) .

We define an operator FFDS,τ : DFDS → DFDS, which is an extension of the operator
Fτ that accounts for compassion requirements, as follows:

FFDS,τ (T, P,Q) = (Fτ (T ), P ∩ None(Fτ (T )), Q ∪ Some(Fτ (T ))) .

Theorem 1. The operator FFDS,τ is monotonic. Formally,

(T1, P1, Q1) ⊆FDS (T2, P2, Q2) =⇒ FFDS,τ (T1, P1, Q1) ⊆FDS FFDS,τ (T2, P2, Q2) .

Proof. Let (T1, P1, Q1) and (T2, P2, Q2) be two elements of DFDS such that
(T1, P1, Q1) ⊆FDS (T2, P2, Q2). Since T1 ⊆ T2 we have⋃

(s,s′)∈T1◦ρτ

None({s, s′}) ⊆
⋃

(s,s′)∈T2◦ρτ

None({s, s′}) ,

i.e., we have None(Fτ (T1)) ⊆ None(Fτ (T2)). Analogously, we have Some(Fτ (T1)) ⊆
Some(Fτ (T2)). We conclude FFDS,τ (T1, P1, Q1) ⊆FDS FFDS,τ (T2, P2, Q2). ��

We define an abstract counterpart D#
FDS of the domain DFDS as follows:

D#
FDS = D# × 2|C| × 2|C| .

We define an ordering ⊆#
FDS on elements (T#

1 , P1, Q1) and (T#
2 , P2, Q2) of D#

FDS:

(T#
1 , P1, Q1) ⊆#

FDS (T#
2 , P2, Q2) = T#

1 � T#
2 and P1 ⊆ P2 and Q1 ⊆ Q2 .
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Note that we only abstract a component of DFDS-elements that may potentially allow
for infinite, strictly increasing chains (T1, P1, Q1) ⊂FDS (T2, P2, Q2) ⊂FDS . . . . We
define a pair of functions (αFDS, γFDS) that connect the domains DFDS and D#

FDS:

αFDS(T, P,Q) = (α(T ), P,Q) , γFDS(T#, P,Q) = (γ(T#), P,Q) .

Lemma 1. The pair of functions (αFDS, γFDS) is a Galois connection between DFDS

and D#
FDS.

Proof. From the monotonicity of γ and α follows that αFDS and γFDS are monotonic.
We carry out the following transformations:

αFDS(γFDS(T#, P,Q)) = αFDS(γ(T#), P,Q)

= (α(γ(T#)), P,Q) .

Since (α, γ) is a Galois connection, by Theorem 5.3.0.4 in [4], we have that
α(γ(T#)) ⊆ T# and hence αFDS(γFDS(T#, P,Q)) ⊆FDS (T#, P,Q). Similarly, we
obtain (T, P,Q) ⊆FDS γFDS(αFDS(T, P,Q)). By Theorem 5.3.0.4 in [4], we conclude
that (αFDS, γFDS) is a Galois connection. ��

The abstract operator F#
FDS,τ : D#

FDS → D#
FDS is defined below:

F#
FDS,τ (T#, P,Q) = αFDS(FFDS,τ (γFDS(T#, P,Q))) .

We extend F#
FDS,τ to the full set of transitions T :

F#
FDS(T

#, P,Q) = {F#
FDS,τ (T#, P,Q) | τ ∈ T } .

The monotonicity of the fixed point operator F#
FDS is a direct consequence of The-

orem 1 and the monotonicity of the abstraction/concretization functions. By Tarski’s
fixed point theorem, the least fixed point of F#

FDS exists. We denote the least fixed point
of F#

FDS above the basis {(α(ρτ ),None(ρτ ),Some(ρτ )) | τ ∈ T } by lfp(F#
FDS, T ).

We compute lfp(F#
FDS, T ) in the usual fashion. If the range of the abstraction function

α does not allow infinite, strictly increasing chains then the fixed point computation
always terminates after finitely many iterations.

We show our analysis for termination of the FDS S under the compassion require-
ments C on Figure 1. For proving the soundness and partial completeness of the analysis
we will develop a corresponding proof rule, whose auxiliary assertions denote elements
of the domain DFDS. The partial completeness property, following [2], requires that the
analysis gives a positive answer for a FDS that terminates under compassion require-
ments C in case the abstract domain D#

FDS satisfies the following property. The domain
D#

FDS contains an abstract value L# that satisfies the condition imposed by the analysis.
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input
FDS S with:

states Σ,
transitions T ,
compassion requirements C,

abstract domain D# with:
abstraction function α : 2Σ×Σ → D#,
concretization function γ : D# → 2Σ×Σ

begin
F#

FDS = λ(T#, P, Q). {(α(ρτ ◦ γ(T#)),
P ∩ None(ρτ ◦ γ(T#)),
Q ∪ Some(ρτ ◦ γ(T#))) | τ ∈ T }

L# = lfp(F#
FDS, T )

if foreach (T#, P, Q) in L#

P ∪ Q �= |C| or well-founded(γ(T#))
then

return(“FDS S terminates under C”)
end.

Fig. 1. Analysis of termination for a fair discrete system S under compassion requirements C

Theorem 2. The analysis shown on Figure 1 is sound and partially complete.

Proof. See Section 5. ��
We apply our analysis on general temporal properties of fair discrete systems as

follows. Let Ψ be a temporal property given by a Büchi automatonAΨ . Note that we do
not encode the fairness requirements intoAΨ . Following Remark 1, we construct a FDS
S|||AΨ together with the set of compassion requirements C|||. For proving that the FDS
S satisfies the property Ψ under the compassion requirements C we apply our analysis
on S|||AΨ (with compassion requirements C|||).

We account for temporal properties given by generalized Büchi and Streett automaton
in a straightforward way. For this purpose, we use a direct translation of the generalized
Büchi and Streett acceptance conditions into compassion requirements, following the
lines of the translation shown in Remark 1.

4 Proof Rule

In this section, we show a proof rule for the verification of fair discrete systems. The
auxiliary assertions of the proof rule, called labeled relations, denote elements of the
domain DFDS used by our analysis. The correspondence between the proof rule and the
analysis will allow us to prove Theorem 2, which states the analysis’ correctness.

Informally, a labeled relation is a triple (T, P,Q) consisting of a binary relation
T over states together with two sets of compassion requirements P and Q. Labeled
relations capture sets of computations segments. A computation segment s1, . . . , sn is
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captured by (T, P,Q) if the pair (s1, sn) is an element of T , and the infinite sequence
(s1, . . . , sn)ω, i.e. the infinite concatenation of the segment with itself, satisfies only
those compassion requirements whose indices are in the set P ∪ Q. We give a formal
definition of labeled relations below.

Definition 1 (Labeled Relation). A labeled relation (T, P,Q) consists of a binary re-
lation T ⊆ Σ × Σ and two sets of indices (labels) P,Q ⊆ |C|. The labeled relation
(T, P,Q) captures a computation segment s1, . . . , sn if the following conditions hold:

(s1, sn) ∈ T , None({s1, . . . , sn}) ⊆ P , Some({s1, . . . , sn}) ⊆ Q .

We write seg(T, P,Q) for the set of all computation segments that are captured by the
labeled relation (T, P,Q).

The following theorem allows us to separate the reasoning about well-foundedness and
fairness.

Theorem 3. The FDS S terminates under the set of compassion requirements C if and
only if there exist labeled relations (T1, P1, Q1), . . . , (Tn, Pn, Qn) such that 1) every
computation segment of S is captured by some labeled relation from the set, and 2) for
every labeled relation (T, P,Q) in the set either |C| �= P ∪ Q or the relation T is
well-founded.

Proof. (if-direction) For a proof by contraposition, assume that 1) a finite set L of
labeled relations captures every computation segment, 2) for each (T, P,Q) ∈ L holds
that either |C| �= P ∪Q or the relation T is well-founded, and 3) S does not terminate
under the compassion requirements C. We will show that there exists a labeled relation
(T, P,Q) in L such that the relation T is not well-founded and |C| = P ∪Q.

By the assumption that S does not terminate under C, there exists an infinite compu-
tation σ = s1, s2, . . . that satisfies all compassion requirements.

We partition the set |C| of indices of compassion requirements into two subsets |C|p
and |C|q as follows. An index j (of the compassion requirement 〈pj , qj〉) is an element
of the subset |C|p if there exist only finitely many positions i in σ such that si ∈ pj ;
otherwise, j is an element of the subset |C|q. There exists a position r such that for each
i ≥ r and for each j ∈ |C|p we have si �∈ pj .

Let H = h1, h2, . . . be an infinite ordered set of positions in σ such that h1 = r and
for each i ≥ 1 and for each j ∈ |C|q there exist a position h between the positions hi and
hi+1 with sh ∈ qj . Since σ satisfies all compassion requirements such a set H exists.

For the fixed σ and the fixed H , we choose a function f that maps an ordered pair
(k, l), where k < l, of indices in H to one of the labeled relations in L as follows:

f(k, l) = (T, P,Q) ∈ L such that (sk, . . . , sl) ∈ seg(T, P,Q) .

Such a function f exists since every computation segment is captured by some labeled
relation in L. The function f induces an equivalence relation ∼ on ordered pairs of
elements from H:

(k, l) ∼ (k′, l′) = f(k, l) = f(k′, l′) .

The equivalence relation ∼ has finite index since the range of f is finite.
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By Ramsey’s theorem [20], there exists an infinite ordered set of positions K =
k1, k2, . . . , where ki ∈ H for all i ≥ 1, with the following property. All pairs of
elements in K belong to the same equivalence class, say [(m,n)]∼ with m,n ∈ K.
That is, for all k, l ∈ K such that k < l we have (k, l) ∼ (m,n). We fix m and n. Let
(Tmn, Pmn, Qmn) denote the labeled relation f(m,n).

Since for all i ≥ 1 we have (ki, ki+1) ∼ (m,n), the function f maps the pair
(ki, ki+1) to (Tmn, Pmn, Qmn) for all i ≥ 1. Hence, the infinite sequence sk1 , sk2 , . . .
is induced by the relation Tmn, i.e., for all i ≥ 1 we have (ski

, ski+1) ∈ Tmn. We
conclude that the relation Tmn is not well-founded.

By the choice ofH the following claims hold. For every i ≥ k1 and for every j ∈ |C|p
the state si is not an element of pj . For every i ≥ 1 and for every j ∈ |C|q there exists
a position k between the positions ki and ki+1 such that sk ∈ qj . Hence, for every
i ≥ 1 the infinite sequence (ski

, . . . , ski+1)
ω satisfies all compassion requirements. We

conclude |C| = Pmn ∪Qmn.

(only if-direction) is shown after the proof of Theorem 4 in this section. ��
We formalize the correspondence between labeled relations and the ingredients of

our analysis by the lemmas below. The ordering⊆FDS approximates the subset inclusion
ordering between the sets of computation segments captured by labeled relations, as
shown in Lemma 2.

Lemma 2. The relation ⊆FDS is an approximation of the entailment relation between
the sets of computation segments that are captured by two labeled relations. Formally,

(T1, P1, Q1) ⊆FDS (T2, P2, Q2) =⇒ seg(T1, P1, Q1) ⊆ seg(T2, P2, Q2) .

Proof. Let the computation segment s1, . . . , sn be captured by the labeled rela-
tion (T1, P1, Q1). From (T1, P1, Q1) ⊆FDS (T2, P2, Q2) and the definition of labeled
relations, we directly obtain (s1, . . . , sn) ∈ seg(T2, P2, Q2). ��

The operator FFDS,τ is ‘compatible’ with the composition of computation segments,
as formalized in Lemma 3.

Lemma 3. Every extension of a computation segment that is captured by a labeled
relation (T, P,Q) by a segment consisting of a pair of states in a transition relation ρτ

is captured by the application of the operator FFDS,τ on (T, P,Q). Formally,

(s1, . . . , sn) ∈ seg(T, P,Q) and (sn, sn+1) ∈ ρτ =⇒
(s1, . . . , sn, sn+1) ∈ seg(FFDS,τ (T, P,Q)) .

Proof. Let s1, . . . , sn be a computation segment that is captured by the labeled re-
lation (T, P,Q), and let (sn, sn+1) be an element of the transition relation ρτ . By
the definition of labeled relations, for the set of indices of compassion requirements
Pn = None({s1, . . . , sn}) we have Pn ⊆ P . Furthermore, for the set of indices
Pn+1 = None({s1, . . . , sn, sn+1}) holds Pn+1 ⊆ None({s1, sn+1}) ⊆ None(T ◦ ρτ )
and Pn+1 ⊆ Pn. Hence, we have Pn+1 ⊆ P and Pn+1 ⊆ None(T ◦ ρτ ). We conclude
Pn+1 ⊆ P ∩ None(Fτ (T )).

Analogously, we have Some({s1, . . . , sn}) ⊆ Q, and, hence, for the set of indices
Qn+1 = Some({s1, . . . , sn, sn+1}) holds Qn+1 ⊆ Q ∪ Some(Fτ (T )).
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The pair of states (s1, sn+1) is an element of the relational composition T ◦ρτ , since
(s1, sn) is an element of the relation T . We conclude that s1, . . . , sn, sn+1 is captured
by FFDS,τ (T, P,Q). ��

We canonically extend the ordering ⊆FDS to sets of labeled relations:

L ⊆FDS M = ∀(T1, P1, Q1) ∈ L∃(T2, P2, Q2) ∈M. (T1, P1, Q1) ⊆FDS (T2, P2, Q2) .

We canonically extend the operator FFDS,τ to sets of labeled transitions:

FFDS,τ (L) = {FFDS,τ (T, P,Q) | (T, P,Q) ∈ L} .

We show a proof rule COMP-TERM for verifying the termination of fair discrete systems
under compassion requirements on Figure 2. By applying Theorem 3, we reduce this
termination proof to the problem of identifying of a set of labeled relation that captures
every computation segment of S. The premises P1 and P2 identify such sets of labeled
relations, which is justified by Lemma 4. The premise P3 accounts for well-foundedness
and fairness.

Lemma 4. A set of labeled relations L for the FDS S that satisfies the premises P1 and
P2 of the proof rule COMP-TERM captures every computation segment.

Proof. Given a set of labeled relations L that satisfies the premises P1 and P2 of the
proof rule COMP-TERM, we show that every computation segment is captured by some
labeled relation in L by the induction over the segment length.

Let s1, s2 such that (s1, s2) ∈ ρτ , where τ is a transition, be a computation segment.
From None({s1, s2}) ⊆ None(ρτ ) and Some({s1, s2}) ⊆ Some(ρτ ) follows directly
that the segment s1, s2 is captured by the labeled relation (ρτ ,None(ρτ ),Some(ρτ )).
By Lemma 2 and the premise P1, the segment s1, s2 is captured by some labeled relation
in L, which is ⊆FDS-greater than (ρτ ,None(ρτ ),Some(ρτ )).

The induction assumption is that the computation segment s1, . . . , sn is captured by
a labeled relation (T, P,Q) from L. Let (sn, sn+1) be an element of ρτ . By Lemma 3,
we have (s1, . . . , sn, sn+1) ∈ seg(FFDS,τ (T, P,Q)). Analogously to the base case, the
segment s1, . . . , sn, sn+1 is captured by some labeled relation in L, which is ⊆FDS-
greater than FFDS,τ (T, P,Q). ��

Theorem 4. The proof rule COMP-TERM is sound and complete.

Proof. The soundness of the proof rule follows directly from the if-direction of Theo-
rem 3, and Lemma 4.

For proving completeness, we assume that the FDS S terminates under the compassion
requirements C. We construct a set L of labeled relations that satisfies all premises of
the proof rule COMP-TERM. Let L be the set of labeled relations defined as follows. For
each pair of sets of indices P ⊆ |C| and Q ⊆ |C| let (T, P,Q) be a labeled relation
in L such that a pair of states (s, s′) is an element of the relation T if there exists a
computation segment s1, . . . , sn such that s1 = s, sn = s′, P = None({s1, . . . , sn}),
and Q = Some({s1, . . . , sn}).

We prove that L satisfies all premises of the proof rule COMP-TERM. We make the
following assumptions on the transition relations ρτ , where τ ∈ T .
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FDS S with:
states Σ,
compassion requirements C,
transitions T ,

Set of labeled relations L = {(T1, P1, Q1), . . . , (Tn, Pn, Qn)} such that:
Ti ⊆ Σ × Σ and Pi, Qi ⊆ |C| for all i ∈ {1, . . . , n}

P1: (ρτ , None(ρτ ), Some(ρτ )) ⊆FDS L for each τ ∈ T
P2: FFDS,τ (L) ⊆FDS L for each τ ∈ T
P3: Pi ∪ Qi �= |C| or Ti well-founded for each i ∈ {1, . . . , n}

FDS S terminates under compassion requirements C

Fig. 2. Proof rule COMP-TERM

Assumption 1. For every pair (s, s′) of states in the transition relation ρτ , where τ ∈ T ,
the sequence s, s′ is a computation segment.

This assumption is not a proper restriction. We can assume that the transition relations
are restricted to the accessible states. Alternatively, we may use a weaker version of the
proof rule that restricts the transition relations ρτ in the premise P1 to the accessible
states Acc.

Assumption 2. For each transition τ ∈ T there exists two sets of indices P and Q
of compassion requirements such that for every pair (s, s′) of states in ρτ we have
P = None({s, s′}) and Q = Some({s, s′}).

This assumption can be fulfilled by splitting every transition relation according to the
sets that appear in the fairness requirements. Now we prove thatL satisfies every premise
of the proof rule.

Premise P1: We show that for every program transition τ ∈ T the condition
(ρτ ,None(ρτ ),Some(ρτ )) ⊆FDS (T, P,Q) holds for the labeled relation (T, P,Q) ∈ L
such that P = None(ρτ ) and Q = Some(ρτ ). We need to prove ρτ ⊆ T . For every
pair of states (s, s′) in ρτ the sequence s, s′ is a computation segment, by Assumption 1.
Furthermore, we have None({s, s′}) = P and Some({s, s′}) = Q, by Assumption 2.
Hence, by construction of the labeled relation (T, P,Q), the pair (s, s′) is an element of
the relation T .

Premise P2: We show that for every labeled relation (T1, P1, Q1) ∈ L and for every
transition τ ∈ T it holds FFDS,τ (T1, P1, Q1) ⊆FDS (T2, P2, Q2), where (T2, P2, Q2)
is the labeled relation in L such that P2 = P1 ∩ None(Fτ (T1)) and Q2 = Q1 ∪
Some(Fτ (T1)). We need to prove T1 ◦ ρτ ⊆ T2.

We note the following auxiliary statement. For every pair (s, s′) of states in T1 we
have P1 ⊆ None({s}), Some({s}) ⊆ Q1, P1 ⊆ None({s′}), and Some({s′}) ⊆ Q1.
To justify the statement above for the pair (s, s′) ∈ T1, we consider a computation
segment s, . . . , s′ that is captured by (T1, P1, Q1) such that None({s, . . . , s′}) = P1
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and Some({s, . . . , s′}) = Q1, which exists by construction of (T1, P1, Q1). From the
definitions of None and Some, our auxiliary statement follows directly.

Now we are ready to proveT1◦ρτ ⊆ T2. For a pair of states (s1, sn) ∈ T1 there exists
a computation segment s1, . . . , sn that is captured by the labeled relation (T1, P1, Q1)
such that None({s1, . . . , sn}) = P1 and Some({s1, . . . , sn}) = Q1, by construction
of (T1, P1, Q1). By Lemma 3, for a pair of states (sn, sn+1) ∈ ρτ the computation
segment s1, . . . , sn, sn+1 is captured by the labeled relation FFDS,τ (T1, P1, Q1). Next,
we prove the equalities

None({s1, . . . , sn, sn+1}) = P1 ∩ None(Fτ (T1)) ,
Some({s1, . . . , sn, sn+1}) = Q1 ∪ Some(Fτ (T1)) ,

from which (s1, sn+1) ∈ T2 follows directly, by construction of (T2, P2, Q2). We follow
the chain of observations below:

None({s1, . . . , sn, sn+1})
= P1 ∩ None({sn, sn+1})
= P1 ∩ None({sn, sn+1}) ∩

⋃
(s,s′)∈T1,(s′,s′′)∈ρτ

None({s}) since P1 ⊆ None({s})

= P1 ∩
⋃

(s,s′)∈T1,(s′,s′′)∈ρτ

(None({s}) ∩ None({sn, sn+1}))

= P1 ∩
⋃

(s,s′)∈T1,(s′,s′′)∈ρτ

(None({s}) ∩ None({s′, s′′})) by Assumption 2

=
⋃

(s,s′)∈T1,(s′,s′′)∈ρτ

(None({s, s′′}) ∩ None({s′}) ∩ P1)

=
⋃

(s,s′)∈T1,(s′,s′′)∈ρτ

(None({s, s′′}) ∩ P1) since P1 ⊆ None({s′})

= P1 ∩ None(Fτ (T1)) .

The proof of Some({s1, . . . , sn, sn+1}) = Q1 ∪ Some(Fτ (T1)) is analogous.

Premise P3: We show, by contraposition, that for every labeled relation (T, P,Q) in L
such that P ∪Q = |C| we have that the relation T is well-founded.

Assume that there exists an infinite sequence of states s1, s2, . . . such that for all i ≥ 1
the pair (si, si+1) is an element ofT , i.e., the relationT is not well-founded. By construc-
tion of (T, P,Q), the state s1 is accessible from some initial state s1 ∈ Θ. Furthermore,
for all i ≥ 1 there exists a computation segment (si, . . . , si+1) ∈ seg(T, P,Q) that
connects the states si and si+1. For connecting the states si and si+1 we choose a com-
putation segment such that None({si, . . . , si+1}) = P and Some({si, . . . , si+1}) = Q.
Such a segment exists by construction of (T, P,Q). We conclude that there exists an
infinite computation σ = s1, . . . , s

1, . . . , s2, . . . . Next, we prove that σ satisfies all
compassion requirements.

For each j ∈ P we have that pj-states does not appear in σ after the state s1. For each
j ∈ Q and each i ≥ 1 we have that some qj-state appear in the segment si, . . . , si+1.
Since P ∪Q = |C|, the computation σ satisfies all compassion requirements.
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There is a contradiction to our assumption that S terminates under the compassion
requirements C. ��
Proof. Theorem 3 (only if-direction) The set of labeled relations constructed in the
completeness part of the proof of Theorem 4 satisfies all premises of the proof rule COMP-
TERM. By Lemma 4, such a set captures all computation segments. Hence, whenever
the FDS S terminates under the compassion requirements C, there exists a set of labeled
relations L such that for each (T, P,Q) ∈ L we have either P ∪Q �= |C| or the relation
T is well-founded. ��

We obtain a proof rule for the verification of general temporal properties of fair
discrete systems by following Remark 1. We account for temporal properties given
by a generalized Büchi automaton or a Streett automaton in a straightforward way,
since generalized Büchi and Streett acceptance conditions are directly expressible as
compassion requirements.

5 Correctness of the Analysis

We prove the soundness of the analysis as follows. First, we observe that the abstract
least fixed point lfp(F#

FDS, T ) represents a finite set L of labeled relations:

L = {(γ(T ), P,Q) | (T, P,Q) ∈ lfp(F#
FDS, T )} .

that satisfies the premises P1 and P2 of the proof rule COMP-TERM. This observation
holds since the operator F#

FDS is a conservative approximation of the operator FFDS, due
to the Galois connection (αFDS, γFDS). Hence, whenever the analysis gives the positive
answer then the set L satisfies all premises of the proof rule. By Theorem 4, we conclude
the analysis is sound.

The partial completeness of the analysis follows from the completeness of the proof
rule. We assume that the FDS S terminates under the compassion requirements C. Let
L be a finite set of labeled relations that satisfies all premises of the proof rule. Such a
set exists, by Theorem 4. Let the abstract domain D#

FDS contains an abstract value L#

such that L = γFDS(L#). By Theorem 13 in [2], we conclude that the least fixed point
lfp(F#

FDS, T ) computed on D#
FDS satisfies the condition that leads to the positive answer.

6 Applications

We have implemented the analysis in a prototype tool using SICStus Prolog [10] and
its built-in solver for linear arithmetic [7]. We applied the tool on several examples,
described below.

In our implementation, we have instantiated the abstract domain D#
FDS by a set of

abstract transitions. Abstract transitions are conjunctions built from some fixed, finite set
of transition predicates [19]. A transition predicate denotes a binary relation over states,
and is represented by an atomic assertion over unprimed and primed program variables,
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local α : channel [1..] of integer

P1 ::

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

local x : integer where x = 0
�0 : loop forever do⎡

⎢⎢⎢⎢⎢⎢⎣

�1 : x := x + 1

�2 :

⎡
⎢⎢⎢⎢⎣

�g
2 : α ⇐ x
or

�s
2 : skip
or

�c
2 : α ⇐ 0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

‖ P2 ::

⎡
⎢⎢⎢⎢⎢⎢⎣

local y : integer where y = 0
m0 : while y = 0 do

m1 : α ⇒ y
m2 : while y > 0 do

m3 : y := y − 1
m4 :

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 3. Program CORR-ANY-DOWN

e.g. x′ ≤ x − 1. The abstraction of a relation T is the abstract transition T# such that
T entails the relation denoted by T#. The meaning of the concretization function γ is
identity. We represent the relations γ(T#) by a ‘simple’program that consists of a single
while loop with only update statements in the loop body, following [18, 19]. There exist
a number of well-foundedness tests for the class of simple while programs that are built
using linear arithmetic expressions [1, 17, 22]. Our tool implements the test described
in [17].

We give a brief description of the example programs. We start with the program
CORR-ANY-DOWN, shown on Figure 3. The communication between the processes of the
program CORR-ANY-DOWN takes place over an asynchronous channel α. The channel
α is unreliable. Messages sent over the channel can be transmitted correctly, get lost or
corrupted during the transmission. The transition α ⇐ x models a correct transmission,
skip models the message loss, and α ⇐ 0 models the message corruption [16]. We prove
the eventual reachability of the location m4.

This property relies on the assumption that the value of the variable x is eventu-
ally communicated to the variable y, i.e., that the channel α is eventually reliable. We
model the eventual reliability by a compassion requirement 〈at �1, at �g

2〉 that ensures
a successful transmission if there are infinitely many attempts to send a message.

The eventual reliability of the communication channel is in fact not sufficient for
proving termination. We also need to exclude computations in which one of the pro-
cesses idles forever in some location. Hence, we introduce a justice requirement for
each location, e.g. ¬at �1 and ¬(at m0 ∧ y = 0).

We model the asynchronous communication channel α by an integer array of infinite
size. We keep track of the positions in the array at which the read and write operations
take place, as well as the position at which the first successfully transmitted value is
written.

The program BAKERY is a simplified version [15] of the Bakery mutual exclusion
protocol [11] for two processes. We verify the starvation freedom for the first process.
This means that whenever it leaves the non-critical section, it will eventually reach the
critical section. The property relies on justice assumptions that none of the processes
idles forever in some location.
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I II III

Number of justice requirements 10 5 5
Number of compassion requirements 1 0 0
Number of transition predicates 19 7 11
Least fixed point computation, sec 363.2 2.7 3.4
Well-foundedness tests, sec 0.5 0.03 0.04

Fig. 4. Analysis of the programs CORR-ANY-DOWN (I), BAKERY (II), and TICKET (III)

The program TICKET is another mutual exclusion protocol. We verify the starvation
freedom property for the first process. It requires the same kind of fairness requirements
as the program BAKERY.

Figure 4 shows the collected statistics. For each program we give the number of
justice and compassion requirements that were necessary to prove the property, and
the number of transition predicates that induce the abstract domain D#. We measured
the time spent on the fixed point computation lfp(F#

FDS, T ), and the well-foundedness
checks well-founded(γ(T#)) (see the analysis on Figure 1).

7 Conclusion

We have presented an analysis of temporal properties of fair discrete systems. Our
analysis relies on the domain of labeled relations, which provides the separation of well-
foundedness and fairness. We have successfully applied our analysis to verify temporal
properties of interesting programs. The verified properties rely on justice and compassion
requirements.
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An Abstract Interpretation-Based
Refinement Algorithm for Strong Preservation
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Abstract. The Paige and Tarjan algorithm (PT) for computing the coarsest re-
finement of a state partition which is a bisimulation on some Kripke structure is
well known. It is also well known in abstract model checking that bisimulation
is equivalent to strong preservation of CTL and in particular of Hennessy-Milner
logic. Building on these facts, we analyze the basic steps of the PT algorithm
from an abstract interpretation perspective, which allows us to reason on strong
preservation in the context of generic inductively defined (temporal) languages
and of abstract models specified by abstract interpretation. This leads us to design
a generalized Paige-Tarjan algorithm, called GPT, for computing the minimal re-
finement of an abstract interpretation-based model that strongly preserves some
given language. It turns out that PT can be obtained by instantiating GPT to the
domain of state partitions for the case of strong preservation of Hennessy-Milner
logic. We provide a number of examples showing that GPT is of general use.
We show how two well-known efficient algorithms for computing simulation and
stuttering equivalence can be viewed as simple instances of GPT. Moreover, we
instantiate GPT in order to design a O(|Transitions||States|)-time algorithm for
computing the coarsest refinement of a given partition that strongly preserves the
language generated by the reachability operator EF.

1 Introduction

Motivations. The Paige and Tarjan [15] algorithm — in the paper denoted by PT — for
efficiently computing the coarsest refinement of a given partition which is stable for a
given state transition relation is well known. Its importance stems from the fact that PT
actually computes bisimulation equivalences, because a partition P of a state space Σ is
stable for a transition relation R ⊆ Σ×Σ if and only if P is a bisimulation equivalence
on the transition system 〈Σ,R〉. In particular, PT is widely used in model checking for
reducing the state space of a Kripke structure K because it turns out that the quotient of
Kw.r.t. bisimulation equivalence strongly preserves branching-time temporal languages
like CTL and CTL∗ [2, 3]. Paige and Tarjan first provide the basic O(|R||Σ|)-time PT
algorithm and then exploit a computational logarithmic improvement in order to design
a O(|R| log |Σ|)-time algorithm, which is usually referred to as Paige-Tarjan algorithm.
It is important to remark that the logarithmic Paige-Tarjan algorithm is derived as a
computational refinement of PT that does not affect the correctness of the procedure
which is instead proved for the PT algorithm. As shown in [16], it turns out that state
partitions can be viewed as domains in abstract interpretation and strong preservation can

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 140–156, 2005.
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be cast as completeness in abstract interpretation. Thus, our first aim was to understand,
from an abstract interpretation perspective, why PT is a correct procedure for computing
strongly preserving partitions.

The PT Algorithm. Let us recall how PT works. Let preR = λX.{s ∈ Σ | ∃x ∈
X. s R−→x} denote the usual predecessor transformer on ℘(Σ). A partition P ∈ Part(Σ)
is PT stable for R when for any block B ∈ P , if B′ ∈ P then either B ⊆ preR(B′)
or B ∩ preR(B′) = ∅. For a given subset S ⊆ Σ, we denote by PTsplit(S, P ) the
partition obtained from P by replacing each block B ∈ P with the blocks B ∩preR(S)
and B � preR(S), where we also allow no splitting, namely that PTsplit(S, P ) = P .
When P �= PTsplit(S, P ) the subset S is called
a splitter for P . Splitters(P ) denotes the set
of splitters of P , while PTrefiners(P ) def= {S ∈
Splitters(P ) | ∃{Bi} ⊆ P. S = ∪iBi}. Then, the
PT algorithm goes as follows.

while (P is not PT stable) do
choose S ∈ PTrefiners(P );
P := PTsplit(S, P );

endwhile PT

An Abstract Interpretation Perspective of PT. Our work originated from a number of
observations on the above PT algorithm. Firstly, we may view the output PT(P ) as the
coarsest refinement of a partition P that strongly preserves CTL. For standard abstract
models which are partitions, it is known that strong preservation of CTL is equivalent
to strong preservation of (finitary) Hennessy-Milner logic HML [12], i.e., the language
generated by the grammar: ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ, where p ranges over atomic
propositions inAP such that {[[p]] ⊆ Σ | p ∈AP} = P and the semantic interpretation
of EX is preR : ℘(Σ) → ℘(Σ). Thus, we observe that PT(P ) indeed computes the
coarsest partition PHML that refines P and strongly preserves HML. Moreover, the parti-
tion PHML corresponds to the state equivalence≡HML induced by the semantics of HML:
s ≡HML s′ iff ∀ϕ ∈ HML. s ∈ [[ϕ]] ⇔ s′ ∈ [[ϕ]]. Hence, we also observe that PHML is an
abstraction of the state semantics of HML on the domain Part(Σ) of partitions of Σ.
Thus, our starting point was that PT can be viewed as an algorithm for computing the
most abstract object on the particular domain Part(Σ) that strongly preserves the par-
ticular language HML. We made this view precise within Cousot and Cousot’s abstract
interpretation framework [4, 5].

We introduced in [16] an abstract interpretation-based framework for reasoning on
strong preservation of abstract models w.r.t. generic inductively defined languages. We
showed that the lattice Part(Σ) of partitions of the state space Σ can be viewed as an
abstraction of the lattice Abs(℘(Σ)) of abstract interpretations of ℘(Σ). Thus, a parti-
tion P ∈ Part(Σ) is here viewed as a particular abstract domain γ(P ) ∈ Abs(℘(Σ)).
This leads to a precise correspondence between forward complete abstract interpreta-
tions and strongly preserving abstract models. Let us recall that completeness in abstract
interpretation [4, 5, 10] encodes an ideal situation where no loss of precision occurs by
approximating concrete computations on the abstract domain. The problem of mini-
mally refining an abstract model in order to get strong preservation of some language
L can be cast as the problem of making an abstract interpretation A forward complete
for the semantic operators of L through a minimal refinement of the abstract domain of
A. It turns out that this latter completeness problem always admits a fixpoint solution.
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Hence, in our abstract interpretation framework, it turns out that for any P ∈ Part(Σ),
the output PT(P ) is the partition abstraction in Part(Σ) of the minimal refinement
of γ(P ) ∈ Abs(℘(Σ)) which is complete for the set F of semantic operators of the
language HML, where FHML = {∩, �,preR} is the set of operators on ℘(Σ) of HML.
In particular, it turns out that a partition P is PT stable iff γ(P ) is complete for the op-
erators in FHML. Also, the following observation is crucial in our approach. The splitting
operation PTsplit(S, P ) can be viewed as the best correct approximation on Part(Σ)
of a refinement operation refinef (S, ·) : Abs(℘(Σ)) → Abs(℘(Σ)) on abstract do-
mains: given an operator f :℘(Σ)→℘(Σ), refinef (S,A) refines an abstract domain A
through a “f -refiner” S ∈ A to the most abstract domain containing both A and f(S). In
particular, P results to be PT stable iff the abstract domain γ(P ) cannot be refined w.r.t.
the function preR. Thus, if refinePart

f de-
notes the best correct approximation in
Part(Σ) of refinef then the PT algo-
rithm can be formulated as follows.

while the set of preR-refiners of P �= ∅ do
choose some preR-refiner S ∈ γ(P );
P := refinePart

preR
(S, P );

endwhile

Main Results. This abstract interpretation-based view of PT leads us to generalize PT
to: (1) a generic domain A of abstract models generalizing the domain of state parti-
tions Part(Σ) and (2) a generic set F of operators on ℘(Σ) providing the semantics
of some language LF and generalizing the set FHML of operators of HML. We design
a generalized Paige-Tarjan refinement algorithm, called GPT, which, for any abstract
model A ∈ A, is able to compute the most abstract refinement of A in A which is
strongly preserving for the language LF . The correctness of GPT is guaranteed by
some completeness conditions onA and F . We provide a number of applications show-
ing that GPT is an algorithmic scheme of general use. We prove that two well-known
algorithms computing simulation and stuttering equivalence can be obtained as simple
instances of GPT. First, we show that the algorithm by Henzinger et al. [13] that com-
putes simulation equivalence inO(|R||Σ|)-time (as far as time-complexity is concerned,
this is the best available algorithm) corresponds to the instance of GPT where the set
of operators is F = {∩,preR} and the abstract domain A is the lattice of disjunctive
(i.e. precise for least upper bounds [5]) abstract domains of ℘(Σ). We obtain this as
a consequence of the fact that simulation equivalence corresponds to strong preserva-
tion of the language ϕ ::= p | ϕ1 ∧ ϕ2 | EXϕ. Second, we show that GPT can be
instantiated in order to get the Groote-Vaandrager algorithm [11] that computes diver-
gence blind stuttering equivalence in O(|R||Σ|)-time (again, this is the best known time
bound). Let us recall that the Groote-Vaandrager algorithm can be also used for com-
puting branching bisimulation equivalence, which is the state equivalence induced by
CTL∗-X [2, 7, 11]. In this case, the set of operators is F = {∩, �,EU}, where EU
is the standard semantic interpretation of the existential until, while A is the domain
of partitions Part(Σ). Moreover, we instantiate GPT in order to design a new par-
tition refinement algorithm for the language inductively generated by the reachability
operator EF and propositional logic, namely with F = {∩, �,EF}. In this case, we de-
scribe a simple implementation for this instance of GPT that leads to a O(|R||Σ|)-time
algorithm.
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2 Basic Notions

Notation. Let X be any set. Fun(X) denotes the set of all the functions f : Xn → X ,
where ar(f) = n > 0 is the the arity of f . For a set S ∈ ℘(℘(X)), we write the
sets in S in a compact form like {1, 12, 123} ∈ ℘(℘({1, 2, 3})). We denote by � the
complement operator w.r.t. some universe set. A function f : C → C on a complete
lattice C is additive when f preserves least upper bounds. We denote by Part(X) the
set of partitions on X . Part(X) is endowed with the following standard partial order
�: given P1, P2 ∈ Part(X), P1 � P2, i.e. P2 is coarser than P1 (or P1 refines P2) iff
∀B ∈ P1.∃B′ ∈ P2.B ⊆ B′. It turns out that 〈Part(X),�,�,�, {X}, {{x}}x∈X〉
is a complete lattice. We consider transition systems (Σ,R) where the relation R ⊆
Σ × Σ (also denoted by R−→) is total. A Kripke structure (Σ,R,AP , �) consists of a
transition system (Σ,R) together with a set AP of atomic propositions and a labelling
function � : Σ → ℘(AP). For any s ∈ Σ, [s]�

def= {s′ ∈ Σ | �(s) = �(s′)}. Also,
P�

def= {[s]� | s ∈ Σ} ∈ Part(Σ). A transition relation R ⊆ Σ × Σ defines the usual
pre/post transformers on℘(Σ): preR, postR, p̃reR, p̃ostR. When clear from the context,
subscripts R are sometimes omitted.

Abstract Interpretation and Completeness. In standard abstract interpretation, abstract
domains can be equivalently specified either by Galois connections/insertions (GCs/GIs)
or by (upper) closure operators (uco’s) [5]. Closure operators have the advantage of being
independent from the representation of domain’s objects and are therefore appropriate
for reasoning on abstract domains independently from their representation. We will
denote by (α, C,A, γ) a GC/GI of the abstract domain A into the concrete domain
C through the abstraction and concretization maps α : C → A and γ : A → C.
Recall that μ : C → C is a uco when μ is monotone, idempotent and extensive (i.e.,
x ≤ μ(x)). If μ is reductive (i.e., μ(x) ≤ x) instead of extensive then μ is a lower closure
operator (lco), namely a uco on the dual lattice C≥. It is known that the set uco(C) of
uco’s on C, endowed with the pointwise ordering �, gives rise to the complete lattice
〈uco(C),�,�,�, λx.�C , id〉. We have that μ � ρ iff ρ(C) ⊆ μ(C); in this case, we
say that μ is a refinement of ρ. Also, 〈lco(C),�〉 denotes the complete lattice of lower
closure operators on C. It turns out that uco(C) and lco(C) are dual isomorphic, namely
uco(C)� and lco(C)� are isomorphic. Hence, notions and results concerning uco’s can
be stated dually for lco’s. Each closure is uniquely determined by the set of its fixpoints,
which is also its image. Also, a subset X ⊆ C is the set of fixpoints of some uco on C iff
X is meet-closed, i.e. X = M(X) def= {∧Y | Y ⊆ X} (where �C = ∧C∅ ∈ M(X)).
Often, we will identify closures with their sets of fixpoints because this does not give
rise to ambiguity. In view of the above equivalence, throughout the paper 〈uco(C),�〉
will play the role of the (complete) lattice of abstract domains of the concrete domain C
[4, 5]. The ordering on uco(C) corresponds to the standard order that compares abstract
domains with regard to their precision: A1 is more precise than A2 (or A2 is more
abstract than A1) iff A1 � A2 in uco(C). Let (α, C,A, γ) be a GI, f : C → C be some
concrete semantic function — for simplicity, we consider here 1-ary functions — and
f 	 : A → A be a corresponding abstract function. Then, 〈A, f 	〉 is a sound abstract
interpretation when α ◦ f � f 	 ◦ α. The abstract function fA def= α ◦ f ◦ γ : A→ A is
called the best correct approximation of f in A. Completeness in abstract interpretation
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corresponds to require the following strengthening of soundness: α ◦ f = f 	 ◦ α. This is
called backward completeness because a dual forward completeness may be considered.
The soundness equation α ◦ f � f 	 ◦ α is equivalent to f ◦ γ � γ ◦ f 	, so that forward
completeness for f 	 corresponds to strengthen soundness by requiring: f ◦ γ = γ ◦ f 	.
Giacobazzi et al. [10] observed that both backward and forward completeness uni-
quely depend upon the abstraction map, namely they are abstract domain properties.
These domain properties can be formulated through uco’s as follows: an abstract domain
μ ∈ uco(C) is backward complete for f iff μ ◦ f = μ ◦ f ◦ μ holds, while μ is forward
complete for f iff f ◦ μ = μ ◦ f ◦ μ.

Shells. Refinements of abstract domains have been much studied in abstract interpre-
tation [4, 5] and led to the notion of shell of an abstract domain [10]. Given a generic
poset P≤ of semantic objects — where x ≤ y intuitively means that x is a “refinement”
of y, i.e. x is more precise than y — and a property P ⊆ P of these objects, the generic
notion of shell goes as follows: the P-shell of an object x ∈ P is defined to be an
object sx ∈ P such that: (i) sx satisties the property P , (ii) sx is a refinement of x, and
(iii) sx is the greatest among the objects satisfying (i) and (ii). Note that if a P-shell
exists then it is unique. We will be particularly interested in shells of abstract domains
and partitions. Given a state space Σ and a partition propertyP ⊆ Part(Σ), theP-shell
of P ∈ Part(Σ) is the coarsest refinement of P that satisfies P , when this exists. Given
a concrete domain C and an abstract domain property P ⊆ uco(C), the P-shell of
μ ∈ uco(C), when this exists, is the most abstract domain that refines μ and satisfies
P . Giacobazzi et al. [10] show that backward complete shells always exist when the
concrete operations are continuous.

Let us now consider the property of forward completeness. Let F ⊆ Fun(C) (thus
functions in F may have any arity) and S ∈ ℘(C). We denote by F (S) ∈ ℘(C) the
image of F on S, i.e. F (S) def= {f(�s) | f ∈ F, �s ∈ Sar(f)}, and we say that S is F -
closed when F (S) ⊆ S. An abstract domain μ ∈ uco(C) is forward F -complete when
μ is forward complete for any f ∈ F . Thus, the (forward) F -complete shell opera-
tor SF : uco(C) → uco(C) is defined as follows: SF (μ) def= � {η ∈ uco(C) | η �
μ, η is forward F -complete}. As already observed by Giacobazzi and Quintarelli [9], it
is easy to show that for any domain μ, SF (μ) is forward F -complete, namely forward
complete shells always exist. It is worth noting that SF ∈ lco(uco(C)�) and that SF (μ)
is the smallest (w.r.t. set inclusion) set that contains μ and is both F -closed and meet-
closed. When C is finite, note that for the meet operator ∧ : C2 → C we have that, for
any F , SF = SF∪{∧}, because uco’s are meet-closed.

We define F uco : uco(C) → uco(C) as F uco def= M ◦ F , namely F uco(ρ) =
M({f(�x) | f ∈ F, �x ∈ ρar(f)}). This operator characterizes forward F -completeness
because it turns out that ρ is forward F -complete iff ρ � F uco(ρ). Moreover, given
μ ∈ uco(C), we consider the operator Fμ : uco(C) → uco(C) defined by Fμ(ρ) def= μ�
F uco(ρ) and we also note that Fμ(ρ) = M(μ ∪ F (ρ)). Observe that Fμ is monotone
on uco(C) and therefore it admits (least and) greatest fixpoint. It turns out that we may
constructively characterize the shell SF (μ) as the greatest fixpoint (denoted by gfp) in
uco(C) of the operator Fμ.
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Lemma 2.1. SF (μ) = gfp(Fμ).

Example 2.2. Let Σ = {1, 2, 3, 4} and f◦ : Σ → Σ be the function {1 �→ 2, 2 �→
3, 3 �→ 4, 4 �→ 4}. Let f : ℘(Σ) → ℘(Σ) be the lifting of f◦ to the powerset,
i.e., f

def= λS.{f◦(s) | s ∈ S}. Consider the abstract domain μ = {∅, 2, 1234} ∈
uco(℘(Σ)⊆). By Lemma 2.1, Sf (μ) = {∅, 2, 3, 4, 34, 234, 1234} because:

ρ0 = {1234} (top uco)

ρ1 = M(μ ∪ f(ρ0)) = M(μ ∪ {234}) = {∅, 2, 234, 1234}
ρ2 = M(μ ∪ f(ρ1)) = M(μ ∪ {∅, 3, 34, 234}) = {∅, 2, 3, 34, 234, 1234}
ρ3 = M(μ ∪ f(ρ2)) = M(μ ∪ {∅, 3, 4, 34, 234}) = {∅, 2, 3, 4, 34, 234, 1234}
ρ4 = M(μ ∪ f(ρ3)) = M(μ ∪ {∅, 3, 4, 34, 234}) = ρ3 (greatest fixpoint). ��

3 Generalized Strong Preservation

Partitions as Abstract Domains. Let Σ be any (possibly infinite) set of system states.
We recall from [16] how the the lattice of state partitions Part(Σ) can be viewed as an ab-
straction of the lattice of abstract domains uco(℘(Σ)). Our goal is to perform a complete
abstract computation of a forward complete shell SF (μ) = gfp(Fμ) (cf. Lemma 2.1) on
the lattice of partitions. Thus, we need to approximate a greatest fixpoint computation
from above so that, as usual in abstract interpretation in these cases, we consider concrete
and abstract domains with their dual ordering relations. Hence, we are looking for a GI
of Part(Σ)� into uco(℘(Σ))�.

We define a mapping par : uco(℘(Σ)) → Part(Σ) by par(μ) def= {[s]μ | s ∈ Σ},
where [s]μ

def= {s′ ∈ Σ | μ({s′}) = μ({s})}. On the other hand, pcl : Part(Σ) →
uco(℘(Σ)) is defined by pcl(P ) def= λX ∈ ℘(Σ). ∪ {B ∈ P | X ∩ B �= ∅}, i.e.
pcl(P )(X) is the minimal covering of the set X ⊆ Σ through blocks in P . Observe that
pcl(P ) is indeed a uco whose set of fixpoints is given by all the unions of blocks in P ,
i.e. pcl(P ) = {∪iBi | {Bi} ⊆ P}. It turns out that (par,uco(℘(Σ))�,Part(Σ)�,pcl)
is a GI. An abstract domain μ ∈ uco(℘(Σ)) is partitioning — meaning that it represents
exactly a partition; also, pcl stands for “partitioning closure” — when pcl(par(μ)) = μ
holds. We denote by puco(℘(Σ)) the set of partitioning abstract domains. As a conse-
quence, the mappings pcl and par give rise to an order isomorphism allowing to view
state partitions as partitioning uco’s: Part(Σ)� ∼= puco(℘(Σ))�. It turns out that an
abstract domain μ ∈ uco(℘(Σ)) is partitioning iff ∀S ∈ μ. �(S) ∈ μ iff (i) μ is ad-
ditive and (ii) {μ({s})}s∈Σ ∈ Part(Σ). Therefore, the partition associated to some
μ ∈ puco(℘(Σ)) is the set of μ-images of singletons, i.e. par(μ) = {μ({s}) | s ∈ Σ}.

Example 3.1. Consider Σ = {1, 2, 3, 4} and the corresponding lattice Part(Σ)�. The
uco’s μ1 = {∅, 12, 3, 4, 1234}, μ2 = {∅, 12, 3, 4, 34, 1234}, μ3 = {∅, 12, 3, 4, 34,
123, 124, 1234}, μ4 = {12, 123, 124, 1234} and μ5 = {∅, 12, 123, 124, 1234} all in-
duce the same partition P = par(μi) = {12, 3, 4} ∈ Part(Σ). Observe that μ3 is the
only partitioning closure because pcl(P ) = μ3. ��



146 F. Ranzato and F. Tapparo

Abstract Semantics and Generalized Strong Preservation. Let us now recall from [16]
how to cast strong preservation in standard abstract model checking as forward com-
pleteness of abstract interpretations. We consider languages L whose syntactic state
formulae ϕ are inductively defined by a BNF grammar: ϕ ::= p | f(ϕ1, ...,ϕn), where
p ∈ AP ranges over a set of atomic propositions that is left unspecified while f ranges
over a finite set Op of operators (each f ∈ Op has an arity ar(f) > 0).

The interpretation of formulae in L is determined by a semantic structure S =
(Σ, I,AP, �) where: Σ is any set of states, I : Op → Fun(℘(Σ)) is an interpretation
function such that for any f ∈ Op, I(f) : ℘(Σ)ar(f) → ℘(Σ),AP is a set of atomic
propositions and � : Σ → ℘(AP) is a labelling function. Semantic structures generalize
the role of Kripke structures by requiring that the semantic interpretation of a n-ary
syntactic state operator is given by any n-ary mapping on ℘(Σ). For p ∈ AP and
f ∈ Op we will also use p and f to denote, respectively, {s ∈ Σ | p ∈ �(s)} and
I(f). Also, Op

def= {f ∈ Fun(℘(Σ)) | f ∈ Op}. The concrete state semantic function
[[·]]S : L → ℘(Σ) evaluates a formula ϕ ∈ L to the set of states making ϕ true on the
semantic structure S, namely it is inductively defined as follows:

[[p]]S = p and [[f(ϕ1, ...,ϕn)]]S = f([[ϕ1]]S , ..., [[ϕn]]S).

In the following, we will freely use standard logical and temporal operators together
with their corresponding usual interpretations: for example, I(∧) = ∩, I(¬) = �,
I(EX) = preR, etc. We say that a language L is closed under a semantic operation
g : ℘(Σ)n → ℘(Σ) when for any ϕ1, ...,ϕn ∈ L, there exists some ψ ∈ L such that
g([[ϕ1]]S , ..., [[ϕn]]S) = [[ψ]]S . It is straightforward to extend this notion to infinitary
operators, e.g. infinite logical conjunction.

The state semantics [[·]]S induces a state logical equivalence ≡S
L ⊆ Σ ×Σ as usual:

s≡S
Ls

′ iff ∀ϕ ∈ L.s ∈ [[ϕ]]S ⇔ s′ ∈ [[ϕ]]S . The corresponding state partition is denoted
by PL ∈ Part(Σ) (the index S for the underlying semantic structure is omitted).

For a number of well known temporal languages like CTL∗, ACTL∗, CTL∗-X, it
turns out that if a partition is more refined than PL then it induces a standard strongly
preserving (s.p.) abstract model. This means that if we interpret L on a Kripke structure
K = (Σ,R,AP, �) and P � PL then one can define an abstract Kripke structure A =
(P,R	,AP , �	) that strongly preserves L: for any ϕ ∈ L and for any s ∈ Σ and B ∈ P
such that s ∈ B, we have that B ∈ [[ϕ]]A ⇔ s ∈ [[ϕ]]K. For example, R	 = R∃∃ for
CTL∗ and R	 = R∀∃ for ACTL∗, while �	(B) = ∪s∈B�(s) (see e.g. [3, 6]). Moreover,
it turns out that PL is the smallest s.p. abstract state space, namely if (A,R	,AP , �	) is
any abstract Kripke structure that strongly preservesL then |PL| ≤ |A|. Thus, following
Dams [6], the notion of strong preservation can be given for generic state partitions:
given a language L and a semantic structure S, P ∈ Part(Σ) is strongly preserving for
L (w.r.t. S) when P � PL. Recall that P� ∈ Part(Σ) is the partition induced by the
labeling � and observe that PL � P� always holds. Hence, it turns out that PL is the
coarsest refinement of P� which is s.p. for L, namely PL is the strongly preserving (for
L) shell of P�.

Abstract interpretation allows us to define abstract semantics. Consider any abstract
domain μ ∈ uco(℘(Σ)). The abstract semantic function [[·]]μS : L → μ induced by μ
evaluates anyϕ ∈ L to an abstract value [[ϕ]]μS ∈ μ. The semantics [[·]]μS is compositionally
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defined by interpreting any p ∈AP and f ∈ Op as best correct approximations on the
abstract domain μ of their concrete interpretations p and f:

[[p]]μS = μ(p) and [[f(ϕ1, ...,ϕn)]]μS = μ(f([[ϕ1]]
μ
S , ..., [[ϕn]]μS)).

Intuitively, the partition PL induced by L is an abstraction of the semantics [[·]]S . We
make this observation precise as follows. We define an abstract domain μ ∈ uco(℘(Σ))
as strongly preserving for L (w.r.t. S) when for any S ∈ ℘(Σ) and ϕ ∈ L: μ(S) ⊆
[[ϕ]]μS ⇔ S ⊆ [[ϕ]]S . As shown in [16], it turns out that this generalizes the notion of
strong preservation from partitions to abstract domains because, by exploiting the above
isomorphism between partitions and partitioning abstract domains, it turns out that P is
s.p. for L w.r.t. S iff pcl(P ) is s.p. for L w.r.t. S. This provides the right framework for
viewing strong preservation as a forward completeness property. Given a state space Σ,
we associate to any set S ⊆ ℘(Σ) a set of atomic propositions APS

def= {pX | X ∈ S}
and a corresponding labeling �S

def= λs ∈ Σ. {pX ∈APS | s ∈ X}. In particular, this
can be done for any abstract domainμ ∈ uco(℘(Σ)) by viewingμ as a set of sets. Hence,
given a state space Σ and an interpretation function I : Op → Fun(℘(Σ)), any abstract
domain μ ∈ uco(℘(Σ)) determines the semantic structure Sμ = (Σ, I,APμ, �μ). The
following result shows that strongly preserving shells indeed coincide with forward
complete shells.

Theorem 3.2 ([16]). Let L be closed under infinite logical conjunction. Then, for any
μ ∈ uco(℘(Σ)), SOp(μ) is the most abstract domain that refines μ and is strongly
preserving for L w.r.t. Sμ.

This allows to characterize the coarsest s.p. partition PL as a forward complete shell
when L is closed under logical conjunction and negation.

Corollary 3.3 ([16]). Let L be closed under infinite logical conjunction and negation.
Then, PL = par(SOp(pcl(P�))).

4 GPT: A Generalized Paige-Tarjan Refinement Algorithm

In order to emphasize the ideas leading to our generalized Paige-Tarjan algorithm, let
us first sketch how some relevant points in PT can be viewed and generalized from an
abstract interpretation perspective.

A New Perspective of PT. Consider a finite Kripke structure (Σ,R,AP , �). In the fol-
lowing, we denote Part(Σ) simply by Part and preR by pre. As a consequence of Theo-
rem 3.2, we showed in [16] that the output PT(P ) of the Paige-Tarjan algorithm on input
P ∈ Part is the abstraction through the map par of the forward {pre, �}-complete shell
of pcl(P ), i.e. PT(P ) = par(S{pre,�}(pcl(P ))). Thus, PT(P ) computes the partition
abstraction of the most abstract domain that refines pcl(P ) and is strongly preserving for
Hennessy-Milner logic HML, namely, by Corollary 3.3, PT(P ) computes the coarsest
s.p. partition PHML. On the other hand, Lemma 2.1 gives a constructive characterization
of forward complete shells, meaning that it provides an iterative algorithm for computing
a shell SF (μ): begin with ρ = �uco(℘(Σ)) and iteratively, at each step, compute Fμ(ρ)
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until a fixpoint is reached. This scheme could be in particular applied for computing
S{pre,�}(pcl(P )). However, note that the algorithm induced by Lemma 2.1 is far from
being efficient: at each step Fμ(ρ) always re-computes the images f(�s) that have been
already computed at the previous step (cf. Example 2.2). Thus, in our abstract interpre-
tation view, PT is an algorithm that computes a particular abstraction of a particular
forward complete shell. Our goal is to analyze the basic steps of the PT algorithm in order
to investigate whether it can be generalized from an abstract interpretation perspective
to an algorithm that computes a generic abstraction of a generic forward complete shell.
We isolate in our abstract interpretation framework the following key points concerning
the PT algorithm. Let P ∈ Part be any partition.

(i) PTsplit(S, P ) = par(M(pcl(P ) ∪ {pre(S)})) = P � {pre(S), �(pre(S))} =
P � par(M({pre(S)})).

(ii) PTrefiners(P ) = {S ∈ pcl(P ) | par(M(pcl(P ) ∪ {pre(S)})) ≺ P}.
(iii) P is PT stable iff {S ∈ pcl(P ) | par(M(pcl(P ) ∪ {pre(S)})) ≺ P} = ∅.

Point (i) provides a characterizaztion of the PT splitting step as best correct approxi-
mation on the abstract domain Part of the following domain refinement operation: given
S ⊆ Σ, refinepre(S, ·) def= λμ.M(μ ∪ {pre(S)}) : uco(℘(Σ)) → uco(℘(Σ)). In turn,
Points (ii) and (iii) yield a characterization of PTrefiners and PT stability based on this
best correct approximation on
Part of refinepre(S, ·). Thus, if
refinePart

pre : Part→Part denotes
the best correct approximation of
refinepre(S, ·) on Part, we may

while {T ∈ pcl(P ) | refinePart
pre (T, P ) ≺ P} �= ∅ do

choose S ∈ {T ∈ pcl(P ) | refinePart
pre (T, P ) ≺ P};

P := refinePart
pre (S, P );

endwhile

view PT as follows. In the following, we generalize this view of PT to generic ab-
stract domains of uco(℘(Σ)) and isolate some conditions ensuring the correctness of
this generalized algorithm.

Generalizing PT. We generalize Points (i)-(iii) above as follows. Let F ⊆ Fun(℘(Σ)).
We define a family of refinement operators of abstract domains refinef : ℘(Σ)ar (f) →
(uco(℘(Σ)) → uco(℘(Σ))) indexed on functions f ∈ F and tuples of sets �S ∈
℘(Σ)ar(f):

(i) refinef (�S, μ) def= M(μ ∪ {f(�S)}).
A tuple �S is a F -refiner for an abstract domain μ when there exists f ∈ F such that
�S ∈ μar(f) and indeed �S contributes to refine μ w.r.t. f , i.e., refinef (�S, μ) � μ. Thus:

(ii) Refinersf (μ) def= {�S ∈ μar(f) | refinef (�S, μ) � μ};
RefinersF (μ) def= ∪f∈F Refinersf (μ).

(iii) μ is F -stable iff RefinersF (μ) = ∅.

These simple observations lead us to design the following PT-like algorithm called
CPTF (Concrete PT), parameter-
ized by F , taking as input an ab-
stract domain μ ∈ uco(℘(Σ)) and
computing the forward F -complete
shell of μ.

while (RefinersF (μ) �= ∅) do
choose for some f ∈ F, 	S ∈ Refinersf (μ);
μ := refinef (	S, μ);

endwhile CPTF
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Lemma 4.1. Let Σ be finite. CPTF always terminates and, for any μ ∈ uco(℘(Σ)),
CPTF (μ) = SF (μ).

Example 4.2. Let us illustrate CPT on μ = {∅, 2, 1234} of Example 2.2.

μ0 = μ = {∅, 2, 1234} S0 = {2} ∈ Refinersf (μ0)
μ1 = M(μ0 ∪ {f(S0)}) = {∅, 2, 3, 1234} S1 = {3} ∈ Refinersf (μ1)
μ2 = M(μ1 ∪ {f(S1)}) = {∅, 2, 3, 4, 1234} S2 = {1234} ∈ Refinersf (μ2)
μ3 = M(μ2 ∪ {f(S2)}) = {∅, 2, 3, 4, 234, 1234} S3 = {234} ∈ Refinersf (μ3)
μ4 = M(μ3 ∪ {f(S3)}) = {∅, 2, 3, 4, 34, 234, 1234} ⇒ Refinersf (μ4) = ∅

Let us note that while in Example 2.2 each step consists in computing the images of
f for the sets belonging to the whole domain at the previous step and this gives rise to
re-computations, here instead an image f(Si) is never computed twice because at each
step we nondeterministically choose a refiner S and apply f to S. ��

Our goal is to provide an abstract version of CPTF that works on a generic abstraction
A of the lattice uco(℘(Σ)). As recalled at the beginning of Section 3, since we aim at
designing an algorithm for computing an abstract greatest fixpoint, viz. α(CPTF (μ))
for some abstraction map α, we need to approximate this greatest fixpoint computation
“from above” instead of “from below” as it happens for least fixpoint computations.
Thus, we consider a Galois insertion (α,uco(℘(Σ))�, A≥, γ) of an abstract domain
A≥ into the dual lattice of abstract domains uco(℘(Σ))�. We denote by ≥ the ordering
relation of the abstract domain A, because this makes the concrete and abstract ordering
notations uniform. Notice that since we consider a Galois insertion ofA into the complete
lattice uco(℘(Σ)), by standard results [5], it turns out that A must be a complete lattice
as well. Also, we denote by ρA

def= γ ◦α the corresponding uco on uco(℘(Σ))�. For any
f ∈ F , the best correct approximation refineA

f : ℘(Σ)ar(f)→ (A→A) of refinef on A
is therefore defined as usual:

(i) refineA
f (�S, a) def= α(refinef (�S, γ(a))).

Accordingly, abstract refiners and stability go as follows:

(ii) RefinersA
f (a) def= {�S ∈ γ(a)ar(f) | refineA

f (�S, a) < a};
RefinersA

F (a) def= ∪f∈F RefinersA
f (a).

(iii) An abstract object a ∈ A is F -stable iff RefinersA
F (a) = ∅.

It is worth remarking that a ∈ A is F -stable iff γ(a) is forward F -complete. We may
now define the following abstract
version of the above algorithm
CPTF , called GPTA

F (Generalized
PT), parameterized on the abstract
domain A. GPTA

F (a) computes a se-
quence of abstract objects {ai}i∈N

input: abstract object a ∈ A
while (RefinersA

F (a) �= ∅) do
choose for some f ∈ F, 	S ∈ RefinersA

f (a);
a := refineA

f (	S, a);
endwhile GPTA

F

which is a decreasing chain in A. Thus, in order to ensure termination of GPTA
F it

is enough to consider an abstract domain A satisfying the descending chain condition
(DCC). Furthermore, let us remark that correctness for GPTA

F means that for any a ∈ A,
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GPTF (a) = α(SF (γ(a))). Note that, by Lemma 2.1, α(SF (γ(a))) = α(gfp(Fγ(a))). It
should be clear that correctness for GPT is somehow related to backward completeness
in abstract interpretation. In fact, if the abstract domain A is backward complete for
Fμ = λρ.μ � F uco(ρ) then, by Lemma 2.1, α(gfp(Fμ)) = gfp(FA

μ ), where FA
μ is the

best correct approximation of the operator Fμ on the abstract domain A, and GPTA
F (a)

intuitively is an algorithm for computing gfp(FA
μ ). Indeed, the following result shows

that GPTA
F is correct whenA is backward complete forF uco, because this implies thatA

is backward complete forFμ, for anyμ. Moreover, we also isolate the following condition
ensuring correctness for GPTA

F : the forward F -complete shell of any concretization
γ(a) still belongs to γ(A), namely A is forward complete for the forward F -complete
shell SF .

Theorem 4.3. Let A be DCC and assume that one of the following conditions holds:

(i) ρA ◦ F uco ◦ ρA = ρA ◦ F uco.
(ii) ρA ◦ SF ◦ ρA = SF ◦ ρA (i.e., ∀a ∈ A. SF (γ(a)) ∈ γ(A)).

Then, GPTA
F always terminates and for any a ∈ A, GPTA

F (a) = α(SF (γ(a))).

Corollary 4.4. Under the hypotheses of Theorem 4.3, for any a ∈ A, GPTA
F (a) is the

F -stable shell of a.

Example 4.5. Let us consider again Example 2.2. Recall that an abstract domain ρ ∈
uco(℘(Σ)) is disjunctive iff for any (possibly empty) S ⊆ ρ, ∪S ∈ ρ. We denote by
duco(℘(Σ)) the set of disjunctive domains in uco(℘(Σ)). Thus, the disjunctive shell
S∪ : uco(℘(Σ)) → duco(℘(Σ)) maps any ρ to the well-known disjunctive completion
S∪(ρ) = {∪S | S ⊆ ρ} of ρ (see [5]). It turns out that duco(℘(Σ)) is indeed an abstract
domain of uco(℘(Σ))�, namely (S∪,uco(℘(Σ))�,duco(℘(Σ))�, id) is a GI.

It turns out that condition (i) of Theorem 4.3 is satisfied for this GI. In fact, by ex-
ploiting the fact that, by definition, f : ℘(Σ) → ℘(Σ) is additive, it is not hard to verify
that S∪ ◦ fuco ◦ S∪ = S∪ ◦ fuco. Thus, let us apply GPTduco

f to the disjunctive abstract
domain μ0 = {∅, 2, 1234} = S∪({2, 1234}) ∈ duco(℘(Σ)).

μ0 = μ = {∅, 2, 1234} S0 = {2}∈Refinersduco
f (μ0)

μ1 = S∪(M(μ0 ∪ {f(S0)})) = {∅, 2, 3, 23, 1234} S1 = {3}∈Refinersduco
f (μ1)

μ2 = S∪(M(μ1 ∪ {f(S1)}))
= {∅, 2, 3, 4, 23, 24, 34, 234, 1234} ⇒ Refinersduco

f (μ2) = ∅

From Example 4.2 we know that Sf (μ0) = {∅, 2, 3, 4, 34, 234, 1234}. Thus, as
expected from Theorem 4.3, GPTduco

f (μ0) coincides with S∪(Sf (μ0)) = {∅, 2, 3, 4,
23, 24, 34, 234, 1234}. Note that we reached the abstract fixpoint in two iterations,
whereas in Example 4.2 the concrete computation by CPTf needed four iterations. ��
An Optimization of GPT. As pointed out in [15], PT works even if we choose splitters
among blocks instead of unions of blocks, i.e., if we replace PTrefiners(P ) with the
subset of “block refiners” PTblockrefiners(P ) def= PTrefiners(P ) ∩ P . This can be
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easily generalized as follows. Given g ∈ F , for any a ∈ A, let subRefinersA
g (a) ⊆

RefinersA
g (a). We denote by IGPTA

F (Improved GPT) the version of GPTA
F where

RefinersA
g is replaced with subRefinersA

g .

Corollary 4.6. Let g ∈ F be such that, for any a ∈ A, subRefinersA
g (a) = ∅ ⇔

RefinersA
g (a) = ∅. Then, for any a ∈ A, GPTA

F (a) = IGPTA
F (a).

Instantiating GPT with Partitions. Let the state space Σ be finite. The following prop-
erties (1) and (2) are consequences of the fact that a partitioning abstract domain pcl(P )
is closed under complements, i.e. X ∈ pcl(P ) iff �(X) ∈ pcl(P ).

(1) RefinersPart
� (P ) = ∅.

(2) For any f and �S ∈ ℘(Σ)ar(f), refinePart
f (�S, P ) = P � {f(�S), �(f(�S))}.

Thus, by Point (1), for any F ⊆ Fun(℘(Σ)), a partition P ∈ Part is F -stable iff P is
(F ∪ {�})-stable, that is comple-
ments can be left out. Hence, ifF -�

denotes F � {�} then GPTPart
F

may be simplified as follows. Note
that the number of iterations of
GPTPart

F is bounded

while (RefinersPart
F -� (a) �= ∅) do

choose for some f ∈ F -�, 	S ∈ RefinersPart
f (a);

P := P � {f(	S), �(f(	S))};
endwhile GPTPart

F

by the hei
ght of the lattice Part, that is by the number of states |Σ|. Thus, if each refinement
step involving some f ∈F takes O(cost(f)) time then the time complexity of GPTPart

F

is bounded by O(|Σ|max({cost(f) | f ∈ F})).
Let us now consider a language L with operators in Op and let (Σ, I,AP, �) be a

semantic structure for L. If L is closed under logical conjunction and negation then, for
any μ ∈ uco(℘(Σ)), SOp(μ) is closed under complements and therefore it is a partition-
ing abstract domain. Thus, condition (ii) of Theorem 4.3 is satisfied. As a consequence
of Corollary 3.3 we obtain the following characterization.

Corollary 4.7. If L is closed under conjunction and negation then GPTPart
Op (P�)=PL.

This provides a parameteric algorithm for computing the coarsest strongly preserving
partition PL induced by a generic language L including propositional logic.
PT as an Instance of GPT. It is now immediate to obtain PT as an instance of GPT.
We know that GPTPart

{pre,�} = GPTPart
pre . Moreover, by Points (i) and (ii) above:

P � {pre(S), �(pre(S))} = PTsplit(S, P ) and RefinersPart
pre (P ) = PTrefiners(P ).

Hence, by Point (iii), it turns out that P ∈ Part is PT stable iff RefinersPart
pre (P ) = ∅.

Thus, the instance GPTPart
pre provides exactly the PT algorithm.Also, correctness follows

from Corollaries 4.4 and 4.7: GPTPart
pre (P ) is both the coarsest PT stable refinement of

P and the coarsest strongly preserving partition PHML.

5 Applications

5.1 Simulation Equivalence and Henzinger et al.’s Algorithm

It is well known that simulation equivalence is an appropriate state equivalence to be used
in abstract model checking because it strongly preserves ACTL∗ and provides a better

-
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state-space reduction than bisimulation equivalence. However, computing simulation
equivalence is harder than bisimulation [14]. Henzinger et al. [13] provide an algorithm,
here called HHK, for computing simulation equivalence which runs in O(|R||Σ|)-time.
As far as time-complexity is concerned, HHK is the best available algorithm for this
problem. We show here that HHK can be obtained as an instance of our algorithmic
scheme GPT.

Consider a finite Kripke structureK = (Σ,R,AP , �) and let≡sim and Psim denote,
respectively, simulation equivalence on K and its corresponding partition. Henzinger et
al.’s algorithm maintains, for any state s ∈ Σ, a set of states sim(s) ⊆ Σ. Initially,
sim(s) = [s]� and at each
iteration some sim(s) is
reduced, so that at the end
s ≡sim s′ iff s ∈ sim(s′)
and s′ ∈ sim(s). The al-
gorithmic scheme

for all s ∈ Σ do sim(s) := {s′ ∈ Σ | �(s′) = �(s)} endfor
while (∃u, v, w ∈ Σ. u ∈ pre({v}) & w ∈ sim(u) &

w �∈ pre(sim(v))) do
sim(u) := sim(u) � {w};

endwhile HHK
HHK

is as follows. Let us show how to cast HHK as an instance of GPT. In this case,
we consider the abstraction of uco(℘(Σ)) given by the disjunctive abstract domains
duco(℘(Σ)), namely additive closures, that we already defined in Example 4.5. Thus,
S∪ : uco(℘(Σ)) → duco(℘(Σ)) is the disjunctive completion and (S∪,uco(℘(Σ))�,
duco(℘(Σ))�, id) is the corresponding Galois insertion. Any disjunctive abstract do-
main ρ ∈ duco(℘(Σ)) is completely determined by the images of the singletons {s}
because, for any X ∈ ℘(Σ), ρ(X) = ∪x∈Xρ({x}). Hence, any ρ ∈ duco(℘(Σ)) can
be represented by the set {ρ({s})}s∈Σ , and conversely any set of sets S = {Ss}s∈Σ in-
dexed on Σ determines a disjunctive abstract domain that we denote by ρS . This shows
that HHK can be viewed as an algorithm which maintains and refines a disjunctive
abstract domain of ℘(Σ) determined by the current {sim(s)}s∈Σ .

On the other hand, it is known (see e.g. [17–Section 8]) that simulation equiva-
lence on K coincides with the state equivalence induced by the following language L:
ϕ ::= p | ϕ1 ∧ ϕ2 | EXϕ, namely, Psim = PL. Moreover, as already observed in
Example 4.5, it turns out that that S∪ ◦ preuco ◦ S∪ = S∪ ◦ preuco. Thus, by The-
orem 4.3, GPTduco

pre (P�) = S∪(Spre(pcl(P�))), and in turn par(GPTduco
pre (P�)) =

par(S∪(Spre(pcl(P�)))). By Theorem 3.2, we know that Spre(pcl(P�)) is the most ab-
stract domain which is strongly preserving for L. As a consequence, it turns out that
par(S∪(Spre(pcl(P�)))) = PL = Psim. Thus, we showed that GPTduco

pre (P�) = Psim,
namely GPTduco

pre allows to compute simulation equivalence.
Even more, it turns out that GPTduco

pre exactly coincides with HHK and therefore ad-
mits the O(|R||Σ|)-time implementation described in [13]. In fact, if S = {sim(s)}s∈Σ

is the current set of sets maintained by HHK then it is possible to show that: (1) the
condition of the while loop in HHK for S is exactly equivalent to pre-stability for
the corresponding disjunctive abstract domain ρS ; (2) the refinement of S in HHK is
precisely a step of pre-refinement of the additive uco ρS in GPTduco

pre .

5.2 Stuttering Equivalence and Groote-Vaandrager Algorithm

Behavioural stuttering-based equivalences originated as state equivalences induced by
languages without a next-time operator [7]. We are interested here in divergence blind
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stuttering (dbs for short) equivalence. Given a Kripke structure K = (Σ,R,AP , �), we
denote by Pdbs ∈ Part(Σ) the partition corresponding to the largest dbs equivalence on
K. We showed in [16] that Pdbs coincides with the coarsest strongly preserving partition
PL for the following language L: ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EU(ϕ1,ϕ2), where the
semantics EU : ℘(Σ)2 → ℘(Σ) of the existential until EU is as usual:

EU(S1, S2) = S2 ∪ {s ∈ S1 | ∃s0, ..., sn ∈ Σ, with n ≥ 0, such that (i) s0 = s,
(ii) ∀i ∈ [0, n). si ∈ S1, si

R−→si+1, (iii) sn ∈ S2}.

Therefore, as a straight instance
of Corollary 4.7, it turns out that
GPTPart

EU (P�) = PL = Pdbs. Groote and
Vaandrager [11] designed the following
partition refinement algorithm, here deno-

P := P�;
while GVrefiners(P ) �= ∅ do

choose 〈B1, B2〉 ∈ GVrefiners(P );
P := GVsplit(〈B1, B2〉, P );

endwhile GV
ted by GV, for computing the partition Pdbs, where, for B1, B2 ∈ P ,1

GVsplit(〈B1, B2〉, P ) def= P � {EU(B1, B2), �(EU(B1, B2))}
GVrefiners(P ) def= {〈B1, B2〉 ∈ P × P | GVsplit(〈B1, B2〉, P ) ≺ P}.

Groote andVaandrager show how GV can be efficiently implemented inO(|R||Σ|)-time.
Indeed, it turns out that GV exactly coincides with IGPTPart

EU . This is a consequence of
the following two facts:

(1) GVrefiners(P ) = ∅ iff RefinersPart
EU (P ) = ∅;

(2) GVsplit(〈B1, B2〉, P ) = refinePart
EU (〈B1, B2〉, P ).

Hence, by Corollary 4.6, Point (1) allows us to exploit the IGPTPart
EU algorithm in order

to choose refiners for EU among the pairs of blocks of the current partition, so that by
Point (2) we obtain that IGPTPart

EU exactly coincides with the GV algorithm.

5.3 A Language Expressing Reachability

Let us consider the following language L which is able to express propositional logic
and reachability: ϕ ::= p | ϕ1∧ϕ2 | ¬ϕ | EFϕ. Given a Kripke structure (Σ,R,AP , �),
the interpretation EF : ℘(Σ) → ℘(Σ) of the reachability operator EF is as usual:
EF(S) def= EU(Σ,S). Since L includes propositional logic, by Corollary 4.7, we have
that the instance GPTPart

EF allows to compute the coarsest strongly preserving partition
PL, namely GPTPart

EF (P�) = PL. Also, we may restrict ourselves to “block refiners”,
that is, BlockRefinersPart

EF (P ) = {B ∈ P | P � {EF(B), �(EF(B))} ≺ P}. In
fact, it turns out that BlockRefinersPart

EF (P ) = ∅ iff RefinersPart
EF (P ) = ∅. Therefore,

by exploiting Corollary 4.6, we have
that IGPTPart

EF (P�) = PL, where
IGPTPart

EF is as follows. Our implemen-
tation of IGPTPart

EF exploits the follow-
ing “stability under refinement”

while (BlockRefinersPart
EF (P ) �= ∅) do

choose B ∈ BlockRefinersPart
EF (P );

P := P � {EF(B), �(EF(B))};
endwhile IGPTPart

EF

1 In [11], pos(B1, B2) denotes EU(B1, B2) ∩ B1.
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property: ifQ � P andB is a block of bothP andQ thenP�{EF(B),�(EF(B))}= P
implies Q � {EF(B), �(EF(B))} = Q. As a consequence, if some block B of the
current partition Pcurr is not a EF-refiner for Pcurr and B is also a block of the next
partitionPnext thenB cannot be aEF-refiner forPnext . This suggests an implementation
of IGPTPart

EF based on the following points:

(1) to represent the current partition P as a doubly linked list of blocks;
(2) to scan list from the beginning in order to find block refiners;
(3) when a block B of the current partition P is split in B1 and B2 then we remove B

from list and we append B1 and B2 at the end of list .

This leads to the following refinement of IGPTPart
EF .

list := list of blocks in P ;
scan B in list

compute EF(B);
current end points to the end of list ;
scan B′ in list up to current end

if (B′ ∩ EF(B) �= ∅ and B′
� EF(B) �= ∅) then

{ remove B′ from list ; append B′ ∩ EF(B) and B′
� EF(B) to list ; }

endscan
endscan

It is not hard to devise a practical implementation of this algorithm requiring
O(|R||Σ|) time. As a preprocessing step we first compute the DAG of the strongly con-
nected components (s.c.c.’s) of the directed graph (Σ,R) that we denote by DAG(Σ,R).
This can be done through a well-known algorithm (see e.g. [1]) running in O(|Σ|+ |R|)-
time, i.e. by totality of the transition relation R, in O(|R|)-time. Moreover, this algo-
rithm returns the s.c.c.’s in DAG(Σ,R) in topological order. This allows us to represent
DAG(Σ,R) through an adjacency list where the s.c.c.’s are recorded in reversed topo-
logical ordering in a list L. Thus, if S and S′ are two s.c.c.’s of (Σ,R) such that there
exists s ∈ S and s′ ∈ S′ with s R−→s′ then S follows S′ in the list L. By exploiting this
representation of DAG(Σ,R) we are able:

(1) to compute EF(B), for some block B ∈ list , in O(|R|)-time;
(2) to execute the inner scan loop in O(|Σ|)-time.

Hence, each iteration of the outer scan loop costs O(|R|)-time, because, by totality of R,
|Σ| ≤ |R|. Moreover, it turns out that the number of iterations of the outer scan loop is in
O(|Σ|). We thus obtain that this implementation of IGPTPart

EF runs in O(|R||Σ|)-time.

6 Related and Future work

Related Work. Dams [6–Chapter 5] presents a generic splitting algorithm which, for a
given language L ⊆ ACTL, computes an abstract model A ∈ Abs(℘(Σ)) that strongly
preserves L. This technique is inherently different from ours, in particular because it is
guided by a splitting operation of an abstract state that depends on a given formula of
ACTL. Additionally, Dams’methodology does not guarantee optimality of the resulting



An Abstract Interpretation-Based Refinement Algorithm 155

strongly preserving abstract model, as instead we do, because his algorithm may provide
strongly preserving models which are too concrete. Dams [6–Chapter 6] also presents a
generic partition refinement algorithm that computes a given (behavioural) state equiv-
alence and generalizes PT (i.e., bisimulation equivalence) and Groote and Vaandrager
(i.e., stuttering equivalence) algorithms. This algorithm is parameterized on a notion of
splitter corresponding to some state equivalence, while our algorithm is directly parame-
terized on a given language: the example given in [6] (a “flat” version of CTL-X) seems
to indicate that finding the right definition of splitter for some language may be a hard
task. Gentilini et al. [8] provide an algorithm that solves a so-called generalized coarsest
partition problem, meaning that they generalized PT stability to partitions endowed with
an acyclic relation. They show that this technique can be instantiated to obtain a loga-
rithmic algorithm for PT stability and an efficient algorithm for simulation equivalence.
This approach is very different from ours since the partition refinement algorithm is not
driven by strong preservation w.r.t. some language.

Future Work. GPT is parameteric on a domain of abstract models which is an abstrac-
tion of the lattice of abstract domains Abs(℘(Σ)). We instantiated GPT to the lattice
Part(Σ) of partitions and to the lattice DisjAbs(℘(Σ)) of disjunctive abstract domains.
We plan to investigate whether the GPT scheme can be applied to new domains of ab-
stract models. In particular, models which are abstractions of Part(Σ) could be useful
for computing approximations of strongly preserving partitions. As an example, if we
are interested in reducing only a portion S ⊆ Σ of the state space Σ, we may consider
the domain Part(S) as an abstraction of Part(Σ) in order to get strong preservation
only on the portion S.

Acknowledgments. This work was partially supported by the FIRB Project “Abstract
interpretation and model checking for the verification of embedded systems”, by the
COFIN2002 Project “COVER: Constraint based verification of reactive systems” and
by the COFIN2004 Project “AIDA: Abstract Interpretation Design and Applications”.
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Abstract. Weakly-typed languages such as Cobol often force program-
mers to represent distinct data abstractions using the same low-level
physical type. In this paper, we describe a technique to recover implicitly-
defined data abstractions from programs using type inference. We present
a novel system of dependent types which we call guarded types, a path-
sensitive algorithm for inferring guarded types for Cobol programs, and
a semantic characterization of correct guarded typings. The results of
our inference technique can be used to enhance program understanding
for legacy applications, and to enable a number of type-based program
transformations.

1 Introduction

Despite myriad advances in programming languages, libraries, and tools since
business computing became widespread in the 1950s, large-scale legacy applica-
tions written in Cobol still constitute the computing backbone of many busi-
nesses. Such applications are notoriously difficult and time-consuming to update
in response to changing business requirements. This difficulty very often stems
from the fact that the logical structure of the code and data manipulated by
these applications is not apparent from the program text. Two sources for this
phenomenon are the lack in Cobol of modern abstraction mechanisms, and the
fragmentation of the physical realization of logical abstractions due to repeated
ad-hoc maintenance activities. In this paper, we focus on the problem of recov-
ering certain data abstractions from legacy Cobol applications. By doing so, we
aim to facilitate a variety of program maintenance activities that can benefit
from a better understanding of logical data relationships.

Cobol is a weakly-typed language both in the sense that it has few modern
type abstraction constructs1, and because those types that it does have are for
the most part not statically (or dynamically) enforced. For example:

– Cobol has no notion of scalar user-defined type; programmers can declare
only the representation type of scalar variables (such variables are usually

� Contact author: komondoo@us.ibm.com.
1 Modern versions of Cobol address some of these shortcomings; however, the bulk of

existing legacy programs are written in early dialects of Cobol lacking type abstrac-
tion facilities.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 157–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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character or digit sequences). Hence, there is no means to declaratively dis-
tinguish among variables that store data from distinct logical domains, e.g.,
quantities and serial numbers.

– Cobol allows allows multiple record-structured variables to be declared to
occupy the same memory. This “redefinition” feature can be used both to
create different “views” on the same runtime variable, or to store data from
different logical domains at different times, often distinguished by a tag value
stored elsewhere. However, there is no explicit mechanism to declare which
idiom is actually intended.

– Cobol programmers routinely store values in variables whose declared struc-
tures do not fully reflect the logical structure of the values being stored. One
reason why programmers do this is the one already mentioned: to simulate
subtyping by storing data from different logical domains (that are subtypes
of some base domain) in a variable at different times.

As part of the Mastery project at IBM Research our long-term goal is to
recover logical data models from applications at a level of abstraction similar
to that found in expressive design-level languages such as UML [8] or Alloy
[5], to alleviate language limitations, and to address the physical fragmentation
alluded to above. Here, we describe initial steps toward this goal by describing a
type inference technique for recovering abstractions from Cobol programs in the
form of guarded types. Guarded types may contain any of the following classes
of elements:

Atomic types: Domains of scalar values. In many cases, distinct atomic types
will share the same physical representation; e.g., Quantity and SerialNumber.
Atomic types can optionally be constrained to contain only certain specific run-
time values.

Records: Domains consisting of fixed-length sequences of elements from other
domains.

Guarded disjoint unions: Domains formed by the union of two or more logi-
cally disjoint domains, where the constituent domains are distinguished by one
or more atomic types constrained to contain distinct guard or tag values.

The principal contributions of the paper are the guarded type system used to
represent data abstractions; a formal characterization of a correct guarded typing
of a program; and a path-sensitive algorithm to infer a valid guarded typing for
any program (path-sensitivity is crucial to inferring reasonably accurate guarded
union types). Although our techniques are designed primarily to address data
abstraction recovery for Cobol programs, we believe our approach may also be
applicable to other weakly-typed languages; e.g., assembly languages.

1.1 Introduction to MiniCobol and Motivating Example

We will illustrate our typing language and inference algorithm using the example
programs in Fig. 1. These examples are written in a simple language MiniCobol,
which contains the essential features of Cobol relevant to this paper. Consider the
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01 PAY-REC.
05 PAYEE-TYPE PIC X.
05 DATA PIC X(13).

01 IS-VISITOR PIC X.
01 PAY PIC X(4).

/1/ READ PAY-REC FROM IN-F. [’E’:Emp ⊗ EId ⊗ Salary ⊗ Unused ⊕
!{’E’}:Vis ⊗ SSN5 ⊗ SSN4 ⊗ Stipend]

/2/ MOVE ’N’ TO IS-VISITOR. [’N’:VisNo]
/3/ IF PAYEE-TYPE = ’E’ [’E’:Emp ⊕ !{’E’}:Vis]
/4/ MOVE DATA[8:11] TO PAY. [Salary]

ELSE
/5/ MOVE ’Y’ TO IS-VISITOR. [’Y’:VisYes]
/6/ MOVE DATA[10:13] TO PAY. [Stipend]

ENDIF
/7/ WRITE PAY TO PAY-F. [Salary ⊕ Stipend]
/8/ IF IS-VISITOR = ’Y’ [’N’:VisNo ⊕ ’Y’:VisYes]
/9/ WRITE DATA[6:9] TO VIS-F. [SSN4]

(a)
01 ID.

05 ID-TYPE PIC X(3).
05 ID-DATA PIC X(9).
05 SSN PIC X(9) REDEFINES ID-DATA.
05 EMP-ID PIC X(7) REDEFINES ID-DATA.

/1/ READ ID. [ ’SSN’:SSNTyp ⊗ SSN ⊕
!{’SSN’}:EIdTyp ⊗ EId ⊗ Unused]

/2/ IF ID-TYPE = ’SSN’ [’SSN’:SSNTyp ⊕ !{’SSN’}:EIdTyp]
/3/ WRITE SSN TO SSN-F [SSN]

ELSE
/4/ WRITE EMP-ID TO EID-F. [EId]

ENDIF
(b)

01 SSN.
01 SSN-EXPANDED REDEFINES SSN.

05 FIRST-5-DIGITS X(5).
05 LAST-4-DIGITS X(4).

/1/ READ SSN FROM IDS-F. [SSN5 ⊗ SSN4]
/2/ WRITE LAST-4-DIGITS. [SSN4]

(c)

Fig. 1. Example programs with guarded typing solutions produced by the inference
algorithm of Sec. 3

fragment depicted in Fig. 1(a). The code for the program is shown in TYPEWRITER
font, while the type annotations inferred by our inference algorithm are shown
within square brackets. The initial part of the program contains variable declara-
tions. Variables are prefixed by level numbers; e.g., 01 or 05. A variable with level
01 can represent either a scalar or a record; it is a record if additional variables
with higher level numbers follow it, and a scalar otherwise. A variable with level
greater than 01 denotes a record or scalar field nested within a previously-declared
variable (with lower level). Clauses of the form PIC X(n) denote the fact that the
corresponding variable is a character string of length n (n defaults to 1 when not
supplied). A REDEFINES clause after a variable declaration indicates that two vari-
ables refer to the same storage. For example, in the program fragment in Fig. 1(b),
variables ID-DATA, SSN, and EMP-ID all occupy the same storage. Note that the
variable declarations reveal the total memory size required by a program (19 bytes,
in the case of the example in Figure 1(a)), as well as the beginning and ending offset
within memory of each variable.

The code following the data declarations contains the executable statements.
MiniCobol contains MOVE statements, which represent assignments, READ and
WRITE statements, as well as the usual control-flow constructs such as statement
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sequencing, conditional statements, loops, and go-to statements. During program
execution the value of each variable is a string of 1-byte characters, as is each
program constant and the contents of each file. (Cobol follows the same approach,
for the most part, e.g., representing numbers as strings of decimal digits). In
other words, the program state at any point during execution of a program P is
represented by a string of size |P| (in addition to the “program counter”), where
|P| is the total memory required by P. A program P’s execution begins with an
implicit READ of |P| characters which initializes the state of the program.

MOVE statements have operands of equal length. The statement READ var
FROM file reads |var | bytes from file, where |var | is the declared length of var, and
assigns this value to var (we assume in this paper that programs are always given
inputs that are “long enough”, so READ var FROM file always gets |var | bytes).
Similarly, WRITE var TO file appends the contents of var to file. In MiniCobol a
data reference is a reference to a variable, or to a part of a variable identified
by an explicit range of locations within the variable; e.g., DATA[8:11] refers to
bytes 8 through 11 in the 13 byte variable DATA. We will use the term variable
occurrence to denote an occurrence of a data-reference in a program.

The program in Fig. 1(a) reads a payment record from file IN-F and processes
it. A payment record may pertain to an employee (PAYEE-TYPE = ’E’), or to a
visitor (PAYEE-TYPE �= ’E’). For an employee, the first 7 bytes of DATA contain
the employee ID number, the next four bytes contain the salary, and the last
two bytes are unused. For a visitor, however, the first 9 bytes of DATA contain a
social security number, and the next four bytes contain a stipend. The program
checks the type of the payment record and copies the salary/stipend into PAY
accordingly; it writes out PAY to file PAY-F and, in the case of a visitor, writes
the last four digits of the social security number to VIS-F.

1.2 Inferring Guarded Types

The right column of Fig. 1 depicts the guarded typing solutions inferred by the
algorithm in Sec. 3. For each line, the type shown between square brackets is
the type assigned to the underlined variable at the program point after the ex-
ecution of the corresponding statement or predicate. Guarded types are built
from an expression language consisting of (constrained) atomic types and the
operators ‘⊗’ (concatenation) and ‘⊕’ (disjoint union), with ‘⊗’ binding tighter
than ‘⊕’. Constrained atomic types are represented by expressions of the form
constr : tvar, where constr is a value constraint and tvar is a type variable. A
value constraint is either a literal value (in MiniCobol, always a string literal), an
expression of the form !(some set of literals) denoting the set of all values except
those enumerated in the set, or an expression of the form !{} denoting the set of
all values. If the value constraint is omitted, then it is assumed to be !{}. The
atomic type variables in the example are shown in sans serif font; e.g., Emp, EId,
Salary, and Unused. Our type inference algorithm does not generate meaningful
names for type variables (the names were supplied manually for expository pur-
poses); however, heuristics could be used to suggest names automatically based
on related variable names. The inference process assigns a type to each occur-
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rence of a data reference; thus different occurrences in the program of the same
data reference may be assigned different types. By inspecting the guarded types
assigned to data references in Fig. 1, we can observe that the inference process
recovers data abstractions not evident from declared physical types, as follows:

Domain Distinctions. The typing distinguishes among distinct logical domains
not explicitly declared in the program. For example, the references to DATA[8:11]
in statement 4 and DATA[6:9] in statement 9 are assigned distinct type variables
Salary and SSN4, respectively, although the declaration of DATA makes no such
distinction.

Occurrence Typing and Value Flow. Different occurrences of variable PAY have
distinct types, specifically, type Salary at statement 4, Stipend at statement 6,
and Salary ⊕ Stipend at statement 7. This indicates that there is no “value flow”
between statements 4 and 6, whereas there is potential flow between statements
4 and 7 as well as statements 6 and 7.

Scalar Values vs. Records. The typing solution distinguishes scalar types from
record types; these types sometimes differ from physical structure of the declared
variable. For example, PAY-REC at statement 1 has a type containing the con-
catenation operator ‘⊗’, which means it (and DATA within it) store structured
data at runtime, while other variables in the program store only scalars. Note
that although DATA is declared to be a scalar variable, it really stores record-
structured data (whose “fields” are accessed via explicit indices). Note that an
occurrence type can contain information about record structure that is inferred
from definitions or uses elsewhere in the program of the value(s) contained in
the occurrence, including program points following the occurrence in question.
So, for example, the record structure of the occurrence of PAY-REC is inferred
from uses of (variables declared within) PAY-REC in subsequent statements.

Value Constraints and Disjoint Union Tags. The constraints for the atomic
types inside the union type associated with IS-VISITOR in statement 8 indicate
that the variable contains either ’N’ or ’Y’ (and no other value). More inter-
estingly, constrained atomic types inside records can be interpreted as tags for
the disjoint unions containing them. For example, consider the type assigned to
PAY-REC in statement 1. That type denotes the fact that PAY-REC contains either
an employee number (EId) followed by a Salary and two bytes of of unused space,
where the PAYEE-TYPE field is constrained to have value ’E’, or a social security
number followed by a stipend, with with the PAYEE-TYPE field constrained to
contain ’E’.

Overlay Idioms. Finally, we observe that the typing allows distinct data ab-
straction patterns, both of which use the REDEFINES overlay mechanism, to be
distinguished by the inference process. Consider the example programs in Fig-
ures 1(b) and (c). Program (b) reads an ID record, and, depending on the value
of the ID-TYPE field, interprets ID-DATA either as as a social security number
or as an employee ID. Here, REDEFINES is used to store elements of a standard
disjoint union type, and the type ascribed to ID makes this clear. By contrast,
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example (c) uses the overlay mechanism to to provide two views of the same
social security number data: a “whole” view, and a 2-part (first 5 digits, last 4
digits) view.

1.3 Applications

In addition to facilitating program understanding, data abstraction recovery
can also be used to facilitate certain common program transformations. For
example, consider a scenario where employee IDs in example Fig. 1(a) must be
expanded to accommodate an additional digit. Such field expansion scenarios
are quite common. The guarded typing solution we infer helps identify variable
occurrences that are affected by a potential expansion. For example, if we wish
to expand the implicit “field” of DATA containing EId, only those statements that
have references to Eid or other type variables in the same union component as Eid
(e.g., Salary) are affected. Note that the disjoint union information inferred by
our technique identifies a smaller set of affected items than previous techniques
(e.g., [7]) which do not infer this information.

A number of additional program maintenance and transformation tasks can
be facilitated by guarded type inference, although details are beyond the scope
of this paper. Such tasks include: separating code fragments into modules based
on which fragments use which types (which is a notion of cohesion); porting from
weakly-typed languages to object-oriented languages; refactoring data declara-
tions to make them reflect better how the variables are used (e.g., the overlaid
variables SSN and SSN-EXPANDED in the example in Fig. 1(c) may be collapsed
into a single variable); and migrating persistent data access from flat files to
relational databases.

1.4 Related Work

While previous work on recovering type abstractions from programs [6, 3, 10, 7]
has addressed the problem of inferring atomic and record types, our technique
adds the capability of inferring disjoint union types, with constrained atomic
types serving as tags. To do this accurately, we use a novel path sensitive anal-
ysis technique, where value constraints distinguish abstract dataflow facts that
are specific to distinct paths. Since the algorithm is flow-sensitive, it also allows
distinct occurrences of the same variable to be assigned different types. To see
the strengths of our approach, consider again the example in Fig. 1(a). The al-
gorithm uses the predicate IF PAYEE-TYPE = ’E’ to split the dataflow fact cor-
responding to PAY-REC into two facts, one for the “employee” case (PAYEE-TYPE
= ’E’) and the other for the “visitor” case (PAYEE-TYPE �= ’E’). As a result, the
algorithm infers that DATA[8:11] (at one occurrence) stores a Salary while the
DATA[10:13] stores a Stipend (at a different occurrence) even though these two
memory intervals are overlapping. We are aware of no prior abstraction inference
technique that is capable of making this distinction. Note that our approach can
in many cases maintain correlations between values of variables, and hence cor-
relate fragments of code that are not even controlled by predicates that have
common variables. For example, our approach recognizes that statements 5 and
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9 in Fig. 1(a) pertain to the “visitor” case, even though the controlling predicates
for each statement do not share a common variable.

The flow-insensitive approach of [10] is able to infer certain subtyping rela-
tionships; these are similar in some respects to our union types. In particular,
when a single variable is the target of assignments from different variables at
different points, e.g., the variable PAY in statements 4 and 6 in Fig. 1(a), their
approach infers that the types of the source variables are subtypes of the type
of the target. Our approach yields similar information in this case. However, our
technique uses path sensitivity to effectively identify subtyping relationships in
additional cases; e.g., a supertype (in the form of a disjoint union) is inferred
for PAY-REC in statement 1, even though this variable is explicitly assigned only
once in the program.

Various approaches based on analysis techniques other than static type in-
ference, e.g., concept analysis, dynamic analysis, and structural heuristics, have
been proposed for the purpose of extracting logical data models (or aspects of
logical data models) from existing code [1, 2, 4, 9]. Previous work in this area
has not, to the best of our knowledge, addressed extraction of type abstractions
analogous to our guarded types (in particular, extraction of union/tag informa-
tion). However, much of this work is complementary in the sense that it recovers
different classes of information (invariants, clusters, roles, etc.) that could be
profitably combined with our types.

Our guarded types are dependent types, in the sense that they incorporate a
notion of value constraint. While dependent types have been applied to a number
of problems (see [11] for examples), we are unaware of any work that has used
dependent types to recover data abstractions from legacy applications, or that
combine structural inference with value flow information.

The rest of the paper is structured as follows. Section 2 specifies the guarded
type language and notation. Section 3 presents our type inference algorithm.
Following that, we present the correctness characterization for the guarded type
system in Section 4, along with certain theorems concerning correct type solu-
tions. We conclude the paper in Section 5 with a discussion on future work.

2 The Type System

Let AtomicTypeVar = ∪i>0Vi denote a set of type variables. A type variable
belonging to Vi is said to have length i. We will use symbols α,β, γ, etc., (some-
times in subscripted form, as in αi) to range over type variables. Type variables
are also called atomic types.

As the earlier examples illustrated, often the specific value of certain tag
variables indicate the type of certain other variables. To handle such idioms
well, types in our type systems can capture information about the values of
variables. We define a set of value constraints ValueAbs as follows, and use
symbols c, d, c1, d2, etc., to range over elements of ValueAbs:

ValueAbs ::= s | !{s1, s2, . . . , sk}, where s and each si are Strings
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While the value constraint s is used to represent that a variable has the
value s, the value constraint !{s1, s2, . . . , sk} is used to represent that a variable
has a value different from s1 through sk. In particular, the value constraint !{}
represents any possible value, and we will use the symbol � to refer to !{}.

We define a set of type expressions T E , built out of type variables, and value
constraints using concatenation and union operators, as follows:

T E ::= (ValueAbs,AtomicTypeVar) | T E⊗T E | T E⊕T E
We refer to a type expression of the form (ValueAbs,AtomicTypeVar) as a

leaf type-expression. We refer to a type expression containing no occurrences of
the union operator ‘⊕’ as a union-free type expression.

We will use the notation α|i| to indicate that variable α has length i, and
the notation c :α|i| to represent a leaf type-expression (c,α|i|). In contexts where
there is no necessity to show the ValueAbs component we use the notation α|i|

to denote a leaf type-expression itself. Where there is no confusion we denote
concatenation implicitly (without the ⊗ operator).

A type mapping for a given program is a function from variable occurrences
in the program, denoted VarOccurs, to T E .

3 Type Inference Algorithm

3.1 Introduction to Algorithm

Input: The input to our algorithm is a control flow graph, generated from the
program and preprocessed as follows. All complex predicates (involving logical
operators) are decomposed into simple predicates and appropriate control flow.
Furthermore, predicates P of the form “X == s” or “X != s”, where s is a
constant string, are converted into a statement “Assume P” in the true branch
and a statement “Assume !P” in the false branch. Other simple predicates are
handled conservatively by converting them into no-op statements that contain
references to the variables that occur in the predicate. The program has a single
(structured) variable Mem (if necessary, a new variable is introduced that contains
all of the program’s variables as substructures or fields). We assume, without loss
of generality, that a program has a single input file and a single output file.

Solution Computed by the Algorithm: For every statement S, the algorithm
computes a set S.inType of union-free types (see Section 2), which describes the
type of variable Mem before statement S. Specifically, the set {f1, f2, · · · , fk},
where each fi is a union-free type, is the representation used by the algorithm
for the type f1⊕f2⊕ · · ·⊕fk. The algorithm represents each union-free type in
right-associative normal form (i.e., as a sequence of leaf type-expressions). When
the algorithm is finished each S.inType set contains the type of the variable
Mem at the program point before statement S. Generating a type mapping for all
variables from this is straightforward, and is based on the following characteristic
of the computed solution: for each variable X that occurs in S and each union-
free type f in S.inType, f contains a projection f [X] (i.e., a subsequence of f ,
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which itself is a sequence of leaf type-expressions) that begins (resp. ends) at the
same offset position as X begins (resp. ends) within Mem. We omit the details of
generating the type mapping due to space constraints.

Key Aspects of the Algorithm: We now describe the essential conceptual
structure of our inference algorithm. The actual algorithm, which is presented
in Figures 2 and 3, incorporates certain optimizations and, hence, has a some-
what different structure. Recall that READs and literal MOVEs (MOVE statements
whose source operand is a constant string) are the only “origin” statements:
i.e., these are the only statements that introduce new values during execution
(other statements use values, or copy them, or write them to files). For each ori-
gin statement S, our algorithm maintains a set S.readType of union-free types,
which represents the type of the values originating at this statement.

At the heart of our algorithm is an iterative, worklist-based, dataflow analysis
that, given S.readType for every origin statement S, computes S1.inType for
every statement S1 in the program. An element 〈S, f〉 in the worklist indicates
that f belongs to S.inType. The analysis identifies how the execution of S
transforms the type f into a type f ′ and propagates f ′ to the successors of S.
We will refer to this analysis as the inner loop analysis.

The whole algorithm consists of an outer loop that infers S.readType (for
every origin statement S) in an iterative fashion. Initially, the values originating
at an origin statement S are represented by a single type variable αS whose
length is the same as that of the operand of S. In each iteration of the outer loop
analysis, an inner loop analysis is used to identify how the values originating at
statement S (described by the set S.readType) flow through the program. During
this inner loop analysis, two situations (described below) identify a refinement to
S.readType. When this happens, the inner loop analysis is (effectively) stopped,
S.readType is refined as necessary, and the next iteration of the outer loop is
started. The algorithm terminates when an instance of the inner loop analysis
completes without identifying any further refinement to S.readType.

We now describe the two possible ways in which S.readType may be refined.
The first type of refinement happens when the inner loop analysis identifies that
there is a reference in a statement S2 to a part of a value currently represented by
a type variable β. When this happens, the algorithm splits β into new variables
of smaller lengths such that the portion referred to in S2 corresponds exactly
to one of the newly obtained variables. More specifically, let S be the origin
statement for β (i.e., S.readType includes some union-free type that includes
β). Then, S.readType is refined by replacing β by a sequence β1β2 or a sequence
β1β2β3 as appropriate. The intuition behind splitting β is that the reference to
the portion of β in S2 is an indication that β is really not an atomic type, but
a structured type (that contains the βi’s as fields).

The second type of refinement happens when the inner loop analysis identifies
that a value represented by a leaf type, say γ, may be compared for equality
with a constant l. When this happens, the leaf type is specialized for constant
l. Specifically, if the leaf type originates as part of a union-free type, say γδρ,
in S.readType, then γδρ is replaced by two union-free types (l :γ1)δ1ρ1 and
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Procedure Main

Initialize worklist to { 〈entry, � :α|m|〉}, where entry is the entry statement of the program, α is
a new type variable, and m is the size of memory. Initialize S.inType to φ for all statements S.
for all statements S = READ Y do {X and Y are used to denote variable occurrences (see Sec. 1.1)}

Create a new type variable α
|l|
S , where l is the size of Y. Initialize S.readType to {� :αS}.

for all statements S = MOVE s TO Y, where s is a string literal do
Create a new type variable α

|l|
S , where l is the length of s (and of Y). From this point in the

algorithm treat S as if it were the statement “READ Y”. Initialize S.readType to {s :αS}.
while worklist is not empty do

Extract some 〈S, t〉 from worklist. Call Process(S, t).
Procedure Process(S : statement, ft : union-free type for Mem)

for all variable occurrences X in S do
if Subseq(ft, X) is undefined then

Call Split(ft, X). Call Restart. return.
if S = MOVE X TO Y then

Call Propagate(Succ, Subst(ft, Y, Subseq(ft,X))), for all successors Succ of S.
else if S = READ Y then

for all union-free types ftY in S.readType do
Call Propagate(Succ, Subst(ft, Y, ftY)), for all successors Succ of S.

else if S = ASSUME X == s then
Let ret = evalEquals(Subseq(ft,X), s).
if ret = true then

Call Propagate(Succ, ft), for all successors Succ of S.
else if ret = false then

do nothing {Subseq(ft,X) is inconsistent with s – hence no fact is propagated}
else {ret is of the form (α, si)}

Call Specialize(α, si). Call Restart. return.
else if S = ASSUME X != s then

Let ret = evalNotEquals(Subseq(ft, X), s).
if ret = true then

Call Propagate(Succ, ft), for all successors Succ of S.
else {ret = false}

do nothing {Subseq(ft,X) has the constant value s – hence no fact is propagated}
else {ret is of the form (α, si)}

Call Specialize(α, si). Call Restart. return.
Function Subseq(ft : union-free type for Mem, X : (portion of) program variable)

if a sequence ftX of leaf type-expressions within ft begins (ends) at the same position within ft
as X does within Mem then return ftX else Undefined

Function Subst(ft : union-free type for Mem, X : (portion of) program variable, ftX : union-free type)
{|ft| = |Mem|, |ftX| = |X|, and Subseq(ft, X) is defined. }

Replace the subsequence Subseq(ft, X) within ft with ftX and return the resultant union-free type.
Procedure Propagate(S : statement, ft : union-free type for Mem)

if 〈S, ft〉 �∈ S.inType then Add 〈S, ft〉 to worklist, and to S.inType.
Procedure Restart

for all READ statements S do
for all union-free types ftp in S.inType do

add 〈S, ftp〉 to the worklist

Fig. 2. Type inference algorithm – procedures Main,Process, Subseq, Subst,

Propagate, and Restart

(!l : γ2)δ2ρ2 (consisting of new type variables) in S.readType. In the general
case, repeated specializations can produce more complex value constraints (see
Figures 2 and 3 for a complete description of specialization). The benefit of
specializing a type by introducing copies is that variable occurrences in the then
and else branches of IF statements cause the respective copies of the type to
refined, thus improving precision.

The algorithm infers a type mapping for every program. It always terminates,
intuitively because the inner-loop analysis is monotonous, and because the mem-
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Procedure Split(ft : union-free type for Mem, X : (portion of) program variable)

Let a = α|l| be a leaf type-expr within ft and off be an offset within a such that the prefix or
suffix of a bordering off occupies an interval within ft that is non-overlapping with the interval
occupied by X within Mem. Create two new type variables α

|l1|
1 and α

|l2|
2 , where l1 = off and l2 =

l− off. Let S be the READ statement such that there exists a union-free type ftS ∈ S.readType such
that a leaf type-expr b = c :α|l| is in ftS.
if c is a string s then

Split s in to two strings s1 and s2 of lengths l1 and l2, respectively.
Let bsplit = s1 :α|l1|

1 s2 :α|l2|
2 .

else {c is of the form !some set}
Let bsplit = � :α|l1|

1 � :α|l2|
2 .

Create a copy ft′
S of ftS that is identical to ftS except that b is replaced by bsplit.

Call Replace(S, ftS, {ft′
S}).

Procedure Specialize(α|l| : type variable, s : string of length l)
Let S be the READ statement such that there exists a union-free type ftS ∈ S.readType such that
a leaf type-expr b = c :α is in ftS. Pre-condition: c is of the form !Q, where Q is a set that does
not contain s. Create two new copies of ftS, ft1S and ft2S, such that each one is identical to ftS
except that it uses new type variable names. Replace the leaf type-expr corresponding to b in ft1S
with s :α|l|

1 , and the leaf type-expr corresponding to b in ft2S with !(Q + {s}) :α|l|
2 , where α1 and

α2 are two new type variables. Call Replace(S, ftS, {ft1S, ft2S}).
Procedure Replace(S : a READ statement, ft : a union-free type in S.readType, fts : a set of union-free
types)

Set S.readType = S.readType − {ft} + fts.
for all all type variables α occurring in ft do

Remove from S.inType, for all statements S, all union-free types that contain α. Remove from
the worklist all facts 〈Sa, fta〉, where fta is a union-free type that contains α.

Procedure evalEquals(ft : union-free type, s : string of the same length as ft)

Say ft = c1 :α|l1|
1 c2 :α|l2|

2 . . . cm :α|lm|
m .

Let s1, s2, . . . sm be strings such that s = s1s2. . .sm and si has length li, for all 1 ≤ i ≤ m.
if for all 1 ≤ i ≤ m: ci = si then

return true {ft’s value is s}
else if for some 1 ≤ i ≤ m: ci =!S, where S is a set that contains si then

return false {ft is inconsistent with s}
else {ft is consistent with s – therefore, specialize ft}

Let i be an integer such that 1 ≤ i ≤ m and ci is !S, where S is a set that does not contain si.
return (αi, si)

Procedure evalNotEquals(ft : union-free type, s : string of the same length as ft)

Say ft = c1 :α|l1|
1 c2 :α|l2|

2 . . . cm :α|lm|
m .

Let s1, s2, . . . sm be strings such that s = s1s2. . .sm and si has length li, for all 1 ≤ i ≤ m.
if for all 1 ≤ i ≤ m: ci = si then

return false {ft’s value is equal to s}
else

if m > 1 OR m = 1 and c1 =!(some set containing s1) then return true else return (α1, s1).

Fig. 3. Type inference algorithm – other procedures

ory requirement (and hence, the number of refinement steps) for any program is
fixed. The actual algorithm described in Figures 2 and 3 differs from the above
conceptual description as follows: Rather than perform an inner loop analysis
from scratch in each iteration of the outer loop, results from the previous execu-
tion of the inner loop analysis that are still valid are reused. Therefore, the two
loops are merged into a single loop.

3.2 Illustration of Algorithm Using Example in Figure 1(a)

Figure 4 illustrates a trace of the algorithm when applied to the example in
Figure 1(a). Specifically, the figure illustrates (a subset of) the state of the
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Time Statement S S.inType S.readType

t1: /1/ READ PAY-REC FROM IN-F. {Initial|19|} {PayRec|14|}
t2: /1/ READ PAY-REC FROM IN-F. {Init|14|

1 Init|5|
2 } {PayRec|14|}

/2/ MOVE ’N’ TO IS-VISITOR. {PayRec|14|Init|5|
2 } {’N’ :VisNo|1|}

t3: /1/ READ PAY-REC FROM IN-F. {Init|14|
1 Init|1|

3 Init|4|
4 } {PayRec|14|}

/2/ MOVE ’N’ TO IS-VISITOR. {PayRec|14|Init|1|
3 Init|4|

4 } {’N’ :VisNo|1|}
/3/ IF PAYEE-TYPE = ’E’ {PayRec|14|’N’ :VisNo|1|Init|4|

4 }

t4: /1/ READ PAY-REC FROM IN-F. {Init|14|
1 Init|1|

3 Init|4|
4 } {’E’ :Emp|1|PayRec|13|

3 ,

!{’E’} :Vis|1|PayRec|13|
4 }

/2/ MOVE ’N’ TO IS-VISITOR. {’N’ :VisNo|1|}
/3/ IF PAYEE-TYPE = ’E’

t5: /1/ READ PAY-REC FROM IN-F. {Init|14|
1 Init|1|

3 Init|4|
4 } {’E’ :Emp|1|PayRec|13|

3 ,

!{’E’} :Vis|1|PayRec|13|
4 }

/2/ MOVE ’N’ TO IS-VISITOR. {’E’ :Emp|1|PayRec|13|
3 Init|1|

3 Init|4|
4 , {’N’ :VisNo|1|}

!{’E’} :Vis|1|PayRec|13|
4 Init|1|

3 Init|4|
4 }

/3/ IF PAYEE-TYPE = ’E’ {’E’ :Emp|1|PayRec|13|
3 ’N’ :VisNo|1|Init|4|

4 ,

!{’E’} :Vis|1|PayRec|13|
4 ’N’ :VisNo|1|Init|4|

4 }
t6: /3/ IF PAYEE-TYPE = ’E’ {’E’ :Emp|1|PayRec|13|

3 ’N’ :VisNo|1|Init|4|
4 ,

!{’E’} :Vis|1|PayRec|13|
4 ’N’ :VisNo|1|Init|4|

4 }
/4/ MOVE DATA[8:11] TO PAY. {’E’ :Emp|1|PayRec|13|

3 ’N’ :VisNo|1|Init|4|
4 }

ELSE

/5/ MOVE ’Y’ TO IS-VISITOR. {!{’E’} :Vis|1|PayRec|13|
4 ’N’ :VisNo|1|Init|4|

4 } {’Y’ :VisYes|1|}

Fig. 4. Illustration of algorithm using example in Figure 1(a)

algorithm at selected seven points in time (t1, t2, . . . , t7). The second column in
the figure shows a statement S, the third column shows the value of S.inType,
while the last column shows the value of S.readType if S is an origin statement.

Initially, a type variable is created for each origin statement. As explained in
Section 1.1, a MiniCobol program has an implicit READ Mem at the beginning.
Though we do not show this statement in Figure 4, it is an origin statement,
with a corresponding type variable Initial|19|, representing the initial state of
memory, in its readType. In the figure /1/.inType represents the readType

of the implicit READ. Similarly, /1/.readType contains PayRec|14|, which is the
initial type assigned by the algorithm to PAY-REC. (We use the notation /n/ to
denote the statement labeled n in Figure 1(a).)

The first row shows the state at time point t1, when the worklist contains the
pair 〈/1/, Initial|19|〉. Notice that statement 1 (READ PAY-REC) has a variable oc-
currence (PAY-REC) that corresponds to a portion (the first 14 bytes) of Initial|19|,
which is the type variable for the entire memory. Therefore, as described in Sec-
tion 3.1, Initial|19| is “split” into Init|14|1 Init|5|2 . This split refinement updates the
readType associated with the implicit initialization READ M and terminates the
first inner loop analysis and initiates the second inner loop analysis.

In the next inner loop analysis, 〈/1/, Init|14|1 Init|5|2 〉 is placed in the work-
list. Processing this pair requires no more splitting; therefore, Init|14|1 is re-
placed by PayRec|14|, which is the type in /1/.readType. The resultant type
f = PayRec|14|Init|5|2 is placed in /2/.inType and is propagated to statement /2/
(by placing 〈/2/, f〉 in the worklist). The resulting algorithm state is shown in
Figure 4 at time point t2.
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(In general, for any origin statement S that refers to a variable X, processing
a pair 〈S, f〉 involves replacing the portion of f that corresponds to X (f [X])
with tX , for each type tX in S.readType, and propagating the resultant type(s)
to the program point(s) that follow S.)

Next, the worklist item 〈/2/, PayRec|14|Init|5|2 〉 is processed. As statement /2/
refers to IS-VISITOR, which corresponds to a portion of Init|5|2 , this type variable
is split into Init|1|3 Init|4|4 and a new inner loop analysis is started.

This analysis propagates the newly split type through statements /1/ and
/2/. The result is that the type PayRec|14|’N’ :VisNo|1|Init|4|4 reaches /3/.inType.
The resulting state is shown as time point t3. Statement /3/ causes a split once
again, meaning a new inner loop analysis starts.

The next inner loop analysis eventually reaches the state shown as time point
t4, where the algorithm is about to process the pair 〈/3/, PayRec|1|1 PayRec|13|2 ’N’ :
VisNo|1|Init|4|4 〉 from the worklist. Because PAYEE-TYPE, which is of type PayRec|1|1 ,
is compared with the constant ’E’, the algorithm specializes the type variable
PayRec|1|1 by replacing, in its origin /1/.readType, its container type PayRec|1|1

PayRec|13|2 with two types {’E’ :Emp|1|PayRec|13|3 , !{’E’} :Vis|1|PayRec|13|4 }. A
new inner loop analysis now starts.

Using the predicate PAYEE-TYPE = ’E’ to specialize /1/.readType is mean-
ingful for the following reason: since statement /1/ is the origin of PayRec|1|1 (the
type of PAYEE-TYPE), the predicate implies that there are two kinds of records
that are read in statement /1/, those with the value ’E’ in the their PAYEE-TYPE
field and those with some other value, and that these two types of records are
handled differently by the program. The specialization of /1/.readType captures
this notion.

Time point t5 shows the algorithm state after the updated /1/.readType is
propagated to /3/.inType by the new inner loop analysis. Notice that corre-
sponding to the two types in /1/.readType, there are two types in /2/.inType
and /3/.inType (previously there was only one type in those sets). The types
in /3/.inType are (as shown): f1 = ’E’ :Emp|1|PayRec|13|3 ’N’ :VisNo|1|Init|4|4 and
f2 =!{’E’} :Vis|1|PayRec|13|4 ’N’ :VisNo|1|Init|4|4 }.

The same inner loop analysis continues. Since f1 and f2 are now specialized
wrt PAYEE-TYPE, the algorithm determines that type f1 need only be propagated
to the true branch of the IF predicate and that type f2 need only be propagated
to the false branch. The result is shown in time point t6. This is an exhibition
of path sensitivity, and it has two benefits. Firstly, the variables occurring in
each branch cause only the appropriate type (f1 or f2) to be split (i.e, the
two branches do not pollute each other). Secondly, the correlation between the
values of the variables PAYEE-TYPE and IS-VISITOR is maintained, which enables
the algorithm, when it later processes the final IF statement (statement /8/),
to propagate only the type that went through the true branch of the first IF
statement (i.e., f1) to the true branch of statement /8/.

We finish our illustration of the algorithm at this point. The final solution,
after the computed inType sets are converted into a type mapping for all variable
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occurrences is shown in Figure 1(a). Notice that each type in /1/.readType
(shown to the right of Statement 1) reflects the structure inferred from only
those variables that occur in the appropriate branch of the IF statements.

4 Type System: Semantics, Correctness, and Properties

In this section we define the notion of a “correct” type mapping, which we call
a typing solution. We state certain properties of typing solutions, and illustrate
that as a result typing solutions provide information about flow of values in
the program. Note that a program may, in general, have a number of typing
solutions; our type inference algorithm finds one of them.

4.1 An Instrumented Semantics for MiniCobol

Since we are interested in tracking the flow of values, we define an instrumented
semantics where every input-file- and literal-character value is tagged with an
unique integer that serves as its identifier. Let IChar denote the set of instru-
mented characters, and IString denote the set of instrumented strings (sequences
of instrumented characters). Thus, every instrumented string is contains a char-
acter string, charSeq(is), which is its actual value, as well as an integer sequence,
intSeq(is).

It is straightforward to define an instrumentation function that takes a pro-
gram P and an input string I and returns instr(P,I) – an instrumented program
and an instrumented string – by converting every character in every string lit-
eral occurring in P as well as every character in I into an instrumented character
with a unique id. Thus, instr(P,I) contains a set of instrumented strings, one
corresponding to I, and the others corresponding to the string literals in P.

We define a collecting instrumented semantics M with the following
signature:

M : Program → String → VarOccurs → 2IString

Given a program P and an input (String) I, the instrumented semantics exe-
cutes the instrumented program and input instr(P,I) much like in the standard
semantics, except that every location now stores an instrumented character, and
the instrumented program state is represented by an instrumented string. The
collecting semantics M identifies the set of all values (IStrings) each variable
occurrence in the program can take.

4.2 Semantics for Type Expressions

We can give type-expressions a meaning with the signature

T : T E → (AtomicTypeVar → 2IString) → 2IString

as follows: this definition extends a given σ : AtomicTypeVar → 2IString that
maps a type variable to a set of values (instrumented strings) of the same length
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as the type variable, to yield the set of values represented by a T E . Before
defining T , we define the meaning of value constraints via a function C which
maps ValueAbs to 2String:

C(s) = {s}
C(!{s1, s2, . . . , sk}) = {s | s ∈ String ∧ s �∈ {s1, s2, . . . , sk}}

T [c :α]σ = {v | v ∈ σ(α) ∧ charSeq(v) ∈ C(c)}
T [τ1⊗τ2]σ = {i1@i2 | ii ∈ T [τ1]σ, i2 ∈ T [τ2]σ}

(@ represents concatenation)
T [τ1⊕τ2]σ = T [τ1]σ ∪ T [τ2]σ

4.3 Correct Type Mappings

Definition 1 (Atomization). An atomization of an instrumented string s is a
list of instrumented strings whose concatenation yields s: i.e., a list [s1, s2, · · · , sk]
such that s1@s2@ · · ·@sk = s. We refer to the elements of an instrumented
string’s atomization as atoms.

Definition 2 (Atomic Type Mapping). Given a program P and an input
string I, an atomic type mapping π for (P,I) consists of an atomization of each
instrumented string in instr(P,I), along with a function mapping every atom to
a type variable. We denote the set of atoms produced by π by atoms(π), and
denote the type variable assigned to an atom a by just π(a). Also, π−1 is the
inverse mapping, from type variables to sets of atoms, induced by π.

Definition 3 (Correct Atomic Type Mapping). Let Γ be a type mapping
for a program P, and let π be an atomic type mapping for instr(P,I), where
I is an input string. (Γ, π) is said to be correct for (P,I) if for every variable
occurrence v in P,

T [Γ (v)]π−1 ⊇M[P ](I)(v).

For example, consider the given program P and type mapping Γb in Fig-
ure 1(b), and let input string I = ’EID1234567’. In this case instr(P,I) contains
two instrumented strings, ’SSN’ from P and ’EID1234567’ from I; we omit, for
brevity, the (unique) integer tags on the characters, and use an overline to in-
dicate their presence. A candidate atomization and atomic type mapping πb for
this example is [’SSN’: SSNTyp, ’EID’:EIdTyp, ’1234567’:EId]. (Γb, πb) is correct
for the given (P, I).

Definition 4 (Typing Solution). A type mapping Γ for a program P is said
to be correct if for every input I there exists an atomic type mapping π such that
(Γ, π) is correct for (P,I). We will refer to a type mapping that is correct as a
typing solution.

Because π maps each atom in the input string and program to a single type
variable, it follows that in a typing solution distinct type variables correspond
to distinct domains of values (atoms).
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4.4 Properties of Correct Type Mappings

Theorem 1 (Atoms are Indivisible). If (Γ, π) is correct for (P,I), then dur-
ing execution of P on I no variable occurrence ever contains a part of an atom
without containing the whole atom.

For example, recall the pair (Γb, πb) mentioned earlier, and recall that it was
correct for the program in Figure 1(b) with input string ’EID1234567’. Then,
the above theorem asserts that no variable occurrence in the program ever takes
on a value that contains a proper substring of any of the atoms ’SSN’, ’EID’, and
’1234567’ during execution of the program on the given input string. Thus, an
atomization helps identify indivisible units of “values” that can be meaningfully
used to talk about the “flow of values”. The indivisibility also implies that in a
typing solution each type variable corresponds to a scalar domain.

We now show how typing solutions tell us whether, for any two variable oc-
currences, there is no execution in which some instrumented value flows to both
occurrences. The following definition formalizes this notion of “disjointedness”.

Definition 5 (Disjointedness). Two variable occurrences v and w in a pro-
gram P are said to be disjoint if for any input I, for any s1 ∈ M[P ](I)(v) and
s2 ∈M[P ](I)(w), s1 and s2 do not have any instrumented character in common.

We now introduce the notion of overlap, and then show how typing solutions
yield information about disjointness.

Definition 6 (Overlap). (a) Two value constraints c1 and c2 are said to over-
lap if they are not of the form s1 and s2, where s1 �= s2 and not of the form s1
and !S, where s1 ∈ S. (b) Two leaf type-expressions c1 :α1 and c2 :α2 are said to
overlap if α1 = α2 and c1 and c2 overlap.

Theorem 2 (Typing Solutions Indicate Disjointedness). Let Γ be a typ-
ing solution for a program P and let v and w be two variable occurrences in P.
If Γ (v) and Γ (w) have no overlapping leaf type-expressions, then v and w are
strongly disjoint.

Consider the example program and typing solution in Figure 1(a). The two
occurrences of PAY in lines 4 and 6, respectively, have non-overlapping types
(Salary and Stipend, respectively). Theorem 2 thus tells us that these two oc-
currences are disjoint (even though they refer to the same variable). On the
other hand each of these two occurrences is non-disjoint with the occurrence of
PAY-REC in line 1; this is because the type expression assigned to the occurrence
of PAY-REC in line 1 contains both Salary and Stipend.

5 Future Work

This paper describes an approach for inferring several aspects of logical data
models such as atomic types, record structure based on usage of variables in the
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code, and guarded disjoint unions. In the future we plan to work on inferring
additional desirable aspects of logical data models such as associations between
types (e.g., based on foreign keys).

Within the context of the approach described in this paper, future work
includes expanding upon the range of idioms that programmers use to imple-
ment union types that the algorithm addresses, expanding the power of the type
system and algorithm, e.g., by introducing more expressive notions of value con-
straints, handling more language constructs (e.g., arrays, procedures), improving
the efficiency of the algorithm, and generating “factored” types in the algorithm
instead of sets of union-free types (e.g., α(β⊕γ)δ, instead of {αβδ,αγδ}).
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Abstract. The automata-theoretic approach to LTL verification relies
on an algorithm for finding accepting cycles in a Büchi automaton.
Explicit-state model checkers typically construct the automaton “on the
fly” and explore its states using depth-first search. We survey algorithms
proposed for this purpose and identify two good algorithms, a new al-
gorithm based on nested DFS, and another based on strongly connected
components. We compare these algorithms both theoretically and exper-
imentally and determine cases where both algorithms can be useful.

1 Introduction

The model-checking problem for finite-state systems and linear-time temporal
logic (LTL) is usually reduced to checking the emptiness of a Büchi automaton,
i.e. the product of the system and an automaton for the negated formula [24].
Various strategies exist for reducing the size of the automaton. For instance,
symbolic model checking employs data structures that compactly represent large
sets of states. This strategy combines well with breadth-first search, leading to
solutions whose worst-case time is essentially O(n2) or O(n log n), if n is the
size of the product. A survey of symbolic emptiness algorithms can be found
in [8].

Explicit-state model checkers, on the other hand, construct the product au-
tomaton ‘on the fly’, i.e. while searching the automaton. Thus, the model checker
may be able to find a counterexample without ever constructing the complete
state space. This technique can be combined with partial order methods [18, 15]
to reduce the state-explosion effect. The best known on-the-fly algorithms use
depth-first-search (DFS) strategies to explore the state space; their running times
are linear in the size of the product (i.e. the number of states plus the number
of transitions). These algorithms can be partitioned into two classes:

Nested DFS, originally proposed by Courcoubetis et al [5], conducts a first
search to find and sort the accepting states. A second search, interleaved with
the first, checks for cycles around accepting states. Holzmann et al’s modifica-
tion of this algorithm [15] is widely regarded as the state-of-the-art algorithm for
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on-the-fly model checking and is used in Spin [14]. The advantage of this algo-
rithm is its memory efficiency. On the downside, it tends to produce rather long
counterexamples. Recently, Gastin et al [10] proposed two modifications to [5]:
one to find counterexamples faster, and another to find the minimal counterex-
ample. Another problem with Nested DFS is that its extension to generalised
Büchi automata creates significant additional effort, see Subsection 5.2.

The other class can be characterised as SCC-based algorithms. Clearly, a
counterexample exists if and only if there is a strongly connected component
(SCC) that is reachable from the initial state and contains at least one ac-
cepting state and at least one transition. SCCs can be identified using, e.g.,
Tarjan’s algorithm [22]. Tarjan’s algorithm can easily accomodate generalised
Büchi automata, but uses much more memory than Nested DFS. Couvreur [6]
and Geldenhuys and Valmari [11] have proposed modifications of Tarjan’s al-
gorithm, whose common feature is that they recognize an accepting cycle as
soon as all transitions on the cycle are explored. Thus, the search may explore
a smaller part of the automaton and tends to produce shorter counterexamples.

In this paper, we survey existing algorithms of both classes and discuss their
relations to each other. This discussion leads to the following contributions:

– We propose an improved Nested-DFS algorithm. The algorithm finds coun-
terexamples with less exploration than [15] and [10] and needs less memory.

– We analyse a simplified version of Couvreur’s algorithm [6] and show that
it has advantages over the more recently proposed algorithm from [11]. We
make several other interesting observations about this algorithm that were
missed in [6]. With these, we reinforce the argument made in [11], i.e. that
SCC-based algorithms are competitive with Nested DFS.

– As a byproduct, we propose an algorithm for finding SCCs, which, to the
best of our knowledge, has not been considered previously. This algorithm
can be used to improve model checkers for CTL.

– Having identified one dominating algorithm in each class, we discuss their rel-
ative advantages for specialised classes of automata. It is known that model
checking can be done more efficiently for automata with certain structural
properties [2]. Our observations sharpen the results from [2] and provide a
guideline on which algorithms should be used in which case.

– We suggest a modification to the way partial-order reduction can be com-
bined with depth-first search.

– Finally, we illustrate our findings by experimental results.

We proceed as follows: Section 2 establishes the notation used in the al-
gorithms. Sections 3 and 4 discuss nested and SCC-based algorithms, respec-
tively. Section 5 takes a closer look at the pros and cons of both classes, while
Section 6 discusses the combination with partial order methods. Section 7 re-
ports some experiments, and Section 8 contains the conclusions and an open
question.

A slightly extended version of this paper is available as a technical report [19].
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2 Notation

The accepting cycle problem can be stated in many different variants. For now,
we concentrate on its most basic form in order to present the algorithms in a
simple and uniform manner. Thus, our problem is as follows:

Let B = (S, T,A, s0), where T ⊆ S × S, be a Büchi automaton (or just
automaton) with states S and transitions T . We call s0 ∈ S the initial state,
and A ⊆ S the set of accepting states. A path is a sequence of states s1 · · · sk,
k ≥ 1, such that (si, si+1) ∈ T for all 1 ≤ i < k. Let dB denote the length of
the longest path of B in which all states are different. A cycle is a path with
s1 = sk; the cycle is accepting if it contains a state from A. An accepting run
(or counterexample) is a path s0 · · · sk · · · sl, l > k, where sk · · · sl forms an
accepting cycle. The cycle detection problem is to determine whether a given
automaton B has an accepting run.

Extensions of the problem, such as generalised Büchi automata, production
of counterexamples (as opposed to merely reporting that one exists), partial-
order reduction, and exploiting additional knowledge about the automaton are
discussed partly along with the algorithms, and partly in Sections 5 and 6.

All algorithms presented below use depth-first-search strategies and are de-
signed to work ‘on the fly’, i.e. B can be constructed during the search. In the
presentation of all algorithms, we make the following assumptions:

– Initially, the state s0 is known.
– Given a state s, we can compute the set post(s) := { t | (s, t) ∈ T }.
– For each state s, s ∈ A can be decided (in constant time).
– The statement report cycle ends the algorithm with a positive answer.

When the algorithm ends normally, no accepting run is assumed to exist.

3 Algorithms Based on Nested DFS

The first Nested-DFS algorithm was proposed by Courcoubetis, Vardi, Wolper,
and Yannakakis [5]. It can be said to consist of a blue and a red search procedure,
both of which visit any state at most once. It requires two bits per state, a ‘blue’
and a ‘red’ bit. We assume that when a state is generated by post for the first
time, both bits are false. The algorithm is shown in Figure 1. Procedure dfs blue
conducts a depth-first search and sets the blue bit in all visited states. When the
search from an accepting state s finishes, dfs red is invoked. This procedure sets
the red bit in all states it encounters and avoids visiting states twice. If dfs red
finds that s can be reached from itself, an accepting run is reported.

3.1 Known Improvements on Nested DFS

The algorithm from [5] can be improved to find counterexamples earlier under
certain circumstances. Consider the automaton shown in Figure 2 (a). To find
the counterexample, the blue DFS must first reach the accepting state s1, and
then the red DFS needs to go from s1 to s0 and back again to s1, even though an
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1 procedure nested dfs ()
2 call dfs blue(s0);

3 procedure dfs red (s)
4 s.red := true;
5 for all t ∈ post(s) do
6 if ¬t.red then
7 call dfs red(t);
8 else if t = seed then
9 report cycle;

10 procedure dfs blue (s)
11 s.blue := true;
12 for all t ∈ post(s) do
13 if ¬t.blue then
14 call dfs blue(t);
15 if s ∈ A then
16 seed := s;
17 call dfs red(s);

Fig. 1. The Nested-DFS algorithm from [5]

s0 s1

(b)
s0 s1

(a)

Fig. 2. Two examples for improvements on the Nested-DFS algorithm

accepting run is already completed at s0. A modification suggested by Holzmann,
Peled, and Yannakakis [15] eliminates this situation: As soon as a red DFS
initiated at s finds a state t such that t is on the call stack of the blue DFS, the
search can be terminated, because t is obviously guaranteed to reach s. To check
in constant time whether a state is on the call stack, one additional bit per state
is used (or, alternatively, a hash table containing the states on the stack).

Another improvement on Nested DFS was recently published by Gastin,
Moro, and Zeitoun [10], who suggested the following additions:

1. The blue DFS can detect an accepting run if it finds an edge back to an
accepting state that is currently on the call stack. Consider Figure 2 (b):
in [15], both the blue and the red procedure need to search the whole au-
tomaton to find the accepting cycle. With the suggestion in [10], the cycle is
found without entering the red search. We note that this improvement can
be slightly generalized to include the case where the current search state is
accepting and finds an edge back to a state on the stack.

2. States are marked black during the blue DFS if they have been found not
to be part of an accepting run. Thus, the red search can ignore black states.
However, the computational effort required to make states black is asymptot-
ically as big as the effort expended in the red search: one additional visit to
every successor state. Moreover, the effort is necessary for every blue state,
even if the state is never going to be touched by the red search. Therefore,
the use of black states is not necessarily an improvement.1

The algorithm from [10] requires three bits per state.

1 [10] also proposes an algorithm for finding minimal counterexamples, which has
exponential worst-time complexity, and for which the black search can provide useful
preprocessing. As the scope of this paper is on linear-time algorithms, this matter
is not considered here.
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3.2 A New Proposal

We now formulate a version of Nested DFS that includes the improvements for
early detection of cycles from [15, 10], but without the extra memory require-
ments. This is based on the observation that, out of the eight cases that could be
encoded in [15] with the three bits blue, red, and stack, four can never happen:

– A state with its blue and red bit false cannot have its stack bit set to true.
– By induction, we show that no state can have its red bit set to true and

its blue bit set to false, independently of its stack bit. When the red search
is initiated, all successors of seed have appeared in the blue search. Later,
if the red search encounters a blue state t with non-blue successor u, we
can conclude that t has not yet terminated its blue search. Thus, t must be
on the call stack, and the improvement of [15] will cause the red search to
terminate before considering u.

– The case where a state has both its red and stack bit set does not have not
be considered: With the improvement from [15], the red search terminates
as soon as it encounters a state with the stack bit.

The remaining four cases can be encoded with two bits. The algorithm in
Figure 3 assigns one of four colours to each state:

– white: We assume that states are white when they are first generated by a
call to post .

– cyan: A state whose blue search has not yet terminated.
– blue: A state that has finished its blue search and has not yet been reached

in a red search.
– red: A state that has been considered in both the blue and the red search.

The seed state of the red search is treated specially: It remains cyan during
the red search and is made red afterwards. Thus, it matches the check at line 18,
and the need for a seed variable is eliminated. Like in the other algorithms based
on Nested DFS, the counterexample can be obtained from the call stack at the
time when the cycle is reported.

1 procedure new dfs ()
2 call dfs blue(s0);

3 procedure dfs blue (s)
4 s.colour := cyan;
5 for all t ∈ post(s) do
6 if t.colour = cyan
7 ∧ (s ∈ A ∨ t ∈ A) then
8 report cycle;
9 else if t.colour = white then

10 call dfs blue(t);
11 if s ∈ A then

12 call dfs red(s);
13 s.colour := red ;
14 else
15 s.colour := blue;

16 procedure dfs red (s)
17 for all t ∈ post(s) do
18 if t.colour = cyan then
19 report cycle;
20 else if t.colour = blue then
21 t.colour := red ;
22 call dfs red(t);

Fig. 3. New Nested-DFS algorithm
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4 Algorithms Based on SCCs

The algorithms in this class are based on the notion of strongly-connected com-
ponents (SCCs). Formally, an SCC is a maximal subset of states C such that
for every pair s, t ∈ C there is a path from s to t and vice versa. The first
state of C entered during a depth-first search is called the root of C. An SCC
is called trivial if it consists of a single state, and if this single state does not
have a transition to itself. An accepting run exists if and only if there exists
a non-trivial SCC that contains at least one accepting state and whose states
are reachable from s0. In the following we present the main ideas behind three
SCC-based algorithms. These explanations are not intended as a full proof, but
should serve to explain the relationship between the algorithms.

Tarjan [22] first developed an algorithm for identifying SCCs in linear time
in the size of the automaton. His algorithm uses depth-first search and is based
on the following concepts: Every state is annotated with a DFS number and a
lowlink number. DFS numbers are assigned in the order in which states appear
in the DFS; we assume that the DFS number is 0 when a state is first generated
by post . The lowlink number of a state s is the lowest DFS number of a state t
in the same SCC as s such that t was reachable from s via states that were not
yet explored when the search reached s. Moreover, Tarjan maintains a set called
Current to which states are added when they are first detected by the DFS. A
state is removed from Current when its SCC is completely explored, i.e. when
the DFS of its root concludes. Current is represented twice, as a bit-array and
as a stack. The following properties hold:

(1) Current contains only states from partially explored SCCs whose roots are
still on the call stack. Thus, every state in Current has a path to a state on
the call stack (e.g., its root).

(2) Therefore, if t is in Current when the DFS at state s detects a transition
to t, t has a path to its root, from there to s, so both are in the same SCC.

(3) Roots have the lowest DFS number within their SCC and are the only states
whose DFS number equals their lowlink number.

(4) A root r is the first state of its SCC to be added to Current. At the time
when the DFS at r concludes, all other SCCs reachable from r have been
completely explored and removed from Current . Thus, the nodes belonging
to the SCC can be identified by removing nodes from the stack representation
of Current until r is found. At the same time, one can check whether the
SCC is non-trivial and contains an accepting state.

For the purpose of finding accepting cycles, the use of Tarjan’s algorithm has
several drawbacks compared to Nested-DFS algorithms: It uses more memory
per state (one bit plus two integers as opposed to two bits), and a larger stack:
In Nested DFS, the stack may grow as large as dB whereas in Tarjan’s algorithm
Current may at worst contain all states, even if dB is small. Moreover, it may
take longer to find a counterexample, because an SCC cannot be checked for
acceptance until itself and all SCCs reachable from it have been completely
explored. In Nested DFS, a red search may be started even before an SCC has
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Fig. 4. Nested DFS may outperform Tarjan’s algorithm on this automaton

been completely explored. Figure 4 illustrates this: Nested-DFS algorithms may
find the cycle s0s1s0 and stop without examining the right part of the automaton
provided that edge (s0, s1) is explored before (s0, s2); Tarjan’s algorithm is bound
to explore the whole automaton regardless of the order of exploration.

Recent developments, however, have shown that Tarjan’s algorithm can be
modified to eliminate or reduce some of these disadvantages, and that SCC-based
algorithms can be competitive to Nested DFS. Two modifications are presented
below. Their common feature is that they can detect a counterexample as soon
as all transitions along an accepting run have been explored. In other words,
their amount of exploration is minimal (i.e., minimal among all DFS algorithms
that follow the search order provided by post).

4.1 The Geldenhuys-Valmari Algorithm

The algorithm recently proposed by Geldenhuys and Valmari [11] extends Tar-
jan’s algorithm with the following idea: Suppose that the DFS starts exploring
an accepting state s. At this point, all states in Current (including s) have a
path to s (property (1)). Moreover, the states that are in Current at this point
can be characterised by the fact that their lowlink number is less than or equal
to the DFS number of s. Thus, to find a cycle including s, we need to find a
state with such a lowlink number in the DFS starting at s. To this end, the DFS
in [11] always keeps track of the deepest accepting state currently in the DFS
stack. When a cycle is found, the search is terminated immediately.

This algorithm requires slightly more memory than Tarjan’s because it must
remember the deepest accepting state for each position in the stack. However, if
a counterexample exists, the algorithm may find it earlier than Nested DFS.

4.2 Couvreur’s Algorithm

Couvreur [6] proposed (in his own words) “a simple variation of the Tarjan al-
gorithm” that solves the accepting cycle problem on generalised automata (see
Subsection 5.2), but where acceptance conditions are associated with transitions.
This algorithm has the advantage of detecting counterexamples early, as in [11].
Here, we translate and simplify the algorithm for the problem stated in Section 2
and then show that it has a number of additional benefits that were not con-
sidered in [6]. The following ideas, which improve upon Tarjan’s algorithm, are
relevant for the algorithm:
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1 procedure couv ()
2 count := 0; Roots := ∅;
3 call couv dfs(s0);

4 procedure remove (s):
5 if ¬s.current then return;
6 s.current := false;
7 for all t ∈ post(s) do remove(t);

8 procedure couv dfs(s):
9 count := count + 1;

10 s.dfsnum := count;
11 push(Roots, s); s.current := true;

12 for all t ∈ post(s) do
13 if t.dfsnum = 0 then
14 call couv dfs(t);
15 else if t.current then
16 repeat
17 u := pop(Roots);
18 if u ∈ A then report cycle;
19 until u.dfsnum ≤ t.dfsnum;
20 push(Roots, u);
21 if top(Roots) = s then
22 pop(Roots);
23 call remove(s);

Fig. 5. Translation of Couvreur’s algorithm

– The stack representation of Current is unnecessary. By property (4), when
the DFS of a root r finishes, all other SCCs reachable from the root have
already been removed from Current . Therefore, the SCC of r consists of all
nodes that are reachable from r and still in Current . These can be found by
a second DFS starting at r, using the bit-array representation of Current .

– Lowlink numbers can be avoided. The purpose of lowlink numbers is to test
whether a given state is a root. However, the DFS number already contains
partial knowledge about the lowlink: it is greater than or equal to it. Cou-
vreur’s algorithm maintains a stack (called Roots) of potential roots to which
a state is added when it appears on the call stack. Recall property (2): when
the DFS sees a transition from s to t after the DFS of t, and t is still in
Current , then s and t are in the same SCC. A root has the lowest DFS
number in its SCC. Thus, all states in the call stack with a DFS number
greater than that of t cannot be roots and are removed from Roots. More-
over, these states are part of a cycle around s; if one of them is accepting,
then a counterexample exists. Finally, a node r can now be identified as a
root by checking whether r is still in Roots when its DFS finishes. At this
point, r can also be removed from Roots.

Figure 5 presents the algorithm. The transformation from the algorithm in [6]
is quite straightforward, even though a slightly different problem is solved.

The issue of generating an actual counterexample was not considered in [6].
Fortunately, adding this is relatively easy: At line 18, the call stack plus the
transition (s, t) provide a path from s0 via u to t. To complete the cycle, we
need a path from t to u, which can be found with a simple DFS within the non-
removed states starting at u (the current bit can be abused to avoid exploring
states twice in this DFS). Alternatively, we could search for any state on the call
stack of the DFS whose number is at most t.dfsnum, which may lead to slightly
smaller counterexamples, but requires an additional ‘on stack’ bit for each state.



182 S. Schwoon and J. Esparza

4.3 Comparison

The algorithms presented in Subsections 4.1 and 4.2 report a counterexample as
soon as all the transitions belonging to it have been explored. Thus, they find
the same counterexamples with the same amount of exploration. However, Cou-
vreur’s algorithm has several advantages to those of both Tarjan and Geldenhuys
and Valmari [11]:

– It needs just one integer per state instead of two.
– Current is a superset of the call stack and contains at worst all the states ([11]

mentions the use of stack space as a drawback). The Roots stack, however,
is only a subset of the call stack. This eliminates one disadvantage of SCC-
based algorithms when compared to Nested DFS.

– Couvreur’s algorithm can be easily extended to multiple acceptance condi-
tions (see Subsection 5.2). It is not clear how such an extension could be
done with the algorithm of Geldenhuys and Valmari.

Note that the first two advantages are not pointed out in [6]. It seems that this
has caused Couvreur’s algorithm to remain largely unappreciated (as evidenced
by the fact that [11] does not seem to be aware of [6]).

On the downside, Couvreur’s algorithm may need two calls to post per state
whereas the others need only one.

4.4 On Identifying Strongly Connected Components

The algorithm in Figure 5 can be easily transformed into an algorithm for iden-
tifying the SCCs of the automaton. All that is required is to remove line 18 and
to output the nodes as they are processed in the remove procedure.

To the best of our knowledge, this algorithm is superior to previously known
algorithms for identifying SCCs: The advantages over Tarjan’s algorithm [22]
have already been pointed out. Gabow [9] avoids computing lowlink numbers, but
still uses the stack representation of Current. Nuutila and Soisalon-Soininen [17]
reduce stack usage in special cases only, and still use lowlink numbers. Sharir’s
algorithm [20] has none of these drawbacks, but requires reversed edges. Sur-
prisingly, the issue of detecting SCCs was not considered in [6].

Compared to the algorithms that use a stack representation of Current, the
new algorithm explores edges twice, whereas the others explore edges only once.
This might be a disadvantage if the calls to post are computationally expensive.
However, the algorithm remains linear in the size of B, and the memory savings
can be significant (see Section 7).

In the model-checking world, SCC decomposition is used in CTL for comput-
ing the semantics of the EG operator [4] or for adding fairness constraints [3].
Therefore, this algorithm can benefit explicit-state CTL model checkers.

5 Nested DFS Versus SCC-Based Algorithms

In Sections 3 and 4 we have shown that the new Nested-DFS algorithm (Figure 3)
and the modification of Couvreur’s algorithm (Figure 5) dominate the other algo-
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Fig. 6. SCC-based algorithms outperform Nested DFS on this automaton

rithms in their class. Of these two, the nested algorithm is more memory-efficient:
While the difference in stack usage, where the SCC algorithm consumes at most
twice as much as the nested algorithm, is relatively harmless, the difference in
memory needed per state can be more significant: the nested algorithm needs
only two bits, the SCC algorithm needs an integer.

Nested DFS therefore remains the best alternative for combination with the
bitstate hashing technique [13], which allows to analyse very large systems while
potentially missing parts of the state space. If traditional, lossless hashing tech-
niques are used, the picture is different: State descriptors even for small systems
often include dozens of bytes, so that an extra integer becomes negligible. In
addition, this small disadvantage of the SCC algorithm is offset by its earlier
detection of counterexamples: the SCC algorithm always detects a counterex-
ample as soon as all transitions on a cycle have been explored (i.e. with minimal
exploration), while the nested algorithm may take arbitrarily longer.

For instance, assume that in the automaton shown in Figure 6, the path
from s1 back to s0 is explored before the subgraph starting at s2. Then, the
SCC algorithm reports a counterexample as soon as the cycle is closed, without
visiting s2 and the states beyond. The nested search, however, needs to explore
the large subgraph before the second DFS can start at s1 and detect the cycle.

In Subsection 5.1, we examine how this advantage of the SCC-based algorithm
is related to structural properties of the automaton. It turns out that for an
important class of automata (namely weak automata), nested DFS avoids the
disadavantage (and can in fact be replaced by a simple, non-nested DFS).

5.1 Exploiting Structural Properties

In [2], Černá and Pelánek defined the following structural hierarchy of Büchi
automata (see also [16, 1]):

– Any Büchi automaton is an unrestricted automaton.
– A Büchi automaton is weak if and only if its states can be partitioned into

sets Q1, . . . , Qn such that each Qi, 1 ≤ i ≤ n is either contained in A or
disjoint from it; moreover, if there is a transition from a state in Qi to a
state in Qj , then i ≤ j.

– A weak automaton is terminal if and only if the partitions containing ac-
cepting states have no transitions into other partitions.

The automata encountered in LTL model checking are the products of a system
and a Büchi automaton specifying some (un)desirable property. Clearly, if the
specification automaton is weak or terminal, then so is its product with the
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system. Thus, the type of the product can be safely approximated by the type
of the specification automaton, which is usually much smaller.

Accepting runs of weak automata have the property that all states in their
cycle part (which all belong to the same SCC) are accepting states. We now
prove that the nested DFS algorithm (Figure 3) discovers an accepting run in
procedure blue dfs as soon as all of its transitions have been explored. Assume
that no counterexample has been completely explored so far, that the blue DFS
is currently at state s, and that (s, t) is the last transition in a counterexample
that has not been explored. We can assume that (s, t) is in the cycle part of the
counterexample (otherwise a complete reachable cycle would have been explored
before, violating the assumption), so both s and t must be accepting states. Then,
the blue DFS will report a counterexample at line 8 if and only if t is cyan when
(s, t) is explored. We prove that t is cyan by contradiction: Being an accepting
state, t cannot be blue; if t is white, then discovering (s, t) will not close a cycle;
and if t is red, then by construction t is not part of a counterexample.

A consequence of this is that the nested algorithm, when processing a weak
automaton, always finds cycles in line 8 (when they exist). Thus, when examining
weak automata, the algorithm of Figure 3 can be improved by disabling the red
search (if an accepting state reaches line 11, it is not part of an accepting cycle,
because such a cycle would have been found during the blue search). Thus,
we end up with a simple, non-nested DFS. Černá and Pelánek [2] previously
proposed simple DFS on weak systems because of its efficiency; we point out
that it also finds counterexamples with minimal exploration.

Weak automata are important because they can represent (the negation of)
many ‘popular’ properties, e.g. invariants (G p), progress (GF p), or response
(G(p → F q)). In fact, [2] claims that 95% of the formulas in a well-known
specification patterns database lead to weak automata, and propose a method
that generates weak automata for a suitably restricted subset of LTL formulas.
Somenzi and Bloem [21] propose an algorithm for unrestricted formulas that
attempts to produce automata that are ‘as weak as possible’.

For terminal automata, [2] proposes to use simple reachability checks. For
correctness, this requires the assumption that every state has a successor.

For unrestricted automata, the new nested-DFS algorithm can be combined
with the changes proposed by Edelkamp et al [7], which further exploit structural
properties of the system and allow to combine the approach with guided search.

5.2 Handling Generalised Büchi Automata

The accepting cycle problem can also be posed for generalised Büchi automata, in
which A is replaced by a set of acceptance sets A ⊆ 2S . Here, a cycle is accepting
if it intersects all sets A ∈ A. Generalised Büchi automata arise naturally during
the translation of LTL into Büchi automata (see, e.g., [12, 6]). Moreover, fairness
constraints of the form GF p can be efficiently encoded with acceptance sets.
Generalised Büchi automata can be translated into (normal) Büchi automata,
but checking them directly may lead to more efficient procedures. The following
paragraph briefly reviews the solutions proposed for this method:
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Let n be the number of acceptance sets in A. For nested DFS, Courcoubetis
et al [5] proposed a method with at worst 2n traversals of each state. Tauriainen’s
solution [23] reduces the number of traversals to n+ 1. Couvreur’s algorithm [6]
works directly on generalised automata; the number of traversals is at most 2,
independently of n. This is accomplished by implementing the elements of Roots
as tuples (state, set), where set contains the acceptance sets that intersect the
SCC of state; these sets are merged during pop sequences.

Thus, Couvreur’s algorithm has a clear edge over nested DFS in the gener-
alised case: It can detect accepting runs with minimal exploration and with less
runtime overhead.

5.3 Summary

The question of optimised algorithms for specialised classes of Büchi automata
has been addressed before in [2], as pointed out in Subsection 5.1. Likewise, [6]
and [11] previously raised the point that SCC-based algorithms may be faster
than nested DFS, but without addressing the issue of when this was the case. Our
results show that these issues are related, which leads to the following picture:

– For weak automata, simple DFS should be used by default: it is simpler and
more memory-efficient than SCC algorithms and finds counterexamples with
minimal exploration.

– For unrestricted automata, an SCC-based algorithm should be used unless
bit hashing is required. The memory overhead of Couvreur’s algorithm (Fig-
ure 5) is not significant, and it can find counterexamples with less exploration
than nested DFS (and often shorter ones, see Section 7). If post is computa-
tionally expensive, Geldenhuys and Valmari’s algorithm may be preferable.

– The improved nested DFS algorithm (Figure 3) should be used for unre-
stricted automata if bitstate hashing is needed.

Note also that when generalised Büchi automata can be used, the balance shifts
in favour of Couvreur’s algorithm.

6 Compatibility with Partial Order Reduction

DFS-based model checking may be combined with partial-order reduction to
alleviate the state-explosion problem. This technique tries not to explore all suc-
cessors of a state, but only a subset matching certain conditions. In the practical
approach of Peled [18], several candidate subsets of successors are tried until
one is found that matches the conditions. Crucially, the chosen subset at state s
depends on the DFS call stack at s. For correctness, one must ensure that each
call to post(s) chooses the same subset. This can be done by (i) ensuring that
the call stack is always the same for any given state, or (ii) remembering the
chosen successor set, which costs extra memory. Holzmann et al [15] describe
memory-efficient methods for (ii), which, however, constrain the kinds of can-
didate successor sets that can be used. We show that there is an alternative
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solution for both nested DFS and SCC-based algorithms that does not require
to remember successor sets, and does not constrain the candidate sets.

Note first that the nested DFS algorithms do not have property (i); the call
stack in the red DFS may differ from the one in the blue DFS. In [6], Couvreur
claims that his algorithm satisfies property (i). However, adding counterexam-
ple generation destroys this property: a state can be entered with a different
call stack during the extra DFS needed for generating a counterexample, see
Subsection 4.2. In both cases, the solutions of [15] can be used as a remedy.

The alternative solution is based on the following observations: The red search
of the new nested algorithm (Figure 3) only explores cyan or blue states. The
extra DFS in the SCC-based algorithm touches only states in the explored, but
unremoved part of the automaton. Thus, if the partial-order reduction produces
an unexplored successor during these searches, that successor can be discarded,
because it cannot have been generated during the first search. In other words,
one may simply generate all successor states and then discard those that were
not explored before. Note that this may still produce some transitions that were
not explored in the first search – however, it is easy to show that these ex-
tra transitions never lead to false results and at best to earlier detection of
cycles.

As this solution does not impose constraints on candidate successor sets, it
could lead to larger reductions at a (probably small) run-time price. We have
not yet tried whether this leads to improvements in practice. No partial-order-
related precautions are required when simple DFS is used for weak automata
(see Section 5.1), as was already observed in [2].

7 Experiments

For experimental comparisons, we replicated two of the three variants from
Geldenhuys and Valmari’s example [11], a leader election protocol with extinc-
tion for arbitrary networks. In both variants, the election restarts after comple-
tion; in Variant 1, the same node wins every time, in Variant 2, each node gets
a turn at becoming the leader. Like in [11], the network specified in the model
consisted of three nodes.

Both variants were modelled in Promela. Spin [14] was used to generate the
complete product state space (with partial-order reduction), and the result was
given as input to our own implementation of the algorithms.

The results are summarized in Table 1. The first two sections of the table
contain the results for the instances in which accepting cycles were found (for
nested and SCC-based algorithms, resp.), whereas the third section contains the
examples that did not contain accepting cycles. In all tables, φ indicates the LTL
properties that were checked, which were taken from [11]. The ‘weak’ column
indicates whether the resulting automaton was weak or not, ‘states’ is the total
number of states in the product, and ‘trans’ the total number of transitions.
(Note that the exact numbers differ from [11] because we used our own models
of the algorithms.) The algorithms that were compared were:
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Table 1. Experimental results on leader election example

Ex. w/ cycles (nested) HPY GMZ New

φ weak states trans st tr dp st tr dp st tr dp

Variant 1
B no 16685 31405 385 409 386 371 392 372 214 215 215
E yes 4849 6081 129 130 130 129 129 130 129 129 130
H no 29564 46059 1765821769 582 17658 42916 582 1765821769 582
I no 29564 46059 1765821769 582 17658 42916 582 1765821769 582

Variant 2
A no 42564 77358 721816485 740 7218 16498 740 578613398 557
B no 49256 93765 721 746 722 707 729 708 439 440 440
E yes 14115 17794 367 368 368 367 367 368 367 367 368
G yes 28126 37457 3982 45891040 3982 81301040 3982 45881040
H no 111094181559 3312853575 906 33128106364 906 3312853575 906

Ex. w/ cycles (SCC) Couv/GV Couv GV

φ weak states trans st dp tr |Roots| tr |Current|
Variant 1

B no 16685 31405 214 215 215 129 215 214
E yes 4849 6081 129 130 129 129 129 129
H no 29564 46059 16132 328 38249 129 20009 4825
I no 29564 46059 16132 328 38249 129 20009 4825

Variant 2
A no 42564 77358 5786 557 13398 367 6983 561
B no 49256 93765 439 440 440 354 440 439
E yes 14115 17794 367 368 367 367 367 367
G yes 28126 37457 3982 1040 4588 379 4588 3982
H no 111094 181559 15259 798 36791 367 18998 14091

Ex. w/o cycles transitions explored stack size

φ states depth HPY GMZ New Couv GV |Roots| |Current |
Variant 1

A 13057 312 30554 41600 30554 41600 20800 129 4825
C 3925 113 9372 9372 9372 9372 4686 113 113
D 8964 312 20822 31868 20822 31868 15394 129 4825
F 8964 312 20822 31868 20822 31868 15394 129 4825
G 4849 312 6081 12162 6081 12162 6081 129 4825

Variant 2
C 3925 113 9372 9372 9372 9372 4686 113 113
D 27323 825 66522 100724 66522 100724 50362 367 14091
F 27323 825 64512 96704 64512 96704 48352 367 14091
I 83658 900 173557 247748 173557 247748 123874 367 14091
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– HPY: the algorithm of Holzmann et al [15], see Subsection 3.1;
– GMZ: the algorithm of Gastin et al [10], see Subsection 3.1;
– New: the new nested algorithm from Figure 3, see Subsection 3.2;
– Couv: the simplified algorithm of Couvreur [6], see Subsection 4.2;
– GV: the algorithm of Geldenhuys and Valmari [11], see Subsection 4.1.

To ensure comparable results, the order of successors given by post was the
same in all algorithms and was always followed. The following (implementation-
independent) statistics are provided: Columns marked ‘st’ indicate the number of
distinct states visited during the search; ‘tr’ indicates how many transitions were
generated by calls to post , i.e. individual transitions may count more than once.
‘dp’ indicates the maximal depth of the call stack. The length of counterexamples
was almost always equal to the value of ‘dp’, and only slightly less otherwise.
For the SCC-based algorithms, we also provide the maximal size of their explicit
state stacks. In the last section, the whole graph is explored, therefore the only
differences are in the transition count, and the size of the explicit state stacks.

The results demonstrate the most important observations made in the theo-
retical discussion of the algorithms, in particular:

– The new nested-DFS algorithm finds counterexamples faster than the other
nested algorithms in three cases. In those cases, the counterexamples are
found as fast as in the SCC algorithms, but that is just a lucky coincidence.

– The GMZ algorithm was never faster than the new algorithm, i.e. its extra
black search did not provide an advantage.

– The SCC-based algorithms found counterexamples earlier than HPY and
GMZ on all weak automata, and earlier than the new nested algorithm in
three cases. In all cases, earlier detection of counterexamples also translated
to shorter counterexamples, but this is not guaranteed in general.

– The Roots stack of Couvreur’s algorithm is often much smaller than the
Current stack of the GV algorithm; in return, it may touch transitions twice.

The relative differences between the algorithms could be made arbitrarily large
by choosing suitable examples – the purpose of this set of examples was just to
provide experimental evidence that the differences do exist. For a more mean-
ingful comparison in practice (i.e. in actual time and memory requirements)
one would have to integrate these algorithms into an actual model checker (e.g.
Spin), which would be a possible next step.

8 Conclusions

We have portrayed and compared a number of algorithms for finding accepting
cycles in Büchi automata. A new nested-DFS algorithm was proposed, which was
experimentally shown to perform better than existing ones. Moreover, we have
presented an adaptation of Couvreur’s SCC-based algorithm and shown that it
has important advantages, some of which were not previously observed. Thus,
we believe that both nested DFS and SCC algorithms have their place in LTL
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verification; the one uses less memory, the other finds counterexamples faster.
Moreover, we provide a refined judgement that takes into account structural
properties of the Büchi automaton.

There remains an interesting open question: Is there a linear-time algorithm
that combines the advantages of nested DFS and SCC-based algorithms, i.e. one
that finds counterexamples with minimal exploration and uses only a constant
number of bits per state?
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Abstract. We propose a novel algorithm for automata-based LTL model check-
ing that interleaves the construction of the generalized Büchi automaton for the
negation of the formula and the emptiness check. Our algorithm first converts the
LTL formula into a linear weak alternating automaton; configurations of the alter-
nating automaton correspond to the locations of a generalized Büchi automaton,
and a variant of Tarjan’s algorithm is used to decide the existence of an accept-
ing run of the product of the transition system and the automaton. Because we
avoid an explicit construction of the Büchi automaton, our approach can yield
significant improvements in runtime and memory, for large LTL formulas. The
algorithm has been implemented within the SPIN model checker, and we present
experimental results for some benchmark examples.

1 Introduction

The automata-based approach to linear-time temporal logic (LTL) model checking re-
duces the problem of deciding whether a formula ϕ holds of a transition system T
into two subproblems: first, one constructs an automaton A¬ϕ that accepts precisely
the models of ¬ϕ. Second, one uses graph-theoretical algorithms to decide whether
the product of T and A¬ϕ admits an accepting run; this is the case if and only if ϕ
does not hold of T . On-the-fly algorithms [2] avoid an explicit construction of the
product and are commonly used to decide the second problem. However, the construc-
tion of a non-deterministic Büchi (or generalized Büchi) automaton A¬ϕ is already
of complexity exponential in the length of ϕ, and several algorithms have been sug-
gested [3, 4, 5, 7, 18, 20] that improve on the classical method for computing Büchi au-
tomata [9]. Still, there are applications, for example when verifying liveness properties
over predicate abstractions [13], where the construction of A¬ϕ takes a significant frac-
tion of the overall verification time. The relative cost of computing A¬ϕ is particularly
high when ϕ does not hold of T , because acceptance cycles are often found rather
quickly when they exist.

In this paper we suggest an algorithm for LTL model checking that interleaves the
construction of (a structure equivalent to) the automaton and the test for non-emptiness.
Technically, the input to our algorithm is a transition system T and a linear weak alter-
nating automaton (LWAA, alternatively known as a very weak alternating automaton)
corresponding to ¬ϕ. The size of the LWAA is linear in the length of the LTL formula,
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and the time for its generation is insignificant. It can be considered as a symbolic repre-
sentation of the corresponding generalized Büchi automaton (GBA). LWAA have also
been employed as an intermediate format in the algorithms suggested by Gastin and
Oddoux [7], Fritz [5], and Schneider [17]. Our main contribution is the identification of
a class of “simple” LWAA whose acceptance criterion is defined in terms of the sets of
locations activated during a run, rather than the standard criterion in terms of automa-
ton transitions. To explore the product of the transition system and the configuration
graph of the LWAA, we employ a variant of Tarjan’s algorithm to search for a strongly
connected component that satisfies the automaton’s acceptance condition.

We have implemented the proposed algorithm as an alternative verification method
in the SPIN model checker [12], and we discuss some implementation options and report
on experimental results. Our implementation is available for download at
http://www.pst.ifi.lmu.de/projekte/lwaaspin/.

2 LTL and Linear Weak Alternating Automata

We define alternating ω-automata, especially LWAA, and present the translation from
propositional linear-time temporal logic LTL to LWAA. Throughout, we assume a fixed
finite set V of atomic propositions.

2.1 Linear Weak Alternating Automata

We consider automata that operate on temporal structures, i.e. ω-sequences of valu-
ations of V . Alternating automata combine the existential branching mode of non-
deterministic automata (i.e., choice) with its dual, universal branching, where several
successor locations are activated simultaneously. We present the transitions of alternat-
ing automata by associating with every location q∈Q a propositional formula δ(q) over
V and Q. For example, we interpret

δ(q1) = (v∧q2∧ (q1∨q3))∨ (¬w∧q1)∨w

as asserting that if location q1 is currently active and the current input satisfies v then
the automaton should simultaneously activate the locations q2 and either q1 or q3. If the
input satisfies ¬w then q1 should be activated. If the input satisfies w then no successor
locations need to be activated from q1. Otherwise (i.e., if the input satisfies ¬v), the au-
tomaton blocks because the transition formula can not be satisfied. At any point during
a run, a set of automaton locations (a configuration) will be active, and transitions are
required to satisfy the transition formulas of all active locations. Locations q ∈ Q may
only occur positively in transition formulas: locations cannot be inhibited. We use the
following generic definition of alternating ω-automata:

Definition 1. An alternating ω-automaton is a tuple A = (Q,q0,δ,Acc) where

– Q is a finite set (of locations) where Q∩V = /0,
– q0 ∈ Q is the initial location,
– δ : Q → B(Q∪V ) is the transition function that associates a propositional formula

δ(q) with every location q ∈ Q; locations in Q can only occur positively in δ(q),
– and Acc⊆ Qω is the acceptance condition.
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(b) Prefix of run dag with configurations.

Fig. 1. Visualization of alternating automata and run dags

When the transition formulas δ(q) are written in disjunctive normal form, the alter-
nating automaton can be visualized as a hypergraph. For example, Fig. 1(a) shows an
alternating ω-automaton and illustrates the above transition formula. We write q → q′
if q may activate q′, i.e. if q′ appears in δ(q).

Runs of an alternating ω-automaton over a temporal structure σ = s0s1 . . . are not
just sequences of locations but give rise to trees, due to universal branching. However,
different copies of the same target location can be identified, and we obtain a more
economical dag representation as illustrated in Fig. 1(b): the vertical “slices” of the dag
represent configurations that are active before reading the next input state.

We identify a set and the Boolean valuation that makes true precisely the elements
of the set. For example, we say that the sets {v,w,q2,q3} and {w} satisfy the formula
δ(q1) above. For a relation r ⊆ S×T , we denote its domain by dom(r). We denote the
image of a set A⊆ S under r by r(A); for x ∈ S we sometimes write r(x) for r({x}).
Definition 2. Let A = (Q,q0,δ,Acc) be an alternating ω-automaton and σ = s0s1 . . .,
where si ⊆ V , be a temporal structure. A run dag of A over σ is represented by the
ω-sequence Δ = e0e1 . . . of its edges ei ⊆Q×Q. The configurations c0c1 . . . of Δ, where
ci ⊆ Q, are inductively defined by c0 = {q0} and ci+1 = ei(ci). We require that for all
i ∈N, dom(ei)⊆ ci and that for all q ∈ ci, the valuation si∪ei(q) satisfies δ(q). A finite
run dag is a finite prefix of a run dag.

A path in a run dag Δ is a (finite or infinite) sequence π = p0 p1 . . . of locations pi ∈Q
such that p0 = q0 and (pi, pi+1) ∈ ei for all i. A run dag Δ is accepting iff π ∈ Acc holds
for all infinite paths π in Δ. The language L(A) is the set of words that admit some
accepting run dag.

Because locations do not occur negatively in transition formulas δ(q), it is easy to
see that whenever si ∪X satisfies δ(q) for some set X of locations, then so does si ∪Y
for any superset Y of X . However, the dag resulting from replacing X by Y will have
more paths, making the acceptance condition harder to satisfy. It is therefore enough to
consider only run dags that arise from minimal models of the transition formulas w.r.t.
the states of the temporal structure, activating as few successor locations as possible.

LWAA are alternating ω-automata whose accessibility relation determines a partial
order: q′ is reachable from q only if q′ is smaller or at most equal to q. We are interested
in LWAA with a co-Büchi acceptance condition:
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Definition 3. A (co-Büchi) linear weak alternating automaton A = (Q,q0,δ,F) is a
tuple where Q, q0, and δ are as in Def. 1 and F ⊆ Q is a set of locations, such that

– the relation �A defined by q′ �A q iff q →∗ q′ is a partial order on Q and
– the acceptance condition is given by

Acc = {p0 p1 . . . ∈ Qω : pi ∈ F for only finitely many i ∈ N}.
In particular, the hypergraph of the transitions of an LWAA does not contain cy-

cles other than self-loops, and run dags of LWAA do not contain “rising edges” as
in Fig. 1. It follows that every infinite path eventually remains stable at some loca-
tion q, and the acceptance condition requires that q /∈ F holds for that “limit location”.
LWAA characterize precisely the class of star-free ω-regular languages, which corre-
spond to first-order definable ω-languages and therefore also to the languages definable
by propositional LTL formulas [16, 22].

2.2 From LTL to LWAA

Formulas of LTL (over atomic propositions in V ) are built using the connectives of
propositional logic and the temporal operators X (next) and U (until). They are inter-
preted over a temporal structure σ = s0s1 . . . ∈ (2V )ω as follows; we write σ|i to denote
the suffix sisi+1 . . . of σ from state si:

σ |= p iff p ∈ s0 σ |= ϕ∧ψ iff σ |= ϕ and σ |= ψ
σ |= ¬ϕ iff σ �|= ϕ σ |= Xϕ iff σ|1 |= ϕ
σ |= ϕ U ψ iff for some i ∈ N, σ|i |= ψ and for all j < i, σ| j |= ϕ

We freely use the standard derived operators of propositional logic and the following
derived temporal connectives:

Fϕ ≡ true U ϕ (eventually ϕ)
Gϕ ≡ ¬F¬ϕ (always ϕ)

ϕ V ψ ≡ ¬(¬ϕ U ¬ψ) (ϕ releases ψ)

An LTL formula ϕ can be understood as defining the language

L(ϕ) = {σ ∈ (2V )ω : σ |= ϕ},
and the automata-theoretic approach to model checking builds on this identification of
formulas and languages, via an effective construction of automata Aϕ accepting the
language L(ϕ). The definition of an LWAA Aϕ is particularly simple [15]: without loss
of generality, we assume that LTL formulas are given in negation normal form (i.e.,
negation is applied only to propositions), and therefore include clauses for the dual op-
erators ∨ and V. The automaton is Aϕ = (Q,qϕ,δ,F) where Q contains a location qψ
for every subformula ψ of ϕ, with qϕ being the initial location. The transition formu-
las δ(qψ) are defined in Fig. 2(a); in particular, LTL operators are simply decomposed
according to their fixpoint characterizations. The set F of co-final locations consists of
all locations qψUχ ∈ Q that correspond to “until” subformulas of ϕ. It is easy to verify
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location q δ(q)

qψ (ψ a literal) ψ
qψ∧χ δ(qψ)∧δ(qχ)
qψ∨χ δ(qψ)∨δ(qχ)
qXψ qψ

qψUχ δ(qχ)∨ (δ(qψ)∧qψUχ)
qψVχ δ(qχ)∧ (δ(qψ)∨qψVχ)

(a) Transition formulas of Aϕ
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Fig. 2. Translation of LTL formulas into LWAA

that the resulting automaton Aϕ is an LWAA: for any locations qψ and qχ, the defini-
tion of δ(qψ) ensures that qψ → qχ holds only if χ is a subformula of ψ. Correctness
proofs for the construction can be found in [15, 23]; conversely, Rohde [16] and Löding
and Thomas [14] prove that for every LWAA A there is an LTL formula ϕA such that
L(ϕA) = L(A).

The number of subformulas of an LTL formula ϕ is linear in the length of ϕ, and
therefore so is the size of Aϕ. However, in practice the automaton should be minimized
further. Clearly, unreachable locations can be eliminated. Moreover, whenever there is
a choice between activating sets X or Y of locations where X ⊆Y from some location q,
the smaller set X should be preferred, and Y should be activated only if X cannot be. As
a simple example, we can define δ(qF p) = p∨ (¬p∧qF p) instead of δ(qF p) = p∨qF p.

Figure 2 shows two linear weak alternating automata obtained from LTL formulas
by applying this construction (the locations in F are indicated by double circles).

Further minimizations are less straightforward. Because the automaton structure
closely resembles the structure of the LTL formula, heuristics to minimize the LTL
formula [4, 18] are important. Fritz and Wilke [6] discuss more elaborate optimizations
based on simulation relations on the set Q of locations.

3 Deciding Language Emptiness for LWAA

In general, it is nontrivial to decide language emptiness for alternating ω-automata, due
to their intricate combinatorial structure: a configuration consists of a set of automaton
locations that have to “synchronize” on the current input state during a transition to a
successor configuration. The standard approach is therefore based on a translation to
non-deterministic Büchi automata, for which emptiness can be decided in linear time.
Unfortunately, this translation is of exponential complexity.

Linear weak alternating automata have a simpler combinatorial structure: the tran-
sition graph contains only trivial cycles, and therefore a run dag is non-accepting only
if it contains a path that ends in a self-loop at some location q ∈ F . This observation
gives rise to the following non-emptiness criterion for LWAA, which is closely related
to Theorem 2 of [7]:
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Theorem 4. Assume that A = (Q,q0,δ,F) is an LWAA. Then L(A) �= /0 if and only if
there exists a finite run dag Δ = e0e1 . . .en with configurations c0c1 . . .cn+1 over a finite
sequence s0 . . .sn of states and some k ≤ n such that

1. ck = cn+1 and
2. for every q ∈ F, one has (q,q) /∈ e j for some j where k ≤ j ≤ n.

Proof. “If”: Consider the infinite dag Δ′ = e0 . . .ek−1(ek . . .en)ω. Because ck = cn+1, it
is obvious that Δ′ is a run dag over σ = s0 . . .sk−1(sk . . .sn)ω; we now show that Δ′ is
accepting. Assume, to the contrary, that π = p0 p1 . . . is some infinite path in Δ′ such
that pi ∈ F holds for infinitely many i ∈ N. Because A is an LWAA, there exists some
m ∈N and some q ∈Q such that pi = q for all i≥m. It follows that (q,q) ∈ ei holds for
all i≥ m, which is impossible by assumption (2) and the construction of Δ′. Therefore,
Δ′ must be accepting, and L(A) �= /0.

“Only if”: Assume that σ = s0s1 . . .∈ L(A), and let Δ′ = e0e1 . . . be some accepting
run dag of A over σ. Since Q is finite, Δ′ can contain only finitely many different
configurations c0,c1, . . ., and there is some configuration c ⊆ Q such that ci = c for
infinitely many i ∈ N. Denote by i0 < i1 < . . . the ω-sequence of indexes such that
ci j = c. If there were some q∈F such that q∈ e j(q) for all j≥ i0 (implying in particular
that q ∈ c j for all j ≥ i0 by Def. 2) then Δ′ would contain an infinite path ending in a
self-loop at q, contradicting the assumption that Δ′ is accepting. Therefore, for every
q ∈ F there must be some jq ≥ i0 such that (q,q) /∈ e jq . Choosing k = i0 and n = im−1
for some m such that im > jq for all (finitely many) q ∈ F , we obtain a finite run dag Δ
as required. ��

Observe that Thm. 4 requires to inspect the transitions of the dag and not just the
configurations. In fact, a run dag may well be accepting although some location q ∈ F
is contained in all (or almost all) configurations. For example, consider the LWAA for
the formula GXF p: the location qF p will be active in every run dag from the second
configuration onward, even if the run dag is accepting. We now introduce a class of
LWAA for which it is enough to inspect the configurations.

Definition 5. An LWAA A = (Q,q0,δ,F) is simple if for all q ∈ F, all q′ ∈Q, all states
s⊆ V , and all X ,Y ⊆ Q not containing q, if s∪X ∪{q} |= δ(q′) and s∪Y |= δ(q) then
s∪X ∪Y |= δ(q′).

In other words, if a co-final location q can be activated from some location q′ for
some state s while it can be exited during the same transition, then q′ has an alternative
transition that avoids activating q, and this alternative transitions activates only locations
that would anyway have been activated by the joint transitions from q and q′. For simple
LWAA, non-emptiness can be decided on the basis of the visited configurations alone,
without memorizing the graph structure of the run dag.

Theorem 6. Assume that A = (Q,q0,δ,F) is a simple LWAA. Then L(A) �= /0 if and
only if there exists a finite run dag Δ = e0e1 . . .en with configurations c0c1 . . .cn+1 over
a finite sequence s0 . . .sn of states and some k ≤ n such that

1. ck = cn+1 and
2. for every q ∈ F, one has q /∈ c j for some j where k ≤ j ≤ n.
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Fig. 3. Illustration of the construction of Thm. 6

Proof. “If”: The assumption q /∈ c j and the requirement that dom(e j) ⊆ c j imply that
(q,q) /∈ e j, and therefore L(A) �= /0 follows using Thm. 4.

“Only if”: Assume that L(A) �= /0, obtain a finite run dag Δ satisfying the conditions
of Thm. 4, and let l = n− k + 1 denote the length of the loop. “Unwinding” Δ, we
obtain an infinite run dag e0e1 . . . over the temporal structure s0s1 . . . whose edges are
ei = ek+((i−k) mod l) for i > n, and similarly for the states si and the configurations ci.
W.l.o.g. we assume that the dag contains no unnecessary edges, i.e. that for all ei ∈ Δ,
(q,q′) ∈ ei holds only if q → q′.

We inductively construct an infinite run dag Δ′ = e′0e′1 . . . with configurations c′0c′1 . . .
such that c′i ⊆ ci as follows: let c′0 = c0 and for i < k, let e′i = ei and c′i+1 = ci+1. For
i ≥ k, assume that c′i has already been defined. Let Fi denote the set of q ∈ c′i ∩F such
that (q,q) /∈ ei but q ∈ ei(c′i), and for any q ∈ Fi let Q′

q denote the set of locations
q′ ∈ c′i such that (q′,q) ∈ ei and let Yq = ei(q). Because A is simple, it follows that
si∪ (ei(q′)\{q})∪Yq |= δ(q′), for all q ∈ Fi and q′ ∈Q′

q. We let e′i be obtained from the
restriction of ei to c′i by deleting all edges (q′,q) for q ∈ Fi and adding edges (q′,q′′) for
all q′ ∈ Q′

q and q′′ ∈ Yq, for q ∈ Fi. Clearly, this ensures that c′i+1 ⊆ ci+1 holds for the
resulting configuration and that c′i+1∩Fi = /0.

For any q ∈ Fi, the definition of an LWAA and the assumption that q /∈ Yq ensure
that q′′ ≺A q holds for all q′′ ∈ Yq, as well as q �A q′ for all q′ ∈ Q′

q. In particular, we
must have q′′ �= q′ for all q′′ ∈ Yq and q′ ∈ Q′

q, and therefore e′i does not contain more
self loops than ei: for all p ∈ Q, we have (p, p) ∈ e′i only if (p, p) ∈ ei.

Consequently, Δ′ is an accepting infinite run dag such that for every q ∈ F there
exists some j ≥ k such that q /∈ c′j. It now suffices to pick some n ≥ k satisfying the
conditions of the theorem; such an n exists because F is finite and Δ′ can contain only
finitely many different configurations. ��

Fig. 3 illustrates two accepting run dags for a simple LWAA: the dag shown above
satisfies the criterion of Thm. 4 although the co-final location corresponding to F p
remains active from the second configuration onward. The dag shown below is the result
of the transformation described in the proof, and indeed the location F p is infinitely
often inactive.
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We now show that the LWAA Aϕ for an LTL formula ϕ is simple provided ϕ does
not contain subformulas X(χ U χ′). Such subformulas are easily avoided because X
distributes over U. Actually, our implementation exploits the commutativity of X with
all LTL connectives to rewrite formulas such that no other temporal operators are in the
scope of X; this is useful for preliminary simplifications at the formula level. Also, the
transformations described at the end of Sect. 2.2 ensure that the LWAA remains simple.

Theorem 7. For any LTL formula ϕ that does not contain any subformula X(χ U χ′),
the automaton Aϕ is a simple LWAA.

Proof. Let Aϕ = (Q,qϕ,δ,F) and assume that q ∈ F , q′ ∈ Q, and X ,Y ⊆ Q are as in
Def. 5, in particular s∪X ∪{q} |= δ(q′) and s∪Y |= δ(q). The proof is by induction on
ψ where q′ = qψ.

ψ≡ (¬)v : δ(q′) = ψ, so we must have s |= δ(q′), and the assertion s∪X ∪Y |= δ(q′)
follows trivially.

ψ≡ χ⊗χ′, ⊗ ∈ {∧,∨} : δ(q′) = δ(qχ)⊗δ(qχ′), and the assertion follows easily from
the induction hypothesis.

ψ≡ Xχ : δ(q′) = qχ, and by assumption χ is not an U formula, so qχ /∈ F . In particular,
qχ �= q, and so the assumption s∪X ∪{q} |= δ(q′) implies that s∪X |= δ(q′), and
the assertion s∪X ∪Y |= δ(q′) follows by monotonicity.

ψ≡ χ U χ′ : δ(q′) = δ(qχ′)∨ (δ(qχ)∧ q′). In case s∪X ∪{q} |= δ(qχ′), the induction
hypothesis implies s∪X ∪Y |= δ(qχ′), hence also s∪X ∪Y |= δ(q′).
If s∪X ∪ {q} |= δ(qχ)∧ q′, we consider two cases: if q = q′ then s∪Y |= δ(q′)
holds by assumption. Moreover, s∪X ∪Y |= δ(qχ) holds by induction hypothesis,
and the assertion follows.
Otherwise, we must have q′ ∈ X . Again, s∪X ∪Y |= δ(qχ) follows from the induc-
tion hypothesis, and since q′ ∈ X it follows that s∪X ∪Y |= δ(qχ)∧q′.

ψ≡ χ V χ′ : δ(q′) = δ(qχ′)∧ (δ(qχ)∨ q′). In particular, s∪X ∪{q} |= δ(qχ′), and we
obtain s∪X ∪Y |= δ(qχ′) by induction hypothesis.
If s∪X ∪{q} |= δ(qχ), we similarly obtain s∪X ∪Y |= δ(qχ). Otherwise, note that
q �= q′ because q ∈ F and q′ /∈ F (since it is not an U formula). Therefore, we must
have s∪X |= q′, and a fortiori s∪X ∪Y |= q′, completing the proof. ��

Let us note in passing that simple LWAA are as expressive as LWAA, i.e. they
also characterize the class of star-free ω-regular languages: from [14, 16] we know that
for every LWAA A there is an LTL formula ϕA such that L(ϕA) = L(A). Since X
distributes over U, ϕA can be transformed into an equivalent formula ϕ′ of the form
required in Thm. 7, and Aϕ′ is a simple LWAA accepting the same language as A .

4 Model Checking Algorithm

We describe a model checking algorithm based on the nonemptiness criterion of Thm. 6,
and we discuss some design decisions encountered in our implementation. The algo-
rithm has been integrated within the LTL model checker SPIN, and we present some
results that have been obtained on benchmark examples.
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procedure Visit(s, C):
let c = (s,C) in

inComp[c] := false; root[c] := c; labels[c] := /0;
cnt[c] := cnt; cnt := cnt+1; seen := seen ∪ {c};
push(c, stack);
forall c’ = (s’,C’) in Succ(c) do
if c’ /∈ seen then Visit(s’,C’) end if;
if ¬inComp[c’] then
if cnt[root[c’]] < cnt[root[c]] then

labels[root[c’]] := labels[root[c’]] ∪ labels[root[c]];
root[c] := root[c’]

end if;
labels[root[c]] := labels[root[c]]

∪ (f_lwaa \ C); // f_lwaa ≡ co-final locations
if labels[root[c]] = f_lwaa then raise Good_Cycle end if;

end if;
end forall;
if root[c]=c then
repeat
d := pop(stack);
inComp[d] := true;

until d=c;
end if;

end let;
end Visit;

procedure Check:
stack := empty; seen := /0; cnt := 0;
Visit(init_ts, {init_lwaa}); // start with initial location

end Check;

Fig. 4. LWAA-based model checking algorithm

4.1 Adapting Tarjan’s Algorithm

Theorem 6 contains the core of our model checking algorithm: given the simple LWAA
A¬ϕ corresponding to the negation ¬ϕ of the property to be verified, we explore the
product of the transition system T and the graph of configurations of A¬ϕ, search-
ing for a strongly connected component that satisfies the acceptance condition. In fact,
in the light of Thm. 6 a simple LWAA A can alternatively be viewed as a symbolic
representation of a GBA whose locations are sets of locations of A , and that has an
acceptance condition per co-final location of A .

The traditional CVWY algorithm [2] for LTL model checking based on Büchi au-
tomata has been generalized for GBA by Tauriainen [21], but we find it easier to adapt
Tarjan’s algorithm [19] for finding strongly connected components in graphs. Figure 4
gives a pseudo-code representation of our algorithm. The depth-first search operates
on pairs (s,C) where s is a state of the transition system and C is a configuration of the
LWAA. Given a pair c = (s,C), the call to Succ computes the set succT (s)×succA(s,C)
containing all pairs c′ = (s′,C′) of successor states s′ of the transition system and suc-
cessor configurations C′ of the LWAA, i.e. those C′ which satisfy s∪C′ |= δ(q) for all
q ∈ C. Tarjan’s algorithm assigns a so-called root candidate root to each node of the
graph, which is the oldest node on the stack known to belong to the same SCC.
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In model checking, we are not so much interested in actually computing SCCs: it is
sufficient to verify that the acceptance criterion of Thm. 6 is met for some strongly con-
nected subgraph (SCS). To do so, we associate a labels field with the root candidate of
each SCC that accumulates the locations q∈F that have been found absent in some pair
(s,C) contained in the SCC. Whenever labels is found to contain all co-final states of
the LWAA (denoted by f_lwaa), the SCS must be accepting and the search is aborted.
Note that we need to maintain two stacks: one for the depth-first search recursion, and
one for identifying SCCs.

If an accepting SCS is found, we also want to produce a counter-example, and Tar-
jan’s algorithm is less convenient for this purpose than the CVWY algorithm whose re-
cursion stack contains the counter-example once a cycle has been detected. In our case,
neither the recursion stack nor the SCC stack represent a complete counter-example.
A counter-example can still be obtained by traversing the nodes of an accepting SCS
that have already been visited, without re-considering the transition system. We add
two pointers to our node representation in the SCC stack, representing “backward” and
“forward” links that point to the pair from which the current node was reached and to
the oldest pair on the stack that is a successor of the current pair. Indeed, one can show
that the subgraph of nodes on the SCC stack with neighborhood relation

{(c,c′) : c′ = forward(c) or c = backward(c′)}
also forms an SCS of the product graph. A counter-example can now be produced by
enforcing a visit to all the pairs that satisfy some acceptance condition.

4.2 Computation of Successor Configurations

The efficient generation of successor configurations in succA(s,C) is a crucial part of
our algorithm. Given a configuration C ⊆Q of the LWAA and a state s of the transition
system (which we identify with a valuation of the propositional variables), we need to
compute the set of all C′ such that s∪C′ |= δ(q) holds for all q ∈C. Moreover, we are
mainly interested in finding minimal successor configurations.

An elegant approach towards computing successor configurations makes use of
BDDs [1]. In fact, the transitions of an LWAA can be represented by a single BDD.
The set of minimal successor configurations is obtained by conjoining this BDD with
the BDD representations of the state s and the source configuration C, and then ex-
tracting the set of all satisfying valuations of the resulting BDD. Some experimentation
convinced us, however, that the resulting BDDs become too big for large LTL formulas.
Alternatively, one can store BDDs representing δ(q) for each location q and form the
conjunction of all δ(q) for q ∈C. Again, this approach turned out to consume too much
memory.

We finally resorted to using BDDs only as a representation of configurations. To do
so, we examine the hyperedges of the transition graph of the LWAA, which correspond
to the clauses of the disjunctive normal form of δ(q). For every location q ∈ C, we
compute the disjunction of its enabled transitions, and then take the conjunction over
all locations in C. We thus obtain

succA(s,C) =
∧
q∈C

( ∨
t∈enabled(s,q)

(t \V )
)
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as the BDD representing the set of successor configurations, where enabled(s,q) de-
notes the set of enabled transitions of q for state s, i.e. those transitions t for which
s∪Q |= t. Although this requires pre-computing a potentially exponentially large set of
transitions, this approach appears to be fastest for BDD-based calculation of successor
nodes.

We compare this approach to a direct calculation of successor configurations that
stores them as a sorted list, which is pruned to remove non-minimal successors. Al-
though the pruning step is of quadratic complexity in our implementation (it could be
improved to O(n logn) time), experiments showed that it pays off handsomely because
fewer nodes need to be explored in the graph search.

4.3 Adapting Spin

Either approach to computing successors works best if we can efficiently determine
the set of enabled transitions of an LWAA location. One way to do this is to generate
C source code for a given LWAA and then use the CPU arithmetics. The SPIN model
checker employs a similar approach, albeit for Büchi automata, and this is one of rea-
sons why we adapted it to use our algorithm.

SPIN [10, 12], is generally considered as one of the fastest and most complete tools
for protocol verification. For a given model (written in Promela) and Büchi automa-
ton (called “never-claim”), it generates C sources that are then compiled to produce a
model-specific model checker. SPIN also includes a translation from LTL formulas to
Büchi automata, but for our comparisons we used the LTL2BA tool due to Gastin and
Oddoux [7], which is faster by orders of magnitude for large LTL formulas.

Our adaptation, called LWAASPIN, adds the generation of LWAA to SPIN, and mod-
ifies the code generation to use Tarjan’s algorithm and on-the-fly calculation of succes-
sor configurations. This involved about 150 code changes, and added about 2600 lines
of code. SPIN includes elaborate optimizations, such as partial-order reduction, that
are independent of the use of non-deterministic or alternating automata and that can
therefore be used with our implementation as well. We have not yet adapted SPIN’s
optimizations of memory usage such as bitstate hashing to our algorithm, although we
see no obstacle in principle to do so.

4.4 Experimental Results

Geldenhuys and Valmari [8] have recently proposed to use Tarjan’s algorithm, but for
non-deterministic Büchi automata, and we have implemented their algorithm for com-
parison. We have not been able to reproduce their results indicating that Tarjan’s al-
gorithm outperforms the CVWY algorithm on nondeterministic Büchi automata (their
paper does not indicate which implementation of CVWY was used). In our experiments,
both algorithms perform head-to-head on most examples. We now describe the results
for the implementation based on LWAA.

For most examples, the search for an accepting SCS in the product graph is slower
than the runtime of the model checker produced by SPIN after LTL2BA has generated
the Büchi automaton. However, our algorithm can be considerably faster than gener-
ating the Büchi automaton and then checking the emptiness of the product automaton,
for large LTL formulas. However, note that both SPIN and our implementation use
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unguided search, and we can thus not exactly compare single instances of satisfiable
problems.

Large LTL formulas are not as common as one might expect. SPIN’s implementation
of the CVWY algorithm can handle weak fairness of processes directly; such conditions
do not have to be added to the LTL formula to be verified. We present two simple and
scalable examples: the dining philosophers problem and a binary semaphore protocol.

For the dining philosophers example, we want to verify that if every philosopher
holds exactly one fork infinitely often, then philosopher 1 will eventually eat:

GFhasFork1∧ . . .∧GFhasForkn ⇒ GFeat1

The model dinphiln denotes the situation where all n philosophers start with their
right-hand fork, which may lead to a deadlock. The model dinphilni avoids the dead-
lock by letting the n-th philosopher start with his left-hand fork.

For the binary semaphore example we claim that if strong fairness is ensured for
each process, all processes will eventually have been in their critical section:

(GFcanenter1 ⇒ GFenter1)∧ . . .∧ (GFcanentern ⇒ GFentern) ⇒ Fallcrit

By sfgoodn, we denote a constellation with n processes and strong fairness assumed
for each of them, while sfbadn denotes the same constellation, except with weak fair-
ness for process pn, which will allow the process to starve.

Table 1 contains timings (in seconds) for the different steps of the verification pro-
cess for SPIN 4.1.1 and for our LWAASPIN implementation. SPIN requires successive
invocations of ltl2ba, spin, gcc and pan; LWAASPIN combines the first two stages.
The times were measured on an Intel Pentium R© 4, 3.0 GHz computer with 1GB main
memory running Linux and without other significant process activity. Entries “o.o.t.”
indicate that the computation did not finish within 2 hours, while “o.o.m.” means “out
of memory”.

We can see that most of the time required by SPIN is spent on preparing the pan
model checker, either by calculating the non-deterministic Büchi automata for the din-
ing philosophers, or by handling the large automata sources for the binary semaphore
example. LWAASPIN significantly reduces the time taken for pre-processing.

The sizes of the generated automata are indicated in Tab. 2. “States seen” denotes
the number of distinct states (of the product automaton) encountered by LWAASPIN

using the direct successor configuration calculation approach. It should be noted that
the Büchi automata for the dining philosophers example are very small compared to
the size of the formula, and are in fact linear; even for the dinphil10i case, the au-
tomaton contains only 12 locations. This is not true for the semaphore example: the
Büchi automaton for sfgood7 contains 3025 locations and 23391 transitions. Still, one
advantage of using LTL2BA is that a Büchi automaton that has been computed once
can be stored and reused; this could reduce the overall verification time for the dining
philosophers example where the same formula is used for both the valid and the invalid
model.

We can draw two conclusions from our data: first, the preprocessing by lwaaspin
uses very little time because we do not have to calculate the Büchi automaton (although
strictly speaking our implementation is also exponential because it transforms the tran-
sition formulas into disjunctive normal form). This makes up for the usually inferior
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Table 1. Comparison of SPIN and LWAASPIN (BDD-less successor calculation)

Problem Counter- SPIN LWAASPIN

example ltl2ba spin gcc pan lwaaspin gcc pan

dinphil6 yes 0.431 0.019 0.601 0.079 0.019 0.579 0.163
dinphil8 yes 35.946 0.02 0.671 0.133 0.027 0.818 0.166
dinphil10 yes 3611.724 0.025 0.767 1.642 0.057 1.899 0.170
dinphil12 yes o.o.t. 0.141 6.644 0.206
dinphil14 yes 0.499 28.082 0.431
dinphil15 yes 0.972 o.o.m.
dinphil6i no 0.431 0.024 0.639 0.244 0.020 0.616 0.569
dinphil8i no 35.946 0.021 0.711 7.309 0.028 0.861 20.177
dinphil10i no 3611.724 0.025 0.807 722.874 0.070 2.623 623.760
dinphil11i no o.o.t. 0.099 3.438 o.o.m.

sfbad6 yes 1.904 0.912 7.284 0.025 0.066 2.211 1.312
sfbad7 yes 27.674 42.525 o.o.m. 0.179 7.423 7.848
sfbad8 yes 0.784 43.472 7.000
sfbad9 yes 2.627 o.o.m.
sfgood6 no 2.292 17.329 27.608 2.193 0.064 2.227 2.540
sfgood7 no 36.306 417.485 o.o.m. 0.357 8.214 15.940
sfgood8 no 0.718 42.688 140.130
sfgood9 no 2.634 o.o.m.

Table 2. Comparison of successor calculation, and sizes of the automata

Problem Successor calculation LWAA Büchi States
BDD direct Locations Transitions Locations Transitions seen

dinphil6 0.834 0.761 10 207 8 36 105
dinphil8 1.194 1.011 12 787 10 55 119
dinphil10 2.803 2.126 14 3095 12 78 133
dinphil6i 1.291 1.205 10 207 8 36 46165
dinphil8i 21.802 21.021 12 787 10 55 1.2 · 106

dinphil10i 643.006 626.453 14 3095 12 78 1.5 · 107

sfbad6 16.664 3.589 26 4140 252 1757 137882
sfbad7 354.874 15.461 30 16435 1292 8252 597686
sfgood6 32.261 4.831 26 4139 972 5872 221497
sfgood7 115.539 24.511 30 16434 3025 23391 872589

performance of our pan version. It also means that we can at least start a model check-
ing run, even for very large LTL formulas, in the hope of finding a counter-example.
Second, we can check larger LTL formulas. Ultimately, we encounter the same diffi-
culties as SPIN during both the gcc and the pan phases; after all, we are confronted
with a PSPACE-complete problem. The pre-processing phase could be further reduced
by avoiding the generation of an exponential number of transitions in the C sources,
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postponing more work to the pan executable. Besides, the bitstate hashing technique as
implemented in SPIN [11] could also be applied to Tarjan’s algorithm.

Table 2 also compares the two approaches to computing successor configurations
described in Sect. 4.2. The BDD-based approach appears to be less predictable and
never outperforms the direct computation, but further experience is necessary to better
understand the tradeoff.

5 Conclusion and Further Work

We have presented a novel algorithm for the classical problem of LTL model checking.
It uses an LWAA encoding of the LTL property as a symbolic representation of the
corresponding GBA, which is effectively generated on the fly during the state space
search, and never has to be stored explicitly. By adapting the SPIN model checker to
our approach, we validate that, for large LTL formulas, the time gained by avoiding the
expensive construction of a non-deterministic Büchi automaton more than makes up for
the runtime penalty due to the implicit GBA generation during model checking, and this
advantage does not appear to be offset by the simplifications applied to the intermediate
automata by algorithms such as LTL2BA. However, we do not yet really understand the
relationship between minimizations at the automaton level and the local optimizations
applied in our search.

We believe that our approach opens the way to verifying large LTL formulas by
model checking. Further work should investigate the possibilities that arise from this
opportunity, such as improving techniques for software model checking based on pred-
icate abstraction. Also, our implementation still leaves room for performance improve-
ments. In particular, the LWAA should be further minimized, the representation of tran-
sitions could be reconsidered, and the memory requirements could be reduced by clever
coding techniques.
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Abstract. The complementation problem for nondeterministic automata on in-
finite words has numerous applications in formal verification. In particular, the
language-containment problem, to which many verification problems are reduced,
involves complementation. Traditional optimal complementation constructions
are quite complicated and have not been implemented. Recently, we have de-
veloped an analysis techniques for runs of co-Büchi and generalized co-Büchi
automata and used the analysis to describe simpler optimal complementation con-
structions for Büchi and generalized Büchi automata. In this work, we extend the
analysis technique to Rabin and Streett automata, and use the analysis to describe
novel and simple complementation constructions for them.

1 Introduction

The complementation problem for nondeterministic automata on infinite words has nu-
merous applications in formal verification. In order to check that the language of an
automaton A1 is contained in the language of a second automaton A2, one checks that
the intersection of A1 with an automaton that complements A2 is empty. Many prob-
lems in verification and design are reduced to language containment. In model checking,
the automaton A1 corresponds to the system, and the automaton A2 corresponds to the
specification [Kur94,VW94]. While it is easy to complement specifications given in
terms of formulas in temporal logic, complementation of specifications given in terms
of automata is so problematic, that in practice the user is required to describe the speci-
fication in terms of a deterministic automaton (it is easy to complement a deterministic
automaton) [Kur87, HHK96], or to supply the automaton for the negation of the spec-
ification [Hol97]. Language containment is also useful in the context of abstraction,
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where a large system is replaced by an abstraction whose language is richer, yet its state
space is smaller. Such abstractions are particularly useful in the context of parametric
verification, where a parallel composition of an unbounded number of processes is ab-
stracted by a composition of a finite number of them [KP00, KPP03], and in the context
of inheritance and behavioral conformity in object-oriented analysis and design [HK02].
Other applications have to do with the fact that language equivalence is checked by two
language-containment tests. For example, the translators from LTL into automata have
reached a remarkable level of sophistication (cf. [GBS02]), and it is useful to check their
correctness, which involves a language-equivalence test.

Efforts to develop simple complementation constructions for nondeterministic au-
tomata started early in the 60s, motivated by decision problems of second order logics.
Büchi suggested a complementation construction for nondeterministic Büchi automata
that involved a complicated combinatorial argument and a doubly-exponential blow-up
in the state space [Büc62]. Thus, complementing an automaton with n states resulted in
an automaton with 22O(n)

states. In 1988, Safra introduced an optimal determinization
construction, which also enabled a 2O(n log n) complementation construction [Saf88],
matching the known lower bound [Mic88]. Another 2O(n log n) construction was sug-
gested by Klarlund in [Kla91], which circumvented the need for determinization. The
optimal constructions in [Saf88, Kla91] found theoretical applications in the establish-
ment of decision procedures (cf. [EJ91]), but the intricacy of the constructions makes
their implementation difficult. We know of no implementation of Klarlund’s algorithm,
and the implementation of Safra’s algorithm [THB95] has to cope with the rather in-
volved structure of the states in the complementary automaton. In [KV01] we described
a simple, optimal complementation of nondeterministic Büchi automata, based on the
analysis of runs of universal co-Büchi automata. A report on an implementation of this
construction can be found in [GKSV03]. The construction was extended to nondeter-
ministic generalized Büchi automata in [KV04]. Beyond its simplicity, the construction
has other attractive properties: it can be implemented symbolically [Mer00, KV01], it
is amenable to optimizations [GKSV03] and improvements [FKV04], and it naturally
generates certificates to the verification task [KV04].

Many of the applications described above for the language-containment problem
involve Rabin and Streett automata; cf. [LPS81, KPSZ02]. In particular, applications
that involve the composition of processes and objects are typically applied to systems
augmented with a strong-fairness condition, which corresponds to the Streett acceptance
condition. Since nondeterministic Büchi automata recognize all theω-regular languages,
the complementation procedure in [KV01] can be used in order to complement richer
classes of automata on infinite words, like nondeterministic Rabin and Streett automata:
given a Rabin or Streett automaton A, one can first translate A to a nondeterministic
Büchi automaton A′, and then complement A′. While such an approach is reasonable
for Rabin automata, it is not reasonable for Streett automata. Indeed, given a Rabin
automaton A with n states and index k, the automaton A′ has O(nk) states, resulting
in a complementary Büchi automaton with 2O(nk log nk) states. When A is a Streett au-
tomaton, however, A′ has O(n2k) states [SV89], resulting in a complementary Büchi
automaton with 2O(nk2k log n) states. The fact that going through Büchi automata leads
to a doubly-exponential construction makes the complementation problem for nonde-
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terministic Streett automata much harder than the corresponding problem for Rabin
automata. The first exponential complementation construction for Streett automata was
given in [SV89]. their bound for the size of complementary automaton is 2m5

, where m
is the size of the input automaton. Only in [Kla91, Saf92], Klarlund and Safra came up
with an improved construction, where the complementary automaton has 2O(nk log nk)

states (optimality of this bound is still open). As has been the case with the early op-
timal constructions for Büchi automata, the constructions in [Kla91, Saf92] are quite
complicated, and quite difficult to understand and teach.

In this work, we generalize the approach of [KV01, KV04] to nondeterministic Ra-
bin and Streett automata, and describe novel and simple complementation construction
for them. Given a nondeterministic Rabin automaton A with n states and index k, the
complementary automaton Ã we construct is a nondeterministic Büchi automaton with
2O(nk log n) states. When A is a Streett automaton, Ã has 2O(nk log nk) states. Our con-
struction is based on an analysis of the runs of the universal dual of A, by means of
ranks associated with states. In this sense, it is closely related to the progress-measures
introduced in [Kla90]. Note that while the constructions (Theorems 2 and 4) are simple,
the analysis (Lemmas 3 and 4) is quite nontrivial. As in the case of Büchi, the state
space of the complementary automaton consists of subsets of the state space of original
automaton and ranking functions for them, thus our constructions can be implemented
symbolically1, and we expect them to be optimizable. Note that in the case of Streett
automata, our blow-up matches the one of Klarlund and Safra, whereas in the case of Ra-
bin automata, we improve the known 2O(nk log nk) bound exponentially. At any rate, the
main advantage of our approach is in the simplicity of the construction; the complexity
analysis shows that, furthermore, there is no “penalty” for this simplicity.

2 Preliminaries

Automata on Infinite Words. Given an alphabet Σ, an infinite word over Σ is an infinite
sequence w = σ0 ·σ1 ·σ2 · · · of letters in Σ. We denote by wl the suffix σl ·σl+1 ·σl+2 · · ·
of w. An automaton on infinite words is A = 〈Σ,Q,Qin, ρ,α〉, where Σ is the input
alphabet, Q is a finite set of states, ρ : Q×Σ → 2Q is a transition function, Qin ⊆ Q is
a set of initial states, and α is an acceptance condition (a condition that defines a subset
of Qω). Intuitively, ρ(q, σ) is the set of states that A can move into when it is in state q
and it reads the letter σ. Since the transition function of A may specify many possible
transitions for each state and letter, A is not deterministic. If ρ is such that for every
q ∈ Q and σ ∈ Σ, we have that |ρ(q, σ)| = 1, then A is a deterministic automaton.

A run ofA on w is a function r : IN → Q where r(0) ∈ Qin and for every l ≥ 0, we
have r(l+1) ∈ ρ(r(l), σl). In automata over finite words, acceptance is defined according
to the last state visited by the run. When the words are infinite, there is no such thing
“last state”, and acceptance is defined according to the set Inf (r) of states that r visits
infinitely often, i.e., Inf (r) = {q ∈ Q : for infinitely many l ∈ IN,we have r(l) = q}.
As Q is finite, it is guaranteed that Inf (r) �= ∅. The way we refer to Inf (r) depends on

1 In contrast, the state space of the complementary automata in [Kla91, Saf92] consist of labeled
ordered trees, making a symbolic implementation difficult.



Complementation Constructions for Nondeterministic Automata on Infinite Words 209

the acceptance condition ofA. Several acceptance conditions are studied in the literature.
We consider here five:

– Büchi automata, where α ⊆ Q, and r is accepting iff Inf (r) ∩ α �= ∅.
– co-Büchi automata, where α ⊆ Q, and r is accepting iff Inf (r) ∩ α = ∅.
– Generalized Büchi automata, where α = {G1, G2, . . . , Gk} and r is accepting iff

Inf (r) ∩Gi �= ∅ for all 1 ≤ i ≤ k.
– Generalized co-Büchi automata, where α = {B1, B2, . . . , Bk} and r is accepting

iff Inf (r) ∩Bi = ∅ for some 1 ≤ i ≤ k.
– Rabin automata, where α = {〈G1, B1〉, 〈G2, B2〉, . . . , 〈Gk, Bk〉}, and r is accept-

ing iff for some 1 ≤ i ≤ k, we have that Inf (r) ∩Gi �= ∅ and Inf (r) ∩Bi = ∅.
– Streett automata, where α = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉}, and r is accept-

ing iff for all 1 ≤ i ≤ k, if Inf (r) ∩Bi �= ∅, then Inf (r) ∩Gi �= ∅.

The number k of sets in the generalized Büchi and co-Büchi acceptance conditions or
pairs in the Rabin and Streett acceptance conditions is called the index of α (orA). Note
that the Büchi and the co-Büchi conditions are dual, in the sense that a run r satisfies
a Büchi condition α iff r does not satisfy α when regarded as a co-Büchi condition.
Similarly, generalized Büchi and generalized co-Büchi are dual, and so are Rabin and
Streett.

SinceA is not deterministic, it may have many runs on w. In contrast, a deterministic
automaton has a single run on w. There are two dual ways in which we can refer to the
many runs. WhenA is a nondeterministic automaton, it accepts an input word w iff there
exists an accepting run ofA on w. WhenA is a universal automaton, it accepts an input
word w iff all the runs of A on w are accepting.

We use three-letter acronyms to describe types of automata. The first letter describes
the transition structure and is one of “D” (deterministic), “N” (nondeterministic), and
“U” (universal). The second letter describes the acceptance condition and is one of
“B” (Büchi), “C” (co-Büchi), “GB” (generalized Büchi), “GC” (generalized co-Büchi),
“S” (Streett), and “R” (Rabin). The third letter designates the objects accepted by the
automata; in this paper we are only concerned with “W” (infinite words). Thus, for ex-
ample, NBW designates a nondeterministic Büchi word automaton and UCW designates
a universal co-Büchi word automaton. For the case of Streett and Rabin automata we
sometimes also indicate the index of the automaton. For example, USW[1] is a universal
Streett word automaton with one pair in its acceptance condition.

In [KV01], we suggested the following approach for complementing nondetermin-
istic automata: in order to complement a nondeterministic automaton, first dualize the
transition function and the acceptance condition, and then translate the resulting univer-
sal automaton back to a nondeterministic one. By [MS87], the dual automaton accepts
the complementary language, and so does the nondeterministic automaton we end up
with. In the special case of Büchi automata, one starts with an NBW, dualize it to a UCW,
which accepts the complementary language, and then translates the UCW to an equiva-
lent NBW. Thus, rather than determinization, complementation is based on a translation
of universal automata to nondeterministic ones, which turned out to be much simpler.
In this paper, we extend this approach to Rabin and Streett automata.
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Run dags Consider a universal word automaton A = 〈Σ,Q,Qin, δ,α〉. Let |Q| = n.
The runs of A on a word w = σ0 · σ1 · · · can be arranged in an infinite dag (directed
acyclic graph) Gr = 〈V, E〉, where

– V ⊆ Q × IN is such that 〈q, l〉 ∈ V iff some run of A on w has r(l) = q. For
example, the first level of Gr contains the vertices Qin × {0}.

– E ⊆ ⋃l≥0(Q×{l})× (Q×{l+1}) is such that E(〈q, l〉, 〈q′, l+1〉) iff 〈q, l〉 ∈ V
and q′ ∈ δ(q, σl).

Thus, Gr embodies exactly all the runs ofA on w. We call Gr the run dag ofA on w, and
we say that Gr is accepting if all its paths satisfy the acceptance condition α. Note that
A accepts w iff Gr is accepting. We say that a vertex 〈q′, l′〉 is a successor of a vertex
〈q, l〉 iff E(〈q, l〉, 〈q′, l′〉). We say that 〈q′, l′〉 is reachable from 〈q, l〉 iff there exists a
sequence 〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of successive vertices such that 〈q, l〉 = 〈q0, l0〉,
and there exists i ≥ 0 such that 〈q′, l′〉 = 〈qi, li〉. For a set S ⊆ Q, we say that a vertex
〈q, l〉 of Gr is an S-vertex if q ∈ S.

Consider a (possibly finite) dag G ⊆ Gr. We say that a vertex 〈q, l〉 is finite in G if
only finitely many vertices in G are reachable from 〈q, l〉. For a set S ⊆ Q, we say that
a vertex 〈q, l〉 is S-free in G if all the vertices in G that are reachable from 〈q, l〉 are not
S-vertices. Note that, in particular, an S-free vertex is not an S-vertex. Finally, we say
that the width of G is d if d is the maximal number for which there are infinitely many
levels l such that there are d vertices of the form 〈q, l〉 in G. Note that the width of Gr is
at most n.

Runs of UCW and UGCW were studied in [KV01, KV04]. For x ∈ IN, let [x] denote
the set {0, 1, . . . , x}, and let [x]odd and [x]even denote the set of odd and even members
of [x], respectively. Consider a generalized co-Büchi condition α = {B1, . . . , Bk}. Let
I = {1, . . . , k}, and let ΩI = [2n]even ∪ ([2n]odd × I). We refer to the members of ΩI

in [2n]even as even ranks and refer to the members of ΩI in [2n]odd ×{j} as odd ranks
with index j. The members of ΩI are ordered according to their element in [2n]. Thus,
r ≤ r′, 〈r, i〉 ≤ r′, and r ≤ 〈r′, i′〉 iff r ≤ r′. In addition, 〈r, i〉 ≤ 〈r′, i′〉 iff r < r′ or
〈r, i〉 = 〈r′, i′〉.

Generalized Co-Büchi Ranking. Recall that a run r satisfies α if there is some j ∈ I
such that inf(r)∩Bj = ∅. A generalized co-Büchi ranking (GC-ranking, for short) for
Gr is a function f : V → ΩI that satisfies the following conditions:

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) = 〈r, j〉, then q �∈ Bj .
2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, we have f(〈q′, l + 1〉) ≤ f(〈q, l〉).

Thus, a ranking associates with each vertex in Gr a rank in ΩI so that ranks along paths
are not increased, and Bj-vertices cannot get an odd rank with index j. Note that each
path in Gr eventually gets trapped in some rank. We say that the ranking f is an odd
GC-ranking if all the paths of Gr eventually get trapped in an odd rank. Formally, f is
odd iff for all paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in Gr, there is l ≥ 0 such that f(〈ql, l〉)
is odd, and for all l′ ≥ l, we have f(〈ql′ , l′〉) = f(〈ql, l〉). Note that, equivalently, f is
odd if every path of Gr has infinitely many vertices with odd ranks.
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Lemma 1. [KV04] The following are equivalent.

1. All the paths of Gr satisfy the generalized co-Büchi condition {B1, . . . , Bk}.
2. There is an odd GC-ranking for Gr.

Proof: Assume first that there is an odd GC-ranking for Gr. Then, every path in Gr

eventually gets trapped in an odd rank with index j, for some j ∈ I . Hence, as Bj-
vertices cannot get an odd rank with index j, all the paths of Gr has some j ∈ I for
which they visit Bj only finitely often, and we are done.

For the other direction, given an accepting run dag Gr, we define an infinite sequence
G0 ⊇ G1 ⊇ G2 ⊇ . . . of dags inductively as follows. For G ⊆ Gr and j ∈ I , we say that
j is helpful for G if G contains a Bj-free vertex.

– G0 = Gr.
– G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}.
– Let j ∈ I be the minimal2 index helpful for G2i+1, if exists.

Then, G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is Bj-free in G2i+1}.

It can be shown that for every i ≥ 0, unless the dag G2i+1 is empty, then there is
some j ∈ I that is helpful for G2i+1. Since the successors of a Bj-free vertex are also
Bj-free, and since all the vertices in G2i+1 have at least one successor, the transition
from G2i+1 to G2i+2 involves the removal of an infinite path from G2i+1. Since the width
of G0 is bounded by n, it follows that the width of G2i is at most n − i. Hence, G2n is
finite, and G2n+1 is empty.

Each vertex 〈q, l〉 in Gr has a unique index i ≥ 1 such that 〈q, l〉 is either finite in
G2i or Bj-free in G2i+1, for some j ∈ I . Thus, the sequence of dags induces a function
f : V → ΩI , where f(〈q, l〉) is 2i, if 〈q, l〉 is finite in G2i, and is 〈2i + 1, j〉, if j is the
minimal index helpful for G2i+1 and 〈q, l〉 is Bj-free in G2i+1. It can be shown that the
function f is an odd GC-ranking3.

A co-Büchi-ranking for Gr (C-ranking, for short) can be defined as a special case of
GC-ranking. Since I = {1}, we omit the indices from the odd ranks, thus a C-ranking
is a function f : V → [2n]. It can be shown (a special case of Lemma 1, see [KV01]
for details) that all the paths of Gr have only finitely many α-vertices iff there is an odd
C-ranking for Gr.

3 NRW Complementation

In this section we analyze runs of USW and use the analysis in order to translate USW to
NBW. The translation is then used for NRW complementation. We start with USW[1],
and then generalize to USW with an arbitrary index.

2 The fact that j is minimal is not important, any choice will do.
3 The proof in [KV04] refers to a slightly different definition of GC-ranking, but it is easy to

modify it to the definition we use here.
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Streett[1]-ranking. We first consider USW[1], where α = {〈B,G〉} contains a single
pair, and Gr is accepting iff all paths in Gr have finitely many B-vertices or infinitely
many G-vertices.

A Streett[1]-ranking for Gr (S[1]-ranking, for short) is a function f : V → [2n] that
satisfies the following two conditions:

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q �∈ B.
2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, either f(〈q′, l + 1〉) ≤ f(〈q, l〉) or q ∈ G.

Thus, an S[1]-ranking associates with each vertex in Gr a rank in [2n] so that the ranks
along paths may increase only when a G-vertex is visited, and no B-vertex is odd. Note
that each path in Gr either visit G-vertices infinitely often or eventually gets trapped
in some rank. We say that the S[1]-ranking f is an odd S[1]-ranking if all the paths
of Gr either visit G-vertices infinitely often or eventually gets trapped in an odd rank.
Formally, f is odd iff for all paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in Gr, either ql ∈ G for
infinitely many l ≥ 0 or there is l ≥ 0 such that f(〈ql, l〉) is odd, and for all l′ ≥ l, we
have f(〈ql′ , l′〉) = f(〈ql, l〉). Note that, equivalently, f is odd if every path of Gr has
infinitely many G-vertices or infinitely many odd vertices.

Lemma 2. The following are equivalent.

1. All the paths of Gr satisfy the Streett[1] condition {〈B,G〉}.
2. There is an odd S[1]-ranking for Gr.

Lemma 2 implies that A accepts a word w iff there is a ranking for the run dag Gr

ofA on w such that every infinite path in Gr has infinitely many G-vertices or infinitely
many odd vertices. Intuitively, the lemma suggests that the two requirements that the
Streett[1] condition involves (finitely many B or infinitely many G) can be reduced to a
new condition of only one type (infinitely often, for odd or G-vertices). This intuition is
formalized in the translation of USW[1] to NBW, which is described (as a special case
of a translation of USW to NBW) in Theorem 2.

Theorem 1. Let A be a USW[1] with n states. There is an NBW A′ with 2O(n log n)

states such that L(A′) = L(A).

Streett-ranking. We now turn to consider a general Streett conditionα = {〈B1, G1〉, . . . ,
〈Bk, Gk〉}, where Gr is accepting iff all paths in Gr have, for all 1 ≤ i ≤ k, finitely
many Bi-vertices or infinitely many Gi-vertices.

Consider a function f : V → [2n]k. For an index 1 ≤ i ≤ k, we use f(v)[i] to
denote the i-th element in f(v). We call f(v)[i] the i-rank of v (according to f ). A
Streett-ranking (S-ranking, for short) for Gr is a function f : V → [2n]k that satisfies
the following two conditions:

1. For all vertices 〈q, l〉 ∈ V and 1 ≤ i ≤ k, if f(〈q, l〉)[i] is odd, then q �∈ Bi.
2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E and 1 ≤ i ≤ k, either f(〈q′, l + 1〉)[i] ≤

f(〈q, l〉)[i] or q ∈ Gi.

Thus, an S-ranking f associates with each vertex in Gr a vector of k ranks in [2n] so that
for all 1 ≤ i ≤ k, the projection f [i] of f is an S[1]-ranking with respect to 〈Bi, Gi〉.
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We say that the ranking f is an odd S-ranking if, for all 1 ≤ i ≤ k, the S[1]-ranking
f [i] is odd. Thus, for all 1 ≤ i ≤ k, all the paths of Gr either visit Gi-vertices infinitely
often or eventually get trapped in an odd i-rank. Formally, f is odd iff for all paths
〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in Gr and for all 1 ≤ i ≤ k, either ql ∈ Gi for infinitely
many l ≥ 0 or there is l ≥ 0 such that f(〈ql, l〉)[i] is odd, and for all l′ ≥ l, we have
f(〈ql′ , l′〉)[i] = f(〈ql, l〉)[i]. Note that, equivalently, f is odd if every path of Gr has, for
all 1 ≤ i ≤ k infinitely many Gi-vertices or infinitely many vertices with an odd i-rank.

Lemma 3. The following are equivalent.

1. All the paths of Gr satisfy the Streett condition {〈B1, G1〉, . . . , 〈Bk, Gk〉}.
2. There is an odd S-ranking for Gr.

Proof: Immediate from Lemma 2 and the definition of an odd S-ranking as the com-
position of k odd S[1]-rankings for the pairs in the Streett condition.

From USW to NBW. A USWAwith α = {〈B1, G1〉, 〈B2, G2〉, . . . , 〈Bk, Gk〉} is equiv-
alent to the intersection of the k USW[1] Ai obtained from A by taking the acceptance
condition to be 〈Bi, Gi〉. It is not surprising, then, that the definition of an odd S-ranking
f requires f to be an odd S[1]-ranking with respect to all pairs in α. Following this
approach, translating A to an NBW A′ can proceed by first translating each USW[1]
Ai into an equivalent NBW A′

i as described in Theorem 1, and then defining A′ as the
product of theA′

i’s (see [Cho74] for the product construction for NBW). Such a product
would have at most k · 3nk · (2n + 1)nk states. We now describe a direct construction,
which follows from the analysis of S-ranking, and which is exponentially better.

Theorem 2. Let A be a USW with n states and index k. There is an NBW A′ with
2O(nk log n) states such that L(A′) = L(A).

Proof: Let A = 〈Σ,Q,Qin, δ, {〈B1, G1〉, . . . , 〈Bk, Gk〉}〉 When A′ reads a word w,
it guesses an odd S-ranking for the run dag Gr of A on w. At a given point of a run of
A′, it keeps in its memory a whole level of Gr and a guess for the rank of the vertices
at this level. In order to make sure that for all 1 ≤ i ≤ k, all the paths of Gr either visit
i-odd or Gi-vertices infinitely often,A′ has a flag 1 ≤ i ≤ k and it remembers the set of
states that owe a visit to i-odd or Gi-vertices. Once the set becomes empty, i is changed
to (i mod k) + 1.

Before we define A′, we need some notations. A level ranking for A is a function
g : Q → [2n]k, such that for all 1 ≤ i ≤ k, if g(q)[i] is odd, then q �∈ Bi. Let R be the
set of all level rankings. For a subset S of Q and a letter σ, let δ(S, σ) =

⋃
s∈S δ(s, σ).

Note that if level l in Gr, for l ≥ 0, contains the states in S, and the (l + 1)-th letter in
w is σ, then level l + 1 of Gr contains the states in δ(S, σ).

For two level rankings g and g′ inR and a letterσ, we say that g′ covers 〈g, σ〉 if for all
q and q′ in Q, if q′ ∈ δ(q, σ), then for all 1 ≤ i ≤ k, either q ∈ Gi or g′(q′)[i] ≤ g(q)[i].
Thus, if g describes the ranks of the vertices of level l, and the (l + 1)-th letter in w is
σ, then g′ is a possible level ranking for level l + 1. Finally, for g ∈ R and 1 ≤ i ≤ k,
let good(g, i) = Gi ∪ {q : g(q)[i] ∈ [2n]odd}. Thus, a state of Q is in good(g, i) if it
belongs to Gi or has an i-odd rank.
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Now, A′ = 〈Σ,Q′, Q′
in, δ

′,α′〉, where

– Q′ = 2Q × 2Q ×R× {1, . . . , k}, where a state 〈S,O, g, i〉 ∈ Q′ indicates that the
current level of the dag contains the states in S, the pair that is now examined is i,
the set O ⊆ S contains states along paths that have not visited a Gi-vertex or an
i-odd vertex since the last time O has been empty, and g is the guessed level ranking
for the current level.4

– Q′
in = Qin × {∅} ×R× {1}.

– δ′ is defined, for all 〈S,O, g, i〉 ∈ Q′ and σ ∈ Σ, as follows.
• If O �= ∅, then δ′(〈S,O, g, i〉, σ) = {〈δ(S, σ), δ(O, σ) \ good(g′, i), g′, i〉 :

g′ covers 〈g, σ〉}.
• If O = ∅, then δ′(〈S,O, g, i〉, σ) = {〈δ(S, σ), δ(S, σ) \ good(g′, (i mod k) +

1), g′, (i mod k) + 1〉 : g′ covers
〈g, σ〉}.

– α′ = 2Q × {∅} ×R× {1, . . . , k}.

Since there are at most (2n + 1)nk level rankings, the number of states in A′ is at most
k · 3n · (2n + 1)nk = 2O(nk log n).

For the proof of Theorem 1, note that when A is a USW[1], there is no need for the
index component in the state space, and A′ has 2O(n log n) states.

Theorem 3. Let A be an NRW with n states and index k. There is an NBW Ã with
2O(nk log n) states such that L(Ã) = Σω \ L(A).

Proof: The automaton Ã is obtained by translating the USW that dualizes A to an
NBW.

Note that the previous complementation constructions for NRW involve a 2O(nk log nk)

blow up, as they first translate the NRW into an NBW with O(nk) states, and com-
plementing an NBW with m states results in an NBW with 2O(m log m) states [Saf88].
Thus, our construction eliminates the term k from the exponent. In addition, the con-
stants hiding in the O() notation are exponentially better in our approach. Indeed, the
number of states of an NBW equivalent to an NRW[k] with n states may be 2nk. On
the other hand, our ranks refer to the original state space of the automaton, and there
is no need to double it for each pair. For example, when k = 1, going through NBW
results in a complementary NBW with at most 32n ·(4n+1)2n states, whereas our direct
construction results in an NBW with at most 3n · (2n + 1)n states.

4 NSW Complementation

In this section we analyze runs of URW and use the analysis in order to translate URW
to NBW. The translation is then used for NSW complementation.

4 Note that a naive direct construction results in an NBW whose state space contains k subsets
of Q, each acting as the “O component” of a pair in α. Since, however, the O component of
all pairs should become empty infinitely often, it is possible to optimize the naive construction
and keep track of a single pair (and its corresponding O component) at a time.
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Rabin-ranking. Consider a Rabin condition α = {〈G1, B1〉, 〈G2, B2〉, . . . , 〈Gk, Bk〉}.
Let I = {1, . . . , k}, and let ΩI = [2n]even ∪ ([2n]odd × I). Recall that a run r satisfies
α iff there is 1 ≤ i ≤ k such that Inf (r) ∩Gi �= ∅ and Inf (r) ∩Bi = ∅. A Rabin rank
is a tuple 〈〈r1, i1〉, . . . , 〈rm−1, im−1〉, rm〉 of m ranks in ΩI , for 1 ≤ m ≤ k + 1. The
ij’s are distinct, and except for the last rank, which is even, all the ranks are odd. We
refer to m as the width of the rank, and to the j-th element of a Rabin rank γ as γ[j]. Let
DI denote the set of Rabin ranks (with respect to α).

A Rabin ranking (R-ranking, for short) for Gr is a function f : V → DI that satisfies
the following conditions:

1. For all 〈q, l〉 ∈ V , let m be the width of f(〈q, l〉). Then,
(a) For all 1 ≤ j < m− 1, if f(〈q, l〉)[j] = 〈rj , ij〉, then q �∈ Gij .
(b) For all 1 ≤ j < m, if f(〈q, l〉)[j] = 〈rj , ij〉, then q �∈ Bij .

2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, let m and m′ be the widths of f(〈q, l〉) and
f(〈q′, l + 1〉), respectively, and let m′′ = min{m,m′}. Then,
(a) For all 1 ≤ j ≤ m′′ − 1, if f(〈q′, l + 1〉)[h] = f(〈q, l〉)[h] for all 1 ≤ h < j,

then f(〈q′, l + 1〉)[j] ≤ f(〈q, l〉)[j].
(b) If f(〈q′, l + 1〉)[h] = f(〈q, l〉)[h] for all 1 ≤ h < m′′, then either f(〈q′, l +

1〉)[m′′] ≤ f(〈q, l〉)[m′′], or m′′ > 1, f(〈q, l〉)[m′′ − 1] = 〈rm′′−1, im′′−1〉,
and q ∈ Gim′′−1

.

Thus, if f(〈q, l〉) = γ and f(〈q′, l + 1〉) = γ′, then Condition 2 guarantees that for
all 1 ≤ j ≤ m′′ − 1, if γ′[j] > γ[j], then there is 1 ≤ h < j such that γ′[h] �= γ[h]. In
addition, if γ′[m′′] > γ[m′′], then either there is 1 ≤ h < j such that γ′[h] �= γ[h], or
m′′ > 1, f(〈q, l〉)[m′′ − 1] = 〈rm′′−1, im′′−1〉, and q ∈ Gim′′−1

. We refer to the latter
conjunction as the bridge disjunct of Condition 2b.

For a vertex v ∈ V , the width of v, denoted width(v), is the width of f(v). A vertex
with width 1 is even, and a vertex with width at least 2 is odd. We say that a vertex 〈q, l〉
is happy (with respect to f ) if f(〈q, l〉) = 〈〈r1, i1〉, . . . , 〈rm−1, im−1〉, rm〉 for some
m > 1 and q ∈ Gim−1 . Note that all happy vertices are odd. An R-ranking is an odd
R-ranking if all infinite paths have infinitely many happy vertices.

Lemma 4. The following are equivalent.

1. All the paths of Gr satisfy the Rabin condition {〈G1, B1〉, . . . , 〈Gk, Bk〉}.
2. There is an odd R-ranking for Gr.

Intuitively, Lemma 4 suggests that the requirements that the Rabin condition involves,
which are of different types (infinitely often, for the Gi elements, and finitely often, for
the Bi elements), can be reduced to a new condition of only one type (infinitely often, for
happy vertices). This intuition is formalized in the construction below. Note that while
the proof of Lemma 4 is complicated, the construction that follows is simple.

Theorem 4. Let A be a URW with n states and index k. There is an NBW A′ with
2O(nk log nk) states such that L(A′) = L(A).

Proof: Let A = 〈Σ,Q,Qin, δ, {〈G1, B1〉, . . . , 〈Gk, Bk〉}〉 When A′ reads a word w,
it guesses an odd R-ranking for the run dag Gr of A on w. At a given point of a run of



216 O. Kupferman and M.Y. Vardi

A′, it keeps in its memory a whole level of Gr and a guess for the ranks of the vertices
at this level. In order to make sure that all the infinite paths of Gr visit happy vertices
infinitely often, A′ remembers the set of states that owe a visit to happy vertices.

Before we defineA′, we need to adjust our notations to ranks inDI . A level ranking
for A is a function g : Q → DI , such that for all q ∈ Q with width(g(q)) = m, and
for all 1 ≤ j < m − 1, if g(q)[j] = 〈rj , ij〉, then q �∈ Gij

. Also, for all 1 ≤ j < m, if
g(q)[j] = 〈rj , ij〉, then q �∈ Bij

. The correspondence between the above conditions and
Condition 1 in the definition of R-ranking guarantees that g describes possible ranks for
vertices in some level of Gr. LetR be the set of all level rankings. Note that since a Rabin
rank inDI can be characterized by at mostk elements in [2n]odd, one element in [2n]even,
and a permutation of I , the size of DI is at most nk · (n + 1) · k!. Accordingly, there
are at most 2O(nk log nk) level rankings. For two level rankings g and g′ in R, a subset
S ⊆ Q, and a letter σ, we say that g′ covers 〈g, S, σ〉 if for all q ∈ S and q′ ∈ δ(q, σ),
the following holds. Let m and m′ be the widths of g(q) and g(q′), respectively, and let
m′′ = min{m,m′}. Then,

1. For all 1 ≤ j ≤ m′′ − 1, if g′(q′)[h] = g(q)[h] for all 1 ≤ h < j, then g′(q′)[j] ≤
g(q)[j].

2. If g(q′)[h] = g(q)[h] for all 1 ≤ h < m′′, then either g′(q′)[m′′] ≤ g(q)[m′′], or
m′′ > 1, g(q)[m′′ − 1] = 〈rm′′−1, im′′−1〉, and q ∈ Gim′′−1

.

The correspondence between the above conditions and Condition 2 in the definition of
R-ranking guarantees that if S is the set of states in level l, the (l + 1)-th letter in the
word is σ, g describes the ranks of vertices of level l, and g′ covers 〈g, S, σ〉, then g′ is
a possible level ranking for level l + 1. Finally, for g ∈ R, let good(g) ⊆ Q be the set
of states q such that the width of g(q) is m > 1, g(q)[m− 1] = 〈rm−1, im−1〉 for some
rm−1 ∈ [2n]odd, and q ∈ Gim−1 .

Now, A′ = 〈Σ,Q′, Q′
in, δ

′,α′〉, where

– Q′ = 2Q × 2Q × R, where a state 〈S,O, g〉 ∈ Q′ indicates that the current level
of the dag contains the states in S, the set O ⊆ S contains states along paths that
have not visited a happy vertex since the last time O has been empty, and g is the
guessed level ranking for the current level.

– Q′
in = Qin × {∅} ×R.

– δ′ is defined, for all 〈S,O, g〉 ∈ Q′ and σ ∈ Σ, as follows.

• If O �= ∅, then δ′(〈S,O, g〉, σ) = {〈δ(S, σ), δ(O, σ)\good(g′), g′〉 : g′ covers
〈g, S, σ〉}.

• If O = ∅, then δ′(〈S,O, g〉, σ) = {〈δ(S, σ), δ(S, σ) \ good(g′), g′〉 : g′ covers
〈g, S, σ〉}.

– α′ = 2Q × {∅} ×R.

Since there are at most 2O(nk log nk) level rankings, the number of states inA′ is at most
3n · 2O(nk log nk) = 2O(nk log nk).

Remark 1. Below we discuss some variants of R-ranking, which still satisfy Lemma 4,
and therefore, with a corresponding adjustment of the definition of “covers”, can be used
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in order to translate URW to NBW. First, it can be shown that Condition 1a is not essential.
In other words, the proof of Lemma 4 stays valid when we allow a vertex 〈q, l〉 with
q ∈ Gij

to have f(〈q, l〉)[j] = 〈rj , ij〉, for j < width(〈q, l〉). Condition 1a, however,
has the advantage that it restricts the state space of the NBW. Second, the indices ij
of a Rabin rank 〈〈r1, i1〉, . . . , 〈rm−1, im−1〉, rm〉 need not be distinct. Again, the proof
stays valid if we allow an index to repeat. As with Condition 1a, the fact the indices are
distinct restricts the state space. On the other hand, in a symbolic implementation, such
a restriction may cause complications.

Theorem 5. Let A be an NSW with n states and index k. There is an NBW Ã with
2O(nk log nk) states such that L(Ã) = Σω \ L(A).

Proof: The automaton Ã is obtained by translating the URW that dualizes A to an
NBW.

5 Language Containment

Recall that a primary application of complementation constructions is language contain-
ment: in order to check that the language of an automatonA1 is contained in the language
of a second automatonA2, one checks that the intersection ofA1 with an automaton that
complements A2 is empty. In this section we demonstrate the simplicity and advantage
of our construction with respect to this application. We first show how an automaton
that complements A2, when constructed using our construction, can be optimized in
the process of its intersection with A1. We then describe the product P of A1 with the
complementing automaton, namely the automaton whose emptiness should be tested in
order to check whether L(A1) ⊆ L(A2). Our goal in describing P is to highlight the
simplicity of the language-containment algorithm. To the best of our knowledge, this is
the first time that such a product P is described in a few lines.

5.1 Optimizations That Depend on A1

Consider a language-containment problem L(A1) ⊆ L(A2). The solution that follows
from our approach is to start by dualizingA2, translate the result (a universal automaton
Ã2) to a nondeterministic automaton Ñ2, which complementsA2, and check the empti-
ness of the product A1 × Ñ2. Consider the universal automaton Ã2. Our translation of
Ã2 to Ñ2 is based on ranks we associate with vertices that appear in run dags of Ã2. Let
n be the number of states on A2. The range of the ranks is 0, . . . , 2n, and, depending
on the type of Ã2, they may be associated with indices, and/or arranged in tuples. The
bound 2n on the maximal rank follows from the fact that the width of the run dag is
bounded by n. To see the latter, consider a run dag Gr that embodies all the runs of Ã2
on a word w = σ0 · σ1 · · ·. A level l ≥ 0 of Gr contains exactly all vertices 〈q, l〉 such
that a run of A2 on w visits q after reading the prefix σ0 · σ1 . . . σl−1. Thus, since there
are n different states, there may be at most n different such vertices in each level.

In fact, we can tighten the width of Gr further. Indeed, the structure of A2 may
guarantee that some states may not appear together in the same level. For example,
if q0 and q1 are reachable only after reading even-length and odd-length prefixes of w,
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respectively, then q0 and q1 cannot appear together in the same level in the run dag ofA2
onw, which enables us to bound its width byn−1. In general, since the construction of Ñ2
takes into an account all words w ∈ Σω, we need to check the “mutual exclusiveness” of
q0 and q1 with respect to all words. This can be done using the subset construction [RS59]:
let A2 = 〈Σ,Q2, Q

2
in, δ2,α2〉, and let Ad

2 = 〈Σ, 2Q2 , {Q2
in}, δd

2〉 be the automaton
without acceptance condition obtained by applying the subset construction toA2. Thus,
for all S ∈ 2Q2 , we have that δd

2(S, σ) =
⋃

s∈S δ2(s, σ). Now, let reach(A2) ⊆ 2Q2 be
the set of states reachable in Ad

2 from {Q2
in}. Thus, S ⊆ Q2 is in reach(A2) iff there is

a finite word w ∈ Σ∗ such that δd
2({Q2

in}, w) = S. Then, reach(A2) contains exactly
all sets S of states such that all the states in S may appear in the same level of some
run dag of A2. Accordingly, we can tighten our bound on the maximal width a run dag
may have to rmax = maxS∈reach(A2) |S|, and tighten our bound on the maximal rank
to 2rmax. If Q2 ∈ reach(A2), then rmax = n, and we do not optimize. Often, however,
the structure of A2 does prevent some states to appear together on the same level. As
we shall explain now, the presence of A1 can make the above optimization even more
effective.

It is easy to see that some states may be mutual exclusive (i.e., cannot appear in
the same level in the run dag) with respect to some words and not be mutual exclusive
with respect to other words. The definition of rmax requires mutual exclusiveness with
respect to all words. On the other hand, checking L(A1) ⊆ L(A2), we only have to
consider mutual exclusiveness with respect to words in L(A1). Note that the fewer
words we have to consider, the more likely we are to get mutual exclusiveness, and then
tighten the bound further. Checking mutual exclusiveness with respect to L(A1) can be
done by taking the product of A1 with Ad

2. Formally, let A1 = 〈Σ,Q1, Q
1
in, δ1,α1〉,

and let reach(A2|A1) ⊆ 2Q2 be the set of states that are reachable in the product of
A1 with Ad

2, projected on the state space of Ad
2. Thus, S ⊆ Q2 is in reach(A2|A1)

iff there is a finite word w ∈ Σ∗ and a state s′ ∈ Q1 such that s′ ∈ δ1(Q1
in, w)

and δd
2({Q2

in}, w) = S. Note that reach(A2|A1) excludes from reach(A2) sets that
are reachable in A2 only via words that are not reachable in A1. Accordingly, we can
tighten our bound on the maximal width a run dag of A2 on a word in L(A1) may
have to rmax

A1
= maxS∈reach(A2|A1 ) |S|, and tighten our bound on the maximal rank in

the construction of Ñ2, which is designated for checking the containment of L(A1) in
L(A2), to 2rmax

A1
.

Note that since we actually need to consider only accepting run dags, we can optimize
further by removal of empty states from the participating automata. For example, if a
state s ∈ Q2 is such that L(As

2) = ∅, we remove s from the range of δ2. In particular,
it follows that A2 has no rejecting sinks, and the range of δ2 may contain the empty set.
This removes from reach(A2) sets S that may appear in the same level in a rejecting run
dag of A2 but cannot appear in the same level in an accepting run dag. Consequently,
rmax may become smaller. Similarly, by removing (in addition) empty states from A1,
we restrict reach(A2|A1) to sets S of states such that all the states in S may appear
in the same level of some (accepting) run dag of A2 on a word in L(A1). Finally, we
can also remove from reach(A2|A1) sets S induced only by pairs 〈s, S〉 ∈ Q1 × 2Q2

for which the product of A1 and Ad
2 with initial state 〈s, S〉 is empty. Indeed, such sets

cannot appear in the same level of an accepting run dag of A2 on a word in L(A1).
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5.2 The Product Automaton

We describe the construction for the most complicated case, whereA1 andA2 are Streett
automata. Other cases are similar, with modified definitions for R, covers, and good, as
in the proofs of Theorems 3 and 5.

Let A1 = 〈Σ,Q1, Q
1
in, δ1,α1〉 and A2 = 〈Σ,Q2, Q

2
in, δ2,α2〉. Also, let R, covers,

and good, be as in the proof Theorem 5, with respect to the components of A2. As
explained in Section 5.1, the ranks in the range DI of the level rankings in R can be
restricted to Rabin ranks in which ΩI = [2rmax

A1
]even ∪ ([2rmax

A1
]odd × I). We define the

product of A1 and Ñ2 as an NSW P = 〈Σ,Q′, Q′
in, δ

′,α′〉, where

– Q′ = Q1 × 2Q2 × 2Q2 ×R.
– Q′

in = Q1
in × {Q2

in} × {∅} ×R.
– δ′ is defined, for all 〈q, S,O, g〉 ∈ Q′ and σ ∈ Σ, as follows.

• If O �= ∅, then δ′(〈q, S,O, g〉, σ) =
{〈q′, δ(S, σ), δ(O, σ) \ good(g′), g′〉 : q′ ∈ δ1(q, σ) and g′ covers 〈g, S, σ〉}.

• If O = ∅, then δ′(〈q′, S,O, g〉, σ) =
{〈q′, δ(S, σ), δ(S, σ) \ good(g′), g′〉 : q′ ∈ δ1(q, σ) and g′ covers 〈g, S, σ〉}.

– α′ = (
⋃

〈G,B〉∈α1
{〈G × 2Q2 × 2Q2 × R, B × 2Q2 × 2Q2 × R〉}) × {〈Q′, Q1 ×

2Q2 × {∅} ×R〉}.

6 Discussion

Complementation is a key construction in formal verification. At the same time, comple-
mentation of automata on infinite words is widely perceived to be rather difficult, unlike
the straightforward subset construction for automata on finite words [RS59]. Checking
the syllabi of several formal-verification courses, one finds that while most mention the
closure under complementation for automata on infinite words, only a few actually teach
a complementation construction. Indeed, not too many researchers are sufficiently famil-
iar with the details of known constructions, and many believe that most of the students
would not be able to follow the intricate technical details.

This situation has led to a perception that complementation constructions for au-
tomata on infinite words are rather impractical. Indeed, an attempt to implement Safra’s
construction led support to this perception [THB95]. Consequently, there is extensive
work on simulation-based abstraction and refinement, cf. [LT87,AL91, DHW91], and
research has focused on ways in which fair simulation can approximate language con-
tainment [HKR02], and ways in which the complementation construction can be circum-
vented by manually bridging the gap between fair simulation and language containment
[Att99, KPP03].

We believe that this perception ought to be challenged. It is true that language con-
tainment is PSPACE-complete [MS73], whereas simulation can be solved in polynomial
time [HHK95]. Nevertheless, the exponential blow-up of complementation, which is the
reason underlying the PSPACE-hardness of language containment, is a worst-case anal-
ysis. As we have learned recently in the context of reasoning about automata on finite
words, worst-case blow-ups rarely occur in typical practice [EKM98]. This is confirmed
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by our recent experience with the complementation construction for Büchi automata
[GKSV03]. It is worth remembering also that the translation from LTL to Büchi au-
tomata [VW94] was for several years considered impractical because of its worst-case
exponential blow-up. We also found the construction of [KV01] quite easy to teach,
covering it in a two-hour lecture5. We believe that the complementation problem for
automata on infinite words ought to be investigated further by the research community,
in order to make complementation constructions routinely applicable in formal verifi-
cation. We hope that our results here for Rabin and Streett automata would constitute a
significant contribution in that direction.
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[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12, Stanford, 1962.

[Cho74] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. Journal of
CSS, 8:117–141, 1974.

[DHW91] D.L. Dill, A.J. Hu, and H. Wong-Toi. Checking for language inclusion using simula-
tion relations. In Proc. 3rd CAV, LNCS 575, pages 255–265, 1991

[EJ91] E.A. Emerson and C. Jutla. Tree automata, μ-calculus and determinacy. In Proc.
32nd FOCS pages 368–377, 1991.
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Abstract. Computation Tree Logic (CTL) has been used quite exten-
sively and successfully to reason about finite state systems. Algorithms
have been developed for checking if a particular model satisfies a CTL
formula (model checking) as well as for deciding if a CTL formula is
valid or satisfiable. Initially, these algorithms explicitly constructed the
model being checked or the model demonstrating satisfiability. A major
breakthrough in CTL model checking occurred when researchers started
representing the model implicitly via Boolean formulas. The use of or-
dered binary decision diagrams (OBDDs) as an efficient representation
for these formulas led to a large jump in the size of the models that can
be checked. This paper presents a way to encode the satisfiability algo-
rithms for CTL in terms of Boolean formulas as well, so that symbolic
model checking techniques using OBDDs can be exploited.

Keywords: CTL, satisfiability, validity, BDDs, tableau

1 Introduction

Temporal logic has been used quite extensively and successfully to reason about
finite state systems, including both hardware and software systems. While there
are different logics to choose from, this discussion focuses on Computation Tree
Logic (CTL) proposed by Clarke and Emerson [1]. (For a survey of various
temporal logics, see Chapter 16 of Handbook of Theoretical Computer Science,
Volume B [2].)

Initial efforts with CTL focused on algorithms for checking if a particular
structure satisfies a formula (model checking) as well as algorithms for check-
ing if there exists a structure that satisfies a formula (satisfiability) [1]. These
algorithms required the explicit construction of a finite-state transition system
either to check that it satisfies the formula or in an attempt to prove that the
formula is satisfiable. In general, the size of the finite-state transition system is
exponential in the number of atomic propositions in the case of model checking
and exponential in the size of the formula in the case of satisfiability. This placed
a severe limitation on the size of the problems that could be handled by these
algorithms.

A major breakthrough occurred when researchers started using boolean for-
mulas to represent the transition relation of the finite-state system as well as
sets of states in the system implicitly. This technique, called symbolic model
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checking, avoids explicitly constructing the graph for the system [3, 4]. The key
was to use Ordered Binary Decision Diagrams (OBDDs), which are a canonical
representation for quantified boolean formulas [5]. This allowed researchers to
verify systems with more than 1020 states [3].

While much effort continued to be focused on symbolic model checking, very
little effort was placed on using these symbolic techniques in the area of CTL
satisfiability checking. In particular, the algorithms for CTL satisfiability rely
on the construction of an explicit model for the formula in question either by
constructing a tableau [1] or by constructing a Hintikka structure [6]. This pa-
per presents a satisfiability algorithm for CTL which uses OBDDs to implicitly
construct a model satisfying the formula. This work depends heavily on the
explicit-state Hintikka structure algorithm presented in [6] and is inspired by
a similar use of OBDDs for LTL satisfiability and model checking presented in
[3, 7].

2 Syntax and Semantics

2.1 Syntax

We provide the syntax and semantics of CTL in a slightly non-standard way
which will be useful later when describing the algorithm. The set of well formed
formulas (hereafter shortened to formulas) are defined inductively as follows:

– The constants tt(true) and ff(false) are formulas.
– If p is an atomic proposition, then p is a formula.
– If f is a formula, then so is ¬f .
– If f and g are formulas, then so are f ∧ g and f ∨ g.
– If f is a formula, then so are EXf and AXf .
– If f and g are formulas, then so are E[f U g], A[f U g], E[f R g], and

A[f R g].

We will also use the following common abbreviations: f → g for ¬f ∨ g,
f ↔ g for (f → g ∧ g → f), EFf for E[tt U f ], AFf for A[tt U f ], EGf for
E[ff R f ], and AGf for A[ff R f ].

2.2 Structures

CTL formulas are interpreted over Kripke structures. A Kripke structure M =
(S,L,R) consists of

– S - a set of states
– L : S → 2AP - a labeling of each state with atomic propositions true in the

state
– R ⊆ S × S - a transition relation

Note that the transition relation R is required to be total which means every
state has a successor. (In other words ∀s ∈ S . ∃s′ ∈ S . R(s, s′)). A path,
π = s0, s1, s2, . . . is an infinite sequence of states such that (si, si+1) ∈ R for all
i ≥ 0.
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2.3 Semantics

The truth or falsity of a formula f in a state s of a structure M = (S,L,R)
is given by the inductively defined relation |=. In the definition below, p is an
atomic proposition while f and g are arbitrary formulas.

– M, s |= p iff p ∈ L(s).
– M, s |= ¬f iff M, s �|= f .
– M, s |= f ∧ g iff M, s |= f and M, s |= f .
– M, s |= f ∨ g iff M, s |= f or M, s |= f .
– M, s |= EXf iff there exists a state s′ such that R(s, s′) and M, s′ |= f .
– M, s |= AXf iff for all states s′, R(s, s′) implies M, s′ |= f .
– M, s |= E[f U g] iff there exists a path s0, s1, s2, . . . where s0 = s and there

exists k ≥ 0 such that M, sk |= g and M, si |= f for all 0 ≤ i < k.
– M, s |= A[f U g] iff for all paths s0, s1, s2, . . . where s0 = s, there exists

k ≥ 0 such that M, sk |= g and M, si |= f for all 0 ≤ i < k.
– M, s |= E[f R g] iff there exists a path s0, s1, s2, . . . where s0 = s, such that

for all k > 0, if M, si �|= f for all 0 ≤ i < k, then M, sk |= g
– M, s |= A[f R g] iff for all paths s0, s1, s2, . . . where s0 = s, and for all k > 0,

if M, si �|= f for all 0 ≤ i < k, then M, sk |= g

Note that we have the following dualities:

– ¬(f ∧ g) ≡ ¬f ∨ ¬g
– ¬EXf ≡ AX¬f
– ¬E[f U g] ≡ A[¬f R ¬g]
– ¬E[f R g] ≡ A[¬f U ¬g]

Also note the following semantic identities which will be used when trying to
construct a model that satisfies a formula.

– E[f U g] ≡ g ∨ (f ∧EXE[f U g])
– A[f U g] ≡ g ∨ (f ∧AXA[f U g])
– E[f R g] ≡ g ∧ (f ∨EXE[f R g])
– A[f R g] ≡ g ∧ (f ∨AXA[f R g])

The modalities EU and AU are the until operator. For example, E[f U g]
is interpreted to mean there is a path on which g eventually holds and on which
f holds until g holds. The abbreviation EFf (AFf) is interpreted to mean that
along some path (along all paths) f eventually holds at some point in the future
while the abbreviation EGf (AGf) means that there along some path (along
on all paths) f holds globally. The modalities ER and AR are not as common
nor as intuitive as the other modalities. The modality R is often translated as
“release”. E[f R g] can be understood to mean that f releases g in the sense
that along some path g is required to be true unless f becomes true in which
case g is no longer required to be true after that state. In other words, E[f R g]
has the same meaning as EGg∨E[g U f ∧g]. The importance of ER and AR is
that they are the duals of the until operator and they can be used to define EG
and AG. The R modality was introduced in [8] (although V was used instead
of the currently popular R) precisely because a dual for the until operator was
required.
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3 Hintikka Structures

We now proceed to describe the algorithm for trying to construct a satisfying
model for a formula f given in [2]. First, we assume that the formula f is in
negation normal form, which means all negations are pushed inward as far as
possible using the dualities in Section 2.3. For any formula g, we will use ∼g to
represent the formula ¬g after being converted into negation normal form.

The closure of a formula f , denoted cl(f), is the smallest set of formulas such
that

– Every subformula of f is a member of cl(f).
– If E[f U g] ∈ cl(f) or E[f R g] ∈ cl(f), then, EXE[f U g] ∈ cl(f) or

EXE[f R g] ∈ cl(f) respectively.
– If A[f U g] ∈ cl(f) or A[f R g] ∈ cl(f), then, AXA[f U g] ∈ cl(f) or

AXA[f R g] ∈ cl(f) respectively.

For example,

cl(AFp ∧EXq) = {AFp ∧EXq,AFp,AXAFp, p,EXq, q}

We will use φ = AFp ∧ EXq as a running example. The extended closure of f ,
denoted ecl(f), is defined to be cl(f) ∪ { ∼g | g ∈ cl(f) }. For example,

ecl(φ) = cl(φ) ∪ {EG¬p ∨AX¬q,EG¬p,EXEG¬p,¬p,AX¬q,¬q}

An elementary formula is one which is either a literal, a negated literal, or
a formula whose main connective is EX or AX. We will use el(f) to denote
the elementary formulas of f (the members of ecl(f) that are elementary). Any
other formula is said to be nonelementary. For example,

el(φ) = {AXAFp, p,EXq, q,EXEG¬p,¬p,AX¬q,¬q}

Recall that all formulas are assumed to be in negation normal form, so all nonele-
mentary formulas have a binary main connective. By using the semantic iden-
tities from Section 2.3, every nonelementary formula can be viewed as either a
conjunctive formula α ≡ α1∧α2 or as a disjunctive formula β ≡ β1∨β2. Table 1
contains the classifications for all nonelementary formulas.

Table 1. Classification of nonelementary formulas

α = f ∧ g α1 = f α2 = g
α = E[f R g] α1 = g α2 = f ∨ EXE[f R g]
α = A[f R g] α1 = g α2 = f ∨ AXA[f R g]
β = f ∨ g β1 = f β2 = g
β = E[f U g] β1 = g β2 = f ∧ EXE[f U g]
β = A[f U g] β1 = g β2 = f ∧ AXA[f U g]
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The model we will try to build for the formula f will have states labeled with
subsets of ecl(f). We will need to impose certain consistency requirements when
constructing the model. The labeling L : S → 2ecl(f) must satisfy the following
consistency rules for all states s in the model:

– Propositional Consistency Rules:
(PC0) ∼p ∈ L(s) implies p �∈ L(s).
(PC1) α ∈ L(s) implies α1 ∈ L(s) and α2 ∈ L(s).
(PC2) β ∈ L(s) implies β1 ∈ L(s) or β2 ∈ L(s).
(PC3) tt ∈ L(s)
(PC4) ff �∈ L(s)

– Local Consistency Rules:
(LC0) AXf ∈ L(s) implies that for every successor t of s, f ∈ L(t).
(LC1) EXf ∈ L(s) implies that there exists a successor t of s, such that

f ∈ L(t).

A fragment is a triple (Ŝ, R̂, L̂). It is similar to a structure, except that R̂
need not be total. Nodes that do not have successors are called frontier nodes
while nodes with at least one successor are called interior nodes. The fragments
we choose will be directed acyclic graphs contained within a particular structure
M = (S,R,L) that is under consideration. So Ŝ ⊆ S, R̂ ⊆ R, and L̂ = L|Ŝ . In
addition, all nodes in a fragment satisfy rules PC0-PC4 and LC0 above, and
all interior nodes also satisfy LC1.

It turns out that we do not have to construct the full model for a formula f
to determine satisfiability. Instead, we will construct a pseudo-Hintikka structure
for f . A pseudo-Hintikka structure for f is a structure M = (S,R,L) where:

1. f ∈ L(s) for some state s ∈ S.
2. All states satisfy the consistency rules PC0-PC4 and LC0-LC1.
3. All eventualities are pseudo-fulfilled as follows:

– A[f U g] ∈ L(s) implies there is a fragment contained in M and rooted
at s such that for all frontier nodes t, g ∈ L(t) and for all interior nodes
u, f ∈ L(u).

– E[f U g] ∈ L(s) implies there is a fragment contained in M and rooted
at s such that for some frontier node t, g ∈ L(t) and for all interior nodes
u, f ∈ L(u).

In [2], Emerson proves that a formula f is satisfiable if and only if there
is a finite pseudo-Hintikka structure for f . He proceeds to give the following
algorithm for deciding the satisfiability of a formula f :

1. Build an initial tableau T = (S,R,L) for f as follows:
– Define S to be the collection of maximal, propositionally consistent sub-

sets of ecl(f). In other words, ∀s ∈ S .∀g ∈ ecl(f) . {g,∼g} ∩ s �= ∅ and
s satisfies PC0 - PC4.

– Define R to be S×S−{ (s, t) | for some AXg ∈ ecl(f),AXg ∈ s and g �∈ t }.
This ensures that T satisfies LC0.

– Define L(s) = s for all s ∈ S.
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2. Ensure the tableau also satisfies pseudo-fulfillment of eventualities and LC1.
This can be done by repeatedly applying the following rules until a fixpoint
is reached:
– Delete any state that has no successors.
– Delete any state that violates LC1.
– Delete any state s that is labeled with an eventuality that does not have

a fragment certifying pseudo-fulfillment of r.
3. The formula f is satisfiable if and only if the final tableau has a state labeled

with f .

It is important to note that the final tableau is not necessarily a model for
the formula, although Emerson does describe how a satisfying model could be
extracted from this final tableau [2].

4 OBDD Encoding

The algorithm presented in Section 3 assumes an explicit representation of the
tableau as a finite-state transition system. OBDDs have been used as an effi-
cient, implicit representation for transition systems and for sets of states in both
CTL and LTL model checking as well as in deciding satisfiability for LTL for-
mulas [3, 7]. We use similar techniques to decide satisfiability for CTL formulas
by encoding the initial tableau (step 1) and the fixpoint computation (step 2)
in terms of OBDDs. When the final tableau is computed, its states and transi-
tion relation will also be represented as OBDDs and we can simply ask if the
conjunction of the OBDD for the states with the OBDD for the formula f is
satisfiable (is not the false OBDD).

First, we observe that when constructing the initial tableau T = (S,R,L)
for a formula f , the propositional consistency rules PC0-PC2 mean that the
labeling on the elementary formulas in a state completely determines the labeling
on all formulas in ecl(f) in that state, so we could define S to be 2el(f). In fact,
we only need half of the elementary formulas since the label on g also determines
the label on ∼g. (Recall that ∼g is the result of pushing in the negation in the
formula ¬g.) Therefore, we can use S = 2el+(f) where el+(f) are the formulas in
ecl(f) that are either atomic propositions or have EX as the main connective.
Again, using φ = AFp ∧EXq, we have

el+(φ) = {p,EXEG¬p, q,EXq}
The set el+(f) forms the set of boolean state variables. Each unique as-

signment to these state variables yields a unique state in the tableau. To help
avoid confusion, we use 〈g〉 to denote the state variable for g ∈ el+(f) and
Vf = { 〈g〉 | g ∈ el+(f) } to denote the set of all state variables in the tableau
for f . We then encode states of the tableau as well as the transition relation
of the tableau using quantified boolean formulas (QBF) over Vf which will be
represented using OBDDs. For example, any QBF formula over Vf can be used
to encode the set of states in which that formula evaluates to true.
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The labeling function L can easily be implemented using OBDDs. Using Ta-
ble 1, and the fact that all EX and all AX formulas will correspond to variables
(possibly negated) in Vf , we can translate any formula in g ∈ ecl(f) into an
equivalent boolean formula g over Vf without temporal operators as follows:

– p = 〈p〉 for all atomic propositions p.
– ¬p = ¬〈p〉 for all atomic propositions p.
– g ∧ h = g ∧ h
– g ∨ h = g ∨ h
– EXg = 〈EXg〉
– AXg = ¬〈EX ∼g〉
– E[g U h] = h ∨ (g ∧ 〈EXE[g U h]〉)
– A[g U h] = h ∨ (g ∧ ¬〈EXE[ ∼g R ∼h]〉)
– E[g R h] = h ∧ (g ∨ 〈EXE[g R h]〉)
– A[g R h] = h ∧ (g ∨ ¬〈EXE[ ∼g U ∼h]〉)

With this translation, we can determine if a state is labeled with g by checking
if g evaluates to true in the state. In other words, L(s) = { g | s |= g }. Clearly,
this definition for L satisfies the propositional consistency rules PC0-PC4.

We now have constructed S and L for the tableau. To construct the transition
relation R, we create a second copy of state variables, V ′

f = { v′ | v ∈ Vf }, to
represent the next state in a transition. In what follows, V and V ′ are boolean
vectors representing a truth assignment to the variables in Vf and V ′

f respectively.
A boolean vector V is identified with the state s that is equal to the set of
variables in Vf assigned true by V . (Recall that in our tableau, S = 2el+(f) and
so each state is a subset of el+(f)). The tableau transition relation R(V,V ′) is
encoded as a QBF formula over Vf ∪ V ′

f that evaluates to true whenever there
is a transition from the state encoded by the assignment V to the state encoded
by the assignment V ′.

Recall that the transition relation for the tableau has a transition between
every pair of states except where this would violate rule LC0. In other words,
there should be a transition from s to s′ whenever∧

AXg∈ecl(f)

AXg ∈ L(s) ⇒ g ∈ L(s′)

is satisfied. This can be translated into a boolean formula over Vf ∪ V ′
f as

R(V,V ′) =
∧

〈EXg〉∈Vf

〈EXg〉 ∨ ∼g′

where for any QBF formula h over Vf , h′ is identical to h except that every
occurrence of a variable v ∈ Vf is replaced by the corresponding next state
variable v′ ∈ V ′

f . So 〈EXg〉 is a variable in Vf and would have a value assigned
to it by the boolean vector V while ∼g′ is a formula over the variables in V ′

f which
would be assigned values from the boolean vector V ′. Note that this formula for
R restricts outgoing transitions from any state s labeled with AXg, since then
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Fig. 1. Constructing a tableau for φ = AFp ∧ EXq

AXg = ¬〈EX ∼g〉 would be true. This would require all outgoing transitions
from the state to satisfy ∼∼g′ = g′ thus satisfying rule LC0.

Figure 1 shows the states in the initial tableau for φ = AFp∧EXq. So that it
is easier to follow the discussion, the figure uses the label AXAFp which is actu-
ally not in el+(φ) instead of EXEG¬p which is. Since AXAFp ≡ ¬EXEG¬p,
states in which AXAFp does not appear are exactly the states where EXEG¬p
should appear. Recall that AFp is characterized by the disjunctive formula
p ∨ AXAFp. Therefore, states which are labeled with neither p nor AXAFp
(and which are drawn with dashed lines for ease of identification) are the states
that would also not be labeled with AFp. In this example, there is a transition
from every state to every state, except that states labeled with AXAFp do not
have transitions to dashed states (states that would not be labeled with AFp).
Also, states not labeled with EXq would be labeled with AX¬q and so would
have no outgoing transitions to q labeled states.

Step two of the satisfiability algorithm requires us to remove “bad” states
from the tableau. We use a QBF formula to encode the states of the original
tableau that have not been removed. Let S(V ) be a QBF formula over Vf en-
coding all the currently valid states in the tableau. The initial value for S(V )
is the formula tt. We now show how to update S(V ) to remove “bad” states as
defined in the explicit tableau algorithm. In what follows, R(V,V ′) is the QBF
encoding of the transition relation described earlier.

To remove all states that have no successors, we place a new restriction on
valid states. The formula

SUCC(V ) = ∃V ′ . R(V,V ′) ∧ S(V ′)
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is satisfied by all states with an outgoing transition to a valid state. In other
words, this formula encodes states that have a successor that is a valid state.
To restrict ourselves to such states (and thus delete dead end nodes), we take
the conjunction of the current set of valid states together with the formula to
get an updated set of valid states: S(V ) ← S(V ) ∧ SUCC(V ). Note that in our
example in Figure 1, all states have valid successors and so S does not change
in this example.

To remove all states that violate LC1, we again place a new restriction on
the set of valid states. The set of states satisfying LC1 is exactly the states
satisfying: ∧

EXg∈ecl(f)

EXg ∈ L(s) ⇒ ∃s′ ∈ S . R(s, s′) ∧ g ∈ L(s′)

which can be encoded as a QBF formula over Vf ∪ V ′
f as

LC1(V ) =
∧

〈EXg〉∈Vf

¬〈EXg〉 ∨ ∃V ′[S(V ′) ∧R(V,V ′) ∧ g′]

Again, to update the set of valid states, simply take the conjunction of the
current valid states with this formula and so the update becomes

S(V ) ← S(V ) ∧ SUCC(V ) ∧ LC1(V ).

Again, in our example, all states labeled with EXq have at least one transition
to a state labeled with q and so again S does not change.

Finally, to remove all states that are labeled with eventualities that are not
pseudo-fulfilled, we need predicates for states labeled with eventualities and
predicates for states at the root of a fragment certifying pseudo-fulfillment. As-
sume that a predicate fragE[g U h] (fragA[g U h]) over the state variables Vf

exists such that fragE[g U h] (fragA[g U h]) evaluates to true exactly in those
states which are roots of fragments certifying pseudo-fulfillment of the formula
E[g U h] (A[g U h]). To encode the states labeled with an eventuality, we
must recall that there are no variables associated with formulas of the form
E[g U h] or A[g U h] since neither is an elementary formula. However, states
satisfying 〈EXE[g U h]〉 ∧ g would be labeled with E[g U h] in the original
algorithm. Similarly, states satisfying ¬〈EXE[g R h]〉 ∧ ∼g would be labeled
with A[ ∼ g U ∼ h] in the original algorithm. Such states also need to sat-
isfy fragE[g U h] or fragA[∼g U ∼h] respectively. The corresponding formulas for
states that respect the pseudo-fulfillment requirement are:

E(V ) =
∧

〈EXE[g U h]〉∈Vf

[
¬〈EXE[g U h]〉 ∨ ¬g ∨ fragE[g U h]

]

A(V ) =
∧

〈EXE[g R h]〉∈Vf

[
〈EXE[g R h]〉 ∨ g ∨ fragA[∼g U ∼h]

]
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Note that states satisfying h would also be labeled with E[g U h] and states
satisfying ∼h would also be labeled with A[ ∼g U ∼h], but these states have
the trivial fragment consisting only of the state itself and so do not need to
be checked. Once again, the current set of valid states is restricted to those
satisfying these predicates and update becomes

S(V ) ← S(V ) ∧ SUCC(V ) ∧ LC1(V ) ∧ E(V ) ∧A(V )

Once again, S does not change in this example, and the fixpoint is reached
immediately.

Recall that in our example there are no elementary formulas of the form
EXE[g U h]. The only eventuality, AFp, results in the elementary formula
¬EXE[ff R ¬p]. Therefore, E(V ) = tt since the conjunction is empty. There is
only one elementary formula of the form EXE[g R h] and so

A(V ) = 〈EXE[ff R ¬p]〉 ∨ fragA[tt U p]

In our example, states in which the variable 〈EXE[ff R ¬p]〉 is assigned true are
the ones that are not labeled with AXAFp. In other words, in order for a state
in our example to satisfy A(V ), it must either not be labeled with AXAFp or it
must satisfy the predicate fragA[tt U p] It turns out that every state in the initial
tableau satisfies fragA[tt U p]. Figure 2 illustrates certifying fragments for two
states in the tableau. Along the bottom is a fragment rooted at the bottom right
node certifying pseudo-fulfillment of AFp for that node. The fragment consists
of only three nodes and two transitions even though in the original tableau, all
three nodes had transitions to every state in the tableau. Similarly, near the top
right is a fragment consisting of three nodes that is rooted at the rightmost node
in the second row and certifying pseudo-fulfillment of AFp for that node. Note
that in both cases, many other certifying fragments were possible, and some
would have been smaller (would have only contained 2 states). For example, in
the top fragment, the leftmost transition could be removed and what remains
is a valid 2 state fragment rooted at the same node. Note that because of the
EXq label in the root node, we could not keep the left transition and remove
the right transition instead.

All that remains is to give definitions for fragE[g U h] and fragA[∼g U ∼h].
These predicates cannot be encoded directly in QBF; however, they can be
encoded as fixpoints of QBF formulas. These fixpoints can then be computed
iteratively as is done for μ-calculus model checking [3]. The correct definitions
for fragE[g U h] and fragA[g U h] are given in the theorems stated below which
are proved in the full version of this paper [9].

Theorem 1. The set of states at the root of a fragment certifying pseudo-
fulfillment of E[g U h] equals the set of states satisfying the fixpoint equation:

fragE[g U h] = μZ .

[
h ∨

(
g ∧ ∃V ′[R(V,V ′) ∧ S(V ′) ∧ Z(V ′)

])]
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Fig. 2. Example fragments certifying pseudo-fulfillment of AFp

Readers familiar with modal μ-calculus model checking may be more familiar
with the following formulation

fragE[g U h] = μZ .
[
h ∨ (g ∧ ♦Z)

]
where for any formula f , ♦f is true in a state if there exists a next state where
f is true. The μ-calculus formula ♦f can be translated into a QBF formula as
∃V ′ . R(V,V ′)∧S(V ′)∧ f ′. The extra term S(V ′) is required to ensure the next
state satisfying f is also a valid state, since unlike in model checking, the struc-
ture is not fixed. Recall that the satisfiability algorithm begins with a tableau
that includes too many states. As states are pruned, we need to ensure that
these pruned states are not used to satisfy the predicate for pseudo-fulfillment.
Therefore, the entire formula reads as follows: a state is at the root of a certifying
fragment for E[g U h] iff

– the state satisfies h or
– the state

1. satisfies g and
2. the state has a successor that is a valid state at the root of a certifying

fragment for E[g U h].

The definition for fragA[g U h] is a little more complicated. The difference
arises because in the case of fragE[g U h], states serving as witnesses to EX
formulas did not themselves have to satisfy E[g U h]. But for fragA[g U h], any
state witnessing an EX formula must also satisfy A[g U h]. The theorem below
provides the correct μ-calculus formula to use.
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Theorem 2. The set of states at the root of a fragment certifying pseudo-
fulfillment of A[g U h] equals the set of states satisfying the fixpoint equation:

fragA[g U h] = μZ .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
∨⎛

⎝g ∧ ∃V ′
[
R(V, V ′) ∧ S(V ′) ∧ Z(V ′)

]

∧
∧

〈EXi〉∈Vf

(
〈EXi〉 → ∃V ′

[
R(V, V ′) ∧ S(V ′) ∧ Z(V ′) ∧ i

′])
⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding modal μ-calculus formula is

fragA[g U h] = μZ . h ∨
(
g ∧ ♦Z ∧

∧
〈EXi〉∈Vf

[〈EXi〉 → ♦(Z ∧ i)
])

This formula reads as follows: a state is at the root of a certifying fragment for
A[g U h] iff

– the state satisfies h or
– the state

1. satisfies g and
2. the state has at least one successor that is a valid state at the root of a

certifying fragment for A[g U h] and
3. for every label of the form EXi in the state, there is a valid successor that

satisfies i and that is at the root of a certifying fragment for A[g U h].

It seems counterintuitive that the predicate for fragA[g U h], should contain ex-
istential quantification. However the first one appears because the models for
CTL formulas are Kripke structures which must have a transition relation that
is total. Without the first existential, any AU eventuality could be trivially cer-
tified by not including any outgoing transitions; however, such dead end states
are not allowed in a Kripke structure. The second existential is required because
of the presence of other existential formulas (EX formulas) in the label for the
state.

We now have all the machinery we need to give a fixpoint characterization
for the full algorithm. Given the construction of the QBF transition relation
described earlier, the states in the final tableau can be computed as the greatest
fixpoint of the predicate transformer:

T (S) = S(V ) ∧ SUCC(V ) ∧ LC1(V ) ∧ E(V ) ∧A(V ).

This means that the original CTL formula f is satisfiable if and only if some
state in the intial tableau satisfies

f ∧ νS . S(V ) ∧ SUCC(V ) ∧ LC1(V ) ∧ E(V ) ∧A(V ).

The BDD for this formula encodes the constraints on states that satisfy thefor-
mula, so once the BDD is constructed, we need only verify that it is not the false
BDD.
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Table 2. Experimental Results

Experiment Time (sec.) BDD Variables BDD Memory (KB)
induction 16 30.3 100 544
induction 20 111 124 608
induction 24 286 148 736
induction 28 710 172 960
precede 16 0.6 102 544
precede 32 11.3 198 544
precede 64 101 390 992
precede 128 794 774 2912

fair 8 0.2 50 512
fair 16 1.9 98 512
fair 32 20 194 576
fair 64 166 386 672
fair 128 1370 770 1856

nobase 16 33.9 100 544
nobase 20 106 124 608
nobase 24 308 148 768
nobase 28 728 172 960

5 Experimental Results

Satisfiability for CTL is known to be EXPTIME complete [2]. The μ-calculus
formula we need to check has alternation depth 2 and can be checked in time
O(|f | · |M |3) using the result in [10]. Note that the f here is our μ-calculus
formula and not the original f we were checking for satisfiability. Also, M is the
initial tableau whose size is exponential in the size of the CTL formula we are
checking. Like model checking, the limiting factor is really the exponential size
of the model. As is the case for symbolic model checking, the practicality of the
technique is supported by experimental results.

Table 2 contains the results of some experiments conducted with our satisfia-
bility checker. The first column contains the name of the experiment. The second
column lists the amount of time taken in seconds. The third column lists the
number of BDD variables required (twice the size of el+(f)). The last column
displays how much memory was allocated by the BDD library while running the
experiment. All experiments were performed on a 600MHz Pentium III machine
with 512 MB running Linux. Experiments consisted of checking for the validity
of a formula by checking that its negation is not satisfiable. The experiments
named induction n successfully verified the validity of formulas of the form[

p0 ∧
n−1∧
i=0

AG
(
pi → AXp[i+1]n

)]→ AGAFp0

The experiments named precede n successfully verified the validity of formulas
of the form
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[
AFpn ∧

n∧
i=0

¬pi ∧
n−1∧
i=0

AG(¬pi → AX¬pi+1)

]
→ AFp0

The experiments named fair n successfully verified the validity of formulas of
the form [

AGAFp0 ∧
n−1∧
i=0

AG(pi → AXAFp[i+1]n)

]
→ AGAFpn−1

Finally, the experiments named nobase n verified that the induction formulas
were not valid without the base case. In other words, these experiments success-
fully verified that the formulas

¬
[

n−1∧
i=0

AG
(
pi → AXp[i+1]n

)→ AGAFp0

]

are satisfiable.

6 Conclusion

We have implemented a symbolic algorithm for determining whether a CTL for-
mula is satisfiable or not. The algorithm avoids constructing an explicit pseudo-
Hintikka structure for the formula by using OBDDs (boolean formulas) to encode
the structure. The procedure has exponential time complexity; however, we have
been able to use it to check a number of complex formulas (on the order of 100
atomic propositions). We are confident that this algorithm will work for other
non-trivial formulas.

While this algorithm seems sufficient to check the very structured formulas
in the experiments, it remains to be seen how practical this approach is if used
on formulas that may arise from some problem domain. Identifying problem
domains where this kind of satisfiability checker would prove useful would be an
excellent avenue for future work.

Perhaps the most obvious avenue for future work is the development of a
model synthesis facility for CTL. Not only could it be useful to be able to con-
struct concrete models that satisfy certain properties, but it would also be very
useful to be able to construct a concrete model that fails to satisfy some prop-
erty. This could serve as a counterexample facility while doing validity checking
(a feature usually not available in theorem provers). In other words, to check
the validity of f , one checks if ¬f is satisfiable. If ¬f is not satisfiable, then f is
valid. However, if ¬f is satisfiable, an example model satisfying ¬f would help
us to understand why f is not valid. Often when trying experiments, we would
try to verify formulas we thought were valid. When our algorithm reported back
that the formula was not valid, it often took a significant amount of work to
determine if this was an error in our algorithm or a mistake in our formula. In
all cases, it was a mistake in the formula. However, an automatically generated
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Fig. 3. Minimal model for φ = AFp ∧ EXq

counter-example would have drastically reduced the time and thought involved
in trying to uncover the mistake. It must be noted that there is some cause for
concern regarding the practicality of synthesizing the model. In particular, the
size of the model generated by Emerson’s algorithm is bounded by m2n where
n is the length of the formula and m is the number of eventualities appearing in
the formula [2]. Some minimization would most likely be necessary. In particu-
lar, it would be extremely helpful to be able to find small certifying fragments.
In our running example, the smallest fragment for AFp for a state that also
satisfies EXq is shown in Figure 3 which is clearly much smaller than the initial
tableau. In the model checking community, there is already a need to find small
counterexamples and perhaps we can once again build on their work.
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Abstract. In this paper algorithms for model checking CSL (continuous
stochastic logic) against infinite-state continuous-time Markov chains of
so-called quasi birth-death type are developed. In doing so we extend the
applicability of CSL model checking beyond the recently proposed case
for finite-state continuous-time Markov chains, to an important class
of infinite-state Markov chains. We present syntax and semantics for
CSL and develop efficient model checking algorithms for the steady-state
operator and the time-bounded next and until operator. For the former,
we rely on the so-called matrix-geometric solution of the steady-state
probabilities of the infinite-state Markov chain. For the time-bounded
until operator we develop a new algorithm for the transient analysis of
infinite-state Markov chains, thereby exploiting the quasi birth-death
structure. A case study shows the feasibility of our approach.

1 Introduction

Continuous-time Markov chains are a widely spread modeling formalism for per-
formance and dependability evaluation of computer and communication systems.
Recently, various researchers have adopted CTMCs as “stochastic extension” of
finite-state automata and have proposed new logics to express quantitative prop-
erties for them. Most notably is the work on CSL for CTMCs [2, 4] as stochastic
extension of CTL, and the work on CSRL for Markov reward models (CTMCs
enhanced with a state reward) [3]. Efficient computational algorithms have been
developed for checking these models against formally specified properties ex-
pressed in these logics, cf. [3, 4], as well as supporting tools, cf. PRISM [13] and
ETMC2 [11].

All of the above work, however, has focused on finite-state models. In this
paper we will extend model checking CSL towards infinite-state CTMCs. It is
then possible to assess infinite-state systems, or to approximate the behavior of
very large-but-finite systems. The analysis of general infinite-state CTMCs is,
however, beyond reach. Therefore, we restrict the class of infinite-state CTMCs
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to the class of so-called quasi birth-death models (QBDs) [16], for which, de-
spite their infinite state space, efficient algorithms exist to compute steady-state
probabilities. As we will see in the course of the paper, we also require the tran-
sient, i.e., time-dependent, analysis of the infinite-state QBDs; we develop new
algorithms for that purpose in this paper as well.

The paper is further organized as follows. We introduce labeled infinite-state
CTMCs, and QBDs in particular, in Section 2. We then describe syntax and
semantics of CSL in Section 3. Section 4 addresses in detail the model checking
algorithms for the CSL operators. The feasibility of the approach is illustrated
in Section 5 with a small case study, and the paper is concluded in Section 6.

2 Infinite-State CTMCs

For a fixed set of AP of atomic propositions a labeled infinite-state CTMC is
defined as follows:

Definition 1. A labeled infinite-state CTMC M is a tuple (S,Q, L) with
an infinite countable set of states S, a square generator matrix1 Q : S×S → R,
and labeling function L : S → 2AP .

The value Q(i, j) ≥ 0, for i �= j, equals the rate at which a transition from state
i to state j occurs in the CTMC, whereas Q(i, i) denotes the negative sum of
the off-diagonal entries in the same row of Q; its value represents the rate of
leaving state i (in the sense of an exponentially distributed residence time). The
labeling function L assigns to each state the set of valid atomic propositions in
that state.

A special case of infinite-state CTMCs are CTMCs with quasi birth-death
structure [16]. Informally speaking, the infinite state space of a QBD can be
viewed as a two-dimensional strip, which is finite in one dimension and infinite
in the other. Furthermore, the states in this strip can be grouped in so-called
levels, according to their value or identity in the infinite dimension. Thus, the
state space of a QBD consist of neighboring levels, which are all alike, except for
the first one (level 0). The first level is called boundary level and all the others
repeating levels. The first repeating level is sometimes called the border level as
it separates the boundary level from the repeating levels.

Transitions, represented by positive entries in the matrix Q, can only occur
between states of the same level or between states of neighboring levels. All
repeating levels have the same inter- and intra-level transition structure. The
state space of a QBD can be partitioned into an infinite number of finite sets
Sj , j = {0, 1, . . .}, each containing the states of one level, such that S =

⋃∞
j=0 S

j .
Figure 1(a) gives a graphical representation of a QBD, where level 0 is the
boundary level and the levels from level 1 onwards are repeating levels. The inter-
level transitions can be represented through matrices B0,1,B1,0,A0,A2, whereas

1 Note that M does not contain self loops. Residence times in a CTMC obey a mem-
oryless distribution, hence, self loops can be eliminated.
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Fig. 1. Regular structure of QBDs

the intra-level transitions can be represented through the matrices B0,0,B1,1 and
A1 (cf. Figure 1(b)).

Although QBDs are introduced here at the state level, high-level formalisms,
e.g., based on stochastic Petri nets [17] or stochastic process algebras [7, 15], do
exist.

Definition 2. A labeled QBD Q of order (N0, N) (with N,N0 ∈ N+) is
a labeled infinite-state CTMC, cf. Def. 1. The set of states is composed as
S = {0, . . . , N0 − 1} × {0} ∪ {0, . . . , N − 1} × N+, where the first part repre-
sents the boundary level with N0 states, and the second part the infinite number
of repeating levels, each with N states. The block-tridiagonal generator matrix
Q consists of the following finite matrices describing the inter- and intra-level
transitions:

B0,0 ∈ RN0×N0 : intra-level transition structure of the boundary level,
B0,1 ∈ RN0×N : inter-level transitions from the boundary level to the border level,
B1,0 ∈ RN×N0 : inter-level transitions from the border level to the boundary level,
B1,1 ∈ RN×N : intra-level transition structure of the border level.
A0 ∈ RN×N : inter-level transitions from one repeating level to the next higher

repeating level,
A1 ∈ RN×N : intra-level transitions for the repeating levels2, and
A2 ∈ RN×N : inter-level transitions from one repeating level to the next lower

repeating level.

In the following we limit ourselves to strongly connected CTMCs and to so-
called level-independent atomic propositions. That is, if an atomic proposition
ap ∈ AP is valid in a certain state of an arbitrary repeating level, it has to be

2 Note that B1,1 differs from A1 only in the diagonal entries.
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valid in the corresponding states of all repeating levels. This limitation poses
a true restriction on the set of formulas we are able to check. In practice, this
means that a CSL formula must not refer to the level index in order to be
level-independent.

Definition 3. Let i ∈ {0, . . . , N − 1}. An atomic proposition ap ∈ AP is level-
independent if and only if for all l, k ≥ 1, L(i, k) = L(i, l).

An infinite path σ is a sequence s0
t0−→ s1

t1−→ s2
t2−→ . . . with, for i ∈ N, si ∈ S

and ti ∈ R>0 such that Q(si, si+1) > 0 for all i. A finite path σ is a sequence

s0
t0−→ s1

t1−→ . . . sl−1
tl−1−−−→ sl such that sl is absorbing3, and Q(si, si+1) > 0 for

all i < l. For an infinite path σ, σ[i] = si denotes for i ∈ N the (i + 1)st state
of path σ. The time spent in state si is denoted by δ(σ, i) = ti. Moreover, with
i the smallest index with t ≤ ∑i

j=0 tj , let σ@t = σ[i] be the state occupied at
time t. For finite paths σ with length l+1, σ[i] and δ(σ, i) are defined in the way
described above for i < l only and δ(σ, l) = ∞ and δ@t = sl for t >

∑l−1
j=0 tj .

PathQ(si) is the set of all finite and infinite paths of the QBD Q that start
in state si and PathQ includes all (finite and infinite) paths of the QBD Q. The
superscript Q will be omitted whenever it is clear to which QBD the paths refer.

As for finite CTMCs, a probability measure Pr on paths can be defined [4].
Starting from there, two different types of state probabilities can be distinguished
for QBDs.

The transient state probability is a time-dependent measure that consid-
ers the QBD at an exact time instant t. The probability to be in state s′ at time
instant t, given the initial state s is denoted as πQ(s, s′, t) = Pr(σ ∈ Path(s) |
σ@t = s′). The transient probabilities are characterized by a linear system of
differential equations of infinite size. Let π(t) be the vector of transient state
probabilities at time t for all possible states (we omit the superscript Q as well
as the starting state s for brevity here), we have π′(t) = π(t) ·Q, given starting
state s. Using a standard differential equation solver is difficult since we deal
with an infinite number of differential equations. An approach using Laplace
transforms and exploiting the tri-diagonal structure of the matrix Q has been
presented in [20], however, this approach does not lead to practically feasible al-
gorithms. Instead, it is better to resort to a technique known as uniformization,
cf. [8, 9]. This will be elaborated upon in Section 4.

The steady-state probabilities to be in state s′, given initial state s, are
then defined as πQ(s, s′) = limt→∞ πQ(s, s′, t), and indicate the probabilities
to be in some state s′ “in the long run”. If steady-state is reached, the above
mentioned derivatives will approach zero. Furthermore, if the QBD is ergodic, the
initial state does not influence the steady-state probabilities (we therefore often
write π(s′) instead of π(s, s′) for brevity). Thus, the steady-state probability
vector π then follows from the infinite system of linear equations π · Q = 0,
and

∑
s πs = 1 (normalization). This system of equations can be solved using

so-called matrix-geometric methods which exploit the repetitive structure in the

3 A state s is called absorbing if for all s′ the rate Q(s, s′) = 0.
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matrix Q [9, 16]. The idea is that the steady-state probabilities are found in a
level-wise fashion, starting from the boundary and the border level. In order
to do so, one first has to find the smallest square matrix R that satisfies the
matrix-quadratic equation A0R2 +A1R+A2 = 0. Efficient algorithms to do so
exist, cf. [14]. Then, a system of linear equations can be set up that involves only
the steady-state probabilities of the boundary and the border level, as well as
a normalization equation with respect to these two levels. This system of linear
equations can be solved with known iterative techniques like the Gauss-Seidel
iterative method. Let v0 and v1 denote the steady-state probabilities of the first
two levels, then, the matrix-geometric result [16] states that for i = 1, 2, · · · , we
have vi+1 = vi ·R.

A final remark should be made about stability. Since a QBD has an infinite
state space, the transition rates can be such that all probability mass in steady
state resides in levels that are “infinitely far away” from level 0. This, often
undesirable situation, can be detected solely on the basis of the matrices A0,A1
and A2, hence, before any (expensive) computations on R start. Notice that in
such cases, computing steady-state probabilities does not make sense; transient
probabilities can still be computed.

3 The Logic CSL

We apply the logic CSL [4] on QBDs. Syntax and semantics are the same for
the only difference that we now interpret the formulas over QBDs.

Syntax. Let p ∈ [0, 1] be a real number, �� ∈ {≤, <,>,≥} a comparison oper-
ator, I ⊆ R≥0 a nonempty interval and AP a set of atomic propositions with
ap ∈ AP .

Definition 4. CSL state formulas Φ are defined by

Φ ::= tt | ap | ¬Φ | Φ ∧ Φ | S��p(Φ) | P��p(φ),

where φ is a path formula constructed by

φ ::= X IΦ | Φ UIΦ.

The steady-state operator S��p(Φ) denotes that the steady-state probability for
a Φ-state meets the bound p. P��p(φ) asserts that the probability measure of
the paths satisfying φ meets the bound p. The next operator X IΦ states that a
transition to a Φ-state is made at some time instant t ∈ I. The until operator
Φ UIΨ asserts that Ψ is satisfied at some time instant in the interval I and that
at all preceding time instants Φ holds.

Semantics. For a CSL state formula Φ on a QBD Q, the satisfaction set con-
tains all states of Q that fulfill Φ. The satisfaction set can be considered as the
infinite union of finite level satisfaction sets: Sat(Φ) = Sat0(Φ) ∪⋃∞

j=1 Sat
j(Φ).

Satj(Φ) contains only those Φ-states that are situated in level j.Satisfaction is
stated in terms of a satisfaction relation |=, which is defined as follows.
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Definition 5. The relation |= for states and CSL state formulas is defined as:

s |= tt for all s ∈ S, s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ,
s |= ap iff ap ∈ L(s) s |= S��p(Φ) iff πQ(s, Sat(Φ)) �� p,
s |= ¬Φ iff s �|= Φ s |= P��p(φ) iff ProbQ(s, φ) �� p.

where πQ(s, Sat(Φ)) =
∑

s′∈Sat(Φ) π
Q(s, s′), and ProbQ(s, φ) describes the prob-

ability measure of all paths σ ∈ Path(s) that satisfy φ when the system is starting
in state s, that is, ProbQ(s, φ) = Pr{σ ∈ PathQ(s) | σ |= φ}.

Definition 6. The relation |= for paths and CSL∞ path formulas is defined as:

σ |= X IΦ iff σ[1] is defined and σ[1] |= Φ and δ(σ, 0) ∈ I,

σ |= Φ UIΨ iff ∃t ∈ I (σ@t |= Ψ ∧ (∀t′ ∈ [0, t)(σ@t′ |= Φ))).

4 Model Checking Algorithms

In order to develop a model checking algorithm for QBDs, we need to focus
on the connection between the validity of state formulas and the special birth-
death structure of QBDs. At first glance, one could think that in corresponding
states of all repeating levels the same CSL formulas hold. Model checking a
QBD would then be reducible to model checking the boundary level and one
repeating level representative for all others. Unfortunately this is not the case,
as can be explained considering the time-bounded next and until operator. In
order to check CSL properties that contain these path formulas, we need to
examine all possible paths in a level-wise fashion. Considering time-bounded
next, note that in the border level other next-formulas might be satisfied than
in the other repeating levels, because the boundary level is still reachable from
the border level but not from any other repeating level. Thus, if we want to check
for example the formula φ = X I red and the property red is only valid in the
boundary level, this property φ can be fulfilled by a path starting in the border
level, but not when starting in any other repeating level. A similar reasoning
holds for the until operator, where not only the border level is concerned but
even more repeating levels, because with the until operator not just one step
is considered, but potentially infinitely many. Thus, for path-formulas no two
repeating levels can a priori be considered the same.

4.1 Level Independence of CSL Formulas

Even though CSL formulas are not level independent in general, their validity
does not change arbitrarily between levels. Remember that we assume level in-
dependence of atomic propositions for the QBDs we consider. For CSL formulas,
we generalize the idea of level independence: we only require that the validity in
a state is level independent for repeating levels with an index of at least k. Thus,
we allow the validity of a CSL formula to change between corresponding states
of repeating levels, but only up to repeating level k − 1. From level k onwards,
the validity must remain unchanged.
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Definition 7. Let Q be a QBD of order (N0, N). A CSL state formula Φ is
level independent as of level k ≥ 1 (in QBD Q) if and only if for levels above
and including k, the validity of Φ in a state does not depend on the level, that is,

for all i ∈ {0, . . . , N − 1} and for all l ≥ k : (i, l) |= Φ ⇐⇒ (i, k) |= Φ.

The following proposition states, under the assumption of level independent
atomic propositions, that such a k exists for any CSL state formula.

Proposition 1 Let Q be a QBD with level independent atomic properties and
let Φ be a CSL state formula. Then there exists a k ∈ N, such that Φ is level
independent as of level k in Q.

We will justify this proposition inductively in the sections that discuss the model
checking of the different types of CSL state formulas.

For model checking a property Φ, we will compute the set Sat(Φ) with a
recursive descent procedure over the parse tree of Φ. To do so, the CSL formula
Φ is split into its sub-formulas and for every sub-formula the model checker is
invoked recursively. For a state formula Φ that is level independent as of level
k, cf. Definition 7, only the first k level satisfaction sets have to be computed.
Satk(Φ) then acts as a representative for all following levels. In what follows
we discuss the required computations for one such invocation, for each of the
operators in the logic CSL.

4.2 Atomic Propositions and Logical Operators

Computing the satisfaction set for an atomic proposition ap proceeds as follows.
Sat0(ap) consists of those states of the boundary level where ap is contained in
the labeling. We test all states in the border level in order to obtain Sat1(ap),
and, hence, Satj(ap) for j ≥ 1 (as per Definition 3).

Let Φ be a CSL state formula that is level independent as of level k. Its
negation ¬Φ is clearly also level independent as of level k. The level satisfaction
sets of ¬Φ are computed by complementing the corresponding satisfaction set
of Φ:

Satj(¬Φ) = Sj\Satj(Φ), for all j ≥ 0.

Let Φ and Ψ be two CSL state formulas, level independent as of level kΦ and kΨ ,
respectively. The conjunction Φ∧Ψ is level independent as of level max(kΦ, kΨ ).
The level satisfaction sets are computed by intersecting the corresponding sat-
isfaction sets of Φ and Ψ :

Satj(Φ ∧ Ψ) = Satj(Φ) ∩ Satj(Ψ), for all j ≥ 0.

4.3 Steady-State Operator

A state s satisfies S��p(Φ) if the accumulated steady state probability of all Φ-
states reachable from s meets the bound p. Since we assume a strongly connected
QBD, the steady-state probabilities are independent of the starting state. It fol-
lows that either all states satisfy a steady-state formula or none of the states



244 A. Remke, B.R. Haverkort, and L. Cloth

does, which implies that a steady-state formula is always level independent as of
level 1. We first determine the satisfaction set Sat(Φ) and then compute the ac-
cumulated steady-state probability. If the accumulated steady-state probability
meets the bound p, we have Sat(S��p(Φ)) = S, otherwise, Sat(S��p(Φ)) = ∅. Ex-
ploiting the special structure of QBDs, the accumulated probability is given by

π(Sat(Φ)) =
∑

s∈Sat(Φ)

π(s) =
∞∑

j=0

∑
s∈Satj(Φ)

vj(s),

where the vectors vj = (· · · , vj(s), · · · ) can be computed one after the other,
using the matrix-geometric method, as discussed in Section 2.

In order to deal with the infinite sum we iterate through the repeating levels
and accumulate the steady-state probabilities in a level-wise fashion. Denote
with π̃l(Sat(Φ)) the accumulated steady-state probabilities of all Φ-states up to
level l, that is,

π̃l(Sat(Φ)) =
l∑

j=0

∑
s∈Satj(Φ)

vj(s).

Starting with l = 0, we iterate through the levels and compute π̃l(Sat(Φ)) and
π̃l(Sat(¬Φ)), respectively. The computation of the steady-state probabilities of
¬Φ-states introduces no additional cost, since they are computed anyway. In
every step we have to check whether we can already decide on the validity of the
steady-state formula S��p(Φ). The following implications hold:

(a) π̃j(Sat(Φ)) > p⇒ π(Sat(Φ)) > p,
(b) π̃j(Sat(¬Φ)) > 1− p⇒ π(Sat(Φ)) < p.

As soon as one of the left hand side inequalities becomes true, the iteration
stops. For the interpretation we distinguish the cases S<p(Φ) and S>p(Φ). For
S≥p(Φ) or S≤p(Φ) the equations need to be modified accordingly. For S<p(Φ) the
interpretation is as follows. If inequality (a) holds, the condition π(Sat(Φ)) < p
is clearly not accomplished and Sat(S<p(Φ)) = ∅. If inequality (b) holds, the
condition π(Sat(Φ)) < p is accomplished and Sat(S<p(Φ)) = S. For S>p(Φ)
the same conditions need to be checked in every iteration step j, but they need
to be interpreted differently. If inequality (a) holds, the probability bound is
met and Sat(S>p(Φ)) = S. If inequality (b) holds, the bound is not met and
Sat(S>p(Φ)) = ∅.

The satisfaction set of Φ might be finite. For a CSL formula Φ that is level
independent as of level k, this is the case when no state in level k satisfies Φ.
The iteration then ends at level k − 1 and π(Sat(Φ)) = π̃k−1(Sat(Φ)). In case
Sat(Φ) is infinite, the iterations stop as soon as one of the inequalities is satisfied.
Unfortunately, if the probability p is exactly equal to the steady-state probability
π(Sat(Φ)), the approximations π̃l(Sat(Φ)) and π̃l(Sat(¬Φ)) will never fulfill one
of the inequalities. In an implementation of this algorithm some care must be
taken to detect this case in order to avoid a non-stopping iteration.

Instead of the just-sketched iterative process, we can also develop a closed-
form matrix expression for the probability π(Sat(Φ)) by exploiting properties of
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the matrix-geometric solution, i.e., by using the fact that
∑

i R
i = (I −R)−1.

In doing so, the infinite summation disappears, however, it comes at the cost
of a required matrix inversion. In practice, this is therefore not always a more
efficient approach, but it avoids the stopping problem.

4.4 Time-Bounded Next Operator

Recall that a state s satisfies P��p(X IΦ) if the one-step probability to reach a
state that fulfills Φ within a time in I = [a, b], outgoing from s meets the bound
p, that is,

s |= P��p(X IΦ) ⇔ Pr{σ ∈ Path(s) | σ |= X IΦ} �� p

⇔

⎛
⎜⎝(eQ(s,s)·a − eQ(s,s)·b

)
·
∑

s′∈Sat(Φ)
s′ 	=s

Q(s, s′)
−Q(s, s)

⎞
⎟⎠ �� p,

(1)

where eQ(s,s)·a − eQ(s,s)·b is the probability of residing at s for a time in I,
and Q(s,s′)

−Q(s,s) specifies the probability to step from state s to state s′. Note that
the above inequality contains a (possibly infinite) summation over all Φ-states.
However, we only need to sum over the states of Sat(Φ) that are reachable from
s in one step. That is, for s = (i, j), we only have to consider the Φ-states from
levels j−1, j, and j+1. For all states of all other levels the one-step probabilities
are zero anyway. The infinite set Sat(Φ) ruling the summation in (1) can thus
be replaced by the finite set SatX ,(i,j)(Φ) containing only the states from level
j − 1, j, j + 1 that fulfill Φ, that is,

SatX ,(i,j)(Φ) =

{
Sat0(Φ) ∪ Sat1(Φ), j = 0,
Satj−1(Φ) ∪ Satj(Φ) ∪ Satj+1(Φ), otherwise.

Now, let the inner formula Φ of the next-formula be level independent as of
level k. Hence, the validity of the state formula P��p(X IΦ) might be different in
corresponding states for all levels up to k − 1. Therefore, unfortunately, level k
can still have different states satisfying P��p(X IΦ) since level k − 1 is reachable
in one step. But, as of level k+1, only levels can be reached where the validity of
state formula Φ is equal for corresponding states. Hence, if Φ is level independent
as of level k, P��p(X IΦ) is level independent as of level k+1. For the construction
of the satisfaction set of such a formula, we therefore have to compute explicitely
the satisfying states up to level k + 1. Subsequently, Satk+1(P��p(X IΦ)) can be
seen as a representative for all following repeating levels.

4.5 Time-Bounded Until Operator

For model checking P��p(Φ UIΨ) we adopt the general approach for finite CTMCs
[4]. The idea is to use a transformed QBD where several states are made absorb-
ing. We focus on the case where I = [0, t]. The CSL path formula ϕ = Φ U [0,t]Ψ
is valid if a Ψ -state is reached on a path, before time t via only Φ-states. As
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Fig. 2. Finite fraction of the QBD needed for the transient solution

soon as a Ψ -state is reached, the future behavior of the QBD is irrelevant for
the validity of ϕ. Thus all Ψ -states can be made absorbing without affecting the
satisfaction set of formula ϕ. On the other hand, as soon as a (¬Φ ∧ ¬Ψ) state
is reached, ϕ will be invalid, regardless of the future evolution of the system.
As a result we may switch from checking the Markov chain Q to the Markov
chain Q[Ψ ][¬Φ ∧ ¬Ψ ] = Q[¬Φ ∨ Ψ ], where the states satisfying the formula in
[·] are made absorbing. Model checking a formula involving the until operator
then reduces to calculating the transient probabilities πQ[¬Φ∨Ψ ](s, s′, t) for all
Ψ -states s′. Exploiting the special structure of QBDs yields

s |= P��p(Φ U [0,t]Ψ) ⇔ ProbQ(s, Φ U [0,t]Ψ) �� p

⇔
⎛
⎝ ∞∑

i=0

∑
s′∈Sati(Ψ)

πQ[¬Φ∨Ψ ](s, s′, t)

⎞
⎠ �� p.

Making the QBD Finite. Uniformization [8] is an often used method to
compute transient probabilities in finite CTMCs. The continuous-time model
is transformed into a discrete-time model together with a Poisson process with
rate λ. The uniformization constant λ must be at least equal to the maximum
absolute value of the diagonal entries of the generator Q. Since for a QBD the
matrix Q has only finitely many different diagonal entries (originating from the
matrices B0,0,B1,1, and A1), λ can be determined even though Q has an infinite
number of entries. For an allowed numerical error εt, uniformization requires a
finite number n of steps (state changes) to be taken into account in order to com-
pute the transient probabilities. Note that n can be computed a priori, given εt,
λ and t.

Let d ≥ 1 be the so-called level diameter, that is, the minimum number of
state transitions that is needed to cross a complete repeating level. If n steps are
to be taken into account, only 'n

d ( levels can be reached from a state in level l
in either direction.

Thus, for model checking the formula P��p(Φ U [0,t]Ψ), first all ¬Φ ∨ Ψ -states
have to be made absorbing. If ¬Φ ∨ Ψ is level-independent as of level k, then,
using uniformization with n steps, we obtain the same transient probabilities for
corresponding states as of level k + 'n

d (, since only equivalent repeating levels
are seen when stepping through the QBD.
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In order to compute the transient probabilities for all states of the QBD, it
suffices to compute them for the first k + 'n

d ( levels only. Hence, only a finite
part of the infinite QBD is needed. Outgoing from level k + 'n

d ( there must
still be the possibility to undertake 'n

d ( steps “to the right”. The total number
of levels we have to consider therefore is k + 2 · 'n

d ( (cf. Figure 2). Thus, we
reduced the task of computing transient probabilities for an infinite QBD to the
computation of transient probabilities in a finite CTMC.

Interpretation of the Transient Probabilities. For all states in the first
k+ 'n

d ( levels, we add the computed transient probabilities to reach any Ψ -state
and check whether the accumulated probability meets the bound p. When using
uniformization, the computed accumulated probability

π̃Q[¬Φ∨Ψ ](s, Sat(Ψ), t) =
∑

s′∈Sat(Ψ)

π̃Q[¬Φ∨Ψ ](s, s′, t)

is always an underestimation of the actual probability. Fortunately, we are able
to indicate a maximum error εm (depending on εt) such that

πQ[¬Φ∨Ψ ](s,Sat(Ψ), t) ≤ π̃Q[¬Φ∨Ψ ](s,Sat(Ψ), t) + εm.

The value of εm decreases as n increases. Applying the above inequality, we
obtain the following implications:

(a) π̃Q[¬Φ∨Ψ ](s,Sat(Ψ), t) > p⇒ πQ[¬Φ∨Ψ ](s,Sat(Ψ), t) > p
(b) π̃Q[¬Φ∨Ψ ](s,Sat(Ψ), t) < p− εm ⇒ πQ[¬Φ∨Ψ ](s,Sat(Ψ), t) < p

If one of these inequalities (a) or (b) holds, we can decide whether the bound
< p or > p is met. For the bounds ≤ p and ≥ p, similar implications can be
derived. If π̃Q[¬Φ∨Ψ ](s,Sat(Ψ), t) ∈ [p, p − εm], then we cannot decide whether
πQ[¬Φ∨Ψ ](s,Sat(Ψ), t) meets the bound p. The number of steps n considered
when computing the transient probabilities via uniformization has been too small
in that case. Decreasing εt, hence, increasing n, might resolve this problem.

As already mentioned, for all levels ≥ k + 'n
d (, the transient probabilities

computed with n steps will be the same. If we can decide whether the bound p is
met (case (a) or (b) above), we can be sure that P��p(Φ U [0,t]Ψ) is level indepen-
dent as of level k + 'n

d (. It might actually be the case that level independence
starts at a smaller level.

If n is large enough we check for all states in levels up to k + 'n
d ( whether

the accumulated transient probability of reaching a Ψ -state meets the bound p.
These states form the subsequent level satisfaction sets Satj(P��p(Φ U [0,t]Ψ)).
The satisfaction set for level k + 'n

d ( is representative for all following levels.
The more general case where I = [t1, t2] for 0 < t1 < t2 can be treated by

following the procedure given in [4]. It requires the computation of transient
probabilities in two “versions” of the QBD, where different states are made
absorbing. The number of levels to be considered must be adapted accordingly.
Details of this procedure are omitted for brevity here, but can be found in [18].
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Fig. 3. Dual-Job-Class Cyclic-Server System

The case where I = [0,∞] can be addressed similarly as in the finite-state
case, cf. [4–Corollary 1], except for the fact that it leads to a system of linear
equations of infinite size. Given the special (QBD) structure of this system of
linear equations, it appears that also in this case a matrix-geometric solution
approach might be applicable, but this remains to be investigated.

Complexity. For model checking the until operator we need to consider k+ 2n
d

levels with N states, respectively N0 states for the boundary level. ν denotes
the average number of transitions originating from a single state of the QBD.
To compute the transient probabilities we require the sum of O(λt) matrices,
each of which is the result of a matrix-matrix multiplication. This results in
an overall computational complexity of O(λt · ν(N0 + kN + nN)2). Regarding
storage complexity, we require O(3(N0 + kN + nN)) storage for the probability
matrices and O(ν(N2

0 +NN0 +N2)) for the transition matrix of the underlying
DTMC.

5 Case Study: A Dual-Job-Class Cyclic-Server System

System Description. We analyze a system with two sorts of jobs, as depicted
in Figure 4. User jobs, having high priority, are served according to an exhaustive
scheduling strategy. System jobs, having low priority, are served with a 1-limited
scheduling strategy. In the beginning, the server always starts serving user jobs
and a system job can only be served after at least one user job has been served.
As long as there are user jobs in the queue, the server first serves these jobs.
System jobs can only be served, if all user jobs have been served and at least one
system job is waiting for service. If the server changes to system jobs, only one
job is served and afterwards the server polls the user jobs queue again. We can
have an infinite number of user jobs and at most K system jobs in the system.
We have modeled this system as iSPN [17]; from this iSPN the underlying QBD
is automatically generated. The order of this QBD depends on the actual value
of K; each level of the underlying QBDs consists of 2K + 1 states that model
the number of system jobs in the queue and the presence of the server at the
system-job queue. The QBD for K = 1 is given in Figure 4.

Its states can be interpreted as follows: j indicates the number of user jobs
currently in the system, i = 0 means that a system job is being served, i = 1
means that no system job is waiting, and i = 2 means that a system job just
arrived but is not being served yet.
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Fig. 4. QBD of the Dual-Job-Class Cyclic-Server System

Steady-State Property. We want to know whether the steady-state proba-
bility of having a full system-job queue is greater than 0.1. As CSL formula,
this property can be stated as S>0.1(QSysfull), where QSysfull is the atomic
proposition that is valid in all states where the system-job queue is full.

For any K, every level contains exactly two states satisfying atomic propo-
sition QSysfull, being the state with K system jobs present (queued), and with
the server active with either a system job or a user job. In case of K = 1, we see
in Figure 4 that these are the states (0, ·) and (2, ·). Hence, Sat(QSysfull) has
infinite size. For K < 11, Sat(S>0.1(QSysfull)) = S, thus, the formula holds in
all states. For K ≥ 11, Sat(S>0.1(QSysfull)) = ∅.

Figure 5 shows the number of iterations (as discussed in Section 4.3), needed
to verify the property, depending on the system parameter K. If the actual
steady-state probability of QSysfull-states comes close to the given bound 0.1,
more iterations are needed. This explains the peak at K = 11. Figure 5 also
gives the computation time for different K. Note that the smaller number of
iterations for K > 11 does not lead to a smaller computation time, since more
time is needed per iteration (as the matrices become larger).

Time-Bounded Until Property. As system jobs have a low priority compared
to the user jobs, we would like to know for which states of the QBD the probabil-
ity of the system-job queue to become empty in a certain time interval is greater
than 0.1. Stated in CSL, we analyze Φ = P>0.1(¬QSysEmpty U [0,t]QSysEmpty).

For K = 1 the formula Φ can be interpreted as follows: Is the probability
greater than 0.1 that a waiting system job is served in a certain time interval?
For a time interval I = [0, 2], a given error ε = 10−7, uniformization considers 23
steps. As Φ is level-independent as of level 1 and we have a level-diameter of 1,
level 24 can serve as a representative for the higher repeating levels. Analyzing
the resulting satisfaction set Sat(P>0.1(¬QSysEmpty U [0,2]QSysEmpty)) shows the
following.

All states with first index i = 1 are trivially included in the satisfaction set,
because QSysEmpty is already valid in these states. States with first index i = 0
are included as they model a situation in the system where the server is serving
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a function of the maximum number of system jobs K

a system job. Hence, for those states the probability for the system job to be
served in time interval [0, 2] is greater than 0.1. If the system job just arrived in
the queue (i = 2), model checking shows that the probability for this job to be
served in time is only greater than 0.1 if less than three user jobs are waiting for
service.

For the computation of the satisfaction sets, we have to deal with state spaces
of the size (2K+1)·(2n+2). The left-hand term accounts for the size of one level
and the right-hand term for the number of levels considered by uniformization.
n gives the number of steps which is considered by uniformization, depending
on the error εt. In Figure 6 the computation time is depicted for different time
intervals. For larger time intervals the state space grows as uniformization needs
to consider more steps which results in larger computation times.
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6 Conclusions

In this paper we have presented model-checking algorithms for checking CSL
properties against infinite-state CTMCs, in particular for QBDs. The model
checking algorithms make extensive use of uniformization for transient anal-
ysis (for time-bounded until) and matrix-geometric methods for determining
steady-state probabilities (for the steady-state operator). The model checking
algorithms as presented are new. Our approach to analyze the transient state
probabilities of infinite-state CTMC is also new. We have shown the feasibility
of the model checking algorithms by a case study.

We are aware of the fact that when checking nested formulas, the number of
levels that have level-dependent properties grows, which makes the algorithms
less efficient. On the other hand, practice reveals that the nesting depth of logical
expressions to be checked is typically small [6], so that this is not so much of a
disadvantage after all.

At various points, the presented algorithms can be made more efficient. For
instance, for checking time-bounded until we have introduced the notion of level
diameter. In practice, there might be two different diameters, depending on the
direction of crossing a level (to higher or to lower levels). Exploiting this fact
might lead to smaller finite-state Markov chains to be considered.

We also required the QBD under study to be strongly connected, in order
to make use of the fact that the steady-state probabilities do not depend on
the starting state. It is left for further investigation how the model checking
algorithms have to be adapted to account for non-strongly connected QBDs.

By restricting ourselves to level-independent formulas, we restrict the set of
CSL formulas that can be checked. For model checking level-dependent CSL for-
mulas new model checking algorithms will be needed, since in that case we cannot
exploit the level-independent QBD structure to cut the infinite set of states.

We note that there has been done a substantial amount of work on model
checking infinite-state systems, e.g., on regular model checking [1] and proba-
bilistic lossy channel systems [19], however, not in the context of continuous-time
Markov chains, as we have presented here. It remains to be investigated whether
and how we can exploit these results in our context.

Finally, we need to complete our work on the tool chain for specifying and
model checking infinite-state systems, and possibly will integrate it into other
model checking tools for CTMCs. First details on this, and on many of the other
issues addressed in this paper, can be found in the recently completed diploma
thesis [18].
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Abstract. Recursive Markov Chains (RMCs) ([EY05]) are a natural
abstract model of procedural probabilistic programs and related systems
involving recursion and probability. They succinctly define a class of de-
numerable Markov chains that generalize multi-type branching (stochas-
tic) processes. In this paper, we study the problem of model checking
an RMC against a given ω-regular specification. Namely, given an RMC
A and a Büchi automaton B, we wish to know the probability that an
execution of A is accepted by B. We establish a number of strong upper
bounds, as well as lower bounds, both for qualitative problems (is the
probability = 1, or = 0?), and for quantitative problems (is the probabil-
ity ≥ p?, or, approximate the probability to within a desired precision).
Among these, we show that qualitative model checking for general RMCs
can be decided in PSPACE in |A| and EXPTIME in |B|, and when A is
either a single-exit RMC or when the total number of entries and exits in
A is bounded, it can be decided in polynomial time in |A|. We then show
that quantitative model checking can also be done in PSPACE in |A|,
and in EXPSPACE in |B|. When B is deterministic, all our complexities
in |B| come down by one exponential.

For lower bounds, we show that the qualitative model checking prob-
lem, even for a fixed RMC, is EXPTIME-complete. On the other hand,
even for reachability analysis, we showed in [EY05] that our PSPACE
upper bounds in A can not be improved upon without a breakthrough on
a well-known open problem in the complexity of numerical computation.

1 Introduction

Recursive Markov Chains (RMCs) are a natural abstract model of procedural
probabilistic programs. They succinctly define a natural class of denumerable
Markov chains that generalize multi-type branching (stochastic) processes. In-
formally, an RMC consists of a collection of finite state component Markov
chains (MC) that can call each other in a potentially recursive manner. Each
component MC has a set of nodes (ordinary states), a set of boxes (each mapped
to a component MC), a well-defined interface consisting of a set of entry and
exit nodes (nodes where it may start and terminate), and a set of probabilistic
transitions connecting the nodes and boxes. A transition to a box specifies the
entry node and models the invocation of the component MC associated with the
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box; when (and if) the component MC terminates at an exit, execution of the
calling MC resumes from the corresponding exit of the box.

RMCs are a probabilistic version of Recursive State Machines (RSMs). RSMs
([AEY01, BGR01]) and closely related models like Pushdown Systems (PDSs)
(see, e.g., [EHRS00, BR00]) have been studied extensively in recent research on
model checking and program analysis, because of their applications to verifica-
tion of sequential programs with procedures. Recursive Markov Chains gener-
alize other well-studied models involving probability and recursion: Stochastic
Context-Free Grammars (SCFGs) have been extensively studied, mainly in nat-
ural language processing (NLP) (see [MS99]). Multi-Type Branching Processes
(MT-BPs), are an important family of stochastic processes with many applica-
tions in a variety of areas (see, e.g., [Har63]). Both SCFG’s and MT-BP’s are
essentially equivalent to single-exit RMC’s: the special case of RMC’s in which
all components have one exit. Probabilistic models of programs and systems are
of interest for several reasons. First, a program may use randomization, in which
case the transition probabilities reflect the random choices of the algorithm. Sec-
ond, we may want to model and analyse a program or system under statistical
conditions on its behaviour (e.g., based on profiling statistics or on statistical
assumptions), and to determine the induced probability of properties of interest

We introduced RMCs in [EY05] and developed some of their basic theory,
focusing on algorithmic reachability analysis: what is the probability of reaching
a given state starting from another? In this paper we study the more general
problem of model checking an RMC against an ω-regular specification: given an
RMC A and a Büchi automaton B, what is the probability that an execution of
A is accepted by B? The techniques we develop in this paper for model checking
go far beyond what was developed in [EY05] for reachability analysis.

General RMCs are intimately related to probabilistic Pushdown Systems
(pPDSs), and there are efficient translations between RMCs and pPDSs. There
has been some recent work on model checking of pPDSs ([EKM04, BKS05]). As
we shall describe shortly, our results yield substantial improvements, when trans-
lated to the setting of pPDSs, on the best algorithmic upper and lower bounds
known for ω-regular model checking of pPDSs.

We now outline the main results in this paper. We are given an RMC A
and a property in the form of a (non-deterministic) Büchi automaton (BA)
B, whose alphabet corresponds to (labels on) the vertices of A. Let PA(L(B))
denote the probability that an execution of A is accepted by B (i.e., satisfies the
property). The qualitative model checking problems are: (1) determine whether
almost all executions of A satisfy the property B (i.e. is PA(L(B)) = 1?, this
corresponds to B being a desirable correctness property), and (2) whether almost
no executions of A satisfy B (i.e. is PA(L(B)) = 0?, corresponding to B being an
undesirable error property). In the quantitative model checking problems we wish
to compare PA(L(B)) to a given rational threshold p, i.e., is PA(L(B)) ≥ p?, or
alternatively, we may wish to approximate PA(L(B)) to within a given number
of bits of precision. Note that in general PA(L(B)) may be irrational or may not
even be expressible by radicals [EY05]. Hence it cannot be computed exactly.
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Qualitative:

reachability det. Büchi nondet. Büchi
1-exit P P P in RMC, EXPTIME in Büchi
Bd P P P in RMC, EXPTIME in Büchi
general PSPACE PSPACE PSPACE in RMC, EXPTIME in Büchi

Quantitative:

reachability det. Büchi nondet. Büchi
1-exit PSPACE PSPACE PSPACE in RMC, EXPSPACE in Büchi
Bd P P in RMC P in RMC,

for fixed Büchi for fixed Büchi
general PSPACE PSPACE PSPACE in RMC, EXPSPACE in Büchi

Fig. 1. Complexity of Qualitative and Quantitative problems

We show that the qualitative model checking problems can be solved in
PSPACE in |A| and EXPTIME in |B|. More specifically, in a first phase the
algorithm analyzes the RMC A by itself (using PSPACE only in |A|). In a sec-
ond phase, it further analyses A in conjunction with B, using polynomial time
in A and exponential time in B. If the automaton B is deterministic then the
time is polynomial in B. Furthermore, if A is a single-exit RMC (which cor-
responds to SCFG’s and MT-BP’s), then the first phase, and hence the whole
algorithm, can be done in polynomial time in A. Another such case, where we
can model-check qualitatively in polynomial time in A, is when the total number
of entries and exits in A is bounded (we call them Bd-RMCs). In terms of proba-
bilistic program abstractions, this class of RMC’s corresponds to programs with
a bounded number of distinct procedures, each of which has a bounded number
of input/output parameter values. The internals of the components of the RMCs
(i.e., the procedures) can be arbitrarily large and complex.

For quantitative model checking, we show that deciding whether PA(L(B)) ≥
p, given a rational p ∈ [0, 1], can be decided in PSPACE in |A| and EXPSPACE
in |B|. When B is deterministic, the space is polynomial in both A and B.
Moreover, for A a Bd-RMC, and when B is fixed, there is an algorithm that
runs in P-time in |A|; however, in this case (unlike the others) the exponent of
the polynomial depends on B. Table 1 summarizes our complexity upper bounds
(the “reachability” columns are from [EY05]; all the other results are new).

For lower bounds, we prove that the qualitative model checking problem,
even for a fixed, single entry/exit RMC, is already EXPTIME-complete. On
the other hand, even for reachability analysis, we showed in [EY05] that our
PSPACE upper bounds in A, even for the quantitative 1-exit problem, and the
general qualitative problem, can not be improved without a breakthrough on
the complexity of the square root sum problem, a well-known open problem in
the complexity of exact numerical computation (see Section 2.2).

Related Work. Model checking of flat Markov chains has received extensive
attention both in theory and practice (e.g. [CY95, Kwi03, PZ93, Var85]). It is
known that model checking of a Markov chain A with respect to a Büchi au-
tomaton B is PSPACE-complete, and furthermore the probability PA(L(B)) can
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be computed exactly in time polynomial in A and exponential in B. Recursive
Markov chains were introduced recently in [EY05], where we developed some of
their basic theory and investigated the termination and reachability problems;
we summarize the main results in Section 2.2. Recursion introduces a number
of new difficulties that are not present in the flat case. For example, in the flat
case, the qualitative problems depend only on the structure of the Markov chain
(which transitions are present) and not on the precise values of the transition
probabilities; this is not any more the case for RMC’s and numerical issues have
to be dealt with even in the qualitative problem. Furthermore, unlike the flat
case, the desired probabilities cannot be computed exactly.

The closely related model of probabilistic Pushdown Systems (pPDS) was in-
troduced and studied recently in [EKM04, BKS05]. They largely focus on model
checking against branching-time properties, but they also study deterministic
([EKM04]) and non-deterministic ([BKS05]) Büchi automaton specifications.
There are efficient (linear time) translations between RMCs and pPDSs, sim-
ilar to translations between RSMs and PDSs (see [AEY01, BGR01]). Our upper
bounds, translated to pPDSs, improve those obtained in [EKM04, BKS05] by
an exponential factor in the general setting, and by more for specific classes
like single-exit and Bd-RMCs. Specifically, [BKS05], by extending results in
[EKM04], show that qualitative model checking for pPDSs can be done in
PSPACE in the size of the pPDS and 2-EXPSPACE in the size of the Büchi
automaton, while quantitative model checking can be decided in EXPTIME in
the size of the pPDS and in 3-EXPTIME in the size of the Büchi automaton.
They do not obtain stronger complexity results for the class of pBPAs (equiva-
lent to single-exit RMCs). Also, the class of Bd-RMCs has no direct analog in
pPDSs, as the total number of entries and exits of an RMC gets lost in transla-
tion to pPDSs. Reference [EE04] is a survey paper that predates this paper and
summarizes only the results in prior papers [EKM04, EY05, BKS05].

The paper is organized as follows. Section 2 gives necessary definitions and
background on RMC’s from [EY05]. Section 3 shows how to construct from
an RMC, A, a flat Markov chain M ′

A which in some sense “summarizes” A;
this chain plays a central role analogous to the ”summary graph” for RSMs
[AEY01, BGR01]. Section 4 addresses the qualitative model checking problems,
presenting both upper and lower bounds. Section 5 addresses the quantitative
model checking problem; a fundamental “unique fixed point theorem” is proved
for RMC’s, and plays a crucial role in our quantitative algorithms.

Due to space limitations, we have removed almost all proofs from this paper.

2 Definitions and Background
A Recursive Markov Chain (RMC), A, is a tuple A = (A1, . . . , Ak), where each
component chain Ai = (Ni, Bi, Yi, Eni, Exi, δi) consists of:

– A set Ni of nodes
– A subset of entry nodes Eni ⊆ Ni, and a subset of exit nodes Exi ⊆ Ni.
– A set Bi of boxes. Let B = ∪k

i=1Bi be the (disjoint) union of all boxes of A.
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– A mapping Yi : Bi �→ {1, . . . , k} assigns a component to every box.
Let Y = ∪k

i=1Yi be Y : B �→ {1, . . . , k} where Y |Bi
= Yi, for 1 ≤ i ≤ k.

– To each box b ∈ Bi, we associate a set of call ports, Callb = {(b, en) | en ∈
EnY (b)}, and a set of return ports, Returnb = {(b, ex) | ex ∈ ExY (b)}.

– A transition relation δi, where transitions are of the form (u, pu,v, v) where:
1. the source u is either a non-exit node u ∈ Ni \ Exi, or a return port

u = (b, ex) ∈ Returnb, where b ∈ Bi.
2. The destination v is either a non-entry node v ∈ Ni \Eni, or a call port

v = (b, en) ∈ Callb, where b ∈ Bi.
3. pu,v ∈ R>0 is the probability of transition from u to v. (We assume pu,v

is rational.)
4. Consistency of probabilities: for each u,

∑
{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1,

unless u is a call port or exit node; neither have outgoing transitions, in
which case

∑
v′ pu,v′ = 0.

We will use the term vertex of Ai to refer collectively to its set of nodes, call
ports, and return ports, and we denote this set by Qi, and we let Q =

⋃k
i=1 Qi

be the set of all vertices of the RMC A. That is, the transition relation δi is a
set of probability-weighted directed edges on the set Qi of vertices of Ai. Let
δ = ∪iδi be the set of all transitions of A.

An RMC A defines a global denumerable Markov chain MA = (V,Δ) as
follows. The global states V ⊆ B∗×Q are pairs of the form 〈β,u〉, where β ∈ B∗

is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. More precisely,
the states V ⊆ B∗ ×Q and transitions Δ are defined inductively as follows:
1. 〈ε,u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β,u〉 ∈ V and (u, pu,v, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β,u〉, pu,v, 〈β, v〉) ∈ Δ
3. if 〈β, (b, en)〉 ∈ V and (b, en) ∈ Callb, then
〈βb, en〉 ∈ V , & (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ Δ.

4. if 〈βb, ex〉 ∈ V and (b, ex) ∈ Returnb, then
〈β, (b, ex)〉 ∈ V & (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ Δ.

Item 1 corresponds to the possible initial states, 2 corresponds to a transition
within a component, 3 is when a new component is entered via a box, 4 is when
the process exits a component and control returns to the calling component.

Some states of MA are terminating, i.e., have no outgoing transitions. Namely,
states 〈ε, ex〉, where ex is an exit. We want MA to be a proper Markov chain, so
we consider terminating states as absorbing, with a self-loop of probability 1.

A trace (or trajectory) t ∈ V ω of MA is an infinite sequence of states t =
s0s1s2 . . .. such that for all i ≥ 0, there is a transition (si, psi,si+1 , si+1) ∈ Δ,
with psi,si+1 > 0. Let Ω ⊆ V ω denote the set of traces of MA. For a state
s = 〈β, v〉 ∈ V , let Q(s) = v denote the vertex at state s. Generalizing this
to traces, for a trace t ∈ Ω, let Q(t) = Q(s0)Q(s1)Q(s2) . . . ∈ Qω. We will
consider MA with initial states from Init = {〈ε, v〉 | v ∈ Q}. More generally
we may have a probability distribution pinit : V �→ [0, 1] on initial states (we
usually assume pinit has support only in Init, and we always assume it has finite
support). This induces a probability distribution on traces generated by random
walks on MA. Formally, we have a probability space (Ω,F ,PrΩ), parametrized
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by pinit, where F = σ(C) ⊆ 2Ω is the σ-field generated by the set of basic
cylinder sets, C = {C(x) ⊆ Ω | x ∈ V ∗}, where for x ∈ V ∗ the cylinder at x is
C(x) = {t ∈ Ω | t = xw, w ∈ V ω}. The probability distribution PrΩ : F �→ [0, 1]
is determined uniquely by the probabilities of cylinder sets, which are:

PrΩ(C(s0s1 . . . sn)) = pinit(s0)ps0,s1ps1,s2 . . . psn−1,sn

See, e.g., [Bil95]. RMCs where every component has at most one exit are called
1-exit RMCs. RMCs where the total number of entries and exits is bounded by
a constant c, (i.e.,

∑k
i=1 |Eni| + |Exi| ≤ c) are called Bounded total entry-exit

RMCs (Bd-RMCs, for short).

2.1 The Central Questions for Model Checking of RMCs

We first define reachability probabilities that play an important role in our anal-
ysis. Given a vertex u ∈ Qi and an exit ex ∈ Exi, both in the same com-
ponent Ai, let q∗(u,ex) denote the probability of eventually reaching the state
〈ε, ex〉, starting at the state 〈ε,u〉. Formally, we have pinit(〈ε,u〉) = 1, and
q∗(u,ex)

.= PrΩ({t = s0s1 . . . ∈ Ω | ∃ i , si = 〈ε, ex〉}). As we shall see, the
probabilities q∗(u,ex) will play an important role in obtaining other probabilities.

Recall that a Büchi automaton B = (Σ,S, q0, R, F ), has an alphabet Σ, a set
of states S, an initial state q0 ∈ S, a transition relation R ⊆ S×Σ×S, and a set of
accepting states F ⊆ S. A run of B is a sequence π = q0v0q1v1q2 . . . of alternating
states and letters such that for all i ≥ 0 (qi, vi, qi+1) ∈ R. The ω-word associated
with run π is wπ = v0v1v2 . . . ∈ Σω. The run π is accepting if for infinitely many
i, qi ∈ F . Define the ω-language L(B) = {wπ | π is an accepting run of B}. Note
that L(B) ⊆ Σω. Let L : Q �→ Σ, be a given Σ-labelling of the vertices v of RMC
A. L naturally generalizes to L : Qω �→ Σω: for w = v0v1v2 . . . ∈ Qω, L(w) =
L(v0)L(v1)L(v2) . . .. Given RMC A, with initial state s0 = 〈ε,u〉, and given a
BA B over the alphabet Σ, let PA(L(B)) denote the probability that a trace of
MA is in L(B). More precisely: PA(L(B)) .= PrΩ({t ∈ Ω | L(Q(t)) ∈ L(B)}).
One needs to show that the sets {t ∈ Ω | L(Q(t)) ∈ L(B)} are measurable (in
F). This is not difficult (see similar proofs in [CY95, Var85]). The model checking
problems for ω-regular properties of RMCs are:

(1) Qualitative model checking problems: Is PA(L(B)) = 1? Is PA(L(B)) = 0?
(2) Quantitative model checking problems: given p ∈ [0, 1], is PA(L(B)) ≥ p?

Also, we may wish to approximate PA(L(B)) to within a given number of
bits of precision.

Note, with a routine for the problem PA(L(B)) ≥ p?, we can approximate
PA(L(B)) to within i bits using binary search with i calls to the routine. Thus,
for quantitative model checking the first problem entails the second. Note that
probabilistic reachability is a special case of model checking: given vertex u of
RMC A and a subset of vertices F , the probability that the RMC starting at u
visits some vertex in F (in some stack context) is equal to PA(L(B)), where we
let the labelling L map vertices in F to 1 and the other vertices to 0, and B is
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the 2-state automaton that accepts strings that contain a 1. Similarly, for the
repeated reachability problem, where we are interested whether a trajectory from
u infinitely often visits a vertex of F , we can let B be the (2-state deterministic)
automaton that accepts strings with an infinite number of 1’s.

To simplify the descriptions of our results, we assume henceforth that Σ = Q,
the vertices of A. This is w.l.o.g. since the problem can be reduced to this case
by relabelling the RMC A and modifying the automaton B (see, e.g., [CY95]),
however care is needed when measuring complexity separately in RMC, A, and
BA, B, since typically B and Σ are small in relation to A. Our complexity results
are all with respect to the standard sizes of A and B.

2.2 Basic RMC Theory and Reachability Analysis (From [EY05])

We recall some of the basic theory of RMCs developed in [EY05], where we
studied reachability analysis. Considering the probabilities q∗(u,ex) as unknowns,
we can set up a system of (non-linear) polynomial equations, such that the
probabilities q∗(u,ex) are the Least Fixed Point (LFP) solution of this system.
Use a variable x(u,ex) for each unknown probability q∗(u,ex). We will often find it
convenient to index the variables x(u,ex) according to a fixed order, so we can
refer to them also as x1, . . . , xn, with each x(u,ex) identified with xj for some j.
We thus have a vector of variables: x = (x1 x2 . . . xn)T .

Definition 1. Given RMC A = (A1, . . . , Ak), define the system of polynomial
equations, SA, over the variables x(u,ex), where u ∈ Qi and ex ∈ Exi, for
1 ≤ i ≤ k. The system contains one equation x(u,ex) = P(u,ex)(x), for each
variable x(u,ex). P(u,ex)(x) denotes a multivariate polynomial with positive ratio-
nal coefficients. There are 3 cases, based on the “type” of vertex u:
1. Type I: u = ex. In this case: x(ex,ex) = 1.
2. Type II: either u ∈ Ni \ {ex} or u = (b, ex′) is a return port. In these cases:

x(u,ex) =
∑

{v|(u,pu,v,v)∈δ} pu,v · x(v,ex).

3. Type III: u = (b, en) is a call port. In this case:
x((b,en),ex) =

∑
ex′∈ExY (b)

x(en,ex′) · x((b,ex′),ex)

In vector notation, we denote SA = (xj = Pj(x) | j = 1, . . . , n) by: x = P (x).

Given A, we can construct x = P (x) in P-time: P (x) has size O(|A|θ2),
where θ denotes the maximum number of exits of any component. For vectors
x,y ∈ Rn, define x � y to mean that xj ≤ yj for every coordinate j. For
D ⊆ Rn, call a mapping H : Rn �→ Rn monotone on D, if: for all x,y ∈ D,
if x � y then H(x) � H(y). Define P 1(x) = P (x), and P k(x) = P (P k−1(x)),
for k > 1. Let q∗ ∈ Rn denote the n-vector of probabilities q∗(u,ex), using the
same indexing as used for x. Let 0 denote the all 0 n-vector. Define x0 = 0, and
xk = P (xk−1) = P k(0), for k ≥ 1. The map P : Rn �→ Rn is monotone on Rn

≥0.

Theorem 1. ([EY05], see also [EKM04]) q∗ ∈ [0, 1]n is the Least Fixed Point
solution, LFP(P ), of x = P (x). Thus, q∗ = P (q∗) and q∗ = limk→∞ xk, and
for all k ≥ 0, xk � xk+1 � q∗, and for all q′ ∈ Rn

≥0, if q′ = P (q′), then q∗ � q′.
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There are already 1-exit RMCs for which the probability q∗(en,ex) is irrational
and not “solvable by radicals” ([EY05]). Thus, we can’t compute probabilities
exactly. Given a system x = P (x), and a vector q ∈ [0, 1]n, consider the following
sentence in the Existential Theory of Reals (which we denote by ExTh(R)):

ϕ ≡ ∃x1, . . . , xm

m∧
i=1

Pi(x1, . . . , xm) = xi ∧
m∧

i=1

0 ≤ xi ∧
m∧

i=1

xi ≤ qi

ϕ is true precisely when there is some z ∈ Rm, 0 � z � q, and z = P (z). Thus,
if we can decide the truth of this sentence, we could tell whether q∗(u,ex) ≤ p, for
some rational p, by using the vector q = (1, . . . , p, 1, . . .). We will rely on decision
procedures for ExTh(R). It is known that ExTh(R) can be decided in PSPACE
and in exponential time, where the time exponent depends (linearly) only on the
number of variables; thus for a fixed number of variables the algorithm runs in
polynomial time [Can88, Ren92, BPR96]. As a consequence:

Theorem 2. ([EY05]) Given RMC A and rational ρ, there is a PSPACE algo-
rithm to decide whether q∗(u,ex) ≤ ρ, with running time O(|A|O(1) · 2O(m)) where
m is the number of variables in the system x = P (x) for A. Moreover q∗(u,ex) can
be approximated to within j bits of precision within PSPACE and with running
time at most j times the above.

For Bd-RMCs, as shown in [EY05] it is possible to construct efficiently a
system of equations in a bounded number of variables, whose LFP yields the
entry-exit probabilities q∗(en,ex). Since ExTh(R) is decidable in P-time when the
number of variables is bounded, this yields:

Theorem 3. ([EY05]) Given Bd-RMC, A & rational p ∈ [0, 1], there is a P-
time algorithm to decide whether, for a vertex u & exit ex, q∗(u,ex) ≥ p(or < p).

For 1-exit RMCs (SCFGs), the qualitative termination/reachability problem
can be solved efficiently, via an eigenvalue characterization and other techniques.

Theorem 4. ([EY05]) There is a P-time algorithm that for a 1-exit RMC,
vertex u and exit ex, decides which of the following holds:(1) q∗(u,ex) = 0,(2)
q∗(u,ex) = 1,or (3) 0 < q∗(u,ex) < 1.

Hardness, such as NP-hardness, is not known for RMC reachability. How-
ever, in [EY05] we gave strong evidence of “difficulty”: the square-root sum
problem is P-time reducible to deciding whether q∗(u,ex) ≥ p, in a 1-exit RMC,
and to deciding whether q∗(u,ex) = 1 for a 2-exit RMC. Square-root sum is the
following decision problem: given (d1, . . . , dn) ∈ Nn and k ∈ N, decide whether∑n

i=1

√
di ≤ k. It is solvable in PSPACE, but it has been a major open problem

since the 1970’s (see, e.g., [GGJ76, Tiw92]) whether it is solvable even in NP.
As a practical efficient numerical algorithm for computing the probabilities

q∗(u,ex), it was proved in [EY05] that a multi-dimensional Newton’s method con-
verges monotonically to the LFP of x = P (x), and constitutes a rapid accelera-
tion of iterating P k(0), k →∞.
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3 The Conditioned Summary Chain M ′
A

For an RMC A, suppose we somehow have the probabilities q∗(u,ex) “in hand”.
Based on these, we construct a conditioned summary chain, M ′

A, a finite Markov
chain that will allow us to answer repeated reachability questions. Extensions
of M ′

A will later be a key to model checking RMCs. Since probabilities q∗(u,ex)
are potentially irrational, we can not compute M ′

A exactly. However, M ′
A will be

important in our correctness arguments, and we will in fact be able to compute
the “structure” of M ′

A, i.e., what transitions have non-zero probability. The
structure of M ′

A will be sufficient for answering various “qualitative” questions.
We will assume, w.l.o.g., that each RMC has one initial state s0 = 〈ε, eninit〉,

with eninit the only entry of a component that does not contain any exits. Any
RMC can readily be converted to an “equivalent” one in this form.

Before describing M ′
A, let us recall from [AEY01], the construction of a “sum-

mary graph”, HA = (Q,EHA
), which ignores probabilities and is based only on

information about reachability in the underlying RSM of A. Let R be the binary
relation between entries and exits of components such that (en, ex) ∈ R precisely
when there exists a path from 〈ε, en〉 to 〈ε, ex〉, in the underlying graph of MA.
The edge set EHA

is defined as follows. For u, v ∈ Q, (u, v) ∈ EHA
iff one of the

following holds:

1. u is not a call port, and (u, pu,v, v) ∈ δ, for pu,v > 0.
2. u = (b, en) is a call port, and (en, ex) ∈ R, and v = (b, ex) is a return port.
3. u = (b, en) is a call port, and v = en is the corresponding entry.

For each vertex v ∈ Qi, let us define the probability of never exiting: ne(v) =
1−∑ex∈Exi

q∗(v,ex). Call a vertex v deficient if ne(v) > 0, i.e. there is a nonzero
probability that if the RMC starts at v it will never terminate (reach an exit of
the component).

We define M ′
A = (QM ′

A
, δM ′

A
) as follows. The set of states QM ′

A
of M ′

A is the
set of deficient vertices: QM ′

A
= {v ∈ Q | ne(v) > 0}. For u, v ∈ QM ′

A
, there is a

transition (u, p′u,v, v) in δM ′
A

if and only if one of the following conditions holds:

1. u, v ∈ Qi and (u, pu,v, v) ∈ δi, and p′u,v = pu,v·ne(v)
ne(u) .

2. u = (b, en) ∈ Callb, v = (b, ex) ∈ Returnb, q∗(en,ex) > 0, & p′u,v =
q∗
(en,ex) ne(v)

ne(u) .

3. u = (b, en) ∈ Callb and v = en, and p′u,v = ne(v)
ne(u) . We call these transitions,

from a call port to corresponding entry, special red transitions.

Note that in all three cases, p′u,v is well-defined (the denominator is nonzero)
and it is positive. Recall that we assumed that the initial vertex eninit is the
entry of a component A0, and A0 has no exits. Thus for all v ∈ Q0, ne(u) = 1,
and thus Q0 ⊆ QM ′

A
, and if (u, pu,v, v) ∈ δ0, then (u, pu,v, v) ∈ δM ′

A
.

Proposition 1. Probabilities on transitions out of each state in QM ′
A

sum to 1.

M ′
A is an ordinary (flat) Markov chain. Let (Ω′,F ′,PrΩ’) denote the probability

space on traces of M ′
A. We now define a mapping ρ : Ω �→ Ω′ ∪ {�}, that maps
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every trace t of the original (infinite) Markov chain MA, either to a unique
trajectory ρ(t) ∈ Ω′ of the MC M ′

A, or to the special symbol �. Trajectories
mapped to � will be precisely those that go through missing vertices u ∈ Q
that are not in QM ′

A
, i.e., with ne(u) = 0. We show the total probability of

all these trajectories is 0, i.e., PrΩ(ρ−1(�)) = 0, and moreover, M ′
A preserves

the probability measure of MA: for all D ∈ F ′, ρ−1(D) ∈ F , and PrΩ’(D) =
PrΩ(ρ−1(D)). We define ρ in two phases. We first define a map ρH : Ω �→ Qω,
where every trajectory t ∈ Ω is mapped to an infinite path ρH(t) in the summary
graph HA. Thereafter, we let ρ(t) = ρH(t) if all vertices of ρH(t) are in M ′

A, and
let ρ(t) = � otherwise. We define ρH for a trace t = s0s1 . . . si . . ., sequentially
based on prefixes of t, as follows. By assumption, s0 = 〈ε, eninit〉. ρH maps s0
to eninit. Suppose si = 〈β,u〉, and, inductively, suppose that ρH maps s0 . . . si

to einit . . .u. First, suppose u is not a call port, and that si+1 = 〈β, v〉, then
s0 . . . sisi+1 maps to einit . . .uv. Next, suppose u = (b, en) is a call port and
si+1 = 〈βb, en〉. If the trace eventually returns from this call (i.e., there exists
j > i + 1, such that sj = 〈βb, ex〉 and sj+1 = 〈β, (b, ex)〉, and such that each
of the states si+1 . . . sj , have βb as a prefix of the call stack), then s0 . . . sj is
mapped by ρH to eninit . . .u(b, ex). If the trace never returns from this call, then
s0 . . . sisi+1 maps to eninit . . .u en. This concludes the definition of ρH . We show
that the mapping ρ is measure preserving.

Lemma 1. PrΩ(ρ−1(�)) = 0. Moreover, for all D ∈ F ′, ρ−1(D) ∈ F and
PrΩ(ρ−1(D)) = PrΩ’(D).

Let H ′
A = (QH′

A
, EH′

A
) be the underlying directed graph of M ′

A. In other words,
QH′

A
= QM ′

A
, and (u, v) ∈ EH′

A
iff (u, p′u,v,u) ∈ δM ′

A
. We show we can compute

H ′
A in P-time for 1-exit RMCs and Bd-RMCs, and in PSPACE for arbitrary

RMCs. The basic observation is: the structure of M ′
A depends only on qualitative

facts about the probabilities q∗(en,ex) and ne(u), for u ∈ Q.

Proposition 2. For a RMC A (respectively, 1-exit or Bd-RMC), and u ∈ Q,
we can decide whether ne(u) > 0 in PSPACE (respectively, P-time).

Proof. Suppose u is in a component Ai where Exi = {ex1, . . . , exk}. Clearly,
ne(u) > 0 iff

∑k
j=1 q

∗
(u,exj) < 1. Consider the following sentence, ϕ, in ExTh(R).

ϕ ≡ ∃x1, . . . , xn

n∧
i=1

Pi(x1, . . . , xn) = xi ∧
n∧

i=1

0 ≤ xi ∧
k∑

j=1

x(u,exj) < 1

Since q∗ is the LFP solution of x = P (x), ϕ is true in the reals if and only
if
∑k

j=1 q
∗
(u,exj) < 1. This query can be answered in PSPACE. In the special

case of a 1-exit RMC, we have Exi = {ex1}, and ne(u) > 0 iff q∗(u,ex1) < 1.
As mentioned in section 2.2, this can be answered in P-time for 1-exit RMCs
([EY05]). Similarly, for Bd-RMCs the question can be answered in P-time by
the techniques developed in [EY05]. ��
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Corollary 1. For a RMC A (respectively, 1-exit or Bd-RMC), we can compute
H ′

A in PSPACE (respectively, in polynomial time).

Proof. Recall that u ∈ QH′
A

precisely when u ∈ Q and ne(u) > 0. Thus we can
determine the set of nodes with the said complexities, respectively. The tran-
sitions of type 1 and 3 in the definition of M ′

A are immediately determined.
For the type 2 transitions, where u = (b, en) and v = (b, ex), in order to de-
termine whether to include the corresponding summary edge (u, v) we need to
decide whether q∗(en,ex) > 0. This can be done in polynomial time by invoking
the reachability algorithm for RSM’s [AEY01, BGR01]. ��

4 Qualitative Model Checking

Upper Bounds. Given an RMC A = (A1, . . . , Ak) and a (nondeterministic)
Büchi automaton B = (Σ,S, q0, R, F ) whose alphabet Σ is the vertex set of
A, we wish to determine whether PA(L(B)) = 1, = 0, or is in-between. We
will construct a finite Markov chain M ′

A,B such that PA(L(B)) is equal to the
probability that a trajectory of M ′

A,B starting from a given initial state reaches
one of a designated set of “accepting” bottom SCCs.

First, let B′ = (Σ, 2S , {q0}, R′, F ′) be the deterministic automaton obtained
by the usual subset construction on B. In other words, states of B′ are subsets
T ⊆ S, and the transition function R′ : (2S ×Σ) �→ 2S is given by: R′(T1, v) =
{q′ ∈ S | ∃q ∈ T1 s.t. (q, v, q′) ∈ R}. (We make no claim that L(B) = L(B′).)

Next we define the standard product RMC, A⊗ B′, of the RMC A, and the
deterministic Büchi automaton B′. A⊗B′ has the same number of components
as A. Call these A′

1, . . . , A
′
k. The vertices in component A′

i are pairs (u, T ), where
u ∈ Qi and T ∈ 2S , and (u, T ) is an entry (exit) iff u is an entry (exit). The
transitions of A′

i are as follows: there is a transition ((u, T ), pu,v, (v,R′(T, v))) in
A′

i iff there is a transition (u, pu,v, v) in Ai.
Define M ′

A,B as M ′
A,B = M ′

A⊗B′ . Thus M ′
A,B is the conditioned summary

chain of RMC A⊗B′. For qualitative analysis on M ′
A,B , we need the underlying

graph H ′
A,B . Importantly for the complexity of our algorithms, we do not have

to explicitly construct A ⊗ B′ to obtain H ′
A,B . Observe that states of M ′

A,B =
(Q × 2S , δM ′

A,B
) are pairs (v, T ) where v is a state of M ′

A, and T a state of B′.
The initial state of M ′

A,B is (v0, {q0}), where v0 is the initial state of M ′
A and q0

of B. The transitions of M ′
A,B from a state (v, T ) are as follows:

– Case 1: v is not a call port. Then for every transition (v, p′v,v′ , v′) ∈ δM ′
A
, we

have a corresponding transition ((v, T ), p′v,v′ , (v′, R′(T, v′))) ∈ δM ′
A,B

.
– Case 2: v is a call port, v = (b, en) where v is vertex in component Ai and box

b is mapped to component Aj . If there is a red transition (v, pv,en, en) ∈ δM ′
A

then there is a red transition ((v, T ), pv,en, (en,R′(T, en)) ∈ δM ′
A,B

with the
same probability.

– Case 3: If v has a summary transition (v, pv,v′ , v′) in M ′
A, where v′ = (b, ex),

then we have summary transitions of the form ((v, T ), p′′, (v′, T ′)) in M ′
A,B
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to states of the form (v′, T ′) iff there exists a path in MA from 〈ε, en〉 to
〈ε, ex〉 which, viewed as a string, drives B′ from T to T ′; the probability p′′

of the transition is p′′ = p′ · ne(v′)/ne(v) where p′ is the probability of all
such v-v′ paths that drive B′ from T to T ′.

M ′
A,B is a well-defined Markov chain, which is a refinement of M ′

A. That is,
every trajectory of M ′

A,B projected on the first component is a trajectory of M ′
A

and the projection preserves probabilities. We can define a mapping σ from the
trajectories t of the original (infinite) Markov chain MA to the trajectories of
M ′

A,B , or the special symbol �, in a similar manner as we defined the mapping
ρ from trajectories of M to M ′

A. For a trajectory t of MA, it is easy to see that
if ρ(t) �= � then also σ(t) �= �. Thus, with probability 1 a trajectory of MA

is mapped to one of M ′
A,B . Furthermore, we can show along similar lines the

analogue of Lemma 2, i.e. the mapping σ preserves probabilities.
Consider a product graph (without probabilities) M ′

A⊗B between the Markov
chain M ′

A and the given nondeterministic BA B (not B′) as follows: M ′
A⊗B has

nodes (v, q), for all vertices v of M ′
A and states q of B, and an edge (v, q) → (v′, q′)

if either (i) v → v′ is an ordinary edge or a red edge of M ′
A and q has a transition

to q′ on input v′, or (ii) v → v′ is a summary edge and the RMC has a path from
v to v′ that corresponds to a run of B from q to q′; if any such run goes through
an accepting state then we mark the edge (v, q) → (v′, q′) as an accepting edge.
Also, call a node (v, q) accepting if q ∈ F is an accepting state of B.

With every transition (edge) of M ′
A,B and every edge of M ′

A⊗B we associate
a string γ over Σ (the vertex set of A) that caused the edge to be included; i.e.,
if edge (v, T ) → (v′, T ′) of M ′

A,B (respectively, edge (v, q) → (v′, q′) of M ′
A ⊗B)

corresponds to an ordinary or red edge of M ′
A then γ = v′. If it corresponds to a

summary edge then we let γ be any string that corresponds to a v−v′ path that
drives B′ from T to T ′ (resp., for which B has a path from q to q′; if the edge
(v, q) → (v′, q′) is marked as accepting then we pick a path that goes through
an accepting state of B). In the case of a summary edge, there may be many
strings γ as above; we just pick anyone of them.

Let t be any trajectory of MA starting from 〈ε, v〉, for some vertex v of M ′
A

and let r be a corresponding run of B starting from a state q. With probability
1, t maps to a trajectory t′ = ρ(t) of M ′

A. The mapping ρ can be extended to
pairs (t, r), where r is a run of B on t, i.e., the pair (t, r) is mapped to a run
r′ = ρ(t, r) of M ′

A ⊗B. If r is an accepting run of B then r′ goes infinitely often
through an accepting node or an accepting edge. The converse does not hold
necessarily: a non-accepting run r of B corresponding to a trajectory t may be
mapped to a run r′ of M ′

A ⊗B that traverses infinitely often an accepting edge.
If B is a deterministic BA, then M ′

A,B and M ′
A ⊗ B are clearly the same

(except that in M ′
A ⊗ B we did not include the probabilities of the edges). In

this case, the analysis is simpler. Let us say that a bottom strongly connected
component (SCC) of M ′

A,B (and M ′
A⊗B) is accepting iff it contains an accepting

node or an accepting edge.
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Theorem 5. For a RMC A and a deterministic BA B, the probability PA(L(B))
that a trajectory of A is accepted by B is equal to the probability that a trajectory
of M ′

A,B starting from the initial node (v0, q0) reaches an accepting bottom SCC.

Suppose now that B is nondeterministic. We will follow the approach of
[CY95] for flat Markov chains, except that here we have to deal with recursive
calls and with the summary edges of the constructed Markov chain M ′

A,B which
correspond to sets of paths in the original chain MA rather than single steps.
This complicates things considerably.

Let v be a vertex of M ′
A and q ∈ F an accepting state of B. Let D(v, q) be

the subgraph of M ′
A,B induced by the node (v, {q}) and all nodes reachable from

it . We say that the pair (v, q) is special of type 1 if some bottom SCC C of
D(v, q) contains a state (v, T ) with q ∈ T . We associate with such a pair (v, q) a
string γ(v, q) ∈ Σ∗ that is the concatenation of the strings associated with the
edges of D(v, q) on a path from (v, {q}) to a node of C. (There may be many
such paths; just pick anyone.) Let v = (b, en) be a vertex of M ′

A that is a call
port of a box b of A and let q �∈ F be a non-accepting state of B. Define a graph
D(v, q) as follows. The graph contains a root node vq and a subgraph of M ′

A,B

consisting of the nodes reachable from vq after we add the following edges. We
add an edge from vq to a node (v′, {q′}) of M ′

A,B , where v′ = (b, ex) is a return
port of the same box b as v, iff there is a path γ from 〈ε, en〉 to 〈ε, ex〉 such that
B has a run from q to q′ on γ that goes through an accepting state; we label
the edge vq → (v′, {q′}) with such a string γ. The graph D(v, q) consists of the
root vq and the subgraph of M ′

A,B induced by all the nodes that are reachable
from vq after adding the above edges. We call the pair (v, q) special of type 2
if some bottom SCC C of D(v, q) contains a state (v, T ) with q ∈ T . As in the
previous case, we associate with the pair (v, q) a string γ(v, q) ∈ Σ∗ that is the
concatenation of the strings associated with the edges of D(v, q) on a path from
vq to a node of C. Special pairs have the following important properties.

Lemma 2. Suppose (v, q) is special and that RMC A starts at 〈ε, v〉 and first
performs the transitions in γ(v, q). Then with probability 1 such a trajectory t
of the RMC is accepted by B with initial state q. Specifically, there is a corre-
sponding accepting run r of B such that ρ(t, r) is a run of M ′

A⊗B starting from
(v, q) that infinitely repeats node (v, q) if (v, q) is special of type 1, or repeats an
accepting edge out of (v, q) if (v, q) is special of type 2.

Lemma 3. Suppose there is non-zero probability that a trajectory of the RMC
A starting at any vertex u ∈ M ′

A has a corresponding run in M ′
A ⊗ B starting

from any node (u, p) which repeats an accepting state (v, q) infinitely often or
repeats an accepting edge (v, q) → (v′, q′) infinitely often. Then (v, q) is special.

Proposition 3. PA(L(B)) > 0 iff from (v0, q0) in M ′
A ⊗ B we can reach a

special (v, q).

Call a bottom SCC of the flat Markov chain M ′
A,B accepting if it contains a state

(v, T ), with some q ∈ T such that (v, q) is special; otherwise call it rejecting.
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Theorem 6. PA(L(B)) is equal to the probability that a trajectory of M ′
A,B

starting from the initial state (v0, {q0}) reaches an accepting bottom SCC.

Thus, PA(L(B)) = 1 iff all bottom SCCs of M ′
A,B reachable from (v0, {q0}) are

accepting, and PA(L(B)) = 0 iff no reachable bottom SCC is accepting (i.e., by
Prop. 3, there is no path in M ′

A ⊗B from (v0, {q0}) to a special node (v, q)).
As with M ′

A and H ′
A, let H ′

A,B denote the underlying directed graph of M ′
A,B .

For the qualitative problem, we only need (1) to construct H ′
A,B and thus only

need to know which nodes and edges are present, and (2) to determine which
pairs (v, q) are special, and hence which bottom SCCs are accepting. Thus we
first have to identify the vertices u of the RMC A for which ne(u) > 0, which
can be done in PSPACE for general RMCs and P-time for 1-exit RMCs and
for Bd-RMCs. Then, the edges of H ′

A,B can be determined by the standard
reachability algorithm for RSMs ([AEY01]). This works by first constructing the
genuine product of the underlying RSM of A (ignoring probabilities on transi-
tions) together with the Büchi automaton B′. This defines a new RSM A ⊗ B′

(no probabilities), whose size is polynomial in A and B′, and thus is exponen-
tial in the original non-deterministic Büchi automaton B. The time required
for reachability analysis for RSMs is polynomial ([AEY01]). Thus, once we have
identified the deficient vertices of the RMC, the rest of the construction of H ′

A,B

takes time polynomial in A and B′.
To determine which pairs (v, q) are special, we construct for each candidate

(v, q) the graph D(v, q). For (v, q) with q ∈ F , this is immediate from H ′
A,B . For

(v, q) with q /∈ F and v = (b, en) a call port of a box b, we test for each return
port v′ = (b, ex) of the box and each state q′ of B whether there should be an
edge vq → (v′, {q′}); this involves a call to the RSM algorithm of [AEY01] to
determine whether there is a path in the RSM A ⊗ B from (en, q) to (ex, q′)
(with empty stack) that goes through a vertex whose second component is an
accepting state of B. Once we determine these edges, we can construct D(v, q).
This takes time polynomial in A and B′. Then compute the SCCs of D(v, q),
examine the bottom SCCs and check if one of them contains (v, T ) with q ∈ T .

Finally, once we have identified the special pairs, we examine the reachable
bottom SCCs of H ′

A,B and determine which ones are accepting and which are
rejecting. The dependence of the time complexity on the size of the given RMC A
is polynomial except for the identification of the vertices u for which ne(u) > 0.
The dependence on |B| is exponential because of the subset construction. If B
is deterministic to begin with, we avoid the exponential blow-up and thus have
polynomial complexity in B. Thus we have:

Theorem 7. Given RMC A & Büchi automaton B, we can decide whether
PA(L(B)) = 0, PA(L(B)) = 1, or 0 < PA(L(B)) < 1 in PSPACE in A, and EX-
PTIME in B. For a 1-exit RMC or Bd-RMC, the time complexity is polynomial
in |A|. And, if B is deterministic, the time complexity in |B| is also polynomial.

Lower Bounds. We show conversely that the exponential time complexity of
qualitative model checking for a nondeterministic BA is in general unavoidable.
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Theorem 8. Deciding whether a given RMC A satisfies a property specified
by a Büchi automaton B with probability = 1, (i.e., whether PA(L(B)) = 1))
is EXPTIME-complete. Furthermore, this holds even if the RMC is fixed and
each component has 1 entry and 1 exit. Moreover, the qualitative “emptiness”
problem, namely deciding whether PA(L(B)) = 0, is also EXPTIME-complete,
again even when the RMC is fixed and each component has 1 entry and 1 exit.

5 Quantitative Model Checking

As mentioned, the transition probabilities of the chain M ′
A,B cannot be computed

exactly, but instead have to be determined implicitly. To do quantitative model
checking in PSPACE in |A|, it will be crucial to use ExTh(R) to uniquely identify
LFP(P ) for the systems x = P (x). The following key theorem enables this.

Theorem 9. (Unique Fixed Point Theorem) The equations x = P (x) have a
unique solution q∗ that satisfies

∑
ex q∗(u,ex) < 1 for every deficient vertex u, and∑

ex q∗(u,ex) ≤ 1 for every other vertex u. (Of course, q∗ = LFP(P ).)

Theorem 10. Given RMC, A, and BA, B, and a rational value p ∈ [0, 1], we
can decide whether PA(L(B)) ≥ p in PSPACE in |A| and in EXPSPACE in B,
specifically in space O(|A|c12c2|B|) for some constants c1, c2. Furthermore, if B
is deterministic we can decide this in PSPACE in both A and B.

Proof. We make crucial use of Theorem 9, and we combine this with use of
the summary chain M ′

A,B , and queries to ExTh(R). Observe that by Theorem
6, all we need to do is “compute” the probability that a trajectory of M ′

A,B ,
starting from the initial state (v0, {q0}) reaches an accepting bottom SCC. We
can not compute M ′

A,B exactly, however, we will be able to identify the transition
probabilities uniquely inside a ExTh(R) query, and will, inside the same query
identify the probability of reaching an accepting bottom SCC.

Let q∗ = LFP(P ) be the solution vector of probabilities for the system x =
P (x) associated with RMC A. Recall that by Proposition 2, we can compute in
PSPACE in |A| the set Q′ = {u ∈ Q | ne(u) > 0} of deficient vertices. We do
this as a first step. Consider next the following quantifier-free formula, where
c(u) is the index of the component of a vertex u:

ϕ1(x) ≡ x = P (x) ∧ 0 � x ∧
∧

u∈Q′

∑
ex∈Exc(u)

x(u,ex) < 1 ∧
∧

u∈Q\Q′

∑
ex∈Exc(u)

x(u,ex) = 1

By Theorem 9, the only vector x in Rn for which ϕ1(x) holds true is q∗. In other
words, ϕ1 uniquely identifies LFP(P ). Recall that ne(u) = 1−∑ex∈Exc(u)

q∗(u,ex).
Now, let y be a vector of variables indexed by vertices of A, and let ϕ2(x,y) ≡∧

u∈Q yu = 1 −∑ex∈Exc(u)
x(u,ex). The only vector of reals (x,y) that satisfies

ϕ1∧ϕ2 is the one where x(u,ex) = q∗(u,ex) and yu = ne(u). Recall the construction
of M ′

A,B . The states of M ′
A,B are pairs (v, T ), where v ∈ Q′, and T ⊆ S is a set

of states of B. The transitions of M ′
A,B come in three varieties.
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Case 1: v is not a call port, and (v, p′v,v′ , v′) ∈ δM ′
A
. Then we have a corresponding

transition ((v, T ), p′v,v′ , (v′, R′(T, v′))) ∈ δM ′
A,B

, where p′v,v′ = pv,v′ ne(v′)/ne(v),
and thus p′v,v′ ne(v) = pv,v′ ne(v′). Associate a variable zv,v′ with each such prob-
ability p′v,v′ , and define the formula: ϕ3(y, z) ≡ ∧(v,v′)∈Case1 zv,v′yv = pv,v′yv′ .

Case 2: v is a call port, v = (b, en) where v is vertex in component Ai and
box b is mapped to component Aj , and v′ = en, and there is a red transition
(v, p′v,v′ , v′) ∈ δM ′

A
. Then there is a red transition ((v, T ), p′v,v′ , (v′, R′(T, v′)) ∈

δM ′
A,B

with the same probability. Here p′v,v′ = ne(v′)/ne(v), and thus p′v,v′ ne(v) =
ne(v′). Associate a variable zv,v′ with each such probability p′v,v′ , and define:
ϕ4(y, z) ≡ ∧(v,v′)∈Case2 zv,v′yv = yv′ .

Case 3: v is a call port that has a summary transition (v, p′v,v′ , v′) in M ′
A to a ver-

tex v′ = (b, ex), then we have summary transitions of the form ((v, T ), p′′, (v′, T ′))
in M ′

A,B to the following set of states of the form (v′, T ′): If there exists a
path of MA that starts at the entry en of Aj and ends at the exit ex (with
empty call stack) which, viewed as a string drives B′ from T to T ′, then we
include the edge ((v, T ), p′(v,T ),(v′,T ′), (v

′, T ′)) in δM ′
A,B

, where p′(v,T ),(v′,T ′) =
q∗((en,T ),(ex,T ′)) · ne(v′)/ne(v), and where q∗((en,T ),(ex,T ′)) is the probability of
reaching 〈ε, (ex, T ′)〉 from 〈ε, (en, T )〉 in the product RMC A ⊗ B′. First, com-
pute A ⊗ B′ and its associated equations w = P⊗(w) explicitly. Note that
|A⊗B′| = O(|A||B′|). Let Q⊗ be the set of vertices of A⊗B′. We can compute
the set Q′⊗ of vertices v of A⊗B′, for which ne(v) > 0 in PSPACE in |A⊗B′|.
Consider now the quantifier-free formula:

ϕ5(w) ≡ w = P⊗(w) ∧ 0 � w ∧
∧

u∈Q′⊗

∑
ex∈Exc(u)

w(u,ex) < 1 ∧
∧

u∈Q⊗\Q′⊗

∑
ex∈Exc(u)

w(u,ex) = 1

By Theorem 9, LFP(P⊗), is the only vector in Rn for which ϕ5(w) holds
true. In other words, ϕ5 uniquely identifies LFP(P⊗). Now, associate a variable
z(v,T ),(v′,T ′) with each probability p′(v,T ),(v′,T ′), where v = (b, en) and v′ = (b, ex),
and define: ϕ6(y,w, z) ≡ ∧((v,T ),(v′,T ′))∈Case3 z(v,T ),(v′,T ′)yv = w((en,T ),(ex,T ′))yv′ .

Observe,
∧6

j=1 ϕj has a unique solution, and the values of variables z in this
solution identify the probabilities p′ on transitions of M ′

A,B . By the methods of
section 4, we compute the underlying graph H ′

A,B of M ′
A,B and compute the

SCCs of H ′
A,B that contain either an accepting node or an accepting edge. Let

us define a revised finite Markov chain, M ′′
A,B , in which we remove all SCCs

in M ′
A,B that contain an accepting node or edge, and replace them by a new

absorbing node v∗, with a probability 1 transition to itself. Furthermore, in M ′′
A,B

we also remove all nodes that can not reach v∗, and all transitions into those
nodes. (Technically, some nodes of M ′′

A,B may no longer have full probability on
the transitions leaving them, but that is ok for our purposes.)

Now, recall from Markov chain theory (see, e.g., [Bil95]) that for such a
finite (sub-)Markov chain M ′′

A,B , there is a linear system of equations t = F (t),
over variables tu,v∗ , where u is any node of M ′′

A,B , and where the coefficients in
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the linear system F (t) are the probabilties p′ on transitions of M ′′
A,B such that

the least fixed point solution, LFP(F ), of t = F (t) assigns to variable tu,v∗ the
probability that v∗ is reachable from u. (In particular, one of the linear equations
is tv∗,v∗ = 1.) Moreover, because we have eliminated from M ′′

A,B all nodes that
can not reach v∗, LFP(F ) is the unique solution to this system. Thus consider the
formula: ϕ7(w, t) ≡ t = F (t). Thus the formula

∧7
j=1 ϕj has a unique solution

in the reals, and the values assigned to variables t(u,v∗) in this solution identify
the probability of reaching an accepting SCC from node u in M ′

A,B .
For initial node u∗ = (v0, {q0}) of M ′

A,B , and p ∈ [0, 1], the following sentence,
ψ, is true in R iff PA(L(B)) ≥ p: ψ ≡ ∃x,y, z,w, t

∧7
j=1 ϕj ∧ tu∗,v∗ ≥ p. ��

Theorem 11. For a fixed BA, B, given a Bd-RMC, A, and a rational value
p ∈ [0, 1], we can decide whether PA(L(B)) ≥ p in time polynomial in |A|.
Proof. (idea) The proof is a modification of Theorem 10. We extend a technique
developed in [EY05]. We use variables only for entry-exit pairs of A and A ⊗
B′, express all other variables as rational functions of those, and transform the
system to one of polynomial constraints in a bounded number of variables. ��
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Abstract. We present MC2, what we believe to be the first randomized,
Monte Carlo algorithm for temporal-logic model checking. Given a spec-
ification S of a finite-state system, an LTL formula ϕ, and parameters
ε and δ, MC2 takes M = ln(δ)/ ln(1 − ε) random samples (random walks
ending in a cycle, i.e lassos) from the Büchi automaton B = BS × B¬ϕ

to decide if L(B) = ∅. Let pZ be the expectation of an accepting lasso in
B. Should a sample reveal an accepting lasso l, MC2 returns false with l as
a witness. Otherwise, it returns true and reports that the probability of
finding an accepting lasso through further sampling, under the assump-
tion that pZ ≥ ε, is less than δ. It does so in time O(MD) and space
O(D), where D is B’s recurrence diameter, using an optimal number
of samples M . Our experimental results demonstrate that MC2 is fast,
memory-efficient, and scales extremely well.

1 Introduction

Model checking [7, 23], the problem of deciding whether or not a property speci-
fied in temporal logic holds of a system specification, has gained wide acceptance
within the hardware and protocol verification communities, and is witnessing in-
creasing application in the domain of software verification. The beauty of this
technique is that when the state space of the system under investigation is finite-
state, model checking may proceed in a fully automatic, push-button fashion.
Moreover, should the system fail to satisfy the formula, a counter-example trace
leading the user to the error state is produced.

Model checking, however, is not without its drawbacks, the most prominent
of which is state explosion: the phenomenon where the size of a system’s state
space grows exponentially in the size of its specification. See, for example, [27],
where it is shown that the problem is PSPACE-complete for LTL (Linear Tem-
poral Logic). Over the past two decades, researchers have developed a plethora
of techniques (heuristics) aimed at curtailing state explosion, including sym-
bolic model checking, partial-order reduction methods, symmetry reduction, and
bounded model checking. A comprehensive discourse on model checking, includ-
ing a discussion of techniques for state explosion, can be found in [6].

We present in this paper an alternative approach to coping with state explo-
sion based on the technique of random sampling by executing a random walk
through the system’s state transition graph. Such a technique was first advocated
by West [31, 32] and Rudin [24] to find errors (safety violations) in communica-
tion protocols. We show how this this technique can be extended and formalized
in the context of LTL model checking.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 271–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Our approach makes use of the following idea from the automata-theoretic
technique of Vardi and Wolper [30] for LTL model checking: given a specification
S of a finite-state system and an LTL formula ϕ, S |= ϕ (S models ϕ) if and
only if the language of the Büchi automaton B = BS ×B¬ϕ is empty. Here BS

is the Büchi automaton representing S’s state transition graph, and B¬ϕ is the
Büchi automaton for the negation of ϕ. Call a cycle reachable from an initial
state of B a lasso, and say that a lasso is accepting if the cycle portion of the
lasso contains a final state of B. The presence in B of an accepting lasso means
that S is not a model of ϕ. Moreover, such an accepting lasso can be viewed as
a counter-example to S |= ϕ.

To decide if L(B) is empty, we have developed the MC2 Monte Carlo model-
checking algorithm. Underlying the execution of MC2 is a Bernoulli random vari-
able Z that takes value 1 with probability pZ and value 0 with probability
qZ = 1− pZ . Intuitively, pZ is the probability that a random walk in B, starting
from an initial state and terminating at a cycle, is an accepting lasso. MC2 takes
M = ln(δ)/ ln(1 − ε) such random walks through B, each of which can be un-
derstood as a random sample Zi. The random walks are constructed on-the-fly
in order to avoid the a priori construction of B, which would immediately lead
to state explosion. Should a sample Zi correspond to an accepting lasso l, MC2

returns false with l as a witness. Otherwise, it returns true and reports that the
probability of finding an accepting lasso through further sampling, under the
assumption that pZ ≥ ε, is less than δ.

The main features of our MC2 algorithm are the following.

– To the best of our knowledge, MC2 is the first randomized, Monte Carlo algo-
rithm to be proposed in the literature for the classical problem of temporal-
logic model checking.

– MC2 performs random sampling of lassos in the Büchi automaton B = BS ×
B¬ϕ to yield a one-sided error Monte Carlo decision procedure for the LTL
model-checking problem S |= ϕ.

– Unlike other model checkers,1 MC2 also delivers quantitative information about
the model-checking problem. Should the random sampling performed by MC2

not reveal an accepting lasso in B = BS ×B¬ϕ, MC2 returns true and reports
that the probability of finding an accepting lasso through further sampling,
under the assumption that pZ ≥ ε, is less than δ.

– MC2 is very efficient in both time and space. Its time complexity is O(MD)
and its space complexity is O(D), where D is B’s recurrence diameter. More-
over, the number of samples M = ln(δ)/ ln(1− ε) taken by MC2 is optimal.

– Although we present MC2 in the context of the classical LTL model-checking
problem, the algorithm works with little modification on systems specified
using stochastic modeling formalisms such as discrete-time Markov chains.

– We have implemented MC2 in the context of the jMocha model checker
for Reactive Modules [2]. Our experimental results demonstrate that MC2 is

1 We are referring here strictly to model checkers in the classical sense, i.e., those for
nondeterministic/concurrent systems and temporal logics such as LTL, CTL, and the
mu-calculus. Model checkers for probabilistic systems and logics, a topic discussed
in Section 7, also produce quantitative results.
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fast, memory-efficient, and scales extremely well. It consistently outperforms
jMocha’s LTL enumerative model checker, which uses a form of partial-order
reduction.

The rest of the paper develops along the following lines. Section 2 considers
the requisite probability theory of geometric random variables and hypothesis
testing. Section 3 presents MC2, our Monte Carlo model-checking algorithm. Sec-
tion 4 describes our jMocha implementation of MC2. Section 5 summarizes our
experimental results. Section 6 considers alternative random-sampling strategies
to the one currently used by MC2. Section 7 discusses related work. Section 8 con-
tains our conclusions and directions for future work. Appendix A of [10] provides
an overview of automata-theoretic LTL model checking.

2 Random Sampling and Hypothesis Testing

As we will show in Section 3, to each instance S |= ϕ of the LTL model-checking
problem, one may associate a Bernoulli random variable Z that takes value 1
with probability pZ and value 0 with probability qZ = 1− pZ . Intuitively, pZ is
the probability that an arbitrary run of S is a counter-example to ϕ. Since pZ

is hard to compute, one can use Monte Carlo techniques to derive a one-sided
error randomized algorithm for LTL model checking.

Given a Bernoulli random variable Z, define the geometric random variable
X with parameter pZ whose value is the number of independent trials required
until success, i.e., until Z = 1. The probability mass function of X is p(N) =
Pr[X = N ] = qN−1

Z pZ and the cumulative distribution function (CDF) of X is

F (N) = Pr[X ≤ N ] =
∑
n≤N

p(n) = 1− qN
Z

Requiring that F (N) = 1− δ for confidence ratio δ yields:

N = ln(δ)/ ln(1− pZ)

which provides the number of attempts N needed to achieve success (find a
counter-example) with probability 1− δ.

In our case, pZ is in general unknown. However, given an error margin ε and
assuming that pZ ≥ ε we obtain that

M = ln(δ)/ ln(1− ε) ≥ N = ln(δ)/ ln(1− pZ)

and therefore that Pr[X ≤M ] ≥ Pr[X ≤ N ] = 1− δ. Summarizing:

pZ ≥ ε ⇒ Pr[X ≤M ] ≥ 1− δ where M = ln(δ)/ ln(1− ε) (1)

In equation 1 gives us the minimal number of attempts M needed to achieve
success with confidence ratio δ, under the assumption that pZ ≥ ε.

The standard way of discharging such an assumption is to use statistical hy-
pothesis testing (see e.g. [21]). To understand how this technique works, consider
the following example.
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Example 1 (Fair versus biased coin). Suppose there are two coins in a hat. One
is fair and the other is biased towards tails. The task is to randomly select one
of them and determine which one it is. To do this, one can proceed as follows:
(i) Define the null hypothesis H0 as “the fair coin was selected”; (ii) Perform N
trials noting each time whether a heads or tails occurred; (iii) If the number of
heads is “low”, reject H0. Else, fail to reject H0. Two types of errors can occur
in this scenario as shown in the following table:

H0 is true H0 is false
Reject H0 Type-I error (probability α) Correct to reject H0

Fail to reject H0 Correct to fail to reject H0 Type-II error (probability β)

A type-I error occurs when H0 is rejected even though it is true and a type-II
error occurs when H0 is not rejected even though it is false. A type-I error can
be thought of as a false positive in the setting of abstract interpretation, while a
type-II error can be viewed as a false negative. The probability of a type-I error
is denoted by α and that of a type-II error by β; common practice is to find
appropriate bounds for each of these error probabilities.

In our case, H0 is the assumption that pZ ≥ ε. Rewriting inequation 1 with
respect to H0 we obtain:

Pr[X ≤M |H0] ≥ 1− δ (2)

We now perform M trials. If no counterexample is found, i.e. if X > M , we
reject H0. This may introduce a type-I error: H0 may be true even though we
did not find a counter-example. However, the probability of making this error
is bounded by δ; this is shown in inequation 3 which is obtained by taking the
complement of X ≤M in inequation 2:

Pr[X > M |H0] < δ (3)

Because we seek to attain a one-sided error decision procedure, we do not con-
sider type-II errors in our application of hypothesis testing: as soon as we find a
counter-example, we stop sampling and decide (with probability 1) that S |= ϕ is
false. To estimate the error probability and obtain a corresponding bound on the
probability β of a type-II error,2 we would need to continue sampling no matter
how early on in the sampling process the first counter-example is encountered.

Such an approach is put forth by us in [11] where we show how to compute
an (ε, δ)-approximation p̃Z of pZ ; i.e., p̃Z is such that:

Pr[pZ(1− ε) ≤ p̃Z ≤ pZ(1 + ε)] ≥ 1− δ

2 A type-II error arises in our setting when pZ < ε even though we find a counter-
example within M samples, thereby leading us to believe incorrectly that pZ ≥ ε.
Given that pZ represents the probability that an arbitrary run of S is a counter-
example to ϕ, one could say that we were “fortunate” to find a counter-example in
this many samples.



Monte Carlo Model Checking 275

As shown in [11], this can be done in a number of samples that is optimal to
within a constant factor by appealing to the optimal approximation algorithm
(OAA) of [8].

The approach taken here, in contrast, appeals to basic probability theory of
Bernoulli and geometric random variables to derive a decision procedure for the
LTL model-checking problem. The number of samples taken by MC2 is therefore
usually an order of magnitude smaller than that required by OAA. This is to be
expected as the theory underlying OAA is based on the more general Chernoff
bounds, which are applicable to any random variable encoding a Poisson trial.

MC2 returns false at the first sample corresponding to an accepting lasso; i.e.,
it’s tolerance level for errors is one. Relaxing this condition would allow MC2 to
continue sampling until an upper bound U on the number of counter-examples
sampled is reached. Such an approach is related to the statistical quality control
process used in manufacturing, where a batch of N items is rejected when more
than U of them are found to be defective out of M randomly and sequentially
chosen samples. This process is known in the literature as a single acceptance
plan with curtailed sampling [9]. The computation of M is considerably more
involved in this case, as it depends on the cumulative distribution function of a
random variable with a negative binomial distribution.

3 Monte Carlo Model-Checking Algorithm

In this section, we present our randomized, automata-theoretic approach to
model checking based on the DDFS algorithm given in Appendix A of [10] and the
theory of geometric random variables and hypothesis testing presented in Sec-
tion 2. The samples we are interested in are the reachable cycles (or “lassos”) of
a Büchi automaton B.3 Should B be the product automaton BS ×B¬ϕ defined
in Appendix A of [10], then a lasso containing a final state of B inside the cycle
(an “accepting lasso”) can be interpreted as a counter-example to S |= ϕ. A
lasso of B is sampled via a random walk through B’s transition graph, starting
from a randomly selected initial state of B.

Definition 1 (Lasso Sample Space). A finite run σ = s0x0 . . . snxnsn+1 of a
Büchi automaton B = (Σ,Q,Q0,Δ, F ), is called a lasso if s0 . . . sn are pairwise
distinct and sn+1 = si for some 0 ≤ i ≤ n. Moreover, σ is said to be an accepting
lasso if some sj ∈ F , i ≤ j ≤ n; otherwise it is a non-accepting lasso. The lasso
sample space L of B is the set of all lassos of B, while La and Ln are the sets
of all accepting and non-accepting lassos of B, respectively.

To define a probability space over L we show how to compute the probability of
a lasso.

Definition 2 (Run Probability). The probability Pr[σ] of a finite run σ =
s0x0 . . . sn−1xn−1sn of a Büchi automaton B is defined inductively as follows:

3 We assume without loss of generality that every state of a Büchi automaton B has
at least one outgoing transition, even if this transition is a self-loop.
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2 3 41

Fig. 1. Example lasso probability space

Pr[s0] = k−1 if |Q0| = k and Pr[s0x0 . . . sn−1xn−1sn] = Pr[s0x0 . . . sn−1] ·
π[sn−1xn−1sn] where π[s x t] = m−1 if (s, x, t) ∈ Δ and |Δ(s)| = m.

Note that the above definition explores uniformly outgoing transitions. An al-
ternative definition might explore uniformly successor states.

Example 2 (Probability of lassos). Consider the Büchi automaton B of Figure 1.
It contains four lassos, 11, 1244, 1231 and 12344, having probabilities 1/2, 1/4,
1/8 and 1/8, respectively. Lasso 1231 is accepting.

Proposition 1 (Lasso Probability Space). Given a Büchi automaton B, the
pair (P(L),Pr) defines a discrete probability space.

The proof of this proposition considers the infinite tree T corresponding to the
infinite unfolding of Δ. T ′ is the (finite) tree obtained by making a cut in T at the
first repetition of a state along any path in T . It is easy to show by induction on
the height of T ′ that the sum of the probabilities of the runs (lassos) associated
with the leaves of T ′ is 1.

Definition 3 (Lasso Bernoulli Variable). The random variable Z associated
with the probability space (P(L),Pr) of a Büchi automaton B is defined as fol-
lows: pZ = Pr[Z = 1] =

∑
λa∈La

Pr[λa] and qZ = Pr[Z = 0] =
∑

λn∈Ln
Pr[λn].

Example 3 (Lassos Bernoulli Variable). For the Büchi automaton B of Figure 1,
the lassos Bernoulli variable has associated probabilities pZ = 1/8 and qZ = 7/8.

Having defined Z, we now present our Monte Carlo decision procedure, which we
call MC2, for the LTL model-checking problem. Its pseudo-code is as follows, where
rInit(B)=random(S0), rNext(B,s)=t′, (s, α′, t′) = random({τ∈Δ | ∃α, t. τ=(s, α, t)})
and acc(s,B)=(s∈ F). The main routine consists of three statements, the first
of which uses inequation 1 of Section 2 to determine the value for M , given
parameters ε and δ. The second statement is a for-loop that successively samples
up to M lassos by calling the random lasso (RL) routine. If an accepting lasso l is
found, MC2 decides false and returns l as a counter-example. If no accepting lasso
is found within M trials, MC2 decides true, and reports that with probability less
than δ, pZ is greater than ε.

The RL routine generates a random lasso by using the randomized init (rInit)
and randomized next (rNext) routines. To determine if the generated lasso is
accepting, it stores the index i of each encountered state s in HashTbl and records
the index of the most recently encountered accepting state in f. Upon detecting
a cycle, i.e., the state s := rNext(B,s) is in HashTbl, it checks if HashTbl(s)≤ f;
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MC2 algorithm
input: B = (Σ, Q, Q0, Δ, F); 0 < ε < 1; 0 < δ < 1.
output: Either (false, accepting lasso l) or (true, "Pr[X > M | H0] < δ")

(1) M := ln δ / ln(1 − ε);
(2) for (i := 1; i≤ M; i++) if (RL(B)==(1,l)) return (false,l);
(3) return (true,"Pr[X > M | H0] < δ");

RL algorithm
input: Büchi automaton B;
output: Samples a RL l. Returns (1,l) if accepting; (0,Null) otherwise

(1) s := rInit(B); i := 0; f := 0;
(2) while (s �∈ HashTbl) {
(3) HashTbl(s) := ++i;
(4) if (acc(s,B)) f := i;
(5) s := rNext(B,s); }
(6) if (HashTbl(s)≤ f) return (1,lasso(HashTbl)) else return (0,Null);

the cycle is an accepting cycle if and only if this is the case. The function lasso()
extracts a lasso from the states stored in HashTbl.

As with DDFS, one can avoid the explicit construction of B, by generating
random states rInit(B) and rNext(B,s) on demand and performing the test for
acceptance acc(B,s) symbolically. In the next section we present such a succinct
representation and show how to efficiently generate random initial and successor
states.

Theorem 1 (MC2 Correctness). Given a Büchi automaton B and parameters
ε and δ, if MC2 returns false, then L(B) �= ∅. Otherwise, Pr[X > M |H0] < δ
where M = ln(δ)/ ln(1− ε) and H0 ≡ pZ ≥ ε.

Proof. If RL finds an accepting lasso then L(B) �= ∅ by definition. Otherwise,
each call to RL can be shown to be an independent Bernoulli trial and the result
follows from inequation 3 of Section 2.

MC2 is very efficient in both time and space. The recurrence diameter of a Büchi
automaton B is the longest loop-free path in B starting from an initial state.

Theorem 2 (MC2 Complexity). Let B be a Büchi automaton, D its recurrence
diameter and M = ln(δ)/ ln(1−ε). Then MC2 runs in time O(MD) and uses O(D)
space. Moreover, M is optimal.

Proof. The length of a lasso is bounded by D; the number of samples taken is
bounded by M . That M is optimal follows from inequation 3, which provides
a tight lower bound on the number of trials needed to achieve success with
confidence ratio δ and lower bound ε on pZ .

It follows from Theorems 1 and 2 that MC2 is a one-sided error, Monte Carlo
decision procedure for the emptiness-checking problem for Büchi automata. For
B = BS ×B¬ϕ, MC2 yields a Monte Carlo decision procedure for the LTL model-
checking problem S |= ϕ requiring O(MD) time and O(D) space. In the worst
case, D is exponential in |S| + |ϕ| and thus MC2’s asymptotic complexity would
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match that of DDFS. In practice, however, we can expect MC2 to perform better
than this. For example, for the problem of N dining philosophers, our experi-
mental results of Section 5 indicate that D = O(N · 1.4N ).

4 Implementation

We have implemented the DDFS and MC2 algorithms as an extension to jMocha [2],
a model checker for synchronous and asynchronous concurrent systems specified
using reactive modules [3]. An LTL formula ¬ϕ is specified in our extension
of jMocha as a pair consisting of a reactive module monitor and a boolean
formula defining its set of accepting states. By selecting the new enumerative
or randomized LTL verification option, one can check whether S |= ϕ: jMocha
takes the composition of the system and formula modules and applies either DDFS
or MC2 on-the-fly to check for accepting lassos.

An example reactive module, for a “fair stick” in the dining philosophers
problem, is shown below. It consists of a collection of typed variables partitioned
into external (input), interface (output), and private. For this example, rqL, rqR,
rlL, rlR, grL, grR, pc, and pr denote left and right request, left and right release,
left and right grant, program counter, and priority, respectively. The priority
variable pr is used to enforce fairness.

type stickType is {free,left,right}
module Stick is

external rqL,rqR,rlL,rlR:event; interface grL,grR:event;
private pc,pr:stickType;

atom STICK
controls pc,pr,grL,grR; reads pc,pr,grL,grR,rqL,rqR,rlL,rlR
awaits rqL,rqR,rlL,rlR

init
[] true -> pc’ := free; pr’ := left;
update
[] pc = free & rqL? & ¬ rqR? -> grL!; pc′:= left; pr′ := right;
[] pc = free & rqL? & rqR? & pr = left -> grL!; pc′:= left; pr′ := right;
[] pc = free & rqL? & rqR? & pr = right -> grR!; pc′:= right; pr′ := left;
[] pc = free & rqR? & ¬ rqL? -> grR!; pc′:= right; pr′ := left;
[] pc = left & rlL? -> pc′ := free;
[] pc = right & rlR? -> pc′ := free;

In jMocha, variables change their values in a sequence of rounds: an initializa-
tion round followed by update rounds. Initialization and updates of controlled
(interface and private) variables are specified by actions defined as a set of
guarded parallel assignments. Controlled variables are partitioned into atoms:
each variable is initialized and updated by exactly one atom.

The initialization round and all update rounds are divided into sub-rounds,
one for the environment and one for each atom A. In an A-sub-round of the
initialization round, all variables controlled by A are initialized simultaneously,
as defined by an initial action. In an A-sub-round of each update round, all
variables controlled by A are updated simultaneously, as defined by an update
action.
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In a round, each variable x has two values: the value at the beginning of the
round, written as x and called the read value, and the value at the end of the
round written as x′ and called the updated value. Events are modeled by toggling
boolean variables. For example rqL?

def= rqL′ �= rqL and grL!
def= grL′ :=¬grL. If a

variable x controlled by an atom A depends on the updated value y′ of a variable
controlled by atom B, then B has to be executed before A. We say that A awaits
B and that y is an awaited variable of A. The await dependency defines a partial
order * among atoms.

Operators on modules include renaming, hiding of output variables, and par-
allel composition. Parallel composition is defined only when the modules update
disjoint sets of variables and have a joint acyclic await dependency. In this case,
the composition takes the union of the private and interface variables, the union
of the external variables (minus the interface variables), the union of the atoms,
and the union of the await dependencies.

A feature of our jMocha implementation of MC2 is that, given a Reactive
module M, the next state along a random walk through M , s′ = rNext(s,M), is
generated randomly both for the external variables M.extl and for the controlled
variables M.ctrl. For the former, we randomly generate a state s.extl′ from the
set of all input valuations Q.M.extl. For the latter, we proceed for each atom A
in a linear order *L

M compatible with *M as follows. We first randomly choose a
guarded assignment A.upd(i) with true guard A.upd(i).grd(s), where i is less
than the number |A.upd| of guarded assignments in A. We then randomly gen-
erate a state s.ctrl′ from the set of all states returned by its parallel (nondeter-
ministic) assignment A.upd(i).ass(s). If no guarded assignment is enabled, we
keep the current state s.ctrl. The routine rInit is implemented in a similar way.

5 Experimental Results

We compared the performance of MC2 and DDFS by applying our implementation
of these algorithms in jMocha to the Reactive-Modules specification of two well
known model-checking benchmarks: the dining philosophers problem and the
Needham Schroeder mutual authentication protocol. All reported results were
obtained on a PC equipped with an Athlon 2100+ MHz processor and 1GB
RAM running Linux 2.4.18 (Fedora Core 1).

For dining philosophers, we considered two LTL properties: deadlock freedom
(DF), which is a safety property, and starvation freedom (SF), which is a liveness
property. For a system of n philosophers, their specification is as follows:

DF : G¬ (pc1 = wait& . . . & pcn = wait)
SF : G F (pc1 = eat)

We considered Reactive-Modules specifications of both a symmetric and asym-
metric solution to the problem. In the symmetric case, all philosophers can si-
multaneously pick up their right forks, leading to deadlock. Lockout-freedom is
also violated since no notion of fairness has been incorporated into the solution.
That both properties are violated is intentional, as it allow us to compare the
relative performance of DDFS and MC2 on finding counter-examples.
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Table 1. Deadlock and starvation freedom for symmetric (unfair) version

DDFS MC2

ph time entr time mxl cxl M
4 0.02 31 0.08 10 10 3
8 1.62 511 0.20 25 8 7

12 3:13 8191 0.25 37 11 11
16 >20:0:0 – 0.57 55 8 18
20 – oom 3.16 484 9 20
30 – oom 35.4 1478 11 100
40 – oom 11:06 13486 10 209

DDFS MC2

ph time entr time mxl cxl M
4 0.17 29 0.02 8 8 2
8 0.71 77 0.01 7 7 1

12 1:08 125 0.02 9 9 1
16 7:47:0 173 0.11 18 18 1
20 – oom 0.06 14 14 1
30 – oom 1.12 223 223 1
40 – oom 1.23 218 218 1

Table 2. Deadlock and starvation freedom for fair asymmetric version

DDFS MC2

ph time entr time mxl avl
4 0:01 178 0:20 49 21
6 0:03 1772 0:45 116 42
8 0:58 18244 2:42 365 99

10 16:44 192476 7:20 720 234
12 – oom 21:20 1665 564
16 – oom 3:03:40 7358 3144
20 – oom 19:02:00 34158 14923

DDFS MC2

ph time entr time mxl avl
4 0:01 538 0:20 50 21
6 0:17 9106 0:46 123 42
8 7:56 161764 2:17 276 97

10 – oom 7:37 760 240
12 – oom 21:34 1682 570
16 – oom 2:50:50 6124 2983
20 – oom 22:59:10 44559 17949

For the symmetric case, we chose δ = 10−1 and ε = 1.8 · 10−3 which yields
M = 1257. This number of samples proved sufficiently large in that for each
instance of dining philosophers on which we ran our implementation of MC2, a
counter-example was detected. The results for the symmetric unfair case are given
in Table 1. The meaning of the column headings is the following: ph is the number
of philosophers; time is the time to find a counter-ex. in hrs:mins:secs; entr is the
number of entries in the hash table; mxl is the maximum length of a sample; cxl
is the length of the counter-example; N is the no. samples to find a counter-ex.
As the data demonstrate, DDFS runs out of memory for 20 philosophers, while
MC2 not only scales up to a larger number of philosophers, but also outperforms
DDFS on the smaller numbers. This is especially the case for starvation freedom
where one sample is enough to find a counter-example.

To avoid storing a large number of states in temporary variables, one might
attempt to generate successor states one at a time (which is exactly what
rNext(B,s) of MC2 does). However, the constraint imposed by DDFS to generate all
successor states in sequential order inevitably leads to the additional time and
memory consumption.

In the asymmetric case, a notion of fairness has been incorporated into the
specification and, as a result, deadlock and starvation freedom are preserved.
Specifically, the specification uses a form of round-robin scheduling to explicitly
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Table 3. Needham-Schroeder protocol

DDFS MC2

mr time entr time mxl cxl M
4 0.38 607 1.68 87 87 103
8 1.24 2527 11.3 208 65 697

16 5.87 13471 10.2 223 61 612
24 18.7 39007 3:06 280 44 12370
32 36.2 85279 2:54 269 63 11012

DDFS MC2

mr time entr time mxl cxl M
40 1:11 158431 1:46 325 117 7818
48 2:03 264607 1:45 232 25 6997
56 3:24 409951 6:54 278 133 28644
64 5:18 600607 7:12 347 32 29982
72 – oom 11:53 336 63 43192

encode weak fairness. As in the symmetric case, we chose δ = 10−1 and ε =
1.8 ·10−3. Our results are given in Table 2, where columns mxl and avl represent
the maximum and average length of a sample, respectively.

The next model-checking benchmark we considered was the Needham-Schroe-
der public-key authentication protocol; first published in 1978 [22], this protocol
initiated a large body of work on the design and analysis of cryptographic pro-
tocols. In 1995, Lowe published an attack on the protocol that had apparently
been undiscovered for the previous 17 years [17]. The following year, he showed
how the flaw could be discovered mechanically by model checking [18].

The intent of the Needham-Schroeder protocol is to establish mutual au-
thentication between principals A and B in the presence of an intruder who can
intercept, delay, read, copy, and generate messages, but who does not know the
private keys of the principals. The flaw discovered by Lowe uses an interleaving
of two runs of the protocol.

To illustrate MC2’s ability to find attacks in security protocols like Needham-
Schroeder when traditional model checkers fail due to state explosion, we en-
coded the original (incorrect) Needham-Schroeder protocol as a Reactive-Modules
specification and checked if it is free from intruder attacks. Our results are shown
in Table 3 where column mr represents the maximum nonce range;4 i.e., a value
of n for mr means that a nonce used by the principals can range in value from 0
to n, and also corresponds to the maximum number of runs of the protocol. The
meaning of the other columns are the same as those in Table 1 for the symmetric
(incorrect) version of dining philosophers.

In the case of Needham-Schroeder, counter-examples have a lower probability
of occurrence and DDFS outperforms MC2 when the range of nonces is relatively
small. However, MC2 scales up to a larger number of nonces whereas DDFS runs
out of memory.

6 Alternative Random-Sampling Strategies

To take a random sample, which in our case is a random lasso, MC2 performs a
“uniform” random walk through the product Büchi automaton B = BS ×B¬ϕ.

4 The principals in the Needham-Schroeder protocol use nonces—previously unused
and unpredictable identifiers—to ensure secrecy.
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20 n-1 n...

Fig. 2. Adversarial Büchi automaton B

In order to decide which transition to take next, a fair, k-sided coin is tossed
when a state of B is reached having k outgoing transitions. No attempt is made
to bias the sampling towards accepting lassos, which is the notion of success
for the Bernoulli random variable Z upon which MC2 is based. We are cur-
rently experimenting with alternative sampling strategies that favor accepting
lassos.

Multi-Lassos. The multi-lasso sampling strategy ignores back-edges that do
not lead to an accepting lasso if there are still forward edges to be explored. As
shown below, this may have dramatic consequences.

In the case where the out-degree of B’s states is nearly uniform, the sampling
currently performed by MC2 is biased toward shorter paths. To see this, consider
for simplicity, the case where the out-degree is constant at k > 1. Then, the
probability of a random lasso of length l is ( 1

k )l and the shorter the lasso, the
higher its probability. Thus, when S is not a model of ϕ, MC2 is likely to first
sample, and hence identify, a shorter counter-example sequence rather than a
longer one. Given that shorter counter-examples are easier to decode and under-
stand than longer ones, the advantage of this form of biased sampling becomes
apparent.

On the other hand, one can construct an automaton that is adversarial to the
type of sampling performed by MC2. For example, consider the Büchi automaton
B of Figure 2 consisting of a chain of n+1 states, such that for each state there
is also a transition going back to the initial state. Furthermore, the only final
state of B is the last state of the chain. Then there are n + 1 lassos l0, . . . , ln
in B, only one of which, ln, is accepting. Moreover, according to Definition 2,
the probability assigned to ln is 1/2n, requiring O(2n) samples to be taken to
sample ln with high probability.

Interpreting automaton B of Figure 2 as the state-transition behavior of some
system S, observe that B itself is not probabilistic even if the sampling performed
on it by MC2 is. In fact, it might even be the case that lasso ln corresponds to a
“normal” or likely behavioral pattern of S, making its detection essential. In this
case, the adversarial nature of B is evident. Using a multi-lasso strategy however,
dramatically increases the probability of ln to 1, as the size of the multi-lasso
space of B is 1.

Probabilistic Systems. In probabilistic model checking (see, for example, [16]),
the state-transition behavior of a system S is prescribed by a probabilistic au-
tomaton such as a discrete-time Markov chain (DTMC). In this case, there is a
natural way to assign a probability to a random walk σ: it is simply the product
of the state-transition probabilities pij for each transition from state i to j along
σ. This implies that MC2 extends with little modification to the case of LTL model
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checking over DTMCs. Also, the example of Figure 2 becomes less adversarial
as ln would indeed in a probabilistic model be one of very low probability.

Input Partitioning. When the probabilities of outgoing transitions are not
known in advance, it seems reasonable to assign a uniform probability to tran-
sitions involving internal nondeterminism. This justifies the use of a sampling
strategy based on uniform random walks for closed systems as discussed above.
For open systems, however, assigning a uniform probability to transitions in-
volving external nondeterminism seems to be less than optimal: in practice, an
attacker might use the same input to trigger a faulty behavior of the system over
and over again. Since the external probabilities are in general unknown, a rea-
sonable sampling strategy for open systems would be to partition (or abstract)
the input into equivalence classes that trigger essentially the same behavior,
and randomly choose a representative of each class when generating successor
states.

7 Related Work

The Lurch debugger [14] performs random search on models of concurrent sys-
tems given as AND-OR graphs. Each iteration of the search function finds one
global-state path, storing a hash value for each global state it encounters. The
random search is terminated when the percentage of new states to old states
reaches a “saturation point” or a user-defined limit on time or memory is reached.
In [5] randomization is used to decide which visited states should be stored, and
which should be omitted, during LTL model checking, with the goal of reducing
memory requirements.

Probabilistic model checkers cater to stochastic models and logics, including,
but not limited to, those for discrete- and continuous-time Markov chains [16, 4],
Probabilistic I/O Automata [28], and Probabilistic Automata [25]. Examples
logics treated by these model checkers include PCTL [12] and CSL [1]. Stochas-
tic modeling formalisms and logics are also considered in [33, 15, 26]; these re-
searchers, like us, advocate an approach to model checking based on random
sampling of execution paths and hypothesis testing. The logics treated by these
approaches, however, are restricted to time-bounded safety properties. Also, the
number of samples taken by our algorithm—arrived at by appealing directly to
the theory of geometric random variables—is optimal and therefore significantly
smaller than the number of samples taken in [15].

Several techniques have been proposed for the automatic verification of safety
and reachability properties of concurrent systems based on the use of random
walks to uniformly sample the system state space [19, 13, 29]. In contrast, MC2

performs random sampling of lassos for general LTL model checking. In [20],
Monte Carlo and abstract interpretation techniques are used to analyze programs
whose inputs are divided into two classes: those that behave according to some
fixed probability distribution and those considered nondeterministic.
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8 Conclusions

We have presented MC2, what we believe to be the first randomized, Monte Carlo
decision procedure for classical temporal-logic model checking. Utilizing basic
probability theory of geometric random variables, MC2 performs random sampling
of lassos in the Büchi automaton B = BS×B¬ϕ to yield a one-sided error Monte
Carlo decision procedure for the LTL model-checking problem S |= ϕ. It does
so using an optimal number of samples M . Benchmarks show that MC2 is fast,
memory-efficient, and scales extremely well.

In terms of ongoing and future work, we are implementing the alternative
sampling strategies discussed in Section 6. Also, we are seeking to improve the
time and space efficiency of our jMocha implementation of MC2 by “compiling”
it into a BDD representation. This involves encoding the current state, hash
table, and guarded assignments of each atom in a reactive module as BDDs,
and implementing the next-state computation and the containment (in the hash
table) check as BDD operations.

As an open problem, it would be interesting to extend our techniques to the
model-checking problem for branching-time temporal logics, such as CTL and
the modal mu-calculus. This extension appears to be non-trivial since the idea
of sampling accepting lassos in the product graph will no longer suffice.
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Abstract. Finding all satisfying assignments of a propositional formula has many
applications to the synthesis and verification of hardware and software. An ap-
proach to this problem that has recently emerged augments a clause-recording
propositional satisfiability solver with the ability to add “blocking clauses.” One
generates a blocking clause from a satisfying assignment by taking its comple-
ment. The resulting clause prevents the solver from visiting the same solution
again. Every time a blocking clause is added the search is resumed until the in-
stance becomes unsatisfiable. Various optimization techniques are applied to get
smaller blocking clauses, since enumerating each satisfying assignment would be
very inefficient.

In this paper, we present an improved algorithm for finding all satisfying
assignments for a generic Boolean circuit. Our work is based on a hybrid SAT
solver that can apply conflict analysis and implications to both CNF formulae and
general circuits. Thanks to this capability, reduction of the blocking clauses can be
efficiently performed without altering the solver’s state (e.g., its decision stack).
This reduces the overhead incurred in resuming the search. Our algorithm performs
conflict analysis on the blocking clause to derive a proper conflict clause for
the modified formula. Besides yielding a valid, nontrivial backtracking level, the
derived conflict clause is usually more effective at pruning the search space, since
it may encompass both satisfiable and unsatisfiable points. Another advantage is
that the derived conflict clause provides more flexibility in guiding the score-based
heuristics that select the decision variables. The efficiency of our new algorithm is
demonstrated by our preliminary results on SAT-based unbounded model checking
of VIS benchmark models.

1 Introduction

Many applications in computer science rely on the ability to solve large instances of the
propositional satisfiability (SAT) problem. Examples include bounded and unbounded
model checking [2, 20, 21], equivalence checking [11] and various other forms of au-
tomated reasoning [1, 17], test generation, and placement and routing of circuits [23].
While some of these applications only require a yes-no answer, an increasing number
of them relies on the solver’s ability to provide a proof of unsatisfiability [10, 29], a sat-
isfying assignment that is minimal according to some metric [5, 24], or an enumeration
of all satisfying assignments to a propositional formula [20].
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Specifically, the systematic exploration of all satisfying assignments is important
for unbounded SAT-based model checking, for decision procedures for arithmetic con-
straints, Presburger arithmetic, and various fragments of first order logic, and in the
optimization of logic circuits. The problem is computationally hard because listing all
the solutions requires exponential time in the worst case. All efforts should be made to
present (and compute) the set of satisfying assignment in a concise form. Normally, the
desired format is a disjunctive normal form (DNF) formula, which should consist of as
few terms as it is feasible without compromising the speed of the solver. Recent advances
in the design of SAT solvers like non-chronological backtracking and conflict analysis
based on unique implication points, and efficient implementations like those based on
two-watched literal schemes have inspired new approaches to the solution enumeration
problem as well [20]. In this paper, in particular, we show how to take full advantage
of sophisticated conflict analysis techniques to substantially increase both the speed of
enumeration and the conciseness of the solution.

Conventional SAT solvers are targeted to computing just one solution, but they can be
augmented to get all solutions. We call the problem of finding all satisfying assignments
AllSat. In principle, to solve AllSat, it is enough to force the SAT solver to continue the
search after getting each satisfying assignment.

In previous work [20, 16, 6], once a satisfying assignment is found then a blocking
clause is generated by taking its complement. Blocking clauses are added to the function
being examined to prevent the SAT solver from finding the same solution again. They
represent the natural way to force a SAT solver based on conflict clause recording to
continue the search. Various optimization techniques are applied to get smaller blocking
clauses, since enumerating each satisfying assignment would be very inefficient. In ap-
plications like unbounded model checking [20], one seeks to enumerate the assignments
to a propositional formula originally given in the form of a circuit. The translation of this
circuit to conjunctive normal form (CNF) introduces auxiliary variables whose values
are determined by those of the inputs of the circuit. The solutions that are enumerated
should only be in terms of these input variables, and the minimization of the blocking
clauses should take this feature into account. One way to achieve this objective is to use
a so-called auxiliary implication graph to determine a subset of the input assignments
sufficient to justify the output of the circuit.

The approach of [16] uses an external two-level minimization program to get a min-
imized form for sets of satisfying assignments instead of finding a minimized blocking
clause internally on the fly. Every time a solution is identified then it is saved in DNF in
addition to adding its negation as a blocking clause. The accumulated DNF is periodi-
cally fed to a two-level minimizer. All recent advances in propositional SAT [22, 9, 15]
based on DPLL [8, 7] can be adopted to enhance performance of these AllSat methods,
since they use exactly the same SAT algorithm except for the addition of the blocking
clauses as additional constraints.

In [19, 12], the authors point out that the size of the instance may be increased
significantly by the addition of the blocking clauses. Consequently, the speed of finding
one solution is decreased because of the time spent in implications for those blocking
clauses. They propose to save solutions in a decision tree by restricting non-chronological
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Fig. 1. Illustration of AllSat solving

backtracking. The decision heuristic also is restricted to increase the chance of saving
solutions into the decision tree.

A simple algorithm for AllSat based on adding blocking clauses is illustrated in
Fig. 1. For a given SAT instance, the search space can be divided into SAT and UNSAT
subspaces. In the figure, the filled rectangles represent the blocking clauses created from
satisfying assignments and the unfilled rectangles represent the conflict clauses generated
from conflict analysis. In conventional SAT solving, if the satisfying assignment is
identified on the SAT side, then the search is terminated. By contrast, inAllSat, the search
is continued to cover all SAT and UNSAT points. When all the search space is covered
by blocking clauses and conflict clauses then AllSat solving is finished. Minimization
techniques can enlarge the filled rectangles as in [20, 16, 6]. Since large rectangles can
prune large parts of the search space, these minimization techniques are beneficial.

Suppose that while solving AllSat, we have a blocking clause close to the UNSAT
side, as illustrated in Part (a) of the figure. By adding the blocking clause, the corre-
sponding satisfying assignments are moved to the UNSAT side as in (b). In the future,
the solver may find a conflict such that the conflict-learned clause prunes this part of
search space as in (c). Since finding blocking clauses and conflict analysis can only be
applied on the SAT and UNSAT sides, respectively, these conventional solvers cannot
apply powerful pruning techniques on both SAT and UNSAT side simultaneously as
in (d). That is, they cannot add clauses that prevent the future exploration of both SAT
and UNSAT points of the search space. In this paper we propose an efficient conflict
analysis that removes this limitation. This technique improves the effectiveness of non-
chronological backtracking, and of the heuristic that chooses the decision variables. The
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main idea is to regard the blocking clause as a conflicting clause for the updated function,
and to generate a conflict clause from it. An important issue is that this additional conflict
analysis requires, for an efficient implementation, that the state of the SAT solver be pre-
served across the computation of the blocking clause. In our solver this is very naturally
accomplished by letting the input circuit be represented in the form of an And-Inverter
Graph (AIG), while conflict and blocking clauses are kept in CNF.

The rest of this paper is organized as follows. Background material is covered in
Section 2. Section 3 presents the new AllSat algorithm based on a hybrid representation,
which consists of AIG and CNF. The efficiency of our new algorithm is demonstrated by
our preliminary results for SAT-based unbounded model checking problems in Section 4.
Finally, we draw conclusions in Sect.5.

2 Preliminaries

Most SAT solvers read a propositional formula in CNF. Boolean circuits, which are
often encountered in design automation applications of SAT, are converted to CNF
by introducing auxiliary variables for the logic gates or subformulae. The conver-
sion to CNF has linear complexity, and is therefore efficient. Recently, however, there
have been proposals for SAT solvers that combine the strengths of different repre-
sentations, including circuits, CNF formulae, and Binary Decision Diagram
(BDD [4]) [18, 14].

In this paper we rely on both CNF and AIGs to solve the AllSat problem. An And-
Inverter Graph (AIG) is a Boolean circuit such that each internal node ν has exactly
two predecessors, and if the predecessor variables are v1 and v2, its function φ(ν) is one
of v1 ∧ v2, v1 ∧ ¬v2, ¬v1 ∧ v2, and ¬v1 ∧ ¬v2. A Conjunctive Normal Form (CNF)
is a set of clauses; each clause is a set of literals; each literal is either a variable or its
complement. The function of a clause is the disjunction of its literals, and the function
of a CNF formula is the conjunction of its clauses.

Figure 2 shows the pseudocode for the DPLL procedure. Procedure ChooseNex-
tAssignment checks the implication queue. If the queue is empty, the procedure makes
a decision: it chooses one unassigned variable and a value for it, and adds the assignment

1 DPLL() {
2 while (ChooseNextAssignment()) {
3 while (Deduce() == CONFLICT) {
4 blevel = AnalyzeConflict();
5 if (blevel ≤ 0) return UNSATISFIABLE;
6 else Backtrack(blevel);
7 }
8 }
9 return SATISFIABLE;
10 }

Fig. 2. DPLL algorithm
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1 AllSat() {
2 while (1) {
3 while (ChooseNextAssignment()) {
4 while (Deduce() == CONFLICT) {
5 blevel = AnalyzeConflict();
6 if (blevel ≤ 0) return UNSATISFIABLE;
7 else Backtrack(blevel);
8 }
9 }
10 FindAndAddBlockingClause();
11 Backtrack();
12 }
13 }

Fig. 3. AllSat algorithm

to the implication queue. If none can be found, it returns false. This causes DPLL to
return an affirmative answer, because the assignment to the variables is complete.

If a new assignment has been chosen, its implications are added by Deduce to the
queue. Efficient computation of implications for clauses is discussed in [25, 27, 22, 9];
implications in AIGs are described in [18];

If the implications yield a conflict, AnalyzeConflict() is launched. Conflict anal-
ysis relies on the (implicit) construction of an implication graph. Each literal in the
conflicting clause has been assigned at some level either by a decision, or by an implica-
tion. If there are multiple literals from the current decision level, at least one of them is
implied. Conflict analysis locates the source of that implication—it may be a clause or an
AIG node—and extends the implication graph by adding arcs from the antecedents of the
implication to the consequent. This process continues until there is exactly one assign-
ment for the current level among the leaves of the tree. The disjunction of the negation of
the leaf assignments gives then the conflict clause. The highest level of the assignments
in the conflict clause, excluding the current one, is the backtracking level. The single
assignment at the current level is known as first Unique Implication Point (UIP). Conflict
clauses based on the first UIP have been empirically found to work well [28].

Conflict analysis produces two important results. The first is a clause implied by the
given circuit and objectives. This conflict clause is added to the clauses of the circuit.
Termination relies on it, because it causes the search to continue in a different direction.
The second result of conflict analysis is the backtracking level: Each assignment to a
variable has a level that starts from 0 and increases with each new decision. When a
conflict is detected, the algorithm determines the lowest level at which a decision was
made that eventually caused the conflict. The search for a satisfying assignment resumes
from this level by deleting all assignments made at higher levels. This non-chronological
backtracking allows the decision procedure to ignore inconsequential decisions that have
provably no part in the conflict being analyzed.

Figure 3 shows the basic algorithm to get all satisfying assignments to a propositional
formula. The DPLL procedure is extended with the ability to add blocking clauses as
in [20, 6]. One generates a blocking clause from a satisfying assignment by taking the
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complement of the conjunction of all the literals in the assignment. Procedure Find-
AndAddBlockingClause() finds a blocking clause and adds it to the database. The
resulting clause prevents the solver from visiting the same solution again. Every time a
blocking clause is added, the search is resumed at some safe backtracking level until the
instance becomes unsatisfiable.

3 Algorithm

In the technique we propose, an AIG is used to represent the Boolean circuit whose
satisfying assignments must be enumerated, while the result of a conflict analysis is
represented as one clause. In our framework, conflict analysis and implications can be
applied to both CNF formulae andAIGs. Figure 4 shows the pseudocode for the proposed
algorithm. The naive algorithm of Figure 3 can be improved by replacing lines 10 and
11 with the procedure in Figure 4.

In the algorithm description, C is a Boolean circuit in the form of an AIG, which is
given as an input together with obj; obj is the objective, which is a node of C. We want to
find the all the assignments over V that satisfy obj. F is the formula resulting from con-
joining C with the conflict clauses and the blocking clauses generated while solving the
AllSat problem. Therefore, initially F is C and when F becomes 0 AllSat is completed.

Procedure BlockingClauseAnalysis is called when a satisfying assignment is
found in F . To get a blocking clause B over the variables in V , Boolean constraint
propagation is applied on C, which is the original Boolean circuit, disregarding conflict
learned clauses and blocking clauses. This is to get a smaller assignment from this
analysis. Figure 5 shows the reason why C is used for finding minimized assignments.
Suppose we have 4 variables in our SAT instance, and a∧c is the off-set.¬a∧b∧¬c∧d
is a satisfying assignment that was detected at an earlier stage. It is possible to get such
an assignment if we use a heuristic minimization algorithm, but with small changes,

1 BlockingClauseAnalysis(F, C, A, V, obj) {
2 B = ∅;
3 for each v ∈ V {
4 B = B ∪ v;
5 BCPonCircuit(C, v, A(v));
6 if (Value(obj) == A(obj)) break ;
7 }
8 MinimizationBasedOnAntecedent(C, B, obj);
9 AddBlockingClause(F, ¬B);
10 if (CheckUIP(F, B) == 0)
11 bLevel = ConflictAnalysis(F, ¬B);
12 else
13 bLevel = GetSafeBacktrackLevel(F, ¬B);
14 Backtrack(bLevel);
15 }

Fig. 4. Blocking clause analysis algorithm
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Fig. 5. Example of minimization

the example could be adapted to the case in which exact minimization is applied. Now
suppose that satisfying assignment ¬c ∧ ¬d is found. If we try to expand ¬c ∧ ¬d with
respect to F , which is C ∧ (a ∨ ¬b ∨ c ∨ ¬d), it cannot be expanded further as in
(a). But if we apply minimization with respect to C, it can be expanded to ¬c as in
(b). Therefore heuristic minimization on C instead of F will give us a chance to get
further minimization, since the expansion on C may give us a cover made up of prime
implicants instead of a disjoint cover. In our framework, implications on either the AIG
or the CNF clauses can be disabled. Since the conflict clauses and blocking clauses are
saved as clauses, the implication on C can be done without extra effort by enabling the
implication on AIGs only.

While applying Boolean constraints propagation (BCP) based on valuations of the
variables in V , if the objective obj is satisfied then a sufficient satisfying assignment
is identified. There is still room to improve because different orders of application of
Boolean constraint propagation may result in different sufficient sets of variables. The
assignments are further minimized by checking the implication graph C. Figure 6 (a)
shows a small example that illustrates order dependency. If we check if y is implied
while applying BCP with the order of a, b, c, d then ¬a ∧ ¬b ∧ c ∧ d is identified as a
satisfying assignment. If we check if y is implied while applying BCP with the order
of c, d, a, b then c ∧ d is a sufficient assignment. To reduce this inefficiency caused by
the order of BCP, we traverse the implication graph after the implication on y has been
obtained. Even though we apply BCP with the order of a, b, c, d, c ∧ d is detected as
sufficient assignment by traversing implication graph on C even with inefficient order of
BCP. This is done in MinimizationBasedOnAntecedent. This procedure is similar
to the techniques used in [20, 13]. It should be noted that this method does not guarantee
minimality of satisfying assignment. Figure 6 (b) shows a case in which we may not get
a minimal assignment with this method. In this example a = 0 is a minimal assignment.
If the implication order is b, a, c, the sufficient assignment is found to be ¬b∧¬a. Only
when a is implied first the minimal assignment is detected.

Thanks to our solver’s hybrid capability, reduction of the blocking clauses can be
efficiently performed on C without altering the solver’s state (e.g., its decision stack
for F and the two-watched literal lists). Therefore the blocking clause is added to F ,
immediately generating a conflict on F . If a blocking clause has only one variable
assignment at the maximum decision level of the implication graph of F , then it already
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has a unique implication point in it. Otherwise the conflict analysis is applied to get a
conflict-learned clause.

Since the solver’s state is not altered during the minimization procedure as opposed
to implementations based on CNF solver [20, 6], this eliminates a reason for restarting
the solver every time a blocking clause is added. One can avoid the restart by duplicating
the whole solver data base so as not to alter the solver’s state. However, it is not efficient
to find an appropriate backtracking level where the search should be resumed based on
blocking clause. Our algorithm, on the other hand, performs conflict analysis on the
blocking clause to derive a proper conflict clause for the modified formula. Besides
yielding a valid, nontrivial backtracking level, the derived conflict clause is usually
more effective at pruning the search space, since it often encompasses both satisfiable
and unsatisfiable points as shown in Figure 1. It is also unrestricted in the sense that both
input and internal variables of the Boolean circuit may appear in it.

A final advantage of our analysis is that the derived conflict clause provides more
flexibility in guiding the score-based heuristics that select the decision variables. If the
blocking clauses are used to update the variable scores, the scores of the variables in V
will unduly increase, since the variables in the blocking clauses are restricted to variables
in that set. This will cause the solver to make decisions almost only on those variables.
The result may be beneficial for the pruning of the SAT part of the search space, but
not for the UNSAT part. The conflict clauses generated by the proposed algorithm still
contain a lot of variables from V . The variables implied earlier than at the current decision
level in a conflicting clause are immediately added to the conflict learned clause. Since
a conflicting clause—in this case, the blocking clause that was added to F—consists
of those variables, the resulting conflict clause still contains a lot of variables in V . To
avoid increasing the score of those variables, we use the Deepest Variable Hiking (DVH)
decision heuristics [15]. Boosting only the score of the most recent decision variable
among the literals in the conflict-learned clause results in a more balanced approach at
letting the blocking clauses influence the search direction.

With proof identical to that of Proposition 1 in [29] one shows that the improved All-
Sat procedure that performs conflict analysis on the blocking clauses does not require
the addition of either blocking clauses or conflict clauses to F to guarantee termination.
However, as in standard SAT solvers, these additional clauses may prove useful by caus-
ing implications during BCP. Many tradeoffs are possible. In our current implementation
we keep both blocking and conflict clauses.
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We show that the conflict clauses generated by the proposed algorithm never block
other satisfying assignment as follows.

Lemma 1. For formula F , the conflict learned clause γ generated by conflict analysis
on blocking clause β is implied by F ∧ β.

Proof. Since the conflict occurred after adding blocking clause to F , F ∧ β → γ. ��

Theorem 1. For formula F , the conflict learned clause γ generated by conflict analysis
on blocking clause β never blocks satisfying assignments not in β.

Proof. Since F ∧β does not block any satisfying assignments except¬β, γ cannot block
other satisfying assignments by Lemma 1. ��

All satisfying assignments produced by the algorithms are satisfying assignments
of C, because at all times F → C. In summary, the AllSat algorithm terminates after
having enumerated all satisfying assignments of C, and is therefore correct.

4 Experimental Results

We have implemented the proposed all satisfying assignments algorithm in VIS-2.1
[3, 26]. To show the efficiency of the proposed algorithm on various examples, we
implemented a SAT-based unbounded model checker that uses the AX operator as
described in [20].

Our algorithm should already be faster than the one described in [20] because of
the hybrid capability and minimization technique discussed in Section 3. Therefore we

Table 1. Performance comparison for reaching a given pre-image step

pre-image With CA Without
Design # latches steps CPU time # blocking CPU time # blocking

synch bakery 22 49 676.7 37651 2398.9 67280
itc-b07 45 20 628.0 492 1607.2 870

solitaireVL 22 12* 2155.2 17754 15698.5 44693
heap 24 4* 847.4 34815 3028.4 78654
eight 27 2* 487.7 99992 1939.5 144563

buf bug 27 8* 3128.9 26343 4160.6 39266
swap 27 5* 1893.7 16224 15808.3 24234
two 30 15* 3414.7 28866 10537.5 48961

luckySevenONE 30 24* 6846.2 40963 17657.0 70465
cube 32 10* 4498.9 46214 8013.5 47018
bpb 36 6* 103.3 5648 3823.8 79946
huff 37 9* 7787.1 100855 13441.5 113222
ball 86 6* 46.8 26659 176.8 52772

s1423 74 2* 2039.0 64097 7153.7 78928
Ifetchprod 147 3* 233.1 47103 716.5 57278
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Table 2. Performance comparison until reaching timeout

With CA Without
Design # latches pre-image steps CPU time pre-image steps CPU time

vsa16a 172 2 1086 0* ≥20000
swap 27 6 3458 4* ≥20000

solitaireVL 22 46 6695 13* ≥20000
eight 27 4* ≥20000 3* ≥20000
two 30 18* ≥20000 16* ≥20000

luckySevenONE 30 27* ≥20000 25* ≥20000
cube 32 11* ≥20000 11* ≥20000
heap 32 6* ≥20000 5* ≥20000
huff 37 17* ≥20000 10* ≥20000

s1423 74 4* ≥20000 2* ≥20000
ball 86 8* ≥20000 7* ≥20000
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Fig. 7. Number of conflict learned clauses

compare the proposed algorithm with and without conflict analysis on blocking clauses
on our hybrid solver rather than comparing with a CNF SAT based implementation.
The experimental setup is as follows. The inputs, that is, the transition relation and the
invariant property, are given as Boolean circuits. At every iteration of the AX operation,
the frontier is extracted and expressed as a circuit in terms of next state variables. A new
objective is created to satisfy the set of states in the frontier. The iteration is continued
until convergence.

The model checking examples are selected from the VIS benchmark suite [26]. The
examples that could be solved in a few seconds were removed from the set. There is not
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direct correlation between the size of the model and its difficulty for model checking.
In several of the large examples we considered, the cones of influence of the given
properties are small so that the pre-images based on AllSat are trivial. By contrast, most
of the selected examples are small, but notoriously difficult for SAT-based methods.

The experiments have been performed on 1.7 GHz Pentium IV with 1 GB of RAM
running Linux. We have set the time out limit to 20,000 s.

Table 1 compares the CPU time spent and the number of blocking clauses generated
until the same number of pre-image steps is reached. The number is the one that the slower
method can complete within the allotted time. The column labeled ‘With CA’ shows the
performance of the proposed algorithm that applies conflict analysis on the blocking
clauses. The column labeled ‘Without’ shows the performance of AllSat without having
conflict analysis on the blocking clauses. All other features described in Sect. 3 are still
applied for the results shown in this column. The comparison of the two sets of results
highlights consistent speed-up (up to 20 times). A ‘*’ after the number of pre-image
steps signals that the performed pre-image steps did not suffice for convergence. Even
though we have consistent speed-up, some examples benefit more than others from the
improved algorithm. We conjecture that this is mainly due to the distribution of satisfying
and unsatisfying assignments over the search space.

Table 2 compares the numbers of pre-image steps that can be completed in a given
amount of time. The proposed algorithm never finishes fewer pre-image steps. Again, a
‘*’ after the number of pre-image steps indicates that convergence was not reached. For
example, ‘vsa16a’ converges in two pre-image steps with the proposed conflict analysis,
while it times out in the first iteration without the proposed conflict analysis.

Figures 7 and 8 show the numbers of conflict learned clauses and the numbers
of blocking clauses of the ‘solitaireVL’ example. Figure 7 supports our claim that the
proposed algorithm generates conflict clauses encompassing both SAT and UNSAT
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points, since it shows large reductions in conflict clauses. We also get smaller numbers
of blocking clauses as shown in Figure 8. This seems to confirm our conjecture that the
DVH decision heuristic tends to make better choices when the scores are updated based
on the conflict clauses generated from the blocking clauses.

5 Conclusions

We have presented a novel conflict analysis on blocking clauses to accelerate the search
of all satisfying assignments to a Boolean circuit. The conflict clauses generated by
the proposed algorithm often cover both the SAT and the UNSAT side of the search
space. This helps in preventing future conflicts. Moreover, we can prune larger parts
of the search space, which helps AllSat finish sooner with fewer conflicts. Since in the
proposed algorithm the decision heuristic is influenced by the blocking clauses as well,
the search is directed in such a way that even larger conflict clauses spanning both the
original UNSAT space and the identified SAT points are obtained through the standard
conflict analysis. Experimental results show a significant improvement in the speed of
AllSat solving and in the number of blocking clauses that make up the solution.

An improved solver for AllSat will benefit many applications that use it directly, like
the SAT-based model checker we used to validate our implementation, or that use it as
the basis of another algorithm. Examples of the latter that we plan to investigate are
decision procedures for various fragments of first order logic.
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Abstract. A rich dense-time logic, called Interval Duration Logic (IDL),
is useful for specifying quantitative properties of timed systems. The logic
is undecidable in general. However, several approaches can be used for
checking validity (and model checking) of IDL formulae in practice. In
this paper, we propose bounded validity checking of IDL formulae by
polynomially reducing this to checking unsatisfiability of lin-sat formu-
lae. We implement this technique and give performance results obtained
by checking the unsatisfiability of the resulting lin-sat formulae using
the ICS solver. We also perform experimental comparisons of several
approaches for checking validity of IDL formulae, including (a) digiti-
zation followed by automata-theoretic analysis, (b) digitization followed
by pure propositional SAT solving, and (c) lin-sat solving as proposed in
this paper. Our experiments use a rich set of examples drawn from the
Duration Calculus literature.

1 Introduction

Interval Duration Logic (IDL)[16] is a highly expressive logic for specifying prop-
erties of real-time systems. It is a variant of Duration Calculus (DC) [20] with
finite timed state sequences as its models. IDL, like DC, is a dense-time interval
temporal logic, incorporating the notion of cumulative amount of time (dura-
tion) for which a condition holds in a given time interval. Because of this, IDL
is well-suited for describing complex properties of real-time systems, including
scheduling and planning constraints. A large number of case studies have exem-
plified the expressive power of the logic [19].

It has been shown that because of its rich expressive power, the problem of
satisfiability (validity) checking of IDL (and DC) formulae is undecidable [16]. In
spite of this, for reasons of practical applicability, there has been interest in de-
veloping tools and techniques for validity and model checking of various duration
logics [5, 8, 16]. One approach has been to work with discrete-time versions of
duration calculus [14, 9, 18]. More recently, a digitization approach which approx-
imates dense-time validity of IDL by discrete-time validity has been proposed
[6]. But model checking of dense-time interval logics like DC and IDL remains a
challenging problem. So far, there have been no tools available for model checking
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these logics and very few experimental results profile the proposed techniques.
In this paper, we address both these issues.

In recent years, boundedmodel checking (BMC) [3] has emerged as a practically
useful method, especially for detecting shallow bugs in complex systems. BMC
exhaustively explores the system behaviour up to a bounded depth k in the state
transition graph. Typically such exploration is reduced to solving satisfiability of
a propositional formula. Inspired by the success of the BMC approach, we apply
it to the problem of validity checking of IDL formulae. We consider the question
‘Does there exist a model (timed state sequence) of length k that violates
a given IDL formula?’ or ‘Is the given IDL formula k-valid?’. As in the BMC
approach, we reduce the problem of checking k-bounded validity of an IDL formula
to checking unsatisfiability of a lin-sat formula, which is a Boolean combination of
propositional variables and mathematical constraints over real variables. We then
use ‘Integrated Canonizer and Solver (ICS)1’ [7], a SAT-based solver to check the
lin-sat formula for satisfiability.

As our primary contribution, we propose an efficient encoding of k-validity
of IDL into unsatisfiability of lin-sat. Our encoding is is linear in the size of the
IDL formula and cubic in k. Since the unsatisfiability of lin-sat is in Co-NP, this
provides a Co-NP algorithm for deciding k-validity of IDL formula. We also give
experimental evidence of the effectiveness of the proposed technique.

ItmustbenotedthatFränzle[9]wasthefirsttosuggestboundedvaliditychecking
of adiscrete-timeduration calculuswithout timing constraintsbypolynomial-sized
reductiontopropositionalSATsolving.Inthispaper,weextendFränzle’stechniques
to deal with discrete and dense-time duration constructs in an efficient manner.

Asoursecondcontribution,weimplementsomealternativemethodsforchecking
the validity of IDL formulae. These are based on the digitization technique of
Chakravorty and Pandya [6] combined with automata-theoretic analysis [14], as
wellaspropositionalSATsolving[9].Weprovideexperimentalresultsontherelative
performance of these techniques on several problems drawn from the Duration
Calculus literature.

The remainder of this paper is organized as follows. In Section 2, we recall
from [16] the basics of Interval Duration Logic. In Section 3, we present a
polynomial-time reduction of the bounded validity checking problem for IDL
formulae to the problem of checking unsatisfiability of lin-sat formulae, and
prove the correctness of our reduction. In Section 4, we compare our approach
with digitization based approaches and give experimental results. We end the
paper with some conclusions and a discussion of related work in Section 5.

2 Interval Duration Logic: An Overview

Let Pvar be the set of propositional variables. The set of states, Σ, is given by
2Pvar, i.e., the set of all subsets of Pvar. Let R denote the set of real numbers and
R0 denote the set of non-negative real numbers.

1 ICS is developed by SRI International.
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Definition 1. A timed state sequence over Pvar is a pair θ = (σ, τ), where
σ = s0 s1 . . . sn−1 is a finite non-empty sequence of states with si ∈ 2Pvar, and
τ = t0 t1 . . . tn−1 is a finite non-decreasing sequence of time-stamps such that
ti ∈ R0 with t0 = 0.

A timed state sequence gives a sampled view of timed behaviour. It is assumed
that the system evolves by discrete transitions. Let dom(θ) = {0, . . . , n − 1} be
the set of positions within the sequence θ. Let the length, n, of θ be denoted by
#θ. Let θ[i] denote the timed state at the ith position of θ. Element si denotes
the ith state and ti gives the time at which this state is entered. Thus the system
remains in state si for the duration [ti, ti+1), which includes ti but excludes ti+1.
The set of intervals in θ is given by Intv(θ) = {[b, e] ∈ dom(θ)2|b ≤ e}, where each
interval [b, e] identifies a sub-sequence of θ between positions b and e. We use the
notation θ, i |= P to denote that proposition P evaluates to true at state θ[i].

Syntax of IDL.2 Let Π be a set of propositions over a finite set of propositional
variables Pvar and let c range over non-negative integer constants. The set of
formulae of IDL is inductively defined as follows:

– η �� c and � �� c are formulae, where �� ∈ {<,=, >,≥,≤}.
– If P ∈ Π then 'P (0 , ''P ( , ∑P �� c, and

∫
P �� c are formulae.

– If D,D1 and D2 are formulae, then so are D1
�D2 , D1 ∧D2 and ¬D.

Semantics of IDL. The satisfaction of an IDL formula D for behaviour θ and
interval [b, e] ∈ Intv(θ) is denoted as θ, [b, e] |= D, and is defined as follows.

θ, [b, e] |= 'P (0 iff b = e and θ, b |= P
θ, [b, e] |= ''P ( iff b < e and θ, i |= P for all i such that b ≤ i < e
θ, [b, e] |= ¬D iff θ, [b, e] �|= D
θ, [b, e] |= D1 ∧D2 iff θ, [b, e] |= D1 and θ, [b, e] |= D2
θ, [b, e] |= D1

�D2 iff ∃m : b ≤ m ≤ e : θ, [b,m] |= D1 and θ, [m, e] |= D2

Entities η, �,
∑

P and
∫
P are called measurements. The entity η, called the

step length, denotes the number of steps within a given interval, while the time
length � gives the amount of real-time spanned by a given interval.

∑
P , called the

step count, denotes the number of states for which proposition P is true within the
interval [b, e). Duration

∫
P gives the amount of real-time for which proposition

P holds in the given interval. η and
∑

P are called discrete measurements, while �
and

∫
P are called dense measurements. The value of a measurement term t in a

timed state sequence θ and an interval [b, e], denoted as eval(t, θ, [b, e]), is defined
as follows:

– eval(η, θ, [b, e]) = e− b
– eval(�, θ, [b, e]) = te − tb

– eval(
∑

P, θ, [b, e]) =
e−1∑
i=b

{
1 if θ, i |= P
0 otherwise

2 Here we consider the version of IDL without quantification ∃p.D.
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– eval(
∫
P, θ, [b, e]) =

e−1∑
i=b

{
ti+1 − ti if θ, i |= P
0 otherwise

We say that θ, [b, e] |= t �� c iff eval(t, θ, [b, e]) �� c.

Derived Operators. Let �D
def= true �D �true and �D

def= ¬�¬D. Then, �D
holds for an interval [b, e] if for some sub-interval of [b, e], the formula D holds.
Similarly, �D holds for [b, e] if for all sub-intervals of [b, e], the formula D is true.

Definition 2 (k-Bounded Validity of IDL Formulae). Let D ∈ IDL, and let
k ∈ N be a natural number. We define the following terminology.

– Validity in behaviour: θ |= D iff θ, [0,#θ − 1] |= D

– Validity: |= D iff θ |= D for all θ
– k-satisfiability: satk(D) iff θ |= D for some θ such that #θ = k + 1
– k-validity: |=k D iff θ |= D for all θ such that #θ = k + 1 ��

Example 1 (Gas Burner). Consider a simplified version of the gas burner problem
from [21].Formulades1 def= �(''Leak( ⇒ � ≤ maxleak) states that anyoccurrence
of gas leakage, Leak, will be stopped (by turning off Gas in full design) within
maxleak seconds. Formula des2 def= �((''Leak(�''¬Leak(�'Leak(0) ⇒ � ≥
minsep) states that between two occurrences of Leak there will be at least minsep
seconds. In its full version, this is achieved by keeping Gas off for at least minsep
time. The safety requirement here is that “gas must never leak for more than
leakbound seconds in any period of at most winlen seconds”. This is captured
by the formula concl

def= �(� ≤ winlen ⇒ ∫
Leak ≤ leakbound). To establish the

safety requirement, we must prove the validity of the following IDL formula for
the given values of constants maxleak, minsep, winlen and leakbound:
G(maxleak,minsep, winlen, leakbound) def= des1 ∧ des2 ⇒ concl ��

2.1 Sub-logics and Decidability

Let DDC be the subset of IDL where dense-time measurement constructs of the
form � �� c or

∫
P �� c are not used. Let DDCR be a further subset of DDC

where even the discrete-time measurement constructs η �� c or ΣP �� c are not
used. For DDC formulae, the time-stamps τ in behaviour θ = (σ, τ) do not play
any role. We can therefore define σ |= D. The following theorem establishes the
decidability of DDC and DDCR.

Theorem 1. [14] For every DDC formula D over propositional variables Pvar,
we can effectively construct a finite state automaton A(D) over the alphabet 2Pvar

such that for all state sequences σ ∈ (2Pvar)∗, σ |= D iff σ ∈ L(A(D)). Hence,
satisfiability (validity) checking of DDCandDDCR formulae are decidable, and can
be reduced to checking the existence of an accepting (rejecting) path in A(D). ��
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Atool,calledDCVALID,basedontheaboveautomata-theoreticdecisionprocedure
for DDC has been implemented earlier, and has been found to be effective on many
significant examples [14]. Although the lower bound on the size of automatonA(D)
is non-elementary in the worst-case, such blowup is rarely observed in practice
(see [14]).

If, however, we consider the full dense-time logic IDL, its rich expressive power
comes at the cost of decidability.

Theorem 2. [16] The satisfiability (and hence validity) checking of IDL formulae
is undecidable . ��

In spite of this, for practical applicability, there has been interest in developing
partial techniques for checking validity of IDL formulae.One suchpartial technique
was the digitization approach of Chakravorty and Pandya [6]. In the next section,
we present a new approach to deciding k-validity of IDL formulae.

3 From IDL to lin-sat

As mentioned earlier, a lin-sat formula is a Boolean combination of propositional
variables and linear constraints over real variables. Each linear constraint is re-
stricted to be in one of the forms: (a) (x − y) �� c, (b)

∑
xi∈V xi �� c

or (c) (x − y) = z, where x, xi, y and z are real variables, V is a finite set of
real variables, c is an integer constant and ��∈ {<,>,≥,≤,=}. For example,
(x1 + x3) ≤ 3 ∧ (b2 ∨ (x2 − x3 = x1)) is a lin-sat formula.

Let the sets of propositional and real variables appearing in a lin-sat formula
φ be denoted by Pvar and Rvar respectively. An interpretation I consists of
(i) a mapping of variables in Pvar to {True,False} and (ii) a mapping of variables
in Rvar to R. A lin-sat formula φ is satisfiable if there exists an interpretation
for which φ evaluates to True. A lin-sat formula is valid if it is satisfiable for all
interpretations. We denote this by |=linsat φ.

Theorem 3. The satisfiability problem for lin-sat is NP-complete. Hence, validity
(unsatisfiability) checking for lin-sat is co-NP-complete.

Proof: Given a lin-sat formula φ, let Constr(φ) denote the set of syntactically
distinct linear constraints in φ. For each constraint χi ∈ Constr(φ), let vχi

be
a propositional variable distinct from all variables in Pvar. The resulting set of
variables, {vχi

| χi ∈ Constr(φ)}, is denoted Auxvar. Let φa = φ[vχi
/χi] be the

propositional formula obtainedby replacing each linear constraintχi in the formula
φ by vχi . Let μ be an assignment of truth values to variables in Pvar ∪ Auxvar.
We denote by LinSys(μ) the set {χi | μ(vχi) = True} ∪ {¬χj | μ(vχj ) = False}.
We call μ consistent if all constraints in LinSys(μ) are simultaneously satisfiable.
It is straightforward to see that φ is satisfiable if and only if there is a consistent μ
such that μ |= φa. Thus, we can non-deterministically guess an assignment μ, and
then verify in polynomial-time that it is consistent and satisfies φa. Since the size
of φa, henceforth denoted as |φa|, is linear in |φ|, checking if μ |= φa requires time
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linear in |φ|. The check for consistency of μ reduces to determining the feasibility
of the set, LinSys(μ), of linear constraints. Since the size of LinSys(μ) is linear in
|φ|, this check also requires time polynomial (grows as the fifth power) in |φ| [12].
Thus, satisfiability for lin-sat is in NP. To see that it is also NP-hard, we note that
an arbitrary instance of 3-SAT is also an instance of satisfiability of lin-sat.

3.1 An Encoding Scheme

Given an IDL formula D and an integer bound k ≥ 0, we now describe a technique
to construct a lin-sat formula, compile(D, k), such that D is k-valid if and only if
compile(D, k) is an unsatisfiable lin-sat formula.

We first define the sets of variables used in compile(D, k), which are different
from those used in D. (i) Let Pvar be the set of propositional variables of D.
Let LSatPvar(k) = {x0, . . . , xk | x ∈ Pvar}, where xi represents the value of
x in state θ[i]. Moreover, for a proposition P over Pvar, let Pi be obtained by
replacing each x by xi in P . Then, Pi represents the value of P in state θ[i]. (ii)
Let LSatTvar(k) = {t0, . . . , tk}, where the ti are fresh real variables representing
time-stamps in the timed state sequence θ. (iii) For every propositionP that occurs
in a measurement sub-formula, i.e.,

∫
P �� c and/or ΣP �� m, we introduce k real

variables, dur Pi and/or c Qi for i in 0 . . . (k − 1). We call this set of variables as
LSatMvar(D, k).

Inorder to correctly capture the semantics of IDL in lin-sat,weneed to introduce
some constraints on the variables defined above. Specifically, time must not flow
backward. Moreover, variables dur Pi and c Pi are intended to represent the values
of
∫
P and ΣQ in the interval [i, i + 1]. Thus, we have the following invariants.

INV T (k) def= (t0 = 0) ∧
k−1∧
i=0

(ti ≤ ti+1)

INV D(k) def=
k−1∧
i=0

⎛
⎝ ∧

c Qi ∈LSatMvar(D,k)

(Qi ∧ (c Qi = 1)) ∨ (¬Qi ∧ (c Qi = 0))

⎞
⎠ ∧

k−1∧
i=0

⎛
⎝ ∧

dur Pi ∈LSatMvar(D,k)

(Pi ∧ (dur Pi = ti+1 − ti)) ∨ (¬Pi ∧ (dur Pi = 0))

⎞
⎠

FINV (k) def= INV T (k) ∧ INV D(k)

Given an IDL formula D and an integer k ≥ 0, we define the syntactic encoding
of k-validity of D as unsatisfiability of the following lin-sat formula.

compile(D, k) def= FINV (k) ∧ ¬β[0,k](D).

Here, β[0,k](D) is computed recursively using the translation scheme shown in
Table 1. In this table, column 2 gives an IDL sub-formula, D′, and column 3 gives
its encoding for subinterval [b, e], where 0 ≤ b ≤ e ≤ k. For notational convenience,
we denote this encoding as β[b,e](D′).
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Table 1. Translation of IDL to lin-sat

No. IDL : D′ lin-sat : β[b,e](D′)

1 �P �0 Pb ∧ (b = e)

2 ��P � ∧e−1
i=b Pi ∧ ( e > b)

3 η �� m (e − b) �� m

4 � �� m (te − tb) �� m

5 ΣP �� m
∑e−1

i=b c Pi �� m

6
∫

P �� m
∑e−1

i=b dur Pi �� m

7 ¬D1 ¬(β[b,e](D1))

8 D1 ∧ D2 β[b,e](D1) ∧ β[b,e](D2)

9 D1
�D2

∨e
j=b

[
(β[b,j](D1)) ∧ (β[j,e](D2))

]

3.2 Proof Outline for Correctness of lin-sat Reduction

In this Section, we will use |=lin for satisfaction in lin-sat to distinguish it from
|= which denotes satisfaction in IDL. Given a timed state sequence θ of length
k + 1 and an IDL formula D, we restrict ourselves to lin-sat formulae over vari-
ables in LSatPvar(k) ∪ LSatTvar(k) ∪ LSatMvar(D, k). We define Iθ as an
interpretation of lin-sat in which each propositional variable xi in LSatPvar(k)
is assigned the value of x in state θ[i], and each ti in LSatTvar(k) is assigned the
time-stamp τi of state θ[i]. In addition, each variable c Pi in LSatMvar(D, k) is
assigned 1 if θ, i |= P , and is assigned 0 otherwise. Similarly, each variable dur Qi

in LSatMvar(D, k) is assigned (τi+1− τi) if θ, i |= Q, and is assigned 0 otherwise.
Thus, by definition, Iθ |=lin FINV (k).

Similarly, given an interpretation I of lin-sat that satisfies FINV (k), we define
θI as a timed state sequence in which (i) the value of propositional variable x in
state θI [i] is the same as that of xi in I, and (ii) the time-stamp of θI [i] is equal
to the value of ti in I, for all i in 0 through k.

Lemma 1. There is a bijection between the set of timed state sequences, θ, of length
k + 1 and the set of interpretations, I, of lin-sat that satisfy FINV (k).

The proof for the lemma follows from the fact that the definitions of Iθ and θI are
injections. We will denote the bijective pair as (θ, Iθ) or (I , θI), as convenient.

Theorem 4. Let D ∈ IDL and θ be a timed state sequence with #θ = k + 1. For
all [b, e] ∈ Intv(θ) we have θ, [b, e] |= D iff Iθ |=lin β[b,e](D).

Proof: The proof is by induction on the structure of D.
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Base Cases: We prove only one case, that of D = � �� m. The proof for the other
cases, where D is 'P (0, ''P (, η �� c ,

∑
P �� c or

∫
P �� c are omitted for lack of

space. The full proof can be found in [17].

– Let D = � �� m. Then,

θ, [b, e] |= � �� m
iff τe − τb �� m . . . from IDL semantics
iff Iθ |=lin ((te − tb) �� m) . . . as Iθ(tb) = τb and Iθ(te) = τe.
iff Iθ |=lin β[b,e](D) . . . from Table 1

Induction Step: We prove only one case, that of D = D1
�D2. The proof for

the other cases where D is D1 ∧D2 or ¬D1 are similar and are omitted for lack of
space.

– Let D = D1
�D2. Then,

θ, [b, e] |= D1
�D2

iff . . . from IDL semantics
for some m : b ≤ m ≤ e, θ, [b,m] |= D1 and θ, [m, e] |= D2

iff . . . by the induction hypothesis
for some m : b ≤ m ≤ e, Iθ |=lin (β[b,m](D1)) and Iθ |=lin (β[m,e](D2))

iff . . . from semantics of ∨
Iθ |=lin

∨e
m=b

[
(β[b,m](D1)) ∧ (β[m,e](D2))

]
iff . . . from Table 1

Iθ |=lin β[b,e](D) ��

Corollary 1. |=k D iff compile(D, k) is unsatisfiable for all interpretations
in lin-sat. Moreover, I |= compile(D, k) implies θI �|= D. ��

3.3 Optimizing the Encoding

In the above encoding scheme, the same lin-sat sub-formula may be replicated at
several places when generating β[0,k](D) due to repeated evaluation of β[i,j](D′).
This can lead to an exponential blowup in the size of the output formula (see [17, 9]
for concrete instances). In order to address this problem, following Fränzle [9], we
introduce auxiliary variables for denoting potentially common sub-formulae.

Let SubForm(D) be the set of sub-formulae of D. Then, LSatAux(D, k) =
{γ[b,e]

ψ | 0 ≤ b ≤ e ≤ k, ψ ∈ SubForm(D)} gives the set of auxiliary variables
used for the optimized encoding. We now reuse the notation of Table 1, and modify
column 3 of rows numbered 7, 8 and 9 in this table by replacing all occurrences of
β[b,e](Di) with γ

[b,e]
Di

. Let the new encoding scheme, represented by the modified
table, be called δ[b,e](D). Given an IDL formula D and an integer k > 0, the
optimized lin-sat encoding can now be obtained as

compile opt(D, k) def= FINV (k) ∧ ¬ γ
[0,k]
D ∧∧

γ
[b,e]
ψ ∈LSatAux(D,k) (γ[b,e]

ψ ⇔ δ[b,e](ψ)).
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It is straightforward to see that compile opt(D, k) is equisatisfiable to the formula
compile(D, k), and therefore the correctness proof of Section 3.2 applies here as
well. The number of auxiliary variables in LSatAux(D, k) is O(k2.|D|), and the
worst-case size of δ[b,e](ψ) isO(k) (from rows 2, 5, 6 and 9 of Table 1). Also, the size
|FINV (k)| is |INV T (k)|+|INV D(k)|+1.Fromthedefinitionsof these invariants,
|INV T (k)| isO(k) and |INV D(k)| isO(k.|D|).Thus, the size of compile opt(D, k)
is O(k3.|D|).

As a further optimization, we note that auxiliary variables need not be intro-
duced for every sub-formula and sub-interval combination. Therefore, we have
implemented our encoding tool, idl2ics, as a two-pass translator. In the first pass,
we identify all sub-formulae and sub-interval combinations that repeat in the en-
coding scheme, and introduce auxiliary variables only for these combinations. This
effectively reduces the size of LSatAux(D, k). In the second pass, the translator
uses these auxiliary variables to generate compile opt(D, k).

3.4 A Comparison of IDL Validity Checking Approaches

In this section, we give a comparative overview of several approaches proposed in
the literature for checking (bounded) validity of IDL formulae.

ApproachA: This is the boundedvalidity checking approachproposed inCorollary
1 of this paper. Checking k-validity of an IDL formula D is polynomially reduced
to checking unsatisfiability of the lin-sat formula compile opt(D, k). The size of
compile opt(D, k) is at most O(k3.|D|) where |D| includes the size of binary
encoding of integer constants occurring in D. Formula compile opt(D, k) can be
checked for unsatisfiability using a Co-NP algorithm based on Theorem 3.

Theorem 5. Using approach A, k-validity checking of IDL formulaD is decidable
with Co-NP complexity. The complement problem, that of finding a satisfying
assignment of compile opt(D, k), is solvable by an NP algorithm with input size
O(k3.|D|), i.e. polynomial in both k and |D|. ��

Approach B: Chakravorty and Pandya [6] have proposed a digitization technique
for reducing validity checking of IDL formulae to validity checking of formulae in
the discrete-timed logic DDC (see Section 2.1). They have defined a translation
dig : IDL → DDC such that |=DDC dig(D) implies |=IDL D. They have also
proposed simple structural tests to identify a subclass SY NCID ⊂ IDL for
which |=DDC dig(D) if and only if |=IDL D. The size of dig(D) is O(|D|), and
validity of dig(D) can be checked using the automata-theoretic decision procedure
implemented in the tool DCVALID [14]. The worst case complexity of validity
checking of DDC formulae is non-elementary in the size of the formula.

Theorem 6. Using approach B, the validity of D ∈ SY NCID(⊂ IDL) is decid-
able by an algorithm with non-elementary worst-case complexity. ��

Approach C: Recall from Section 2.1 that the subset DDCR of DDC consists of
formulae without any quantitative measurements. It has been shown by earlier
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researchers [14, 8, 19] that every formula D ∈ DDC can be effectively transformed
to an equivalent formula untime(D) ∈ DDCR. The worst-case size of untime(D)
is O(2|D|), where |D| includes the size of binary encoding of constants occurring
in D. In approach C, a formula D ∈ SY NCID(⊂ IDL) is first digitized to a
validity preserving formula dig(D) ∈ DDC. This is then reduced to an equivalent
DDCR formula, untime(dig(D)), which can be checked for bounded validity. Note
that for D′ ∈ DDCR, the translation compile opt(D′,m) gives a purely propo-
sitional formula whose unsatisfiability can be established by propositional SAT-
solving. The size of the propositional formula compile opt(untime(dig(D)),m) is
O(m3.|untime(dig(D))|), which is O(m3.2|D|) in the worst-case. Fränzle [9] first
suggested checking m-validity of DDC formulae using propositional SAT solving.
Hence, approach C is an extension of his work.

In the context of bounded validity checking, the effect of digitization on the
length of counter-models is an important factor to consider. Let D be digitizable,
i.e. D ∈ SY NCID. Chakravorty and Pandya [6] have shown that every timed
state sequence θ of logic IDL can be represented by a state sequence θ̂ of DDC such
that θ |=IDL D iff θ̂ |=DDC dig(D). The encoding of time in θ̂ is achieved by
having exactly one unit of time elapse between successive states in the sequence. In
contrast, the elapse of an arbitrary length of time between successive states can be
represented in the timed state sequence θ by using appropriate time-stamps. Thus,
a discretized (counter-)model θ̂ is typically much longer than the corresponding
time-stamped (counter-)model θ. Let k be the length of the shortest (counter-
)model of D and let k′ be the length of shortest (counter-)model of dig(D). While
it is difficult to estimate k′ directly from k and D, it is easy to see that k ≤ k′.
This follows from the fact that the bijective mapping θ → θ̂ does not reduce the
length of the model [6]. We will present experimental results comparing k and k′

on several benchmark problems later in the paper.

Theorem 7. UsingapproachC,k-validityofD ∈ SY NCID (⊂ IDL) isdecidable
with Co-NEXP complexity. The complement problem, that of finding a satisfying
assignment of compile opt(untime(dig(D)), k′) is solvable by an NP algorithm
with input size O(k′3.2|D|). i.e., polynomial in k′ (with k′ ≥ k) and exponential
in |D|. ��

4 Implementation and Experimental Results

The three approaches outlined in the previous section have widely differing theo-
retical complexities. Moreover, each of them gives a partial solution to the problem
of checking whether an IDL formula D is valid. Hence, an experimental evaluation
of their effectiveness and efficiency is needed.

Implementation: For realizing approach A, we have implemented a translator,
idl2ics, from IDL to lin-sat, giving the formula compile opt(D, k). The resulting
lin-sat formulaischeckedforunsatisfiabilityusingtheICSsolver [7].UsingCorollary
1, if a satisfying assignment is found by ICS, a counter-example for the original
IDL formula is obtained in an encoded form. If the lin-sat formula is found to be
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unsatisfiable, the original IDL formula is declared k-valid. We have also conducted
preliminary experiments with other solvers like UCLID and CVClite for checking
unsatisfiability of lin-sat formulae. However, ICS significantly outperformed both
CVClite and UCLID for our benchmarks [17]. Hence our detailed experiments
were conducted with the ICS solver.

For implementing digitization-based approaches B and C, we have developed a
translator, idl2ddc, that takes a formula D ∈ IDL and returns dig(D) along with
an indication of whether D ∈ SY NCID. In approach B, the formula dig(D) is
checked for validity using the DCVALID tool. In approach C, we further translate
dig(D) to untime(dig(D)) using a translator, ddc2ddcr, that transforms a formula
D ∈ SY NCIDtoavalidity-preservingformulauntime(D) ∈ DDCR.Theformula
untime(dig(D)) is then checked for bounded validity by translating it using idl2ics
with a suitable bound k′ for the model length. The resulting propositional formula
is then checked for unsatisfiability using the ICS solver.

We draw our set of benchmarks from the Duration Calculus literature. We
refer the reader to [11, 17] for the detailed IDL specification of each problem. Each
problem was formulated such that the IDL formula is inSY NCID. Owing to space
limitations, we simply list the formula name for each problem here along with a
list of its parameters (time constants) below. In each case, the aim is to check the
validity of the IDL specification for some given values of time constants.

1. G(maxleak,minsep, winlen, leakbound) denotes a gas burner specification
[21], given earlier as Example 1.

2. M(δ, ω, ε, ζ, κ) denotes a minepump controller specification [16, 13].
3. L(ts, t0, tmax, tm) denotes a lift controller specification [4, 17].
4. J24 and J44 denote job-shop scheduling problems on 4 machines with 2 and

4 jobs respectively [17].

Experimental Results: Table 2 gives our experimental results comparing the per-
formance of the three approaches.Here, “CE len” denotes the length of the smallest
counter-example found by the various approaches. In case the formula is valid (as
detected by approach B), we use the entry V for “CE len”. For such formulae, we do
not apply approaches A and C, since these bounded validity checking techniques
are useful only for invalid formulae.The corresponding rows inTable 2 are therefore
marked “Valid - BVC Not Applied”. The various columns under each approach
show the translation times and the time taken to check validity (unsatisfiability)
of the resulting formulae using ICS or DCVALID. In Approach B, a “↓” entry
denotes an abort due to the BDD-nodes for the automata representation exceeding
a fixed threshold. An entry >26h denotes that the corresponding computation was
aborted after 26 hours since it did not terminate in that time. A “-” entry denotes
non-applicability due to the failure of the preceding stage. Counter-example gen-
eration is not applicable to valid formulae and this is denoted by an ‘NA” entry.
All our experiments were performed on a 1 GHz i686 PC with 1GB RAM running
RedHat Linux 7.3.

Note on DCVALID: In approach B above, the validity of dig(D) is checked using
the toolDCVALID [14]. InTable 2, column3under approachBgives the time taken
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Table 2. Comparative Performance of IDL Validity Checking Approaches

Approach A Approach C Approach B

Example CE idl2lin-sat CE idl2ddcr + CE idl2ddc OPT-CTLDC

len +ICS time len ddcr2sat + len + Dcvalid time(secs)

(secs) ICS time(secs) time(secs) T R C

M(2,12,5,20,2) 7 0.01 2.28 - 0.01 >26h - 30 0.01 39.62 1.76 2.99 5m35

M(20,120,50,100,20) 7 0.02 2.30 - 0.06 >24h - - 0.01 ↓ ↓ - -

M(3,25,5,27,5) Valid - BVC not applicable V 0.01 2m 2.08 1.52 NA

M(4,30,5,35,7) Valid - BVC not applicable V 0.01 ↓ 2.48 1.77 NA

G(1,2,11,3) 7 0.1 0.52 8 0.0 33.87 25.58 8 0.0 18.24 0.37 0.08 0.15

G(1,2,15,4) 9 0.0 4.41 10 0.1 1m17 16m34 10 0.0 ↓ 0.43 0.11 0.20

G(10,5,50,30) 7 0.01 1.00 - 0.02 >24h - 35 0.01 ↓ 3.82 2.03 2.81

G(15,10,80,35) 5 0.0 0.22 - 0.0 >24h - 39 0.01 ↓ 35.07 20.75 28.49

G(20,10,100,50) 5 0.0 0.22 - 0.0 >24h - - 0.01 ↓ ↓ - -

G(20,10,70,45) 5 0.0 0.21 - 0.0 >24h - - 0.01 ↓ ↓ - -

G(1,4,12,4) Valid - BVC not applicable V 0.0 ↓ 0.43 0.11 NA

L(10,3,5,10) 2 0.01 0.09 13 0.02 0.19 231m - 0.01 ↓ 9.9 >1h -

L(100,30,50,70) 3 0.02 0.12 - 0.08 >24h - - 0.0 ↓ ↓ - -

J24 7* 0.01 0.30 - 0.02 >19h - 33 0.0 10.01 1.29 8.44 3m18

J44 10* 0.05 259m - 0.01 >24h - - 0.0 ↓ 2.95 1m4 >9h

Table 3. Growth of Computation time (in seconds) with k in k-Validity Checking

k Mine1 Mine2 Gas1 Gas2 Gas3 Gas4 Gas5 Lift1 Lift2 Job24 Job44

1 0.10 0.08 0.09 0.09 0.09 0.09 0.08 0.08 0.09 0.09 0.09

2 0.10 0.10 0.08 4.73 0.08 0.09 0.09 0.09 0.10 0.09 0.10

3 0.17 0.16 0.07 4.73 0.12 0.12 0.13 0.12 0.12 0.09 0.12

4 0.32 0.29 0.08 4.74 0.18 0.16 0.17 0.15 0.17 0.12 0.16

5 0.81 0.58 0.08 4.79 0.33 0.22 0.22 - 0.23 0.20 0.26

6 1.31 1.07 0.67 4.67 0.71 0.25 0.25 - - 0.48 0.69

7 2.28 2.30 0.52 1.68 1.00 0.30 0.29 - - 0.3 2.96

8 6.47 4.96 0.65 4.43 0.77 - - - - 0.28 15.8

9 10.02 9.98 0.75 4.41 0.84 - - - - 0.63 8m23.65

10 - - - 5.38 - - - - - - 258m66.69

11 - - - 6.47 - - - - - - Aborts

12 - - - - - - - - - - Aborts

Sum upto CE 5.09 4.58 1.59 29.86 2.51 0.68 0.69 0.17 0.31 1.37 16070.52

by the currently released version (1.4) of DCVALID. However, this tool suffers
from several inefficiencies and a more optimized version of the automata-theoretic
analysis has been implemented by us. This is denoted by “OPT-CTLDC” and
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columns 4-6 under approach B of Table 2 give the time taken using OPT-CTLDC.
The optimized analysis works in the following steps: (i) it applies a few validity
preserving transformations to theQDDC formula, (ii) it translates the formula into
asynchronousproductof several sub-automata(takingtimeT),whichareoutputas
SMV modules [15], (iii) it performs reachability analysis of the SMV model (taking
time R) to detect a counter-example of the original formula, and (iv) it performs a
forward search (taking timeC) to explicitly generate the shortest counter-example,
if one exists. Step (ii) is performed using the tool CTLDC [15, 14] and steps (iii) and
(iv) are performed using the tool NuSMV. Details of this optimized approach will
be addressed in a future paper. However, it can be seen from Table 2 that the OPT-
CTLDCbasedapproach is significantlymoreefficientvis-a-vis theDCVALIDbased
approach.

Table 3 profiles the time taken by ICS for checking satisfiability of formula
compile opt(k,D) fordifferentvaluesofk, asused inapproachA.Theentries inbold
correspond to the shortest counter-example. It can be seen that the computation
time grows smoothly with the value of k with no significant jump between valid
and invalid instances.

5 Conclusions and Discussion

The dense-time logic IDL is undecidable in general (see Theorem 2). Hence, all
algorithmic approaches to its validity checking are doomed to be incomplete. In
this paper, we have presented a technique for bounded validity checking of IDL by
reducing it to checking unsatisfiability of lin-sat. We have compared this technique
tomethodsbasedondigitizationof IDL,boththeoreticallyandexperimentally.Our
experimental comparison used a variety of well-known examples. In the process,
we have created tools [11] which allow such examples to be verified. We now discuss
the relative merits of the three approaches (A, B and C) based on the results of
Sections 3.4 and 4, and draw some conclusions.

Digitization (used in approaches B and C) reduces the validity of dense-time
IDL to the validity of discrete-time DDC. While it is sound for all formulae (i.e.
|=DDC dig(D) ⇒ |=IDL D), it is complete only for the sub-class SY NCID ⊂
IDL. We believe that this is not a crippling restriction in practice (see [6]).

In approach B, the digitized formula is checked for validity using the automata-
theoretic decision procedure for DDC (see Theorem 6) implemented in the tool
DCVALID as well as in its optimized version, OPT-CTLDC. While the worst-case
complexity of this approach is non-elementary, this is rarely observed in practice.
As shown inTable 2, this approach succeeds in proving validity/invalidity of several
examples when the constants in the formulae are relatively small. Moreover, this
approach can establish unbounded validity of a formula, while approaches A and
C can only check bounded validity. Unfortunately, for many problem instances
with large constants, approach B fails to succeed within reasonable time and space
constraints.

Approach A checks k-validity of an IDL formula D by checking unsatisfiability
of a lin-sat formula (see Theorem 5). While it cannot establish the validity of
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Table 4. Gas Burner for different constants using Approach A

Constants CE Len Translation Time(secs) ICS Time(secs)

G(5, 7, 69, 28) 11 0.01 18.43

G(10, 15, 137, 53) 11 0.01 18.24

G(210, 534, 4000, 1225) 11 0.01 18.39

G(7400, 9535, 93010, 44341) 11 0.01 18.66

an IDL formula D, like bounded model checking, it is useful for finding shallow
counter-examples of invalid IDL formulae. As Table 2 shows, when used in this
fashion, approach A is much more effective compared to the other approaches.
Counter-examples (timed state sequences) of lengths up to 11 could be found
relatively efficiently for almost all our benchmarks. When large constants are
present in the formula, approach A clearly outperforms the other approaches. This
is because the time taken for lin-sat solving is relatively insensitive to the scaling
of constants. This is clearly borne out in Table 4. In contrast, digitization-based
approaches, like B and C, that model the passage of time in steps of one unit, are
very sensitive to scaling of constants.

ApproachCcombinesdigitizationandSATsolvingforboundedvaliditychecking
(see Theorem 7). Theoretically, it suffers from an exponential increase in the worst-
casecomplexityoverapproachA.However, itusespropositionalSATsolvinginstead
of themore complicated lin-sat solvingof approachA.Despite this, our experiments
show that in most cases, approach C is not very effective and is outperformed by
approachesAandB(OPT-CTLDC).One reason for this is the exponential increase
in the size of the propositional SAT formula compared to the lin-sat formula of
approach A. Another significant factor is the need for using a larger bound, k′, for
finding the shortest counter-example in approach C, as compared to the bound
k used in approach A. The experimental results on the shortest counter-example
lengths in Table 2 clearly point to this factor.

While we have presented a technique for bounded validity checking of IDL
formulae, this can be easily extended to performboundedmodel-checking of timed-
automata [1] against an IDL specificationD. Following the approach of Audemard
et al [1], this can be achieved by checking the unsatisfiability of compile opt(D, k)
conjuncted with a lin-sat formula representing the k-step behaviour of the timed
automaton. We propose to extend our tool with this capability in the future.

Comparison with Related Work: Bounded model checking of LTL formulae using
SAT solving was proposed by Bierre et al [3] as an efficient method for finding
shallow counter examples. Audemard et al [1] extended this to timed systems
using MATHSAT solving. Fränzle [9] first proposed bounded validity checking of
Discrete Duration Calculus without timing constructs (i.e., the same as DDCR)
by a polynomial-sized reduction to propositional SAT solving. When used with the
timing constructs ΣP and η, this reduction has an exponential blowup, assuming
binary encoding of constants in the formula (seeTheorem7). Fränzle demonstrated
that for simple instances of the discrete-time version of the gas burner problem, his
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technique was superior to the automata-theoretic procedure DCVALID. In this
paper, we have extended Fränzle’s technique to the dense-time logic IDL including
the duration and count constructs. We have given an encoding of k-validity of
IDL into unsatisfiability of lin-sat, where the size of the encoding is polynomial in
the size of the IDL formula D, with constants encoded in binary. We believe that
our generalization of Fränzle’s work is practically significant and advantageous, as
demonstrated by our experimental evaluation. More recently, Fränzle and Herde
have investigated efficient SAT-solving techniques for 0-1 linear constraints which
arise in the translation of the discrete-time count construct [10].

Fränzle was influenced by the prior work of Ayari and Basin [2], who gave a
polynomial-time encoding of the logic ML2STR (monadic logic of finite words)
into Quantified Boolean Formulae for bounded validity checking. Ayari and Basin
demonstrated that on many problems, the automata-theoretic decision procedure
for ML2STR (using the MONA tool) performed better than the QBF SAT solving
technique.Butonsomecomplexproblems,QBFSATsolvingwasabletofindcounter-
examples faster. Approach B in our experiments uses a similar automata-theoretic
technique, but it handles the dense-time logic IDL using digitization. Moreover,
the tool OPT-CTLDC considerably improves the automata based analysis.

Acknowledgments. The authors thank Martin Fränzle and A. Cimatti for their
helpful comments, and Dina Thomas and S. N. Krishna for their help in conducting
experiments.
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7. J. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonizer and
Solver. In CAV, volume 2102 of LNCS. Springer, 2001.

8. M. Fränzle. Model-Checking Dense-Time Duration Calculus. In M.R. Hansen (ed.),
Duration Calculus: A Logical Approach to Real-Time Systems Workshop proceedings
of ESSLLI X, 1998.

9. M. Fränzle. Take it NP-easy: Bounded Model Construction for Duration Calculus.
In FTRTFT, volume 2469 of Lecture Notes in Computer Science. Springer, 2002.

10. M. Fränzle and C. Herde. Efficient SAT engines for concise logics: Accelerating proof
search for zero-one linear constraint systems. In M. Vardi and A. Voronkov, editors,
LPAR, volume 2850 of LNAI, pages 302–316. Springer, 2003.



316 B. Sharma et al.

11. IDLVALID: Model Checking Dense-time Duration Logics. WWW page, 2004.
http://www.tcs.tifr.res.in/˜pandya/idlvalid.html.

12. N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4(4):373–395, 1984.

13. Z. Liu. Specification and Verification in the Duration Calculus. In M. Joseph, editor,
Real-time Systems: Specification, Verification and Analysis, pages 182–228. Prentice
Hall, 1996.

14. P.K. Pandya. Specifying and Deciding Quantified Discrete-Time Duration Dalculus
Formulae using DCVALID. In Paul Pettersson and Wang Yi, editors, RTTools,
Uppsala University Technical Report Series, 2000.

15. P.K. Pandya. Model checking CTL[DC]. In TACAS, volume 2031 of LNCS. Springer,
2001.

16. P.K.Pandya. IntervalDurationLogic: Expressiveness andDecidability. InE.Asarin,
O. Maler, and S. Yovine, editors, TPTS’02, volume 65 of ENTCS. Elsevier Science
Publishers, 2002.

17. B. Sharma. SAT Based Validity Checking of Interval Duration Logic Formuale.
M.Tech Dissertation, Dept. of Computer Science and Engineering, IIT Bombay,
June 2004.

18. J.U. Skakkebæk and P. Sestoft. Checking Validity of Duration Calculus Formulas.
ESPRIT project PROCOS II. Technical report, Department of Computer Science,
Technical University of Denmark, 1996.

19. Chaochen Zhou and M.R. Hansen. Duration Calculus. Springer, 2003.
20. ChaochenZhou,C.A.R.Hoare, andA.P.Ravn. ACalculus ofDurations. Information

Processing Letters, 40(5):269–276, 1991.
21. Chaochen Zhou, A. Ravn, and M.R. Hansen. An Extended Duration Calculus for

Hybrid Real-Time Systems. In Hybrid Systems, pages 36–59. Springer, 1993.



An Incremental and Layered Procedure for
the Satisfiability of Linear Arithmetic Logic�

Marco Bozzano1, Roberto Bruttomesso1, Alessandro Cimatti1, Tommi Junttila2,
Peter van Rossum1, Stephan Schulz3, and Roberto Sebastiani4

1 ITC-IRST, Via Sommarive 18, 38050 Povo, Trento, Italy
{bozzano,bruttomesso,cimatti,vanrossum}@itc.it

2 Helsinki University of Technology, P.O.Box 5400, FI-02015 TKK, Finland
Tommi.Junttila@tkk.fi

3 University of Verona, Strada le Grazie 15, 37134 Verona, Italy
schulz@eprover.org
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Abstract. In this paper we present a new decision procedure for the satisfiabil-
ity of Linear Arithmetic Logic (LAL), i.e. boolean combinations of propositional
variables and linear constraints over numerical variables. Our approach is based
on the well known integration of a propositional SAT procedure with theory de-
ciders, enhanced in the following ways.

First, our procedure relies on an incremental solver for linear arithmetic, that is
able to exploit the fact that it is repeatedly called to analyze sequences of increas-
ingly large sets of constraints. Reasoning in the theory of LA interacts with the
boolean top level by means of a stack-based interface, that enables the top level
to add constraints, set points of backtracking, and backjump, without restarting
the procedure from scratch at every call. Sets of inconsistent constraints are found
and used to drive backjumping and learning at the boolean level, and theory atoms
that are consequences of the current partial assignment are inferred.

Second, the solver is layered: a satisfying assignment is constructed by rea-
soning at different levels of abstractions (logic of equality, real values, and integer
solutions). Cheaper, more abstract solvers are called first, and unsatisfiability at
higher levels is used to prune the search. In addition, theory reasoning is parti-
tioned in different clusters, and tightly integrated with boolean reasoning.

We demonstrate the effectiveness of our approach by means of a thorough
experimental evaluation: our approach is competitive with and often superior to
several state-of-the-art decision procedures.
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1 Motivations and Goals

Many practical domains require a degree of expressiveness beyond propositional logic.
For instance, timed and hybrid systems have a discrete component as well as a dy-
namic evolution of real variables; proof obligations arising in software verification are
often boolean combinations of constraints over integer variables; circuits described at
Register Transfer Level, even though expressible via booleanization, might be easier to
analyze at a higher level of abstraction (see e.g. [15]). Many of the verification problems
arising in such domains can be naturally modeled as satisfiability in Linear Arithmetic
Logic (LAL), i.e., the boolean combination of propositional variables and linear con-
straints over numerical variables. For its practical relevance, LAL has been devoted a
lot of interest, and several decision procedures exist that are able to deal with it (e.g.,
SVC [17], ICS [24, 19], CVCLITE [17, 10], UCLID [36, 33], HDPLL [30]).

In this paper, we propose a new decision procedure for the satisfiability of LAL,
both for the real-valued and integer-valued case. We start from a well known approach,
previously applied in MATHSAT [26, 4] and in several other systems [24, 19, 17, 10, 35,
3, 21]: a propositional SAT procedure, modified to enumerate propositional assignments
for the propositional abstraction of the problem, is integrated with dedicated theory
deciders, used to check consistency of propositional assignments with respect to the
theory.

In this paper, we extend the MATHSAT approach in the following directions. First,
the linear arithmetic solver is incremental: since the theory solver is called to analyze
increasingly large sets of constraints, theory reasoning interacts with the boolean top
level by means of a stack-based interface, that enables the top level to add constraints,
set points of backtracking, and backjump. In addition, sets of inconsistent constraints
are identified and used to drive backjumping and learning at the boolean level, and
theory atoms that are consequences of the current partial assignment are automatically
inferred. Second, we make aggressive use of layering: a satisfying assignment is incre-
mentally constructed by reasoning at different levels of abstractions (logic of equality,
real values, and integer solutions). Cheaper, more abstract solvers are called first, and
unsatisfiability at higher levels is used to prune the search. In addition, theory reasoning
is partitioned in different clusters, and tightly integrated with boolean reasoning.

We evaluated our approach by means of a thorough experimental comparison: the
MATHSAT solver is compared against the state-of-the-art systems ICS, CVCLITE, and
UCLID [33] on a large set of benchmarks proposed in the literature. We show that our
approach is able to deal effectively with a wide class of problems, with performances
comparable with and often superior to the other systems.

This paper is structured as follows. In Sect. 2 we define Linear Arithmetic Logic.
In Sect. 3 we describe the basic algorithm, the interplay between boolean and theory
reasoning, and the incrementality of the theory solver. In Sect. 4 we describe the internal
structure of the solver, focusing on the ideas of layering and clustering. In Sect. 5 we
describe the MATHSAT system, and in Sect. 6 we present the result of the experimental
evaluation. In Sect. 7 we discuss some related work; finally, in Sect. 8 we draw some
conclusions and outline the directions for future work.
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2 Background

Let B := {⊥,�} be the domain of boolean values. Let D be the domain of either real
numbers R or integers Z. By math-terms and math-formulas on D we denote respec-
tively the quantifier-free linear mathematical expressions and formulas built on con-
stants, variables and arithmetical operators over D and on boolean propositions, closed
on boolean connectives. Math-terms are either constants ci ∈ D , or variables vi over
D , possibly with coefficients (i.e. ci · v j), or applications of the arithmetic operators +
and − to math-terms. Atomic math-formulas are either boolean propositions Ai over
B, or applications of the arithmetic relations =, �=,>,<,≥,≤ to math-terms. Such for-
mulas are also called atoms. Math formulas are either atoms or combinations of math
formulas by means of the standard boolean connectives ∧, ¬, ∨, →, ↔. For instance,
A1∧ ((v1 +5)≤ 2v3) is a math-formula on either R or Z; an atom is called boolean if it
is a boolean proposition, otherwise it is called a mathematical atom. A literal is either
an atom (a positive literal) or its negation (a negative literal). Examples of literals are
A1, ¬A2, (v1 +5v2 ≤ 2v3−2), ¬(2v1−v2 = 5). If l is a negative literal ¬ψ, then by “¬l”
we mean ψ rather than ¬¬ψ. We denote by Atoms(φ) the set of mathematical atoms of
a math-formula φ.

We introduce abijective function M 2B (for “Math-to-Boolean”),also called boolean
abstraction function, that maps boolean atoms into themselves, math-atoms into fresh
boolean atoms —so that two atom instances in ϕ are mapped into the same boolean
atom iff they are syntactically identical— and distributes over sets and boolean connec-
tives. Its inverse function B2M (for “Boolean-to-Math”) is respectively called refine-
ment.

An interpretation in D is a map I which assigns values in D to math-terms and truth
values in B to math-formulas, and interprets mathematical constants, arithmetical and
boolean operators according to the usual semantics of arithmetical and logical symbols.
We say that I satisfies a math-formula φ, written I |= φ, iff I (φ) evaluates to true. E.g.,
the math-formula ϕ := (A1 → (v1− 2v2 ≥ 4))∧ (¬A1 → (v1 = v2 + 3)) is satisfied by
an interpretation I in Z s.t. I (A1) =�, I (v1) = 8, and I (v2) = 1. We say that a math-
formula ϕ is satisfiable in D if there exists an interpretation in D which satisfies ϕ.

We address the problem of checking the satisfiability of math-formulas. As standard
boolean formulas are a strict sub-case of math-formulas, it follows trivially that the
problem is NP-hard. Thus the problem is theoretically “at least as hard” as standard
boolean satisfiability, and much harder in practice.

A total (resp. partial) truth assignment for a math-formula φ is a truth value assign-
ment μ to all (resp. a subset of) the atoms of φ. We represent truth assignments as set of
literalsμ ={α1, . . . ,αN ,¬β1, . . . ,¬βM,A1, . . . ,AR,¬AR+1, . . . ,¬AS},α1, . . . ,αN ,β1, . . . ,βM

being mathematical atoms and A1, . . . ,AS being boolean atoms, with the intended mean-
ing that positive and negative literals represent atoms assigned to true and to false re-
spectively.

We say that μ propositionally satisfies φ, written μ |=p φ, iff M 2B(μ) |= M 2B(φ).
Intuitively, if we see a math-formula φ as a propositional formula in its atoms, then |=p

is the standard satisfiability in propositional logic.
We say that an interpretation I satisfies μ iff I satisfies all the elements of μ. For

instance, the assignment {A1,(v1− 2v2 ≥ 4),¬(v1 = v2 + 3)} propositionally satisfies
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(A1 → (v1 − 2v2 ≥ 4))∧ (¬A1 → (v1 = v2 + 3)), and it is satisfied by I s.t. I (A1) =
�, I (v1) = 8, and I (v2) = 1. We say that an assignment or a math-formula is LAL-
satisfiable if there is an interpretation I satisfying if, LAL-unsatisfiable otherwise.

Example 1. Consider the following math-formula ϕ:

ϕ = (¬(2v2− v3 > 2) ∨A1) ∧ (¬A2∨ (2v1−4v5 > 3))

∧ ((3v1−2v2 ≤ 3) ∨A2) ∧ (¬(2v3 + v4 ≥ 5) ∨¬(3v1− v3 ≤ 6) ∨¬A1)

∧ (A1∨ (3v1−2v2 ≤ 3)) ∧ ((v1− v5 ≤ 1) ∨ (v5 = 5−3v4)∨¬A1)

∧ (A1∨ (v3 = 3v5 +4) ∨A2).

The truth assignment given by the underlined literals above is:

μ = {¬(2v2−v3>2),¬A2,(3v1−2v2 ≤3),¬(3v1−v3 ≤6),(v1−v5 ≤1),(v3 =3v5 +4)}.
μ propositionally satisfies ϕ as it sets to true one literal of every disjunction in ϕ. Notice
that μ is not satisfiable, as both the following sub-assignments of μ

{¬(2v2− v3 > 2),(3v1−2v2 ≤ 3),¬(3v1− v3 ≤ 6)} (1)

{¬(3v1− v3 ≤ 6),(v1− v5 ≤ 1),(v3 = 3v5 +4)} (2)

do not have any satisfying interpretation. �

Given a LAL-unsatisfiable assignment μ, we call a conflict set any LAL-unsatisfiable
sub-assignment μ′ ⊆ μ; we say that μ′ is a minimal conflict set if all subsets of μ′ are
LAL-satisfiable. E.g., both (1) and (2) are minimal conflict sets of μ.

3 The Top Level Algorithm: Boolean+Theory Solving

This section describes the MATHSAT algorithm [4] (see Fig. 1), and its extensions.
MATHSAT takes as input a math-formula φ, and returns � if φ is LAL-satisfiable (with
I containing a satisfying interpretation), and⊥ otherwise. (Without loss of generality, φ
is assumed to be in conjunctive normal form (CNF).) MATHSAT invokes MATHDPLL

on the boolean formula ϕ := M 2B(φ). (Both M 2B and B2M can be implemented so
that they require constant time in mapping one atom.)

MATHDPLL tries to build an assignment μ satisfying ϕ, such that its refinement
is LAL-satisfiable, and the interpretation I satisfying B2M (μ) (and φ). This is done
recursively, with a variant of DPLL modified to enumerate assignments, and trying to
refine them according to LAL:

base. If ϕ == �, then μ propositionally satisfies M 2B(φ). In order to check if μ is
LAL-satisfiable, which shows that ϕ is LAL-satisfiable, MATHDPLL invokes the linear
mathematical solver MATHSOLVE on the refinement B2M (μ), and returns a Sat or
Unsat value accordingly.

backtrack. If ϕ == ⊥, then μ has lead to a propositional contradiction. Therefore
MATHDPLL returns Unsat and backtracks.

unit. If a literal l occurs in ϕ as a unit clause, then l must be assigned a true value.
Thus, MATHDPLL is invoked recursively with assign(l,ϕ) and the assignment obtained
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function MATHSAT (Math-formula φ, interpretation & I )
return MATHDPLL (M 2B(φ),{},I );

function MATHDPLL (Boolean-formula ϕ,assignment & μ, interpretation & I )
if (ϕ ==�) /* base */

then return MATHSOLVE (B2M (μ),I ) ;
if (ϕ ==⊥) /* backtrack */

then return Unsat;
if {l occurs in ϕ as a unit clause} /* unit prop. */

then return MATHDPLL (assign(l,ϕ),μ∪{l},I );
if (MATHSOLVE (B2M (μ),I ) == Unsat) /* early pruning */

then return Unsat;
l := choose-literal(ϕ); /* split */
if ( MATHDPLL (assign(l,ϕ),μ∪{l},I ) == Sat )

then return Sat;
else return MATHDPLL (assign(¬l,ϕ),μ∪{¬l},I );

Fig. 1. High level view of the MATHSAT algorithm

by adding l to μ. assign(l,ϕ) substitutes every occurrence of l in ϕ with � and proposi-
tionally simplifies the result.

early pruning MATHSOLVE is invoked on (the refinement of) the current assignment
μ. If this is found unsatisfiable, then there is no need to proceed, and the procedure
backtracks.

split If none of the above situations occurs, then choose-literal(ϕ) returns an unassigned
literal l according to some heuristic criterion. Then MATHDPLL is first invoked recur-
sively with arguments assign(l,ϕ) and μ∪{l}. If the result is Unsat, then MATHDPLL

is invoked with arguments assign(¬l,ϕ) and μ∪{¬l}.

The schema of Fig. 1 is over-simplified for explanatory purposes. However, it can be
easily adapted to exploit advanced SAT solving techniques (see [38] for an overview).
In the rest of this section, we will focus on the interaction between boolean reason-
ing (carried out by MATHDPLL) and theory reasoning (carried out by MATHSOLVE)
instead of on the details underlying the boolean search.

Theory-Driven Backjumping and Learning. [23, 37]. When MATHSOLVE finds the
assignment μ to be LAL-unsatisfiable, it also returns a conflict set η causing the un-
satisfiability. This enables MATHDPLL to backjump in its search to the most recent
branching point in which at least one literal l ∈ η is not assigned a truth value, pruning
the search space below. We call this technique theory-driven backjumping. Clearly, its
effectiveness strongly depends on the conflict set generated.

Example 2. Consider the formula ϕ and the assignment μ of Ex. 1. Suppose that MATH-
DPLL generates μ following the order of occurrence within ϕ, and that MATHSOLVE(μ)
returns the conflict set (1). Thus MATHDPLL can jump back directly to the branch-
ing point ¬(3v1− v3 ≤ 6) without exploring the right branches of (v3 = 3v5 + 4) and
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(v1− v5 ≤ 1). If instead MATHSOLVE(μ) returns the conflict set (2), then MATHSAT
backtracks to (v3 = 3v5 +4). Thus, (2) causes no reduction in search. �

When MATHSOLVE returns a conflict set η, the clause ¬η can be added in conjunc-
tion to ϕ: this will prevent MATHDPLL from generating again any branch containing η.
We call this technique theory-driven learning.

Example 3. As in Ex. 2, suppose MATHSOLVE(μ) returns the conflict set (1). Then the
clause (2v2 − v3 > 2)∨¬(3v1 − 2v2 ≤ 3)∨ (3v1 − v3 ≤ 6) is added in conjunction to
ϕ. Thus, whenever a branch contains two elements of (1), then MATHDPLL will assign
the third to false by unit propagation. �

As in the boolean case, learning must be used with some care, since it may cause an ex-
plosion in the size of ϕ. Therefore, some techniques can be used to discard learned
clauses when necessary [11]. Notice however the difference with standard boolean
backjumping and learning [11]: in the latter case, the conflict set propositionally fal-
sifies the formula, while in our case it is inconsistent from the mathematical viewpoint.

Theory-Driven Deduction. [2, 4, 21]. With early pruning, MATHSOLVE is used to
check if μ is LAL-satisfiable, and possibly close whole branches of the search. It is
also possible to use MATHSOLVE to reduce the remaining boolean search: in fact, the
mathematical analysis of μ performed by MATHSOLVE can allow for discovering that
the value of some mathematical atoms ψ �∈ μ is already determined, based on some sub-
set μ′ ∈ μ being part of the current assignment. For instance, consider the case where
the literals (v1− v2 ≤ 4) and (v2 = v3) are in the current (partial) assignment μ, while
(v1−v3 ≤ 5) is currently unassigned. Since {(v1−v2 ≤ 4),(v2 = v3)} |= (v1−v3 ≤ 5),
atom (v1−v3 ≤ 5) can not be assigned to⊥, since this would make μ LAL-inconsistent.
MATHSOLVE is therefore used to detect and suggest to the boolean search which unas-
signed literals have forced values. This kind of deduction is often very useful, since it
can trigger new boolean constraint propagation: the search is deepened without the need
to split. Moreover, the implication clauses (e.g. ¬(v1−v2 ≤ 4)∨¬(v2 = v3)∨(v1−v3 ≤
5)) can be learned and added to the main formula: this constrains the remaining boolean
search in the event of backtracking.

Incremental and Backtrackable Theory Solver. [5, 17, 24]. Given the stack-based
nature of the boolean search, the MATHSOLVE can significantly exploit previous com-
putations. Consider the following trace (left column, then right):

MATHSOLVE (μ1) =⇒ Sat Undo μ2
MATHSOLVE (μ1∪μ2) =⇒ Sat MATHSOLVE (μ1∪μ′2) =⇒ Sat
MATHSOLVE (μ1∪μ2∪μ3) =⇒ Sat MATHSOLVE (μ1∪μ′2∪μ′3) =⇒ Sat
MATHSOLVE (μ1∪μ2∪μ3∪μ4) =⇒ Unsat MATHSOLVE (μ1∪μ′2∪μ′3∪μ′4) =⇒ Sat

On the left, an assignment is repeatedly extended until a conflict is found. We notice
that MATHSOLVE is invoked (during early pruning calls) on incremental assignments.
When a conflict is found, the search backtracks to a previous point (on the right), and
MATHSOLVE is then restarting from a previously visited state. Based on these consid-
erations, our MATHSOLVE is not a function call: it has a persistent state, and is incre-
mental and backtrackable. Incremental means that it avoids restarting the computation
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from scratch whenever it is given as input an assignment μ′ such that μ′ ⊃ μ and μ has
already been proved satisfiable. Backtrackable means that it is possible to return to a
previous state on the stack in a relatively efficient manner. In fact, MATHSOLVE mimics
the stack based behaviour of the boolean search.

4 Clustering and Layering in MATHSOLVE

In this section, we discuss how to optimize MATHSOLVE, based on two main ideas:
clustering and layering.

Clustering. At the beginning of the search, the set Atoms(φ) of all atoms occurring in
the formula is partitioned into disjoint clusters: intuitively, two atoms (literals) belong to
the same cluster if they share a variable. Say Lits(φ) = L1∪ ·· ·∪Lk is the so-obtained
static partitioning of the literals. Because no two Li have a variable in common, the
assignment μ is satisfiable if and only if each μ∩Li is satisfiable.

Based on this idea, instead of having a single, monolithic solver for linear arithmetic,
k different solvers are constructed, each responsible for the handling of a single cluster.
The advantage of this approach is not only that running k solvers on k disjoint problems
is faster then running one solver on the union of those k problems, but also a significant
gain is obtained by the potential construction of smaller conflict sets. Additionally, we
are hashing the results of calls to the linear solvers; if there are more linear solvers, then
the likelihood of a hit increases.

Layering. In many calls to MATHSOLVE, a general solver for linear constraints is not
needed: very often, the unsatisfiability of the current assignment μ can be established
in less expressive, but much easier, sub-theories. Thus, MATHSOLVE is organized in a
layered hierarchy of solvers of increasing solving capabilities. If a higher level solver
finds a conflict, then this conflict is used to prune the search at the boolean level; if it
does not, the lower level solvers are activated.
Layering can be explained as trying to privilege

equational
solver

dispatcher

real linear

integers

solver
real linear

integers

solver
real linear

integers

solver

MathSolve

Fig. 2. Clustering and layering

faster solvers for more abstract theories over
slower solvers for more general theories. Fig. 2
shows a rough idea of the structure of MATH-
SOLVE, and highlights the two places in MATH-
SOLVE where this layering is taking place. Firstly,
the current assignment μ is passed to the equa-
tional solver, described in more detail in Sect. 4.1, that only deals with (positive and
negative) equalities. Only if this solver does not find a conflict is a full-blown solver
for linear arithmetic invoked. Secondly, the solver for linear arithmetic, described in
Sect. 4.2, is itself layered: when reasoning about integer variables, it first tries to find a
conflict over the real numbers, and looks for a conflict over the integers only in case of
satisfiability.
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4.1 The Equational Satisfiability Procedure

The first layer of MATHSOLVE is provided by the equational solver, a satisfiability
checker for the logic of unconditional ground equality over uninterpreted function sym-
bols. It is incremental and supports efficient backtracking. The solver generates conflict
sets, deduces assignments for equational literals, and can provide explanations for its
deductions. Thanks to the equational solver, MATHSAT can be used as an efficient deci-
sion procedure for the full logic of equality over uninterpreted function symbols (EUF).
However, in this section we focus on the way the equational solver is used to improve
the performance on LAL.

The solver is based on the congruence closure algorithm suggested in [28], and
reuses some of the data structures of the theorem prover E [32] to store and process
terms and atoms. It internally constructs a congruence data structure that can deter-
mine if two arbitrary terms are necessarily forced to be equal by the currently asserted
constraints, and can thus be used to determine the value of (some) equational atoms.

It also maintains a list of asserted disequations, and signals unsatisfiability if one of
these is violated by the current congruence. Similarly, the solver implicitly knows that
syntactically different constants in D are semantically distinct, and efficiently detects
and signals if a new equation forces the identification of distinct domain elements.

If two terms are equal, an auxiliary proof tree data structure allows us to extract
the reason, i.e. the original constraints (and just those) that forced this equality. If a
disequality constraint is violated, we can return the reason (together with the violated
inequality) as a conflict set.

Similarly, we can perform forward deduction: for each unassigned equational atom,
we can determine if the two sides are already forced to be equal by the current assign-
ment, and hence whether the atom has to be asserted as true or false. Again, we can
extract the reason for this deduction and use it to represent the deduction as a learned
clause on the Boolean level.

There are two ways in which the equational solver can be used: as a solver for equa-
tional clusters, or as a layer in the arithmetic reasoning process. In the first case, only
those clusters not involving any arithmetic at all are given to the equational solver: the
dispatcher moves to the equational solver only equations of the form vi �� v j, vi �� c j,
with ��∈ {=, �=}. Thus, the equational solver provides a full solver for some clusters,
avoiding the need to call an expensive linear solver on an easy problem. This can sig-
nificantly improve performance, since in practical examples it is often the case that a
purely equational cluster is present – typical examples are modeling of assignments in
a programming language, and gate and multiplexer definitions in circuits.

In the second case, the dispatcher also passes constraints involving arithmetic op-
erators to the equational solver. While arithmetic functions are treated as fully uninter-
preted, the equational solver has a limited interpretation of < and ≤, knowing only that
s < t implies s �= t, and s = t implies s ≤ t and ¬(s < t). However, all deductions and
conflicts under EUF semantics are also valid under fully interpreted semantics. Thus,
the efficient equational solver can be used to prune the search space. Only if the equa-
tional solver cannot deduce any new assignments and reports a tentative model, this
model has to be verified (or rejected) by lower level solvers.
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4.2 The Solver for Linear Arithmetic

The task of the linear solver is to check a given assignment μ of linear constraints
(∑i civi �� c j, with ��∈ {=, �=,>,<,≥,≤}) for satisfiability and, as appropriate, return
a model or a conflict set.

The linear solver itself is also layered, running faster, more general solvers first and
using slower, more specialized solvers only if the early ones do not detect an inconsis-
tency. The control flow through the linear solver is given in Fig. 3.

First, we consider only those constraints that are in the difference logic fragment,
i.e., the subassignment of μ consisting of all constraints of the forms vi − v j �� c and
vi �� c, with ��∈ {=, �=,<,>,≤,≥}. Satisfiability checking for this subassignment is
reduced to a negative-cycle detection problem in the graph whose nodes correspond to
variables and whose edge correspond to the constraints. We use an incremental ver-
sion of the Bellman-Ford algorithm to search for a negative-cycle and hence for a
conflict [16].

Second, we try to determine if the current assignment μ is consistent over the reals,
by means of the Cassowary constraint solver. Cassowary [13, 8] is a simplex-based
solver over the reals, using slack variables to efficiently allow the addition and removal
of constraints and the generation of a minimal conflict set.

Cassowary is called on μ minus the disequalities (i.e., with �� equal to �=). When
Cassowary does not find a conflict, its incremental and backtrackable machinery is
used to check for each disequality ∑civi �= c j in μ separately if it is consistent with
the non-disequality constraints in μ. We do so by adding and retracting both ∑civi < c j

and ∑civi > c j. Of course, if one of the disequalities is inconsistent, the whole assign-
ment μ is inconsistent. However, if each disequality separately is consistent, then by
dimensionality reasons all of μ is consistent.1

Whenever the variables are interpreted over the reals, MATHSOLVE is done at this
point. If the variables are interpreted over the integers, and the problem is unsatisfiable
in the reals, then it is so in the integers. When the problem is satisfiable in the reals, a
simple form of branch-and-cut is carried out, to search for solutions over the integers,
using Cassowary’s incremental and backtrackable machinery. If branch-and-cut does
not find either an integer solution or a conflict within a small, predetermined amount of
search, the Omega constraint solver [29] is called on the current assignment. Omega is a
constraint solver over the integers based on Fourier-Motzkin. Since it is computationally

1 Basically because it is impossible to write an affine subspace A of Rk as a finite union of proper
affine subspaces of A.
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expensive to call, does not have an incremental and backtrackable interface and also is
not capable of generating a conflict set, it is called only as a last resort.

One implementation issue is that everything has to be done with infinite precision.
For this, we modified the Cassowary solver to handle arbitrary large rational numbers.

5 The MATHSAT System

The actual MATHSAT system has three components: (i) a preprocessor, (ii) a boolean
satisfiability solver, and (iii) the MATHSOLVE theory solver described in Sect. 4.

Preprocessor. MATHSAT allows the input formulas to contain constructions that can-
not be handled directly by the MATHDPLL algorithm. These features and some opti-
mizations are handled by a preprocessor. First, MATHSAT allows the input formulas
to be in non-clausal form and to include boolean operators such as → and ternary if-
then-else. Thus the last step in the preprocessor is to translate the formula into CNF by
using a standard linear-time satisfiability preserving translation. Second, the input for-
mulas may contain uninterpreted functions and predicates. If they are used in a mixed
way that cannot be handled either by the EUF solver or linear arithmetic solver alone
(e.g. an atom f (x)+ f (z) = c), the preprocessor uses Ackermann’s reduction to elimi-
nate them [1].

In addition, the preprocessor uses a form of static learning to add some satisfiability
preserving constraints that help to prune the search space in the boolean level. For
instance, if a formula φ contains a set of math-atoms of form {(t = c1), ...,(t = cn)},
where t is a math-term and ci are mutually disjoint constants, then φ is conjuncted
with constraints enforcing that at most one of the atoms can be true. Similarly, a linear
number of constraints encoding the basic mathematical relationships between simple
(in)equalities of the form t �� ci, �� ∈ {<,≤,=≥,>}, are added. E.g. if (t ≤ 2),(t =
3),(t > 5) are math-atoms in φ, then φ is conjuncted with the constraints (t = 3) →
¬(t > 5), (t = 3)→¬(t ≤ 2), and (t ≤ 2)→¬(t > 5). Furthermore, some facts between
difference constraints of form t1− t2 �� c, where �� ∈ {<,≤,≥,>} and c is a constant,
are included: (i) mutual exclusion of conflicting constraints is forced, e.g. for (t1− t2 ≤
3) and (t2 − t1 < −4), the constraint ¬(t1 − t2 ≤ 3)∨¬(t2 − t1 < −4) is added, and
(ii) constraints corresponding to triangle inequalities are added, e.g. for (t1 − t2 ≤ 3),
(t2− t3 < 5), and (t1− t3 < 9), the constraint (t1− t2 ≤ 3)∧ (t2− t3 < 5)→ (t1− t3 < 9)
is included.

Boolean Solver. The math-formula in CNF produced by the preprocessor is given to
the boolean satisfiability solver extended to implement the MATHDPLL algorithm in
Sect. 3. In MATHSAT, the boolean solver is built upon the MINISAT solver [18].
Thus it inherits conflict-driven learning and back-jumping, restarts [34, 11, 22], opti-
mized boolean constraint propagation based on the two-watched literal scheme, and
an effective splitting heuristics VSIDS [27] for free. It communicates with MATH-
SOLVE through an interface (resembling the one in [21]) that passes assigned literals,
LAL-consistency queries and backtracking commands to MATHSOLVE and gets back
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answers to the queries, mathematical conflict sets and implied literals (Sect. 3). The
boolean solver is also extended to handle some optimization options relevant when
dealing with math-formulas. For instance, MATHSAT inherits MINISAT’s feature of
periodically discarding some of the learned clauses to prevent explosion of the formula
size. But because clauses generated by theory-driven learning and forward deduction
mechanisms (Sect. 3) may have required a lot of work in MATHSOLVE, as a default
option they are never discarded. As a second example, it is possible to initialize the
VSIDS heuristics weights of literals so that either boolean or mathematical atoms are
preferred as splitting choices early in the MATHDPLL search.

Furthermore, as the theory of linear arithmetic on Z is much harder, in theory and
in practice, than that on R [12], in early pruning calls we only use weaker but faster
versions of MATHSOLVE, which look for a solution on the reals only. This is based on
the heuristic consideration that, in practice, if an assignment is consistent in R it is often
also consistent in Z, and that early pruning checks are not necessary for the correctness
and completeness of the procedure.

6 Experimental Evaluation

In this section we report on the experiments we have carried out to evaluate the per-
formance of our approach. The experiments were run on a 4-processor PentiumIII 700
MhZ machine with more than 6 Gb of memory, running Linux RedHat 7.1. An exe-
cutable version of MATHSAT and the source files of all the experiments performed in
the paper are available at [26].

Description of the Test Cases. The first set of experiments was performed on the SAL
suite [31], a set of benchmarks for ground decision procedures. The suite is derived
from bounded model checking of timed automata and linear hybrid systems, and from
test-case generation for embedded controllers. The problems are represented in non-
clausal form, and constraints are in linear arithmetic. This suite contains 217 problems,
110 of which are in the separation logic fragment.

The second set of experiments was performed on a benchmark suite (called RTLC
hereafter) formalizing safety properties for RTL circuits, provided to us by the authors
of [30] (see [30] for a more detailed description of the benchmarks).

Finally, we used a benchmark suite (CIRC) generated by ourselves, verifying prop-
erties for some simple circuits. The suite is composed of three different kinds of bench-
marks, all of them being parametric in (and scaling up with) N, where [0..2N − 1] is
the range of an integer variable. In the first benchmark, the modular sum of two inte-
gers is checked for equality against the bit-wise sum of their bit decomposition. The
negation of the resulting formula is therefore unsatisfiable. In the second benchmark,
two identical shift-and-add multipliers and two integers a and b are given; a and the bit
decomposition of b (respectively b and the bit decomposition of a) are given as input to
the first (respectively, the second) multiplier, and the outputs of the two multipliers are
checked for equality. The negation of the resulting formula is therefore unsatisfiable.
In the third benchmark, an integer a and the bitwise decomposition of an integer b are
given as input to a shift-and-add multiplier; the output of the multiplier is compared
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Fig. 4. Execution time ratio: the X and Y axes report MATHSAT and each competitor’s times
respectively

with the constant integer value p2, p being the biggest prime number strictly smaller
than 2N . The resulting formula is satisfiable, but it has only one solution: a = b = p and
corresponding bit values.

Comparison with Other State-of-the-Art Tools. We evaluated the performance of
MATHSAT with respect to other state-of-the-art tools, namely ICS, CVCLITE and
UCLID. For ICS and UCLID, the latest officially released versions were used for
the comparative evaluation. For CVCLITE, we used the latest available version on the
online repository, given that the latest officially released version showed a bug related
to the management of integer variables. Moreover, the version we used turned out to be
much faster than the other one. The time limit for these experiments was set to 1800
seconds (only one processor was allowed to run for each run) and the memory limit was
set to 500 MB.

The overall results are reported in Fig. 4. The rows show the comparison between
MATHSAT and, respectively, CVCLITE, ICS and UCLID, whereas the columns cor-
respond to the different test suites. The X and Y axes show, respectively, MATHSAT
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Fig. 5. Number of benchmarks solved (X axis) versus accumulated time (Y axis)

and each of the competitor’s execution times. A dot in the upper part of a picture, i.e.
above the diagonal, means a better performance of MATHSAT and viceversa. The two
uppermost horizontal lines and the two rightmost vertical lines represent, respectively,
benchmarks that ended in out-of-memory (higher) or timed-out (lower) for, respec-
tively, each of the competitors and MATHSAT.

For the UCLID tests only, the dots on the uppermost horizontal line represent prob-
lems on which UCLID could not be run on, because it does not support full LAL; thus,
these points are significant only for MATHSAT.

The comparison with CVCLITE shows that MATHSAT performs generally better
on the majority of the benchmarks in the SAL suite (CVCLITE timeouts on several of
them). On the RTLC suite, the comparison is slightly in favour of CVCLITE for some
of the problems whose time ratio is close to 1, however CVCLITE has high computation
times and even timeouts a couple of times for a few problems which MATHSAT can
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solve in less than a second. For the CIRC suite, the comparison is definitely in favour
of MATHSAT.

The comparison with ICS shows that ICS is superior on the SAL suite (that is, on
its own test suite) on a majority of smaller problems. However, MATHSAT performs
better on the most difficult problems in the suite (ICS timeouts on some of them). On
the RTLC and CIRC suite MATHSAT performs clearly better than ICS.

Finally, the comparison with UCLID shows a substantial difference of performance
in favour of MATHSAT 2.

Fig. 5 shows an overall comparison between MATHSAT and its competitors, where
the number of tests solved within the time and memory limits (X axis) is plotted against
the accumulated execution time (Y axis). Notice that plots with less samples indicate
a higher number of time outs. For this reason, we do not report the data for UCLID,
given that it could be run only on a subset of the benchmarks.

On the SAL suite, ICS generally performs the best on most examples; however
MATHSAT performs better than ICS on the hardest examples (MATHSAT is able to
solve some problems for which ICS timeouts); CVCLITE performance on this suite is
definitely worse. On the RTLC suite, the performances of MATHSAT and CVCLITE

are quite close to each other, whereas ICS performance is definitely worse. Finally, on
the CIRC suite MATHSAT is the the best performer followed by ICS, whereas CV-
CLITE performs much worse. The last picture shows the results obtained by putting
together the data in the three benchmarks suites: overall, MATHSAT and ICS per-
form clearly better than CVCLITE, with MATHSAT performing better than ICS on
the harder problems and ICS performing slightly better on simpler ones.

7 Related Work

In this paper we have presented a new decision procedure for Linear Arithmetic Logic.
The verification problem for LAL is well known, and it has been devoted a lot of interest
in the past. In particular, our approach builds upon and improves our previous work on
MATHSAT [5, 4, 7, 6, 14], along the lines described in Sect. 3.

Other related decision procedures are the ones considered in Sect. 6, namely CV-
CLITE [17, 10], ICS [24, 19] and UCLID [36, 33]. CVCLITE is a library for checking
validity of quantifier-free first-order formulas over several interpreted theories, includ-
ing real and integer linear arithmetic, arrays and uninterpreted functions. CVCLITE

replaces the older tools SVC and CVC [17]. ICS is a decision procedure for the satisfi-
ability of formulas in a quantifier-free, first-order theory containing both uninterpreted
function symbols and interpreted symbols from a set of theories including arithmetic,
tuples, arrays, and bit-vectors. Finally, UCLID is a tool incorporating a decision pro-
cedure for arithmetic of counters, the theories of uninterpreted functions and equality
(EUF), separation predicates and arrays. It can also handle limited forms of quantifi-
cation. In this paper these tools have been compared using the benchmarks falling into
the class of linear arithmetic logic (in the case of UCLID the subset of arithmetic of

2 UCLID could not be run on some of the problems in SAL and RTLC and on all of the problems
in CIRC, because it does not support full LAL, hence the emptiness of the bottom-right picture.
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counters). A comparison on the benchmarks dealing with the theory of EUF is part of
our future work.

Other relevant systems are Verifun [20], a tool using lazy-theorem proving based
on SAT-solving, supporting domain-specific procedures for the theories of EUF, linear
arithmetic and the theory of arrays, and the tool ZAPATO [9], a tool for counterexample-
driven abstraction refinement whose overall architecture is similar to Verifun. The
DPLL(T) [21] tool is a decision procedure for the theory of EUF, which, similarly
to MATHSAT, is based on a DPLL-like SAT-solver engine coupled with a specialized
solver for EUF. A comparison with DPLL(T) in the case of EUF is also planned as fu-
ture work. ASAP [25], is a decision procedure for quantifier-free Presburger arithmetic
(that is, the theory of LAL over non-negative integers) implemented on top of UCLID;
a comparison was not possible given that the system is not publicly available. A further
relevant system is TSAT++ [35, 3], which is limited, however, to the separation logic
fragment of LAL.

Finally, we mention [30], which presents HDPLL, a decision procedure for LAL,
specialized to the verification of circuits at RTL level. The procedure is based on DPLL-
like Boolean search engine integrated with a constraint solver based on Fourier-Motzkin
elimination and finite domain constraint propagation. According to the experimental
results in [30], HDPLL seems to be very competitive, at least for property verification
of circuits at RTL level. It would be very interesting to perform a thorough experimental
evaluation wrt. MATHSAT (at the moment this was not possible due to unavailability of
the tool) and also to investigate the possibility of tuning MATHSAT using some ideas
mentioned in the paper.

8 Conclusions and Future Work

In this paper we have presented a new decision procedure for the satisfiability of Linear
Arithmetic Logic. The work is carried out within the (known) framework of integration
between off-the-shelf SAT solvers, and specialized theory solvers. We proposed several
improvements. First, the theory solver is incremental and backtrackable, and therefore
able to tightly interact with the boolean top level by mimicking its stack-based be-
haviour; furthermore, it provides explanations in case of conflict, and can carry out
deductions that provide truth values to unassigned atoms. Second, we heavily exploit
the idea of layering: the satisfiability of theory constraints is evaluated in theories of
increasing strength (Equality, Separation logic, Linear Arithmetic over the reals, and
Linear Arithmetic over the integers). The idea is to privilege less expensive solvers
(for weaker theories), thus reducing the use of more expensive solvers. Finally, static
learning and weakened early pruning are also used. We carried out a thorough exper-
imental evaluation of our approach: the MATHSAT solver is able to tackle effectively
a wide class of problems, with performance comparable with and often superior to the
state-of-the-art competitors.

Besides the experiments shown in this paper, we have performed an additional set of
experiments to evaluate the impact of the above mentioned improvements on the overall
performance of MATHSAT. The results of this evaluation are reported in an extended
version of this paper, available at [26].
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As future work, we plan to further tune MATHSAT, to investigate the impact of
different splitting heuristics taking into account the internal nature of constraints. In
addition, we plan to extend MATHSAT to deal with other theories, including non-linear
arithmetics, arrays, bitvectors, and a model of memory access. We are investigating
an extension of MATHSAT to combinations of theories, in particular EUF and LAL.
Finally, we plan to lift SAT-based model checking beyond the boolean case, to the
verification of sequential RTL circuits and of hybrid systems.
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Abstract. Lazy proof explication is a theorem-proving architecture that allows
a combination of Nelson-Oppen-style decision procedures to leverage a SAT
solver’s ability to perform propositional reasoning efficiently. The SAT solver
finds ways to satisfy a given formula propositionally, while the various decision
procedures perform theory reasoning to block propositionally satisfied instances
that are not consistent with the theories. Supporting quantifiers in this architecture
poses a challenge as quantifier instantiations can dynamically introduce boolean
structure in the formula, requiring a tighter interleaving between propositional and
theory reasoning.

This paper proposes handling quantifiers by using two SAT solvers, thereby
separating the propositional reasoning of the input formula from that of the instan-
tiated formulas. This technique can then reduce the propositional search space,
as the paper demonstrates. The technique can use off-the-shelf SAT solvers and
requires only that the theories are checkpointable.

1 Introduction

Automatic verification of hardware and software systems requires a good decision pro-
cedure for the conditions to be verified. Verification conditions generated for the verifi-
cation of software involve functions and predicates for many types of values, including
those of the source programming language. Designing decision procedures for these
individual theories may be easier than designing a decision procedure that handles all of
them. Nelson and Oppen [12, 11] developed a famous method for combining decision
procedures of a class of first-order theories. Because of its modular architecture, theo-
rem provers based on this method can readily support many interesting theories that are
useful in practice. Many theorem provers are based on such combinations, for example
Simplify [5], Verifun [7], ICS [3], and CVC Lite [2], and these have been applied to the
verification of hardware and software systems.

Software verification conditions also involve quantified formulas. For example, the
verification conditions generated by the program checker ESC/Java [9] use quantified
formulas in several ways: (0) to specify a partial set of properties of otherwise uninter-
preted functions, (1) to axiomatize properties guaranteed by Java and its type system, (2)
to describe a procedure call’s effect on the program heap, (3) to state object invariants
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for all objects of a class, and (4) to support quantifiers, usually over array elements,
supplied by the user. Unfortunately, the Nelson-Oppen combination method is appli-
cable only to quantifier-free first-order formulas. Reasoning about quantifiers in this
setting cannot be handled as an ordinary theory, but instead needs special support. An-
other problem is that it is not always possible to have a terminating decision procedure
when the input formulas contain quantifiers, but the prevalence of quantified formulas
in important problems demands that the theorem provers handle them effectively in
practice.

The Simplify theorem prover [5] provides support for quantified formulas that has
been shown to be effective for software verification applications, for example in extended
static checking [6, 9]. Simplify uses a kind of pattern matching of ground terms to trigger
the instantiation of universally quantified formulas. However, Simplify does not handle
propositional search very efficiently. A new generation of theorem provers, including
Verifun [7], ICS [3], and CVC Lite [2], attempt to speed up the propositional search by
leveraging the last decade’s advances in SAT solving and using a lazy-proof-explication
architecture. In such an architecture, a Nelson-Oppen combination of decision proce-
dures interacts with an off-the-shelf SAT solver: the SAT solver finds ways to satisfy a
given formula propositionally, while the combination of other decision procedures per-
forms theory reasoning to block propositionally satisfied instances that are not consistent
with the theories.

To use such a new-generation theorem prover in software verification applications,
we seek to incorporate support for quantified formulas in the lazy-proof-explication ar-
chitecture. This poses the following key challenges. First, quantified formulas typically
involve propositional connectives. As a result, quantifier instantiations performed dur-
ing theory reasoning can dynamically introduce boolean structure in the formula. This
requires tighter interleaving between propositional and theory reasoning. Second, most
quantifier instantiations are not useful in proving the validity of the formula. Blindly
exposing such redundant instantiations to the SAT solver could drastically reduce the
performance of the propositional search.

Support for quantified formulas in a lazy-proof-explication prover has been incorpo-
rated into Verifun [8]. When the quantifier instantiations result in formulas with propo-
sitional structure, Verifun augments the original formula with such instantiations so that
the SAT solver can find ways to satisfy these instantiations in the context of the original
formula. However, the added disjunctions then persist in the prover’s state.

As an alternative approach, we propose a two-tier technique in this paper. This tech-
nique involves two off-the-shelf SAT solvers, a main solver that performs the proposi-
tional reasoning of the input formula, and a little solver that reasons over the quantifier
instantiations. When the main SAT solver produces a propositionally satisfying instance
that is consistent with the decision procedures, a pattern matching algorithm, similar to
the one in Simplify, generates a set of quantifier instantiations. The little SAT solver,
along with the decision procedures, tries to falsify the satisfying instance with the instan-
tiations produced. If successful, the little SAT solver then generates a blocking clause
that only contains literals from the input formula. By thus separating the propositional
reasoning of the input formula from that of the instantiated formulas, this technique
reduces the propositional search space.
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Section 2 introduces some preliminaries and reviews the architecture of theorem
provers based on lazy proof explication. Section 3 discusses the main problem in han-
dling quantifiers in lazy-proof-explication theorem provers. The quantifier algorithm is
presented in Section 4. We trace through an example in Section 5 and report on our
preliminary experience with an implementation of the algorithm in Section 6. The final
sections offer a discussion, some related work, and a conclusion.

2 Theorem Proving Using Lazy Proof Explication

In this section, we review in more detail the architecture and main algorithm of a theorem
prover based on lazy proof explication.

2.1 Terminology

A formula is constructed from an arbitrary combination of function and predicate sym-
bols, propositional connectives, and first-order quantifier bindings. The following is an
example formula:

(∀ a, i , v • 0 � i ∧ i < Length(a) ⇒ read(write(a, i , v), i) = v ) ∧
Length(b) > 0
⇒ read(write(b, 0, 10), 0) = 10

An atom is a formula that does not start with a propositional connective. Propositional
connectives include conjunction ( ∧ ), disjunction ( ∨ ), negation (¬), and implication
( ⇒ ). For example, the following are all atoms:

(∀ a, i , v • 0 � i ∧ i < Length(a) ⇒ read(write(a, i , v), i) = v ),
Length(b) > 0,
read(write(b, 0, 10), 0) = 10.

A quantifier atom is an atom that starts with a quantifier. A literal is either an atom
or its negation. A quantifier literal is either a quantifier atom or its negation. A monome
is a set of literals. If P is a set of formulas, we sometimes write just P when we mean
the conjunction of the formulas in P .

A theorem prover can be equivalently viewed either as a validity checker or a satisfia-
bility checker: establishing the validity of a given conjecture P is equivalent to showing
a satisfying assignment does not exist for ¬P . For the theorem provers discussed in this
paper, we take the second view, thinking of the input as a formula (the negation of a
conjecture) to be satisfied or shown unsatisfiable. We define three notions of satisfiabil-
ity for a formula Φ : propositional satisfiability (PSat(Φ)), satisfiability with theories
(TSat(Φ)), and satisfiability with theories and quantifiers (QSat(Φ)).

1. PSat(Φ) = True if there exists a satisfying truth value assignment to every atom
in Φ .

2. TSat(Φ) = True if PSat(Φ) = True and the truth value assignment to the
non-quantifier atoms is consistent with the underlying theories.

3. QSat(Φ) = True if PSat(Φ) = True and the truth value assignment to the atoms
is consistent with both the underlying theories and the semantics of quantifiers.
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Proposition 1 QSat(Φ) implies TSat(Φ) , which in turn implies PSat(Φ) .

We define a lemma to be a formula that does not affect the satisfiability of any formula.
That is, if P is a lemma and Φ is any formula, then QSat(Φ) iff QSat(Φ ∧ P) . Note
that if both P and Q are lemmas, then so is P ∧ Q . And if P is a lemma and P
implies Q , then Q is also a lemma. In this paper, we use three kinds of lemmas:

1. a tautology generated by the theories,
2. a quantifier instantiation lemma of the form (∀ x • P(x ) ) ⇒ P(a) , which is

also a tautology,
3. a quantifier skolemization lemma of the form (∃ x • P(x ) ) ⇒ P(K ) for an

appropriate skolem function K , as defined later.

2.2 Lazy Proof Explication

In a lazy-proof-explication theorem prover, an off-the-shelf SAT solver conducts propo-
sitional reasoning of an input formula Φ . The SAT solver treats each atom in Φ as an
opaque propositional variable. When possible, the SAT solver returns a truth value as-
signment m of these atoms that propositionally satisfies Φ . The theorem prover then
invokes the theory-specific decision procedures to determine if the monome m is con-
sistent with the underlying theories. If so, the input formula Φ is satisfiable. If not,
the theories are responsible for producing a lemma that shows the monome m to be
inconsistent. By conjoining this lemma to Φ—which by the definition of lemma does
not change the satisfiability of Φ—the theorem prover blocks the assignment m .

For example, suppose a theorem prover is asked about the satisfiability of the fol-
lowing formula:

([[x � y ]] ∨ [[y = 5]]) ∧ ([[x < 0]] ∨ [[y � x ]]) ∧ ¬[[x = y ]]

where for clarity we have enclosed each atom within special brackets. As (the proposi-
tional projection of) this formula is passed to the SAT solver, the SAT solver may return
a monome containing the following three literals (corresponding to the truth value as-
signment to three atoms):

[[x � y ]], [[y � x ]], ¬[[x = y ]] (1)

This monome is then passed to the theories, where the theory of arithmetic detects an
inconsistency and return the following lemma:

[[x � y ]] ∧ [[y � x ]] ⇒ [[x = y ]] (2)

By conjoining this lemma to the original formula, the propositional assignment (1) is
explicitly ruled out in the further reasoning performed by the SAT solver. Since (2) is
a lemma, it could have been generated and conjoined to the input even before the first
invocation of the SAT solver, but the strategy of generating this lemma on demand—that
is, lazily—is the reason the architecture is called lazy proof explication.

Figure 1 outlines the algorithm of a theorem prover using lazy proof explication.
PSat(F ) is implemented by calling an off-the-shelf SAT solver (after projecting the
atoms onto propositional variables). If the result is True , a monome m is returned as
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Input: formula F
Output: satisfiability of F

while (PSat(F)) {
let monome m be the satisfying assignment ;
P := CheckMonome(m) ;
if (P = ∅) {

return True ;
} else {

F := F ∧ P ;
}

}
return False ;

Fig. 1. Lazy-proof-explication algorithm without support for quantifiers

the satisfying assignment. Then, CheckMonome is called to determine if m is consis-
tent with the underlying theories. CheckMonome(m) returns a set of lemmas that are
sufficient to refute monome m . An empty set indicates that the theories are unable to
detect any inconsistency, in which case the algorithm reports that the original formula
is satisfiable. Otherwise, the lemmas are conjoined to F and the loop continues until
either the formula becomes propositionally unsatisfiable or the theories are unable to
find inconsistency in the monome returned by PSat .

3 Handling Quantifiers

When a formula contains quantifiers, usually the information expressed by the quanti-
fiers must be used in showing a formula is unsatisfiable. This section discusses some
basic notation and challenges for handling quantifiers. The main quantifier algorithm is
presented in Section 4.

3.1 Terminology

A quantified formula has the form ( δ x • F ) , where δ is either ∀ or ∃ . Quantifiers can
be arbitrarily nested. Provided all the bound variables have been suitably α -renamed,
the following three equations hold:

¬( δ x • F ) ≡ ( δ̄ x • ¬F )
( δ x • F ) ∧ G ≡ ( δ x • F ∧ G )
( δ x • F ) ∨ G ≡ ( δ x • F ∨ G )

Here ∀̄ = ∃ and ∃̄ = ∀ . By repeatedly applying the above three equations, we can
move all the quantifiers in a quantifier atom to the front and convert it to the prenex form
( δ1 x1 • ( δ2 x2 • . . . ( δn xn • F ))) , where F does not contain any quantifier.

The existentially bound variables in the prenex form can be eliminated by skolem-
ization. Skolemization replaces each existential variable x in the quantified body with a
term K (Ψ) , where K is a fresh function symbol that is unique to the quantified formula
and the existential variable x , and Ψ is the list of universally bound variables that appear
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before x . The skolem term K (Ψ) is interpreted as the “existing term” determined by Ψ .
We say the resulting purely universal formula is in canonical form. We use Canon(Q)
to denote the canonical form of a formula Q . Note that Q ⇒ Canon(Q) is a lemma.

For any quantified formula C in canonical form and any substitution θ that maps
each universal variable to a ground term, we write C [θ] to denote the formula obtained
by taking C ’s body and applying θ to it.

3.2 Challenges in Handling Quantifiers

In order to reason about quantifiers, one can instantiate the universal variables with some
concrete terms. This will introduce new facts that contain boolean structures, which
cannot be directly used in the theory reasoning to refute the current monome. Neither
can one only rely on propositional reasoning to handle these new facts because some
inconsistency has to be determined by the theories. This means that in order to reason
about quantifiers, both propositional reasoning and theory reasoning are necessary. This
poses a challenge to theorem provers with lazy proof explication, where the two are
clearly separated.

One approach is to conjoin the original formula with lemmas of instantiating universal
quantifiers. Let Q be a quantifier literal in a formula F and let θ be a substitution that
maps each universal variable in Canon(Q) to a concrete term. Then, the following is a
lemma for F :

Q ⇒ Canon(Q)[θ]

It is a lemma because Q ⇒ Canon(Q) and Canon(Q) ⇒ Canon(Q)[θ] are lemmas.
Conjoining these lemmas puts more constraints on the original formula. If the instan-

tiations are properly chosen, more inconsistencies can be detected and eventually the
formula can be shown to be unsatisfiable. Simplify [5] uses a matching heuristic to return
a set of instantiations that will likely be useful in refuting the formula. However, there
may still be too many useless instantiations returned by the matcher. This may blow up
the SAT solver, because those lemmas can have arbitrary propositional structure, causing
more case splits.

The quantifier algorithm we present in this paper adopts a different approach. First,
the matching heuristic in Simplify is still used to return likely-useful instantiations.
Then, the little SAT solver performs the propositional reasoning for those instantiated
formulas. During the reasoning process, many new instantiations are generated, but only
some of them are relevant in refuting the monome. Once the monome is refuted, our
algorithm returns an appropriate lemma. The rationale of using the little SAT solver
is to separate the propositional reasoning for finding a satisfying monome from the
propositional reasoning for refuting a monome. Once a monome is refuted, many of
the instantiations are not useful anymore. Without this two-tier approach, they would
remain in the formula and introduce many unnecessary case splits in the future rounds
of reasoning.
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4 Quantifier Algorithm

The quantifier reasoning is performed in the CheckMonome function in the algorithm
shown in Figure 1. We show the quantifier algorithm in two steps. In section 4.1, we
present the simple one mentioned in Section 3.2. In Section 4.2, we show how to use the
little SAT solver in CheckMonome to perform both propositional and theory reasoning.

4.1 One-Tier Quantifier Algorithm

Figure 2 shows the CheckMonome algorithm with the simple quantifier support dis-
cussed in Section 3.2. We call this the one-tier quantifier algorithm. The quantifier
module is invoked only when the other theories cannot detect any inconsistency in the
given monome. As discussed in Section 3.2, the lemmas are generated by instantiat-
ing universal quantifications. The instantiations are returned from a matching algorithm
similar to that of Simplify. To avoid generating duplicate instantiations, the quantifier
module remembers the instantiations it has produced. When no more lemmas can be
generated, CheckMonome will return an empty set, in which case the algorithm in
Figure 1 will terminate with the result of True . To guarantee termination (at the cost of
completeness), an implementation limits the number of times the quantifier module can
be called for each run of the theorem prover and simply return an empty set when the
limit is exceeded.

Unlike the lemmas output by the theories after discovering an inconsistency, the
lemmas generated by the quantifier module generally are not guaranteed to refute the
monome. There are two reasons for this. First, many inconsistencies involve both quan-
tifier reasoning and theory reasoning. Without cooperating with the other theories, the
lemmas returned by instantiating quantifiers alone may not be sufficient to proposition-
ally block the monome. Second, the instantiations returned by the matching algorithm
depend on the monome. Since instantiating quantifiers may produce more atoms to ap-
pear in a monome, it is possible that the matcher can provide the “right” instantiation
only after several rounds.

As a result of CheckMonome returning a set of lemmas insufficient to refute the
monome, the next round may call CheckMonome with the same monome, plus some
extra literals coming from the quantifier instantiation. This is undesirable, because the
SAT solver repeats its work to find the same monome again. A more serious problem

Input: monome m
Output: a set of lemmas P
procedure CheckMonome(m) ≡

Assert m to the theories ;
if (m is inconsistent with the theories) {

Theories output a lemma P that refutes m ;
} else {

Quantifier module generates lemmas P ;
}
return P ;

Fig. 2. CheckMonome algorithm in the one-tier technique
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Input: monome m
Output: a set of lemmas that can refute m , or ∅ when m is satisfiable

0. procedure CheckMonome(m) ≡
1. Assert m to theories ;
2. Checkpoint all theories ;
3. P := ∅ ;
4. loop {
5. if (the theories report inconsistency) {
6. Theories output a lemma P0 that refutes current monome ;
7. } else {
8. Quantifier module generates new lemmas P0 ;
9. if (P0 = ∅) {

10. return ∅ ;
11. }
12. }
13. P := P ∪ P0 ;
14. if (PSat(m ∧ P) = False) {
15. return FindUnsatCore(m, P) ;
16. }
17. let m ∧ m ′ be the satisfying monome ;
18. Restore checkpoints in all the theories ;
19. Assert m ′ to theories ;
20. }

Fig. 3. The CheckMonome algorithm using the two-tier technique

of this simple algorithm is that many of the returned lemmas are not even relevant in
refuting the monome. Those useless lemmas remain in the formula during the proving
process, and without removing them, the SAT solver will eventually be overwhelmed
by many unnecessary case splits.

4.2 Two-Tier Quantifier Algorithm

In order to use quantifier instantiations to refute a monome, propositional reasoning
is needed. The key problem of the simple CheckMonome algorithm is: by directly
returning the lemmas generated from quantifiers, it essentially relies on the main SAT
solver to perform the propositional reasoning of those newly generated formulas. This
causes repetitive and unnecessary work in the main SAT solver. To address this problem,
we separate the propositional reasoning of the instantiated formula from that of the
original formula by using a little SAT solver in our CheckMonome algorithm (Figure 3).

Set P records all the lemmas generated so far. Some of the lemmas are generated
by the quantifier module (line 8), while the others are generated by the theories (line
6). When new lemmas are added into P , the little SAT solver performs propositional
reasoning on m ∧ P (line 14). For every satisfying assignment m ∧ m ′ produced by
the little SAT solver, the algorithm invokes the theories to check if the assignment is
consistent. To avoid redundant work, the algorithm checkpoints the state of the theories
before entering the loop (line 2). As a result, the algorithm only needs to assert m ′ to
the theories in each iteration (line 19).
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The loop continues as long as P does not propositionally refute m and new lemmas
are still being generated. If no more lemmas can be generated, either by the quantifier
module or by the theories, and m ∧ P is still satisfiable, the algorithm terminates and
returns an empty set, indicating failure to refute monome m .

Once P can refute m , the function FindUnsatCore(m,P) is called to extract a
good-quality lemma from P . FindUnsatCore(F ,G) requires that F ∧ G is propo-
sitionally unsatisfiable. It returns a formula H such that G ⇒ H , F ∧ H is still
unsatisfiable, and the atoms in H all occur in F .

Function FindUnsatCore can be implemented in various ways. Modern SAT solvers
can extract a small unsatisfiable core of a propositional formula [14] and this seems
to be useful in FindUnsatCore . Alternatively, interpolants [10] may be used here, be-
cause any interpolant of G and F satisfies the specification of FindUnsatCore(F ,G) .
For our preliminary experiments, we have the following naive implementation of the
FindUnsatCore function for the particular kind of arguments that show up in the algo-
rithm:

For a monome m and a formula P , if PSat(m ∧ P) = False , then there exists
a minimal subset m0 of m such that PSat(m0 ∧ P) = False . Such a m0 can be
obtained by trying to take out one literal from m at a time and discard the literal if the
formula remains propositionally unsatisfiable. It is easy to see that P ⇒ ¬m0 . We just
return ¬m0 as the result of FindUnsatCore(m,P) .

Correctness. The correctness of the two-tier algorithm hinges on the fact that every
formula in P is a lemma for the monome m . The correctness of the algorithm is
formalized as the following theorem.

Theorem 1 . Let P be the set of all lemmas generated during the run of the algorithm.
Then, the algorithm refutes the monome m iff TSat(m ∧ P) = False .

Intuitively, the result of the algorithm is the same as if we had generated all the
lemmas P up front and run a standard Nelson-Oppen theorem prover on the formula
m ∧ P . Since conjoining lemmas does not change the satisfiability of a formula, the
theorem shows our algorithm to be sound:

Corollary 2 . If the algorithm refutes m , then QSat(m) = False .

This is because ¬TSat(m ∧ P) ⇒ ¬QSat(m ∧ P) by Proposition 1, and QSat(m ∧
P) = QSat(m) by the definition of lemma. On the other hand, the algorithm is not
complete, since we cannot always generate all the lemmas relevant to the formula. When
the algorithm fails to refute a monome, all that is known is TSat(m ∧ P) = True , that
is, even with all the information in P , a Nelson-Oppen theorem prover cannot refute
the monome either.

5 Example

In this section, we demonstrate how our algorithm works on a small example.
Let P and Q be two quantified formulas:

P : (∀ x • x < 10 ⇒ R(f (x )) )
Q : (∀ y • R(f (y)) ⇒ S (g(y)) )
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where the match patterns to be used for P and Q are x : f (x ) and y : g(y) , respectively.
A pattern ρ is a lambda term such that if a subterm t of the formula matches it, i.e.
∃t0.t = ρ(t0) , t0 will be used to instantiate the universal variable ρ is associated with.
In our current implementation, the patterns are specified by the user, although they could
be automatically inferred in most cases. We now trace our algorithm through the request
of determining whether or not the following formula is satisfiable:

[[P ]] ∧ [[Q ]] ∧ ([[b = 1]] ∨ [[b = 2]]) ∧ ¬[[S (f (b))]] ∧ ¬[[S (g(0)]])

In the first round, the main SAT solver returns a monome m , say

{ [[P ]], [[Q ]], [[b = 1]], ¬[[S (f (b)]]), ¬[[S (g(0)]]) }
Since no theory can detect inconsistency, the quantifier module is invoked to gener-
ate lemmas. According to the match pattern, x is instantiated with b in P and y is
instantiated with 0 in Q :

(3)[[P ]] ⇒ ([[b < 10]] ⇒ [[R(f (b))]])
(4)[[Q ]] ⇒ ([[R(f (0))]] ⇒ [[S (g(0))]])

The lemmas (3) and (4) are conjoined to the monome and the little SAT solver is called.
The extended monome m ′ for the newly-introduced atoms might be:

{ ¬[[b < 10]], ¬[[R(f (0))]] }
At this point the theories detect an inconsistency between [[b = 1]] and ¬[[b < 10]] . So
a new lemma is added:

[[b = 1]] ∧ ¬[[b < 10]] ⇒ False (5)

In the next iteration, m ′ is

{ [[R(f (b))]], ¬[[R(f (0))]] }
The theories are unable to detect inconsistency in the monome m ∧ m ′ . The quantifier
module is invoked again to generate lemmas. This time the term f (0) in the newly
generated formulas matches the pattern, so x in P is instantiated by 0 .

[[P ]] ⇒ ([[0 < 10]] ⇒ [[R(f (0))]]) (6)

The next m ′ is

{ [[R(f (b))]], ¬[[R(f (0))]], ¬(0 < 10) }
The theory then detects an inconsistency:

¬(0 < 10) ⇒ False (7)

After conjoining (7), the original monome m will be propositional refuted. The lemma
constructed is

[[P ]] ∧ [[Q ]] ∧ ¬[[S (g(0))]] ⇒ False
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After conjoining this lemma to the original formula, it becomes propositionally unsatis-
fiable.

If we use the simple algorithm, lemma (3) would be conjoined to the input formula,
even though it has nothing to do with the contradiction. In the subsequent solving, this
unnecessary lemma could introduce a case split on ([[b = 1]] ∨ [[b = 2]]) , if the SAT
solver happens to assign [[b < 10]] False. The theories would have to consider both
in order to block the truth value assignment ¬[[b < 10]] . By separating the two SAT
solvers, our algorithm only needs to consider one of them.

6 Experimental Results

We have implemented the two-tier quantifier algorithm in a lazy-proof-explication the-
orem prover in development at Microsoft Research. For a comparison, we also imple-
mented the one-tier algorithm. This section describes the results from our preliminary
evaluation of the algorithm.

Figure 4 shows the number of SAT-solver case splits required for some small ex-
amples. In addition to showing the case splits by the main and little SAT solvers in the
two-tier approach, we show the number of case splits performed by our implementation
of FindUnsatCore . We used two sets of examples, explained next.

The first set of formulas was designed to show how the two-tier approach can save
case splits over the one-tier approach. Formula ex2 is the example from Section 5, and
ex9 and ex100 are the same example but with 9 and 100 different disjuncts instead
of 2. The number of case splits for these examples (Figure 4) confirm that the two-tier
approach can indeed reduced the number of case splits.

The second set of formulas was constructed to look like (the negations of) typical
verification conditions of method bodies in an object-oriented program (cf. [9, 1]): on
entry to the method body, one gets to assume that an object invariant holds for all allocated
objects; on return from the method, one needs to show that the object invariant holds for
all allocated objects; in between, the method body contains control structure and calls to
other methods. In our example, we used an object invariant that puts an integer constraint
on a field f of objects. In our example, the method body to be verified makes calls of

one-tier two-tier
formula SAT solver main SAT little SAT FindUnsatCore

case splits case splits case splits case splits
ex2 7 1 1 9
ex9 44 9 3 23
ex100 428 106 2 104
prog.1.1 116 0 116 51
prog.2.2 547 4 491 277
prog.3.4 1919 13 1505 919
prog.3.4.err 2000 11 1312 218

Fig. 4. Results from running some preliminary experiments, showing the number of SAT solver
case splits performed by the one-tier and two-tier approaches on some small examples
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/* axioms about operations that read and write the heap */
( ∀ h, x ,F , y ,G, a • x �= y ∨ F �= G ⇒

sel(upd(h, x ,F , a), y ,G) = sel(h, y ,G) ) ∧
( ∀ h, x ,F , a • sel(upd(h, x ,F , a), x ,F ) = a ) ∧

/* fields names are distinct (only two distinctions are needed for this example) */
f �= g ∧ g �= alloc ∧

/* object invariants hold initially, where H is the name of the heap */
( ∀ o • o �= null ∧ is(o,T ) ∧ sel(H , o, alloc) ⇒ sel(H , o, f ) < 7 ) ∧

/* encoding of the call, where K is the name of the heap in the post-state */
( ∀ o,F • sel(H , o,F ) = sel(K , o,F ) ∨

(o = p ∧ F = g) ∨ (o = p ∧ F = f ) ∨
¬sel(H , o, alloc) ) ∧

( ∀ o • sel(H , o, alloc) ⇒ sel(K , o, alloc) ) ∧
( ∀ o • ¬sel(H , o, alloc) ∧ sel(K , o, alloc) ⇒ sel(K , o, f ) < 7 ) ∧
sel(K , p, f ) = 3 ∧

/* the (negation of the) postcondition to be proved */
¬( ∀ o • o �= null ∧ is(o,T ) ∧ sel(K , o, alloc) ⇒ sel(K , o, f ) < 7 )

Fig. 5. A formula showing a typical structure of verification conditions of methods in an object-
oriented program

the form p.M (x ) , where p is some object and x is an integer. The semantics of the
calls come from the specification of the callee. We used a specification for M that says
that p.M (x ) sets the field p.f to x , arbitrarily assigns to the field p.g , and allocates
an arbitrary number of objects and changes the fields of those objects in arbitrary ways
that satisfy the object invariant.

Formula prog .1.1 is (the negation of) the verification condition for a method whose
body simply calls p.M (3) . It is shown in Figure 5. Formulas prog .2.2 and prog .3.4
are similar, but correspond to method bodies containing 2 and 4 calls (with various
parameters) and with if statements that give rise to 2 and 3 execution paths, respectively.
Formula prog .3.4.err corresponds to the same program as prog .3.4 , but with an inserted
program error; thus, prog .3.4.err is the only one of our small formulas that is satisfiable.

Since prog .1.1 is a straight-line program, there are no case splits to be done by the
main SAT solver, so the little SAT solver performs roughly the same work as the SAT
solver in the one-tier approach. Verification conditions produced from method bodies
with more than one possible control-flow path contain disjunctions at the top level of the
formula. As soon as there are such disjunctions in our examples, the two-tier approach
performs fewer case splits not just in the main SAT solver, but in the main and little SAT
solvers combined.

When the two-tier approach refutes a monome produced by the main SAT solver, the
lemma returned to the main SAT solver has been pruned to contain a minimal number
of literals. This keeps the state of the main SAT solver small, but the pruning has a price.
The pruning may be done directly by the SAT solver, but our implementation performs
the pruning using the FindUnsatCore function described above. Figure 4 shows that
this function performs a rather large number of case splits. We do not yet know the actual
cost of these case splits relative to everything else in our implementation.
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7 Discussion

7.1 Detecting Useful Quantifier Instantiations

The two-tier technique separates the propositional reasoning of the input formula from
the propositional reasoning of the quantifier instantiations. By doing so, this technique
prevents useless instantiations from blowing up the propositional search of the input
formula. However, it is possible for some instantiations to be repeatedly useful in refuting
many propositionally satisfying assignment of the input formula. In such cases, it could
be advantageous to expose this instantiation to the main SAT solver.

As an example, consider the following input formula:

[[(∀ x • P(x ) ⇒ x � a )]] ∧ [[P(2)]] ∧ ([[a = 0]] ∨ [[a = 1]])

Suppose the main SAT solver picks a satisfying assignment consisting of the first two
conjuncts and the disjunct [[a = 0]] . The following instantiation

[[(∀ x • P(x ) ⇒ x � a )]] ⇒ [[P(2)]] ⇒ [[2 � a]]

is sufficient to refute the current satisfying assignment. Consequently, the two-tier tech-
nique returns the following lemma:

[[(∀ x • P(x ) ⇒ x � a )]] ∧ [[P(2)]] ⇒ ¬[[a = 0]]

However, the instantiation above is also sufficient to refute the (only) other satisfying
assignment of the input formula.

If it is possible to detect such reuse of instantiations, the algorithm can expose these
instantiations to the main SAT solver. We are currently exploring different heuristics to
identify such useful instantiations.

7.2 Handling Non-convex Theories

For efficiency, it is best if theories combined using Nelson-Oppen are convex. Informally,
a convex theory will never infer a disjunction of equalities without inferring one of them.
Thus the decision procedures only need to propagate single equalities. For non-convex
theories, sometimes it is necessary for the decision procedure to propagate a disjunction
of equalities. For example, the integer arithmetic theory can infer the following fact:

0 � x ∧ x � 3 ⇒ x = 0 ∨ x = 1 ∨ x = 2 ∨ x = 3.

This fact should be added as a lemma in the proving process. Like the lemmas generated
by quantifier instantiation, there is a risk that useless lemmas increase the work required
of the propositional search. The same technique discussed in this paper is readily applied
to those non-convex theories. In this sense, our algorithm in Figure 3 actually provides
a unified approach to handle both quantifiers and non-convex theories—they can both
be viewed as a theory that can generate lemmas of arbitrary forms.
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8 Related Work

Among decision-procedure based theorem provers, besides our work, Simplify [5], Ver-
ifun [7], and CVC Lite [2] all provide some degree of quantifier support.

Simplify’s method of using triggering patterns to find instantiations [11, 5] has proved
quite successful in practice. Once an instantiation is generated, it remains in the prover
until the search backtracks from the quantifier atom. We implemented a similar triggering
algorithm and used a second SAT solver to reason about the instantiated formulas so
that useful instantiations can be identified.

Our handling of quantifiers is based on Verifun’s early work [8]. Some attempts
have been made in Verifun to identify useful lemmas from instantiations of quantifiers.
However, it seems that it is an optimization that works only when the instantiations
alone can propositionally refute the current monome. In most scenarios, we believe, the
quantifier module needs to cooperate with other theories to find out the instantiations
that are useful to refute the monome.

In CVC Lite, each term is given a type and the formula is type checked. Types
give hints about which terms can be used to instantiate a universal variable. However,
instantiating a variable with every term whose type matches may be unrealistic for large
problems.

Apart from the decision-procedure based theorem provers that rely on heuristic in-
stantiations of quantified formulas, many automated first-order theorem provers includ-
ing the resolution-based theorem provers (such as Vampire [13]) and the superposition
theorem provers (such as HaRVey [4]) can handle quantifiers.

9 Conclusion

In this paper, we have proposed a two-tier technique for handling quantifiers in a lazy-
proof-explication theorem prover. The propositional reasoning of the original formula
and that of the instantiated formulas are handled by two SAT solvers. The major purpose
of this separation is to avoid unnecessary case splits caused by intertwining useless
instantiations and the original formula. The FindUnsatCore method can extract, from a
set of lemmas generated during quantifier reasoning, a “good lemma” that is both relevant
to the problem and sufficient to refute the given monome. We also use checkpointable
theories to improve efficiency during the quantifier reasoning.

Acknowledgments. We thank the referees for their many useful comments on a previous
version of this paper.
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Abstract. This paper addresses the problem of generating symbolic test
cases for testing the conformance of a black-box implementation with re-
spect to a specification, in the context of reactive systems. The challenge
we consider is the selection of test cases according to a test purpose, which
is here a set of scenarios of interest that one wants to observe during test
execution. Because of the interactions that occur between the test case
and the implementation, test execution can be seen as a game involving
two players, in which the test case attempts to satisfy the test purpose.

Efficient solutions to this problem have been proposed in the context
of finite-state models, based on the use of fixpoint computations. We
extend them in the context of infinite-state symbolic models, by showing
how approximate fixpoint computations can be used in a conservative
way. The second contribution we provide is the formalization of a quality
criterium for test cases, and a result relating the quality of a generated
test case to the approximations used in the selection algorithm.

1 Introduction

In this paper we address the generation of test cases in the framework of con-
formance testing of reactive systems [1]. In this context, a Test Case (TC ) is
a program run in parallel with a black-box Implementation Under Test (IUT ),
that stimulates the IUT by repeatedly sending inputs and checking that the
observed outputs of the IUT are in conformance with a given specification S. In
case the IUT exhibits a conformance error, the execution is immediately inter-
rupted. However, in addition to checking the conformance of the IUT , the goal
of the test case is to guide the parallel execution towards the satisfaction of a test
purpose, typically a set of scenarios of interest. Because of this second feature,
test execution can be seen as a game between two programs, the test case and
the IUT . The test case wins if it succeeds to make the parallel execution realize
one of the interesting scenarios specified by the test purpose; the IUT wins if
the execution cannot be extended any more to one that realizes an interesting
scenario. If a conformance error is detected, the game terminates with a tie.

The test selection problem consists in finding a strategy that minimizes the
likehood for the test case to lose the game. Indeed, it is generally not possible
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to ensure that the test case wins, because IUT is unknown: it is a black-box
program that may behave in a non-controllable way. This problem has been
previously addressed in a context where the specifications, the test cases and the
test purposes are modeled with finite Labelled Transition Systems (LTS) [9].

Finding a suitable strategy for the test case is decomposed in two steps:

1. One first performs an off-line selection of a Test Case that detects when the
game is lost by the tester and stops the execution in this case. This is done
by static analysis of the specification S and the test purpose TP .

2. Then, during the execution of the obtained test case in parallel with the
IUT , one performs an on-line selection of the inputs that the test case sends
to the IUT . This on-line selection is based on the history of the current
execution.

A previous paper [14] extends these principles and algorithmic methods to
the case where specifications, test purposes and test cases are modeled with
Input-Output Symbolic Transition Systems (ioSTS), which are automata that
operate on variables (integers, booleans, aggregate types, ...) and communicate
with the environment by means of input and output actions carrying parameters.
For undecidability reason, the static analysis used for the off-line selection (Step
1) is approximated. [14] considers only a specific analysis (moreover restricted
to the control structure) and does not study the effect of the approximations on
the generated test cases.

The contributions of this paper are twofold. First we describe a general test
selection method parameterized by an approximate analysis, in the context of
Input-Output Symbolic Transition Systems. Compared to [14], we allow for the
use of more precise analyses that perform both control and data based selection.
We show that the test cases obtained by this method are sound. Second, we
investigate the effect of the approximations of the analysis from the point of
view of test execution as a game: in which way do they degrade the winning
capabilities of the obtained test case? This leads us to define an accuracy ordering
between test cases, to formalize the notion of optimal test case, and to compare
the test cases generated by our method using these notions.

Context and Related Work

Conformance testing: Testing is the most used validation technique to assess the
quality of software systems. Among the aspects of software that can be tested,
e.g., functionality, performance, timing, robustness, etc, we focus here on confor-
mance testing and specialize it to reactive systems. In this approach, the software
is specified in a behavioral model which serves both as a basis for test generation
and for verdicts assignment. Testing theories based on models such as automata
associated to fault models (see e.g. the survey [13]), or labelled transition sys-
tems with conformance relations (see e.g. [16]) are now well understood. Test
generation algorithms have been designed based on these theories, and tools like
TorX [2], TGV [9] have been developed and used on industrial-size systems.
Test selection: The test selection problem consits of choosing some test cases
among many possible, according to a given criterion. Most approaches are based

.
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on variants of classical control and data-flow coverage criteria [8, 3], while oth-
ers focus on specific functionalities using test purposes [6]. Although this is not
always made explicit, test generation typically relies on reachability and core-
achability analyses [9] based on pre- and post- predicate transformers.
Symbolic models: Many of the existing test generation algorithms and tools op-
erate on variants of labeled transition systems (LTS). High-level specifications
(written in languages such as SDL, Lotos, or UML) can be treated as well, via a
translation (by state-space exploration) to the more basic labeled transition sys-
tems. More recently, attempts have been made in the direction of symbolic test
generation [14] which works directly on the higher-level specifications without
enumerating their state-space, thus avoiding the state-space explosion problem.

Outline: In Section 2, we recall ioLTS model, the corresponding testing the-
ory and the principles of test generation using test purposes. In Section 3, we
define the syntax of the symbolic model of ioSTS and its ioLTS semantics. In
Section 4, we propose an off-line test selection algorithm for ioSTS based on syn-
tactical transformations and parameterized by an approximate fixpoint analysis.
Section 5 describes the on-line test selection that occurs during test execution.
Section 6 defines qualitative properties on tests cases concerning their ability to
satisfy the test purpose, and shows how the approximations used in the off-line
test generation step influence those qualities.

2 Testing with Input/Output Labeled Transition
Systems

Specification languages for reactive systems can often be given a semantics in
terms of labelled transition systems. For test generation, we use the following
version where actions are explictly partitioned into inputs, which are controlled
by the environment, and outputs, which the environment may only observe. This
model also serves as a semantic model for our symbolic automata (cf. Section 3).

Definition 1 (ioLTS). An Input/Output Labelled Transition System is a tuple
(Q,Q0, Λ,→) where Q is a set of states, Q0 the set of initial states, Λ = Λ?∪Λ! is
a set of actions partitioned into inputs (Λ?) and outputs (Λ!) and →⊆ Q×Λ×Q
is the transition relation.

We write q
α→ q′ in place of (q,α, q′) ∈→ and note q

α→ when ∃q′ : q α→ q′.
For the sake of simplicity, we consider only deterministic ioLTS: the alphabet

does not contain internal actions and ∀q ∈ Q, q
α→ q′ ∧ q

α→ q′′ ⇒ q′ = q′′.
A run is a finite sequence ρ = q0

α0→ q1
α1→ . . .

αn−1→ qn such that q0 ∈
Q0 and ∀i < n, (qi,αi, qi+1) ∈→. Its projection onto actions is the trace σ =
trace(ρ) = α0 . . .αn−1. We denote by Runs(M) ⊆ Q0 · (Λ · Q)∗ the set of runs
of M and by Traces(M) ⊆ Λ∗ the set of traces of M . An ioLTS M can be
seen as an automaton if it is equipped with a set of marked states X ⊆ Q.
A run ρ = q0

α0→ q1
α1→ . . .

αn−1→ qn is accepted in X iff qn ∈ X. We denote
RunsX(M) ⊆ Runs(M) the set of runs accepted by X. Similarly, the set of
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accepted traces TracesX(M) ⊆ Traces(M) is obtained by projecting RunsX(M)
on Λ∗. An ioLTS M is complete in a state q if ∀α ∈ Λ : q α→; it is complete if
it is complete in all states. Similarly, the notion of input-completeness is defined
by replacing Λ with Λ?.

The synchronous product of two ioLTS M = (Q,Q0, Λ,→M ) and M ′ =
(Q′, Q′

0, Λ,→M ′
) with same alphabet is the ioLTS M × M ′ = (Q × Q′, Q0 ×

Q′
0, Λ,→M×M ′

) where →M×M ′
is defined by the inference rule:

q1
α→M

q2 q′1
α→M ′

q′2

(q1, q′1)
α→M×M ′

(q2, q′2)
(Sync)

As usual, we get Traces(M × M ′) = Traces(M) ∩ Traces(M ′) and
TracesX×X′(M×M ′) = TracesX(M)∩TracesX′(M ′) for X ⊂ Q and X ′ ⊂ Q′.

For a set of traces W ⊆ Λ∗, we denote respectively by pref ≤(W ) and
pref <(W ) the set of prefixes (resp. strict prefixes) of W . For X ⊆ Q, we denote by
post(X) = {q′ | ∃q ∈ X,∃α ∈ Λ : q α→ q′} and pre(X) = {q | ∃q′ ∈ X,∃α ∈ Λ :
q

α→ q′} the pre- and post-condition operators. The set of states reachable from
a subset Q′ of Q in M may then be defined by reach(Q′) = lfp(λX.Q′∪post(X))
where lfp is the least fixpoint operator. Similarly, the set of states coreachable
from a set of states Q′ may be defined as coreach(Q′) = lfp(λX.Q′ ∪ pre(X)).

2.1 Testing Theory

The testing theory we consider is based on the notions of specification, imple-
mentation, and conformance relation between them [16]. The specification is an
ioLTS S = (QS , QS

0 , Λ,→S). The Implementation Under Test (IUT ) is also as-
sumed to be an ioLTS IUT = (QIUT , QIUT

0 , Λ,→IUT ) which is unknown except
for its alphabet, which is assumed to be the same as that of the specification.
Moreover, it is assumed that the IUT is input-complete, which reflects the hy-
pothesis that the implementation cannot refuse an input from its environment.

Definition 2 (Conformance relation). A trace σ is conformant to S, denoted
by σ conf S, iff pref ≤(σ)∩ (Traces(S)·Λ!) ⊆ Traces(S). IUT is conformant to S,
denoted by IUT conf S, iff Traces(IUT ) ∩ Traces(S)·Λ! ⊆ Traces(S).

?b
e!

?a
!f

d!
?b

?a

?a

?a

!e

?a

!f

?b

!e

S σ0 σ1 σ2

Intuitively, IUT conf S if after each trace of S,
IUT may emit only outputs that S can emit
as well while its inputs are unconstrained. For
readers familiar with ioco [16], note that conf
can be interpreted as ioco if S makes qui-
escence (absence of output) explicit. For in-
stance on the figure ¬(σ1 conf S), σ2 conf S,
and σ0 conf S as σ0 diverges from S by an input.

2.2 Test Cases and Test Purposes

A test case is an ioLTS able to interact with an implementation and to emit ver-
dicts about the implementation’s conformance with respect to the specification.

.
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Table 1. Properties of Test Cases

Property Explanations
(1) TC is output-complete, verdict states are sink always, def 3
(2) Traces(TC ) ⊆ Traces(S)·({ε} ∪ Λ!) always, def 3
(3) TracesFail(TC ) = Traces(TC ) ∩ ((Traces(S)·Λ!) \ Traces(S)) soundness, def 5
(4) TracesPass(TC ) = Traces(TC ) ∩ ATraces(S,TP) soundness, def 5
(5) Traces Inconc(TC ) ⊆ RTraces(S,TP) soundness, def 5
(6) Traces Inconc(TC ) = Traces(TC ) ∩ RTraces(S,TP)

∩pref <(ATraces(S,TP))·Λ!

optimality, def 10

(7) Traces(TC ) ∩ Λ∗ ·Λ? ⊆ pref ≤(ATraces(S,TP)) optimality, def 10

In our approach, a test case is an ioLTS implementing a strategy for satisfying
a given test purpose (typically, staying within a (finite or infinite) set of traces).
The test case takes into account output choices of the specification (observable
non-determinism) and anticipates incorrect outputs of the implementation.

Definition 3 (Test Case). A test case for a specification S is an ioLTS
TC = (QTC , QTC

0 , ΛTC ,→TC ) equipped with 3 disjoint subsets of sink states
Pass,Fail, Inconc ⊆ QTC (corresponding to the verdicts it may emit) such that

– its alphabet is the mirror of that of S (ΛTC
? = ΛS

! and ΛTC
! = ΛS

? ) and it is
input-complete (outputs of IUT are not refused) except in verdict states;

– Traces(TC ) ⊆ Traces(S)·({ε} ∪Λ!): as soon as a conformance error cannot
occur any more the test case stops (cf. Definition 2).

The specification S contains all the information relevant to conformance, and
its mirror followed by input-completion constitutes a test case by itself. However,
such a test case is typically too large and is not focused on any part of the
system. It is more interesting in practice to test what happens in the course of
a given scenario (or set thereof), and if no error has been detected, to end the
test successfully when the scenario is completed. This is precisely the reason for
introducing test purposes.

Definition 4 (Test Purpose). A test purpose TP for a specification S is an
ioLTS TP = (QTP , QTP

0 , Λ,→TP ) equipped with a subset Accept ⊆ QTP of ac-
cepting states, which are sink. TP is complete except in Accept states. TP defines
a set ATraces(S,TP) of accepted traces of S which induces a set RTraces(S,TP)
of refused traces (traces of S that cannot be extended to accepted traces):

ATraces(S,TP) = TracesQS×Accept(S × TP) (1)
RTraces(S,TP) = Traces(S) \ pref ≤(ATraces(S,TP)) (2)

Observe that both accepted and refused traces are conformant. More elaborate
test purposes can be defined which may choose traces based on internal actions
and states. We do not describe them here for simplicity.

A test case TC should emit the appropriate verdicts in the appropriate situa-
tions. Fail verdicts should be emitted if and only if a non conformance is observed.
This requirement depends only on S. Additionally, since a test purpose TP is



354 B. Jeannet et al

used for selection, TC and IUT can be viewed as players in a game. In this
context, Pass verdicts should reflect success of the game for the test case, while
Inconc verdicts should reflect defeat for the test case. These requirements are
made explicit in the following definition:

Definition 5 (Soundness of test case verdicts). The verdicts of TC are
sound w.r.t. S and TP whenever the following properties of Table 1 are satisfied:

– (3): Fail is emitted iff TC observes an unspecified output after a trace of S.
– (4): Pass is emitted iff TC observes a trace of S accepted by TP.
– (5): Inconc may be emitted only if the trace observed by TC belongs to S

(thus, it is conformant) but is refused by TP. In this case, the test execution
can be interrupted, as Pass cannot be emitted any more.

Notice that for test cases satisfying Definition 5, Fail and Pass verdicts are
uniquely defined, so that they are emitted appropriately and as soon as pos-
sible. In particular for Fail, the requirement is stronger than the usual notion
of soundness [16] which says that only non conformant IUT s can be rejected.
On the other hand, Definition 5 does not uniquely define the Inconc verdict.
We have adopted this definition in anticipation of the general (symbolic) test
selection algorithm (addressed in Section 4) where checking whether a trace is
refused is undecidable.

2.3 Off-line Test Selection Algorithm

For finite ioLTS, the principles of test generation using test purposes [12] are
described by Table 2. Explanations and sketch of proof are given below.

1. After Step 1, by properties of ×, TracesPass(P ) = ATraces(S,TP), implying
Property (4) of Table 1, and Traces(P ) ⊆ Traces(S), implying Property (2).
Intuitively, the product P combines information about conformance, coming
from S, and information about the game with the IUT , coming from TP .

2. After Step 2, we have Traces Inconc(P ′) ⊆ RTraces(S,TP), implying Prop-
erty (5) of Table 1. Properties (2) and (4) from the previous step are pre-
served. This selection step is based on the definition of RTraces(S,TP) and
the following property: pref ≤(TracesPass(P )) = Tracescoreach(Pass)(P ). The
exact knowledge of coreach(Pass) allows to detect when an action extends
a trace and causes it to be refused (i.e., not a prefix any more of accepted
traces).

3. After Step 3, we have TracesFail(TC ) = Traces(TC ) ∩ (Traces(S) · Λ! \
Traces(S)), which is Property (3) of Table 1. Moreover, Property (1) be-
comes true (rule (Fail)). Properties (2), (4), (5) are preserved by the trans-
formation.

The TGV tool [9] is based on the above algorithm. The main optimization,
consists in performing these operations on the fly. This means that S, P , P ′,
and TC are built in a lazy way, from a high level specification, thus avoiding the
state explosion problem. This involves both a reachability and coreachability

.



Symbolic Test Selection Based on Approximate Analysis 355

Table 2. Off-line test selection algorithm

{ 1. Product and Pass verdict }
P := S × TP; Pass := QS × AcceptTP;

{ 2. Selection and Inconc verdict }
P ′ = (QP , QP

0 , Λ, →P ′
) is equipped with Inconc ⊆ QP and →P ′

is de-
fined by:

q, q′ ∈ coreach(Pass)
q

α−→P q′ α ∈ Λ? ∪ Λ!

q
α−→P ′

q′
(KeepI)

q∈coreach(Pass), q′ �∈coreach(Pass)
q

α−→P q′ α ∈ Λ!

q
α−→P ′

q′ q′ ∈ Inconc
(Inconc)

{ 3. Input-completion and Fail verdict }

TC = (QP ′ ∪ {Fail}, QP
0 , ΛTC , →TC) with ΛTC

? = Λ! and ΛTC
! = Λ?, and

→TC is defined by:

q
α−→P ′

q′

q
α−→TC q′

(KeepF) ¬(q α−→P ′) α ∈ Λ!

q
α−→TC Fail (α ∈ ΛTC

? )
(Fail)

analysis of P that do not modify the soundness of the test case. A test case
generated as above is called a complete test graph as it contains all traces
accepted by TP . This notion will be formalized in Section 6. TGV also allows
to generate other test cases that are less complete, by pruning some outputs
and the corresponding subgraphs.

We do not describe the on-line selection phase, that occurs during the parallel
execution of the test case with the IUT . It is described later for ioSTS.

3 ioSTS: Input/Output Symbolic Transition Systems

In this section, we introduce a model of symbolic automata with a finite set of
locations and typed variables, which communicates with its environment through
actions carrying values. We call it ioSTS for Input/Output Symbolic Transition
Systems. Figure 1 gives an example of such an ioSTS.

Variables, Predicates, Assignments. In the sequel we shall assume a set of
typed variables. We note Dv the domain in which a variable v takes its values.
For a set of variables V = {v1, . . . , vn}, we note DV the product domain Dv1 ×
. . .×Dvn

. An element of DV is thus a vector of values for the variables in V . We
use also the notation Dv for a vector v of variables. Depending on the context, a
predicate P (V ) on a set of variables V may be considered either as a set P ⊆ DV ,
or as a logical formula, the semantics of which is a function DV → {true, false}.
An assignment for a variable v depending on the set of variables V is a function
of type DV → Dv. An assignment for a set X of variables is then a function
of type DV → DX . We do not specify the syntactical constructions used for
building predicates and assignments. They are discussed in the full paper.

Definition 6 (ioSTS). An Input/Output Symbolic Transition System M is de-
fined by a tuple (V, Θ,Σ, T ) where:
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– V = Vp ∪ Vo is the set of variables, partitioned into a set Vp of proper
variables and a set Vo of observed variables.

– Θ is the initial condition: a predicate Θ ⊆ DVp
defined on proper variables.

– Σ = Σ? ∪Σ! is the finite alphabet of actions. Each action a has a signature
sig(a), which is a tuple of types sig(a) = 〈t1, . . . , tk〉 specifying the types of
the communication parameters carried by the action.

– T is a finite set of symbolic transitions. A symbolic transition t =
(a,p, G,A), also noted

[
a(p) : G(v,p) ? v′

p := A(v,p)
]
, is defined by (i)

an action a ∈ Σ and a tuple of (formal) communication parameters
p = 〈p1, . . . , pk〉, which are local to a transition; without loss of general-
ity, we assume that each action a always carries the same vector p, which
is supposed to be well-typed w.r.t. the signature sig(a) = 〈t1, . . . , tk〉; Dp is
denoted by Dsig(a); (ii) a guard G ⊆ DV × Dsig(a), which is a predicate on
the variables and the communication parameters, and (iii) an assignment
A : DV ×Dsig(a) → DVp

, which defines the evolution of the proper variables.
We denote by Av the function in A defining the evolution of the variable
v ∈ Vp.

This model is rather standard, except for the distinction between proper and ob-
served variables. The observed variables allow an observer ioSTS M1 to inspect
the variables of another ioSTS M2 when composed together with it. Note also
that there is no explicit notion of control location, since the control structure of
an automaton can be encoded by a specific program counter variable.
The semantics of an ioSTS M=(V, Θ,Σ, T ) is an ioLTS �M�=(Q,Q0, Λ,→):
– Q = DV , Q0 = {ν = 〈νp,νo〉 | νp ∈ Θ ∧ νo ∈ DVo

};
– Λ = {〈a,π〉 | a ∈ Σ ∧ π ∈ Dsig(a)};
– → is defined by

(a,p, G,A) ∈ T ν = 〈νp,νo〉 ∈ DV π ∈ Dsig(a) G(ν,π)
ν′ = 〈ν ′

p,ν
′
o〉 ∈ DV ν′

p = A(ν,π)

ν
〈a,π〉→ ν′

(Sem)

The rule says that a transition (a,p, G,A) of an ioSTS is fireable in the current
state ν = 〈νp,νo〉, if there exists a valuation π of the communication parameters
p such that 〈ν,π〉 satisfies the guard G; in such a case, the valued action 〈a,π〉
is taken, the proper variables are assigned new values as specified by the assign-
ment A, whereas observed variables take arbitrary values. Such a behaviour for
observed variables reflects the fact that their value is defined by another ioSTS.

Given this semantics, most notions and properties of ioSTS are defined in
terms of their underlying ioLTS semantics. For example, a run (resp. a trace) of
an ioSTS M is a run (resp. a trace) of its ioLTS semantics �M�. An ioSTS M
is deterministic if �M� is deterministic. Whether an ioSTS is deterministic or
not cannot be decided for ioSTS in the general case, as it implies the knowledge
of reachable states. Sufficient conditions for an ioSTS to be deterministic exist
(mutual exclusion of guards of all transitions labeled by the same action).

The product of ioSTS is more complex than that of ioLTS: ioSTS synchronize
on actions, but also via observed variables, which observe runs (not only traces).

.
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Definition 7 (Product). Two ioSTS Mi = (V i, Θi, Σ, T i), i = 1, 2 with the
same alphabet are compatible for product if V 1

p ∩ V 2
p = ∅ (proper variables are

disjoint). In this case, their product M1×M2 = M = (V, Θ,Σ, T ) is defined by

– V = Vp ∪ Vo, with Vp = V 1
p ∪ V 2

p and Vo = (V 1
o ∪ V 2

o ) \ Vp;
– Θ(〈v1,v2〉) = Θ1(v1) ∧Θ2(v2);
– T is defined by the following inference rule:[

a(p) : G1(v1,p) ? (v1
p)

′ := A1(v1,p)
] ∈ T 1[

a(p) : G2(v2,p) ? (v2
p)

′ := A2(v2,p)
] ∈ T 2[

a(p) : G1(v1,p) ∧G2(v2,p) ? (v1
p)′ := A1(v1,p), (v2

p)′ := A2(v2,p)
]

If V 1
o ∩V 2

p �= ∅, G1 and A1 may depend on proper variables of M2 (cf. Figure 3).
Let M1 and M2 be two ioSTS compatible for product, and M = M1×M2.

Then Traces(M) ⊆ Traces(M1) ∩Traces(M2). Let also F i = Xi ×DV i
o
, where

i = 1, 2 and Xi ⊆ DV i
p
, be sets of accepting states of ioSTS Mi. By taking

as set of accepting states F = X1 ×X2 × DVo
for M, we have TracesF (M) ⊆

TracesF 1(M1)∩TracesF 2(M2). It is not hard to see that the two trace inclusions
are obtained from corresponding equalities for runs and accepting runs, which
become inclusions by projection on observable actions.

The testing theory for ioLTS developed in Section 2.1 also applies to ioSTS.
Specifications, test purposes and test cases are assumed to be ioSTS; moreover

– A specification is supposed to be an ioSTS S = (V S , ΘS , Σ, TS) with only
proper variables and no observed variable (V S = V S

p );
– A test purpose for S is an ioSTS TP = (V TP , ΘTP , Σ, TTP ) such that

V TP
o = V S

p (symbolic test purposes are allowed to observe the internal state
of S). The set of accepting states is defined by the truth value of a Boolean
variable Accept ∈ V TP

p . TP should be complete except when Accept = true,
which means that for any action a,

⋃
(a,p,G,A)∈TTP G ⇔ ¬Accept. This con-

dition can be enforced syntactically by completion of TP . It ensures that
TP does not restrict the runs of S before they are accepted (if ever).

– A test case is an ioSTS TC = (V TC , ΘTC , Σ, TTC ) with a variable Verdict ∈
V TC of the enumerated type {none, fail, pass, inconc}.

The set of accepted traces is defined as ATraces(S,TP) = TracesAccept(S ×TP)
(as in Definition 4, except that the product is now the ioSTS product).

4 Off-line Test Selection for ioSTS

The aim of this section is to extend the test generation principles of ioLTS to
symbolic test generation, taking into account the following difficulties:

1. Ensuring semantic transformations through operations on ioSTS;
2. Relying on approximate coreachability analysis instead of exact analysis, due

to undecidability issues in the (infinite-state) symbolic case.
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Table 3. Off-line symbolic test selection algorithm

{ 1. Product and Pass verdict }
P := S × TP
P ′ = (V P ∪ {Verdict}, ΘP ∧ Verdict = none, Σ, T P ′

) is defined by

[ a(p) : G(v, p) ? v′ = A(v, p) ] ∈ T P[
a(p) : G(v, p) ∧ Verdict = none ?

v′ := A(v, p), Verdict′ := if AAccept then pass else Verdict

]
∈ T P ′ (3)

{ 2. Selection and Inconc verdict }
P ′′ = (V P ′

, ΘP ′
, Σ, →P ′′

) is defined by

[ a(p) : G(v, p) ? v′ = A(v, p) ] ∈ T P ′

[ a(p) : G(v, p) ∧ preα(A)(coreachα) ? v′ = A(v, p) ] ∈ T P ′′ (KeepI)

[ a(p) : G(v, p) ? v′ = A(v, p); Verdict′ := AVerdict ] ∈ T P ′
a ∈ Σ!

[ a(p) : G(v, p) ∧ ¬preα(A)(coreachα) ? v′ = A(v, p); Verdict′ := inconc ] ∈ T P ′′

(Inconc)

{ 3. Input-completion and Fail verdict }

TC = (V P ′
, ΘP ′

, Σ, TTC ) is defined by

t ∈ T P ′′

t ∈ TTC (KeepF)
a ∈ Σ! Ga =

∧{¬G(v, p) | (a, p, G, A) ∈ T P ′′}
[ a(p) : Ga(v, p) ? Verdict′ := fail ] ∈ TTC (Fail)

We consider again the simple case where the specification S and the test
purpose TP do not contain internal actions or non-determinism. Our running
example is depicted on Figure 1–6. The selection algorithm is given in Table 3.
The first step is the symbolic version of Step 1 for ioLTS (cf. Table 2). The same
invariants hold. The transformation from P to P ′ specifies the behavior of the
Verdict variable and makes states with Verdict �= none sink.

Step 2 is the main step of the selection. As the coreachability problem is now
undecidable, coreachability analysis should be approximated. Fixpoint compu-
tations on ioSTS or similar models can indeed be overapproximated by classical
Abstract Interpretation techniques [4, 7, 10]. We consider here an overapprox-
imation coreachα ⊇ coreach(Pass) of the exact set of coreachable states (see
Figure 7(b)). It can be represented by a logical formula to be used in syntacti-
cal operations on ioSTS. Moreover, preα(A)(X) denotes a formula representing
an overapproximation of the precondition pre(A)(X) = A−1(X) of states in X
by the assignement A. In this context, preα(A)(coreachα) is an overapproxi-
mation of the set of values for variables and parameters which allow to stay in
coreach(Pass) when taking the transition, or in other words it is a necessary con-
dition. Its negation is thus a sufficient condition to leave coreach(Pass), and to
lose the game for the test case. Hence, rule (KeepI) discards all (semantic) tran-
sitions labeled by a (controllable) input that certainly exit coreach(Pass), and
rule (KeepI) “redirects” to Inconc all transitions labelled by an (uncontrollable)
output that certainly exit coreach(Pass).
Finally, Step 3 is the symbolic version of the corresponding step in Table 2.

.
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Fig. 1. Specification
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Fig. 2. Test Purpose
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Fig. 3. Product ioSTS (after Step 1)

Idle,Wait End,Wait

RecX,Wait

RecY,Wait

Cmp,Wait

WaitX,Accept

?Start

?a(p)
p≥6 ?
x := p

?a(p)
p=x+2 ?
y := p

!End :
Verdict := inconc

!OK(p) :
p=y-x=2 ?

Verdict := pass

Fig. 4. Product ioSTS modified
using coreachability analysis and
Inconc verdict (Step 2), and sim-
plified with reachability analysis

Example: The specification describes a program which is waiting for two successive
inputs ?a(p1) and ?a(p2), and emits !OK(p2 −p1) when their difference is less than 2 in
absolute value, and !NOK otherwise. If the value held by the channel ?a is negative, the
message !Error is emitted. The program may also emit !End and ends its execution.
The test purpose specifies that a test of interest is one that terminates with the first
emission of !OK(p), and with p = 2, from a state of the specification where x ≥ 6. A
!NOK(p) message is forbidden. This implies that we should have p≥6 (resp. p = x+2)
in ?a(p) from location RecX (resp. RecY), facts which are discovered by a coreachability
analysis using convex polyhedra [7] and taken into account in Figure 4. The resulting
test case is depicted in Figure 5.

In contrast, if the analysis performed on the product of Figure 3 is a more simple
interval analysis, it would only detects that we should have p ≥ 6 in ?a(p) from location
RecY, and we would obtain the test case depicted in Figure 6. Here, we avoid to lose
the game by receiving a conformant ?Error(p) messages (because we emit !a(p) with
p ≥ 0) but we can lose the game with conformant ?OK(p) or ?NOK(p) messages.
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Fig. 6. Less accurate Test Case

Intuitively, the main effect of approximations for the generated test case will
be either to miss the Inconc verdict, when receiving IUT outputs, or to lose
the game, when sending inadequate inputs to the IUT , as illustrated by the
comparison of Figure 5 and 6. In the worst case, when the approximation does
not deliver any information, the Inconc verdict will never be emitted and the test
case will not guide at all the parallel execution towards accepting states. This
will be formalized in Section 6.

5 On-line Test Selection and Test Case Execution

The off-line test selection phase produces an ioSTS equipped with verdicts, in
which (some) losing strategies has been removed, but it does not implement a
single strategy, in terms of its game against the IUT . Indeed, it may contain
choices between several outputs that may be sent to the IUT . For instance, in
Figure 5, from the location RecY,Wait, the action a(p) may be emitted for any
p ≥ 6. This illustrates the fact that the test case has to assign values to the
formal communication parameters carried by the actions.

As a consequence, test case execution implies on-line constraint solving. A
test case is then executed as follows. At any point of the parallel execution of
TC with IUT , TC is in a known state ν ∈ DV . It may then have the choice
between observing an output of the IUT , or controling an input of the IUT :

– TC observes an output a of the IUT with actual values of parameters π ∈
Dsig(a). As TC is input-complete and deterministic, exactly one transition
(a,p, G,A) ∈ TTC satisfies 〈ν,π〉 ∈ G. It then performs the assignments
ν′ = A(ν,π), and checks the value of Verdict.

– TC controls an input a in a transition (a,p, G,A). By constraint solving, it
chooses π such that 〈ν,π〉 ∈ G, sends a(π) to IUT , performs ν′ = A(ν,π),
and finally checks the verdict.

.
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A test execution driver thus needs to implement the choice between observing or
controlling, the evaluation of guards on outputs of the IUT , constraint solving
for the choice of values of parameters on inputs of the IUT , and evaluation
of assignments. Evaluation of a formula is never a problem, however the use of
constraint solving techniques to instantiate input parameters imposes restrictions
into a decidable theory, such as Presburger arithmetic.

6 Quality of Generated Test Cases

As sketched during the off-line test selection algorithm of Section 4, test case
verdicts are sound, which implies the usual soundness property of test cases —
only non-conformant IUT can be rejected, like for ioLTS. Exhaustiveness —
every non conformant IUT may be rejected [16], can also be proved, but this is
out of the scope of the present paper.

These properties are related to conformance or to soundness of verdicts. They
do not say whether test cases are good players in the game against the IUT .
In this section we formalize qualitative properties of test cases relative to their
ability to satisfy the test purpose during test execution, and show how the preci-
sion of the approximate analysis during the off-line selection algorithm influences
them. We consider a fixed specification S and test purpose TP .

We can first compare two test cases in terms of their sets of traces lead-
ing to Pass. The requirement (4) of Table 1 only relates TracesPass(TC ) and
Traces(TC ). However, a test case can be pruned in any state where there exists
a choice between several outputs (inputs of IUT ). Such an operation may reduce
the sets Traces(TC ) and TracesPass(TC ).

Definition 8 (Completeness ordering; completeness of a test case).
Let TC and TC ′ be two test cases with sound verdicts (Definition 5), both
generated from same S and TP. TC ′ is less complete than TC, denoted by
TC ′ �comp TC, if TracesPass(TC ′) ⊆ TracesPass(TC ). TC is a complete test
case if TracesPass(TC ) = ATraces(S,TP).

The test cases produced by the off-line test selection algorithms of Sections 2.3
and 4 are complete. In the TGV tool however [9], they are pruned to remove the
choices between inputs to be sent to the IUT . Thus, in this case the on-line test
selection (described in section 5 for ioSTS) is partly performed off-line.

The (partial) completeness of a test case is not directly related to its quality
as a player in the game for satisfying the test purpose. However, we are only able
to compare the quality of test cases when they are equivalent with respect to the
completeness ordering. Otherwise, two test cases may have disjoint sets of traces,
which makes their comparison as players difficult. We now define an accuracy
ordering between test cases that are equivalent with respect to the completeness
ordering. The definition seems simplistic, however it makes sense when examining
its consequences, by taking the properties of Table 1 into account.
Definition 9 (Accuracy ordering). Let TC and TC ′ be two test cases with
sound verdicts that are equivalent for the completeness ordering. TC is more
accurate than TC ′, denoted by TC �acc TC ′, if Traces(TC ) ⊆ Traces(TC ′).
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Fig. 7. Control and inconclusiveness: Step 2 of off-line selection algorithms

In particular, using properties of Table 1, TC �acc TC ′ implies
1. Traces Inconc(TC ) ⊆ Traces(TC ′): TC ′ detects inconclusives later than TC ,

if ever;
2. TracesFail(TC ) ⊆ TracesFail(TC ′): TC ′ emits more Fail verdicts than TC ,

The second consequence may seem paradoxical: an accurate test case detects
less conformance errors than a less accurate one! In fact, two test cases that are
equivalent for the completeness ordering have same accepted traces and detect
exactly the same errors along prefixes of those accepted traces. But a less ac-
curate test case (i) exercices weaker control on the inputs of the IUT and (ii)
emits Inconc verdicts later, which gives more opportunity to the IUT to exhibit
non-conformance. Figure 5 and 6 illustrates point (i).

Now, among sound and completeness-equivalent test cases, the optimal test
case can be defined as the test case where refused traces of S w.r.t. TP are never
entered by a controllable input of the IUT and where Inconc verdict is emitted
as soon as an output of IUT enters these refused traces.

Definition 10 (Optimal test case). TC is optimal w.r.t. S and TP if:
1. Traces(TC ) ∩ Λ∗ ·Λ? ⊆ pref ≤(ATraces(S,TP)): TC does not lose the game

on a controllable action;
2. Traces Inconc(TC )=Traces(TC ) ∩ RTraces(S,TP) ∩ pref <(ATraces(S,TP))·

Λ!: TC immediately detects refused traces.

These conditions correspond to properties (7) and (6) of Table 1, respectively.

In the case of finite ioLTS it is not hard to see that the algorithm in Sec-
tion 2.3 builds sound, complete and optimal test cases. Completeness is obtained
at Step 1 of the algorithm. Optimality is obtained at Step 2, as Inconc is reached
exactly when leaving coreach(Pass). Both properties are preserved by Step 3.
In the case of ioSTS, we also build sound and complete test cases. However,
the effect of the approximate coreachability analysis is to relax the optimality
(see also Figure 6). The following theorem confirms the relevance of the accu-
racy ordering of test cases (Definition 9) and identifies the consequences of an
approximate analysis in the off-line test selection algorithm.

.
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Theorem 1 (Relating accuracy to precision). Let TC and TC ′ be two test
cases generated by the algorithm described in Table 3, where TC was generated
using a more precise approximation α than the approximation α′ used for gener-
ating TC ′, i.e., preα(A)(coreachα) ⊆ preα′

(A)(coreachα′
). Then TC �acc TC ′.

Proof. We need only to consider Step 2. For inputs, only the rule (KeepI) of Step
2 of the algorithm applies. In this case, a better precision for preα(A)(coreachα)
strengthens the guards of the symbolic transitions, implying that fewer semantic
transitions will be inferred in the underlying ioLTS. For outputs, both infer-
ence rules apply. For any state q of the underlying ioLTS, a better precision
for preα(A)(coreachα) means that more semantic transitions from q leading to
Inconc (which is sink) will be inferred by the rule (Inconc) while less transitions
from q to its “normal” successors (which are generally not sink) will be inferred
by the rule (KeepI). This implies that Traces(TC 1) ⊆ Traces(TC 2). Moreover,
TracesPass(TC 1) = TracesPass(TC 2), hence the conclusion of the theorem.

The two extreme cases are actually the following:

– The computation is exact; an optimal test case is obtained, as in Section 2.3;
– The approximation is maximal (preα(A)(coreachα) = true), thus delivers no

information: Step 2 of the algorithm has no effect and the test case is unable
to control the implementation to satisfy the test purpose, nor to detect when
Inconc should be emitted.

7 Conclusion

In this paper, we have presented a symbolic test generation algorithm for
specifications and test purposes given as symbolic automata. Test generation
has been decomposed into an off-line selection of test cases and an on-line
execution on the IUT . The off-line selection is based on syntactical trans-
formations and is parameterized by an approximate fixpoint analysis. We
have showed how the precision of the analysis influences the accuracy of se-
lected test cases. The on-line execution is based on constraint solving. These
algorithms have been implemented in our tool STG, STG relies on NBac
(http://www.irisa.fr/prive/bjeannet/nbac/nbac.html)fortheapproximate
fixpoint analysis and Omega (http://www.cs.umd.edu/projects/omega/) for
constraint resolution inPresburgerarithmetic.STGusesamoregeneralmodel than
the one presented here, in particular admitting non-deterministic specifications
under some restrictions. While most other works are limited to controlable (and
deterministic) systems, we are able to generate test cases for non-controllable (and
non-deterministic) specifications. Moreover, we believe that our framework can
be generalized to other models that cannot be analyzed in an exact way.

In a sense, our approach is an improvement of strictly on-line approaches (as
e.g. TorX [2, 5]), which lack control of the test cases on the IUT . Off-line symbolic
selection seriously improves this feature. In fact, off-line selection based on test
purposes can be seen as a syntactic slicing of the specification w.r.t. particular
scenarios, preserving the capability to generate sound test cases on line.
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Several extensions of our work can be investigated. We have presented this
work in the context of conformance testing, but similar techniques could be used
in structural testing for the selection of test cases based on the source code. Also,
other models can be considered, such as programs with recursive calls modelled
as pushdown automata. One problem is then to decide what is observable and
controlable by a tester. Finally, other selection criteria can benefit from our
techniques, like safety properties [15] or standard structural coverage criteria.
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Abstract. Object-oriented unit tests consist of sequences of method invocations.
Behavior of an invocation depends on the method’s arguments and the state of
the receiver at the beginning of the invocation. Correspondingly, generating unit
tests involves two tasks: generating method sequences that build relevant receiver-
object states and generating relevant method arguments. This paper proposes Sym-
stra, a framework that achieves both test generation tasks using symbolic execution
of method sequences with symbolic arguments. The paper defines symbolic states
of object-oriented programs and novel comparisons of states. Given a set of meth-
ods from the class under test and a bound on the length of sequences, Symstra
systematically explores the object-state space of the class and prunes this explo-
ration based on the state comparisons. Experimental results show that Symstra
generates unit tests that achieve higher branch coverage faster than the existing
test-generation techniques based on concrete method arguments.

1 Introduction

Object-oriented unit tests are programs that test classes. Each test case consists of a fixed
sequence of method invocations with fixed arguments that explores a particular aspect of
the behavior of the class under test. Unit tests are becoming an important component of
software development. The Extreme Programming discipline [5], for instance, leverages
unit tests to permit continuous and controlled code changes. Unlike in traditional testing,
it is developers (not testers) who write tests for every aspect of the classes they develop.
However, manual test generation is time consuming, and so typical unit test suites cover
only some aspects of the class.

Since unit tests are gaining importance, many companies now provide tools, frame-
works, and services around unit tests. Tools range from specialized test frameworks, such
as JUnit [18] or Visual Studio’s new team server [25], to automatic unit-test generation,
such as Parasoft’s Jtest [27]. However, existing test-generation tools typically do not
provide guarantees about the generated unit-test suites. In particular, the suites rarely
satisfy the branch-coverage test criterion [6], let alone a stronger criterion, such as the
bounded intra-method path coverage [3] of the class under test. We present an approach
that uses symbolic execution to exhaustively explore bounded method sequences of the
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class under test and to generate tests that achieve high branch and intra-method path
coverage for complex data structures such as container implementations.

1.1 Background

Generating test sequences involves two tasks: generating method sequences that build rel-
evant receiver-object state and generating relevant method arguments. Researchers have
addressed this problem several times. Most tools generate test sequences using concrete
representations. A popular approach is to use (smart) random generation; this approach
is embodied in tools such as Jtest [27] (a commercial tool for Java) or JCrasher [13] and
Eclat [26] (two research prototypes for Java). Random tests generated by these tools often
execute the same sequences [34] and are not covering (do not cover all sequences). The
AsmLT model-based testing tool [16, 15] uses concrete-state space-exploration tech-
niques [12] to generate covering method sequences. But AsmLT requires the user to
carefully choose sufficiently large concrete domains for method arguments and the right
abstraction functions to guarantee the covering. Tools such as Korat [8] are able to gen-
erate non-isomorphic object graphs that can be used for testing, but they do not generate
covering test sequences.

King proposed in the 70’s to use symbolic execution for testing and verification [20].
Because of the advances in constraint solvers, this technique recently regained the atten-
tion for test generation. For example, the BZ-TT tool uses constraint solving to derive
method sequences from B specifications [22]. However, the B specifications are not
object-oriented. Khurshid et al. [19, 33] proposed an approach for generating tests for
Java classes based on symbolic execution. They show that their generation based on sym-
bolic execution generates tests faster than their model checking of method sequences
with concrete arguments. This is expected: symbolic representations describe not only
single states, but sets of states, and when applicable, symbolic representations can yield
large improvements, witnessed for example by symbolic model checking [24]. The ap-
proach of Khurshid et al. [19,33], however, generates the receiver-object states, similar
to Korat [8], only as object graphs, not through method sequences. Moreover, it requires
the user to provide specially constructed class invariants [23], which effectively describe
an over-approximation of the set of reachable object graphs.

Symbolic execution is the foundation of static code analysis tools. These tools typi-
cally do not generate test data, but automatically verify simple properties of programs.
These properties often allow merging symbolic states that stem from different execution
paths. However, for test generation, states have to be kept separate, since different tests
should be used for different paths. Recently, tools such as SLAM [4,2] and Blast [17,7]
were adapted for test generation. However, neither of them can deal with complex data
structures, which are the focus of this paper.

1.2 Contributions

This paper makes the following contributions.

Symbolic Sequence Exploration: We propose Symstra, a framework that uses symbolic
execution to generate method sequences. When applicable, Symstra uses an exhaustive
exploration of method sequences with symbolic variables for primitive-type arguments.
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(We also discuss how Symstra can handle reference-type arguments.) Each symbolic
argument represents a set of all possible concrete values for the argument. Symstra uses
symbolic execution to operate on symbolic states that include symbolic variables.

Symbolic State Comparison: We present novel techniques for comparison of sym-
bolic states of object-oriented programs. Our techniques allow Symstra to prune the
exploration of the object state and thus generate tests faster, without compromising the
exhaustiveness of the exploration. In particular, the pruning preserves the intra-method
path coverage of the generated test suites.

Implementation: We describe an implementation of a test-generation tool for Sym-
stra. Our implementation handles dynamically allocated structures, method pre- and
post-conditions, and symbolic data. Our current implementation does not support con-
currency, but such support can be added by reimplementing Symstra in a Java model
checker, such as Java Pathfinder [32] or Bogor [29].

Evaluation: We evaluate Symstra on seven subjects, most of which are complex data
structures. The experimental results show that Symstra generates tests faster than the
existing test-generation techniques based on exhaustive exploration of sequences with
concrete method arguments [33,16,15,34]. Further, given the same time for generation,
Symstra can generate tests that achieve better branch coverage than the existing tech-
niques. Finally, Symstra works on ordinary Java implementations and does not require
the user to provide the additional methods required by some other approaches [33, 8].

2 Example

This section illustrates how Symstra explores method sequences and generates tests.
Figure 1 shows a binary search tree class BST that implements a set of integers. Each
tree has a pointer to the root node. Each node has an element and pointers to the left
and right children. The class also implements the standard set operations: insert adds
an element, if not already in the tree, to a leaf; remove deletes an element, if in the
tree, replacing it with the smallest larger child if necessary; and contains checks if an
element is in the tree. The class also has a default constructor that creates an empty tree.

Some tools such as Jtest [27] or JCrasher [13] test a class by generating random
sequences of methods; for BST, they could for example generate the following tests:

Test 1: Test 2:
BST t1 = new BST(); BST t2 = new BST();
t1.insert(0); t2.insert(2147483647);
t1.insert(-1); t2.remove(2147483647);
t1.remove(0); t2.insert(-2147483648);

Each test has a method sequence on the objects of the class, e.g., Test 1 creates a tree
t1, invokes two insert methods on it, and then one remove. Typically, checking the
correctness (of outputs) for such tests relies on design-by-contract annotations translated
into run-time assertions [27, 10] or on model-based testing [16]. If there are no annota-
tions or models, the tools check only the code robustness: execute the tests and check
for uncaught exceptions [13].
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class BST implements Set {
Node root;
static class Node {

int value;
Node left;
Node right;

}
void insert(int value) { ... }
void remove(int value) { ... }
bool contains(int value) { ... }

}
Fig. 1. A set implemented as a binary search tree

Some other tools [33, 16, 15, 34] can exhaustively explore all method sequences up
to a given length. Such exploration raises two questions: (1) what arguments to use for
method calls, and (2) how to determine equivalent tests? These tools typically require
the user to provide a sufficiently good set of concrete values for each argument, or based
on the argument type, use a set of default values that may miss relevant behaviors. These
tools check equivalence of test sequences by comparing the states that the sequences
build; the comparison uses either user-provided functions or defaults, such as identity
or isomorphism. This generation is similar to explicit-state model checking [12].

Symstra also explores all sequences, but using symbolic values for primitive-type
arguments in method calls. Such exploration relieves Symstra users from the burden of
providing concrete values: Symstra determines the relevant values during the execution.
Having symbolic arguments necessitates symbolic execution [20]. It operates on a sym-
bolic state that consists of two parts: (1) a constraint, known as the path condition, that
must hold for the execution to reach a certain point and (2) a heap that contains symbolic
variables. When the symbolic execution encounters a branch, it explores both outcomes,
appropriately adding the branch condition or its negation to the constraint. Symbolic
state exploration in Symstra is conceptually similar to symbolic model checking [24].

Let us consider the symbolic execution of the following sequence:

BST t = new BST();
t.insert(x1);
t.insert(x2);
t.insert(x3);
t.remove(x4);

This sequence has four method calls whose arguments are symbolic variables x1, x2,
x3, and x4. While an execution of a sequence with concrete arguments produces one
state, symbolic execution of a sequence with symbolic arguments can produce several
states, thus resulting in an execution tree. Figure 2 shows a part of the execution tree
for this example. Each state has a heap and a constraint that must hold for that heap to
be created. The constructor first creates an empty tree. The first insert then adds the
element x1 to the tree.

The second insert produces states s3, s4, and s5: if x1 = x2, the tree does not
change, and if x2 > x1 (or x2 < x1), x2 is added in the right (or left) subtree. Note
that the symbolic states s2 and s4 are syntactically different: s2 has the constraint true,
while s4 has x1 = x2. However, these two symbolic states are semantically equivalent:
they can be instantiated into the same set of concrete heaps by giving to x1 and x2
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Fig. 2. A part of the symbolic execution tree

concrete values that satisfy the constraints; since x2 does not appear in the heap in s4,
the constraint in s4 is “irrelevant”. Instead of state equivalence, it suffices to check state
subsumption: we say that s2 subsumes s4 because the set of concrete heaps of s4 is a
subset of the set of concrete heaps of s2. Hence, Symstra does not need to explore s4
after it has already explored s2. Symstra detects this by checking that the implication
of constraints x1 = x2 ⇒ true holds. Our current Symstra implementation uses the
Omega library [28] and CVC Lite [11] to check the validity of the implication.

The third insert again produces several symbolic states. Symstra applies insert
only on s3 and s5 (and not on s4). In particular, we focus on s6 and s7, two of the
symbolic states that these executions produce. These two states are syntactically dif-
ferent, but semantically equivalent: we can exchange the variables x2 and x3 to obtain
the same symbolic state. Symstra detects this by checking that s6 and s7 are isomorphic
(Section 3.2). Symstra finally applies remove. Note again that one of the symbolic states
produced, s8, is subsumed by a previously explored state, s3.

This example has illustrated how Symstra would explore symbolic execution for one
particular sequence. Symstra actually exhaustively explores the symbolic execution tree
for all sequences up to a given length, pruning the exploration based on subsumption.
These sequences consists of all specified methods of the class under test, i.e., insert,
remove, and contains for BST.

After producing a symbolic state s, Symstra can generate a specific test with concrete
arguments to produce a concrete heap of s. Symstra generates the test by traversing the
shortest path from the root of the symbolic execution tree to s and outputting the method
calls that it encounters. To generate concrete arguments for these calls, Symstra uses a
constraint solver. Our current implementation uses the POOC solver [31]. For example,
the tests that it generates for s3 and s5 are:
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Test for s3: Test for s5:
BST t3 = new BST(); BST t5 = new BST();
t3.insert(-999999); t5.insert(-1000000);
t3.insert(-1000000); t5.insert(-999999);

A realistic suite of unit tests contains more sequences that test the interplay between
insert, remove, and contains methods. Section 4 summarizes such suites.

3 Framework and Implementation

We next formalize the notions introduced informally in the previous section. We first de-
scribe how Symstra represents symbolic states. Symstra uses them for two purposes: (1)
during the symbolic execution of method invocations and (2) for representing the states
between method invocations in method sequences. We then present how Symstra com-
pares states based on the isomorphism of heaps and implication of constraints. We next
present the symbolic execution of method invocations. We finally present the systematic
exploration of method sequences and how Symstra uses symbolic state comparison to
prune this exploration. We present the Symstra technique itself as well as our current
implementation.

3.1 Symbolic State

Symbolic states differ from concrete states, on which the usual program executions
operate, in that symbolic states contain symbolic expressions with symbolic variables and
also constraints on these variables [20]. Symstra uses the following symbolic expressions
and constraints:

• A symbolic variable is a symbolic expression. Each symbolic variable has a type,
which is one of the Java types. For example, x1 and x2 may be each a symbolic
variable (and thus also a symbolic expression) of type int.

• A Java constant of some type is a symbolic expression of that type.
• For each Java operator . with n operands, n symbolic expressions of the appropri-

ate operand types connected with . are a symbolic expression of the result type.
For example, x1 + x2 and x1 > x2 are expressions of type int and boolean,
respectively.

• Symbolic expressions of type boolean are constraints.

Let P be the set of all primitive values, including integers, true, false, etc. Let V
be a set of infinite number of symbolic variables of each type and U a set of all possible
expressions formed from V and P . Given a valuation for the variables, η : V → P , we
extend it to evaluate all expressions η : U → P as follows: η(p) = p for all p ∈ P , and
η(.u1, . . . ,un) = eval(., η(u1), . . . , η(un)) for all u1, . . . ,un ∈ U and operations
., where eval evaluates operations on primitive values according to the Java semantics.

In object-oriented programs, a concrete state consists of a global heap and a stack (in
general one stack for each thread, but we consider here only single-threaded programs), as
well as several other parts, such as metadata for classes and program counters. Symbolic
states in Symstra have the same parts as concrete states, but the heaps and stacks in
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symbolic states can contain symbolic expressions; additionally, each symbolic state has
a constraint. We focus on the symbolic state between method sequences.

Definition 1. A symbolic state 〈C,H〉 is a pair of a constraint and a symbolic heap.

We view each heap as a graph: nodes represent objects (as well as primitive values
and symbolic expressions) and edges represent object fields. LetO be some set of objects
whose fields form a set F . Each object has a field that represents its class. We consider
arrays as objects whose fields are labelled with (integer) array indexes and point to the
array elements.

Definition 2. A symbolic heap is an edge-labelled graph 〈O,E〉, where E ⊆ O× F ×
(O ∪ {null} ∪ U) such that for each field f of each o ∈ O exactly one 〈o, f, o′〉 ∈ E.
A concrete heap has only concrete values: o′ ∈ O ∪ {null} ∪ P .

3.2 Heap Isomorphism

We define heap isomorphism as graph isomorphism based on node bijection [8]. We
are interested in detecting isomorphic heaps because they lead to equivalent method
behaviors; hence, it suffices to explore only one representative from each isomorphism
partition. Nodes in symbolic heaps contain symbolic variables, so we first define a
renaming of symbolic variables. Given a bijection τ : V → V , we extend it to the
whole τ : U → U as follows: τ(p) = p for all p ∈ P , and τ(.u1, . . . ,un) =
.τ(u1), . . . , τ(un) for all u1, . . . ,un ∈ U and operations .. We further extend τ to
substitute free variables in formulas with bound variables, avoiding capture as usual.

Definition 3. Two heaps 〈O1, E1〉 and 〈O2, E2〉 are isomorphic iff there are bijections
ρ : O1 → O2 and τ : V → V such that:

E2 = {〈ρ(o), f, ρ(o′)〉|〈o, f, o′〉 ∈E1, o
′ ∈O1}∪{〈ρ(o), f, null〉|〈o, f, null〉 ∈E1}∪

{〈ρ(o), f, τ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ U}.

Note that the definition allows only object identities and symbolic variables to vary:
two isomorphic heaps have the same fields for all objects and equal (up to renaming)
symbolic expressions for all primitive fields.

The state exploration in Symstra focuses on the state of several objects and does
not consider the entire heap; in this context, the state of an object o consists of the
values of the fields of o and fields of all objects reachable from o. From a program
heap 〈O,E〉 and a tuple 〈v0, . . . , vn〉 of pointers and symbolic expressions vi ∈ O∪U ,
where 0 ≤ i ≤ n, Symstra constructs a rooted heap [34] 〈Oh, Eh〉 that has a unique root
object r ∈ Oh: Symstra first creates the heap 〈O′, E′〉, where O′ = O ∪ {r}, r �∈ O,
and E′ = E ∪ {〈r, i, vi〉|0 ≤ i ≤ n}, and then creates 〈Oh, Eh〉 as the subgraph of
〈O′, E′〉 such that Oh ⊆ O′ is the set of all objects reachable from r within E′ and
Eh = {〈o, f, o′〉 ∈ E′|o ∈ Oh}.

We can efficiently check isomorphism of rooted heaps, even though for general
graphs it is unknown whether checking isomorphism can be done in polynomial time.
Symstra linearizes heaps into integer sequences such that checking heap isomorphism
corresponds to checking sequence equality. Figure 3 shows the linearization algorithm.
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Map<Object,int> objs; // maps objects to unique ids
Map<SymVar,int> vars; // maps symbolic variables to unique ids

int[] linearize(Object root, Heap <O,E>) {
objs = new Map(); vars = new Map();
return lin(root, <O,E>>;

}

int[] lin(Object root, Heap <O,E>) {
if (objs.containsKey(root))
return singletonSequence(objs.get(root));

int id = objs.size() + 1; objs.put(root, id);
int[] seq = singletonSequence(id);
Edge[] fields = sortByField({ <root, f, o> in E });
foreach (<root, f, o> in fields) {

if (isSymbolicExpression(o)) seq.append(linSymExp(o));
elseif (o == null) seq.append(0);
else seq.append(lin(o, <O,E>)); // pointer to an object

}
return seq;

}

int[] linSymExp(SymExp e) {
if (isSymVar(e)) {

if (!vars.containsKey(e))
vars.put(e, vars.size() + 1);

return singletonSequence(vars.get(e));
} elseif (isPrimitive(e)) return uniqueRepresentation(e);
else { // operation with operands
int[] seq = singletonSequence(uniqueRepresentation(e.getOperation()));
foreach (SymExp e’ in e.getOperands())

seq.append(linSymExp(e’));
return seq;

}
}

Fig. 3. Pseudo-code of linearization for a symbolic rooted heap

It starts from the root and traverses the heap depth first. It assigns a unique identifier to
each object, keeps this mapping in objs and reuses it for objects that appear in cycles.
It also assigns a unique identifier to each symbolic variable, keeps this mapping in vars
and reuses it for variables that appear several times in the heap.

A similar linearization is used to represent concrete heaps in model checking [1,30,
32]. This paper extends the linearization from our previous work [34] with linSymExp

that handles symbolic expressions; this improves on the approach of Khurshid et al. [19,
33] that does not use any comparison for symbolic expressions. It is easy to show that
our linearization normalizes rooted heaps.

Theorem 1. Two rooted heaps 〈O1, E1〉 (with root r1) and 〈O2, E2〉 (with root r2) are
isomorphic iff linearize(r1, 〈O1, E1〉)=linearize(r2, 〈O2, E2〉).

3.3 State Subsumption

We define symbolic state subsumption based on the concrete heaps that each symbolic
state represents. Symstra uses state subsumption to prune the exploration. To instantiate
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boolean checkSubsumes(Constraint C1, Heap H1,
Constraint C2, Heap H2) {

int[] i1 = linearize(root(H1), H1);
Map<SymVar,int> v1 = vars; // at the end of previous linearization
Set<SymVar> n1 = variables(C1) - v1.keys(); // variables not in the heap
int[] i2 = linearize(root(H2), H2);
Map<SymVar,int> v2 = vars; // at the end of previous linearization
Set<SymVar> n2 = variables(C2) - v2.keys(); // variables not in the heap
if (i1 <> i2) return false;
Renaming τ = v2 ◦ v1−1 // compose v2 and the inverse of v1
return checkValidity(τ(∃n2. C2) ⇒ ∃n1. C1);

}

Fig. 4. Pseudo-code of subsumption checking for symbolic states

a symbolic heap into a concrete heap, we replace the symbolic variables in the heap with
primitive values that satisfy the constraint in the symbolic state.

Definition 4. An instantiation I(〈C,H〉) of a symbolic state 〈C,H〉 is a set of concrete
heaps H ′ such that there exists a valuation η : V → P for which η(C) is true and H ′

is the evaluation η(H) of all expressions in H according to η.

Definition 5. A symbolic state 〈C1, H1〉 subsumes another symbolic state 〈C2, H2〉, in
notation 〈C1, H1〉 ⊇ 〈C2, H2〉, iff for each concrete heap H ′

2 ∈ I(〈C2, H2〉), there
exists a concrete heap H ′

1 ∈ I(〈C1, H1〉) such that H ′
1 and H ′

2 are isomorphic.

Symstra uses the algorithm in Figure 4 to check if the constraint of 〈C1, H1〉, af-
ter suitable renaming, implies the constraint of 〈C2, H2〉. Note that the implication is
universally quantified over the (renamed) symbolic variables that appear in the heaps
and existentially quantified over the symbolic variables that do not appear in the heaps
(more precisely only in H1, because the existential quantifier for n2 in the premise of
the implication becomes a universal quantifier for the whole implication). We can show
that this algorithm is a conservative approximation of subsumption.

Theorem 2. IfcheckSubsumes(〈C1, H1〉, 〈C2, H2〉) then 〈C1, H1〉 subsumes 〈C2, H2〉.
Symstra gains the power and inherits the limitations from the technique used to

check the implication on the (renamed) constraints. The current Symstra prototype uses
the Omega library [28], which provides a complete decision procedure for Presburger
arithmetic, and CVC Lite [11], an automatic theorem prover, which has decision pro-
cedures for several types of constraints, including real linear arithmetic, uninterpreted
functions, arrays, etc. Since these checks can consume a lot of time, Symstra further uses
the following conservative approximation: if free-variables(∃n1. C1) are not a subset of
free-variables(τ(∃n2. C2)), return false without checking the implication.

3.4 Symbolic Execution

We next discuss the symbolic execution of one method in a method sequence. Each
method execution starts with one symbolic state and produces several symbolic states.
We use the notation σm(〈C,H〉) to denote the set {〈C1, H1〉, . . . , 〈Cn, Hn〉} of states
that the symbolic execution, σ, of the method m produces starting from the state 〈C,H〉.
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Following the typical symbolic executions [20, 33], Symstra symbolically explores
both branches of if statements, modifying the constraint with a conjunct that needs
to hold for the execution to take a certain branch. In this context, the constraint is
called path condition, because it is a conjunction of conditions that need to hold for the
execution to take a certain path and reach the current address. This symbolic execution
directly explores every path of the method under consideration. The common issue in the
symbolic execution is that the number of paths may be infinite (or too large as it grows
exponentially with the number of branches) and thus σm(〈C,H〉) may be (practically)
unbounded. In such cases, Symstra can use the standard set of heuristics to explore only
some of the paths [33, 9].

The current Symstra prototype implements the execution steps on symbolic state
by rewriting the code to operate on symbolic expressions. Further, Symstra implements
the exploration of different branches by re-executing the method from the beginning
for each path, without storing any intermediate states. Note that Symstra re-executes
only one method (for different paths), not the whole method sequence. (This effectively
produces a depth-first exploration of paths within one method, while the exploration of
states between methods is breadth-first as explained in the next section.)

Our Symstra prototype also implements the standard optimizations for symbolic
execution. First, Symstra simplifies the constraints that it builds at branches; specifically,
before conjoining the path condition so far C and the current branch condition C ′ (where
C ′ is a condition from an if or its negation), Symstra checks if some of the conjuncts
in C implies C ′; if so, Symstra does not conjoin C ′. Second, Symstra checks if the
constraint C&&C ′ is unsatisfiable; if so, Symstra stops the current path of symbolic
execution, because it is an infeasible path. The current Symstra prototype can use the
Simplify [14] theorem prover or the Omega library [28] to check unsatisfiability. We
have found that Omega is faster, but it handles only linear arithmetic constraints.

Given a symbolic state at the entry of a method execution, Symstra uses symbolic
execution to achieve structural coverage within the method, because symbolic execution
systematically explores all feasible paths within the method. If the user of Symstra is
interested in only the tests that achieve new branch coverage, our Symstra prototype
monitors the branch coverage during symbolic execution and selects a symbolic execu-
tion for concrete test generation (Section 3.6) when the symbolic execution covers a new
branch. The Symstra prototype can also be extended for selecting symbolic executions
that achieve new bounded intra-method path coverage [3].

3.5 Symbolic State Exploration

We next present the symbolic state space for method sequences and how Symstra sys-
tematically explores this state space. The state space consists of all states that are reach-
able with the symbolic execution of all possible method sequences for the class under
test. Let C and M be a set of the constructor and non-constructor methods of this class.
Each method sequence starts with a constructor from C followed by several methods
from M. We denote with ΣC,M the state space for these sequences. The initial sym-
bolic state is s0 = 〈true, {}〉: the constraint is true, and the heap is empty. The state
space includes the states that the symbolic execution produces for the constructors and



Symstra: A Framework for Generating Object-Oriented Unit Tests 375

methods:
⋃

c∈C σc(s0)⊂ΣC,M and ∀s∈ΣC,M.
⋃

m∈M σm(s)⊂ΣC,M. As usual [12],
ΣC,M is the least fixed point of these equations. The state space is typically infinite.

The current Symstra prototype exhaustively explores a bounded part of the symbolic
state space using a breadth-first search. The inputs to Symstra are a set of constructor
C and non-constructor methods M of the class under test and a bound on the length of
sequences. Symstra maintains a set of explored states and a processing queue of states.
Symstra processes the queue in a breadth-first manner: it takes one state and symbolically
executes each method under test (constructor at the beginning of the sequence and a
non-constructor after that) for each path on this state. Every such execution yields a new
symbolic state. Symstra adds the new state to the queue for further exploration only if it
is not subsumed by an already explored state from the set. Otherwise, Symstra prunes
the exploration: the new symbolic state represents only a subset of the concrete heaps
that some explored symbolic state represents; it is thus unnecessary to explore the new
state further. Pruning based on subsumption plays the key role in enabling Symstra to
explore large state spaces.

3.6 Concrete Test Generation

During the symbolic state exploration, Symstra also builds specific concrete tests that
lead to the explored states. Whenever Symstra finishes a symbolic execution of a method
that generates a new symbolic state 〈C,H〉, it also generates a symbolic test. This test
consists of the constraint C and the shortest method sequence that reaches 〈C,H〉.
(Symstra associates such a method sequence with each symbolic state and dynamically
updates it during execution). Symstra then instantiates a symbolic test using the POOC
constraint solver [31] to solve the constraint C over the symbolic arguments for methods
in the sequence. Based on the produced solution, Symstra obtains concrete arguments
for the sequence leading to 〈C,H〉. Symstra exports such concrete test sequences into a
JUnit test class [18]. It also exports the constraintC associated with the test as a comment
for the test in the JUnit test class.

At the class-loading time, Symstra instruments each branching point of the class
under test for measuring branch coverage at the bytecode level. It also instruments each
method of the class to capture uncaught exceptions at runtime. The user can configure
Symstra to select only those generated tests that increase branch coverage or throw new
uncaught exceptions.

4 Evaluation

This section presents our evaluation of Symstra for exploring method sequences and
generating tests. We compare Symstra with Rostra [34], our previous framework that
generates tests using bounded-exhaustive exploration of sequences with concrete argu-
ments. We have developed Symstra on top of Rostra, so that the comparison does not
give an unfair advantage to Symstra because of unrelated improvements. In these ex-
periments, we have used the Simplify [14] theorem prover to check unsatisfiability of
path conditions, the Omega library [28] to check implications, and the POOC constraint
solver [31] to solve constraints. We have performed the experiments on a Linux machine
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Table 1. Experimental subjects

class methods under test some private methods #ncnb #
lines branches

IntStack push,pop – 30 9
UBStack push,pop – 59 13
BinSearchTree insert,remove removeNode 91 34
BinomialHeap insert,extractMin findMin,merge 309 70

delete unionNodes,decrease
LinkedList add,remove,removeLast addBefore 253 12
TreeMap put,remove fixAfterIns 370 170

fixAfterDel,delEntry
HeapArray insert,extractMax heapifyUp,heapifyDown 71 29

with a Pentium IV 2.8 GHz processor using Sun’s Java 2 SDK 1.4.2 JVM with 512 MB
allocated memory.

Table 1 lists the seven Java classes that we use in the experiments. The first six classes
were previously used in evaluating Rostra [34], and the last five classes were used in
evaluating Korat [8]. The columns of the table show the class name, the public methods
under test (that the generated sequences consist of), some private methods invoked by
the public methods, the number of non-comment, non-blank lines of code in all those
methods, and the number of branches for each subject.

We use Symstra and Rostra to generate test sequences with up to N methods. Rostra
also requires concrete values for arguments, so we set it to use N different arguments
(the integers from 0 to N − 1) for methods under test. Table 2 shows the comparison
between Symstra and Rostra. We range N from five to eight. (For N < 5, both Symstra
and Rostra generate tests really fast, usually within a couple of seconds, but those tests do
not have good quality.) We tabulate the time to generate the tests (measured in seconds,
Columns 3 and 7), the number of explored symbolic and concrete object states (Columns
4 and 8), the number of generated tests (Columns 5 and 9), and the branch coverage1

achieved by the generated tests (Columns 6 and 10). In Columns 5 and 9, we report the
total number of generated tests and, in the parentheses, the cumulative number of tests
that increase the branch coverage.

During test generation, we set a three-minute timeout for each iteration of the breadth-
first exploration: when an iteration exceeds three minutes, the exhaustive exploration of
Symstra or Rostra is stopped and the system proceeds with the next iteration. We use a
“*” mark for each entry where the test-generation process timed out; the state exploration
of these entries is no longer exhaustive. We use a “–” mark for each entry where Symstra
or Rostra exceeded the memory limit.

The results indicate that Symstra generates method sequences of the same length
N often much faster than Rostra, thus enabling Symstra to generate longer method
sequences within a given time limit. Both Symstra and Rostra achieve the same branch

1 We measure the branch coverage at the bytecode level during the state exploration of both
Symstra and Rostra, and calculate the total number of branches also at the bytecode level.
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Table 2. Experimental results of test generation using Symstra and Rostra

Symstra Rostra
class N time states tests %cov time states tests %cov

UBStack 5 0.95 22 43(5) 92.3 4.98 656 1950(6) 92.3
6 4.38 30 67(6) 100.0 31.83 3235 13734(7) 100.0
7 7.20 41 91(6) 100.0 *269.68 *10735 *54176(7) *100.0
8 10.64 55 124(6) 100.0 - - - -

IntStack 5 0.23 12 18(3) 55.6 12.76 4836 5766(4) 55.6
6 0.42 16 24(4) 66.7 - - - -
7 0.50 20 32(5) 88.9 *689.02 *30080 *52480(5) *66.7
8 0.62 24 40(6) 100.0 - - - -

BinSearchTree 5 7.06 65 350(15) 97.1 4.80 188 1460(16) 97.1
6 28.53 197 1274(16) 100.0 23.05 731 7188(17) 100.0
7 136.82 626 4706(16) 100.0 - - - -
8 *317.76 *1458 *8696(16) *100.0 - - - -

BinomialHeap 5 1.39 6 40(13) 84.3 4.97 380 1320(12) 84.3
6 2.55 7 66(13) 84.3 50.92 3036 12168(12) 84.3
7 3.80 8 86(15) 90.0 - - - -
8 8.85 9 157(16) 91.4 - - - -

LinkedList 5 0.56 6 25(5) 100.0 32.61 3906 8591(6) 100.0
6 0.66 7 33(5) 100.0 *412.00 *9331 *20215(6) *100.0
7 0.78 8 42(5) 100.0 - - - -
8 0.95 9 52(5) 100.0 - - - -

TreeMap 5 3.20 16 114(29) 76.5 3.52 72 560(31) 76.5
6 7.78 28 260(35) 82.9 12.42 185 2076(37) 82.9
7 19.45 59 572(37) 84.1 41.89 537 6580(39) 84.1
8 63.21 111 1486(37) 84.1 - - - -

HeapArray 5 1.36 14 36(9) 75.9 3.75 664 1296(10) 75.9
6 2.59 20 65(11) 89.7 - - - -
7 4.78 35 109(13) 100.0 - - - -
8 11.20 54 220(13) 100.0 - - - -

coverage for method sequences of the same lengthN . However, Symstra achieves higher
coverage faster. It also takes less memory and can finish generation in more cases than
Rostra. These results are due to the fact that each symbolic state, which Symstra explores
at once, actually describes a set of concrete states, which Rostra must explore one by
one. Rostra often exceeds the memory limit when N = 7 or N = 8, which is often not
enough to guarantee full branch coverage.

5 Discussion and Future Work

Specifications. Symstra uses specifications, i.e., method pre- and post-conditions and
class invariants, written in the Java Modelling Language (JML) [21]. The JML tool-set
transforms these constructs into run-time assertions that throw JML-specific excep-
tions when violated. Generating method sequences for methods with JML specifications
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amounts to generating legal method sequences that satisfy pre-conditions and class in-
variants, i.e., do not throw exceptions for these constructs. If during the exploration
Symstra finds a method sequence that violates a post-condition or invariant, Symstra
has discovered a bug; Symstra can be configured to generate such tests and continue or
stop test generation. If a class implementation is correct with respect to its specification,
paths that throw post-condition or invariant exceptions should be infeasible.

Symstra operates on the bytecode level. It can perform testing of the specifications
woven into method bytecode by the JML tool-set or by similar tools. Note that in this set-
ting Symstra essentially uses black-box testing [33] to explore only those symbolic states
that are produced by method executions that satisfy pre-conditions and class invariants;
conditions that appear in specifications simply propagate into the constraints associated
with a symbolic state explored by Symstra. Using symbolic execution, Symstra thus
obtains the generation of legal test sequences “for free”.

Performance. Based on state subsumption, our current Symstra prototype explores one
or more symbolic states that have the isomorphic heap. We plan to evaluate an approach
that explores exactly one union symbolic state for each isomorphic heap. We can create
a union state using a disjunction of the constraints for all symbolic states with the
isomorphic heap. Each union state subsumes all the symbolic states with the isomorphic
heap, and thus exploring only union states can further reduce the number of explored
states without compromising the exhaustiveness of the exploration. (Subsumption is a
special case of union; if C2 ⇒ C1, then C1 ∨ C2 simplifies to C1.)

Symstra enables exploring longer method sequences than the techniques based on
concrete arguments. However, users may want to have an exploration of even longer
sequences to achieve some test purpose. In such cases, the users can apply several tech-
niques that trade the guarantee of the intra-method path coverage for longer sequences.
For example, the user may provide abstraction functions for states [23], as used for in-
stance in the AsmLT generation tool [15], or binary methods for comparing states (e.g.
equals), as used for instance in Rostra. Symstra can then generate tests that instead
of subsumption use these user-provided functions for comparing state. This leads to a
potential loss of intra-method path coverage but enables faster, user-controlled explo-
ration. To explore longer sequences, Symstra can also use standard heuristics [33,9] for
selecting only a set of paths instead of exploring all paths.

Limitations. The use of symbolic execution has inherent limitations. For example, it
cannot precisely handle array indexes that are symbolic variables. This situation occurs in
some classes, such as DisjSet and HashMap used previously in evaluating Rostra [34].
One solution is to combine symbolic execution with (exhaustive or random) exploration
based on concrete arguments: a static analysis would determine which arguments can
be symbolically executed, and for the rest, the user would provide a set of concrete
values [15].

So far we have discussed only methods that take primitive arguments. We cannot
directly transform non-primitive arguments into symbolic variables of primitive type.
However, we can use the standard approach for generating non-primitive arguments:
generate them also as sequences of method calls that may recursively require more
sequences of method calls, but eventually boil down to methods that have only primitive
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values (or null). (Note that this also handles mutually recursive classes.) JCrasher [13]
and Eclat [26] take a similar approach. Another solution is to transform these arguments
into reference-type symbolic variables and enhance the symbolic execution to support
heap operations on symbolic references. Concrete objects representing these variables
can be generated by solving the constraints and setting the instance fields using reflection.
However, the collected constraints are often not sufficient to generate legal instances, in
which case an additional object invariant is required.

6 Conclusion

We have proposed Symstra, a novel framework that uses symbolic execution to generate
a small number of method sequences that reach high branch and intra-method path cov-
erage for complex data structures. Symstra exhaustively explores method sequences with
symbolic arguments up to a given length. It prunes the exploration based on state sub-
sumption; this pruning speeds up the exploration, without compromising its exhaustive-
ness. We have implemented a test-generation tool for Symstra and evaluated it on seven
subjects, most of which are complex data structures. The results show that Symstra gen-
erates tests faster than the existing test-generation techniques based on exhaustive explo-
ration of sequences with concrete method arguments, and given the same time limit, Sym-
stra can generate tests that achieve better branch coverage than these existing techniques.
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Abstract. Symmetry reduction is a technique to combat the state ex-
plosion problem in temporal logic model checking. Its use with symbolic
representation has suffered from the prohibitively large BDD for the orbit
relation. One suggested solution is to pre-compute a mapping from states
to possibly multiple representatives of symmetry equivalence classes. In
this paper, we propose a more efficient method that determines repre-
sentatives dynamically during fixpoint iterations. Our scheme preserves
the uniqueness of representatives. Another alternative to using the orbit
relation is counter abstraction. It proved efficient for the special case of
full symmetry, provided a conducive program structure. In contrast, our
solution applies also to systems with less than full symmetry, and to sys-
tems where a translation into counters is not feasible. We support these
claims with experimental results.

1 Introduction

Model checking [CE81, QS82] is a successful approach to formal verification of
finite-state concurrent systems. Numerous attempts have been made to combat
its main obstacle, the state space explosion problem. Symmetry reduction is a
technique that exploits replication. The state space is reduced by considering
global states equivalent that are identical up to applications of structure auto-
morphisms, for example permutations that interchange the identities of partici-
pating components. This equivalence, the orbit relation, gives rise to a bisimilar
quotient structure over the equivalence classes (orbits) [ES96, CEFJ96].

Symmetry reduction was first successfully incorporated into explicit-state
verifiers, such as Murϕ [ID96]. Disappointingly, it was discovered that sym-
bolic representation using BDDs, by then becoming a standard in large-scale
system verification, seemed not to combine favorably with symmetry reduction
[CEFJ96]. The reason is that the BDD for the orbit relation is provably in-
tractably large.

In this paper we present a strategy of bypassing the orbit relation. To perform
symmetry reduction, it is not necessary to build a representation of the quotient
structure. Instead, the reduction can be achieved by computing transition images
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with respect to the unreduced structure, and immediately afterwards mapping
the new states to their respective representatives. The main contribution of this
paper is to provide an efficient symbolic algorithm for a function that takes a
set of states and computes their representatives, given the underlying symmetry
group and the permutation action. We first concentrate on full component sym-
metry, the most frequent and beneficial case in practice. We go on to show how
to extend our algorithm to other symmetry groups and to data symmetry (see
section 2).

Our solution compares with previous approaches as follows. Clarke et. al.
[CEFJ96] proposed the admission of multiple orbit representatives. This affords
the possibility to map a state to that representative of its orbit for which this
mapping is most efficient. The relation ξ associating states with their represen-
tatives is pre-computed in a BDD. This method, albeit an improvement, was
not effective enough for systems of interesting size. This is in part because the
BDD for ξ is generally still huge, and in part due to the multiplicity of the
representatives, such that symmetry is not exploited to the fullest extent. In
comparison, our method dynamically computes representatives of states, i.e. em-
bedded in the model checking process. In addition to preserving the uniqueness
of orbit representatives, this has the important advantage that there is no need
to compute, let alone store for the lifetime of the program, the representative
mapping ξ. Further, for reachability analysis we only maintain representatives
actually encountered during the computation, which might be few. In contrast,
pre-computing representatives (irrespective of reachability) may consume a lot
of resources, only to find afterwards that a state close to an initial state already
has a bug.

Another technique, generic representatives [ET99], applies to the special case
of fully symmetric systems. The idea is that two global states are symmetry-
equivalent exactly if for every local state L, the number of components residing
in L is the same in both global states. This approach requires a translation of the
original program text into one that represents global states as vectors of counters,
one counter for each local state. The Kripke structure derived from the new
program can then be model-checked without further symmetry considerations.
This method, more generally known as counter abstraction [PXZ02], proved to
be very efficient—if applicable: it is limited to full component symmetry, its
performance degrades if there are too many local states, and the translation to
counters can be non-trivial [EW03]. Our new reduction algorithm is not based
on counting processes in local states and thus does not suffer from any of these
problems.

In summary, this paper presents an exact, yet flexible and efficient response to
the orbit relation dilemma of symbolic symmetry reduction. It works with many
common symmetry groups and even applies to data symmetry. It requires no
expensive up-front computation of a representative mapping and no translation
of the input program, nor does it depend unreasonably on the number of local
states. Experimental results document the superiority of our approach to existing
ones, often by orders of magnitude.
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2 Background: Symmetry Reduction

Intuitively, the Kripke model M = (S,R) of a system is symmetric if it is in-
variant under certain transformations of its state space S. In general, such a
transformation is a bijection π: S → S. The precise definition of π depends
on the type of symmetry; common ones are discussed in the next paragraph.
Given π, we derive a mapping at the transition relation level by defining π(R) =
{(π(s), π(t)) : (s, t) ∈ R}. Structure M is said to be symmetric with respect to a
set G of bijections if π(R) = R for all π ∈ G. The bijections with this property
are called automorphisms of M and form a group under function composition,
M ’s symmetry group.

The most common type of symmetry is known as component symmetry. In
this case, the automorphism π takes over the task of permuting the components.
For example, if li denotes the local state of component i ∈ [1..n], π is derived
from a permutation on [1..n] and acts on a state s as π(s) = π(l1, . . . , ln) =
(lπ(1), . . . , lπ(n)). Under data symmetry [ID96], an automorphism acts directly
on the variable values, in the form π(l1, . . . , ln) = (π(l1), . . . , π(ln)). For exam-
ple, the permutation π on {a, b} that flips a and b acts on state (a, a) under
component symmetry by exchanging positions 1 and 2 in the pair to yield the
same state (a, a). Under data symmetry, π exchanges the values a and b to
yield (b, b).

2.1 Exploiting Symmetry

Given a group G of automorphisms π: S → S, the relation θ := {(s, t) : ∃π ∈ G :
π(s) = t} on S defines an equivalence between states, known as orbit relation;
the equivalence classes it entails are called orbits [CEFJ96]. Relation θ induces
a quotient structure M̄ = (S̄, R̄), where S̄ is a chosen set of representatives of
the orbits, and R̄ is defined as

R̄ = {(s̄, t̄) ∈ S̄ × S̄ : ∃s, t ∈ S : (s, s̄) ∈ θ ∧ (t, t̄) ∈ θ ∧ (s, t) ∈ R}. (1)

Depending on the size of G, M̄ can be up to exponentially smaller than M . In
case of symmetry, i.e. given π(R) = R for all π ∈ G, M̄ is bisimulation equivalent
to M ; the bisimulation relation is ξ = (S×S̄)∩θ. Relation ξ is actually a function
and maps a state s to the unique representative s̄ of its equivalence class under θ.
Summarizing, for two states s, s̄ with (s, s̄) ∈ ξ and any symmetric formula f ,
i.e. such that p ⇔ π(p) is a tautology for every propositional subformula p of f
and every π ∈ G,

M, s |= f iff M̄, s̄ |= f. (2)

2.2 Unique Versus Multiple Representatives

Equation 1 defining the quotient transition relation makes use of the orbit rela-
tion θ. Clarke et. al. [CEFJ96] show that computing this relation can be expen-
sive in both time and space, especially in a symbolic context. There is currently
no polynomial-time algorithm for deciding, for an arbitrary symmetry group G,
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whether there is a permutation mapping a given state to another. In addition,
a symbolic representation of the orbit relation using BDDs can be shown to
require space exponential in the smaller of the number of components and the
number of local states per component. This is even true for special symmetries,
such as the important full symmetry group.

An alternative that avoids the orbit relation is provided by the same authors
[CEFJ96]. In their approach, the quotient structure is allowed to have more than
one representative per orbit. The programmer supplies a choice of representative
states Rep. In [CEFJ96], precise conditions are given for the existence of a set
C ⊂ G of permutations such that

ξ := {(s, r) : r ∈ Rep ∧ ∃π ∈ C : π(s) = r}
is a suitable representative relation from which a bisimulation equivalent quotient
structure can be derived. This quotient is the structure M̄ = (Rep, R̄), where R̄ is
defined as before in equation 1, except that S̄ is replaced by Rep, and θ by ξ. The
intuition behind this is that for any state s, in order to find a representative r for
it (i.e. (s, r) ∈ ξ), it suffices to try applying permutations from C to s, instead of
all permutations from G. If C is exponentially smaller than G, this is a big win in
the search for a representative of s. Indeed, as experiments have shown, avoiding
the orbit relation this way certainly outweighs the cost of extra representative
states.

2.3 Counter Abstraction of Fully Symmetric Systems

For the case of fully symmetric systems of concurrently executing components,
one can make use of the following observation in order to represent orbits. Two
global states, viewed as vectors of local state identifiers, are identical up to
permutation exactly if for every local state L, the frequency of occurrence of L
is the same in the two states—permutations only change the order of elements,
not the elements themselves. An orbit can therefore be represented as a vector of
counters, one for each local state, that records how many of the components are
in the corresponding local state. For example, in a system with local states N , T
and C, the states (N,N, T,C), (N,C, T,N), and (T,N,N,C) are all symmetry-
equivalent; their orbit (which contains other states as well) can be represented
compactly as (2N, 1T, 1C) or just (2, 1, 1).

In practice, it may be possible to rewrite the program describing a fully
component-symmetric system such that its variables are local state counters in
the first place (before building a Kripke structure). This procedure is known
as counter abstraction [PXZ02]. The advantage of the counter notation is that
the symmetry is implicit in the representation; the very act of rewriting the
program from the specific notation of local state variables into the generic [ET99]
notation of local state counters implements symmetry reduction. Subsequently,
model checking can be applied to the structure derived from the counter-based
program without further considerations of symmetry.

In addition to being applicable only to fully symmetric systems, counter
abstraction requires that automorphisms act on states only by changing the order
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of state components, not their values (as they do under data symmetry), since
only then counters are insensitive to automorphism application. Further, since
rewriting the program in terms of counters in fact anonymizes the components,
variables containing component identifiers complicate matters, for example turn
variables and pointers to other components [EW03].

3 Dynamically Computing Representatives

Symmetry reduction and model checking can be combined in two principally
different ways. The straightforward method seems to be to build a representation
of the quotient structure M̄ and then model check it. Fig. 1 (a) shows the
standard fixpoint routine to compute the representative states satisfying EF bad ,
assuming we have a BDD representation of the quotient transition relation R̄.
We use bad to denote the representatives of bad states of M .

In practice, this algorithm is usually not the method of choice for symbolic
model checking. The reason is that direct computation of the BDD for the quo-
tient transition relation R̄ is very expensive. Equation 1 involves the orbit rela-
tion directly and is thus intractable as an algorithm. In our experiments, we were
only able to compute this BDD in a reasonable amount of time for very simple
examples. An intuitive argument for the complexity is that the orbit relation,
even if not used during the computation of R̄, is essentially embedded in the
BDD for R̄.

An alternative is to modify the model checking algorithm. Consider the ver-
sion in fig. 1 (b). It is identical to (a), except that it uses the operation α(EXR Z)
in the computation of the next iterate: It first applies to Z the backward image
operator with respect to R, rather than with respect to R̄. It then employs some
mechanism α that maps the results to representatives, formally defined as

α(T ) = {t̄ ∈ S̄ : ∃t ∈ T : (t, t̄) ∈ θ}. (3)

Viewing the quotient M̄ as an abstraction of the concrete system M , α pre-
cisely denotes the abstraction function, mapping concrete to abstract states.
The algorithm in fig. 1 (b) is an instance of the abstract interpretation frame-
work [CC77]. Generally, abstract images can be computed by mapping the given

Y := ∅
repeat

Y ′ := Y
Y := bad ∨ EXR̄ Y

until Y = Y ′

return Y

(a)

Z := ∅
repeat

Z′ := Z
Z := bad ∨ α(EXR Z)

until Z = Z′

return Z

(b)

Fig. 1. Two ways to compute the representative states satisfying EF bad
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abstract state to the concrete domain using the concretization function γ, then
applying the concrete image, and finally mapping the result back to the abstract
domain using α. Symmetry affords the simplification that γ can be chosen to be
the identity function, since abstract states (i.e. representatives) are embedded in
the concrete state space. We can thus apply EXR (the concrete backward image
operator) directly to a set of abstract states (Z, in fig. 1 (b)), obtaining the set
of concrete successor states. Applying α produces the final abstract backward
image result.

Given different realizations of α, fig. 1 (b) actually represents a family of
symmetry reduction algorithms. The definition of α (3) is based on the orbit
relation and is therefore inappropriate as a recipe for an algorithm. Another way
to compute α is as forward image under a precomputed representative relation
ξ ⊂ S × S̄. This technique was used by Clarke et. al. [CEFJ96] in connection
with multiple representatives; the authors describe ways to obtain such a relation
without explicitly using the orbit relation θ. In contrast, we propose in this paper
to compute the set of representatives of a set of states dynamically during the
execution of symbolic fixpoint algorithms, instead of a priori statically. This has
two advantages:

1. We avoid computing, and storing at all times, the table ξ associating states
with representatives, which is expensive.

2. For reachability analysis, we do not need the complete set of representatives
S̄, which is required for the computation of ξ. Rather we only maintain
representatives encountered during the computation.

The algorithm to compute α depends on the type and underlying group of
symmetry. In the following section, we first describe in detail the algorithm for
the most common and important case of full component symmetry. Later, in
section 6, we present extensions to other symmetries and also generalize our
algorithm to full CTL model checking.

4 Computation of α Under Full Component Symmetry

A scheme for defining representatives frequently used in the case of full compo-
nent symmetry is the following. Recall that an orbit consists of all states that
are identical up to permutations of components, which amounts to permutations
of the local states of the components. Given some total ordering among the lo-
cal states, there is a unique state in each orbit where the local states appear
in ascending order. Thus, the unique representative of a state can be chosen to
be the lexicographically least element of the state’s orbit. This element can be
computed by sorting the local state vector representing the given state.1

How can this be accomplished symbolically? Not every sorting algorithm
lends itself to symbolic implementation. Compared to an explicit-state algorithm,

1 We assume for now that there are no symmetry-relevant global variables; section 6
below generalizes.
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instead of sorting one vector of local states, we want to sort an entire set of
local state vectors in one fell swoop. One algorithm that allows this efficiently is
bubble sort. It is a comparison-based sorting procedure that rearranges the input
vector in-place by swapping out-of-order elements. To symbolically bubble-sort
a set of vectors simultaneously, we remark: Instead of comparing two elements
of the input vector, the algorithm forms a subset of vectors for which the two
elements in question are out of order. Instead of swapping one pair of out-of-
order elements, we apply the swap operation to all vectors in the subset, in one
step.

The operation of swapping two items turns out to be the factor dominating
efficiency. Its complexity depends heavily on the distance, in the BDD variable
ordering, of the bits involved in the swap. In order to keep this distance small,
we exploit one key feature of bubble sort: it is optimal in the locality of swap
operations—it swaps only adjacent elements.

The lexicographical order of global states is based on a total order ≤ on the
local states of the components. For a fixed global state z, this order ≤ induces
a total order ≤z on the components via

p ≤z q iff lp(z) ≤ lq(z),

where li(z) is the local state of component i in global state z. Given ≤z, and
denoting by n the total number of components, the set of representative states
(the lexicographically least members of some orbit) is defined as

S̄ = {z ∈ S : ∀p < n : p ≤z p + 1} =
⋂
p<n

{z ∈ S : p ≤z p + 1}. (4)

For our algorithm, the exact definition of ≤z is irrelevant; we only need it
to be a total order on the components. This flexibility turns out to be useful in
situations where considering just the local states of components is not enough
to characterize representative states; these situations are discussed in section 6.
Our sorting algorithm looks for states z with components that are not in correct
order with respect to ≤z, and swaps them. This is repeated until a fixpoint is
reached, cf. fig. 2.

For p ranging from 1 to n − 1, the predicate transformer τ in (b) computes
Zbad , the set of states in Z in which components p and p + 1 are not in the
correct order (line 2). If Zbad is non-empty, the algorithm first saves the set of
states in Z in which p and p + 1 are in correct order (line 4) and then swaps
components p and p+1 in all states in Zbad (line 5). The simultaneous swapping
can be achieved by swapping the bits that store components p and p + 1 in the
BDD for Zbad , which effects all states in Zbad . This is the expensive step of the
algorithm; it profits from the fact that these bits are nearby (see section 5).
Finally, the untouched and the swapped states in Z are combined to give the
new value for Z (line 6).
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α(T ):

1. Z := T
2. repeat
3. Z′ := Z
4. Z := τ(Z)
5. until Z = Z′

6. return Z

(a)

τ(Z):

1. for p := 1 to n − 1 do
2. Zbad := Z ∧ ¬{z : p ≤z p + 1}
3. if Zbad �= ∅ then
4. Zgood := Z \ Zbad

5. Zswapped := swap(p, p + 1,Zbad)
6. Z := Zgood ∨ Zswapped

7. return Z

(b)

Fig. 2. Computing the representative mapping α using subroutine τ

5 Correctness and Efficiency of the Algorithm

Our algorithm is an instance of the template shown in fig. 1 (b). We first show
more generally that the template computes the same result as the algorithm (a)
in the same figure. We only assume that α maps the states of its argument set
to representatives.

Lemma 1. Let α satisfy

α(T ) = {t̄ ∈ S̄ : ∃t ∈ T : (t, t̄) ∈ θ}. (5)

Then, for an arbitrary set P ⊂ S̄ of representatives, EXR̄ P = α(EXR P ).

Proof : In the following, we also use the notation α(t) for the unique represen-
tative of a single state t, i.e. the unique element of α({t}).

s̄ ∈ α(EXR P )
⇔ 〈def. of backward image and function application〉
∃s, t̄ : s̄ = α(s) ∧ (s, t̄) ∈ R ∧ t̄ ∈ P

⇔ 〈“⇒”: t := t̄ and note t̄ ∈ P ⊂ S̄, so t̄ = α(t̄) = α(t)〉
〈“⇐”: s := π(s′) for π : π(t) = t̄. Then α(s′) = α(s), π(s′, t) = (s, t̄) ∈ R〉

∃s′, t, t̄ : s̄ = α(s′) ∧ t̄ = α(t) ∧ (s′, t) ∈ R ∧ t̄ ∈ P
⇔ 〈def. of R̄〉
∃t̄ : (s̄, t̄) ∈ R̄ ∧ t̄ ∈ P

⇔ 〈def. of backward image〉
s̄ ∈ EXR̄ P. 	

Corollary 2. The two algorithms in fig. 1 return the same set (and they do so
with the same number of iterations of the repeat loop).

Proof : Let Yi and Zi denote the ith iterates of the two algorithms. Then for all
i, Yi ⊂ S̄, Zi ⊂ S̄ (by the definitions of bad , backward image in R̄ and α). Thus,
utilizing lemma 1, for all i, Yi = Zi, from which the two claims follow. 	

Lemma 3. The algorithm in fig. 2 computes α satisfying equation 5.



390 E.A. Emerson and T. Wahl

Proof : We will show termination and partial correctness.
Termination: The argument is essentially the same as for standard bubble

sort. Every call to swap(p, p + 1,Zbad ) brings the local state of at least one of
the components p and p + 1 closer to its correct position. Hence, after about
n2 swaps, there is no pair (p, p + 1) left with ¬(p ≤z p + 1). Thus, Zbad as
computed in line 2 (fig. 2 (b)) is empty in every iteration of the for loop, Z
remains unchanged, and the condition Z = Z ′ in line 5 (a) is true.

Partial correctness: We use two observations.

(I) When the algorithm terminates, we know that for all values of p, Zbad as
computed in line 2 (b) is empty. Hence, Z ⊂ ⋂

p<n{z : p ≤z p + 1} = S̄

(equation 4), so Z = α(T ) ⊂ S̄.
(II) Predicate transformer τ manipulates the set Z by applying transpositions

(swap) to states in Z. Hence, at the end T and α(T ) contain the same states
up to permutations.2

These observations allow us to prove α(T ) = {t̄ ∈ S̄ : ∃t ∈ T : (t, t̄) ∈ θ} as two
inclusions:

⊂: Consider t̄ ∈ α(T ). From (I) we know t̄ ∈ S̄. From (II) we conclude that
there exists t in T with (t, t̄) ∈ θ.

⊃: Consider t̄ ∈ S̄, t ∈ T such that (t, t̄) ∈ θ. From (II) we conclude that
there exists π such that π(t) ∈ α(T ). From (I) we conclude π(t) ∈ S̄. Since there
is exactly one representative of t in S̄, we derive π(t) = t̄, so t̄ ∈ α(T ). 	

Corollary 4. The algorithm in fig. 1 (b), using the computation of α in fig. 2,
correctly implements backward reachability analysis on the quotient structure.

Efficiency Considerations

The set {z : p ≤z p+1}, which is by definition {z : lp(z) ≤ lp+1(z)}, needs to be
calculated only once for each p. The condition that the local state of component p
is at most that of component p + 1 can be expressed symbolically with a BDD
of size O(l2), for the number l of possible local states.

As indicated earlier, the swap operation in line 5, fig. 2 (b), is the bottleneck
of the algorithm. In BDD terms, it corresponds to pairwise swapping of all bits
that represent the two items to be swapped. The complexity of swapping two
bits in all elements of a set T , i.e. computing

{(. . . xj . . . xi . . .) : (. . . xi . . . xj . . .) ∈ T},

depends exponentially on the distance d of xi and xj in the BDD variable or-
dering. To illustrate this claim, we observe that in the BDD for T , every subtree
rooted at a node labeled xi contains at most 2d nodes labeled xj . Each such
node labeled xj has an immediate subtree that corresponds to one of the cases

2 There is, however, in general no single π such that α(T ) = π(T ), i.e. α by itself is
not just a permutation.
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affected by the swap, namely (xi, xj) = (0, 1) and (xi, xj) = (1, 0). These 2d

subtrees must be moved.
BDD variable orderings usually have the property that it is possible to index

the components as 1, . . . , n such that the distance between corresponding bits
of components p and q is proportional to |p − q|. Consider, for example, the
following frequently used orderings:

concatenated: b11 . . . b1 log l b21 . . . b2 log l . . . . . . bn1 . . . bn log l

interlaced: b11 . . . bn1 b12 . . . bn2 . . . . . . b1 log l . . . bn log l

where bij denotes the jth bit of component i. For the concatenated ordering, the
distance between the jth bit of component p and the jth bit of component q is
log l · |p− q|; for the interlaced ordering, it is |p− q|.

Bubble sort, among the numerous sorting procedures, enjoys the unique fea-
ture of swapping only adjacent components. The distance |p− q| is hence 1, for
every swap operation, thus minimizing the complexity of swapping. This proves
bubble sort optimal for our purpose of symbolic sorting.

6 Generalizations

6.1 Other Types of Symmetry

The idea of sorting to obtain unique orbit elements only works for the case of full
component symmetry. Without proof, we give here the idea of how to compute
α for other, less lucrative, but still somewhat common types of symmetry.

Consider first the case of component symmetries. Permutations act on states
in the form π(l1, . . . , ln) = (lπ(1), . . . , lπ(n)). Our solution for full symmetry gen-
eralizes as follows. Call a symmetry group G of permutations on [1..n] nice if
there exists a “small” subset F of G with the following property: A state z is
lexicographically least in its orbit exactly if there is no π ∈ F with π(z) <lex z.
Many common symmetry groups are nice. For full symmetry, F can be chosen
as the set of n − 1 transpositions (i i + 1) (1 ≤ i < n). Set F also happens to
be a generating set for the full symmetry group. If the group G itself is small,
F := G is a viable choice. This is, for example, the case for the n rotations gen-
erated by the left shift cycle (1 2 . . . n). Note that in this case the generating
set {(1 2 . . . n)} is not a valid choice for F : The vector z := (BCA) is not
lexicographically least, yet applying the generating permutation does not make
z smaller (applying it twice does).

Given a nice group G, consider the algorithm for α as before in fig. 2 (a),
but with subroutine τ as shown in fig. 3. Again, Zbad in line 2 selects the states
z in Z that are not lexicographically least. By the niceness of G, this means
that for some π ∈ F , π(z) <lex z. Line 5 applies π element-wise to Zbad . This
algorithm terminates, since <lex is a well-order on the set of local state vectors.
Hence, eventually there will be no π such that for some z, π(z) <lex z. Partial
correctness follows from an argument similar to that in lemma 3.

If G is nice, we expect to have a small set F of permutations that can be
traversed in line 1. The direct application of π in line 5 may be expensive.
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τ(Z):

1. for π in F do
2. Zbad := Z ∧ {z : π(z) <lex z}
3. if Zbad �= ∅ then
4. Zgood := Z \ Zbad

5. Zswapped := {π(z) : z ∈ Zbad}
6. Z := Zgood ∨ Zswapped

7. return Z

Fig. 3. Subroutine τ for “nice” symmetry groups

However, π can be expressed as a product of at most 1/2n(n− 1) transpositions
of adjacent elements. As argued in section 5, transpositions of neighbors are the
least expensive permutations, as for implementation using BDDs. The important
point is that the algorithm for τ in fig. 3 resembles bubble sort, in that it is in-
place, and it only swaps neighboring processes, if the π’s in F are rewritten as
products of transpositions.

For data symmetry (see section 2), the idea of lexicographically least orbit
elements no longer applies. A set of unique representatives can be defined as
{(l1, . . . , ln) : ∀i : li ≤ i}. To compute the mapping α, the algorithm in fig. 2 can
still be used, with only slight modifications. Set Zbad (line 2) contains the states
from Z that satisfy lp > p. Line 5 swaps the values p and lp in all states in Zbad .
Since lp may vary from state to state in Zbad (even for fixed p), a loop over the
possible values of lp is required.

6.2 Process Id Variables

Often, systems have id-sensitive global variables containing component ids, such
as the identity of a process holding a token or a reference to a process having
an exclusive copy of some cache data. In this case, the condition ∀p : p < n :
lp(z) ≤ lp+1(z) is not enough to guarantee that z is a unique representative
state. Consider, for instance, the two states (A,A,B, 1) and (A,A,B, 2) of a
three-process system with one id-sensitive global variable (listed last). Since
components 1 and 2 are both in local state A in both states, the permutation that
flips 1 and 2 proves the states equivalent.3 The local states appear in ascending
order: AAB. Yet, the states differ, compromising uniqueness. The solution is to
define the unique representative as the orbit element with ascending local states
where the id-sensitive variables have minimal values (1, in the example above).
In this case, p ≤z p+1 means for state z and the local states of p and p+1 that
either lp(z) < lp+1(z), or lp(z) = lp+1(z) and none of the id-sensitive variables
has value p+1. This condition is violated for z := (A,A,B, 2) and p := 1. Thus,
the permutation (1 2) will be applied to z, whereupon it turns into (A,A,B, 1).

This solution can be extended to the more challenging case of id-sensitive
local variables, the general treatment of which is beyond the scope of this paper.

3 This permutation acts on (permutes) the id-sensitive variable; see [EW03] for details.
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6.3 Full CTL Model Checking

Section 4 can be summarized as having presented an efficient algorithm for the
computation of EXR̄ Z, used in backward reachability analysis. This algorithm
generalizes to all CTL formulas as follows. Existential modalities (EG, EF, EU)
have a fixpoint characterization based on existential backward images. For exam-
ple, EG f can be calculated as the greatest fixpoint of the predicate transformer
λ(Z) = f ∧ EXZ. For the quotient structure, an algorithm similar to that in
fig. 1 (b) can be used.

The universal backward image AXR̄ Z cannot be replaced by an analogous
construct involving α. Suppose we wish to compute the representative states
satisfying AG good on the quotient structure. An algorithm similar to that in
fig. 1 (a) exists, which computes the greatest fixpoint of λ(Z) = good ∧ AXR̄ Z.
However, in general α(AXR Z) � AXR̄ Z. The underlying problem is that the
abstraction function α distributes over set union, but not intersection:

α(P ∪Q) = α(P ) ∪ α(Q), but
α(P ∩Q) � α(P ) ∩ α(Q) (in general).

The solution is to reduce universal to existential modalities. Care must be
taken in that negation over the quotient structure is with respect to S̄, the set
of representatives. Thus, in a context where states are encoded as elements of S,
we have to compute {s̄ ∈ S̄ : s̄ �∈ Z} as S̄ ∧ ¬Z. We obtain

AXR̄ Z = S̄ ∧ ¬(EXR̄(S̄ ∧ ¬Z)) = S̄ ∧ ¬(α(EXR(S̄ ∧ ¬Z))).

The above solutions for the EG modality—a greatest fixpoint—and the uni-
versal modalities require the set S̄ of all representatives (unlike the case of EF
[reachability] and EU, where only representatives encountered during the compu-
tation are stored). Depending on the application and the definition of representa-
tives, the BDD for this set can be (but is not always) costly. It can be computed
as α(true), but the “direct” way based on the expression

⋂
p<n p ≤z p + 1 is

often more efficient. Other than S̄, the above equations only involve boolean
primitives, existential backward image with respect to R, and the abstraction
function α. This makes our technique complete for CTL.

7 Experimental Results

We present results of verifying example systems using our technique, with respect
to properties that came along with the system specification. Our tool uses the
CUDD BDD package [Som01]. We ran the examples on an i686/1400 Mhz PC
with 256MB main memory. In tables, the figure behind the name of an example
indicates the number of components involved. “Number of BDD Nodes” refers
to the peak number of BDD nodes allocated at any time during execution. It
represents the memory bottleneck of the verification run. The abbreviations s,
m, h, M stand for seconds, minutes, hours, and million, respectively.
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Table 1. Comparison to Multiple Representatives and Counter Abstraction

Multiple Counter Dynamic Sym-
Representatives Abstraction metry Reduction

Number of Number of Number ofProblem
BDD Nodes

Time
BDD Nodes

Time
BDD Nodes

Time

MsLock 10 369,239 1:15m 68,154 29s 24,092 15s
MsLock 20 4,407,127 4:05h 325,325 7:06m 139,990 9:35m
MsLock 30 (>13M) (>28h) 725,672 24:26m 375,649 1:23h

CCP 03 16,522,710 13:12h 1,988,991 7:55m 14,088 1s
CCP 05 (>12M) (>35h) 4,001,573 1:49h 74,754 14s
CCP 10 — — (>14M) (>18h) 1,075,206 26:35m
CCP 15 — — — — 4,947,726 6:17h

Table 2. Comparison to unreduced Model Checking and Multiple Representatives

Without Sym- Multiple Dynamic Sym-
metry Reduction Representatives metry Reduction

Number of Number of Number ofProblem
BDD Nodes

Time
BDD Nodes

Time
BDD Nodes

Time

Comp&Swap 40 376,681 1m 157,470 25s 48,433 10s
Comp&Swap 50 (>14M) (>24h) 4,259,627 37:34m 419,529 4:03m
Comp&Swap 60 — — (>10M) (>24h) 6,246,717 2:10h
Fetch&Store 40 1,083,830 4:12m 413,036 2:02m 160,628 40s
Fetch&Store 50 (>12M) (>24h) (>11M) (>24h) 2,017,634 29:43m
Fetch&Store 60 — — — — (>12M) (>24h)
Distrib. List 30 861,158 28s 708,339 20s 60,394 2s
Distrib. List 40 6,380,209 4:35m 2,963,024 2:37m 213,448 5s
Distrib. List 50 (>15M) (>24h) 13,580,042 29:30m 271,366 11s

In Table 1, we compare our dynamic symmetry reduction technique to the
aforementioned alternative methods, Multiple Representatives and Counter Ab-
straction. To ensure fair comparison, we set various BDD parameters individ-
ually for each technique such that it performed best. The MsLock example is
a simplified model of a queuing lock algorithm [MS91]. The simplification was
necessary to make the system amenable to counter abstraction. The example
denoted CCP refers to a buggy version of a cache coherence protocol suggested
by S. German, see for example [LS03]. Due to the presence of errors, parameter-
ized model checking (for arbitrary n) initially fails on this protocol (an inductive
invariant proving the safety property does not exist). Model checkers such as our
tool can then be used to provide an error trace for fixed values of the size param-
eter. This example is characterized by a large number of local states, which is
why counter abstraction performs much worse on it than our dynamic technique.
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The Multiple Representatives approach suffers from the high cost of building the
representative mapping ξ.

The second table presents examples to which counter abstraction can not be
applied. The reason is that here permutations act upon states by not only chang-
ing the order of local state components, but also their values. “Comp&Swap”
and “Fetch&Store” are two versions of the queuing lock [MS91], a simplification
of which was used in the MsLock example above. The “Distrib. List” example
is a distributed protocol for processes in a FIFO queue sending and receiving
messages, acting as a relay if asked to do so [MD96]. Symmetry exists in both the
processes and the messages. In this table we also show results of the verification
run without symmetry reduction, where the intermediate BDDs become huge
quickly. Our technique invariably outperforms the other two, for large problem
instances by orders of magnitude.

8 Summary

In this paper, we have presented a dynamic symmetry reduction technique that
surpasses, to the best of our knowledge, previously known techniques dramat-
ically. Multiple Representatives suffer from symptoms similar to those of orbit
relation-based approaches (although alleviated). Counter abstraction is often ef-
ficient if operative, but does not scale well for systems of components with a
large local state space, requires full symmetry, and is only applicable to symme-
tries with “simple” permutation action. In contrast, our solution is not based
on counters and thus more flexible, yet it does not suffer from the problems
associated with storing pairs of states and their representatives.

Our method can generally be seen as a symbolic abstraction technique that
avoids pre-computing the abstraction function, but rather offers an efficient sym-
bolic algorithm to map concrete to abstract states on the fly. In connection with
symmetry reduction, there was a need for such a technique, due to the ongoing
difficulties with the orbit relation.

Bubble sort is traditionally regarded naive and not successful on large sort-
ing problems. Our decision to use it in the representative mapping under full
symmetry is an instance of a phenomenon often seen in parallel programming:
The most clever and sophisticated sequential algorithms are not always the best
in a new computational model. Instead, a simple-minded routine can prove very
suitable. In our case, we believe that the locality of bubble sort, i.e. its affecting
only nearby elements and being in-place, is paramount.

Related Work. In addition to the references mentioned in the introduction, the
work closest to ours is the paper by Barner and Grumberg [BG02], who con-
sidered combining symmetry and symbolic representation using BDDs mainly
for falsification. If too large, the set of reached representatives is under-approxi-
mated, which renders the algorithm inexact. Also, their work uses multiple rep-
resentatives and therefore forgoes some of the symmetry reduction possible. Fi-
nally, there is a lot of other work on symmetry not directly related to symbolic
representation [PB99, God99, SGE00, HBL+03–among many].
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Abstraction
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Abstract. In the domain of software verification, predicate abstraction has e-
merged to be a powerful and popular technique for extracting finite-state models
from often complex source code. In this paper, we report on the application of
three techniques for improving the performance of the predicate abstraction re-
finement loop. The first technique allows faster computation of the abstraction.
Instead of maintaining a global set of predicates, we find predicates relevant to
various basic blocks of the program by weakest pre-condition propagation along
spurious program traces. The second technique enables faster model checking
of the abstraction by reducing the number of state variables in the abstraction.
This is done by re-using Boolean variables to represent different predicates in the
abstraction. However, some predicates are useful at many program locations and
discovering them lazily in various parts of the program leads to a large number
of abstraction refinement iterations. The third technique attempts to identify such
predicates early in the abstraction refinement loop and handles them separately
by introducing dedicated state variables for such predicates. We have incorpo-
rated these techniques into NEC’s software verification tool F-Soft, and present
promising experimental results for various case studies using these techniques.

1 Introduction

In the domain of software verification, predicate abstraction [2, 7, 9, 11] has emerged
to be a powerful and popular technique for extracting finite-state models from often
complex source code. It abstracts data by keeping track of certain predicates on the data.
Each predicate is represented by a Boolean variable in the abstract program, while the
original data variables are eliminated. The application of predicate abstraction to large
programs depends crucially on the choice and usage of the predicates. If all predicates
are tracked globally in the program, the analysis often becomes intractable due to the
large number of predicate relationships. In Microsoft’s SLAM [4] toolkit, this problem
is handled by generating coarse abstractions using techniques such as Cartesian approx-
imation and the maximum cube length approximation [3]. These techniques limit the
number of predicates in each theorem prover query. The refinement of the abstraction
is carried out by adding new predicates. If no new predicates are found, the spurious
behavior is due to inexact predicate relationships. Such spurious behavior is removed
by a separate refinement algorithm called Constrain [1].
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The BLAST toolkit [13] introduced the notion of lazy abstraction, where the ab-
straction refinement is completely demand-driven to remove spurious behaviors. Recent
work [14] describes a new refinement scheme based on interpolation [8], which adds new
predicates to some program locations only, which we will call henceforth localization of
predicates. On average the number of predicates tracked at a program location is small
and thus, the localization of predicates enables predicate abstraction to scale to larger
software programs. In this paper we describe three novel contributions:

• Our first contribution is inspired by the lazy abstraction approach and the localization
techniques implemented in BLAST. While BLAST makes use of interpolation, we
use weakest pre-conditions to find predicates relevant at each program location.
Given an infeasible trace s1; . . . ;sk, we find predicates whose values need to be
tracked at each statement si in order to eliminate the infeasible trace. For any program
location we only need to track the relationship between the predicates relevant at
that location. Furthermore, since we use predicates based on weakest pre-conditions
along infeasible traces, most of the predicate relationships are obtained from the
refinement process itself. This enables us to significantly reduce the number of calls
to back-end decision procedures leading to a much faster abstraction computation.

• The performance of BDD-based model checkers depends crucially on the number of
state variables. Due to predicate localization most predicates are useful only in certain
parts of the program. The state variables corresponding to these predicates can be
reused to represent different predicates in other parts of the abstraction, resulting in a
reduction of the total number of state variables needed. We call this abstraction with
register sharing. This constitutes our second technique which reduces the number
of state variables, enabling more efficient model checking of the abstract models.

• While the above techniques speed up the individual computations and the model
checking runs of the abstractions, they might result in too many abstraction refine-
ment iterations. This can happen if the value of a certain predicate needs to be tracked
at multiple program locations, i.e., if the predicate is useful globally or at least in
some large part of the program. Since we add predicates lazily only along infeasible
traces, the fact that a predicate is globally useful for checking a property will be
learned only through multiple abstraction refinement iterations. We make use of a
simple heuristic for deciding when the value of a certain predicate may need to be
tracked globally or in a complete functional scope. If the value of a predicate needs
to be tracked in a large scope, then it is assigned a dedicated state variable which is
not reused for representing the value of other predicates in the same scope.

Further Related Work: Rusu et al. [20] present a framework for proving safety prop-
erties that combines predicate abstraction, refinement using weakest pre-conditions and
theorem proving. However, no localization of predicates is done in their work. Namjoshi
et al. [18] use weakest pre-conditions for extracting finite state abstractions, from pos-
sibly infinite state programs. They compute the weakest pre-conditions starting from an
initial set of predicates derived from the specification, control guards etc. This process
is iterated until a fix-point is reached, or a user imposed bound on the number of it-
erations is reached. In the latter case, the abstraction might be too coarse to prove the
given property. However, no automatic refinement procedure is described. The MAGIC
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tool [5] also makes use of weakest pre-conditions in a similar way. Both approaches have
the disadvantage that the number of predicates tracked at each program location can be
much higher, which may make the single model checking step difficult. In contrast, we
propagate the weakest pre-conditions lazily, that is, only to the extent needed to remove
infeasible traces. In order to check if a sequence of statements in the C program is
(in)feasible we use a SAT-solver as in [16]. The relationships between a set of predicates
is found by making use of SAT-based predicate abstraction [6, 17]. We further improve
the performance of SAT-based simulation of counterexamples and abstraction compu-
tation by making use of range analysis techniques [19, 21] to determine the maximum
number of bits needed to represent each variable in the given program.

In the experiments presented in Section 5, F-Soft computes a single BDD repre-
senting the reachable set of states. As is done in SLAM for example, F-Soft is able
to partition the BDD into subsets according to the basic blocks. However, the effects
discussed in this paper still carry over to such a scheme as the individual BDDs will
be smaller and contain fewer state variables in the support set. This is due to the fact
that prior approaches cannot quantify out uninteresting predicates since their value may
be important in following basic blocks. The information computed in our approach
gives us a more accurate classification of which predicates are useful in a given basic
block.

Outline: The following section describes the pre-processing of the source code with our
software verification tool F-Soft [15] and the localized abstraction refinement frame-
work based on weakest pre-condition propagation. F-Soft allows both SAT-based and
BDD-based bounded and unbounded model checking of C. Here, we focus on our BDD-
based model checker since BDDs often work well enough for abstract models with few
state variables. The third section presents an overview of the computation of the abstrac-
tion with and without register sharing, while the fourth section describes our approach
of dedicating abstract state variables to predicates. Section 5 discusses the experimental
results, and we finish this paper with some concluding remarks.

2 A Localized Abstraction-Refinement Framework

2.1 Software Modeling

In this section, we briefly describe our software modeling approach that is centered
around basic blocks as described in [15]. The preprocessing of the source code is per-
formed before the abstraction refinement routine is invoked. A program counter variable
is introduced to monitor progress in the control flow graph consisting of basic blocks.
Our modeling framework allows bounded recursion through the introduction of a fixed
depth function call stack, when necessary, and introduces special variables representing
function return points for non-recursive functions. Due to space limitation, we omit the
details of our handling of pointer variables, which can be found in [15]. It is based on
adding simplified pointer-free assignments in the basic blocks.
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2.2 Localization Information

The formula φ describes a set of program states, namely, the states in which the value of
program variables satisfy φ. The weakest pre-condition [10] of a formula φ with respect
to a statement s is the weakest formula whose truth before the execution of s entails the
truth of φ after s terminates. We denote the weakest pre-condition of φ with respect to
s by WP (φ,s). Let s be an assignment statement of the form v = e; and φ be a C
expression. Then the weakest pre-condition of φ with respect to s, is obtained from φ
by replacing every occurrence of v in φ with e.

Given an if statement with condition p, we write assume p or assume ¬p, de-
pending upon the branch of the if statement that is executed. The weakest pre-condition
of φ with respect to assume p, is given as φ∧p. As mentioned earlier, pointer assign-
ments are rewritten early on in our tool chain, thus allowing us to focus here on only
the above cases. The weakest pre-condition operator is extended to a sequence of state-
ments by WP (φ,s1;s2) = WP (WP (φ,s2),s1). A sequence of statements s1; . . . ;sk

is said to be infeasible, if WP (true,s1; . . . ;sk) = false. Note that for ease of presen-
tation, we present the following material using individual statements while the actual
implementation uses a control flow graph consisting of basic blocks.

We define child(s) to denote the set of statements reachable from s in one step in
the control flow graph. Each statement s in the program keeps track of the following
information: (1) A set of predicates denoted as local(s) whose values need to be tracked
before the execution of s. We say a predicate p is active at the statement s, if p ∈
local(s). (2) A set of predicate pairs denoted as transfer(s). Intuitively, if (pi,pj) ∈
transfer(s), then the value of pj after s terminates is equal to the value of pi before the
execution of s. Formally, a pair (pi,pj)∈ transfer(s) satisfies the following conditions:

- pi ∈ {True,False}∪ local(s).
- There exists s′ ∈ child(s), such that pj ∈ local(s′).
- If s is an assignment statement, then pi = WP (pj ,s).
- If s is an assume statement, then pi = pj .

We refer to the sets local(s) and transfer(s) together as the localization information
at the statement s. This information is generated during the refinement step, and is used
for creating refined abstractions which eliminate infeasible traces.

Example: Consider the code in Fig. 1(a) and the localization information in Fig. 1(d).
Since (p4,p3) ∈ transfer(s1) and s1 is an assignment, it means that p4(c = m) is the
weakest pre-condition of p3(x=m) with respect to statement s1. The value of predicate
p4 is useful only before the execution of s1. After the execution of s1, predicate p3
becomes useful.

2.3 Refinement Using Weakest Pre-condition Propagation

Let s1; . . . ;sk be an infeasible program trace. If si is of the form assume pi, then the
weakest pre-condition of pi is propagated backwards from si until s1. When computing
the weakest pre-condition of a predicate pi with respect to a statement sj of the form
assume pj , we propagate the weakest pre-conditions of pi and pj separately. That is,
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s
1 : x = c;
2 : y = c + 1;
3 : if (x == m);
4 : if (y != m+1);
5 : ERROR: ;

(a)

s
1 : x = c;
2 : y = c + 1;
3 : assume (x == m);
4 : assume (y != m+1);

(b)

s local(s) transfer(s)
1 : {p2} {(p2,p2)}
2 : {p2} {(p2,p1)}
3 : {p1} {(p1,p1)}
4 : {p1}

(c)

s local(s) transfer(s)
1 : {p2,p4} {(p2,p2),(p4,p3)}
2 : {p2,p3} {(p2,p1),(p3,p3)}
3 : {p1,p3} {(p1,p1)}
4 : {p1}

(d)

Fig. 1. (a) A simple C program. (b) An infeasible program trace. (c) Status of local(s) and
transfer(s) sets after the first iteration of the refinement algorithm (see Fig. 2). Predicates p1,p2
denote y �= m+1 and c �= m, respectively. (d) New additions to the local(s) and transfer(s)
in the second iteration. p3,p4 denote x = m and c = m, respectively

we do not introduce a new predicate for pi∧pj . This is done to ensure that the predicates
remain atomic. The local and the transfer sets for the various statements are updated
during this process. The complete algorithm is given in Fig. 2.

Example: Consider the C program in Fig. 1(a) and an infeasible trace in Fig. 1(b).
Assume that initially local(s) and transfer(s) sets are empty for each s. The refinement
algorithm in Fig. 2 is applied to the infeasible trace. The localization information after
the first iteration (i = 4) and second iteration (i = 3) of the outer loop in the refinement
algorithm, is shown in Fig. 1(c) and Fig. 1(d), respectively. No change occurs to the
localization information for i = 2 and i = 1, since s2 and s1 do not correspond to
assume statements.

If s1; . . . ;sk is infeasible, then WP (true,s1; . . . ;sk) = false by definition. Intu-
itively, the atomic predicates in WP (true,s1; . . . ;sk) appear in local(s1). Thus, by
finding the relationships between the predicates in local(s1), it is possible to construct a
refined model which eliminates the infeasible trace. When an infeasible trace s1; . . . ;sk

is refined using the algorithm in Fig. 2, s1 is stored into a set of statements denoted by
marked. If a statement s is in the marked set, and the size of local(s) is less than a
certain threshold, then the abstraction routine computes the relationships between the
predicates in local(s) using SAT-based predicate abstraction [6, 17]. Otherwise, these
relationships are determined lazily by detection of spurious abstract states [1].

Proof Based Analysis: The refinement algorithm described in Fig. 2 performs a back-
ward weakest pre-condition propagation for each assume statement in the infeasible
trace. However, neither all assume statements nor all assignments may be necessary for
the infeasibility of the given trace. Propagating the weakest pre-conditions for all such
statements results in an unnecessary increase in the number of predicates active at each
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Input: An infeasible trace s1; . . . ;sk

Algorithm:
1: for i = k downto 1 //outer for loop
2: if si is of form (assume φi) then //propagate weakest pre-conditions
3: local(si) = local(si)∪{φi} //localize φi at si

4: seed = φi

5: for j = i−1 downto 1 //inner for loop
6: if sj is an assignment statement then
7: wp = WP (seed,sj)
8: else
9: wp = seed
10: local(sj) = local(sj) ∪ {wp} //localize wp at sj

11: transfer(sj) = transfer(sj) ∪ {(wp,seed)}//store predicate relationships
12: seed = wp
13: if seed is constant (i.e, true or false) then exit inner for loop
14: end for
15: end if
16: end for
17: marked = marked ∪ {s1}

Fig. 2. Predicate localization during refinement

statement in the infeasible trace. We make use of the SAT-based proof of infeasibility of
the given trace to determine the statements for which the weakest pre-condition propa-
gation should be done [12]. Thus, the localization information is updated partially, in a
way that is sufficient to remove the spurious behavior. The computation of an abstract
model using the localization information is described in the next section.

3 Computing Abstractions

We describe the abstraction of the given C program by defining a transition system
T . The transition system T = (Q,I,R) consists of a set of states Q, a set of initial
states I ⊆ Q, and a transition relation R(q,q′), which relates the current state q ∈ Q
to a next-state q′ ∈ Q. The abstract model preserves the control flow in the original
C program. Let P = {p1, . . . ,pk} denote the union of the predicates active at various
program locations. We first describe an abstraction scheme where each predicate pi is
assigned one unique Boolean variable bi in the abstract model. The state space of the
abstract model is |L| · 2k, where L is the set of control locations in the program. We
call this scheme abstraction without register sharing. Next, we describe a scheme where
the number of Boolean variables needed to represent the predicates in P is equal to the
maximum number of predicates active at any program location. The size of the abstract
model is given by |L| · 2k′

, where k′ = max1≤i≤|L||local(si)|. We call this scheme
abstraction with register sharing. Due to the localization of predicates, k′ is usually
much smaller than k, which enables faster model checking of the abstraction obtained
using register sharing.
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3.1 Abstraction Without Register Sharing

Let PC denote the vector of state variables used to encode the program counter. In
abstraction without register sharing each predicate pi has a state variable bi in the ab-
stract model. Each state in the abstraction corresponds to the valuation of |PC|+k state
variables, where k is the total number of predicates. In the initial state PC is equal to
the value of the entry location in the original program. The state variables correspond-
ing to the predicates are initially assigned non-deterministic Boolean values. Given a
statement sl and a predicate pi the following cases are possible:

- sl is either an assume statement or an assignment statement that does not assign to any
variable in pi. That is, after executing sl the value of predicate pi remains unchanged.
Thus, in the abstract model the value of the state variable bi remains unchanged after
executing sl. We denote the set of all statements where pi is unchanged as unc(pi).
- sl assigns to some variable in pi. Let pj denote the weakest pre-condition of pi with
respect to sl. If the predicate pj is active at sl, that is pj ∈ local(sl), and (pj ,pi) ∈
transfer(sl), then after executing sl, the value of predicate pi is the same as the value
of predicate pj before executing sl. In the abstract model this simply corresponds to
transferring the value of bj to bi at sl. If the predicate pj is not active at sl, then the
abstract model assigns a non-deterministic Boolean value to bi at sl. This is necessary
to ensure that the abstract model is an over-approximation of the original program.

We denote the set of all statements that can update the value of a predicate pi as
update(pi). The set of statements where the weakest pre-condition of pi is available
is denoted by wpa(pi). Using the localization information from Sec. 2.2, wpa(pi) is
defined as follows: wpa(pi) := {sl|sl ∈ update(pi) ∧ ∃pj . (pj ,pi) ∈ transfer(sl)}.

We use inp(pi) to denote the set of statements that assign a non-deterministic value
vi to the state variable bi. This set is defined as update(pi)\wpa(pi). Let cil denote the
state variable corresponding to the weakest pre-condition of predicate pi with respect
to sl. We use pcl to denote that the program counter is at sl, that is PC = l, and vi to
denote a non-deterministic input variable. The next state function for the variable bi is
then defined as follows:

b′i :=
[ ∨

sl∈unc(pi)

(pcl∧ bi)
]
∨
[ ∨

sl∈wpa(pi)

(pcl∧ cil)
]
∨
[ ∨

sl∈inp(pi)

(pcl∧vi)
]

(1)

Note that no calls to a decision procedure are needed when generating the next-state
functions. All the required information is gathered during the refinement step itself by
means of weakest pre-condition propagation.

Example: Consider the abstraction of the program in Fig. 3(a) with respect to the lo-
calization information given in Fig. 3(b). The predicate p1 (y �= m+1) is updated at
statement s2, and its weakest pre-condition p2 (c �= m) is active at s2, and (p2,p1) ∈
transfer(s2). So the next state function for the state variable representing p1 is given
as follows: b′1 := (pc2 ∧ b2)∨ ((pc1 ∨ pc3 ∨ pc4)∧ b1). The other next state functions
are given as follows: b′2 := b2, b′4 := b4, and b′3 := (pc1∧ b4)∨ ((pc2∨pc3∨pc4)∧ b3).
The resulting abstraction is shown in Fig. 3 (c). For simplicity the control flow is shown
explicitly in the abstraction.
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s
1: x = c;
2: y = c + 1;
3: if (x == m)
4: if (y != m+1)
5: ERROR:;

(a)

local(s) transfer(s)
{p2,p4} {(p2,p2),(p4,p3)}
{p2,p3} {(p2,p1),(p3,p3)}
{p1,p3} {(p1,p1)}
{p1}

(b)

Abstraction
1: b3 = b4;
2: b1 = b2;
3: if (b3)
4: if (b1)
5: ERROR: ;

(c)

s Mapping
1: {p2 : b1,p4 : b2}
2: {p2 : b1,p3 : b2}
3: {p1 : b1,p3 : b2}
4: {p1 : b1}
5:

(d)

Abstraction
1: skip;
2: skip;
3: if (b2)
4: if (b1)
5: ERROR: ;

(e)

Global constraint for (c):
b2 ↔ ¬b4

Local constraint for (e):
(PC = 1) → (b1 ↔ ¬b2)

(f)

Fig. 3. (a) C program. (b) Localization information for the program where p1,p2,p3,p4 denote
the predicates y �= m + 1, c �= m,x = m,c = m, respectively. (c) Abstraction with no register
sharing. Boolean variable bi represents the value of pi in the abstraction. (d) Mapping of predicates
in local(s) for each s to the Boolean variables (register sharing). (e) Abstraction with register
sharing. (f) Global constraint and Local constraint for abstractions in (c) and (e) , respectively

Global Constraint Generation: The precision of the abstraction can be increased by
finding the relationships between the predicates in local(s) for some s. For example,
in Fig. 3(b) the relationship between the predicates in local(s1) results in a global
constraint, b2 ↔¬b4. This constraint holds in all states of the abstract model of Fig. 3
(c) as the Boolean variables b2 and b4 always represent the same predicate throughout
the abstraction without register sharing. The abstraction without register sharing given
in Fig. 3(c) combined with the global constraint in Fig. 3(f) is sufficient to show that the
ERROR label is not reachable in the C program given in Fig. 3(a). Note that we could
have simplified the computation here by recognizing that p4 = ¬p2, which we omit for
presentation purposes only.

The constraint generation is done only for some of the statements which are marked
during the refinement (Fig. 2, line no. 17). We use SAT-based predicate abstraction
[6, 17] to find the relationships between the predicates in local(s) for such statements.
This is the only time we use any decision procedure other than checking for the feasibility
of traces. Due to the computational cost of enumerating the set of solutions, we only
perform this computation for very small sets of predicates. Other relationships are then
discovered on demand based on spurious abstract states [1].

3.2 Abstraction with Register Sharing

In abstraction with no register sharing, the state-space of the abstract model is |L| ·2|P | ,
where P is the set of predicates, and L is the set of locations in the given program. Thus,
when the number of predicates is large, model checking of the abstraction can become
a bottleneck even with a symbolic representation of the state space. We make use of the



Localization and Register Sharing for Predicate Abstraction 405

locality of predicates to speed up the model checking of the abstraction. This is done
by reducing the number of (Boolean) state variables in the abstraction. The fact that
each state variable in the abstract model is only locally useful can be used to represent
different predicates in different parts of the program using the same state variable. We
call the reuse of state variables in the abstract model register sharing.

Example: Consider the C program in Fig. 3(a) and the localization information in
Fig. 3(b). The abstraction of this program with no register sharing in Fig. 3(c), con-
tains four state variables, one for each predicate. However, the number of predicates
active at any program statement is max1≤i≤4|local(si)| = 2. Intuitively, it should be
possible to create an abstraction with just two state variables.

The predicates p2,p4 are active at program location 1, so we introduce two Boolean
variables b1, b2, to represent each of these predicates, respectively. After the execution
of s1, predicate p4 is no longer active, and the state variable b2 can be used to represent
some other predicate. Predicate p3 becomes active at s2, so we can reuse the abstract
variable b2 to represent p3 at s2. In a similar fashion, b1 can be reused to represent
predicate p1 at program locations s3 and s4. We use p : b to denote that the predicate p
is represented by the state variable b. The mapping of active predicates at each program
location to the state variables is given in Fig 3(d).

The abstraction with register sharing is obtained by translating the predicate relation-
ships in transfer(s) for each s, according to the mapping discussed above. Continuing
our example, (p4,p3) ∈ transfer(s1) in Fig. 3(b), the value of the state variable rep-
resenting p4 at s1, must be transferred to the state variable representing p3, afterwards.
Since both p4 and p3 are represented by the same state variable b2, the abstraction for
s1 does not alter the value of b2. The abstraction using only two state variables (b1, b2)
is shown in Fig 3(e). The skip statement means that the values of the state variables b1
and b2 remain unchanged for that statement.

Mapping Predicates to State Variables: Recall, that p = {p1, . . . ,pk} denotes the set of
predicates. Let B = {b1, . . . , bl} be the set of state variables in the abstraction, where
l equals the maximum number of active predicates at any program location. For every
statement s, the predicates relevant at s are mapped to unique state variables in B. Let
map be a function that takes a statement s and a predicate p as arguments. If p∈ local(s),
then the result of map(s,p) is a state variable b ∈ B; otherwise, the result is ⊥. Recall
that child(s) denotes the set of statements reachable from s in one step in the control
flow graph. The constraints to be satisfied by map are as follows:

– Two distinct predicates which are active together at the same statement should not
be assigned the same Boolean variable in the abstraction for that statement.

∀s∀pi,pj ∈ local(s) [pi �= pj →map(s,pi) �= map(s,pj)]

– Consider statement s and (p1,p2) ∈ transfer(s). By definition there exists s′ ∈
child(s) where p2 is active, that is p2 ∈ local(s′). This case is shown in Fig. 4(a).
Suppose the predicate p1 is mapped to bi in s and p2 is mapped to bj in s′. The
abstraction for the statement s will assign the value of bi to bj . So bj should not be
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Fig. 4. (a) Statement s and two successors s′ and s′′. Predicates p1,p2,p3 are active at s, s′, and
s′′, respectively. (b) Abstraction with register sharing, where (p1,p2) ∈ transfer(s). Predicate
p1,p2 are mapped to bi, bj , respectively, in the abstraction. Predicate p3 �= p2 should not be
mapped to bj for safe abstraction i.e., an over-approximation of the original program. (c) Boolean
variable b is used to represent two distinct predicates p1 and p2 on the same path. It is set to a *
(non-deterministic value) between s and s′ to ensure safe abstraction

used to represent a predicate p3, where p3 �= p2, in any other successor of s. This is
because there is no relationship between the value of the predicate p1 at s and the
predicate p3 at s′′. This constraint is shown in Fig. 4(b).

We now describe the algorithm which creates an abstraction in the presence of register
sharing. Let abs(s) be a set of Boolean pairs associated with each statement s. Intuitively,
if (bl, bm) ∈ abs(s), then in the abstraction the value of bm after s terminates is equal to
the value of bl before the execution of s. Formally, abs(s) is defined as follows:

abs(s) := {(bl, bm)|∃(pi,pj) ∈ transfer(s). bl = map(s,pi) ∧
∃s′ ∈ child(s). bm = map(s′,pj)}.

Given a Boolean variable bi and a statement sl, the following cases are possible:

– sl updates the value of bi. That is, there exists a bj ∈B such that (bj , bi) ∈ abs(sl).
We denote the set of all statements which update bi as update(bi). The function
rhs(sl, bi) returns the Boolean variable which is assigned to bi in the statement sl.

– sl assigns a non-deterministic value to bi. The set of all such statements is denoted by
nondet(bi). In order to understand the use of this set, consider a Boolean variable
b which is used to represent two distinct predicates p1 and p2 on the same path.
Assume that b is not used to represent any other predicate between the statements
s and s′. Since p1 and p2 are not related, the value of b when it is representing p1
should not be used when b is representing p2. So b is assigned a non-deterministic
value between the path starting from s to s′. This is necessary to ensure that the
abstraction is an over-approximation of the original program. This case is shown in
Fig. 4(c).

– The value of bi is a don’t-care at statement sl. The value of bi is a don’t care for all the
statements which are not present in update(bi) or nondet(bi). In such cases, we set
the value of bi to false at these statements, in order to simplify its conjunction with
the program counter variable to false. This simplifies the overall transition relation.
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Given the above information the next state function for the variable bi is defined as
follows (we use an input vi for introducing non-determinism and pcl to denote PC = l):

b′i :=
[ ∨

sl∈update(bi)

(pcl∧ rhs(sl, bi))
]
∨
[ ∨

sl∈nondet(pi)

(pcl∧vi)
]
. (2)

Local constraint generation: The abstraction can be made more precise by relating the
predicates in local(s) for some s. For example, in Fig. 3(b) the predicates in local(s1)
satisfy the constraint that p2 ↔¬p4. In order to add this constraint to the abstraction,
we need to translate it in terms of the Boolean variables. The mapping given in Fig. 3(d)
assigns Boolean variables b1, b2 to p2, p4, at s1 respectively. This leads to a constraint
(PC = 1) → (b1 ↔ ¬b2). This is called a local constraint as it is useful only when
PC = 1. We cannot omit the PC = 1 term from the constraint as this would mean
that b1 ↔ ¬b2 holds throughout the abstraction. The abstraction with register sharing
in Fig. 3(e) combined with the local constraint in Fig. 3(f) is sufficient to show that the
ERROR label is not reachable in the C program given in Fig. 3(a).

4 Dedicated State Variables

Register sharing enables the creation of abstract models with as few Boolean variables
as possible which enables more efficient model checking of the abstractions. However,
register sharing might also result in a large number of refinement iterations as described
in the following. Consider a sequence SE of statements from s to s′, which does not
modify the value of a predicate p. Suppose p is localized at the statements s,s′, but not at
any intermediate statement in SE. In abstraction with register sharing, it is possible that
p is represented by two different Boolean variables b1 and b2 at s and s′, respectively.
Because the value of p remains unchanged along SE, the value of b1 at s should be equal
to the value of b2 at s′. If this is not tracked, we may obtain a spurious counterexample
by assigning different values to b1 at s and b2 at s′. This leads to a refinement step, which
localizes the predicate p at every statement in SE, to ensure that the value of predicate p
does not change along SE in subsequent iterations. We should note that such behavior
is handled in the abstraction without register sharing approach through the use of the
unchanged set denoted by unc in Eqn. (1) described earlier.

If p is discovered frequently in different parts of the program through various spurious
counterexamples, then using the abstraction with register sharing will lead to many
abstraction refinement iterations. This problem can be avoided, if p is represented by
exactly one Boolean variable b in a large scope of the abstraction. This is because the
value of b will not be changed by any statement in SE, and thus, the value of b at s′ will
be the same as that at s. We call a Boolean variable which represents only one predicate
for a large scope a dedicated state variable. The next state function for a dedicated state
variable b is computed using Eqn. (1).

Hybrid Approach: Initially, when a predicate is discovered it is assigned a Boolean
variable, which can be reused for representing different predicates in other parts of the
abstraction. If the same predicate is discovered through multiple counterexamples in the
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various parts of the program, then it is assigned a dedicated Boolean variable for a global
or functional scope of the program depending on the variables used in the predicate. The
decision about when to assign a dedicated Boolean variable to a predicate is done by
making use of the following heuristic.

For each predicate p, let usage(p, i) denote the number of statements where p is
localized in the iteration number i of the abstraction refinement loop. If usage(p, i)
exceeds a certain user-defined threshold TH , then p is assigned a dedicated Boolean
variable. If TH = 0, then every predicate will be assigned a dedicated state variable as
soon as it is discovered. This is similar to performing abstraction with no register sharing
for all state variables. On the other hand, if TH = |L|+1, where |L| is the total number
of statements in the program, then none of the predicates will be assigned a dedicated
state variable. This allows complete reuse of the abstract variables, which is similar to
abstraction with register sharing. For any intermediate value of TH we have a hybrid of
abstraction with and without register sharing.

In the hybrid approach, it is possible to have global constraints on the dedicated state
variables. This saves refinement iterations where the same constraint is added locally in
various parts by means of counterexamples. We can still have local constraints on the
state variables which are reused. Furthermore, we hope to discover as early as possible
whether a predicate should be given a dedicated state variable by having a low threshold
for the early iterations of the abstraction refinement loop, which increases as the number
of iterations increases. Predicting early on that a predicate may need a dedicated state
variable reduces the number of abstraction refinement iterations substantially.

5 Experimental Results

We have implemented these techniques in NEC’s F-Soft [15] verification tool. All
experiments were performed on a 2.8GHz dual-processor Linux machine with 4GB
of memory. We report our experimental results on the TCAS and Alias case studies.
TCAS (Traffic Alert and Collision Avoidance System) is an aircraft conflict detection
and resolution system used by all US commercial aircrafts. We used an ANSI-C version
of a TCAS component available from Georgia Tech. Even though the pre-processed
program has only 1652 lines of code, the number of predicates needed to verify the
properties is non-trivial for both F-Soft and BLAST. We checked 10 different safety
properties of the TCAS system. Alias is an artificial benchmark which makes extensive
use of pointers. Each property was encoded as a certain error label in the code. If the
label is not reachable, then the property is said to hold. Otherwise, we report the length
of the counterexample in the "Bug" column in Table 1. CPU times are given in seconds,
and we set a time limit of one hour for each analysis. Note, that many implementation
details of F-Soft and BLAST not discussed here may impact the measured runtimes.

5.1 Predicate Localization, Register Sharing, and Dedicated State Variables

We first experimented with no localization of predicates. However, this approach did
not scale, as the abstraction computation becomes a bottleneck. We next experimented
with localization of predicates using weakest pre-conditions. The results of applying
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only localization and abstraction without register sharing is shown under the "Localize"
heading in the Table 1. The "Time Abs MC" column gives the total time, followed by the
breakup of total time into the time taken by abstraction (Abs), model checking (MC),
respectively. We omit the time taken by refinement, which is equal to Time - (Abs +
MC) for each row. The "P" and the "I" columns give the total number of predicates,
and the total number of iterations, respectively. Two observations can be made from the
"Localize" results: 1) Due to the localization of predicates, the abstraction computation
is no longer a bottleneck. 2) Model checking takes most of the time, since for each
predicate a state variable is created in the abstract model. Note that the model checking
step is the cause of the timeouts in three rows under the "Localize" results.

Next, we experimented with register sharing. The number of state variables in the
abstraction was reduced, and the individual model-checking steps became faster. How-
ever, as discussed in Sec. 4 this approach resulted in too many abstraction refinement
iterations. This problem was solved by discovering on-the-fly whether a predicate should
be assigned a dedicated state variable, that is, a state variable which will not be reused. A
dedicated state variable is introduced for a predicate whose usage exceeds a progressively
increasing threshold, starting at 5% of the total number of program locations.

The results of combining these multiple techniques is given under the "Combined"
heading in Table 1. The "P Max Ded" column gives the total number of predicates (P),
followed by the maximum number of predicates active at any program location (Max),
and the total number of state variables which represent exactly one predicate, that is,
dedicated state variables (Ded). Observe that the time spent during model checking (MC)
has reduced significantly as compared to the "Localize" column.

We also experimented with theTH (threshold) parameter, which is used to determine
when a predicate is assigned a dedicated state variable. Fig. 5(a) shows the variation of
the total runtime with the initial value for the threshold. When the threshold is equal to
zero every predicate is assigned a dedicated state variable. This results in too many state
variables in the abstract model causing the total runtime to be high. However, as the
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Fig. 5. (a) Variation in the total runtime with the threshold. (b) Variation in the total number of
abstraction refinement iterations with the threshold
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Table 1. Results for: 1) Localization, abstraction without register sharing ("Localize") . 2) Local-
ization, abstraction with register sharing, dedicated state variables ("Combined"). 3) BLAST with
interpolation ("BLAST"). A "-" indicates that the property holds. A "·" indicates that the bench-
mark could not be handled properly. A "TO" indicates a timeout of 1hr. We report the statistics
observed before timeout occurs

Bench Localize Combined BLAST Bug
-mark Time Abs MC P I Time Abs MC P Max Ded I Time P Max Avg I
TCAS0 245 7 196 71 32 36 5 15 65 26 18 31 96 85 24 10 33 -
TCAS1 1187 15 1069 108 44 161 9 118 96 35 25 38 256 137 43 17 42 -
TCAS2 952 10 882 74 38 104 25 51 95 31 24 36 148 108 31 11 40 -
TCAS3 940 15 864 91 36 46 17 17 73 22 15 33 172 101 26 10 44 152
TCAS4 1231 13 1111 97 39 88 9 48 90 34 25 32 182 149 38 13 51 166
TCAS5 1222 11 1128 79 41 141 8 98 98 37 29 31 105 114 31 10 33 -
TCAS6 TO 20 2270 117 49 330 16 266 109 40 33 40 293 158 41 14 69 179
TCAS7 1758 16 1627 79 47 64 10 29 94 28 21 33 287 125 30 11 63 160
TCAS8 TO 21 1988 84 51 119 13 68 106 34 27 41 181 116 31 11 46 -
TCAS9 TO 26 3349 113 58 250 14 186 106 34 27 44 322 140 40 14 61 179
ALIAS 50 6 33 61 11 6 2 1 55 25 15 9 · · · · · -

threshold is increased, the number of abstraction refinement iterations starts to increase
as shown in Fig. 5(b). The best runtime in our experiments has so far been obtained
for an initial threshold of 5%. Even such a small value for the threshold is effective
in separating the predicates which are globally relevant from those which are locally
useful. As the threshold is further increased very few predicates are assigned dedicated
state variables. One of the main advantages of choosing a small initial threshold is that
we are able to decide early on whether a predicate may need a dedicated state variable.
If we start with a higher initial threshold, the number of additional iterations needed for
a single predicate to receive a dedicated state variable increases too much.

The map function (see Section 3.2) is computed incrementally, as new predicates
are discovered. Suppose during refinement a predicate p gets added to local(s) for some
s. In order to find a state variable to represent the value of p at s, we first check if
some existing state variable can be reused without violating the constraints described
in Section 3.2. Let the total number of times reuse is possible be R. If no existing state
variable can be used, we introduce a new state variable for representing the value of p
at s. Let the total number of times a new state variable is introduced be C. The ratio
R/(C +R) measures the effectiveness of variable reuse in controlling the total number
of state variables. The value of this ratio is 88% on average across the TCAS benchmarks
and 81% for the ALIAS benchmark.

5.2 Comparison with BLAST
We first ran BLAST in the default mode without any options. However, the default
predicate discovery scheme in BLAST fails to find the new set of predicates during
refinement, and terminates without (dis)proving any of the TCAS properties. Next, we
tried the Craig interpolation [14] options (craig1 and craig2) provided by BLAST.
The BLAST manual recommends the use of predH7 heuristic with Craig interpolation.
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Of the various options to BLAST, craig2 and predH7 result in the best performance
when checking the TCAS properties. Table 1 gives the result of running BLAST with
these options under the "BLAST" heading. The "P Max Avg" column gives the total
number of predicates (P), followed by the maximum (Max) and the average (Avg) number
of predicates active at any program location (rounded to the nearest integer).

The best runtimes are shown in bold in Table 1. Note that the "Combined" technique
of F-Soft outperforms BLAST on 9 out of 11 benchmarks, and the number of iterations
required by "Combined" is less than that for "BLAST" in all cases. Recall that the size
of the abstraction is exponential in the maximum number of active predicates (Max).
This number is comparable for both BLAST and F-Soft, even though BLAST makes
use of a more complex refinement technique based on the computation of interpolants.

6 Conclusions and Future Work
The application of the predicate abstraction paradigm to large software depends crucially
on the choice and usage of the predicates. If all predicates are tracked globally in the
program, the analysis often becomes intractable due to the large number of predicate
relationships. In this paper we described various techniques for improving the overall
performance of the abstraction refinement loop. We presented experimental results in our
F-Soft [15] toolkit using the techniques of predicate localization, register sharing and
dedicated state variables, and showed how a combination of these techniques allowed
us to check properties requiring a large number of predicates.

There are a number of interesting avenues for future research. Theoretical compar-
ison between the use of interpolants [14] and the use of weakest pre-conditions for
localization of predicates will be useful. Other techniques for finding the right balance
between the predicates whose values are tracked locally and the predicates whose values
are tracked globally are worth further investigation. Furthermore, we need to experiment
with these heuristics for more and larger case studies as well.
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BLAST.
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On Some Transformation Invariants
Under Retiming and Resynthesis�
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Abstract. Transformations using retiming and resynthesis operations
are the most important and practical (if not the only) techniques used in
optimizing synchronous hardware systems. Although these transforma-
tions have been studied extensively for over a decade, questions about
their optimization capability and verification complexity are not answered
fully. Resolving these questions may be crucial in developing more effec-
tive synthesis and verification algorithms. This paper settles the above
two open problems. The optimization potential is resolved through a con-
structive algorithm which determines if two given finite state machines
(FSMs) are transformable to each other via retiming and resynthesis op-
erations. Verifying the equivalence of two FSMs under such transforma-
tions, when the history of iterative transformation is unknown, is proved
to be PSPACE-complete and hence just as hard as general equivalence
checking, contrary to a common belief. As a result, we advocate a conser-
vative design methodology for the optimization of synchronous hardware
systems to ameliorate verifiability. Our analysis reveals some properties
about initializing FSMs transformed under retiming and resynthesis. On
the positive side, established is a lag-independent bound on the length
increase of initialization sequences for FSMs under retiming. It allows a
simpler incremental construction of initialization sequences compared to
prior approaches. On the negative side, we show that there is no analo-
gous transformation-independent bound when resynthesis and retiming
are iterated. Fortunately, an algorithm computing the exact length in-
crease is presented.

1 Introduction

Retiming [7, 8] is an elementary yet effective technique in optimizing synchronous
hardware systems. By simply repositioning registers, it is capable of reschedul-
ing computation tasks in an optimal way subject to some design criteria. As
both an advantage and a disadvantage, retiming preserves the circuit structure
of the system under consideration. It is an advantage in that it supports incre-
mental engineering change with good predictability, and a disadvantage in that
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the optimization capability is somewhat limited. Therefore, resynthesis [9, 1, 10]
was proposed to be combined with retiming, allowing modification of circuit
structures. This combination of retiming and resynthesis certainly extends the
optimization power of retiming, but to what extent remains an open problem,
even though some notable progress has been made since [9], e.g. [14, 15, 20].
Fully resolving this problem is crucial in understanding the complexity of ver-
ifying the equivalence of systems transformed by retiming and resynthesis and
in constructing correct initialization sequences. In fact, despite its effectiveness,
the transformation of retiming and resynthesis is not widely used in hardware
synthesis flows due to the verification hindrance and the initialization problem.
Progress in these areas could enhance the practicality and application of retim-
ing and resynthesis, and advance the development of more effective synthesis
and verification algorithms.

This paper tackles three main problems regarding retiming and resynthesis:

Optimization power: What is the transformation power of retiming and resyn-
thesis? How can we tell if two synchronous systems are transformable to each
other with retiming and resynthesis operations?

Verification complexity: What is the computational complexity of verifying
if two synchronous systems are equivalent under retiming and resynthesis?

Initialization: How does the transformation of retiming and resynthesis affect
the initialization of a synchronous system? How can we correct initialization
sequences?

Our main results include

• (Section 3) Characterize constructively the transformation power of retiming
and resynthesis.

• (Section 4) Prove the PSPACE-completeness of verifying the equivalence of
systems transformed by retiming and resynthesis operations when the trans-
formation history is lost.

• (Section 5) Demonstrate the effects of retiming and resynthesis on the initial-
ization sequences of synchronous systems. Present an algorithm correcting
initialization sequences.

2 Preliminaries

In this paper, to avoid later complication we shall not restrict ourselves to bi-
nary variables and Boolean functions. Thus, we assume that variables can take
values from arbitrary finite domains, and similarly functions can have arbitrary
finite domains and co-domains. When (co)domains are immaterial in the dis-
cussion, we shall omit specifying them. We introduce the following notational
conventions. Let V1 be a set of variables. Notation [[V1]] represents the set of all
possible valuations over V1. Let V2 ⊆ V1. For x ∈ [[V1]], we use x[V2] ∈ [[V2]]
to denote the valuation over variables V2 which agrees with x on V2. Suppose
s is a (current-)state variable. Its primed version s′ denotes the corresponding
next-state variable.



On Some Transformation Invariants Under Retiming and Resynthesis 415

Synchronous Hardware Systems. Based on [7], a syntactical definition of
synchronous hardware systems can be formulated as follows. A hardware system
is abstracted as a directed graph, called a communication graph, G = (V, E)
with typed vertices V and weighted edges E. Every vertex v ∈ V represents
either the environment or a functional element. The vertex representing the en-
vironment is the host, which is of type undefined; a vertex is of type f if the
functional element it represents is of function f (which can be a multiple-output
function consisting of f1, f2, . . .). Every edge e〈w〉 = (u, v)〈w〉 ∈ E with a non-
negative integer-valued weight w corresponds to the interconnection from vertex
u to vertex v interleaved by w state-holding elements (or registers). (From the
viewpoint of hardware systems, any component in a communication graph dis-
connected from the host is redundant. Hence, in the sequel, we assume that a
communication graph is a single connected component.) A hardware system is
synchronous if, in its corresponding communication graph, every cycle contains
at least one positive-weighted edge. This paper is concerned with synchronous
hardware systems whose registers are all triggered by the same clock ticks. More-
over, according to the initialization mechanism, a register can be reset either
explicitly or implicitly. For registers with explicit reset, their initial values are
determined by some reset circuitry when the system is powered up. In contrast,
for registers with implicit reset, their initial values can be arbitrary, but can be
brought to an identified set of states (i.e. the set of initial states1) by applying
some input sequences, the so-called initialization (or reset) sequences [13]. It
turns out that explicit-reset registers can be replaced with implicit-reset ones
plus some reset circuitry [10, 17]. (Doing so admits a more systematic treatment
of retiming synchronous hardware systems because retiming explicit-reset regis-
ters needs special attention to maintain equivalent initial states.) Without loss of
generality, this paper assumes that all registers have implicit reset. In addition,
we are concerned with initializable systems, that is, there exist input sequences
which bring the systems from any state to some set of designated initial states.

The semantical interpretation of synchronous hardware systems can be mod-
elled as finite state machines (FSMs). An FSM M is a tuple (Q, I,Σ,Ω, δ,λ),
where Q is a finite set of states, I ⊆ Q is the set of initial states, Σ and Ω
are the sets of input and output alphabets, respectively, and δ : Σ × Q → Q
(resp. λ : Σ × Q → Ω) is the transition function (resp. output function). Let
VS , VI , and VO be the sets of variables that encode the states, input alphabets,
and output alphabets respectively. Then Q = [[VS ]], Σ = [[VI ]] and Ω = [[VO]]. To
uniquely construct an FSM from a communication graph G = (V, E), we divide
each edge (u, v)〈w〉 ∈ E into w+1 edges separated by w registers and connected
with the two end-vertices u and v. We then associate the outgoing (incoming)
edges of registers with current-state variables VS (next-state variables VS′); asso-
ciate the outgoing (incoming) edges of the host with variables VI (VO). All other
edges are associated with internal variables. The transition and output functions

1 When referring to “initial states,” we shall mean the starting states of a system after
initialization.
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are obtained, starting from VS′ and VO, respectively, by a sequence of recursive
substitutions of variables with functions of their input functional elements until
the functions depend only on variables VI ∪ VS .

We define a strong form of state equivalence which will govern the study of
the transformation power of retiming.

Definition 1. Given an FSM M = (Q, I,Σ,Ω, δ,λ), two states q1, q2 ∈ Q are
immediately equivalent if δ(σ, q1) ≡ δ(σ, q2) and λ(σ, q1) ≡ λ(σ, q2) for any
σ ∈ Σ.

Also, we define dangling states inductively as follows.

Definition 2. Given an FSM, a state is dangling if either it has no prede-
cessor state or all of its predecessor states are dangling. All other states are
non-dangling.

Retiming. A retiming operation over a synchronous hardware system consists
of a series of atomic moves of registers across functional elements in either a for-
ward or backward direction. (The relocation of registers is crucial in exploring
optimal synchronous hardware systems with respect to various design criteria,
such as area, performance, power, etc. As not our focus, the exposition of retim-
ing in the optimization perspective is omitted in this paper. Interested readers
are referred to [8].) Formally speaking, retiming can be described with a retime
function [7] over a communication graph as follows.

Definition 3. Given a communication graph G = (V, E), a retime function
ρ : V → Z maps each vertex to an integer, called the lag of the vertex, such
that w + ρ(v)− ρ(u) ≥ 0 for any edge (u, v)〈w〉 ∈ E. If ρ(host) ≡ 0, ρ is called
normalized; otherwise, ρ is unnormalized.

Given a communication graph G = (V, E), any retime function ρ over G uniquely
determines a “legally” retimed communication graph G† = (V, E†) in which
(u, v)〈w〉 ∈ E if, and only if, (u, v)〈w + ρ(v)− ρ(u)〉 ∈ E†. It is immediate that
the retime function −ρ reverses the retiming from G† to G.

Retime functions can be naturally classified by calibrating their equivalences
as follows.

Definition 4. Given a communication graph G, two retime functions ρ1 and ρ2
are equivalent if they result in the same retimed communication graph.

Proposition 1. Given a retime function ρ with respect to a communication
graph, offsetting ρ by an integer constant c results in an equivalent retime func-
tion.

Hence any retime function can be normalized. This equivalence relation, which
will be useful in the study of the increase of initialization sequences due to
retiming, induces a partition over retime functions. Equivalent retime functions
(with respect to some communication graph) form an equivalence class.
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Proposition 2. Given a communication graph G, any equivalence class of re-
time functions is of infinite size; any equivalence class of normalized retime
functions is of size either one or infinity (only when G contains components dis-
connected from the host). Furthermore, any equivalence class of retime functions
has a normalized member.

Resynthesis. A resynthesis operation over a function f rewrites the syntacti-
cal formula representation of f while maintaining its semantical functionality.
Clearly, the set of all possible rewrites is infinite (but countable, namely, with
the same cardinality as the set N of natural numbers). When a resynthesis op-
eration is performed upon a synchronous hardware system, we shall mean that
the transition and output functions of the corresponding FSM are modified in
representations but preserved in functionalities. This modification in represen-
tations will be reflected in the communication graph of the system. (Again, such
rewrites are usually subject to some optimization criteria. Since this is not our
focus, the optimization aspects of resynthesis operations are omitted. See, e.g.,
[1] for further treatment.)

3 Optimization Capability

The transformation power of retiming and resynthesis can be understood best
with state transition graphs (STGs) defined by FSMs. We investigate how re-
timing and resynthesis operations can alter STGs.

3.1 Optimization Power of Retiming

We study how the atomic forward and backward moves of retiming affect the
corresponding FSM M = ([[VS ]], I, Σ,Ω, δ,λ) of a given communication graph
G = (V, E).

To study the effect of an atomic backward move, consider a normalized retime
function ρ with ρ(v) = 1 for some vertex v ∈ V and ρ(u) = 0 for all u ∈ V \{v}.
(Because a retiming operation can be decomposed as a series of atomic moves,
analyzing ρ defined above suffices to demonstrate the effect.) Let VS = VS� ∪VS∗

be the state variables of M, where VS� = {s1, . . . , si} and VS∗ = {si+1, . . . , sn}
are disjoint. Suppose v is of type f : [[{t1, . . . , tj}]] → [[{s′1, . . . , s′i}]], where the
valuation of next-state variables s′k is defined by fk(t1, . . . , tj) for k = 1, . . . , i.
Let M† = ([[V†

S ]], I†, Σ,Ω, δ†,λ†) be the FSM after retiming, where state vari-
ables V†

S = VT ∪ VS∗ with VT = {t1, . . . , tj}. For any two states q†1, q
†
2 ∈ [[V†

S ]],
if q†1[VS∗ ] ≡ q†2[VS∗ ] and f(q†1[VT ]) ≡ f(q†2[VT ]), then q†1 and q†2 are immediately
equivalent. This immediate equivalence results from the fact that the transition
and output functions of M† can be valuated after the valuation of f, which
filters out the difference between q†1 and q†2. Comparing state pairs between M
and M†, we can always find a relation R ⊆ [[VS ]]× [[V†

S ]] such that
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1. Pairs (q1, q
†
1) and (q1, q

†
2) are both in R for the state q1 of M with q1[VS∗ ] ≡

q†1[VS∗ ] and q1[VS� ] ≡ f(q†1[VT ]).
2. It preserves the immediate equivalence, that is, (q, q†) ∈ R if, and only if,

λ(σ, q) ≡ λ†(σ, q†) and (δ(σ, q), δ†(σ, q†)) ∈ R for any σ ∈ Σ.

Since f is a total function, every state of M† has a corresponding state in M
related by R. (It corresponds to the fact that backward moves of retiming cannot
increase the length of initialization sequences, the subject to be discussed in Sec-
tion 5.) On the other hand, since f may not be a surjective (or an onto) mapping
in general, there may be some state q of M such that ∀x ∈ [[VT ]]. q[VS� ] �≡ f(x),
that is, no states can transition to q. In this case, q can be seen as being anni-
hilated after retiming. To summarize,

Lemma 1. An atomic backward move of retiming can 1) split a state into mul-
tiple immediately equivalent states and/or 2) annihilate states which have no
predecessor states.

With a similar reasoning by reversing the roles of M and M†, one can show

Lemma 2. An atomic forward move of retiming can 1) merge multiple imme-
diately equivalent states into a single state and/or 2) create states which have
no predecessor states.

(Similar results of Lemmas 1 and 2 appeared in [15], where the phenomena of
state creation and annihilation were omitted.)

Note that, in a single atomic forward move of retiming, transitions among
the newly created states are prohibited. In contrast, when a sequence of atomic
forward moves m1, . . . ,mn are performed, the newly created states at move
mi can possibly have predecessor states created in later moves mi+1, . . . ,mn.
Clearly all the newly created states not merged with original existing states due
to immediate equivalence are dangling. However, to be shown in Section 5.1, the
transition paths among these dangling states cannot be arbitrarily long.

Since a retiming operation consists of a series of atomic moves, Lemmas 1
and 2 set the fundamental rules of all possible changes of STGs by retiming.
Observe that a retiming operation is always associated with some structure (i.e.
a communication graph). For a fixed structure, a retiming operation has limited
optimization power, e.g., the converses of Lemmas 1 and 2 are not true. That
is, there may not exist atomic moves of retiming (over a communication graph)
which meet arbitrary targeting changes on an STG. Unlike a retiming operation,
a resynthesis operation provides the capability of modifying the vertices and
connections of a communication graph.

3.2 Optimization Power of Retiming and Resynthesis

A resynthesis operation itself cannot contribute any changes to the STG of
an FSM. However, when combined with retiming, it becomes a handy tool. In
essence, the combination of retiming and resynthesis validates the converse of
Lemmas 1 and 2 as will be shown in Theorem 1. Moreover, it determines the
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transitions of newly created states due to forward retiming moves, and thus has
decisive effects on initialization sequences as will be discussed in Section 5.2.
On the other hand, we shall mention an important property about retiming and
resynthesis operations.

Lemma 3. Given an FSM, the newly created states (not merged with original
existing states due to immediate equivalence) due to atomic forward moves of re-
timing remain dangling throughout iterative retiming and resynthesis operations.

Remark 1. As an orthogonal issue to our discussion on how retiming and resyn-
thesis can alter the STG of an FSM, the transformation of retiming and resyn-
thesis was shown [10] to have the capability of exploiting various state encodings
(or assignments) of the FSM.

Notice that the induced state space of the dangling states originating from
atomic moves of retiming is immaterial in our study of the optimization capabil-
ity of retiming and resynthesis because an FSM after initialization never reaches
such dangling states. An exact characterization of the optimization power of
retiming and resynthesis is given as follows.

Theorem 1. Ignoring the (unreachable) dangling states created due to retiming,
two FSMs are transformable to each other through retiming and resynthesis if,
and only if, their state transition graphs are transformable to each other by a
sequence of splitting a state into multiple immediately equivalent states and of
merging multiple immediately equivalent states into a single state.

(A similar result of Theorem 1 appeared in [15], where however the optimiza-
tion power of retiming and resynthesis was over-stated as will be detailed in
Section 6.) From Theorem 1, one can relate two FSMs before and after the
transformation of retiming and resynthesis as follows.

Corollary 1. Given M = (Q, I,Σ,Ω, δ,λ) and M† = (Q†, I†, Σ,Ω, δ†,λ†),
FSMs M and M† are transformable to each other through retiming and resyn-
thesis operations if, and only if, there exists a relation R ⊆ Q×Q† satisfying

1. Any non-dangling state q ∈ Q (resp. q† ∈ Q†) has at least one non-dangling
state q† ∈ Q† (resp. q ∈ Q) such that (q, q†) ∈ R.

2. State pair (q, q†) ∈ R if and only if, for any σ ∈ Σ, λ(σ, q) ≡ λ†(σ, q†) and
(δ(σ, q), δ†(σ, q†)) ∈ R.

Notice that the statements of Theorem 1 and Corollary 1 are nonconstructive in
the sense that no procedure is given to determine if two FSMs are transformable
to each other under retiming and resynthesis. This weakness motivates us to
study a constructive alternative.

3.3 Retiming- esynthesis Equivalence and Canonical
Representation

Given an FSM, the transformation of retiming and resynthesis operations can
rewrite it into a class of equivalent FSMs (constrained by Corollary 1). We ask

R



420 J.-H.R. Jiang

ConstructQuotientGraph
input: a state transition graph G
output: a state-minimized transition graph w.r.t. immediate equivalence
begin
01 remove dangling states from G
02 repeat
03 compute and merge immediately equivalent states of G
04 until no merging performed
05 return the reduced graph
end

Fig. 1. Algorithm: Construct quotient graph

if there exists a computable canonical representative in each such class, and
answer this question affirmatively by presenting a procedure constructing it.
Rather than arguing directly over FSMs, we simplify our exposition by arguing
over STGs.

Because retiming and resynthesis operations are reversible, we know

Proposition 3. Given STGs G, G1, and G2. Suppose G1 and G2 are deriv-
able from G using retiming and resynthesis operations. Then G1 and G2 are
transformable to each other under retiming and resynthesis.

We say that two FSMs (STGs) are equivalent under retiming and resynthesis
if they are transformable to each other under retiming and resynthesis. Thus,
any such equivalence class is complete in the sense that any member in the class
is transformable to any other member. To derive a canonical representative of
any equivalence class, consider the algorithm outlined in Figure 1. Similar to
the general state minimization algorithm [6], the idea is to seek a representative
minimized with respect to the immediate equivalence of states. However, unlike
the least-fixed-point computation of the general state minimization, the compu-
tation in Figure 1 looks for a greatest fixed point. Given an STG, the algorithm
first removes all the dangling states, and then iteratively merges immediately
equivalent states until no more states can be merged.

Theorem 2. Given an STG G, Algorithm ConstructQuotientGraph produces
a canonical state-minimized solution, which is equivalent to G under retiming
and resynthesis.

For a näive explicit enumerative implementation, Algorithm ConstructQuotient-
Graph is of time complexity O(kn3), where k is the size of input alphabet and
n is number of states. (Notice that the complexity is exponential when the in-
put is an FSM, instead of an STG, representation.) For an implicit symbolic
implementation, the complexity depends heavily on the internal symbolic repre-
sentations. If Step 3 in Figure 1 computes and merges all immediately equivalent
states at once in a breadth-first-search manner, then the algorithm converges in
a minimum number of iterations.
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VerifyEquivalenceUnderRetiming&Resynthesis
input: two state transition graphs G1 and G2

output: Yes, if G1 and G2 are equivalent under retiming and resynthesis
No, otherwise

begin
01 G1/ := ConstructQuotientGraph(G1)
02 G2/ := ConstructQuotientGraph(G2)
03 if G1/ and G2/ are isomorphic
04 then return Yes
05 else return No
end

Fig. 2. Algorithm: Verify equivalence under retiming and resynthesis

An algorithm outlined in Figure 2 can check if two STGs are transformable
to each other under retiming and resynthesis.

Theorem 3. Given two state transition graphs, Algorithm VerifyEquivalence-
UnderRetiming&Resynthesis verifies if they are equivalent under retiming and
resynthesis.

The complexity of the algorithm in Figure 2 is the same as that in Figure 1 since
the graph isomorphism check for STGs is O(kn), which is not the dominating
factor. With the presented algorithm, checking the equivalence under retiming
and resynthesis is not easier than general equivalence checking. In the following
section, we investigate its intrinsic complexity.

4 Verification Complexity

We show some complexity results of verifying if two FSMs are equivalent under
retiming and resynthesis.

4.1 Verification with Unknown Transformation History

We investigate the complexity of verifying the equivalence of two FSMs with
unknown history of (iterative) retiming and resynthesis operations.

Theorem 4. Determining if two FSMs are equivalent under iterative retiming
and resynthesis with unknown transformation history is PSPACE-complete.

Proof. Certainly Algorithm VerifyEquivalenceUnderRetiming&Resynthesis can
be performed in polynomial space (even with inputs in FSM representations).

On the other hand, we need to reduce a PSPACE-complete problem to our
problem at hand. The following problem is chosen.

Given a total function f : {1, . . . , n} → {1, . . . , n}, is there a composition
of f such that, by composing f k times, fk(1) = n?
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In other words, the problem asks if n is “reachable” from 1 through f . It was
shown [5] to be deterministic2 LOGSPACE-complete in the unary representa-
tion and, thus, PSPACE-complete in the binary representation [12]. We show
that the problem in the unary (resp. binary) representation is log-space (resp.
polynomial-time) reducible to our problem with inputs in STG (resp. FSM)
representations. We further establish that the answer to the PSPACE-complete
problem is positive if and only if the answer to the corresponding equivalence
verification problem (to be constructed) is negative. Since the complexity class of
nondeterministic space is closed under complementation [4], the theorem follows.

To complete the proof, we elaborate the reduction. Given a function f as
stated earlier, we construct two total functions f1, f2 : {0, 1, . . . , n} → {0, 1, . . . , n}
as follows. Let f1 have the same mapping as f over {1, . . . , n − 1} and have
f1(0) = 1 and f1(n) = 1. Also let f2 have the same mapping as f with f2(0) = 1
but f2(n) = 0. Clearly the constructions of f1 and f2 can be done in log-space.
Treating {0, 1, . . . , n} as the state set, f1 and f2 specify the transitions of two
STGs, say G1 and G2, (which have empty input and output alphabets). Observe
that any state of G1 (similarly G2) has exactly one next-state. Thus, every state
is either in a single cycle or on a single path leading to a cycle. Observe also
that two states of G1 (similarly G2) are immediately equivalent if and only if
they have the same next-state. An important consequence of these observations
is that all states not in cycles can be merged through iterative retiming and
resynthesis due to immediate equivalence.

To see the relationship between reachability and equivalence under retiming
and resynthesis, consider the case where n is reachable from 1 through f . States 1
and n of G1 must be in a cycle excluding state 0; states 1 and n of G2 must be in
a cycle including state 0. Hence the state-minimized (with respect to immediate
equivalence) graphs of G1 and G2 are not isomorphic. That is, G1 and G2 are not
equivalent under retiming and resynthesis. On the other hand, consider the case
where n is unreachable from 1 through f . Then state n of G1 and state n of G2
are dangling. From the mentioned observations, merging dangling states in G1
and G2 yields two isomorphic graphs. That is, G1 and G2 are equivalent under
retiming and resynthesis. Therefore, n is reachable from 1 through f if, and only
if, G1 and G2 are not equivalent under retiming and resynthesis. (Notice that,
unlike the discussion of optimization capability, here we should not ignore the
effects of retiming and resynthesis over the unreachable state space.)

4.2 Verification with Known Transformation History

By Theorem 4, verifying if two FSMs are equivalent under retiming and resyn-
thesis without knowing the transformation history is as hard as the general
equivalence checking problem. Thus, we advocate a conservative design method-
ology optimizing synchronous hardware systems to ameliorate verifiability.

2 It is a well-known result by Savitch [16] that deterministic and nondeterministic
space complexities coincide.
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An easy approach to circumvent the PSPACE-completeness is to record the
history of retiming and resynthesis operations as verification checkpoints, or
alternatively to perform equivalence checking after every retiming or resynthesis
operation. The reduction in complexity results from the following well-known
facts.

Proposition 4. Given two synchronous hardware systems, verifying if they are
transformable to each other with retiming is of the same complexity as checking
graph isomorphism; verifying if they are transformable to each other with resyn-
thesis is of the same complexity as combinational equivalence checking, which is
NP-complete.

Therefore, if transformation history is completely known, the verification com-
plexity reduces to NP-complete.

5 Initialization Sequences

To discuss initialization sequences, we rely on the following proposition of
Pixley [13].

Proposition 5. ([13]) An FSM is initializable only if its initial states are non-
dangling. (In fact, any non-dangling state can be used as an initial state by
suitably modifying initialization sequences.)

By Lemma 3, Corollary 1 and Proposition 5, it is immediate that

Corollary 2. The initializability of an FSM is an invariant under retiming and
resynthesis.

Hence we shall assume that the given FSM M is initializable. Furthermore, we
assume that its initialization sequence is given as a black box. That is, we have
no knowledge on how M is initialized. Under these assumptions, we study how
the initialization sequence is affected when M is retimed (and resynthesized).
As shown earlier, the creation and annihilation of dangling states are immaterial
to the optimization capability of retiming and resynthesis. However, they play a
decisive role in affecting initialization sequences. In essence, the longest transition
path among dangling states determines how long the initialization sequences
should be increased.

5.1 Initialization Affected by Retiming

Lag-dependent bounds. Effects of retiming on initialization sequences were
studied by Leiserson and Saxe in [7], where their Retiming Lemma can be
rephrased as follows.

Lemma 4. ([7]) Given a communication graph G = (V, E) and a normalized
retime function ρ, let � = maxv∈V −ρ(v) and let G† be the corresponding retimed
communication graph of G. Suppose M and M† are the FSMs specified by G and



424 J.-H.R. Jiang

G†, respectively. Then after M† is initialized with an arbitrary input sequence
of length �, any state of M† has an equivalent3 state in M.

That is, � (nonnegative for normalized ρ) gives an upper bound of the increase
of initialization sequences under retiming. This bound was further tightened in
[2, 18] by letting � be the maximum of −ρ(v) for all v of functional elements
whose functions define non-surjective mappings. Unfortunately, this strengthen-
ing still does not produce an exact bound. Moreover, by Proposition 1, a nor-
malized retime function among its equivalent retime functions may not be the
one that gives the tightest bound. A derivation of exact bounds will be discussed
in Section 5.2.

Lag-independent Bounds. Given a synchronous hardware system, a natural
question is if there exists some bound which is universally true for all possible
retiming operations. Even though the bound may be looser than lag-dependent
bounds, it discharges the construction of new initialization sequences from know-
ing what retime functions have been applied. Indeed, such a bound does exist
as exemplified below.

Proposition 6. Given a communication graph G = (V, E) and a normalized
retime function ρ, let r(v) denote the minimum number of registers along any
path from the host to vertex v. Then r(v) sets an upper bound of the number of
registers that can be moved forward across v, i.e., −r(v) ≤ ρ(v). (Similarly, r(v)
on G with reversed edges sets an upper bound of ρ(v).)

Thus, maxv r(v), which is intrinsic to a communication graph and is independent
of retiming operations, yields a lag-independent bound.

When initialization delay is not a concern for a synchronous system, one can
even relax the above lag-independent bound by saying that the total number
of registers of the system is another lag-independent bound. As an example,
suppose a system has one million registers and its retimed version runs at one
gigahertz clock frequency. Then the initialization delay increased due to retiming
is less than a thousandth of a second.

5.2 Initialization Affected by Retiming and Resynthesis

So far we have focused on initialization issues arising when a system is retimed
only. Here we extend our study to issues arising when a system is iteratively
retimed and resynthesized.

A difficulty emerges from directly applying Lemma 4 to bound the increase
of initialization sequences under iterative retiming and resynthesis. Interleaving
retiming with resynthesis makes the union bound

∑
i ui the only available bound

from Lemma 4, where ui denotes the lag-dependent bound for the ith retiming
operation. Essentially, inaccuracies accumulate along with the summation of

3 A state q of FSM M is equivalent to a state q† of FSM M† if M starting from q,
and M† starting from q† have the same input-output behavior.
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the union bound. Thus, the bound derived this way can be far beyond what is
necessary. In the light of lag-independent bounds discussed earlier, one might
hope that there may exist some constant which upper bounds the increase of
initialization sequences due to any iterative retiming and resynthesis operations.
(Notice that, when no resynthesis operation is performed, the transformation of a
series of retiming operations can be achieved by a single retiming operation. Thus
a lag-independent bound exists for iterative retiming operations.) Unfortunately,
such a transformation-independent bound does not exist as shown in Theorem 5.

Lemma 5. Any dangling state of an FSM (with implicit reset) is removable
through iterative retiming and resynthesis operations.

Theorem 5. Given a synchronous hardware system and an arbitrary constant
c, there always exist retiming and resynthesis operations on the system such that
the length increase of the initialization sequence exceeds c.

Since the mentioned union bound is inaccurate and requires knowing the ap-
plied retime functions, it motivates us to investigate the computation of exact4

length increase of initialization sequences without knowing the history of retim-
ing and resynthesis operations. The length increase can be derived by computing
the length, say n, of the longest transition paths among the dangling states be-
cause applying an arbitrary5 input sequence of length greater than n drives the
system to a non-dangling state. The length n can be obtained using a symbolic
computation. By breadth-first search, one can iteratively remove states without
predecessor states until a greatest fixed point is reached. The number of the
performed iterations is exactly n.

6 Related Work

Optimization Capability. The closest to our work on the optimization power
of retiming and resynthesis is [15], where the optimization power was unfortu-
nately over-stated contrary to the claimed exactness. The mistake resulted from
the claim that any 2-way switch operation is achievable using 2-way merge and
2-way split operations (see [15] for their definitions). (Essentially, a restriction
needs to be imposed — under any input assignment, the next state of a current
state to be split should be unique.) In fact, only 2-way merge and split operations
are essential. Aside from this minor error, no constructive algorithm was known
to determine if two given FSMs are equivalent under retiming and resynthesis.
In addition, not discussed were the creation and annihilation of dangling states,
which we show to be crucial in initializing synchronous hardware systems.

4 The exactness is true under the assumption that the initialization sequence of the
original FSM is given as a block box. If the initialization mechanism is explored,
more accurate analysis may be achieved.

5 Although exploiting some particular input sequence may shorten the length increase,
it complicates the computation.
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Verification Complexity. Ranjan in [14] examined a few verification complex-
ities for cases under one retiming operation and up to two resynthesis operations
with unknown transformation history. The complexity for the case under an ar-
bitrary number of iterative retiming and resynthesis operations was left open,
and was conjectured in [20] to be easier than the general equivalence checking
problem. We disprove the conjecture.

Initialization Sequences. For systems with explicit reset, the effect of retim-
ing on initial states was studied in [19, 3, 17]. In the explicit reset case, incorpo-
rating resynthesis with retiming does not contribute additional difficulty. Note
that, for systems with explicit-reset registers, forward moves of retiming are
preferable to backward moves in maintaining equivalent initial states, contrary
to the case for systems with implicit-reset registers. To prevent backward moves,
Even et al. in [3] proposed an algorithm to find a retime function such that the
maximum lag among all vertices is minimized. Interestingly enough, their algo-
rithm can be easily modified to obtain minimum lag-dependent bounds on the
increase of initialization sequences. As mentioned earlier, explicit reset can be
seen as a special case of implicit reset when reset circuitry is explicitly repre-
sented in the communication graph. Hence, the study of the implicit reset case is
more general, and is subtler when considering resynthesis in addition to retiming.

Pixley in [13] studied the initialization of synchronous hardware systems with
implicit reset in a general context. Leiserson and Saxe studied the effect of retim-
ing on initialization sequences in [7], where a lag-dependent bound was obtained
and was later improved by [2, 18]. We show a lag-independent bound instead.
In recent work [11], a different approach was taken to tackle the initialization
issue raised by retiming. Rather than increasing initialization sequence lengths,
a retimed system was further modified to preserve its original initialization se-
quence. This modification might need to pay area/performance penalties and
could nullify the gains of retiming operations. In addition, the modification re-
quires expensive computation involving existential quantification, which limits
the scalability of the approach to large systems. In comparison, prefixing an ar-
bitrary input sequence of a certain length to the original initialization sequence
provides a much simpler solution (without modifying the system) to the initial-
ization problem.

7 Conclusions and Future Work

This paper demonstrated some transformation invariants under retiming and
resynthesis. Three main results about retiming and resynthesis were established.
First, an algorithm was presented to construct a canonical representative of an
equivalence class of FSMs transformed under retiming and resynthesis. It was
extended to determine if two FSMs are transformable to each other under re-
timing and resynthesis. Second, a PSPACE-complete complexity was proved for
the above problem when the transformation history of retiming and resynthesis
is unknown. Third, the effects of retiming and resynthesis on initialization se-
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quences were studied. A lag-independent bound was shown on the length increase
of initialization sequences of FSMs under retiming; in contrast, unboundability
was shown for the case of iterative retiming and resynthesis. In addition, an
exact analysis on the length increase was presented.

For future work, it is important to investigate more efficient computation,
with reasonable accuracy, of the length increase of initialization sequences for
FSMs transformed under retiming and resynthesis. Moreover, as the result of
[3] can be modified to obtain a retime function targeting area optimization with
minimum increase of initialization sequences, it would be useful to study retiming
under other objectives while avoiding increasing initialization sequences.
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Compositional Message Sequence Charts
(CMSCs) Are Better to Implement Than MSCs
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Abstract. Communicating Finite States Machines (CFMs) and Mes-
sage Sequence Graphs (MSC-graphs for short) are two popular spec-
ification formalisms for communicating systems. MSC-graphs capture
requirements (scenarios), hence they are the starting point of the de-
sign process. Implementing an MSC-graph means obtaining an equiva-
lent deadlock-free CFM, since CFMs correspond to distributed message-
passing algorithms. Several partial answers for the implementation have
been proposed. E.g., local-choice MSC-graphs form a subclass of deadlock-
free CFM: Testing equivalence with some local-choice MSC-graph is thus
a partial answer to the implementation problem. Using Compositional
MSCs, we propose a new algorithm which captures more implementable
models than with MSCs. Furthermore, the size of the implementation is
reduced by one exponential.

1 Introduction

Specifying the behavior of software systems in such a way that formal methods
can be applied and validation tasks can be automated, is a challenging goal.
While research has brought strong results and tools for simple systems, complex
systems still lack powerful techniques. For instance, concurrent systems such as
message passing systems are still hard to cope with.

Concurrent languages such as Harel’s Live Sequence Charts [11], UML se-
quence diagrams, interworkings..., have seen a growing interest this last decade.
Among them, the ITU visual notation of Message Sequence Charts (MSCs, [14])
has received a lot of attention, both in the area of formal methods and in auto-
matic verification [2, 13, 19, 18, 20]. MSCs can be considered as an abstract rep-
resentation of communications between asynchronous processes. They are used
as requirements, documentations, abstract test cases, and so on. MSC-graphs
propose a way of modeling set of behaviors, combining parallel composition
(processes) with sequential composition (transition system). The main advan-
tage of such a visual representation is to have a local, explicit description of
the communication and the causalities appearing in the system. On the other
hand, SDL (ITU norm Z100) brings another formalism, namely Communicating
Finite States Machines (CFM for short) [5]. Being really close to distributed
algorithms, CFMs are the ideal model for modelling parallel programs. The ab-
sence of deadlock is crucial for communication protocols, where any blocking
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execution means a failure in the system. That is, any concurrent system which
has to be implemented must be turned into a deadlock-free CFM. Hence, we will
consider only deadlock-free CFM implementations in this paper.

Our aim is to give a heuristic to implement MSC-graphs. That is, if a model
passes the test, then it is implementable and we can provide an implementation.
However, if it fails the test, it may be the case that it is implementable anyway.
The important point is to understand which implementable systems are cap-
tured with this algorithm, the more the better. Our test captures every model
which is equivalent to some local-choice Compositional MSC-graph (local-choice
CMSC-graphs for short). Every local-choice CMSC-graph is implementable, for
its control is local (as for CFM), in contrast with the usual global control of
MSC-graphs.

Implementation of MSC-graphs is a non trivial task, which has yet no defini-
tive answer. The first implementation test, which was proposed by [1], captures a
subclass of MSC-graphs which are equivalent to some deadlock-free CFM with-
out adding control data to messages. This test covers only a subclass of the very
restricted regular MSC-graphs. It was further extended to capture a subclass
of globally-cooperative MSC-graphs [16], with the same EXPSPACE-complete
complexity. With this same restriction of disallowing additional data, [12] char-
acterizes the subclass of local-choice MSC-graph which is implementable. Since
data parts are usually abstracted away in an MSC-graph specification, this re-
striction prevents many useful models from being implementable. For instance, as
soon as we add data to messages, any local-choice MSC-graph is implementable
[9]. The first paper to consider additional data was [13], giving the exact expres-
sivity of a subclass of (not deadlock-free) CFMs in terms of MSC-graphs. [4]
characterizes the expressivity of deadlock-free CFMs in terms of MSC-graphs,
but no complete algorithm is provided. At last, an internal report [7] gives a
PSPACE algorithm to test implementation into local-choice MSC-graph (thus
into deadlock-free CFM), yielding an implementation of doubly exponential size.

In this paper, we extend the results of [7] in order to improve the complexity of
the test to co-NP, yielding an implementation of single exponential size, instead
of two exponentials. To achieve this goal, we use local-choice Compositional
MSC-graphs. The implementation of this class follows easily from [9]. Using
compositional MSCs instead of MSCs allows to capture more formalisms. CMSC-
graphs were introduced by [10] to get rid of the finite generation restriction
of MSC-graphs. Later, safe CMSC-graphs were shown to be model-checkable
against MSO [18], temporal logic [8], and globally cooperative CMSC-graphs
[6]. The important property used by these algorithms is that the events of any
generated MSC can be scheduled using bounded communication channels, for
a fixed bound (see section 3). Since nodes of a compositional MSC-graph need
not be labeled by complete MSCs (there can be unmatched sends and receives),
the time consuming test of [7] becomes irrelevant: Not only we show that we
can still test whether a CMSC-graph is equivalent to some local-choice CMSC-
graph (with a new algorithm), but the complexity is better than for local-choice
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MSC-graphs (co-NP-complete vs PSPACE), improving the implementation size
by one exponent, and thus making the test more practical.

Related Work: A new formalism, Triggered MSCs [22], was designed from the
ground for the implementation purpose. It makes implementation easier than for
MSC-graphs, but model-checking has not been studied yet. Also, Live Sequence
Charts [11] use a different semantics to obtain implementability.

2 Message Sequence Charts (MSCs)

Message Sequence Charts (MSC for short) is a scenario language standardized
by the ITU ([14]). They represent simple diagrams depicting the activity and
communications in a distributed system. The entities participating in the inter-
actions are called instances (or processes) and are represented by vertical lines.
Message exchanges are depicted by arrows from the sender to the receiver. In
addition to messages, atomic actions can also be represented.

Definition 1. [10] A compositional MSC (CMSC) is a tuple M=〈P, E, C, t,m,<〉
where:

– P is a finite set of processes,
– Ep is a finite set of events on process p, with E =

⋃
p∈P Ep

– C is a finite set of names for messages and local actions,
– t : E → T = {p!q(a), p?q(a), p(a) | p �= q ∈ P, a ∈ C} labels an event with its

type: either a send p!q(a) of message a on process p to q, a receive p?q(a)
on p from q, or a local event p(a). We partition E = S ·⋃R ·⋃L into sends,
receives and local events.

– m : S → R is a partial and injective function matching a send to its corre-
sponding receive. If m(s) = r, then t(s) = p!q(a) and t(r) = p?q(a) for some
p, q ∈ P, a ∈ C.

– <⊆ E × E is an acyclic relation between events consisting of:
- a total order on Ep, for every process p ∈ P, and
- s < r, whenever m(s) = r.

An MSC is a CMSC where the message function m is a total function that
is one-to-one.

The event labeling t implicitly defines the process P (e) for each event e:
P (e) = p if t(e) ∈ {p!q(a), p?q(a), p(a)} for some q ∈ P, a ∈ C. We denote any
pair (p, q) ∈ P2 of distinct processes as a channel. We assume that channels are
FIFO, i.e., there is no overtaking on messages sent on the same channel.

The relation < is called the visual order of the CMSC, since it corresponds
to its graphical representation. It is comprised of the process ordering and the
message ordering. Since < is required to be acyclic, its reflexive-transitive closure
<∗ is a partial order on the set E of events, which we will denote by ≤. An
extension of ≤ to a total order is called a linearization of M . We consider labeled
linearizations t(e1) · · · t(en), with e1 · · · en a linearization on events. One can
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Fig. 1. The left part of the figure depicts an MSC scenario M . The two squares on the
right are CMSCs involving actions 1!2, 2!1, 1?2, 2?1

understand any linearization as some particular execution of the CMSC. Notice
that because of the FIFO condition, one can retrieve an MSC from any of its
linearizations.

Definition 2. [17] We say that a linearization t(e1) · · · t(en) is b-bounded if,
for each channel (p, q), the difference between the number of sends p!q and the
number of receives q?p in any prefix t(e1) · · · t(ei) is at most b, for any i. We
say that an MSC M is existentially (respectively universally) b-bounded if some
(resp. every) linearization of M is b-bounded .

MSCs specify only finite behaviors. For describing sets of behaviors, we
use MSC-graphs, which are the basic fragment of the High-level MSCs of the
norm [14] (the norm allows hierarchy that we do not take into account here)
that are just transition systems with nodes labeled by MSCs. They were ex-
tended to Compositional MSC-graphs (CMSC-graphs), where nodes are labeled
by CMSCs [10].

Definition 3. A CMSC-graph is a labeled transition system G = (V,→, v0, F, λ)
with set of nodes V , transition relation →∈ V × V , initial node v0 and set of
final nodes F . Each node v is labeled by a CMSC λ(v). An accepting path of
G is defined as a sequence of transitions ρ = (v1 → v2 · · · → vk) with v1 = v0

and vk ∈ F .

A composition of two CMSCs is one of the CMSCs defined by gluing together
the processes axis, and extending the messages functions in any way such that
the FIFO condition is preserved.

Definition 4. A composition of CMSCs M1, · · · ,Mn, where Mi =
〈P, Ei, Ai, ti,mi, <i〉 is a CMSC M = 〈P, E =

⋃
i Ei,A =

⋃Ai, t =
⋃

ti,m,<〉
such that:

– The message function m extends each mi and it is required that m preserves
the FIFO restriction on matched events. That is if m(s) = r and m(s′) = r′

are two messages from p to q and s <p s′ then r <q r′.
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– The visual order < is the union of <i and the set of (e, f) with m(e) = f or
P (e) = P (f) and e ∈ Ei, f ∈ Ej, j > i.

Notice that a sequence of given CMSCs M1, . . . ,Mn can admit several com-
positions. For instance, gluing together a CMSC composed by two send events
from process 1 to 2 and a CMSC composed of two receives on 2 from 1 may
yield the MSC consisting of two messages from 1 to 2. It can also yield a receive
(which matchs a send which will be glued before), a message then a send to be
matched. However, there can be at most one such composition that is an MSC,
since the k-th send from p to q of an MSC is matched by the k-th receive on q
from p. If it exists, we denote by M1 · · ·Mn the MSC which is a composition of
M1, · · · ,Mn. For instance, there exists only one MSC which is a composition of
CMSCs seen along the path that loops three times around each node of figure
1. This MSC is depicted in the left part of figure 1. Since we will consider only
the MSCs generated by a CMSC-graph, we are only interested in this unique
composition, if it exists.

Definition 5. The language of a CMSC-graph G is L(G) = {λ(v1) · · ·λ(vk) ∈
MSC | v1 · · · vk is an accepting path of G}, where MSC is the set of all MSCs.

An MSC-graph is a CMSC-graph whose nodes are labeled by MSCs. Let G be
an MSC-graph. The MSC-graph G is finitely-MSC-generated, that is any MSC
generated by G is the composition of MSCs labeling the nodes of G. Hence, any
M ∈ L(G) is existentially b-bounded, where b is the size of the largest MSC in
the set L of MSCs labeling the nodes of G. We call G an ∃-b-bounded MSC-graph.

The right part of figure 1 depicts a CMSC-graph which is not existentially
bounded, since iterating n times both loops gives an MSC which is not universally
n− 1 bounded. In figure 2, we denote s for the send from host to function, and
r for the receive on function from host. Then iterating n times the leftmost
loop in figure 2 yields an MSC having the 1-bounded linearization (sr)n+1, and
having also the linearization sn+1rn+1 which is not n− 1-bounded. That is, this
MSC-graph is existentially 1-bounded, but it is not universally bounded.

The size |M | of a (C)MSC M is its number of events. The size |G| of a
(C)MSC-graph G is the sum of the sizes |M | of the CMSCs labeling its nodes.
The size of P is the number ℘ of processes.

A Communicating finite-state machine (CFM) A = (Ap)p∈P [5] consists of
finite automata Ap associated with processes p ∈ P, that communicate over
unbounded, error-free, FIFO channels. The content of a channel is a word over a
finite alphabet C. With each pair (p, q) ∈ P2 of distinct processes we associate a
channel Cp,q. Each Ap is described by a tuple Ap = (Sp, Ap,→p, Fp) consisting
of a set of local states Sp, a set of actions Ap, a set of local final states Fp and a
transition relation →p⊆ Sp×Ap×Sp. The computation begins in an initial state
s0 ∈∏p∈P Sp. The actions of Ap are either local actions or sending/receiving a
message. We use the same notations as for MSCs. Sending message p!q(a) means
that a is appended to the channel Cp,q. Receiving message p?q(a) means that a
must be the first message in Cq,p, which will be then removed from Cq,p. A local
action a on process p is denoted by lp(a). A run of a CFM is a linearization x
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Fig. 2. MSC-graph depicting the isochronous transactions of usb 1.1

of some MSC such that the projection of x on process p is a run of Ap, for all
p. In particular, x should not receive more messages than sent. We denote a run
of the CFM as successful, if each process p can finish the run in some final state
of Fp, and all channel are empty. The set of successful runs generated by A is
denoted L(A). It is easy to notice that if x is an accepting run of the MSC M ,
then any linearization of M is also a successful run. We will denote by L(A) the
MSC-language of A, that is the set of MSCs whose linearizations are successful
runs. Moreover, we say that a CFM is deadlock-free if every run can be extended
to a successful run.

3 Existential Bound on Channels

CMSC-graphs are more expressive than CFMs [10], and thus most non trivial
problems for CMSC-graphs are undecidable. The solution applied here to recover
decidability is to consider representative linearizations, as what was done first
for MSC-graphs by [20] and for CMSC-graphs by [18]. More precisely, if G is ∃-
b-bounded, then every MSC M ∈ L(G) has a linearization in the set Linb(G) of
b-bounded linearizations of L(G). We call the set Linb(G) a set of representatives
for L(G), since any MSC of L(G) can be retrieved from a linearization of Linb(G).
To ensure an existential bound on channels, safe CMSC-graphs (called realizable
CMSC-graph by [10], and simply CMSC-graphs by [18]) were defined.

Definition 6. A CMSC-graph G is safe if every sequence of CMSCs labeling an
accepting path of G can be composed as an MSC.

Recall that it may be the case that among the CMSC-compositions of a path
of a (non safe) CMSC-graph, none is an MSC (e.g. because number of sends
and receives from p to q are not equal). Notice that safe CMSC-graphs con-
tain the class of MSC-graphs. For instance, figure 2 depicts a safe CMSC-graph.
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Being safe implies that each (looping) path v1 · · · vn, n ≥ 1 with vn → v1 of the
CMSC-graph G is labeled by the same number of sends and receives from p to
q, for each pair of processes p, q. This is the key argument for the syntactical
characterization of safe CMSC-graphs that can be checked in polynomial time
[10]. For instance, the CMSC-graph depicted on the right part of figure 1 is not
safe since loops are labeled with a different number of sends and receives.

Let KG be the automaton obtained from G by replacing every node v of G by
a sequence of |λ(v)| transitions of the automaton, labeled by some linearization
of λ(v). The language L(KG) of this automaton is a set of representatives of
L(G). Since each loop of the CMSC-graph G is labeled by the same number of
sends and receives from p to q, for each pair of processes p, q, every x ∈ L(KG)
is b-bounded, with b ≤ |G|. Since this bound is important for G, we denote the
b for which L(KG) is universally b-bounded as bG. Hence, G is existentially bG-
bounded. We will use the class of globally-cooperative CMSC-graphs as a central
class of our implementation algorithm. The reason is that this class ensures the
existence of a regular set of representatives, namely LinbG(G).

Definition 7. The communication graph of a CMSC M is a directed graph
whose vertices are the processes involved in M , and there is an edge between
vertices p, q iff M contains both a send p!q from p to q and a receive q?p on q
from p (these send and receive may not define the same message).

For instance, the communication graph of the MSC made of one message
from process 3 to 2 and one message from process 1 to 2 is weakly connected.
We recall that a loop in a CMSC-graph is a path starting and ending in the
same node (we do not require that the loop is simple, that is, a loop can meet
several times the same node).

Definition 8. A CMSC-graph is loop-connected if every loop is labeled by a
CMSC whose communication graph is weakly connected. A CMSC-graph is globally-
cooperative (gc-CMSC-graph for short) if it is safe and loop-connected.

In particular, if there is a loop labeled by two groups of processes without
communication between the two groups, then G is not loop-connected, hence
not globally-cooperative.

Proposition 1. [6] The set Linb(G) of b-bounded linearizations of every globally-
cooperative CMSC-graph G is regular, for all b ≥ bG.

4 Implementation by CFMs

It is easy to see that not every globally-cooperative CMSC-graph is imple-
mentable by a deadlock-free CFM (actually, they are always implementable by
a CFM with possible deadlocks [6]). Since any specification should be imple-
mentable, we need a test for implementability.

Definition 9. A CMSC-graph G is implementable without additional data iff
there exists some deadlock-free CFM A with L(A) = L(G).
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There is an EXPSPACE-complete algorithm to test whether a
globally-cooperative MSC-graph is implementable without additional data [1,
16]. Anyway, there are two drawbacks in such an approach. First, the algorithm
is obviously time-consuming. Second, implementing directly an MSC-graph is
too extreme, since some easily implementable MSC-graphs are said not to be,
as the globally-cooperative MSC-graph of figure 2. The reason is that the data
written in the first message is abstracted away, hence both host and function can
choose to send the second message, yielding a scenario that is not possible in the
system, thus a deadlock. The solution already used in [9, 13] is to allow data to
be added to messages. For instance, we would add in the first message a bit to
indicate which process (host or function) must send. A data projection function
simply projects away the additional data from messages.

Definition 10. A CMSC-graph G is implementable (with additional data) iff
there exists some data projection Proj and some deadlock-free CFM A with
Proj(L(A)) = L(G).

The problem is that we have no algorithm to test this implementability.
Moreover, even if such an algorithm would exist, it would probably be too time
consuming. We propose then an alternative approach to the problem, trying
to go through a class which is easily implementable with additional data. The
reason for non-implementability of an MSC-graph is the global control, whereas
the choices in a CFM must be done locally. The idea is then to define local-choice
MSC-graphs, that is, any node is controlled by a single process [3, 12].

Definition 11. A CMSC-graph G is local-choice if

– G is safe
– For each transition v → w, node w has a unique minimal event min(w).

Moreover, the minimal process of w, denoted pmin(w), appears in v.
– There exists a process p0 such that the initial node of G has a unique minimal

event on p0.

A local-choice MSC-graph is a local-choice CMSC-graph which is an MSC-
graph.

Example 1. The MSC-graph in figure 2 is local-choice. The MSC-graph in figure
3 is not local-choice, since the looping node has two minimal events.

The next proposition follows easily from [9].

Proposition 2. Any local-choice CMSC-graph is implementable. Moreover, the
size of the CFM obtained is linear in the size of the local-choice CMSC-graph.

The local-choice restriction appears to be a heuristics for implementation.
That is, if a CMSC-graph is local-choice or equivalent to some local-choice
CMSC-graph, then it is implementable (without deadlock). However, if it is
not equivalent to a local-choice CMSC-graph, then this does not mean that it is
not implementable.



CMSCs Are Better to Implement Than MSCs. 437

1 2 1 2

Fig. 3. A globally-cooperative MSC-graph universally bounded but not local-choice

4.1 A Concrete Protocol: USB

The protocol USB (Universal Serial Bus) describes several communication modes
between two communicating processes, a master (called host), and a slave (called
function) in the standard [21]. Every command is given by host. That is, the
first message of each mode is from host to function, and contains the command
(mode chosen, actions to perform, etc.). Three kinds of interactions can be done,
Isochronous, Bulk and Setup.

The isochronous mode is described by the local-choice MSC-graph in figure 2.
The first message tells function that host has chosen the isochronous mode, and
whether host must send or receive information. Setup mode is a slight variation
of the isochronous mode.

Bulk transfer looks like the alternated bit protocol. Every message received
should be acknowledged with the parity of the message, such that the sender can
be sure that his message was indeed received. In order to bound the channel,
a limit for send events in transit is imposed. We represent a part of the Bulk
protocol in the upper part of figure 4.

ack

host function host function host function

ack

ack

host function host function host function

ack ack
ack

ack

ack ack

Fig. 4. Equivalent CMSC-graphs specifying the Bulk transactions of usb 1.1
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The CMSC-graph in the upper part of figure 4 is not local-choice (the looping
node has two minimal events). However, we can transform this CMSC-graph into
the equivalent local-choice CMSC-graph depicted in the lower part of figure 4.
We want to give an algorithm to build such an equivalent local-choice CMSC-
graph, whenever it is possible.

5 Implementation Algorithms

A crucial notion related to local-choice are triangles. We call a CMSC T a triangle
iff it has a unique minimal event min(T ) for the visual order. A triangle T
is called an MSC-triangle iff it is an MSC. Let Tn be the set of triangles of
size bounded by n. We define a generic CMSC-graph HT

n : for each triangle
T ∈ Tn, it has a node vT labeled by T . There is a transition vT → vT ′ whenever
P (min(T ′)) ∈ P (T ). We define in the same line the generic local-choice MSC-
graph HM

n on MSC-triangles of size at most n.
The next proposition shows that we must consider only globally-cooperative

CMSC-graphs for our implementability test:

Proposition 3. 1 Let G be a safe CMSC-graph that is not globally-cooperative.
Then G is not equivalent to any local-choice CMSC-graph.

Theorem 1. A globally-cooperative CMSC-graph G is equivalent to some local-
choice CMSC-graph iff there exists some n with L(G) ⊆ L(HT

n ). If it is the
case, then one can obtain some local-choice CMSC-graph equivalent to G, of size
exponential in |G| and n.

Sketch of Proof. If L(G) ⊆ L(H) for some local-choice CMSC-graph H, then
L(G) ⊆ L(HT

n ) with n = |H|.
Conversely, if L(G) ⊆ L(HT

n ), then we compute an automaton A accepting
LinbG+(℘+bG℘2)n(G) using proposition 1. It is at most of single exponential size
in n and |G| [6]. We recall that ℘ ≤ |G| is the number of processes in P. Making
the product between A and HT

n , we obtain a CMSC-graph H of size |A||HT
n |

that is local-choice. To see that it is equivalent to G, we have to show that
for any decomposition of M ∈ L(G) into a sequence of triangles T1 · · ·Tm of
size at most n, there exist linearizations x1, · · · , xm of T1, · · · , Tm such that
x1 · · ·xm is bG + (℘ + bG℘2)n-bounded. By contradiction, assume that for some
channel (p, q), the linearization x1 · · ·xk−1 has bG unmatched sends (we denote
by s0 the first unmatched send), xk · · ·xl has (℘+ bG℘2)n+1 unmatched sends,
and xl+1 contains r0, the receive associated with s0. Hence, there are at least
(℘ + bG℘2) + 1 triangles containing the unmatched sends of xk · · ·xl from p to
q. Since M ∈ L(G), there exists some bG-bounded linearization x equivalent to
x1 · · ·xl+1. In x, the receive r0 must occur before all unmatched sends in xk · · ·xl

from p to q. So the past of r0 (i.e., all events e with e ≤ r0) occurs in x before
the unmatched sends in xk · · ·xl. Notice that the past of r0 contains the minimal

1 This result is a slight variation over [7] which considered only MSC-graphs as input.
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event of each triangle in Tk, . . . , Tl that has at least one unmatched send. It is
now easy to check that the past of r0 restricted to any of these triangles either
eliminates some process from the past restricted to later triangles, or it contains
an unmatched send. Since there are at most ℘ triangles of the first kind, there
must be at least bG℘2 + 1 triangles of the second kind, hence at least bG℘2 + 1
unmatched sends in x before the unmatched sends of xk · · ·xl. So there is at least
one channel with bG+1 unmatched sends, which contradicts the bG-boundedness
of x. �

We can state theorem 1 similarly for local-choice MSC-graphs, by replacing
HT

n by HM
n . Theorem 1 will give an algorithm for testing whether G is equivalent

to some local-choice CMSC-graph as soon as we limit the value of n for which
we must test L(G) ⊆ L(HT

n ).
We show now some structural properties that must be satisfied by the CMSC-

graphs we are interested in. We call two MSCs R,S MSCs in parallel for G if
P (R) ∩ P (S) = ∅ and there exist CMSCs L,N with LRSN ∈ L(G).

Proposition 4. 1 Let G be a local-choice CMSC-graph. Let R,S be MSCs in
parallel in G. Then either |R| ≤ 2℘|G|, or |S| ≤ 2℘|G|.

We give another property that concerns only local-choice MSC-graphs, and
not CMSC-graphs. Let M be an MSC and e be an event of M . We call e a
peak of M if its future Future(e) = {f ∈ M | e ≤ f} for the visual order of M
is an MSC (that is, if it contains some send or receive, it should also contain
the associated event). In a local-choice MSC-graph, every event that starts a
node is a peak, which is not always the case in a local-choice CMSC-graph. Let
G be a CMSC-graph. We say that M is an MSC-triangle without G-peak if it
exists an MSC-triangle L and an MSC N with LMN ∈ L(G) and LMN has a
unique peak within M (which is minM ). It is worth noting that LMN can have
peaks other than minM , as soon as these peaks are not within M . Moreover,
LM can have several peaks within M , but they will not be peaks anymore for
LMN .

Proposition 5. 1 Let G be a local-choice MSC-graph. Let M be an MSC-triangle
without G-peak. Then |M | ≤ 2℘|G|.

Using these notions, we can characterize the class of safe CMSC-graphs which
are equivalent to any local-choice MSC-graph:

Theorem 2. 1 Let G be a safe CMSC-graph. Then G is equivalent to some
local-choice MSC-graph iff there exists some integer n such that:

1. G is globally cooperative.
2. Each M ∈ L(G) is a triangle.
3. Each MSCs M,N in parallel for G satisfies |M | ≤ n, or |N | ≤ n.
4. Each MSC-triangle M without G-peaks satisfies |M | ≤ n.
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5.1 A Tractable Test Algorithm

The first test of theorem 2 is co-NP-complete [19]. The second test is
NLOGSPACE [7]. The third test is co-NP [7]. The fourth test is PSPACE [7].
If the third and fourth tests are satisfied, then we have a value for n, such that
L(G) ⊆ L(HM

℘n), and then we can compute an equivalent local-choice MSC-
graph using theorem 1. The problem is that the fourth test gives an exponential
value to n (while the third gives a polynomial value to n), making the implemen-
tation potentially doubly exponential. However, the fourth test makes no sense
for local-choice CMSC-graph, for which we can do better.

Example 2. The globally-cooperative MSC-graph in figure 3 is not equivalent to
any local-choice MSC-graph, but it is not hard to show the equivalence with a
local-choice CMSC-graph.

We turn now to the test whether a given safe CMSC-graph is equivalent to
some local-choice CMSC-graph. We characterize triangles that cannot belong
to L(HT

n ), that is which cannot be decomposed in a sequence of triangles of
size at most n. Let T = T1T2 be a decomposition of such a triangle into two
triangles. We call the minimal events min(T ) = min(T1) = e and min(T2) = f .
In a CMSC, there are at most two immediate successors g, h of e (the event g
on the same process as e, and the receive h of e if e is a send). Obviously, either
f ≥ g or f ≥ h. That is, if we want to minimize the size of T1, an optimal
choice is to take either f = g, or f = h2. The triangle T2 is defined as the set
of events Future(f) in the future of f , and T1 is the set of events that are not
in Future(f), that is F (f) = Future(e) \ Future(f) = T1. That is, if |F (g)| > n
and |F (h)| > n, then T is not decomposable into a sequence of triangles of size
at most n. Furthermore, if T labels a path of a safe CMSC-graph G, and if F (g)
and F (h) are large enough, then we can find a loop of G in F (f) and one in
F (g) that we can iterate such that both F (g) and F (h) become as large as we
want. That is, L(G) �⊆ L(HT

n ) for any n.
Iterating one of these loops should not delete any event in F (h) or in F (g)

because of a new dependency. To do so, we need to define the Ω-type, which is
related to the existential bound bG associated with G. The Ω-type of an event e
is its type t ∈ {p!q, p?q}, plus the number modulo bG of events of the same type
that have happened before e, that is, Ω = T × {0, · · · , bG − 1}. We denote by
type(X) the set of Ω-types of events in X.

Lemma 1. Let MBN be an MSC that has two minimal events g, h, and assume
that type(Future(g) ∩M) = type(Future(g) ∩MB) and type(Future(h) ∩M) =
type(Future(h) ∩ MB). We denote by Future′, F ′ and m′ the functions cor-
responding to Future, F and m with respect to MBBN . Assume that M is
existentially-bG-bounded.

Then F (g) ⊆ F ′(g) and F (h) ⊆ F ′(h).

2 Actually, we take the only immediate successors of h instead of h since we want that
the minimal process of a node belongs to any predecessor node.



CMSCs Are Better to Implement Than MSCs. 441

Proof. Let f ∈ {g, h}. Assume by contradiction that Future′(f)∩F (f) �= ∅. We
denote d1 ≺ d2 ≺ · · · ≺ dm a causality chain in MBBN with d1 = f, dm ∈ F (f),
and where di ≺ di+1 if m′(di) = di+1 or if di <p di+1 for some process p.

We will show that dm ∈ Future(f), a contradiction with dm ∈ F (f). Assume
that there is an i with di in the first B and di+1 in the second B. We will delete
the first B of MBBN to obtain MBN . In MBN , we still have di+1 < dm. Since
B conserves the Ω-types of Future(f), we have a d′i ∈ Future(f) ∩M , of same
Ω-type as di. If di <p di+1, then within MBN , we also have d′i <p di+1. Hence
dm ∈ Future(f). Else, we have m(di) = di+1 in MBBN . Let d be the first event
of B of same T -type as di (that is, the second component of its Ω-type can
differs from di). We have d′i <p d ≤p di for some p. Hence d ∈ Future(f) ∩MB
and there exists some d′ ∈ Future(f)∩M , of same Ω-type as d. Hence, we have
at least bG sends of same T -type as di in [d′, d[, that is in Future(f) ∩M .

Since M is existentially bG-bounded, it has at most bG unmatched sends:
if we delete the first B, there exists some d′′ ∈ [d′, d[⊆ Future(f) ∩ M with
m(d′′) = di+1. Hence dm ∈ Future(f).

It remains to consider the case where there is one of the two occurrences of
B that contains no (di)i≤m. We will then delete this occurrence of B to obtain
MBN . We consider the new ordering relation in MBN . If di <p di+1 in MBBN ,
then this is also true in MBN . If m′(di) = di+1, assume that m(di) �= di+1. Else,
dm ∈ Future(f). We have some di before the deleted B, and di+1 after the deleted
B. In the deleted B, there exists a send d of same T -type as di. We can apply
the same arguments than above to prove that dm ∈ Future(f). �

Let us recall that HT
n is a CMSC-graph whose nodes are triangles of size at

most n.

Proposition 6. A globally-cooperative CMSC-graph G is equivalent to a local-
choice CMSC-graph if and only if L(G) ⊆ L(HT

b0
), with b0 = 4bG℘2|G|+1. This

test can be done in co-NP.

Proof. Assume that L(G) �⊆ L(HT
b0

). It means that there exists an MSC M ∈
L(G) and a send e ∈ M such that for all immediate <-successors f ∈ {g, h}
of e, we have |F (f)| > b0. Else, we could decompose inductively any triangle
M ∈ L(G) into triangles of size at most b0. This test can be performed in co-NP.

We show now how to increase the size of F (g) without decreasing the size
of F (h). By symmetry, we will do the same for augmenting F (h). The MSC M
labels a path of G. Since there are b0 events in F (g), there are at least 4bG℘2 +1
occurrences of the same event eg ∈ F (g). Hence we can decompose M into a
sequence M = BB1 · · ·BnB

′ with Bi labeling a loop of G. Moreover, Bi begins
and ends by eg, and n = 4bG℘2 + 1.

Among the loops B1 · · ·Bn, at most 2bG℘2 can change the Ω-types of Future(g).
More formally, let Typei(g) be the set of Ω-types of events in (BB1 · · ·Bi) ∩
Future(g). There are at most 2bG℘2 loops Bi with Typei−1(f) �= Typei(f), since
Typei(f) is an increasing sequence of sets of size at most 2bG℘2. In the same
line, there are at most 2bG℘2 loops that can change the Ω-types of Future(h).
That is, there is at least one loop, say Bk, that changes neither the Ω-type
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Fig. 5. globally-cooperative CMSC-graph hard to turn into a local-choice CMSC-graph

of Future(g), nor those of Future(h). We can then iterate the loop Bk without
deleting any event from F (g) or F (h), applying the lemma 1.

Since Bk contains eg ∈ F (g) and does not change the Ω-types of Future(g),
iterating the loop Bk makes F (g) strictly grow.

In the same line, we can decompose M with respect to F (h). Hence, we can
iterate a loop that makes F (h) strictly grow without shrinking F (g). Since G is
safe, we obtain an MSC of L(G) by iterating these two loops. Hence, we obtain
for all k an MSC Mk ∈ L(G) \ L(HT

k ). That is, G cannot be equivalent to any
local-choice CMSC-graph.

�

Using theorem 1 and the previous proposition, we obtain:

Theorem 3. Let G be a safe CMSC-graph. Then one can decide in co-NP
whether G is equivalent to some local-choice CMSC-graph. If the answer is posi-
tive, then an equivalent local-choice CMSC-graph can be built of size exponential
in |G|.

Here is an example for which we need an exponential-blowup for coming from
a globally-cooperative CMSC-graph to a local-choice CMSC-graph. Since there
is a loop on host, we need to put the n local events on the same node. Since
we have 2 choices for each local events, it yields 2n nodes in any equivalent
local-choice CMSC-graphs.

6 Conclusion

We presented an algorithm testing implementability of a scenario-based specifi-
cation, CMSC-graphs, into local-choice CMSC-graphs, which is a strict subclass
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of deadlock-free CFMs. This test seems practical since it is co-NP and gives an
implementation of size exponentially larger than the specification in the worst
case.

This test is an improvement in both expressivity and complexity of the in-
ternal report [7], even when the model is given as an MSC-graph. That is, com-
positionality appears only as a technical step in our construction, and needs not
to be known by the user.

There are two restrictions of local-choice MSC-graphs for turning them into
CFMs. The first one is the need of numerous peaks, and the second one is a
restriction on the number of events that are pairwise concurrent. We succeeded
in getting rid of the first restriction using compositional MSC-graphs. A further
work will consist in finding specification formalisms that allow more parallelism
than local-choice CMSC-graphs.

Acknowledgments. I would like to thank Anca Muscholl for fruitful discus-
sions, and anonymous referees for useful comments.
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Abstract. We provide semantics for the powerful scenario-based lan-
guage of live sequence charts (LSCs). We show how the semantics of live
sequence charts can be captured using temporal logic. This is done by
studying various subsets of the LSC language and providing an explicit
translation into temporal logic. We show how a kernel subset of the LSC
language (which omits variables, for example) can be embedded within
the temporal logic CTL∗. For this kernel subset the embedding is a strict
inclusion. We show that existential charts can be expressed using the
branching temporal logic CTL while universal charts are in the intersec-
tion of linear temporal logic and branching temporal logic LTL ∩ CTL.
Since our translations are efficient, the work described here may be used
in the development of tools for analyzing and executing scenario-based
requirements and for verifying systems against such requirements.

1 Introduction

Understanding system and software behavior by looking at various “stories”
or scenarios seems a promising approach, and it has focused intensive research
efforts in the last few years. One of the most widely used languages for specifying
scenario-based requirements is that of message sequence charts (MSCs), adopted
long ago by the ITU [26], or its UML variant, sequence diagrams [25]. This paper
addresses the relationship between scenario-based requirements and temporal
logic [23]. As a scenario based language we focus on the language of live sequence
charts (LSCs) [7] which is a powerful extension of classical message sequence
charts.

LSCs distinguish between behaviors that may happen in the system (exis-
tential) from those that must happen (universal). A universal chart contains a
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prechart, which specifies the scenario which, if successfully executed, forces the
system to satisfy the scenario given in the actual chart body.

Our contribution focuses on providing semantics for the powerful scenario-
based language of live sequence charts, but the underlying approach and ideas
are more general and can also be applied to other scenario based approaches
including classical MSCs, UML sequence diagrams, triggered message sequence
charts [24] and other variations. We show how the semantics of live sequence
charts can be captured using temporal logics. This is done by studying various
subsets of the LSC language and providing an explicit translation to temporal
logic. We also show how some of the popular temporal logic “patterns” can be
specified using live sequence charts.

In addition to gaining a better theoretical understanding of scenario-based
languages, another motivation for this work is the development of tools for ana-
lyzing scenario based requirements and verifying systems against these require-
ments. Since our translations are efficient, the work described here may be used
in tools that verify that a system satisfies a requirement specified using LSCs,
in tools for executing scenarios directly, as suggested by the play-in/play-out
approach [14, 15] and smart play-out [13], and in testing and synthesis tools.

2 Live Sequence Charts

2.1 Overview

Live sequence charts (LSCs) [7] have two types of charts: universal (annotated
by a solid borderline) and existential (annotated by a dashed borderline). Uni-
versal charts are used to specify restrictions over all possible system runs. A
universal chart typically contains a prechart, that specifies the scenario which,
if successfully executed, forces the system to satisfy the scenario given in the
actual chart body. Existential charts specify sample interactions between the
system and its environment, and must be satisfied by at least one system run.
They thus do not force the application to behave in a certain way in all cases,
but rather state that there is at least one set of circumstances under which a
certain behavior occurs. Existential charts can be used to specify system tests,
or simply to illustrate longer (non-restricting) scenarios that provide a broader
picture of the behavioral possibilities to which the system gives rise.

We will use an example of a cellular phone system to illustrate the main
concepts and constructs of the language. The chart OpenCover appearing in
Fig. 1 requires that whenever the user opens the Cover, as specified in the
prechart (dashed hexagon), the Speaker must turn silent. Both the messages
Open sent from the User to the Cover, and the self message Sound(Silent) of the
Speaker are synchronous messages as denoted by the close triangular arrowheads.

The chart CloseCover appearing in Fig. 2 requires that whenever the user
closes the Cover, The Chip will send the message MakeSound(Silent) to the
Speaker and later the speaker will turn silent as designated by the self message
Sound(Silent). The Display should set its state to Time and later set its back-
ground to Green. An LSC induces a partial order which is determined by the



Temporal Logic for Scenario-Based Specifications 447

Fig. 1. Open Cover

Fig. 2. Close Cover

order along an instance line, by the fact that a message can be received only
after it is sent, and taking into account that a synchronous message blocks the
sender until receipt. Thus in Fig. 2, message ChangeBackground(Green) must
occur after message SetState(Time), but both are unordered with respect to
messages MakeSound(Silent) and Sound(Silent). In the chart appearing in
Fig. 2 all messages are synchronous, except message MakeSound(Silent) which
is asynchronous, as denoted by the open arrowhead.

The chart Call911 appearing in Fig. 3 is an existential chart as denoted by
the dashed borderline. It describes a scenario in which a user calls the number
911, opens the antenna and the call is answered. The chart in Fig. 3 introduces a
new element – a condition – denoted by a hexagon. The conditions in this chart
are hot conditions, specifying assertions that must hold for the scenario to be
satisfied. Existential charts do not have a prechart, and the meaning is that this
is a possible scenario, that should be satisfied by at least one system run.
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Fig. 3. Call 911

So far we have shown the main LSC features, which are at the focus of
our research in this paper, and are also the ones most widely used. The LSC
language supports additional features making it a rich and complex language.
For a detailed description of live sequence charts the reader is referred to [7, 14].

2.2 Trace-Based Semantics for LSCs

This section defines the languages specified by a set of LSCs. Later in this pa-
per we show how to provide equivalent semantics using temporal logics. For the
ease of presentation and due to space limitations, the LSC definitions appear-
ing here are a restricted and simplified version of the original LSC semantics
[7]. These definitions provide the key ideas and concepts, allowing the reader to
understand extensions that will be explained as we go along. The concept of an
execution of a chart which is defined here will be used later in the temporal logic
constructions.

We assume the LSC specification relates to an object system composed of
a set of objects O = {O1 . . . On}. An object system corresponds to an implemen-
tation, and our goal while providing semantics for LSCs is to define if a given
object system satisfies an LSC specification. The instance identifiers in the LSC
charts are objects from O, and possibly also the environment denoted env. The
LSC specifies the behavior of the system in terms of the message communication
between the objects in the system. We want to define the notion of satisfiabil-
ity of an LSC specification. In other words, we want to capture the languages
L ⊆ A∗ ∪ Aω generated by the object systems that satisfy the LSC specifi-
cation. The alphabet A used defines message communication between objects,
A = O × (O.Σ) where Σ is the alphabet of messages.
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Let inst(m) be the set of all instance-identifiers referred to in chart m.
With each instance i we associate a finite number of locations dom(m, i) ⊆
{0, ..., l max(i)}. We collect all locations of m in the set

dom(m) = {< i, l >| i ∈ inst(m) ∧ l ∈ dom(m, i)}

The messages appearing in m are triples

Messages(m) = dom(m)×Σ × dom(m),

where (< i, l >, σ,< i′, l′ >) corresponds to instance i, while at location l,
sending σ to instance i′ at location l′. Each location can appear in at most one
message in the chart. The relationship between locations and messages is given
by the mapping

msg(m) : dom(m) →Messages(m)

The msg function induces two Boolean predicates send and receive. The predi-
cate send is true only for locations that correspond to the sending of a message,
while the predicate receive is true only for locations that correspond to the re-
ceiving of a message. We define the binary relation R(m) on dom(m) to be the
smallest relation satisfying the following axioms and closed under transitivity
and reflexivity:

– order along an instance line:

∀ < i, l >∈ dom(m), l < l max(i) ⇒< i, l > R(m) < i, l + 1 >

– order induced from message sending:

∀msg ∈Messages(m),msg = (< i, l >, σ,< i′, l′ >) ⇒

< i, l > R(m) < i′, l′ >

– messages are synchronous; they block sender until receipt:

∀msg ∈Messages(m),msg = (< i, l >, σ,< i′, l′ >) ⇒

< i′, l′ > R(m) < i, l + 1 >

We say that the chart m is well-formed if the relation R(m) is acyclic. We
assume all charts to be well-formed, and use ≤m to denote the partial order
R(m).

We denote the preset of a location < i, l > containing all elements in the
domain of a chart smaller than < i, l > by

• < i, l >= {< i′, l′ >∈ dom(m)| < i′, l′ >≤m< i, l >}.

We denote the partial order induced by the order along an instance line by
≺m, thus < i, l >≺m< i′, l′ > iff i = i′ and l < l′.
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A cut through m is a set c of locations, one for each instance, such that for
every location < i, l > in c, the preset • < i, l > does not contain a location
< i′, l′ > such that < j, lj >≺m< i′, l′ > for some location < j, lj > in c. A cut
c is specified by the locations in all of the instances in the chart:

c = (< i1, l1 >,< i2, l2 >, ..., < in, ln >)

For a chart m with instances i1, ..., in the initial cut c0 has location 0 in all the
instances. Thus, c0 = (< i1, 0 >,< i2, 0 >, ..., < in, 0 >). We denote cuts(m) the
set of all cuts through the chart m.

For chart m, some 1 ≤ j ≤ n and cuts c, c′, with

c= (< i1, l1 >,< i2, l2 >, ..., < in, ln >), c′ = (< i1, l
′
1 >,< i2, l

′
2 >, ..., < in, l

′
n >)

we say that c′ is a < j, lj >-successor of c, and write succm(c,< j, lj >, c′), if
c and c′ are both cuts and

l′j = lj + 1 ∧ ∀i �= j, l′i = li

Notice that the successor definition requires that both c and c′ are cuts, so that
advancing the location of one of the instances in c is allowed only if the obtained
set of locations remains unordered.
A run of m is a sequence of cuts, c0, c1, ..., ck, satisfying the following:

– c0 is an initial cut.
– for all 0 ≤ i < k, there is 1 ≤ ji ≤ n, such that succm(ci, < ji, lji

>, ci+1).
– in the final cut ck all locations are maximal.

Assume the natural mapping f between (dom(m) ∪ env) × Σ × dom(m) to
the alphabet A, defined by

f(< i, l >, σ,< j, l′ >) = (Oi, Oj .σ)

Intuitively, the function f maps a location to the sending object and to the
message of the receiving object. Using this notation, f(Messages(m)) will be
used to denote the letters in A corresponding to messages that are restricted by
chart m:

f(Messages(m)) = {f(v) | v ∈Messages(m)}

Definition 1. Let c = c0, c1, ..., ck be a run. The execution trace, or simply
the trace of c, written w = trace(c), is the word w = w1 · w2 · · ·wk over the
alphabet A, defined by:

wi =
{
f(msg(m)(< j, lj >)) if succm(ci−1, < j, lj >, ci) ∧ send(< j, lj >)
ε otherwise

We define the trace language generated by chart m, Ltrc
m ⊆ A∗, to be

Ltrc
m = {w | ∃(c0, c1, ..., ck) ∈ Runs(m) s.t. w = trace(c0, c1, ..., ck)}
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There are two additional notions that we associate with an LSC, its mode
and its activation message. These are defined as follows:

mod : m→ {existential,universal}
amsg : m→ dom(m)×Σ × dom(m)

The activation message of a chart designates when a scenario described by
the chart should start, as we describe below. The charts and the two additional
notions are now put together to form a specification. An LSC specification is
a triple

LS = 〈M,amsg,mod〉,
where M is a set of charts, and amsg and mod are the activation messages and
modes of the charts, respectively.

The language of the chart m, denoted by Lm ⊆ A∗ ∪ Aω, is defined as
follows:

For an existential chart, mod(m) = existential, we require that the activation
message is relevant (i.e., sent) at least once, and that the trace will then satisfy
the chart:

Lm = {w = w1 · w2 · · · | ∃i0, i1, ..., ik and ∃v = v1 · v2 · · · vk ∈ Ltrc
m , s.t.

(i0 < i1 < ... < ik) ∧ (wi0 = f(amsg(m))) ∧
(∀j, 1 ≤ j ≤ k,wij = vj) ∧
(∀j′, i0 ≤ j′ ≤ ik, j

′ �∈ {i0, i1, ..., ik} ⇒ wj′ �∈ f(Messages(m)))}
The formula requires that the activation message is sent once (wi0 =

f(amsg(m))), and then the trace satisfies the chart; i.e., there is a subsequence
belonging to the trace language of chart m (v = v1 · v2 · · · vk = wi1 ·wi2 · · ·wik

∈
Ltrc

m ), and all the messages between the activation message until the end of the
satisfying subsequence (∀j′, i0 ≤ j′ ≤ ik) that do not belong to the subsequence
(j′ �∈ {i0, i1, ..., ik}) are not restricted by the chart m (wj′ �∈ f(Messages(m))).

For a universal chart, mod(m) = universal, we require that each time the
activation message is sent the trace will satisfy the chart:

Lm = {w = w1 · w2 · · · | ∀i, wi = f(amsg(m)) ⇒ ∃i1, i2, ..., ik and
∃v = v1 · v2 · · · vk ∈ Ltrc

m , s.t. (i < i1 < i2 < ... < ik) ∧
(∀j, 1 ≤ j ≤ k,wij

= vj) ∧
(∀j′, i ≤ j′ ≤ ik, j

′ �∈ {i1, ..., ik} ⇒ wj′ �∈ f(Messages(m)))}
The formula requires that after each time the activation message is sent

(∀i, wi = f(amsg(m))), the trace will satisfy the chart m (this is expressed in
the formula in a similar way to the case for an existential chart.)

Now come the main definitions, which finalize the semantics of our version
of LSCs by connecting them with an object system:

Definition 2. A system S satisfies the LSC specification LS = 〈M,amsg,mod〉,
written S |= LS, if:
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1. ∀m ∈M, mod(m) = universal ⇒ LS ⊆ Lm

2. ∀m ∈M, mod(m) = existential ⇒ LS ∩ Lm �= ∅

3 Specifying Temporal Logic Patterns in LSCs

We show how to specify some important temporal logic formulas using LSCs.
Apart from the interest in specifying the properties, this can help getting more
familiar with LSCs by seeing several examples.

Consider the universal chart appearing in Fig. 4(a) specifying the temporal
logic property Fp.The label Initial specifies that the chart can be activated
only once, at the beginning of the system run. The prechart (top dashed hexagon)

Fig. 4.

Fig. 5.
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has the condition TRUE as activation condition, this implies the main chart con-
sisting of the message p occur eventually. The chart appearing in Fig. 4(b) speci-
fies the temporal logic property Gp. The default interpretation without the label
Initial is that whenever the prechart is activated, the main chart follows so p
eventually occurs, and the forbidden element restricts all other messages from
occurring so p always occurs. The properties GFp and G(p→ Fq) are specified
in Fig. 5(a), (b). Note the label tolerant in Fig. 5(b) that allows p to occur
more than once before q happens without causing a violation of the chart.

4 Basic Translation

Embedding LSCs into CTL∗

As a starting point for studying the relationship between LSCs and temporal
logic, we consider a subset of the LSC language including only messages, and
with at most one message in a prechart. We show that these LSC specifications
can be embedded in the branching temporal logic CTL∗ [9]. This translation was
first proposed in [12]. In this paper we will show how to support a wider subset
of LSCs compared to [12] and in a much more efficient way.

Definition 3. Let w = m1m2m3...mk be a finite trace. Let R = {e1, e2, e3 · · · el}
be a set of events. The temporal logic formula φR

w is defined as:

φR
w = NU(m1 ∧ (X(NU(m2 ∧ (X(NU(m3...))))))),

where the formula N is given by N = ¬e1 ∧ ¬e2... ∧ ¬el.

Definition 4. Let LS = 〈M,amsg,mod〉 be an LSC specification. For a chart
m ∈M , we define the formula ψm as follows:

– If mod(m) = universal, then ψm = AG(amsg(m) → X(
∨

w∈Ltrc
m

φR
w)).

– If mod(m) = existential, then ψm = EF (
∨

w∈Ltrc
m

φR
w).

Here for a universal chart m we take R to be the events appearing in the
prechart and in the main chart.

The following can now be proved.

Proposition 1. Given LS = 〈M,amsg,mod〉, let ψ be the CTL∗ formula∧
m∈M ψm, and let S be an object system. Then

S |= ψ ⇔ S |= LS.

Proof. Follows from the definitions. Omitted from this version of the paper.

It is noteworthy that the reverse is not true: CTL∗ cannot be embedded in the
language of LSCs. In particular, given the single level quantification mechanism
of LSCs, the language cannot express general formulas with alternating path
quantifiers. However, it shouldn’t be too difficult to extend LSCs to allow certain
kinds of quantifier alternation, as noted in [7]. This was not done there, since it
was judged to have been too complex and unnecessary for real world usage of
sequence charts.
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5 Extending and Optimizing the Translation

5.1 Precharts with More Than One Message

In the language of live sequence charts, scenarios are a basic concept, so a
prechart can itself describe a scenario which leads to the activation of the univer-
sal chart. We now consider the effect of this more general case on our translation.
Since existential charts do not have precharts their translation is not affected,
and we have to consider only the universal charts.

For a universal chart m we define the formula ψm as follows:

Definition 5.

ψm = G(
∨

w∈Ltrc
pch(m)

φw →
∨

w∈Ltrc
pch(m)·Ltrc

m

φw)

We denote Ltrc
pch(m) the language of executions for the prechart m. The lan-

guage Ltrc
pch(m) · Ltrc

m consists of concatenations of executions of the prechart and
executions of the main chart.

Notice that this is a formula in linear temporal logic (LTL), as is the formula
for a universal chart in the basic translation.

5.2 Improved Translation

The formula described in Definition 5 can be large, due to the possibility of
having many different traces for the chart, which affects the number of clauses
in the disjunction, and also due to the similarity of clauses at the different sides
of the implication operator. We give an improved translation where the resulting
temporal logic formulas are much more succinct (polynomial vs. exponential in
the number of locations).

We consider the case where both the prechart and the main chart consist
only of message communication, and denote p1, · · · pk the events appearing in
the prechart, m1, · · ·ml the events appearing in the main chart. Denote ei any
of these events, either in the prechart or in the main chart. Denote ei ≺ ej if ei

precedes ej in the partial order induced by the chart and ei ⊀ ej if ei and ej are
unordered. We assume also that a message does not appear more than once in
the same chart. It remains open whether an efficient translation exists for the
most general case.

Definition 6.

ψm = G((
∧

pi≺pj

φpi,pj ∧
∧

∀pi,mj

φpi,mj ∧
∧

pi⊀pj

¬χpj ,pi) →

(
∧

mi≺mj

φmi,mj
∧

∧
mj is maximal

Fmj ∧
∧

∀ei,mj

¬χei,mj
))

φxi,xj
= ¬xjUxi

χxi,xj
= (¬xi ∧ ¬xj)U(xi ∧X((¬xi ∧ ¬xj)Uxi))
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Here the formula φxi,xj
specifies that xj must not happen before xi which

eventually occurs. The formula ¬χxi,xj
specifies that xi must not occur twice

before xj occurs. Note that this translation is polynomial in the number of
messages appearing in the chart, while the translation in Definition 5 may be
exponential in the number of messages appearing in the chart.

5.3 Past and Future

Another way to view LSCs is as a past formula implying a future formula, an
approach similar to that of Gabbay [10]. An advantage of this view is that past
formulas have simple and efficient canonical transformations to testers. A tester
can be composed with a system and detect when a chart is activated due to
the completion of the prechart. In this case the translation can be reduced to
the simpler case of an activation message or activation condition rather than
handling precharts explicitly. This view is formalized in the following definition:

Definition 7.

ψm = G((
∧

pi≺pj

τpi,pj ∧
∧

∀pi,mj

τmj ,pi ∧
∧

pi⊀pj

¬ξpj ,pi) →

(
∧

mi≺mj

φmi,mj
∧

∧
mj is maximal

Fmj ∧
∧

∀ei,mj

¬χei,mj
))

φxi,xj
= ¬xjUxi

χxi,xj = (¬xi ∧ ¬xj)U(xi ∧X((¬xi ∧ ¬xj)Uxi))
τxi,xj = ¬xiSxj

ξxi,xj
= (¬xi ∧ ¬xj)S(xj ∧ Y ((¬xi ∧ ¬xj)Sxj))

Here the formula τxi,xj specifies that xi must not happen in the past before
xj which eventually occurs in the past. The formula ¬ξxi,xj specifies that xj

must not occur twice in the past before xi occurs. Y denotes the previous state,
and is the past version of the operator X while S denotes the Since operator
and is the past version of the Until operator U .

6 Expressing Formulas in CTL

In this section we investigate the possibilities of expressing LSCs using the
branching time logic CTL. The logic CTL is a restricted subset of CTL∗. In
CTL the temporal operators G,F,X and U must be immediately preceded by
a path quantifier. We now show that the formulas in Definition 4 are in CTL,
i.e. although syntactically they are not CTL formulas (In φw the X and U op-
erators are not immediately preceded by a path quantifier) they have equivalent
formulas that are CTL formulas.

Proposition 2. For any formula ψm in Definition 4 there exists an equivalent
CTL formula ψ′

m.



456 H. Kugler et al.

Proof. We consider the two cases of existential and universal charts.

Existential chart
The formula given is ψm = EF (

∨
w∈Ltrc

m
φw) We can simplify it as follows:

EF (
∨

w∈Ltrc
m

φw) ≡
∨

w∈Ltrc
m

EF (φw)

And then go on to show that φw is equivalent to the CTL formula where the
E path quantifier is added before each X and U temporal operator.

Universal chart
The formula given is ψm = AG(amsg(m) → X(

∨
w∈Ltrc

m
φw)).

We show a proof for the special case of a single disjunct:
AG(amsg(m) → Xφw). It illustrates the main ideas and results that can be
applied to the general case.

In order to explain the proof we consider an example with messages m0,m1,
m2,m3 and prove the following lemma:

Lemma 1.

G(m0 → (X(NU(m1 ∧X(NU(m2 ∧X(NUm3))))))) ≡

AG(m0 → (AX(A(NU(m1 ∧AX(A(NU(m2 ∧AX(A(NUm3))))))))))

Here N = ¬m0 ∧ ¬m1 ∧ ¬m2 ∧ ¬m3

In order to prove Lemma 1 we use a characterization obtained by Maidl of
the common fragment of CTL and LTL [21]. In [21] an inductive definition of
the ACTL 1 formulas that can be expressed in LTL is given. These formulas are
called ACTLdet, and they are a restriction of ACTL.

ACTLdet is inductively defined as follows:

Definition 8. ACTLdet

– p is a predicate.
– For ACTLdet formulas φ1 and φ2 and a predicate p:

φ1∧φ2, AXφ1, (p∧φ1)∨(¬p∧φ2), A(p∧φ1)U(¬p∧φ2), A(p∧φ1)W (¬p∧φ2).

Theorem 1. (Maidl [21])
Let φ be an ACTL formula. Then there exists an LTL formula ψ which is equiv-
alent to φ iff φ can be expressed in ACTLdet.

We also use a theorem by Clarke and Draghicesku [6].

1 ACTL is the fragment of those CTL formulas that contain, when in negation normal
form, only A as a path quantifier.
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Theorem 2. (Clarke and Draghicesku [6]) For a CTL formula φ, we denote
the result of removing all path quantifiers from φ by φd. Let φ be a CTL for-
mula. Then there is an LTL formula ψ such that φ and ψ are equivalent iff φ is
equivalent to φd.

Proof. (of Lemma 1)
We now show that the formula in the right hand side of the equivalence in
Lemma 1 is in ACTLdet by constructing it inductively according to Definition 8.

φ0 = m3
φ1 = A(¬m3 ∧ (¬m0 ∧ ¬m1 ∧ ¬m2))U(m3 ∧ true) ≡ A(NUm3)
φ2 = AX(φ1) ≡ AX(A(NUm3))
φ3 = A((¬m2∧(¬m0∧¬m1∧¬m3))U(m2∧φ2)) ≡ A(NU(m2∧AX(A(NUm3)))
φ4 = AX(φ3) ≡ AX(A(NU(m2 ∧AX(A(NUm3)))))
φ5 = A(¬m1∧(¬m0∧¬m2∧¬m3))U(m1∧φ4)) ≡ A(NU(m1∧AX(A(NU(m2∧

AX(A(NUm3)))))))
φ6 = AX(φ5) ≡ AX(A(NU(m1 ∧AX(A(NU(m2 ∧AX(A(NUm3))))))))
φ7 = (¬m0∧TRUE)∨ (m0∧φ6) ≡ m0 → AX(A(NU(m1∧AX(A(NU(m2∧

AX(A(NUm3))))))))
φ8 = A(true∧φ7)W (false) ≡ AG(m0 → AX(A(NU(m1 ∧AX(A(NU(m2 ∧

AX(A(NUm3)))))))))
This shows that the formula in the right hand side of the equivalence in

Lemma 1 is in ACTLdet, and therefore according to Theorem 1 the formula is
in the common fragment of LTL and CTL.

As we showed the formula:

AG(m0 → AX(A(NU(m1 ∧AX(A(NU(m2 ∧AX(A(NUm3)))))))))

is in ACTLdet therefore by theorem 1 the formula can be expressed in LTL,
and by theorem 2 it is equivalent to the formula obtained by removing all path
quantifiers:

G(m0 → (X(NU(m1 ∧X(NU(m2 ∧X(NUm3)))))))

thus completing the proof of Lemma 1.
��

The proof of an equivalence like that of Lemma 1 for an execution of arbitrary
length k, w = m1m2m3...mk is by induction on k and is straightforward.

7 Extension for Additional LSC Constructs

We briefly outline how our translations can be extended to handle additional LSC
constructs. A detailed treatment will appear in the full version of the paper.

7.1 Conditions

The LSC language allows using conditions, which are assertions on the variables
of the system. Variables may be local to an instance or globally known. Conditions
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can be handled within the framework described previously, the main effect of
conditions on the translation is on the languages of executions. We consider
generalized executions, w = x1x2x3...xk is an execution of m, a sequence of events
(send or receive) or conditions (or their negation) satisfying the requirements ofm.

As before

φw = NU(x1 ∧ (X(NU(x2 ∧ (X(NU(x3...))))))),

where the formula N is given by N = ¬m1 ∧ ¬m2... ∧ ¬ml. Each mi in the
formula is a proposition indicating the occurrence of a send or receive event,
the conditions do not appear in N . Each xi in the formula φw is a proposition
indicating the occurrence of a send or receive event mi, a condition holding ci

or not holding ¬ci. Conditions can come in two flavors: mandatory (hot) and
provisional (cold). If a system run encounters a false mandatory condition the
run aborts abnormally, while a false provisional condition induces a normal exit
from the enclosing charts. Conditions can also be shared by several instances,
forming a synchronization barrier. These issues can be treated by our translation
but are beyond the scope of this version of the paper.

7.2 Iteration

A loop construct is a subchart that is iterated a number of times. Fixed loops are
annotated by a number or variable name, while unbounded loops are performed
an a priory unknown number of times. The subchart can be exited when a
cold condition inside it is violated. Bounded loops can be treated by unfolding
techniques. Unbounded loops enhance the expressive power of LSCs and cannot
be expressed in propositional temporal logic (PTL), since PTL does not allow
counting modulo n, which can be specified by an LSC with unbounded loop with
a certain message appearing n times inside the loop.

8 Related Work

A large amount of work has been done on scenario-based specifications. We
briefly discuss the ones most relevant to our work. The idea of using sequence
charts to discover design errors at early stages of development has been investi-
gated in [1, 22] for detecting race conditions, time conflicts and pattern matching.
The language used in these papers is that of classical message sequence charts,
with semantics being simply the partial order of events in a chart. In order to
describe system behavior, such MSC’s are composed into hierarchal message se-
quence charts (HMSC’s) which are basically graphs whose nodes are MSC’s. As
has been observed in several papers, e.g. [2], allowing processes to progress along
the HMSC with each chart being in a different node may introduce non-regular
behavior and is the cause of undecidability of certain properties. Undecidabil-
ity results and approaches to restrict HMSC’s in order to avoid these problems
appear in [16, 17, 11].

Live sequence charts have been used for testing and verification of system
models. Lettrari and Klose [20] present a methodology supported by a tool called
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TestConductor, which is integrated into Rhapsody [18]. The tool is used for mon-
itoring and testing a model using a restricted subset of LSCs. Damm and Klose
[8, 19] describe a verification environment in which LSCs are used to describe
requirements that are verified against a Statemate model implementation. The
verification is based on translating an LSC chart into a timed Büchi automa-
ton, as described in [19], and it also handles timing issues. Standard translations
from Büchi automata to temporal logic can then be applied. Previous work on
optimizing temporal logic formulas for model-checking appears in [3]. LSCs have
also been applied to the specification and verification of hardware systems [4, 5].

In [14] a methodology for specifying and validating requirements, termed
“play-in/play-out” is described. According to this approach, requirements are
captured by the user playing in scenarios using a graphical interface of the system
to be developed or using an object model diagram. The user “plays” the GUI
by clicking buttons, rotating knobs and sending messages (calling functions) to
objects in an intuitive manner. As this is being done, the supporting tool, called
the Play-Engine, constructs a formal version of the requirements in the form of
LSCs. Play-out is a complementary idea to play-in, which makes it possible to
execute the requirements directly. Smart play-out [13] is an extension of the play-
out mechanism using verification methods to drive the execution. The semantics
described in this paper follows that of [14, 13], but the translation to temporal
logic described here is new and was not used as part of (smart) play-out, a
direction that we plan to investigate in future work.
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Abstract. Specifications are necessary in order to find software bugs
using program verification tools. This paper presents a novel automatic
specification mining algorithm that uses information about error han-
dling to learn temporal safety rules. Our algorithm is based on the obser-
vation that programs often make mistakes along exceptional control-flow
paths, even when they behave correctly on normal execution paths. We
show that this focus improves the effectiveness of the miner for discov-
ering specifications beneficial for bug finding.

We present quantitative results comparing our technique to four ex-
isting miners. We highlight assumptions made by various miners that are
not always born out in practice. Additionally, we apply our algorithm to
existing Java programs and analyze its ability to learn specifications that
find bugs in those programs. In our experiments, we find filtering can-
didate specifications to be more important than ranking them. We find
430 bugs in 1 million lines of code. Notably, we find 250 more bugs using
per-program specifications learned by our algorithm than with generic
specifications that apply to all programs.

1 Introduction

Software remains buggy and testing is still the dominant approach for detecting
software errors. The difficulties and costs of testing have helped to push forward
techniques that automatically find classes of errors statically [4, 5, 6, 7, 13] or
dynamically [10, 11, 12, 14]. Such program verification tools can point out bugs
or provide guarantees about the absence of some mistakes.

Invariably, however, verification tools require specifications that describe
some aspect of program correctness. Creating correct specifications is difficult,
time-consuming and error-prone. Verification tools can only point out disagree-
ments between the program and the specification. Even assuming a sound and
complete tool, an imperfect specification can still yield false positives by point-
ing out non-bugs as bugs or false negatives by failing to point out real bugs.
Crafting specifications typically requires program-specific knowledge.

One way to reduce the cost of writing specifications is to use implicit
language-based specifications (e.g., null pointers should not be dereferenced)
or to reuse standard library specifications (e.g., [4, 13]). More recently, however,
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a variety of attempts have been made to infer program-specific temporal specifi-
cations and API usage rules [1, 2, 7, 14] automatically. These specification mining
techniques take programs (and possibly dynamic traces, or other hints) as input
and produce candidate specifications as output. In general, specifications could
also be used for documenting, refactoring, testing, debugging, maintaining, and
optimizing a program. We focus here on finding and evaluating specifications in a
particular context: given a program and a generic verification tool, what specifi-
cation mining technique should be used to find bugs in the program and thereby
improve software quality? Thus we are concerned both with the number of “real”
and “false positive” specifications produced by the miner and with the number
of “real” and “false positive” bugs found using those “real” specifications.

We propose a novel technique for temporal specification mining that uses
information about program error handling. Our miner assumes that programs
will generally adhere to specifications along normal execution paths, but that
programs will likely violate specifications in the presence of some run-time
errors or exceptional situations. Intuitively, error-handling code may not be
tested as often or the programmer may be unaware of sources of run-time er-
rors. Taking advantage of this information is more important than ranking can-
didate policies.

The contributions of this paper are as follows:

– We propose a novel specification mining technique based on the observation
that programmers often make mistakes in exceptional circumstances or along
uncommon code paths.

– We present a qualitative comparison of five miners and show how some miner
assumptions are not well-supported in practice.

– Finally, we give a quantitative comparison of our technique’s bug-finding
powers to generic “library” policies. For our domain of interest, mining finds
250 more bugs. We also show the relative unimportance of ranking candidate
policies. In all, we find 69 specifications that lead to the discovery over 430
bugs in 1 million lines of code.

In Section 2 we describe temporal safety specifications. We present our spec-
ification mining algorithm in Section 3. In Section 4 we describe some existing
specification mining algorithms, leading up to a qualitative comparison of var-
ious techniques in Section 5. We describe our experience running our miner in
Section 6, comparing its bug-finding powers to another technique and to generic
“library” specifications.

2 Temporal Safety Specifications

A specification miner takes a program as input and produces one or more can-
didate specifications with respect to a set of interesting program events. The
program is presented as a set of static or dynamic traces, each of which is a se-
quence of events and annotations (e.g., data values, records of raised exceptions).
Static traces are generated from the program source code. Dynamic traces are



Mining Temporal Specifications for Error Detection 463

Session sess = sfac.openSession();
Transaction tx;
try {

tx = sess.beginTransaction();
// do some work
tx.commit();

} catch (Exception e) {
if (tx != null) tx.rollback();
throw e;

} finally
sess.close();

Fig. 1. hibernate2 Session class documentation pseudocode and temporal
safety policy, given as an FSM over a six-event alphabet. Edge labels (events) are ei-
ther successful method invocations or method errors. Other transitions involving these
six events violate the policy, but other events (e.g., S.find) are not constrained

produced by running the program against a workload. In practice, events are
usually taken to be context-free function calls.

Mined specifications (or policies) are typically finite state machines with
events as edges. A run of the program adheres to the policy if it generates a
sequence of events accepted by the FSM. Such policies commonly limit how an
interface may be invoked (e.g., close cannot be called before open and must be
called after it). Many program verifiers can check such FSM properties, either
per-object (as a form of typestate) or globally. Ammons et al. [2] present a more
formal treatment of the mining problem.

As a concrete example, we consider a policy for the interfaces of the
SessionFactory, Session and Transaction classes in the hibernate2 pro-
gram, a 57k LOC framework that provides persistent Java objects [9]. The
Session class is the central interface between hibernate2 and a client. The
Session documentation includes explicit pseudocode and an injunction that
clients should adhere to it. The code and five-state FSM specification are shown
in Figure 1. We denote SessionFactory by SF, Session by S, and Transaction
by T. A typical use of this interface would visit states 1 through 3, “do some
work” there (involving events like S.flush and S.save that are not part of the
input alphabet of the FSM and thus do not affect it), and then visit 5 and return
to 1. In the next section we discuss our mining algorithm using this specification
as a concrete example.

3 Specification Mining Algorithm

Our work on specification mining was motivated by observations of run-time
error handling mistakes. Based on previous work examining such mistakes [13]
we believe that client code frequently violates simple API specifications in ex-
ceptional situations (i.e., in the presence of run-time errors). We found such
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bugs using generic “library” specifications (e.g., Socket and File open/close
rules), but we believed that we would be able to have a greater impact on soft-
ware quality by looking for program-specific mistakes. Our mining algorithm
produces policies dealing with resource leaks or forgotten obligations. We have
found that programs repeatedly violate such policies, especially when run-time
errors are involved. Our technique is in the same family as that of Engler et
al. [7] but is based on assumptions about run-time errors, chooses candidate
event pairs differently, presents significantly fewer candidate specifications and
ranks presented candidates differently.

We attempt to learn pairs of events 〈a, b〉 corresponding to the two-state
FSM policy given by the regular expression (ab)∗. For example, from traces
generated by the state machine in Figure 1 we might learn 〈SF.openSession,
S.close〉, because every accepting sequence that transitions from state 1 to
state 2 via SF.openSession must also transition from state 5 to state 1 via
S.close. We learn multiple candidate specifications per program and present
a ranked list to the user. For example, we might learn the candidate speci-
fication 〈SF.openSession, T.rollback〉. Unlike some mining algorithms that
produce detailed policies that must be manually debugged or modified, we pro-
duce simple policies that are designed to be accepted or rejected. With this
approach we will not be able to learn the “complete” policy in Figure 1. How-
ever, the full policy is closely approximated by 〈SF.openSession, S.close〉 and
〈S.beginTransaction, T.commit〉.

In a normal execution, events a and b may be separated by other events and
difficult to discern as a pair. After an error has occurred, however, the cleanup
code is usually much less cluttered and contains only operations required for
correctness. Intuitively, a programmer who is aware of the specification will have
included b in an exception handler, finally block, or other piece of cleanup code,
making it easier to pick up than in a normal execution path. The pseudocode
in Figure 1 demonstrates this sort of cleanup for the T.rollback and S.close
events. If S.close is the only legal way to discharge a Session obligation, we
expect to see S.close in well-written cleanup code.

We classify intra-procedural static traces as “error” traces if they involve
exceptional control flow. These are the traces containing at least one method
call that terminates with raising of an exception. Such exceptions are assumed to
signal run-time errors or unusual situations. Traces in which no such exceptions
are raised are “normal” traces. In Figure 1, a normal trace of events would
involve the state sequence 1–2–3–5–1. An error trace would visit 1–2–5–1 or
1–2–3–4–5–1.

3.1 Filtering Candidate Specifications

Let Nab be the number of normal traces that have a followed by b, and let Na

be the number that have a not followed by b. We define Eab and Ea similarly for
error traces. Given a set of traces, we consider all event pairs 〈a, b〉 from those
traces such that all of the following occur:
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Exceptional Control Flow (ex). Our novel filtering criterion is that event b
must occur at least once in some cleanup code (e.g., a catch or finally block):
we require Eab > 0. We assume that if the policy is important to the program-
mer, language-level error handling will be used at least once to enforce it. In
hibernate2, the SF.openSession and S.beginTransaction events never oc-
cur in cleanup code, thus ruling them out as the second event in a pair. The
T.commit, T.rollback and S.close events all do occur in cleanup code, how-
ever. Other miners limit events to those on a user-specified list.1 We prefer to
automate the creation of this list because of the cost of acquiring specific knowl-
edge about each target program. However, if such domain knowledge is available,
it can be used instead of, or in addition to, the default from cleanup code. The
occurrence of the event in normal execution traces will be used in Section 3.2 to
rank candidate specifications.

One Error (oe). There must at least one error trace with a but without b: we
require Ea > 0. We are here only interested in learning specifications that will
lead to finding program errors, and we assume that the programmer will make
mistakes in the handling of exceptional situations.

Same Package (sp). Events a and b must be declared in the same package.
For example, we assume that no temporal specification will be concerned with
the relative order of an invocation of an org.apache.xpath.Arg method and
a net.sf.Hibernate.Session method from separate libraries. The user can
specify wider or narrower related groups if such information is available.

Dataflow (df). Every value and receiver object expression in b must also be in
a. When dealing with static traces we require that every non-primitive type in b
also occur in a. We thus assume that Session SessionFactory.openSession()
may be followed by void Session.close() but forbid the opposite ordering.
Intuitively, this also corresponds to finding edges that share the same node in
policies like Figure 1. This notion is in contrast to other miners where a more
precise dataflow analysis rules out some unwanted specifications. In our exper-
iments this lightweight dataflow requirement has been sufficient to capture our
intuitive notion of correlated events.

3.2 Ranking Candidate Specifications

In order to improve the usability of this technique, we present to the user a ranked
list of the candidate specifications that satisfy the criteria described above. Our
heuristics will assign higher ranks to candidates that are more likely to be real
policies. We do not rank policies based on the number of bugs the policy would
find in the program. However, as we will see in Section 6, ranking plays a much
smaller role than eliminating extraneous candidates.

1 For example, in Engler et al. [7] the list includes functions whose names contain the
substrings “lock”, “unlock”, “acquire”, etc.
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Event a Event b Real Na Nab Ea Eab Filters rank z-rank z-rank|N
SF.openSessi S.close Yes 3 100 1348 1040 ex oe sp df 0.971 -73.5 2.40
S.beginTrans S.close ? 2 56 1037 501 ex oe sp df 0.966 -73.3 1.66
S.beginTrans T.commit Yes 2 56 565 973 ex oe sp df 0.966 -33.9 1.66
S.flush S.close no 9 39 200 473 ex oe sp df 0.812 -17.0 -2.02
T.commit S.close ? 1 57 474 504 ex oe sp 0.983 -38.5 2.10
S.beginTrans S.save no 4 54 37 1501 oe sp df 0.931 9.90 0.788
SF.openSessi T.commit ? 47 56 1415 973 ex oe sp 0.544 -81.0 -12.1
SF.openSessi println no 82 21 2121 267 ex oe df 0.204 -130 -23.4

Fig. 2. Static trace observations for Session events in hibernate2. The “real” column
indicates whether 〈a, b〉 is definitely (Yes), possibly (?) or definitely not (no) a valid
policy based on Figure 1. Na is the number traces with a but not b, Nab is the number
of normal traces with a followed by b. Ea and Eab measure the same figures for error
traces. The “Filters” column indicates which of our filterting requirements the pair
meets. Only the first four pairs qualify as candidates for our miner. The “rank” column
reports Nab/(Na + Nab) and high values indicate more likely specifications. The “z-
rank” column shows the z-statistic applied to all traces as in Engler et al. [7], while
the “z-rank|N” column shows the z-statistic restricted to normal traces

We assume 〈a, b〉 is more likely to be a policy if the programmer intends to
adhere to it many times. We assume that normal traces represent the intent of
the programmer and that some error traces represent unforseen circumstances
likely to contain bugs; thus we rank pairs according to the fraction of normal
traces in which a is followed by b.

Our ranking for a candidate 〈a, b〉 is Nab/(Nab + Na). The best ranking is 1,
and a reported specification with rank 1 has a followed by b in all normal paths.

Figure 2 shows observations for Session-related events on a set of static
traces. All eight pairs could potentially be policies, but our requirements in
Section 3.1 filter out the last four. Since SF.openSession does not occur in any
error-handling code, we do not consider pairs like 〈S.close, SF.openSession〉.
As desired, we rule out pairs like 〈SF.openSession, T.commit〉 with our dataflow
requirement (there is no Transaction object available in event a). Our package
requirement correctly rules out policies involving printf-like logging methods.
Finally, while we cannot rule out pairs like 〈S.flush, S.close〉 (where S.flush
is one of the “do some work” options that would occur at state 3 of Figure 1), we
rank it lower because a smaller fraction of normal paths have that pairing (e.g., in
Figure 2 that pair ranks 0.812 while the best pair involving S.close ranks 0.971).

The z-rank and z-rank|N columns of Figure 2 show the result of using the
z-statistic for proportions [8], an alternative ranking scheme, to rank candidate
specifications, with the z-rank|N column being computed over normal traces
only. The z-rank was used by Engler et al. [7]. The z-statistic increases with the
total number of observations involving a and decreases with the number of obser-
vations involving a but not b. Ignoring some constant factors, z-rank|N is equal
to our ranking multiplied by

√
Na + Nab. We provide an empirical comparison

of these three rankings in Section 6.
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4 Other Specification Mining Techniques

We now describe the main characteristics of several existing mining approaches.

Strauss. Ammons et al. [2] present a miner in which events from dynamic traces
that are related by traditional dataflow dependencies form a scenario. The user
provides a seed event and a maximum scenario size N . A scenario contains at
most N ancestors and at most N descendants of the seed event. The seed can
be any interesting event that is assumed to play a role in the specification.
Such scenarios are fed to a probabilistic finite state machine learner. The output
of the learner, a single policy, is minimized and may further be “cored” by
removing infrequently traversed edges or “debugged” and simplified with the
user’s help [3].

WML-Static. Whaley et al. [14] propose two methods for deriving interface
specifications for classes based on an explicit representation of typestate in mem-
ber fields.

In the first (static) approach the user specifies a class in the program. Traces
are generated statically by considering all pairs 〈a, b〉 of invocations for methods a
and b of that class. If b conditionally raises an exception when a field has a certain
constant value and a always sets that field to that value, 〈a, b〉 is considered a
violation of the interface policy. For example, the close method might set the
field opened to false, and the read method might raise an exception if opened is
false. The single final specification consists of all other pairs 〈a, b〉, represented
as a DFA with one state per method. This miner explicitly looks for “a must
not be followed by b” requirements, and by considering all possible method pair
interactions it discovers what can follow a as well. In our experiments, we used an
extended version of the miner that considers multiple fields and inlines boolean
methods.

JIST. The JIST tool of Alur et al. [1] refines the WML-static miner by using
predicate abstraction for a more precise dataflow analysis. The user specifies
a class and an undesired exception, as well as providing a set of predicates
and a specification size k. A boolean model of the class is constructed based
on the predicate set, and a model checker determines if invoking a sequence of
methods raises the given exception. If it can, that sequence is removed from
the specification. The process finds the most permissive policy of that size that
is safe with respect to the predicates and the exception. As with Strauss, the
output of the analysis is minimized using an off-the-shelf FSM library. In a WML-
static policy, states represent the last invoked method. In JIST, states represent
predicate valuations, which in turn represent object state. For example, JIST
could produce a policy in which the sequence 〈a, b〉 is allowed but 〈a, a, b〉 is not.
Thus, in JIST’s more general policies, states do not correspond directly to the
last method invocation.

WML-dynamic. Whaley et al. [14] also present a dynamic trace analysis that
learns a permissive policy for a given class. Such a permissive specification is the
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most restrictive policy that accepts all of the training traces. Each field of the
class is considered separately. Only events representing client calls to methods of
that class that read or write that field are examined. If a is immediately followed
by b in the trace, an edge from a to b is added to the policy. The single output
policy for the class is formed from the per-field policies.

ECC. Engler et al. [7] describe a technique for mining rules of the form “b
must follow a” as part of a larger work on may-must beliefs, bugs, and deviant
behavior. If b follows a in any trace, the event pair 〈a, b〉 is considered as a
candidate specification.

A pair 〈a, b〉 is a candidate policy if the events a and b are related by dataflow
and if there are both traces in which a is followed by b and traces in which a
is not followed by b. A series of dependency checks is employed: two events are
related if they have either the same first argument, or have no arguments, or if
the return value from the first passed as the sole argument to the second. The
user may also restrict attention to a certain set of methods.

ECC produces a large number of candidate policies. Engler et al. use the
z-statistic for proportions to hierarchically rank candidates. The z-statistic mea-
sures the difference between the observed ratio and an expected ratio p0. Engler
et al. use the ranking because it grows with the frequency with which the pair is
observed together and decreases with the number of counter-examples observed.
They take p0 = 0.9 based on the assumption that perfect fits are uninteresting
in bug-finding and that error cases are found near counter-examples. In our ex-
periments we have found that ECC’s assumptions tend to hold true for normal
traces but not for error traces (where the frequency counts are quite high if the
traces are static and often quite low if the traces are dynamic).

5 Qualitative Comparison of Mining Techniques

In this section we present experiments comparing these mining techniques. We
evaluate a miner in terms of the policy it produces and later in terms of the
number of bugs found by that policy. When comparing miners we abbreviate
our miner (defined in Section 3) by WN.

The first experiment compares miner performance on policies governing
hibernate2’s SessionFactory, Session and Transaction classes, as described
in Section 2. This example was chosen because one policy for it is clearly de-
scribed in the documentation, and also because that policy is complex enough
that none of the miners can expect to learn it perfectly (e.g., our technique is
unable to find all of the pieces of the full specification because of its assumptions
about run-time errors). ECC and WN both find policies about these classes (and
others) automatically. For the purposes of comparison, however, we restrict all
miners to policies about these three classes. For Strauss, WML and JIST we also
provide all of the appropriate parameters (e.g., class names, predicates).
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For the purposes of the comparison we present the same raw trace data to
each algorithm that looks at client code. In addition, some amount of human
help was given to every miner. For ECC and WN, two of the top seven candidate
policies were manually selected. For Strauss and WML-dynamic, a slice or core of
the learned policy was selected. For JIST and WML-static, all relevant predicates
and fields were given.

5.1 Hibernate2 Session Specifications

Strauss, WML-dynamic, ECC, and our technique all learned policies similar to
the documentation-based policy shown in Figure 1.

Fig. 3. A slice (the “hot core”) of the Session

policy learned by Strauss: the full learned spec-
ification has 10 states and 45 transitions

The Strauss policy (Figure 3)
captures the beginning and the
end of the Figure 1 closely but
is less precise than Figure 1 in
the middle. Strauss’s use of fre-
quency information means that
common sequences of events like
find and delete are included as
part of the policy. Paths through
states 2–6 are all particular in-
stantiations of the “do some
work” state 3 in Figure 1. Com-
pared to Figure 1, a sequence
of two flush events after an
openSession is incorrectly rejected by the Strauss policy while a sequence that
has beginTransaction but no rollback or commit is incorrectly accepted.

Fig. 4. A slice of the Session policy
learned by WML-dynamic

The WML-dynamic policy permissively
accepts all of the input traces. A slice
is shown in Figure 4, the full policy has
27 states and 117 transitions. The slice
captures the highlights of Figure 1 (e.g.,
in states 1–2–3–5–6) but fails to reject
observed illegal behavior (e.g., forgetting
close) and rejects unobserved legal behav-
ior (e.g., reconnect followed by close).
WML-dynamic makes a strong frequency
assumption: a transition is valid if and only
if it is observed. By contrast, our algo-
rithm’s ex and oe filters rule out some observed illegal behavior.

Figure 5 shows the top seven policies for these classes learned by ECC and
our approach. ECC learned 350 such candidate policies. The z-statistic fa-
vors frequent pairs: the pair 〈beginTransaction, save〉 occurs on more than
1,500 traces, and is thus a common practice, but is not strictly required.
Our approach learned 15 candidate policies, of which 2 are real. Two of the
three main aspects of the documented specification, 〈openSession, close〉 and
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ECC Policies WN Policies
#z-rank Event a Event b Real RankEvent a Event b RealECC
1 9.896 S.beginTrans S.save Yes 1.000S.iterate S.close no 286
2 1.686 S.reconnect S.load no 1.000S.getIdentifier S.close no 28
3 1.634 S.getLockModeS.close no 0.971SF.openSession S.close Yes 256
4 0.609 SF.openConn SF.closeConnYes 0.971S.createQuery S.close no 269
5 0.430 S.disconnect S.reconnect no 0.969S.find S.close no 290
6 0.309 S.getLockModeS.load no 0.966S.beginTrans T.commitYes 175
7 -0.430 S.disconnect S.load no 0.966S.beginTrans S.close no 254

Fig. 5. The top seven Session policies learned by ECC and WN. Each policy requires
an instance of “Event a” to be followed an instance of the corresponding “Event b”. The
“Real” column notes whether the policy is decidedly a false positive (no) or possibly
valid (Yes). For a WN policy, the “ECC” column shows the ranked number (out of
350, low represents a likely specification) ascribed to it by the ECC algorithm

〈beginTransaction, commit,〉 appear as #3 and #6 on the list. Since we ex-
plicitly look only for pairs 〈a, b〉 that occur in almost all normal traces we will
not find the rollback policy (no normal traces include rollback events).

5.2 Hibernate2 Session Typestate Specifications

Fig. 6. Session policy learned by
WML-static

The hibernate2 documentation mentions
one notion of Session typestate. The code
does contain defensive programming checks
using this typestate that raise exceptions,
just as WML-static and JIST assume. Un-
fortunately, neither WML-static nor JIST
are able to learn this typestate because it
is checked by verifying that an instance ob-
ject is in a dynamic data structure kept at
run-time. In addition, no check raises an ex-
ception if close, commit or rollback are
forgotten, and in general inspecting library
code will miss policies about such methods,
so WML-static and JIST cannot learn the
full specification in Figure 1.

WML-static (Figure 6) discovers five illegal sequences of Session methods.
It finds a useful undocumented Session typestate: two variables track the state
of a Session as it connects to a database. The S.write method checks these
underlying typestate variables but does not set them. For WML-static and JIST,
all unlisted events (e.g., S.close) are orthogonal to the learned policy.

JIST (Figure 7) produces a more precise policy (e.g., it discovers that
connection cannot be followed by writeObject) because it does not require
methods to have a uniform impact on the object’s typestate. Each state in the
JIST policy represents a distinct valuation of two variables. The writeObject
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method may only be called when both are false. The reconnect method always
sets the second to true, so both techniques discover that it cannot be followed by
writeObject. The connection method, however, has a different effect on the
state variables depending on their current values, so WML-static cannot reason
precisely about it.

Fig. 7. JIST Session policy

In our experiments the important dif-
ference between JIST and WML-static was
not JIST’s greater dataflow precision but
JIST’s accurate characterization of interest-
ing traces. All of the data manipulation was
either too complicated for both methods to
model (e.g., heap data structures) or sim-
ple enough to meet WML-static’s assump-
tions (e.g., comparing fields and constant val-
ues). These observations support our algorithmic design choice to use a simple
dataflow requirement but to pay careful attention to characterizing exceptional
traces.

6 Experiments

We present bug-finding effectiveness results comparing the performance of all
algorithms on the Session policy and results comparing our algorithm against
ECC and generic “library” specifications for one million lines of code.

6.1 Comparison with Other Specification Miners

Given a candidate policy, we use an ESP-like tool [5] to find potential bugs by
checking the policy against the source code [4, 5, 7, 13]. Each potential bug is
classified as a false positive or a real error by manual inspection. For example, if
an application fails to close a file but immediately shuts down as a result of the
error, the “leaked” file is classed as a false positive. However, a leaked database
lock between the JVM (held on behalf of the program) and an external database
is a bug if no finalizers close the connection when the program (but not the
JVM) shuts down.

In Figure 8 we present the results of using the mined specifications to find
bugs in the hibernate2 program. Each “false positive” or “real error” represents
a method where a trace fails to adhere to the given policy. The WML-dynamic
approach is not shown because its specification accepts all of the traces by con-
struction (thus it finds no bugs but yields no false positives).

Strauss-Full, the entire 10-state policy learned by Strauss, yields too many
false positives to be effective for bug-finding. Twenty-five of the false positives
are from traces along which S.close occurs after a sequence of “work” that
the specification fails to accept. However, since the specification also has many



472 W. Weimer and G.C. Necula

Mining False Real
Technique Positives Errors
Strauss-Full 27 0
Strauss-Cored 20 46
ECC #1 30 20
ECC #4 1 0
WN #3 4 46
WN #6 3 20
WML-static 9 0
JIST 1 0

Fig. 8. Comparison of
miner bug-finding power for
hibernate2 Session policies.
“False Positives” are methods
that violate the mined policy
but are actually correct. “Real
Errors” are buggy methods that
violate the mined policy

Strauss-Cored, the sliced policy shown in
Figure 3, gives a reduced number of false pos-
itives compared to Strauss-Full, but still suf-
fers from the same problems. However, Strauss-
Cored is able to find 46 methods in which
openSession is called but close is not (and
4 false positives involving openSession).

ECC, using specification #1 (the policy
with the highest z-rank, see Figure 5), finds
20 methods that deal with beginTransaction
improperly, 3 false positives involving
beginTransaction and 27 false positives
involving save. ECC specification #4 turns out
not to be useful for bug finding. Its z-rank is
high (28 of 30 traces that mention a also men-
tion b), but it only occurs at one point in the
source code. Either the z-rank|N or our ranking
would rank it much lower (Na = 1, Nab = 1).

Our method using specification #3 finds all
46 of the Session leaks found by Strauss-Cored (and the same four false pos-
itives). In fact, the Strauss-Cored report is a superset of the WN #3 report.
Using specification #6 we are able to find the 20 methods with commit and
rollback mistakes that are also found by ECC. Along 20 of the 23 error paths
we report in which beginTransaction occurs but commit does not, rollback
does not either. The ECC #1 report is a superset of the WN #6 report (but
with additional false positives).

Neither the WML-static nor the JIST specification lead to the discovery of
any bugs in this example. No traces contain S.discon followed by S.discon, for
example (or indeed any other erroneous violations of this typestate specification).
The JIST specification yields fewer false positives because it more accurately
represents the underlying Session typestate.

We conclude from these experiments that (1) the various techniques produce
different kinds of specifications, in accordance with their assumptions about
how programmers make mistakes and (2) not all of the assumptions underly-
ing these miners were born out by this example (such as the assumption that
typestate would be explicitly and simply represented or assumptions about event
frequency). WML-static and JIST were both able to find an undocumented type-
state specification. Their low false positive count shows that they were able to
form specifications that were permissive enough to accept most client behaviors.
Strauss, ECC and our technique were all good at yielding specifications that
found bugs. Our technique found all bugs reported by other techniques on this
example and did so with the fewest false positives.

accepting states (in particular, the state after SF.openSession accepts), errors
involving forgetting S.close are not reported.
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Lines WN (our miner) ECC Library
Program of Real Bugs Real Total Bugs Policy

Code Specs via Specs Specs Specs via Specs Bugs
infinity 1.28 28k 1 / 10 4 0 / 227 6468 0 14
hibernate2 2.0b4 57k 9 / 51 93 3 / 424 9591 21 13
axion 1.0m2 65k 8 / 25 45 0 / 96 4159 0 15
hsqldb 1.7.1 71k 7 / 62 35 0 / 224 5032 0 18
cayenne 1.0b4 86k 5 / 35 18 3 / 311 8432 8 17
sablecc 2.17.4 99k 0 / 4 0 0 / 80 2506 0 3
jboss 3.0.6 107k 11 / 114 94 2 / 444 12852 4 40
mckoi-sql 1.0.2 118k 19 / 156 69 2 / 346 10860 5 37
ptolemy2 3.0.2 362k 9 / 192 72 3 / 656 23522 12 27
total 993k 69 / 649 430 13 / 2808 83422 50 172

Fig. 9. Bugs found with specifications mined by ECC and our technique. The “Real
Specs” column counts valid specifications (determined by manual inspection) against
candidate specifications. For WN, all candidate policies were inspected. For ECC, only
candidates with non-negative z-rank were inspected. The “Total Specs” column counts
all policies reported by ECC. The “Bugs via Specs” column counts methods that
violate the “Real Specs”. Finally, the last column counts methods violating a generic
“library”-based policy that was applied equally to all programs

6.2 Bug Finding and Candidate Specification Ranking

Figure 9 compares our technique and the ECC technique on various benchmarks.
The benchmarks were chosen for ease of comparison with previous work, and may
favor the “a must be followed by b” specifications that both WN and ECC are
designed to mine. We also compare the bugs found via specification mining to
the bugs found via the generic “library” specifications we used in our previous
work [13]. The library policies were two- to four-state FSMs describing network
connections, database locks and file handles. We are unable to directly compare
the other techniques because of the cost involved in manually specifying classes,
predicates, and other parameters in advance.

ECC is able to find 4 specifications missed by our algorithm. In one of these
examples, the b event never occurs in any error handling code (and thus does not
meet our ex requirement). Removing the ex requirement causes our algorithm to
produce 1,114 candidate specifications for hibernate2 alone. Given the paucity
of real specifications that are filtered by the requirement and the plethora of
false positives that it avoids, we believe that basing our algorithm on exceptional
control flow paths was a good decision.

Of the 69 real specifications we found, 24 involved methods from separate
classes, arguing against class-based module requirements. Only one valid specifi-
cation involved methods from different libraries. On the other hand, for example,
30 of the first 100 false positive specifications reported by ECC for axion could
have been avoided with our sp package-level module requirement. We believe
these results argue strongly in favor of package-level requirements.
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A common false positive for ECC paired the family of methods
ListIterator.hasNext and ListIterator.next. The vast majority of paths
that contain the former also contain the latter, and iterators occur frequently,
causing the z-rank (whether restricted to normal traces or not) for such pairs
to be high (iterator specifications occur as one of the top five candidates for
ECC on six of our nine programs).

A common false positive for our technique paired read or write (instead of
open) with close. As the 〈flush, close〉 data in Figure 2 demonstrate, work
functions like read are almost invariably followed by close if they are present,
but the more desirable open-based specification usually ranks higher.

Almost every valid specification our technique found was listed somewhere
in ECC’s voluminous output of candidate specifications. For example, our 59th
candidate jboss policy finds four real errors and is #9522 on the ECC list
(z-rank= −54, z-rank|N= −29).

Fig. 10. Bugs found as a function of the rank
order in which candidate specifications are in-
spected. “WN Rank” is Nab/(Na+Nab), the rank-
ing used by our algorithm, “z-rank|N” is the z-
statistic restricted to normal traces and “z-rank”
is the z-statistic

Figure 10 shows the number
of bugs found as a function of
the ranking used to sort can-
didate specifications produced
by our algorithm. Compared to
the z-rank, our ranking only
required 42% of the specifica-
tions to be inspected (instead of
72%) in order to find two-thirds
of the bugs. However, we con-
clude that since various rank-
ings work only moderately bet-
ter than a random shuffle, it
is very important to produce
a small number of extraneous
candidates.

Our results for ECC are con-
sistent with, but slightly better
than, previously published figures in which 23 errors were found via specification
mining on the Linux 2.4.1 kernel (about 840k LOC) [7]. ECC was designed to
target C operating systems code. It actually performs better (in errors found per
line of code) in this domain than in their reported experiments, although there
is no reason to believe that the bug density should be the same.

One additional consideration is the utility of the found bugs. Evaluating the
importance of a bug is beyond the scope of this work. Our mining technique
favors resource leaks and forgotten obligations. One of the authors of ptolemy2
was willing to rank resource leaks we found on his own scale. For that program,
11% of the bugs we reported were in tutorials or third-party code, 44% of them
rated a 3 out of 5 for taking place in “little used, experimental code”, 19% of
them rated a 4 out of 5 and were “definitely a bug in code that is used more
often”, and 26% of them rated a 5 out of 5 and were “definitely a bug in code
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that is used often.” We cannot claim that this breakdown generalizes, but it does
provide one concrete example.

Using our miner to find bugs was decidely better than using generic library
policies. We found 430 bugs using mined policies compared to 172 using generic
ones. We found 380 more bugs and 56 more policies than ECC using 2000 fewer
candidate specifications. This highlights the practical importance of our algo-
rithmic assumptions, in particular our use of exceptional control flow.

7 Conclusions

As automatic program verification tools become more prevalent, specifications
become the limiting factor in verification efforts, and specification mining for
the purposes of finding bugs becomes more important. Given a program, a spec-
ification miner emits candidate policies that describe real or common program
behavior. We propose a novel miner that uses information about exceptional
paths. We compare the bug-finding power of various miners. In 1 million lines
of Java code, we found 430 bugs using mined specifications compared to 172
using generic “library”-based ones, and we found more bugs than comparable
mining algorithms. Our experiments highlighted the relative unimportance of
candidate ranking and the practical importance of our algorithmic assumptions,
in particular our use of exceptional control flow for specification mining.
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Abstract. The automatic synthesis of programs from their specifica-
tions has been a dream of many researchers for decades. If we restrict
to open finite-state reactive systems, the specification is often presented
as an ATL or LTL formula interpreted over a finite-state game. The re-
quired program is then a strategy for winning this game. A theoretically
optimal solution to this problem was proposed by Pnueli and Rosner, but
has never given good results in practice. This is due to the 2EXPTIME-
complete complexity of the problem, and the intricate nature of Pnueli
and Rosner’s solution. A key difficulty in their procedure is the deter-
minisation of Büchi automata. In this paper we look at an alternative
approach which avoids determinisation, using instead a procedure that
is amenable to symbolic methods. Using an implementation based on
the BDD package CuDD, we demonstrate its scalability in a number of
examples. Furthermore, we show a class of problems for which our algo-
rithm is singly exponential. Our solution, however, is not complete; we
prove a condition which guarantees completeness and argue by empirical
evidence that examples for which it is not complete are rare enough to
make our solution a useful tool.

1 Introduction

Finite-state reactive systems occur in many critical areas of computing. They can
be found in places such as network communication protocols, digital circuits, and
industrial control systems. Their use in systems which involve concurrency and
their interaction with unpredictable or hostile environments makes reactive sys-
tems notoriously hard to write correctly. By considering such systems as games
we can distinguish between events that we can control (inside the program) and
events that we cannot (the environment). This gives a more realistic framework
for reasoning about them than the conventional approach of “closing” the system
by adding a restricted environment and treating all choices uniformly.

We take the stance that closing an open system for verification or synthesis
is imprecise and that reasoning with game semantics provides a much better
solution. This stance has been advocated by many other researchers [1, 9, 10,
8], but there are some verification and synthesis problems that become much
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harder in the game-theoretic world. In particular the problems of synthesis and
verification for games with LTL winning conditions are 2EXPTIME-complete
[12, 13]. This high complexity and the intricacy of the solution offered by Pnueli
and Rosner have meant that despite the wealth of potential applications, there
has been no implementation of synthesis for LTL games. We address this problem
by providing a novel algorithm which avoids a major difficulty of the classical
approach: the determinisation of Büchi automata. The best known method for
this determinisation is due to Safra [14] and this method has been proven to be
optimal [11] but has resisted efforts at efficient symbolic implementation [17].
Instead of trying to determinise a Büchi automaton, our algorithm uses a “shift
automaton” to track the possible states that the Büchi automaton could be in
and retake non-deterministic choices if they turn out to be wrong. The shift
automaton is of roughly equal size to the deterministic automaton produced by
Safra’s algorithm, but it can be constructed symbolically. This has allowed for
the construction of an efficient implementation using BDDs. In this paper we
describe in detail a new algorithm for the synthesis of strategies in LTL games; we
describe some small problems that can be solved by the implementation of this
algorithm; and finally we give some performance data obtained by parameterising
the given examples.

2 ω-Automata and Infinite Games

We quickly review the definitions and establish notations for writing about ω-
automata and infinite games. Detailed information on ω-automata can be found
in [18]; and information on infinite games can be found from [8] and [19].

Given an alphabet Σ, we denote the set of all finite words made from letters
in Σ as Σ∗, and the set of all ω-words (infinte words) as Σω. For a word λ ∈ Σω,
we write λ[i] for the i-th letter, λ[i, j] for the finite section of the word from point
i to j, and λ[i,∞] for the infinte suffix from point i. ω-automata provide a way
of recognising sets of ω-words. An ω-automaton A = 〈QA, iA, δA, Acc〉 is a tuple
where the component parts are as follows: QA is a finite set of states; iA is
an initial state; δA : QA × Σ �→ 2QA is a transition function (we may define
δA : QA × Σ �→ QA for deterministic automata); and Acc is an acceptance
condition. A run ρ of an ω-automaton on a word λ is an infinite sequence of
states such that ρ[0] = iA and for all i ≥ 0 ρ[i + 1] ∈ δA(ρ[i], λ[i]). We denote
the set of states that occur infintely often on a run ρ by In(ρ). In this paper
we are concerned with two types of ω-automata: Büchi automata and Rabin
automata. We write DB for a deterministic Büchi automaton and NB for a non-
deterministic Büchi automaton. The acceptance condition in a Büchi automaton
is a set F ⊆ QA and a word λ is accepted if and only if there is a run ρ on λ
such that In(ρ) ∩ F �= ∅. The acceptance condition on a Rabin automaton is a
set of pairs {(E0, F0), . . . , (En, Fn)} and a word λ is accepted if and only if there
is a run ρ on λ such that there exists i ∈ [0, n] such that In(ρ) ∩ Fi �= ∅ and
In(ρ) ∩ Ei = ∅.
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An infinite game is a tuple G = 〈QG, iG, QP , QA, δG〉 representing a two-
player game between the protagonist P and the antagonist A. QG is a set of
states from which iG is the initial one; QP and QA partition QG into turns
for P and A, respectively; δG : QG �→ 2QG is a transition function such that
∀q ∈ QP δG(q) ⊆ QA and ∀q ∈ QA δG(q) ⊆ QP i.e. the players alternate turns.
A play of the game is an infinite sequence λ of states from QG such that λ[0] = iG
and for all i ≥ 0 λ[i + 1] ∈ δG(λ[i]). We formalise the capabilites of players in
the game with the notion of strategies. A strategy f : Q+

G �→ 2QG for P restricts
the choices of P by prescribing how he should play his moves. We require that
for any play λ and all i ≥ 0 f(λ[0, i]) ⊆ δG(λ[i]). The set of outcomes out(f, q0)
of playing a strategy f from a state q0 is defined as

out(f, q0) = {q0, q1, . . . | ∀i ≥ 0 if (qi ∈ QP ) qi+1 ∈ f(q0, . . . , qi)
else qi+1 ∈ δG(qi)}

We also use partial strategies which are partial functions with the same type as
a normal strategy. The set of outcomes of a partial strategy is defined as:

out(f, q0) = {q0, q1, . . . | ∀i ≥ 0 if (qi ∈ QP ∧ f(q0, . . . , qi) defined)
qi+1 ∈ f(q0, . . . , qi) else qi+1 ∈ δG(qi)}

When a game is provided with a winning condition W , we say that P can win
the game if and only if there is a strategy (partial or complete) for P such that
all outcomes of the strategy satisfy W .

3 Synthesis for NB Games

The main algorithm in our synthesis procedure takes as input a game G =
〈QG, iG, QP , QA, δG〉 and a winning condition in the form of a Büchi automaton,
B = 〈QB , iB , δB , FB〉. The algorithm identifies a set of states that are winning
for P and produces a partial strategy (partial because it may be undefined from
states which are not winning for P ) such that the set of outcomes of the strategy
from any winning state are accepted by B.

To see why the conventional approach uses determinisation, let us consider
an approach which uses an obvious extension of the algorithm used for games
with Büchi winning conditions [19]. A Büchi winning condition (as opposed to a
winning condition specified by a NB) specifies a set FG ⊆ QG such that plays are
winning for P if and only if they visit FG infinitely often. The solution for these
games offered in [19] is a game-theoretic extension of the algorithm proposed
by Emerson and Lei for finding fair strongly connected components [7]. This
algorithm is attractive as it has shown to be quite efficient when compared
against other symbolic fair cycle detection algorithms [16]. It works by finding
the set of states from where P has a strategy to reach FG, then the states where
P has a strategy to reach FG and from there has a strategy to reach FG again
etc. An increasing number of visits to FG are required until a fixed-point is
achieved whereupon we know that P has a strategy to visit FG infinitely often.
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1 32 4

(a) Game

t0

t1

t2

1, 2, 3, 4

1, 2

3, 4

1, 2

3, 4

(b) Winning Condition

Fig. 1. A game where the winning condition “needs” determinisation. Square states
are P ’s moves, circles are A’s

The game-theoretic aspect of the algorithm in [19] works by adapting the notion
of predecessor to enforce that a state in QP is winning if there exists a winning
successor, and a state in QA is winning if all successors are winning.

We could try to perform the same computation over G × B, always evalu-
ating the B component existentially. However, there is an assumption in this
algorithm that winning is transitive i.e. the states along a winning path are win-
ning themselves. Whilst this may seem like a natural thing to expect, it is not
actually true. The game and specification in Figure 1 give an example of how
winning can fail to be transitive in this sense. P has only one choice which comes
at state 3; he can win this game by always choosing 3 → 4 if he gets that choice.
Although there is a winning strategy from (1, t0), if we follow that strategy and,
at the same time, try to construct a winning run from the B part, we cannot be
sure to reach a state from where there is another winning strategy. The opponent
can stay in {(1, t?), (2, t?)} as long as he likes and we must choose what to do
with the Büchi component. We cannot allow the Büchi automaton to visit t1 in
case the opponent later chooses 3. So we either have a losing run in the Büchi
component, ((1, t0)(2, t0))ω or reach {(1, t1), (2, t1)} from where there is no win-
ning strategy (A chooses 3 and B is stuck). On this basis, (1, t0) would not be
identified as winning because P cannot be sure to reach a state in QG×FB from
where he has a winning strategy.

Our solution to this is to allow some “shifting” between Büchi states. If the
Büchi automaton is in a dead-end state, we now allow the transition relation to
be overridden by making a shift i.e make a transition as if the Büchi automaton
were in a different state. We maintain the set of reachable Büchi states at all
times, and this provides the justification for shifts – whenever a shift is made, it
is made to some reachable state and, thus, is equivalent to retaking some earlier
non-deterministic choices. The set of reachable states is provided by the shift au-
tomaton, S = 〈QS , iS , δS〉, a deterministic automaton derived from B with the
subset construction where each state in QS represents a set of states from QB :

QS = P(QB) iS = {iB} δS(φ, q) = {t′ | ∃t ∈ φ.t′ ∈ δB(t, q)} (1)
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Accordingly, we define the synthesis algorithm over G×B×S. We call this prod-
uct the composite, C, and define some shorthands to ease the burden of notation:

QC = QG ×QB ×QS (2)
FC = {(q, t, φ) ∈ QC | t ∈ FB} (3)

QCP = {(q, t, φ) ∈ QC | q ∈ QGP } (4)
QCA = {(q, t, φ) ∈ QC | q ∈ QGA} (5)

Now, if we are in a situation such as the one in Figure 1, we can make win-
ning transitive by allowing some shifts. The informal argument is as follows:
From (1, t0, {t0}) we always go to (2, t1, {t0, t1}) because we are optimistic about
getting an accepting run in the B component. If the opponent always chooses
2 → 1, then we have an accepting run made up of (1, t0, {t0}) ((2, t1, {t0, t1})
(1, t0, {t0, t1}))ω. If the opponent eventually chooses 2 → 3, then we take a shift:
In state (2, t1, {t0, t1}) the B component could have been in t0, so when the
opponent chooses 3 we make a shift and take the t0 →3 t2 transition i.e. we
go to (3, t2, {t0, t2}). From here, P can win and we end up with an overall win-
ning path made up by (1, t0, {t0})((2, t1, {t0, t1})(1, t0, {t0, t1}))∗(2, t1, {t0, t1})
((3, t2, {t0, t2}) (4, t2, {t0, t2}))ω.

Shifting helps the issue of completeness, but allowing an infinite number of
shifts would be unsound. However, if shifting is only allowed finitely often, the
language is not changed. Informally we justify this on the basis that acceptance
is evaluated over infinite paths, and although shifting may allow finitely many
extra visits to FC , paths must eventually have no more shifts and thus would
be accepting without any shifting. The soundness of finite shifting is implied by
Theorem 2.

To write down the main synthesis algorithm with finite shifting, we first
define two predecessor functions preP and preA. These are evaluated over the
triple state-space of G × B × S, respecting the alternation of the game and
allowing for shifting. Unlike a conventional predecessor function, two arguments
are supplied. The second argument is a set that we allow shifts into. preP (X,W )
is the set of transitions which obey the game and shift automaton, and either
have a transition in B to reach X (t′ ∈ δB(t, q′)∧(q′, t′, φ′) ∈ X in Equation 6) or
have a shift justified by the shift automaton to reach W (t′ ∈ φ′∧ (q′, t′, φ′) ∈W
in Equation 6). preA(X,W ) simply uses preP (X,W ) as an approximation, and
then makes sure that there is a good transition for every possible game-successor.

preP (X,W ) ={〈(q, t, φ), (q′, t′, φ′)〉 | q′ ∈ δG(q), φ′ = δS(φ, q′),
(t′ ∈ δB(t, q′) ∧ (q′, t′, φ′) ∈ X) ∨ (t′ ∈ φ′ ∧ (q′, t′, φ′) ∈W )} (6)

preA(X,W ) = {〈(q, t, φ), (q′, t′, φ′)〉 ∈ preP (X,W ) | ∀q′2 ∈ δG(q)
∃〈(q, t, φ), (q′2, t

′
2, φ

′
2)〉 ∈ preP (X,W )} (7)

Using these definitions, we write the main algorithm in Figure 21. To understand
how the synthesis algorithm works, consider each of the variables in turn:

1 We denote the k-th projection of a tuple T by πk(T )
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1 w0 := ∅;
2 δF,0,∞,∞ := ∅;
3 repeat counted by j = 1 . . .
4 zj,0 := QC ;
5 repeat counted by k = 1 . . .
6 τj,k := zj,k−1 ∩ FC ;
7 sj,k,0 := ∅;
8 δFj,k,0 := δFj−1,∞,∞;
9 repeat counted by l = 1 . . .
10 uA := preA(τj,k ∪ sj,k,l−1, wj−1) ∩ (QCA × QCV );
11 uV := preV (τj,k ∪ sj,k,l−1, wj−1) ∩ (QCV × QCA);
12 δFj,k,l := δFj,k,l−1 ∪ {〈(q, t, φ), (q′, t′, φ′)〉 ∈ uA ∪ uV

| (q, t, φ) �∈ π1(δFj,k,l−1)};
13 sj,k,l := sj,k,l−1 ∪ π1(uA) ∪ π1(uV );
14 until sj,k,l = sj,k,l−1

15 zj,k := zj,k−1 ∩ sj,k,∞;
16 until zj,k = zj,k−1

17 wj := wj−1 ∪ zj,∞;
18 until wj = wj−1

Fig. 2. Synthesis algorithm with finite shifting

– wj : At the end of the algorithm, this will contain the set of winning states.
The j subscript is the maximum number of shifts required to win from a
state in wj .

– zj,k: At the end of the middle loop, this is the set of states from where every
outcome reaches zj,k ∩ FC infinitely often with no shifting or just reaches
wj−1 (possibly by shifting). During the middle loop, every outcome reaches
zj,k−1 ∩ FC with no shifting or wj−1 (possibly by shifting).

– τj,k: The “target” for the innermost loop. This variable could be substituted
for its definition at each use, it is clearer (and more efficient in implementa-
tion) to write separately.

– sj,k,l: The set of states from where P can be sure to reach τj,k in l steps with
no shifting or wj−1 in l steps with a shift.

– δF,j,k,l: The partial strategy as it is synthesised. On the first j-loop it will
be a strategy to win with no shifting. On line 12 we must be careful not to
overwrite old moves. On iteration l of the inner loop, when a transition is
first added to the strategy it must go into sj,k,l−1∪τj,k or wj−1. However, this
state will be rediscovered on later iteration of the inner loop and uP /uA may
contain transitions which do not make progress towards an accepting state
and we must therefore keep the transition from the first discovery. Having
built a strategy with no shifts, we carry this forward to the next iteration
of the j-loop. Here another strategy is built up, but this time it allows the
possibility of a shift to wj−1 since we already have a winning strategy from
there. New moves are written for states in wj − wj−1, but as soon as the
strategy reaches wj−1 the old strategy takes over.
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The algorithm in Figure 2 is computing nested fixed-points which can be
characterised as μw.νz.μs.π1((preP (s∨ (z∧FC), w)∧ (QCP ×QCA))∨ (preA(s∨
(z ∧ FC), w) ∧ (QCA × QCP )). We note that on the first iteration of the outer
loop in this algorithm, the computation performed is the näıve extension of the
solution for Büchi games i.e. νz.μs.π1((preP (s∨ (z ∧FC),⊥)∧ (QCP ×QCA))∨
(preA(s ∨ (z ∧ FC),⊥) ∧ (QCA × QCP )). This calculation does not depend on
the shift automaton and, in this way, we are sometimes able to perform the
strategy synthesis without having to generate the shift automaton. We can give
a precise condition which assures this by first defining trivially determinisable
Büchi automata.

Definition 1. A Büchi automaton is trivially determinisable if and only if it
can be made deterministic by removing 0 or more transitions without changing
its language.

Using this definition it is possible to prove the following theorem:

Theorem 1. For any game G, with a winning condition specified by a Büchi
automaton B, if B is trivially determinisable, then all winning states for P in
QC satisfy νz.μs.π1((preP (s ∨ (z ∧ FC),⊥) ∧ (QCP × QCA)) ∨ (preA(s ∨ (z ∧
FC),⊥) ∧ (QCA ×QCP )).

Whilst this definition includes the shift automaton, it is clear that the predeces-
sor functions do not depend on the shift automaton when W is empty, so this
proves that if B is trivially determinisable, the algorithm can succeed without
generating the shift automaton. Intuitively, this theorem holds because the näıve
algorithm is complete for deterministic Büchi automata and since the transitions
of B are evaluated existentially, a trivially determinisable Büchi automaton is
as good as a deterministic one. In the long version of this paper, this theorem
and all the other theorems that follow are proven in the appendix.

Since preP and preA are monotonic functions and the state-spaces involved in
the algorithm are finite, it follows that the algorithm terminates. The algorithm’s
soundness is asserted by the following theorem:

Theorem 2. Once the algorithm has terminated, for all (q, t, φ) ∈ w∞,
δF∞,∞,∞ is a partial strategy such that ∀λ ∈ out(δF∞,∞,∞, (q, t, φ)) π1(λ[1,∞])
∈ L(B,φ).

In much the same way as the completeness condition in Theorem 1, we can give
a condition for the algorithm in Figure 2. To do this, we introduce the concept of
the generalised Rabin expansion of a Büchi automaton. Intuitively, this automa-
ton encodes the idea of finite shifting by its structure and winning condition.

Definition 2. Let B be a Büchi automaton, and S be the corresponding shift
automaton for B. The generalised Rabin expansion, R = 〈QR, iR, δR, FR, ER〉,
of B and S is defined as
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QR = QB ×QS

iR = iB × iS

δR = {((t, φ), a, (t′, φ′)) ∈ QR ×Σ ×QR | φ′ ∈ δS(φ, a), t′ ∈ φ′}
FR = {(t, φ) ∈ QR | t ∈ FB}

ER = {((t, φ), a, (t′, φ′)) ∈ δR | t′ �∈ δB(t, a)}

where, in the usual way, QR, iR, and δR are the state-space, initial state, and
transition function, respectively. FR and ER are used to define the winning con-
dition of R: A run ρ on a word λ is winning if and only if ∃∞i ≥ 0.ρ[i] ∈ FR

and ∃j ≥ 0.∀k ≥ j (ρ[k], λ[k], ρ[k + 1]) �∈ ER.

It is convenient to specify a winning condition on transitions rather than states,
but it is easy to translate such an automaton into a conventional Rabin automa-
ton. The translation could be done as follows: create a second copy of every
state; make every transition in ER go instead to the copy; make every transition
in the copy go back into the original; finally, set the Rabin condition to have
infinitely many visits to FR in the original and only finitely many visits to the
copied states. We also note that for any reachable state (t, φ) in R, the invariant
is maintained that t ∈ φ.

With this definition in place, it is possible to prove the following theorem
about completeness for the synthesis algorithm.

Theorem 3. For any game G, with a winning condition specified by a Büchi
automaton B, if B’s generalised Rabin expansion is trivially determinisable then
all winning states for P in QC satisfy μw.νz.μs.π1((preP (s ∨ (z ∧ FC), w) ∧
(QCP ×QCA)) ∨ (preA(s ∨ (z ∧ FC), w) ∧ (QCA ×QCP )).

We note that this is a safe approximation of the class of problems for which the
algorithm will be complete. In fact, the structure of the game is also cruical to
completeness. Providing a characterisation which uses the structure of both the
game and the specification would be an interesting avenue for future research.

4 Synthesis for LTL Games

In the previous section we provided an algorithm for solving games with NB win-
ning conditions that was complete under a condition on the form of the NB. We
can perform synthesis for LTL games by using the tableau method to translate
an LTL specification into a NB and then using the algorithm in Figure 2. With
the restriction of Theorem 3 and our goal of symbolic implementation in mind,
our choice of translation from LTL to NB must be made wisely. The method that
we use is based on the symbolic construction of [4], with three changes: First,
we deal with formulae in negation normal form rather than using a minimal set
of temporal operators – as noted by [15], this provides us with a slight efficiency
improvement as safety formulae do not have to be treated as negated liveness
formulae. Secondly, we define a weaker transition formula than [4] – this allows
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some types of formulae to be translated into trivially determinisable Büchi au-
tomata and allows for the last change. Finally, we split variables into “required”
and “optional” forms meaning that the fairness constraints of optional formulae
do not necessarily have to be met as long as some other fairness constraints are
whilst the constraints of required formulae must always be met.

First we recall the syntax and semantics of LTL, a more thorough review can
be found in [6]. Syntactically, we consider an LTL formula ψ in negation normal
form to obey the following grammar

Π ::= p | ¬Π | Π ∨Π ψ ::= Π | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ U ψ | ψ R ψ

where p is a member of the set of atomic propositions. The semantics of LTL
are defined inductively over infinite paths λ.

– λ 
 p iff p ∈ λ[0].
– λ 
 ¬ψ iff λ �
 ψ.
– λ 
 ψ1 ∨ ψ2 iff λ 
 ψ1 or λ 
 ψ2.
– λ 
 ψ1 U ψ2 iff ∃i ≥ 0.λ[i,∞] 
 ψ2 and ∀j ∈ [0, i− 1] λ[j,∞] 
 ψ1.
– λ 
 ψ1 R ψ2 iff ∀i ≥ 0 either λ[i,∞] 
 ψ2 or there exists j ∈ [0, i] such that

λ[j,∞] 
 ψ1 ∧ ψ2.

Like [4], we define a function el() to return the set of elementary sub-formulae
of an LTL formula. The set el(ψ) forms the set of propositions in the tableau
for ψ.

– el(p) = {p}
– el(¬ψ) = el(ψ)
– el(ψ1 ∧ ψ2) = el(ψ1) ∪ el(ψ2)
– el(Xψ1) = {(Xψ1)r} ∪ el(ψ1)
– el(ψ1 ∨ ψ2) = el(ψ1) ∪ el(ψ2) ∪ {xo | xr ∈ el(ψ1) ∪ el(ψ2)}
– el(ψ1 U ψ2) = {(X(ψ1 U ψ2))r} ∪ el(ψ1) ∪ el(ψ2)
– el(ψ1 R ψ2) = {(X(ψ1 R ψ2))r} ∪ el(ψ1) ∪ el(ψ2).

We see from this that the propositions arising from formulae under an ∨ appear
in optional and required forms. This is how the optional formation is used –
in a formula ψ1 ∨ ψ2 the conventional tableau construction would generate an
automaton which chooses between three covering formulae: ψ1 ∧¬ψ2, ¬ψ1 ∧ψ2,
and ψ1 ∧ ψ2. In a game where the opponent can infinitely often choose between
satisfying the fairness constraints of ψ1 or ψ2, this splitting can necessitate in-
finite shifting for the algorithm in Figure 2. By making the fairness constraints
optional, we allow the tableau to follow the ψ1 ∧ ψ2 path as long as the play
is consistent with the safety requirements of ψ1 ∧ ψ2 and consider the play to
be accepted if it satisfies either the fairness constraints of ψ1 or the fairness
constraints of ψ2.

Again like [4], we define a function sat() which takes an LTL formula and
returns a formula representing the set of states in the tableau for which out-
going fair paths are labelled by plays which satisfy the LTL formula. It works
uniformly for all t ∈ {r, o}. The only change from the standard definition is in
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sat((ψ1 ∨ψ2)r); here we always allow the possibility of the optional versions be-
ing taken instead of the required ones. Since the clause for the optional variables
is (sat(ψo

1)∧ sat(ψo
2)), the structure of the tableau ensures that paths are consis-

tent with both formulae (i.e. they satisfy the non-fairness part of the formulae).
Our new definition of the fairness constraints will allow one or the other to be
satisfied. For all t ∈ {r, o}, sat(ψt) is defined as:

– sat(Πt) = Π
– sat((ψ1 ∧ ψ2)t) = sat(ψt

1) ∧ sat(ψt
2)

– sat((ψ1 ∨ ψ2)t) = sat(ψt
1) ∨ sat(ψt

2) ∨ (sat(ψo
1) ∧ sat(ψo

2))
– sat((Xψ1)t) = (Xψ1)t

– sat((ψ1 U ψ2)t) = sat(ψt
2) ∨ (sat(ψt

1) ∧X(ψ1 U ψ2)t)
– sat((ψ1 R ψ2)t) = (sat(ψt

1) ∧ sat(ψt
2)) ∨ (sat(ψt

2) ∧X(ψ1 R ψ2)t).

The transition relation ensures that if Xψ occurs in a state, all fair paths from
all successors of that state satisfy ψ.∧

t∈{r,o}

∧
(Xψ1)t∈el(ψr)

(Xψ1)t ⇒ sat(ψt
1)

′. (8)

This differs from [4] by the inclusions of optional/required tags and by using
⇒ instead of ⇔. This relaxation is possible because the input formulae are in
negation normal form and its soundness is implied by Theorem 4.

The fairness constraints on the tableau are defined by another new function,
fsat(). Conventionally, the fairness constraints for a formula ψ would require that
for each sub-formula of the form ψ1 U ψ2 a fair path infinitely often has either
¬X(ψ1 U ψ2) or sat(ψ2) i.e. at any point, either ψ1 U ψ2 is not required or it
is eventually satisfied. Our definition of fsat is based on this notion, but allows
for the special case of optional variables. Fairness on a path π is defined by the
following function:

– fsat(Πt) = �
– fsat((ψ1 ∨ ψ2)t) = fsat(ψt

1) ∧ fsat(ψt
2) ∧ (fsat(ψo

1) ∨ fsat(ψo
2))

– fsat((ψ1 ∧ ψ2)t) = fsat(ψt
1) ∧ fsat(ψt

2)
– fsat((Xψ1)t) = fsat(ψt

1)
– fsat((ψ1 U ψ2)t) = fsat(ψt

1) ∧ fsat(ψt
2)

∧ ∃∞i ≥ 0.π[i] ∈ sat(ψt
2) ∨ ¬(X(ψ1 U ψ2))t

– fsat((ψ1 R ψ2)t) = fsat(ψt
1) ∧ fsat(ψt

2).

We see that the only departure from the conventional usage (a convention ob-
served by [4]) is in allowing one or the other of a pair of optional variables to be
satisfied.

Since our construction is a relaxation of the one given by [4], we do not prove
its completeness. However, its soundness is asserted by the following theorem:

Theorem 4. Let ψ be an LTL formula over a set, P, of atomic propositions.
Let T be the symbolic tableau automaton for ψ constructed as above. For any
ψ1 ∈ sub(ψ), any t ∈ {r, o} and any path, π, in T , for all i ≥ 0 if π[i] ∈ sat(ψt

1)
and π[i,∞] satisfies fsat(ψt

1) then π[i,∞] 
 ψ1.
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Using this tableau construction we can perform the entire synthesis procedure
symbolically. First the LTL formula is translated in the manner described above.
This tableau is then used as the Büchi automaton in the algorithm from Figure 2
which can also be computed symbolically. Despite the doubly exponential worst-
case complexity of this procedure we shall see in the following section that useful
results can be computed. First, we note that for request-response specifications
[20], strategies can be synthesised without generating a shift automaton i.e.
the tableau for such specifications is trivially determinisable. Request-response
specifications can be written in LTL as G(p ∧ (r0 ⇒ Fs0) ∧ . . . ∧ (rn ⇒ Fsn))
and we prove the following proposition in the appendix.

Proposition 1. The tableau for LTL formulae of the form G(p∧ (r0 ⇒ Fs0)∧
. . . ∧ (rn ⇒ Fsn)) (where p, ri, and si are propositional formulae) is always
trivially determinisable.

5 Implementation

The synthesis algorithm has been implemented in Java using native calls to
the CuDD [5] library to handle BDDs. As input, the program takes an XML
file containing a symbolic description of the game and an LTL specification.
After successful synthesis, a number of output options are possible: the program
can print the set of winning states; produce an explicit graph of the winning
strategy with dot; show an interactive, expandable tree of the strategy so that
the user can play it out; and convert the strategy into a program in the language
of the Cadence SMV model checker [3]. The output to SMV can be used to
check the correctness of the implementation by checking against the original
LTL specification (once a winning strategy has been synthesised, it is possible
to view the strategy as a closed system and check for correctness on all paths).

5.1 Examples

Mutual Exclusion. In this example we synthesise a controller to enforce mutual
exclusion. We solve this problem for various numbers of processes in order to get a
measure of the scalibility of the implementation, using n as the parameter for size.

The game is modelled with the following boolean variables: u indicates the
current turn and alternates between moves. When u is true, it is the user pro-
cesses turn, when it is false it is the system’s turn. r1, r2, . . . , rn indicate that a
process requesting access to its critical section. When a request is made, it can-
not be withdrawn until the critical section is reached. Furthermore, when it is
the system’s turn, the request variables must keep their old values. c1, c2, . . . , cn
indicate that a process is in its critical section. ci can only become true if it is the
system’s turn and ri is true. When it is true, ci will become false in the next turn.

The specification of mutual exclusion and liveness can easily be written in in
LTL as

G(
∧

i∈[1,n]

(
(ri⇒ Fci) ∧

∧
j∈[i+1,n]

¬(ci ∧ cj)
)
)
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Fig. 3. Mutual exclusion performance data

For two processes, the synthesis implementation ran in about 30ms and pro-
duced a strategy which plays out Peterson’s algorithm for mutual exclusion.
Whenever both processes request at once, one process (say process 1) is chosen
non-deterministically to proceed. From then until process 2 gets to enter its crit-
ical section, if both processes request at once then process 2 will be favoured.
This behaviour is symmetric for both processes, guaranteeing that neither pro-
cess starves. Strategies were found for problems with between 2 and 80 processes,
recording the “peak live node usage” and time for each problem. The peak live
node usage is a statistic gathered by the CuDD library denoting the maximum
number of BDD nodes that have been used during a computation. The tests were
run on a 1.5GHz Pentium 4 system with 256MB of RAM running Linux. The
results are shown in Figure 3. We note that even with 80 processes, which gives a
state-space of 2(80×2)+1 ≈ 1048 and a formula with 80 liveness sub-formulae, the
time taken was about 50 minutes. This is quite reasonable for a model checking
tool and the overall growth in the two plots shows the feasibility of the approach.

Lift System. Here we synthesise a controller for a lift (elevator) system. The
game describes some general behaviour regarding the physical situation of a lift
(there are user-controlled buttons, movement between floors is consecutive etc.),
and the LTL specification puts requirements on the actual controller. We model
the lift system with various numbers of floors, using n as a parameter for the size;
the variables used to describe the system are: u which indicates the current turn
and works as in mutual exclusion. f which indicates the current floor. This is
modelled with 'log(n)( variables which we treat as a single integer variable. We
write f [0], f [1], . . . f [n] to denote floors. Initially, the floor is 0; we require that
transitions between floors are consecutive and that the floor does not change on
users turns. b[0], b[1], . . . , b[n] are the button variables. These boolean variables
are controlled by the users to simulate requests for the lift. Initially, all buttons
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Fig. 4. Lift performance data

are off; once lit, a button stays on until the lift arrives and the buttons do
not change on the system’s turns. up is a boolean variable which observes the
transition between floors and is true if the lift is going up. Initially up is false.
The specification that we use for the lift system is as follows:

G
(
(
∧

i∈[0,n]

b[i] ⇒ Ff [i]) ∧
∧

i∈[0,n]

f [i] ∧ ¬sb⇒ f [i] U (sb R (F (f [0] ∨ sb) ∧ ¬up))
)

Where sb is an abbreviation for
∨

i∈[1,n] b[i] to mean “some button is lit”. The
first conjunct says that every request is eventually answered, the second demands
that the lift should park when it is idle. If we synthesise a strategy without the
parking specification, we find that the lift does answer all calls, but it does so by
moving up and down continuously regardless of what calls are made (this was
apparent from playing out the strategy and verified formally using SMV). In the
second conjunct, the release formula is the actual parking action: the lift should
go to f [0] by going continuously down, unless some button is pressed. The rest
of the formula can be read as: if the lift is on floor i and no button (other than
0) is pressed, then remain at floor i until parking can commence. Synthesising a
strategy for the entire specification, we find that the lift now behaves as expected
and, once again, we can verify that the strategy implements the specification by
using SMV. The results for a range of sizes are plotted in Figure 4 – we see
the time taken and the number of nodes used rising dramatically. This is due
to the size and complexity of the specification resulting in an extremely large
tableau. The fluctuations in time taken and nodes used are hard to explain.
One possible cause could be the heuristic nature of the re-ordering algorithms
in CuDD. Similar fluctuations are seen in the shifting example below, but they
seem to be magnified here by the size of the state-space increase as each extra
floor is added to the lift problem.
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A Shifting Problem. The previous two examples were computed without hav-
ing to use any shifting. Although a number of specifications were tried in the
context of these systems, shifting was never required. It is clear that shifting is
necessary for some specifications, though, so we use an abstract example based
on the one from Figure 1 to measure performance in such cases. The game is
shown in Figure 5.

The specification used is simply FG0 ∨ FG1 ∨ . . . ∨ FGn. For n = 2, this
produces a tableau with the same property as the Büchi automaton in Figure
1 – it has two disjoint regions, one for FG0 and one for FG1. In order to solve
this game, the algorithm needs to consider shifting. As expected, the synthesis
algorithm generates a shift automaton and terminates using one shift. The win-
ning strategy simply keeps play in 1 if the opponent ever chooses it, otherwise it
has no choice but to stay in 0. Figure 6 shows the performance over a range of
sizes. Even with a length of 95, and having to generate the doubly exponential
shift automaton, the implementation ran in 1 hour 14 minutes.

6 Conclusion

We have provided a new algorithm and corresponding symbolic implementation
to solve the problem of strategy synthesis in LTL games. Whilst this algorithm
is not complete, it has performed well in the test-cases that were given to it
and holds enough promise to warrant use on larger, real-world problems in the
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future. The separation between the partial solution to NB games and the sym-
bolic tableau method itself offers the prospect of future improvements to the
completeness result by changes to the tableau method. It would be interesting
to see whether the completeness result given in terms of automata could be re-
lated back to a fragment of LTL so that it might be compared with such work
as [2]. At present, there are formulae for which we know that the algorithm here
does not perform optimally and there are formulae which cannot be dealt with
in fragments solved by [2], but can be dealt with by our work.
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Abstract. Shorter counterexamples are typically easier to understand. The length
of a counterexample, as reported by a model checker, depends on both the algo-
rithm used for state space exploration and the way the property is encoded. We
provide necessary and sufficient criteria for a Büchi automaton to accept shortest
counterexamples. We prove that Büchi automata constructed using the approach
of Clarke, Grumberg, and Hamaguchi accept shortest counterexamples of future
time LTL formulae, while an automaton generated with the algorithm of Gerth
et al. (GPVW) may lead to unnecessary long counterexamples. Optimality is lost
in the first case as soon as past time operators are included. Adapting a recently
proposed encoding for bounded model checking of LTL with past, we construct a
Büchi automaton that accepts shortest counterexamples for full LTL. We use our
method of translating liveness into safety to find shortest counterexamples with a
BDD-based symbolic model checker without modifying the model checker itself.
Though our method involves a quadratic blowup of the state space, it outperforms
SAT-based bounded model checking on a number of examples.

1 Introduction

Counterexamples are a salient feature of model checking that help developers to under-
stand the problem in a faulty design. Most counterexamples still need to be interpreted
by humans, and shorter counterexamples will, in general, be easier to understand.

As LTL is defined over infinite paths counterexamples are, in principle, infinitely
long. In a finite state system every failing LTL property also has a lasso-shaped coun-
terexample βγω [27]. Such a counterexample can be finitely represented, where its length
is defined as the sum of the lengths of the stem β and loop γ [7]. Counterexamples to
safety properties also have finite bad prefixes that are more useful for a developer than
a corresponding infinite path. In [17] Kupferman and Vardi showed how to recognize
the shortest bad prefix using an automaton of size doubly exponential in the size of the
corresponding formula. In this paper we concentrate on shortest lasso-shaped counterex-
amples for general LTL properties.

BDD-based symbolic techniques usually proceed breadth first and can find shortest
bad prefixes for many safety properties [17]. For more general specifications, finding
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a shortest counterexample amounts to finding a shortest fair cycle, which is an NP-
complete problem [7]. Most BDD-based model checkers offer only heuristics to mini-
mize the length of counterexamples to such properties. For a comparative study on their
performance and the length of the generated counterexamples see [20]. In explicit state
model checking a double DFS [8] is typically used to search the state space. It does not
find shortest counterexamples. Gastin et al. propose an algorithm [11] to minimize the
length of counterexamples, which may visit a state an exponential number of times.

The first technique in widespread use that can produce shortest counterexamples
for general LTL properties is SAT-based bounded model checking [3]. While [3] was
restricted to future time LTL, more recent implementations cover full LTL [2], [5],
[19]. Whether shortest counterexamples can be reported depends also on the encoding
of the property. Both, [2] and [19] find shortest counterexamples. [5] achieves higher
performance than [2] but sacrifices shortest counterexamples. A detailed experimental
comparison of [5] and [19] is not yet available. As SAT-based model checking does not
perform equally well on all examples as the BDD-based variant and vice versa [1], an
efficient BDD-based technique that produces shortest counterexamples is desirable.

We recently proposed a method to translate liveness into safety [22], which finds
shortest lassos and performs well on a number of examples in a BDD-based model
checker. The automaton-based approach to model checking [27] employs such loop
detection but requires translation of an LTL property into a Büchi automaton. Hence,
not only must the shortest lasso be found, but the property automaton must also accept
a shortest counterexample [11, 1]. So far, size of Büchi automata was a more important
criterion than length of the resulting counterexamples, and little is known about the latter.

In this paper we establish necessary and sufficient criteria for Büchi automata to ac-
cept shortest counterexamples. We prove that the approach by Clarke et al. [6] generates
Büchi automata that satisfy these criteria for future time LTL. This is not the case if
past time is included, and we establish a quadratic bound on the excess length. We give
an example that the algorithm by Gerth et al. [12] and many of its descendants do not
generate shortest counterexamples even for future time LTL.

Past time operators do not add expressive power to future time LTL [15]. Still,
a specification that includes past time operators may be more natural than the pure
future variant, and it can be exponentially more succinct [18]. We are not aware of
an efficient, easy-to-implement algorithm to translate a past time LTL formula into its
future time equivalent. We instead construct a Büchi automaton that accepts shortest
counterexamples for full LTL by adapting a recent, simple and efficient encoding for
bounded model checking with past [19]. We then use our transformation from liveness to
safety to find shortest counterexamples with a BDD-based symbolic model checker. The
transformation itself does not require modifications to the model checker but is purely
on the model and the specification to be checked. The only requirement is a breadth-first
reachability check. Our experiments show that finding shortest counterexamples in the
transformed model with the BDD-based algorithm of NuSMV [4] can be significantly
faster than SAT-based bounded model checking of the original model.

In the following section we introduce our notation. In Sect. 3 we define shortest
counterexamples and investigate which Büchi automata can accept them. We present
our construction of a Büchi automaton that accepts shortest counterexamples in Sect. 4
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and give some hints on our implementation in Sect. 5. Experimental results are reported
in Sect. 6. The last section concludes.

2 Preliminaries

Let Σ be a finite set, let α be a finite or infinite sequence over Σ. The length of a sequence
α is defined as |α| = n + 1 if α = σ0σ1 . . .σn is finite, ∞ otherwise. α(i) denotes the
element at index i, αi is the suffix α(i)α(i+1) . . . of α with its first i states chopped off.
We also call sequences over Σ words over Σ. The crossproduct of two sequences α×β
is defined componentwise.

Let β, γ be finite sequences. A sequence α is a 〈β,γ〉-lasso with stem β and loop γ iff
α = βγω. We sometimes write 〈α,β〉 instead of αβω. The length of a lasso is defined as
|〈β,γ〉|= |β|+ |γ|. A lasso 〈β,γ〉 is minimal for α iff α = βγω and ∀β′,γ′ . α = β′γ′ω ⇒
|〈β,γ〉| ≤ |〈β′,γ′〉|. The type [18] of a 〈β,γ〉-lasso is defined as type(〈β,γ〉) = (|β|, |γ|).
A sequence α can be mapped to a set of types: type(α) = {type(〈β,γ〉) | α = βγω}. We
state the following fact about sequences (proved in the full version of this paper [23]).

Lemma 1. Let 〈β,γ〉 be a minimal lasso for α, 〈β′,γ′〉 a minimal lasso for α′, and
α′′ = α×α′. Then there are finite sequences β′′,γ′′ such that 〈β′′,γ′′〉 is a minimal lasso
for α′′, |β′′|= max(|β|, |β′|), and |γ′′|= lcm(|γ|, |γ′|)1.

2.1 Kripke Structures

Following [16] we define a fair Kripke structure as tuple K = (V, I,T,F). V is a finite
set of state variables vi, each ranging over a finite set Vi. A state s is a valuation of the
variables inV , the set of all states is S. I is the initial condition that defines the set of initial
states of K. The transition relation T is also given as a predicate, referring to valuations
of the variables in the current state, s, and in the successor state, s′. F = {F1, . . . ,Fn} is a
set of (weak) fairness constraints. The value of v in s is denoted by v(s). If s is clear from
the context, v also denotes the value of v in the current state, and v′ that in the successor
state. We assume a set of atomic propositions AP that relates variables to their potential
valuations, each of the form vi = c j with c j ∈ Vi. A mapping L is implicitly given that
maps a state s to the set of atomic propositions true in s.

A non-empty sequence of states is a path in K if ∀0 ≤ i < |π| . (si,si+1) |= T . If
s0 |= I, π is initialized. An infinite path π is fair if ∀Fi ∈ F . ∀ j . ∃k > j . π(k) |= Fi. Π
is the set of paths in K. Via L a path implicitly defines a sequence over 2AP.

The synchronous product of two Kripke structures K1 = (V1, I1,T1,F1) and K2 =
(V2, I2,T2,F2) is a Kripke structure K1 ×K2 = (V1 ∪V2, I1 ∧ I2,T1 ∧ T2,F1 ∪ F2). The
projection of a state s onto a set of variables V ′ is denoted s|V ′ .

2.2 PLTL

We consider specifications given in Propositional LTL with both future and past time
operators (PLTLB) [9]. The syntax of PLTLB is defined over a set of atomic propositions

1 lcm(a,b) denotes the least common multiple of a and b.
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πi |= p iff p ∈ πi for p ∈ AP
πi |= ¬φ iff πi �|= φ
πi |= φ∨ψ iff πi |=φ or πi |=ψ

πi |= Xφ iff πi+1 |= φ
πi |= φ U ψ iff ∃ j ≥ i . (π j |= ψ∧∀i≤ k < j . πk |= φ)
πi |= Yφ iff i > 0 and πi−1 |= φ
πi |= φ S ψ iff ∃0≤ j ≤ i . (π j |= ψ∧∀ j < k ≤ i . πk |= φ)

Fig. 1. The semantics of PLTLB

AP. If φ and ψ are PLTLB formulae, so are¬φ, φ∨ψ, Xφ, φ U ψ, Yφ, φ S ψ. The semantics
of PLTLB is defined recursively on infinite sequences over 2AP in Fig. 1.

If the past time operators Y and S are excluded, we obtain future time LTL formulae
(PLTLF). Similarly, a past time formula (PLTLP) has no occurrences of X and U. For this
reason, when we speak about future or past we include present. We have the following
usual abbreviations:�≡ p∨¬p,⊥≡¬�, φ∧ψ≡¬(¬φ∨¬ψ), φ→ ψ≡¬φ∨ψ, φ↔
ψ≡ (φ→ψ)∧(ψ→ φ), φ R ψ≡¬(¬φ U ¬ψ), Fφ≡�U φ, Gφ≡¬F¬φ, Zφ≡¬Y¬φ,
φ T ψ≡ ¬(¬φ S ¬ψ), Oφ≡� S φ, and Hφ≡ ¬O¬φ.

A PLTLB property φ holds universally in a Kripke structure K, denoted K |=∀ φ,
iff it holds for every initialized fair path. If K �|=∀ φ, each initialized fair path π in K
with π |= ¬φ is a counterexample for φ. φ holds existentially, K |=∃ φ, iff there exists an
initialized fair path that fulfills φ. Each such path is a witness for φ. For every finite K,
if K �|=∀ φ, then there exists a fair 〈β,γ〉-lasso α in K such that α �|= φ [27]. A finite path
πpre is a bad prefix for φ iff ∀πinf . (|πinf |= ∞⇒ πpreπinf �|= φ) [17].

For U and S there exist recursive expansion formulae (e.g. [16]):

φ = ψ1 U ψ2 : πi |= φ iff (πi |= ψ2)∨ (πi |= ψ1)∧ (πi+1 |= φ)
φ = ψ1 S ψ2 : πi |= φ iff (πi |= ψ2)∨ (i > 0)∧ (πi |= ψ1)∧ (πi−1 |= φ)

The expansion of U is not sufficient to guarantee proper semantics: additional measures
must be taken to select the desired fixed point, e.g., by adding fairness constraints.

Finally, the past operator depth [2] of a formula φ, h(φ), is the maximal number of
nested past operators in φ:

h(φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 iff φ ∈ AP
h(ψ) iff φ = ◦ψ , where ◦ ∈ {¬,X}
max(h(ψ1),h(ψ2)) iff φ = ψ1 ◦ψ2 , where ◦ ∈ {∨,U}
1+h(ψ) iff φ = Yψ
1+max(h(ψ1),h(ψ2)) iff φ = ψ1 S ψ2

The authors of [18, 2] proved independently that a PLTLB property φ can distinguish
at most h(φ) loop iterations of a lasso. We restate Lemma 5.2 of [18] for PLTLB:

Lemma 2. For any lasso π of type (ls, ll), for any PLTLB property φ with at most h(φ)
nested past-time modalities, and any i≥ ls + llh(φ), πi |= φ⇔ πi+ll |= φ.

2.3 Büchi Automata

A Büchi automaton over a set of variables V K with a corresponding set of states SK is a
Kripke structure B = (V, I,T,F), where V = V K ∪ V̂ . A run ρ of a Büchi automaton B
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Table 1. Property-dependent part of a Büchi automaton constructed with CGH+

definition
ψ

V ψ = Iψ = T ψ = Fψ =
p {xp} � xp ↔ p /0

¬ψ1 V ψ1 ∪{xψ} Iψ1 T ψ1 ∧ (xψ ↔¬xψ1) Fψ1

ψ1∨ψ2 V ψ1 ∪V ψ2 ∪{xψ} Iψ1 ∧ Iψ2
T ψ1 ∧T ψ2∧
(xψ ↔ xψ1 ∨ xψ2)

Fψ1 ∪Fψ2

Xψ1 V ψ1 ∪{xψ} Iψ1 T ψ1 ∧ (xψ ↔ x′ψ1
) Fψ1

ψ1 U ψ2 V ψ1 ∪V ψ2 ∪{xψ} Iψ1 ∧ Iψ2
T ψ1 ∧T ψ2∧
(xψ ↔ xψ2 ∨ xψ1 ∧ x′ψ)

Fψ1 ∪Fψ2∪
{{¬xψ∨ xψ2}}

Yψ1 V ψ1 ∪{xψ} Iψ1 ∧ (xψ ↔⊥) T ψ1 ∧ (x′ψ ↔ xψ1) Fψ1

ψ1 S ψ2 V ψ1 ∪V ψ2 ∪{xψ} Iψ1 ∧ Iψ2∧
(xψ ↔ xψ2)

T ψ1 ∧T ψ2∧
(x′ψ ↔ x′ψ2

∨ x′ψ1
∧ xψ) Fψ1 ∪Fψ2

on an infinite word α over SK , denoted ρ |= α, is an initialized fair path in B such that
∀i . α(i) = ρ(i)|V K . The set of all runs of B is Runs(B). A word is accepted by B iff B
has a run on α. The set of words accepted by B defines its language Lang(B).

In the automaton-based approach to model checking [27] a Büchi automaton that rec-
ognizes counterexamples to the specification is constructed. In other words, the language
of the automaton is precisely the set of witnesses for the negation of the specification.
Then, an initialized fair path in the synchronous product of the model and that automaton
indicates failure of the specification. Formally, to check whether K |=∀ φ holds for some
model K and LTL formula φ, we negate φ and construct a Büchi automaton B¬φ with
Lang(B¬φ) = {α | α |= ¬φ}. Any initialized fair path in K×B¬φ is a counterexample
for φ.

In this scenario V K corresponds to the set of atomic propositions in ¬φ, whereas V̂
depends on the specific algorithm used to obtain B. Our definition of a Büchi automaton
is similar to a state-labeled, generalized Büchi automaton but splits states according
to the variables in V K . This is more convenient in a symbolic setting, where this split
happens anyway when the synchronous product with the model automaton is formed. It
does not restrict the generality of the results in Sect. 3 and 4.

An approach to construct a Büchi automaton tailored to symbolic model checking
(used, e.g., in NuSMV [4]) is by Clarke, Grumberg, and Hamaguchi [6]. The original
version deals only with future time formulae, but extensions to PLTLB are available, see.
e.g., [16, 21]. We refer to this extended version as CGH+ below. An automaton Bφ

CGH+

is constructed as Bφ
CGH+ = (V φ, Iφ ∧ xφ,T φ,Fφ) where V φ, Iφ, T φ, and Fφ are defined

recursively in Tab. 1. All xψ are Boolean. On every run ρ on a word α the valuation of

a state variable xψ of Bφ
CGH+ reflects the validity of the corresponding subformula ψ of

φ, i.e., xψ(ρ(i))↔ αi |= ψ. By [6, 16, 21] we have Lang(Bφ
CGH+) = {α | α |= φ}. Note

that, for a uniform explanation, Tab. 1 uses state variables also for Boolean connectives.
In [6, 16, 21] these are replaced by macros.
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3 Büchi Automata to Detect Shortest Counterexamples

3.1 Shortest Counterexamples for PLTLB

We have defined PLTLB over infinite paths, hence we need to specify what should
be considered a shortest counterexample. Given that we are only interested in finite
representations, and a failing PLTLB property in a finite state system always has a lasso-
shaped counterexample [27], we adopt the following definition from [7]: a shortest
counterexample is one that has a most compact representation as a lasso.

Definition 1. Let K = (V, I,T,F) be a Kripke structure, let φ be a PLTLB property. A
path α in K is a shortest counterexample for φ in K iff

1. α �|= φ
2. ∃β,γ . (α = βγω∧∀β′,γ′ . (β′γ′ω ∈Π∧β′γ′ω �|= φ⇒ |〈β,γ〉| ≤ |〈β′,γ′〉|))

This definition is not optimal. First, an early position of the violation (if that can be
clearly attributed) need not coincide with the least number of states required to close a
loop. Second, apart from length, ease of understanding is not a criterion either.

The first problem is most relevant for properties that also have finite bad prefixes, i.e.,
properties that are a subset of a safety property [17]. Finding the shortest bad prefix for
safety formulae can be done in parallel, using the (doubly exponential) method proposed
in [17]. The solution to the second problem is left as future work; for approaches and
more references see [13].

3.2 Tight Büchi Automata

In the automaton-based approach to model checking, a PLTLB property is verified by
searching for loops in the synchronous product of a Kripke structure K, representing the
model, and a Büchi automaton B, accepting counterexamples for the property. Hence, if
shortest counterexamples are desired, the product of the model and the Büchi automaton
must have an initialized fair path λ = 〈μ,ν〉 that can be represented as lasso of the same
length as the shortest counterexample α = 〈β,γ〉. Kupferman and Vardi [17] call an
automaton on finite words tight if it accepts shortest prefixes for violations of safety
formulae. We extend that notion to Büchi automata on infinite words.

Definition 2. Let B be a Büchi automaton. B is tight iff

∀α ∈ Lang(B) . ∀β,γ . (〈β,γ〉 is minimal for α⇒
∃ρ ∈ Runs(B) . ∃λ,μ,ν . (ρ |= α ∧ λ = α×ρ = μνω ∧ |〈μ,ν〉|= |〈β,γ〉|))

Consider the scenarios in Fig. 2. The automaton B in the left scenario has a run
στω of the same structure as the counterexample βγω in K, leading to an equally short
counterexample (β×σ)(γ× τ)ω in the product K×B. The run of the Büchi automaton
in the right scenario has an unnecessarily long stem and loop.

From Lemma 1 it can be inferred that a path of the same length in K×B as the
counterexample in K implies that the corresponding run ρ = στω in B can be repre-
sented as the same type as 〈β,γ〉. The left scenario in Fig. 2 suggests another, alternative
formulation, which may be more intuitive and is easier to prove for some automata: the
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Fig. 2. Scenarios with shortest and non-optimal counterexample

subsequences of α starting at indices 4,7,10, . . . are the same, as are those beginning at
5,7,11, . . ., and 6,9,12, . . .. On the other hand, the subsequences starting at the respective
indices in a single iteration are all different — otherwise a part of the loop could be cut
out, contradicting minimality. Hence, if B is tight, there must be a run ρ on α with the
following property: for each pair of indices i, j, if the subsequences of α starting at i and
j have the same future (αi = α j), then ρ maps i and j to the same state in B (ρ(i) = ρ( j)).
Theorem 1 establishes the equivalence of the criteria.

Theorem 1. Let B be a Büchi automaton. The following statements are equivalent:

1. B is tight.

2. ∀α ∈ Lang(B) . ∀β,γ . (〈β,γ〉 is minimal for α⇒
∃ρ ∈ Runs(B) . (ρ |= α∧ type(〈β,γ〉) ∈ type(ρ)))

3. ∀α ∈ Lang(B) . ((∃β,γ . α = βγω)⇒
(∃ρ ∈ Runs(B) . (ρ |= α∧ (∀i, j . αi = α j ⇒ ρ(i) = ρ( j)))))

Proof. 1 ⇒ 2: Assume a run ρ = στω such that λ = α×ρ = μνω with |〈μ,ν〉|= |〈β,γ〉|.
Let 〈σ′,τ′〉 be minimal for ρ. Lemma 1 gives |σ′| ≤ |β| and |τ′| divides |γ|. Now it’s easy
to find σ′′,τ′′ with σ′′τ′′ω = στω, and type(〈σ′′,τ′′〉) = type(〈β,γ〉).

2 ⇒ 1: Assume a run ρ with type(〈β,γ〉) ∈ type(ρ). By definition of type, there exist
σ,τ such that ρ = στω, |β|= |σ|, and |γ|= |τ|. Hence, with μ = β×σ and ν = γ×τ, we
have λ = α×ρ = μνω and |〈μ,ν〉|= |〈β,γ〉|.

2 ⇒ 3: Let α ∈ Lang(B), assume 〈β,γ〉 minimal for α, and let ρ = στω be a run on α
such that |β|= |σ| and |γ|= |τ|. Let i, j with αi = α j. It remains to show that ρ(i) = ρ( j).
This is done by case distinction according to the positions of i and j w.r.t. to β and γ in
α. The case i = j is obvious, the other cases either contradict the minimality of 〈β,γ〉 for
α or can be reduced to a previous case. Details are given in the full version [23].

3 ⇒ 2: Let α = βγω ∈ Lang(B) and ρ a run on α with ∀i, j . αi = α j ⇒ ρ(i) = ρ( j). Let
〈β,γ〉 be minimal for α.

α = βγω ⇒ ∀i < |γ|,∀k . α|β|+i = γi = α|β|+i+|γ|k
⇒ ∀i < |γ|,∀k . ρ(|β|+ i) = ρ(|β|+ i+ |γ|k)

Let σ = ρ(0), . . . ,ρ(|β|− 1) and τ = ρ(|β|), . . . ,ρ(|β|+ |γ|− 1). Hence, ρ = στω such
that |σ|= |β| and |τ|= |γ|. �
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3.3 (Non-) Optimality of Specific Approaches

The approach by Gerth et al. (GPVW) [12] for future time LTL forms the basis of
many algorithms to construct small Büchi automata, which benefits explicit state model
checking but is also used, e.g., for symbolic model checking in VIS [14]. Figure 3 shows
an example that GPVW does not, in general, lead to tight automata. Subsequences
starting from the initial state of the Büchi automaton fulfill p∧XGq, those starting
from the other state satisfy Gq. The model has a single, infinite path satisfying G(p∧
q) — a counterexample of length 1 to the specification ¬(p∧XGq). Note that adding
transitions or designating more initial states is not enough to make the automaton in
Fig. 3 tight: an additional state is required. Non-optimality of GPVW is shared by many
of its descendants, e.g., [26].

p & q {p, X G q, p & X G q} {q, G q, X G q}

Büchi automatonmodel

Fig. 3. Model and Büchi automaton to recognize counterexamples for ¬(p∧XGq) resulting in
non-optimal counterexample

In a Büchi automaton Bφ
CGH+ each state variable corresponds to a subformula ψ of

φ (see Tab. 1). This directly proves tightness of Bφ
CGH+ for a PLTLF formula φ.

Proposition 1. Let φ be a future time LTL formula, let Bφ
CGH+ be defined as above. Then

Bφ
CGH+ is tight.

Proof. Every two states in Bφ
CGH+ differ in the valuation of at least one state variable,

and therefore specify a different, non-overlapping future. According to Thm. 1, a Büchi
automaton B is tight iff for each accepted word α there exists a run ρ on α in B with
∀i, j . (αi = α j ⇒ ρ(i) = ρ( j)). Clearly, αi = α j have the same future, hence, on each
run in B we have αi = α j ⇒ ρ(i) = ρ( j). �

What is useful for future time hurts tightness as soon as past operators are included:
Bφ

CGH+ may also distinguish states of an accepted word that have different past but
same future. Lemma 2 states that a past time formula can distinguish only finitely many
iterations of a loop. This can be used to establish an upper bound on the excess length
of a counterexample produced by CGH+ for a PLTLB formula:

Proposition 2. Let K be a Kripke structure, φ a PLTLB property with K �|=∀ φ, and
B¬φ

CGH+ a Büchi automaton constructed with CGH+. Let α = 〈β,γ〉 be a shortest coun-

terexample in K. Then, there is an initialized fair lasso λ = 〈μ,ν〉 in K×B¬φ
CGH+ with

|μ| ≤ |β|+(h(¬φ)+1)|γ| and |ν|= |γ|.
The proof is given in the full version [23]. For an example that exhibits excess

length, which is quadratic in the length of the shortest counterexample, consider the
simple modulo-n counter and property in Fig. 4 (adapted from [2]). The innermost
formula O(c = n−1) remains true from the end of the first loop iteration in the counter,



Shortest Counterexamples for Symbolic Model Checking 501

... n−1n−210

¬(F(G(O((c = 0)∧
O((c = 1)∧

. . .
O(c = n−1)

. . .
)

))))

Fig. 4. Simple modulo-n counter with property

O((c = n−2)∧ (O(c = n−1))) becomes and remains true n−1 steps later, etc. Hence,
a loop in B¬φ

CGH+ is only reached after O(n2) steps of the counter have been performed.
Clearly, the shortest counterexample is a single iteration of the loop with O(n) steps.

Every PLTLB formula can be transformed into a future time LTL formula equivalent
at the beginning of a sequence [10]. Due to [18] we can expect an at least exponential
worst-case increase in the size of the formula. Rather than translating an LTL formula
with past into a pure future version, we follow a different path in the next section.

4 A Tight Look at LTL Model Checking

Proposition 2 states that a Büchi automaton constructed with CGH+ accepts a shortest
counterexample with a run that may have an overly long stem but a loop of the same
length as that of the counterexample. Bounded model checking [3] has been extended
recently to include past time operators [2, 5, 19]. Of these, [2, 19] use virtual unrolling of
the transition relation to find shortest counterexamples if past time operators are present.
Inspired by [19], we adapt this approach to construct a tight Büchi automaton for PLTLB
based on CGH+.

4.1 Virtual Unrolling for Bounded Model Checking of PLTLB

In bounded model checking, the model checking problem, which asks whether K |=∀ φ
holds, is translated into a sequence of propositional formulae of the form |[M,φ,k]| in
the following way: |[M,φ,k]| is satisfiable iff a finite informative bad prefix [17] or lasso-
shaped counterexample π of length k exists. In the case of a lasso-shaped counterexample,
a loop is assumed to be closed between the last state π(k) and some successor π(l +1)
of a previous occurrence of that last state π(l) = π(k). The resulting formulae are then
handed to a SAT solver for increasing bounds k until either a counterexample is found,
absence of a counterexample is proved, or a user defined resource threshold is reached.
Typically, one fresh Boolean variable x j,ψ is introduced for each pair of relative position
in the path (0≤ j≤ k) and subformula ψ of φ, such that x j,ψ is true iff ψ holds at position
j.

On a lasso-shaped path, the truth of a future time formula φ at position k may depend
on the truth of some of its subformulae ψ at positions > k. While those are not available
directly, the truth of a future time formula at a given position within the loop does not
change between different iterations of the loop. Hence, the truth value of ψ at position
0≤m < k− l in any iteration i≥ 0 of the loop can be substituted with the truth value of
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ψ at position m in the first iteration: πl+i(k−l)+m |= ψ ⇔ πl+m |= ψ. A single unrolling
of the loop is therefore sufficient, resulting in a shortest counterexample.

When past time operators are admitted, this is no longer true. By Lemma 2, the
truth of a subformula ψ may change between the first h(ψ)+ 1 iterations of the loop
before it stabilizes. Hence, only after h(ψ) + 1 iterations can the truth value of ψ in
some iteration i ≥ h(ψ)+ 1 of the loop be replaced by the truth value of ψ in iteration
h(ψ)+1: πl+i(k−l)+m |= ψ⇔ πl+(h(ψ)+1)(k−l)+m |= ψ. A naive approach for checking a
past time formula φ would still have one Boolean variable per pair of relative position in
the path and subformula. However, the approach would have to ensure that the path ends
with h(φ)+1 copies of the loop. This would lead to a more complicated formulation of
loop detection and would not allow to find shortest counterexamples. A less naive, but
still suboptimal solution might not guarantee a high enough number of loop unrollings
directly but could include the variables representing the truth of properties in the loop
detection. That approach could not ensure shortest counterexamples either.

Benedetti and Cimatti [2] showed how to do better: note, that some subformulae
ψ of φ have lower past operator depth, and, therefore, require fewer loop iterations to
stabilize. In particular, atomic propositions remain stable from the first iteration onward.
It is sufficient to perform a single unrolling of the loop. Rather than having only one
Boolean variable x j,ψ per pair of relative position j in the path and subformula ψ, there
are now as many variables per pair ( j,ψ) as iterations of the loop are required for that
subformula to stabilize. Each variable corresponds to the truth value of ψ at the same
relative position j but in a different iteration i of the loop: x j,ψ,i ⇔ π j+i(k−l) |= ψ with
0 ≤ j ≤ k∧ 0 ≤ i ≤ h(ψ) (the value of x j,ψ,i may not be well-defined if i > 0∧ j < l).
This virtual unrolling of the loop leads to shortest counterexamples.

4.2 A Tight Büchi Automaton for PLTLB

A Büchi automaton constructed with CGH+ suffers from similar problems as the naive
approaches to bounded model checking of PLTLB. The automaton has a single vari-
able representing the truth of a subformula in a given state. For a loop in the product
of the model and the automaton to occur, the truth of all subformulae must have sta-
bilized. Hence, we can adopt the same idea as outlined above to obtain a tight Büchi
automaton.

We construct a Büchi automaton Bφ
SB = (V φ

SB, I
φ
SB,T

φ
SB,F

φ
SB) for a PLTLB formula φ as

follows: V φ
SB = V φ∪{lb, le} with LB = LE = {⊥,�}, Iφ

SB = Iφ∧ xφ,0, T φ
SB = T φ∧ (lb→

lb′), and Fφ
SB = Fφ ∪{{lb∧ le}}, where V φ, Iφ, T φ, and Fφ are defined recursively in

Tab. 2.
Each subformula ψ of φ is represented by h(ψ)+ 1 state variables xψ,i. We refer to

the i in xψ,i as generation below. Two more state variables lb (for loop body) and le (for
loop end) are added. As long as lb is false (on the stem), only variables in generation 0
are constrained according to the recursive definition of PLTLB. When lb becomes true
(on the loop), the definitions apply to all generations. While le is false (the end of a
loop iteration is not yet reached), xψ,i is defined in terms of current and next-state values
of variables in the same generation. When le is true (at the end of a loop iteration),
the next-state values are obtained from the next generation of variables if the present
generation is not already the last. The fairness constraints, which guarantee the correct
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Table 2. Property-dependent part of a tight Büchi automaton

ψ definition

p
V ψ = {xp,0}, where Xp,0 = {⊥,�}
T ψ = xp,0 ↔ p
Iψ = � Fψ = /0

¬ψ1

V ψ = V ψ1 ∪⋃h(ψ)
i=0 {xψ,i}, where Xψ,i = {⊥,�}

T ψ = T ψ1 ∧∧h(ψ)
i=0 (xψ,i ↔¬xψ1,i)

Iψ = Iψ1 Fψ = Fψ1

ψ1∨ψ2

V ψ = V ψ1 ∪V ψ2 ∪⋃h(ψ)
i=0 {xψ,i}, where Xψ,i = {⊥,�}

T ψ = T ψ1 ∧T ψ2 ∧∧h(ψ)
i=0 (xψ,i ↔ xψ1,min(i,h(ψ1))∨ xψ2,min(i,h(ψ2)))

Iψ = Iψ1 ∧ Iψ2 Fψ = Fψ1 ∪Fψ2

Xψ1

V ψ = V ψ1 ∪⋃h(ψ)
i=0 {xψ,i}, where Xψ,i = {⊥,�}

T ψ = T ψ1 ∧ (¬lb→ (xψ,0 ↔ x′ψ1,0))

∧((lb∧¬le)→∧h(ψ)−1
i=0 (xψ,i ↔ x′ψ1,i))

∧((lb∧ le)→∧h(ψ)−1
i=0 (xψ,i ↔ x′ψ1,i+1))

∧(lb→ (xψ,h(ψ) ↔ x′ψ1,h(ψ1)
))

Iψ = Iψ1 Fψ = Fψ1

ψ1 U ψ2

V ψ = V ψ1 ∪V ψ2 ∪⋃h(ψ)
i=0 {xψ,i}, where Xψ,i = {⊥,�}

T ψ = T ψ1 ∧T ψ2 ∧ (¬lb→ (xψ,0 ↔ xψ2,0∨ (xψ1,0∧ x′ψ,0)))

∧((lb∧¬le)→∧h(ψ)−1
i=0 (xψ,i ↔ xψ2,min(i,h(ψ2))∨ (xψ1,min(i,h(ψ1))∧ x′ψ,i)))

∧((lb∧ le)→∧h(ψ)−1
i=0 (xψ,i ↔ xψ2,min(i,h(ψ2))∨ (xψ1,min(i,h(ψ1))∧ x′ψ,i+1)))

∧(lb→ (xψ,h(ψ) ↔ xψ2,h(ψ2)∨ (xψ1,h(ψ1)∧ x′ψ,h(ψ))))
Iψ = Iψ1 ∧ Iψ2 Fψ = Fψ1 ∪Fψ2 ∪{{¬xψ,h(ψ)∨ xψ2,h(ψ2)}}

Yψ1

V ψ = V ψ1 ∪⋃h(ψ)
i=0 {xψ,i}, where Xψ,i = {⊥,�}

T ψ = T ψ1 ∧ (¬lb→ (x′ψ,0 ↔ xψ1,0))

∧((lb∧¬le)→∧h(ψ)−1
i=0 (x′ψ,i ↔ xψ1,i))

∧((lb∧ le)→∧h(ψ)−2
i=0 (x′ψ,i+1 ↔ xψ1,i))

∧(lb→ (x′ψ,h(ψ) ↔ xψ1,h(ψ1)))
Iψ = Iψ1 ∧ (xψ,0 ↔⊥) Fψ = Fψ1

ψ1 S ψ2

V ψ = V ψ1 ∪V ψ2 ∪⋃h(ψ)
i=0 {xψ,i}, where Xψ,i = {⊥,�}

T ψ = T ψ1 ∧T ψ2 ∧ (¬lb→ (x′ψ,0 ↔ x′ψ2,0∨ (x′ψ1,0∧ xψ,0)))

∧((lb∧¬le)→∧h(ψ)−1
i=0 (x′ψ,i ↔ x′ψ2,min(i,h(ψ2))

∨ (x′ψ1,min(i,h(ψ1))
∧ xψ,i)))

∧((lb∧ le)→∧h(ψ)−1
i=0 (x′ψ,i+1 ↔ x′ψ2,min(i+1,h(ψ2))

∨ (x′ψ1,min(i+1,h(ψ1))
∧ xψ,i)))

∧(lb→ (x′ψ,h(ψ) ↔ x′ψ2,h(ψ2)
∨ (x′ψ1,h(ψ1)

∧ xψ,h(ψ))))
Iψ = Iψ1 ∧ Iψ2 ∧ (xψ,0 ↔ xψ2,0) Fψ = Fψ1 ∪Fψ2

fixed point for U formulae, are only applied to the last generation of the corresponding
variables.

The intuition is as follows. Starting with generation 0 on the stem and the first itera-
tion of the loop, each generation i of xψ,i represents the truth of ψ in one loop iteration, the
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end of which is signaled by lb∧ le being true. Formally, for i < h(ψ), xψ,i( j) holds the
truth of ψ at position j of a word iff lb∧ le has been true on that path i times prior to the
current state. From the h(ψ)-th occurrence of lb∧ le, xψ,h(ψ) continues to represent the
truth of ψ.

Note that lb and le are oracles. The valuation of these variables on an arbitrary
run may not correspond to the situations they are named after. However, for Bφ

SB to
correctly recognize {α | α |= φ}, it is not relevant which generation holds the truth at a
given position. It is only required that at each position some generation represents truth
correctly, each generation passes on to the next at some point, and ultimately, depending
on ψ, the last generation h(ψ) continues to hold the proper values.

For tightness, the variables of a given generation need to be able to take on the same
values in every iteration of the loop, regardless of whether they currently hold the truth or
not. This requires breaking the links to previous iterations for variables of generation 0
representing Y and S formulae at each start of a loop iteration after the first. In addition,
Y- and S-variables of generations > 0 may not be constrained by past values at the
beginning of the loop body. On a shortest run on some lasso-shaped word α, lb and le
will correctly signal loop body and loop end.

Theorem 2. Let φ be a PLTLB formula, let Bφ
SB be defined as above. Then, Lang(Bφ

SB)
= {α | α |= φ} and Bφ

SB is tight.

Proof. By Lemma 3 and 4. �

Lemma 3. Lang(Bφ
SB) = {α | α |= φ}

Proof. (Correctness) We show that on every fair path in (V φ
SB, I

φ,T φ
SB,F

φ
SB) the values of

xψ,i j( j) represent the validity of the subformula ψ at position j, where i j is either the
number of le’s seen so far or h(ψ), whichever is smaller. Formally, let ρ be a run on α
in (V φ

SB, I
φ,T φ

SB,F
φ
SB). For each position j in α, let i j = min(|{k | (k≤ j−1)∧ lb(ρ(k))∧

le(ρ(k))}|,h(ψ)). Inspection of Tab. 2 shows that the constraints on the xψ,i j( j) are
the same as the constraints on the corresponding xψ( j) in Tab. 1. Hence, α j |= ψ ⇔
xψ,i j(ρ( j)).

(Completeness) We show that there is a run in (V φ
SB, I

φ,T φ
SB,F

φ
SB) for each word α.

Choose a set of indices U = { j0, j1, . . .} such that le( j)↔ j ∈U . Further, choose ls ≤
j0 and set lb( j) ↔ j ≥ ls. We inductively construct a valuation for xψ,i( j) for each
subformula ψ of φ, i ≤ h(ψ), and j ≥ 0. If ψ is an atomic proposition p, set xp,0( j)↔
(α j |= p). If the top level operator of ψ is Boolean, the valuation follows directly from the
semantics of the operator. For X, each xψ,i( j) is defined exactly once in Tab. 2. ψ = Yψ1

is similar. Note that h(ψ) = h(ψ1)+ 1. Therefore, i runs only up to h(ψ)−2 if lb∧ le;
i = h(ψ)− 1 is covered by the case for lb in the line below. xψ,i( j) is unconstrained if
i = 0 and j−1 ∈U as well as if i≥ 1 and j≤ ls. For ψ = ψ1 U ψ2, start with generation
h(ψ). If xψ2,h(ψ2) remains false from some jm on, assign ∀ j ≥ jm . xψ,h(ψ)( j) ↔ ⊥.
Now work towards decreasing j from each jn with xψ2,h(ψ2)( jn)↔�, using line 4 in the
definition of T for U. Continue with generation h(ψ)−1. Start at each j ∈U by obtaining
xψ,h(ψ)−1( j) from the previously assigned xψ,h(ψ)( j +1) via line 3. Then work towards
decreasing j again, using lines 1 or 2 in the definition of T until xψ,h(ψ)−1 is assigned for
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all j. This is repeated in decreasing order for each generation 0 ≤ i < h(ψ)−1. For S,
start with xψ,0(0) and proceed towards increasing j, also increasing i when j ∈U (lines
1 – 3 in the definition of T for S). When i = h(ψ) is reached, assign xψ,h(ψ) for all j
using the fourth line in the definition of T . Then, similar to U, work towards decreasing
i and j from each j ∈U . Fairness follows from the definition of U , ls, and the valuation
chosen for U.

The claim is now immediate by the definition of Iφ
SB. �

Lemma 4. Bφ
SB is tight.

Proof. We show inductively that the valuations of the variables xψ,i( j) can be chosen
such that the valuation at a given relative position in a loop iteration is the same for each
iteration in a generation i. Formally, let α = βγω with α |= φ. There exists a run ρ such
that for all subformulae ψ of φ

∀i≤ h(ψ) . ∀ j1, j2 ≥ |β| . ((∃k ≥ 0 . j2− j1 = k|γ|)⇒ (xψ,i(ρ( j1))↔ xψ,i(ρ( j2))))

Atomic propositions, Boolean connectives, and X are clear. Y is also easy, we only have
to assign the appropriate value from other iterations when xψ,i( j) is unconstrained. For
ψ = ψ1 U ψ2, by the induction hypothesis, xψ2,h(ψ2) is either always false (in which case
we assigned xψ,h(ψ)( j) to false according to the proof of Lemma 3) or becomes true at the
same time in each loop iteration. Hence, the claim holds for generation h(ψ). From there
we can proceed to previous generations in the same manner as in the proof of Lemma 3.
For S we follow the order of assignments from the proof of Lemma 3. By induction, the
claim holds for generation h(ψ). From there, we proceed towards decreasing j and i. We
use, by induction, the same valuations of subformulae and the same equations (though
in reverse direction) as we used to get from xψ,0(0) to generation h(ψ). �

Bφ
SB has O(2|φ|2) states. A symbolic representation can be constructed in O(|φ|2)

time and space. Note, that the size of a Büchi automaton that is tight in the original
sense of [17] (i.e., it recognizes shortest violating prefixes of safety properties) is doubly
exponential in |φ| [17].

The same optimization as used in Sect. 2 for CGH+ can be applied. It replaces state
variables for Boolean connectives with macros in order to reduce the number of BDD
variables in the context of symbolic model checking with BDDs.

5 Finding Shortest Counterexamples with Symbolic Model
Checking

We implemented the Büchi automaton described in the previous section for NuSMV
[4]. We use our reduction of finite state model checking to reachability analysis [22] to
find a shortest counterexample. For efficiency reasons, the encoding of the automaton is
tightly integrated with the symbolic loop detection, which is at the heart of [22]. As an
example, the signals for loop body and loop end are provided directly by the reduction
rather than being separate input variables.
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In fact, our implementation started as an adaptation of the very elegant encoding of
PLTLB in [19] to our reduction. Only then we extracted a tight Büchi automaton from
the construction. We kept our original implementation for its superior performance but
chose to provide the more abstract view in the previous section, as, in our opinion, it
provides better understanding and is also more widely applicable.

6 Experimental Results

In this section we compare our implementation to find shortest counterexamples with
symbolic model checking from Sect. 5 with bounded model checking using the encoding
of [19] and the standard LTL model checking algorithm of NuSMV [4]. For our trans-
lation, we performed invariant checking with NuSMV 2.2.2. For standard LTL, also
in NuSMV 2.2.2, forward search on the reachable state space was applied. Bounded
model checking was performed with the implementation of Timo Latvala in a modi-
fied NuSMV 2.1.2. If cone of influence reduction is to be used with our translation,
the reduction must be applied before the translation. However, NuSMV 2.2.2 doesn’t
seem to provide a direct way to output the reduced model. Therefore, cone of influ-
ence reduction was disabled in all experiments. Otherwise, NuSMV 2.2.2 would find
shorter loops, involving only the variables in the cone of the property, in the reduced
model. Platform was an Intel Pentium IV at 2.8 GHz with 2 GB RAM running Linux
2.4.18. Timeout for each experiment was set to 1 hour, memory usage was limited to 1.5
GByte.

As the focus of this paper is on producing lasso-shaped counterexamples, only prop-
erties were chosen that proved false with such a counterexample. Results are shown in
Tab. 3. The experiments include all real-world models used in [19]: abp4, brp, dme?, pci,
and srg5. If the property checked in [19] has a lasso-shaped counterexample, it was used
unmodified in our experiments (“L”). We also used the negated version of that property if
that yields such a counterexample (“¬ L”). Some of the properties were made a liveness
property by prefixing them with F (requiring a loop to prove false) or were enhanced
to make part of the property non-volatile (yielding a more interesting counterexample),
marked “nv”. In addition, we chose some of the models from our previous work [22],
with some properties already verified there and with new, more complicated properties.
Templates of the properties are shown in the full version of this paper [23].

Columns 3 – 5 give the results for standard LTL model checking (“LTL”): l is the
length of the counterexample, time is in seconds, and memory usage in thousand BDD
nodes allocated. The 6th col. gives the length of a shortest counterexample as reported by
our translation and bounded model checking. Columns 7 and 8 give run time and memory
usage for our algorithm (“L2S”). The last three columns indicate run time for bounded
model checking (“BMC”). The first of these is the time for the last unsuccessful iteration
of the bounded model checker alone (not yet producing a counterexample), the second is
the time for the first successful iteration alone (giving the shortest counterexample), and
the last column is the time for all bounds from 1 until a counterexample is found. The
implementation of [19] is not incremental [25], i.e., the SAT solver cannot benefit from
results of previous iterations. We use the time required for the last unsuccessful iteration
(“Time l − 1”) to estimate the amount of work that an incremental implementation
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Table 3. Real-world examples

LTL L2S BMC
model property l′ time memory l time memory time l−1 time l time 1 . . . l

1394-3-2 0 16 72.8 119 11 7.9 1267 9.3 3.1 54.3
1 12 17.0 157 11 6.8 1556 9.4 3.7 60.0

1394-4-2 0 t.o. t.o. t.o. 16 462.1 34695 219.7 13.6 1233.6
1 20 812.6 2356 16 429.0 44177 314.6 14.9 1499.9

abp4 L 37 < 1 234 16 16.3 844 78.8 8.4 340.2
brp ¬ L 6 4.8 46 1 < 1 192 < 1 < 1 < 1

¬ L, nv 68 15.0 122 24 104.9 1560 1005.0 260.8 3171.0
dme2 ¬ L 1 < 1 123 1 < 1 128 < 1 < 1 < 1

¬ L, nv 40 2.3 408 39 1.2 52 97.4 7.9 502.9
dme5 ¬ L 1 11.3 112 1 1.1 186 < 1 < 1 < 1

¬ L, nv 344 1533.1 330 99 384.8 1396 t.o. t.o. t.o.
dme6 ¬ L 1 29.1 183 1 1.6 362 < 1 < 1 < 1

¬ L, nv t.o. t.o. t.o. 119 926.4 2093 t.o. t.o. t.o.
pci F L 22 231.4 341 18 t.o. t.o. 771.2 965.4 1879.6
prod-cons 0 69 3.1 311 26 16.5 722 442.4 41.7 551.8

1 33 2.0 250 21 1.8 162 25.0 11.1 126.2
2 58 71.0 216 24 3.1 221 7.6 10.9 178.8
3 42 7.9 241 24 2.6 224 28.0 8.93 361.6

production-cell 0 85 < 1 300 81 9.8 220 59.1 107.8 t.o.
1 146 1.4 241 81 t.o. t.o. 23.4 30.0 t.o.

bc57-sensors 0 112 141.3 213 103 194.1 4382 1143.1 201.9 t.o.
srg5 ¬ L 16 < 1 120 1 < 1 74 < 1 < 1 < 1

¬ L, nv 15 < 1 31 6 1.5 217 < 1 < 1 < 1

would at least have to do. If our algorithm needs less time than that, we conclude that
our algorithm is faster. “t.o.” or “m.o.” indicate time- or memory-out.

Both, L2S and BMC, find significantly shorter counterexamples than LTL. Our al-
gorithm often outperforms BMC with respect to time. On the other hand, L2S needs
more memory than standard LTL in most cases. L2S may even give a speed up when
compared to the standard algorithm on some examples.

7 Conclusions

We have presented a method to find shortest lasso-shaped counterexamples for full LTL.
Experimental results show competitive performance with bounded model checking. We
have established general criteria for Büchi automata to accept shortest lasso-shaped
counterexamples, extending the notion of a tight automaton from [17]. We have presented
a construction of a Büchi automaton that is tight for full LTL.

Our construction generates Büchi automata with a high number of states. In ongoing
work we apply virtual unrolling to obtain tight Büchi automata from the subclass of
automata that, like automata constructed with CGH+, accepts counterexamples with an
overly long stem but shortest loop. This should result in tight automata with fewer states
and may help to facilitate application also in explicit state model checking employing,
e.g., the algorithm of [11]. Further options include using transition-labeled instead of
state-labeled automata [1] as well as more deterministic automata [24].
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Abstract. The classical model for concurrent systems is based on ob-
serving execution sequences of global states, separated from each other
by atomic transitions. This model is intuitively simple and enjoys a va-
riety of mathematical tools, e.g., finite automata and linear temporal
logic, and algorithms that can be applied in order to test and verify con-
current systems. Although this model is sufficient for most frequently
used validation tasks, some phenomena of concurrent systems are dif-
ficult to express using its related formalisms. In particular, not all the
global states (snapshots) related to an execution appear on a particular
execution sequence; some appear on equivalent sequences. Previous at-
tempts to move into formalisms that are based on a more detailed model
of execution, e.g,. the causality based model, resulted in specification
formalisms with inherently high complexity verification algorithms. We
study here verification problems that involve allowing the execution se-
quences model to observe past global states from equivalent executions.
We show various algorithms and complexity results related to our exten-
sion of the interleaving model.

1 Introduction

Several temporal logics are tailored to reason about partial order executions.
With such logics, we are interested in local states of actions that occurred ac-
cording to the partial order, or in the global states compatible with a partial
order. A partial order among events can be completed into multiple total orders
that are consistent with it, forming a set of equivalent execution sequences. As
these equivalent sequences cannot be distinguished by an observer not capable
of monitoring instantaneously concurrent processes, it is unnatural to distin-
guish between them. A specification that permits some interleaving sequence
but forbids another equivalent one is possibly ambiguous. Local temporal log-
ics like TLC [5], LocTL [8] and all MSO-definable temporal logics [12], do not
distinguish equivalent sequences and allow model-checking in PSPACE. But ex-
pressing global properties of the system is notoriously hard in most of these
formalisms. Alternatively, one can use global temporal logics that are tailored

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 510–525, 2005.
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to express global properties. The inherent problem of these logics is the very
high computational complexity (e.g., EXSPACE-complete for the UNTIL-free
fragment of ISTL [4] and non-elementary for LTrL [24, 26]).

In this paper, we consider a global temporal logic whose capability to talk
about partial-order properties is restricted to expressing elementary properties
of snapshots.

As a partial order execution model we select Mazurkiewicz traces. Namely,
equivalence classes of sequences over some finite alphabet generated using a
(fixed) independence relation over the alphabet. Two sequences are equivalent
exactly when we can obtain one from the other by commuting adjacent indepen-
dent occurrences of letters. Thus, if the alphabet includes a, b and c, where a and
b are independent, but both interdependent with c, then we have cabba ≡ caabb,
with [cabba] denoting the trace (equivalence class) that includes the denoted
sequence. A trace [v] subsumes a trace [u] if there is a sequence u′ such that
v ≡ uu′. In concurrency theory, this represents the fact that [u] is a (possible)
past of [v]. For example, [cab] subsumes itself, [ca], [cb], [c] and [ε] (the empty
trace). Informally, we also say that the word cab subsumes cb.

We describe the Snapshot Linear Temporal Logic, a new temporal logic with
propositions [p], expressing that a state satisfying p has to be subsumed. Together
with that logic, we give a model-checking algorithm, which is EXPSPACE only
in the size of the alphabet, and has the same complexity as the model-checking
of LTL otherwise. We further identify a fragment of the logic which is PSPACE-
complete only in the size of the formula, extending the model-checking algo-
rithm for LTL. In order to gain further insight of the model-checking problem
(as we do not have a tight lower bound for it), we study the model-checking of
snapshots of a word. The corresponding language theoretic problem is: given a
word (which can represent an execution), we want to check whether it subsumes
a word that is in some language L (where L can represent some property).
To formalize the problem, we consider that the property is given by a trace-
closed automaton. Hence, checking whether the snapshot of a word satisfies the
property is equivalent to test whether w ∈ [LΣ�], which is somehow related
to pattern matching in traces. We later use a construction for the word prob-
lem for giving a more efficient model checking algorithm for a subset of our
temporal logic.

Model-checking snapshots of a word can be seen as an extension of model-
checking a word [19], which is an important task that has not received enough
attention. For instance, model-checking a word is the core of runtime verifica-
tion, but is also needed for DNA algorithms, or checking for a spurious counter-
example in an abstracted model. We study variations of the problem, namely
relaxing the dependencies and considering very long words. A case where the de-
pendencies are not too complicated, is when the trace alphabet is series-parallel
[9], that is, built on serial and parallel composition of letters. This kind of al-
phabets is often used to facilitate algorithms [7, 17]. To produce more efficient
algorithms on very long words, we follow several papers [15, 19, 22] that con-
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sider that the word is given in a compressed way, by means of Straight Line
Programs [22].

Related works deal with checking whether snapshots of an execution of a dis-
tributed system satisfy a given propositional predicate. Solutions for this appear
e.g., in [11, 23]. In our work, we study the problem of checking whether such a
word, or a finite state system, satisfy a given temporal property that also deals
with snapshots.

2 Preliminaries

Let Σ be a finite alphabet. An independence relation is an irreflexive and sym-
metric relation I ⊆ Σ ×Σ. The pair (Σ, I) is called a concurrency alphabet.

For two words u, v ∈ Σ∗, write u
1≡ v if there exist words w1, w2 and letters

a, b such that (a, b) ∈ I, u = w1abw2 and v = w1baw2, i. e., if u is obtained
from v by exchanging the order of two adjacent independent letters. Let ≡ be
the reflexive and transitive closure of the relation

1≡. We say that u and v are
trace equivalent [18] over (Σ, I) if u ≡ v. That is, u is trace equivalent to v
if u can be obtained from v by repeatedly commuting adjacent independent
letters.

We next want to extend this equivalence to infinite words. Denote by u ≺ v
the fact that u is a finite prefix of v. For two infinite words w1, w2 ∈ Σω over Σ,
we write w1 ≡lim w2 iff

– for every u ∈ Σ� such that u ≺ w1 there exist v, v′ ∈ Σ� such that v ≺ w2
and uv′ ≡ v, and

– for every u ∈ Σ� such that u ≺ w2 there exist v, v′ ∈ Σ� such that v ≺ w1
and uv′ ≡ v.

Since no confusion can arise, we abbreviate w1 ≡lim w2 by w1 ≡ w2, i.e., we
consider the trace equivalence ≡ as an equivalence relation on the set of finite
and infinite words. A trace is an equivalence class w.r.t. ≡. It is usually de-
noted by writing one representative of the equivalence class in square brackets,
e.g., [abaac]. The alphabet and independence relation should be clear from the
context. Note that u ≡ u′ and v ≡ v′ imply uv ≡ u′v′ (for u,u′ finite and
v, v′ possibly infinite). Thus, we can define a concatenation of traces simply by
[u][v] = [uv] for a finite word u and a finite or infinite word v. A trace [u]
subsumes [v], denoted [v] � [u] if there exists some v′ such that u ≡ vv′ (equiva-
lently, if [u] = [v][v′]). For a language L of finite and infinite words we write [L]
for the set {u | u ≡ v, v ∈ L}.

A (labeled) transition system over Σ is a tuple A = (S,E, ι,Σ) with set of
states S, transitions E ⊆ S × Σ × S, and initial state ι ∈ S. An automaton is
a transition system extended by a set of accepting states F . It is trace-closed if
[L(A)] = L(A), i.e., if its language is closed under the trace equivalence ≡.
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3 Snapshot Linear Temporal Logic

3.1 Syntax, Semantics, and Motivation

We extend the definition of Linear Temporal Logic (LTL) by adding a construct
for dealing with snapshots. We call the new extension Snapshot Linear Temporal
Logic or SLTL. Let P be a finite set of propositional formulas and Bool(P) be
the set of Boolean combinations of propositions over P.

ϕ ::= p | [p] | (¬ϕ) | (ϕ ∨ ϕ) | (©ϕ) | (�ϕ) | (ϕUϕ)

where p ∈ Bool(P). Note that the ‘[ ]’ construct is applied only to a Boolean
expression, never to a formula with modalities. Note also that we use square
brackets for two different (although related) notions: for trace equivalence classes,
as in the previous section, and in the logic to denote that a Boolean combination
holds in a subsumed snapshot.

A Kripke structure S = (S,E, ι,Σ, val) is a deterministic transition system
(S,E, ι,Σ) together with a valuation function val : S → 2P assigning to a
state s those atomic propositions that hold in this state. We now fix a Kripke
structure S. For a word w ∈ Σ∗, let state(ι, w) denote the unique state that is
obtained by applying the actions of w to the initial state ι. The interpretation
of SLTL-formulas is defined over a pair of sequences u ∈ Σ� and v ∈ Σω.

• (u, v) |= p iff p ∈ val(state(ι,u)) for p ∈ P.
• (u, v) |= [p] iff there exists a sequence u′ ∈ Σ� such that [u′] � [u] and

state(ι,u′) |= p for p ∈ Bool(P) (according to propositional logic).
• (u, v) |= ¬ϕ iff (u, v) �|= ϕ.
• (u, v) |= ϕ ∨ ψ iff (u, v) |= ϕ or (u, v) |= ψ.
• (u, v) |= ©ϕ iff (ua, v′) |= ϕ where a ∈ Σ and v′ ∈ Σω with v = av′.
• (u, v) |= ϕUψ iff we can write v = wv′ such that (uw, v′) |= ψ and for any

decomposition w = w1w2 where w2 is nonempty, (uw1, w2v) |= ϕ.

Based on these temporal operators, we can define (as usual) several other ones.
In particular, ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ)), ϕVψ = ¬((¬ϕ)U(¬ψ)), true = p ∨ ¬p,
false = p ∧ ¬p, �ϕ = falseVϕ, and �ϕ = trueUϕ.

It is not hard to verify that the following are tautologies involving the new
snapshot operator:

�([p] → �[p]) �(p→ [p]) �(([p ∧ q]) → [p] ∧ [q])
�(([p] ∨ [q]) ↔ [p ∨ q]) �(¬[p] → [¬p])

To motivate such a logic, we describe a situation where an execution is a
partial order of events, and a global state is a collection of local states of the
different system components that are history closed. History closeness means that
if the past or history (basically, a set of events) includes some event, then it must
also include any event that happened previously. This notion of global states
coincides with Chandy and Lamport’s snapshot algorithm [6]. In an equivalent
way, such a global state is related to snapshots as defined in Section 2. Thus,
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unlike interleaving semantics, we do not just have a simple sequence of global
states. Snapshots are in particular important for achieving fault tolerance, where
occasional snapshots of a distributed system are saved in order to allow the
system to recover in a consistent way.

In our example, consider a bank with several branches, in different states. The
bank operation hours in the different states accord with the local time. There
is no global observation of the bank operation. Different branches can update
each other by making phone calls. The bank employees are working according to
some code of conduct that dictates what action to take in different situations.
The customers can make various interactions with their branches (or even visit
other branches), including deposits withdrawals and balance enquiries. Phone
calls between branches are also actions of the system.

The bank analysts prepared a finite state model of the bank, and have written
a specification of allowed behaviors of the bank system, using our specification
formalism. The marked nodes in the graph correspond to some bank targets,
e.g., having a certain balance, which is defined as the sum of money over the
different branches in some global state. The bank lawyers can use histories of
the executed actions to show that a balance existed. The bank does not stop
everything in all branches to take frequent global and synchronized snapshots,
e.g., printing the balance in each branch at exactly every hour. Hence snapshots
are a good notion of balance that they can have.

We can express the fact that the bank has a positive balance snapshot for
every (execution) sequence by �[p], where p is a predicate denoting positive
balance. This does not mean that p holds for some state in every execution
sequence. We can also express the fact that q starts to hold for the minimal
state that has a subsumed snapshot satisfying p by (¬q ∧ ¬[p])U(q ∧ [p]). We
can extend the logic with related operators. For example, under the current
definitions, ��[p] does not mean under our semantics that there are infinitely
many subsumed snapshots satisfying p, since [p] is monotonic, thus one snapshot
satisfying p suffices. Therefore, we can add an appropriate construct to capture
such a property.

3.2 Model-Checking SLTL

In this section, we outline an algorithm that decides whether an SLTL-formula
ϕ holds true for all words in a given Kripke structure S = (S,E, ι,Σ, val). The
idea is to construct a second Kripke structure B that includes the ‘memory’
which is required for deciding snapshot properties. While P is the set of atomic
propositions of S, we allow in B atomic propositions of the form p for p ∈ P as
well as [p] for p ∈ Bool(P).

– The state set SB equals 2S×2Σ×S. For s = (X , t) ∈ SB, we write current(s) =
t ∈ S and past(s) = {s′ ∈ S | ∃A ⊆ Σ : (s′, A) ∈ X}.

– The valuation function valB is given by valB(X , s) = val(s) ∪ {[p] | ∃t ∈
past(X , s) : t |= p}.

– There is an a-labeled edge in EB from (X , s) to (Y, t) if
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1. (s, a, t) ∈ E, and
2. Y is the set of all pairs (t′, B) ∈ S × 2Σ for which there is (s′, A) ∈ X

satisfying either
(a) s′ = t′ and B = A ∪ {a}, or
(b) (s′, a, t′) ∈ E, A = B, and {a} ×A ⊆ I.

– the initial state ιB is ({(ι, ∅)}, ι)

Intuitively, we keep in every state of B the current state s on A given the
same sequence of letters from the initial state. In addition, we keep with s the
set of states of subsumed traces. If t is a state of a subsumed trace, then we keep
with it also the set A of letters (but not the actual sequence) that belong to the
difference between the actual sequence and the subsumed one. Let s

a−→ r in E.
Given a pair 〈t, A〉 kept as a past of s we generate the following pairs as a past
of r: We add a to A and remain in state t, obtaining 〈t, A∪{a}〉. This is because
the set of subsumed traces is just extended, and if t v−→ s then t

va−→ r. Another
pair is formed when a is independent of all letters in A. In this case we can also
progress from t to r according to the transition relation of E obtaining 〈r,A〉.
This is because if u ≡ vv′ (and hence [v] is a prefix of [u]), and a is independent

of the letters in v′) then [va] is a prefix of [ua] and t
v′
−→ r.

A model-checking algorithm for SLTL uses the structure B instead of S. Let
ϕ be some SLTL-formula whose validity over S we want to check. Recall that
the atomic propositions of B are of the form p for p ∈ P and [p] for p a Boolean
combination of elements from P. Hence ϕ can be seen as a classical LTL-formula
speaking about paths in the structure B. Because of the construction of B from
S, we get for any infinite word v: (ε, v) |=S ϕ (seen as SLTL-formula) iff (ε, v) |=B
ϕ (seen as LTL-formula). Now the well-known model-checking algorithm (i.e.,
translating the LTL-formula ¬ϕ into an automaton and checking emptiness of
the intersection of this automaton and B) yields the following result

Theorem 1. Let S be a Kripke structure describing the system, and ϕ be
an SLTL-formula of the Snapshot Linear Temporal Logic. Then one can check
whether S |= ϕ in EXPSPACE, with a space complexity of O(|S| × 2|Σ| × |ϕ|),
that is, in space complexity exponential only in the size of the alphabet.

4 Model-Checking Snapshots of a Word

We are given a language L = [L] i.e., a language closed under trace equivalence
w.r.t. some concurrency alphabet (Σ, I). We are also given an automaton A such
that L = L(A), and a word w ∈ Σ�. We want to check whether some snapshot
of w fulfills the property given by A, that is, whether w ∈ [LΣ�]. Note that the
language [LΣ�] consists of words from L where arbitrary letters are appended
to them, and then shuffled to the left according to the independence relation I.
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4.1 A Non deterministic Construction for the Membership
Problem

Let I ⊆ Σ2 be an independence relation and A = (S,E, ι,Σ, F ) be a trace-closed
automaton.

For checking emptiness or inclusion of a word w ≡ xy in the language
[L(A)Σ�] with x ∈ L(A), we can make the following construction. The idea
is to guess the set of letters of the suffix of x that can still appear (as opposed to
the previous automaton which kept what is used before from any point, hence
had to keep many histories). Thus, the set of states is S × 2Σ and a state 〈s,A〉
is accepting iff s ∈ F . The initial state is 〈ι, Σ〉. Given a letter a ∈ Σ, there
is a transition from state 〈s,A〉 labeled by a to 〈s,B〉, where B ⊆ A excludes
any letter from A that depends on a. If a ∈ A, we continue from a state 〈s,A〉
according to the transition relation of A to a state 〈t, A〉.

Formally, we define an automaton D with the following transitions:

– 〈s,A〉 a−→ 〈s,B〉, when B = A \ {b ∈ A | (b, a) ∈ D}.
– 〈s,A〉 a−→ 〈t, A〉, when a ∈ A and s

a−→ t ∈ E.

Basically, D is built on 2|Σ| copies of A. Now, consider that if a word belongs
to L(D), then it will pass through at most |Σ| of these copies. That is, these Σ
automata can be non-deterministically guessed, together with the positions of w
where the transition from one automaton to another is made. Then, it suffices
to test whether each factor of w between two consecutive positions belongs to
the automaton that was guessed, which can be easily performed in polynomial
time.

Theorem 2. Let (Σ, I) be a concurrency alphabet. Let A be a trace-closed
automaton and w a word of Σ�. Then one can test in NP whether w ∈ [L(A)Σ�].
If the alphabet is fixed (not part of the input), then the problem is NLOGSPACE.

4.2 Lower Bound in the Deterministic Case

In this section, we show that the minimal deterministic automaton accepting
[LΣ∗] is exponential in the size of the automaton accepting L. To this aim, let
Σ = {a, b, c, d} with I = {a, b}×{c, d}. We consider, for p ∈ N, the language Lp =
[{uavc | u ∈ {a, b}∗, v ∈ {c, d}∗, |u| ≡ |v| mod p}]. Because of the special form
of the independence relation I, a word w ∈ Σ∗ belongs to Lp iff its projection
to {a, b} ends with an a, its projection to {c, d} ends with a c, and these two
projections have the same length modulo p. Thus, in order to accept Lp, we need
to count modulo p the occurrences of letters from {a, b} and remember the last
one of them, and similarly for {c, d}. Thus, we need 4 · p2 many states.

Now let u1, · · · ,un ∈ {a, b} and v1, · · · , vm ∈ {c, d}. Then the words u1 . . .un

v1 . . . vm and u1 . . .ui v1 . . . vj ui+1 . . .un vj+1 . . . vm are equivalent for any i and
j. Hence the former belongs to [Lp Σ

∗] iff there are 1 ≤ i ≤ n and 1 ≤ j ≤ m
with i = j (mod p), ui = a and vj = c.

We want to show that in order to accept [Lp Σ
�] with a deterministic au-

tomaton, we need exponentially many states (exponential in p): For a set X =
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{x1, x2, . . . , xn} ⊆ {0, 1, . . . , p − 1} let uX = (bx1abp−x1−1)(bx2abp−x2−1) . . .
(bxnabp−xn−1). Then, by the observation in the previous paragraph, for m < p
we have uXdmc ∈ [Lp ·Σ�] ⇐⇒ ∃i : m = xi (mod p) ⇐⇒ m ∈ X.

Now supposeA is a deterministic automaton accepting [Lp Σ
∗] and let ι be its

initial state. Furthermore, let X and X ′ be two distinct subsets of {0, 1, . . . , p−1}
and suppose that they both lead to the same state when executed in the initial
state of A. Then there is (without loss of generality) x ∈ S \X ′. Since uX and
uX′ lead to the same state, so do uX dxc and uX′ dxc. Since uX dxc ∈ [Lp Σ

∗] this
state is accepting, implying that uX′ dxc is accepted by A. Since this contradicts
our assumption on A to accept [Lp Σ

∗], two distinct words of the form uX cannot
lead to the same state of A when executed in the initial state ι. Since there are
exponentially many words uX , the automaton A has exponentially many states.

Note that, in contrast to the exponential lower bound for a deterministic au-
tomaton, Theorem 2 gives a polynomial non deterministic automaton accepting
[Lp Σ

∗] (since the alphabet is fixed).

5 A PSPACE-Complete Fragment of SLTL

We define now the ‘negative’ fragment of SLTL, whose model-checking exploits
the model-checking of snapshots of a word (see section 4). Let us look at the
usual normal form of LTL, that is when only the expression {p, [p]} can use
negation (negation is pushed the deepest possible). Then we say that a formula
ϕ is a negative formula of SLTL if in the normal form of ¬ϕ, the negation is
used only over Boolean combinations. That is, the snapshot expressions [p] only
appear in a positive form (in the negation of the formula). Note that negation
may appear inside the ‘[ ]’ operator. For instance, the property ϕ = �¬[p]∨�¬[q]
is a negative formula of SLTL since ¬ϕ = (�[p] ∧�[q]).

Notice that every LTL formula is a negative formula of SLTL since it does not
use [p]. Hence, model-checking of negative SLTL formulas is already PSPACE-
hard.

We show now how to do model-checking in PSPACE for such a formula.
We use the LTL translation [14], except that subformulas of the form [p] are
kept as a whole (as in the construction for Theorem 1). This construction does
not introduce new negations to propositional letters or snapshot subexpressions
(as opposed e.g., to the construction in [25]). We know that there exists an
automaton B¬ϕ accepting L(¬ϕ), labeled by p,¬p and by positive [p], whose
size is exponential in |ϕ|.

We check each subformula [p] on a separate automaton copy, computing the
snapshots (trace prefixes) of S, that is [L(S)Σ�], as constructed in Section 4.1.
Note however that for two different [p], [q], the prefixes need not be the same,
and thus we need two different copies of the trace prefix automaton. Notice that
once [p] holds, it holds forever, so we need not have several copies for the same
subformula [p].

For every subformula [p] (there are at most |ϕ| such propositions), we create
an automaton Sp from the Kripke structure S as follows: states, initial states,
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and transitions are those from S and a state is accepting iff it satisfies p; i.e., Sp

accepts all those words that lead to a state in S satisfying p. There exists an au-
tomaton Ap of size exponential only in |Σ| accepting [L(Sp)Σ�] (see section 4.1).
We just need to check whether there exists accepting paths ρ¬ϕ, ρ, ρp1 , · · · , ρpn

of A¬ϕ, S,Ap1 , · · · ,Apn
labeled by the same word w (in the different copies),

such that for every prefix u of w, the state v¬ϕ, v, vp1 , · · · , vpn
reached on u

satisfy: if v¬ϕ |= (¬)p, then v |= (¬)p and if v¬ϕ |= [p], then vp |= p. Hence,

Theorem 3. Let S be a Kripke structure describing the system, and ϕ be a
negative formula of SLTL. Then the model-checking of S |= ϕ is PSPACE-
complete, with a space complexity of O(log(|S|) · |ϕ| · |Σ|).

6 Efficient Model-Checking of a Word

Since model-checking snapshots of a word is important (see section 4 and 5), we
propose here some variations to improve its efficiency.

6.1 Series-Parallel Alphabets

We show that the membership problem in [L(A)Σ∗] is in PTIME provided the
independence alphabet is series-parallel (see also [7, 17] for algorithms on series-
parallel alphabet). Actually, we consider the more general case of deciding mem-
bership in [L(A)L(B)] in polynomial time provided A and B are trace-closed
automata over a series-parallel independence alphabet (Σ, I).

In this section, we consider independence alphabets together with a chosen
total order on the letters. Let (Σ1, I1,≤1) and (Σ2, I2,≤2) be disjoint inde-
pendence alphabets where ≤1 and ≤2 are linear orders on Σ1 and Σ2, resp.
A linear order ≤ is defined on Σ1 ∪ Σ2 by a ≤ b iff a ≤1 b or a ≤2 b or
a ∈ Σ1 and b ∈ Σ2. Then the serial composition (Σ1, I1,≤1) · (Σ2, I2,≤2) is
(Σ1 ∪ Σ2, I1 ∪ I2,≤). The parallel composition (Σ1, I1,≤1) � (Σ2, I2,≤2) is de-
fined to be (Σ1 ∪ Σ2, I1 ∪ I2 ∪ (Σ1 × Σ2) ∪ (Σ2 × Σ1),≤). A series-parallel
independence alphabet is a tuple (Σ, I,≤) that can be constructed from ordered
independence alphabets of the form ({α}, ∅,≤). A component of (Σ, I,≤) is a set
Γ ⊆ Σ that occurs in this inductive construction. Note that any series-parallel
independence alphabet has at most |Σ| many components.

The linear order ≤ on Σ can be extended to words setting x1x2 . . . xm ≤
y1y2 . . . yn if m < n or m = n and x1 < y1 or m = n, x1 = y1 and x2x3 . . . xm ≤
y2y3 . . . yn. Since this length-lexicographic order is a well order on Σ∗, any trace
(i.e., any equivalence class of words) contains a minimal element. We call the
minimal element of [u] the lexicographic normal form LNF(u) of u.

From now on, we fix some series-parallel independence alphabet (Σ, I,≤) and
two trace-closed automataA = (SA, EA, ιA, Σ, FA) and B = (SB, EB, ιB, Σ, FB).
We will construct an automaton C(Σ) with states of the form (s, t, Γ,X) where
s ∈ SA, t ∈ SB, Γ ⊆ Σ is a component of (Σ, I,≤), and X is A or B with the
following property:
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Let Γ ⊆ Σ be a component and u ∈ Γ ∗ be in lexicographic normal form.
Then (s, t, Γ,X) u−→C (s′, t′, Γ, Y ) iff there exist uA,uB ∈ Γ ∗ with u ≡ uAuB,
s

uA−→A s′, t uB−→B t′, and uB = ε provided X = Y = A and uA = ε provided
X = Y = B.

This automaton C will be constructed inductively following the inductive con-
struction of the series-parallel independence alphabet (Σ, I,≤), i.e., we will have
automata C(Δ) for any component Δ such that the above invariant holds for
all components Γ ⊆ Δ (and C(Δ) does not have transitions labeled by letters
outside of Δ).

In this construction, we will use the following automata AΓ and BΓ for Γ
a component: The set of states of AΓ is SA × SB × {Γ} × {A}. There is tran-
sition (s, t, Γ,A) a−→AΓ

(s′, t′, Γ,A) iff a ∈ Γ , s a−→A s′ and t = t′. Symmetri-
cally, the set of states of BΓ is SA × SB × {Γ} × {B} and there is a transition
(s, t, Γ,B) a−→BΓ

(s′, t′, Γ,B) in B iff a ∈ Γ , s = s′, and t
a−→B t′.

The base case is simple: if |Γ | = 1, then C(Γ ) is the union of AΓ and BΓ ,
plus transitions from AΓ to BΓ . That is, the set of states of C(Γ ) equals SA ×
SB × {Γ} × {A,B} and there is a transition (s, t, Γ,X) a−→C(Γ ) (s′, t′, Γ, Y ) iff
a ∈ Γ , s a−→A s′, t = t′, and X = A or s = s′, t a−→B t′ and X = Y = B.

Now suppose that Γ is a component that is built as the parallel product of the
components Γ1 and Γ2. Then we take as C(Γ ) the union of the automata C(Γ1)
and C(Γ2) together with transitions of the form (s, t, Γ1, X) a−→C(Γ ) (s′, t′, Γ2, Y )
provided a ∈ Γ , s a−→A s′ and t = t′ or s = s′ and t

a−→B t′. Note that words
over Γ in lexicographic normal form belong to Γ ∗

1 Γ ∗
2 . This allows to prove the

invariant for C(Γ ).
Finally, let Γ be a component that is built as the serial product of the com-

ponents Γ1 and Γ2. Then C(Γ ) is the union of the automata AΓ , C(Γ1), C(Γ2),
and BΓ together with transitions of the form (s, t,Δ1, X) a−→C(Γ ) (s′, t′,Δ2, Y )
provided Δ1,Δ2 are components of Γ (already seen by induction) and one of
the following holds

(1) (s, t,Δ1, X) is a state of AΓ and
– (s′, t′,Δ2, Y ) is a state of C(Γ1) or of BΓ and a ∈ Γ2, or
– (s′, t′,Δ2, Y ) is a state of C(Γ2) or of BΓ and a ∈ Γ1

(2) (s′, t′,Δ2, Y ) is a state of BΓ and
– (s, t,Δ1, X) is a state of C(Γ1) and a ∈ Γ2, or
– (s, t,Δ1, X) is a state of C(Γ2) and a ∈ Γ1.

This construction is visualized in Figure 1. To prove the invariant for C(Γ ), let
u ∈ Γ ∗ be in lexicographic normal form. Write u as an alternating sequence of
nonempty words ui from Γ+

1 and of Γ+
2 . For any trace equivalent factorization

v w ≡ u1u2 . . .un, there exists i and a trace equivalent factorization v′ w′ ≡ ui

with v ≡ u1u2 . . .ui−1v
′ and w ≡ w′ui+1 . . .un. If v′ = ε or w′ = ε, we go directly

from AΓ to BΓ . Otherwise, we go from AΓ to BΓ via C(Γk) with ui ∈ Γ+
k .

Proposition 1. Let (Σ, I,≤) be a series-parallel independence alphabet. More-
over, let A and B be automata such that LNF(w) is accepted as soon as w is
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AΓ BΓ
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Γ1
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Fig. 1. Construction of C(Γ1 � Γ2)

accepted for any w ∈ Σ∗.1 Then u ∈ [L(A)L(B)] if and only if LNF(u) ∈ L(C(Σ))
for any u ∈ Σ∗.

Note that C(Γ ) is polynomial in A and B since there are only linearly many
components of (Σ, I,≤). Since, in addition, LNF(u) can be constructed in poly-
nomial time from u, we get the following improvement of Theorem 2:

Theorem 4. Let (Σ, I,≤) be a series-parallel independence alphabet and A,
B be trace-closed automata. Then we can test in polynomial time whether w ∈
[L(A)Σ∗].

Notice that if the automata A or B are not trace-closed, then the membership
problem is NP-complete. Actually, a slightly easier problem, deciding whether
there exists v ≡I w such that v ∈ L(A), is already NP-complete [2]. The fact is
that it remains NP-complete even if the alphabet is fully parallel, in particular
even if it is series-parallel.

6.2 Compression

Usually, when one model-checks a word (see section 4), either this word comes
from a very long log file (or DNA encoding), or it can be a looping run of
some system: it is often very long. Having the most succinct representation for
this word is then a big advantage, since it can severely decrease the runtime of
the algorithm. We present here the idea of using words compressed by means
of straight-line programs. If the word is not already compressed, then the tool
from [1] can be used.

Straight-line programs. A straight-line program (SLP for short) over the
alphabet Σ is a context-free grammar with variables V = {X1, . . . , Xk}, initial
variable X1 and rules from V ×(V ∗∪Σ). The rules are such that there is exactly
one rule for each left-hand side variable, and if Xi −→ α, then each Xj in α
satisfies j > i.

1 This holds in particular if A and B are trace-closed.
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The constraint on the rules makes that any variable Xi generates a unique
word. For convenience, we denote the word generated by the variable Xi also as
Xi. Without loss of generality, we can assume that rules are of size 2, that is of
the form X −→ Y Z with Y,Z ∈ (V ∪ {ε}) ∪Σ. The size |X| of an SLP X is its
number of variables. Lately, algorithms on SLP-compressed objects have been
intensively studied [1, 15, 19, 22]. We will used two known results, namely:

Proposition 2. Let w be an SLP, A an automaton and (Σ, I) a concurrency
alphabet.

– The problem whether w ∈ L(A) is PTIME-complete [15, 19, 22], and solvable
in time O(|w| · |A|3).

– The problem whether there exists some v ≡I w with v ∈ L(A) is PSPACE-
complete [15].

Using the first part of proposition 2 and theorem 2, we can easily show that:

Proposition 3. Let w be an SLP and A,B two trace-closed automata. The test
whether w ∈ [L(A)L(B)] is of complexity NP in the size of the alphabet (i.e.,
polynomial-time for a fixed alphabet).

We can restate the second result of proposition 2, showing that testing
whether w ∈ [L(A)L(B)] is PSPACE-complete if w is an SLP and A or B is
not trace-closed. With more work, we can show that the complexity remains
PSPACE-complete if the alphabet is series-parallel.

The interesting question is what happens whenA,B are both trace-closed and
the alphabet is series-parallel. Actually, we manage to show that the problem
is PTIME-complete in this case. That is, unlike the case where A or B is not
trace-closed, compression does not increase the complexity.

Theorem 5. Let w be an SLP, (Σ, I) be a series-parallel alphabet, and A,B be
two trace-closed automata. Then testing whether w ∈ [L(A)L(B)] is PTIME-
complete, and solvable in time O(|w| · (|Σ|2 · |A| · |B|)3).

Proof. Let w be an SLP. We use proposition 1 to obtain an automaton C
that recognizes LNF(w) exactly when w ∈ [L(A)L(B)]. As soon as we obtain
a polynomial-size SLP representation of LNF(w), we can use proposition 2 to
have a PTIME algorithm for testing whether LNF(w) ∈ L(C). It is PTIME-hard
using [19].

The blow-up for obtaining an SLP representation of LNF(w) from an SLP w
is likely to be exponential in general. Anyway, we are in the special case where the
alphabet is series-parallel, for which we show now how to compute a polynomial
SLP for LNF(w).

We first need to describe the SLP variables differently than for the SLP w.
For any component alphabet Σi and rule X = Y Z, we define the projection
(X,Σi) of X on Σi by the rules:
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– (a,Σi) = a if a ∈ Σi, else (a,Σi) = ε,
– (X,Σi) = (Y,Σi)(Z,Σi).

Then, for Σi = Σj · Σk and X = Y Z, we describe the longest prefix and
suffix in Σ�

j of the projection on Σi of X by Pref(X,Σj),Suf(X,Σj).
The rules associated with Pref(X,Σj) are as follows:

– If a ∈ Σj , then Pref(a,Σj) = a, else Pref(a,Σj) = ε.
– If Pref(Y,Σj) does not contain any letter from Σk, then

Pref(X,Σj) = (Y,Σj)Pref(Z,Σj), else Pref(X,Σj) = Pref(Y,Σj).

The SLP (w,Σ) is defined using variables (X,Σi),Pref(X,Σi),Suf(X,Σj).
Then, for every rule X = Y Z of (w,Σ), we add the variable (XY ) with the rule
(XY ) = XY . In particular, X,Y,Z can be a suffix or a prefix of variables of w.
This gives an SLP of size O(2|Σ| · |w|).

We can now describe the SLP LNF(w,Σ) computing LNF(w). For each com-
ponent alphabet Σi = Σj · Σk and each variable X = Y Z of (w,Σ), we in-
troduce new variables Fact(Y,Σh, Σl) for h, l ∈ {j, k} representing the factor of
LNF(Y,Σi) obtained by deleting the longest prefix of Y in Σ�

h and the longest suf-
fix of Y in Σ�

l . In particular, Fact(Y, ∅, Σj)LNF(Suf(Y,Σj), Σj) = LNF(Y,Σi).
Let X = Y Z, Σi = Σj ·Σk and h, l, t ∈ {j, k} such that Suf(Y,Σt) �= ε. The

rule associated with Fact(X,Σh, Σl) is:

Fact(X,Σh, Σl) =
Fact(Y,Σh, Σt) LNF((Suf(Y,Σt)(Pref(Z,Σt)), Σt) Fact(Z,Σt, Σl)

The rules associated with LNF(X,Σi) are

– LNF(a,Σi) = a if a ∈ Σi, else LNF(a,Σi) = ε,

– If Σi = Σj �Σk and Σj ≺ Σk, then LNF(X,Σi) = LNF(X,Σj)LNF(X,Σk),

– If Σi = Σj ·Σk with Suf(Y,Σj) �= ε, then

LNF(X,Σi) =
Fact(Y, ∅, Σj) LNF(Suf(Y,Σj)Pref(Z,Σj), Σj) Fact(Z,Σj , ∅)

Notice that in the description above, it might be the case that Suf(X,Σj)
stands for Suf(Suf(Y,Σl), Σj), because X = Suf(Y,Σl) is a variable of (w,Σ).
Even though Suf(Suf(Y,Σl), Σj) is not a variable of (w,Σ), we can express it
with only one suffix, that is with variables of (w,Σ). Assume that Σi = Σj ·Σk.
If Suf(Y,Σl) contains a letter of Σk, then Suf(Suf(Y,Σl), Σj) = Suf(Y,Σj). Else,
Suf(Suf(Y,Σl), Σj) = Suf(Y,Σl). The case with two (or more) nested prefixes is
symmetric. Notice moreover that a prefix of a suffix or a suffix of a prefix is not
possible.

It is easy to show by induction that LNF(w,Σ) computes exactly the lexico-
graphic normal form of the projection of w on Σ. Moreover, the size of the SLP
LNF(w,Σ) is at most O(|Σ|3 · |w|).

Since the time complexity of checking whether an SLP S belongs to L(A) is
O(|S| · |A|3), we get a complexity of O(|w| · (|Σ|2 · |A| · |B|)3). �
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7 Conclusion

We described in this paper a new Linear Temporal Logic, the Snapshot LTL,
which captures some properties of global logics on traces without the inherently
high complexity. We proposed an EXPSPACE algorithm to do model-checking
against this logic, based on a deterministic automaton construction. It would
be interesting to compare the properties expressed by our logic with the one
expressed by the EXPSPACE-complete fragment of LTrL [24] and of ISTL [21].
Moreover, the ’negative’ fragment of SLTL is PSPACE-complete, yet more gen-
eral than LTL.

We also considered model-checking for snapshots of a word, which is not
easy to tackle either. For instance, the precise complexity is still unknown (but
neither is known the precise complexity of model-checking a word against LTL
properties [19]).

w ∈ [L(A)Σ�] A trace-closed A
Normal case NP NP-complete
w compressed NP PSPACE-complete

Series-parallel 2|Σ| × |A| NP-complete
Series-parallel + compression PTIME-complete PSPACE-complete

Fig. 2. Complexity of the snapshot verification of a word

We studied the complexity when we vary slightly the problem (see figure 2),
to understand the limits of our algorithms. We show that the time complexity
becomes quickly polynomial, for instance when the alphabet is not too complex
(series-parallel). Moreover, we show that the algorithms we proposed are pretty
robust, since the complexity remains the same even in case where we use com-
pressed words. On series-parallel alphabets and using compression, we obtained
a PTIME-algorithm, which contrasts with the PSPACE-complete complexity as
soon as A is not trace-closed.

Notice that this problem is somehow not complicated enough to get an
NP-completeness result, since we would need for this more than a fixed num-
ber of automata. Indeed, the problem whether w ∈ [L(A1) · · · L(An)] is NP-
complete.

This work also shows that pattern matching a trace is PTIME in |Σ| and
NLOG in the size of the word (trace) if the alphabet is series-parallel, unlike the
general case. In this case, our algorithm greatly simplifies the general pattern
matching algorithm for compressed traces given in [15].

Acknowledgement We would like to thank Christof Löding and Lenore Zuck
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Time-Efficient Model Checking with
Magnetic Disk

Tonglaga Bao and Michael Jones
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Abstract. Explicit model checking with magnetic disk is prohibitively
slow if file input/output (IO) is not carefully managed. We give an em-
pirical analysis of the two published algorithms for model checking with
magnetic disk and show that both algorithms minimize file IO time but
are dominated by delayed duplicate detection time (which is required to
avoid regenerating parts of the transition graph). We present and analyze
a more time-efficient algorithm for model checking with magnetic disk
that requires more file IO time, but less delayed duplicate detection time
and less total execution time. The new algorithm is a variant of parallel
partitioned hash table algorithms and uses a time-efficient chained hash
table implementation.

Model checking with magnetic disk can significantly increase the space available
for storing visited states. In explicit model checking, visited states are stored
to avoid generating duplicate states and to aid in termination detection. In
this paper, we analyze the performance of the two published model checking
algorithms for use with magnetic disk and find that, while file IO is an overhead
in algorithms that use disk, delayed duplicate detection is the single largest
overhead. We propose a new algorithm for explicit model checking with magnetic
disk that requires more file IO time but reduces duplicate detection time and
total execution time. The new algorithm solves large model checking problems
in less time than other disk-based algorithms and solves small problems in 15%
to 27% of the time required by the RAM-only algorithm.

Delayed duplicate detection is an extra processing step added to search al-
gorithms that use magnetic disk to store visited states. The delayed duplicate
detection step compares recently generated states with a set of visited states.
The purpose of this comparison is to determine if the recently generated states
are duplicates of visited states or not. The set of already visited states is called
the visited candidate set and the set of new states is called the duplicate candi-
date set. Each state in the duplicate candidate set may have a different visited
candidate set. During delayed duplicate detection, each state in the duplicate
candidate set is compared with the states in its visited candidate set. The cost of
delayed duplicate detection is a multiple of the product of the size of the visited
candidate set and the average size of the delayed candidate sets. Reducing the
size of either candidate set reduces the cost of delayed duplicate detection.
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c© Springer-Verlag Berlin Heidelberg 2005



Time-Efficient Model Checking with Magnetic Disk 527

Korf [5] and Zhou [13] give a more thorough discussion of the role of delayed
and immediate duplicate detection in search using magnetic disk in the context
of artificial intelligence. Zhou’s algorithm eliminates the delayed duplicate de-
tection step for search problems that satisfy a strict locality requirement. The
locality requirement is that all successors for a group of states to fall within
a subset of the entire state space. The resulting search algorithm is as fast as
RAM-only search for some problems and actually faster than the RAM-only
algorithm for other problems (due to cache effects). Unfortunately, transition
graphs often encountered in model checking do not satisfy the strict locality
requirement. However, a similar focus on delayed duplicate detection in explicit
model checking can yield similar positive results.

Published algorithms for explicit model checking with magnetic disk have
focused on minimizing file IO time. File IO time is the time spent reading states
from and writing states to magnetic disk. While these algorithms have success-
fully minimized file IO time, delayed duplicate detection time for these algo-
rithms is actually much greater than file IO time. We propose two methods for
reducing delayed duplicate detection time: a partitioned hash table search algo-
rithm and a chained hash table data structure. Both methods require more space
and less time than algorithms and data structures in the published methods for
model checking with magnetic disk. However, such a trade off is well suited for
model checking with large, but relatively slow, magnetic disks.

Stern and Dill published the first results for an explicit state enumeration
algorithm for model checking with magnetic disk [11]. The Stern and Dill al-
gorithm is inspired by an Roscoe’s earlier algorithm for model checking CSP
using magnetic disk [10]. The Stern and Dill algorithm, which we will refer to as
the Mono algorithm, stores the visited candidate set in a large monolithic hash
table on disk and keeps a smaller table of duplicate candidates in RAM. This
algorithm was originally implemented using an open-address hash table for the
delayed candidate set. In this implementation of this algorithm, the entire table
on disk is the visited candidate set for each duplicate candidate state in RAM.
The Roscoe algorithm also stores visited states on disk and delays duplicate de-
tection, but the algorithm performs duplicate detection by sorting then merging
duplicate and visited candidate sets (rather than performing a pairwise compar-
ison as in Mono). Stern and Dill point out [11] that the sort and merge step is,
perhaps, unduly complicated because it requires sorting a list that will not fit
in RAM. The cost of delayed duplicate detection in the Mono algorithm grows
quickly with the size of the visited candidate set because detecting duplicates
requires searching the entire visited candidate set for each duplicate candidate.

Della Penna et al. published an algorithm for model checking with magnetic
disk that is a modification of the Mono algorithm [7]. This algorithm, which
we will refer to as the Local algorithm, exploits transition locality by reading
only the most recently written states from disk during delayed duplicate detec-
tion. The motivation for the design of this algorithm is to improve efficiency
by reducing file IO. The algorithm is indeed faster than the Mono algorithm.
Our empirical analysis of both algorithms shows that exploiting locality in this
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manner actually increases file IO time while greatly decreasing delayed dupli-
cate detection time. Delayed duplicate detection time in the Local algorithm is
decreased because the visited candidate set is reduced to just the most recently
written states rather than all visited states (as in the Mono algorithm). File IO
is increased because some duplicates are not detected and their successors, which
are also duplicates, are repeatedly transferred to and from disk. The Local al-
gorithm occasionally uses all visited states in duplicate detection to reduce the
number and impact of missed duplicates.

In this paper, we reduce delayed duplicate detection time in a new model
checking algorithm, called the Part algorithm, by reducing the visited candidate
set with a partitioned hash table and reducing the duplicate candidate set with
a chained hash table. While use of a chained hash table is perhaps the least
interesting aspect of the new algorithm, it is responsible for the majority of the
performance improvement. We reimplement the Mono and Local algorithms
using a chained hash table and compare the performance of both the Mono
and Local algorithms using either implementation. This allows us to focus
on the algorithms rather than hash table implementations. As expected, both
algorithms are faster when implemented with a chained hash table. However,
the Mono algorithm becomes faster than the Local algorithm when both are
implemented with a chained hash table.

The second feature of the Part algorithm is the use of a partitioned hash
table. The partitioned hash table is composed of n individual tables, each of
which store a fraction of the visited states. A secondary hash function is used
to divide states into partitions. The partitioned hash table improves delayed
duplicate detection by reducing the visited candidate set. The partitioned hash
table does increase file IO requirements because states must be read from and
written to disk more frequently than the other algorithms.

Unlike switching to a chained hash table, switching to a partitioned hash
table requires changing the state exploration algorithm. The most significant
impact is that the usual double depth first search (DFS) used in linear temporal
logic (LTL) model checking will miss property violations if naively implemented
on a partitioned hash table. The state generation algorithm used in the Part
algorithm is based on partitioned hash table algorithms used in parallel model
checking and is not designed to detect violations of LTL properties. LTL model
checking algorithms for partitioned hash tables require a serialization step to
properly order the second DFS. This is costly for parallel algorithms, but should
have little impact on the Part algorithm which is an inherently serial algorithm.
The investigation of LTL model checking with magnetic disk is left for future
work.

In the next section, we profile the Mono and Local algorithms to show that
delayed duplicate detection, not file IO, is the dominant overhead in both algo-
rithms. Section 2 presents and discusses the Part algorithm. Section 3 contains
an analytical comparison of the Part algorithm to the RAM-only, Mono and
Local algorithms. We give experimental results in section 4 and offer conclu-
sions and future work in section 5.
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1 Profiling Existing Uses of Disk

The original algorithm for model checking with magnetic disk was proposed
by Stern and Dill [12]. Stern’s algorithm, Mono, strives to minimize file IO
time. Simply storing visited states on disk and performing immediate duplicate
detection requires a disk access for every state generated. This creates a series
of small disk accesses with poor locality which defeats caching and buffering
techniques used to minimize average latency. The Mono algorithm minimizes
file IO time by delaying duplicate state detection and writing each visited state to
disk exactly once. The Mono algorithm maintains two sets of visited states1 and
a queue of states. One set stores the signatures of expanded states on magnetic
disk and the other stores the signatures of expanded sets in RAM. The search
is conducted breadth-first.

Delayed duplicate detection occurs when either a level of breadth-first search
is finished or the table in memory becomes full. Delayed duplicate detection
sequentially checks whether or not every state in the table on disk is contained
in the table in RAM. If a state in the table in RAM is also in the table on
magnetic disk, then that state in table is deleted from RAM. After the duplicate
states are deleted, the remaining newly visited states are appended to the visited
states on disk. The search then continues until either the disk becomes full or
the queue becomes empty.

The more recent Local algorithm proposed by Della Penna et al. improves on
the execution time of Stern’s algorithm by exploiting transition locality [7]. The
Local algorithm divides the table of states on disk into blocks. Rather than
loading and comparing every state in the disk table during delayed duplicate
detection, the Local algorithm loads and compares states in only the most
recently stored blocks. To avoid extensive duplication of previous work, older
blocks are occasionally loaded for comparison.

Table 1. Total verification time, in seconds, for five verification problems. Both algo-
rithms are implemented with an open-address hash table

Algorithm atomix mcslock1 newlist6 dense atomix2
Mono 19654.7 19755.2 6346.2 15434.8 32404.2
Local 5240.0 10645.0 3337.0 4039.0 11039.0

We have reimplemented and profiled the Mono and Local algorithms in
Hopper [4]. Both algorithms were profiled on a collection of five model checking
problems. We measured wall clock time for disk access, performing delayed du-
plicate detection, inserting states into the table in RAM, generating successor
states and the total from start to finish. Wall clock time, which is the amount of
time that passes for “a clock on the wall” during program execution, is reported

1 They are actually hash signatures created using hash compaction, but the difference
is not relevant.
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a critical role in state generation time and are not generally applicable to differ-
ent implementations of executable translations of formal protocol descriptions.
We propose the Part algorithm to reduce delayed duplicate detection time in
model checking with magnetic disk by

1. Using partitioned hash tables to reduce the cost of delayed duplicate de-
tection. Partitioned hash tables have been used in distributed model check-
ing [11] for some time. Rather than store each partition on a separate com-
puting node, we store all but one of the partitions on disk and the remaining
partition in RAM. Partitioning the hash table reduces the size of the set of
states which must be searched during delayed duplicate detection.

2. Using a chained hash table rather than an open-address hash table. Pre-
viously, the hash table was implemented using an open-address table with
double hashing, presumably to avoid the overhead of storing pointers and
swapping them between disk and memory. Instead, we use a chained hash
table which further reduces the size of the candidate set for delayed du-
plicate detection by requiring a state to be in a particular bucket or chain
rather than allowing a state to be stored anywhere in the table. Finally, we
use separate hash functions to partition and store states. This is a method,
common to other parallel search problem domains, which further reduces
penalties associated with increasing hash loads.

The pseudocode for the Part algorithm is given in figure 2. The algorithm
uses a Partition function to map every state to a unique memory queue. There
is the same number of disk files and memory queues. Memory queues store both
unexplored and explored states; disk queues store states that overflow from the
memory queues. The disk files store the explored candidate sets.

The search begins when the Search function generates start states and stores
the start states in their corresponding queues. If a memory queue becomes full,
then that queue is written to disk queue and memory queue is cleared (lines 4-
6 ). In the pseudocode, qm

i indicates the memory queue belongs to partition i
and qd

i indicates the disk queue belongs to partition i. The Search function then
selects the queue, i , with the most states as the active queue and calls the Select
function (lines 7-8).

The Select function loads the disk file that corresponds to the active queue
into memory (line 12). Next, the function dequeues states from the active queue.
If the newly dequeued states are not already in the table of visited states, then
the states are stored in memory and every successor is generated (line 13-14).
When the active queue in memory becomes empty, the corresponding disk queue,
if it exists, is loaded into memory (line 15). After both the memory queue and
the disk queue are empty, the table of expanded states is stored back to disk
(line 17). The algorithm then chooses the next longest queue (line 18), loads the
corresponding table and continues exploration. If all the queues are empty, the
algorithm terminates (line 19).

The Explore function checks to see if the successors of the states in the active
queue belong to the active queue. If they do, and they are not present in the
current table in memory, then they are added to the current active queue. If they
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1 var
2 M : RAM hash table; D[n]: files; Qm[n]: FIFO queues; Qd[n]: disk queues;
3 Search()
4 for every start state s0 do
5 i := Partition(s0); insert s0 into qm

i ;
6 if Full(qm

i ) then store qm
i in qd

i ; qm
i := ∅;

7 i := maxi∈n(|qm
i + qd

i |);
8 Select(i);
9 Select(i: int)
10 while i ≥ 0 do
11 while qm

i �= ∅ do
12 load D[i] into M ;
13 s = dequeue(qm

i );
14 if s is not in M then insert s in M ; Explore (i, s);
15 if qd

i �= ∅ then load qd
i to qm

i ;
16 while qm

i �= ∅;
17 store M in D[i].
18 i := maxi∈n(|qm

i + qd
i |);

19 if |qm
i + qd

i | = 0 then i = −1;
20 Explore(i: int, s: state)
21 for all s′ ∈ successors(s) do
22 i′:= Partition(s′);
23 if i′ = i and s′ is not in M then insert s′ in qm

i ; else insert s′ in qm
i′ ;

24 if Full(qm
i′ ) then store qm

i′ in qd
i′ ; qm

i′ := ∅;

Fig. 2. The Part algorithm for model checking with magnetic disk

do not belong to the current queue, then they are stored to their corresponding
queues (line 23). This allows duplicate and expanded states to be stored in the
work queues. If any of the queues are full, then they are written to disk (line-24).

3 Comparative Analysis

First we compare the computation time of new algorithm with the usual RAM-
only model checking algorithm. Then we compare the new algorithm with the
Mono and Local algorithms for model checking with magnetic disk. The anal-
ysis clarifies sources and costs of overheads associated with the Part algorithm.

3.1 Comparison with the RAM-Only Algorithm

In the results presented later, the new algorithm for model checking with mag-
netic disk requires up to 27% more computational time than the RAM-only
algorithm–for large models, when only 5% of RAM memory required by the
RAM-only algorithm is used.

Verification time in the RAM-only algorithm is composed of the following
parts:

TotalRAM = InsertionRAM + StateGeneration
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Where InsertionRAM is the time spent on inserting newly generated states into
memory and StateGeneration is the time spent on the generation of successor
states.

For the Part algorithm verification time consists of:

TotalPart = InsertionPart + StateGeneration +
IOPart + Computation + EnqueueDequeue

Where InsertionPart is the time spent on inserting states into memory, IOPart
is the time spent reading the states from disk to memory and writing the states
from memory to disk, Computation is the time spent on computing each state’s
corresponding partition and EnqueueDequeue is the time overhead related to
storing states in the queues.

For the Part algorithm, InsertionPart indicates delayed duplicate detection
because the algorithm detects duplicates by attempting to insert them into the
table of visited states. This value is similar to InsertionRAM since the number
of reachable states, including duplicates, generated by both algorithms are the
same. The new overhead introduced by Part algorithm is then:

IOPart + Computation + EnqueueDequeue

The comparative performance of the Part algorithm can be improved by
decreasing any of these values. The performance of the Part algorithm improves
as the following conditions are met.

A small state vector, v, is used to minimize file IO time. Hash compaction
reduces the size of the state vector which reduces the memory requirements for
verification and also reduces the file IO overhead, IOPart (the results in section 4
are generated using hash compaction).

The transition graph is partitioned so that states and their successors are
often in the same partition. This reduces the number of duplicate states that
are stored in the queues and hence reduces EnqueueDequeue time. We do not
address the problem of partitioning in this paper, but the partitioning scheme
proposed by Rangarajan and others for parallel partitioned model checking [8]
can be applied here.

The algorithms are applied to transition graphs with low average in-degree
because this reduces the EnqueueDequeue time associated with partitioning
states and storing several copies of duplicate states for delayed duplication de-
tection. This is a reasonable assumption in certain situations. More specifically,
models of machine code tend to have low average in-degree while models of
scheduling algorithms tend to have high average in-degree. Machine code mod-
els have low in-degree because very few instructions are the targets of multiple
different branches. Scheduling algorithms tend to have higher in-degree because
there are typically many different computational paths that lead to entry into a
process–espeically if non-determinism is used to obtain a control abstraction.

Pelánek’s study of structural properties of state spaces concludes that indus-
trial problems tend to have low average in-degree [6]. This suggests that algo-
rithms that perform well on models with low average in-degree can be expected
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to perform well on most industrial models. In the study, Pelánek takes industrial
models to be the non-trivial models distributed with the SPIN, Murphi, CADP
and μCRL model checkers. The clustering coefficient used in Pelánek’s study
measures how many edges in a k-vertex neighborhood remain in that neighbor-
hood. High clustering coefficients correspond to high in-degrees.2 Pelánek con-
cludes that the sampled industrial models have low clustering coefficients while
“toy” examples tend to have high clustering coefficients. The dense problem in
section 4 is a toy problem with a high clustering coefficient of nearly 7 and the
Part algorithm performs poorly on this problem compared to the RAM-only
algorithm.

3.2 Comparison with the Mono and Local Algorithms

The following analysis reveals why Part is usually faster. Mono must read each
state from disk every time the memory table becomes full.When RAM is a small
fraction of the total space needed, the memory table becomes full more often
and thus Mono performs more reads.

The total time required by the Mono algorithm is

TotalMono = InsertionMono + StateGeneration +
IOMono + DDDMono

where StateGeneration measures time spent generating states. InsertionMono
measures the time spent on inserting newly generated states into memory. IOMono
is the disk IO time and DDDMono is delayed duplicate detection time spent on
comparing states in disk with states in memory. The value of IOMono is less than
IOPart, but DDDMono is significantly greater than InsertionPart.

The comparison time for the Mono algorithm depends on the implemen-
tation of the hash table used in memory. The Mono algorithm was originally
implemented with an open address hash table in memory. The double hash im-
plementation of an open address table is slower on average than a chained hash
table because it requires more comparison time than a chained hash table. An
open address hash table stores states directly in the table. A chained hash table
is essentially a table of pointers to chains of states. The double hash implementa-
tion of an open address hash table uses a sequence of combinations of two hash
values to probe the table for a given state. While the performance trade-offs
between chained and open-address implementations are well-understood (see [2]
for a thourough discussion), they are of interest in this work because their use in
the Mono algorithm amplifies the differences. We make the relevant differences
more precise with the following equations.

Assume there are Ki states on disk when the passed state file is read the ith
time and assume that the disk file is read a total of t times during the entire
verification process. The total number of states read from disk is K =

∑t
i=1 Ki.

2 However, clustering coefficients include only edges from “local” nodes in the neigh-
borhood; edges from outside the neighborhood are not counted and will only increase
the in-degree.
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Assume the table of states stored in memory contains M bytes. For the open-
address implementation, Mono-open, the average comparisons required to do
duplicate detection for a state on disk is M/(2|v|) because the state may be
anywhere in the table. Duplicate detection occurs for every state read from disk
and K states are read from disk so:

DDDMono−open =
CKM

2|v|
where C is the time required to compute the next hash value and compare two
states. Note that K is often quite large and the product KM in DDDMono−open

is significant.
However, if the Mono algorithm is implemented with a chained hash table

then DDDMono is reduced because duplicate candidates are confined to a par-
ticular chain rather than the entire hash table. This means that the K term is
multiplied by the average chain length, C̄, instead of the entire table size:

DDDMono−Chained =
CKC̄

2|v| .

The product of KC̄ is much smaller than KM as K becomes large.
Although an open-address hash table requires less memory (one fewer pointer

per state stored) than a chained hash table, the space savings is offset by the
increase in delayed duplicate detection overhead. This design trade-off is contra-
dictory given that the fundamental trade-off in model checking with magnetic
disk is to increase space at the expense of increasing computation time.

Returning to the comparison of the Part and Mono algorithms, we will
assume that the Mono algorithm is implemented with a chained hash table.
To make the Part algorithm faster than the Mono algorithm, we only need
to make sure that the sum of IOPart, Computation, and EnqueueDequeue is
less than or equal to the sum of IOMono and DDDMono. We ignore hash table
insertion time because it is negligible. This is often the case because DDDMono
is often much greater than any other overhead in the Part algorithm.

Similar analysis applies to the Local algorithm; the only difference is that
each Ki value is smaller because the algorithm considers only part of the disk
table. However, the sum of the Ki terms may be bigger due to duplicate states.

When the RAM table is smaller, the Part algorithm becomes more efficient
when compared with the Mono and Local algorithms. For the Mono and Lo-
cal algorithms, the RAM table is full more often as RAM decreases and more
invocations of the delayed duplicate detection process are required. Each of the
additional delayed duplicate detection checks require traversing the set of all vis-
ited candidate states. For the Part algorithm, the number of partitions increases
as RAM decreases and there are more swaps between disk file and memory. Since
file IO time is significantly smaller than delayed duplicate detection time, the
Part algorithm is comparatively more efficient with less RAM.
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4 Experimental Results

This section presents the experimental results obtained by running the RAM-
only, Mono, Local and Part algorithms on several verification problems. We
give results for two kinds of models: those that can be verified in less than 2GB
of RAM and those that can not. We use the smaller models to test all algorithms
and use the bigger models to test only the algorithms that use magnetic disk.
The RAM-only algorithm can not complete the larger models because 32-bit
UNIX processes can address at most 2GB of memory. The verification problems
used are atomix, mcslock1, newlist6, dense, atomix2, 6-peterson and mcslock2.
Each of the models can be obtained at [3].

Most of the following results are reported using a chained rather than an
open-address hash table. Executing Stern’s Mono algorithm and Della Penna’s
Local algorithm with chained, rather than open-address, tables increases the
space requirements for both, but reduces their execution time.

4.1 Small Models

In this section, we report results for problems that require less than 2 GB of
memory to store visited states. The pie charts in figure 3 demonstrate the re-
duction in delayed duplicate detection time when using a chained hash table
in the Mono and Part algorithms. Table 2 gives results for five models us-
ing all algorithms, including the RAM-only algorithm. Figure 4 gives the slow-
down of each algorithm for model checking with magnetic disk relative to the
RAM-only algorithm as the amount of allowed RAM varies on the same five
models.

Figure 3 gives the distribution of time in various parts of the algorithm for
Mono and Part implemented with chained hash tables. Compared with the pie
graph in figure 1, the Mono algorithm using a chained hash table significantly
decreases delayed duplicate detection time to 30% and 17% on the Mcslock1 and
Newlist6 problems. Duplicate detection time continues to dominate in the Dense
problem. File IO and insertion take between 1% and 4% and the percentage of
state generation is increased to 65% and 77% for to Mcslock1 and Newlist6
problems due to the decrease in delayed duplicate detection time.

For the Part algorithm, delayed duplicate detection time is reflected in in-
sertion time, which is comparable to insertion time for the other algorithms.
The largest overhead introduced by the new algorithm is the enqueue/dequeue
overhead which ranges from 6% to 53%. Duplicate states are detected before
enqueueing them into the queues for the other three algorithms. However, states
are all enqueued before doing duplicate detection in the Part algorithm. Since
the number of duplicate states is usually much more than the number of unique
states (particularly for the Dense problem), enqueue/dequeue takes a significant
amount of time. The state generation section of the Part algorithm takes a
greater percentage of total time, between 21% and 88%. This indicates an over-
all speed increase of Part algorithm since the time required for state generation
is similar for both algorithms. The partitioning category measures the extra time
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Fig. 4. Average slowdown, relative to the RAM-only algorithm, for all three algorithms
for different portions of required RAM and averaged over five problems. Each algorithm
is implemented with a chained hash table. A slowdown of x indicates that an algorithm
is x times slower than the RAM-only algorithm

computed by dividing the running time of the algorithm by the running time
of the RAM-only algorithm, and taking the average over the five problems in
table 2. Given the same amount of memory as the RAM-only algorithm, the
Mono and Part algorithms have similar slowdowns but Local is the slowest.
As the amount of available memory decreases (moving to the left on the x-axis in
the figure), each algorithm experiences greater slowdown. The Part algorithm
experiences the least slowdown and has a slowdown of 2.8 when given 1/20th of
the memory used by the RAM-only algorithm.

4.2 Big Models

Results for verification problems that can not be verified by the RAM-only algo-
rithm are particularly interesting for disk based algorithms. In this section, we
report results for two problems that require 5 GB and 8 GB of space to store
visited states. The peak storage space during verification grows to 31 GB due
to large queues of states waiting to be expanded. We verified these two models
using the Mono, Local and Part algorithms. Hash compaction is used and
3% of space required to store visited states is allocated to each algorithm in
RAM.

Table 3 shows the results. The Part algorithm is 2.0 and 2.7 times faster than
the Mono algorithm and 5.1 and 3.3 times faster than the Local algorithm.
Because the Local algorithm may miss duplicates and regenerate portions of
the state space, the Local algorithm actually stores 999 M visited states for
the mcslock2 model.
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Table 3. Number of reachable states and total verification time, in seconds, for two
large models. Each algorithm is allowed approximately 3% of the RAM required to
store all reachable states

Models States Mono Local Part
6-peterson 382,513,749 31,890.0 83,207.8 16,218.7
mcslock2 666,254,155 188,129.5 228,271.0 69,726.9

The ldash6 model is even larger than any of the “big” models in table 3. None
of the algorithms are able to generate all of the states in this model using 42 GB of
disk. The incomplete results reveal some drawbacks of the Part algorithm. The
Mono algorithm requires 14992 seconds to generate 6 million states of ldash6.
The Part algorithm requires 22788 seconds to generate the same number of
states. Although it in not clear which algorithm would finish first,3 it is clear
that Mono performs more efficiently in the first 6 million states. This is due to
the 1020 byte state vector, which is larger the state vectors of all other models
reported in this paper, used in the ldash6 model. Since Part algorithm allows
duplicate states to be stored in queues and queues have to store the actual state,
instead of just the hash compacted state, the disk read/write overhead for disk
queues becomes worse in proportion with the state vector size.

5 Conclusion

Reducing delayed duplicate detection time, even at the expense of increasing file
IO time, reduces the total execution time of model checking algorithms that use
magnetic disk. Delayed duplicate detection time can be reduced by partitioning
the table of visited states and by storing visited states in a chained, rather
than an open-address, hash table. The resulting model checking algorithm is
faster than other published algorithms for model checking with magnetic disk,
even when the other algorithms are reimplemented with the faster chained hash
table. The performance of the new algorithm degrades more slowly than that of
other algorithms as the amount of available RAM decreases.

In the new partitioned hash table algorithm, duplicate states are stored in
queues for delayed duplicate detection. While this incurs the same amount of
duplicate detection work as required by a RAM-only algorithm, enqueueing and
dequeueing duplicate states becomes the dominant overhead. Storing more than
one partition in memory at a time may reduce the enqueue and dequeue overhead
by allowing immediate duplicate detection between partitions. Ideally, one could
store exactly the partitions that would allow the immediate detection of all
duplicates, as in [13]. However, an approximation based on prior locality patterns
may provide some improvement.

3 Because the state generation rates vary with hash and disk loads. The state gener-
ation rate of the new algorithm also depends on how often partitions are sswapped.
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In this paper, we focus on explicit model checking with magnetic disk. Ran-
jan et al. give an efficient algorithm for symbolic model checking with magnetic
disk [9]. This algorithm constructs binary decision diagrams using an iterative
breadth-first technique that localizes memory accesses. The key problem in sym-
bolic model checking with magnetic disk is determining child-node variable in-
dices rather than delayed duplicate detection, as addressed here.
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Abstract. We present a tool for finding errors in Java programs that
translates Java bytecodes into symbolic pushdown systems, which are
then checked by the Moped tool [1].

1 Introduction

We present jMoped, a checker for (a large class of) Java programs. jMoped con-
sists of a translator that transforms Java bytecode into a symbolic pushdown
system (SPDS), which is then checked by the Moped tool [1]. The translator, de-
scribed in more detail in [2], supports a wide range of Java programming features
including arithmetic operations, control statements, method calls, recursion, ar-
rays, object manipulations, inheritance, and exception handling. On the other
hand, its current implementation does not support float, double, or string vari-
ables, dynamic arrays, non-static global arrays, dynamic method binding, calling
a method of an interface, implicit exceptions, and multi-threading. Moreover, ev-
ery instance of a class must be initialized with a separate new statement.

The functionality of jMoped is very simple. The user writes a Java class
satisfying the constraints above (like the one on the left of Figure 1), and adds
either a method error(), which is executed if some invariant is violated, or
a method ok() signaling termination. For instance, in order to check if the
variable x may become zero at a certain program point, the user adds a line
if x = 0 then error(). In the example of Figure 1, calling “jmoped -e -n
LinkedList”, where n is a number whose precise meaning is explained later,
we obtain the answer that no execution of error() was found. However, if one
changes the call in contains to return isExist(header.next, x); and runs
the check again, jMoped reports that error() is executed. Calling “jmoped -t
-n LinkedList” we obtain that no non-terminating execution was detected.
Witness paths can also be printed in order to help finding bugs.

The main advantage of jMoped’s translator is that SPDSs, its target lan-
guage, closely matches Java bytecodes. In particular, invoke and return instruc-
tions are directly translated into push/pop SPDS rules. No inlining of bytecodes
(which may yield an exponential blowup in size) and no artificial bound on the

� This work is supported by the EPSRC Grant GR/93346 “An Automata-theoretic
Approach to Software Model Checking” and by the DFG project “Algorithms for
Software Model Checking”.
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maximal depth of the stack of method calls are required. The only restrictions
are on the data side: Moped requires a bound on the range of variables, and on
the maximal number of objects that can be generated.

2 The Translation

We recall that a Java program is compiled into a class file containing bytecodes,
the machine language of the Java Virtual Machine (JVM). Bytecodes of the form
invokestatic <name> or invokevirtual <name> invoke the method <name>.

A pushdown system consists of a set of control states, a stack alphabet, and
a number of rules, which correspond to the well-known transition rules of push-
down automata. An SPDS is a pushdown system together with two sets of global
and local variables over a finite domain. Loosely speaking, there is one single copy
of a global variable, but each stack symbol owns a copy of each local variable.
The rules of an SPDS are best explained by means of an example. The rule

q1 <f1> --> q2 <f2 f3> (x > 3 & y’ = x’’ + 1)

where x and y are local variables, is read as follows: If the current control state
is q1, the topmost stack symbol is f1, and the value of the copy of x owned
by f1 is greater than 3, then move to control state q2, replace f1 by f2 f3 on
the stack, and set the copy of y owned by f2 to 1 plus the value of the copy
of x owned by f3. The stack is useful whenever the front end is a procedural
language. The local variables owned by a stack symbol correspond to the local
variables of a procedure or method. A procedure call and a return are modeled
by a push and a pop, respectively.

Our translator first fetches the bytecodes of the methods in the class, and of
the methods from other classes called by them. Then, each bytecode instruction
is directly mapped into one or more SPDS rules. The JVM uses two stacks: a
local stack for each method, whose maximal size is determined at compile time,
and the stack of method calls. The local stacks are modeled with stack variables
called (sv0,...,svk-1 ), where k is the maximum stack depth (usually a low
number) obtained from the Java compiler. sv0 represents the top of the stack.
A push of number 1 to the local stack is modeled by a rule of the form

q <f1> --> q <f2> ((sv0’=1) & (sv1’=sv0) & (sv2’=sv1) & ...)

Figure 1 shows fragments of a Java program and some corresponding byte-
codes. Method contains checks if the list contains a given value. It calls the
recursive method isExist. The methods insert and error (both omitted) add
a node to the list and handle errors, respectively.

The translator produces a set of SPDS variables and a set of rules. Roughly
speaking, the SPDS variables are the stack variables mentioned above, local
SPDS variables matching the variables of a method, plus SPDS variables used
to store the values of object fields. The translator assigns an id to each object
reference created by a new bytecode. For every object field, an array of global
SPDS variables is created with ids as array indices. In our example, the bytecode
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of the main method creates four references (one for the list l and three for
nodes). The translator assigns ids 1 to 4, and creates three arrays: header[1,1],
value[2,4], next[2,4]. The numbers in brackets indicate the array bounds.

We can now explain the meaning of the -n option when calling jMoped: it
specifies the number of bits assigned by Moped to each variable, and so its range.

Figure 2 shows some SPDS rules produced by the translator. Notice that
the JVM assigns to each method a set of variables indexed by 0,1,2,. . . . The
translator creates the corresponding SPDS variables var0, var1, etc. The first
line of the figure corresponds to bytecode 0: and pushes the value of var1 onto
the local stack. The translation of 1: and 16: should be self-explanatory. The
translation of 25: uses a variable ret to store the result of the method call. The
translation of 46: in method main uses a push to model the method invocation
and shows how the return value is evaluated.

public class ListNode { isExist(ListNode, int):
int value; 0: aload 1
ListNode next; 1: ifnonnull +5
public ListNode(int x) 4: iconst 0
{ value = x; next = null; } 5: ireturn

} 6: aload 1
7: getfield <value>

public class LinkedList { 10: iload 2
private ListNode header; 11: if cmpne +5
public LinkedList() 14: iconst 1
{ header = null; } 15: ireturn
... 16: aload 0
public boolean contains(int x) 17: aload 1
{ return isExist(header, x); } 18: getfield <next>
boolean isExist(ListNode n, int x) { 21: iload 2
if (n == null) return false; 22: invokevirtual <isExist>
if (n.value == x) return true; 25: ireturn
else return isExist(n.next, x); main(String[]):
} 0: new <LinkedList>
... 3: dup
public static void main(String[] args) { 4: invokespecial <init>
LinkedList l = new LinkedList(); 7: astore 1
l.insert(new ListNode(1)); ...
l.insert(new ListNode(2)); 44: aload 1
l.insert(new ListNode(3)); 45: iconst 1
if (!l.contains(1)) 46: invokevirtual <contains>
error(); 49: ifne +6

} 52: invokestatic <error>
} 55: return

Fig. 1. Java code (left) and some of its bytecodes (right)
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Some transition rules of isExist(ListNode, int):
q <f0> --> q <f1> ((sv0’=var1) & (sv1’=sv0) & (sv2’=sv1) & ...)
q <f1> --> q <f6> ((sv0!=0) & (sv0’=sv1) & (sv1’=sv2) & ...)
q <f16> --> q <f17> ((sv0’=var0) & (sv1’=sv0) & (sv2’=sv1) & ...)
q <f25> --> q <> ((ret’=sv0) & ...)

Some transition rules of main(String[]):
q <m46> --> q <c0 m49a> ((var1’=sv0) & (var0’=sv1) & (sv0’’=sv2) & ...)
q <m49a> --> q <m49> ((sv0’=ret) & (sv1’=sv0) & (sv2’=sv1) & ...)

Fig. 2. Part of the translation of the code of Figure 1

3 jMoped and Alloy

We compare our approach to the one of Vaziri and Jackson [3] using the Alloy
system. There, Java code is translated into a SAT formula. This requires bounds
not only on the range of variables and the number of generated objects, but also
on the maximum depth of the call stack and on the number of times a loop can
be executed. Moreover, method calls are dealt with by inlining. Our approach
removes the last two bounds while staying within a decidable problem [4].

The bounds on the range of variables mean that both tools check the presence
or absence of errors within these bounds. So, in fact, they are carrying out a sort
of extended symbolic testing, in which many different test cases (often billions)
are checked in one single symbolic computation, and in which non-termination
can be explicitly detected.

We have considered the faulty insertion algorithm in red-black trees used
in [3], and invariant properties. In [3] the property is written in Alloy, while
we added an error() method that is executed when the invariant is violated.
Vaziri and Jackson report being able to automatically find the bug when the
number of nodes and the number of iterations of a loop are both limited to five
in 18 seconds. In our case it took 10 seconds in a standard PC. While the two
numbers are not directly comparable, because different machines were used, they
indicate that our approach, while providing a more direct match to the structure
of imperative languages, does not necessarily lose efficiency.

4 Conclusion and Future Work

We have described jMoped, a tool that allows to check invariant properties and
termination of Java code by translating Java bytecodes into pushdown systems
and then applying the Moped tool. The tool covers a large fragment of Java
programs. Our ultimate goal (from which we are still far away) is to develop a
checking tool for Java programs with a very simple interface that could be used
routinely, even by people without a background on verification.
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Abstract. A Java-based tool-supported software development and anal-
ysis framework is presented, where monitoring is a foundational princi-
ple. Expressive requirements specification formalisms can be included
into the framework via logic plug-ins, allowing one to refer not only to
the current state, but also to both past and future states.

1 Introduction
This paper presents a monitoring oriented programming (MOP) software devel-
opment and analysis environment for Java, named Java-MOP. Based on the
belief that specification and implementation should together form a system and
interact with each other by design, we proposed the MOP framework [2], aiming
at increasing the quality of software through monitoring of formal specifications
against running programs.

There are several software development approaches in the literature based on
the very basic idea of monitoring. Design by Contract (DBC) [10] related ap-
proaches, e.g., Jass [3] and JML [8], allows specifications to be associated with
classes as assertions and invariants, which are compiled into runtime checks. Run-
time verification (RV) [5] is an expanding area dedicated to provide more rigor
in testing, essentially as a complementary approach to model checking software
systems. There are several RV systems, including Java-MaC [7], Temporal
Rover and its follower DB Rover [4], JPaX [6] and its followers Eagle [1]
and JMPaX [12].

What distinguishes the MOP from these approaches is its ability to be ex-
tended with new logics and to support self-recovery at violation. Practice has
shown that there is no “silver bullet” logic to formally express any requirements.
Some can be best expressed using a certain logical formalism, for example tem-
poral logics, while others can be best expressed using other logics, like that of
JML, or domain-specific logics. On the other hand, programming languages are
intended to be universal. For these reasons, MOP provides the capability of
adding logics on top of a target programming language via logic plugins.

Monitoring can also provide a strong foundation for increasing the quality,
robustness, and confidence in the correctness of complex software systems. The
Simplex [13] architecture shows an example to smoothly upgrade control sys-
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tems based on monitoring. Therefore, MOP supports the user to define viola-
tion and/or validation handlers along with specifications, which can be highly
complicated recovery actions. These handlers will be automatically triggered at
runtime when the specification is violated or validated, in order to recover the
program from unsafe states.

2 Overview of Java-MOP

Java-MOP is a development tool for Java, supporing the MOP paradigm. It
provides both GUI and command-line interfaces for editing and processing spec-
ifications. Algorithms to synthesize optimized monitoring code for different log-
ics have been implemented in order to incorporate useful specification languages
into Java-MOP. Moreover, users are able to easily incorporate new formalisms
which can be used later in specifications via logic plugins. Java-MOP does not
only aim at specifying and monitoring system behaviors, but also gives users
the ability to recover from errors at runtime. Here we only briefly present major
features of Java-MOP. Interested readers can refer to our website [11] for the
distribution package and related documents.

Extensible Architecture. Java-MOP follows a distributed architecture in
design as shown in figure 1. This design facilitates extending the framework
with logic formalisms added to the system as new components, which we sim-
ply call logic plug-ins. These components are usually comprised of two modules,
namely a logic engine and a language shell. For example, the logic engine for
ERE and the Java shell for ERE form the logic plugin for extended regular
expressions. Logic engines translate formulae into efficient monitors, presented
in some abstract representation (pseudocode). Then language shells transform
abstract monitors into code for a specific language, e.g., Java. The output in-
terface of the logic pluign is standarized. This way, if a new logical formalism is
needed to specify the requirement of a certain application, then one can develop
a synthesis algorithm for the specific logic, wrap the algorithm as a logic plugin
for Java, and add the plugin into the Java-MOP. For some simple specification
languages, or for programming-language-specific formalisms, such as Jass, the
logic engine is unnecessary and the language shell only is sufficient to generate
the monitor.

The client part contains the Java annotation processors, which integrate the
monitoring code generated by the server into the system, according to configura-
tion attributes of the monitor. In addition, the client part is also in charge of in-
strumenting the code to generate events to be monitored. Currently, Java-MOP
is using AspectJ as the instrumentation mechanism. AspectJ aspects are pro-
duced for specifications to be monitored. AspectJ, however, also imposes some
limitation in our implementation. The integration made by AspectJ is static
while the monitoring is dynamic. This brings difficulties and inefficiencies when
monitoring dynamic entities. For example, for a class invariant, one may need
to monitor every update of anObject.aField instead of afield of any object
whose class is the same as anObject.
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Fig. 1. The Architecture of Java-MOP

Monitor Synthesis. Every logic plugin essentially encodes an algorithm
to synthesize monitoring code for a specific formalism. We have devised monitor
synthesis algorithms for future time and past time temporal logics, as well as for
extended regular expressions, JASS, and JML.

– JML and Jass. These DBC-based approaches follow the idea of including
specifications into the code and then pre-compiling them into runtime checks.
So we are able to smoothly include them in Java-MOP. The original syntax
of JML and JASS annotations has been slightly modified, to fit the uniform,
logic-independent syntactic conventions in Java-MOP.

– Temporal Logics. Temporal logics have proved to be indispensable and ex-
pressive formalisms in the field of formal specification and verification of sys-
tems [9]. Since MOP can be regarded at some extent as a complementary,
but still related, approach to formal verification, we provide logic plug-ins
to support past and future time variants of temporal logics.

– Extended Regular Expression. Regular expressions provide an elegant and
powerful specification language for monitoring requirements, because an ex-
ecution trace of a program is in fact a string of states. Extended regular
expressions (ERE) add complementation to regular expressions, which gives
one the power to express patterns on traces non-elementarily more com-
pactly. A logic plugin for ERE has been incorporated into Java-MOP.

Steering Behaviors of Monitors. Besides adding more rigor to
testing, MOP is especially intended to be a monitoring tool to assure correctness
during program execution. To support runtime recovery, MOP provides a the
capability to steer the execution of the program when requirements are violated
or validated.

Users can provide handlers for the violation or validation of monitored prop-
erties. These handlers can not only report errors or throw exceptions, but also
execute complicated actions, e.g., resetting states or rebooting the system. There-
fore, critical monitors can be automatically integrated into the final system to
correct the system at runtime.
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MOP monitors can have different running scope. It can be a class invariant,
which is checked at every change of the class state. Or it can be a interface
constraint, which is checked when a client invokes the interface of the class.
Java-MOP also supports method pre-/post- conditions and checkpoint asser-
tions. Besides, users can also choose if the system needs to wait for the checking
result or not. The keywords synchronized and asynchronized are used for this
purpose. The motivation behind asynchronous monitors is that some properties
are not critical and the system does not have to react to the violation. In such
cases, asynchronous mode can avoid unnecessary waiting and reduce the run-
time overhead. Besides, some logics, e.g., context-free languages, may require the
generated monitor to wait until the next events to proceed.

3 Conclusion

This paper presents a development and analysis environment for Java, which
supports the MOP paradigm. Monitors will be generated from formal specifi-
cations and then used to verify the execution of the system. Users can define
self-recovery actions for the violation of specifications. More logic plugins for
useful specification languages will be added into Java-MOP in order to support
different domain requirements.
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6. K. Havelund and G. Roşu. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, 2004.

7. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool
for Java. In Proceedings of Runtime Verification (RV’01), volume 55 of Electronic
Notes in Theoretical Computer Science. Elsevier Science, 2001.

8. G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations
and tools supporting detailed design in Java. In OOPSLA 2000 Companion, pages
105–106, 2000.



550 F. Chen and G. Roşu
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Abstract. This paper describes a tool for symbolically animating JML
specifications using Constraint Logic Programming. A customized solver
handles constraints that represent the value of instance fields. We have
extended a model-based approach to be able to handle object-oriented
specifications. Our tool is also able to check properties during the simula-
tion and exhibit counter-examples for false properties. Therefore, it can
be used both for semi-automated verification and for validation purposes.

Keywords: Java Modeling Language, model-based, object-oriented, sym-
bolic animation.

1 Motivations

Building formal models of systems is a valuable technique for improving the
design of software, and analyzing safety and functionality, particularly when
there is good tool support for the formal method. A variety of different modeling
languages are used for building the formal models. The Java Modeling Language
(JML) [LBR98, LBR99], is an object-oriented modeling language based on Java
and designed to be used as well by developers as by modeling engineers.

The use of formal models makes it possible to check the coherence of the spec-
ification (verification) and also to check the conformance of the specification with
the initial requirements (validation). Good tool support for these verification and
validation processes is always appreciated by users of the modeling language. A
key technique for validation is animation of the model. This is a semi-automated
process, which simulates the execution of the specification, allowing the author
to check that his specification has the desired behavior.

This paper describes a tool, called JML-Testing-Tools, which is able to sym-
bolically execute a JML specification. It also allows users to specify constrained
values as input for the method parameters, which is more general than entering
specific values. We use a novel constraint solver to handle the constrained values
of the resulting state variables. Moreover, our tool is able to check properties
on-the-fly and to display counter examples for properties that fail. Thus, this
tool may also be used for verification purposes. This technology has already
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been applied to the animation of B [Abr96], Z [Spi92] or Statechart [Har87]
specifications within the BZ-Testing-Tools environment [ABC+02].

2 Illustrating JML with an Example

JML is used to specify the behavior of Java modules. It is presented as anno-
tations embedded within the Java code, starting with a comment-like syntax so
that they do not interfere with usual Java tools, but specialized JML tools may
take care of them.

The example in figure 1 presents a simplified electronic purse specification
that illustrates the possibilities of JML. This class contains a field named balance
which represents the amount of money stored in the purse, and a static field
named max which designates the maximal amount that the purse may contain.

This specification illustrates the main clauses of JML, such as the class in-
variant (invariant), specifying that the balance should always be greater or
equal to zero, or history constraints (constraint) specifying that the maximal
balance, max, should never be modified. Notice the presence of the \old(x) op-
erator in the before-after predicates, which expresses that the expression x has
to be considered at its before value.

Each method specification clause is described by a keyword indicating its kind
(e.g. requires for preconditions, ensures for normal postcondition, signals for
exceptional postcondition, etc.), followed by a first-order logic predicate or an ex-
plicit keyword (e.g. \nothing, \not_specified, etc.). The assignable clause
in the method specifications is used to list the fields which may be modified
by the execution of the method. The signals clause is used to describe the
postcondition the method establishes when the considered method throws an
exception of the given type. In our example, the exception NoCreditException
is raised when the amount to withdraw is greater than the value of the
balance.

class Purse {

//@ invariant balance >= 0;
short balance;
//@ constraint max == \old(max);
static short max = 32767;

/*@ behavior
@ requires a > 0;
@ assignable balance;
@ ensures balance == \old(balance) - a;
@ signals (NoCreditException e)
@ balance == \old(balance) &&
@ a > \old(balance);
@*/

public void withdraw(short a)
throws NoCreditException {...}

/*@ normal_behavior
@ requires b > 0 && b <= max;
@ assignable balance;
@ ensures getBalance() == b;
@*/

public Purse(short b) {...}

/*@ normal_behavior
@ assignable \nothing;
@ ensures \result == balance;
@*/

public /*@ pure @*/ short getBalance() {...}

}

Fig. 1. The JML specification of the Purse example
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JML also introduces new kind of method declaration modifiers, including the
notion of purity, meaning that a method specified as pure does not change the
value of any field of the considered class. In our example, method getBalance()
is described to observe the value of the field balance. Method specifications may
contain method calls, if and only if these methods are described as pure, in order
to avoid side-effects.

3 Description of JML-Testing-Tools

JML-Testing-Tools – JML-TT – is a recently developed JML specification ani-
mator. It relies on a model-based approach, meaning that we only consider the
method specifications to simulate the activation of the behaviors of the system,
and we do not execute the Java code itself.

This is an extension of the BZ-Testing-Tools technology, a framework for
animation and automatic test generation from B, Z or Statechart specifications,
extended for handling object concepts. At the present time, only the animation
part has been studied and implemented.

JML-TT takes as an input a JML annotated
file of a Java class. The tool parses, type-checks
and gathers all the referenced and needed classes
which are then translated it to an intermediate
format file, from which animation is realized. The
animation relies on an original constraint solver
named CLPS-BZ which handles constraints on
the values of state variables, and method input
parameters. Indeed, JML-TT makes it possible
to constrain the value of an input to execute a
method on an instance. Moreover, JML-TT is
able to assign to the state variables a value sat-
isfying the constraints store, by valuation of a
constrained environment.

4 Animating a JML Specification

JML-Testing-Tools uses the JML annotations describing the specification of the
Java module, i.e., class or interface, to symbolically execute it.

The CLPS-BZ animation engine manages an execution environment, which
represents the classes, instances, fields and their corresponding values. Animat-
ing consists in identifying the predicates representing the different behaviors
of a considered method, and interpreting them so that a new execution state
is reached. Therefore, the methods are described using before-after predicates
whose semantics is close to JML.

During the animation, the user is free to choose which objects he wants to
create and which methods he wants to invoke on the created objects. The user
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is also asked to input the value of method parameters, which may also be left
constrained. This latter creates a constrained variable to represent the value of
the parameter, depending on its type and the constraints described in the JML
method annotations. New constrained variable may appear to represent instance
fields values, if they are related to the constrained parameter. A labeling can be
performed at any time to get all the possible values for all the newly introduced
constrained variables.

The invocation of a method may create choice-points identifying behaviors
in the specification. For example, the following JML-annotated method:

/*@ behavior
@ requires P;
@ assignable A;
@ ensures Q;
@ signals (Exception) S;
@*/

TypeReturn methodName(TypeParam1 param1, ...) { ... }

will induce two behaviors: P ∧ Q and P ∧ S, describing the case when the method
terminates normally and establishes the normal postcondition Q, and the case
when the method terminates abnormally by throwing the specified exception
and establishes the exceptional postcondition S. JML-TT makes it possible to
execute each one of them by using a simple backtracking technique.

Each step of the animation is expressed in Java syntax to produce a trace
of the symbolic execution performed. This Java instruction sequence may then
be exported to a Java test case file and compiled to perform runtime assertion
checking as described in [CL02].

Finally, properties can be checked within a specific execution state to ensure
the conformance of the dynamic part of the specification –the methods– with
the static properties of the system –the invariant and the history constraints.
Properties are checked using the principle of refutation, which makes it possible
to check either the validity or the satisfiability of the properties and to exhibit
a reachable counter-example, when the property is checked to false.

5 Features of JML-Testing-Tools

JML-Testing-Tools has the following features:

• Animation of a JML specification in an environment also displaying all the
referenced classes;

• Execution of the methods by activating their behaviors with precondition
checking;

• Possibility to leave input values of method parameters unspecified, to create
constrained states;

• Valuation of the constrained state to assign all their possible values to the
constrained variables, with the possibility to take into account the invariant
and/or the history constraints;
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• Properties checking (invariant, history constraints) within an execution state,
and exhibition of counter-examples for unchecked properties;

• Exportation of the user-defined execution sequence to a Java test case file,
that can be checked by a runtime assertion checker;

• Good coverage of JML specifications clauses: class invariant, history con-
straints, preconditions (requires), postcondition (ensures, signals), delaying
(when), divergence (diverges);

• Undo and redo features;
• Possibility to save and open animations.

All these features are realized by the user through a user-friendly Graphical
User Interface described hereafter.

6 Description of the GUI

The Graphical User Interface displayed by the tool is presented in figure 2.
The left area (1) displays the state informations: the instances that have been

created, the value of their fields, etc. From this area, the user can execute the
class methods on the instances, or several specific actions on public fields such
as directly assigning a value. The top-right area (2) displays the Java code corre-
sponding to the execution sequence that is being created. The middle-right area
(3) recalls information on the selected instance and on the corresponding class.
The bottom-right area (4) is used to present the result of properties checking,
such as invariant or history constraints. If a property evaluates to false, it is

Fig. 2. The JML-Testing-Tools animator main frame
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displayed and a counter-example exhibits the state of the system that presents
an error. The menu is used to run the verification of properties or the valuation
of a constrained environment.

7 General Information

The JML-Testing-Tools has been developed at the Computer Science Laboratory
of the University of Franche-Comté CNRS INRIA (France), in the Constraint
group led by Professor Bruno Legeard, in partnership with the GECCOO1 and
INRIA CASSIS2 projects.

JML-Testing-Tools is available for download at the following address:

http://lifc.univ-fcomte.fr/~jmltt/
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Abstract. We present jETI, a redesign of the Electronic Tools Inte-
gration platform (ETI), that addresses the major issues and concerns
accumulated over seven years of experience with tool providers, tool
users and students. Most important was here the reduction of the ef-
fort for integrating and updating tools. jETI combines Eclipse with Web
Services functionality in order to provide (1) lightweight remote com-
ponent (tool) integration, (2) distributed component (tool) libraries, (3)
a graphical coordination environment, and (4) a distributed execution
environment. These features will be illustrated in the course of building
and executing remote heterogeneous tool sequences.

1 Motivation

The Electronic Tool Integration platform (ETI) [10] is an online platform specif-
ically designed to support the distributed use of and experimentation with tools
over the internet. Born in 1996 and online since early 1997, it offered a unique
service to tool providers and users: its solution for the remote execution of tools
and the internet-based administration of user-specific home areas on the ETI
server was well ahead of the technology of those times. Since then, users can

– retrieve information about the tools,
– execute tools in stand-alone mode, or
– combine functionalities of different tools to obtain sequential programs called

coordination sequences and run them in tool-coordination mode.

In particular, ETI is unique in allowing users to combine functionalities of tools
of different application domains to solve problems a single tool never would be
able to tackle.

Obviously, the richness of the tool repository plays a crucial role in the success
of ETI: the benefit gained from our experimentation and coordination facilities
grows with the amount and variety of integrated software-tools. The success
of the ETI concept is thus highly sensitive to the process and costs of tool
integration and tool maintenance.

In this paper we show how, taking advantage of newer technologies that
internally base on Web Services and Java technology, we can
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1. considerably simplify the integration process, and at the same time
2. flexibilize the distribution, version management and use of integrated tools,
3. broaden the scope of potential user profiles and roles, by seamlessly integrat-

ing ETI’s coordination and synthesis features (cf. [8]) with a standard Java
development environment, and

4. solve the scalability problem connected with tool maintenance and evolution.

The background and a first attempt to the new distributed way of tool integra-
tion for ETI have been described in [3]. Our current version of ETI, jETI,

– exploits Web Services technology [14, 13, 11] to further simplify the remote
tool integration and execution,

– supports cross platform execution of the coordination models based on the
quasi standard set by Java, and it naturally

– flexibilizes the original coordination level by seamlessly integrating the Eclipse
development framework [2].

A more detailed description of jETI can be found in [4].
In the following, Section 2 sketches ETI’s philosophy of remote tool inte-

gration, before we describe ETI’s enhanced, formal methods-based coordination
facility in Section 3, and ETI’s framework view in Section 4. Our conclusions
and directions are given in Section 5.

2 jETI as an Integration Tool

jETI’s integration philosophy addresses the major obstacle for a wider adoption,
as identified during seven years of experience with tool providers, tool users and
students: the difficulty to provide the latest versions of the state-of-the-art tools.
The tool integration process required on dedicated ETI servers was too compli-
cated for both the tool providers and the ETI team, making it impossible to keep
pace with the development of new versions and a wealth of new tools. jETI’s
new remote integration philosophy overcomes this problems, because it replaces
the requirement of ‘physical’ tool integration by a very simple registration and
publishing. This allows the provision of tool functionalities in a matter of min-
utes: fast enough to be fully demonstrated during our presentation. Moreover,
whenever the portion of a tool’s API which is relevant for a new version of a
functionality remains unchanged, version updating is fully automatic!

Based on the Web Services functionality, the realization of this registration/pub-
lishing based integration philosophy required the implementation of four com-
ponents, as illustrated in Figure 1:

1. a HTML Tool Configurator, which allows tool providers to register a new
tool functionality just by filling our a simple template form,

2. the jABC Component Server, which (a) automatically generates appro-
priate Java classes from these specifications and (b) organizes all the regis-
tered tool functionalities, including the corresponding version control,
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Fig. 1. The jETI Tool Integration Workflow

3. the jETI client, which automatically loads the relevant Java classes from
the jABC Component Server and provides a flexible Java development envi-
ronment for coordinating the so obtained tool functionalities. Depending on
their goals and skill profile, users may just use our graphical coordination
editor (as in Sect. 3) to experiment with the tools, or they may use the full
development support of Eclipse to really embed remote functionalities into
normal Java programs. Of course, this choice heavily influences the size of
the required jETI-Client: only the first option is open to our envisaged ‘pure
HTML’ solution.

4. a Tool Executor, which is able to steer the execution of the specified tools
at the tool providers’ site.

This approach enables experts to develop complex tools in Java on the basis
of a library of remotely accessible tool functionalities, as well as newcomers to
use jETI’s formal methods-based, graphical coordination environment to safely
combine adequate tool functionalities into heterogeneous tools.
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3 Formal Methods in jETI: The Coordination Feature

jETI’s philosophy of ‘pure Java’ totally eliminates the need for the proprietary
high-level coordination language (HL) of the original ETI [8], as well as the pro-
prietary format of the SIBs, ETI’s elementary building blocks. In jETI, SIBs are
now just classes that support a certain interface, which directly allows arbitrary
tool coordination via Java programming, possibly supported by Eclipse [2] or
other IDEs.

As Java programming-based coordination is only open to programming ex-
perts, jETI additionally provides a formal methods based, graphical coordination
environment. This environment allows non-experts to graphically compose ar-
bitrary tool functionalities under the control of a type checker, a model checker
and a model synthesis tool, as shown in Figure 2 top right. Coordination mod-
els passing this control are directly remotely executable on every (distributed)
platform providing a Java Virtual machine and a Tomcat Servlet Container.

However, not only the tool composition is under formal methods control. All
the tool functionalities are taxonomically characterized by means of ontologies,

Fig. 2. Architecture of the jABC Framework
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similar to the techniques adopted for the Semantic Web [1]. ETI supports a global
classification, but users may also introduce their private classification scheme,
which helps them to quickly identify the tools relevant for certain applications.
In fact, the requirement for this organizational support of tool functionalities
was a result of a common project with the CMU, aiming at introducing a larger
variety of formal verification tools in the undergraduate curricula.

4 jETI: The Architecture

jETI can be seen as a tool that enhances other tools and frameworks by the in-
tegration, organization and execution of remote functionalities. E.g., the setup
described above is based on jABC (cf. Figure 2), which is itself a framework
for enhancing Java development environments (like Eclipse) with a graphical
coordination level and dedicated control via formal methods. The charme of
this architecture is that complex environment functionality can be added just
via the plugin concept: this allows users to combine/exchange functionality in
a transparent way, without touching the code of the kernel system. In our
case, jABC can itself be seen as an Eclipse plugin, which, in addition to the
ETI plugin, offers plugins for model checking, local checking, and a tracer.
Dually, Eclipse can also be seen as an jABC plugin, enhancing the power of
the jABC as a development environment. In particular, users may handily ex-
change Eclipse with their favorite Java development environment (or they may
use jETI/jABC in a stand-alone fashion), and our game-based model checker
[5] with their tool of trust, without having to touch anything of the jABC and
jETI implementation.

5 Conclusions and Future Work

We have presented jETI, a tool for remote tool integration, which overcomes
the bottlenecks of the ETI platform observed over the past seven years. Based
on our remote tool integration and execution philosophy, jETI drastically lowers
the entrance hurdle for tool providers and allows upgrading of tools essentially
for free. In combination with the change to a ‘pure Java’ approach, jETI has the
unique potential to become a standard for enhancing Java development envi-
ronments with remote component execution, high level coordination, and formal
methods-based control. We are planning to make jETI available as open source
for this purpose in the near future.

Our current implementation must still be sees as a prototype, a status, which
we want to overcome by the end of 2005, which, besides others, requires a redevel-
opment of the graphical user interface in particular for supporting the Semantic
Web and the synthesis functionality. We plan to start the β-testing phase for
a version hosted by us in Spring 2005, followed by a first system delivery to
partners half a year later.
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Abstract. We present the FocusCheck model-checking tool for the ver-
ification and easy debugging of assertion violations in sequential C pro-
grams. The main functionalities of the tool are the ability to: (a) iden-
tify all minimum-recursion, loop-free counter-examples in a C program
using on-the-fly abstraction techniques; (b) extract focus-statement se-
quences (FSSs) from counter-examples, where a focus statement is one
whose execution directly or indirectly causes the violation underlying
a counter-example; (c) detect and discard infeasible counter-examples
via feasibility analysis of the corresponding FSSs; and (d) isolate pro-
gram segments that are most likely to harbor the erroneous statements
causing the counter-examples. FocusCheck is equipped with a smart
graphical user interface that provides various views of counter-examples
in terms of their FSSs, thereby enhancing usability and readability of
model-checking results.

1 Introduction

Software model checking typically follows a three-step, iterative process of ab-
straction, verification, and refinement [4, 1, 7]. First, given a program P , a finite-
state abstract version P ′ of P is generated. Then, P ′ is verified with respect to
the given property and a counter-example (sequence of program statements) is
generated should a violation occur. Finally, constraint solvers and/or theorem
provers are used to check whether the counter-example is feasible in the con-
crete program P ; if not, the abstract program P ′ is refined. The three steps are
iterated until a feasible counter-example is identified or the property is satisfied.

Counter-example feasibility analysis requires the user to understand the root-
cause of the counter-example, and subsequently isolate and debug the error in the
program. The presence of complex data and control structures in the program
can make such analysis an extremely tedious and time-consuming process.

To render counter-example analysis more tractable, we present the FocusCheck
model checker and debugger. FocusCheck takes C programs as input; using a
model checker written in XSB Prolog [8] for push-down systems, it identifies
in one pass all counter-examples (if any) in the program under investigation.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 563–569, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Generated counter-examples are analyzed to identify slices in the form of focus-
statement sequences (FSSs): it is the execution of the program statements in the
FSSs, and nothing else, that leads to the violation of property [3]. Feasible FSSs
are ranked such that those of higher rank are likely to be easier to understand
and debug than those of lower rank. Constraints on data variables in each FSS
are determined to allow the tool to zoom in on specific program segments that
are most likely to harbor the erroneous statements in the program.

2 Tool Description

In this section, we describe the main components of the FocusCheck model checker
and counter-example analyzer. Figure 1 presents the architecture of the tool.

Translating C-programs to Push-down Models. The translator uses the
CIL toolset [5] to transform C programs into XSB Prolog, from which push-down
system transitions of the form S → S’ are generated. Here S is the statement at
the top of stack which, when executed, is replaced by S’. Push-down systems are
a natural choice for accurately representing the control behavior of sequential
programs as they capture the exact call-return patterns such programs exhibit.

Model Checker. The core of the model checker, written in XSB Prolog, is
a reachability analyzer for push-down transition systems; this in turn is tightly
integrated with a slicer. A model of a program can exhibit infinite-state behavior
due to the presence of infinite-domain variables. A typical solution to such a
problem is to perform forward reachability from the initial state by leaving the
evaluation of infinite-domain variables un-interpreted. Once an error trace is
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1: ... if ( x > 100 ) {
2: if ( y < 50 ) {
3: bigProcedure1();
4: i = 10; }
5: } else {
6: bigProcedure2();
7: i = 10; } } ...

(a) uninterpreted variables: x, y
(b) counter-examples:

[1,2,3,...,4], [1,2,6,...,7]
(c) FSSs: [1,2,4], [1,2,7]
(d) assumptions:

[x>100, y<50],[x>100,y>=50]
(e) localized lines: 2, 4, 7

Fig. 2. Example code-snippet illustrating main tool features

obtained, backward reachability analysis from the error state to the start state
identifies all the un-interpreted variable operations and employs a constraint
solver or theorem prover to check whether these operations in the error trace
are feasible. In short, feasibility of an error trace is decided by the feasibility of
operations on infinite-domain variables within the trace.

Note that leaving variable operations un-interpreted during forward analy-
sis may lead to an infinite number of search paths in the program due to the
presence of infinite-domain recursion control and loop control parameters. Our
technique addresses this issue by detecting loop-free counter-examples with min-
imal recursion [2] which amounts to summarizing the effect of procedures and
discards all unfoldings of recursion that do not alter the effect. By effect of a
procedure, we mean the valuations of finite-domain variables present in its scope.

Slicing is performed on the counter-example itself using the variables present
in the last statement of the counter-example sequence as the slicing criteria.
The aim is to detect all the statements in the counter-example that directly or
indirectly effect the assertion violation underlying the counter-example; i.e. the
FSS of the counter-example.

Constraint-solver: CLP(R). The operations contained in an FSS are checked
for feasibility using CLP(R), XSB’s built-in constraint solver. We show in [3] that
the feasibility of an FSS implies the existence of a feasible counter-example. An
important aspect of FocusCheck is that all feasible counter-examples are detected
(using the backtracking capabilities of XSB) in one cycle; as such, the typical
abstraction-refinement iteration is avoided.

Localizer. In the presence of uninitialized or input variables in an FSS, feasi-
bility analysis enforces certain constraints on these variables. We refer to these
constraints as assumptions, and generate them by the constraint generator mod-
ule. One of FocusCheck’s distinguishing features is its ability to localize errors
to specific program regions using assumptions [3]. This region is called a neigh-
borhood of error statements (NEST). The technique relies on the presence of
multiple feasible FSSs owing to branching behavior of the program.

Illustrative Example. The program of Figure 2 illustrates the main features of
the FocusCheck tool. Assume that the property of interest is violated if i=10.
The variables left uninterpreted are x and y and, as such, all possible conditional
branches are explored. The line numbers of the counter-examples generated by
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FocusCheck are shown in item (b). The “...” after Lines 3 and 6 represent re-
spectively the line numbers of procedures bigProcedure1() and bigProcedure2(),
which are present in the counter-examples. Since these procedures do not effect
the valuation of i (=10), their line numbers do not appear in the correspond-
ing FSSs given in item (c). The feasibility of the FSSs requires constraints over
the uninterpreted variables and these are given in item (d). Finally, in item (e),
Lines 2, 4, and 7 are classified as a NEST as both branches of the conditional
block starting at Line 2 lead to the violation of the property.

Graphical User Interface. One of the major challenges in designing a debug-
ger is to present the user with just enough information about counter-examples
so that corrective measures can be taken. With this in mind, FocusCheck per-
forms counter-example analysis in order to extract the relevant information from
counter-examples, which it presents to the user via an intuitive GUI.

As discussed above, counter-examples are analyzed and sliced to generate
focus-statement sequences (FSSs), while constraints (assumptions) over unini-
tialized/input variables are identified using a constraint solver. Given a program
and its property, FocusCheck generates all possible feasible FSSs and their associ-
ated assumption sets. FSSs are ranked so that the user can examine conceptually
easier-to-understand FSSs before the more difficult ones. Consequently, the GUI
presents FSSs using a tabbed panel, where the number of tabs is equal to the
total number of FSSs identified by FocusCheck. Moreover, a lower-numbered tab
holds the information of a higher-rank FSS. This enables the user to concentrate
on one FSS without having to look at any other FSS.

An FSS is represented in terms of line numbers and each line number is
mapped to the program statement at that line number in the source code. In-
formation associated with an FSS, e.g. the assumptions on uninitialized/input
variables or the localized block of the program, can be also viewed by the user.
Assumptions are shown in a separate pop-up window, while the localization
information is presented by coloring the corresponding line numbers red.

If the user decides to examine multiple FSSs at a time, she can highlight
the lines of the current FSS and move over to another FSS using the FSS tabs.
For easy viewing, each FSS is color-coded so that the highlights for one FSS
are distinct from another. The lines that are common to multiple FSSs are
highlighted in grey. Furthermore, the user can consult the localization caused by
different FSSs and their corresponding assumptions and analyze multiple FSSs
at the same time.

Tool Demonstration. A number of examples are given in the test suite of the
tool. In the following, we present one of the examples that illustrates the salient
features of our tool. The program merge.c sorts five integers a1, a2, a3, a4, and
a5, in only five comparisons given the partial order a1>a2, a3>a4, a1>a3. The
output of the program is a sorted list of output variables o1, o2, o3, o4, o5 in
descending order. The program is based on the algorithm for finding the median
of a list of numbers in linear time.
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Fig. 3. Viewing counter-examples for merge.c

We injected an error into the program by replacing the conditional expression
at Line 57, a1 > a5, with a1 < a5. Verification of the modified program with
respect to the assertional property that all output elements should be sorted,
produces two FSSs, the panels for which are labeled FSS1 and FSS2 in Figure 3.
The figure contains a screenshot of the FocusCheck GUI, with the program source
code viewer on the left, and various information pertaining to the currently
selected FSS (FSS1) on the right. In particular, the statements of FSS1 can
be seen in the scrollable text box, each of which is tagged by the corresponding
source-code line number. The color-coding scheme for FSSs deployed by the GUI
enables one to observe that the two FSSs differ in the if-then-else block of Lines
57–60. Noticing this difference, it can be inferred that both branches of the if-
block at Lines 57–60 may be responsible for the assertion violation. Next we see
the difference between constraints1 associated with the FSSs are a1 < a5 and a1
>= a5. A quick inspection of the FSSs shows that the conditional expression at
Line 57 is responsible for generation of these constraints.

Furthermore, localization indicates that Lines 57 and 58 of FSS1 and Lines 57
and 60 of FSS2 constitute a neighborhood of error statements (NEST). Com-

1 Variables in constraints are shown by pre-pending information about the scope in
which they are active. For example, a local variable var in procedure func is denoted
local func var while a global variable x is denoted global x.
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bining the results for both FSSs, the error is localized to block extending from
Lines 57 to 60. The intuition behind such localization is based on the follow-
ing reasoning. Consider the outer block (Lines 45–65) of the localized region
(Lines 57–60). There are no FSSs that go through the then-branch (Lines 46–54)
whereas multiple (in this case exactly two) FSSs go through the else-block (Lines
56–65). Thus our localizer identifies the deviation between a block containing
multiple FSSs from the block having no focus statement and localizes to all the
FSSs in the former block. In short, FocusCheck identifies the deepest nested block
in the program-block hierarchy that exhibits such deviations.

Localization coupled with constraints over variables correctly indicates that
one possible remedy to the error in the program can be achieved by changing
the conditional expression at Line 57 to (a1>a5) from (a1<a5).

Typically, generating counter-examples in terms of the FSSs has been consid-
erably useful in large examples where the length of the counter-example is poten-
tially of the order of size of the program. For example, our experiments with Res-
olution Advisory module of Traffic Collision Avoidance System (TCAS) [6] (ap-
prox. 200 LOC) show that length of FSS is 52 while the corresponding counter-
example length is 89.

3 Discussion

FocusCheck provides a number of facilities aimed at allowing the user to under-
stand and debug errors efficiently. The model checker is developed in a highly
modular fashion with simple interfaces and disintegrates the domain-specific
analysis (such as translators and constraint solvers) from the model checker’s
core. As such, components can be further enhanced and extended independently.
This permits, for example, translators for procedural languages other than C
to be plugged into the tool; or for the reachability analyzer to be coupled with
guided-search or summarization techniques without effecting other modules. The
FocusCheck tool is available from http://www.cs.iastate.edu/∼sbasu/focuscheck
along with its documentation and download instructions.
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Abstract. This paper presents a model checking tool, SatAbs, that
implements a predicate abstraction refinement loop. Existing software
verification tools such as Slam, Blast, or Magic use decision proce-
dures for abstraction and simulation that are limited to integers. Sa-
tAbs overcomes these limitations by using a SAT-solver. This allows the
model checker to handle the semantics of the ANSI-C standard accu-
rately. This includes a sound treatment of bit-vector overflow, and of the
ANSI-C pointer arithmetic constructs.

1 Introduction

In the hardware domain, Model Checking [1] has become a well-established for-
mal verification technique. In contrast to that, the software industry mostly relies
on non-exhaustive techniques such as testing.

There are two issues that prohibit a wide-spread use of model checking tools
for commercial software. First of all, most model checking tools do not scale
gracefully when applied to software of substantial size. Thus, much of the re-
search on model checking has focused on improving scalability. The second issue
is that most model checking tools that are available use input languages that
are not used for programming. The software system has to be translated into
the input language of the model checker.

SatAbs, the tool presented in this paper, is geared towards application by
software engineers. ANSI-C is one of the most popular programming languages,

� This research was sponsored by the National Science Foundation (NSF) under grant
no. CCR-9803774, the Office of Naval Research (ONR), the Naval Research Labo-
ratory (NRL) under contract no. N00014-01-1-0796, and by the Defense Advanced
Research Projects Agency, and the Army Research Office (ARO) under contract no.
DAAD19-01-1-0485, and the General Motors Collaborative Research Lab at CMU
and was conducted as part of the PACC project at the CMU Software Engineering
Institute (SEI). The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official policies, either
expressed or implied, of SRC, NSF, ONR, NRL, DOD, ARO, or the U.S. government.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 570–574, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



SATABS: SAT-Based Predicate Abstraction for ANSI-C 571

in particular for safety critical embedded software. Thus, the tool was designed
to take ANSI-C programs as input. In SatAbs, a special emphasis was made
on supporting a rich subset of the ANSI-C language. The bit-vector semantics
is modeled accurately, and thus the tool is able to detect errors that are related
to bit-level operators and arithmetic overflow.

In order to address the scalability problem, SatAbs automatically com-
putes an abstraction of the program given as input. Abstraction is one principal
method in state space reduction of software systems. Predicate abstraction [2, 3]
is one of the most popular and widely applied methods. It abstracts data by only
keeping track of certain predicates. Each predicate is represented by a Boolean
variable in the abstract model, while the original variables are eliminated. The
abstract program is created using Existential Abstraction [4], which is a con-
servative abstraction for reachability properties. If the property holds on the
abstract model, it also holds on the original program.

The drawback of the conservative abstraction is that when model checking
of the abstract program fails, it may produce a counterexample that does not
correspond to a concrete counterexample. This is called a spurious counterexam-
ple. When a spurious counterexample is encountered, refinement is performed
by adjusting the set of predicates in a way that eliminates this counterexample.
This is automated by Counterexample Guided Abstraction Refinement [5, 6, 7].

Related Work. Counterexample guided abstraction refinement for ANSI-C pro-
grams was promoted by the success of the Slam project at Microsoft [6]. Thus,
there are already a number of other implementations, such as Magic [8], Com-
FoRT [9] and Blast [10]. All these projects have support for concurrent software.
Both Slam and Blast now implement forms of lazy abstraction.

The feature that distinguishes SatAbs from these existing tools is the tight
integration of a SAT solver into the abstraction, simulation, and refinement steps
of the abstraction refinement loop. This allows precise encodings of the semantics
of the ANSI-C language, including pointer-arithmetic and bit-vector overflow.
In contrast to that, all the tools mentioned above rely on external theorem
provers to reason about the programming language constructs. Initially, Slam,
Blast, Magic, and ComFoRT used the theorem prover Simplify [11], which
supports linear arithmetic on real numbers only. The remaining operators are
approximated by means of uninterpreted functions. The Slam project replaced
Simplify by Zapato [12], which provides better performance, but no support
for bit-vectors.

The use of propositional logic and a SAT solver to reason about ANSI-C
language constructs is already found in CBMC [13], a Bounded Model Checker
for ANSI-C programs. There is a prototype of Slam, which has been integrated
with parts of CBMC to reason about bit-vector constructs [14]. This version
has found a previously unknown bug in Windows.

In [15], Lahiri, Bryant, and Cook use the SAT-based quantification engine
implemented in SatAbs in order to compute abstractions of C programs. How-
ever, the algorithm uses unbounded integer semantics for the program variables,
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and does not support bit-vector operators. An integration into a full abstraction
refinement loop is not reported.

In order to make SatAbs applicable to a wide range of low-level programs,
SatAbs supports most constructs found in the ANSI-C language. In particular,
it has support for arrays (with possibly unbounded size), and unions. None of
the tools cited above provides these features. SatAbs is integrated into the
graphical user interface (GUI) of CBMC. The user interface allows the user to
step through counterexample traces generated by SatAbs as if using a debugger.
The GUI is described in more detail in [13].

2 Using SAT for Predicate Abstraction and Refinement

This section provides a short overview of the algorithm implemented by Sa-
tAbs. For more information on the algorithm in the case of sequential code, we
refer the reader to [16]. The algorithm is extended to concurrent programs with
asynchronous interleaving semantics in [17].

SatAbs uses SAT-based Boolean quantification in order to compute the ab-
stract model. Let S denote the set of concrete states, R the concrete transition
relation, and α(x) with x ∈ S the abstraction function. The abstract model can
make a transition from an abstract state x̂ to x̂′ iff there is a transition from x
to x′ in the concrete model and x is abstracted to x̂ and x′ is abstracted to x̂′.
Formally, the abstract transition relation is denoted by R̂.

R̂ := {(x̂, x̂′) | ∃x, x′ ∈ S : R(x, x′) ∧ α(x) = x̂ ∧ α(x′) = x̂′}

This formula is transformed into CNF by replacing the bit-vector arithmetic
operators by arithmetic circuits. Due to the quantification over the abstract
states this corresponds to an all-SAT instance. For efficiency, SatAbs overap-
proximates R̂ by partitioning the predicates into clusters [18].

The abstract model is passed to a model checker. SatAbs support a variety
of model checkers, e.g., Moped, SPIN, NuSMV, and a QBF-based symbolic
simulator. If the model checker returns a counterexample, it has to be simulated
on the original code to check if it is spurious.

Given an abstract error trace, SatAbs first checks if it contains any spurious
transitions. These spurious transitions are caused by the partitioning done during
the computation of the abstraction. SatAbs forms a SAT instance for each
transition in the error trace. If it is found to be unsatisfiable, the transition is
spurious. As described in [18], the tool uses the unsatisfiable core of the instance
for efficient refinement.

The absence of individual spurious transitions does not guarantee that the
error trace is real. Thus, SatAbs forms another SAT instance. It corresponds
to Bounded Model Checking on the original program following the control flow
given by the abstract error trace. If satisfiable, SatAbs builds an error trace from
the satisfying assignment, which shows the path to the error. If unsatisfiable, the
abstract model is refined by adding predicates using weakest preconditions.
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SatAbs was applied to system-level descriptions given in SpecC, a concurrent
variant of ANSI-C [17]. Also, in [19], SatAbs was used for equivalence checking:
SatAbs verified weak bi-simulation of an ANSI-C program and a circuit given
in Verilog.

3 Conclusion

This paper presents an implementation of previously presented techniques for
verifying ANSI-C programs. The contribution of SatAbs is its emphasis on
precise encodings of the programming language constructs. The tool supports
one of the most popular programming languages, ANSI-C. In contrast to other
tools, it supports language features such as bit-vector operators, arrays, and
unions. It comes with a graphical user interface that resembles a debugger. The
distinguishing feature of SatAbs is the tight integration with a SAT solver.
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Abstract. We present a SAT-based model checking platform (DiVer) based on 
robust and scalable algorithms that are tightly integrated for verifying large 
scale industry designs. DiVer houses various SAT-based engines each targeting 
capacity and performance issues inherent in verifying large designs. The en-
gines with their respective roles are as follows: Bounded Model Checking 
(BMC) and Distributed BMC over a network of workstations for falsification, 
Proof-based Iterative Abstraction (PBIA) for model reduction, SAT-based Un-
bounded Model Checking and Induction for proofs, Efficient Memory Model-
ing (EMM) and its combination with PBIA in BMC for verifying embedded 
memory systems with multiple memories (with multiple ports and arbitrary ini-
tial state). Using several industrial case studies, we describe the interplay of 
these engines highlighting their contribution at each step of verification. DiVer 
has matured over 3 years and is being used extensively in several industry set-
tings. Due to an efficient and flexible infrastructure, it provides a very produc-
tive verification environment for research and development.  

1 Introduction 

Verifying modern designs requires robust and scalable approaches in order to meet 
more-demanding time-to-market requirements. Compared to symbolic model check-
ing  [1, 2] based on Binary Decision Diagrams [3], SAT-based model checking tech-
niques [4-17] have been able to scale and perform well due to the many recent ad-
vances in DPLL-style SAT solvers [18-20]. We present a SAT-based model checking 
platform (DiVer) based on robust and scalable algorithms  [5-7, 11-17, 20, 21] that are 
tightly integrated for verifying large scale industry designs. We present a brief over-
view of DiVer with its engines each targeting capacity and performance issues inher-
ent in verifying large designs. Using several industrial case studies, we describe the 
interplay of these engines highlighting their contribution at each step of verification. 

2 Tool Overview 

DiVer uses an efficient circuit representation with on-the-fly simplification algorithms 
[18, 21], and an incremental hybrid SAT solver [20] that combines the strengths of 
circuit-based and CNF-based solvers seamlessly. DiVer houses the following  
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SAT-based engines, each geared towards verifying large systems: bounded model 
checking (BMC) [7] and distributed BMC (d-BMC) over a network of workstations 
(NOW) [12] for falsification, proof-based iterative abstraction (PBIA) for model re-
duction [13], SAT-based unbounded model checking (UMC) [15] and induction for 
proofs [5, 11], Efficient Memory Modeling (EMM) [14] and its combination with 
PBIA in BMC for verifying embedded memory systems with multiple memories 
(with multiple ports and arbitrary initial state) and to discover irrelevant memories 
and ports for proving property correctness [17]. 

DiVer has matured over 3 years and is being used extensively by the designers in 
our company. Because of an efficient and flexible infrastructure, it provides a very 
productive environment for research and development. In this paper we provide use-
ful pointers to the various research efforts, and describe how they fit well together. 
We present the tool as a “wheel of verification engines” in Figure 1(a). We show the 
interplay of these engines in verification flows for designs with and without embed-
ded memory in Figures 1(b-c). In the following, we briefly describe various engines: 
 
Internal Representation and Hybrid SAT Solver: The verification model is repre-
sented efficiently as a circuit graph with 2-input OR/INVERTER gates, using an on-
the-fly multi-level functional hashing algorithm [18, 21] that detects and removes 
structural and local redundancies. We use this graph to represent the transition rela-
tion, unrolled time frames, and the set of enumerated states. For Boolean reasoning, 
we combine [20] the strengths of circuit-based [18] and CNF-based SAT solvers [19] 
with incremental SAT solving capabilities [7]. The solver uses deduction and diag-
nostics engines efficiently on the hybrid Boolean representation, i.e., circuit graph and 
CNF. The decision engine also benefits from both circuit and CNF based heuristics.  

 
 
 

 
 
 
 
 
 
 
 
 

 
                                (a)                                                    (b)                                (c) 

Fig. 1. DiVer Overview (a), Verification without (b) / with (c) embedded memory 

BMC: Our SAT-based BMC engine uses the simplified circuit graph to represent 
unrolled time frames and the hybrid SAT solver to falsify the given the property. For 
commonly occurring properties, we use customized translations of LTL properties 
that involve partitioning the problem and using incremental model checking [7]. 
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d-BMC: Our d-BMC engine over a network of workstations [12] overcomes the 
memory limitation of a single server to provide a scalable approach for carrying out 
deeper search on memory-intensive designs.  We achieve a) scalability by not keeping 
the entire problem data on a single processor, and b) low communication overhead by 
making each process cognizant of the partition topology while communicating; 
thereby, reducing the process’s receiving buffer with unwanted information. 
 
BMC+EMM: Our EMM approach [14, 17] augments BMC to handle embedded 
memory systems (with multiple read, write ports) without explicitly modeling each 
memory bit, by capturing the memory data forwarding semantics efficiently using 
exclusivity constraints. An arbitrary initial state of the memory is modeled precisely 
using constraints on the new symbolic variables introduced [17].  
 
BMC+PBIA: Our PBIA technique [13] generates a property-preserving abstract 
model (up to a certain depth) by a) obtaining a set of latch reasons (LR) involved in 
the unsatisfiability proof of a SAT problem in BMC, and b) by abstracting away all 
latches not in this set as pseudo-primary inputs. We further reduce the model size by 
using the abstraction iteratively and using lazy constraints [16]. 
 
BMC+EMM+PBIA: We combine the EMM and PBIA techniques [17] to identify 
fewer memory modules and ports that need to be modeled; thereby reducing the 
model size, and verification problem complexity. If no latch corresponding to the 
control logic for a memory module or port is in the LR set (obtained by PBIA), we do 
not add the EMM constraints for that memory module or port during BMC.   
 
UMC: Our UMC approach [15] improves the SAT-based blocking clause approach 
[8] by several orders of magnitude, by using circuit-based cofactoring to capture a 
larger set of new states per enumeration, and representing them efficiently using a 
simplified circuit graph. The method is combined with inductive invariants, e.g., 
reachability constraints [11] for faster fixed-point computations. 

3  Selected Case Studies 

Using selected case studies from the industry, we demonstrate the role of various 
engines at each step of the verification. Note that without the interplay of the engines 
we could not have verified any of these designs. The first two case studies use the 
verification flow shown in Figure 1(b) and the next two use that shown in Figure 1(c). 
All experiments were performed on a server with 2.8 GHz Xeon processors with 4GB 
running Red Hat Linux 7.2.  
 
Industry Design I: The design has 13K flip-flops (FFs), ~0.5M gates in the cone of 
influence of a safety property. Using BMC, we showed there was no witness up to 
depth 120 (in 1643s) before we run out of memory. Using d-BMC, we showed no 
witness up to depth 323 (in 8643s) using 5 workstations (configured as 1 Master and 4 
Clients and connected with 1Gps Ethernet LAN), with a communication overhead of 
30% and scalability factor of 0.1 (i.e, potentially we could do a 10 times deeper  
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analysis than that on the single server.) We hypothesized that the property is correct. 
We used the PBIA engine to obtain an abstract model with 71 FFs and ~1K gates in 6 
iterations taking ~1200s. With UMC, we proved the property correct taking ~2400s.   
 
Industry Design II: The design with environmental constraints has 3.3K FFs and 
~28K gates for a safety property. Using BMC, we showed there was no witness up to 
depth 113 (in ~3hr, 720MB). Again, we hypothesized the correctness of the property. 
We used PBIA to obtain an abstract model A1 with 163 FFs and ~2K gates in 4 itera-
tions taking 9000s. Without the environmental constraints, the abstract model A2 has 
only 66 FFs and ~1K gates. We computed a reachability invariant [11] on the A2 
model (in ~4s) and used this with UMC on the A1 model to obtain a proof in ~60s.  
 
Industry Design III: The design has 756 FFs (excluding the memory registers), and 
~15K gates. It has two memory modules, both having address width, AW = 10 and 
data width, DW = 8. Each module has 1 write and 1 read port, with the memory state 
initialized to 0. There are 216 reachabality properties. Using BMC+EMM, we found 
witnesses for 206 of the 216 properties, taking ~400s and 50Mb. The maximum depth 
over all witnesses was 51. Using explicit modeling, we required 20540s (~6hrs) and 
912Mb to find witnesses for all 206 properties. By using induction with BMC+EMM, 
we proved the remaining 10 properties in <1s (25 s for explicit modeling).  
 
Quicksort: The implementation has two memory modules: an un-initialized array  
with AW=10, DW=32, 1 read and 1 write port and an un-initialized stack (for recur-
sive function calls) with AW=10, DW=24, 1 read and 1 write port. The design has 
167 FFs (excluding memory registers), and ~9K gates for array size 5. The property 
states that after return from a recursive call, the program counter should go to a recur-
sive call on the right partition or return to the parent on the recursion stack. Using 
BMC+EMM+PBIA, we reduced the model to 91 FFs and ~3K gates, and also identi-
fied the array module as irrelevant for this property. On this reduced model we proved 
correctness using forward induction (proof diameter = 59) in 2.3Ks, 116MB. (Without 
the abstraction, the induction proof in BMC+EMM takes ~5Ks, 400MB. For explicit 
model, however, we could obtain neither a proof nor an abstract model in 3 hours). 
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Appendix 

DiVer is the core of the verification system as shown in the Figure 2. The tool has the 
ability to handle several industry design features including multiple clocks, phase, and 
gated clocks with arbitrary frequency ratios, embedded memories with multiple read 
and write ports, environmental and fairness constraints. Current input spec is LTL, but 
support for other specification like PSL is on the way.  DiVer is used extensively by 
the designers within the company who are not verification experts. We have often 
received feedbacks that tool has been able to discover hard to detect bugs that simula-
tions could not have found, or could have found at very high cost in terms of re-
sources. As of now, the tool is not available for free download. 
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Fig. 2. Overview of Verification System 
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1 Introduction

The equivalence checking problem consists in verifying that a system (e.g., a
protocol) matches its abstract specification (e.g., a service) by comparing their
Labeled Transition Systems (Ltss) modulo a given equivalence relation. Two
approaches are traditionally used to perform equivalence checking: global verifi-
cation requires to construct the two Ltss before comparison, whereas local (or
on-the-fly) verification allows to explore them incrementally during comparison.
The latter approach is able to detect errors even in prohibitively large systems,
and therefore reveals more effective in combating state explosion.

Existing on-the-fly equivalence checking algorithms (see [2] for a survey) ex-
plore the synchronous product of the two Ltss in a forward manner, until either
a wrong execution pattern (counterexample) is encountered, or the product is
entirely explored (the Ltss are equivalent). Despite their usefulness, only a few
implementations of these algorithms are available, most of them being targeted
to specific input languages and/or equivalence relations. This is the case for
Aldébaran [4], whose efficient on-the-fly algorithms [3] only handle networks
of communicating automata, being difficult to adapt to other description lan-
guages, such as process algebras. In this context, a more generic technology
is desirable in order to reduce the development effort, handle new equivalence
relations easily, and achieve a maximal reuse of existing algorithms.

In this paper, we present Bisimulator, an efficient on-the-fly equivalence
checker with a highly modular architecture, developed within the Cadp veri-
fication toolbox [6]. The front-end of the tool encodes five widely-used equiv-
alence relations in terms of Boolean Equation Systems (Bess) by using the
Open/Cæsar [5] and Bcg environments of Cadp, which provide powerful Lts
exploration primitives. This makes Bisimulator language-independent, the tool
being directly available for any description language equipped with a compiler
able to produce Ltss compliant with the Open/Cæsar interface. The back-end
of the tool carries out the verification by means of the generic Cæsar Solve [9]
library of Cadp, dedicated to (both sequential and distributed) on-the-fly Bes
resolution and diagnostic generation. This architecture clearly separates the im-
plementation of equivalence relations and the verification engine, which can
therefore be extended and optimized independently.

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 581–585, 2005.
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2 Tool Architecture

Bisimulator (see below) takes as inputs two Ltss 〈Qi, Ai, Ti, q0i〉 (i ∈ {1, 2}),
where Qi are the sets of states, Ai the sets of actions, Ti ⊆ Qi × Ai × Qi the
transition relations, and q0i ∈ Qi the initial states. The first Lts is represented
implicitly (by its successor function) as an Open/Cæsar program obtained by
translating a system description, and the second one is represented explicitly
(by its list of transitions) as a Bcg file1. Bisimulator (12, 000 lines of C code)
consists of several modules, each one containing the Bes translation and the di-
agnostic generation for a particular equivalence relation (strong, branching, ob-
servational, τ∗.a, safety). Bess are derived directly from the definitions of equiv-
alence relations; for instance, strong equivalence is translated into the greatest
fixed point Bes {Xp,q

ν=
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Bess are handled internally by the Cæsar Solve library as boolean
graphs [1], which give an intuitive view of the dependencies between variables
and facilitate the development of resolution algorithms. Boolean graphs are
represented implicitly by their successor function, in the same way as Ltss

1 This asymmetry, due to the current architecture of Open/Cæsar, which does not
allow to explore several Ltss on-the-fly, is likely to disappear in a future version.
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in Open/Cæsar. The library offers several on-the-fly resolution algorithms,
based on different search strategies of boolean graphs: breadth-first, which pro-
duces small-depth diagnostics, and depth-first, with memory-efficient variants
for acyclic or disjunctive/conjunctive boolean graphs (these kinds of graphs are
obtained, e.g., by encoding comparison modulo strong equivalence when one Lts
is acyclic or deterministic, respectively) [9]. Diagnostics are provided by the li-
brary as boolean subgraphs, which are subsequently converted by Bisimulator
into counterexamples (directed acyclic graphs containing transition sequences
that can be executed simultaneously in the two Ltss and lead to non equivalent
states) represented as Bcg files.

Recently, Cæsar Solve has been extended with a distributed on-the-fly res-
olution algorithm [8] running on several machines connected by a network. This
allowed to immediately obtain a distributed version of Bisimulator, which
scales up smoothly to larger systems.

3 Performance Measures

We give below some experimental data obtained using various Ltss taken from
the Cadp demo examples and from the Vlts benchmark suite [10].
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The first picture shows a comparison between Bisimulator and Aldébaran
(on-the-fly algorithms) for strong equivalence, based on experiments performed
using 64 Ltss ranging from 3 Kstates and 6 Ktransitions to 3.8 Mstates and
11 Mtransitions, on a Pc with 2.2 GHz and 1 Gbyte of memory. Each experi-
ment consisted in checking that an Lts is equivalent with its minimized version
modulo strong equivalence, which is a worst-case situation for on-the-fly algo-
rithms, since both Ltss must be explored entirely. Each vertical line on the
picture denotes a mark (between 0 and 20) comparing the speed of the tools
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on a given experiment. The mark is computed as follows: 20 if Bisimulator
succeeds and Aldébaran fails; 19 if Bisimulator is more than 5 times faster;
10..19 if Bisimulator is from 1 to 5 times faster; 10 if both tools are equally fast
or they fail; 0..10 in a strictly symmetric way when Bisimulator is slower or
fails. On 31 experiments out of 64, Aldébaran fails because of memory short-
age or too long computation, whereas Bisimulator only fails (together with
Aldébaran) on 4 experiments. On the remaining 33 experiments, the aver-
age time/memory are 11.8 sec./32.5 Mbytes for Bisimulator, and 20.5 sec./99
Mbytes for Aldébaran.

The second picture shows the speedup of the distributed version of
Bisimulator w.r.t. the sequential one (breadth-first search algorithm) for
strong equivalence, based on experiments performed using 12 Ltss ranging from
65 Kstates and 2.6 Mtransitions to 8 Mstates and 42.9 Mtransitions, on a Pc
cluster composed of 20 nodes with 2.4 GHz and 1.5 Gbytes of memory. Each
experiment consisted in comparing an Lts with its minimized version. Speedup
ranges uniformly from low – still better than sequential – to almost optimal,
and increases with Lts size (e.g., the experiment vasy 157 297, involving an
Lts with 157 Kstates and 297 Ktransitions, is handled 16 times faster than
the sequential version by the distributed version using 20 machines). Similar
behaviours are observed for weak equivalences; additional experimental data
showing low memory overhead and good scalability of distributed Bisimulator
is available in [8].

4 Conclusion and Future Work

The development of an on-the-fly equivalence checker “from scratch” is a com-
plex and costly task. The modular architecture adopted for Bisimulator aims
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at making this process easier, by using the well-established verification frame-
work of Bess, together with the generic libraries for Lts exploration and Bes
resolution provided by Cadp. This tool architecture reduces the effort of imple-
menting a new equivalence relation to its strict minimum: encoding the mathe-
matical definition of the equivalence as a Bes, and interpreting the counterex-
amples. Another advantage of our approach over previous dedicated on-the-fly
equivalence checking algorithms [3] is that particular cases suitable for optimiza-
tion can be handled more elegantly and precisely using the Bes representation.
For instance, in Bisimulator the encodings of equivalence relations exploit the
determinism w.r.t. a given action and the absence of τ -transitions locally (i.e.,
on each state encountered during verification) to reduce the size of boolean equa-
tions, whereas in [3] the condition for applying the optimized algorithm handling
the “deterministic case” is global (i.e., it involves all states of one Lts).

We plan to continue our work by extending Bisimulator with other equiv-
alence relations (e.g., trace equivalence and its weak variant, Markovian bisim-
ulation [7], etc.) and by studying new strategies for (sequential and distributed)
on-the-fly Bes resolution.
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