

Lecture Notes in Computer Science 3453
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lizhu Zhou Beng Chin Ooi
Xiaofeng Meng (Eds.)

Database Systems
for Advanced
Applications

10th International Conference, DASFAA 2005
Beijing, China, April 17-20, 2005
Proceedings

13

Volume Editors

Lizhu Zhou
Tsinghua University
Department of Computer Science
Beijing, 100084, China
E-mail: dcszlz@tsinghua.edu.cn

Beng Chin Ooi
National University of Singapore
School of Computing, Department of Computer Science
Kent Ridge, 117543, Singapore
E-mail: ooibc@comp.nus.edu.sg

Xiaofeng Meng
Renmin University
School of Information
59 Zhongguancun Road, Beijing, 100872, China
E-mail: xfmeng@ruc.edu.cn

Library of Congress Control Number: 2005923495

CR Subject Classification (1998): H.2, H.3, H.4, H.5.1, H.5.4

ISSN 0302-9743
ISBN-10 3-540-25334-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25334-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11408079 06/3142 5 4 3 2 1 0

Foreword

On behalf of the Organizing Committee, we would like to welcome you to the
proceedings of the 10th International Conference on Database Systems for Ad-
vanced Applications (DASFAA 2005). This conference provides an international
forum for technical discussionamong researchers,developers andusersofdatabase
systems from academia, business and industry. DASFAA focuses on research in
database theory, and the development and applications of advanced DBMS tech-
nologies. This was the second time that this conference has been held in China,
the first time was in Hong Kong in 2001. China is the third largest nation in
terms of size, with the largest population in the world. The capital, Beijing, is a
great metropolis, famous in Asia and throughout the world. We therefore were
most privileged to host this conference in this renowned location.

This volume contains papers selected for presentation and includes the three
keynote talks, by Dr. Philip Yu, Prof. Elisa Bertino and Prof. Deyi Li.

The conference also featured two tutorials: (1) Data Mining Techniques for
Microarray Datasets, by Lei Liu, Jiong Yang and Anthony Tung, and (2) Pattern
Management: Models, Languages, and Architectural Issues, by Barbara Catania.
The technical program of the conference was selected by a distinguished Program
Committee led by two PC Co-chairs, Lizhu Zhou and Beng Chin Ooi. The 89
members, half of whom reside outside Asia, made the committee a truly interna-
tional one. They faced a difficult task in selecting 67 regular papers and 15 short
papers from many very good contributions. This year the number of submissions,
302, was a record high for DASFAA conferences since the first conference held in
1989 in Seoul, Korea. We wish to express our thanks to the Program Committee
members, external reviewers, and all authors for submitting their papers to this
conference.

We would also like to thank the Honorary Conference Chair, Shan Wang;
the Program Co-chairs, Lizhu Zhou and Beng Chin Ooi; the Geographic Area
Chairs, Yoshifumi Masunaga, Sang Kyun Cha, Chin-Chen Chang, David Che-
ung, Yanchun Zhang, Vilas Wuwongse, Mukesh Mohania, Mong Li Lee, Gillian
Dobbie, Stefano Spaccapietra, David Embley and Mengchi Liu; the Tutorial
Co-chairs, Jayant Haritsa and Ge Yu; the Panel Co-chairs, Changjie Tang and
Jeffrey Yu Xu; the Publicity Co-chairs, Liang Zhang and Katsumi Tanaka; the
Publication Co-chairs, Xiaofeng Meng and Qing Li; the Finance Co-chairs, Kam-
Fai Wong and Chunxiao Xing; the Local Arrangements Co-chairs, Jianhua Feng
and Tengjiao Wang; the Registration Chair, Aoying Zhou; the Conference Sec-
retary, Chao Li; and the System Administrator, Sinan Zhan.

We wish to extend our thanks to the National Natural Science Foundation
of China, Microsoft Research Asia, IBM, HP, the Special Interest Group on
Databases of the Korea Information Science Society (KISS SIGDB), and the
Database Society of Japan (DBSJ), for their sponsorship and support.

VI Foreword

At this juncture, we wish to remember the late Prof. Yahiko Kambayashi
who passed away on February 5, 2004 at age 60. He was a founder, member,
Vice Chair and Chair of the Steering Committee of the DASFAA conference.
Many of us will remember him as a friend, a mentor, a leader, an educator, and
our source of inspiration. We express our heartfelt condolences and our deepest
sympathy to his family.

We hope that you will find the technical program of DASFAA 2005 to be
interesting and beneficial to your research. We trust attendees enjoyed Beijing
and visited some famous historic places, such as the Badaling section of the
Great Wall, the Forbidden City, the Temple of Heaven, etc., and left with a
beautiful and memorable experience.

April 2005 Tok Wang Ling
Jianzhong Li

Preface

The 10th International Conference on Database Systems for Advanced Appli-
cations (DASFAA 2005) was held in Beijing, China, from April 18 to 20, 2005.
Beijing is an ancient city whose recorded history stretches back more than 3,000
years. With a landscape dotted with ancient palaces and temples in the midst
of modern infrastructure and architecture, the Chinese capital city is indeed a
good venue for a forum of serious academic and professional exchanges, and an
ideal place for meaningful entertainment and cultural immersion on the side.

In keeping with the traditions of the conference, DASFAA 2005 provided an
international forum for technical discussion among researchers, developers and
users from all walks of life. The conference, which was organized by Tsinghua
University and the Database Society of the China Computer Federation, aimed
to promote database research and applications.

The reputation of the conference has been rising since its inception. This is
apparent in the increasing number of submissions it has received over the years,
and the expanding number of participants from various parts of the world. This
year, the conference received 302 submissions from 20 countries/regions. The
papers were rigorously reviewed by 89 Program Committee members, and 67
full papers and 15 short papers were accepted for presentation.

Being a general database conference, the areas addressed by the papers were
diverse. While many papers continued to address interesting and new research
issues in established areas such as XML, data mining, and spatial and temporal
databases, a significant number of papers explored interesting research issues in
upcoming areas such as watermarking and encryption, sensor databases, bioin-
formatics and Web services. The combination of papers, which had been selected
solely based on reviews, not only made the conference interesting, but also pro-
vided the basis for discussion and exchange of ideas, and for future development.

The conference was privileged to have keynote speeches delivered by Philip
Yu of IBM’s T.J. Watson Research Center, Elisa Bertino of Purdue University,
USA, and Deyi Li of the China Institute of Electronic Systems Engineering. They
provided insights into various research issues such as data mining, and database
security and privacy, and presented provocative challenges on related research
issues. The program was made even more interesting by having panelists such as
Divyakant Agrawal, Elisa Bertino and Limsoon Wong provide their views and
comments on research issues in data mining on a panel chaired by Haixun Wang
and Wei Wang.

The technical program was preceded by two tutorials before the conference
proper. The tutorial on Pattern Management: Models, Languages, and Archi-
tectural Issues by Barbara Catania was an interesting primer for participants
who might be new to the research area of knowledge management. The tutorial
on Data Mining Techniques for Microarray Datasets by Lei Liu, Jiong Yang and

VIII Preface

Anthony Tung provided a refreshing view of the research domain of data mining
and bioinformatics.

In all, DASFAA 2005 lived up to the traditions of the conference as an in-
ternational forum for fruitful technical discussion. And Beijing, with its vibrant
blend of rich cultural heritage and dynamic modernity, was a superb background
to the proceedings.

The conference would not have been a success without the help and con-
tributions of many individuals, and our sincere thanks go to them. We would
like to express our thanks to the conference General Chairs, Jianzhong Li and
Tok Wang Ling; Tutorial Co-chairs, Jayant Harista and Ge Yu; Panel Co-chairs,
Changjie Tang and Jeffrey Yu; Publication Co-chairs, Xiaofeng Meng and Qing
Li; and others in the organizing committees for helping to put together such a
great program. We would like to thank the Program Committee members and
external reviewers for their rigorous and timely reviews. We would also like to
thank the keynote speakers, session chairs, panelists, tutorial speakers, authors
and participants who contributed to making the conference a success.

Lizhu Zhou
Beng Chin Ooi

DASFAA 2005 Conference Committee

Honorary Chair

Shan Wang Renmin University of China, China

General Conference Co-chairs

Jianzhong Li Harbin Institute of Technology, China
Tok Wang Ling National University of Singapore, Singapore

Program Committee Co-chairs

Lizhu Zhou Tsinghua University, China
Beng Chin Ooi National University of Singapore, Singapore

Tutorial Co-chairs

Jayant Haritsa Indian Institute of Science, India
Ge Yu Northeastern University, China

Panel Co-chairs

Changjie Tang Sichuan University, China
Jeffrey Yu Xu Chinese Univ. of Hong Kong, Hong Kong,

China

Publicity Co-chairs

Liang Zhang Fudan University, China
Katsumi Tanaka Kyoto University, Japan

Publications Co-chairs

Xiaofeng Meng Renmin University of China, China
Qing Li City University of Hong Kong, Hong Kong,

China

X Conference Committee

Finance Co-chairs

Kam-Fai Wong Chinese Univ. of Hong Kong, Hong Kong,
China

Chunxiao Xing Tsinghua University, China

Local Arrangements Co-chairs

Jianhua Feng Tsinghua University, China
Tengjiao Wang Beijing University, China

Registration Chair

Aoying Zhou Fudan University, China

Geographic Area Chairs

Japan
Yoshifumi Masunaga Ochanomizu University, Japan

Korea
Sang Kyun Cha Seoul National University, Korea

Taiwan
Chin-Chen Chang National Chung Cheng University, Taiwan

Hong Kong
David Cheung Hong Kong University, Hong Kong, China

Australia
Yanchun Zhang Victoria University, Australia

Thailand
Vilas Wuwongse Asian Institute of Technology, Thailand

India
Mukesh Mohania IBM India Research Lab, India

Singapore
Mong Li Lee National University of Singapore, Singapore

New Zealand
Gillian Dobbie University of Auckland, New Zealand

Europe
Stefano Spaccapietra EPFL Lausanne, Switzerland

Americas
David W. Embley Brigham Young University, USA

Canada
Mengchi Liu Carleton University, Canada

Conference Committee XI

Conference Secretary

Chao Li Tsinghua University, China

Conference Web Master

Sinan Zhan Tsinghua University, China

DASFAA Steering Committee

Tok Wang Ling (Chair) National Univ. of Singapore, Singapore
Yoshifumi Masunaga Ochanomizu Univ., Japan

(Vice Chair)
Arbee L.P. Chen National Dong Hwa University, Taiwan
Yoshihiko Imai (Treasurer) Matsushita Electric Industrial Co., Japan
Fred Lochovsky HKUST, China
Seog Park Sogang Univ., Korea
Ron Sacks-Davis RMIT, Australia
Wang Shan Renmin Univ., China
Katsumi Tanaka Kyoto Univ., Japan
Kyhyun Um Dongkuk Univ., Korea
Kyu-Young Whang (Secretary) KAIST/AITrc, Korea

DASFAA 2005 Program Committee

Dave Abel CSIRO, Australia
Karl Aberer EPFL-DSC, Switzerland
Divyakant Agrawal University of California at Santa Barbara, USA
Gustavo Alonso ETH Zurich, Switzerland
Walid G. Aref Purdue University, USA
Paolo Atzeni Dipart. Informatica e Automazione Univ. Roma Tre, Italy
Elisa Bertino Purdue University, USA
Tolga Bozkaya Oracle, USA
Barbara Catania University of Genoa, Italy
Sang K. Cha Seoul National University, Korea
Arbee L.P. Chen National Dong Hwa University, Taiwan
Ming-Syan Chen National Taiwan University, Taiwan
David Cheung University of Hong Kong, Hong Kong, China
Peter Dadam University of Ulm, Germany
Wei Fan IBM T.J. Watson Research Center, USA
Hong Gao Harbin Institute of Technology, China
Jiawei Han University of Illinois at Urbana-Champaign, USA
Bonghee Hong Pusan University, Korea
Wei Hong Intel Research Berkeley, USA
Zhiyong Huang National University of Singapore, Singapore
Zachary Ives University of Pennsylvania, USA
Christian S. Jensen Aalborg University, Denmark
Kamal Karlapalem IIIT Hyderabad, India
Norio Katayama National Institute of Informatics, Japan
Daniel A. Keim University of Constance, Germany
Hiroyuki Kitagawa Tsukuba University, Japan
Wolfgang Klas University of Vienna, Austria
George Kollios Boston University, USA
Nick Koudas AT&T Research, USA
Dik Lun Lee Hong Kong Univ. of Science and Technology, Hong Kong,

China
Mong Li Lee National University of Singapore, Singapore
YoonJoon Lee KAIST, Korea
Chen Li University of California at Irvine, USA
Ee-Peng Lim Nanyang Technological University, Singapore
Qiong Luo Hong Kong Univ. of Science and Technology, Hong Kong,

China
Akifumi Makinouchi Kyushu University, Japan
Yannis Manolopoulos Aristotle University, Greece
Alberto Mendelzon University of Toronto, Canada

Program Committee XIII

Weiyi Meng State University of New York at Binghamton,
USA

Xiaofeng Meng Renmin University of China, China
Anirban Mondal Tokyo University, Japan
Yunmook Nah Dankook University, Korea
Sham Navathe Georgia Institute of Technology, USA
Erich J. Neuhold University of Darmstadt, Germany
Yong-Chul Oh Korea Polytechnic University, Korea
M. Tamer Özsu University of Waterloo, Canada
Dimitris Papadias Hong Kong Univ. of Science and Technology,

Hong Kong, China
Jignesh M. Patel University of Michigan, USA
Marco Patella University of Bologna, Italy
Zhiyong Peng Wuhan University, China
Evaggelia Pitoura University of Ioannina, Greece
Sunil Prabhakar Purdue University, USA
Calton Pu College of Computing, Georgia Tech, USA
Krithi Ramamritham IIT Bombay, India
Rajeev Rastogi Bell Labs Lucent, USA
HengTao Shen University of Queensland, Australia
Kyuseok Shim Seoul National University, Korea
Charles A. Shoniregun University of East London, UK
Divesh Srivastava AT&T Labs Research, USA
Jaideep Srivastava University of Minnesota, USA
Jianwen Su University of California at Santa Barbara, USA
S. Sudarshan IIT Bombay, India
Hideaki Sugawara National Institute of Genetics, Japan
Kian-Lee Tan National University of Singapore, Singapore
Changjie Tang Sichuan University, China
Yufei Tao City University of Hong Kong, Hong Kong,

China
Yannis Theodoridis University of Athens, Greece
Anthony K.H. Tung National University of Singapore, Singapore
Ozgur Ulusoy Bilkent University, Turkey
Athena Vakali Aristotle University, Greece
Guoren Wang Northeast University, China
Xiaoling Wang Fudan University, China
Yan Wang Macquarie University, Australia
Kyu-Young Whang KAIST, Korea
Peter Widmayer ETH Zurich, Switzerland
Weili Wu University of Texas at Dallas, USA
Dongqing Yang Peking University, China
Jiong Yang UIUC, USA
Jun Yang Duke University, USA
Haruo Yokota Tokyo Institute of Technology, Japan

XIV Program Committee

Masatoshi Yoshikawa Nagoya University, Japan
Clement Yu University of Chicago, USA
Cui Yu Monmouth University, USA
Ge Yu Northeast University, China
Jeffrey Yu Chinese Univ. of Hong Kong, Hong Kong, China
Philip S. Yu IBM T.J. Watson Research Center, USA
Aoying Zhou Fudan University, China
Xiaofang Zhou University of Queensland, Australia
Justin Zobel RMIT, Australia

DASFAA 2005 External Reviewers

Ahmed Metwally
Aixin Sun
Alexander Markowetz

Manfred Reichert

Alexandros Nanopoulos
Marco Mesiti

Andrew Innes
Maria Kontaki

Anna Maddalena
Maria Luisa Damiani

Antonio Corral
Mark Cameron

Anwitaman Datta
Michael Vassilakopoulos

Apostolos N. Papadopoulos
Ming Yung

Avare Stewart
Mintz Hsieh

Bendick Mahleko
Mohamed G. Elfeky

Bin Lin
Mohamed Mokbel

Bin Wang
Mourad Ouzzani

Bingsheng He
Moustafa Hammad

Cagdas Gerede
Na Ta

Can Lin
Natwar Modani

Chao Liu
Nicholas Lester

Chen Guanhua
Nikos Pelekis

Chen Jidong
Ning Zhang

Chen Yan
Nobuto Inoguchi

Cheng-Enn Hsieh
Norihide Shinagawa

Cheqing Jin
Norimasa Terada

Chih-Kang Yeh
Oleksandr Drutskyy

Ching Chang
Ozgur D. Sahin

Christian Thomsen
Panagiotis Papapetrou

Chuan Yang
Paolo Cappellari

Chunnian Liu
Paolo Missier

Claudia Niederee
Patrick Wolf

Depeng Dang
Peter Lamb

Ding-Ying Chiu
Pierluigi Del Nostro

Dongdong Zhang
Ralph Bobrik

Dong-Hoon Choi
Ranga Raju Vatsavai
Ravikant
Ravindranath JampaniEdgar Chia-Han Lin
Reynold ChengEvimaria Terzi
Risi V. ThonangiFabius Klemm
Roman SchmidtFang Liu
Sangyong HwangFariborz Farahmand
Sarunas GirdzijauskasFatih Emekci
Sarvjeet SinghFeifei Li

Manish Tayal

Feng Yaokai
Francesca Odone Satyanarayana R. Valluri

Satoru Miyazaki

XVI External Reviewers

Soujanya VadapalliGeorgia Koloniari
Spiridon BakirasGiansalvatore Mecca
Stefano RovettaGiuseppe Sindoni
Sungheun WiGleb Skobeltsyn
Sunil PrabhakarGuimei Liu
Takashi AbeGuo Longjiang
Tengjiao WangGuoliang Li
Thanaa GhanemHicham Elmongui
Toshiyuki AmagasaHolger Brocks
Toshiyuki ShimizuHong Cheng
Tzu-Chiang WuHong-Hoon Choi

Wai Lam
Hongjian Fan

Wanhong Xu
Huagang Li

Wanxia Xie
Hua-Gang Li

Wee Hyong Tok
Huan Huo

Wei Liu
Hung-Chen Chen

Weining Qian
Igor Timko

Wenwei Xue
Irene Ntoutsi

Wenyuan Cai
Ismail Sengor Altingovde

Wynne Hsu
Jaeyun Noh

Xiang Lian
Janaka Balasoorya

Xiaochun Yang
Jeff Riley

Xiaopeng Xiong
Jeiwei Huang

Xiuli Ma
Jhansi Rani Vennam

Xiuzhen Zhang
Jiang Yu

Yannis Karydis
Jie Wu

Yao-Chung Fan
Jing Zhao

Yicheng Tu
Ji-Woong Chang

Yi-Hung Wu
Jun Gao

Yin Shaoyi
Junghoo Cho

Yin Yang
Junmei Wang

Ying Feng
Ken-Hao Liu

Ying-yi Chen
Kenji Hatano

Yongsik Yoon
Kunihiko Kaneko

Yoshiharu Ishikawa
Kyriakos Mouratidis

Younggoo Cho
Kyuhwan Kim

Young-Koo Lee
Leonardo Tininini

Yu Wang
Li Benchao

Yuguo Liao
Li Juanzi

Yunfeng Liu
Li Zhao

Yuni Xia
Liang Zhang

Zhaogong Zhang

Vincent Oria

Madhu Govindaraju
Magdalena Punceva

External Reviewers XVII

Lin Li Zheng Shao
Linus Chang Zhi-Hong Deng
Longxiang Zhou Zhiming Ding
M.H. Ali Zhongfei Zhang
M.Y. Eltabakh Zhongnan Shen
Ma Xiujun

Table of Contents

Keynotes

Data Stream Mining and Resource Adaptive Computation
Philip S. Yu . 1

Purpose Based Access Control for Privacy Protection in Database
Systems

Elisa Bertino . 2

Complex Networks and Network Data Mining
Deyi Li . 3

Bioinformatics

Indexing DNA Sequences Using q-Grams
Xia Cao, Shuai Cheng Li, Anthony K.H. Tung . 4

PADS: Protein Structure Alignment Using Directional Shape Signatures
S. Alireza Aghili, Divyakant Agrawal, Amr El Abbadi 17

LinkageTracker: A Discriminative Pattern Tracking Approach to
Linkage Disequilibrium Mapping

Li Lin, Limsoon Wong, Tzeyun Leong, Pohsan Lai 30

Watermarking and Encryption

Query Optimization in Encrypted Database Systems
Hakan Hacıgümüş, Bala Iyer, Sharad Mehrotra . 43

Watermarking Spatial Trajectory Database
Xiaoming Jin, Zhihao Zhang, Jianmin Wang, Deyi Li 56

Effective Approaches for Watermarking XML Data
Wilfred Ng, Ho-Lam Lau . 68

XML Query Processing

A Unifying Framework for Merging and Evaluating XML Information
Ho-Lam Lau, Wilfred Ng . 81

XX Table of Contents

Efficient Evaluation of Partial Match Queries for XML Documents
Using Information Retrieval Techniques

Young-Ho Park, Kyu-Young Whang, Byung Suk Lee,
Wook-Shin Han . 95

PathStack¬: A Holistic Path Join Algorithm for Path Query with
Not-Predicates on XML Data

Enhua Jiao, Tok Wang Ling, Chee-Yong Chan . 113

XML Coding and Metadata Management

An Improved Prefix Labeling Scheme: A Binary String Approach for
Dynamic Ordered XML

Changqing Li, Tok Wang Ling . 125

Efficiently Coding and Indexing XML Document
Zhongming Han, Congting Xi, Jiajin Le . 138

XQuery-Based TV-Anytime Metadata Management
Jong-Hyun Park, Byung-Kyu Kim, Yong-Hee Lee, Min-Woo Lee,
Min-Ok Jung, Ji-Hoon Kang . 151

Data Mining

Effective Database Transformation and Efficient Support Computation
for Mining Sequential Patterns

Chung-Wen Cho, Yi-Hung Wu, Arbee L.P. Chen 163

Mining Succinct Systems of Minimal Generators of Formal Concepts
Guozhu Dong, Chunyu Jiang, Jian Pei, Jinyan Li,
Limsoon Wong . 175

A General Approach to Mining Quality Pattern-Based Clusters from
Microarray Data

Daxin Jiang, Jian Pei, Aidong Zhang . 188

Data Generation and Understanding

Real Datasets for File-Sharing Peer-to-Peer Systems
Shen Tat Goh, Panos Kalnis, Spiridon Bakiras,
Kian-Lee Tan . 201

SemEQUAL: Multilingual Semantic Matching in Relational Systems
A. Kumaran, Jayant R. Haritsa . 214

Table of Contents XXI

A Metropolis Sampling Method for Drawing Representative Samples
from Large Databases

Hong Guo, Wen-Chi Hou, Feng Yan, Qiang Zhu 226

Panel

Stay Current and Relevant in Data Mining Research
Haixun Wang, Wei Wang . 239

Music Retrieval

An Efficient Approach to Extracting Approximate Repeating Patterns
in Music Databases

Ning-Han Liu, Yi-Hung Wu, Arbee L.P. Chen . 240

On Efficient Music Genre Classification
Jialie Shen, John Shepherd, Anne H.H Ngu . 253

Effectiveness of Note Duration Information for Music Retrieval
Iman S.H. Suyoto, Alexandra L. Uitdenbogerd . 265

Query Processing in Subscription Systems

A Self-Adaptive Model to Improve Average Response Time of
Multiple-Event Filtering for Pub/Sub ystem

Botao Wang, Wang Zhang, Masaru Kitsuregawa 276

Filter Indexing: A Scalable Solution to Large Subscription Based
Systems

Wanxia Xie, Shamkant B. Navathe, Sushil K. Prasad 288

Caching Strategies for Push-Based Broadcast Considering Consecutive
Data Accesses with Think-Time

Wataru Uchida, Takahiro Hara, Shojiro Nishio . 300

Extending XML

XDO2: A Deductive Object-Oriented Query Language for XML
Wei Zhang, Tok Wang Ling, Zhuo Chen, Gillian Dobbie 311

Extending XML with Nonmonotonic Multiple Inheritance
Guoren Wang, Mengchi Liu . 323

S

XXII Table of Contents

Database Design with Equality-Generating Dependencies
Junhu Wang . 335

Web Services

WDEE: Web Data Extraction by Example
Zhao Li, Wee Kong Ng . 347

Concept-Based Retrieval of Alternate Web Services
Dunlu Peng, Sheng Huang, Xiaoling Wang, Aoying Zhou 359

WSQuery: XQuery for Web Services Integration
Zhimao Guo, Xiaoling Wang, Aoying Zhou . 372

High-Dimensional Indexing

A New Indexing Method for High Dimensional Dataset
Jiyuan An, Yi-Ping Phoebe Chen, Qinying Xu, Xiaofang Zhou 385

BM+-Tree: A Hyperplane-Based Index Method for High-Dimensional
Metric Spaces

Xiangmin Zhou, Guoren Wang, Xiaofang Zhou, Ge Yu 398

Approaching the Efficient Frontier: Cooperative Database Retrieval
Using High-Dimensional Skylines

Wolf-Tilo Balke, Jason Xin Zheng, Ulrich Güntzer 410

Sensor and Stream Data Processing

False-Negative Frequent Items Mining from Data Streams with Bursting
Zhihong Chong, Jeffrey Xu Yu, Hongjun Lu, Zhengjie Zhang,
Aoying Zhou . 422

Adaptively Detecting Aggregation Bursts in Data Streams
Aoying Zhou, Shouke Qin, Weining Qian . 435

Communication-Efficient Implementation of Join in Sensor Networks
Vishal Chowdhary, Himanshu Gupta . 447

Database Performance Issues

Zoned-RAID for Multimedia Database Servers
Ali E. Dashti, Seon Ho Kim, Roger Zimmermann 461

Table of Contents XXIII

Randomized Data Allocation in Scalable Streaming Architectures
Kun Fu, Roger Zimmermann . 474

Trace System of iSCSI Storage Access and Performance Improvement
Saneyasu Yamaguchi, Masato Oguchi, Masaru Kitsuregawa 487

CoCache: Query Processing Based on Collaborative Caching in P2P
Systems

Weining Qian, Linhao Xu, Shuigeng Zhou, Aoying Zhou 498

Clustering, Classification and Data Warehouses

Multi-represented NN-Classification for Large Class Sets
Hans-Peter Kriegel, Alexey Pryakhin, Matthias Schubert 511

Enhancing SNNB with Local Accuracy Estimation and Ensemble
Techniques

Zhipeng Xie, Qing Zhang, Wynne Hsu, Mong Li Lee 523

MMPClust: A Skew Prevention Algorithm for Model-Based Document
Clustering

Xiaoguang Li, Ge Yu, Daling Wang . 536

Designing and Using Views to Improve Performance of Aggregate
Queries

Foto Afrati, Rada Chirkova, Shalu Gupta, Charles Loftis 548

Large Relations in Node-Partitioned Data Warehouses
Pedro Furtado . 555

Data Mining and Web Data Processing

Mining Frequent Tree-Like Patterns in Large Datasets
Tzung-Shi Chen, Shih-Chun Hsu . 561

An Efficient Approach for Mining Fault-Tolerant Frequent Patterns
Based on Bit Vector Representations

Jia-Ling Koh, Pei-Wy Yo . 568

NNF: An Effective Approach in Medicine Paring Analysis of Traditional
Chinese Medicine Prescriptions

Chuan Li, Changjie Tang, Jing Peng, Jianjun Hu,
Yongguang Jiang, Xiaojia Yong . 576

k

XXIV Table of Contents

From XML to Semantic Web
Changqing Li, Tok Wang Ling . 582

A Hybrid Approach for Refreshing Web Page Repositories
Mohammad Ghodsi, Oktie Hassanzadeh, Shahab Kamali,
Morteza Monemizadeh . 588

Schema Driven and Topic Specific Web Crawling
Qi Guo, Hang Guo, Zhiqiang Zhang, Jing Sun, Jianhua Feng 594

Moving Object Databases

Towards Optimal Utilization of Main Memory for Moving Object
Indexing

Bin Cui, Dan Lin, Kian-Lee Tan . 600

Aqua: An Adaptive Q ery-Aware Location Updating Scheme for
Mobile Objects

Jing Zhou, Hong Va Leong, Qin Lu, Ken C.K. Lee 612

A Spatial Index Using MBR Compression and Hashing Technique for
Mobile Map Service

Jin-Deog Kim, Sang-Ho Moon, Jin-Oh Choi . 625

Temporal Databases

Indexing and Querying Constantly Evolving Data Using Time Series
Analysis

Yuni Xia, Sunil Prabhakar, Jianzhong Sun, Shan Lei 637

Mining Generalized Spatio-Temporal Patterns
Junmei Wang, Wynne Hsu, Mong Li Lee . 649

Exploiting Temporal Correlation in Temporal Data Warehouses
Ying Feng, Hua-Gang Li, Divyakant Agrawal, Amr El Abbadi 662

Semantics

Semantic Characterization of Real World Events
Aparna Nagargadde, Sridhar , Krithi Ramamritham 675

Learning Tree Augmented Naive Bayes for Ranking
Liangxiao Jiang, Harry Zhang, Zhihua Cai, Jiang Su 688

U

a a ar ar anjV d

Table of Contents XXV

Finding Hidden Semantics Behind Reference Linkpages: An Ontological
Approach for Scientific Digital Libraries

Peixiang Zhao, Ming Zhang, Dongqing Yang, Shiwei Tang 699

XML Update and Query Patterns

Xandy: Detecting Changes on Large Unordered XML Documents
Using Relational Databases

Erwin Leonardi, Sourav S. Bhowmick, Sanjay Madria 711

FASST Mining: Discovering Frequently Changing Semantic Structure
from Versions of Unordered XML Documents

Qiankun Zhao, Sourav S. Bhowmick . 724

Mining Positive and Negative Association Rules from XML Query
Patterns for Caching

Ling Chen, Sourav S. Bhowmick, Liang-Tien Chia 736

Join Processing and View Management

Distributed Intersection Join of Complex Interval Sequences
Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, Matthias Renz 748

Using Prefix-Trees for Efficiently Computing Set Joins
Ravindranath Jampani, Vikram Pudi . 761

Maintaining Semantics in the Design of Valid and Reversible
SemiStructured Views

Ya Bing Chen, Tok Wang Ling, Mong Li Lee . 773

Spatial Databases

DCbot: Finding Spatial Information on the Web
Mihály Jakob, Matthias Grossmann, Daniela Nicklas,
Bernhard Mitschang . 779

Improving Space-Efficiency in Temporal Text-Indexing
Kjetil Nørv̊ag, Albert Overskeid Nybø . 791

Nearest Neighbours Search Using the PM-Tree
Tomáš Skopal, Jaroslav Pokorný, Vášclav Snášel 803

XXVI Table of Contents

Enhancing Database Services

Deputy Mechanism for Workflow Views
Zhe Shan, Qing Li, Yi Luo, Zhiyong Peng . 816

Automatic Data Extraction from Data-Rich Web Pages
Dongdong Hu, Xiaofeng Meng . 828

Customer Information Visualization via Customer Map
Ji Young Woo, Sung Min Bae, Chong Un Pyon, Sang Chan Park 840

Finding and Analyzing Database User Sessions
Qingsong Yao, Aijun An, Xiangji Huang . 851

Recovery and Correctness

Time-Cognizant Recovery Processing for Embedded Real-Time
Databases

Guoqiong Liao, Yunsheng Liu, Yingyuan Xiao .

An Efficient Phantom Protection Method for Multi-dimensional Index
Structures

Seok Il Song, Seok Jae Lee, Tae Ho Kang, Jae Soo Yoo 8 5

CMC: Combining Multiple Schema-Matching Strategies Based on
Credibility Prediction

KeWei Tu, Yong Yu . 8 8

XML Databases and Indexing

Translating XQuery to SQL Based on Query Forests
Ya-Hui Chang, Greg Liu, Sue-Shain Wu . 94

A New Indexing Structure to Speed Up Processing XPath Queries
Jeong Hee Hwang, Van Trang Nguyen, Keun Ho Ryu 9 0

Translate Graphical XML Query Language to SQLX
Wei Ni, Tok Wang Ling . 9 7

GTree: An Efficient Grid-Based Index for Moving Objects
Xiaoyuan Wang, Qing Zhang, Weiwei Sun . 9 4

863

7

8

8

0

0

1

Table of Contents XXVII

Adaptive Multi-level Hashing for Moving Objects
Dongseop Kwon, Sangjun Lee, Wonik Choi, Sukho Lee 9 0

Author Index . 9 7

2

2

Data Stream Mining and Resource
Adaptive Computation

Philip S. Yu

IBM T.J. Watson Research Center,
19 Skyline Drive,

Hawthorne, NY 10532
psyu@us.ibm.com

Abstract. The problem of data streams has gained importance in re-
cent years because of advances in hardware technology. These advances
have made it easy to store and record numerous transactions and ac-
tivities in everyday life in an automated way. The ubiquitous presence
of data streams in a number of practical domains has generated a lot
of research in this area. Example applications include trade surveillance
for security fraud and money laundering, network monitoring for intru-
sion detection, bio-surveillance for terrorist attack, and others. Data is
viewed as a continuous stream in this kind of applications. Problems such
as data mining which have been widely studied for traditional data sets
cannot be easily solved for the data stream domain. This is because the
large volume of data arriving in a stream renders most algorithms to in-
efficient as most mining algorithms require multiple scans of data which
is unrealistic for stream data. More importantly, the characteristics of
the data stream can change over time and the evolving pattern needs to
be captured. Furthermore, we need to consider the problem of resource
allocation in mining data streams. Due to the large volume and the high
speed of streaming data, mining algorithms must cope with the effects
of system overload. Thus, how to achieve optimum results under various
resource constraints becomes a challenging task. In this talk, I’ll provide
an overview, discuss the issues and focus on how to mine evolving data
streams and perform resource adaptive computation.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, p. 1 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Purpose Based Access Control for Privacy
Protection in Database Systems

Elisa Bertino

CERIAS, CS & ECE Departments,
Purdue University

bertino@cerias.purdue.edu

Abstract. The development of privacy-preserving data management
techniques has been the focus of intense research in the last few years.
Such research has resulted in important notions and techniques, such
as the notions of Hippocratic database systems and k-anonymity, and
various privacy-preserving data mining techniques. However, much work
still needs to be carried out to develop high assurance privacy-preserving
database management systems. An important requirement in the de-
velopment of such systems is the need of providing comprehensive and
accurate privacy-related metadata, such as data usage purposes. Such
metadata represent the core of access control mechanisms specifically
tailored towards privacy. In this talk we address such issue. We present
a comprehensive approach for privacy preserving access control based on
the notion of purpose. Purpose information associated with a given data
element specifies the intended use of the data element. Purpose infor-
mation represents an important form of metadata, because data usage
purpose is very often part of privacy policies, such as the case of poli-
cies expressed according to P3P. A key feature of our model is that it
allows multiple purposes to be associated with each data element and
it also supports explicit prohibitions, thus allowing privacy officers to
specify that some data should not be used for certain purposes. Another
important issue to be addressed is the granularity of data labeling, that
is, the units of data with which purposes can be associated. We address
this issue in the context of relational databases and propose four differ-
ent labeling schemes, each providing a different granularity. In the paper
we also propose an approach to representing purpose information, which
results in very low storage overhead, and we exploit query modification
techniques to support data access control based on purpose information.
We conclude the talk by outlining future work that includes the appli-
cation of our purpose management techniques to complex data and its
integration into RBAC.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, p. 2 2005.
c© Springer-Verlag Berlin Heidelberg 2005

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, p. 3, 2005
© Springer-Verlag Berlin Heidelberg 2005

Complex Networks and Network Data Mining

Deyi Li

China Institute of Electronic System Engineering, Beijing, 100840

ziqin@public2.bta.net.cn

Abstract. We propose a new method for mapping important factors abstracted
from a real complex network into the topology of nodes and links. By this
method, the effect of a node is denoted with its computable quality, such as the
city scale with traffic network, the node throughput of communication network,
the hit rates of a web site, and the individual prestige of human relationship. By
this method, the interaction between nodes is denoted by the distance or length of
links, such as the geographic distance between two cities in the traffic network,
the bandwidth between two communication nodes, the number of hyperlinks for
a webpage, and the friendship intensity of human relationship. That is,
topologically, two-factor operations with node and link are generally expanded
to four-factor operations with node, link, distance, and quality. Using this
four-factor method, we analyze networking data and simulate the optimization of
web mining to form a mining engine by excluding those redundant and
irrelevant nodes. The method can lead to the reduction of complicated messy web
site structures to a new informative concise graph. In a prototype system for
mining informative structure, several experiments for real networking data sets
have shown encouraging results in both discovered knowledge and knowledge
discovery rate.

Indexing DNA Sequences Using q-Grams

Xia Cao, Shuai Cheng Li, and Anthony K.H. Tung

Department of Computer Science, National University of Singapore
{caoxia, lisc, atung}@comp.nus.edu.sg

Abstract. We have observed in recent years a growing interest in similarity search
on large collections of biological sequences. Contributing to the interest, this
paper presents a method for indexing the DNA sequences efficiently based on
q-grams to facilitate similarity search in a DNA database and sidestep the need for
linear scan of the entire database. Two level index – hash table and c-trees – are
proposed based on the q-grams of DNA sequences. The proposed data structures
allow the quick detection of sequences within a certain distance to the query
sequence. Experimental results show that our method is efficient in detecting
similarity regions in a DNA sequence database with high sensitivity.

1 Introduction

Similarity search on DNA database is an important function in genomic research. It is
useful for making new discoveries about a DNA sequence, including the location of
functional sites and novel repeatitive structures. It is also useful for the comparative
analysis of different DNA sequences. Approximate sequence matching is preferred to
exact matching in genomic databases due to evolutionary mutations in the genomic
sequences and the presence of noise data in a real sequence database. Many approaches
have been developed for approximate sequence matching. The most fundamental one
is the Smith-Waterman alignment algorithm [14] which is a dynamic programming
approach that seeks the optimal alignment between a query and the target sequence in
O(mn) time, m and n being the length of the two sequences.

However, these methods are not practical for long sequences in the megabases range.
Effort to improve the efficiency falls into the common idea of filtering by discarding the
regions with low sequence similarity. A well known approach is to scan the biological
sequences and find short “seed” matches which are subsequently extended into longer
alignments. This method is used in program like FASTA [13] and BLAST [1] which are
the most popular tools used by biologists. An alternative approach is to build index on
the data sequences and conduct the search on the index. Various index structure models
[2, 4, 7, 17] have been proposed for this purpose.

Our method is based on the observation that two sequences share a certain number
of q-grams if the edit distance between them is within a certain threshold. Moreover,
since there are only four letters in the DNA alphabet, we know that the number of all
combinations of q-grams in a DNA sequence is 4q.

In this paper, we propose two level index to prune data sequences that are far away
from the query sequence. The disjoint segments with the length ω are generated from

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 4–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Indexing DNA Sequences Using q-Grams 5

the sequence. In the first level, the clusters (called qClusters) of similar q-grams in DNA
sequence are generated; then a typical hash table is built in the segments with respect
to the qClusters. In the second level index, the segments are transformed into the c-
signatures based on their q-grams; then a new index called the c-signature trees (c-trees)
is proposed to organize the c-signatures of all segments of a DNA sequence for search
efficiency.

In the first level of search, the sliding segment of query sequence is generated and
encoded into the key in terms of the coding function, and then the neighbors of this
key will be enumerated. Thus a set of candidate segments will be extracted from the
buckets pointed by the key and its neighbors, and be put into the second index structure
c-trees for future filtering. In the second level of search, we only access the tree paths in
c-trees that include possible similar data sequences in their leaf nodes. We also propose
a similarity search algorithm based on the c-trees for query segments.

The rest of paper is organized as follows. In Section 2, we define the problem of
similarity search in DNA sequence databases and briefly review related work. In Section
3, the concept of qClusters and c-signature is presented. The filter principle based on
q-grams is also described. In Section 4, we propose two-level index scheme constructed
on the q-grams for DNA sequences. In Section 5, an efficient similarity search algorithm
is presented based on the proposed index structure. The test data and experimental results
are presented in Section 6. Section 7 summarizes the contribution of this paper.

2 Problem Definition and Related Work

In this section, we formalize the similarity search problem in a DNA sequence database
and describe the related existing work.

2.1 Problem Definition

The problems of approximate matching and alignment are the core issues in sequence
similarity search. To process approximate matching, one common and simple approxi-
mation metric is called edit distance.

Definition 1. Edit Distance
The edit distance between two sequences is defined as the minimum number of edit
operations (i.e., insertions, deletions and substitutions) of single characters needed to
transform the first string into the second. ed(S, P) is used to denote the edit distance
between sequence S and P .

In general, this problem of sequence search can be described formally as follow:

Problem 1. Given the length l and edit distance ϑ, find all subsequences S in D which
have length |S| ≥ l and ed(S,Q′) ≤ ϑ for subsequence Q′ in query sequence Q.

Since with high possibility there exists a similar segment pair (s, q), s ∈ S, q ∈ Q′

if S is similar to Q′, we instead solve the following problem.

Problem 2. Given the length ω and edit distance ε, find all the segments si with length
ω in D which meet ed(si, qj) ≤ ε for the query segments qj with length ω in Q.

6 X. Cao, S.C. Li, and A.K.H. Tung

2.2 Related Work

A great amount of work has been done to improve search efficiency and effectiveness in
DNA sequence databases. BLAST[1] is a heuristic method for finding similar regions
between two genomic sequences. It regards the exact match of W contiguous bases as
candidates which are then extended along the left side and the right side to obtain the
final alignments. Unfortunately, BLAST faces the dilemma of DNA homology search:
increasing the seed size W decreases sensitivity while decreasing the seed size results
in too many random results. PatternHunter [8] is an improvement on BLAST both in
speed and sensitivity through the use of non-consecutive k letters as model. In essence,
PatternHunter’s basic principles are similar to those of BLAST.

Researchers have also proposed indices for sequence databases. The suffix tree family
is a well-studied category of indices to resolve string-related problems [16, 9, 2, 11, 10].
QUASAR [2] applies a modification of q-gram filtering on top of a suffix array. However,
its performance deteriorates dramatically if the compared sequences are weakly similar.
Also, the resulting index structure based on the suffix array and suffix tree is large
compared to the size of the sequence database. Even if the suffix tree is used without
links as proposed in [5], the suffix tree structure index is still nearly 10 times the size
of the sequence database. Oasis [10], a novel fast search algorithm is driven by a suffix
tree and it also suffers the large size of index structure.

In [15], the ed-tree is proposed to support probe-based homology search in DNA
sequence databases efficiently. But the size of the tree-structure index is larger than the
sequence database and also it is very time-consuming to build the ed-tree for sequences.
Recently, some attempts [7, 12] have been made to transform DNA sequences into nu-
merical vector spaces to allow the use of multi-dimensional indexing approaches for
sequence similarity search. Though these methods avoid false dismissals and offer very
fast filtering, their drawback is that the approximation of edit distance is not sufficiently
tight, which increases the cost of refining results for final output.

SST [4] has been shown to be much faster than BLAST when searching for highly
similar sequences. Unfortunately, since the distance between sequences in vector space
does not correspond well with the actual edit distance, a larger number of false dismissals
may occur if the similarity between the query sequence and the target sequence is not
sufficiently high. Williams et al. [17] proposed a search algorithm in a research prototype
system, CAFE, which uses an inverted index to select a subset of sequences that display
broad similarity to the query sequence. The experiments show that CAFE is faster but
also less sensitive than BLAST when searching for very similar sequences.

3 Notations

Although the edit distance is a simple but fairly accurate measure of the evolutionary
proximity of two DNA sequences, the computation complexity isO(mn),m andn being
the length of the two sequences. To speed up approximate sequence matching, filtering
is an efficient way to quickly discard parts of a sequence database, leaving the remaining
part to be checked by the edit distance. Our proposed approach to sequence similarity
search is based on q-grams, where the q-gram similarity is used as a filter.

Indexing DNA Sequences Using q-Grams 7

3.1 Preliminaries

Before we define qClusters and c-signature, we shall briefly review q-grams and
q-gram based filter. The intuition behind the use of q-grams as a filter for approximate
sequence search is that two sequences would have a large number of q-grams in common
when the edit distance between them is within a certain number.

Definition 2. q-gram of Sequence
Given a sequence S, its q-grams are obtained by sliding a window of length q over the
characters of S. For a sequence S, there are |S| − q + 1 q-grams.

Lemma 1. Filter based on q-grams (Jokinen and Ukkonen [6])
Let an occurrence of Q[1 : w] with at most ε edit or hamming distance end at position
j in sequence database S. Then at least w + 1 − (ε + 1)q of the q-grams in Q[1 : w]
occur in the substring S[j − w + 1 : j]. In another word, there are at most εq q-grams
in Q[1 : w] which do not occur in S[j − w + 1 : j], and vice versa. So obviously, the
number of different q-grams between Q[1 : w] and S[j − w + 1 : j] is at most 2εq.

3.2 The qClusters and c-Signature

The alphabet of the DNA sequence comprises four letters: Σ = {A,C,G, T}. It means
there are in all |Σ|q = 4q kinds of q-grams, and we may arrange them according to the
lexicographic order, and use ri to denote the ith q-gram in this order. All the possible
q-grams are denoted as: � = {r0, r1, . . . , r4q−1}. The q-gram clusters(qClusters) can be
defined below:

Definition 3. q-gram Clusters (qClusters)
All the possible q-grams, � = {r0, r1, . . . , r4q−1} are divided into λ clusters (denoted
as qClusters) {qCluster1, . . . , qClusterλ} by a certain principle. In this paper, we
simply cluster them continuous q-grams{r(i−1)m, . . . , rim−1} together into qClusteri,
1 ≤ i ≤ λ = � 4q

m �.

The q-gram signature and c-signature of the DNA sequence are defined as follows:

Definition 4. q-gram Signature
The q-gram signature is a bitmap with 4q bits where ith bit corresponds to the presence
or absence of ri. For a given sequence S, the ith bit is set as ‘1’ if ri ∈ � occurs at least
once in sequence S, else it is set as ‘0’.

Definition 5. c-signature
Let sig1(S)=(a0, . . . , an−1) be a q-gram signature of the DNA segment S with n=4q,
then its c-signature is defined as: sigc(S) = (u0, . . . , uk−1) where k=�n/c�, and ui =∑(i+1)c−1

j=ic aj . Set aj = 0 when n ≤ j < ck. For sequence S and P , we define
the distance between sigc(S) = (u0, . . . , uk−1) and sigc(P) = (v0, . . . , vk−1) as
SDist(sigc(S), sigc(P))=

∑k−1
i=0 |ui − vi|.

For better understanding of the definition of q-gram signature and c-signature, we
consider the below example:

8 X. Cao, S.C. Li, and A.K.H. Tung

Example 1. For sequence P=“ACGGTACT", its q-gram signature is (01 00 00 11 00 11
10 00) with 16(=42) dimensions when q = 2. In P , the q-gram ‘AC’ occurs twice in
position 0 and 5, so we set the corresponding bit in position 1 in q-gram signature as ‘1’.
As there is no occurrence of ‘AA’ in sequence P , the corresponding bit in position 0 in
q-gram signature is set as ‘0’. For c=2, the c-signature of P is (10020210) with respect
to the definition of the c-signature.

With the property |a|+ |b| ≥ |a+ b|, it is not difficult to obtain the following lemma
for filtering in terms of c-signature:

Lemma 2. Filter Based on c-signatures
Given a sequence S, there is at most ε edit or hamming distance from another sequence
P with |S| = |P |. Let sig1(S) = (a0, a1, . . . , an−1) and sig1(P) = (b0, b1, . . . , bn−1)
be the q-gram signatures generated for sequence S and P respectively. Denote the c-
signatures ofS andP assigc(S)=(u0, u1, . . . , uk−1)andsigc(P)=(v0, v1, . . . ,vk−1),
c > 1, respectively. Then

∑k−1
i=0 |ui − vi| ≤

∑n−1
j=0 |aj − bj | ≤ 2εq.

Proof: In term of Lemma 1 and the definition of q-gram signature,
∑n−1

i=0 |ai − bi| ≤
2εq holds. According to the definition of c-signature, ui =

∑(i+1)c−1
j=ic aj and vi =∑(i+1)c−1

j=ic bj . The following formula holds:
∑k−1

i=0 |ui − vi| =
∑k−1

i=0 |
∑(i+1)c−1

j=ic aj −∑(i+1)c−1
j=ic bj | ≤

∑k−1
i=0

∑(i+1)c−1
j=ic |aj−bj |=

∑kc−1
j=0 |aj−bj |=

∑n−1
j=0 |aj−bj | ≤ 2εq.

4 An Indexing Scheme for DNA Sequences

A two-level indexing scheme is proposed to organize the segments in DNA sequence
database and support the similarity search.

4.1 The Hash Table

In order to hash the DNA segments to a hash table with size 2λ, it is necessary to encode
the segment into a λ-bit integer. Given a segment s, we encode it into a λ bitmap e =
(e1, e2, . . . , eλ) with respect to qClusters={qCluster1, qCluster2, . . . , qClusterλ}. If
there exists a q-gram gram in s which meets gram ∈ qClusteri, we set ei = 1, else
ei = 0, where 1 ≤ i ≤ λ. Following the encoding principle, any DNA segment s can
be encoded into a λ-bit integer (e1, . . . , eλ) by the coding function:

coding(s) =
λ∑

i=1

2i−1ei

The hash table has totally 2λ buckets for the qClusters {qCluster1, . . . , qClusterλ},
and each segment si can be inserted into the corresponding bucket in the hash table with
the use of the hash function coding(si). Note that λ is set as 5 and 22 for q=3 and 4
respectively in the experimental studies for better performance, and we will not declare
it again.

Indexing DNA Sequences Using q-Grams 9

4.2 The c-Trees

The c-trees are a group of rooted dynamic trees built for indexing c-signatures. The
height of the trees, � is set by the users. Given the c-signature of the segment s, sigc(s)=
(v0, v1, . . . , vk−1), there are δ = �k

� � trees in total. We denote these trees as T0,...,Tδ−1.
Each path from the root to a leaf in Ti corresponds to the c-signature string sigc

i (s) =
(vi�, vi�+1, . . . , v(i+1)�−1). For ease of discussion, we shall assume without loss of
generality that k is divisible by � and thus Tδ−1 also has a height of �. For each internal
node of the tree, there are at most c+1 children. Each edge in a tree of c-trees is labeled
with the respective value from 0 to c.

Algorithm 1 Tree Construction
Input: c-signatures sigc(s0), . . . , sigc(s|D|−ω) Output: c-trees (T0, T1, . . . , Tδ−1)
1: Ti ← NULL, 0 ≤ i < δ
2: for each c-signature sigc(sj) do
3: for i ← 0 . . . δ − 1 do
4: TreeInsert(Ti, sigc

i (sj), sj)
5: end for
6: end for
7:
8: Function TreeInsert(Nx, sig, s)
9: if sig = ε then

10: insert(Nx, s, i) /*Nx is the leaf node*/
11: else if there exists an edge 〈Nx, Ny〉 where label[〈Nx, Ny〉] is a prefix of sig then
12: TreeInsert(Ny , sig − label[〈Nx, Ny〉], s)
13: else if there exists an edge 〈Nx, Ny〉 where label[〈Nx, Ny〉] shares a longest prefix pf with

sig, pf �= ε then
14: split 〈Nx, Ny〉 into two parts with a new node Nz , such that pf = label[〈Nx, Nz〉]
15: create a new leaf lNode with edge label sig-label[〈Nx, Nz〉] under Nz

16: insert(lNode, s, i)
17: else
18: create a new leaf node lNode under Nx with edge label label[〈Nx, lNode〉]=sig
19: insert(lNode, s, i)
20: end if
21:
22: Function insert(lNode, s, i)
23: if i=0 then
24: E0[lNode] ← E0[lNode] ∪ {s}
25: else
26: build the link from c-signature of s to lNode in Ti

27: end if

The DNA segments are transformed into the c-signatures in order to build the c-
trees on them. Note that it is not necessary to store the c-signatures themselves after the
trees are constructed. To further consolidate the definition of c-trees, we shall present a
straightforward algorithm to build c-trees for a group of c-signatures.

10 X. Cao, S.C. Li, and A.K.H. Tung

0

1

1

0

0

s3(s0,s2,s4)s1

T0

0

1

1

0

1

1

11

0

2

0

01

0

0

T1

s2s1 s4s3s0

1

0

1

0

1 0

0

0

Fig. 1. The c-trees for the DNA segments

In Algorithm 1, label[〈Nx, Ny〉] denotes the label of edge 〈Nx, Ny〉 in the c-trees.
For notation convenience, define S − S

′
as a suffix of S, where S

′
is a prefix of S, and

the concatenation of S
′

and S − S
′

is S. ε is used to refer an empty string. Also lNode
denotes the leaf node in the c-trees, and E0[lNode] is a group of segments in lNode of
the first tree T0. Note that E0[∗] will be constructed only for the tree T0. For the other
trees, the link from the c-signature to the leaf node will be constructed instead.

The c-signature strings sigc
i (s) are inserted into the growing trees Ti 0 ≤ i < δ

one by one by executing the function TreeInsert(Ti, sig
c
i (s), s) recursively. We now

demonstrate the c-trees construction for DNA segments with the following example.

Example2. Consider the five DNA segmentss0=“ACGGT",s1=“CTTAG",s2=“ACGTT",
s3=“TAAGC" and s4=“GACGT". When we set q=2 and c=2, the c-signatures are:
sig2(s0)=(1001 0200), sig2(s1)=(0101 0011), sig2(s2)=(1001 0101), sig2(s3)=(1100
1010), sig2(s4)=(1001 1100). If � = 4, we get 4q

c� =2 trees. The first tree T0 is constructed
from the c-signature strings sig2

0(si), 0 ≤ i ≤ 3, and the tree T1 is constructed from
sig2

1(si), 4 ≤ i ≤ 7. The c-trees (T0, T1) for the five DNA segments are shown in Fig. 1.

5 Query Processing

In this section, we present how to use the two-level index to get the candidates by
pruning data segments that are far away from the query sequence. Then the dynamic
programming is conducted to obtain the final alignments with high alignment score
between the candidates and query sequence. This phase is a standard procedure, so we
just skip the details about it in this paper. Before sequence similarity search begins, a
hash table HT and the c-trees are built on the DNA segments. The query sequence Q is
also partitioned into |Q| − ω + 1 sliding query patterns q1, . . . , q|Q|−ω+1.

5.1 The First Level Filter: Hash Table Based Similarity Search

The query pattern qi is first encoded to a hash key hi, which is a λ bit integer. Then all
the encoded neighbors ngbr of the hash key hi are enumerated, and the neighbors are
those λ bit integers encoded from the segments which are within a small edit distance

Indexing DNA Sequences Using q-Grams 11

from qi. In [3], an approach has been proposed to enumerate a segment’s neighbors.
The main idea is also applicable for our current case, but the difference is that we need
to consider the impact on the q-grams to get the encoded neighbors when some edit
operations are conducted on the segment. d edit operations on segment s will result in at
most dq q-grams which are different from those in s, and the new neighboring key will
be computed in terms of the new group of q-grams by using the coding function. In our
case, d is set as 3.

Once an encoded neighbor engbr of qi is enumerated, the segments in the bucket
HT [engbr] of the hash structure HT will be retrieved as candidates and stored into the
candidate set Cht.

5.2 The Second Level Filter: The c-Trees Based Similarity Search

The candidate segments Cht generated from the first level filter will be further verified
by the c-trees. According to the c-trees structure, the c-signature sigc(q) of query q is
divided into δ c-signature strings which are sigc

i (q), 0 ≤ i < δ. Algorithm 2 shows
how to retrieve the segment s which satisfies the range constraint ed(q, s) ≤ ε for a
query segment q. For clarity, threshold γ in Algorithm 2 is set as 2qε, where q is the
q-gram length and ε is the edit distance allowed between the DNA data segment and
query segment.

In Algorithm 2, wi[lNode] is used to denote the distance between sigc
i (q) and the

path label pl = label[〈rooti, lNode〉] from the respective root rooti to lNode in Ti,
namelywi[lNode] = SDist(sigc

i (q), pl). We use score[s] to denote the partial distance
for segment s during similarity search. Also for notation simplicity, we use sigc

i (s) as
its corresponding path label for a leaf node in Ti, 0 < i < δ, since each sigc

i (s) can only
be mapped to one path or one leaf node in Ti.

During query processing, for each leaf node lNode in the tree T0, the distance
w0[lNode]) between the path label of lNode and sigc

0(q) are computed. And the initial
candidate set C includes those segments in E0[lNode] ∩ Cht where w0[lNode] ≤ γ.
For the trees {T1, . . . , Tδ−1}, candidates will be pruned based on the partial distance
gradually. For each candidate s inC, we can find its corresponding leaf node lNodewith
label sigc

i (s) in Ti(i �= 0) in time O(1) with links constructed during tree construction,
and the partial distance score[s] can be computed as well.

5.3 The Space and Time Complexity Analysis

In this section, the space and time complexity are analyzed for the two-level index
structure. For the space complexity of the hash table, we need O(2λ) for the table head.
For the bucket of the table, segments will contribute space Θ(|D|/ω). Thus, the total
space complexity for the hash structure will be O(2λ + |D|/ω). Each neighboring of
the segment can be generated with time amortized complexity O(1). Thus, the time
complexity for the query is O(|q|).

Essentially, the space complexity for the c-trees can be divided into two portions:
the c-trees themselves, and space occupied by the E0[∗] and links. According to the
algorithm, E0[∗] must be stored for the first tree; thus they require O(|D|/ω) space. The
height of each tree is bounded by O(4q/(δc)), thus for each tree, the storage required

12 X. Cao, S.C. Li, and A.K.H. Tung

Algorithm 2 Similarity Search Algorithm
Input: The c-trees (T0, T1, ..., Tδ−1) on D, query c-signature (sigc

0(q), ..., sig
c
δ−1(q)),

Candidate segments Cht, distance γ. Output: Candidate set C
1: C ← ∅
2: for lNode ∈ T0 do
3: if w0[lNode] < γ then
4: E

′
0[lNode] = E0[lNode] ∩ Cht; C ← C ∪ E

′
0[lNode]

5: for each s ∈ E
′
0[lNode] do

6: score[s] ← w0[lNode]
7: end for
8: end if
9: return Search({T1, . . . , Tδ−1}, C)

10: end for
11:
12: Function: Search(TSet, C)
13: if TSet = ∅ then
14: return C
15: else
16: Ti ← first entry in TSet
17: for each s ∈ C do
18: if wi[sigc

i (s)] + score[s] ≤ γ then
19: score[s] ← wi[sigc

i (s)] + score[s]
20: else
21: C ← C − {s}
22: end if
23: end for
24: return Search(TSet-{Ti}, C)
25: end if

for the edge labels is bounded by O((c + 1)4
q/(δc) log(c + 1)) for each tree. Besides,

we also need to maintain the links for the other trees. The space required by links highly
depends on the data distribution. Note there are lots of zeros in c-signatures, thus a lot
of links will point to a dummy leaf (by dummy we mean that the path label is 0). So we
may just compress those links. The time complexity depends on the pruning rate for each
iteration. Suppose the filtering rate for each iteration is β, then the total time required

to obtain the final candidate set is O(δ(c + 1)4
q/(δc) + (|D|/ω) (1−β)(1−(1−β)δ)

β) in the
worst case. Note in practice, the algorithm is much more efficient since we do not need
to traverse the whole structure most of the time.

6 Experimental Studies

We evaluate the sensitivity, effectiveness and efficiency of our search method and com-
pare it to the latest version of BLAST(NCBI BLAST2). For BLAST, we set the length
of the seed as 11 in the experiment.

Indexing DNA Sequences Using q-Grams 13

6.1 The Sensitivity Analysis

The key issue for the entire search approach is to find a trade-off between sensitivity
and effectiveness while maintaining search efficiency. Sensitivity can be measured by
the probability that a high score alignment is found by the algorithm. We define the
sensitivity analysis problem as: Given a pair of genomic sequences with length L and
the similarity ratio sim, compute the sensitivity or probability that they can be detected
by the search model.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Se
ns

iti
vi

ty

The Number of Common q-grams

Sensitivity(sim=63%, L=30)

q=2
q=3
q=4

Blast11

(a) The Sensitivity vs The Number of Common q-
grams

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Se
ns

iti
vi

ty

Similarity

Sensitivity(L=30)

q=3
q=4

Blast11

(b) The Sensitivity vs Similarity

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

Fi
lte

r
R

at
e(

%
)

The Parameter c

Filter Rate(w=30, edit distance=3)

q=3
q=4

(c) The Filter Rate vs The Parameter c

95

96

97

98

99

100

30 31 32 33 34 35 36 37 38 39 40

Fi
lte

r
R

at
e(

%
)

The Segment Length w

Filter Rate(q=4,c=3)

edit distance=3
edit distance=4

(d) The Filter Rate vs The Segment Length ω

Fig. 2. Experimental Results for Sensitivity and Effectiveness

In the experiment, the sensitivity of the filter model is the probability that the two
sequencesS andP with lengthL and similarity sim can be regarded as similar sequences
when the number of the common q-grams in S and P is at least ρ. Fig. 2(a) depicts how
the number of common q-grams ρ affects the sensitivity of the filter model for L=30,
sim=63% and q = 2, 3, 4, and compares the sensitivity to BLAST. Given sim=63%,
for q=4, it shows that our filter method can achieve higher sensitivity than BLAST as
long as the number of common q-grams is no more than 9. Fig. 2(b) shows how the
sensitivity of our filter model varies with the similarity sim for L=30. In comparison
with BLAST, our filter method for q=3,4 achieves higher sensitivity.

14 X. Cao, S.C. Li, and A.K.H. Tung

6.2 The Effectiveness Analysis

Two groups of experiments were conducted to measure the effectiveness of the proposed
two-level index structure by using the dataset ecoli.nt. The filter rate used in the exper-
iment description is defined as the ratio of the total number of hits found to the total
number of segments in data sequence.

The first group of experiments measure how the parameters c and q affect the ef-
fectiveness of filtering when we fix ω=30 and ε=3, in the filter processing. The result
in Fig. 2(c) shows that when c increasing, the filter rate drops down as the c-signature
representing the segment becomes inaccurate. On the other hand, larger q results in
better filter rate since the segment property can be captured more accurately by the c-
signatures. The filter rate is 99.9495% for q=4 and c=3. We will use q=4 and c=3 for the
efficiency analysis in the following experiment.

The second group of experiments evaluate the effectiveness of the index while varying
the segment length ω as well as edit distance ε. The filter rate for different ω and ε is
shown in Fig. 2(d). For ω=30 and ε=4, the filter rate can still be as high as 95.895%. All
the results show that the proposed index structure is effective for the similarity search.

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

T
im

e(
se

c)

Database Size(Mb)

Preprocessing Time

two-level index
Blast11

(a) Efficiency of Preprocessing

1.7

1.8

1.9

2

2.1

2.2

30 31 32 33 34 35 36 37 38 39 40

T
im

e(
se

c)

The Segment Length w

Efficiency(q=4,c=3,DB:Patnt)

edit distance=3
edit distance=4

(b) The Efficiency of the Index Structure

5

10

15

20

25

30

1000 1500 2000 2500 3000

T
im

e(
se

c)

Query Length

DB:Patnt

two-level index
Blast11

(c) The Efficiency vs Query Length(DB:Patnt)

0

5

10

15

20

25

30

200 400 600 800 1000

T
im

e(
se

c)

Database Size(Mb)

Query length=1000

two-level index
Blast11

(d) The Efficiency vs DBSIZE(|Q|=1000)

Fig. 3. Experimental Results for Efficiency

Indexing DNA Sequences Using q-Grams 15

6.3 The Efficiency Analysis

The five DNA datasets used in the experiments are: other genomic(1.06GB), Patnt(702.1
MB), month.gss(286.2MB), yeast.nt(12.3MB) and ecoli.nt(4.68MB).All the datasets are
downloaded from NCBI website.

We first evaluate the efficiency in data sequence preprocessing before performing
similarity search in terms of the proposed index structure. Fig. 3(a) shows that pre-
processing with our method is much faster than that with BLAST due to the efficient
algorithm for the hash table and c-trees construction.

The efficiency for searching a single segment is analyzed. The results of the effi-
ciency of segment searching are presented in Fig. 3(b) for q=4 and c=3. We conduct the
experiment by varying the segment length ω from 30 to 40, and the edit distance ε from
3 to 4 for the dataset patnt. The results show that better performance can be achieved
for ε = 3 since it causes better filter rate than ε = 4.

An experiment is also carried out to investigate how the length of the query sequence
affects the performance of our method in comparison with BLAST. To do this, we
perform similarity search for query lengths of 1000, 1500, 2000, 2500 and 3000 on
patnt. Fig.3(c) shows our search speed is about twice faster than BLAST when the
query length is varied from 1000 to 3000. We performed a comparison of our search
method with BLAST on the five datasets as well. We set q=4, c=3, ω=30 and ε=3. The
results of the comparison are shown in Fig. 3(d) when the query length is fixed as 1000.
The speed-up of the c-trees over BLAST ranges from 2 to 3 for the different size of
sequence datasets.

7 Conclusion

We have devised a novel two-level index structure based on q-grams of the DNA se-
quences which can support efficient similarity search in DNA sequence database. The
filter principle with respect to the index structure is presented and it can guarantee that
we can achieve efficient sequence searching while keeping the higher sensitivity. We also
carry out the experiments to evaluate the performance of our method in the sensitivity,
effectiveness and efficiency, and the results show that our method can efficiently detect
the regions in DNA sequence database which are similar to the query sequence with
high sensitivity.

References

1. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. A basic local alignment search
tool. In Journal of Molecular Biology, 1990.

2. S. Burkhardt, A. Crauser, P. Ferragina, H. P. Lenhof, and M. Vingron. q-gram based database
searching using a suffix array (quasar). In Int. Conf. RECOMB, Lyon, April 1999.

3. X. Cao, S.C. Li, B.C. Ooi, and A. Tung. Piers: An efficient model for similarity search in dna
sequence databases. ACM Sigmod Record, 33, 2004.

4. E. Giladi, M. Walker, J. Wang, and W. Volkmuth. Sst: An algorithm for searching sequence
databases in time proportional to the logarithm of the database size. In Int. Conf. RECOMB,
Japan, 2000.

16 X. Cao, S.C. Li, and A.K.H. Tung

5. E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large biological sequences.
In International Journal on VLDB, pages 139–148, Roma, Italy, September 2001.

6. P. Jokinen and E. Ukkonen. Two algorithm for approximate string matching in static texts.
In Proc. of the 16th Symposium on Mathematical Foundataions of Computer Science, pages
240–248, 1991.

7. T. Kahveci and A. Singh. An efficient index structure for string databases. In Proc. 2001 Int.
Conf. Very Large Data Bases (VLDB’01), Roma, Italy, 2001.

8. B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology search.
Bioinformatics, 18:440–445, 2002.

9. U. Manber and G. Myers. Suffix arrays: a new method for on-line string search. SIAM Journal
on Computing, 22:935–948, 1993.

10. C. Meek, J.M. Patel, and S. Kasetty. Oasis: An online and accurate technique for local-
alignment searches on biological sequences. In Proc. 2003 Int. Conf. Very Large Data Bases
(VLDB’03), pages 910–921, Berlin, Germany, Sept. 2003.

11. S. Muthukrishnan and S.C. Sahinalp. Approximate nearest neighbors and sequence compar-
ison with block operation. In STOC,Portland, Or, 2000.

12. O. Ozturk and H. Ferhatosmanoglu. Effective indexing and filtering for similarity search in
large biosequence datasbases. In Third IEEE Symposium on BioInformatics and BioEngi-
neering (BIBE’03), Bethesda, Maryland, 2003.

13. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Pro-
ceedings Natl. Acad. Sci. USA, 85:2444–2448, 1988.

14. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Molecular
Biology, 147:195–197, 1981.

15. Z. Tan, X. Cao, B.C. Ooi, andA. Tung. The ed-tree: an index for large dna sequence databases.
In Proc. 15th Int. Conf. on Scientific and Statistical Database Management, pages 151–160,
2003.

16. P. Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE Symp. On Switching and
Automata Theory, pages 1–11, 1973.

17. H.E. Williams and J.Zobel. Indexing and retrieval for genomic databases. IEEE Transactions
on Knowledge and Data Engineering, 14:63–78, 2002.

PADS: Protein Structure Alignment Using
Directional Shape Signatures�

S. Alireza Aghili, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science,
University of California-Santa Barbara,

Santa Barbara, CA 93106
{aghili, agrawal, amr}@cs.ucsb.edu

Abstract. A novel data mining approach for similarity search and knowl-
edge discovery in protein structure databases is proposed. PADS (Protein
structure Alignment by Directional shape Signatures) incorporates the
three dimensional coordinates of the main atoms of each amino acid and
extracts a geometrical shape signature along with the direction of each
amino acid. As a result, each protein structure is presented by a series
of multidimensional feature vectors representing local geometry, shape,
direction, and biological properties of its amino acid molecules. Further-
more, a distance matrix is calculated and is incorporated into a local
alignment dynamic programming algorithm to find the similar portions
of two given protein structures followed by a sequence alignment step
for more efficient filtration. The optimal superimposition of the detected
similar regions is used to assess the quality of the results. The proposed
algorithm is fast and accurate and hence could be used for analysis and
knowledge discovery in large protein structures. The method has been
compared with the results from CE, DALI, and CTSS using a represen-
tative sample of PDB structures. Several new structures not detected by
other methods are detected.

Keywords: Shape Similarity, Protein Structure Comparison, Biological
Data Mining, Bioinformatics.

1 Introduction

Protein structure similarity has been extensively used to highlight the similar-
ities and differences among homologous three dimensional protein structures.
The corresponding applications include drug discovery, phylogenetic analysis,
and protein classification which have attracted tremendous attention and have
been broadly studied within the past decade. The proteins have a primary se-
quence, which is an ordered sequence of amino acid molecules, e.g. AALHSI-
AISAJSH. However, they also appear to conform into a three dimensional shape

� This research was supported by the NSF grants under CNF-04-23336, IIS02-23022,
IIS02-09112, and EIA00-80134.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 17–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 S.A. Aghili, D. Agrawal, and A. El Abbadi

(fold) which is highly conserved in the protein evolution. The fold of a protein
strongly indicates its functionality and the potential interactions with other pro-
tein structures. Meanwhile, the protein sequences as well as their structures may
change over time due to mutations during evolution or natural selection. High
sequence similarity implies descent from a common ancestral family, and the oc-
currence of many topologically superimposable substructures provides suggestive
evidence of evolutionary relationship [8]. This is because the genetic mechanisms
rarely produce topological permutations. For two given proteins, if the sequences
are similar then the evolutionary relationship is apparent. However the three
dimensional structure of proteins, due to their conformational and functional re-
straints, are much more resilient to mutations than the protein sequences. There
exist functionally similar proteins which sequence-level similarity search fails to
accurately depict the true similarity. Such cases introduce a big challenge and
the necessity of incorporating structure-level similarity. Meanwhile, there are two
main problems in protein structure similarity:

– Complexity. The problem of structure comparison is NP-hard and there is no
exact solution to the protein structure alignment [9]. A handful of heuristics
[4, 5, 6, 8, 12, 13, 14, 15, 18] have been proposed in which, to achieve the best
result the similarity might need to be evaluated using a series of techniques
in conjunction. However, none of the proposed methods can guarantee opti-
mality within any given precision! There are always cases where one heuristic
fails to detect, while some of the others succeed.

– Curse of Dimensionality. The total number of discovered protein structures
has been growing exponentially. Currently the Protein Data Bank (PDB)[1]
contains 27,112 protein structures (as of September 8th, 2004.). The growth
in the content of PDB demands faster and more accurate tools for structure
similarity and the classification of the known structures.

We first provide the basic definitions of terms used throughout the paper
in Table 1. In this paper, we consider both the sequence and structure of pro-
tein chains for more efficient similarity comparison. The main goal of protein
structure similarity is to superimpose two proteins over the maximum number
of residues (amino acids) with a minimal distance among their corresponding
matched atoms. These methods typically employ the three dimensional coordi-
nates of the Cα atoms of the protein backbone and sometimes, in addition, the
side chain comprising Cβ atoms but exclude the other amino acid atoms when
making global structural comparisons. When superimposing two protein struc-
tures, side chain conformations (coordinates of O, C, Cβ , N, H atoms) may vary
widely between the matched residues however the Cα atoms of the backbone
trace and the corresponding SSEs are usually well conserved. However, there
are situations where the local comparison of the side chain atoms can be of
great significance, for instance, in the comparison of residues lining an active or
binding sites especially when different ligands1 are bound to the same or similar
structures [10].

1 ligand : An atom, molecule, or ion that forms a complex around a central atom.

PADS: Protein Structure Alignment Using Directional Shape Signatures 19

Table 1. Notations

TERM DESCRIPTION
atom Any of the Nitrogen(N), Oxygen(O), Hydrogen(H), or Carbon(C) atoms found in

protein chains. Carbon atoms that are located on the backbone of the protein
chains are called Cα, and those on the side chains of the protein are called Cβ .
The atoms that are located closer to the backbone are much more resilient to
topological and mutational changes, compared to those atoms that are further
away from the backbone. different atom combinations are approximated. For
instance, the NH+

3 and CO− molecules may be approximated by just considering the
considering the coordinates of their corresponding N and C atoms.

amino acid There are 20 different amino acid molecules in nature (Alanine, Glycine, Serine, . . .)
(residue) which are the alphabets of proteins. Each amino acid is labeled by a capital letter

(A, B, F, T, ...) which is made of a number of atoms. All the amino acids have the
main N, O, C, and Cα atoms, however that is not true of other atoms like Cβ (e.g.,
Glycine does not have Cβ). In this paper, the terms amino acid and residue are
used interchangeably.

protein A protein is an ordered sequence of amino acids (i.e. ALFHIASUHG. . .).
Additionally, each amino acid and as a result each protein chain takes a three-dime-
nsional shape in nature (i.e. in solvents, reactions, . . .). Given two proteins, they may
be compared by just aligning their sequences or further inspecting their three-dime-
nsional conformations. Each protein may be either represented by the sequence of its
amino acid constituents or its three-dimensional conformation. The topological shape
of a protein is one of the very main key factors in defining its functionalities.

SSE Secondary Structure Element (SSE) is the ordered arrangement or conformation
of amino acids in localized regions of a protein molecule. The two main secondary
structures are the α-helix and β-sheets. A single protein may contain multiple
secondary structures.

Distances between the atom coordinates or residual feature vectors or their
corresponding biochemical properties are often used to compare protein struc-
tures. These features are considered either separately or in combination, as a ba-
sis for structural comparison. Some of these features include: physical properties,
local conformations, distance from gravity center, position in space, global/local di-
rection in space, side chain orientation, and secondary structure type. First, each
amino acid of the target and query proteins are represented by a feature vector,
and hence each protein is mapped into an ordered sequence of feature vectors.
Comparison of the features of the query and target proteins is used as a basis to
attribute the similarity. Dynamic programming [16, 20] may be used to discover
the similarities between any two protein structures using any number and combi-
nation of features of individual residues or regional segments. As a result, a local
alignment of the structural features may be deployed to give the best sequen-
tial alignment of the given protein structure pairs. Subsequently, the structures
should be superimposed according to the results of the alignment. However, a sin-
gle global alignment of the given protein structures might be meaningless while
dissimilar regions (fragments) may affect the overall superimposition drastically.
Hence, each fragment of the aligned protein structures should be superimposed
individually and independently to explore local similarities. are superimposed on
each other, independent of the other similar regions.

The rest of the paper is organized as follows: section 2, discusses the back-
ground and related work. Section 3 introduces the formulation and the proposed
technique. Section 4 discusses the experimental results, and section 5 which con-
cludes the work.

20 S.A. Aghili, D. Agrawal, and A. El Abbadi

2 Background and Related Work

Given two protein chains P = p1 − p2 − ... − pm and Q = q1 − q2 − ... − qn

(each pi and qj denote the feature vectors extracted from the ith and jth amino
acid molecule of P and Q, respectively), there are a variety of heuristics to find
optimal structural similarities (global or local) among them. The techniques map
the entire or the best matching regions of the given structures to each other.
These algorithms may be classified into three main categories based on their
choice of feature vectors and the detail level: i) algorithms incorporating only
Cα atom coordinates as representatives of amino acid residues and inspecting
their inter-atomic distances [12, 13, 18], ii) algorithms incorporating SSEs to find
initial alignments and filter out non-desired segments [4, 13, 14, 15, 19], and iii)
algorithms using geometric hashing as an indexing scheme to retrieve similar
structural alignments [17].

The methods may also be classified based on their choice of heuristics used to
align one structure against the other in order to determine the equivalent pairs.
The term equivalent pairs is defined as the pairs of atoms (or fragments) from
the given protein chains whose distance is less than a threshold. The thresh-
old or cut-off value may either be a contextual characteristic of the employed
method, or provided by the user, or directly learned from the input dataset.
The context and the domain properties of the applied method determines the
choice of the distance function and the cut-off thresholds, which explains why
different structure similarity methods may return non-identical though mostly
coherent results. There also exist methods2 which employ a combination of the
listed techniques, including Dynamic programming methods [5, 16, 18, 20], Bi-
partite and Clique Detection methods [6, 12, 13], Match list methods [4, 6, 12].
Different methods have different notions of similarity score or distance function.
These differences make the alignment score not a tangible criterion for compar-
ison. Some of the most frequently used indicators of the quality of a structural
comparison include the Root Mean Square Deviation (RMSD) and the extent
of the match which is the number of aligned residues. These factors along with
the alignment score may be used to asses the quality of the alignment. PADS
extends our earlier proposal [3], which considers both the sequence and structure
of protein chains and constructs a rotation-invariant geometrical representation
from each structure for more efficient similarity comparison. The following sec-
tion introduces the theoretical aspects and formulation of the proposed protein
structure similarity technique.

3 The PADS Method

PADS is a novel method for fast and accurate protein structure similarity us-
ing directional shape signatures. The algorithm not only exploits the topological
properties of the amino acid and protein structures, but also incorporates the

2 For a detailed survey and comparative study of these methods refer to [2].

PADS: Protein Structure Alignment Using Directional Shape Signatures 21

biochemical properties (SSE assignments) of the protein chains into account.
PADS starts by identifying the geometrical properties of each amino acid of the
given proteins along with their directions and their SSE assignments. As a result,
each protein structure is represented by a series of directional shape signature
feature vectors, one for each amino acid. In the next step, a score matrix is
constructed on the corresponding feature vectors. A local structural alignment
[20] based on shape, direction and biological features detects the optimal local
matching regions among the two proteins. For each of the locally matched regions
(pertaining to length and score constraints), a sequence alignment is performed
to facilitate a visualization of the sequence similarities. Thereafter, the best lo-
cally matched regions are topologically superimposed. The corresponding RMSD
value, length of the aligned fragments, and sequence alignment score are reported
for the assessment of the quality of the match. A linear time least-square solu-
tion to superimpose the ordered sets of protein feature vectors is applied (due
to space limitations, the details are provided in [2]). We sort the results based
on their extent(L) and RMSD value and report a list of top alignments with the
best scores ϕ, where ϕ = L/RMSD.

3.1 Shape Signature Extraction

Consider a protein structure P made of an ordered set of amino acids [a1, ..., aN],
where each ai is a vector of three-dimensional coordinates of atoms such as Cα,
C, O, N, H or other side chain atoms. Hence each amino acid residue constitutes
a 3D polyhedron in 3D Euclidean space. For instance, if 6 significant atoms (as
in Figure 1-a) of ai are considered, then ai would be represented by a vector of 6
three-dimensional vectors, one for the position of each of its constituent atoms.

Definition 1 Let S = (v1, . . . , vn) be a polyhedron amino acid in 3D Euclidean
space. Let vi denote an atom of S positioned at vi = [vix, viy, viz] with molar
mass µi. The Center of Mass3 of S is a multidimensional point, C�(S), and
is defined as

C�(S) = [CS
�x, C

S
�y, C

S
�z], where

CS
�x =

∑n

i=1
µivix∑n

i=1
µi

, CS
�y =

∑n

i=1
µiviy∑n

i=1
µi

, and CS
�z =

∑n

i=1
µiviz∑n

i=1
µi

.

For instance, let S = (N,Cα) be an amino acid made of only two atoms,N (Ni-
trogen: molar mass 14.01 g/mol) and Cα (Carbon: : molar mass 12.01 g/mol) po-
sitioned at locations [10, 4, 12] and [2, 6, 1], respectively. The center of mass of S is
a 3D point and is calculated as C�(S) = [(10×12.01)+(2×14.01)

12.01+14.01 , (4×12.01)+(6×14.01)
12.01+14.01 ,

(12×12.01)+(1×14.01)
12.01+14.01] = [5.7, 5.08, 6.08].

Definition 2 Let S = (v1, . . . , vn) be the polyhedron amino acid with center
of mass C�(S). Shape Signature of S, σ(S) = (r1, . . . , rn), is defined as the
distance between each of the atoms of S to C�(S):

3 The notations C�(S) and CM are used interchangeably to denote the center of mass.

22 S.A. Aghili, D. Agrawal, and A. El Abbadi

Fig. 1. Shape signature extraction process. (a) An amino acid molecule consisted of
N(NH+

3), Cα, C(CO−), O, R(Cβ), and H atoms. (b) The same amino acid visualized
as a three-dimensional polyhedron with its vertices being the coordinates of the corre-
sponding atoms, after removing the bonds. (c) Directional Shape Signature Extraction:
The distances between the center of mass CM (or C�) and all the atoms are calculated
(r1, r2, . . .) along with the direction of the amino acid as −−−−→

CMCα.

ri =
√

(vix − CS�x)2 + (viy − CS�y)2 + (viz − CS�z)2.

For instance, let S be the same amino acid as in the previous example with
C�(S) = [5.7, 5.08, 6.08]. The shape signature of S is σ(S) = (r1, r2) where

r1 =
√

(10 − 5.7)2 + (4 − 5.08)2 + (12 − 6.08)2 = 7.4 and

r2 =
√

(2 − 5.7)2 + (6 − 5.08)2 + (1 − 6.08)2 = 6.35.

The localized shape signature as described above captures the general shape
of each amino acid and is invariant to rotation and displacement. The invariance
property facilitates the matching of the amino acids solely based on their shape
and topological properties. This is a particularly helpful summarization since
most protein structures in PDB belong to different coordinate systems. Being
able to capture the local and global shape of the amino acids and proteins
(invariant to rotation and displacement) facilitates the initial step of protein
structure similarity. also be taken into account. The next definition captures
the conformational property and orientation of the amino acid structures by

PADS: Protein Structure Alignment Using Directional Shape Signatures 23

augmenting the direction of each amino acid molecule onto its corresponding
shape signature.

Definition 3 Let S = (v1, . . . , vn) be a polyhedron amino acid with the center
of mass C�. Let vα (for some 0 < α ≤ n) denote the coordinates of Cα atom of
S. The Direction of S,

−−−→
D(S), is defined as the direction of the vector connecting

C� to vα, or in other words
−−−→
D(S) = −−−→

C�vα.

Figure 1 depicts the steps involved in extracting the directional shape sig-
nature. We excluded Cβ from the shape signature because not all amino acids
possess Cβ (Glycine, GLY) and Hydrogen(H) side chain atoms, and due to their
dramatic topological variances in different amino acids. On the other hand, a
good shape signature should not only capture the topological and shape proper-
ties but also biologically motivated features. As a result, PADS incorporates the
secondary structure assignment of each amino acid for a more meaningful and
efficient structure comparison. Let P be a protein structure with amino acids
[p1, . . . , pN] where each pi is a vector of the three-dimensional coordinates of
atoms of the ith residue. Different amino acids have different, though unique,
number of atoms. For instance, Serine is an amino acid residue which has only
14 atoms while Arginine has 27 atoms. PADS also incorporates the distances
from C� to the coordinates of Cα, Nitrogen(N) of the amino group, Carbon(C)
and uncharged Oxygen(O) of the carboxyl group, which are common among all
amino acids and are topologically more resilient than other side chain atoms.

Definition 4 Let P = [p1, . . . , pN] be a protein structure where each pi repre-
sents the list of coordinates of atoms that constitute the ith amino acid of P .
The Directional shape signature of P, Pϑ, is defined as the feature vector
Pϑ = [pϑ

1 , . . . , p
ϑ
N] where each pϑ

j is a feature vector

(|−−−→C�N |, |−−−−→C�Cα|, |
−−−→
C�C|, |

−−−→
C�O|,

−−−−→
C�Cα, SSEj),

comprising the distances from the center of mass of the jth amino acid to its
N, Cα, C and O atoms(Def. 2) along with its corresponding direction(Def. 3),
and its secondary structure assignment.

3.2 Local Alignment Procedures

This section introduces the alignment procedures to be performed on the ex-
tracted directional shape signatures of the corresponding proteins. Structural
local alignment starts by constructing a score matrix, S, on the directional shape
signatures of the given proteins. This score matrix is used to structurally align
the corresponding signatures in the alignment step.

Let P and Q be two protein structures with their corresponding directional
shape signatures Pϑ = [pϑ

1 , . . . , p
ϑ
N] and Qϑ = [qϑ

1 , . . . , q
ϑ
M], where pϑ

i and qϑ
j

denote the feature vectors [rp
i,1, r

p
i,2, r

p
i,3, r

p
i,4,

−→
vp

i , SSE
p
i] and [rq

j,1, r
q
j,2, r

q
j,3,r

q
j,4,

−→
vq

j,

24 S.A. Aghili, D. Agrawal, and A. El Abbadi

SSEq
j], respectively. The entry Si,j , of the score matrix S, denotes the sym-

metric normalized4 score of replacing pϑ
i by qϑ

j residue and is defined

Si,j =
4∑

k=1

(rp
i,k − rq

j,k)−2 + cos(
−→
vp

i ,
−→
vq

j)−1 + SSEPQ
i,j ,

where cos(U ,V) denotes the cosine of the angle between vectors U and V , and

SSEPQ
i,j =

{
+G SSEp

i = SSEq
j

−G SSEp
i �= SSEq

j .

The value of the constant G is empirically chosen to be 10, which is equal
to half of the range of the normalized score values. The constant G is used to
favor the residue pairs that belong to similar SSEs, and to penalize those that
belong to different SSEs. This constant is a tuning parameter of PADS and the
user may choose to penalize the residues which have different SSE assignments
with a different value for G as desired. Once the calculation of the score matrix
is completed, a dynamic programming alignment algorithm is applied to align
the given structures. We have deployed the local alignment algorithm [20] using
the affine cost gap model with opening and extending gap penalty of -5 and -2,
respectively.

Note that, PADS performs two consecutive alignment procedures, struc-
tural alignment and sequence alignment. Structural alignment aligns the cor-
responding proteins based on their directional shape signatures to find the best
structurally-matched-regions. Thereafter, the sequence alignment [16] is per-
formed on the amino acid sequences of the structurally-matched-regions for fur-
ther refinement of the alignment. For each of the discovered locally matched
regions satisfying length and score constraints5, a sequence alignment is per-
formed to facilitate the visualization of the sequence similarities and further
refinement. The aligned residue coordinates passed through structural and se-
quence alignment steps are then passed to the superimposition stage.

Why did we need to perform the superimposition? The detected best local
alignment passed from the structural alignment step is not necessarily the most
optimal alignment because the directional shape signatures do not include any
information on the proximity/locality of the amino acids (i.e., Center of mass
(C�) was not taken as part of the directional shape signature). Including such
locality features in the shape signature would not have been very meaningful
because the proteins have different coordinate frames. Should the locality infor-
mation be included in the shape signature, then two very similar proteins with
different coordinate frames may be reported non-similar because of their loca-
tion differences. Additionally, the detected patterns may have very poor RMSD
if the gaps produced by the structural alignment are in turn and twist regions of

4 Scores are normalized on the range [1 . . . 20] for all i, j such that 0 < Si,j ≤ 20 to
be similar to that of PAM [7] score matrix and CTSS [5].

5 Length longer than 10 and Score above the 60% of the overall average score.

PADS: Protein Structure Alignment Using Directional Shape Signatures 25

the protein structures. The sequence alignment step aims at eliminating those
regions from affecting the superimposition process. After the local regions are
passed to the superimposition step, the given proteins are translocated to a com-
mon coordinate frame. Once the structures are in a common coordinate system,
they are optimally superimposed on each other (with the necessary displace-
ments and rotations) achieving the minimal RMSD. Finally, after performing
the superimposition, the RMSD values and the length of the best matched re-
gions are reported. Figure 2 provides a summary of PADS procedure.

Input: Protein chains P = [p1, . . . , pN] and Q = [q1, . . . , qM], where each pi and qj represent
the list of coordinates of atoms that constitute the ith and jth amino acids of P and Q,
respectively.

Output: Pairs of aligned/matched fragments of P and Q, reported with their corre-
sponding RMSD and fragment length.
———–

1. Directional Shape Signature Extraction:
– Calculate the center of mass of each amino acid molecule pi and qj , as C�(pi) and

C�(qj), for 1 ≤ i ≤ N and 1 ≤ j ≤ M .
– Calculate the distances between each of the atoms of pi and qj molecules to their

corresponding center of mass C�(pi) and C�(qj), respectively.
– Extract the direction of each amino acid molecule pi and qj .
– Inspect and include the SSE assignment of each pi and qj in the shape signature.

2. Structural local alignment
– Calculate the score matrix for P and Q protein chains as described in section 3.2.
– Run the dynamic programming on the calculated score matrix to find the best

structurally-matched (aligned) fragment pairs of P and Q.
– Report the fragment pairs to the next step.

3. Sequence alignment
– Run the global sequence alignment on the sequences of the structurally-matched frag-

ment pairs
– Remove the gapped regions of the alignment from the fragments, and report the non-

gapped subfragments of the alignment to the next step.
4. Optimal Superimposition

– Find the best rotation and translation matrix to superimpose the matched non-gapped
fragment pairs.

– Report the RMSD and the length of the matched fragment pairs in the sorted order.

Fig. 2. PADS structure similarity procedure

4 Experimental Results

We implemented our proposed technique using Java 1.4.1 and ran our experi-
ments on an Intel Xeon 2.4 GHz with 1GB of main memory. Our experiments
incorporated a representative of PDB database using the PDBSELECT6 method
[11] which does not contain any homologue protein pairs. The PDBSELECT
database is an archive of 2216 non-homologue protein chains with a total num-
ber of 352855 residues (as of December 2003). Each of the protein pairs from
the PDBSELECT protein database has less than 25% sequence identity (non-
homologue). As a result, protein pairs with low sequence similarity may not be

6 For more information refer to http://homepages.fh-giessen.de/ hg12640/pdbselect/

efficiently compared solely based on a sequence-level similarity procedure and

26 S.A. Aghili, D. Agrawal, and A. El Abbadi

therefore introduce a challenging problem where the combination of structure
and sequence alignment is inevitable. As mentioned before, PADS incorporates a
combination of structural and sequence alignment for efficient protein similarity
comparison.

The performance comparison of PADS with other structural alignment meth-
ods is not always possible. One of the main challenges is the running time com-
parison of the proposed technique against current existing heuristics. This is
mainly because most of the available techniques are provided as web services in
which the results are notified back to the user through an e-mail. As a result,
the time interval between submitting a query and obtaining the results does not
truly reflect the running time of the applied method. There are many factors
that may affect the running time. The servers may include pre-evaluated results
for the known structures, and hence the results may be returned very fast. They
may be using parallel clusters or various hardware setups for faster computation
of the results. The DALI [12] interactive database search7 may report the results
back in 5 to 10 minutes or 1 to 2 hours depending on whether the query protein
has a homologue in the database [5]. Meanwhile the most important obstacle is
the fact that various structural alignment techniques may lead to non-identical
results which makes the quality assessment an even harder problem. There are
cases when the regions found very similar by one technique are not validated
by other techniques8. Since there is no exact solution to the structural align-
ment problem, a combination of various techniques along with domain expert is
needed to evaluate and ascertain all the similarities.

In the experiments, we discovered motifs not reported by other alignment
tools such as CE [18], DALI [12], and CTSS [5]. The aligned fragment pairs are
reported as a pair of fragments (r1, r2) where r1 and r2 denote the location of the
matched fragments in the first and second protein chains, respectively. One such
motif discovered by our technique was between 1AKT: (made of 147 residues
and 1108 atoms) and 1CRP: (made of 166 residues and 2619 atoms) protein
chains (having 8.9% sequence identity) with RMSD 0.58 Å. Figure 3 shows the
results of structural alignments on 1AKT: and 1CRP: protein chains using CE9

and PADS, respectively. These results are reported after finding the best similar
regions (fragments) followed by the optimal superimposition of the structures
of the corresponding matched fragments. However, the results are shown at the
sequence level for the sake of visualization. In figure 3(b), the fragments reported
by PADS are demonstrated using the output of CE as the base for better visual
comparison of the results. The local fragments are identified by three numbers
in the R(L,ϕ) format, where R, L and ϕ = L

R denote RMSD, length and the
fragment score of the aligned (matched) fragments, respectively. The fragment

7 http://www.embl-ebi.ac.uk/dali/
8 Please refer to Table VI in [18]
9 The results of CE were obtained by submitting the corresponding protein chains to

CE’s interactive web server at http://cl.sdsc.edu/ce.html

score denotes the quality of the matched fragments and the best aligned fragment
is the one with the highest fragment score. PADS reports the aligned fragment
pairs sorted by their corresponding fragment scores in decreasing order.

PADS: Protein Structure Alignment Using Directional Shape Signatures 27

Table 2. Comparison of detected similar regions between 1AKT: and 1CRP: protein
chains using PADS and DALI methods with alignment rank ϕ = Fragment Length

RMSD

PADS DALI
Rank ϕ Fragment size RMSD (Å) 1AKT: 1CRP: 1AKT: 1CRP:

– [1–8] [4–11]
2 11.66 14 1.2 [10–23] [12–35] [12–15] [12–15]

[18–23] [16–21]
– [26-29] [41–44]
5 3.7 20 5.4 [35–54] [51–70] [30–36] [53–59]

[43–58] [69–84]
4 6.66 28 4.2 [75–101] [98–125] [65–81] [88–104]

[83–92] [107–116]
[93–100] [118–125]

3 7.64 13 1.7 [108–121] [130–142] [104–112] [130–138]
[121–124] [140–143]

– [129–133] [146–150]
1 29.31 17 0.58 [131–147] [149–165] [135–147] [151–163]

Table 2 shows a detailed comparison of PADS against DALI10 [12] on the
very same pair of protein chains. Each column pair (1AKT: , 1CRP:) indi-
cates the location of the aligned fragments in the corresponding protein chains.
The correspondence of the detected aligned fragments of PADS and DALI are
noted in rows and labeled with ϕ to indicate the quality of the aligned fragments
and their corresponding ranks as reported by PADS technique. There are some
matched fragments reported by PADS, which do not have counterparts in the
results returned by DALI. However, it is interesting to note that, the fragments
matched using PADS with higher ϕ tend to be those fragment pairs having a
higher level of similarity to their corresponding aligned fragments as reported
by DALI. As a result, highly-ranked matched fragment pairs reported by PADS,
have very similar counterparts in the results reported by DALI. We use DALI
to validate the quality of our results, while DALI is designed with very insight-
ful domain expertise and is expected to return biologically meaningful results.
PADS results are very similar, though not identical, to that of DALI and in some
cases, the fragment pairs reported by PADS are a combination of some consecu-
tive fragment pair outputs of DALI. Meanwhile, running PADS on 1AKT: and
1CRP: protein chains takes only 0.1 CPU seconds.

Similarly, the reported results on the very same pair of protein chains were
compared against the CTSS [5] algorithm. CTSS reports the best aligned frag-
ment pair between 1AKT: and 1CRP: protein chains to be ([89–113],[140–164])
with length 24 and RMSD 2.14 Å with a fragment score of ϕ=11.21. On a relative
note, the best aligned fragment pair reported by PADS is ([131–147],[149–165])

10 The results of DALI were obtained by submitting the corresponding protein chains
to DALI’s interactive web server hosted by European Bioinformatics Institute at
http://www.ebi.ac.uk/dali/

of length 17, though with an RMSD of 0.58 Å and the fragment score of ϕ=29.31.
Although the best fragment pair reported by PADS has smaller length however
it is aligned with a substantially better RMSD value (by a factor of 3.6) and
higher quality of the alignment (by a factor of 2.6) noted by ϕ. The calculation

28 S.A. Aghili, D. Agrawal, and A. El Abbadi

Fig. 3. (a) Structural alignment (shown at the sequence level) between 1AKT: and
1CRP: using CE. (b) The RMSD, extent and score of local fragments discovered by
PADS structural alignment (shown at the sequence level) between 1AKT: and 1CRP:
(The output of CE is also shown for comparison purposes)

of the value of ϕ in our algorithm is identical with its counterpart in the CTSS
method. The intuition behind PADS finding a better fragment pair compared
with CTSS, is as follows. The CTSS method approximates each protein chain by
a spline (curve), however PADS represents each chain as a series of directional
shape signatures (a sequence of polyhedrons in multidimensional space). To give
a better visual example, suppose we would like to represent a snake, then CTSS
approximates its shape with a rope while PADS approximates the shape using
a chain of polyhedral beads for a more precise approximation.

5 Conclusion and Future Work

In this paper, we introduced a novel data representation technique incorporating
multidimensional shape similarity and data mining techniques for the problem of
structural alignment of protein structure databases. We evaluated the quality of
the results of PADS on a pair of protein chains and compared the corresponding
results with the other methods. The results demonstrate highly accurate (the
reported fragments have very high score with the RMSD value much better than
all other methods), consistent (the fragment pairs reported similar by PADS had
high overlap with regions reported similar by other methods) results compared
with DALI, CE, and CTSS protein structure similarity methods, while running
only in fractions of a second. PADS may be used in collaboration with other
protein alignment methods such as DALI and CE for providing a larger number
of fragment pairs. One could potentially use PADS to get an instant feedback
of the location and quality of the matched regions, and thereafter run the time-
consuming DALI method to achieve the most accurate results, if desired. We
intend to perform database-against-database structure similarity search for pro-
tein classification and add a 3D visualization tool to PADS for better assessment
of fragment pair discovery.

PADS: Protein Structure Alignment Using Directional Shape Signatures 29

References

1. Protein data bank(pdb). http://www.rcsb.org/pdb/holdings.html, 2004.
2. S. A. Aghili, D. Agrawal, and A. E. Abbadi. Pads: Protein structure alignment

using directional shape signatures. Technical Report 2004-12, UCSB, May 2004.
3. S. A. Aghili, D. Agrawal, and A. E. Abbadi. Similarity search of protein structures

using geometrical features. In Proceedings of Thirteenth Conference on Information
and Knowledge Management (CIKM), pages 148–149, 2004.

4. P. Bradley, P. Kim, and B. Berger. Trilogy: Discovery of sequence-structure pat-
terns across diverse proteins. Proc. Natl. Academy of Science, 99(13):8500–5, 2002.

5. T. Can and Y. Wang. Ctss: A robust and efficient method for protein structure
alignment based on local geometrical and biological features. In IEEE Computer
Society Bioinformatics Conf., pages 169–179, 2003.

6. O. Çamoğlu, T. Kahveci, and A. Singh. Towards index-based similarity search
for protein structure databases. In IEEE Computer Society Bioinformatics Conf.,
pages 148–158, 2003.

7. M. Dayhoff and R. Schwartz. Atlas of protein sequence and structure. Nat. Biomed.
Res. Found., 1978. Washington.

8. J. Gibrat, T. Madej, and S. Bryant. Surprising similarities in structure comparison.
Current Opinion Structure Biology, 6(3):377–85, 1996.

9. A. Godzik. The structural alignment between two proteins: is there a unique
answer? Protein Sci., 5:1325–1338, 1996.

10. D. Higgins and W. Taylor. Bioinformatics: Sequence, Structure and Databanks.
Oxford University Press, 2000.

11. U. Hobohm, M. Scharf, and R. Schneider. Selection of representative protein data
sets. Protein Science, 1:409–417, 1993.

12. L. Holm and C. Sander. Protein structure comparison by alignment of distance
matrices. J. Molecular Biology, 233(1):123–138, 1993.

13. L. Holm and C. Sander. 3-d lookup: Fast protein database structure searches at
90% reliability. In ISMB, pages 179–185, 1995.

14. G. Lua. Top: a new method for protein structure comparisons and similarity
searches. J. Applied Crystallography, 33(1):176–183, 2000.

15. T. Madej, J. Gibrat, and S. Bryant. Threading a database of protein cores. Pro-
teins, 23:356–369, 1995.

16. S. Needleman and C. Wunsch. General method applicable to the search for similar-
ities in the amino acid sequence of two proteins. J. Molecular Biology, 48:443–453,
1970.

17. X. Pennec and N. Ayache. A geometric algorithm to find small but highly similar
3d substructures in proteins. Bioinformatics, 14(6):516–522, 1998.

18. I. Shindyalov and P. Bourne. Protein structure alignment by incremental combi-
natorial extension (ce) of the optimal path. Protein Engineering, 11(9):739–747,
1998.

19. A. Singh and D. Brutlag. Hierarchical protein structure superposition using both
secondary structure and atomic representations. In Proc. Int. Conf. Intelligent
System Mol. Bio., pages 284–93, 1997.

20. R. Smith and M. Waterman. Identification of common molecular subsequences. J.
Mol. Bio., 147(1):195–197, 1981.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 30 – 42, 2005.
© Springer-Verlag Berlin Heidelberg 2005

LinkageTracker: A Discriminative Pattern Tracking
Approach to Linkage Disequilibrium Mapping

Li Lin1, Limsoon Wong2, Tzeyun Leong3, and Pohsan Lai4

1 3 School of Computing, National University of Singapore
2 Institute for Infocomm Research, Singapore

4 Dept of Pediatrics, National University Hospital, National University of Singapore
{linl, leongty}@comp.nus.edu.sg, limsoon@i2r.a-star.edu.sg,

paelaips@nus.edu.sg

Abstract. Linkage disequilibrium mapping is a process of inferring the disease
gene location from observed associations of marker alleles in affected patients
and normal controls. In reality, the presence of disease-associated chromosomes
in affected population is relatively low (usually 10% or less). Hence, it is a
challenge to locate these disease genes on the chromosomes. In this paper, we
propose an algorithm known as LinkageTracker for linkage disequilibrium
mapping. Comparing with some of the existing work, LinkageTracker is more
robust and does not require any population ancestry information. Furthermore
our algorithm is shown to find the disease locations more accurately than a
closely related existing work, by reducing the average sum-square error by
more than half (from 80.71 to 30.83) over one hundred trials. LinkageTracker
was also applied to a real dataset of patients affected with haemophilia, and the
disease gene locations found were consistent with several studies in genetic
prediction.

1 Introduction

Linkage disequilibrium mapping has been used in the finding of disease gene
locations in many recent studies [6][13]. The main idea of linkage disequilibrium
mapping is to identify chromosomal regions with common molecular marker alleles1
at a frequency significantly greater than chance. It is based on the assumption that
there exists a common founding ancestor carrying the disease alleles, and is inherited
by his descendents together with some other marker alleles that are very close to the
disease alleles. The same set of marker alleles is detected many generations later in
many unrelated individuals who are clinically affected by the same disease. In a
realistic setting, the occurrence of such allele patterns is usually very low, and most
often consist of errors or noise. For instance, the hereditary mutations of BRCA-1 and

1 A molecular marker is an identifiable physical location on the genomic region that either tags a

gene or tags a piece of DNA closely associated with the gene. An allele is any one of a series
of two or more alternate forms of the marker. From the data mining aspect, we could represent
markers as attributes, and alleles as attribute values that each attribute could take on.

,

 LinkageTracker: A Discriminative Pattern Tracking Approach 31

BRCA-2 genes only account for about five to ten percent of all breast cancer
patients[12]. Assuming that we know that BRCA-1 gene resides somewhere on
chromosome 17, the finding of the exact location of BRCA-1 gene on chromosome
17 based on a set of sample sequence collected from breast cancer patients where at
most ten percent of the sample sequence exhibit allelic association or linkage
disequilibrium is a nontrivial task. To further complicate this task, the linkage
disequilibrium patterns also consist of errors due to sample mishandling and
contamination.

Due to errors and low occurrence of linkage disequilibrium patterns, existing data
mining and artificial intelligence methods involving training and learning will not be
applicable. In this paper, we propose a novel method known as LinkageTracker for
the finding of linkage disequilibrium patterns and inference of disease gene locations.
First of all, we identify the set of linkage disequilibrium patterns using a heuristic
level-wise neighbourhood search and score each pattern by computing their p-values
to ensure high discriminative powers of each pattern. After which, we infer the
marker allele that is closest to the disease gene based on the p-value scores of the set
of linkage disequilibrium patterns. LinkageTracker is a nonparametric method as it is
not based on any assumptions about the population structure. The method is robust to
cater for missing or erroneous data by allowing gaps in between marker patterns.
Comparing our method with Haplotype Pattern Mining (HPM) which was reported by
Tiovonen et. al. [16], LinkageTracker outperforms HPM by reducing the average
sum-square error by more than half (from 80.71 to 30.83) over one hundred trials.

Organization of This Paper. In the next section, related work will be introduced,
followed by a technical representation of the problem and a detailed description of the
LinkageTracker algorithm. Next, the optimal number of gaps to set on
LinkageTracker to achieve good accuracy will be discussed. We will then evaluate the
performance of LinkageTracker with a recent work known as Haplotype Pattern
Mining (HPM). Finally, we conclude our paper with a summary and the directions for
future work.

2 Related Works

There are generally two methods used for detecting disease genes, namely, the direct
and the indirect methods. Techniques used in the direct method include allele-specific
oligonucleotide hybridization analysis, heteroduplex analysis, Southern blot analysis,
multiplex polymerase chain reaction analysis, and direct sequencing. A detailed
description of these techniques is beyond the scope of this paper but is available in [3]
and [10]. Direct method requires that the gene responsible for the disease be identified
and specific mutations within the gene characterized. As a result, direct method is
frequently not feasible, and, the indirect method is used. The indirect methods such as
[7], [14], and [16] involves the detection of marker alleles that are very close to or are
within the disease gene, such that they are inherited together with the disease gene
generation after generation. Such marker alleles are known as haplotypes. Alleles at
these markers often display statistical dependency, a phenomenon known as linkage

32 L. Lin et al.

disequilibrium or allelic association [5]. The identification of linkage disequilibrium
patterns allows us to infer the disease gene location. Most commonly, linkage
disequilibrium mapping involves the comparison of marker allele frequencies
between disease chromosomes and control chromosomes.

Kaplan et. al. [7] developed a maximum likelihood method for linkage
disequilibrium mapping which estimates the likelihood for the recombination fraction
between marker and disease loci by using a Poisson branching process. The likelihood
of the haplotypes observed among a sample of disease chromosomes depends on their
underlying genealogical relationships, the rates of recombination among markers, and
the time since the mutation arose. Although likelihood methods have many desirable
properties when used on data whose population ancestry is well understood, it is
difficult to evaluate the likelihood when the data is arising from a huge number of
possible ancestries.

DMLE+ proposed by Rannala & Reeve [14] uses Markov Chain Monte Carlo
methods to allow Bayesian estimation of the posterior probability density of the
position of a disease mutation relative to a set of markers. As similar to the maximum
likelihood method, DMLE+ has many good properties when applied to data whose
population ancestry is well understood. However, DMLE+ requires some prior
information such as the fraction of the total population of present-day disease
chromosome, growth rate of population and the age of the mutation, which may not
be readily available. Furthermore, it is assumed that every sample sequence carries
the disease mutation, although the authors claimed that this assumption can be
relaxed, details on the extent that this assumption can be relaxed was not discussed.

Recently, Tiovonen et. al. [16] introduced a linkage disequilibrium mapping
algorithm known as haplotype pattern mining (HPM). Firstly, HPM uses the
association rule mining algorithm [1] to discover a set of highly associated patterns by
setting the Support threshold to a certain value. Next, HPM uses chi-square test to
discriminate disease association from control association. Finally, HPM computes the
marker frequency for each of the markers. The frequency for each marker is computed
by counting the number of associated patterns consisting of that specific marker. The
marker with the largest frequency is predicted as closest to the disease gene. The main
drawback of this algorithm is that it suffers from the rare item problem. As it uses
association rule mining algorithm to discover highly associated patterns, and such
patterns are relatively rare in the problem of linkage disequilibrium mapping. As a
result the support threshold will need to be set at a very low value in order to discover
those highly associated patterns.

Comparing LinkageTracker with the maximum likelihood method and DMLE+,
the two methods require information about the population ancestry and assumes that
the disease mutation occurs in most (or all) sample sequences, whereas
LinkageTracker does not require any population ancestry information and allows for
the disease mutation to occur in as low as 10% of the sample sequences. When
compared to HPM, the LinkageTracker dose not use Support in the assessment of
marker patterns, instead LinkageTracker uses a statistical method known as odds ratio
to detect discriminating patterns that are highly associated within the patient data but
not in the control data. Hence, the finding of candidate/potential linkage
disequilibrium patterns and scoring their degree of associations are combined into a

 LinkageTracker: A Discriminative Pattern Tracking Approach 33

single step. Also as mentioned by Tamhane & Dunlop [15], chi-square test only
indicate whether there exists statistically significant association, but it does not
account for the magnitude of association. It is thus possible to have a significant chi-
square statistics although the magnitude of association is small. The most common
measure of the magnitude of association is the odds ratio method. LinkageTracker
infers the marker closest to the disease gene by combining the p-values of association
patterns consisting of that marker using a method recommended by Fisher [4], and not
based on the marker frequency as in the HPM algorithm.

3 Technical Representation of LinkageTracker

The general framework of the LinkageTracker can be represented as a quintuple
<D, Ω, L, Ψ, T> where

 D is a dataset consisting of M vectors <x1,…, xM>, where each xi is a vector <di1,…,
din> that describes the allele values of n genes/markers in a particular biological
sample.

 For each position d*j, ωj = {v1,…, vt} denotes the set of all possible expression
values that d*j could take on, and Ω is a collection of {ω1,…, ωn}.

 A labelling for D is a vector L = <l1,…, lM>, where the label li associated with xi is
either abnormal (a biological sequence derived from an individual exhibiting
abnormality) or normal (a biological sequence belonging to a normal control).

 Ψ is the neighbourhood definition. The neighbourhood determines the maximum
allowable gap size within each pattern. The gap setting is to enable LinkageTracker
to be robust to noise. In a very noisy environment, larger gap size is required for
better accuracy by extending the search space, at the expense of computational
speed.

 T∈ ℜ+ is the threshold value for accepting a particular pattern. In statistical terms,
T is the level of significance of the test. When the pattern score is less than T, the
pattern is considered as significant, and will be kept for further processing.

The output P is a set of linkage disequilibrium patterns with high discriminative
powers. A pattern p=<d*i, d*j,…,d*k> where p ∈ P, such that i < j < k. Based on the
set of patterns in P, we infer the marker allele that is closest to the disease gene. For
each marker allele, we combine the p-values of all patterns in P that consist of that
marker allele. The method to combine p-values was first introduced by Fisher [4], and
will be described in detail in the next section.

4 LinkageTracker Algorithm

There are two main steps in the LinkageTracker algorithm. Step 1 identifies a set of
linkage disequilibrium patterns which are strong in discriminating the abnormal from
the normal, and step 2 infers the marker allele that is closest to the disease gene based
on the linkage disequilibrium patterns derived in step 1.

34 L. Lin et al.

4.1 Step 1: Discovery of Linkage Disequilibrium Pattern

LinkageTracker uses a statistical method known as odds ratio to score each
potential/candidate pattern. If the p-value of a pattern is below the threshold T, then it
is considered as having a significant discriminative power, and will be kept for further
processing. Odds ratio provides a good measure of the magnitude of association
between a pattern and the binary label L, which is crucial in determining the
discriminative power and the allelic associations of a pattern. In this section, we will
first of all describe the odds ratio method; follow by the details of level-wise
neighbourhood searches for potential/candidate patterns and scoring them.

Odds Ratio. Given a pattern x, odds ratio computes the ratio of non-association
between x and the label L, to the association between x and L based on a set of data.
For example, given a pattern, say (1,3), we are interested in finding out whether the
marker pattern (1,3) is strongly associated with the label abnormal. Table 1 shows the
contingency table for our example; odds ratio is defined as follows:

Odds Ratio, θ =
1001

0011

ππ
ππ (1)

To test the significance of the magnitude of association, we compute the p-value of
each pattern, and compare the p-value against T, if the p-value is less than or equals to
T, the pattern is significant and we will use it for marker inference in the later stage. If
the p-value is greater than T, the pattern is not significant, and will be discarded. The
threshold T that we use has been adjusted using a method called Bonferroni
Correction [11] in order to guarantee that the overall significance test is still at level T
despite that we have made independent tests on each of the pattern.

Table 1. 2x2 contingency table

 Abnormal Normal

not(1,3) π00 π01

(1,3) π10 π11

LinkageTracker Algorithm. LinkageTracker mines patterns of the form <d*i,
d*j,…,d*k>, for example, (3,5,6,*,*,4) is a marker pattern of length 4. The symbol “*”
represents missing or erroneous marker allele, and will not be taken into consideration
when testing for significance of the pattern. Also the symbol “*” will not be
considered when computing the length of a marker pattern. Therefore, marker patterns
(1,*,*,3), (1,*,3), and (1,3) are all considered as having length of 2.

A gap is a “*” symbol in between two known marker alleles. For instance, the
marker patterns (1,*,*,*3) has three gaps, (1,*,3) has one gap, and (1,3) has no gaps.
The maximum number of gaps for this marker pattern (1,*,*,3,*,*,*,*,5) is four, as
there are at most four gaps in between any two known marker alleles. The user is able
to set the maximum number of gaps for the marker patterns. However, we recommend

 LinkageTracker: A Discriminative Pattern Tracking Approach 35

that a maximum allowable gap to be 6, giving the highest accuracy if the markers are
spaced at 1 cM2. The detail of such a recommendation is given in the later section.

To find linkage disequilibrium patterns using odds ratio, one of the way is to use
the brute force method. That is, we could enumerate all possible marker patterns of
length one, two, and three etc, and compute the odds ratio of each of the pattern and
select those patterns that are significant. However, there are some practical difficulties

to this approach: for n markers each with m alleles, there are km
k

n marker patterns

of length k, which we need to test for significance. Combinatorial explosion occurs as
the length of marker patterns increases.

The enumeration of all possible marker patterns is in fact unnecessary. This is
because, base on studies by Long & Langley [9], allelic associations are detectable
within a genomic region of 20cM, allelic associations beyond 20cM are weak and are
not easily detectable. Therefore, enumerating marker patterns whose marker alleles
are more than 20cM apart is unlikely to yield significant results. Based on this
observation, LinkageTracker uses a heuristic search method which allows the user to
restrict its search space by controlling the maximum allowable gap size between two
marker alleles. As described in section 3, the gap size setting Ψ helps to define the
search space of LinkageTracker as well as to enable its robustness to noise. For
simplicity of illustration, all examples in this paper assume that the markers are
spaced at 1cM apart, furthermore, the markers in the simulated datasets (generated by
Toivonen et. al. [16]) applied by LinkageTracker are all spaced at 1cM apart.

LinkageTracker is a heuristic level-wise search method which allows only
significant marker patterns (or linkage disequilibrium patterns) of length i-1 at level
i to join with their neighbors (of length 1) whose join would satisfy the maximum
gap constraint Ψ to form candidate/potential marker patterns of length i, where 1 ≤ i
≤ n and n is the number of markers. We call the procedure of joining linkage
disequilibrium patterns at each level to form longer patterns the neighborhood join.
Note that in neighborhood join, only the marker patterns of length i-1 need to be
significant, the neighbors that they join with need not be significant and may be
several markers apart.

Fig. 1. Illustration of marker positions

2 cM stands for centimorgan. It is the unit of measurement for genomic distance. In human

genome, 1 centimorgan is approximately equivalent, to 1 million base pairs.

36 L. Lin et al.

A marker allele exhibits significant allelic association with the disease gene under
two conditions. Firstly, it is significant on its own when tested (i.e. at level 1).
Secondly, when combine with other marker alleles that exhibit allelic associations
with the disease gene, it become significant when tested.

The former condition is trivial to detect, the latter condition is concerned with a
marker allele who shows significant allelic association with the disease gene when
combine with other significant marker alleles but is insignificant when assessed alone.
Let us denote this maker allele as Mx. This problem can be further divided into 2
cases. The first case is that Mx is close to a neighbor Mi that is significant when tested
alone. The term “close” here means that Mx will be selected to join with Mi directly to
form marker patterns for the immediate next level. For example, two markers say Mx
and My are both not significant at level 1, hence they will be discarded when forming
marker patterns for level 2. Now, we have Mi which is an immediate neighbor of My
showing significant allelic association in level 1 (assuming that the markers are
ordered as follows: Mi, My and Mx). Hence, in level 2, Mi will be made to combine
with its neighbors to form marker patterns of length 2. Since My is the immediate
neighbor of Mi, My will be selected to form pattern with Mi. Although Mx is one
marker away from Mi, Mx will also be selected, because LinkageTracker allows
joining with markers that are some gaps away as described above. Hence, in level 2,
both My and Mx are included in the marker patterns.

The second case is that Mx is very far from a marker allele Mz that is significant
when tested alone. The term “far” here means that Mx is less than 20 markers away
from Mz, but is far enough such that Mx will not be selected by Mz to form marker
pattern for the immediate next level. For example, from Figure 1, Mx and Mz is 8
markers apart. Assuming that the maximum allowable gap size is set to 2, Mz is made
to combine with Ma, Mb, and Mc to form patterns of length 2. Assuming that (Mz,Mc)
is tested significant, then (Mz,Mc) will combine with Md, Me,and Mf to form patterns
of length 3. Assuming that (Mz,Mc,Mf) is tested significant, then (Mz,Mc,Mf) will
combine with Mg, Mh, and Mx to form patterns of length 4. Hence, Mx will ultimately
be detected to form marker patterns under the condition that there are sufficient
significant “intermediate” allele markers such as Mc and Mf, to facilitate the detection
of allelic associative marker alleles that are much further away (i.e. Mx).
Nevertheless, as in accordance with the studies by Long & Langley [9], most marker
alleles exhibiting allelic associations with the disease gene will occur within a
distance of 20cM from the disease gene, which means that marker alleles exhibiting
allelic associations with the disease gene are quite densely packed within the 20
makers region. Hence, the chances of LinkageTracker detecting significant marker
alleles within the range of 20 markers are relatively high even though LinkageTracker
is a heuristic method.

4.2 Step 2: Marker Inference

As mentioned in the earlier section, we infer the marker closest to the disease gene by
combining the p-values of the highly associated patterns. Now, let us describe how we
could combine p-values from n patterns to form a single p-value. R.A. Fisher’s

 LinkageTracker: A Discriminative Pattern Tracking Approach 37

method [4] specifies that one should transform each p-value into c = -2 * LN(P),
where LN(P) represents the natural logarithm of the p-value. The resulting n c-values
are added together, and their sum, (c), represents a chi-square variable with 2n
degree of freedom. For example, to find the marker closest to the disease gene, we
compute the combine p-value and the frequency for each marker allele. In Figure 2a,
Marker 2 has allele 4 occurring four times, its combined p-value is 1.4 * 10-6, which is
the chi-square distribution of (c) = 9.4211 + 10.0719 + 11.6183 + 10.8074 =
41.9186 with 8 degree of freedom. Figure 2b depicts the combined p-value for each of
the marker alleles from Figure 2a. As we can see Marker 2 allele 4 has the lowest
combined p-value, and hence we infer that Marker 2 is closest to the disease gene. If
more than one marker alleles have the same lowest p-value, then the marker with the
highest frequency is selected as the marker closest to the disease gene.

Marker 1 2 3 4 5 6 P-Value c = -2 * ln(P)
Pattern01 * 4 3 * * * 0.0090 9.4211
Pattern02 2 4 * * 6 1 0.0065 10.0719
Pattern03 2 4 3 5 * * 0.0030 11.6183
Pattern04 * * 3 5 * 1 0.0100 9.2103
Pattern05 2 4 * 5 6 * 0.0045 10.8074

(a)

 Freq (c) Combine P-Value
Marker 1 allele 2 3 32.4975 1.3098E-05
Marker 2 allele 4 4 41.9186 1.4027E-06
Marker 3 allele 3 3 30.2497 3.5236E-05
Marker 4 allele 5 3 31.6390 1.9160E-05
Marker 5 allele 6 2 10.0719 0.0392
Marker 6 allele 1 2 19.2822 0.007

(b)

Fig. 2. a) Example of 5 linkage disequilibrium patterns. b) Combine p-value of each marker
allele from (a)

5 Setting the Optimal Number of Gaps

To accurately find the marker closest to the disease gene, it is important to determine
the optimal number of gaps to use. The marker alleles that show significant allelic
associations with the disease gene (within 20 markers region) should minimize the
number of joins with neighbors beyond the 20 markers region. This is because the
joining of a significant marker allele with some neighbors that are beyond the 20
markers region will inevitably introduce some false positive marker patterns or noise.
Such false positive marker patterns will result in the reduction in accuracy during
marker inference. On the other hand, we want to be as robust as possible, that is, to
maximize the total possible gaps so as to cater for erroneous marker alleles. Based on

38 L. Lin et al.

these two conditions, we compute the Score for each gap setting g as follows for
patterns of length 2:

Score(g) =

=

=
g

i
i

g

i
i

Noise

Robustness

0

0

(2)

Figure 3 shows the Score values for gap settings between 0 to 20. Different gap
settings will result in different values for Noise and Robustness. We shall now
illustrate how the values of Noise and Robustness were computed with examples.

Noise. Noise is defined as the maximum possible number of patterns consisting of
markers beyond the 20 markers region. Figure 4 shows a disease gene that is very
close to marker M1, markers M21 and M22 are in dotted boxes as they are beyond the
20 makers region from the disease gene. Assuming that marker M2 shows significant
association with the disease gene, and we set the maximum allowable gaps to 1, then
M2 can join with its neighbors M3 and M4 to form patterns of length 2, i.e. (M2,M3)
and (M2,M4). Recall that the joining of a significant marker with some neighbors that
are beyond the 20 markers region will introduce Noise. In this case, if markers M19
and M20 are significant, they will join with M21 and M22 to form patterns of length
2. We can see from Figure 4 that M19 and M20 will join with M21 and M22 in three
ways, as illustrated by the dotted arrows. Hence, the maximum possible number of

patterns consisting of markers beyond the 20 markers region (i.e.
=

1

0i
iNoise) is 3

when the gap setting is 1. The Noise values for gap settings from 2 to 20 were
computed similarly.

Robustness. Before computing the Robustness values, we need to compute the
maximum possible number of patterns p formed within the 20 markers region when
the gap setting is g. When the gap setting g is set to 1, we can have at most 18 patterns
(i.e. p = 18) as illustrated by the arrows in Figure 5. With the values of p for different
values of g, we define Robustness as the maximum number of patterns formed within
the 20 markers region weighted by the gap setting g itself:

Robustness = p× g. (3)

Recall that it is desirable to have wider gaps so as to cater for erroneous marker
alleles, hence the value of Robustness increases as the value of g increases. As we can
see from Figure 3 that the gap setting of 6 has the highest Score value, hence we
recommend that for a dataset with more than 20 markers to each chromosome (i.e.
more than 20 attributes to each record) and each marker is spaced at 1cM apart, the
optimal allowable gap setting should be 6.

To verify our above recommendation, we evaluated the performance of
LinkageTracker by varying the gap settings from 2 to 10 on 100 realistically
simulated datasets generated by Tiovonen et. al. [16] (details in the next section). The
sum-square errors were computed for different gap settings g when applied to the 100
datasets. We found that the gap setting of 6 has the lowest sum-square error, which
means that it has the highest accuracy. This is in compliance with our above
recommendation.

 LinkageTracker: A Discriminative Pattern Tracking Approach 39

Num. of Gaps
(g)

Noise
Num. Of patterns p
form with g gaps

Robustness
= p × g

Score(g)

0 1 19 0 0

1 2 18 18 6

2 3 17 34 8.67

3 4 16 48 10

4 5 15 60 10.67

5 6 14 70 10.95

6 7 13 78 11

7 8 12 84 10.89

8 9 11 88 10.67

9 10 10 90 10.36

10 11 9 90 10

11 12 8 88 9.59

12 13 7 84 9.14

13 14 6 78 8.67

14 15 5 70 8.17

15 16 4 60 7.65

16 17 3 48 7.11

17 18 2 34 6.56

18 19 1 18 6

19 20 0 0 0

20 21 0 0 0

Fig. 3. Score values for 0 to 20 gaps

Fig. 4. The darken circle indicates the disease gene location

Fig. 5. Joining of markers when gap setting g is 1

40 L. Lin et al.

6 Evaluation

6.1 Generated Datasets

The datasets used in our experiments are generated by Tiovonen et. al. [16] and are
downloadable from the following URL: http://www.genome.helsinki.fi/eng/research/
projects/DM/index-ajhg.html. The simulated datasets correspond with the realistic
isolated founder populations which grow from 300 to about 100,000 individuals over
a period of 500 years. The simulation of isolated population is suited to linkage
disequilibrium studies as recommended by Wright et. al. [17].

There are altogether 100 datasets each consists of 400 biological sequences where
200 sequences were labeled “abnormal” and 200 labeled “normal”, each biological
sequence consists of 101 markers. The datasets were generated such that each dataset
has a different disease gene location, and our main task is to predict the marker (or
attribute) that is nearest to the disease gene for each dataset.

6.2 Comparison of Performance on Generated Datasets

Figure 6 shows the performance of HPM (proposed by Tiovonen et. al. [16]) and
LinkageTracker when applied to the generated datasets. Each point on the graph
depicts the predicted disease gene location by HPM if marked “ ” and the predicted
disease gene location by LinkageTracker if marked “+”, for the 100 dataset. The
straight line depicts that the predicted location is the same as the actual location, the
closer the “ ” or “+” marks to the straight line the more accurate is the prediction. As
we can see that the accuracy of LinkageTracker is reasonably good with only one
significant outlier, whereas HPM has two significant outliers. The same outlier was
encountered by LinkageTracker when tested on different gap settings, which means

Fig. 6. Comparison of prediction accuracies between HPM and LinkageTracker

 LinkageTracker: A Discriminative Pattern Tracking Approach 41

that there may exists some errors in this dataset such that a “pseudo region” occurs
that differentiate itself from the normal population that is much more significant than
the true region with the disease gene. The average sum-square error for HPM is
80.71, and the average sum square error for LinkageTracker is 30.83. Hence,
LinkageTracker outperforms HPM in general with lower sum-square error. Even after
we remove the common outlier between LinkageTracker and HPM, LinkageTracker
continues to outperform HPM with an average sum-square error of 6.40, as compared
to HPM with an average sum-square error of 15.47.

6.3 Performance on Real Dataset

We applied our algorithm on a real dataset, consisting of patients affected by
hemophilia from Singapore3, and a set of matching unaffected individuals.
Hemophilia A is an X-linked recessive bleeding disorder that results from deficiency
and/or abnormality of coagulation factor VIII (FVIII) [2]. The FVIII gene spans 186
kb of DNA and resides on 0.1% of the X chromosome (band Xq28).

A set of markers located on chromosome Xq28 which tags the hemophilia A
disease gene were collected and analyzed from 47 patients and 47 matched normal
controls. The LinkageTracker detected Bcl I RFLP marker as the closest to the
disease susceptible gene. Our prediction results showing Bcl I association was found
and confirmed through elaborate biological experiments, as Bcl I is an intragenic SNP
(single nucleotide polymorphism) in intron 18 of FVII gene and is linked to
hemophilia A disease phenotype [8]. LinkageTracker is able to guide or narrow the
investigation in identifying the polymorphic markers that tag the disease genes.

7 Conclusions and Future Work

We have introduced a new method of inferring the location of disease genes based on
observed associations known as LinkageTracker. LinkageTracker has shown to be
highly accurate in both simulation-generated and real genetic datasets. We have also
recommended the optimal number of gaps to set on LinkageTracker to achieve good
accuracy. Comparing with the maximum likelihood method and DMLE+, the two
methods require information about the population ancestry and assume that the
disease mutation occurs in most or all sample sequences, whereas LinkageTracker
does not require any population ancestry information and allows for the disease
mutation to occur in as low as 10% of the sample sequences. Comparing the
performance of LinkageTracker with a recent work known as HPM, LinkageTracker
outperforms HPM with lower average sum-square error. Even after we remove the
common outlier, the sum-square error of LinkageTracker remains significantly lower
than the average sum-square error of HPM. In the future, we plan to extend this work
to identify boundaries in which all the significant patterns can be bounded and
ultimately guarantees that all significant patterns can be found.

3 Data is obtained from Department of Pediatrics, National University Hospital, National

University of Singapore.

42 L. Lin et al.

Acknowledgements

This research is partially supported by a Research Grant No. R-252-000-111-112/303
from the Agency for Science, Technology, and Research (A*Star) and the Ministry of
Education in Singapore.

References

[1] R. Agrawal, and R. Srikant. Fast algorithm for mining association rules. In Proceedings
of the Very Large Data Bases (VLDB) Conference, 1994.

[2] S. Antonarakaris, H. Kazazian, E. Tuddenham. Molecular etiology of factor VIII
deficiency in hemophilia A. Human Mutation, 5:1-22,1995.

[3] A. Beaudet, C. Scriver, W. Sly, D.Valle. Genetics, biochemistry, and molecular basis of
variant human phenotypes. In: Scriver CR, Beaudet AL, Sly WS, et al, eds. The
Metabolic and Molecular Basis of Inherited Disease. 7th ed. New York, NY: McGraw-
Hill, Inc; 2351-2369, 1995.

[4] R. Fisher. Statistical methods for research workers, 14th edition. Hafner/MacMillan,
New York, 1970.

[5] D. Goldstein, and M. Weale. Population genomics: Linkage disequilibrium holds the key.
Current Biology, 11:R576-R579, 2001.

[6] J. Hastbacka, A. de la Chapelle, I. Kaitila, P. Sistonen, A. Weaver, and E. Lander.
Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in
Finland. Nature Genetics, 2:204-211, 1992.

[7] N. Kaplan, W. Hill, and B. Weir. Likelihood methods for locating disease genes in non-
equilbrium populations. American Journal of Human Genetics, 56:18–32, 1995.

[8] S. Kogan, M. Doherty, J. Gitschier. An improved method for prenatal diagnosis of
genetic diseases by analysis of amplified DNA sequences. Application to hemophilia A.
New England Journal of Medicine, 317: 985-990, 1987.

[9] A. Long, and C. Langley. The power of association studies to detect the contribution of
candidate genetic loci to variation in complex traits. Genome Research, 9: 720-731, 1999.

[10] S. Malcolm. Molecular methodology. In: Rimoin DL, Connor JM, Pyeritz RE, eds.
Emery and Rimoin's Principles and Practice of Medical Genetics. 3rd ed. New York, NY:
Churchill Livingstone; 67-86, 1997.

[11] R. Miller. Simultaneous statistical inference . 2nd edition. Springer Verlag, 1981.
[12] National Cancer Institute. Cancer Facts. http://cis.nci.nih.gov/fact/3_62.htm. Date

reviewed: 02/06/2002.
[13] L. Ozelius, P. Kramer, D. de Leon, N. Risch, S. Bressman, D. Schuback et. al. Strong

allelic association between the torsion dystonia gene (DYT1) and loci on chromosome
9q34 in Ashkenazi Jews. American Journal Human Genetics 50: 619–628, 1992.

[14] B. Rannala and J. Reeve. High-resolution multipoint linkage-disequilibrium mapping in
the context of a human genome sequence. American Journal of Human Genetics 69:159-
178, 2001.

[15] A. Tamhane, and D. Dunlop. Statistics and data analysis: from elementary to
intermediate. Prentice Hall, 2000.

[16] H. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen, P. Sevon, H. Mannila, M. Herr, and
J. Kere. Data mining applied to linkage disequilibrium mapping. American Journal of
Human Genetics, 67:133-145, 2000.

[17] A. Wright, A. Carothers, and M. Pirastu. Population choice in mapping genes for
complex diseases. Nature Genetics, 23:397-404, 1999.

Query Optimization in Encrypted Database
Systems

Hakan Hacıgümüş1, Bala Iyer2, and Sharad Mehrotra3

1 IBM Almaden Research Center, USA
hakanh@acm.org

2 IBM Silicon Valley Lab., USA
balaiyer@us.ibm.com

3 University of California, Irvine, USA
sharad@ics.uci.edu

Abstract. To ensure the privacy of data in the relational databases,
prior work has given techniques to support data encryption and execute
SQL queries over the encrypted data. However, the problem of how to
put these techniques together in an optimum manner was not addressed,
which is equivalent to having an RDBMS without a query optimizer.
This paper models and solves that optimization problem.

1 Introduction

There is an ongoing consolidation in IT industry that results in the application-
service-provider (ASP) model. Organizations outsource some or all of their core
IT operations (e.g., data centers) to specialized service providers over the Inter-
net. Many users will be storing their data and processing their applications at
the remote, potentially untrusted, computers. One of the primary concerns is
that of data privacy – protecting data from those who do not need to know.

There are two kinds of threats to the privacy. Outsider threats from hack-
ers and insider threats, perhaps, disgruntled employees. Encrypting the stored
data [3] is a way to address the outsider threats. The data is only decrypted
on the server before computation is applied and re-encrypted thereafter. The
insider threats, however, are more difficult to protect against. For example, how
would one protect the privacy of data from the database system administrator
who probably has the superuser access privileges? If the client is on a secure
environment then one way to solve the insider threat problem is to store all the
data encrypted on the server and make it impossible to decrypt on the server.
In this model we assume the computation against the data stored at the server
is initiated by the client. Say it is possible to transform and split the compu-
tation into two parts. The server part is sent to the server to execute directly
against the encrypted data giving encrypted results, which are shipped to the
client, who decrypts and performs the end user portion of the computing. This
scheme, presented [1], addresses the problem of insider threats. The problem of
how to perform this scheme in an optimum manner was not addressed, which

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 43–55, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

44 H. Hacıgümüş, B. Iyer, and S. Mehrotra

is equivalent to having an RDBMS without a query optimizer. In this paper,
we essentially address that problem. We will start our presentation with the
description of the system model.

2 The System Model

In this paper, we follow the service-based database model. We specifically follow
the system model described in [1]. In the model, the data is owned by the clients.
The server exposes mechanisms for the clients to create tables, insert, update
records and execute queries. The privacy challenge is to make it impossible for
the server to correctly interpret the data.

The data originates from the client and the data is encrypted by the client
before it is sent to the server for inclusion in a table. The data is always encrypted
when it is stored on, or processed by the server. The authorized clients are given
the needed encryption key(s). At no time is the encryption key given to the
server, thus the data cannot be decrypted by the server. Queries against data-
in-the-clear, originate from the client. The algorithms, based on client metadata,
decompose the query into client and server queries. The server query is sent to the
server to execute against encrypted data. The processing algorithms are designed
such that the results of the original query are obtained if the client decrypts and
further processes the answers of the server query using the decomposed client
query.

Encrypted Data Storage Model: The encrypted storage model defines how
the clients’ data is stored at the server site in encrypted form. The storage
model we use in this study substantially enhances the one presented in [1] and
we presented essential parts of it elsewhere [4]. Hence we give the details of the
storage model in Appendix A for the benefit of the reader.

3 Query Processing over Encrypted Data

Given a query Q, which is represented as an operator tree, our purpose is to define
how the query can be securely evaluated in an encrypted database environment.
We partition a given query tree into two parts: QS and QC , where QS executes
at the server and QC at the client. Since decryption is not allowed at the server,
QS executes over the encrypted data directly. The most obvious way to partition
the query processing in this case is to store the encrypted tables at the server
side and transfer them whenever they are needed for the query processing to
the client. Then, the client could decrypt the tables and evaluate the rest of
the query. Although this model would work, it pushes almost the whole query
processing to the client and does not allow the client to exploit the resources
available at the server site. In computing models we consider, the goal of the
partitioning is to minimize the work done by QC since the clients may have
limited storage and computational resources and they rely on the servers for the
bulk of the computation.

Query Optimization in Encrypted Database Systems 45

σ ∧

γ

(a)

∆

σ
∧ ∈

π

γ

σ

(b)

∆

σ
∧ ∈

γ

σ

γ

σ
∧

π

Ψ

∆

(c)
Fig. 1. Operator and Data level query partitioning

Our focus in this paper is how to partition a given query tree in a way
that maximizes the benefit of the client based on system specific criteria. We
formulate this concern as an optimization problem. In our system, the client is
responsible to generate the partitioned query execution plans. Consequently, the
client performs the optimization process based on the statistics and the metadata
information maintained at the client site. Once the server side and the client side
queries are identified, they are subject to the traditional query optimization at
the server and at the client sites, respectively.

3.1 Operator Level Partitioning

The server query, QS , executes over the encrypted representation directly gener-
ating a possibly superset of the results. The results of QS are decrypted and fur-
ther processed by the client using QC to generate the real answer to the original
query Q. We refer to the partitioning of Q into QS and QC as the operator-level
partitioning. Since the operator-level partitioning has been extensively studied in
[1], we explain the basic idea using an example over the employee and manager
tables. The sample population of employee table is given in Table 2 and parti-

46 H. Hacıgümüş, B. Iyer, and S. Mehrotra

tioning scheme of salary attribute of employee is given in Table 3 in Appendix
A. Consider the following query:

SELECT SUM(salary) FROM employee, manager

WHERE city=‘Maple’ AND salary < 65K AND emp.did=mgr.did

The query tree corresponding to this query is shown in Figure 1(a). Based
on the schemes presented in [1], the sample population given here, and the data
partitions, the server side query can be formulated as shown in Figure 1(b).

Here, ∆ operator denotes the decryption operation. For now, we can just
assume that the operator simply decrypts all the encrypted data fed to it. We
will discuss the definition and the use of ∆ operator in detail later. The inequality
predicate salary < 65K over salary attribute is transformed into a predicate,
salaryid ∈ {49, 59, 81}. Note that partition 81 may or may not include the values
that satisfy the condition. Therefore, they are subject to the client side post-
processing.

3.2 Data Level Partitioning

Since the data is represented using a coarse representation via partition indices,
a condition in Q is translated into a corresponding condition over the partition
indices in QS which may produce a superset of the tuples that truly satisfy
Q. Tuples that satisfy conditions in QS can be classified into two: those that
certainly satisfy and those that may satisfy the the original conditions in Q.
We refer to such tuples as certain tuples and maybe tuples, respectively. This
partitioning of tuples into maybe and certain tuples induces a partitioning of
the server side query QS into two parts: QS

m and QS
c . We refer to such a data-

induced partitioning of QS into QS
m and QS

c as the data-level partitioning. If the
data-level partitioning is used, the results of the two server side queries must be
appropriately merged at the client to produce the final answer to the query.

The data-level partitioning splits the server side query QS into two parts
QS

c and QS
m, based on the records that qualify the conditions in QS ; those that

certainly satisfy the condition of the original query Q and those that may or
may not, respectively.

• Certain Query (QS
c): that selects the tuples that certainly qualify the

conditions included in Q. The results of QS
c can be computed at the server.

• Maybe Query (QS
m): that selects the etuples corresponding to the records

that may qualify the conditions of Q but it cannot be determined for sure
without decrypting.

We illustrate the data-level partitioning below using an example query over the
employee and manager tables we considered earlier. Here we show the split that
would result if we further considered the data level partitioning. The resulting
queries, QS

c and QS
m, after the data-level partitioning are shown in Figure 1(c).

The rationale for the above split is that given the partitioning scheme shown
in Table 3 (shown in Appendix A), we know that the tuples corresponding to
partitions 49 and 59 certainly satisfy the condition specified in the original query

Query Optimization in Encrypted Database Systems 47

(salary < 65K). Thus, those tuples can be collected and aggregated at the
server by exploiting the PH. QS

m selects the tuples which may satisfy the original
query condition. In our example, these correspond to the first two tuples of
the employeeS relation (see Table 1 in Appendix A). The query returns the
corresponding etuples to the client. Upon decryption, the client can figure that,
the first tuple (which has salary = 70K) does not satisfy the query and should
be eliminated. The second tuple, however, which has salary = 60K, satisfies
the query condition and should be taken into account. The client finalizes the
computation by merging the answer returned by the first and second queries.
This presents the data level partitioning of the query. We refer the interested
readers to [4] for the details of the algorithm that derives QS

c and QC
m given Q.

In the query execution tree, the Ψ operator represents the merge operation.

3.3 Multi-round Communications

There are certain cases where the server communicates with the client by sending
some encrypted intermediate results, and continues the server side query pro-
cessing after receiving additional information from the client. This information
can be in different forms as it will be clear in the sequel. We call this process
as round communication (or round trip) and represent by a ω operator in the
query execution tree. The reason we use the term of “multi-round” is that, ob-
viously, there may be a number of such communications between the server and
the client during the execution of a given query tree. In the following subsections
we show the specific uses of the round communications.

Filtering the Maybe Tuples. The server can communicate with the client
by sending the maybe tuples as the intermedi-

∆

σ
∧ ∈

ω

γ

Fig. 2. Round communication for
filtering the maybe tuples

ate results for filtering, instead of “carrying”
them to the later operations in a query execu-
tion tree. The server continues the server side
computation after receiving back the filtered
results, which include only the certain tuples
in this case. This process is the first use of the
round trips between the client and the server.
The output of this operator includes “only”
the certain records.

We illustrate the use of a round trip in
Figure 2. The query execution tree represents
the same query we used in Section 3.1. Differ-
ently from the previous case, the server com-
municates with the client after the selection

operator, σcityf=E(′Maple′)∧salaryid∈{49,59,81}. Recall that partition 81 produces
maybe tuples as it may or may not contain records that satisfy the original
query condition salary < 65K. Instead of carrying those maybe tuples, the
server sends them to the client and receives only the ones that satisfy the origi-
nal condition. Since the client can decrypt, the client performs this filtering. As

48 H. Hacıgümüş, B. Iyer, and S. Mehrotra

the remaining operators do not produce more maybe tuples, the server is able to
perform the rest of the computation over the encrypted records, including the
aggregation operation. The client receives only the aggregate value and decrypts
it to compute the final answer to the query.

The Use of Server-Computed Values. The second use of the round commu-
nications is for the values that are computed by the server in the encrypted form.
The logical comparisons (except the equality) cannot be performed by the server
over the encrypted values. This is mainly due to the security restrictions of the
encryption algorithms [5, 6, 4]. We make use of the partition ids to evaluate the
logical comparisons [1]. Therefore, whenever the server has to perform a logical
comparison, which uses at least one value that is computed in the encrypted
form, then the server needs to send the tuples that have been processed until
that point to the client for the client side query processing. However, being able
to make use of these values can significantly reduce the amount of work that has
to be done at the client site for some cases. The aggregation queries are a typical
example for that situation. Further details on the use of server-computed values
could be found in [2].

4 Optimization

It is obvious that a rich set of possibilities exist in placing ∆ and ω opera-
tors in a query tree and different placements indeed result in different query
execution plans, which may have significantly different resource utilization and
consumption. Therefore, a decision on a query execution plan should be made
judiciously based on some criteria, which consider the system and application
specific requirements. In this section, we study the query-plan-selection problem
of this kind. We present algorithms for finding the optimal placement of ∆ and
ω operators in a given query execution tree. That query execution tree may be
provided by any other source such as a traditional query optimizer. After that,
the objective of an optimization algorithm is to find the “best” places for ∆ or ω
operators or both. Our optimization algorithms follow a “cost-based” approach.
However, we do not assume any cost metric for optimality criteria. We only
use a specific cost metric to give examples to present the ideas. Therefore, the
algorithms can be integrated with any cost metric of particular choice.

4.1 Definitions and Notations

We first give necessary definitions and introduce new additional operators that
are used in the query formulations.

Query Execution Tree: A query execution tree is a directed acyclic graph
G = (V,E), consisting of nodes V and edges E ⊂ V × V . The internal nodes
of the tree are the relational algebra operators and the leaf nodes are the base
relations, Ri : 1 � i � n. The edges specify the flow of data. For an edge

Query Optimization in Encrypted Database Systems 49

e = (u, v) : u, v ∈ V , if the relational operator corresponding to u produces
maybe records, then we state that, the edge “carries” maybe records.

Relational Algebra Operators: We consider the following relational opera-
tors: the binary operators denoted by � = {��,→,×} (→ represents left out-
erjoin) and the unary operators denoted by � = {π, δ, σ, γ}. Let �p denote a
binary operator involving predicate p.

Renaming Base Relations: A base relation of a query tree is renamed with
a unique identifier Ri : 1 ≤ i ≤ n, where n is the number of leaves (i.e., base
relation) of the tree. Here, i denotes the index of the base relations. We define
the set of base relation indexes as I = {i | 1 ≤ i ≤ n and i is the index of base
relation Ri}.
Label of an Edge: A label of an edge e = (u, v), label(e), is the set of base
relation indexes of the relations of which u is ancestor.

∆ Operator: ∆L signifies the “last” interaction (or one way trip) case in the
system. This means, if a ∆ operator is placed on a path, beyond the ∆ operator
the execution is performed at the client site. In the process, the server sends all
the intermediate results to the client and requests the needed decryptions. This
concludes the server side query processing. L is a set of base relation indexes of
the relations, of which the ∆L operator is an ancestor in the query execution
tree. In the most general case, a ∆L operator implies the decryption of all of the
attributes of the schema of the expression passed to the operator.

ω Operator: An ω operator represents a round trip communication between the
client and the server, as it is described in Section 3.3. The server communicates
with the client by sending only the maybe records for the intermediate processing.
The client decrypts those records, and applies any needed processing, e.g., the
elimination of false positives, and sends back only the records corresponding to
the true positives, to the server. The output of this operator includes “only”
certain records. The server temporarily transfers the query processing to the
client and gets it back if an ω operator is used, whereas the control of query
processing is totally transferred to the client and is never transferred back to the
server if a ∆ operator is used.

ω-Eligible Edge: ω-eligible edge is an element of E and is any edge that carries
maybe data items or carries server-computed values or both.

4.2 Query Re-write Rules

To be able to generate alternate query execution plans, we have to be able
to move ∆ and ω operators around in the query tree. This requires the re-write
rules, which defines the interaction of those operators with the relational algebra
operators. ω operator does not pose any difficulty in pulling up/pushing down
it above/below of a query tree node. Because, the sole purpose of ω operator is
filtering out the maybe records. Eliminating false positives does not affect the

50 H. Hacıgümüş, B. Iyer, and S. Mehrotra

∆

∆

σ ∧

γ

Fig. 3. Starting point for ∆ optimization

correctness of the operators in the nodes above and below an ω node. However,
∆ operator needs special attention.

Re-write Rules for ∆ Operator: ∆ operator can be pulled above of any unary
and binary operator except GroupBy operator. Formally, we give the re-write
rules as follows:

∆L1E
S
1 �p ∆L2E

S
2 = �C

p′ ∆L1∪L2(E
S
1 �S

Mapcond(p) E
S
2)

�p ∆L1E
S
1 = �C

p′ ∆L1 �S
Mapcond(p) E

S
1

where ES
1 , E

S
2 are query expressions. �C and �C represent the client site com-

putation of the translated operators. Similarly, �S and �S represent the server
side computation of the translated operators. p′ represents the client side filtering
conditions for the translated operators. The details of those operator translations
are fully studied in [1]. Mapcond function maps the query conditions into the new
ones that can be evaluated over the encrypted data. The definition of Mapcond

is fully discussed in [1] and [4].

4.3 Optimization Algorithm

In this section, we give the optimization algorithms to optimally place ∆ and ω
operators in a given query execution tree. We first present an algorithm, which
only deals with ∆ operators and then provide another algorithm, which considers
both ∆ and ω operators together by utilizing the first one.

Optimization for ∆ Operators. The algorithm steps, which optimally places
∆ operators only in a given query execution tree, is shown in Figure 4. There
are pre-processing steps before the execution of the algorithm as given below.

Pre-processing over a given query execution tree:
1) Renaming base relations: We rename the base relations as described in

Section 4.1. 2) Creation of set of ∆ operators: We put a ∆i operator as an

The complete discussion for GroupBy operator could be found in [2].
1

1

Query Optimization in Encrypted Database Systems 51

adjacent node above each leaf node (base relation Ri) in the query tree. 3)
Labeling the edges: The labels of the edges of the query execution tree are created
bottom-up fashion. The initialization of the process starts with the creation of
the labels of the edges ei = (Ri,∆i), where Ri is a leaf level node (a base relation)
and the ∆i is corresponding ∆ operator added to the query execution tree. Then
label label(e) of an edge e = (u, v) : u, v ∈ V is created as label(e) =

⋃
label(e′),

where e′ = (w, u) : w, u ∈ V .
The starting point for the algorithm is an original given query tree, for ex-

ample Figure 1(a). We first rename the relations and replace them with the
server-side representations of the relations. After this step, we place the ∆ oper-
ators to their initial positions. Such a query tree, based on Figure 1(a), is given
in Figure 3. Starting with that plan, the optimization algorithm enumerates the
valid query plans by placing ∆ operators using the rewrite rules. A possible
outcome of the algorithm can be the plan given in Figure 1(b).

The algorithm given in Figure 4 enumerates all possible sets of edges, η, in
Line 1. Those sets have two properties: 1) the labels of the edges included in
the set are disjoint and 2) the labels of the edges in the set constitute the set of
base relation indexes, I, when they are combined. The first property ensures the
uniqueness of the set. The second property ensures the completeness. This means,
all of the tuples, which are needed to correctly finalize the query processing, from
all of the encrypted tables are sent to the client.

After that step, the algorithm places ∆ operators on each edge of the selected
set in Line 4. This creates a unique query execution plan p augmented with ∆
operators. Then the algorithm computes the cost of the plan in Line 5. The cost
of a plan, cost(p), is defined based on a cost metric determined for a system
setup. This cost is compared with the minimum cost plan so far. At this state,
the algorithm checks whether the generated query plan is realizable in line 6. To
do this, the ∆ operators in the generated plan are pulled up from their initial
locations (right above the base encrypted relations) to the current locations
determined by the plan by using the rewrite rules given in Section 4.2. If they
can be pulled up in that way, this constitutes a realizable query execution plan.
The algorithm returns the plan with the minimum cost after examining the
enumerated plans.

Optimal Placement of ω Operators. The placement of ω operators are
essentially different than that of the ∆ operators. There may not be more than
one ∆ operator on a path in a query execution tree whereas there may be ω
operators as many as the number of ω-eligible edges on a path from the root of
the query execution tree to a node. As a result, the optimal placement algorithm
for the ω operators considers any combination of the ω-eligible edges in a given
query execution tree.

A Three-Phase Optimization Algorithm. In this section we discuss an
optimization algorithm, which considers both ∆ and ω operators to find the
optimal query execution plan. The algorithm operates at three phases and is
shown in Figure 5.

52 H. Hacıgümüş, B. Iyer, and S. Mehrotra

Input: A query execution tree G = (V, E)
Output: bestP lan

1 Let E′ be a set of all η where η ⊂ E
s.t.

⋂
i

label(ei) = ∅ ∧ ⋃
i

label(ei) = I : ei ∈ η

2 bestP lan = a dummy plan with infinite cost
3 for all η ∈ E′

4 place ∆ on each edge ei : ei ∈ η
5 if cost(p) < cost(bestP lan) then
6 if p is realizable then bestP lan = p
7 endfor
8 return bestP lan

Fig. 4. Optimal placement for ∆ operators

Input: A query execution tree G = (V, E)
Output: bestP lan

/* First Phase */
1 Let E′ be a set of all η where η ⊂ E s.t.⋂

i

label(ei) = ∅ ∧ ⋃
i

label(ei) = I : ei ∈ η

2 perform pre-processing steps on G
3 pull ∆ operators up to highest possible locations

/* Second Phase */
4 bestP lan = a dummy plan with infinite cost
5 for all S ⊆ E
6 place ω on each ω eligible edge si : si ∈ S
7 if cost(p) < cost(bestP lan) then bestP lan = p
8 endfor
9 define query tree G′ = (E′, V ′)

/* Third Phase */
10 perform pre-processing steps on G′

11 Let E′′ be a set of all η where η ⊂ E′ s.t.⋂
i

label(ei) = ∅ ∧ ⋃
i

label(ei) = I : ei ∈ η

12 for all η ∈ E′′

13 place ∆ on each edge ei : ei ∈ η
14 if cost(p) < cost(bestP lan) then
15 if p is realizable then bestP lan = p
16 endfor
17 return bestP lan

Fig. 5. Algorithm steps for three-phase optimization

Query Optimization in Encrypted Database Systems 53

The first phase, (lines 1-3), is the initial placement of ∆ operators without
optimization. In the pre-processing, ∆ operators are placed in their initial posi-
tions, right above the encrypted base relation in the query execution tree. After
this step, the ∆ operators are pulled-up as high as they can be, by using the
rewrite rules given in Section 4.2. Note that, here we are not interested in the
optimal placement of ∆ operators. Instead, we try to create a realizable query
execution tree with a largest possible number of nodes included in the server
side query.

The second phase (lines 4-9) starts operating on the query execution tree
generated in the first phase, and it finds the optimal placements for ω operators.
To do that, the algorithm enumerates the eligible subsets of E of the query
execution plan G consisting of ω-eligible edges (in line 5), and places the ω
operators on the ω-eligible edges of those subsets (in line 6). Then it selects the
best plan with the optimal placement of the ω operators. This phase generates
a query execution tree, which (possibly) includes ω operator nodes.

In the third phase (lines 10-17) the part of the query tree generated by the
second phase is fed to the optimization algorithm given in Figure 4, which places
the ∆ operators to their final locations. Due to the space limitations we provide
experimental results in [2].

5 Conclusions

We have studied the problem of query optimization in the encrypted database
systems. Our system setup was a service-based database model where the client
is the owner of the data and the server hosts the client’s data in the encrypted
form to ensure the privacy of the data. The server is not allowed to see the
data in the clear at any time. The previous work studied the execution of SQL
queries over the encrypted relational databases in this kind of setup. It is always
desired, as the spirit of the model, to minimize the work that has to be done
by the client. We formulated this concern as a cost-based query optimization
problem and provided a solution.

References

1. H. Hacıgümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted
Data in Database Service Provider Model. In Proc. of ACM SIGMOD, 2002.

2. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Query Optimization in Encrypted
Database System. Technical Report TR-DB-05-01, Database Research Group at
University of California, Irvine, 2005.

3. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Providing Database as a Service. In Proc.
of ICDE, 2002.

4. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Efficient Execution of Aggregation Queries
over Encrypted Relational Databases. In Proc. of International Conference on
Database Systems for Advanced Applications (DASFAA), 2004.

54 H. Hacıgümüş, B. Iyer, and S. Mehrotra

5. D. R. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

6. R. L. Rivest, L. M. Adleman, and M. Dertouzos. On Data Banks and Privacy
Homomorphisms. In Foundations of Secure Computation, 1978.

A Encrypted Data Storage Model

The storage model is presented in [4]. The storage model includes various types
of attributes to efficiently satisfy different performance and privacy requirements
imposed by specific applications.

Let R be a relation with the set of attributes R̃ = {r1, . . . , rn}. R is rep-
resented at the server as an encrypted relation RS that contains an attribute
etuple = 〈Et(r1, r2, . . . , rn)〉, where Et is the function used to encrypt a row of
the relation R. RS also (optionally) stores other attributes based on the following
classification of the attributes of R:

• Field level encrypted attributes (Fk ∈ R̃ : 1 � k � k′ � n): are attributes
in R on which equality selections, equijoins, and grouping might be performed.
For each Ft, RS contains an attribute F f

k = Ef (F f
k), where Ef is a deterministic

encryption, where Ai = Aj ⇔ Ek(Ai) = Ek(Aj), where Ek is a deterministic
encryption algorithm with key k, used to encode the value of the field Fk.

• Partitioning attributes (Pm ∈ R̃ : 1 � m � m′ � n): are attributes of R
on which general selections/joins (other than equality) might be performed. For
each Pm, RS contains an attribute P id

m that stores the partition index of the
base attribute values.

• Aggregation attributes (Aj ∈ R̃ : 1 � j � j′ � n): are attributes of R on
which we expect to do aggregation. Specifically, we need encryption algorithms,
which allow basic arithmetic operations directly over encrypted data. Privacy
Homomorphisms (PHs for short) are such encryption algorithms. PHs are first
introduced by Rivest et al [6]. Detailed discussion of how PHs can be used in
SQL query processing including necessary extensions to PHs is found in [4]. In
the storage model, for each Aj , RS contains an attribute Ah

j that represents
the encrypted form of corresponding original attribute Aj with PH, thus Ah

j =
EPH(Aj), where EPH is a PH.

Table 1. Relation employeeS : encrypted version of relation employee

salaryh

etuple(encrypted tuple) eidid salaryid cityid didid cityf didf salaryh
p salaryh

q

=*?Ew@R*((¡¡=+,-. . . 2 81 18 2 ?Ew. . . @R*. . . 7 27
b*((¡¡(*?Ew@=l,r. . . 4 81 18 3 ?Ew. . . =+,. . . 18 17
w@=W*((¡¡(*?E:,j. . . 7 59 22 4 ¡(*. . . ¡(*. . . 2 23
¡(* @=W*((¡?E;,r. . . 4 49 18 3 ?Ew. . . E:,. . . 3 2
(¡(@=U(¡S?/,6. . . 4 49 18 2 ?Ew. . . @R*. . . 8 7
ffTi* @=U(¡?G+,a. . . 7 49 22 2 ¡(*. . . @R*. . . 13 12

Query Optimization in Encrypted Database Systems 55

• Embedded attributes (E� ∈ R̃ : 1 � � � �′ � n): are attributes in R̃
that are not in any of the above four categories. These attributes are, most
likely, not accessed individually by queries for either selections, group creation,
or aggregation.

Given the above attribute classification, the schema for the relation RS is
as follows: RS(etuple, F f

1 , . . . , F
f
k′ , P id

1 , . . . , P id
m′ , Ah

1 , . . . , A
h
j′). Table 1 shows a

possible instance of the server side representation of the the employee relation
given in Table 2.

Table 2. Relation employee

eid ename salary city did
23 Tom 70K Maple 10
860 Mary 60K Maple 55
320 John 23K River 35
875 Jerry 45K Maple 58
870 John 50K Maple 10
200 Sarah 55K River 10

Table 3. Partitions

employee.salary

Partitions ID

[0,25K] 59
(25K,50K] 49
(50K,75K] 81
(75K,100K] 7

Watermarking Spatial Trajectory Database

Xiaoming Jin, Zhihao Zhang, Jianmin Wang, and Deyi Li

School of software, Tsinghua University,
Beijing, 100084, China
xmjin@tsinghua.edu.cn

Abstract. Protection of digital assets from piracy has received increas-
ing interests where sensitive, valuable data need to be released. This pa-
per addresses the problem of watermarking spatial trajectory database.
The formal definition of the problem is given and the potential attacks
are analyzed. Then a novel watermarking method is proposed, which
embed the watermark information by introducing a small error to the
trajectory shape rather than certain data values. Experimental results
justify the usefulness of the proposed method, and give some empirical
conclusions on the parameter settings.

Keywords: Digital watermarks, spatial trajectory, database security.

1 Introduction

Recent advances in geographic data collection techniques have increased the
production and collection of spatial trajectories of moving objects [1][2][3][4].
Generally, trajectory is a sequence of consecutive locations of a moving object
in multidimensional (generally two or three dimensional) space [3]. Real world
examples could be found in global positioning systems (GPS), remote sensors,
mobile phones, vehicle navigation systems, animal mobility trackers, and wire-
less Internet clients. Recently, protection of such digital assets from piracy has
become a crucial problem in both research and industrial fields, especially where
sensitive, valuable data need to be released.

Digital watermarking is a promising technique to solve the issue of copy-
right protection. Unlike encryption techniques[5], watermarking approaches do
not prevent copy or further use of the data, rather it deters illegal copying by
providing a means of establishing the original owners an authorship-aware copy.
This technique is based on an important assumption that database can be up-
dated in some data items, which are such that changes in a few values do not
affect the usability of the data. Accordingly, watermarking is to embed into the
data a group of indelible, small errors (termed watermark information or simply
watermarks) that (1) exhibit certain patterns representing the ownership of the
digital assets, and (2) preserve the usability of the data [6][7][8]. For example,
image data can be watermarked by introducing minor noises, which served as
the watermark information, into the high frequency in transformed domain [9].
Since such modifications have little impact on the visual quality of the image

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 56–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Watermarking Spatial Trajectory Database 57

from the viewpoint of human’s sensitivity, the modifications are acceptable with
respect to the potential use of the image. Once an illegal copy occurs, the owner
of the data could therefore extract the noises that represent the watermarks from
the image to verify his ownership of the data.

Due to its importance, there have been several efforts to develop effective
and efficient watermarking methods for various types of data, such as multime-
dia data [8][9][10], software[11][12][13], relational data [14][15], and parametric
curves and surfaces [16]. However, to the best of our knowledge, watermarking
technique for protecting the spatial trajectories remains unexplored.

Researches on watermarking techniques are highly data-oriented, that is, they
are closely related to the type and potential usage of the data. Therefore, given
data objects with different characters, the respective watermarking strategies are
usually of fundamental differences. Consider the trajectory data, some distinc-
tive characters should be addressed. First, multimedia data, e.g. image, audio
and video, contain large portion of redundant information, on which the modi-
fication is insensible for human being. However, consider the trajectory data in
real applications, the redundancy is relatively rare. Then modifications of same
“scale” on trajectory data will lead to more distinct usability decrease than that
on multimedia data. Another aspect of spatial trajectory data that challenge
the watermarking process is that trajectory is usually accessed as a whole data
object, and the meaning of it consists in the sharp of movements, rather than
any individual location value. Therefore, spatial transforms do not decrease the
usability of trajectories, e.g. zoom it to another scale, or shift it to another posi-
tion. Since all the data values might be completely regenerated during the spatial
transform process, the watermarks that dependent on certain bits of data values
are apt to be completely erased.

These particular features of trajectory data disables the application of vast
previous approaches that consider precise values in a database, such as the pri-
mary key based methods for watermarking relational data [14], and the transform
based methods for watermarking multimedia data [9]. A more similar effort is on
watermarking vector digital maps [17]. However, the watermarks in this work is
extracted by comparing the original data with the watermarked data, which is
often a extremely difficult task in watermarking trajectories because the original
data themselves are often hard to be validated without a proper escrow that
rarely appears.

Therefore, developing a new method for watermarking trajectory data is by
no means trivial. In this paper, we propose a novel watermarking method for
spatial trajectory database. The main idea of our method is to embed the wa-
termark information by introducing a small error to the shape presented by the
trajectory data. Since the shape should be preserved within any migration ver-
sions and piracy versions (otherwise the data become useless), the watermarking
information is also preserved within these versions.

The rest of this paper is organized as follows: Section 2 describes the problem
and gives some remarks on the requirements and potential attacks. Section 3
describes our watermarking method. Section 4 presents the experimental results
and some discussions. Finally, section 5 offers some concluding remarks.

58 X. Jin et al.

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2
−5

−4

−3

−2

−1

0

1

2

Fig. 1. An example of moving object trajectory in 2D space. Each diamond in the
figure stands for a single location of the object at a certain time, and arrow represents
a movement from one location to another

2 Problem Descriptions and Analysis

A spatial trajectory of a moving object is a sequence of consecutive locations
in a multidimensional space. For clearness, we only consider the trajectories
in 2D space in this paper without loss of generality. A trajectory is denoted
as: D = D(1), . . . , D(N),where D(n) = (T (n), A1(n), A2(n), . . .), and T (n) =
(Tx(n), T y(n)) stands for the location of the moving object on the n-th sam-
pling time, and Am(n) is the m-th none-spatial attribute collected on the n-th
sampling time. Since the data we want to protect is the spatial information of the
trajectory, so we use a simplified data form in this paper: T = T (1), . . . , T (N).
|T | = N denotes the length of T. The projection of T in x-axis and that in
y-axis are represented as Tx = Tx(1), . . . , Tx(N) and Ty = Ty(1), . . . , T y(N)
respectively. Fig. 1 shows a simple example of 2D trajectory data.

Given a trajectory T, watermarks are a group of small errors that exhibit
certain patterns representing the ownership of T. The process of watermark
embedding is to generate these errors and/or their positions in the whole data
set (i.e. where to embed the errors) based on a private key k known only to the
owner of T, and then embed the generated errors at corresponding positions.
This process can be expressed formally as:

TW = Embed(T, k)

where TW = TW (1), . . . , TW (N) is a distributable copy of T that contains wa-
termark information.

Watermarking Spatial Trajectory Database 59

When the copyright of a watermarked trajectory TW need to be examined,
the watermark information is extracted and then is verified to find whether it is
coincident with the owner’s private key, i.e.

Deteck(TW , k)

A positive answer of the above verification means TW was watermarked with pri-
vate key k that exclusively belongs to an individual or organization, whereupon
the ownership of the data is justified.

The following properties are desirable for watermarking method for trajec-
tory data. They are similar in general to, but different in detail from, the re-
quirements of watermarking relational data [14]. (1) Detectability: the owner of
the data should be able to detect the watermarks embedded. (2) Robustness:
watermarks should be robust against malicious attacks to erase them. (3) Incre-
mental updatability: An important aspect of mobile object trajectories is that
the data are usually born with streaming factor. This means the trajectories is
frequently appended in the end over time. On this occasion, when the data T
have been updated, incremental update on the watermarked version TW should
be enabled without destroying the watermarks. (4) Imperceptibility: The modi-
fications caused by watermarking process should not reduce the usability of the
database. That is, the important features of the data should not be significantly
affected. For trajectory data, the motion shapes of the observed object need to be
preserved. (5) Blind and key-based system: Watermark detection should neither
require the knowledge of the original database nor the watermark. And only the
private key can be regarded as unknowable for pirates, whereas the watermark
embedding algorithm should remain public.

Watermark method should be able to defeat various malicious attacks. Sim-
ilarly to the above requirements, the potential attacks are also data-oriented,
that is, different forms of attacks may occur to different types of data objects.
Consider trajectory data, malicious attacks can be inspired in the following ways:

– Scale attack: the original trajectory is zoomed to another scale, whereupon
the value of each location has been changed.

– Base location attack: shift the trajectory in any direction.
– Update attack: Some selected locations are adjusted.

Consider the scale attack and base location attack, all values TW (n) =
(TxW (n), T yW (n)) will be completely changed. As mentioned in section 1, this
disable the applications of the previous watermarking approaches that introduce
small errors (generally a bit pattern) into each individual data item. The update
attacks cannot be very violent, in terms of both the number of affected locations
and the modification values. Otherwise the shape of the trajectory will be fun-
damentally changed, whereupon the usability of the data is lost. Deletion can
also be a type of attack, but, for the same reason, we do not address this issue
in this paper.

60 X. Jin et al.

Table 1. Notation conversions

Notation Explanations

T The spatial trajectory to be watermarked
TW The watermarked trajectory
τ Threshold for suspect piracy
β The position to which the watermarking information is embedded
δ Step in calculating new locations containing watermarks

3 Watermarking Trajectory

This section will present our watermarking approach. It is based on the notion
that neither the change in the scaling factor nor that in the base location will
change the trajectory shape. Then it is reasonable to embed the watermark in-
formation by introducing a small error to the features that present the trajectory
shape, e.g. the length ratio of two consequence movements. Based on this prop-
erty, the idea of our watermarking approach is as follows: When a trajectory
needs watermarking, (1) select a set of locations to be watermarked; and (2)
the watermarking information is embedded as a certain bit in the distance ratio
relative to the selected locations. When a watermarked trajectory need to be
examined, (1) the same set of locations are extracted; (2) distance ratios cor-
responding to these locations are calculated; and finally, (3) certain bit of each
ratio are counted, and the result is used to verify the ownership of the data.

The algorithms for embedding and detecting watermarks will be introduced
in detail in section 3.1. Section 3.2 will give some analyzing remarks. For the rest
of this paper, we shall use the notational conventions showed in table 1 unless
otherwise specified.

3.1 Watermarking Algorithms

The detailed watermarking algorithms are shown in Fig. 2. The embedding al-
gorithm is first to search sequentially all the possible locations in the trajectory
to select a group of locations for watermarking. Such locations are identified as
watermark locations. Here we use a strategy similar to that in [14]: For each
location T (n), a message authenticated code is calculated based on the order n
of the location and a private key k. Detailed calculation is F(n, k) = H(n ◦ k)
where H is a one-way hash function, and ◦ stands for direct connection. Then
given a parameter m indicating the percentage of watermark locations, T (n) will
be watermarked if and only if F(n, k) mod m = 0.

For each location T (n) to be watermarked, the following operation is triggered
to generate the corresponding location TW (n) in the watermarked trajectory:

TW (n) ← arg min
BINβ

(
max(L2(p,T (n+1)),L2(p,T (n−1)))
min(L2(p,T (n+1)),L2(p,T (n−1)))

)
=1

L2(p, T (n))

where BINβD stands for the bit of decimal value D with bit-wise position indi-
cated by β (termed β bit), and L2(A,B) means the Euclidean distance between

Watermarking Spatial Trajectory Database 61

Algorithm Embed
Input: trajectory T,private key k,integer m
Output: watermarked trajectory TW

for each 0 < n ≤ |T |
if F(n, k) mod m=0 then

watermark the n-th location T (n) to TW (n)
else

TW (n) = T (n)
return TW

Algorithm Detect
Input: watermarked trajectory TW ,private key k,integer m
Output: binary decision about whether TW was watermarked

location_count=0
watermark_count=0
for each 0 < n ≤ |TW |

if F(n, k) mod m=0 then
location_count=location_count+1
if Verify(n)=True then

watermark_count=watermark_count+1
If watermark_count/location_count> τ then

return True
else

return False

Fig. 2. Watermarking algorithms

location A and B. Here the location T (n) is watermarked to TW (n) such that
the β bit of the distance ratio relative to T (n) is adjust to be 1. β controls the
bit-wise position in which the watermark information is embedded. There are
several ways to define the β bit. For example, a simple definition is to use the
β-th bit as the β bit. Alternatively, a more meaningful definition is that the β bit
of D is the last bit of the nearest integers to 10βD. We use the later definition
in our experimental system.

Calculation of TW (n) seems complex, but can be simplified as follows: We
expand a tentative range in a minor step until a valid location is found within
that range, and then TW (n) is set approximately to be the location that is first
meet. Furthermore, the range can be restricted to the four directions parallel with
the axis for simpleness of computation. Given a parameter δ indicating the step
of the tentative range, then only four tentative locations, (Tx(n) − kδ, Ty(n)),
(Tx(n)+kδ, Ty(n)), (Tx(n), T y(n)−kδ) and (Tx(n), T y(n)+kδ), need examining
in the k-th expanding step. Fig. 3 gives a example of the valid locations to which
a given location is adjusted.

62 X. Jin et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4
valid watermarking location
T(n−1)
T(n+1)
T(n)

Fig. 3. A demonstration of watermarking a certain location T (n)

Detection of watermark is an inverse process. First, the algorithm find all
locations that should have been watermarked, i.e. the watermark locations, based
on the location order and the private key. Then each location is examined to find
whether the β bit of the distance ratio relative to this location is (or has been set
to) 1. If so, the location is marked as a support location. This process is formally
defined as follows:

Verify(n) =

{
True BINβ

L2(TW (n),TW (n+1))
L2(TW (n),TW (n−1)) = 1

False otherwise

Finally, the match rate, which is the ratio of the number of support locations
to the number of watermark locations, is calculated and then is compared with
a user specified threshold τ to evaluate the possibility that the data are water-
marked by the person who provide the key, i.e. Deteck(TW , k) (see section 2 for
its definition).

3.2 Analysis of the Proposed Approach

As discussed in section 2, the main challenge on watermarking spatial trajectory
data consists in that the scaling factor and base location are apt to be modified.
Our method can fill this gap since it embeds watermarks based on the relative
distance of the trajectory, instead of the primitive data values. After various
spatial transforms or location updates are made on the data, the overall shape
of the trajectory remains unchanged, whereupon the watermark information is
preserved. This make our method robust enough to serve as a counterpoise to
malicious attacks.

There are several parameters that might affect the performance of our wa-
termarking strategy. Generally, these parameters should be set based on the

Watermarking Spatial Trajectory Database 63

requirements of the application domains on data precision, time complexity, and
robustness. β indicates the bit-wise position to which the watermarking informa-
tion is embedded. It controls the trade-off between the error introduced and the
robustness. Obviously, modifications on the first few bits will result in introduc-
ing big errors on the trajectory data. On the other hand, watermarks generated
by modifying the last few bits suffer from that the watermarking bits tend to
be stained by cut-off error when the trajectory are zoomed, shifted, or modified.
On this occasion, the watermarking information is unstable and apt to be com-
pletely erased. δ stands for the step in calculating a new location that contains
watermark information. It controls the trade-off between the complexity of the
solution and the error introduced. Setting δ to relatively large value will reduce
the time expense of the calculation, whereas bigger error may be introduced
comparing with using a smaller δ.

From a practical point of view, β can be set around the position of the least
places of decimals that are meaningful, e.g. 0 - 3 (the second definition of β bit
in section 3.1); δ can be set as a/s where a = ΣnL2(T (n),T (n−1))

|T |−1 is the average
distance between each two consecutive locations and s can be selected empirically
around 10 - 1000 based on the discussions above; and τ can be, for example, 60%
- 90% according to the requirements on decision confidence.

4 Experimental Evaluations

In this section, we give an empirical study of the proposed method. The objective
is to evaluate its effectiveness and performance with respect to various param-
eter settings. Since watermarking trajectory database has not been considered
previously, and the existing methods, which were initially designed for other
data objects, are very brittle for this problem, we have not make any comparing
study.

4.1 Experimental Results on Various δ and β

Given the location to be watermarked, the quality of a certain parameter setting
can be directly evaluation by whether a valid location can be found efficiently
and whether the error introduced (i.e. distance between the original location and
the watermarked location) is small enough.

The computational processes on various δ and β are shown in Fig. 4, in which
all the nearby valid watermarking locations are shown. For clearness, we show
only a sub-trajectories with 3 locations. By a visual analysis, we conclude: (1)
A smaller δ provided valid locations that are closer to T (n). This means smaller
error will be introduced. (2) When β bit is set within the first few bits, i.e. β is
set to a small value, the error introduced is big. These two observations verified
the discussions in section 3.2.

64 X. Jin et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4
valid watermarking location
T(n−1)
T(n+1)
T(n)

(a) δ = 0.5, β = 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4
valid watermarking location
T(n−1)
T(n+1)
T(n)

(b) δ = 0.1, β = 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4
valid watermarking location
T(n−1)
T(n+1)
T(n)

(c) δ = 0.05, β = 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4
valid watermarking location
T(n−1)
T(n+1)
T(n)

(d) δ = 0.05, β = 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4
valid watermarking location
T(n−1)
T(n+1)
T(n)

(e) δ = 0.05, β = 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4
valid watermarking location
T(n−1)
T(n+1)
T(n)

(f) δ = 0.05, β = 3

Fig. 4. Computational processes on various δ and β

Watermarking Spatial Trajectory Database 65

4.2 Effectiveness of the Proposed Method

To evaluate our approach on data with relatively large size, we used synthetic
data with 10K length. The attacks issued were combinations of the scale attacks
and update attacks. Given a cut-off ratio C, the attack first transformed the
watermarked trajectory TW to T ′

W where T ′
W (n) = TW (n)/C, then only the data

values to P places of decimals were extracted in each dimension. T ′
W preserved

the shape on the whole, but differed from the original data in both absolute
values and precisions. That is, with the increase of C, the trajectory became
more compressed, and more information was lost during the cut-off process. In
this part of experiments, δ was set to 0.05, β was set to 1 and 2 respectively, C
varied from 1 to 50, and P was set to 3.

The resulting match rates (see section 3.1 for its definition) on various cut-off
ratios are shown in Fig. 5. From the results, we could conclude: First, the em-
bedded watermarks are detectable when the data are simply shifted, zoomed, or
modified with a relatively small cut-off ratio. Second, the confidence of suspect-
ing a piracy depends crucially on the amount of remained information. That is,
the detectable watermarking information decreases with the increase of infor-
mation that have been removed. Particularly, the watermarking bits will reduce
to random selections when the cut-off ratio is too high, which means that the
watermark is completely removed. However, on the other hand excessive cut-off
ratio will make the shape of the trajectories changed fundamentally, whereupon
the usability of the data is lost, and the attacks itself become meaningless. There-
fore, the cut-off ratio is guaranteed to be small enough from a practical point of
view. This justify the robustness of our approach.

In addition, these experimental results also generalized the conclusions on
performance trade offs mentioned in section 4.1: the increase in β will results
in both the increase in precision (i.e. less error introduced) and the decrease in
robustness.

0 5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cut−off ratio

M
at

ch
 r

at
e

Beta=2
Beta=1

Fig. 5. Match rates of embedded watermark, on various cut-off ratios

66 X. Jin et al.

5 Conclusion Remarks

This paper addresses the problem of watermarking spatial trajectory database.
The proposed watermarking method is to embed the watermark information by
introducing a small error to the trajectory shape instead of the data values.
Experimental results give some empirical conclusions on the proposed method
and the parameter settings, which include:

– The embedded watermarks are detectable when the trajectory data are sim-
ply shifted, zoomed, or modified with a small cut-off ratio. This justifies the
usefulness of the proposed method.

– The detectable watermarking information decreases with the increase of cut-
off ratio. However, since the cut-off ratio is guaranteed to be small enough
from a practical point of view, our method is applicable in real applications.

– There are some trade offs in setting the parameters: Small δ help reducing the
error introduced, whereas it increase the time expense of the watermarking
process. Using the last few bits on watermarking can also reduce the error
introduced, but such watermarking bit tends to be stained by cut-off attack,
and vice versa.

The research in this paper can be extended along the following two directions:
First, more sophisticated watermarking strategies can be applied to improve the
efficiency and robustness of the proposed approach. Second, we believe that the
underlying idea in this paper is quite general and can be used in other problems.
For example, another important problem in the context of data security is trajec-
tory authentication, which is to prevent illegal modification of the trajectories.
This problem can also be solved by the ideas in this paper as follows: The tra-
jectories can be first watermarked. And then, if major modifications have been
applied, most watermark information will be destroyed, and therefore detecting
algorithm will generate an alarm of insufficiency that indicates modifications.

Acknowledgements

The work was supported by the NSFC 60403021, NSFC 60473077, and the Na-
tional Basic Research Program of China (973 Program) 2004CB719400.

References

1. N. Priyantha, A. Miu, H. Balakrishnan, S. Teller. The cricket compass for context-
aware mobile applications. In Proc. of MOBICOM’2001, pages 1-14, 2001.

2. G. Chen, D. Kotz. Categorizing binary topological relations between regions, lines,
and points in geographic databases. Technical Report TR2000-381, A Survey of
Context-Aware Mobile Computing Research, Dept. of Computer Science, Dart-
mouth College, 2000.

3. M. Vlachos, G. Kollios, Dimitrios Gunopulos. Discovering Similar Multidimen-
sional Trajectories. In Proc. of the 18th International Conference on Data Engi-
neering (ICDE’02). San Jose, California, 2002.

Watermarking Spatial Trajectory Database 67

4. Jignesh M. Patel, Yun Chen, V. Prasad Chakka. STRIPES: An Efficient Index for
Predicted Trajectories. Proceedings of ACM SIGMOD 2004, pp. 635-646, 2004.

5. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, Yirong Xu. Order Pre-
serving Encryption for Numeric Data. Proceedings of ACM SIGMOD 2004, pp.
563-574, 2004.

6. Fabien A. P. Petitcolas, Ross J. Anderson, Markus G. Kuhn. Information Hiding
- A Survey. Proceedings of the IEEE, Vol.87, No.7, pp. 1062-1078, 1999.

7. S. Craver, N. Memon, B. -L. Yeo, M. M. Yeung. Resolving Rightful Ownerships
with Invisible Watermarking Techniques: Limitations, Attacks, and Implications.
IEEE Journal of Selected Areas in Communications, Vol.16, No.4, pp. 573-586,
1998.

8. F. Hartung, M. Kutter. Multimedia Watermarking Techniques. Proceedings of the
IEEE, Vol.87, No.7, pp. 1079-1107, 1999.

9. J. J. K. Ruanaidh, W. J. Dowling, F. M. Boland. Watermarking Digital Images for
Copyright Protection. IEEE Proceedings on Vision, Signal and Image Processing,
Vol.143, No.4, pp. 250-256, 1996.

10. I. J. Cox, J. P. M. G. Linnartz. Some General Methods for Tampering with Wa-
termarks. IEEE Journal of Selected Areas in Communication, Vol.16, No.4, pp.
573-586, 1998.

11. Christian Collberg, Clark Thomborson. On the Limits of Software Watermarking.
Technique Reports, Department of Computer Sciences, The University of Auck-
land. 1998.

12. Hoi Chang, Mikhail Atallah. Protecting software code by guards. Security and
Privacy in Digital Rights Management, LNCS, 2320:160-175, 2002.

13. Christian Collberg, Edward Carter, Saumya Debray, Andrew Huntwork, Cullen
Linn, Mike Stepp. Dynamic path-based software watermarking. In SIGPLAN ’04
Conference on Programming Language Design and Implementation. 2004.

14. Rakesh Agrawal, Jerry Kiernan. Watermarking Relational Databases. Proceedings
of the 28th VLDB Conference, Hong Kong, China, 2002.

15. Radu Sion, Mikhail Atallah, Sunil Prabhakar. Rights Protection for Relational
Data. Proceedings of ACM SIGMOD, pp. 98-109, 2003.

16. Ryutarou Ohbuchi, Hiroshi Masuda, Masaki Aono. A Shape-Preserving Data Em-
bedding Algorithm for NURBS Curves and Surfaces. Computer Graphics Interna-
tional 1999 (CGI ’99), Canmore, Canada, 1999.

17. Ryutarou Ohbuchi, Hiroo Ueda, Shuh Endoh. Robust Watermarking of Vector
Digital Maps. Proceedings of the IEEE International Conference on Multimedia
and Expo 2002 (ICME 2002), Lausanne, Switzerland, 2002.

Effective Approaches for Watermarking XML
Data

Wilfred Ng and Ho-Lam Lau

Department of Computer Science,
The Hong Kong University of Science and Technology, Hong Kong

{wilfred, lauhl}@cs.ust.hk

Abstract. Watermarking enables provable rights over content, which
has been successfully applied in multimedia applications. However, it
is not trivial to apply the known effective watermarking schemes to
XML data, since noisy data may not be acceptable due to its structures
and node extents. In this paper, we present two different watermark-
ing schemes on XML data: the selective approach and the compression
approach. The former allows us to embed non-destructive hidden infor-
mation content over XML data. The latter takes verbosity and the need
in updating XML data in real life into account. We conduct experiments
on the efficiency and robustness of both approaches against different
forms of attack, which shows that our proposed watermarking schemes
are reasonably efficient and effective.

1 Introduction

Watermarking in the contexts of image, audio or video data is well-known to be
an effective technique to protect the intellectual property of electronic content.
Essentially, the technique embeds a secret message into a cover message within
the content in order to prove the ownership of materials. Remarkable successes
in watermarking on multimedia applications have been achieved in recent years
[4]. Thus, relevant business sectors are able to distribute their data while keeping
the ownership and preventing the original data being resold illegally by others.

The existing watermarking technology has mostly been developed in the con-
text of multimedia data, since such data has a high tolerance to noise and thus
it is not easy to detect the watermark. Unlike multimedia data, XML data are
diverse in nature: some are data-centric and numeric (e.g. regular scientific data)
while some are document-centric and verbose (e.g.book chapters). It is challeng-
ing to develop an effective watermarking scheme which is invisible and is able to
resist various kinds of attack.

In this paper, we attempt to develop watermarking schemes for XML data
based on two different watermarking approaches. One is the selective approach
and another is the compression approach. As for the selective approach, we de-
velop a watermarking scheme for uncompressed XML data based on the database
watermarking algorithm proposed by Agrawal [2]. The second approach is more
interesting. It follows our advocation that in reality some XML documents are
verbose and they need compression in practical applications [3]. In addition, we

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 68–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Effective Approaches for Watermarking XML Data 69

take into consideration that XML documents need to be updated frequently.
Therefore, in the compression approach, we introduce a novel watermarking
scheme based on our earlier developed XML compressor, namely XQzip, which
does not require full decompression when querying. [3]. By watermarking com-
pressed XML data, we gain the advantage of having better document security,
and at the same time, higher flexibility of updating XML data.

Related Work. Agrawal presents an effective watermarking technique for the
relational data [2]. This technique ensures some bit positions of certain attributes
contain the watermarks. We extend their techniques on XML data by defining
locators in XML in our selective approach. Sion [5] discusses the watermarking
of semi-structures of multiple types of contents and represents them as graphs by
characterizing the values in the structure and individual nodes. He also proposes
a watermarking algorithm that makes use of the encoding capacity of different
types of nodes. Gross-Amblard [1] investigates the problem of watermarking
XML databases while preserving a set of parametric queries. His work mainly
focuses on performing queries on different structures and pay less attention to
the watermarking scheme. However, the query approaches are similar to the pre-
defined queries used in the compression approach. At present, all proposed XML
watermarking schemes are based on uncompressed XML data and no studies
exist on watermarking compressed XML data to the best of our knowledge.

Paper Outline. After introducing our XML watermarking schemes in this sec-
tion, we describe and study the selective approach, which is for uncompressed
XML data, and the compression approach, which is for XQzip compressed XML
data in Sections 2 and 3, respectively. Then in Section 4, we conclude our work
and suggest future improvements for the watermarking schemes we developed.

2 The Selective Approach of Watermarking XML

In this section, we introduce the selective approach of XML watermarking. We
also analyze the robustness of our watermarking system against the following
two forms of attacks: subtractive attack and additive attack. All the experiments
related to the watermarking system are conducted on a machine of the configu-
ration as follows: P4 2.26GHz, 512MB main memory and 15GB disk space.

2.1 Watermark Insertion

In the selective approach of watermarking XML, the watermarks are randomly
distributed throughout the XML document based on a secret key provided by
the owner. We aim at making minor changes on XML data without causing
errors during the process.

The watermark insertion algorithm and the notations we used are presented
in Algorithm 1 and Table 1, respectively. Before embedding marks in XML
data, we define a locator, which is an analogy to the primary key in relational
databases, to indicate whether a particular element should be marked. Unlike

70 W. Ng and H.-L. Lau

watermarking relational databases [2], primary keys are not necessarily to be
specified and defined in XML. We assume the owner of the watermarked data
is responsible to select the elements that are suitable to be the candidates of
locators. The best choice of such an element is that its value is unique, non-
modifiable and has large locator space. For example, the tag “ISBN” of a book
XML document could be served as a locator.

Table 1. Notation Used

υ Number of elements in the document available for marking.
ξ Number of the least significant bits available for marking in an element.
1/γ Fraction of marked elements in the document (the watermark ratio).
α Significance level of the test for detecting a watermark.
N Number of elements in the document.
τ Minimum number of detected locators required for a successful detection.

Let E be a locator candidate and K be the secret key provided by the owner.
We use the value of E in a hash function H(E,K) = E ◦ K, which generates
a hash value, h to determine whether E should be marked or not. For the sake
of simplicity, we use concatenation to generate h. In fact H(E,K) can be some
other functions as long as it is able to generate a unique value for a given pair
of E and K. After determining the marked locators, say Em, we watermark the
value of Em according to the data type of Em. For numerical data, we mark
Em by modifying the least significant bit specified by the control parameter,
denoted as ξ. We assume that numerical data is able to tolerate small and non-
detectable changes. For example, “1000.30000” can be changed to “1000.30001”.
For textual data, the value of Em is replaced by a synonym function, denoted as
Synm(), which is based on a well-known synonym database WordNet [10]. For
example, “theory” can be replaced by its synonyms “concept” or “belief”. Once
Em is marked, we call it the marked element.

2.2 Watermark Detection

To detect whether the XML data has originated from the data source, the data
owner is required to supply the secret key, K, and the corresponding setting
file to the watermark detection algorithm, which is shown in Algorithm 2. The
setting file includes information such as the significance level, α, and the list
of locator candidates in XPath format. The detection algorithm finds out the
number of marked elements and locators in the XML data, and then evaluates
the hit rate. We call the locator whose watermark is detected by the algorithm the
detected locator. The detection algorithm uses a threshold function to calculate
the smallest integer, denoted as t, such that if the hit rate is larger than t, the
owner can claim the ownership of the document with the confidence of (1− α).

Figure 1 shows the proportion of detected locators required for a successful
detection with 99% confidence against different watermark ratios. It is interest-

Effective Approaches for Watermarking XML Data 71

Algorithm 1 The watermark insertion algorithm in the selective approach
1: for each locator candidates r ∈ R do{
2: if (r.lablel() mod υ equals 0){ //mark this locator
3: value index i = r.lablel() mod υ; //modify value Ai

4: if (Ai is textual){
5: word index wi = r.lablel() mod num of word in value;
6: Ai = markText(r.lablel(), Ai, wi);} //modify the wth

i word
7: else if (Ai is numerical){
8: bit index bi = r.lablel() mod ξ; //modify the bth

i bit
9: Ai = markNum(r.lablel(), Ai, bi);}}}

10: Procedure markNum(secret key sk, number v, bit index j) return number
11: first hash = H(K · sk)
12: if(first hash is even)
13: set the jth least significant bit of v to 0;
14: else
15: set the jth least significant bit of v to 1;
16: return v;

17: Procedure markText(secret key sk, text v, word index j) return text
18: first hash = H(K · sk);
19: if (first hash is even)
20: replace the jth word w by a synonym s where s = change(w,0);
21: else
22: replace the jth word w by a synonym s where s = change(w, 1);
23: return v;

24: Procedure change(word w, value v) return word
25: if (Symn(w) equals v)
26: Do nothing and return w;
27: else{
28: syn list = all synonyms of w from a dictionary database;
29: randomly select a synonym s from syn list where Synm(s) equals v;}
30: Procedure Synm(word w) return number
31: if (H(w) is even)
32: return 0;
33: else
34: return 1;

ing to find that, in a small XML document (N = 10,000), if 1% of the records
are marked, only 62% of detected locators are needed to provide 99% confidence.
As the watermark ratio increases, the proportion of detected locators required
decreases. The proportion tends to the constant value of 0.5 because the detec-
tion algorithm is probabilistic and needs more than 50% of detected locators to
differentiate a watermark from a chance of random occurrence. In general, for
an XML document with more elements, fewer detected locators are required to
achieve the same level of detectability than XML documents with fewer elements.

72 W. Ng and H.-L. Lau

Algorithm 2 The watermark deletion algorithm in the selective approach
1: TotalCount = 0;
2: MatchCount = 0;
3: for each locator r ε R do{
4: if (r.lablel() mod γ equals 0){// this locator is detected
5: value index i = r.lablel() mod υ; // value Ai was modified
6: if (Ai is textual) {
7: word index wi = r.lablel() mod num of word in value; // wth

i word was modi-
fied

8: TotalCount = TotalCount+1;
9: MatchCount = MatchCount + isMatchNum(r.lablel(), Ai, wi);}

10: else if (Ai is numeric) {
11: bit index bi = r.lablel() mod ξ // bth

i bit was modified;
12: TotalCount = TotalCount+1;
13: MatchCount = MatchCount + isMatchWord(r.lablel(), Ai, bth

i);}}}
14: t = Threshold(Totalcount, α, 0.5);
15: if(MatchCount ≥ t)
16: The document is a suspect piracy;

17: Procedure Threshold(number n, significance a, success probability p)
18: q = 1 − p;
19: return minimum integer k such that Σn

r=knCr pr qn−r < α;

0.01 0.1 1 10

Watermark ratio (%)

pr
op

or
tio

n
of

 d
et

ec
te

d
lo

ca
to

rs
 r

eq
ui

re
d

=0.01

N=10,000 N=100,000

N=1,000,000 N=10,000,000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 1. Proportion of detected locators required for successful watermark detection

2.3 Experiments

Two XML data sources are used in the experiments: 1998 statistics.xml and
weblog.xml. Table 2 shows the features of these datasets.

Marked and Modified Records. We first examine the relationship between
the fraction parameter, γ, and the marked locators. Figure 2(a) shows that
the percentages of marked locators in the two XML datasets are slightly lower
than our expected level (c.f. the superimposed curve representing 1/γ). This
is due to the fact that some locators cannot be modified by the watermark
insertion algorithm, such as the synonym of a word of the locator does not exist.
Figure 2(b) shows that the percentage of modified locators with different values
of γ. The experimental result for “1998 statistics.xml” is fluctuating around our
expected level of 50%, while that of the “weblog.xml” is usually less than 50%.

Effective Approaches for Watermarking XML Data 73

Table 2. Features of XML datasets

Documents File size
(KB)

No. of
records

No. of elements avail-
able for marking (υ)

No. of least significant
bits for marking (ξ)

1998 statistics.xml 1227 1226 4 3
weblog.xml 89809 247024 2 3

P
er

ce
n

ta
g

e
o

f
M

ar
ke

d
 L

o
ca

to
rs

(a)

100

0

10

20

30

40

50

60

70

80

90

1 2 3 5 7 9 10

(b)
P

er
ce

n
ta

g
e

o
f

M
o

d
if

ie
d

 L
o

ca
to

rs

0

10

20

30

40

50

60

70

80

90

100

1 2 3 5 7 9 10

Expected Level % of Modified Locators (1998_statistics.xml) % of Modified Locators (weblog.xml)

Fig. 2. Percentages of (a) marked and (b) modified locators versus γ

Table 3. Running time of watermark insertion

Watermark ratio (%) 100.00 50.00 33.33 20.00 14.29 11.11 10.00
1998 statistics.xml (sec) 0.891 0.891 0.861 0.891 0.871 0.871 0.851
weblog.xml (sec) 73.46 69.02 68.01 61.68 61.62 61.44 61.79

Running Time of Watermark Insertion. Table 3 shows the running time
of applying the watermark insertion algorithm on the two XML datasets with
different watermark ratios. The results show that the watermark ratios do not
have a big impact on the running time of the algorithm. The I/O time is the
main overhead, since the document is parsed only once, which is irrespective to
the watermark ratios.

Subtractive Attack. A subtractive attack aims at eliminating the presence of
watermarks. A successful subtractive attack reduces the watermarks created by
the original owner in order to render the claim of ownership impossible. Subset
attack is a typical form of subtractive attacks, it attempts to copy parts of the
watermarked document and hence reduces the percentage of watermarks found
in the document. We use the “weblog.xml” dataset to demonstrate the resistance
to subset attacks in the selective approach. We randomly select elements from
the watermark version of weblog.xml at different gap sizes and selectivity levels
and then examine the watermark detection percentage.

In Figure 3, when the gap size is equal to 10, 90% of watermarks can be
detected with only 0.02% selectivity level. When gap size increases, selectivity
level also increases for detecting over 90% of watermarks. At 0.3% selectivity,
watermark detection reaches 100%. For a gap size of 1000, only a small selectivity
level can reach over 90% watermark detection. This result indicates that the
watermarks inserted by our watermarking schemes are evenly distributed and
have good resistance to the subset attack.

74 W. Ng and H.-L. Lau

Gap Size

10

100

1000

Selectivity (%)

W
at

er
m

ar
k

D
et

ec
te

d
 (

%
)

0.
01

0.
02

0.
03

0.
10

0.
20

0.
30

1.
00

2.
00

3.
00

0

10

20
30

40

50

60

70
80

90

100

Fig. 3. Watermark detected versus selectivity level

Additive Attack. In an additive attack, illegal parties insert their own water-
marks over the original document and claim the “legal” ownership of the data.
Since the watermarks inserted afterwards is able to overwrite the former water-
marks in some overlapping regions, it results in the illegal copy more detected
elements than the original one can be found in the overlapping regions. Let M
be the total number of marked element, L be the number of elements available
for marking and F be the total number of watermarks added afterwards. The
probability of having overlapping region is given as follows:{

1 −ΠF−1
i=0

(L−i)−M
L−i , if M + F < L;

0, if M + F ≥ L.

The mean of the overlapping region = L × Probability of collision in an
element node = L × (M/L) × (F/L).

Illegal parties may try to reduce the overlapping regions by using a low wa-
termark ratio such as 0.1% or 0.01%. Figure 4 shows the probability and the
mean of having overlapping regions when the watermark insertion algorithm is
applied twice on the same XML document.

Mean of overlapping element with
watermarks 0.01 %

Percentage of watermarks used

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

(%
)

(d)

-

2

4

6

8

10

12

0.1 1 2 5 10

Mean of overlapping elements with
watermarks 0.1 %

Percentage of watermarks used

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

(%
)

(c)

-

20

40

60

80

100

120

0.1 1 2 5 10

Probability of collision with
watermarks 0.01 %

0.1 1 2 5 10

Percentage of watermarks used

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

(%
)

(b)

0
20

40
60

80
100

Probability of collision with
watermarks 0.1 %

0.1 1 2 5 10

Percentage of watermarks used

P
ro

ba
bi

lit
y

of
 c

ol
lis

io
n

(%
)

(a)

0

20

40
60

80

100

N = 10,000 N = 100,000 N = 1,000,000 N = 10,000,000

Fig. 4. Probability and mean of having overlapping region with 0.1% and 0.01% wa-
termark ratios

Figure 4(a) shows that for a small XML document (N=10000), if the owner
uses a 10% watermark ratio and the illegal party inserts watermarks with a
0.1% watermark ratio, the probability of the occurrence of overlapping regions
is 65%. However, the mean of these overlapping regions is only 1 as shown in

Effective Approaches for Watermarking XML Data 75

Figure 4(c). For a large XML document (N = 100,000), if the owner uses a
lower watermark ratio of 2% and the illegal party inserts watermarks with a
0.1% watermark ratio, we can achieve a higher probability of overlapping (85%)
and the mean of overlapping region is 2. Figures 4(b) & (d) show the results
of illegal parties using a very low watermark ratio of 0.01%. They show that
the probability of an overlapping occurrence and the mean of overlapping region
decrease dramatically. In this case, since the probability of overlapping region
is low, in order to resist additive attacks with a very low watermark ratio, we
can decrease the value of γ such that when overlapping occurs, the collisions of
watermarks are large enough to make an accurate decision.

Discussions. The experimental results show that the selective approach is sus-
ceptible to subtractive and additive attacks. The performance of the approach is
determined by four parameters: the size of the document (N), the watermarking
ratio (γ), the number of locators (v) and the significant level of the test (α). It is
worth mentioning in our finding larger documents can use a smaller watermark
ratio to achieve a particular confidence of detectability (c.f. Figure 1). Compu-
tation overhead introduced by the watermark ratio to the watermark insertion
algorithm is relatively small compared to the I/O time. The overhead is also
directly related to the size of the documents.

Our watermark algorithm can also resists some attacks that transform the
structure of the watermarked XML data conforming to DTDs or XML schemas
(i.e. distortive attack). Since XML data is a tree structure, re-transformation to
the original structure is possible by using the original schema, in this case we
can still apply the watermark detection algorithm to examine whether the XML
data belongs to the owner. In real life, some XML document is based on some
well-known schema, such as the Electronic Business using eXtensible Markup
Language (ebXML) [8], the distorted documents become less valuable.

3 The Compression Approach of Watermarking XML

Existing watermarking techniques are all targeted on plain XML data. The selec-
tive approach we introduced in Section 2 is efficient and effective in proving the
ownerships of the owners. However, the protection on the data from access in this
approach is not taken into consideration. In this section, we introduce a novel
watermark approach which is based on compressed XML data which provides a
prove of ownership as well as the protection of data security. The principle is that
compressed XML data are unable to be retrieved directly without the correct
decompression. Watermarking compressed XML data is a preventive measure
for unauthorized copy or reading. Similar to the selective approach, the com-
pression approach is also driven by the owner-selected secret key. The secret key
is used to calculate the location of the watermarks, each distributed copy is wa-
termarked by a unique secret key set by the owner. Without the secret key, the
compressed data cannot be retrieved. Authorized parties are allowed to retrieve
the data by using the pre-defined queries sets provided by the owner, the owner

76 W. Ng and H.-L. Lau

can also limit the amount of data visible to different parties by giving them
different pre-defined query sets. We also consider in practice some XML data
are updated frequently and thus it is inefficient to compress and watermark the
XML documents again for every update activity. Therefore, we provide a facility
which only requires the owner to distribute supplementary compressed files to
the relevant parties when update occurs.

3.1 Architecture of the Compression System

The architecture of the compression system is shown in Figure 5. We only briefly
explain the functionality of the main modules due to the space limit.

Compressed XML with
watermark

Compressed
Supplementary Set

Compressed Pre-defined
Query-set with watermark

Query and
Decompressor

Supplementary
Handler

Query
Result

ID
Adder

Query
Handler

Compressor (XQzip)

Watermark Engine

Key

XML

Supplementary

Own Info.

Pre-defined Query

User Query

Fig. 5. An overview of the compression approach of watermarking XML

ID Adder. The ID Adder is built on a SAX parser, it parses the XML document
sequentially and inserts the owner’s information into the XML document. The
information is stored in an “ownership node” under the root of the XML docu-
ment. The label of the ownership node is simply the hash value of the owner’s
secret key. To support update, a unique system-assigned ID value is added for
each element for easy processing when consulting the supplementary file.

Query Handler. This module is an interface that allows the owner to restrict
some pre-defined queries for an authorized party. The module selects the visible
parts of the XML document, then converts them into an XML document and
finally passes the XML document to the compressor.

Compressor and Watermark Engine. We adopt our earlier developed XQzip
[3] to carry out the XML compression. The secret key, hash function and gap
value are used to determine the byte position to be marked. Roughly, a smaller
gap value results in more watermarks being inserted into the compressed blocks.
After all the blocks are compressed and watermarked, they are merged into a
single file.

Query and Decompressor. Querying and decompressing are also executed
using XQzip [3]. A compressed pre-defined queries set is first decompressed.
Then, the authorized parties select and perform queries from the pre-defined
query list. The system locates the position of the query solution through the
index file developed in XQzip. The query solution is decompressed and passed to
the supplementary handler if update is required. In the process of decompression,

Effective Approaches for Watermarking XML Data 77

the query and decompressor hashes the embedded secret keys and gap values to
determine the marked elements and recover them.

Supplementary Handler. There are two steps in handling the supplementary
files when updating the compressed XML data. First, the handler removes the
out-dated contents defined by the supplementary set. The result is then passed
to the ID adder which updates the contents defined by the supplementary doc-
ument. Then, the parser checks for every attributes of each element, and if an
attribute is indicated as “added”, the parser inserts the value to the correspond-
ing elements and finally, the result is outputted as an XML file.

In the compressed watermark system, the number of watermarks in each
compressed block is restricted. The system processes byte flipping at the locator
indicated by the hash function. If one byte location is selected twice or even num-
ber of times, flipping does not occur at that byte location. To ensure that a block
contains at least one watermark, the number of watermark in each compression
block should be odd. The number of marks is determined by the following for-

mula where m is the block size: Number of mark =
{
m, when m is odd;
m + 1, otherwise.

3.2 Experiments

We implement the compression watermarking system and conduct a series of
experiments which are based on the same machine configuration as stated in
Section 2. Four common XML datasets are used in the experiments: XMark,
Shakespeare and two DBLP data sources of different size.

Effectiveness and Detectability of Compressed Watermarking System.
The data of a compressed document is retrieved by using the same {key, gap}
pair used in the compression. To test for the effectiveness of the system, we re-
trieve data from a compressed document by the query system from the following
scenarios: (1) different secret keys and different gap values, (2) the same secret
key but different gap values, (3) different secret keys but the same gap value,
and (4) the same secret key and same gap value. Note that when a wrong {key,
gap} pair is supplied, the query and decompressor cannot locate the pattern of
marked element and fails to decompress the required data.

Query Response Time. We present the worst case query response time of the
four datasets in the system on three different scenrios: (1) ID and update are
supported, (2) ID is supported but no update and (3) ID and update are not
supported. The test query we used is set to retrieve the whole document and the
processing involves a full decompression.

Figure 6(a) shows the query response time of the data sources in the system
which support ID and update. When the smallest gap value, i.e. gap = 1, requires
roughly 30% more time to process the query than that with the largest gap value,
i.e. gap = 10000. The reason for this is that the gap value controls the number of
marks to be recovered, the smaller the gap value, the more the marked elements
are needed to be recovered. Figure 6(b) shows the query response time of our
system and XQzip which support ID but not update. It shows that when the

78 W. Ng and H.-L. Lau

(b)

Gap=1 Gap=10 Gap=100 Gap=1000 Gap=100000

Query Response Time (With ID and update)

Compressed Data Sources
(a)

T
im

e
(s

)

0

200

400

600

800

1000

1200

XMark Shakes
-peare

DBLP1 DBLP2

Query Response Time (With ID and no update)

Compressed Data Sources
(b)

T
im

e
(s

)

0

50

100

150

200

250

300

XMark Shakes
-peare

DBLP1 DBLP2
0

20

40

60

80

100

120

140

160

180
Query Response Time (Without ID and update)

T
im

e
(s

)

Compressed Data Sources
(c)

XMark Shakes
-peare

DBLP1 DBLP2

Fig. 6. Query processing time comparison (a) (support ID and update), (b) (support
ID but not update) and (c) (do no support ID nor update)

gap value is smaller, the query processing time is longer; it takes 10 times longer
for gap = 1 than gap = 10000.

Compared Figure 6(a) to Figure 6(b), there is a big difference in the query
time between the updated case and that of not updated. The difference is obvious
when the gap value is small and the file size is large, in this case handling supple-
mentary XML documents is expensive and consumes too much time. However,
when the gap value is very small, time spent on recovering the marked elements
from the compressed XML data becomes critical and the time spent on handling
supplementary XML document becomes less significant.

Figure 6(c) shows the query time of the system which support neither ID nor
update. The result is similar to the results shown in Figure 6(b). In this case
most of the time is used in recovering the marked elements from the compressed
XML data. This also indicates that the time required for handling ID is linear
to the size of the document, which does not introduce much overhead.

Robustness of Watermarking. We now analyze the robustness of the com-
pression approach against various forms of attacks. An attack is assumed to be
aimed at retrieving data from the compressed document without using the query
system. Such attacks are classified as a flipping attack or an averaging attack.

Flipping Attack. A flipping attack attempts to destroy the watermark by flip-
ping the value at certain byte positions. Since a compressed document is com-
posed of many compressed blocks, an attacker attempts to attack each block
and combine all the attacked blocks to form a new compressed document. If any
one block is modified wrongly, the compressed document is unable to be decom-
pressed therefore the attacker has to guess the pattern of all blocks correctly.

Suppose the attacker knows the number of marked locators, m, and the size
of the data, n. If two marked elements are at the same location, they cancel the
effect of each other. The probability of correctly guessing the pattern of marks
is given by: 1

Σr=1,3,...,mnCr , for 0 < m ≤ n and m is odd.
Figure 7 shows the success rate of the simulated flipping attacks. The success

rate decreases upon the increase of block size at a fixed gap value. On the other
hand, if the block size is fixed, a decrease in gap value decreases the success rate.
For instance, a small block size (n = 30) and a large gap value (gap = 100000)
gives a higher success rate, however, most of the success rates are within 3%,
which are rather low.

Effective Approaches for Watermarking XML Data 79

Probability of successful flipping attack

0 1 2 3 4 5

0.005

0.01

0.015

0.02

0.025

0.03

0.035

su
cc

es
s

ra
te

log (gap)

n = 3000

n = 300

n = 30

Fig. 7. Success rate for flipping attack

Averaging Attack. An averaging attack attempts to construct a watermark-
free document from a number of sample watermarked documents. Similar to the
flipping attacker, an averaging attacker attacks the compressed data block by
block by analyzing all the compressed blocks from the available samples and
uses the information to construct a new block. Let the attacker has s samples (s
is supposed to be an odd number) and create a new artificial block, a. The ith

byte of a is the majority value of the ith byte in all the s samples.
We carry out experiments by simulating the averaging attack by using the

XMark and Shakespeare datasets. For each dataset, there are 99 samples avail-
able. We randomly generate the blocks sizes as the attack targets. To launch a
successful averaging attack, all artificial blocks are required to be successfully
attacked. The number of samples required is shown in Table 4 and “Fails” means
the attack is fail after averaging all the samples.

Table 4. Number of samples required for averaging attack at different gap size

Gap Size 1 5 10 100 1000 10000 100000
XMark Fails Fails Fails 5 3 3 3
Shakespeare Fails Fails Fails 5 3 3 3

From Table 4, we find that the attack on compressed data can be easily
successful if the gap values are large. This is mainly because majority of blocks
being unmarked when the gap value is large. When the gap value is below 10,
all attacks fail, since few byte errors are sufficient to prevent the attacker from
decompressing the data. From the results, we can see that when the gap value
is smaller the system is more robust against the averaging attack. Thus, there
is indeed a tradeoff between the gap value and compression time.

4 Concluding Remarks

We have presented two approaches for watermarking XML for both usual XML
and a compressed form, which are shown to be robust and effective. The proposed
watermark algorithms are presented and various forms of attacks are studied.
In the selective approach, we decide how to insert synonyms and control the

80 W. Ng and H.-L. Lau

synonymity level of a word. The performance of the scheme in this approach
depends very much on the quality of the synonym database. In the compression
approach, we rely on an effective queriable XML compressor we developed. This
approach is both effective and practical for large XML datasets.

References

1. D. Gross-Amblard. Query-preserving Watermarking of Relational Databases and
XML Documents. In Proc. of Principle of Database Systems, 2003.

2. R. Agrawal and J. Kiernan. Watermarking Relational Databases. In Proc. of
VLDB, 2002.

3. J. Cheng and W. Ng. XQzip: Querying Compressed XML Using Structural Index-
ing. In Proc. of the EDBT, pages 219-236, 2004.

4. C. Collberg and C. Thomborson. Software Watermarking: Models and Dynamic
Embeddings. In Proc. of Principles of Programming Languages, 1999.

5. R. Sion, M. Atallah and S. Prabhaker. Resilient Information Hiding for Abstract
Semi-Structures. In Proc. of the IWDW, 2004

6. S. Inoue et al. A Proposal on Information Hiding Methods using XML. In the
First NLP and XML Workshop.

7. M. Atallah, R. Sion and S. Prabhakar. Watermarking non-media content. In the
the CERIAS Security Symposium, 2001.

8. UN/CEFACT and OASIS. ebXML - Electronic Business using eXtensible Markup
Language. In http://www.ebxml.org/.

9. Y. Li, V. Swarup and S. Jajodia. Constructing a Virtual Primary Key for Finger-
printing Relational Data. In Proc. of the 2003 ACM workshop on Digital rights
management, 2003.

10. C Fellbaum. WordNet An Electronic Lexical Database. The MIT Press, 1998.

A Unifying Framework for Merging and
Evaluating XML Information

Ho-Lam Lau and Wilfred Ng

Department of Computer Science,
The Hong Kong University of Science and Technology, Hong Kong

{lauhl, wilfred}@cs.ust.hk

Abstract. With the ever increasing connection between XML informa-
tion systems over the Web, users are able to obtain integrated sources of
XML information in a cooperative manner, such as developing an XML
mediator schema or using eXtensible Stylesheet Language Transforma-
tion (XSLT). However, it is not trivial to evaluate the quality of such
merged XML data, even when we have the knowledge of the involved
XML data sources. Herein, we present a unifying framework for merging
XML data and study the quality issues of merged XML information. We
capture the coverage of the object sources as well as the structural diver-
sity of XML data objects, respectively, by the two metrics of Information
Completeness (IC) and Data Complexity (DC) of the merged data.

1 Introduction

Information integration, a long established field in different disciplines of Com-
puter Science such as cooperative systems and mediators, is recognized as an
important database subject in a distributed environment [5, 8]. As the network-
ing and mobile technologies advance, the related issues of information integration
become even more challenging, since merged data can be easily obtained from a
wide spectrum of emerging modern data applications, such as mobile computing,
peer-to-peer transmission, mediators, and data warehousing.

As XML data emerges as a de-facto standard of Web information, we find
it essential to address the quality issues of integrated XML information. In this
paper, we attempt to establish a natural and intuitive framework for assessing
the quality of merging XML data objects in a co-operative environment. We
assume that there are many XML information sources which return their own
relevant XML data objects (or simply XML data trees) as a consequence of
searching for a required entity from the users. To gain the maximal possible
information from the sources, a user should first query the available sources and
then integrate all the returned results. We do not study the techniques used
in the search and integration processes of the required XML data objects as
discussed in [1, 2, 3]. Instead, we study the problem of how to justify the quality
of merged XML information returned from the cooperative sources.

We propose a framework to perform merging and to analyze the merged
information modelled as multiple XML data objects returned from a set of XML

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 81–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 H.-L. Lau and W. Ng

information sources. Essentially, our analysis is to convert an XML data object
in an Merged Normal Form (MNF) and then analyze the data content of the
normalized object based on a Merged Tree Pattern (MTP). We develop the
notions of Information Completeness (IC) and Data Complexity (DC). These
are the two components related to the measure of the information quality.

Intuitively, IC is defined to compute the following two features related to the
completeness of those involved information sources. First, how many XML data
objects (or equivalently, XML object trees) can be covered by a data source, and
second, how much detail does each XML data object contain. We call the first
feature of IC the merged tree coverage (or simply the coverage) and the second
feature of IC the merged tree density (or simply the density).

The motivation for us to define IC is that, in reality when posing queries
upon a set of XML information sources that have little overlaps in some pre-
defined set of core labels C, then the integrated information contains a large
number of distinct XML data objects but with few subtrees or data values under
the core labels, in this case the integrated information has comparatively high
coverage but low density. On the other hand, if the sources have large overlaps
in C, the integrated information contains a small number of distinct objects with
more subtrees or data elements under the core labels, in this case the integrated
information has comparatively low coverage but high density.

The metric DC is defined to compute the following two features related to
the complexity of the retrieved data items, resulting from merging data from
those involved information sources. First, how diversified the merged elements
or the data under a set of core labels are, and second, how specific those merged
elements or data are. We call the first feature of DC the merged tree diversity (or
simply the diversity) and the second feature of DC the merged tree specificity
(or simply the specificity). In reality, when we merge the data under a label in C
it may lead to a too wide and deep tree structure. For example, if most data of
the same object from different sources disagree with each other, then we have to
merge a diverse set of subtrees or data elements under the label. Furthermore,
the merged tree structure under the label can be very deep, i.e. to give very
specific information related to the label.

We assume a global view of data, which allows us to define a set of core labels
of an entity that we search over the sources. As a core label may happen anywhere
along a path of the tree corresponding to the entity instance, we propose a Merge
Normal Form (MNF). Essentially, an XML object in MNF ensures that only the
lowest core label along a path in the tree can contain interested subtrees or
data elements. Assuming all XML objects are in MNF we aggregate them into a
universal template called Merged Tree Pattern (MTP). We perform merging on
the subtrees or data values associated with C from XML tree objects: if the two
corresponding core paths (paths having a core label) from different objects are
equal, then they can be unanimously merged in MTP. If the two paths are not
equal, the conflict is resolved by changing the path to a general descendant path.
Finally, if the two core paths do not exist then they are said to be incomplete,
the missing node in MTP will be counted when computing IC.

A Unifying Framework for Merging and Evaluating XML Information 83

The main contributions is that we establish a framework for evaluating the
quality of integrated XML information. Our approach is based on a merged
XML template called MTP, which is used to aggregate XML data objects from
different sources. The framework is desirable for several reasons. First, the IC
score is a simple but an effective metric to assess the quality of individual data
source or a combination of data sources, which can serve as a basis for source
selection optimization. The DC is a natural metric to assess the diversity and
specificity of the subtrees under core labels. Second, MTP shares the benefits
of traditional nested relations which are able to minimize redundancy of data.
This allows a very flexible interface at the external level, since both flat and
hierarchical data can be well presented to the users. The MTP provides for
the explicit representation of the structure as well as the semantics of object
instances. Finally, an XML data objects T can be converted into MNF in a
linear time complexity, O(k1 + k2), where k1 is the number of nodes and k2 is
the number of edges in T .

Paper Organisation. Section 2 formalises the notion of integration for a set
of XML data objects from a given source, which includes the discussion of the
merged objects and the merged normal form (MNF). Section 3 introduces the
concept of XML merged tree pattern (MTP) and illustrates how XML data ob-
jects can be merged under the MTP. Section 4 defines the components of mea-
suring quality of integrated XML information. Finally, we give our concluding
remarks in Section 5.

2 Merging Data from XML Information Sources

In this section, we assume a simple information model consisting of different
XML sources, which can be viewed as a set of object trees. We introduce two
notions of Merge Normal Form (MNF) and Merge Tree Pattern (MTP) in order
to evaluate the merged results. Our assumptions of the information model of
co-operative XML sources are described as follows.

Core Label Set. We assume a special label set over the information sources,
denoted as C = {l1, . . . , ln}. C is a set of core tag labels (or simply core labels)
related to the requested entity e. We term those paths starting from the entity
node with tag label le leading to a core node with tag label the core paths. C
also consists of a unique ID label, K, to identify an XML object instance of e.
A user query q = 〈e, C〉 is a selection of different information related to a core
label, which should include the special K path. We assume heterogenicity of data
objects to be resolved elsewhere, such as using data wrappers and mediators.

Key Label and Path. We assume an entity constraint: if two sources present
an XML data object then we consider these objects represent the same entity in
real world. The K label is important to merge information of identical objects
from different sources. We do not consider the general case of FDs in order to
simplify our discussion. The assumption of the K tag label is practical, since in

84 H.-L. Lau and W. Ng

reality an ID label is commonly available in XML information, which is similar
to the relational setting.

Source Relationships. The information source contents overlap to various
degrees with each others, regarding the storage of XML data objects. In an
extreme case, one source can be equal to another source, for example mirror
Web sites. In the other extreme case, one source can be disjoint from another,
i.e. no common XML data object exists in two sources, for example one source
holds ACM publications and another source holds IEEE publications. Usually,
independent sources have different degrees of overlaps, e.g. they share information
of common objects. Furthermore, if all objects in one source exist in another
larger one then we say the former is contained in the latter.

Example 1. Figure 1 shows three publication objects T1, T2 and T3, all of which
have a K path, key, represented in different XML object trees as shown. Each ob-
ject contains different subsets of the core labels C = {key, author, title, url, year}.

C = {key, author, title, url, year}

T2

r

key title

Phil
Shaw

author

X3H2-
90-292

Modification
of User...

pub

url

db/systems/
sqlPapers...

1990

year

article

T1

r

key year

SQL/Data
System ...

title

GH24
-5013

1981

pub

book

T3

r

key title

Sai

author

RJ-
2736

Index Path
Length...

pub

year

1980Strong

author

Fig. 1. A source of three XML data objects of publication records

We now consider merging the same XML data object identified by the K
path. There are several scenarios arising from merging an object obtained from
two different sources. (1) A core path l ∈ C of the object does not exist in either
sources. (2) A core path l ∈ C of the object is provided by only one source. (3)
A core path l ∈ C of the object is provided by both sources but their children
under the l-node may be distinct.

The first and second cases do not impose any problems for merging, since we
simply need to aggregate the existent paths in the merged result. The outcome
of the merge is that there is either no information for the path l or a unique
piece of information for the path l in the merged result. The last case does not
bring into any problem if the children (data values or subtrees) under the core
label obtained from the sources are identical. However, it poses a problem when
their children disagree with each other, since conflicting information happens in
the merged result. Our approach is different from the common ones which adopt
either human intervention or some pre-defined resolution schemes to resolve the
conflicting data. We make use of the flexibility of XML and introduce a special
merge node labelled as m (m-node) as a parent node to merge the two subtrees
as its children. We formalize the notion of merging in the following Definition.

A Unifying Framework for Merging and Evaluating XML Information 85

special label for merging subtrees. We construct a subtree T3 having the children
generated by T1 and T2, where v3 is a m-node whose children are defined as
follows. (1) T3 has two children of T1 and T2 under the root v3, if neither v1 nor
v2 are m-nodes. (2) T3 has the children T1 with T2 being added immediately
under v3, if v1 is under a m-node but v2 is not. (Similar for the case if v2 is the
only m-node.) (3) T3 has the children child(v1) and child(v2) under v3, if both
v1 and v2 are under m-nodes.

A merge operator on two given subtrees having the roots, v1 and v2, under
a given l, denoted as merge(v1, v2), is an operation which returns T3 as a child
under the l-node, defined according to the above conditions.

Figure 2 shows the three possible results of merge(v1, v2), on the two subtrees,
T1 and T2, under the core node with label � ∈ C. The three cases correspond to
the cases stated in Definition 1. We can see that the resultant subtree T3, which
has the root of a m-node, is constructed from T1 and T2.

Case 1

... ...

T2

v2

T1

v1
m

T2

v2

T1

v1

v3

...

Case 2

...

T2

v2

... ...

(v1, m)

T2

v2child(v1)

v3
(v1, m)

child(v1)

Case 3

child(v2)

T1

...

(v2, m)

...

m

child(v1)

v3

(v1, m)

child(v1) child(v2)

Fig. 2. The merge operator on two subtrees T1 and T2 under a core label

The merge operator can be naturally extended to more than two input chil-
dren under a given core node with a label l ∈ C. We can verify the following com-
mutativity and associativity properties of the merge operator: merge(v1, v2) =
merge(v2, v1) and merge(merge(v1, v2), v3) = merge(v1,merge(v2, v3)). In ad-
dition, the merge operator is able to preserve the occurrences of identical data
items of a core label of the same object. Our use of the merge node has the ben-
efit that it provides the flexibility of further processing of the children under the
m-node, which is independent on any pre-defined resolution schemes for conflict-
ing data. For example, in the case of having flat data values under the m-node,
we may choose an aggregate function such as min, max, sum or avg to further
process the conflicting results. In the case of having tree data under the m-node,
we may use a tree pattern to filter away the unwanted specific information.

One might think that it is not sufficient to define the merge operator over the
same object from different sources. In fact, the merge operator has also ignored
the fact that in a core path, more than one core label may occur. In order to deal
with these complications, we need the concepts of Merge Normal Form (MNF)
and Merge Tree Pattern (MTP) to handle general merging of XML data objects.

Definition 2. (Merge Normal Form) Let T be an XML object tree, where
P ⊆ C be the set of core labels in T and K ∈ P is the key label of T . Let us call
those nodes having a core label core nodes and those path having a core node

Definition 1. (Merging Subtrees Under Core Labels) Let v1 and v2 be
the roots of two subtrees, T1 and T2, under a core label l ∈ C. Let m be the

86 H.-L. Lau and W. Ng

core paths. A tree T is said to be in the Merge Normal Form (MNF), denoted
as N(T), if for any core paths p in T , all the ancestor nodes of the lowest core
nodes of p have one and only one child.

Intuitively, the MNF allows us to estimate how much information is associ-
ated with the core labels of an entity by simply checking the lowest core label in
a path. We now present an algorithm which converts a given XML object tree,
T , into an MNF. By Definition 2, we are able to view N(T) = {p1, . . . , pn} as
the merged normal form of T , where pi is the core path from the root to the
lowest core node in the path. Note that any particular core label may have more
than one core path in N(T).

MNF Generation

Input: an XML object tree T .
Output: the MNF of the tree Tr = N(T)
N(T){
1. Let Tr = φ; P = φ;
2. Normal(T.root);
3. return N(T) := Tr;}
Normal(n) {
1. for each child node hi of n {
2. Normal(hi);
3. if (label(n) ∈ C) {
4. if (n has non-core children) {
5. if (there exist a path, path(n′) ∈ Tr, such that path(n′) = path(n))
6. child(n′) = merge(child(n′), child(n));
7. else {
8. if (label(n) /∈ P)
9. P ∪ label(n);
10. Tr ∪ path(n); }}}}}

The underlying idea of Algorithm 2 is to visit each node in T iteratively in a
depth first manner until all distinct core paths are copied as separate branches
into N(T). The core paths that have no non-core subtrees attached are removed.
If there are two core paths ended at nodes with the same core label, we check if
there exists a path, path(n′) ∈ N(T), such that path(n′) = path(n), their value
are simply merged together, otherwise, path(n) is added as a new branch. The
complexity of Algorithm 2 is O(k1 + k2), where k1 is the number of node and
k2 is the number of edges in T . Note that the NMF of T may not be a unique
N(T) from Algorithm 2. However, it is easy to show that the output satisfies
the requirement in Definition 2. From now on, we assume that all XML data
object trees are in MNF (or else, they can be transformed to MNF by using
Algorithm 2.) We now extend the merge operations on two XML data objects.

A Unifying Framework for Merging and Evaluating XML Information 87

Definition 3. (Merging XMLData Object fromTwo Sources)Let core(T)
be the set of core labels in T . Given two XML object trees, T1 = {p1, . . . , pn} and
T2 = {q1, . . . , qm}, where pi and qj are core paths. We define T3 = merge(T1, T2)
such that T3 satisfies (1) pi ∈ T3, where pi ∈ T1, pi /∈ T2. (2) qj ∈ T3, where qj ∈
T2, qj /∈ T1. (3) rk ∈ T3 and child(nrk

) = merge(npi
, nqj

), where rk = pi = qj .

e

T1

K

e

C1

T2

K C3

Case 2

K

e

C1
C2

T3

C3C1
C2 C3

U
I T1T2

e

C1
C2

T1

K C3

e

T2

K C4 C5 C6

Case 1
T1 T2 = O

C6

e

C1 C2

T3

K
C3 C4

C5

U

e

T1

K

e

T2

e

T3

KK
C1 C2

C3
C1 C3

C4

C2

Case 3
T1 T2 != O

U

C5
C4 C3

C4

C1
C3

C5

Fig. 3. Merging of MNF XML trees N(T1) and N(T2)

Figure 3 shows the three possibilities of merging an XML object tree from
two different sources. By Algorithm 2, we can transform an XML object tree
into its MNF, which can be viewed as a set of basic core paths. We denote S as
a set of XML object trees in MNF, S = {T1, T2, . . . , Tn}. We further develop a
template for general merging, called the Merge Tree Pattern (MTP), which is
used to merge the information of a given set of normalized object trees obtained
from different sources. Essentially, we perform merging the children of the basic
core paths iteratively within MTP.

Definition 4. (Merge Tree Pattern) Let core(T) denote the set of basic
core labels in T . Let T = {T1, . . . , Tn}. A Merge Tree Pattern (MTP) is a tree
template obtained by combining the trees in T . An MTP is generated according
to the following algorithm. We say that two basic core paths are mismatched, if
the two given paths both end at the same core label but they have different lists
of core nodes along the basic core path. The child of each leaf of the basic core
path in the MTP is a list of elements which store the data corresponding to the
basic core path. We also define desc(n) to be the descendant axis of the node n.
For example, given path(n) = r/a/b/c/d, we have desc(n) = r//d.

Example 2. Figure 4 demonstrates the generation of MTP with three XML trees
in MNF forms, T1, T2 and T3. We can check that the core path for “title” are
different in T1, T2 and T3, therefore, we represent it as the descendant axis
“r//title”. The child of the core label “author” in T2 is a subtree of non-core
labels, in MTP, we insert a labelled pointer (author, 1) to indicate it. Note that
the child of the core label “author” subtree is a subtree having the root m-node.
The list in Algorithm 4 does not store the whole tree structure, we only need to
insert a labelled pointer (m, 2) directed to the required subtree as shown.

88 H.-L. Lau and W. Ng

MTP Generation

Let Ti = {path(n1i), . . . , path(npi)}, 1 ≤ i ≤ n
and T = {path(m1), . . . , path(mq)}
Input: a set of trees in MNF, T = {T1, . . . , Tn}
Output: the MTP of T
MTPGen(T){
1. Let T = T1;
2. For each Ti in T {
4. For each leaf node, n, in Ti {
5. if (path(ni) and path(mj) are mismatched) {
6. path(mj) = desc(mj);
7. list(mj).add(merge(value(mj), value(ni))); }
8. else {T ∪ path(ni);
9. list(ni).add(value(ni)); }}}
10. return MTPGen(T) := T; }

pubpub

T2

title

author

Modification
of User...

url

db/systems/
sqlPapers...

1990

yeararticle

T3

key title

RJ-
2736

Index Path
Length...

year

1980

author

Sai Strong

m
firstname lastname

T1

key year

SQL/Data
System ...

title

GH24-
5013

1981

book ke
y

X3H2-
90-292

Phil Shaw

pub

-
author

Modification
of User...

url

db/systems/
sqlPapers...

1990

year

SQL/Data
System ...

1981 -

Index Path
Length...

1980 -(m, 2)

MTP of T1, T2 and T3

Sai Strong

(author, 1)

ke
y

X3H2-
90-292

GH24
-5013

RJ-
2736

Phil Shaw

firstname lastname

pub

title

Fig. 4. Generation of MTP with three XML trees in MNF

3 Merge Operations on MTP

In order to perform merging of the entire query results from multiple sources, we
define two useful merge operators on MTPs, the join merge, �, and the union
merge, �.

Definition 5. (Join Merge Operator) Let P1 and P2 be two MTPs derived
from the sources S1 and S2. Let core(P1), core(P1) ⊆ C be the set of core labels
obtained from the sources S1 and S2, respectively, where K ∈ core(S1), and
K ∈ core(S2). Then we define the MTP P3 = P1 � P2, such that ∃T1 ∈ S1 and
∃T2 ∈ S2 satisfies that if r1//K = r2//K, then T3 is constructed by:
1. path(r3//K) := path(r1//K).
2. path(r3//l/v3) := path(r1//l/v1), where l ∈ (core(P1)− core(P1)).
3. path(r3//l/v3) := path(r2//l/v2), where l ∈ (core(P1)− core(P1)).
4. path(r3//l/v3) := desc(v3) where child(nv3) := merge(child(nv1), child(nv2)),
where l ∈ (core(P1) ∩ core(P2)).

The intuition behind the above definition is that in the first condition we
adopt the key path as the only criterion to join the tree objects identified by K
obtained from P1 and P2. The second and third conditions state that we choose

A Unifying Framework for Merging and Evaluating XML Information 89

1

K
C2

C1 C3 C4

(m, 1) (m, 2) (m,3) -

e

3 - X1 (m, 4) Z1

2 W1 - -
4 - -W

3 -

K

1
3

C2
C1 C3 C4

(m, 1) (m, 2) (m,3) -
- X1 (m, 4) Z

1

e

(c) MTP 1 MTP 2

Y
1

W
2 Y2

C3, 4
W

2 Y1Y
2

C3, 4

(d) MTP
1

MTP
2

e

K C2C1 C3

1

2

3

(m, 1)

W
1

-

(m, 2)

-
X1

Y
1

Y2

-
1

3

4

W
2

(m,3)

-
-
Z1

-W3

(C
3
, 4)-

e

K C3C1 C
4

(a) MTP 1 (b) MTP
2

Fig. 5. The Join Merge and Join Union Operators

all the paths from the two MTPs as long as they do not overlap. The fourth
condition is to resolve the conflict of having the common path in both source
MTPs by using a descendant path and merging the node information.

Example 3. Figure 5(c) and 5(d) illustrates the use of the join-merge and join-
union operations on P1 and P2.

Definition 6. (Union Merge Operator) Let P1 and P2 be two MTPs derived
from the sources S1 and S2. Let core(P1), core(P1) ⊆ C be the set of core labels
obtained from the sources S1 and S2, respectively, where K ∈ core(S1), and
K ∈ core(S2). Then we define the MTP P3 = P1 � P2, such that ∃T1 ∈ S1 and
∃T2 ∈ S2 satisfies that, if path(r1//K) = path(r2//K), then T3 is constructed by:
(1) path(r3//K) := path(r1//K). (2)path(r3//l/v3) := path(r1//l/v1), where
l ∈ (core(P1) − core(P1)). (3) path(r3//l/v3) := path(r2//l/v2), where l ∈
(core(P1) − core(P1)). (4) path(r3//l/v3) := desc(v3) where child(nv3) =
merge(child(nv1), child(nv2)), where l ∈ (core(P1) ∩ core(P2)). Or else T3 is con-
structed by path(r3//l/v3) := path(r1//l/v1) or path(r3//l/v3) := path(r2//l/v2).

Notably, the union merge operator can be viewed as a generalized from of
the full-outer join in relational databases [8].

4 Quality Metrics of Merged XML Trees

We describe two measures of information completeness and data complexity to
evaluate the quality of the results of the join and union merge operators.

The merged tree coverage (or simply the coverage) of an XML source relates
to the number of objects that the source can potentially return. Intuitively, the
notion of coverage captures the percentage of real world information covered
in a search. The problem lies in the fact that XML sources mutually overlap
a different extent. We need to devise an effective way to evaluate the size of
coverage.

Definition 7. (Merged Tree Coverage)
Let the MTP of the source S of a set of XML data objects be PS and n be

the total number of objects related to the requested entity e specified in a query

90 H.-L. Lau and W. Ng

q = (e, C), where C is the set of core labels associated with e. We define the
merged tree coverage (or the coverage) of PS with respect to q as cov(S) = |PS |

n ,
where | PS | is the number of XML data objects distinguished by the object key
K ∈ C stored in PS .

The coverage score of simple objects is between 0 and 1 and can be regarded
as the probability that any given real world object is represented by some objects
in the source. We adopt the union merge operator proposed in Definition 6 to
generate the MTP for the merged objects and determine the coverage score [4].

Example 4. Assume that there are about two million electronic computer science
publications over the Web (i.e. n = 2,000,000). About 490,000 of these are listed
in the Digital Bibliography & Library Project (DBLP) and the information is
available in XML format. Table 1 shows the number of electronic publications
available on the Web. The coverage scores are obtained by dividing the number
of publications by 2,000,000.

Table 1. The coverage score of five electronic publication sources

Number of Publication
659,481

1,463,418
490,000
412,306
75,000

Electronic Publication Source
CiteSeer

The Collection of Computer Science Bibliographies
DBLP

CompuScience
Computing Research Repository (CoRR)

Coverage Scores
0.3297
0.7317
0.2450
0.2061
0.0375

The coverage measure for the MTP from many sources can be computed in
a similar way, based on the coverage scores of individual sources. In reality, we
may download the source to assess the coverage or the coverage can be estimated
by a domain expert. To respond to a user query, a query is sent to multiple XML
information sources. The results returned by these sources are sets of relevant
XML data objects. Some data objects may be returned by more than one source.
We assume that there are only three different cases of overlapping data sources.

1. The two sources are disjoint, which means that, according to the K label,
there are no common XML data objects in the two sources. Then cov(Si � Sj)
is equal to cov(Si) + cov(Sj) and cov(Si � Sj) is equal to 0.

2. The two sources are overlapping, meaning that, according to the K label,
there are some common XML data objects in the two sources. The two sources
are assumed to be independent. Then cov(Si � Sj) is equal to cov(Si) + cov(Sj)
− cov(Si) ·cov(Sj) and cov(Si�Sj) is equal to cov(Si) ·cov(Sj) (if Si is contained
in Sj).

3. One source is contained in another, which means that, according to the K
label, all the XML data objects in one source are contained in another source.
Then cov(Si � Sj) is equal to cov(Sj) and cov(Si � Sj) is equal to cov(Si) (if Si

is contained in Sj).
Now, we consider the general case of integrating results returned from mul-

tiple data sources. We emphasize that the extension of the two merge opera-
tions in Definitions 5 and 6 from two sources to many sources is non-trivial,

A Unifying Framework for Merging and Evaluating XML Information 91

since mixed kinds of overlapping may occur between different sources. We let
M =

⊔
(S1, . . . , Sn) be the result obtained from union-merged a set of sources

W = {S1, . . . , Sn}. Let S �∈ W . We define the disjoint sets of sources D ⊆ W to
be the maximal subset of W , such that all the sources in D are disjoint with S,
the contained sets of sources T ⊆ W to be the maximal subset of W , such that
all the sources in T are subsets of S, and the independent sets of sources I ⊆ W
to be the remaining overlapping cases, i.e. I = W − T − S.

Theorem 1. The following statements regarding W and S are true.
1. cov(M � S) = cov(M) + cov(S) − cov(M � S).
2. If � ∃Si ∈ W such that S ⊆ Si, then cov(M�S) = cov(M)+cov(S)−cov(M�S),
or else cov(M � S) = cov(S).

The merged tree density (or simply the density) of an XML source relates to
the ratio of core label information provided by the source. As XML objects have
flexible structures, the returned object trees from a source do not necessarily
have information for all the core labels. Furthermore, a basic core node may
have a simple data value (i.e. a leaf value) or a subtree as its child. We now
define the density of a core label in an MTP, PS .

Definition 8. (Core Label Density) We define the merge tree density (or
simply density) of a core path pl for some l ∈ C of PS , denoted as den(S, l),
by den(S, l) = | {T∈PS | rT //pl/v exists in T}|

| PS | , where “rT //pl/v” is a basic core
path and v is the corresponding core node in T . The density of the MTP PS ,
denoted as den(S), is the average density over all core labels and is given by
den(S) = Σl∈Cden(S,l)

|C| .

In particular, a core label that has a child (a leaf value of a subtree) for every
data tree of the source S has a density of 1 in its PS . The density of a core label
l that is simply not provided by any object data tree has density den(S, l) = 0.
Core labels for which a source can provide some values have a density score in
between 0 and 1. By assumption den(S,K) is always 1.

Table 2. The DBLP XML table from MTP(DBLP)

key
tr/ibm/GH24...

tr/ibm/RJ...
tr/sql/X3H2...
tr/dec/SRC...

tr/gte/TR-026...

title
SQL/Data System ...
Index Path Length...

Modification of User...
The 1995 SQL Reunion...
An Evaluation of Object...

author
-

Sai, Strong
Phil Shaw

-
Frank Manola

journal
IBM Publication

IBM Research Report
ANSI X3H2

Digital System...
GTE Laboratories...

volume
GH24-5013

RJ2736
X3H2-90-292
SRC1997-018

TR-0263-08-94-165

year
1981
1980
1990
1997
1994

url
-
-

db/systems/...
-

db/labs/gte/...

Example 5. Let C = (key, title, author, journal, vloumn, year, url) be a simpli-
fied set of core labels of an article object. Consider the DBLP table (ignoring
all core paths) extracted from MTP(DBLP) as shown in Table 2. The data in
the table is the information returned from the DBLP source for searching ar-
ticles. The density of the core labels title and url are den(S, title) = 1 and
den(S, url) = 0.4, respectively.

92 H.-L. Lau and W. Ng

Similar to finding real coverage scores, density scores can be assessed in many
ways in practice. Information sources may give the scores for an assessment. We
may also use a sampling technique to estimate the density. For large data sources,
the sampling process can be continuous and then the score can be incrementally
updated to a more accurate value.

Now, we consider the general case of n data sources. We use the same set of
notations M,W,T, S and I as already introduced in Section 4.

Theorem 2. The following statements regarding W and S are true.
1. (den(M � S) = den(M, l) · cov(M) + den(S, l) · cov(S) − den(T, l) · cov(T) −
(den(S, l)+den(I, l)−den(S, l)·den(I, l))·cov(S)·cov(I)+(den(I, l)+den(T, l)−
den(I, l) · den(T, l)) · cov(I � T)) · 1

cov(M�S)
2. den(M � S, l) = den(M, l) + den(S, l) − den(M, l) · den(S, l).

Example 6. Assume that DBLP (D) and CiteSeer(C) are independent sources.
Let the density scores for the volumn label be 1 and 0.6 respectively. The cov-
erage score is 0.245 and 0.3297. Thus, the density score of their merged result
is given by den(D � C) = 1 · 0.245 + 0.6 · 0.3297 − (1 + 0.6 − 1 · 0.6) · 0.245 ·
0.3297 · 1

0.245+0.3298−0.245·0.3297 = 0.2387. We now add the CompuScience(S)
and assume it is independent of DBLP and CiteSeer. Its density of 0.8 for
the volume label and a coverage of 0.2061. The new density score is given by:
den(D � C � S) = 0.2387 · 0.5747 + 0.8 · 0.2061 − (0.2387 + 0.8 − 0.2387 · 0.8) ·
0.5747 · 0.2061 · 1

0.5747+0.2061−0.5747·0.2061 = 0.4179.

4.1 Information Completeness and Data Complexity

The notion of information completeness of an information source represents the
ratio of its information amount to the total information of the real world. The
more complete a source is, the more information it can potentially contribute to
the overall response to a user query.

Definition 9. (Information Completeness) The Information Completeness
(IC) of a source S is defined by

comp(S) =
No. of data objects associated with each l ∈ C in PS

| W | · | C | ,

where W is the total number of data objects of a real world entity and PS is the
MTP of S.

The following corollary allows us to employ coverage and density to find out
the IC score. This corollary can be trivially generalised to a set of information
sources using the corresponding MTP. Intuitively, the notion of IC can be in-
terpreted as the “rectangular area” formed by coverage (height) and density
(width). The following example further helps to illustrate these ideas.

Corollary 1. Let S be an information source. Then comp(S) = cov(S) ·den(S).

A Unifying Framework for Merging and Evaluating XML Information 93

Example 7. Table 2 represents the entries DBLP XML source. The table pro-
vides only five tuples with varying density. The coverage of the source is thus
given by cov(DBLP) = 5

2,000,000 . The densities for the labels are 1, 1, 0.6, 1, 1,
1, and 0.4, respectively, and it follows that the density of the source is 6

7 . Thus,
the completeness of DBLP is 5

2,000,000 ·
6
7 = 3

1,400,000 .

We define specificity and diversity of an XML source to represent the depth
and breadth of data that the source can potentially return. As the subtree of
a core label may contain subtrees of flexible structures, the returned data does
not contain the same amount of data, it may contain something as simple as a
single textual value, or a complex subtree having many levels.

Definition 10. (Specificity and Diversity) Let PS be the MTP of a source
S of a set of XML data objects. Let avg(di) and max(di) be the average and
maximum depth of child subtrees under the core node labelled by li ∈ C and D be
the maximum of {max(d1), . . . ,max(dn)} where | C |= n. Specificity is defined
by spec(S) = Σavg(di)

n·D . Similarly, we define diversity by div(S) = Σavg(bi)
n·B , where

avg(bi) and max(bi) are the average number and the maximum of children of
subtrees under the core node labelled by li ∈ C. Similarly, B be the maximum
of {max(b1), . . . ,max(bn)}.

r

key C1 C2 C3

1

2

3

(m, 1)

(m, 2)

-

Y
1

Y
2

Y
3

-
(m, 3)

Z
1

1

2

3

key
2

4

0

1

1

1

0

7/3

1

average depth of subtree in r
under core nodes

C
1

C
2

C
3

1

2

3

key
8/3

11/2

0

1

1

1

0

4

1

average breadth of subtree in r
under core nodes

C
1

C
2

C
3

(m, 3)

d=4
b=7

d=1
b=2

d=2
b=3

d=7/3
b=4

(m, 2)

d=5
b=8

d=3
b=3

d=4
b=11/2

(m, 1)

d=3
b=5

d=1
b=2

d=2
b=1

d=2
b=8/3

Fig. 6. Specificity and diversity of subtrees

Example 8. In Figure 6, under the core label C1, the list contains three values:
“(m, 1), (m, 2), −”. The depth of core label C1 is d(C1) = d((m,1))+d((m,2))+d(−)

3 =
2+4+0

3 = 2. Similarly, d(C2) = 1+1+1
3 = 1 and d(C3) = 0+ 7

3+1
3 = 1.1111. The

deepest path is (m, 2), so we have D = 4. The specificity of the tree is spec(S) =
d(C1)+d(C2)+d(C3)

n·D = 2+1+1.1111
3·4 = 0.3426. The breadth of core label C1, b(C1) =

b((m,1))+b((m,2))+b(−)
3 =

8
3+ 11

2 +0
3 = 2.7222. Similarly, b(C2) = 1+1+1

3 = 1 and
b(C3) = 0+4+1

3 = 5
3 . The broadest subtree is b((m, 2)), so we have B = 5.5. The

diversity of the tree is div(S) = b(C1)+b(C2)+b(C3)
n·B = 2.7222+1+1.6667

3·5.5 = 0.3266.

The notion of data complexity of an information source is employed to represent
the amount of information from the source. The higher the data complexity of
a source is, the richer and broader information it can potentially contribute to
the overall response to a user query.

94 H.-L. Lau and W. Ng

Definition 11. (Data Complexity) The Data Complexity (DC) of a source
S is defined by cpex(S) = spec(S) · div(S).

Example 9. Consider the MTP in Figure 6, the data complexity, DC of the tree
is cpex(S) = spec(S) · div(S) = 0.3426 · 0.3266 = 0.1119.

5 Concluding Remarks

We have proposed a framework which consists of two useful concepts, the first
being information completeness (IC), which represents the coverage of data ob-
jects and the density of data related to a set of core labels, and the second being
data complexity (DC), which represents the diversity and the specificity of data
content for a set of core nodes associated with the search entity. The framework
allows merging XML data objects obtained from different sources. We present
an MNF as a standard format to unify the essential data in merged objects of
an entity and an efficient algorithm to transform an XML data object into an
MNF. We develop MTP as a unifying template to represent the merge of a set
of XML objects. MTP serves as a basis to evaluate the IC and DC scores. We
also investigated the properties of density and coverage via two merge operators
in different sources that are disjoint, overlapping and independent. An impor-
tant issue related to this work is how we obtain the values of various metrics of
coverage, density, diversity and specificity. We suggest that this information can
be derived from the data sources or from other authority corpora. For example,
from the probability distribution on certain topics of CS if we compare those
complete or almost complete sources we can then compute the coverage.

References

1. E. Bertino and E. Ferrari. XML and Data Integration. IEEE Internet Computing.
5(6):75-76, 2001.

2. V. Christophides, S. Cluet, and J. Simeon. On Wrapping Query Language and
Efficient XML Integration. In Proc. of SIGMOD Conference, 2000.

3. Z. G. Ives et al. An Adaptive Query Execution System for Data Integration. In
Proc. of SIGMOD , 1999.

4. D. Florescu, D. Koller, and A. Levy. Using probabilistic information in data inte-
gration. In Proc. of VLDB, 1997.

5. E. Lim, J. Srivastava, S. Prabhakar and J. Richardson. Entity Identification in
Database Integration. In Proc. of ICDE, 1993.

6. A. Motro and I. Rakov. Estimating the quality of databases. In Proc. of FQAS,
1998.

7. F. Naumann, J. C. Freytag and U. Leser. Completeness of Information Sources. In
Proc. of DQCIS, 2003 .

8. Elmasri and Navathe. Fundamentals of Database Systems. Addison Wesley, 3rd
Edition, 1997.

Efficient Evaluation of Partial Match Queries for XML
Documents Using Information Retrieval Techniques

Young-Ho Park1, Kyu-Young Whang1, Byung Suk Lee2, and Wook-Shin Han3

1 Department of Computer Science
and Advanced Information Technology Research Center (AITrc)��

Korea Advanced Institute of Science and Technology (KAIST), Korea
{yhpark, ywhang}@mozart.kaist.ac.kr

2 Department of Computer Science,
University of Vermont Burlington, VT, USA

bslee@cs.uvm.edu
3 Department of Computer Engineering,
Kyungpook National University, Korea

wshan@knu.ac.kr

Abstract. We propose XIR, a novel method for processing partial match queries
on heterogeneous XML documents using information retrieval (IR) techniques. A
partial match query is defined as the one having the descendent-or-self axis “//" in
its path expression. In its general form, a partial match query has branch predicates
forming branching paths. The objective of XIR is to efficiently support this type of
queries for large-scale documents of heterogeneous schemas. XIR has its basis on
the conventional schema-level methods using relational tables and significantly
improves their efficiency using two techniques: an inverted index technique and a
novel prefix match join. The former indexes the labels in label paths as keywords in
texts, and allows for finding the label paths matching the queries more efficiently
than string match used in the conventional methods. The latter supports branching
path expressions, and allows for finding the result nodes more efficiently than
containment joins used in the conventional methods. We compare the efficiency
of XIR with those of XRel and XParent using XML documents crawled from the
Internet. The results show that XIR is more efficient than both XRel and XParent
by several orders of magnitude for linear path expressions, and by several factors
for branching path expressions.

1 Introduction

Recently, there have been significant research on processing queries against XML docu-
ments [30]. To our knowledge, however, most of them considered only a limited number
of documents with a fixed schema, and thus, are not suitable for large-scale applications
dealing with heterogeneous schemas–such as an Internet search engine [20] [29]. A
novel method is needed for these applications, and we address it in this paper.

�� This work was supported by the Korea Science and Engineering Foundation (KOSEF) through
the Advanced Information Technology Research Center (AITrc).

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 95–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 Y.-H. Park et al.

Partial match queries in XPath [7] can be particularly useful for searching XML
documents when their schemas are heterogeneous while only partial schema informa-
tion is known to the user. Here, a partial match query is defined as the one having
the descendent-or-self axis “//" in its path expression. A full match query [18] can be
considered a special case of a partial match query.

Partial match queries can be classified into linear path expressions (LPEs) and
branching path expressions (BPEs). An LPE is defined as a path expression consist-
ing of a sequence of labels having a parent-child relationship or an ancestor-descendent
relationship between labels; a BPE is defined as a path expression having branching
conditions for one or more labels in the LPE.

Existing methods for providing partial match queries can be classified into two types:
schema-level methods [24] [14] [15] [8] and instance-level methods [17] [26] [4] [6]
[16] [5] [9] [10] [12]. The ones of the first type are usable for both partial match queries
and BPEs, but they are not designed for use in large-scale documents of heterogeneous
schemas [24] [14] [15] or have only limited support for partial match queries and do
not explicitly handle BPEs [8]. The ones of the second type can support both, but can
not be best used in a large-scale database because of inefficiency. Between these two
classes of methods, the schema level methods are much more feasible than the instance
level methods for large-scale XML documents because of their abilities to “filter out”
document instances at the schema level. We thus adopt the schema-level methods as the
basis of our method.

We particularly base our method on the schema-level methods using relational tables,
such as XRel [24] and XParent [14] [15]. There are two reasons for this. First, those
methods can utilize well-established techniques on relational DBMSs instead of a few
native XML storages. Second, those methods can also utilize SQLs to query XML
documents. For the query processing, they store the schema information and instance
information of XML documents in relational tables, and process partial match queries
in two phases: first, find the XML documents whose schemas match a query’s path
expression, and second, among the documents, find those that satisfy selection conditions
(if there are any) specified on the path expression.

However, query processing efficiencies of the two existing methods, XRel and XPar-
ent, are too limited for large-scale applications, as we will show in our experiments in
Section 6. The hurdle in the first phase is the large amount of schema information, and
the hurdle in the second phase is the large number of document instances.

The objective of our method (we name it XIR) is to improve the efficiencies in both
phases. Specifically, for the first phase, we present a method that adopts the inverted index
[22] technique, used traditionally in the Information retrieval (IR) field, for searching a
very large amount of schema information. IR techniques have been successfully used for
searching large-scale documents with only a few keywords (constituting partial schema
information). If we treat the schema of an XML document as a text document and convert
partial match queries to keyword-based text search queries, we can effectively search
against heterogeneous XML documents using partial match queries. For the second
phase, we present a novel method called, prefix match join, for searching a large amount
of instance information.

In this paper, we first describe the relational table structures for storing the XML
document schema and instance information, and then, describe the structure of the in-
verted index. We then present the algorithms for processing queries. We also present
the prefix match join operator, which plays an essential role in the evaluation of BPEs,
and present an algorithm for finding the nodes matching the BPE. Then, we discuss
the performance of XIR in comparison with that of XRel and XParent, and verify our

Efficient Evaluation of Partial Match Queries for XML Documents 97

comparison through experiments using real XML document sets collected by crawlers
from the Internet. The results show that XIR outperforms both XRel and XParent by
several orders of magnitude for LPEs and by several factors for BPEs.

This paper makes the following novel contributions toward large-scale query pro-
cessing on heterogeneous XML documents:

• In XIR, we apply the IR technology to the schema-level information rather than to the
instance-level information of the XML documents. In a large-scale heterogeneous
environment, schema-level information as well as instance-level information would
be extremely large. By applying the IR technique to the schema-level information,
we can improve performance significantly by achieving schema-level filtering. i.e.,
restricting the instances to be searched to those whose schema matches the query’s
path expression.

• XIR also presents a novel instance-level join called the prefix match join for effi-
ciently processing queries involving BPEs. The prefix match join improves perfor-
mance significantly by minimizing the number of joins for finding instance nodes
satisfying branching predicates.

2 Preliminaries

2.1 XML Document Model

Our XML document model is based on the one proposed by Bruno et al. [6]. In this model,
an XML document is represented as a rooted, ordered, labeled tree. A node in the tree
represents an element, an attribute, or a value; an edge in the tree represents an element-
subelement relationship, element-attribute relationship, element-value relationship, or
attribute-value relationship. Element and attribute nodes collectively define the document
structure, and we assign labels (i.e., names) and unique identifiers to them. Figure 1 shows
an example XML tree of a document. In this figure, all leaf nodes except those numbered
15 and 27 (representing the two attribute values “R” and “T”) represent values and all non-
leaf nodes except those numbered 14 and 26 (representing the attribute @category)
represent elements. Note that attributes are distinguished from elements using a prefix
‘@’ in the labels.

issue

articles

1

2

3

4

5

7

8

9

10

11

17

editoreditor

lastfirst lastfirst

``Michael’’ ``Franklin’’ ``Jane’’ ``Poe’’
6

author

lastfirst

``David’’ ``Curry’’

@category keywordtitle

``XML’’``XML schema’’

article

18

19

20

21

22

23

12

13

14

15

16 28
author

lastfirst

``John’’ ``Smith’’

@category keywordtitle

``DB’’``OODB’’

article

29

30

31

32

33

34

25

24

26

27
``R’’ ``T’’

35

36

Fig. 1. An example XML tree of a document

98 Y.-H. Park et al.

We modify this model so that a node represents either an element or an attribute but
not a value. We also extend the model with the notions of label paths and node paths as
defined below.

Definition 1. A label path in an XML tree is defined as a sequence of node labels
l1, l2, ..., lp (p ≥ 1) from the root to a node p in the tree, and is denoted as l1.l2.
· · · .lp.

Definition 2. A node path in an XML tree is defined as a sequence of node identi-
fiers n1, n2, ..., np (p ≥ 1) from the root to a node p in the tree, and is denoted as
n1.n2. · · · .np.

Label paths represent XML document structures and are said to be schema-level infor-
mation. In contrast, node paths represent XML document instances and are said to be
instance-level information. We say a label path matches a path expression, a node path
belongs to a label path, and a node path is obtained from a path expression. For exam-
ple, in Figure 1, issue.editor.first is a label path matching a path expression
//editor//first, and 1.2.3, 1.7.8 are node paths belonging to the label path. Note
that there may be more than one node path belonging to the same label path because
there may be more than one instance with the same structure.

2.2 XML Query Model

Our query language belongs to the tree pattern query (TPQ) class [2]. The query lan-
guage supports two kinds of path expressions: 1) linear path expressions (LPEs) and 2)
branching path expressions (BPEs).

An LPE is expressed as a sequence of labels connected with ‘/’ or ‘//’ as in Defini-
tion 3.

Definition 3. A linear path expression is defined as l0o1l1o2l2 · · · onln, where li (i =
0, 1, · · · , n) is the i-th label in the path, and oj (j = 1, 2, · · · , n) is either ‘/’ or ‘//’ which,
respectively, denotes a parent-child relationship or an ancestor-descendant relationship
between lj−1 and lj . Here, l0 is the root of the XML tree denoting the set of all XML
documents (i.e., document("*")) and may be omitted.

A BPE is expressed as an LPE augmented with ‘branch predicate expressions’ [Ci]
for some labels li (i ∈ {1, 2, · · · , n}) [7] as in Definition 5. As in some work in the
literature [1] [21], for simplicity, we consider only simple selection predicates1 for the
branch predicate expressions as in Definition 4.

Definition 4. A branch predicate expression Ck is defined as an expression L or Lθ v,
where L is a linear path subexpression ok1lk1ok2lk2 · · · okplkp (p ≥ 1), v is a constant
value, and θ is a comparison operator (θ ∈ {=, �=, >,≥, <,≤}).L specifies the existence
of a node path n1.n2. · · · .np that belongs to the label path matching the LPE l0o1l1o2-
· · · oklkok1lk1ok2lk2 · · · okplkp, and Lθ v further specifies the node path to satisfy the
selection condition on np.

1 This can be easily extended to consider compound (e.g., conjunctive) predicates as supported
in other work in the literature [4] [6]. However, we omit this issue since it is not the focus of
this paper.

Efficient Evaluation of Partial Match Queries for XML Documents 99

Definition 5. A branching path expression is defined as l0o1l1[C1]o2l2[C2] · · · onln[Cn]
where (1) l0o1l1o2l2 · · · onln is an LPE defined in Definition 3 and (2)Ck (k = 1, 2, · · · ,-
n) is a branch predicate expression as defined in Definition 4, where some (not all) of
them may be omitted.

The following query is an example BPE for retrieving the title elements that are
children of the article elements that contain at least one keyword element and that
are descendants of an issue element having a descendant author element whose
child last element has the value "Curry".

Q1: :/issue[//author/last="Curry"]//article[/keyword]/-
title

Note that this BPE on the element issue has a selection condition on the label last
in the LPE //issue//author/last and an existential condition on the label
keyword in the LPE //issue//article/keyword.

2.3 XML Query Patterns

In this paper, we model a path expression as a query pattern defined in Definition 6. We
modify the definition of the twig pattern originally used in the Holistic Twig Join [6] to
formally represent the notions that we use in this paper. The definition is based on the
BPE, as defined in Definition 5.

Definition 6. Given a path expression o1l1[C1]o2l2[C2] · · · onln[Cn] defined in Defini-
tion 5 (with l0 omitted), we represent it as a query pattern that consists of a binary tree
and a dangling edge connected to its root and that has the following properties:

• An edge represents oj (j ∈ {1, 2, · · · , n}) in the path expression. The edge is shown
as a single line if oj is ‘/’ and as a double line if oj is ‘//’. The dangling edge
represents o1.

• A node represents a label lk (k ∈ {1, 2, · · · , n}) in the path expression. The root
node represents the label l1.

• The left child of a node representing lk (k ∈ {1, 2, · · · , n− 1}) represents lk+1.
• The right subtree of a node representing lk (k ∈ {1, 2, · · · , n}) is the query pat-

tern representing the branching predicate expression Ck ≡ ok1lk1ok2lk2 · · · okplkp

(p ≥ 1).
• If the label represented by a node has a selection condition (“θ v”) on it, then the

node is earmarked with “θ v”.

The twig pattern [6] does not distinguish between the subtree whose root is also the
root of the XML tree and the one whose root is not, if both match the same pattern. In
contrast, the query pattern does distinguish between them by showing the dangling edge
using a single line in the former case and a double line in the latter case.

Related to the query pattern, we use the following terms in this paper.

• One of the nodes in a query pattern is retrieved as the query result. This node
corresponds to the label ln in the LPE defined in Definition 3 or the BPE defined
in Definition 5. We call this node the result node and distinguish it from the other
nodes by shading it gray.

• Some of the nodes in a query pattern have a right subtree. We call such a node a
branching node. Any node corresponding to a label lk followed by [Ck] as in lk[Ck]
shown in Definition 5 is a branching node.

100 Y.-H. Park et al.

issue

author

keywordtitle

article

last

= ``Curry’’

Fig. 2. Query pattern of the query Q1

Figure 2 shows the query pattern of the query Q1 in Section 2.2. The node title
is the result node, and the nodes issue and article are branching nodes.

As a special case of the query pattern, we define the linear query pattern as follows.

Definition 7. The query pattern of a linear path expression is called the linear query
pattern. Compared with the query pattern defined in Definition 6, a linear query pattern
has no branching node.

In this paper, we use the terms root label, leaf label, result label, and branching label
in a path expression interchangeably with the root node, leaf node, result node, and
branching node in a query pattern. For example, in Figure 2, issue is the root label of
the query Q1; title, keyword, and last are leaf labels; title is the result label;
and issue and article are branching labels.

3 Related Work

As mentioned in Introduction, there are two kinds of methods for evaluating path ex-
pressions: schema-level methods and instance-level methods. A schema-level method
uses structural information like the label paths to find nodes matching a path expression
[14] [15] [24] [8], whereas an instance-level method uses only node identification infor-
mation like the start and end positions of a node [4] [6] [16]. In this section, we briefly
discuss instance-level methods, and then, focus on schema-level methods.

3.1 Instance-Level Methods

There have been three different approaches for the instance-level method. The first uses
XML tree navigation [3] [13] [19]. It converts a path expression to a “state machine”2,
and then evaluates the path expression by navigating the XML tree guided by the state
machine. The second uses node instance information stored for each node in an XML tree
[4] [6] [16] [17] [23] [26]. It converts a path expression to a (structural) join query, and
then evaluates the join query using the node instance information. The query evaluation in
this approach, however, involves comparing the node instance information, and therefore,
tends to be more expensive than in the schema-level methods, which can filter out node
instances significantly by using the schema information. The third uses information

2 A representation of the sequence of labels in the path expression as a sequence of states in
finite state automata.

Efficient Evaluation of Partial Match Queries for XML Documents 101

retrieval (IR) technique, particularly an inverted index created on XML documents [5]
[9] [10] [12]. Although using inverted indexes, however, they are fundamentally different
from XIR, which creates an inverted index on the label paths, which are schema-level
information.

3.2 Schema-Level Methods

Schema-level methods are categorized into those using special purpose indexes [8] [11]
and those using relational tables [24] [14] [15] depending on where and how label paths
are stored. In the former case, label paths are stored dynamically as they are used in the
queries. In the latter case, all label paths in the documents are stored in the tables of a
relational DBMS a priori.

Index Fabric [8] is considered the representative method in the schema-level methods
using special purpose indexes. Index Fabric uses the Patricia trie to index the label
paths and values that have occurred in the queries occurring frequently. However, Index
Fabric is not meant to support partial match queries. Furthermore, the method is not
designed to support BPEs, which are very effective for searching in a heterogeneous
environment. These are critical drawbacks that render the method inapplicable in a
large-scale, heterogeneous environment. Thus, in this section, we primarily focus on the
schema-level methods using relational tables.

XRel [24] and XParent [14] [15], which are the two representative ones among the
schema-level methods using relational tables, provide a basis for our XIR method. We
describe each method in this subsection. We use the term node interchangeably with
element or attribute as these are represented as nodes in the XML document model and
the query pattern.

XRel. In XRel, the XML tree structure information is stored in the following four tables
[24]:

Path(label path id, label path)
Element(document id, label path id, start position,
end position, sibling order)
Text(document id, label path id, start position,
end position, value)
Attribute(document id, label path id, start position,
end position, value)

XRel uses two techniques for evaluating LPEs and BPEs: string match and contain-
ment join. The former belongs to the schema-level method and is used to handle LPEs;
the latter belongs to the instance-level method and is used to handle BPEs.

In the case of an LPE, XRel first finds the label paths matching the query’s path
expression from the Path table. The matching is done using the SQL string match
operator LIKE. All label paths in the Path table must be scanned in this case because
an index like the B+-tree cannot be used to search for a partially matching label path.
Then, XRel joins the set of matching label paths with the table Element via the column
label path id to obtain the result nodes.

For the case of a BPE, we use the query pattern defined in Section 2.3. XRel first
decomposes a BPE into multiple LPEs consisting of one LPE from the root to each
branching node and one LPE from the root to each leaf node. For example, a BPE
/l1[/l2/l3 = v2]/l4 is decomposed into three LPEs /l1, /l1/l2/l3, and /l1/l4. Then,

102 Y.-H. Park et al.

for each LPE, XRel finds the set of nodes (we call it a node set) obtained from the LPE
in the same manner described above and reduces the set to those satisfying a selection
condition (e.g., /l1/l2/l3 = v2). Then, it compares the node set obtained from an LPE
ending at a branching node (e.g., /l1) with the node set obtained from the LPEs ending
at the leaf nodes (e.g., /l1/l2/l3, /l1/l4) and, among the nodes obtained from the latter
LPEs, retains only those that are descendants of the nodes in the former node set. This
is done using the containment join which is implemented as a θ-join comparing the start
positions and end positions of nodes.

XParent. XParent [14] [15] is similar to XRel, but uses a different table schema so that
it can implement the containment join operator using equi-joins instead of θ-joins. The
schema is as follows [14].

LabelPath(label path id, length, label path)
Element(document id, label path id, node id, sibling order)
Data(document id, label path id, node id, sibling order,
value)
Ancestor(node id, ancestor node id, offset to ancestor)
DataPath(parent node id, child node id)

In query processing, XParent evaluates an LPE in the same way as XRel. In the case
of a BPE, however, XParent generates a smaller number of LPEs than XRel because
it generates only those from the root to each leaf node of a query pattern. Then, after
retrieving the node set in the same manner as in XRel, the node set obtained from the
LPE containing the result node is reduced through joins with those obtained from the
other LPEs. Here, the join is performed as an equi-join through the table Ancestor,
thereby finding the node idenfitier of the common ancestor.

4 XIR Storage Structures

In this section, we present the storage structures used in our XIR method. XIR stores
information needed for query processing at two levels – the schema level and the instance
level. The schema-level information consists of the label paths occurring in the XML
tree and the inverted index on these label paths; the instance-level information consists
of all the node paths in the XML tree.

XIR uses two tables and an inverted index to store information about XML document
structure:

LabelPath(pid, label path)
NodePath(pid, docid, nodepath, value)
Inverted index on label path of the table LabelPath.

4.1 Schema-Level Information

The tableLabelPath represents the schema-level information and stores all the distinct
label paths occurring in XML documents and their path identifiers (pids). Figure 3
shows the LabelPath table and the inverted index for the example XML tree in
Figure 1. The labels prefixed with ‘$’ and ‘&’ are added to denote the first label and the

Efficient Evaluation of Partial Match Queries for XML Documents 103

Fig. 3. An example LabelPath table and inverted index

Fig. 4. An example NodePath table

last label of each label path. The first label is to match the root label of the document,
and the last label is to match the leaf label of a path expression.

The LabelPath inverted index is created on the labelpath field in the
LabelPath table. Here, we consider label paths as text documents and labels in these
label paths as keywords. Like the traditional inverted index [22], the LabelPath
inverted index is made of the pairs of a keyword (i.e., a label) and a posting list.
Each posting in a posting list has the following fields: pid, occurrence count,
offsets, label path length, where pid is the identifier of the label path in
which the label occurs, occurrence count is the number of occurrences of the
label within the label path, offsets is the set of the positions of the label from
the beginning of the label path, and label path length is the number of labels
in the label path. For instance, in the posting of the label section in a label path
$chapter.chapter.section.section.section.paragraph.& para-
graph, the occurrence count of section is 3, the offsets of section
is { 3, 4, 5}, and the label path length is 7.

104 Y.-H. Park et al.

4.2 Instance-Level Information

The tableNodePath represents the instance-level information and stores the node paths
to uniquely identify all the nodes in the XML documents. Figure 4 shows an example
of the NodePath table for the XML tree in Figure 1.

The NodePath table stores all the node paths in the column nodepath. If the
leaf node of a node path has a value, then the value is stored in the column value. The
column pid stores label path identifiers, and is used for join with the LabelPath table
to find all the node paths belonging to the same label path. The column docid stores
the XML document identifiers.

5 XIR Query Processing Algorithms

In this section we present the algorithms for evaluating LPEs and BPEs based on the
XIR storage structures described in the previous section, and analytically compare XRel,
XParent, and XIR with a focus on their performance-related features.

5.1 LPE Evaluation Algorithm

Figure 5 shows the algorithm for evaluating an LPE. In this algorithm, XIR first finds
matching label paths in the LabelPath table using the LabelPath inverted in-
dex, and then, performs an equi-join between the set of the label paths found and the
NodePath table via the column pid. It then returns the matching node paths as the
query result.

Fig. 5. XIR LPE evaluation algorithm

Formally, an LPE is evaluated as

Πnodepath(σMATCH (labelpath,LPE)
LabelPath ��pid=pid NodePath) (1)

Since the selection σMATCH(labelpath,LPE)LabelPath is implemented as a text search
on the labelpath column, XIR should first convert an LPE to a keyword-based text
search condition (we call it information retrieval expression(IRExp)). The following rule
specifies how the conversion is done.

Efficient Evaluation of Partial Match Queries for XML Documents 105

Rule 1 [LPE-to-IRExp] An LPE o1l1o2l2 · · · oplp, where oi ∈ {‘/’, ‘//’} for i=1,2,· · · ,-
p, is mapped to an IRExp using the following rule:

o1l1 ⇒
{
l1 if o1 = ‘//’
$l1 near(1) l1 if o1 = ‘/’

lioi+1li+1 ⇒
{
li near(∞) li+1 if oi+1 = ‘//’
li near(1) li+1 if oi+1 = ‘/’

for i = 1, 2, · · · , p− 1
lp ⇒ lp near(1) &lp

where near(w) is the proximity operator, which retrieves the documents in which the
two operand keywords appear within w words apart.

Note that l1 and lp are respectively the root (i.e., first) node and the leaf (i.e.,
last) node of the linear query pattern representing the LPE. For example, an LPE
//article//author/last is converted to an IRExp article near(∞)
author near(1) last near(1) &last; an LPE /issue/articles//
author is converted to an IRExp $issue near(1)issue near(1)articles
near(∞) author near(1) &author. Note $issue indicates that issue is
the root of the document.

5.2 BPE Evaluation Algorithm

Figure 6 shows the algorithm for evaluating a BPE. In this algorithm, XIR first decom-
poses a BPE into LPEs in the same way as XParent does, that is, one LPE from the root
to each leaf node. It then evaluates each LPE to obtain a set of node path sets(NPsets).

This evaluation is done in the same manner as in Equation 1, with a slight modification
to handle a branch predicate expression as

Πnodepath(σMATCH (labelpath,LPE)
LabelPath ��pid=pid σvalue θ vNodePath) (2)

where “value θ v” is a selection condition on the leaf label of the branch predicate
expression (see Definition 4) included in the LPE being evaluated.

Only one of the LPEs includes the result node (defined in Section 2.3). Let us call
such an LPE the result LPE (P0 in Figure 6). Then, XIR reduces the result NPset
obtained from the result LPE through prefix match join with each of the other LPEs
(P1, P2, · · · , Pr−1 in Figure 6). Definition 8 shows a formal definition of the prefix
match join.

Definition 8. Given two relations having the schemas R(A1A2 · · ·AcB1 · · ·Bm) and
S(A1A2 · · ·AcC1 · · ·Ck) that share the attributes A1A2 · · ·Ac, the prefix match join
between R and S, denoted by R � S, is defined as

R � S = σR.A1=S.A1 and ··· and R.Ac=S.Ac
(R× S)

In Definition 8, the relational schema refers to a label path and the relation instance refers
to a node path set. According to this definition, given two LPEs, the prefix match join
between the two NPsets obtained from them is performed as follows: (1) find the longest

106 Y.-H. Park et al.

Fig. 6. XIR BPE evaluation algorithm

common prefix label subpath l1l2 · · · lc(≡ A1A2 · · ·Ac in Definition 8) matching both
LPEs; (2) find the set of common prefix node subpaths, {n1n2 · · ·nc}, belonging to the
label subpath l1l2 · · · lc; and (3) for each node subpath n1n2 · · ·nc in the set, select all
node paths that have the subpath in common.

Example 1. Consider the BPE//article[/keyword="XML"]//author[/la-
st="Curry"]/first. The following three LPEs are generated: (1) //article/-
keyword, (2)//article//author/last,and (3)//article//author/fi-
rst. Among these, LPE 3 is the result LPE. XIR retrieves the following three node path
sets from these LPEs and the selection conditions on the leaf labels of LPE 1 and LPE 3:
NPset1 {1.12.13.23} from LPE 1 and keyword = "XML", NPset2 {1.12.13.18.21}
from LPE 2 and last="Curry", and NPset3 {1.12.13.18.19, 1.12.25.30.31} from
LPE 3. Then, the prefix match join with NPset2 reduces NPset3 to {1.12.13.18.19} based
on the common prefix label subpath /issue/articles/article/author, and
a further join with NPset1 keeps NPset3 to be {1.12.13.18.19} based on the common
prefix label subpath /issue/articles/article.

Figure 7 shows the SQL statement generated for this BPE. It implements the prefix
match join of node sets shown in Algorithm XIR BPE evaluation by performing tuple-
by-tuple prefix matches. The function Prefix matching performs a prefix match
between two node paths provided as the first two input arguments (e.g., n1.nodepath
and n2.nodepath) by comparing only the prefix characters whose length is returned
from the function getCommonPrefixLength. This function takes as inputs two
LPEs and two label paths matching them and calculates the prefix length in the follow-
ing steps: (1) identify the longest common prefix subexpression of the two input LPEs
(e.g., //article common to //article/keyword and //article/author-
/last in Figure 3), (2) for each of the two input label paths (e.g., p1.labelpath
and p2.labelpath), count the number of prefix labels matching the common prefix
subexpression (e.g., count 3 for a label path$issue.issue.articles.article-
.keyword.&keyword in Figure 3, excluding $issue, which is an extra addition to
the label path), and (3) if the two counts are equal then returnthe count and otherwise
return -1.

The query processing algorithms of XRel, XParent, and XIR share the same outline,
but have some different implementations leading to their performance differences. In the

Efficient Evaluation of Partial Match Queries for XML Documents 107

Fig. 7. XIR SQL statement for the BPE in Example 1

case of LPEs, XIR’s performance advantage over both XRel and XParent comes from
using inverted index search instead of string match for finding label paths matching
the LPE. In the case of BPEs, XIR has the performance advantage over XRel in that
it generates a smaller number of LPEs for the same BPE. Another major performance
advantage of XIR for BPEs over both XRel and XParent comes from the number of
joins performed and the cardinalities of node sets joined to determine the node (or node
path) set returned as the query result. XIR requires a far less number of joins compared
with XRel and XParent. Besides, the cardinalities of node sets joined in XIR or XRel are
smaller than those in XParent. Details of the analysis can be found in the reference [25].

6 Performance Evaluation

We compare the query processing performance of XIR with those of XRel and XParent.
The results show that XIR is far more efficient than both XRel and XParent.

6.1 Experimental Setup

Databases. We have collected 10008 real-world XML documents from the Internet
using two web crawlers: Teleport Pro Version 1.29.1959 [28] and ReGet Deluxe 3.3
Beta (build 173) [27]. For crawling XML documents, we first start with base URLs, and
then, crawl all XML documents reachable from the base URLs. The base URLs include
web sites of major universities, companies, and publishers in several countries. Note that
about 91% of the XML documents are 4 Kbytes or less.

Using the collected XML documents, we have constructed five sets of data files of
different sizes. Each set contains approximately 5000, 10000, 20000, 40000, and 80000
distinct label paths. The last set has 1460000 node paths. A larger set contains all label
paths in a smaller set, i.e., is a superset of smaller sets. Documents in each set are then
parsed, and the parsed results are loaded into three databases, each containing tables
used by XRel, XParent, and XIR methods. The total number of databases thus generated
is fifteen.

108 Y.-H. Park et al.

For XRel and XParent, we have used the database schema and indexes as they were
used in the original designs [14, 24]. For XIR, we have loaded the data files into the
LabelPath and NodePath tables, created B+-tree indexes on the columns pid,
docid of each table as in XRel or XParent, and created an inverted index on the
labelpath column of the Labelpath table.

The resulting database size for XIR is 454 Mbytes for 79943 distinct label paths and
is 10% - 29% smaller than those of XRel or XParent. Details of the analysis can be found
in the reference [25].

Queries. Table 1 shows three groups of tree pattern queries: a group of LPEs, a group
of BPEs whose branch predicate expressions do not contain selection conditions, and
a group of BPEs whose branch predicate expressions do contain selection conditions.
Each group has two sets of queries: one is on issue documents; the other on movie
documents. The former has far more document instances than the latter.

Table 1. Queries

Computing Environment. We have conducted the experiments using the Odysseus
object-relational database management system3 on SUN Ultra 60 workstation with
512 Mbyte RAM. In order to eliminate the unpredictable buffering effect in the op-
erating system, we have used a raw disk device to bypass the OS buffer. We have also
flushed the DBMS buffer after each query execution so that the execution does not affect
later ones. The cost metrics used are the elapsed time and the number of disk I/O’s.

6.2 Experimental Results

Since the crawlers collect arbitrary documents from the Internet, new label paths are
added as new documents are added by crawling. We have extracted the number of
distinct label paths from the XML documents collected. We crawled a total of 10009
XML documents extracting 79943 distinct label paths.

Figure 8 shows the costs of the query LPE4 in Table 1 for the three methods as the
number of distinct label paths increases. Figures 9 and 10 show those for BPE2 and
BPS1 in Table 1. The buffer size has been set to 200 4Kbyte-pages to eliminate extra
disk I/O’s caused by an insufficient buffer size. Due to space limit, we omit the figures
of the other queries; their costs show similar trends with typical curves.

3 Odysseus has been developed at the KAIST Advanced Information Technology Research
Center, and provides the key operations needed by a text search engine.

Efficient Evaluation of Partial Match Queries for XML Documents 109

Fig. 8. Query costs of XRel, XParent, XIR for LPE4 (buffer size = 200 pages)

Fig. 9. Query costs of XRel, XParent, XIR for BPE2 (buffer size = 200 pages)

Fig. 10. Query costs of XRel, XParent, XIR for BPS1 (buffer size = 200 pages)

In Figures 8 through 10, we see that XIR is more efficient than both XRel and
Xparent4. The performance gap varies from several orders of magnitude in the case of
LPEs to several factors in the case of BPEs. In particular, the costs of LPEs increase
nearly linearly for XRel and XParent while sublinearly – nearly constant – for XIR.
This amounts to the difference between the string match and inverted index search for

4 As mentioned in Section 3.2, we use the table Ancestor to be able to support partial match
queries in XParent [14], [15]. This causes XParent to show poorer performance than XRel due
to the cardinality of the Ancestor table that is heavily involved in joins. This is in contrast
with the results shown in the XParent papers [14], [15], where the performances of only full
match queries using the DataPath table were presented.

110 Y.-H. Park et al.

finding matching label paths. In the case of BPEs, the costs increase linearly for all three
methods, but the slope is the smallest for XIR. This comes from XIR’s join performance
advantage [25]. When comparing the BPEs without selection conditions (Figure 9) and
those with selection conditions (Figure 10), we see that the gaps among the costs of
the three methods are smaller for BPEs with selection conditions. The reason for this is
that XRel or XParent can take advantage of the B+-tree index created on the ‘value’
column of the table Text or Data.

7 Conclusions

We have proposed a novel approach called XIR to processing partial match queries on
a large number of heterogeneous XML documents typical in the Internet environment.
For this purpose, we have presented two key techniques. In the first technique, we treat
the label paths occurring in XML documents as texts and create an inverted index on
them. This inverted index supports much faster partial match than XRel’s or XParent’s
string match when evaluating a linear path expression. In the second technique, we use
prefix match joins to evaluate a branching path expression. A branching path expression
is decomposed into linear path expressions, and the results of evaluating each linear path
expression are combined using the prefix join. Using the prefix join significantly reduces
the number of joins compared with the containment join used in XRel or XParent.

Through extensive experiments, we have compared the performance of XIR with
those of XRel and XParent using real XML documents crawled from the Internet. The
results show that XIR is significantly more efficient than XRel or XParent.

References

1. A. Aboulnaga, A. R. Alameldeen, and J. Naughton, “Estimating the Selectivity of XML Path
Expressions for Internet Scale Applications,” In Proc. the 27th Int’l Conf. on Very Large Data
Bases (VLDB), pp. 591-600, Rome, Italy, Sept. 11-14, 2001.

2. S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, D. Srivastava, “Minimization of Tree Pattern
Queries,” In Proc. 2001 ACM SIGMOD Int’l Conf. on Management of Data, pp. 497-508,
Santa Barbara, California, May 21-24, 2001.

3. M. Altinel, M. J. Franklin, “Efficient Filtering of XML Documents for Selective Dissemination
of Information,” In Proc. the 26th Int’l Conf. on Very Large Data Bases (VLDB), pp. 53-64,
Cairo, Egypt, Sept. 10-14, 2000.

4. S. Al-Khalifa, H. V. Jagadish, N. Koudas, and J. M. Patel, “Structural Joins: A Primitive for
Efficient XML Query Pattern Matching,” In Proc. the 18th Int’l Conf. on Data Engineer-
ing (ICDE), pp. 141-152, San Jose, California, Feb. 26 - Mar. 1, 2002.

5. Jan-Marco Bremer and Michael Gertz, “XQuery/IR: Integrating XML Document and Data
Retrieval,” In Proc. the Fifth Int’l Workshop on the Web and Databases (WebDB 2002), pp.
1-6, Madison, Wisconsin, 2002.

6. N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig Joins: Optimal XML Pattern Match-
ing,” In Proc. 2002 ACM SIGMOD Int’l Conf. on Management of Data, pp. 310-321, Madison,
Wisconsin, June 3-6, 2002.

7. J. Clark and S. DeRose, XML Path Language (XPath), W3C Recommendation,
http://www.w3.org/TR/xpath, Nov. 1999.

8. B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon, “A Fast Index
for Semistructured Data,” In Proc. the 27th Int’l Conf. on Very Large Data Bases (VLDB), pp.
341-350, Rome, Italy, Sept. 11-14, 2001.

Efficient Evaluation of Partial Match Queries for XML Documents 111

9. Daniela Florescu, Donald Kossmann, and Ioana Manolescu,“Integrating Keyword Search
into XML Query Processing ,” In Proc. the 9th WWW Conference/Computer Networks, pp.
119-135, Amsterdam, NL, May 2000.

10. Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram, “XRANK: Ranked
Keyword Search over XML Documents,” In Proc. 2003 ACM SIGMOD Int’l Conf. on Man-
agement of Data, pp. 16-27, San Diego, California, June 9-12, 2003.

11. R. Goldman and J. Widom, “DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases,” In Proc. the 23th Int’l Conf. on Very Large Data Bases (VLDB),
pp. 436-445, Athens, Greece, Aug. 26-29, 1997.

12. A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishnamurthy, A. N. Rao, F. Tian, S. Viglas,
Y. Wang, J. F. Naughton, and D. J. DeWitt, “Mixed Mode XML Query Processing,” In Proc.
the 29th Int’l Conf. on Very Large Data Bases (VLDB), pp. 225-236, Berlin, Germany, Sept.
9-12, 2003.

13. Z. Ives, A. Levy, and D. Weld, Efficient Evaluation of Regular Path Expressions on Streaming
XML Data, Technical Report UW-CSE-2000-05-02, University of Washington, 2000.

14. H. Jiang, H. Lu, W. Wang, and J. Xu Yu, “Path Materialization Revisited: An Efficient Storage
Model for XML Data,” In Proc. the 13th Australasian Database Conference (ADC), pp. 85-94,
Melbourne, Australia, Jan. 28 - Feb. 1, 2002.

15. H. Jiang, H. Lu, W. Wang, and J. Xu Yu, “XParent: An Efficient RDBMS-Based XML
Database System,” In Proc. the 18th Int’l Conf. on Data Engineering (ICDE), pp. 335-336,
San Jose, California, Feb. 26 - Mar. 1, 2002.

16. H. Jiang, W. Wang, H. Lu, and J. X. Yu, “Holistic Twig Joins on Indexed XML Documents,” In
Proc. the 29th Int’l Conf. on Very Large Data Bases (VLDB), pp. 273-284, Berlin, Germany,
Sept. 9-12, 2003.

17. Q. Li and B. Moon, “Indexing and Querying XML Data for Regular Path Expressions,” In
Proc. the 27th Int’l Conf. on Very Large Data Bases (VLDB), pp. 361-370, Rome, Italy, Sept.
11-14, 2001.

18. F. Mandreoli, R. Martoglia, P. Tiberio, “Searching Similar (Sub)Sentences for Example-Based
Machine Translation,” In Proc. 2002 Italian Symposium on Sistemi Evoluti per Basi di Dati
(SEBD’02), Isola d’Elba, Italy, June 2002.

19. J. McHugh, J. Widom, “Query Optimization for XML,” In Proc. the 25th Int’l Conf. on Very
Large Data Bases (VLDB), pp. 315-326, Edinburgh, Scotland, UK, Sept. 7-10, 1999.

20. J. Naughton et al., “The Niagara Internet Query System,” IEEE Data Engineering Bulletin,
pp. 27-33, Vol. 24, No. 2, June, 2001.

21. N. Polyzotis and M. Garofalakis, “Statistical Synopses for Graph-structured XML Databases,”
In Proc. 2002 ACM SIGMOD Int’l Conf. on Management of Data, pp. 358-369, Madison,
Wisconsin, June 3-6, 2002.

22. G. Salton and M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New
York 1983.

23. I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang,
“Storing and Querying Ordered XML Using a Relational Database System,” In Proc. 2002
ACM SIGMOD Int’l Conf. on Management of Data, pp. 204-215, Madison, Wisconsin, June
3-6, 2002.

24. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, “XRel: A Path-based Approach
to Storage and Retrieval of XML Documents using Relational Databases,” ACM Trans. on
Internet Technology(TOIT), pp. 110-141, Vol. 1, No. 1, 2001.

25. Y. Park, K. -Y. Whang, B. Lee, W. Han, “Efficient Evaluation of Partial Match Queries
for XML Documents Using Information Retrieval Techniques,” Technical Report CS-TR-
2004-212, Department of Computer Science, KAIST, Dec., 2004. Also, available on AITrc
Technical Report No. 04-11-048, http://aitrc.kaist.ac.kr/util tr.htm, Dec. 28, 2004.

112 Y.-H. Park et al.

26. C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohmann, “On Supporting
Containment Queries in Relational Database Management Systems,” In Proc. 2001 ACM
SIGMOD Int’l Conf. on Management of Data, pp. 425-436, Santa Barbara, California, May
21-24, 2001.

27. ReGet Deluxe 3.3 Beta (build 173), http://deluxe.reget.com/en/.
28. Teleport Pro Version 1.29, http://www.tenmax.com/teleport/pro/home.htm.
29. Xyleme, http://www.xyleme.com.
30. eXtensible Markup Language(XML), http://www.w3.org/XML/.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 113 – 124, 2005.
© Springer-Verlag Berlin Heidelberg 2005

PathStack¬: A Holistic Path Join Algorithm for Path
Query with Not-Predicates on XML Data

Enhua Jiao, Tok Wang Ling, and Chee-Yong Chan

School of Computing, National University of Singapore
{jiaoenhu, lingtw, chancy}@comp.nus.edu.sg

Abstract. The evaluation of path queries forms the basis of complex XML
query processing which has attracted a lot of research attention. However,
none of these works have examined the processing of more complex queries
that contain not-predicates. In this paper, we present the first study on evalu-
ating path queries with not-predicates. We propose an efficient holistic path
join algorithm, PathStack¬, which has the following advantages: (1) it re-
quires only one scan of the relevant data to evaluate path queries with not-
predicates; (2) it does not generate any intermediate results; and (3) its mem-
ory space requirement is bounded by the longest path in the input XML
document. We also present an improved variant of PathStack¬ that further
minimizes unnecessary computations.

1 Introduction

Finding all root-to-leaf paths in tree-structured XML documents that satisfy certain
selection predicates is the basis of complex XML query processing. Such selection
predicates are called path queries (i.e., twig queries without branches), and there has
been a lot of research on the efficient evaluation of path queries (as well as the more
general twig queries) [1, 4, 7, 9, 10, 11]. However, none of these works have consid-
ered the processing of more general queries that involved not-predicates, which are
very common and useful in many applications.

As an example of a path query with a not-predicate, consider the XPath query:
//supplier[not(./part/color=’red’)], which finds suppliers who do not supply any red
color parts. A naïve approach to evaluate such path queries is to decompose it into
multiple simple path queries (without not-predicates) and evaluate each of the decom-
posed path queries individually using an existing approach (e.g., PathStack [1]); the
final result is then derived by combining the individual results. Thus, the example
query can be computed by the set difference of two simple path queries: p1 – p2,
where p1 = //supplier and p2 = //supplier[./part/color=’red’]. Clearly, this approach
can be extended to process complex path queries with nested not-predicates by apply-
ing the decomposition recursively. However, such a naïve approach is obviously inef-
ficient as it not only incurs high I/O cost for the repetitive scans of the data and the
generation of intermediate results, but also incurs computational overhead to combine
the intermediate results to derive the final result.

114 E. Jiao, T.W. Ling, and C.-Y. Chan

In this paper, we study the problem of evaluating path queries with not-predicates
and make the following contributions:

1. We define both the representation of path queries with not-predicates as well as the
semantics of matching such queries.

2. We develop two novel algorithms, PathStack¬ and imp-PathStack¬, to effi-
ciently evaluate path queries with not-predicates. Our approach is a generalization
of the PathStack algorithm [1], which is based on using a collection of stacks to
store partial/complete matching answers.

3. We demonstrate the effectiveness of the proposed algorithms over a naïve ap-
proach with an experimental performance study.

To the best of our knowledge, this is the first paper that addresses this problem.
The rest of the paper is organized as follows. Section 2 defines the representation

and semantics of path queries with not-predicates. In Section 3, we present our first
algorithm for evaluating path queries with not-predicates called PathStack¬. In Sec-
tion 4, we present an improved variant of PathStack¬ called imp-PathStack¬ that
incorporates two optimizations to reduce unnecessary computations. We present a
performance study in Section 5. Section 6 discusses related work. Finally, we con-
clude our paper in section 7 with some future research plans. Due to space constraint,
proofs of correctness and other details are given in [6].

2 Preliminaries

2.1 Data Model

For simplicity and without loss of generality, we model an XML document as a
rooted, ordered labeled tree, where each node corresponds to an element and each
edge represents a (direct) element-subelement. As an example, Fig.1 (b) shows the
tree representation for the simple XML document in Fig.1 (a).

Similar to [1], our work does not impose any specific physical organization on the
document nodes, and it suffices that there is some efficient access method that returns
a stream of document nodes (sorted in document order) for each distinct document
element. We also further assume that each stream of returned nodes can be filtered to
support any value predicate matching in the path queries; thus, for simplicity, we
ignore value predicates in our path queries.

Finally, our work also assumes an efficient method to determine the structural rela-
tionship between a given pair of document nodes (e.g., determine whether one node is
an ancestor or a parent of another node). Several positional encoding schemes for
document nodes have been proposed for this purpose (e.g., [1]), and our proposed
algorithms can work with any of these schemes.

2.2 Representation of Path Queries with Not-Predicates

A path query with not-predicates is represented as a labeled path <n1, n2,…, nm>,
where each node ni (with level number i) is assigned a label, denoted by label(ni), that

 PathStack : A Holistic Path Join Algorithm 115

(a) doc
(c) query1

n1 : A
||

n2 : B
||

n3 : C
||

n4: D C2, f B1, f
B2, t

 A1

Sbool
3 S1Sbool

2

(h) result1

<A1, B2>
A1

B1

C1

D1 E1

B2

C2

Sbool
4

(f) stacks encoding the path
 from A1 to D1

Sbool
3 S1Sbool

2Sbool
4

(g) stacks encoding the path
 from A1 to C2

T1: [A1]
T2: [B1, B2]
T3: [C1, C2]
T4: [D1]

(e) associated
 streams

C1, t B1, f A1D1, t
<A>

 <C>
 <D/>
 <E/>
 </C>

 <C/>

 (b) tree

representation

n1 : A
|

n2 : B
||

n3 : C
||

n4: D

(d) query2 (i) result2

<A1, B1>

Fig. 1. (a) An XML document consisting of elements only; (b) the tree representation of the
document in (a) (integer subscript here is for easy reference to nodes with the same element
name); (c) representation of path query: //A//B[not(.//C//D)]; (d) representation of path query:
//A/B[not(.//C[not(.//D)])]; (e) the associated streams used in PathStack¬ algorithm; (f) and (g)
two examples of stack encoding for root-to-leaf paths in doc tree; (h) result for (c) on (b); (i)
result for (d) on (b)

is an element name. Each pair of adjacent nodes ni and ni+1 is connected by an edge,
denoted by edge(ni, ni+1), which is classified into one of the following four types: (1)
ancestor/descendant edge, represented as “||”; (2) parent/child edge, represented as “|”;
(3) negative ancestor/descendant edge, represented as “||¬”; (4) negative parent/child
ed*ge, represented as “|¬”. A negative edge corresponds to a not-predicate in XPath
expression. Two examples of path queries are shown in Fig.1 (c) and (d), where each
node is depicted as ni:label(ni).

For convenience, we abbreviate the terms parent/child and ancestor/descendant by
P/C and A/D, respectively. Given a node ni, we use parentEdge(ni) to denote
edge(ni-1, ni) if i > 1, and use childEdge(ni) to denote edge(ni, ni+1) if i < m.

2.3 Matching of Path Queries with Not-Predicates

Definition 1. (output node, non-output node, output leaf node, leaf node) A node
ni in a path query is classified as an output node if ni does not appear below any
negative edge; otherwise, it is a non-output node. The output node with the maxi-
mum level number is also called the output leaf node. The last node nm in a path
query is also referred to as the leaf node.

For example, {n1, n2} and {n3, n4} are the sets of output nodes and non-output
nodes in Fig.1 (c) and (d), respectively. Note that n2 is the output leaf node and n4 is
the leaf node.

We use subquery(ni, nj) (1 i j m) to refer to a sub-path of a path query that
starts from node ni to node nj. For example, subquery(n2, n4) in Fig.1 (c) refers to the
sub-path consisting of the set of nodes {n2, n3, n4} and the two edges edge(n2, n3) and
edge(n3, n4).

Definition 2. (Satisfaction of subquery(ni, nj)) Given a subquery(ni, nj) and a node
ei in an XML document D, we say that ei satisfies subquery(ni, nj) if (1) the element
name of ei is label(ni); and (2) exactly one of the following three conditions holds:

¬

116 E. Jiao, T.W. Ling, and C.-Y. Chan

(a) i = j; or
(b) edge(ni, ni+1) is an A/D (respectively, P/C) edge, and there exists a descendant

(respectively, child) node ei+1 of ei in D that satisfies subquery(ni+1, nj) ; or
(c) edge(ni, ni+1) is a negative A/D (respectively, P/C) edge, and there does not

exist a descendant (respectively, child) node ei+1 of ei in D that satisfies
subquery(ni+1, nj).

We say that ei fails subquery(ni, nj) if ei does not satisfy subquery(ni, nj). For no-
tional convenience, we use the notation ei to represent a document node that has an
element name equal to label(ni).

Example 1. Consider the XML document and query in Figs.1 (b) and (c), respec-
tively. Observe that (1) D1 satisfies subquery(n4, n4) (condition a); (2) C1 satisfies
subquery(n3, n4) because of (1) and D1 is a descendant of C1 (condition b); and (3) B1
fails subquery(n2, n4) because of (2) and C1 is a descendant of B1 (condition c).

Definition 3. (Matching of Path Queries with Not-predicates) Given an XML
document D and a path query <n1, n2,…, nm> with nk as the output leaf node, a tuple
<e1, …, ek> is defined to be a matching answer for the query iff (1) for each adjacent
pair of nodes ei and ei+1 in the tuple, ei+1 is a child (respectively, descendant) node of
ei in D if edge(ni, ni+1) is a P/C (respectively, A/D) edge; and (2) ek satisfies sub-
query(nk, nm). We refer to a prefix of a matching answer <e1, …, ek> as a partial
matching answer.

Example 2. Consider the document in Fig.1 (b). For query1 in Fig.1 (c), <A1, B1> is
not a matching answer for it since C1 satisfies subquery(n3, n4) and therefore B1 fails
subquery(n2, n4); hence <A1, B1> fails condition (2) of Definition 3. However, <A1,

B2> is a matching answer for it because there does not exist a Ci node in Fig.1 (b)
which is a descendant of B2 and satisfies subquery(n3, n4); therefore B2 satisfies
subquery(n2, n4). Clearly, <A1, B2> satisfies condition (2) of Definition 3. Similarly,
for query2 in Fig.1 (d), <A1, B1> is a matching answer for it since B1 satisfies sub-
query(n2, n4) and <A1, B1> satisfies condition (2) in Definition 3. However, <A1, B2>
is not a matching answer for query2 because B2 fails subquery(n2, n4).

3 PathStack¬ Algorithm

In this section, we describe our first algorithm, called PathStack¬ , for evaluating
path queries that contain not-predicates. As the name implies, our approach is based
on the stack encoding technique of the PathStack approach [1] for evaluating path
queries without not-predicates.

3.1 Notations and Data Structures

Each query node ni is associated with a data stream Ti, where each Ti contains all
document nodes for element label(ni) sorted in document order. Each stream Ti
maintains a pointer that points to the next node in Ti to be returned. The following

 117

operations are supported for each stream: (1) eof(Ti) tests if the end of the stream Ti
is reached; (2) advance(Ti) advances the pointer of Ti; and (3) next(Ti) returns the
node pointed to by the pointer of Ti.

Each query node ni is also associated with a stack Si which is either a regular
stack or a boolean stack. In a regular stack, each item in Si consists of a pair <ei,
pointer to an item in Si-1>, where ei is a document node with the element name of ei
equal to label(ni). In a boolean stack, each item in Si consists of a triple <ei, pointer
to an item in Si-1, satisfy>, where satisfy is a boolean variable indicating whether ei
satisfies subquery(ni, nm) w.r.t. all the nodes in the data streams that have been
visited so far during the evaluation. Note that the pointer to an item in Si-1 is null iff
i=1. The stack Si associated with ni is a boolean stack if ni is a non-output node or
the output leaf node; otherwise, Si is a regular stack. If Si is a boolean stack, we can
also denote it explicitly by Sbool

i. Note that only regular stacks are used in the
PathStack algorithm [1].

The following operations are defined for stacks: (1) empty(Si) tests if Si is empty;
(2) pop(Si)/ top(Si) pops/returns the top item in Si; and (3) push(Si, item) pushes item
into Si. For an input XML document D, the stacks are maintained such that they sat-
isfy the following three stack properties:

1. At every point during the evaluation, the nodes stored in the set of stacks must lie
on a root-to-leaf path in the input XML document D.

2. If ei and e’i are two nodes in Si, then ei appears below e’i in Si iff ei is an ancestor of
e’i in D.

3. Let mi=<ei, pointeri> and mi-1=<ei-1, pointeri-1> be two items in stacks Si and Si-1,
respectively. If pointeri=mi-1 (i.e., ei is linked to ei-1), then ei-1 must be an ancestor
of ei in D such that there is no other node (with the same element name as ei-1) in D
that lies along the path from ei-1 to ei in D.

3.2 Algorithm

The main algorithm of PathStack¬ (shown in Fig.2) evaluates an input path query q
by iteratively accessing the data nodes from the streams in sorted document order, and
extending partial matching answers stored in the stacks. Each iteration consists of
three main parts. The first part (step 2) calls the function getMinSource to determine
the next node from the data streams to be processed in document order. Before using
the selected next node to extend existing partial matching answers, the algorithm first
needs to pop off nodes from the stacks that will not form a partial matching with the
next node (i.e., preserve stack property1). This “stack cleaning” operation is done by
the second part (steps 3 to 9). Each time an item <ei, pointeri, satisfy> is popped from
a boolean stack Sbool

i, the algorithm will output all the matching answers that end with
ei (by calling showSolutions) if ni is the output leaf node and satisfy is true. Other-
wise, if ni is a non-output node, then Si-1 must necessarily be a boolean stack, and
updateSatisfy is called to update the satisfy values of the appropriate nodes in Si-1.
Finally, the third part (step 11) calls the function moveStreamToStack to extend the
partial answer currently stored in stacks by pushing the next node into the stack Smin.

PathStack : A Holistic Path Join Algorithm ¬

118 E. Jiao, T.W. Ling, and C.-Y. Chan

Algorithm PathStack¬(q)
01 while (¬end(q))
02 nmin = getMinSource(q) // find the next node
03 for query node ni of q in descending i order // clean stack
04 while((¬empty(Si) (top(Si) is not an ancestor of next(Tmin))
05 ei = pop(Si)
06 if (ni is the output leaf node ei.satisfy=true)
07 showSolutions(ei) // output solution
08 else if (ni is a non-output node)
09 updateSatisfy(ni, ei)
10 //push the next node
11 moveStreamToStack(nmin, Tmin, Smin, pointer to top(Smin-1))
12 repeat steps 03 to 09 for the remaining nodes in the stacks

Function getMinSource(q)
 Return query node ni of q such that next(Ti) has the minimal document
order among all unvisited nodes.

Function end(q)
Return ni in q eof(Ti) is true.

Fig. 2. PathStack¬ Main Algorithm

Procedure moveStreamToStack(ni, Ti, Si, pointer)
01 if Si is a regular stack // regular stack, no Boolean value
02 push(Si, <next(Ti), pointer>)
03 else if ni is the leaf node
04 push(Si, <next(Ti), pointer, true>)
05 else if childEdge(ni)is negative
06 push(Si, <next(Ti), pointer, true>)
07 else if childEdge(ni)is positive
08 push(Si, <next(Ti), pointer, false>)
09 advance(Ti)

Procedure updateSatisfy(ni, ei)
01 if ei.satisfy = true
02 ei-1 = ei.pointer
03 if parentEdge(ni) is a negative edge
04 newvalue = false
05 else
06 newvalue = true
07 if parentEdge(ni) is an A/D edge
08 for all e’i-1 in S

bool

i-1 that are below ei-1 (inclusive of ei-1)
09 e’i-1.satisfy = newvalue
10 else // parentEdge(ni) is an P/C edge
11 if ei-1 is a parent of ei

12 ei-1.satisfy = newvalue

Fig. 3. Procedures moveStreamToStack and updateSatisfy

The details of the procedures moveStreamToStack and updateSatisfy are shown in
Fig.3. In moveStreamToStack, if the input stack Si is a boolean stack, then the satisfy
value of the data node ei to be pushed into Si is initialized as follows. If ni is the leaf
node in the query (step 3), then ei trivially satisfies subquery(ni, nm) and satisfy is set
to true. Otherwise, satisfy is set to false (respectively, true) if childEdge(ni) is a posi-
tive (respectively, negative) edge since ei satisfies (respectively, fails) subquery(ni,
nm) w.r.t. all the nodes that have been accessed so far.

 119

Procedure updateSatisfy maintains the satisfy values of stack entries such that
when a data node ei is eventually popped from its stack Si, its satisfy value is true iff ei
satisfies subquery(ni, nm), i.e, w.r.t. the whole input XML document. The correctness
of updateSatisfy is based on the property that once an initialized satisfy value is
complemented by an update, its value will not be complemented back to the initial-
ized value again.

The details of procedure showSolutions can be found in [1].

Example 3. This example illustrates the evaluation of query1 in Fig.1 (c) on the XML
document in Fig.1 (b) using algorithm PathStack¬ .

(1) The nodes A1, B1, C1, and D1 are accessed and pushed into their corresponding
stacks; the resultant stack encoding is shown in Fig.1 (f).

(2) B2 is the next node to be accessed (E1 is not accessed as it is irrelevant to the
query), and nodes C1 and D1 need to be first popped off from their stacks to pre-
serve the stack properties. When node D1 is popped, it is detected to satisfy sub-
query(n4, n4), and therefore C1.satisfy is updated to true. When C1 is popped, it
is determined to satisfy subquery(n3, n4). Consequently, B1.satisfy is updated to
false.

(3) B2 is accessed and pushed into Sbool
2.

(4) C2 is accessed and pushed into Sbool
3; the resultant stack encoding is shown in

Fig.1 (g).
(5) Since all the relevant data nodes have been accessed, the algorithm now pops off

the remaining nodes in the stacks in the order of C2, B2, B1, and A1. When C2 is
popped, it is detected to fail subquery(n3, n4) and so no update takes place.
When B2 is popped, it is detected to satisfy subquery(n2, n4). Since B2 is a leaf
output node, the matching answer <A1, B2> is generated. When B1 is popped, it is
detected to fail subquery(n2, n4) and so no matching answer is produced. Finally,
A1 is popped without triggering any operations.

(6) Since all the stacks are empty, the algorithm terminates with exactly one match-
ing answer <A1, B2>.

3.3 Performance Analysis

In this section, we present an analysis of the time and space complexity of algorithm
PathStack¬. Let Sizei denote the total number of nodes in the accessed data streams,
Size denote the length of the longest path in the input XML document, and Sizeo
denote the size of the matching answers.

Since the number of iterations in the outer while loop (steps 1 to 11) is bounded by
the number of nodes in the input streams, and both the inner for loop (steps 3 to 9)
and step 12 are bounded by the longest path in the input XML document, the CPU
complexity of PathStack¬ is given by O(Sizei * Size + Size). The I/O complexity is
O(Sizei + Sizeo) since the input data streams are scanned once only and the only out-
puts are the matching answers. The space complexity is given by O(Size) since at any
point during the evaluation, the data nodes that are stored in the stacks must lie on a
root-to-leaf path in the input XML document.

PathStack : A Holistic Path Join Algorithm ¬

120 E. Jiao, T.W. Ling, and C.-Y. Chan

4 Improved PathStack¬ Algorithm

In this section, we present an improved variant of PathStack¬, denoted by imp-
PathStack¬, that is based on two optimizations to reduce unnecessary computations.
Due to space constraint, the details of the optimizations are omitted in this paper but
can be found in [6].

4.1 Reducing the Number of Boolean Stacks

One key extension introduced by our PathStack¬ algorithm to handle not-predicates
is the use of boolean stacks for output leaf and non-output query nodes. Boolean
stacks are, however, more costly to maintain than regular stacks due to the additional
satisfy variable in each stack entry. In this section, we present an optimization to
minimize the number of boolean stacks used in the algorithm.

Our optimization is based on the observation that boolean stacks are actually only
necessary for query nodes that have negative child edges. To understand this optimi-
zation, note that a non-output node ni can be classified into one of three cases: (1) ni is
also the leaf node; or (2) ni has a positive child edge; or (3) ni has a negative child
edge. For case (1), since each data node ei in Si trivially satisfies subquery(ni, nm), ei
.satisfy is always true and therefore Si can be simplified to a regular stack (i.e., Si can
be viewed as a virtual boolean stack). For case (2), the satisfy value of each node in Si
can effectively be determined from the nodes in Sj, where nj is the nearest descendant
query node of ni that is associated with a (real or virtual) boolean stack. Details of this
are given in [6]. Thus, Si again can be simplified to a regular stack. Consequently,
only non-output nodes belonging to case (3) need to be associated with boolean
stacks.

4.2 Nodes Skipping

Our second optimization aims to exploit the semantics of not-predicates to minimize
the pushing of “useless” data nodes into stacks that do not affect the input query’s
result. In the following, we explain and illustrate the intuition for this optimization;
more details are given in [6].

Consider a stack Sbool
i that corresponds to a query node ni with a negative child

edge. Suppose ei, the topmost node in Sbool
i, has a false value for satisfy. Then there

are two cases to consider for the optimization depending on whether childEdge(ni) is
an A/D or P/C edge.

Case 1: If childEdge(ni) is an A/D edge, then it follows that every data node below
ei in Sbool

i also has a false value for satisfy. Therefore, for each j > i, the nodes in Tj
that precede next(Ti) in document order can be skipped as they will not contribute
to any matching answers. For example, consider the query query1 on document
doc1 in Fig.4. Note that after the path of nodes from A1 to C1 have been accessed,
the satisfy values for both A1 and A2 are determined to be false. Thus, the stream of
nodes {B2,…,B5} and {C2,…,C4} can be skipped as they will not affect the satisfy
value of A3.

 121

Case 2: If childEdge(ni) is a P/C edge, then let e’i be the lowest node in Sbool
i with a

false value for satisfy. It follows that for each j > i, the data nodes in Tj that are de-
scendants of e’i and precede next(Ti) in document order will not contribute to any
matching answers and can therefore be skipped. For example, consider the query
query2 on document doc2 in Fig.4. Note that after the path of nodes from A1 to C1
have been accessed, the satisfy values for both A1 and A2 are determined to be false,
and the stream of nodes {B3, B4} and {C2,…,C4} can be skipped. As another example,
consider query query2 on document doc1 in Fig.4. After the path of nodes from A1 to
C1 have been accessed, the satisfy value for A2 is determined to be false, the stream of
nodes {B2, B3} and {C2} can be skipped. Note that B4 and C3 can not be skipped in
this case as they will affect A1’s satisfy value which is yet to be determined.

A1

B1

A2

C1

B3

D1

root

B2

C2

B4

C3

A3B5

C4

E1

D2

A1

B4

D1

root

B3

C4

A3

(b) doc2(a) doc1

n1: A

|
n2: B

||
n3: C

n1: A

||
n2: B

||
n3: C

(c) query1 (d) query2

Bn

Cm
A2

B1

B2

C1 C2 C3

Fig. 4. XML documents and path queries

The node skipping optimization becomes even more effective when combined with
the boolean stack reduction optimization since it enables the nodes’ satisfy values to
be updated earlier and a more aggressive node skipping. For example, consider the
query query1 on document doc2 in Fig.4. When the boolean stack optimization is
used, there is only one boolean stack Sbool

2, and the satisfy values of A1 and A2 are
both determined to be false once the path of nodes from A1 to C1 have been accessed.
In contrast, without the first optimization, all the stacks are boolean, and the satisfy
values of A1 and A2 are determined to be false only after B2 is popped off from its
stack when B3 is accessed; consequently, the nodes C2 and C3 can not be skipped.

5 Experimental Evaluation

This section presents experimental results to compare the performance of our pro-
posed algorithms, PathStack¬ and imp-PathStack¬, as well as the decomposition-
based naïve approach described in Section 1 (referred to as Naïve).

We used the synthetic data set Treebank.xml [14] with about half a million of
nodes, an average path length of 8 levels, and a maximum path length of 35 levels.
We generated three sets of path queries (denoted by Q1, Q2, and Q3), where each
query in Qi contains exactly i number of not-predicates and has 7 levels. About 30%
of the data nodes are accessed for each query, and the matching answers are formed
from about 0.4% of the data nodes. For each query and approach, we measured both
the total execution time as well as the disk I/O (in terms of the total number of data
nodes that are read/written to disk). Our experiments were conducted on a 750MHz
Ultra Sparc III machine with 512MB of main memory.

PathStack : A Holistic Path Join Algorithm ¬

122 E. Jiao, T.W. Ling, and C.-Y. Chan

5.1 Naïve Versus PathStack¬

Fig.5 compares the execution time of Naïve and PathStack¬, and the results show
that PathStack¬ is much more efficient than Naïve. In particular, observe that while
the execution time of Naïve increases almost linearly as the number of not-predicates
increases, the execution time of PathStack¬ remains constant. This can be explained
by the results in Fig.6 (which compares their I/O performance) and Fig.7 (which gives
the detailed breakdown).

Fig.6 shows that the I/O cost of PathStack¬ is independent of the number of not-
predicates since each data stream is scanned exactly once (without any intermediate
results generated), and the final matching answers written to disk have about the same
size. On the other hand, Fig.7 reveals that as the number of not-predicates increases,
Naïve incurs more disk I/O as it needs to access the data streams multiple times and
output intermediate results to disk.

PathStack Naive

31 . 1

51 . 1

69

21. 421 . 421 . 3

0

20

40

60

80

QS1 QS2 QS3ex
ec

ut
io

n
ti

me
(s

ec
)

 Q1 Q2 Q3

Fig. 5. Execution time comparison between
PathStack¬ and Naïve

193 . 9

346 . 2

480. 2

153 . 9154. 1 154. 4

0

200

400

600

QS1 QS2 QS3di
sk

 I
/O

 (

of
 n

od
es

)

PathStack Naive

 Q1 Q2 Q3

Fig. 6. Disk I/O comparison between Path-
Stack¬ and Naïve

Streams Intermediate Result Final Results Total

of nodes % of total # of nodes % of total # of nodes % of total # of nodes

Q1
PathStack 152.1 k 98.7% 0 k 0% 2 k 1.3% 154.1 k

Naive 185.7 k 95.8% 6.2 k 3.2% 2 k 1% 193.9 k

Q2
PathStack 152.0 k 98.8% 0 k 0% 1.9 k 1.2% 153.9 k

Naive 337.1 k 97.4% 7.2 k 2.1% 1.9 k 0.5% 346.2 k

Q3
PathStack 152.3 k 98.6% 0 k 0% 2.1 k 1.4% 154.4 k

Naive 466.8 k 97.2% 11.3 k 2.4% 2.1 k 0.4% 480.2 k

Fig. 7. Breakdowns of disk I/O in PathStack¬ and Naïve

5.2 PathStack¬ Versus imp-PathStack

Fig.8 compares the execution time of PathStack¬ and imp-PathStack¬; the amount
of time spent only on scanning the accessed data streams is also shown (labeled as
“sequential scan”) for comparison. Our results show that imp-PathStack¬ is only
slightly faster than PathStack¬, with about 90% of the total execution time being
dominated by the scanning of the data streams. Note that our implementation of imp-
PathStack¬ did not utilize any indexes for accessing the data streams. We expect that
if the data streams were indexed, the performance improvement of imp-PathStack¬
over PathStack¬ (due to the additional reduction of I/O cost in node skipping) would
become more significant.

 123

sequential scan

imp-PathStack

PathStack

18.718.718.7
20.7 21.1 20.2

21.3 21.4 21.4

0

5

10

15

20

25

QS1 QS2 QS3

ex
ec

ut
io

n
tim

e
(s

ec
)

 Q1 Q2 Q3

Fig. 8. Execution time comparison between
Sequential Scan, imp-PathStack¬ and PathStack

Stream Size
(# of nodes)

Nodes Skipped
(# of nodes)

% of
skipping

Q1 152.1 k 10.2 k 6.7 %

Q2 152.0 k 3.6 k 2.4 %

Q3 152.3 k 28.1 k 18.5 %

Fig. 9. Percentage (%) of nodes skipped for
each query set in imp-PathStack

Fig.9 compares the number of skipped nodes for various queries using imp-
PathStack¬. Our results did not reveal any interesting relationship between the num-
ber of not-predicates and the percentage of skipped nodes (which is between 2.4%
and 18.5%); we expect this percentage to be higher for an XML document that has a
higher fan-out (note that the fan-out of treebank.xml is only around 2-3). More analy-
sis can be found in [6].

6 Related Work

XML query processing and optimization for XML databases have attracted a lot of
research interests. Particularly, path query matching has been identified as a core
operation in querying XML data. While there is a lot of work on path and twig query
matching, none of these works addressed the evaluation of queries with not-
predicates. Below, we review the existing work on path/twig query evaluation, all of
which do not address not-predicates.

Earlier works [3, 5, 9, 10, 12, 13, 14] have focused on a decomposition-based ap-
proach in which a path query is decomposed into a set of binary (parent-child and
ancestor-descendant) relationships between pairs of query nodes. The query is then
matched by (1) matching each of the binary structural relationships against the XML
data, and (2) “stitching” together these basic matches. The major problem with the
decomposition-based approach is that the intermediate results can get very large even
when the inputs and final results are small.

The work in [1, 2] are more closely related to ours. The algorithms PathStack and
PathMPMJ were proposed to evaluate path queries without not-predicates. These
algorithms process a path query in a holistic manner, which do not generate large
intermediate results and also avoid costly binary structural joins. PathStack has been
shown to more efficient than PathMPMJ as it does not require repetitive data scans.

7 Conclusions and Future Work

In this paper, we have proposed two novel algorithms PathStack¬ and imp-
PathStack¬ (which is an improved variant of PathStack¬ to further minimize un-
necessary computation) for the efficient processing of path queries with not-
predicates. We have defined the representation and matching of path queries with not-
predicates, and proposed the simple but effective idea of using boolean stacks to sup-

PathStack : A Holistic Path Join Algorithm ¬

¬ ¬

124 E. Jiao, T.W. Ling, and C.-Y. Chan

port efficient query evaluation. Our proposed algorithms require only a single scan of
each data stream associated with the input query without generating any intermediate
results. To the best of our knowledge, this is the first work that addresses the evalua-
tion of path queries with not-predicates.

While our proposed algorithms can be easily extended to handle twig queries with
at most one path containing not-predicates, we are currently extending our work to
process more general twig queries that have not-predicates in multiple branches.

References

1. N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML pattern
matching. In Proc. of the SIGMOD, 2002.

2. N. Bruno, N. Koudas, D. Srivastava. Holistic Twig Joins: Optimal XML Pattern Matching.
Technical Report. Columbia University. March 2002.

3. D. Florescu and D. Kossman. Storing and querying XML data using an RDMBS. IEEE
Data Engineering Bulletin, 22(3): 27-34, 1999.

4. H. Jiang, H. Lu, W. Wang, Efficient Processing of XML Twig Queries with OR-
Predicates, In Proc. of the SIGMOD 2004.

5. H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig joins on indexed XML documents.
In Proc. of the VLDB, pages 273-284, 2003.

6. E. Jiao, Efficient processing of XML path queries with not-predicates, M.Sc. Thesis, Na-
tional University of Singapore, 2004.

7. Q. Li and B. Moon. Indexing and querying XML data for regular path expressions. In
Proc. of the VLDB, pages 361-370, 2001.

8. R. Riebig and G.Moerkotte. Evaluating queries on structure with access support relations.
In Proc. of the WebDB’00, 2000.

9. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton. Rela-
tional databases for querying XML documents: Limitations and opportunities. In Proc. of
VLDB, 1999.

10. D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, and Y. Wu. Struc-
tural joins: A primitive for efficient XML query pattern matching. In Proc. of the ICDE,
pages 141-152, 2002.

11. H. Wang, S. Park, W. Fan, and P. S. Yu. Vist: A dynamic index method for querying
XML data by tree structures. In Proc. of the SIGMOD, pages 110-121, 2003.

12. Y. Wu, J. M. Patel, and H. V. Jagadish. Structural join order selection for XML query op-
timization. In Proc. of the ICDE, pages 443-454, 2003.

13. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On supporting containment
queries in relational database management systems. In Proc. of the SIGMOD, 2001.

14. Treebank.xml: http://www.cis.upenn.edu/~treebank/.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 125 – 137, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Improved Prefix Labeling Scheme: A Binary String
Approach for Dynamic Ordered XML

Changqing Li and Tok Wang Ling

Department of Computer Science, National University of Singapore
{lichangq, lingtw}@comp.nus.edu.sg

Abstract. A number of labeling schemes have been designed to facilitate the
query of XML, based on which the ancestor-descendant relationship between
any two nodes can be determined quickly. Another important feature of XML is
that the elements in XML are intrinsically ordered. However the label update
cost is high based on the present labeling schemes. They have to re-label the
existing nodes or re-calculate some values when inserting an order-sensitive
element. Thus it is important to design a scheme that supports order-sensitive
queries, yet it has low label update cost. In this paper, we design a binary string
prefix scheme which supports order-sensitive update without any re-labeling or
re-calculation. Theoretical analysis and experimental results also show that this
scheme is compact compared to the existing dynamic labeling schemes, and it
provides efficient support to both ordered and un-ordered queries.

1 Introduction

The growing number of XML [7] documents on the Web has motivated the develop-
ment of systems which can store and query XML data efficiently. XPath [5] and
XQuery [6] are two main XML query languages.

There are two main techniques to facilitate the XML queries, viz. structural index
and labeling (numbering) scheme. The structural index approaches, such as dataguide
[9] in the Lore system [11] and representative objects [13], can help to traverse
through the hierarchy of XML, but this traverse is costly. The labeling scheme ap-
proaches, such as containment scheme [2, 10 16, 17], prefix scheme [1, 8, 11, 14] and
prime scheme [15], require smaller storage space, yet they can efficiently determine
the ancestor-descendant and parent-child relationships between any two elements of
the XML. In this paper, we focus on the labeling schemes.

One salient feature of XML is that the elements in XML are intrinsically ordered.
This implicit ordering is referred to as document order (the element sequence in the
XML). The labeling scheme should also have the ability to determine the order-
sensitive relationship.

The main contributions of this paper are summarized as follows:

 This scheme need not re-label any existing nodes and need not re-calculate any
values when inserting an order-sensitive node into the XML tree.

 The theoretical analysis and experimental results both show that this scheme has
smaller storage requirement.

126 C. Li and T.W. Ling

The rest of the paper is organized as follows. Section 2 reviews the related work
and gives the motivation of this paper. We propose our improved binary string prefix
scheme in Section 3. The most important part of this paper is Section 4, in which we
show that the scheme proposed in this paper need not re-label any existing nodes and
need not re-calculate any values when updating an ordered node. The experimental
results are illustrated in Section 5, and we conclude in Section 6.

2 Related Work and Motivation

In this section, we present three families of labeling schemes, namely containment [2,
10 16, 17], prefix [1, 8, 11, 14] and prime [15].

Containment Scheme. Agrawal et al [2] use a numbering scheme in which every
node is assigned two variables: “start” and “end”. These two variables represent an
interval [start, end]. For any two nodes u and v, u is an ancestor of v iff label(u.start)
< label(v.start) < label(v.end) < label(u.end). In other words, the interval of v is con-
tained in the interval of u.

Although the containment scheme can determine the ancestor-descendant relation-
ship quickly, it does not work well when inserting a node into the XML tree. The
insertion of a node may lead to a re-labeling of all the nodes of the tree. This problem
may be alleviated if we increase the interval size with some values unused. However,
it is not so easy to decide how large the interval size should be. Small interval size is
easy to lead to re-labeling, while large interval size wastes a lot of values which
causes the increase of storage.

[3] uses real (float-point) values for the “start” and “end” of the intervals. It seems
that this approach solve the re-labeling problem. But in practice, the float-point is
represented in computer with a fixed number of bits which is similar to the represen-
tation of integer. As a result, there are a finite number of values between any two real
values [14].

Prefix Scheme. In the prefix labeling scheme, the label of a node is its parent’s label
(prefix) concatenates the delimiter and its own label. For any two nodes u and v, u is
an ancestor of v iff label(u) is a prefix of label(v). There are two main prefix schemes,
the integer based and the binary string based.

DeweyID [14] is an integer based prefix scheme. It labels the nth child of a node with
an integer n, and this n should be concatenated to the prefix (its parent’s label) to form
the complete label of this child node.

On the other hand, Cohen et al use Binary strings to label the nodes (Binary) [8].
Each character of a binary string is stored using 1 bit. The root of the tree is labeled
with an empty string. The first child of the root is labeled with “0”, the second child
with “10”, the third with “110”, and the fourth with “1110”, etc. Similarly for any
node u, the first child of u is labeled with label(u).“0”, the second child of u is labeled
with label(u).“10”, and the ith child with label(u).“1i-10”.

 An Improved Prefix Labeling Scheme: A Binary String Approach 127

Compared to the containment scheme, the prefix scheme only needs to re-label the
sibling nodes after this inserted node and the descendants of these siblings, which is
more dynamic in updating.

Prime Number Scheme. Wu et al [15] proposed a novel approach to label XML trees
with prime numbers (Prime). The label of a node is the product of its parent_label and
its own self_label (the next available prime number). For any two nodes u and v, u is
an ancestor of v iff label(v) mod label(u) = 0.

Furthermore, Prime utilizes the Chinese Remainder Theorem (CRT) [4, 15] for the
document order. When using the Simultaneous Congruence (SC) value in CRT to
mod the self_label of each node, the document order for each node can be calculated.
When new nodes are inserted into the XML tree, Prime only needs to re-calculate the
SC value for the new ordering of the nodes instead of re-labeling.

In addition, Prime uses multiple SC values rather than a single SC value to prevent
the SC value to become a very very larger number.

The prefix and prime schemes are called dynamic labeling schemes, and we only
compare the performance of dynamic labeling schemes in this paper.

Motivation. The Binary and DeweyID prefix schemes both need to re-label the exist-
ing nodes when inserting an order-sensitive node.

Although Prime is a scheme which supports order-sensitive updates without any
re-labeling of the existing nodes, it needs to re-calculate the SC values based on the
new ordering of nodes. The SC values are very large numbers and the re-calculation is
very time consuming.

In addition, the Prime scheme skips a lot of integers to get the prime number, and
the label of a child is the preoduct of the next available prime number and its parent’s
label, which both make the storage space for Prime labels large.

Thus the objective of this paper is to design a scheme 1) which need not re-label
any existing nodes and need not re-calculate any values when inserting an order-
sensitive node (Section 4.1 and 5.3), and 2) which requires less storage space for the
labels (Section 3.2 and 5.1).

3 Improved Binary String Prefix Scheme

In this section, we elaborate our Improved Binary string prefix scheme (ImprovedBi-
nary). Firstly we use an example to illustrate how to label the nodes based on our
ImprovedBinary. Then we describe the formal labeling algorithm of this scheme. Also
we analyze the size requirements of different labeling schemes.

In prefix schemes, the string before the last delimiter is called a prefix_label, the
string after the last delimiter is called a self_label, and the string before the first
delimiter, between two neighbor delimiters or after the last delimiter is called a com-
ponent.

Example 3.1. Figure 1 shows our ImprovedBinary scheme. The root node is labeled
with an empty string. Then we label the five child nodes of the root. The prefix_labels
of these five child nodes are all empty strings, thus the self_labels are exactly the

128 C. Li and T.W. Ling

complete labels for these five child nodes. The self_label of the first (left) child node
is “01”, and the self_label of the last (right) child node is “011”. We use “01” and
“011” as the first and last sibling self_labels because in this way, we can insert nodes
before the first sibling and after the last sibling without any re-labeling of existing
nodes. See Section 4.1.

Fig. 1. ImprovedBinary scheme

When we know the left and right self_labels, we can label the middle self_label
and 2 cases will be encountered: Case (a) left self_label size ≤ right self_label size,
and Case (b): left self_label size > right self_label size. For Case (a), the middle
self_label is that we change the last character of the right self_label to “0” and con-
catenate one more “1”. For Case (b), the middle self_label is that we directly concate-
nate one more “1” after the left self_label.

Now we label the middle child node, which is the third child, i.e. 32/)51(=+ .

The size of the 1st (left) self_label (“01”) is 2 and the size of the 5th (right) self_label
(“011”) is 3 which satisfies Case (a), thus the self_label of the third child node is
“0101” (“011” → “010” → “0101”).

Next we label the two middle child nodes between “01” and “0101”, and between
“0101” and “011”. For the middle node between “01” (left self_label) and “0101”
(right self_label), i.e. the second child node (22/)31(=+), the left self_label size 2

is smaller than the right self_label size 4 which satisfies Case (a), thus the self_label
of the second child is “01001” (“0101” → “0100” → “01001”). For the middle node
between “0101” (left self_label) and “011” (right self_label), i.e. the fourth child
(42/)53(=+), the left self_label size 4 is larger than the right self_label size 3

which satisfies Case (b), thus the self_label of the fourth child is “01011” (“0101” ⊕
“1” → “01011”).

Theorem 3.1. The sibling self_labels of ImprovedBinary are lexically ordered.

Theorem 3.2. The labels (prefix_label ⊕ delimiter ⊕ self_label) of ImprovedBinary
are lexically ordered when comparing the labels component by component.

Example 3.2. The self_labels of the five child nodes of the root in Figure 1 are lexi-
cally ordered, i.e. “01” “01001” “0101” “01011” “011” lexically. Fur-
thermore, “0101.011” “011.01” lexically.

01 01001 0101 01011 011

0101.01 0101.011 011.01 011.011

 An Improved Prefix Labeling Scheme: A Binary String Approach 129

3.1 The Formal Labeling Algorithm

We firstly discuss the AssignMiddleSelfLabel algorithm (Figure 2) which inserts the
middle self_label when we know the left self_label and the right self_label. If the size
of the left self_label is smaller than or equal to the size of the right self_label, the
self_label of the middle node is that we change the last character of the right
self_label to “0” and concatenate one more “1”. Otherwise, the self_label of the mid-
dle node is the left self_label concatenates “1”.

Fig. 3. Labeling algorithm.

Algorithm 2: Labeling
Input: XML document
Output: Label of each node
begin
1: for all the sibling child nodes of each node of the XML document
2: for the first sibling child node, self_label[1]=“01” //self_label is an array
3: if the Number of Sibling nodes SN > 1
 then self_label[SN]=“011”
 self_label=SubLabeling(self_label, 1, SN)
4: label = prefix_label ⊕ delimiter ⊕ each element of self_label array
end

SubLabeling
Input: self_label array, left element index of self_label array L, and right ele-

ment index of self_label array R
Output: self_label array
begin
1: M = floor((L+R)/2) //M refers to the Mth element of self_label array
2: if L+1<R
 then self_label[M]=AssignMiddleSelfLabel(self_label[L], self_label[R])
 SubLabeling(self_label, L, M)
 SubLabeling(self_label, M, R)
end

Algorithm 1: AssignMiddleSelfLabel
Input: left self label self_label_L, and right self label self_label_R
Output: middle self label self_label_M, such that

 self_label_L self_label_M self_label_R lexically.
begin
1: calculate the size of self_label_L and the size of self_label_R
2: if size(self_label_L) ≤ size(self_label_R)

 then self_label_M = change the last character of self_label_R to “0”,
 and concatenate (⊕) one more “1”

3: else if size(self_label_L) > size(self_label_R)
 then self_label_M = self_label_L ⊕ “1”

end

Fig. 2. AssignMiddleSelfLabel algorithm.

130 C. Li and T.W. Ling

Next we discuss how to label the whole XML tree. Figure 3 shows the Labeling al-
gorithm. We firstly get all the sibling child nodes of a node. If there is only one sib-
ling, the self_label of this node is “01”. Otherwise, the self_label of the first sibling
node is “01” and the self_label of the last sibling node is “011”. We use the SubLabel-
ing function to get all the self_labels of the rest sibling nodes.

SubLabeling is a recursive function, the input of which is a self_label array, the
left element index of self_label “L” and the right element index of self_label “R”.
This function assigns the middle self_label (self_label[M]) using the AssignMiddle-
SelfLabel algorithm (Figure 2), then it uses the new left and right self_label positions
to call the SubLabeling function itself, until each element of the self_label array has a
value.

Finally the label of each sibling node is the prefix_label concatenates the
self_label.

3.2 Size Analysis1

In this section, we analyze the size required by the DeweyID, Binary, Prime and our
ImprovedBinary. The “D”, “F” and “N” are respectively used to denote the maximal
depth, maximal fan-out and number of nodes of an XML tree.

DeweyID. The maximal size to store a single self_label is)log(F (all the self_labels

of DeweyID use this size). When considering the prefix, the maximal size to store a
complete label (prefix_label ⊕ self_label) is)log(FD × since the maximal depth is

D and there are at most (D-1) delimiters in the prefix_label. Thus the maximal size
required by DeweyID to store all the nodes in the XML tree is

)log(FDN ×× (1)

Binary. The size of the first sibling self_label is only 1, the second is 2, ···, and the Fth
is F. Thus the actual total sibling self_label size is =+⋅⋅⋅++ F21

=×+ 2/)1(FF 2/2/2 FF + , and the average size for a single self_label is

2/12/ +F . Thus the maximal size to store all the nodes in the XML tree is

)2/12/(+×× FDN (2)

From formulas (1) and (2), we can see that the size of Binary is larger than the size
of DeweyID.

Prime. According to the size analysis of Prime in [15], the maximal size required to
store all the nodes in the XML tree is

))log(log(NNDN ××× (3)

Comparing formulas (1) and (3), F is definitely less than)log(NN × , thus

DeweyID requires smaller label size than Prime when considering the worst case.

1 The size in this paper refers to bits and the log in this paper is used as the logarithm to base 2.

 An Improved Prefix Labeling Scheme: A Binary String Approach 131

This is intuitive when we notice that Prime skips many integers to get the prime num-
ber and uses the product of two numbers.

ImprovedBinary. Finally we consider the size required by our ImprovedBinary.

Example 3.3. For the 5 sibling self_labels of the child nodes of the root in Figure 1,
the first and last sibling self_labels are “01” and “011” with size 2 and 3 bits respec-
tively. The middle self_label between “01” and “011” is “0101” with size 4 bits.
Then for the two middle nodes “01001” and “01011” (between “01” and “0101”, and
between “0101” and “011”), their sef_label sizes are both 5, and so on.

Table 1 shows the relationship between the size of a label and the number of labels
with this size. There is one label with size 2, one label with size 3, 20 label with size 4,
21 labels with size 5, 22 labels with size 6, 23 labels with size 7, ···, and 2n labels with
size n+4. The number of sibling nodes F is equal to 1+1+20+21+22+23+···+2n=2n+1+1.
Therefore 2/)1(2 −= Fn , and 3)1log(4 +−=+ Fn . Thus the total sibling self_label
size is

⋅⋅⋅+×+×+×+×++ 7262524132 321)4(2 +× nn
= ⋅⋅⋅+×+×+×+×++ 7262524132 321)3)1(log(2/)1(+−×− FF

1)1log(2)1log(+−−+−= FFFF
Hence the average size for a single self_label is

FFFF /1/)1log(2)1log(+−−+−=
Accordingly the maximal size required to store all the nodes in the XML tree is

)/1/)1log(2)1(log(FFFFDN +−−+−×× (4)

Table 1. Number of sibling nodes and single sibling self_label size of ImprovedBinary

Number of labels with this size Size (bits)
1 2
1 3

1 (20) 4
2 (21) 5
4 (22) 6
8 (23) 7

··· …
2n n+4

It can be seen from formulas (1) and (4) that the size required by ImprovedBinary
is as small as the size required by DeweyID. In addition, DeweyID uses fixed length
for all the self_labels. On the other hand, our ImprovedBinary uses variable length,
therefore the self_label size of our ImprovedBinary will not always employs the
maximal fan-out F. As a result, the actual total label size of our ImprovedBinary
should be smaller than the actual total label size of DeweyID. Consequently the size
required by our ImprovedBinary is smaller than the size required by Binary and
Prime. This will be confirmed in Section 5.1 by the experimental results.

132 C. Li and T.W. Ling

4 Order-Sensitive Update and Query

The most important part of this paper is Section 4.1, in which we show that our Im-
provedBinary scheme need not re-label any existing nodes and need not re-calculate
any values when inserting an order-sensitive node. In Section 4.2, we briefly intro-
duce how to answer order-sensitive queries based on different schemes.

4.1 Order-Sensitive Update

The deletion of a node will not affect the ordering of the nodes in the XML tree.
Therefore in this section, we discuss the following three order-sensitive insertion
cases.

Case (1): Insert a Node Before the First Sibling Node. The self_label of the in-
serted node is that the last character of the first self_label is changed to “0” and is
concatenated with one more “1”. After insertion, the order is still kept.

Case (2): Insert a Node at any Position Between the First and Last Sibling Node.
We use the AssignMiddleSelfLabel algorithm introduced in Section 3.1 to assign the
self_label of the new inserted node. After insertion, the order is still kept.

Case (3): Insert a Node After the Last Sibling Node. The self_label of the inserted
node is that the last self_label concatenates one more “1”. After insertion, the order is
still kept.

In the above three cases, the prefix_labels of the inserted nodes are the same as the
prefix_labels of the sibling nodes.

Example 4.1. When inserting the node “a” (see Figure 4), it is Case (1), thus the
self_label (label) of “a” is “001” (“01” → “00” → “001”). When inserting the node
“b”, it is case (2) and we use the AssignMiddleSelfLabel algorithm to assign the
self_label of “b”. The left self_label of “b” is “01001” with size 5 and the right
self_label of “b” is “0101” with size 4, therefore we directly concatenate one more
“1” after the left self_label (“01001” ⊕ “1” → “010011”), then the self_label of “b”
is “010011”. When inserting the node “c”, it is still case (2), but the left self_label
(“01”) size < the right self_label (“011”) size, therefore the self_label of “c” is
“0101” (“011” → “010” → “0101”), and the complete label of “c” is “0101.0101”.
When inserting the node “d”, it is case (3), thus the self_label of “d” is “0111”

a
01011

011.011 011.01

01 01001 0101

0101.01 0101.011

Fig. 4. Order-sensitive update for Improved Binary

011
b d

c

 An Improved Prefix Labeling Scheme: A Binary String Approach 133

(“011” ⊕ “1” → “0111”). After insertion, the orders are still kept, i.e. label(a)
“01”, “01001” label(b) “0101”, “0101.01” label(c) “0101.011”, and
“011” label(d) lexically.

It can be seen that for all the above three cases, ImprovedBinary need not re-label
any existing nodes and need not re-calculate any values.

On the other hand, DeweyID and Binary need to re-label all the sibling nodes fol-
lowing the inserted node and all the descendant nodes of the following sibling nodes
for Case (1) and (2). Prime needs to re-calculate the SC values for the new ordering.

4.2 Order-Sensitive Query

Besides the ancestor-descendant and parent-child relationship determinations, there
are the following order-sensitive queries.

1) position = i:
Selects the ith node within a context node set. For example, the query “/play/act[2]”

will retrieve the second act of the play.
2) preceding-sibling or following-sibling:
Selects all the preceding (following) sibling nodes of the context node. For exam-

ple, the query “/play/act[2]/preceding-sibling::act” will retrieve all the acts (“::act”)
which are sibling nodes of act[2] and are before act[2].

3) preceding or following:
Selects all the nodes before (after) (in document order) the context node excluding

any ancestors (descendants). For example, the query “/play/act[2]/following::*” will
retrieve all the nodes (“::*”) after act[2] in document order and these nodes should
not be the descendants of act[2].

The Prime scheme uses the SC value and the self_label to calculate the order of
each node, then it can fulfill these three types of order-sensitive queries.

From the labels only, the prefix schemes (including DeweyID, Binary and Improv-
edBinary) can determine the sequence of nodes, hence they can fulfill these three
order-sensitive queries.

It should be noted when inserting a node, DeweyID and Binary need to re-label the
existing nodes and Prime needs to re-calculate the SC values before they can process
the order-sensitive queries.

5 Performance Study

We conduct three sets of experiments (storage, query and update) to evaluate and
compare the performance of the four dynamic labeling schemes, namely DeweyID,
Binary, Prime and ImprovedBinary. All the four schemes are implemented in Java
and all the experiments are carried out on a 2.6GHz Pentium 4 processor with 1 GB
RAM running Windows XP Professional. We use the real-world XML data available
in [18] to test the four schemes. Characteristics of these datasets are shown in Table 2
which shows the depths of real XMLs are usually not too high (confirmed by [12]).

134 C. Li and T.W. Ling

Table 2. Test datasets

Datasets Topics # of files Max fan-out
for a file

Max depth
for a file

Total # of nodes
for each dataset

D1 Bib 18 25 4 2111
D2 Club 12 47 3 2928
D3 Movie 490 38 4 26044
D4 Sigmod Record 988 26 6 39058
D5 Department 19 257 3 48542
D6 Actor 480 368 4 56769
D7 Company 24 529 4 161576
D8 Shakespeare’s play 37 434 5 179689
D9 NASA 1882 1188 6 370292

5.1 Storage Requirement

The label size in Figure 5 refers to the total label size for all the nodes in each dataset.
As expected, ImprovedBinary has the smallest label size for each of the nine datasets.
Furthermore, the total label sizes of all the nine datasets for Binary, Prime and our
ImprovedBinary are 3.97, 2.00 and 0.78 times of that of DeweyID.

40.612677

0

4

8

12

16

D1 D2 D3 D4 D5 D6 D7 D8 D9

Datasets

L
ab

el
 S

iz
e

(1
,0

00
,0

00
 b

it
s)

DeweyID

Binary

Prime

ImprovedBinary

Fig. 5. Storage space for each dataset

2342

0

500

1000

1500

2000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Queries

R
es

p
o

n
se

 T
im

e
(m

s)

DeweyID

Binary

Prime

ImprovedBinary

Fig. 6. Processing time of the nine queries

 An Improved Prefix Labeling Scheme: A Binary String Approach 135

5.2 Query Performance2

In this experiment, we test the query performance of the four schemes based on all the
XML files in the Shakespeare’s play dataset (D8). In order to make a more sizeable
data workload, we scale up (replicate) D8 10 times as described in [14]. The ordered
and un-ordered queries and the number of nodes returned from this scaled dataset are
shown in Table 3. Except Q3, ImprovedBinary works the fastest for the rest 8 ordered
and un-ordered queries (see Figure 6).

Table 3. Test queries on the scaled D8

Queries # of nodes returned
Q1 /play/act[4] 370
Q2 /play/act[5]//preceding::scene 6110
Q3 /play/act/scene/speech[2] 7300
Q4 /play/*/* 19380
Q5 /play/act//speech[3]/preceding-sibling::* 30930
Q6 /play//act[2]/following::speaker 184060
Q7 /play//scene/speech[6]/following-sibling::speech 267050
Q8 /play/act/scene/speech 309330
Q9 /play/*//line 1078330

5.3 Order-Sensitive Update Performance

The elements in the Shakespeare’s plays (D8) are order-sensitive. Here we study the
update performance of the Hamlet XML file in D8. The update performance of other
XML files is similar. Hamlet has 5 acts, and we test the following six cases: inserting
an act before act[1], inserting an act between act[1] and act[2], ···, inserting an act
between act[4] and act[5], and inserting an act after act[5]. Figure 7 shows the number
of nodes for re-labeling when applying different schemes.

DeweyID and Binary have the same number of nodes to re-label in all the six
cases. The Hamlet XML file has totally 6636 nodes, but DeweyID and Binary need to
re-label 6595 nodes when inserting an act before act[1].

For Prime, the number of SC values that are required to be re-calculated is counted
in Figure 7. Because we use each SC value for every three3 labels, the number of SC
values required to be re-calculated is 1/3 of the number of nodes required to be re-
labeled by DeweyID and Binary. (Note that all the act nodes are the child nodes of the
root play.)

In all the six cases, ImprovedBinary need not re-label any existing nodes and need
not re-calculate any values.

2 The query time and re-labeling (re-calculation) time in this paper refer to the processing time

only without including the I/O time.
3 The SC values for every 4 or more nodes will be very large numbers which can not be stored

using 64 bits in Java for calculation, for every 1 or 2 nodes will cause more SC values to be
re-calculated.

136 C. Li and T.W. Ling

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6

Insertion Cases

N
u

m
b

er
 o

f
N

o
d

es
 f

o
r

R
e-

la
b

el
in

g

o
r

R
e-

ca
lc

u
la

ti
o

n

DeweyID/Binary

Prime

ImprovedBinary

Fig. 7. Number of nodes or values for re-labeling or re-calculation

Next we study the time required to re-label nodes or re-calculate SC values. The
time in Figure 8 shows that the time required by Prime to re-calculate the SC values is
at least 337 times larger than the time required by DeweyID and Binary to re-label the
nodes. In contrast, our ImprovedBinary needs 0 milliseconds (ms) for the insertion in
all the six cases.

210036266203 53166924

0

10

20

30

40

1 2 3 4 5 6

Insertion Cases

T
im

e
fo

r
R

e-
la

b
el

in
g

 o
r

R
e-

ca
lc

u
la

ti
o

n
 (

m
s) DeweyID

Binary

Prime

ImprovedBinary

Fig. 8. Processing time for re-labeling or re-calculation

6 Conclusion and Future Work

When an order-sensitive node is inserted into the XML tree, the present node labeling
schemes need to re-label the existing nodes or re-calculate some values to keep the
document order which is costly in considering either the number of nodes for re-
labeling (re-calculation) or the time for re-labeling (re-calculation). To address this
problem, we propose a node labeling scheme called ImprovedBinary in this paper,
which need not re-label any existing nodes and need not re-calculate any values when
inserting order-sensitive nodes into the XML tree.

In the future, we will further study how to efficiently process the delimiters of the
prefix schemes and decrease the label size, as well keep the low label update cost.

 An Improved Prefix Labeling Scheme: A Binary String Approach 137

References

1. Serge Abiteboul, Haim Kaplan, Tova Milo: Compact labeling schemes for ancestor que-
ries. SODA 2001: 547-556

2. Rakesh Agrawal, Alexander Borgida, H. V. Jagadish: Efficient Management of Transitive
Relationships in Large Data and Knowledge Bases. SIGMOD Conference 1989: 253-262

3. Toshiyuki Amagasa, Masatoshi Yoshikawa, Shunsuke Uemura: QRS: A Robust Number-
ing Scheme for XML Documents. ICDE 2003: 705-707

4. James A. Anderson and James M. Bell, Number Theory with Application, Prentice-Hall,
New Jersey, 1997.

5. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez, Michael Kay, Jona-
than Robie, and Jerome Simon. XML path language (XPath) 2.0 W3C working draft 16.
Technical Report WD-xpath20-20020816, World Wide Web Consortium, Aug. 2002.

6. Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, and
Jerome Simon. XQuery 1.0: An XML Query LanguageW3C working draft 16. Technical
Report WD-xquery-20020816, World Wide Web Consortium, Aug. 2002.

7. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois Yergeau. Ex-
tensible markup language (XML) 1.0 third edition W3C recommendation. Technical Re-
port REC-xml-20001006, World Wide Web Consortium, Oct. 2000.

8. Edith Cohen, Haim Kaplan, Tova Milo: Labeling Dynamic XML Trees. PODS 2002:
271-281

9. Roy Goldman, Jennifer Widom: DataGuides: Enabling Query Formulation and Optimiza-
tion in Semistructured Databases. VLDB 1997: 436-445

10. Quanzhong Li, Bongki Moon: Indexing and Querying XML Data for Regular Path Ex-
pressions. VLDB 2001: 361-370

11. Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, Jennifer Widom: Lore: A
Database Management System for Semistructured Data. SIGMOD Record 26(3): 54-66
(1997)

12. Laurent Mignet, Denilson Barbosa, Pierangelo Veltri: The XML web: a first study.
WWW 2003: 500-510

13. Svetlozar Nestorov, Jeffrey D. Ullman, Janet L. Wiener, Sudarshan S. Chawathe: Repre-
sentative Objects: Concise Representations of Semistructured, Hierarchial Data. ICDE
1997: 79-90

14. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eugene J.
Shekita, Chun Zhang: Storing and querying ordered XML using a relational database sys-
tem. SIGMOD Conference 2002: 204-215

15. Xiaodong Wu, Mong-Li Lee, Wynne Hsu: A Prime Number Labeling Scheme for Dy-
namic Ordered XML Trees. ICDE 2004: 66-78

16. Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, Shunsuke Uemura: XRel:
a path-based approach to storage and retrieval of XML documents using relational data-
bases. ACM Trans. Internet Techn. 1(1): 110-141 (2001)

17. Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, Guy M. Lohman: On
Supporting Containment Queries in Relational Database Management Systems. SIGMOD
Conference 2001

18. The Niagara Project Experimental Data. Available at:
http://www.cs.wisc.edu/niagara/data.html

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 138–150, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Efficiently Coding and Indexing XML Document

Zhongming Han1, Congting Xi2, and Jiajin Le1

1 College of Computer Science and Technology of Donghua University,
1882 Yananxi Road Shanghai (200051), P.R. China

2 Taiyuan University of Technology Taiyuan Shanxi P.R. China
hx_zm@mail.dhu.edu.cn, ct_xi@163.com, lejiajin@dhu.edu.cn

Abstract. In this paper, a novel and efficient numbering scheme is presented,
which combines the label path information and data path information, and it can
efficiently support all kinds of queries. A compact index structure, named HiD,
is also proposed in this paper. Query algorithms based this index structure are
introduced. At last, the comprehensive experiments are conducted to assess all
the technologies in question.

1 Introduction

The Extensible Markup Language (XML) is rapidly emerging on the World Wide
Web as a standard for representing and exchanging data. Several query languages,
including XPath [16], Quilt [15], and XQuery [14], have been proposed for semi-
structured XML data. The ability to express complex structure or efficient index
structure is one of the major focuses in XML query language design. Furthermore, an
efficient numbering scheme provides the foundation for an efficient index structure. A
numbering scheme is to encode nodes and produce the node identification.

Nowadays, researchers have proposed many kinds of query and index
technologies, such as EF-Join, EA-Join, KC-join [5], MPMCJN [6], tree-merge,
XPATH Accelerator, Containment Join etc, which are based on the structure join.
Other approaches, like RiST and ViST [13], use tree structures as the basic unit of
query to avoid expensive join operations. All of these query approaches are
constructed on some numbering scheme on XML documents. Among these
numbering schemes, two types of numbering methods stand out, one is the region-
based numbering scheme and the other is DataGuide.

There are some problems with the region-based numbering schemes. Firstly, they
lack of flexibility. It is very difficult to support dynamic nodes inserting, deleting and
modifying operations although researchers proposed some mechanisms to enlarge the
range of region. Meanwhile, maintenance of numbers of nodes needs a lot of time.
Moreover, region-based numbering schemes do not contain path information of
nodes. Finally, region numbering schemes do not support queries in the form of
document order, which is the relative ordering existing among nodes within a single
document.

DataGuide provides another numbering scheme, in which the path information and
node position are combined. In this numbering scheme, more information is provided.
However, in this numbering scheme, nodes are also represented by the starting

 Efficiently Coding and Indexing XML Document 139

number of pre-order traversing XML document, and thus it is still very difficult to
support dynamic nodes inserting, deleting and modifying operations.

In order to improve support dynamic operation and performance, in this paper, we
propose a new novel node numbering scheme. We distinguish the label path
information from the data path information for a node. This numbering scheme
provides solutions to a wide range of challenges and shows a better performance. The
following is the main contributions.

 A novel and efficient node numbering scheme is proposed in this paper. This
node identification contains the label path information and data information.

 A compact index structure is proposed, which combine the structural index and
value index. Query algorithms based this index structure are introduced.

 The comprehensive experiments are conducted to evaluate the node numbering
scheme, index structure and query algorithm.

The rest of the paper is structured as follows. In Section 2, we review related work.
In Section 3, basic concepts are introduced. In Section 4, the index structure is
proposed. In Section 5, the focus is on query algorithms. In Section 6, through some
experimental results, we analyse the presented algorithms and compare them with
other existing ones. Finally we make some concluding remarks in Section 7.

2 Related Work

Node numbering scheme is the foundation for an efficient index structure. There are a
lot of researches on this subject. In [1], region based numbering scheme is firstly
introduced. In [4,6,10,23] researchers use this type of numbering schemes. Later, the
extended preorder numbering scheme [5] is put forward which improves the region
based numbering scheme. The results in [8,5,18] have demonstrated that assigning a
start number, end number, and level to each element suffices. In essence, they are still
region based numbering schemes.

Because the region based numbering scheme does not support dynamic node
inserting or deleting operation, some researchers tried to use statistic technologies to
solve this problem. This type of methods [13,17] is based on estimations of the
number of attribute values, and other statistical information of the XML document.

To our knowledge, the most efficiently structural join algorithm is the twig join
algorithm, including those in [5,8,9,24,25]. These stack-based approaches process the
input streams of nodes whose tag appears in the query twig and they speed up join
processing by skipping some nodes. The problem with these approaches is that the
effectiveness depends on the distribution of the matches in the input list.

The DataGuide is proposed in [2, 11]. In the DataGuide, a number is assigned to
each node; these node numbers uniquely identify the rooted label path, which is the
advantage of the method. However DataGuide cannot answer the query with
branching path expressions without accessing the original XML data. In [12], based
on DataGuide, a new node identification is proposed.

Another query technology, sequence matching that transforms documents and
queries into structured encoded sequences and evaluate queries based on the sequence

140 Z. Han, C. Xi, and J. Le

matching, is recently proposed in [13, 22]. These approaches support flexible queries
in query without join operations. But they still have some drawbacks. Firstly, they
need a lot of post-processing to guarantee the result accuracy; otherwise they may
have false alarms in the query results. The second drawback is that usually these
approaches need a lot of storage spaces. Although they eliminate expensive join
operations, they need more IO exchange and may lead to declining performance.

There are some other researchers concentrating on node coding and index structure.
For example, a tagged perfect binary tree is employed to represent an XML document
and pre-order traverse binary tree to get the node identification in [7].

3 Node Identification

We assume that a single document D is a node labeled acyclic tree with the set V of
nodes and the set E of edges, and labels are taken from the set L of strings.
Furthermore, text values come from a set T of text strings and can be attached to any
type of nodes, not just leaf nodes. The following definitions introduce some
fundamental notions used in the rest of the paper.

Definition 1. An XML document D is a tree (V, root, label, children, text), where

 V is a finite set of nodes;
 root V is the root of D;
 label is a mapping: V L;
 children is a mapping from nodes to a partially ordered sequence of child nodes

and induces the set of E of edges;
 text: V T.

Definition 2. Let n1, n2 V be two nodes in an XML document. The unique label path
from n1 to n2, denoted by lpath(n1, n2), is the label path (l1,l2, lk) where l1=label (n1)
and lk= label (n2), il)1,,2(−= ki correspond to the sequence of labels on the path
in D connecting the two nodes. If there is no such connecting path, then lpath(n1,
n2)=e (the empty path). The rooted label path of a node n V, lpath(n), is the label
path from the root node to the node n.

Definition 3. Let n1 and n2 be two nodes in an XML document. If n2 is a child node of
n1, i.e. n2 children n1 , then position(n2) is the position of node n2 in children n1)
with respect to nodes that have the same label label(n2). The arity of node n2, arity(n2),
is the number of nodes with label label(n2) in the n1’s list of children.

Definition 4. The data path from the node n1 to nk in an XML document D, dpath(n1,
nk), is the sequence of positions of nodes along the label path from n1 to nk in D. That
is, if (n1, n2, nk) ni V (i=1,2…k), is the path from 1 to nk, then the sequence of
positions is (position(n1), position(n2), , position(nk)).

If n1 is the root node, then position(n1)=1. The rooted data path of nk, dpath(nk), is
the data path dpath(root, nk). The alternative representation of data path is
position(n1), position(n2),. … , position(nk).

 Efficiently Coding and Indexing XML Document 141

3.1 Node Label Path Number

A tree always can be transformed to a binary tree without ambiguity. Thus we
transform an XML label path tree to a binary tree.

DB

ar t i c l e Teachr epor t

t i t l e t ext

par a

t extt i t l e

0
DB

1 0

1 a r t i c l e

0

Te a c h r e p o r tt i t l e

t e x t

1
pa r a

0 t e x t

1 t i t l e

Fig. 1. An XML Label Path Tree Fig. 2. The Binary Tree with Figure 1

Fig 1 shows an XML document label path tree, which consists of all label paths and
reflects the structural information in the XML document. A node of the tree
corresponds to a label of the document. It is easy to know all the label paths of nodes
from this tree. Then we transform this tree into a binary tree shown in Fig 2.

Fig 2 shows the binary tree. There are many methods to code a binary tree.
However we seek a coding method that can reflect path information from the number
of nodes, so we choose Haveman's code. The number labelled with each node is
produced according to Haveman's code. In Table 1, Haveman's code of nodes can be
found. Thus, the label path of a node in a document would be expressed by
Haveman’s code of the node in the label path tree.

Table 1. Node Numbering

Node Code Arity Data Path Data path Number Node identification
DB 0 1 0 0 (0,0)
article 01 2 1,2 0,1 (1,0) (1,1)
Teachreport 010 2 1 0 (2,0)
title 011 1 1 0 (3,0)
text 0110 1 1.1 01 (6,1)
para 01101 3 1.1,1.2,1.3 000,001,010 (13,0),(13,1), (13,2)
title 0101 1
text 01010 1 1.1 00 (10,0)

Definition 5. Let n be a node in an XML document, and the bit string S be the
Haveman's code of the node of the label path tree. Then the label path number of n is
the decimal number to which the bit string is transformed.

3.2 Data Path Number

We use a binary number to represent a position in a data path. As a result, the data path
can be represented by a binary number sequence. Fig 3 shows a data path number.

142 Z. Han, C. Xi, and J. Le

Fig. 3. One Data Path Number

Definition 6. Let n be a node in an XML document, and bit sequence S be the data
path of node n. The data path number of n is defined as the decimal number to which
the bit sequence is transformed.

To reduce the length of data path, a node is eliminated if the arity of the node is 1.
In Fig. 3, considering that the data path of the third para. of the second article is
0.10.0.11, the node root and text are eliminated since their arity is 1. The resulting
data path becomes 10.11 and the corresponding decimal number is 11. The length of
the bit string in encoding a node can be determined by the arity of the node, which is
shown in Table 1.

An important and extensive application for data path number query is
connectedness checking, i.e. given two data path numbers and a node position, we
need to check whether or not these two data paths are connected at this position.
Algorithm 1 is an algorithm to check connectedness. In this algorithm, there is a
function, named decompose, which has three parameters. This function decomposes
the bit sequence of a data path number into a position list according to arities.

3.3 Node Identification

To identify a node in an XML document, we need two types of information, one is the
structure information of the node, and the other is the data instance of the node. We
combine the two types of information to identify a node in an XML document. A

Algorithm 1. Connectedness checking algorithm (CC)
Input: Two data path numbers, two arity lists and a

position number
Output: true or false.
1. bn1=bit sequence (LPNum1)
2. bn2=bit sequence (LPNum2)
3 decompose (bn1,Aritiy list1,positions1[])
4. decompose(bn2,arity list2, positions2[])
5 return (positions1[position]==positions2[position])

Fig. 4. An XML Document Fig. 5. Structure Index

An E ffic ient
XM L Node
Identification
and Indexing
Schem e

 Efficiently Coding and Indexing XML Document 143

node n in an XML document can be uniquely represented by (ln, dn), where ln and dn
are the label path number and data path number of n respectively.

Fig. 4 shows an XML document whose label path tree is shown in Fig. 1. In order
to encode the article, we need 2 bits. The maximum number of the node para is 3, and
thus 2 bits can represent the data path of the node para.

Table 1 shows the data path and data path number represented by binary numbers
of nodes. From Table 1, we know that a node identification is represented by a pair of
number (label path number, data path number). Based on this representation, we
create a HiD index for an XML document.

4 Index Structure

The index structure in this paper is hybrid index structure, named HiD, and is
composed of structure index and value index. The structure index is for document
structure and the value index is for node values. The structure index is created based
on node identification. The structure index is investigated in detail in Section 4.1 and
the value index is simply introduced in Section 4.2.

4.1 Structure Index

Usually, in a large XML document, there are few label path numbers and a lot of data
path numbers. So we firstly construct a Hash table for labels. A label could have more
than one label path and label path number. For a complex XML schema, we create an
ordered list for the label path numbers with the same label. For data path numbers of a
label path number, we construct a B+Tree to index them. Fig. 5 shows a framework of
the structure index.

In Fig. 5, the index framework contains 3 layers, the first layer is a Hash table, the
second layer contains ordered lists, and the last layer contains B+trees. With the Hash
table, a label is mapped into an address pointer. Each address pointer points to an
ordered list to store all label path numbers of the label. The key of the ordered list is
the label path number. Using data path numbers as keys, we create B+trees which are
for data path numbers. To handle some traversing problems rapidly, we build a bi-
direction list for leaf nodes of each B+Tree. The list will be called leaf node list.

Each element of the label path ordered list is composed of label path number (LP),
B+Tree pointer (BI) that points to the root of the B+Tree and leaf nodes list pointer
(LI) that points to the leaf node list of the B+Tree. Each leaf node of B+Tree consists
of data path number (DPNum) and value index (IX), where IX is the virtual ID of the
node in the value index. It is used to connect structure index with value index.

4.2 Values Index

For an XML document, the value of a node is represented by a string. With the
development of XML schema, more and more data types are supported in XML
documents. Consequently, index that is suitable for different data types needs to be
adopted. In addition, information retrieval is widely applied. So the principle of
creating a value index is (1) it is easily combined with the structure index; (2) support

144 Z. Han, C. Xi, and J. Le

different data types; (3) implement a uniform interface search function for different
value indices.

Now we propose two types of value indices: Invert List and Number. We
implement a uniform search function: ValueSearch(VID, predication), where VID is a
pointer that points to a group of value indices, and predication is a value predication.
The function returns a list of elements that satisfy the value predication. Besides
ValueSearch function, we implement another function, named VIValidate, with two
input parameters IX and VID. IX is the virtual ID of a node. This function returns the
value to that IX points. This function can efficiently support queries, in which data
path numbers need to be computed so that IXs are obtained.

Invert list type: For this type, a string is treated as a bag of tokens and a mapping
is created from each token to a list of absolute element references whose values
contain this token.

Number type: Numerical values are indexed by a Number type, which sorts
numerical values of a label path number in an ascending order. Number type supports
the numerical range search. More specifically, given a range of numbers (a, b), it
returns a list of node references whose values are greater than a and less than b.

Towards the end of this section, we mention the process of construct process of
structure index. The process can be simply divided into two phases. In the first phase,
we generate label paths and data paths of nodes. Meanwhile we collect statistical
information of nodes and related values information including strings, numbers etc. to
create values index. We create an invert list of all strings. In the second phase, two
tasks need to be fulfilled. One task is to generate node identification based on label
paths, data paths and their statistics. In the same time, we start with the other task, i.e.
construct the structure index.

5 Query Handling

Our intuition is that it is necessary to reduce and eliminate expensive join operations
to accelerate query process. Noticing that the numbering scheme contains path
information, it is possible to compute label path numbers of related nodes to get the
query results. By doing so, join operations can be significantly reduced.

Usually, there are two kinds of queries, path pattern query and tree pattern query.
We firstly discuss path pattern query and how to handle wildcard // and *in Section
5.1 and tree pattern query in Section 5.2.

5.1 Path Pattern Query

Path pattern query is the simplest type of queries. Meanwhile it is the base of tree
pattern query. We divide path pattern queries into two categories. The first category is
the simple path pattern query that does not contain any node position. Firstly, assume
that the query does not contain wildcard.”//” and “*”. This class of query can be
simply handled. Find the label path numbers of leaf node “author” by means of Hash
table. Because a label path number is directly related to a rooted label path, we can
follow a bottom-up checking of parent-child relation to validate whether or not the

 Efficiently Coding and Indexing XML Document 145

parent node is “proceedings”. It is easy to discover all label path numbers that match
the given query. Then we avoid expensive join operations produced by structural join
algorithms. After getting the true label path numbers, we can return the query results
by traversing the leaf node list if the query does not contain a value predication.

The second category is the path pattern query based on node positions. For
example, /Authors/Author [1] /AuthorInfo[2]/ AuthorURL is a path pattern query
based on node positions. This class of query cannot be handled by the previous
region-based numbering approaches. We can efficiently handle this type of queries by
node numbering.

Now we briefly analyze the querying process in this example to illustrate
Algorithm 2. Like the path pattern query without wildcard, we firstly determine the
label path number of node AuthorURL. In the process of bottom-up checking of
parent-child relation, arities of ancestors such as Authors, Author, AuthorInfo and
AuthorURL can be available. For example, if the resulting arities list is 1.100.6.1,
then the root has one sub-element Authors and AuthorInfo has one sub-element
AuthorURL. Hence we can compute the data path number of node AuthorURL. In the
last step, search the B+Tree pointed by BI and the given data path numbers and return
IX. Algorithm 2 shows the query process for the path pattern query based on
positions.

Towards the end of this section, we briefly discuss how to handle the wildcard “//”
and “*”. We discuss the two cases: a//b and a*b, and others can be similarly dealt
with. a//b means that a is an ancestor of b. Firstly obtain the label path number n and
m of a and b respectively. We can judge whether or not n is an ancestor label path
number of m. Then we can find all the label path numbers of b that satisfy a//b. As for
a*b, the handling process is as follows. Firstly get the label path numbers of b. Next,
compute label path numbers of the parent node. Finally, find this number in the set of
label path numbers of a to validate a*b.

5.2 Tree Pattern Query

The existing structural join approaches to handle tree pattern query break up a
complete tree pattern query into simple paths and then merge all these simple query
results. Our method is to get one branch label path number and, based on branching
point and related information, compute other branch label path number and then get
final query results.

Algorithm 2. Algorithm for path pattern query based on position
Input: A path pattern query and position list.
Output: The target element list, represented by (LPNum, DPNum ,IX).
1. n=hash(leaf node)
2. Fetch each label path number in the label path ordered list pointed by n.pointer
3. check(label path number, list of labels)
4. GetArity(label path number)
5. DPNum=computeDP(position list, arities list)
6. BtreeSearch(DPNum, BI)
7. Return (LPNum, DPNum ,IX)

146 Z. Han, C. Xi, and J. Le

Algorithm 3 can handle tree pattern queries with two branches. As for more
complex tree pattern queries, such as the query with more than 3 branches, we can
extend this algorithm to support them.

In Algorithm 3, with Row 2 and 3, we get the label path numbers by Hash table.
The following step is to get a list of data path numbers. Because the query has no
value indices, all the elements in the list are likely valid. Two lists are obtained after
Row 4 and 5 are implemented. The last job is to merge the two lists. At this point,
most of structural merging algorithms can be adopted. However because a data path
number encodes the information of a rooted data path, we choose the semi-join
algorithm to accelerate the merging process. From Row 9 to Row 15, we handle the
tree pattern query with value predictions. In Row 9, a branch is selected from the
query, and the selecting process is as follows:

 If only one of two branches has value prediction, then this branch is selected;
 If both of two branches have value prediction, and then the longer path is

selected.

Now we have label path numbers of leaf node of this branch. The coming row 12 is
different from Row 4. After executing Row 4, all data path numbers pointed by
LPNum1 will be returned whereas only those numbers satisfying the value
predications are returned after executing Row 12. This can avoid a lot of unnecessary
path join operations. Furthermore, unlike the previous algorithm, we can compute
data path numbers of the leaf node of other branch instead of joining all data path
numbers pointer by LPNum2. The principle of computing data path number is that if
two data path numbers are connected by the branch point, then two data path numbers
must possess the same prefix which the data path number of the node of the branch
point. If both of two branches have value predications, then we need another value
index checking process, which is the main job of the last step from Row 14 and 15.

Algorithm 3. Algorithm for tree pattern query
Input: A tree pattern query Q.
Output: The target element list, represented by (LPNum, DPNum ,IX).
1.If (Q has not value prediction) then
2. Get LPNum1
3. Get LPNum2
4. Get [DPNum1]
5. Get [DPNum2]
6. fetch each (DPNum1, DPNum2) from [DPNum1] and [DPNum2]
7. If CC(DPNum1, DPNum2) then output
8. else
9. Select path with value predication
10. Get LPNum1
11. Get LPNum2
12. Get [DPNum1]
13. Compute [DPNum2, DPNum2’]
14. Fetch each (DPNum1, DPNum2) from [DPNum1] and [DPNum2]
15. If VIValidate (DPNum2) then output
16.end if

 Efficiently Coding and Indexing XML Document 147

6 Experiments

We implemented our index structure and query algorithm in C++. The XML parser is
the Xerces SAX2 parser [26]. The B+Tree API is provided by the Berkeley DB
library [19]. Experiments were run on a P4 1.8 GHz CPU PC with 256M main
memories, running Windows 2000 Server. We also implemented a node index method
similar to XISS [5], but with TwigStack [24] query algorithm on this node index. In
addition, we ran ViST [13] on this PC machine for the purpose of comparison.

The data sets in experiments have public XML databases DBLP [20] and the XML
benchmark database XMARK [21].

Table 4. Characteristics

Document Nodes Characters Spaces
Size
(M)

DBLP 1906219 11660704 61485 46.6
DBLP 5920583 95266119 5384135 197
DBLP 6391621 103717843 5817551 209
XMark 2048193 81286567 0 117
XMark 9621573 398304178 0

Fig. 6. Index Constructing Time

We firstly look at index constructing time of different approaches and storage

requirement of index structure. The Fig 6 shows the index constructing time of
different approaches.

Fig. 7. Time of Different Phase Fig. 8. Storage Requirements

As can be seen in Fig. 6, index constructing time required with our approach is the
least. For large documents, we still can construct our index structure in less time. The
index constructing time of node index is absent in Fig. 6 since some tasks of construct
process are done by manual.

We also compare time needed for our index constructing process in two phases.
The result is shown in Fig. 7. The blue bars indicate time consumed in the first phase.
The red parts at the top of blue bars show time consumed in the second phase. It is
obvious that we need much more time in the first phase.

0

5

10

15

20

1 2 3 4 5

Dat a Set s

Ti
m

e
(m

)

0

50

100

150

200

250

1 2 3 4 5

Dat a Set s

Si
ze

 (
M

B)

Hi D

Dat aGui de

Node Index

Vi ST

0

10

20

30

40

1 2 3 4 5

Dat a Set s

Ti
m

e
(m

) Hi D

Dat aGui de

Vi ST

148 Z. Han, C. Xi, and J. Le

The storage requirement of different approaches is shown in Fig. 8. From this
figure, we can know that the occupied space for our index structure is the least among
the mentioned approaches. Especially for large documents, storage requirement of our
index structure is very litter.

Table 5. Queries

Queries Data Sets
Q1: /inproceedings/title DBLP
Q2: /*/author="David" DBLP
Q3://item/description/keyword="attries" XMARK
Q4:/site/person/city="New Work" XMARK
Q5:/ariticle[./author="David"][./year=1996] DBLP
Q6:/proceedings[./title="XML"][.//author="David"] DBLP
Q7:/site/item[./location="USA"][./mail] XMARK
Q8://closed auction[./seller/person="person1"][./date="12/12/2002"] XMARK

Now we analyze the query performance. Table 5 lists 8 queries. These queries are
significantly different in terms of complexity, presence of values and structure. We
choose four of these queries to run on DBLP data set with size 197MB. Other 4
queries are run on XMARK data set with size 117MB. Because DataGuide cannot
answer tree pattern query directly, we do not run query5-query8 by DataGuide.

Fig. 9 shows the elapsed time for query 1 to query 4 running by different
approaches. From this figure, we know that HiD and TwigStack yield comparable
performance. The most significant performance difference is between query 3 and 4.
For path pattern query, most of time for our approach is spent on merging output lists.
At this point, TwigStack costs as much time as HiD. HiD and TwigStack need not
much extra time although XMARK data sets have complex structure, which indicates
that HiD and TwigStack can efficiently query complex data sets.

Fig. 9. Elapsed time for Query1- 4 Fig. 10. Elapsed time for Query5 –8

The performances of query 5 to query 8 are shown in Fig. 10. It is obvious that HiD
performs much better than TwigStack and ViST for all tree pattern queries. For
complex queries, we can find necessary nodes by computing label path and data path
numbers. In this way, we reduce many unnecessary nodes.

0

50

100

150

200

250

0 1 2 3 4 5

Quer i es

Ti
m

e
(m

se
c)

0

50

100

150

200

250

300

350

0 1 2 3 4 5

Quer i es

Ti
m

e
(m

se
c)

 Efficiently Coding and Indexing XML Document 149

7 Conclusions and Future Work

In this paper, we present a new efficient node identification approach and construct an
index structure based on this kind of identification called HiD. We also discuss some
properties related to our method. For the path pattern query, our querying algorithm
avoids join operations. We provide some experimental results to demonstrate the
efficiency of our approach.

Actually, the node identification can be used not only to construct HiD index
structure and query approach, but also to construct other query approaches such as the
sequence matching approach. We are going to develop a sequence matching approach
based on our node identification. We also would like to optimize our query algorithms
and analyze the time and space complexity in the future.

Acknowledgement

We thank Dr. Haixun Wang in IBM Thomas J. Watson Research Center, for
providing the ViST system.

References

[1] Paul F. Dietz. Maintaining order in a linked list. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, pages 122-127, San Francisco, California,
5-7 May 1982.

[2] R.Sacks-Davis, T.Dao, J.A. Thom, J.Zobel. Indexing Documents for Queries on
Structure, Content and Attributes. Proc. of International Symposium on Digital Media
Information Base (DMIB), Nara, Japan, pages 236–245, 1997.

[3] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An algebra for structured text
search and a framework for its implementation. The Computer Journal, 38(1):43-56
1995.

[4] D. D. Kha, M. Yoshikawa, S. Uemura. An XML Indexing Structure with Relative
Region Coordinate.In Proceedings of the 17th ICDE, pages 313-320. Heidelberg,
Germany, April, 2001.

[5] Q. Li and B. Moon. Indexing and querying XML data for regular path expressions. In
Proceedings of the 27th VLDB, pages 361-370. Roma, Italy, September 2001.

[6] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman. On supporting
containment queries in relational database management systems. In Proceedings of the
27th ACM SIGMOD, pages 425-436. Santa Barbara, California, USA, May 2001.

[7] W. Wang. H. Jiang, H. Lu and J. X. Yu. PbiTree Coding and Efficient Processing of
Containment Join. In Proceedings of 19th ICDE, pages 391-402. 2003.

[8] Al-Khalifa et al. Structural Joins: A Primitive for Efficient XML Query Pattern
Matching. In Proc. of ICDE, San Jose, Feb. 2002.

[9] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Efficient structural
joins on indexed XML documents. In Proceedings of the 28th VLDB Conference, Hong
Kog, China, August 2002.

[10] Alan Halverson, Josef Burger, etc. Mixed Mode XML Query Processing. In Proceedings
of the 29th VLDB, pages 361-370. Berlin, Germany, 2003.

150 Z. Han, C. Xi, and J. Le

[11] Roy Goldman, Jennifer Widom. DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. In Proceedings of the 23rd VLDB
Conference Athens, Greece, 1997

[12] Jan Marco Bremer and Michael Gertz. An Efficient XML Node Identification and
Indexing Scheme. Teach report. Department of Computer Science University of
California, Davis. Jan.27 2003.

[13] Haixun Wang 1Sanghyun Park Wei Fan Philip S. Yu. ViST: A Dynamic Index Method
for Querying XML Data by Tree Structures. In SIGMOD 2003.

[14] D. Chamberlin, D. Florescu, J. Robie, J. Simon, and M. Stefanescu. XQuery: A query
language for XML W3C working draft. Technical Report WD-xquery-20010215, World
Wide Web Consortium, 2001.

[15] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query language for
heterogeneous data sources. In WebDB, May 2000.

[16] J. Clark and S. DeRose. XML path language (XPath) version 1.0 w3c recommendation.
Technical Report REC-xpath-19991116, World Wide Web Consortium, 1999.

[17] Edith Cohen, Haim Kaplan, and Tova Milo. Labeling dynamic XML trees. In PODS,
pages 271-281, 2002.

[18] Zhang et al. On Supporting Containment Queries in Relational Database Management
Systems, SIGMOD Conference, 2001.

[19] Sleepycat Software, http://www.sleepycat.com. The Berkeley Database (Berkeley DB).
[20] Michael Ley. DBLP database web site. http://www.informatik.uni-trier.de/ ley/db.
[21] XMARK: The XML-benchmark project. http://monetdb.cwi.nl/ xml.
[22] Praveen Rao and Bongki Moon PRIX: Indexing And Querying XML Using Prufer

Sequences. In ICDE’2004 March 2004.
[23] H.Jiang, H.Lu, W.Wang and B.C.Ooi. XR-Tree:indexing XML Data for Efficent

Structural Joins. In ICDE, 2003.
[24] N.Bruno, N.Koudas, D.Srivastava. Holistic Twig Joins: Optimal XML Pattern Matching.

In SIGMOD 2002.
[25] H.Jiang, W.Wang, H.Lu. Holistic Twig Joins on Indexed XML Documents. In VLDB

2003.
[26] SAX (Simple API for XML). http://sax.sourceforge.net.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 151 – 162, 2005.
© Springer-Verlag Berlin Heidelberg 2005

XQuery-Based TV-Anytime Metadata Management

Jong-Hyun Park1, Byung-Kyu Kim2, Yong-Hee Lee3,
Min-Woo Lee 4, Min-Ok Jung1, and Ji-Hoon Kang1,*

1 Dept. of Computer Science, Chung Nam National University,
Gung-Dong, Yuseong-Gu, Daejeon, 305-764, South Korea
{jhpark, ultra999, jhkang}@cs.cnu.ac.kr
2 Korea institute of Science and Technology Information,

Eoun-Dong, Yuseong-Gu, Daejeon, 305-806, South Korea
yourovin@kisti.re.kr

3 Electronics and Telecommunications Research Institute,
Gajeong-Dong, Yuseong-Gu, Daejeon, 305-350, South Korea

lyhcool@etri.re.kr
4 Power Plant S/W Business Team, Korea Electric Power Data Network Co. Ltd.

Seocho2-Dong, Seocho-Gu, Seoul, 137-072, South Korea
cslmw@hanmir.com

Abstract. Digital broadcasting is a novel paradigm for the next generation
broadcasting. It can offer a new opportunity for interactive services such as con-
tent-based browsing, non-linear navigation, usage of user preference, and
history, etc. On the other hand, one of the important factors for this new
broadcasting environment is the interoperability among providers and
consumers since the environment is distributed. Therefore a standard metadata
for digital broadcasting is required and TV-Anytime metadata is one of the
metadata standards for digital broadcasting. It is defined using XML schema, so
its instances are XML data. In order to fulfill interoperability, a standard query
language is also required and XQuery, which is a forthcoming standard query
language for XML data, is a natural choice. In this paper we propose an
efficient XML data management system that supports TV-Anytime metadata,
especially using XQuery as a query language. Since the volume of metadata
would be very large in real situation, our system considers a relational database
system as storage. We implement a prototype system and test performance for
various typical queries by comparing our system with other general-purpose
systems.

1 Introduction

Digital broadcasting is a novel paradigm for the next generation broadcasting. Its goal
is to provide not only better quality of pictures but also a variety of services which are
impossible in traditional airwaves broadcasting. In order to support new services such
as content-based browsing, non-linear navigation, usage of user preference, and his-
tory, on-demand service, etc. [1], we need a metadata description for these informa-
tion and should support management of the metadata. On the other hand, one of the

* He is a corresponding author.

152 J.-H. Park et al.

important factors for this new broadcasting environment is the interoperability among
providers and consumers since the environment is distributed. Therefore a standard
metadata for digital broadcasting is required and TV-Anytime metadata [2] that is
proposed by the TV-Anytime Forum is one of the metadata standards for digital
broadcasting [3]. The TV-Anytime metadata is technically defined using a single
XML schema, so its instances are XML data. In order to fulfill interoperability, a
standard query language is also required and XQuery [4], which is a forthcoming
standard query language for accessing XML data, is a natural choice.

In this paper we propose an efficient metadata management system that supports
TV-Anytime metadata, especially using XQuery as a query language. Since the vol-
ume of metadata for digital broadcasting would be very large in real situation, we
consider a relational database system as storage. There are some issues for managing
XML data using relational databases efficiently:

• How to store XML data into a relational database system? XML data are semi-
structured but relational databases are structured. A mapping from semi-structured
data into a structured data is required for supporting efficient storage and retrieval.
We also need to have a labeling mechanism in order to preserve the original docu-
ment order. The label information is useful for searching and required for publishing
query results.

• How to reduce join cost when processing queries? When a query has a long path
for identifying nodes over XML instances, its processing can require many joins. For
efficient processing, we need to reduce overall join cost.

• How to transform the SQL query answers into the answesr of the original
XQuery queries for returning the final results back to users? The time for reconstruct-
ing answers depends on quires, but this job is quite time-consuming. Therefore we
need a method that is less dependent on query types.

For each issue, there have been several previous work [5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18]. In this paper, however, we try to show what the best strategy is for
each issue when the strategies are integrated into a single system altogether. In order
to identify whether our choice of the strategies for the issues is relevant, we compare
our prototype system with other general-purpose systems and test their performance
for various typical queries.

The remainder of this paper is organized as follows. Section 2 describes the archi-
tecture of the Metadata Management System for digital broadcasting. Section 3 de-
scribes our approach for managing TV-Anytime metadata. Section 4 shows the result
of the performance evaluation for our system. Section 5 explains how our system has
been applied to a digital broadcasting environment. Finally, Section 6 provides con-
cluding remarks.

2 TV-Anytime Metadata Management System

The TV-Anytime Metadata Management system keeps the metadata in large-volume
storage and processes queries for searching the metadata. Figure 1 shows the architec-
ture of the TV-Anytime Metadata Management system.

 XQuery-Based TV-Anytime Metadata Management 153

We assume three user interface modules for our system, Metadata Generator,
Metadata Editor, and Metadata Finder. They are generic and can be replaced by ap-
propriate modules in real situation. Metadata Generator generates TV-Anytime meta-
data instances and stores them in the storage. Metadata Editor can retrieve, update,
and delete a metadata instance. Metadata Finder gives a query into the system for
searching the TV-Anytime metadata and gets back the query result from the system.

Fig. 1. TV-Anytime Metadata Management System

There are two important modules in the system, Storage Engine and XQuery En-
gine. Storage Engine interacts with Metadata Generator and Metadata Editor for stor-
ing and managing metadata. XQuery Engine interacts with Metadata Finder for proc-
essing queries. As we have already mentioned in Section 1, we use the XQuery as a
standard query language in order to guarantee interoperability.

2.1 Storage Engine

As shown in Figure 2, Storage Engine provides basically four interfaces: InsertDoc,
DeleteDoc, UpdateDoc, and GetDoc for inserting, deleting, updating, and retrieving a
metadata instance, respectively.

Fig. 2. The architecture of Storage Engine

When receiving a metadata instance from Metadata Generator or Metadata Editor,
InsertDoc parses it and generates a DOM Tree. InsertDoc extracts both the content
and structural information from the DOM Tree and stores the extracted information to
the database. For identifying TV-Anytime metadata instances, we use CRID (Content

 Metadata
Generator

 Metadata
Editor

Result
in XML

Metadata
Finder

Storage
Engine

XQuery
Engine

Relational DBMS

DB for TV-Anytime metadata

Query in
XQuery

Metadata
Generator

Metadata
Editor

InsertDoc

DB for TV-Anytime Metadata

DeleteDoc

Storage Engine

UpdateDoc GetDoc

154 J.-H. Park et al.

Reference ID). A unique CRID is given to each instance. DeleteDoc gets a CRID as
an input and deletes the metadata instance with the given CRID. UpdateDoc gets a
new metadata instance as an input. It replaces the old instance with the new one. That
is, it deletes the old one with the given CRID and then inserts the new one. GetDoc
gets the metadata instance with the CRID received from Metadata Editor.

2.2 XQuery Engine

 Figure 3 shows the architecture of XQuery Engine. XQuery Engine receives a query
written in XQuery, processes the query, and returns the query result back into Meta-
data Finder. XQuery Analyzer gets a query in XQuery, parses the query using an
XQuery parser and generates its syntax tree. XQuery Translator extracts necessary
information from the parsed syntax tree and generates an SQL query for querying the
metadata stored in the database. XML publisher gets two inputs from the XQuery
translator. One is the SQL query and the other is the information for reconstruction
the result in XML format. Actually XQuery Translator obtains the information for
reconstructing from the RETURN clause of the original XQuery query. Then the
XQuery Publisher accesses the TV-Anytime metadata database to get the SQL result
set and reconstructs an XML instance that satisfies the return structure described in
the RETURN clause. Finally, Metadata Finder receives the reconstructed XML in-
stance.

Fig 3. The architecture of XQuery Engine

3 The Approaches for Managing Metadata

In Section 1, we referred to the issues for managing XML data efficiently. Now we
discuss each issue in more detail and propose our approach for solving them.

3.1 How to Store XML Data into a Relational Database System

In order to accommodate a large volume of metadata, we use a relational database
system. There could be some other choices. For example, file systems, XML-native
systems, XML-enabled systems, and Object-oriented database systems, etc. File sys-
tems are not appropriate for large-volume data. XML-native systems support only
XML data and can be efficient for managing XML data itself. However, they cannot
support other data types and thus cannot accommodate legacy non-XML data. XML-

XML Publisher

XQuery
Analyzer

Query in
XQuery

Metadata
Finder

Result
in XML

Parsed
query

Translated SQL query &
Return Structure Info

XQuery
Translator

XQuery Engine

DB for
TV-Anytime
Metadata

Query
in SQL

Result
Tables

 XQuery-Based TV-Anytime Metadata Management 155

enabled systems are basically the existing database systems that support XML data
additionally. They are general-purpose systems and are less efficient in performance.
This can also be shown from our performance test in Section 4. Object-oriented data-
base systems are not mature enough to process complex queries on large databases
efficiently so far [7].

The problem for storing XML data into relational databases is how to map the tree
structures into relational tables. There are several methods for resolving this problem
[5, 6, 7, 10, 13, 15]. For our system, we take the binary approach [7]. The binary ap-
proach groups all the element nodes with the same label into one table.

The Binary approach has several merits for our system. First, we can easily map
the tree structures into relational tables since every element type is mapped into its
corresponding table. Moreover our system considers only one XML schema, TV-
Anytime metadata schema, so that the system knows the entire tables in advance
before storing data. Second, the binary approach can reduce data redundancy against
other approaches [7]. Of course we could consider the edge approach, which stores all
the elements and attributes into one relational table. The edge approach does not need
to consider XML schemas so that it can be useful when a system should consider
XML data from many schemas or even well-formed XML data with no schema.

Another thing to be considered is how to preserve the original document order
when an XML document is stored into relational tables. This is important since we
need to reconstruct original document from the databases. The basic idea is to give a
unique label to each node in a document. There have been several labeling methods
for this purpose [10, 15, 17, 18]. We adopt the Dewey order labeling [10].

The Dewey order labeling represents the path from the document’s root to the ele-
ment node by using the Dewey Decimal Classification. The root has the label ‘1’. Its
first child has the label ‘1.1’, its second child ‘1.2’, and so on. The first child of the
node labeled with ‘1.2’ has the label ‘1.2.1’, the second child ‘1.2.2’, and so on. The
element table in Figure 4 shows the labels in the fields ‘ID_TITLE’ and
‘ID_PROGEAMINFORMATION’.

When a node is inserted or deleted, the Dewey order labeling requires re-labeling
for all the descendents of the node and for the subtrees of its right siblings. For our
system, however, the main jobs are searching so that the metadata is assumed not be
modified so frequently. Moreover, the Dewey order labeling generally shows better
searching performance than other labeling methods [10].

3.2 How to Reduce Join Cost

One of the main problems when processing queries in XQuery is how to reduce the
number of joins, especially when queries have many long XPath expressions. The
binary approach itself does not give any benefit to reduce number of joins. If the
length of a path expression for specifying a set of nodes is N, we need N-1 joins. For
our system, we adopt the path table concept [15] for reducing the number of joins.

The path table stores all the full paths from the root element to all the element nodes
in every XML instances. Our path table has two fields. One is the path id. The other is
the path itself. Every element table has a field for the reference to the path id. If we want
to find nodes from the element E specified by a path expression, we search the path
table to get a path id p for the given path expression. Then we access the table for the

156 J.-H. Park et al.

element E and select the rows with the path id p. Each row becomes a candidate that
satisfies the path expression. Consequently we do not need any join between any two
element tables to get the candidate rows. Therefore we can avoid many joins.

Figure 4 shows ‘Path’ table, ‘Doc’ table, and two Element tables. ‘Doc’ table
stores the metadata XML instances as CLOB. Each entry represents one instance.
Each of the two element tables stores the information for ‘ProgramInformation’ ele-
ment and ‘Title’ element, respectively. Note that the former is an internal node in TV-
Anytime metadata, ant the latter is a leaf node.

Figure 5 shows a query written in XQuery (line 1 to 9) and its translated SQL
query (line 10 to 22). The XPath expressions from line 15 to 18 are constructed from

Fig. 4. The relationship of element, Doc and Path table

1: <Results>{ for $d in input("TVAnyTime") return <Result>{
2: distinct-values(
3: for $p1 in $d0/TVAMain/ProgramDescription/…./ProgramInformation
4: for $p2 in $p1/BasicDescription
5: for $p3 in $p2/Title
6: for $p4 in $p2/Synopsis
7: where contains(string($p3), "navy") and contains(string($p4), "fight")
8: return $p1)
9: }</Result> }</Results>
10: SELECT DISTINCT ProgramInformation.id_ProgramInformation,
11: ProgramInformation.Position
12: FROM Title, Synopsis, BasicDescription, Path Path0, Path Path1, ProgramInformation
13: WHERE Title.Title like '%navy%'
14: AND Title.id_Path = Path0.id_Path
15: AND Path0.Pathexp = '/TVAMain/ProgramDescription/…./BasicDescription/Title'
16: AND Synopsis.Synopsis like '%fight%'
17: AND Synopsis.id_Path = Path1.id_Path
18: AND Path1.Pathexp ='/TVAMain/ProgramDescription/./BasicDescription/Synopsis'
19: AND Title.id_Title like BasicDescription.id_BasicDescription || '%'
20: AND Synopsis.id_Synopsis like BasicDescription.id_BasicDescription || '%'
21: AND BasicDescription.id_BasicDescription like ProgramInformation.id_ProgramInformation || '%'

Fig. 5. An XQuery query and its translated SQL query

ID_Path PathExp
1 TVAMain
2 TVAMain/ProgramDescription
… …
6 TVAMain/ProgramDescription/ProgramInformationTable/ProgramInformation
7 TVAMain/ProgramDescription/ProgramInformationTable/ProgramInformation/BasicDescription
8 TVAMain/ProgramDescription/ProgramInformationTable/ProgramInformation/BasicDescription/Title
9 TVAMain/ProgramDescription/ProgramInformationTable/ProgramInformation/BasicDescription/Synopsis
1

ID_DOC CRID CONTENT
1 Crid://…1 …
2 Crid://…2 …

ID_DOC ID_TITLE ID_Path TITLE ID_DOC ID_PROGRAMINFORMATION ID_Path POSITION
1 1.1.1.1.1.1 8 navy 1 1.1.1.1 6 789, 650
1 1.1.1.1.2.1 8 love story 2 1.1.1.1 6 870, 690
2 1.1.1.1.1.1 8 navy

‘Path’ Table

‘Doc’ Table

‘TITLE’ Element Table ‘PROGRAMINFORMATION’ Element Table

 XQuery-Based TV-Anytime Metadata Management 157

the FOR clauses in the line 3 to 6 of the XQuery query. If there is an abbreviated
XPath expression in an XQuery query, the XPath expression for the translated SQL
query will be expressed using the 'like' operator. The conditions for searching the
same ancestors in the SQL query (line 19 to 21) are expressed as the comparisons
between Dewey order labels so that no direct comparison between XPath expressions
is required. The table names in the FROM clause of the SQL query come from the
leaf node names of the XPath expressions in the XQuery query, which are Synopsis,
Title, BasicDescription, and ProgramInformation. The SELECT clause (line 10) of
the SQL query is generated from the RETURN clause (line 8) of the XQuery query.

3.3 How to Reconstruct the Answer of the Original XQuery Query

A new structure for the query result is described in the RETURN clause of an XQuery
query. The reconstruction of XML data as a query result yields another performance
issue for XQuery processing. The query result will become subtrees of the original
data stored in the databases or a combination of subtrees. The problem is that we need
join operations to get a subtree from the database. If the result subtree is larger, we
need more number of joins. If the subtree is a leaf node, it can be obtained directly
from the table for that node without any join. If the subtree is a whole document,
many joins can be required. Note that the path table is not helpful for reducing joins
during reconstruction although it can be helpful for searching.

In order to resolve this problem, we store every metadata instance as a CLOB. For
each element node, we get both the starting and ending position from its correspond-
ing CLOB instance, and store the pair of these position values into the corresponding
row of the corresponding table. By doing so, when a subtree is required for recon-
struction we can obtain the subtree from CLOB instance using the position pair with-
out any join. Note that if the node is a leaf we do not store the position pair since the
node can be obtained directly from the corresponding table.

Storing CLOB instances requires more storage volume. This problem can be ig-
nored since the storage can be considered not so expensive. Another problem is the
integrity since we store the same data twice. If an update occurs in the database, we
should delete the old CLOB instance and insert the new one. Note that our approach
puts an emphasis on search and retrieval.

Figure 4 shows that ‘content’ field in Doc table stores CLOB instances. Also ‘Pro-
gramInformation’ Table for internal element node shows the ‘position’ field. ‘Title’
table has no the ‘position’ field since this table is for leaf nodes.

4 Performance Evaluation

In order to evaluate whether our choice of the strategies for the issues is relevant, we
compare our prototype system with other general-purpose systems and test their per-
formance for various typical queries. We select two popular general-purpose database
systems. One, which is a XML-native system, is eXcelon DXE Manager Version 3.1
SP2. The other, which is an XML-enabled system, is Oracle9i. There are two ways
for storing XML data in the Oracle9i system [16]. The first way is to register XML

 XQuery-Based TV-Anytime Metadata Management 159

Fig. 6. Comparison of query processing times

Figure 6 summarizes the performance. The size of the test metadata is 10MB. The
result shows that our system outperforms other methods for any queries except Q7. In
case of eXcelon and Oracle9i, the complex queries Q4, Q5, and Q6, takes more exe-
cution time than the simple query Q1, Q2, and Q3. However, our system does not so
depend on the queries. In case of our system, Q7 takes more execution time than the
other queries since we need more time to get CLOB instances from the databases and
to convert CLOB type into string type.

Figure 7 shows the scalability property of the systems. The size of the test data is
5M Bytes(about 400 documents), 10M (about 800), 15M (about 1500) and 20M
(about 2000), respectively. In case of eXcelon and Oracle9i, the processing time in-
creases linearly as the size of data increases. However, the processing time of our
system is independent of the data size for searching.

Fig. 7. Performance evaluation for scalability property

160 J.-H. Park et al.

The result of the evaluation shows that our system outperforms so that our approach
is believed to be one of the efficient approaches for managing TV-Anytime metadata.

5 Application to Digital Broadcasting Systems

Our system has been applied as a TV-Anytime metadata management system to a
digital broadcasting system which has been developed by the Electronics and Tele-
communications Research Institute [19]. Figure 8 shows the architecture of the Con-
tent Service Provider in the digital broadcasting system. There is a user interface to
access TV-Anytime metadata and content. It seems a little difficult for any user to use
XQuery language directly for searching. To overcome this problem, we have designed
an easy-to-use interface component which transforms the user search requirements
into XQuery queries automatically. Since we are adopting a standard metadata and a
standard query, we are able to send any query to other Content Service Providers and
to get query results from them if the Content Service Providers support both the TV-
Anytime Metadata and the XQuery language.

Fig. 8. Digital Broadcasting Sysstem

 Our system can also be applied to Personal Digital Recorders, which are usually
installed at each home. Any home user requirements can be transformed into XQuery
queries and sent for searching over the broadcasting environment including Content
Service Providers. Of course, each Personal Digital Recorder will manage its own
local TV-Anytime metadata.

6 Conclusion

In this paper, we have proposed an efficient system for managing TV-Anytime meta-
data. We have identified some important issues regarding performance and have pro-

Content Service Provider (CSP1)

TV-Anytime
Metadata

Management
System

Multimedia Content &
TV-Anytime Metadata

Feature
Extractor

Metadata
Editor

Metadata
Generator

User
Interface

Interactive
Digital

Broadcasting
Network

TV-Anytime
Metadata

Management
System

User
Interface

PDR2

Presonal Metadata

Personal Digital
Recorder (PDR1)

PDRm

CSP2

CSPn

 XQuery-Based TV-Anytime Metadata Management 161

posed our approach, which seems important since our prototype system outperforms
the other compared systems. We have also shown that our system has been applied to
a digital broadcasting environment. Of course, our result can be applied to any XML
management systems that focus on the performance of search and retrieval. Current
other existing systems do not support XQuery language. We need more evaluation
after some systems are available.

Acknowledgement

This work was partly supported by BK21 Human Resource Development Consortium
for Information Technology and by Software Research Center of Chungnam National
University.

References

1. S. Pfeiffer & U. Srinivasan: TV Anytime as an application scenario for MPEG-7. In Proc.
ACM Multimedia 2000, Los Angeles, October (2000).

2. TV Anytime Specification Series, August 2001. (http://www.tv-anytime.org/)
3. Advanced Television Systems Committee(ATSC) Standards. (http://www.atsc.org).
4. W3C, XQuery 1.0: An XML Query Language, Working Draft, November (2003).

(http://www.w3.org/TR/2003/WD-xquery-20031112/)
5. A. Deutsch, M. Fernandez, & D. Suciu: Storing Semistructured Data with STORED. In

Proc. ACM SIGMOD, Philadelphia, Pennsylvania, USA, June (1999).
6. A. Schmidt, M. Kersten, M. Windhouwer, & F. Waas: Efficient Relational Storage and Re-

trieval of XML Documents. In Proc. WEBDB 2000, Dallas, May (2000).
7. D. Florescu & D. Kossmann: Storing and Querying XML Data Using an RDBMS. IEEE

Data Engineering Bulletin, Vol. 22, No. 3, (1999).
8. D. Scheffner & J.-C. Freytag: The XML Query Execution Engine (XEE). In Proc. Bal-

ticDB&IS 2002, Tallinn, Estonia, June (2002).
9. I. Manolescu, D Florescu, & D. Kossmann: Pushing XML Queries inside Relational Data-

bases. INRIA Technical Report, INRIA, No. 4112, January (2001).
10. I. Tatarinov, S.D.Viglas, K.Beyer, J.Shanmugasundaram, E.Shekita & C.Zhang: Storing

and Querying Ordered XML Using a Relational Database System. In Proc. ACM
SIGMOD, Madison, Wisconsin, June (2002).

11. J. McHugh, S. Abiteboul, R. Goldman, D. Quass & J. Widon: Lore: A Database Manage-
ment System for Semi-structured Data. ACM SIGMOD Record Vol. 26, No.3, September
(1997).

12. J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan & J. Funderburk: Querying XML
Views of Relational Data. In Proc. 27th VLDB, Roma, Italy, September (2001).

13. J.Shanmugasundaram, K.Tufte, G.He, C.Zhang, D.DeWitt & J.Naughton: Relational Data-
bases for Querying XML Documents: Limitations and Opportunities. In Proc. 25th VLDB,
Edinburg, Scotland, September (1999).

14. M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita & S. Subramanian: XPERANTO:
Middleware for Publishing Object-Relational Data as XML Documents. In Proc. VLDB
2000, September (2000).

162 J.-H. Park et al.

15. M.Yoshikawa, T.Amagasa, T.Shimura, & S.Uemura: XRel: a path-based approach to stor-
age and retrieval of XML documents using relational databases. ACM Transactions on
Internet Technology, Vol. 1, Issue 1, pp. 110~141, August. (2001).

16. S. Banerjee, V. Krishnamurthy, M. Krishnaprasad & R. Murthy: Oracle8i - The XML En-
abled Data Management System. In Proc. ICDE 2000, San Diego, California, USA, March
(2000).

17. Q. Li & B. Moon: Indexing and Querying XML data for Regular Path Expressions. In
Proc. VLDB 2001, Roma, Italy. September (2001).

18. X. Wu, M. L. Lee & W. Hsu: A Prime Number Labeling Scheme for Dynamic Ordered
XML Trees. In Proc. ICDE 2004, Boston, USA. March (2004).

19. K. Kang, J. G. Kim, H. K. Lee, H. S. Chang, S. J. Yang, Y. T. Kim, H. K. Lee & J. W.
Kim: Metadata Broadcasting for Personalized Service: a Practical Solution. ETRI Journal,
Vol.26, No.5, pp.452-466, October (2004).

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 163–174, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Effective Database Transformation and Efficient Support
Computation for Mining Sequential Patterns

Chung-Wen Cho1, Yi-Hung Wu1, and Arbee L.P. Chen2

1 Department of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan

2 Department of Computer Science, National Chengchi University,
Taipei, Taiwan

alpchen@cs.nccu.edu.tw

Abstract. In this paper, we introduce a novel algorithm for mining sequential
patterns from transaction databases. Since the FP-tree based approach is effi-
cient in mining frequent itemsets, we adapt it to find frequent 1-sequences. For
efficient frequent k-sequence mining, every frequent 1-sequence is encoded as a
unique symbol and the database is transformed into one in the symbolic form.
We observe that it is unnecessary to encode all the frequent 1-seqences, and
make full use of the discovered frequent 1-sequences to transform the database
into one with a smallest size. To discover the frequent k-sequences, we design a
tree structure to store the candidates. Each customer sequence is then scanned to
decide whether the candidates are frequent k-sequences. We propose a tech-
nique to avoid redundantly enumerating the identical k-subsequences from a
customer sequence to speed up the process. Moreover, the tree structure is de-
signed in a way such that the supports of the candidates can be incremented for
a customer sequence by a single sequential traversal of the tree. The experiment
results show that our approach outperforms the previous works in various as-
pects including the scalability and the execution time.

Keywords: Data mining, Sequential patterns, Database transformation, Frequent
k-sequences.

1 Introduction

Sequential pattern mining [2][3][4][5][6][8], which discovers interesting patterns
from transaction databases, is an essential problem in the data mining field. This prob-
lem was first introduced in [2]. A transaction database has three fields, i.e. customer
id, transaction-time, and the items purchased. An itemset is a non-empty set of items
and a sequence is an ordered list of itemsets. In this way, each transaction corresponds
to an itemset. Each customer with a unique customer id may have more than one
transaction with different transaction-times. All the transactions from a customer are
ordered by increasing transaction-times to form a sequence, called the customer se-
quence.

The size of an itemset is the number of items in it. A k-itemset is an itemset with
size k. The length of a sequence is the number of itemsets in it. A k-sequence is a

164 C.–W. Cho, Y.-H. Wu, and A.L.P. Chen

sequence with length k. Moreover, the size of a sequence is also defined as the num-
ber of items in it. Given sequences X=<X1X2...Xn> and Y=<Y1Y2...Ym> where all
Xi’s and Yj’s are itemsets and n≤m, X is a subsequence of Y, i.e., contained in Y, if
there exist n integers 1≤i1<i2< …<in≤m such that X1⊆Yi1, …, Xn⊆Yin. The support of
a sequence is the number of customer sequences containing it in the entire database.
Given a minimum support threshold minsup, a sequence is frequent if its support is
not lower than minsup. We call the database composed of customer sequences the
sequence database. The problem of sequential pattern mining is to efficiently find all
the frequent sequences from a sequence database.

In the remainder of this paper, for brevity, we will use frequent itemsets and fre-
quent sequences to mean frequent 1-sequences and frequent k-sequences for k>1,
respectively, unless explicitly specified otherwise. To our knowledge, AprioriAll is
the first algorithm [2] that mines frequent sequences in two phases. That is, in the first
phase, only frequent itemsets are found and then frequent sequences are mined in the
second phase. In both phases, patterns are mined in the bottom-up fashion, i.e., fre-
quent k-itemsets/sequences first, then frequent (k+1)-itemsets/sequences, and so on.
The stage of mining frequent k-itemsets/sequences is called pass k. Between two
consecutive passes, the anti-monotonic property, that all subsets/subsequences of a
frequent itemset/sequence must be frequent, is utilized for candidate pruning, where a
candidate is a sequence whose support has not been computed yet. AprioriAll applies
the Apriori algorithm [1], which is proposed to mine association rules, to Phase 1 for
mining frequent itemsets from the sequence database. At the beginning of Phase 2,
AprioriAll maps every frequent itemset to a unique symbol and then transforms each
transaction into a set composed of all the symbols whose patterns are contained in the
transaction. For example, given the sequence database in Table 1 and the minsup 2,
the frequent itemsets and the corresponding symbols are listed in Table 2. Note that in
our notation an itemset is enclosed with parentheses while a sequence is enclosed with
angle brackets. Based on Table 2, Table 1 is transformed into Table 3. In this way, all
the frequent itemsets are retained and the subsequences of customer sequence contain-
ing a non-frequent itemset will not be considered as candidates for the frequent se-
quences.

Table 1. A sequence
database

Table 2. Mappings Table 3. The transformed database

CID Cus. Seq. F.I. S. F.I. S. CID Customer Sequence
C1 <(abc)(bc)> a A ab E C1 <(ABCEFGH)(BCG)>
C2 <(b)(abc)(ad)> b B ac F C2 <(B)(ABCEFGH)(AD)>
C3 <(bd)(bc)> c C bc G C3 <(BD)(BCG)>

 d D abc H

In Phase 2, we call a sequence singular if each set in it has only one symbol. Con-
sider a set having two symbols X and Y, where x and y are the corresponding frequent
itemsets, respectively. On one hand, if x is a subset of y, a sequence containing (XY)
can be replaced with the corresponding one containing (Y). On the other hand, let z be
the union of x and y. If z is frequent, again a sequence containing (XY) can be re-

 Effective Database Transformation and Efficient Support Computation 165

placed with the corresponding one containing (Z), where Z is the symbol correspond-
ing to z. Therefore, after the transformation, only the singular sequences should be
considered as the candidates for the frequent sequences in Phase 2.

During the support computation, AprioriAll enumerates the subsequences of each
customer sequence and accumulates the support of each candidate in a candidate tree,
where each path from the root to a leaf in it corresponds to a candidate. Two or more
subsequences enumerated from a customer sequence might be identical and therefore
the corresponding path in the candidate tree will be traversed and counted more than
once. However, by the problem definition, no matter how many times a subsequence
appears in the customer sequence, its support can be increased at most by one. There-
fore, it is unnecessary to repeatedly enumerate identical subsequences from a cus-
tomer sequence. In the applications, this problem is usual, e.g., a customer often buys
the same items more than once. Owing to the large number of enumerated subse-
quences, the counting on the candidate tree can be time-consuming.

In addition to AprioriAll, SPAM [4], and Pseudo-Projection [6] find frequent se-
quences based on the lattice concept as follows. Given a set of items, a lattice is a
layered graph where each node stands for a distinct sequence and each link indicates
the parent-child relationship between one sequence with size k and another with size
k+1. To find all the frequent k-sequences, all the two approaches recursively select a
set of nodes as candidates and scan the database to compute their supports. The num-
ber of database scans in each of them is directly proportional to the total number of
frequent k-sequences.

To sum up, AprioriAll retains all the frequent itemsets in the transformed database
in Phase 2 to avoid enumerating the subsequences containing non-frequent itemsets.
Given n distinct frequent items, if the maximal length of a frequent sequence is k,
there can be in the worse case (2n-1)+(2n-1)2+…+(2n-1)k frequent sequences to be
discovered. Since the 2n-1 frequent itemsets are in the minority, mining frequent se-
quences is relatively important in sequential pattern mining. The two-phase architec-
ture that finds two kinds of patterns separately should enable the mining tasks for
different types of patterns improved. However, previous works [4][5][6][8] have
noted that the bottom-up approach suffers from the huge amount of candidates gener-
ated at one pass. Recently, as the price-to-capacity ratio of main memory shrinks, the
pain of too many candidates in AprioriAll has been alleviated. However, AprioriAll
still suffers from the transformed database that can be much larger than the original
one and the high execution time for support computation. Accordingly, in this paper,
we develop a new two-phase approach for mining sequential patterns, equipped with
the facilities for effective database transformation and efficient support computation.

Finding frequent itemsets in Phase 1 is relevant to the problem of association rule
mining, which have been extensively discussed, such as [1][7]. Among them, the FP-
tree based approach [7] takes advantage of the common items among itemsets to re-
duce the cost of subset enumeration. This inspires us to adapt the same idea to the
sequence database. A straightforward way that adopts the FP-tree to find frequent
itemsets from a sequence database does not work because the support of an itemset
may be overestimated. In this paper, we propose the concept of transaction intersec-
tion to compute the correct support of each itemset.

In Phase 2, we aim at effective database transformation and efficient support com-
putation. First, from the anti-monotonic property, it is not necessary to retain all the

166 C. W. Cho, Y.-H. Wu, and A.L.P. Chen

frequent itemsets in the transformed database. Take Table 3 as an example. Since
combining A with any other symbol cannot form a frequent sequence, it guarantees
that E and F (two supersets of A) cannot form any frequent sequence, either. Our
approach skips this kind of symbols during the database transformation to have two
advantages: no need to examine the sequences containing a symbol that cannot form
any frequent sequence and the transformed database with a smaller size.
To speed up the support computation, we propose a technique to avoid redundantly
enumerating the identical subsequences from a customer sequence. Moreover, the
nodes in the candidate tree are sorted such that the supports of the candidates can be
incremented for a customer sequence by a single traversal of the tree. In the experi-
ments, our approach outperforms the previous works in both the execution time and
database scalability. Moreover, the results also show that the main advantages of our
approach lie in minimizing the number of symbols encoded and computing the sup-
ports of candidates in Phase 2 efficiently.

The rest of this paper is organized as follows. In Section 2, we present the method for
mining frequent itemsets from the sequence database. In Section 3, we describe the
method for mining frequent sequences. The performance evaluation and experiment
results are shown in Section 4. Finally, we conclude this paper in Section 5.

2 Frequent Itemset Discovery

In Phase 1, we adapt the FP-tree based approach to finding frequent itemsets from the
sequence database. The FP-tree based approach first constructs a compact data
structure called FP-tree to keep all the transactions in the transaction database and
then performs a mining algorithm on it to find all the frequent itemsets. In this paper,
we adopt the mining algorithm named TD-FP-Growth. For lack of space, readers
please refer to [7] for the detail.

The FP-tree based approach cannot be directly applied to finding frequent itemsets
in the sequence database because the transactions in a customer sequence may contain
identical itemset. In that case, the support of the itemset will be overestimated. For
example, given a customer sequence <(abc)(bcd)>, as the two transactions are in-
serted into the FP-tree, this customer sequence will contribute 2 to the support of (bc).
An intuitive response to this problem is to combine (abc) and (bcd) into a single
transaction (abcd), which correctly provides the support of (bc). However, in this way
the support of (ad) will be miscounted. In our approach, we introduce the concept of
transaction intersection that can correctly compute the support of each itemset as we
insert all the transactions in each customer sequence into the FP-tree.

Consider an itemset I and a customer sequence S=<T1T2…Tn>, where each Ti is a
transaction. Our goal is to insert all Ti’s into the FP-tree such that the correct support
of I from S, i.e., 0 or 1, can be obtained from the FP-tree. This process is similar to the
enumeration of I from S. If the intersection Oij between Ti and Tj is I, I will be enu-
merated twice and its support from the FP-tree is overestimated as 2. Therefore, for
every two transactions Ti and Tj in S, we consider their intersection Oij as an extra
transaction, called a negative transaction intersection, which is also inserted into the
FP-tree with a negative support -1. Moreover, if the intersection Oijk between Ti, Tj

-

 Effective Database Transformation and Efficient Support Computation 167

and Tk is I, I will be enumerated from S thrice but decreased by the three negative
instance intersections Oij, Oik, and Ojk. In that case, the support of I from the FP-tree is
underestimated as 0. Therefore, for every three transactions Ti, Tj and Tk in S, we
further consider their intersection Oijk as a positive transaction intersection, which is
also inserted into the FP-tree to increase the support of I by one. In this way, the two
kinds of transaction intersections (abbreviated as TI) are alternatively derived from
the intersections among transactions in S. The transaction intersection that is the inter-
section between L transactions in S is called the L-TI. Without loss of generality, each
transaction in S is treated as a positive 1-TI.

For example, given a customer sequence S = <(abc)(bcd)(abd)(ac)>, for every two
transactions, we have the 2-TIs {(bc), (ab), (ac), (bd), (c), (a)}. Moreover, for every
three transactions, we have the 3-TIs {(b), (c), (a), ∅}. Finally, the 4-TI is ∅. From
the 4 transactions in S, i.e., 1-TIs, the support of (a) is overestimated as 3. Since (a)
appears in three 2-TIs, its support will be decreased to 0. Finally, (a) appears in only
one 3-TI and therefore its support will be correctly computed as 1.

Our approach employs all the transaction intersections generated from each cus-
tomer sequence to construct the FP-tree, in which the negative transaction intersec-
tions can decrease the supports of the corresponding itemsets contained in them. After
the FP-tree is constructed, the count of a node in the FP-tree can be positive, zero, or
negative. Finally, the TD-FP-Growth algorithm is directly applied to this FP-tree to
find all the frequent itemsets.

3 Frequent Sequence Discovery

All the notations used in this section and their definitions are shown in Table 4.
The two main components of Phase 2 in our approach are database transformation

and frequent sequence discovery, respectively. In the database transformation, unlike
AprioriAll that encodes all the frequent itemsets at once, our approach divides the
frequent itemsets into groups based on their size and encodes them at different rounds
in pass 2. The groups of frequent itemsets having smaller sizes are encoded earlier,
i.e., frequent 1-itemsets, frequent 2-itemsets, and so on.

In our approach, frequent k-sequences are discovered at pass k, where k≥2. In pass
2, at the first round, all the frequent 1-itemsets are encoded as symbols and the
frequent 2-sequences that contain at least one of them are discovered. These frequent
2-sequences are immediately used to check the frequent 2-itemsets to see whether

Table 4. Notations and their definitions

Notations Definitions
FEr The set of the frequent r-itemsets encoded in round r
FE1..r The set of all the frequent itemsets encoded in rounds 1…r
FSr The set of the symbols corresponding to FEr
FS1..r The set of all the symbols generated in rounds 1…r
TDr The database after the transformation in round r
F2

r The set of the frequent 2-sequences found in round r

168 C. W. Cho, Y.-H. Wu, and A.L.P. Chen

they should be encoded in the next round. This process repeats until there is no fre-
quent itemset to be encoded. In pass k (k≥3), candidate k-sequences are generated
according to the frequent (k-1)-sequences found in pass k-1, and then the transformed
database is scanned to compute their supports. Note that, although main memory
space is getting larger nowadays, it is still possible to generate too many candidates in
one pass. Therefore, in each pass, our approach monitors the number of candidate
sequences currently generated. If this number reaches a predefined threshold, the
supports of these candidate sequences are computed via one database scan. In this
way, during the support computation, all the candidate sequences involved can fit in
the main memory. In the following, our procedure of database transformation is intro-
duced first. After that, the main stages, candidate generation and support computation,
for frequent sequence discovery are presented, respectively.

3.1 Database Transformation

In the first round of pass 2, each frequent 1-itemset is put into FE1 and encoded as a
distinct symbol in FS1. Moreover, each transaction in a customer sequence that con-
tains the frequent 1-itemsets in FE1 is replaced with a set of the corresponding sym-
bols in FS1 to produce TD1. After that, all the frequent 2-sequences in TD1, i.e., F2

1,
are discovered. Finally, we determine whether a frequent 2-itemset should be encoded
for the second round according to the following property.

Property 1. Given a frequent (r+1)-itemset X, let the r-itemsets contained in X be
denoted as X1, X2 … and Xr+1. For any frequent itemset Y, the following two rules
always hold:

1. If <XY> is frequent in round r+1 <XiY>∈ F2
r ∀1≤i≤r+1.

2. If <YX> is frequent in round r+1 <YXi>∈ F2
r ∀1≤i≤r+1.

According to the anti-monotone property, the above property can be easily ob-
served. As a result, only the frequent 2-itemsets should be encoded in round 2, if there
exists a frequent itemset Y in FE1..2 such that one of the rules in Property 1 holds. In
round r (r≥2), the database TDr-1 is transformed into TDr by adding the symbols in FSr
to the transactions that contain the corresponding frequent itemsets in FEr. After that,
to avoid the frequent 2-sequences that have been generated in previous rounds, only
the 2-sequences that contain at least one symbol in FSr are considered as candidates
and enumerated from TDr. Finally, the frequent (r+1)-itemsets satisfying Property 1
are encoded for round r+1. When no more frequent itemset is encoded, the database
transformation is terminated in pass 2.

For example, consider the sequence database in Table 1. and the symbols in Table
2. In the first round, all the frequent 1-itemsets are encoded (A, B, and C) and TD1 is
shown in Table 5. The frequent 2-sequences composed of these symbols are <BB>
and <BC>. In the second round, only (bc) has to be encoded because (ab) and (ac) do
not satisfy the rules in Property 1. Symbol F is appended to each transaction contain-
ing both B and C, and the result is shown in Table 6. In this round, only <BF> is a
frequent 2-sequence. Finally, pass 2 is terminated because no frequent 3-itemset
should be encoded.

-

 Effective Database Transformation and Efficient Support Computation 169

 Table 5. TD1 Table 6. TD2

CID Customer Sequence CID Customer Sequence
1 <(ABC)(BC)> 1 <(ABC)(BCF)>
2 <(B)(ABC)(A)> 2 <(B)(ABCF)(A)>
3 <(B)(BC)>

3 <(B)(BCF)>

Distributing the database transformation task into rounds has two advantages. First,
the transformed database generated in each round is much smaller than the one gener-
ated by AprioriAll. Second, in AprioriAll, every frequent itemset is encoded at the
beginning of Phase 2 and therefore the number of candidates can be huge. By con-
trast, in our approach, the sequences containing the frequent itemset that is not en-
coded are not generated as candidates. Moreover, our approach will not enumerate
such kind of sequences from the customer sequences for support computation.

3.2 Candidate Generation

We describe the procedure of candidate generation in two cases, i.e., pass = 2 and pass =
k for k ≥ 3. In round r of pass 2, for each symbol α in FSr, α is combined with each β in
FS1...r to generate the candidate sequences <αβ> and <βα>. Since only the 2-sequences
that contain at least one symbol encoded in round r are considered as candidates, our
algorithm will not generate redundant candidates in different rounds.

We adopt the same method as described in [2] to generate candidates in pass k for
k≥3. Each frequent (k-1)-sequence <α1…αk-2αk-1> is combined with each frequent (k-
1)-sequence <β1…βk-2βk-1>, where α1=β1, …, and αk-2=βk-2, to generate the candidate
sequence <α1…αk-1βk-1>. Based on the anti-monotonic property, we further check
whether any subsequence with length k-1 of <α1…αk-1βk-1> is non-frequent. If there
exists such a subsequences, <α1…αk-1βk-1> cannot be frequent and therefore will be
pruned.

In each pass, the generated candidates are stored into the candidate tree, where the
support of each candidate is kept at the leaf node of the corresponding path. For each
non-leaf node, all its children are stored in lexicographic order as an ordered list. This
ordering of nodes in the candidate tree is used to reduce the cost on support computa-
tion, which will be detailed in the next section.

3.3 Support Computation

In pass k, for each customer sequence, all the subsequences with length k are enumer-
ated by combining the symbols in different transactions. Given a subsequence
α=<α1α2…αk> enumerated from a customer sequence, where αi is a symbol, we say
α matches a path p=n1n2...nk in the candidate tree if ni=αi for 1≤i≤k. For each subse-
quence enumerated, the candidate tree is traversed to find its match. As described in
Section 1, repeated enumeration of identical subsequences from a customer sequence
is unnecessary and time-consuming. Therefore, in this section, we introduce a novel
 method to avoid it such that only a single traversal of the candidate tree is required
for counting all the subsequences enumerated from a customer sequence.

170 C. W. Cho, Y.-H. Wu, and A.L.P. Chen

The rationale of our approach is as follows. First, since a subsequence may have
multiple occurrences in a customer sequence, we need a particular representation of
the customer sequence such that each distinct subsequence is enumerated exactly once
from that representation. Second, the symbols in that representation should be ordered
such that the subsequences enumerated from it are in the same order as the sequential
traversal on the candidate tree. In the following, we first define the proposed represen-
tation and then describe the subsequence enumeration algorithm on it.

Consider a customer sequence S=<T1T2...Tn>, where Ti is the ith transaction. If a
symbol α appears in Ti, this occurrence of α is denoted as αi. For example,
<(BDE)(A)(B)(BC)> can be denoted as <B1D1E1A2B2B3B4C4>. Let i-suffixS denote
the subsequence <TiTi+1...Tn> of S. If α appears in Tj1, Tj2 ... Tjm, where i≤j1<j2...jm≤n,

we call αjk the kth instance of α in i-suffixS.

Definition 1. Given k occurrences of symbols β1
i1, β2

i2 … βk
ik in S, where

1≤i1≤i2…≤ik≤n, <β1
i1β2

i2…βk
ik> is called a necessary subsequence of S if β1

i1 is the 1st
instance of β1 in the 1-suffixS and for 2≤j≤k, βj

ij is the 1st instance of βj in the (ij-1+1)-
suffixS.

For example, in <B1D1E1A2B2B3B4C4>, <B1A2C4> is a necessary subsequence be-
cause B1 is the 1st instance of B in 1-suffixS, A

2 is the 1st instance of A in 2-suffixS,
and C4 is the 1st instance of C in 3-suffixS. On the contrary, <B1A2B4> is not a neces-
sary subsequence because B4 is not the 1st instance of B in 3-suffixS.Obviously, each
subsequence enumerated from S must have exact one occurrence in S, which is a
necessary subsequence. As a result, only the necessary subsequences instead of all the
subsequences in a customer sequence should be enumerated.

Definition 2. For each i-suffixS S’, if we remove each occurrence of a symbol that is
not the 1st instance of that symbol in S’, the resultant subsequence is called a pivot and
denoted as i-pivot.

For example, the 4 pivots of <B1D1E1A2B2B3B4C4> are 1-pivot: < B1D1E1A2C4>,
2-pivot: <A2B2C4>, 3-pivot: <B3C4>, and 4-pivot: <B4C4>, respectively. For ease of
presentation, we denote the jth element of the i-pivot as i-pivot[j] and the total number
of elements in the i-pivot as |i-pivot|. The following lemma shows the relationships
between the pivots and a necessary subsequence.

Lemma 1. If <β1
i1β2

i2…βk
ik> is a necessary subsequence of S, it must be in the form

of <1-pivot[j1], (i1+1)-pivot[j2], …(ik-1+1)-pivot[jk]>, where j1≤|1-pivot| and jh≤|(ih-1)-
pivot| for 2≤h≤k.

From Lemma 1, each necessary subsequence of a customer sequence S can be
formed by the elements in the pivots of S. Therefore, our approach first derives all the
pivots from S and then generates all the necessary subsequences from the pivots.
Since the pivots derived from S can be much larger than S, we derive and keep the
pivots of S only when S is scanned for support counting. For each customer sequence
with size n, we sort its elements in the form of <β1

i1 β2
i2 …βn

in> such that for 1≤j<n,
βj<βj+1 or (βj=βj+1 and ij<ij+1). For instance, the sorted form of <B1D1E1A2B2B3B4C4>
is <A2B1B2B3B4C4D1E1>. Given the sorted form of a customer sequence <β1

i1 β2
i2

…βn
in>, our algorithm named Pivot Derivation with two nested for-loops is proposed

as follows.

-

 Effective Database Transformation and Efficient Support Computation 171

Initially, all the pivots are set empty. Each entry of an array Index[k] is used to
keep the number of elements in the k-pivot. For each symbol βj

ij (in the ij
th transac-

tion), we check whether βj has been stored in ij-pivot, (ij-1)-pivot, ... or 1-pivot. If the
k-pivot does not have βj, βj

ij is immediately stored into it. The idea of this algorithm
comes from two observations. First, the input is the sorted form of S. If k-
pivot[Index[k]] does not equal βj, this implies that βj

ij must be the 1st instance in k-
suffixS and also an element in the k-pivot according to Definition 2. On the contrary,
if the k-pivot has βj, there must exist an occurrence of βj that is the 1st instances of βj
in h-suffixS for h=1…k. In this case, βj

ij cannot be an element in the h-pivot for
h=1…k and therefore will be skipped.

For example, consider the sorted form of <A2B1B2B3B4C4D1E1> as the input. First,
after A2 is processed, both the 2-pivot and 1-pivot are <A2>. Second, after B1, B2, B3,
and B4 are processed, we have 1-pivot=<A2B1>, 2-pivot=<A2B2>, 3-pivot=<B3>, and
4-pivot=<B4>, respectively. Third, after C4 is processed, all the 4 pivots are appended
with C4. Finally, after D1 and E1 are processed, only the 1-pivot is changed to
<A2B1C4D1E1>.

In our approach, sorting each customer sequence is done during database transfor-
mation. During the support counting, the above algorithm is invoked to derive all the
pivots from a customer sequence. In the following, we will present our algorithm that
can enumerate all the necessary subsequences from the pivots. Given the pivots de-
rived from the sorted form of a customer sequence S=<T1T2...Tn>, the candidate tree,
and pass k, our algorithm named Necessary Subsequence Enumeration (abbreviated
as NSE) is shown as below. Note that the matching and counting for the candidates on
T are also included in it. Given a node x on the candidate tree, its jth child and the total
number of its children are denoted as x.children[j] and |x.children|, respectively. In
addition, the serial number of the transaction having r-pivot[i] is denoted as r-
pivot[i].no.

Algorithm NSE(pivots, x, L, r)

(1) If (|x.children| ≠ 0) do {
(2) i = j = 1;
(3) While (i≤|r-pivot|) and (j≤|x.children|) do {
(4) If (r-pivot[i] == x.children[j]) {
(5) If (L == k)
(6) x.children[j].count++;
(7) Else If (r-pivot[i].no<n) and (L<k)
(8) NSE(pivots, x.children[j], L+1,

r-pivot[i].no+1);
(9) i ++; j ++; }
(10) Else If (r-pivot[i] < x.children[j]) {
(11) i++; }
(12) Else j++; }

Initially, NSE(pivots, the root of the candidate tree, 1, 1) is invoked. The parameter
L is used to keep the path length currently traversed, indicating the length of candi-
date sequences to be counted. The parameter r will identify the pivot currently used.

172 C. W. Cho, Y.-H. Wu, and A.L.P. Chen

In the while-loop, each symbol α in the r-pivot is compared with the symbol β in
every child y of the node x. If α matches β, three cases exist. First, if a candidate k-
sequence is found, its count is increased by one. Second, if y is not a leaf node and α
is not in the last transaction (i.e., Tn), a further traversal of the candidate tree is re-
quired. Notice that the parameter r passed in the recursive call is determined accord-
ing to Lemma 1. If neither case holds, both the next element of r-pivot and the next
child of x are considered in the next iteration. On the other hand, if α does not match
β, either the next element of the r-pivot or the next child of x is considered.

4 Performance Evaluation

In this section, we compare our approach with AprioriAll, Pseudo-Projection, and
SPAM under different parameter settings. We implement all the approaches and fol-
low the standard procedure in [2] to generate the synthetic databases. The number of
distinct items is fixed to 1000, and the remaining parameters unmentioned are set as
the default values. In addition, we modified AprioriAll to divide the candidates gener-
ated in a pass into groups such that each group of candidates can be placed in the
main memory. In the following, we show the results from three experiments. At first,
we compare the four approaches on the various settings of minsup. A number of data-
bases are tested and the results are consistent. For lack of space, we only report the
results from the database D10kC10T10S10I10.

In Figure 1, each point of a curve stands for the execution time of one approach.
Generally, Pseudo_Projection and SPAM perform worse than our approach when min-
sup gets small, because of the larger amount of frequent sequences which leads to more
database scans for support computation. Moreover, SPAM reports the worst processing
time due to the following reasons. The computer hardware architecture cannot fully
support very large bit-maps. SPAM needs additional CPU time to do the logical opera-
tions on bit-maps. As the minsup gets small, a large number of candidates need to be
processed. As a result, the load of doing bit operations becomes very heavy.

Our approach outperforms M-AprioriAll (the modified AprioriAll) lightly when
minsup is high. This is because only a few frequent itemsets exist. M-AprioriAll en-
codes all the frequent itemsets at the beginning of Phase 2, while our approach en-
codes them in different rounds. As a result, our approach needs more database scans
than M-AprioriAll for the encoding process. However, when considerable frequent
itemsets exist, the transformed database will be very large produced in M-AprioriAll,
and many non-frequent sequences are generated as candidates. Moreover, the problem
of repeated enumeration of identical subsequences from a customer sequence may
also become worse when more frequent itemsets exist. Therefore, M-AprioriAll is
worse than Pseudo_Projection and our approach.

When the database size is getting larger, all the approaches spend more time on da-
tabase scans. In the second experiment, we compare the four approaches on different
numbers of customer sequences, and the results are shown in Figure 2, where minsup
is fixed to 50. All the three approaches are worse than our approach because Pseudo-
Projection and SPAM frequently scan the databases, and M-AprioriAll produces a
large transformed database.

-

 Effective Database Transformation and Efficient Support Computation 173

D10kC10T10S10I10

0

0.5

1

1.5

2

2.5

3

3.5

4

0.3 0.35 0.4 0.5 0.7 1 3
minsup (%)

lo
gY

 +
 0

Our approach
Pseudo
SPAM
M-AprioriAll

DXC10T10S10I10

0

1000

2000

3000

4000

5000

6000

7000

8000

20k 30k 40k 50k 60k 70k 80k 90k 100k
Num. of customers

se
c.

Our approach

Pseudo

SPAM
M-AprioriAll

D10kC10T10S10I10

0

0.5

1

1.5

2

2.5

3

3.5

4

0.3 0.35 0.4 0.5 0.7 1 3
minsup (%)

lo
gY

 +
 0

Our approach
Pseudo
SPAM
M-AprioriAll

DXC10T10S10I10

0

1000

2000

3000

4000

5000

6000

7000

8000

20k 30k 40k 50k 60k 70k 80k 90k 100k
Num. of customers

se
c.

Our approach

Pseudo

SPAM
M-AprioriAll

Fig. 1. Processing time for different
minsup values

Fig. 2. Processing time on different
database sizes

D10kC10T10S10I10

0

100

200

300

400

500

600

0.3 0.35 0.4 0.5 0.7 1 3
minsup (%)

se
c.

sequential search verision
non-sequential search verison
M-AprioirAll

D10kC10T10S10I10

0

5000

10000

15000

20000

25000

30000

35000

0.3 0.35 0.4 0.5 0.7
minsup (%)

en
co

de
d

sy
m

bo
ls

s

Our approach

M-AprioirAll

D10kC10T10S10I10

0

100

200

300

400

500

600

0.3 0.35 0.4 0.5 0.7 1 3
minsup (%)

se
c.

sequential search verision
non-sequential search verison
M-AprioirAll

D10kC10T10S10I10

0

5000

10000

15000

20000

25000

30000

35000

0.3 0.35 0.4 0.5 0.7
minsup (%)

en
co

de
d

sy
m

bo
ls

s

Our approach

M-AprioirAll

D10kC10T10S10I10

0

5000

10000

15000

20000

25000

30000

35000

0.3 0.35 0.4 0.5 0.7
minsup (%)

en
co

de
d

sy
m

bo
ls

s

Our approach

M-AprioirAll

Fig. 3. The number of encoded symbols
on different minsup values

Fig. 4. Processing time of Phase 2

Finally, we compare Phase 2 in our approach with that of M-AprioriAll in two as-
pects, i.e., the number of symbols encoded and the process time on various values of
minsup. For the number of symbols encoded, in Figure 3, as the minsup gets smaller,
the number of encoded symbols reduced by our approach gets larger. Figure 4 shows
the detailed comparisons between our approach and M-AprioriAll. We implemented
two versions of our approach. One follows the idea proposed in Section 3.3, while the
other does not provide the sequential search on the candidate tree. The former is
called sequential version and the latter is called non-sequential version. As a result,
the sequential version of our approach has the best performance than the others and
the non-sequential version still outperforms than M-AprioriAll.

5 Conclusions

In this paper, we propose a novel approach to mining frequent sequences in large
sequence databases. We adopt the two-phase architecture that generates frequent
itemsets and frequent sequences separately. In Phase 1, we propose the concept of
transaction intersection to successfully adapt the FP-tree approach for association
rules mining to the sequence database. In Phase 2, we encode the frequent itemsets in
different rounds such that the size of the transformed database, the number of candi-
dates, and the number of enumerated subsequences are reduced. In addition, we also
avoid enumerating the redundant subsequences from a customer sequence and

174 C. W. Cho, Y.-H. Wu, and A.L.P. Chen

sequentially traverse the candidate tree for the subsequence enumeration of a cus-
tomer sequence. We perform experiments based on various database sizes and mini-
mum supports to compare our approach with M-AprioriAll, Pseudo-Projection, and
SPAM. Moreover, we compare our approach with that of M-AprioriAll in the number
of symbols encoded. We also implemented various versions of Phase 2 in our ap-
proach to compare with Phase 2 of M-AprioriAll. The results show that our approach
is more efficient than the others in total processing time.

Acknowledgements

This work was partially supported by the NSC Program for Promoting Academic
Excellence of Universities (Phase II) under the grant number 93-2752-E-007-004-
PAE, and the NSC under the contract number 93-2213-E-004-013.

References

1. Agrawal R., Srikant R.: Fast Algorithm for Mining Association Rules. Proceedings of Inter-
national Conference on Very Large Data Bases. (1994) 487-499.

2. Agrawal R., Srikant R.: Mining Sequential Patterns. Proceedings of International Confer-
ence on Data Engineering. (1995) 3-14.

3. Agrawal R., Srikant R.: Mining Sequential Patterns: Generalizations and Performance Im-
provements. Proceedings of the Fifth International Conference on Extending Database
Technology. (1996) 3-17.

4. Ayres J., Gehrke J., Yiu T., Flannick J.: Sequential PAttern Mining using A Bitmap Repre-
sentation. Proceedings of ACM SIGKDD Conference. (2002) 429-435, 2002.

5. Chiu D. Y., Wu Yi. H., Chen A. L. P.: An Efficient Algorithm for Mining Frequent Se-
quences by a New Strategy without Support Counting. Proceedings of International Confer-
ence on Data Engineering. (2004) 375-386.

6. Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U., M. Hsu.: PrefixSpan: Mining
Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proceedings of Inter-
national Conference on Data Engineering. (2001) 215-224.

7. Wang K., Tang L., Han J., Liu J.: Top Down FP-Growth for Association Rule Mining. Pro-
ceedings of Advances in Knowledge Discovery and Data Mining. (2002) 334-340.

8. Zaki M. J.: An efficient algorithm for mining frequent sequences. Machine Learning, Vol.
42(1/2). (2001) 31-60.

-

Mining Succinct Systems of Minimal Generators
of Formal Concepts

Guozhu Dong1, Chunyu Jiang1, Jian Pei2, Jinyan Li3, and Limsoon Wong3

1 Wright State University, U.S.A
{gdong, cjiang}@cs.wright.edu

2 Simon Fraser University, Canada
jpei@cs.sfu.ca

3 Institute for Infocomm Research, Singapore
{jinyan, limsoon}@i2r.a-star.edu.sg

Abstract. Formal concept analysis has become an active field of study for data
analysis and knowledge discovery. A formal concept C is determined by its extent
(the set of objects that fall under C) and its intent (the set of properties or attributes
covered by C). The intent for C, also called a closed itemset, is the maximum set
of attributes that characterize C. The minimal generators for C are the minimal
subsets of C’s intent which can similarly characterize C. This paper introduces
the succinct system of minimal generators (SSMG) as a minimal representation
of the minimal generators of all concepts, and gives an efficient algorithm for
mining SSMGs. The SSMGs are useful for revealing the equivalence relationship
among the minimal generators, which may be important for medical and other sci-
entific discovery; and for revealing the extent-based semantic equivalence among
associations. The SSMGs are also useful for losslessly reducing the size of the
representation of all minimal generators, similar to the way that closed itemsets
are useful for losslessly reducing the size of the representation of all frequent
itemsets. The removal of redudancies will help human users to grasp the structure
and information in the concepts.

Keywords: Minimal generators, formal concepts, closed itemsets, succinctness.

1 Introduction
Formal concept analysis (FCA) [7] is an important tool for data analysis and knowl-
edge discovery. A formal concept C is determined by its extent (the set of objects or
transactions that fall under C) and its intent (the set of properties, attributes, or items
covered by C). Take the transaction database TDB in Figure 1 as an example. Each
transaction has an identity Tid and a set of items; the set of items is written as a list of
items alphabetically and the set brackets are omitted. Itemset bcghi and transaction set
{T1, T3, T5} form a formal concept, where itemset bcghi is its intent and transaction
set {T1, T3, T5} is its extent. Intuitively, bcghi is the largest itemset that is contained in
transactions T1, T3 and T5. No other transactions contains bcghi. The formal concepts
in the transaction database are listed in Figure 2.

In general, the intent of a formal concept C is the closure of the properties, attributes,
or items that form a maximum characterization for C: Every object satisfying the intent

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 175–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

176 G. Dong et al.

Tid Items

T1 abcdeghi

T2 acdg

T3 bcdghi

T4 abdhi

T5 bceghi

Fig. 1. A transaction
database TDB

Closure Minimal generators Sup SuccMinGen

ad a 3 a

bhi b, h, i 4 b, h, i

cg c, g 4 c, g

d d 4 d

bceghi e 2 e

abdhi ab, ah, ai 2 ab

acdg ac, ag 2 ac

abcdeghi ae, de, abc, abg, 1 ae, de, abc
ach, aci, agh, agi

bcghi bc, bg, ch, ci, gh, gi 3 bc

bdhi bd, dh, di 3 bd

cdg cd, dg 3 cd

bcdghi bcd, bdg, cdh, cdi, dgh, dgi 2 bcd

Fig. 2. The formal concepts and their closures, minimal generators
and succinct system of minimal generators in TDB of Figure 1

is in C. The closure (or a closed itemset) serves as the upper bound of the attributes
covered by the formal concept. Mining the intents of concepts or closed itemsets has
attracted a lot of attention (e.g., [9, 10, 8, 12, 15, 14]) for their importance in knowledge
discovery, and for the significant reduction in the number of necessary frequent itemsets
achieved by removing redundant (recoverable) ones.

Each formal concept actually corresponds to a set of itemsets, which are all equiv-
alent since they capture the same intent. While the closures are the maximal sets of
attributes/items presenting the concept, it is often interesting to ask, “What are the criti-
cal combinations of attributes that manifest the concept?” That is, for a concept, we want
to identify the minimal combinations of attributes—the so-called minimal generators—
that distinguish the objects in this concept from the others. Such minimal generators can
offer a complementary, perhaps simpler way to understand the concept, because they
may contain far fewer attributes than closed itemsets.

Technically, the minimal generators of a formal concept C are the minimal subsets
of C’s intent that can characterize C, and are the lower bounds of the itemsets char-
acterizing C [10, 12]. For the running example, itemsets bc, bg, ch, ci, gh, gi are the
minimal generators of formal concept bcghi, since any transaction containing any of
those minimal generators must also contain the other items in the closure.

Complementary to closures, minimal generators provide an important way to charac-
terize formal concepts. However, very little has been done on understanding and mining
the minimal generators. Some previous studies (e.g., [10, 15]) use minimal generators
only as a means to achieve other goals such as mining closed itemsets. [12] considers
the mining of all minimal generators, but its algorithm leaves considerable room for
improvement.

Since formal concepts and closed itemsets are in one-to-one correspondence, we henceforth
treat a closed itemset and its corresponding formal concept as the same thing.

Interestingly, the minimal generators still may contain a lot of redundant information.
Consider the formal concepts in Figure 2. Closed itemset bcghi has six minimal gener

-

1

1

Mining Succinct Systems of Minimal Generators of Formal Concepts 177

ators: bc, bg, ch, hg, ic and ig. From any one of them we can derive all the others, since
b, h and i always appear together in transactions and are thus equivalent, and similarly
for c and g. Those facts are indicated by formal concepts bhi and cg, respectively.

Can we remove the redundant information and achieve a succinct representation of
the minimal generators? In this paper, we propose a novel concept of succinct system of
minimal generators (SSMG for short). The idea is to remove the redundant information
by choosing one (e.g., the lexically smallest) minimal generator of a formal concept as
its representative minimal generator, and exclude non-representative minimal generators
of the concept to occur as parts of minimal generators of any other concepts.

For example, we can choose b as the representative minimal generator for the formal
concept bhi, and c for cg. For the concept bcghi only the minimal generator bc will be
included in the SSMG; all the other five (i.e. bg, ch, hg, ic and ig) are excluded and can
be derived. Using SSMG there are a total of 17 minimal generators (Figure 2), compared
with a total of 38 standard minimal generators. This big reduction in size causes no loss
of information, as all minimal generators can be inferred from the SSMG.

Using the SSMG, the same equivalence information between the minimal generators
of a concept will not occur redundantly. This helps reduce the result of mining and make
it easier to browse, understand and manage, and reduce the need for the user to digest
the same information multiple times and hence helps the user to concentrate on the new
equivalence among minimal generators. Since the results on the equivalence among the
minimal generators also reveal the minimal equivalence relation among associations and
itemsets, results on SSMG are also useful for association mining.

In this paper, we give an efficient algorithm for mining SSMGs. Our algorithm
is substantially more effective and efficient than the algorithm in [12], which mines all
minimal generators. While the problem of mining SSMGs is computationally expensive,
our experiments demonstrate that our algorithm can deal with high dimensional and large
real data sets. We will also illustrate the power of our method on real data sets in terms of
both effectiveness and efficiency. It should be noted that the SSMG mining is significantly
more involved than the closed itemset mining, since it provides information on all the
minimal generators in addition to the closed itemsets. We applied the algorithm on some
real data sets and obtained some some interesting findings. But the details are omitted
due to space limit.

Section 2 provides definitions of SSMG. Section 3 describes the algorithm. Section 4
reports experimental results on effectiveness and efficiency. Section 5 discusses related
works and potential extensions.

2 Definition of SSMG

After revisiting the preliminaries of formal concepts, this section introduces the notion
of succinct system of minimal generators (SSMG).

2.1 Preliminaries

Let I = {i1, . . . , in} be a set of items. An itemset is a subset of I . A transaction is a
tuple 〈tid,X〉, where tid is a transaction identity and X is an itemset. A transaction

178 G. Dong et al.

database TDB is a set of transactions. A transaction 〈tid,X〉 is said to contain itemset
Y if Y ⊆ X . Let TDB be a given transaction database. The support of an itemset
X , denoted as sup(X), is the number of transactions in TDB that contain X . Given a
minimum support threshold min sup, X is frequent if sup(X) ≥ min sup.

The transaction set of an itemset X , denoted as T (X), is the set of all transactions
in TDB that contain X . For our running example (Figure 1), T (bc) = {T1, T3, T5}.
Two itemsets X and Y are called equivalent, denoted as X ∼ Y , if T (X) = T (Y).
The equivalence class of an itemset X is the set of all itemsets that are equivalent to X .
For Figure 1, itemsets bc and gi are equivalent since T (bc) = {T1, T3, T5} = T (gi);
the equivalence class of b is {b, h, i, bh, bi, hi, bhi}. Symmetrically, the itemset of a
set of transactions D ⊆ TDB, denoted as I(D), is the set of items that appear in every
transaction in D, i.e., I(D) = ∩(tid,X)∈DX . In Figure 1, I({T1, T3, T5}) = bcghi.

An itemset X is call closed if there exists no proper superset X ′ ⊃ X such that
sup(X) = sup(X ′). Easily, we can show that an itemset X is closed iff I(T (X)) = X .
Symmetrically, a set of transaction D is closed if and only if T (I(D)) = D.

Definition 1. A formal concept is a pair C = (X,D) where X and D are a closed
itemset and a closed transaction set, respectively, such that D = T (X) and X = I(D).
Given two concepts C = (X,D) and C ′ = (X ′, D′), C is said to be more general than
C ′ if X ⊂ X ′.

Under the set containment order, the itemsets form a lattice L. Moreover, under the
same order on the closed itemsets, the formal concepts form a lattice LC , which is a
Galois lattice (see Figure 3). Apparently, the lattice of the formal concepts is a quotient
lattice with respect to L, i.e., LC = L/ ∼.

bdhi bcghi

cg bhid

abcdeghi

{}

cdg

acdg abdhi bcdghi bceghi

ad

Fig. 3. Galois lattice for TDB of Figure 1

Observe that each equivalence class of itemsets contains a unique closed itemset,
which serves as the upper bound for the equivalence class. Also, each class contains one
or more lower bounds, which are the minimal generators. For example in Figure 1, b, h
and i are the minimal generators of formal concept (bhi, {T1, T3, T4, T5}) (Figure 2).

Definition 2. An itemset Y is called a minimal generator for a formal concept (X,D)
if T (Y) = D but for every proper subset Y ′ ⊂ Y , T (Y ′) �= D.

2.2 Succinct System of Minimal Generators

As discussed earlier, the minimal generators may still contain a lot of redundant infor-
mation. Consider again the formal concept C = (bcghi, {T1, T3, T5}) in our running

Mining Succinct Systems of Minimal Generators of Formal Concepts 179

example. In the same database, there is another concept C1 = (cg, {T1, T2, T3, T5}). C1
is more general than C, and C1 has c and g as minimal generators. We can observe the
following: If itemset cX is a minimal generator for C such that g �∈ X , then gX is also
be a minimal generator for C. This can be verified from Figure 2. Since we have bc, ch
and ci as the minimal generators containing c but no g, we also have minimal generators
bg, gh and gi. So, we only need to keep either the minimal generators containing c or
those containing g, but not both; the rest can be inferred.

Can we have a non-redundant representation of the minimal generators? The answer
is yes. The idea is intuitive though not straightforward. To illustrate the general idea,
suppose a user wishes to browse the minimal generators of the formal concepts in the
coarse-to-fine (or general-to-specific) order . For each new concept C to be browsed,
we would like to present to the user a minimal but complete set of all new minimal
generators that cannot be inferred from the others for this concept C and from the
minimal generators of the more general formal concepts already browsed.

Formally, for each formal concept C, we need to define a new equivalence relation:
Two itemsets X and Y are C-equivalent, denoted X ≈C Y if (i) both X and Y are
minimal generators of formal concept C ′ such that C ′ is more general than C, or (ii) X
can be obtained from Y by replacing a subset Z ⊂ X with Z ′ ⊂ Y such that Z ≈C Z ′.

In our running example, if C is the formal concept whose closed itemset is bcghi,
then b ≈C h, b ≈C i, c ≈C g, bc ≈C bg, bc ≈C hg, etc. (Note that C has two more
general formal concepts.) If C is the formal concept whose closed itemset is bhi, then
X ≈C Y if and only if X = Y since there are no concept more general than C.

The ≈C equivalence relation partitions C’s minimal generators into equivalence
classes. We can achieve the goal of deriving a minimal non-redundant subset of minimal
generators by presenting one minimal generator for each of the equivalence classes. For
example, if C is the formal concept whose closed itemset is bcghi, then all of its six
minimal generators, namely bc, bg, ch, ci, gh, gi, belong to one equivalence class; if C
is the formal concept whose closed itemset is abcdeghi, then its minimal generators can
be partitioned into three equivalence classes: {ae}, {de}, {abc, abg, ach, aci, agh, agi}.
Then, we can choose one representative for each class of minimal generators.

Which member of an equivalence class should be shown to the user, in order to
minimize the overall overhead on the user? We choose one minimal generator of each
formal concept as its representative minimal generator. This can be done freely for most
basic formal concepts such as bhi, cg and d in Figure 3. To be succinct, for other concepts,
we should choose one of those canonical minimal generators X such that X does not
contain any non-representative minimal generators of more general formal concepts.
For example, if C is the formal concept whose closed itemset is bcghi, if b and c are
respectively the representative minimal generators for the concepts for bhi and cg, then
bc should be the representative of C.

Definition 3. A succinct system of minimal generators, or SSMG for short, consists of,
for each formal concept C = (X,D), a representative minimal generator and a set of
canonical minimal generators.

In fact, our definitions can deal with any order of browsing.2

2

180 G. Dong et al.

An SSMG will remove the redundancy of minimal generators, give the users a con-
sistent handle on each class using the representative minimal generators, and also can be
used to derive all the minimal generators. The last column of Figure 2 gives an SSMG for
our running exampleTDB, where the first minimal generators are the representatives for
the concepts of the corresponding rows. Given an SSMG, clearly we can reconstruct all
of the minimal generators. Also, the SSMG is not unique, even though different SSMGs
have the same number of minimal generators.

ProblemDefinition.Givena transaction databaseTDB andasupport thresholdmin sup,
the problem of mining the succinct system of minimal generators is to find a succinct sys-
tem of minimal generators for all formal conceptsC = (X,D) that sup(X) ≥ min sup.

3 The SSMG-Miner Algorithm

This section introduces our algorithm for mining SSMGs. It includes several novel
techniques for computing local minimal generators and closed itemsets in a depth-first
manner, and for using them to derive the SSMGs. While the high-level structure of the
algorithm is similar to many existing DFS based algorithms, the new algorithmic contri-
butions lie with the efficient techniques for producing representative minimal generators
and removing the non-representative ones.

3.1 Depth-First Search Framework

The SSMG-Miner algorithm follows the general depth-first search framework that can be
described using a depth-first search tree (e.g. set-enumeration tree (or SE-tree) [13]). The
SE-tree enumerates all possible itemsets for a given set of items, with a global order on
the items. For each node v in the tree we have a head H (consisting of items considered
so far), and a tail T (consisting of items to be considered among descendant nodes). The
search space associated with v consists of all itemsets of the form Z = H ∪ T ′, where
T ′ is a nonempty subset of T . For the node labelled by ab in the SE-tree for {a, b, c, d},
we have H = ab and T = cd, and its search space consists of abc, abd, and abcd. The
algorithm will remove useless branches of the SE-tree, as discussed later.

3.2 Computing Local Minimals/Closures

The SSMG-Miner will efficiently compute “local minimal generators and closed item-
sets” for each visited node in the depth-first search. Later we will show that some local
minimal generators and closed itemsets may not be true minimal generators and closed
itemsets for formal concepts, and consider efficient techniques to remove such itemsets.

In our DFS computation, for each node v with head H and tail T , those items x in
T such that T (Hx) = T (H) (or equivalently, sup(Hx) = sup(H), in other words,
item x appears in every transaction that contains H) are in the local closed itemsets,
and are removed from T . Let the local closure of H be LC(H) = {x ∈ H ∪ T |
T (H) = T (Hx)}. The removal of items from T as described above will ensure that,
for all ancestor nodes v′ of v with head H ′ and tail T ′, LC(H ′) is a proper subset of
LC(H). Hence H is considered as the local minimal generator for LC(H).

We now illustrate the local minimal generators and closures computed for 6 nodes,
using our running example (Figure 1). (1) At the root node, H = ∅, T = abcdeghi,

Mining Succinct Systems of Minimal Generators of Formal Concepts 181

LC(H) = ∅. (2) For the first child of the root, H = a and T = bcdeghi; since
T (a) = T (ad), we remove d from T (so T becomes bceghi; this node now has 6
children instead of the original 7); LC(H) = ad; a is the local minimal generator
for ad and ad is the local closure for a. (3) For the node with (H,T) = (ab, ceghi),
LC(ab) = abdhi with sup(ab) = 2. (4) For (H,T) = (abc, eg), LC(abc) = abcdeghi
with sup(abc) = 1. (5) For (H,T) = (abe, g),LC(abe) = abdeghiwith sup(abe) = 1.
(6) For (H,T) = (ae, ∅), LC(ae) = aeghi with sup(ae) = 1.

The SSMG-Miner algorithm keeps a tuple of the form (MinList : Max,Count)
for each formal concept, where MinList is the list of minimal generators, Max is the
closed itemset, and Count is the support count. The first minimal generator in MinList
is the representative minimal generator. For Figures 1 and 2, the tuple (b, h, i : bhi, 4)
is for the formal concept (bhi, {T1, T3, T4, T5}).

3.3 Determining Equivalence

The local minimal generators and closures computed at different nodes may belong to the
same formal concept. The SSMG-Miner will check on this and remove any redundancy.

Lemma 1. Let v be a node with head H and tail T . Then LC(H) belongs to an existing
formal concept at the time v is visited if and only if there is a node v′ visited before, with
head H ′ and tail T ′, such that LC(H) ⊂ LC(H ′) and sup(H) = sup(H ′).

If one does the equivalence check based on the above lemma, the check will be
inefficient. The reason is that, for each new node v with head H and tail T , we will need
to go through all existing formal concepts and conduct the subset checking based on
the support equivalence. In general, checking whether an itemset is a subset of another
itemset in collection of itemset is very expensive.

Lemma 2. Let v be a node with head H and tail T . Then LC(H) belongs to an existing
formal concept at the time v is visited if and only if there is a node v′ with head H ′ and
tail T ′ such that v′ is visited before v and v′ satisfies the following three conditions:
(1) sup(LC(H)) = sup(LC(H ′)); (2) LC(H) and LC(H ′) share a common suffix
starting from x, where x is the last item of H; (3) the prefix of LC(H)) before x is a
subset of the prefix of LC(H ′) before x, where x is as above. Here, the values of T and
T ′ are those when the nodes are created.

Rationale. Clearly the “if” holds, since conditions (1–3) imply that LC(H) ⊂ LC(H ′)
and sup(H) = sup(H ′), which in turn imply that LC(H) and LC(H ′) are subsets of
some common closed itemset. “Only if”: Suppose LC(H) belongs to an existing formal
concept at the time v is visited. Let v′ be the node when LC(H)’s formal concept is
first inserted; let H ′ be its head and T ′ its tail. Since LC(H) and LC(H ′) belong to
the same concept, condition (1) holds. Since v′ is the first node when LC(H)’s formal
concept is inserted, by the nature of DFS computation, we have {y | y ∈ H and y is
before x} ⊆ {y | y ∈ H ′ and y is before x}, and so (3) holds. This implies (2) holds.

This lemma allows us to efficiently implement the check using some comparison on
the support counts, and certain suffixes and prefixes of itemsets and the local closure.

Example 1. We illustrate by considering these three formal concepts for example in
Figures 1 and 2: (a : ad, 3), (ab : abdhi, 2) and (abc : abcdeghi, 1). For the node with

182 G. Dong et al.

H = abe and T = g, LC(abe) = abdeghi and sup(abe) = 1. We need to decide if
this is a new formal concept and, if not new, which existing concept is that of abe. We
do this as follows: We look for (1) concepts with the same support count as abe, and we
compare their closed itemsets against LC(abe) = abdeghi. The concept C of abc is the
only such concept. We note the following: (2) The closed itemset of C, namely abcdeghi,
and LC(abe) = abdeghi share the common suffix of eghi, starting at the item e (the
last item of abe). (3) The prefix of LC(abe) = abdeghi before e, namely abd, is a subset
of the prefix of abcdeghi before e. Lemma 2 ensures that, when this happens, abe is not
generating a new formal concept, but abe is another potential generator for the concept
of C.

On the other hand, if there is no concept C satisfying the conditions, then the new
local minimal generator and closure form a new formal concept. Consider the formal
concept (bd : bdhi, 3) and we compute LC(cd) = cdg and sup(cd) = 3 at the node
with H = cd. We conclude that cd and bd do not belong to any previously found formal
concept, since LC(cd) is not a subset of any closed itemsets of existing concepts with
the same support.

More specifically, Lemma 2 implies that equivalence checking can be accomplished
efficiently by using a search tree structure. In such a tree, the items are ordered under the
reverse of the original order on the items. We have one such tree for each support count.
The trees will be built in a lazy manner. For each formal concept C, we use the closed
itemset for C to search and insert. This is done similarly for local closures computed at
nodes. For example, if the original order of items is the alphabetical order, for the closed
itemset abcdeghi, we have a branch of i → h → g → e → ... For the search involving
LC(abe) = abdeghi, we follow the branch i → h → g → e. Then we go through
the formal concepts stored below this branch to check for containment of the prefixes.
Since the search of the suffix only needs to continue if exact match is found and can be
terminated as soon as a mismatch is found, it is very efficient.

3.4 Removing Non-minimal Generators and Clutters

Some local minimal generators computed in the DFS process may turn out to be not
minimal generators for their formal concepts. Also, the clutters caused by redundant
minimal generators need to be removed. We now discuss how SSMG-Miner handles
these issues.

To show the removal of non-minimal generators, let us examine the running example
again (Figures 1 and 2). For node H = ae, we have four formal concepts computed: (a :
ad, 3), (ab : abdhi, 2), (abc, abe, abg, ace, ach, aci : abcdeghi, 1), (ac : acdg, 2). We
find thatae is a new minimal generator for the concept ofabcdeghi. Sinceabe andace are
supersets of ae, they are not true minimal generators for their formal concept, and should
be removed. So the third formal concept becomes (abc, abg, ach, aci : abcdeghi, 1),
before ae is inserted. Since ae is earlier than abc in the “cognitive-order”, we select ae
to replace abc as the representative minimal generator.

To exemplify the removal of clutters, let us consider the running example (Figures 1
and 2). Suppose our current set of formal concepts are as given above, and we next
consider the node H = ag. We find that LC(ag) = adg. We see that adg and acdg
are equivalent, hence ag is the second minimal generator of acdg. We then remove

Mining Succinct Systems of Minimal Generators of Formal Concepts 183

all minimal generators of other concepts which contain ag (the redundant generators).
For example, abg is removed from the set of minimal generators of abcdeghi. So we
get the following formal concepts: (a : ad, 3), (ab : abdhi, 2), (ae, ach, aci, abc :
abcdeghi, 1), (ac, ag : acdg, 2).

Regarding implementation, for each formal concept we have a concept identifier
CID. For each item x, we have an inverted list consisting of all those formal concepts
that have one or more minimal generators containing x. These inverted lists will be used
to locate formal concepts that may contain a given itemset (minimal generator).

3.5 The Pseudo-Code of SSMG-Miner

The SSMG-Miner (Figure 4) calls the DFS function for the root node, with these three
arguments: H = ∅, T = I − LC, and LC = ∅, where I is the set of all items.

Algorithm SSMG Miner:
Input: A transaction database TDB, support threshold min sup.
Output: Succinct system of minimal generators for formal concepts in TDB.
Method:

let SSMG = ∅; // SSMG is a global variable;
let LC = {items occurring in all transactions};
call DFS(H = ∅, T = I − LC, LC);
return SSMG;

Function DFS(H,T,LC) // H: head, T : tail
// LC: local closure, with value of parent node initially

if sup(H) < min sup return;
for each x ∈ T

if sup(H ∪ {x}) = sup(H)
let T = T − {x}, LC = LC ∪ {x};

if (H : LC, sup(H)) is a new concept
add (H : LC, sup(H)) to SSMG;

else add H as minimal generator for LC and remove clutter
for each x in T

let Hx = H ∪ {x} and Tx = {y ∈ T | y > x};
call DFS(Hx, Tx, LC);

Fig. 4. Algorithm SSMG-Miner

The DFS function first determines if H meets the minimal support threshold. If the
answer is yes, it will move all those items x such that sup(H) = sup(H ∪{x}) from T
to LC. At this time, (H,LC, sup(H)) becomes a candidate new concept. If LC is not
equivalent to any current concept, then it inserts (H,LC, sup(H)) as a new concept.
Otherwise it inserts H as a new minimal generator of its concept, and removes the
clutters. The check regarding equivalence, the insertion of new minimal generators and
the removal of clutters are discussed in the previous subsections. Limited by space, their
pseudo-code is omitted. DFS calls itself for each child node of the current node.

184 G. Dong et al.

 0

 50000

 100000

 150000

 200000

 250000

 36 38 40 42 44

N
um

be
r

of
 g

en
er

at
or

s

Number of items

Minimum Generators
Succinct minimum generators

Fig. 5. Reduction of # of gen-
erators on Colon Cancer data
set (support threshold = 1%)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 20 25 30 35 40 45 50 55 60 65 70

R
un

tim
e

(s
ec

on
d)

Number of items

Charm+diff
SSMG-Miner

Fig. 6. Scalability on number
of items: Colon Cancer data
set (support threshold=1%)

0

200

400

600

800

1000

30 40 50 60 70 80 90 100 110 120

R
un

tim
e

(s
ec

on
d)

Number of items

Charm+diff
SSMG-Miner

Fig. 7. Scalability on num-
ber of items: Mushroom data
set (support threshold=1%)

4 Performance Study

We now report experiments on the performance of the SSMG-Miner algorithm and its
effect in reducing the amount of redundant information. Experiments show that the
algorithm can deal with fairly high dimensional data sets within a short time. We also
provide comparison with previous work as much as we could, and with a post-processing
approach. All experiments (unless indicated otherwise) were performed on a PC with
P4 2.4G CPU and 512M main memory, running on Windows XP.

We used two data sets in our efficiency experiments. (1) The Mushroom data set has
been frequently used for evaluating data mining algorithms and is obtained from the
UCI Machine Learning Repository. It includes 22 attributes and 8, 124 tuples. There are
a total of 121 attribute-value pairs (items). (2) The Colon tumor gene expression data set
is from [2]. It consists of micro-array gene expression data for 62 sample tissues, with
22 being normal tissues and 40 colon tumor tissues. Microarrays are a technology for
simultaneously profiling the expression levels of tens of thousands of genes in a patient
sample. It is increasingly clear that better diagnosis methods and better understanding of
disease mechanisms can be derived from a careful analysis of microarray measurements
of gene expression profiles. As with most association-type data mining, we discretized
each gene into two intervals: low and high. We also used the entropy method to select
the top 45 most “relevant” genes from total of 2000 genes. These data sets are typical
examples of data that might be used in scientific discovery process by data mining
techniques. Please also note that these two data sets are quite dense and thus challenging
to mine, as indicated by many previous studies.

4.1 Redundant Information Reduction

Figure 5 shows the succinct minimal generator concept leads to a huge reduction in the
number of minimal generators in the result of mining. The Colon data set is used. For
the case of 40 items, 76% of the minimal generators are redundant, and for 45 items
93% of the minimal generators are redundant. The reduction on Mushroom is similar
(the details are omitted due to space).

4.2 Comparison with Postprocessing Approach

Post processing seems to be much worse than the SSMG-Miner, even though we do
not ask the postprocessing algorithm to remove the reduntant minimal generators. For

Mining Succinct Systems of Minimal Generators of Formal Concepts 185

example, we compared with the postprocessing approach which combines the Charm
algorithm [15] for closed itemset mining, and the Border-Diff algorithm [6] for mining
the minimal generators from the closed itemsets. First, the Charm algorithm is used
to compute the closed itemsets satisfying given support threshold. (We used our own
implementation of the Charm algorithm.) Then, for each closed itemset X , let SX =
{Y | Y ⊂ X and Y is a closed itemset}; then the Border-Diff algorithm is called to mine
the minimal itemsets which occur in X but not in any itemset in SX . Let M1, ...,Mk be
the result of this operation. It can be verified that M1, ...,Mk are the minimal generators
for the class represented by X . It turns out that this algorithm is very expensive: On
the Colon data, on 20, 25 and 30 projected columns of the data, SSMG-Miner used 1, 1
and 2 seconds respectively, whereas post-processing used 305, 964, and 4090 seconds
respectively. The main cost of the Charm+Border-Diff algorithm is due to the large
number of calls fo Border-Diff.

4.3 Comparison with a Previous Algorithm

No previous work has considered the mining of succinct minimal generators. Some
prior work considered the mining of all minimal generators [12]. (Several papers con-
sidered the mining of closed itemsets, and perhaps with one minimal generator for
each closed itemset.) We contacted the authors of [12], but we cannot obtain either
executable or source code. We are able to provide a rough comparison as follows: For
the Mushroom data when all attributes are considered and the minimal support is set
at 1 (so that all itemsets are frequent), our algorithm finished in about 2 hours on our
machine. On the other hand, the algorithm of [12] used about one day and a half. Al-
though the configuration of the test platform is not given in [12], we believe that our
method is substantially faster. We should also note that the algorithm of [12] does not
remove clutters.

4.4 Scalability on Number of Items

Figures 6 and 7 show the computation time of SSMG as the number of items varies.
The minimum support is set at 1% and the different number of items is obtained by
projecting the original data set over the first k items. Although the processing time in-
creases exponentially with the number of items, it is encouraging to know that our algo-
rithm finishes in a reasonable amount of time. We use random subsets of the Mushroom
data to test the scalability on size of database. Figure 8 shows the computation time
vs. the number of instances for the Mushroom data. The computation time is roughly
linear as the number of instances (tuples) increases. Figure 9 shows how computation
time varies as the support threshold varies on the Mushroom data. As the support
threshold decreases, the number of minimal generators increases, leading to increased
computation time.

Summary. From the extensive experiments on the two real data sets, the effectiveness and
efficiency of SSMG-Miner are verified. Our results show that SSMG-Miner is feasible
for mining real data sets.

186 G. Dong et al.

50

100

150

200

250

300

350

400

450

500

550

2000 3000 4000 5000 6000 7000 8000

R
un

tim
e

(s
ec

on
d)

Number of tuples

SSMG-Miner

Fig. 8. Scalability on database size: Mushroom
data set (support threshold=1%)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20

R
un

tim
e

(s
ec

on
d)

Support (%)

SSMG-Miner

Fig. 9. Scalability on support threshold:
Mushroom data set

5 Related Work and Discussion

5.1 Related Work

Formal Concept Analysis (FCA) was first pioneered by Wille in 1982 [7], and has grown
into an active field for data analysis and knowledge discovery. Other previous research
most related to our work can be divided into two categories: mining closed itemsets and
mining minimal generators.

Closed itemset mining is one of the major classes of research addressing the frequent
itemset mining problem [1]. This class of research aims at mining a concise subset of
the frequent itemsets that can be used to derive all other frequent itemsets and their
support counts. A major approach considers the closed itemset mining problem, initially
proposed in [10], where one mines only those frequent itemsets having no proper superset
with the same support. Mining closed itemsets can lead to orders of magnitude smaller
result set [16] (than mining all frequent itemsets) while retaining the completeness,
i.e., the concise result set can be used to generate all the frequent itemsets with correct
support counts in a straightforward manner. In the last several years, extensive studies
have proposed fast algorithms for mining frequent closed itemsets, such as Aclose [10],
CLOSET [11], MAFIA [4], CHARM [15], and CLOSET+ [14].

While prior research considered closed itemsets, they paid little or no attention to
mining minimal generators. Minimal generators were only used as a means to achieve
other goals if they were considered. The algorithm of [10] focused on the mining of
closed itemsets, but in the computation process it produces one minimal generator as a
by-product. The non-derivable and free itemsets [5, 3] are related to minimal generators.

Reference [12] gave an algorithm to compute the closed itemsets and their minimal
generators incrementally (by inserting tuples one at a time). However, it does not consider
the removal of the redundant minimal generators.

5.2 Further Extensions

Our method can be extended in several aspects, including these three: (1) We can analyze
the SSMGs and their relationship with their corresponding closed itemsets. We can also
analyze the SSMGs for data with multiple classes, such as normal tissues and cancer
tissues for colon cancer discussed above. (2) We can consider SSMGs for approximate
formal concepts, as a generalization of “exact” equivalent classes. We can view itemsets
as approximately equivalent if their transaction sets are approximately equal. This will
help reduce the number of formal concepts significantly. We can also analyze the SSMGs

Mining Succinct Systems of Minimal Generators of Formal Concepts 187

of approximately identical formal concepts. (3)We conjecture that the following numbers
can be used as indicators of the structure of the data set under consideration: the number
of formal concepts, the number of formal concepts with multiple minimal generators, and
the reduction ratio from number of minimal generators to succinct minimal generators.

Acknowledgement: We thank Ravi Janga who helped with the coding of the Charm-
BDiff algorithm, and the reviewers of a previous version of this paper.

References

1. R. Agrawal, et al. Mining association rules between sets of items in large databases. In
SIGMOD’93.

2. U. Alon, et al. Broad patterns of gene expression revealed by clustering analysis of tumor
and normal colon tissue s probed by oligonucleotide arrays. Proc. Nat. Academy of Sciences
of the United States of American, 96:6745–675, 1999.

3. J-F. Boulicaut, et al. Free-sets: A condensed representation of boolean data for the approxi-
mation of frequency queries. Data Mininig and Knowledge Discovery, 7(1):5–22, 2003.

4. D. Burdick, et al. MAFIA: A maximal frequent itemset algorithm for transactional databases.
In ICDE’01.

5. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In PKDD’02.
6. G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences.

In KDD’99.
7. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer,

Heidelberg, 1999.
8. J. Hereth, et al. Conceptual knowledge discovery and data analysis. In Int. Conf. on Conceptual

Structures, pages 421–437, 2000.
9. G. Mineau and B. Ganter, editors. Proc. Int. Conf. on Conceptual Structures. LNCS 1867,

Springer, 2000.
10. N. Pasquier, et al. Discovering frequent closed itemsets for association rules. In ICDT’99.
11. J. Pei, et al. CLOSET: An efficient algorithm for mining frequent closed itemsets. In ACM

SIGMOD DMKD’00.
12. J.L. Pfaltz and C.M. Taylor. Closed set mining of biological data. In BIOKDD’02.
13. R. Rymon. Search through systematic set enumeration. In Proc. of Int’l Conf. on Principles

of Knowledge Representation and Reasoning, Cambridge MA, pages 539–550, 1992.
14. J. Wang, et al. Closet+: Searching for the best strategies for mining frequent closed itemsets.

In KDD’03.
15. M. Zaki and C. Hsiao. CHARM:An efficient algorithm for closed itemset mining. In SDM’02.
16. M. J. Zaki. Generating non-redundant association rules. In KDD’00.

A General Approach to Mining Quality
Pattern-Based Clusters from Microarray Data�

Daxin Jiang1, Jian Pei2, and Aidong Zhang1

1 State University of New York at Buffalo, USA
{djiang3, azhang}@cse.buffalo.edu

2 Simon Fraser University, Canada
jpei@cs.sfu.ca

Abstract. Pattern-based clustering has broad applications in microar-
ray data analysis, customer segmentation, e-business data analysis, etc.
However, pattern-based clustering often returns a large number of highly-
overlapping clusters, which makes it hard for users to identify interest-
ing patterns from the mining results. Moreover, there lacks of a general
model for pattern-based clustering. Different kinds of patterns or differ-
ent measures on the pattern coherence may require different algorithms.
In this paper, we address the above two problems by proposing a general
quality-driven approach to mining top-k quality pattern-based clusters.
We examine our quality-driven approach using real world microarray
data sets. The experimental results show that our method is general,
effective and efficient.

1 Introduction

Clustering is an important data mining problem. For a set of objects, a clustering
algorithm partitions the objects into a set of clusters, such that objects within a
cluster are similar to each other, and objects in different clusters are dissimilar.
While many traditional clustering methods often assume that the clusters are
mutually exclusive and rely on metric distance between objects, some recently
emerging applications, such as those in bio-informatics and e-business, post the
challenges of mining non-exclusive, non-distance-based clusters in various sub-
spaces from large databases.

As a typical application, a microarray data set can be modelled as a numerical
data matrix recording the expression levels of genes on samples. An important
task of analyzing microarray data is to find co-expressed genes and phenotypes.
A group of co-expressed genes are the ones that demonstrate similar expression

� This research is partly supported by NSF grants DBI-0234895 and IIS-0308001, NIH
grant 1 P20 GM067650-01A1, the Endowed Research Fellowship and the President
Research Grant from Simon Fraser University. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 188–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A General Approach to Mining Quality Pattern-Based Clusters 189

patterns over a substantial subset of samples, and the subset of samples may
correspond to some phenotype.

Moreover, given a microarray data set, a gene can belong to more than one
co-expressed gene group, since it may correlate to more than one phenotype;
and a sample can manifest more than one phenotype, such as tumor vs. normal
tissues and male vs. female samples. To address the novel requirements, recently,
a new theme of pattern-based clustering, is being developed [1, 5, 6, 9, 10] (Please
see Section 2 for a brief review).

As indicated by the previous studies, pattern-based clustering is effective for
mining non-exclusive, non-distance-based clusters. However, the state-of-the-art
methods for pattern-based clustering are still facing the following two serious
challenges, which will be addressed in this paper.

Challenge 1: Pattern-based clustering may return a large number of
highly-overlapping clusters.
To filter out trivial clusters, most of the pattern-based clustering methods adopt
some thresholds, such as the minimum number of objects in a cluster, the min-
imum number of attributes in a cluster, and the minimum degree of coherence
of a cluster. Since too tight threshold values may prune out most of the clusters,
including those bearing interesting patterns, loose threshold values are usually
preferred.

However, pattern-based clustering will return the complete set of possible
combinations of objects and attributes that pass the thresholds. When loose
threshold values are specified, thousands or tens of thousands of clusters will be
reported. Moreover, since the microarray data are typically highly-connected [3],
the reported clusters may be often highly overlapping. For example, our empirical
study has shown that the average overlap among the clusters returned by a
representative pattern-based clustering algorithm may be as high as 79% (Please
see Section 5 for details). Clearly, it is hard for users to identify useful patterns
from such voluminous and redundant mining results.

Can we develop an effective method that can automatically focus on finding
a small set of representative clusters with respect to loose threshold values?

Our Contribution. In this paper, we propose a theme of mining top-k quality
pattern-based clusters, based on a user specified quality/utilization function. In
particular, the top-k clusters are sorted according to their quality, and the clus-
ters with higher quality are reported before those with lower quality. We show
that, by intuitive quality functions, highly overlapping clusters can be avoided.

Challenge 2: There are numerous pattern-based clustering models due
to various definitions of patterns and coherence measures.
For example, Cheng and Church [1] measured the coherence of clusters by the
mean squared residue score. Wang et al. [9] introduced the notion of pScore
to measure the similarity between the objects in clusters. Liu and Wang [5]
defined patterns by ordering attributes in value ascending order. Jiang et al. [4]
constrained the coherence within groups of samples by the minimum coherence
threshold. Different algorithms are proposed to handle specific models. Even

190 D. Jiang, J. Pei, and A. Zhang

with a minor change to the specific pattern-based clustering model, such as the
definition of coherence function, we may have to write a new algorithm.

Given that pattern-based clustering methods share essential intuitions and
principles, can we have a general approach such that many different pattern-
based clustering models can be handled consistently?

Our Contribution. In this paper, we develop a general model for pattern-
based clustering to address the above challenge. Our new pattern-base clustering
model is a generalization of several previous models, including bi-Cluster [1], δ-
pCluster [9], OP-Cluster [5] and coherent gene cluster [4]. We study how to mine
top-k quality pattern-based clusters under the general model, and give a general
and efficient algorithm.

The remainder of the paper is organized as follows. In Section 2, we review
the related work, and also clarify the novel progress that we make in this pa-
per comparing to our previous studies on mining microarray data. A general
quality-driven model is introduced in Section 3. A general approach to mining
top-k quality pattern-based clusters is presented in Section 4. We report the
experimental results in Section 5. Finally, we conclude this paper in Section 6.

2 Related Work

Our research is highly related to pattern-based clustering. Cheng and Church
[1] introduced bi-cluster model. Given a subset of objects I and a subset of
attributes J , the coherence of the submatrix (I, J) is measured by the mean
squared residue score.

rIJ =
1

|I||J |
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2, (1)

where aij is the value of object i on j, aiJ is the average value of row i, aIj is the
average value of column j, and aIJ is the average value of the submatrix (I, J).
The problem of bi-clustering is to mine submatrices with low mean squared
residue scores. Yang et al. [10] proposed a move-based algorithm to find biclusters
more efficiently. The algorithms in [1] and [10] adopt heuristic search strategies,
and thus cannot guarantee to find the optimal biclusters in a data set.

In [9], Wang et al. proposed the model of δ-pCluster. A subset of objects
O and a subset of attributes A form a pattern-based cluster if for any pair of
objects x, y ∈ O, and any pair of attributes a, b ∈ A, the difference of change of
values on attributes a and b between objects x and y is smaller than a threshold
δ, i.e., |(x.a− y.a) − (x.b− y.b)| ≤ δ. In a recent study [6], Pei et al. developed
MaPle, an efficient algorithm to mine the complete set of maximal pattern-based
clusters (i.e., non-redundant pattern-based clusters).

In [5], Liu and Wang presented the model of OP-Cluster. Under this model,
two objects gi, gj are similar on a subset of attributes S if the values of these two
objects induce the same relative order of those attributes. An efficient algorithm,
OPC-Tree, was developed.

A General Approach to Mining Quality Pattern-Based Clusters 191

2.1 New Progress in This Paper

Since 2002, we have been systematically developing pattern-based clustering
methods for mining microarray data, e.g., [6, 4, 3]. For example, we proposed a
model for coherent clusters, a specific type of pattern-based clusters, in the novel
gene-sample-time series microarray data sets, and developed algorithms Sample-
Gene Search and Gene-Sample Search [4]. Sample-Gene Search was shown more
efficient.

This paper is critically different from [4] and other previous studies on pattern-
based clustering in the following perspectives. First, the methods discussed
in [4] enumerate all pattern-based clusters. As discussed before, although MaPle,
OPC-Tree, Gene-Sample Search and Sample-Gene Search can find the complete
set of the pattern-based clusters in a data set, they may not be effective to
handle the two challenges discussed in Section 1. In this paper, we address the
challenges by proposing a general quality-driven pattern-based clustering frame-
work. Instead of enumerating all the pattern-based clusters, we mine only the
top-k clusters here according to a quality/utilization function specified by users.
All existing methods cannot mine such top-k clusters.

Second, [4] studies a specific type of microarray data stes. In this paper, we do
not focus on a specific model. Instead, we generalize several previously proposed
pattern-based clustering models and propose a general approach.

Last, [4] and this paper share the framework of pattern-growth approaches,
i.e., both methods conduct depth-first search. However, due to the quality-driven
mining requirements, in this paper, we develop techniques to prune futile search
subspaces using the quality criteria (e.g., Section 4.1 and Rule 3). The algorithm
developed in this paper inherits and generalizes the technical merits from [4, 6].

3 Mining Quality Pattern-Based Clusters

For a set of n genes G-Set = {g1, . . . , gn} and a set of m samples S-Set =
{s1, . . . , sm}, the expression levels of the genes on the samples form a matrix
M = {mi,j}, where mi,j is the expression level of gene gi (1 ≤ i ≤ n) on sample
sj (1 ≤ j ≤ m). A cluster is a submatrix C = (G,S) of M , i.e., G ⊆ G-Set
and S ⊆ S-Set, such that C is coherent. Here, the coherence of C describes how
coherently the genes in G exhibit expression patterns on the set of samples S.

The measure of coherence varies in different specific pattern-based clustering
models. In this paper, we are interested in constructing a general model instead
of proposing another measure of coherence. Thus, we assume that the coherence
of a submatrix is given by a function cScore such that (1) cScore(C) ≥ 0 for any
submatrix C; and (2) for submatrices C1 and C2, if cScore(C1) > cScore(C2),
then C1 is more coherent than C2.

For a specific model, it is easy to revise the coherence measure to satisfy the
above two requirements. For example, the bi-Cluster model [1] minimizes the
mean squared residue score rIJ (Equation 1). Since the score is always greater
than or equals to 0, minimizing rIJ is equivalent to maximizing 1

rIJ
. Thus, we

can use the following cScore() function.

192 D. Jiang, J. Pei, and A. Zhang

cScore(C) =
1∑

i∈I,j∈J(aij − aiJ − aIj + aIJ)2
(2)

For δ-pCluster, we can use the following function.

cScore(C) =
{

1 if pScore(X) ≤ δ for any 2× 2 sumbmatrix X of C
0 otherwise (3)

For OP-Cluster, we have

cScore(C) =
{

1 if patterns in C follow the same ordering
0 otherwise (4)

Moreover, for coherent gene cluster [4], we can specify the cScore function as
follows.

cScore(C) =
{

1 if in C each gene is coherent across the samples
0 otherwise (5)

In real applications, users often have a preference among the clusters. For
example, in mining gene expression data, clusters with a high coherence score
and a large number of genes and samples are strongly preferred. Accordingly, we
define the quality measure of clusters as follows.

Definition 1 (Quality of a cluster). Let C = (G,S) be a submatrix of a
microarray data set M , the quality of C is defined as quality(C) = size(C) ·
cScore(C), where size(C) = |G| · |S| and cScore is the coherence function.

For a set of clusters that have no overlap, the quality of the set of clusters is
simply the sum of the quality of each cluster. However, when there exist some
overlaps, we have to make sure that each overlapping cell contributes to the
total quality only once, and the contribution goes to the most quality cluster
that contains the overlap.

Definition 2 (Quality of a set of clusters). Let Ω be a set of submatri-
ces. The quality of Ω is defined as quality(Ω) =

∑
mi,j∈∪C∈ΩC Q(mi,j), where

Q(mi,j) = max{cScore(C)|(C ∈ Ω) ∧ (mi,j ∈ C)}.

Suppose a user wants a set of k clusters that have the best quality, the problem
can be formulated as to compute a set Ω = {C1, . . . , Ck} of k submatrices
such that quality(Ω) is globally maximized. However, given different numbers of
clusters k and k′ such that k < k′, the corresponding optimized sets of clusters
Ω and Ω′ may not be consistent. In other words, since we maximize the quality
function on a global level, a quality cluster C ∈ Ω may not necessarily appear in
Ω′. The inconsistency among the mining results with respect to different numbers
of clusters is undesirable, since the number of clusters k is usually unknown a
priori.

A General Approach to Mining Quality Pattern-Based Clusters 193

To address this problem, we turn to a greedy framework. The main idea is
that we compute a series of k clusters Ω = {C1, . . . , Ck} such that (1) C1
is the cluster with the highest quality; and (2) for Ci (i ≥ 2), Ci is a cluster
maximizing the “quality improvement” with respect to C1, . . . , Ci−1. In this
way, for any two numbers of clusters k < k′, we have Ω ⊂ Ω′. Then the user can
choose the number of clusters in an incremental manner. At first, the user can
choose a small value of k, if all the clusters reported are with high quality, the
user can ask for more clusters until the quality of the latest reported cluster is
not satisfactory. We formulate the idea as follows.

Definition 3 (Quality gain). Let C = (G,S) be a submatrix of a gene ex-
pression matrix M , and cScore be a coherence function. For a set of sub-
matrices Ω = {C1, . . . , Ck}, the quality gain of C (against Ω) is defined as
quality(C|Ω) = |C−overlap(C,Ω)|·cScore(C), where function overlap(C,Ω) =
{mi,j |(mi,j ∈ C)∧ (∃C ′ ∈ Ω : mi,j ∈ C ′)} returns the set of cells in C that over-
lap with some clusters in Ω.

Problem of Mining Top-k Quality Clusters. Given a gene expression ma-
trix M , a coherence function cScore(·) and a positive integer k. The problem of
mining top-k quality pattern based clusters is to compute a series of k subma-
trices C1, . . . , Ck such that (1) quality(C1) is the maximum; and (2) for i ≥ 2,
quality(Ci|{C1, . . . , Ci−1}) is the maximum.

Our general model of mining quality pattern-based clusters has the follow-
ing distinct features. First, our model can generate a list of clusters in quality
descending order. Many previous approaches such as [4, 5, 6, 9] report all the
pattern-based clusters without any indication of the significance of the clusters.
It is often tedious to select the interesting clusters from those trivial ones. Sec-
ond, our model is a generalization of bi-cluster, δ-pCluster, OP-Cluster, and
coherent gene cluster. As shown before, we can easily assign coherence functions
to those specific models.

In many applications, a user has several basic constraints to avoid trivial
clusters. The constraints can be specified using the following three thresholds.
(1) Minimum number of genes ming; (2) Minimum number of samples mins; and
(3) Minimum coherence δ. A submatrix C = (G,S) will be reported as a cluster
only if it satisfies the constraints: |G| ≥ ming, |S| ≥ mins and cScore(C) ≥ δ.

Moreover, in some pattern-based clustering models, such as δ-pCluster, OP-
Cluster, and coherent gene cluster, an anti-monotonicity holds: a coherence
function cScore() is anti-monotonic if for any two clusters C1 = (G1, S1) and
C2 = (G2, S2) such that G1 ⊆ G2 and S1 ⊆ S2, cScore(C1) ≥ cScore(C2). The
anti-monotonicity captures a natural assumption: the coherence of a submatrix
monotonically decreases as more genes and/or more samples are included. In our
general model, we also assume that the anti-monotonicity holds for the coherence
function.

194 D. Jiang, J. Pei, and A. Zhang

4 The Mining Algorithm

In this section, we will present a general approach to mine top-k quality clusters
that satisfy the thresholds. Basically, we find the top-k clusters iteratively, one
at a time. We will address the following two issues.

– In the i-th iteration (1 ≤ i ≤ k), how can we find cluster Ci that maximizes
the quality gain against the set of clusters {C1, . . . , Ci−1}?

– How to search the huge space of all possible submatrices efficiently and prune
unpromising subspace sharply?

4.1 Mining a Cluster Maximizing Quality Gain

A näıve method to find a cluster that has the maximum quality gain is to test
every possible submatrix and its quality gain. A submatirx can be viewed as a
combination of genes and samples. Therefore, the problem can be reduced to
enumerating all possible combinations of genes and samples.

A systematic way to tackle an enumeration problem is to use enumeration
tree [7]. Figure 1 shows the enumeration tree of a four-element set {a, b, c, d}. It
provides a conceptual tool to enumerate all the subsets of {a, b, c, d} systemati-
cally.

{a,b,d}

{a,b} {a,c}

{a,c,d}

{a,b,c,d}

{a,d}

{a}

{b,c} {b,d}

{b,c,d}

{b} {c}

{c,d}

{d}

{}

{a,b,c}

Fig. 1. Enumeration of combinations of samples

Basically, we can enumerate all the subsets of samples first. For each subset
of samples S, we enumerate all subsets of genes G, and test the quality gain of
(G,S). We only need to keep the submatrix C = (G,S) that satisfies the thresh-
olds and achieves the best quality gain in the current iteration. This method is
called the Sample-Gene Search.1

Why do we enumerate subsets of samples first and then subsets of genes later,
but not in the reverse way?

In gene expression data, the number of genes is typically by far larger than
the number of samples. In other words, the number of combinations of genes

1 The initial idea of enumerating samples instead of genes in microarray data sets
to find pattern-based clusters was firstly proposed by Wang et al. [9], and further
systematically developed in [6].

A General Approach to Mining Quality Pattern-Based Clusters 195

is often dramatically larger than the number of combinations of samples. With
our pruning rules in Section 4.2, if the Sample-Gene Search is adopted, once a
subset of samples and its descendants are pruned, all searches of related subsets
of genes are pruned as well. Heuristically, the Sample-Gene Search may bring
a better chance to prune a more bushy search sub-tree than the Gene-Sample
Search for gene expression data.

When we enumerate the subsets of samples or genes, we can conduct a re-
cursive, depth-first search of the set enumeration tree. Given a data set of m
samples and n genes, the set enumeration tree has 2m+n nodes. However, we
never need to materialize such a tree. Instead, we only need to keep a path from
the root of the tree to the node we are searching as a working set, which contains
at most m + n + 1 nodes. Besides, proper pruning techniques will be developed
to prune unpromising branches as early as possible.

4.2 The Rules for Pruning

In this subsection, we develop efficient rules to prune unpromising subspaces
using the thresholds and/or the anti-monotonicity of the coherence function.

For the Sample-Gene Search, each node on the set enumeration tree contains
a unique submatrix. Thus we will use the submatrix to refer to the node. At
node C = (G,S) of the set enumeration tree, where G = {gi1 , . . . , gik

} (1 ≤
i1 < · · · < ik ≤ n), we keep a list gTail of genes. A gene gj ∈ G-Set is included
in list gTail if (1) j ≥ ik and (2) the coherence score of C ′ = (G ∪ {gj}, S)
is no less than minimum coherence threshold δ. We have the following result,
which generalized some of the pruning techniques in the existing pattern-based
clustering methods (e.g., [6, 4]).

Rule 1 (Pruning irrelevant genes). For a node C in the set enumeration
tree, only the genes in list gTail should be used to construct super clusters of C.

Rationale. Suppose gene gj /∈ gTail of C = (G,S), where G = {gi1 , . . . , gik
}

(1 ≤ i1 < · · · < ik ≤ n). Two situations may happen. First, j ≤ ik. Second,
C ′ = (G ∪ {gj}, S) violates the coherence constraint. For the first situation, gj

cannot be used to expand C according to the structure of the set enumeration
tree. For the second situation, since any descendant C ′′ of C ′ is a submatrix
of C ′, according to the anti-monotonic property, C ′′ also violates the coherence
constraint. Therefore, we can prune the genes not in the gTail list.

Similarly, we can maintain a list sTail of samples for node C, and prune the
samples not in sTail when we search the subtree of C. Due to the limit of space,
we omit the details here. Moreover, for any descendant node C ′ of C, the gTail
and sTail lists of C ′ are subsets of those lists of C, respectively.

Since the gTail and sTail lists of the current node C tell us which genes and
samples can be used to further expand the subtree of C, they actually provide
us the a priori information about the subtree of C. Based on such information,
we can prune the unpromising descendants of C early.

196 D. Jiang, J. Pei, and A. Zhang

Rule 2 (Pruning small submatrices). For a node C = (G,S), the subtree of
C can be pruned if (|G| + |gTail|) < ming or (|S| + |sTail|) < mins.

Rationale. Since we only use the genes and samples in gTail and sTail lists to
expand the subtree of C, for any descendant node C ′ = (G′, S′) of C, we have
|G′| ≤ (|G|+ |gTail|) and |S′| ≤ (|S|+ |sTail|). If for node C, (|G|+ |gTail|) <
ming or (|S| + |sTail|) < mins, then none of the descendants of C will satisfy
the size constraint. Therefore, the subtree of C can be pruned.

Rules 1 and 2 are essential for pattern-based clustering (as well as frequent
itemset mining). The similar idea has been studied before extensively (e.g., [4, 6]).
The quality mining inherits them. To push the quality requirement into the
mining, the following lemma gives the upper bound of the quality gain that can
be achieved in a subtree.

Input: the gene expression data set M
Output: the top-k clusters Ω
Method:

let Ω = ∅ // the set of top clusters already found
for num = 1 to k do

let maxQ = −1, maxCluster = null
for each subset of samples S

if |S| < mins continue
for i = 1 to (|G-Set| − ming) do

let G = {gi}, C = (G, S); compute gTail
call recursive-search(C, gTail)

end for // end the enumeration of genes
end for // end the enumerate of samples
let Ω = Ω ∪ {maxCluster}

end for
Procedure: recursive-search(C, gTail)

if (|G| + |gTail|) < ming then return
calculate the quality upper bound of C’s descendants according to Lemma 1
if C can be pruned by Pruning Rule 3 then return
while (gTail �= ∅) do

let i = min{j| gj ∈ gTail}
let C′ = (G ∪ {gi} × S); compute gTail′

call recursive-search(C′, gTail′)
end while
if ((|G| ≥ ming) && (|S| ≥ mins)) then

if (quality(C|Ω)) > maxQ
then let maxQ = quality(C|Ω), let maxCluster = C
end if

end if

Fig. 2. Algorithm Q-Clustering for mining top-k quality clusters

Lemma 1. Let Ω be a set of clusters. For any descendant C ′ of node C = (G,S)
in the set enumeration tree, a tight upper bound of quality(C ′|Ω) is given by
[(|G|+|gTail|)(|S+|sTail|)−|overlap(((G∪gTail), (S∪sTail)), Ω)|]·cScore(C).

A General Approach to Mining Quality Pattern-Based Clusters 197

Proof sketch. [(|G| + |gTail|) ∗ (|S + |sTail|) − overlap(((G ∪ gTail), (S ∪
sTail)), Ωk−1)] is the upper bound of the non-overlapping size of the descendants
of C. Given the anti-monotonicity of the coherence measure, cScore(C) is the
upper bound of the coherence score of the descendants of C. Therefore, Lemma 1
gives an upper bound of the quality of the descendants of C. The bound can be
shown tight. Limited by space, we omit the details here.

Based on Lemma 1, we have the following rule immediately.

Rule 3 (Pruning low quality submatrices). The subtree of C can be pruned
if the upper bound of the quality gain given by Lemma 1 is smaller than the best
quality gain that has got so far in the current iteration.

In summary, Figure 2 shows algorithm Q-Clustering to mine the top-k quality
clusters. Limited by space, we omit the details of pruning techniques using the
sTail list, which is basically symmetric to the case of gTail list.

5 Experimental Results

We tested algorithm Q-Clustering on both synthetic data sets and real gene
expression data sets. The system is implemented in Java. The tests are conducted
on a Sun Ultra 10 work station with a 440MHz CPU and 256 MB main memory.
The results are consistent. Limited by space, we only report the results on a real
data set here.

Spellman et al. [8] reported the genome-wide 6, 220 mRNA transcript levels
during the cell cycle of the budding yeast S. cerevisiae. The complete data set
consists of 3 independent time-series, namely, the αfactor (18 time points), the
elutriation (14 time points) and the cdc15 (24 time points). We choose the cdc15
data set since it contains the longest time-series. Out of the 6, 220 monitored
genes, only 800 genes are found cell-cycle-dependent. We call this subset of data
cdc 800. To test the performance of our algorithm extensively, we sample the
complete data set (6,220 genes and 56 time points) with various sizes.

To test the effectiveness of our general quality-driven approach, we chose a
representative pattern-based clustering model, the δ-pCluster [9], and compare
the mining results reported by our approach with those by a representative
pattern-based clustering algorithm, MaPle [6]. Given the cdc 800 data set, both
Q-Clustering and MaPle were invoked when mins = 5 and ming = 5, while the
δ value ranges from 0.3 to 0.4. For Q-Clustering, we only return the clusters with
a quality gain beyond mins ∗ming. According to Definition 3 and the semantic
meaning of mins and ming, such clusters may carry interesting patterns.

Figure 3(a) shows the number of clusters reported by the two algorithms.
Since MaPle finds the complete set of maximal δ-pClusters, we can see the
number of clusters increases dramatically when the threshold value increases.
However, Q-Clustering only returns the quality δ-pClusters, and the number of
clusters is much more stable.

198 D. Jiang, J. Pei, and A. Zhang

 10

 100

 1000

 0.3 0.32 0.34 0.36 0.38 0.4

N
u
m
b
e
r

o
f

c
l
u
s
t
e
r
s

δ

S-G Search
MaPle

 30

 35

 40

 45

 50

 55

 60

 65

 0.3 0.32 0.34 0.36 0.38 0.4

C
o
v
e
r
a
g
e

(
%
)

δ

(a) Number of clusters (b) Coverage of clusters

Fig. 3. Clusters reported by MaPle and Gene-Sample Search

δ quality clusters all maximal clusters

3.0 0.0% 69.4%
3.2 1.2% 70.0%
3.4 1.5% 73.8%
3.6 1.6% 75.5%
3.8 2.6% 77.6%
4.0 5.8% 79.3%

Fig. 4. Overlap between clusters

We then evaluate the correlation between the clusters reported by
Q-Clustering and MaPle. That is, we want to measure to which extent the qual-
ity clusters cover the set of δ-pClusters. We represent a cluster C by {(gi, sj)},
where gi and sj are the gene and sample in C, respectively. Given two sets of
clusters Ω = {C1, . . . , Cm} and Ω′ = {C ′

1, . . . , C
′
n}, the coverage of Ω on Ω′

is defined by (C1∪...∪Cm)∩(C′
1∪...∪C′

n)
C′

1∪...∪C′
n

. Figure 3 (b) illustrates the coverage of the
quality clusters on the complete set of clusters. We can see that when δ = 0.4, al-
though the number of quality clusters is only 3% of the total number of clusters,
the coverage of quality clusters is over 40%. That is, our quality-driven approach
focuses on finding a small set of clusters which can effectively represent the un-
derlying patterns in the data set. Please note that, to increase the coverage, users
can always ask more clusters from the system until no more interesting patterns
are identified.

Why the number of clusters reported by our quality-driven approach is much
smaller than that by MaPle?

The rationale is that, due to the high-connectivity of microarray data, the
pattern-based clusters usually highly overlap with each other. Figure 4 demon-
strates the average overlap among the clusters by MaPle and Sample-Gene
Sample, respectively. Given a set of clusters Ω, the average overlap of Ω is

A General Approach to Mining Quality Pattern-Based Clusters 199

∑
Ci∈Ω

overlap(Ci)

|Ω| , where the overlap of a cluster Ci is measured by overlap(Ci) =

max{Ci∩Cj

Ci
|Cj ∈ Ω, i �= j}. We can see that the average overlap among the com-

plete set of clusters is usually higher than 70%, while the average overlap among
the quality clusters is less than 6%. In practice, a gene may participate in mul-
tiple cellular processes or correlate to several phenotypes. Consequently, it may
belong to more than one cluster. However, such situation is not common and a
ratio of about 6% overlap is biologically plausible.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
u
n
t
i
m
e

(
s
e
c
)

Number of genes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 15 20 25 30 35 40 45 50

R
u
n
t
i
m
e

(
s
e
c
)

Number of samples

(a) Runtime vs. number of genes (b) Runtime vs. number of samples

Fig. 5. Scalability with respect to the sizes of the data sets

Finally, we test the scalability of our algorithm. We set mins = 6,ming = 10
and δ = 0.2. We sample the cdc15 time-series (24 time points) when we test
the scalability with respect to the number of genes. To test the scalability with
respect the number of samples, we fix the number of genes to 3,000 and sample
the time points from the complete data set. The results are shown in Figure 5(a)
and (b). We can see that our algorithm scales well with respect to both the
number of genes and the number of samples.

6 Discussion and Conclusions

In this paper, we proposed a general approach to mining top-k quality pattern-
based clusters. The experimental results on gene expression data show that our
method is general, effective and efficient. Several interesting and important prob-
lems still remain open, such as how to find multiple quality clusters during a
single iteration, and how to handle non-anti-monotonic coherence functions.

Acknowledgements. We thank the reviewers for their comments and sugges-
tions which help to improve the presentation of the paper.

200 D. Jiang, J. Pei, and A. Zhang

References

1. Cheng, Y. and Church, G.M. Biclustering of expression data. ISMB’00.
2. Jain, A.K., Murty, M.N. and Flynn, P.J. Data clustering: a review. ACM Com-

puting Surveys, 31:264–323, 1999.
3. Jiang, D., Pei, J. and Zhang, A. Interactive Exploration of Coherent Patterns in

Time-Series Gene Expression Data. In KDD’03.
4. Jiang, D., Pei, J., Ramanathan, M., et al. Mining Coherent Gene Clusters from

Gene-Sample-Time Microarray Data. In KDD’04.
5. Liu, J., Wang, W. OP-Cluster: Clustering by Tendency in High Dimensional Space.

In ICDM’03.
6. Pei, J., Zhang, X., Cho, M., et al. MaPle: A Fast Algorithm for Maximal Pattern-

based Clustering. ICDM’03.
7. Rymon, R. Search through systematic set enumeration. In KR’92.
8. Spellman, P.T., Sherlock, G., Zhang, M.Q., et al. Comprehensive identification

of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol. Biol. Cell, 9:3272–3297, 1998.

9. Wang, H., Wang, W., Yang, J. et al. Clustering by Pattern Similarity in Large
Data Sets. In SIGMOD’02.

10. Yang, J., Wang, W., Wang, H. et al. δ-cluster: Capturing Subspace Correlation in
a Large Data Set. In ICDE’02.

Real Datasets for File-Sharing Peer-to-Peer
Systems

Shen Tat Goh1, Panos Kalnis1, Spiridon Bakiras2, and Kian-Lee Tan1

1 Department of Computer Science,
National University of Singapore,

3 Science Drive 2, Singapore
{gohst, kalnis, tanlk}@comp.nus.edu.sg

2 Department of Computer Science,
Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong
sbakiras@cs.ust.hk

Abstract. The fundamental drawback of unstructured peer-to-peer (P2P)
networks is the flooding-based query processing protocol that seriously
limits their scalability. As a result, a significant amount of research work
has focused on designing efficient search protocols that reduce the overall
communication cost. What is lacking, however, is the availability of real
data, regarding the exact content of users’ libraries and the queries that
these users ask. Using trace-driven simulations will clearly generate more
meaningful results and further illustrate the efficiency of a generic query
processing protocol under a real-life scenario.

Motivated by this fact, we developed a Gnutella-style probe and col-
lected detailed data over a period of two months. They involve around
4,500 users and contain the exact files shared by each user, together with
any available metadata (e.g., artist for songs) and information about the
nodes (e.g., connection speed). We also collected the queries initiated by
these users. After filtering, the data were organized in XML format and
are available to researchers. Here, we analyze this dataset and present
its statistical characteristics. Additionally, as a case study, we employ it
to evaluate two recently proposed P2P searching techniques.

1 Introduction

Distributed peer-to-peer (P2P) systems provide an alternative architecture to
the traditional client/server model and their initial success has captured the at-
tention of the research community during the past few years. P2P nodes are both
clients and servers and do not depend on centralized infrastructure.Participation
is ad-hoc and dynamic, since nodes may independently join or leave the network.

P2P networks are classified into two main categories: unstructured (e.g.,
Gnutella [1]) and structured (e.g., CAN [9] and Chord [13]). Unstructured
broadcast-based P2P networks are the most widely used systems today for infor-
mation exchange among end-users, and provide the basis on which many popular

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 201–213, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

202 S.T. Goh et al.

file-sharing applications are built. Their popularity emerges primarily from their
inherent simplicity; nodes that wish to exchange information, join randomly the
overlay topology and are only responsible for their own data. The result is an
inexpensive, easy-to-use system, which does not require any form of central ad-
ministration. One major drawback, though, is the query processing protocol;
whenever a node receives a query message, it broadcasts it to all of its neigh-
bors. This is done recursively until a maximum number of hops is reached. This
algorithm does not scale well to a large population size, since the whole network
is overwhelmed with query messages.

As a result, research has focused on designing efficient search protocols that
reduce the overall communication cost. Most of the reported results, however,
are based on ad-hoc synthetic data. Clearly, the availability of real data regard-
ing the content of users’ libraries and the exact queries that these users ask,
would generate more meaningful and realistic results. Motivated by this fact, we
developed a Gnutella-based probe and gathered detailed data from a large and
diverse user population.

In this paper, we present the data that we collected from around 4,500
Gnutella users over an extended time period. Our dataset contains information
about each node (e.g., its connection speed and the software it uses) together
with the index of the entire users’ libraries, which is around 850,000 files in
total. Additionally, we capture the exact queries initiated by each node. These
data were filtered, organized in XML format and are now available to the public
[3]. Moreover, since music sharing is very common in P2P networks, we pro-
cessed separately a subset of the data consisting only of music files. There are
around 2,000 nodes sharing almost 200,000 songs which we further organized
based on the title, artist and genre (e.g., pop, rock, etc). We analyzed these
data and present here some useful statistics and distribution graphs. Finally,
as a case study, we investigate the performance of two recently proposed P2P
searching techniques, namely Dynamic Reconfiguration [4] and Interest-based
Locality [12], using the collected workload. To the best of our knowledge, our
work is the first one to deal with the exact contents of the users’ libraries and
correlate them with the observed query patterns.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 describes the data collection methodology and presents an anal-
ysis of the dataset. Section 4 gives a brief overview of two case studies on which
the generated workload was applied, followed by the detailed results of the trace-
driven simulations. Finally, Section 5 concludes our work.

2 Related Work

Research in the P2P area was triggered by the apparent success of systems like
Napster [2] and Gnutella [1]. Napster is a hybrid system, since it maintains a
centralized index which is used for searching. Gnutella, on the other hand, is
a pure P2P system and performs searching by Breadth-First-Traversal (BFT).
Each peer that receives a query propagates it to all of its neighbors up to a

Real Datasets for File-Sharing Peer-to-Peer Systems 203

maximum of d hops. The advantage of BFT is that by exploring a significant
part of the network, it increases the probability of satisfying the query. The
disadvantage is the overloading of the network with unnecessary messages. Yang
and Garcia-Molina [14] observed that the Gnutella protocol could be modified in
order to reduce the number of nodes that receive a query, without compromising
the quality of the results. They proposed three techniques: Iterative Deeping,
Directed BFT, and Local Indices. A technique similar to Local Indices is used
in Ref. [15], the only difference being that indices are kept only in a subset of
powerful nodes called super-peers.

Several studies have performed measurements in a wide range of P2P systems.
Saroiu et al. [10] studied the characteristics of peer-to-peer users in the Gnutella
and Napster file-sharing systems. In particular, the authors measured several
parameters, including bandwidth, delay, availability (i.e., the fraction of time
a user is active), and sharing patterns. Sen and Wang [11] measured flow-level
information at multiple border routers of a large ISP network. They collected
data from three popular P2P systems over a period of three months. The reported
results illustrate a large skew in the distribution of traffic across the network, at
different levels of spatial aggregation.

Contrary to the above studies that focus on P2P traffic characterization, the
work by Gummadi et al. [7] provides some useful insight regarding the nature
of file-sharing workloads. The authors analyzed a 200-day trace from the Kazaa
network, and showed that P2P workloads are substantially different from their
Web counterparts. Specifically, object popularity changes over time (with new
objects being more popular), and the aggregate popularity distribution does not
follow a Zipf curve. In addition, the authors observed a considerable locality in
the P2P workload, which may be exploited by object caching.

In contrast to our work, none of the above papers provides the exact contents
of the users’ libraries together with the actual user queries.

3 Data Analysis

We implemented our probe by modifying a Limewire client [8], which connects
to Gnutella networks. Limewire is implemented in Java and the source code is
publicly available and well-documented. We forced our client to be promoted
to an ultra-peer. In this way, we were able to observe all the queries submitted
by leaf nodes connected directly to the probe. For each query, we captured the
IP address1 and port number of the initiating leaf node, a time-stamp and the
query string (i.e., a set of keywords). We used the Browse Host operation to
retrieve the contents of the leaf peers’ libraries. Notice that the peers respond
to this operation since our probe is an ultra-peer. The information of each peer
includes its address, the type of the connection as reported by the client (e.g.,
Modem, Cable, etc.) and the index of its library. Index entries are composed by
the filename, the filetype and the size of the file in bytes. The resulting dataset

1 To preserve anonymity, we replaced the IP by a randomly generated unique key.

204 S.T. Goh et al.

Table 1. Statistics for the generic and the music files dataset

Generic Dataset Music files Dataset
Number of Users 4,447 2,000
Number of queries 11,075 5,462
Total number of files 845,454 195,023
Number of distinct files 505,818 58,848
Number of artists n.a. 15,499
Number of Genres n.a. 245

relates the library of each user with the queries he asked. Except from requests
originating from leaf nodes connected to the probe, many queries arrive through
other ultra-peers. In such case, we cannot always retrieve the peer’s index, since
some users restrict the Browse Host operation for remote peers.

Peers may enter and leave the network frequently. Ideally, we want to record
all the queries issued by a specific user, irrespectively of how often he reconnects.
Unfortunately, due to dynamic IP, it is not easy to distinguish the identity of
a peer. To minimize the problem, we do not rely on the IP address but we
compare the contents of the libraries. If at least 90% of the contents of a peer
(also considering the order) are the same as the contents of another, we assume
that the two peers are identical. We allow a 10% difference, since a user might
add or delete some files while he is off-line. Nevertheless, we cannot guarantee
that all the queries are captured; a peer may reconnect to a different ultra-peer
and its subsequent queries are not necessarily routed through our probe.

Data were collected over a two months’ period. We employed two probes, one
in Singapore and the other in Hong Kong2, hoping to capture a geographically
diverse population. Additionally, during the collection period the probes were
disconnected and reconnected to the network several times, ensuring that our
data are independent of any specific network configuration.

3.1 Generic Dataset

Here we analyze our generic dataset consisting of a set of almost 4,500 users, the
indexes of their libraries (around 850,000 files of various types) and they queries
they asked. Table 1 presents summarized statistics of the data. The dataset is
available online [3] in XML format.

Figure 1 shows the relation between users and files; observe that both axis
are logarithmic. In Figure 1(a) we show the number of files per user, after sorting
the users in descending order according to the number of files they have. It is
clear that most of the users have a significant number of files, although there
exist some users with many files and others with only a few; this is similar to
the results of Saroiu et al. [10]. In Figure 1(b) we present the popularity of each
file (i.e., the number of users that have a particular file). As expected, the graph
resembles a Zipf distribution.

2 The domains of the captured clients where not restricted to these areas.

Real Datasets for File-Sharing Peer-to-Peer Systems 205

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
um

be
r

of
 F

ile
s

pe
r

U
se

r

userID

Sorted-Log Number of Files per User Histogram (Snapshot: Shared Data)

#files/user

(a) Files per user.

1

10

100

1000

1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 U

se
rs

 h
av

in
g

th
at

 F
ile

fileID

Sorted-Log Popularity Histogram (Snapshot: Shared Data)

#user/file

(b) Users per file.

Fig. 1. Distribution of files

In Figure 2 we present statistics related to the connection speed of the peers.
Figure 2(a) shows the number of peers for each connection speed category. It is
obvious that the slow connections dominate the network. Notice that these are
the speeds reported by the peers themselves. Many users, however, deliberately
report low bandwidth to discourage other peers from downloading files [10]. In
the next graph (Figure 2(b)) we draw the average number of files shared by nodes
belonging to a specific connection speed category. Although we observe some
variations, it seems that the size of a user’s library does not depend significantly
on the connection speed.

In Figure 3(a) we present the number of queries initiated by each user. Both
axis in this graph are logarithmic. The graph resembles a Zipf-like distribution,
indicating that some users ask a lot of queries, while most others ask only a few.
We also investigate the relationship between the number of queries asked by user
and their connection speed. In contrast to our intuition, the connection speed
seems to be irrelevant.

Finally, Figure 3(b) combines the queries with the contents of the users’
libraries. It shows, for an average user, the cumulative value of the answers
returned by other users, as a percentage of the total answers. For example,
during the process of answering a specific query, if a node contacts 50 other
peers it can retrieve around 62% of the available answers in the entire network.
From the graph it is obvious that for any query a node needs to contact at
most 120 out of the 4,500 peers, in order to find all the qualifying answers in
the network. This fact indicates that it is possible to develop algorithms which
answer queries efficiently in large P2P systems.

3.2 A Special Case: Music Files

A substantial percentage of the traffic in P2P systems is due to the exchange of
music files among the users. To facilitate experimentation in this domain, we ex-
tracted from the original data a subset consisting only of music files. There were

206 S.T. Goh et al.

0

500

1000

1500

2000

2500

3000

Modem Cable/DSL T1 T3/Higher

N
um

be
r

of
 U

se
rs

 fo
r

ea
ch

 C
on

ne
ct

io
n

S
pe

ed

Connection Speed

User-Speed Distribution

Connect_Speed

(a) Number of users vs. connection

0

40

80

120

160

200

240

280

Modem Cable/DSL T1 T3/Higher

A
ve

ra
ge

 N
um

be
r

of
 F

ile
s

pe
r

N
od

e

Connection Speed

Average Number of Files per Node for each Connection Speed

Avg#FilesPerNode

(b) Number of files vs. connection

Fig. 2. Group by connection speed

2,000 nodes containing at least one music file, while we captured approximately
200,000 such files in total; detailed statistics are presented in Table 1. Due to
the restricted domain, we were able to capture additional attributes for each
file. From the filename itself, we extracted the song title and the artist. Then,
by consulting song databases available in the Web, we categorized each song by
its genre (e.g., pop, rock, etc.) In total, 245 different genres were identified. The
music file dataset is also available online [3] in XML format.

In general, we observed that the distribution of songs among users is similar
to the distribution of general files presented in Figure 1. Moreover, the song
popularity within a genre also follows a Zipf distribution. Due to lack of space,
we do not present the corresponding graphs. The interested user should refer to
the long version of this paper [3].

Figure 4(a) shows the number of songs per category. Interestingly, here the
distribution does not follow Zipf’s law, since many categories have a lot of songs
while many others have only a few. In the next graph (Figure 4(b)) we investigate
whether the queries asked by users are similar to the contents of their libraries.
For instance, we want to know whether a user who owns mostly rock songs
is likely to search for another rock song. To verify this, we first generated a
histogram for each user’s library based on the songs’ genre. Then, we evaluated
all the queries of each user against our entire song dataset and generated a
histogram based on the genre that included all the qualifying songs. Finally, for
each user, we calculated the overlap between the histogram of his library and
the histogram of his queries. The graph shows that for many users their queries
exhibit substantial similarity with their libraries. This fact could be exploited
by an algorithm to generate an enhanced network topology based on the users’
interests as reflected by their shared libraries. Other groupings are are possible
(e.g., a query about a rock ballad is compatible with pop songs). Such an in-
depth analysis is outside the scope of this paper.

Real Datasets for File-Sharing Peer-to-Peer Systems 207

1

10

100

1000

1 10 100 1000 10000

nu
m

be
r

of
 q

ue
rie

s

userID

Sorted Query Distribution histogram

queryDistrib

(a) Number of queries per user

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

P
er

ce
nt

ag
e

of
 m

at
ch

 b
et

w
 L

oc
al

-Q
ue

ry
 s

et
 u

se
rI

D
’s

 D
at

a

userID

Sorted Local-Query Remote-Data Histogram of an Average user

average user

(b) Cumulative % of answers found
in other users for an Average User

Fig. 3. Distribution of queries and answers

1

10

100

1000

1 10 100

N
um

be
r

of
 S

on
gs

 p
er

 C
at

eg
or

y

CategoryID

Number of Songs per Category (userID 2) Histogram (Snapshot: Shared Dat

Category:Genre

(a) Songs per category (genre)

1

10

100

0 200 400 600 800 1000 1200 1400

%
 o

f S
im

ila
rit

y

userID

Sorted-Log Similarity Histogram (Snapshot: Queries & Shared Data)

Category:Genre

(b) Similarity between queries and
library contents

Fig. 4. Statistics for the music files

4 Case Study

As a case study, in this section we evaluate two recently proposed methods,
namely the Dynamic Reconfiguration [4] and the Interest-based locality [12].
Both attempt to minimize the network traffic by identifying nodes which are
beneficial in terms of content.

The intuition behind Dynamic Reconfiguration [4] is that there are groups
of users in the network that share common interests. The method attempts to
identify groups of compatible nodes and dynamically reconfigure the network to
bring such nodes close to each other; thus, consequent queries will be answered
with fewer hops.

208 S.T. Goh et al.

When a node initiates a query, multiple peers may reply and statistics are
gathered for all of them. All search results are not equally beneficial. A user
will prefer to download a song from a node with high bandwidth. Moreover, the
larger the results list, the lesser its significance for the reconfiguration process,
since it cannot differentiate the compatible from the incompatible peers.

Based on these observations, the network reconfiguration process is imple-
mented as follows. (i) Each obtained result accounts for a benefit of c/TRN ,
where c is the bandwidth of the answering link and TRN is the total number
of results. Notice that the Gnutella Ping-Pong protocol, which performs explo-
ration, specifies that information concerning bandwidth capacity is propagated
together with the query reply. (ii) Periodically, each node checks the cumulative
benefit of all nodes for which it keeps statistics, and includes in the new neigh-
borhood the most beneficial ones. (iii) When a new node needs to be added, an
invitation message is sent. (iv) The invited node always accepts an invitation
evicting the least beneficial neighbor if necessary. (v) Neighbor log-offs trigger
the update process. Note that in order to avoid frequent reconfigurations, when
a node is evicted it does not attempt to replace the evicting neighbor immedi-
ately. Such a node will obtain a new neighbor if: (a) it receives an invitation
from another node or, (b) reaches a reorganization threshold. In Ref. [4] the Dy-
namic Reconfiguration method is shown to be around 50% better than Gnutella
in terms of message overhead, for a synthetic dataset.

Interest-based locality [12] is trying to improve the scalability of Gnutella-
type search protocols, by introducing the concept of interest-based shortcuts.
Shortcut lists are maintained at each node inside the network, which contain
information (e.g., IP addresses) about other nodes that have answered a query
in the past. Assuming that P2P users exhibit interest similarities, these nodes
might be able to answer subsequent queries from the same user. The basic idea
is to create a new overlay structure on top of the existing P2P network (based
on these lists), and perform the content search in two steps. The nodes in the
shortcut list are queried first (one by one, starting from the most beneficial node)
until the requested file is found. If the search is not successful, the underlying
P2P network is utilized by employing the standard flooding-based protocol.

In the basic algorithm, shortcuts are discovered through the Gnutella-type
flooding protocol. Anytime a query is not resolved via the shortcut list, new
candidate nodes are discovered following the flooding process. Then, a new node
is selected and added to the shortcut list, possibly replacing a less beneficial
shortcut. The size of the list is limited to ten entries, while its content is contin-
uously updated due to the dynamic nature of the network (i.e., nodes entering
or leaving the network). The importance of each shortcut (which also reflects its
position in the sorted list) is determined by its success rate, i.e., the percent-
age of requests that it was able to answer successfully. Several enhancements to
the basic algorithm were evaluated in Ref. [12] but the performance gain was
relatively small compared to the increased complexity.

Real Datasets for File-Sharing Peer-to-Peer Systems 209

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

%
 o

f n
et

w
or

k
co

ve
re

d

Number of hops

500 nodes -- GT-ITM network
2000 nodes -- GT-ITM network

500 nodes -- Powerlaw network
2000 nodes -- Powerlaw network

Fig. 5. Number of hops to cover the network

4.1 Experimental Setup

We developed a discrete event simulator in order to measure the query response
time in addition to the number of messages which are exchanged. We split the
users into three categories, according to their connection bandwidth; each user
may be connected through a 56K modem, a cable modem or a LAN. The mean
value of the one-way delay between two users is governed by the slowest user,
and is equal to 300ms, 150ms and 70ms, respectively. The standard deviation
is set to 20ms for all cases, and values are restricted in the interval µ± 3σ. We
experimented with various query rates. When the query rate is too high, the
nodes are overloaded and all methods suffer. In the graphs we present here the
query rate is slow enough to avoid this problem.

We used two network topologies for our experiments: (i) power-law [6] net-
works comprising of 500 and 2000 nodes, where the average number of neighbors
per node was set to 3.2, and (ii) stub networks with 500 and 2000 nodes, pro-
duced with the GT-ITM [5] generator. In Figure 5 we show the percentage of the
nodes that can be reached within 1 to 12 hops for each of the network topologies.
Notice, that we did not keep the client population constant within the duration
of each experiment. Instead, we properly set the arrival and departure rate of
nodes in the system, in order to maintain the desired average population size.

Inwhat follows,we compare the normal Gnutella protocol(denoted as Gnutella
in the graphs) with Dynamic Reconfiguration (denoted as Dynamic-Gnutella)
and the Interest-based Locality method (denoted as Direct-Gnutella).

4.2 Performance Evaluation

First, we consider a GT-ITM network with 2000 nodes. We measure the response
time from the moment that a user submits a query, until the moment when the
first result arrives. In the experiment of Figure 6(a) we allow the message to
propagate for up to six hops and present the cumulative response time. The
graph, for example, shows that after 6000 msec Dynamic-Gnutella was able
to find answers for a little less than 30% of the submitted queries, while this
percentage grows to almost 35% for Direct-Gnutella. The important observation

210 S.T. Goh et al.

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

%
 o

f Q
ue

rie
s

an
sw

er
ed

Delay (ms)

% of Queries answered within time Delay

Gnutella
Dynamic_Gnutella

Direct_Gnutella

(a) % of queries answered vs. delay

400000

450000

500000

550000

600000

650000

700000

10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

s

Hours

Query overhead

Gnutella
Dynamic_Gnutella

Direct_Gnutella

(b) Query overhead

Fig. 6. GT-ITM network, 2000 nodes, 6 hops

here is that the Dynamic method can be worse than plain Gnutella in terms of
response time due to the reorganization overhead. Moreover, the performance
improvements of Direct-Gnutella are not significant.

Figure 6(b) shows the number of messages transferred in the network per
hour, for a simulated period of 100 hours. The Dynamic method needs less
messages because a node does not propagate the query further as soon as a
result is found. Because of the reconfiguration process, compatible nodes are
gathered closer so query propagation stops earlier. The Direct method, however,
needs to perform a Gnutella-style search if the results are not found by following
the shortcuts. Since this is usually the case, it needs as many messages as the
plain Gnutella protocol.

Figure 7(a) and Figure 7(b) present the respective results when the number of
hops is increased to eight. Since all methods can reach more peers, the absolute
number of the answered queries increases. However, the differences among the
algorithms diminish, since the additional results are further away.

Figures 8(a) and 8(b) present similar results for a power-law network of 500
nodes. Here, we allow a smaller number of hops, because the connectivity of the
network is much higher (see Figure 5). The results are similar to the previous
ones. The only difference is that the number of transmitted messages is almost
the same for all methods. This is due to the higher connectivity of the network: no
matter how the network is reconfigured it is very likely that a query will reach
a highly connected peer which will generate many messages for the Dynamic
method as well as for Gnutella.

The conclusion from the above experiments is that the Dynamic and Direct
variations of Gnutella can outperform the näıve protocol if the connectivity of the
network is low and the allowed number of hops is limited. Then, the advanced
methods can reach directly parts of the network which would take Gnutella
several hops. On the other hand, if the network is well connected (e.g., power-law)

Real Datasets for File-Sharing Peer-to-Peer Systems 211

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000 7000 8000

%
 o

f Q
ue

rie
s

an
sw

er
ed

Delay (ms)

% of Queries answered within time Delay

Gnutella
Dynamic_Gnutella

Direct_Gnutella

(a) % of queries answered vs. delay

1e+06

1.1e+06

1.2e+06

1.3e+06

1.4e+06

1.5e+06

1.6e+06

1.7e+06

10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

s

Hours

Query overhead

Gnutella
Dynamic_Gnutella

Direct_Gnutella

(b) Query overhead

Fig. 7. GT-ITM network, 2000 nodes, 8 hops

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000 30000 35000

%
 o

f Q
ue

rie
s

an
sw

er
ed

Delay (ms)

% of Queries answered within time Delay

Gnutella
Dynamic_Gnutella

Direct_Gnutella

(a) % of queries answered vs. delay

0

20000

40000

60000

80000

100000

10 20 30 40 50 60 70 80 90 100

M
es

sa
ge

s

Hours

Query overhead

Gnutella
Dynamic_Gnutella

Direct_Gnutella

(b) Query overhead

Fig. 8. Power-law network, 500 nodes, 4 hops

the performance difference diminishes since Gnutella can reach remote nodes
easily.

The inherent drawbacks of the advanced methods are the assumptions that
(i) during its online period each peer initiates enough queries to locate beneficial
nodes, (ii) subsequent queries are relevant to the previous ones, and (iii) there
is similarity among the contents of each peer. Our dataset reveals that in prac-
tice these conditions are unlikely to be met, therefore the performance of the
advanced methods is not impressive. In particular, the first assumption seems to
be the major factor behind these results. A peer that does not ask many queries
will not able to discover many beneficial nodes. Furthermore, even when some
beneficial nodes are discovered, there is no guarantee that they will stay on-line
for a long period of time. Regarding assumptions (ii) and (iii), our dataset shows

212 S.T. Goh et al.

some degree of similarity both among peer libraries and among the content of
a peer’s library and the queries that this peer asks. However, this behavior was
limited to only a fraction of the total population.

5 Conclusions

In this paper we presented the characteristics of a large real dataset collected
from the peers in the Gnutella network. We believe that this dataset will benefit
all researchers in the P2P area because (i) it can become a standard benchmark
to test various algorithms, and (ii) it provides realistic results since it is the only
one to include not only queries but also the exact index of the peers’ libraries.
Initial analysis of the dataset revealed that real systems exhibit interesting char-
acteristics that can be used to improve searching in P2P networks. For instance,
we showed that in the music sharing domain, many users search for songs similar
to their own libraries. Moreover, we used the dataset to evaluate existing P2P
systems which attempt to identify beneficial peers. We found that in practice
these systems may not perform as well as expected.

Acknowledgments

We would like to thank Yip Jun Kwan (Elton) for the implementation of the
Gnutella probe and the collection of the data.

References

1. Gnutella home page. http://gnutella.wego.com.
2. Napster home page. http://www.napster.com.
3. Real dataset for file-sharing p2p systems. http://www.comp.nus.edu.sg/∼p2p.
4. S. Bakiras, P. Kalnis, T. Loukopoulos, and W. S. Ng. A general framework for

searching in distributed data repositories. In Proc. IEEE IPDPS, pages 34–41,
2003.

5. K. Calvert, M. Doar, and E. W. Zegura. Modeling internet topology. IEEE Com-
munications Magazine, 35:160–163, June 1997.

6. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. In Proc. ACM SIGCOMM, pages 251–262, 1999.

7. K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan.
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In
Proc. ACM SOSP, pages 314–329, 2003.

8. Limewire Home Page. http://www.limewire.com/.
9. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable

content-addressable network. In Proc. ACM SIGCOMM, pages 161–172, 2001.
10. S. Saroiu, K. P. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer

file sharing systems. In Proc. Multimedia Computing and Networking, 2002.
11. S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks. In Proc.

Internet Measurement Workshop (IMW), pages 137–150, 2002.

Real Datasets for File-Sharing Peer-to-Peer Systems 213

12. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using
interest-based locality in peer-to-peer systems. In Proc. IEEE INFOCOM, pages
2166–2176, 2003.

13. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proc. ACM
SIGCOMM, pages 149–160, 2001.

14. B. Yang and H. Garcia-Molina. Efficient search in peer-to-peer networks. In Proc.
IEEE ICDCS, pages 5–14, 2002.

15. B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proc. ICDE,
pages 49–60, 2003.

SemEQUAL: Multilingual Semantic Matching
in Relational Systems

A. Kumaran and Jayant R. Haritsa

Database Systems Laboratory, SERC/CSA,
Indian Institute of Science, Bangalore 560012, INDIA

{kumaran, haritsa}@dsl.serc.iisc.ernet.in

Abstract. In an increasingly multilingual world, it is critical that information
management tools organically support the simultaneous use of multiple natural
languages. A pre-requisite for efficiently achieving this goal is that the underlying
database engines must provide seamless matching of text data across languages.
We propose here SemEQUAL, a new SQL functionality for semantic match-
ing of multilingual attribute data. Our current implementation defines matches
based on the standard WordNet linguistic ontologies. A performance evaluation
of SemEQUAL, implemented using standard SQL:1999 features on a suite of
commercial database systems indicates unacceptably slow response times. How-
ever, by tuning the schema and index choices to match typical linguistic features,
we show that the performance can be improved to a level commensurate with
online user interaction.

1 Introduction

Internet demographics are changing dramatically: about two-thirds of current Inter-
net users are non-native English speakers [18] and it is predicted that the majority of
web-pages will be multilingual by 2010 [22]. In such an increasingly multilingual dig-
ital world, it is critical that information management tools, e-Commerce portals and
e-Governance applications, support the simultaneous use of multiple natural languages.
A pre-requisite is that the underlying database engines (typically relational), provide sim-
ilar functionality and efficiency for multi-lingual data as that associated with processing
uni-lingual data, for which they are well-known.

From the efficiency perspective, we recently profiled in [14] the performance of
standard relational operators on multilingual data and proposed efficient storage formats
to make the operators natural-language-neutral. Subsequently, from the functionality
perspective, we introduced a new SQL operator called LexEQUAL [15], for phonetic
matching of specific types of attribute data across languages, optimized for supporting
e-Commerce environments. In this paper, we take the next logical step, by proposing
SemEQUAL, a semantic functionality for matching text attribute data across languages
based on meaning. For example, to automatically and transparently match the English
noun mathematics, with mathématiques in French or (transliterated as kanitham,
meaning mathematics) in Tamil.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 214–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SemEQUAL: Multilingual Semantic Matching in Relational Systems 215

1.1 The SemEQUAL Operator

The proposed semantic matching functionality is illustrated on a hypothetical
Books.com, with a sample multilingual product catalog, as shown in Figure 1, where the
Category attribute stores the classification of the book in the original language of publi-
cation. In today’s database systems, a query with (Category = ‘History’) selection condi-
tion, would return only those books that have Category asHistory in English, although
the catalog also contains history books in French, Hindi and Tamil. A multilingual user
may be better served, however, if all the history books in all the languages (or more
likely, in a set of languages specified by her) are returned. A query using the proposed
SemEQUAL and a result set, as given in Figure 2, would therefore be desirable.

Fig. 1. A Multilingual Books.com

SELECT Author,Title,Category FROM Books
WHERE Category SemEQUAL ALL ‘History’
InLanguages {English, French, Tamil}

Fig. 2. Multilingual Semantic Selection

It should be noted that the SemEQUAL operator shown here is generalized to return
not just the tuples that are equivalent in meaning, but also with respect to semantic
generalizations and specializations, as in the last three tuples that are reported in the
output1. Without the optional ALL directive, only the first three records that are directly
equivalent to History would be reported.

1 Historiography (the science of history making) and Autobiography are specialized
branches ofHistory. The third record in the result has a category value of (translit-
erated as Charitram) in Tamil, meaning History, and the last record has a category value
of (transliterated as Suyacharitam) in Tamil, meaning Autobiography.

216 A. Kumaran and J.R. Haritsa

To determine semantic equivalence of word-forms across languages and to char-
acterize the SemEQUAL functionality, we take recourse to WordNet [23], a standard
linguistic resource that is available in multiple languages and, very importantly from our
perspective, features inter-lingual semantic linkages. After integrating WordNet with
the database platform, two alternatives arise with regard to the SemEQUAL implemen-
tation: a derived-operator approach using the standard SQL features, or a core-operator
implementation that is internally visible to the database engine. While the latter approach
may prove more efficient in the long-term, we investigate the derived-operator approach
here since it can be implemented immediately on existing commercial database systems
using their current SQL capabilities. Specifically, we first analyse the performance of
SemEQUAL, expressed using recursive SQL features of the SQL:1999 standard, in
relational database systems. A direct implementation on three commercial database sys-
tems indicates that supporting multilingual semantic processing is unacceptably slow.
However, by applying a few simple optimizations that tune the schema and access struc-
tures to match WordNet characteristics, the response times are brought down to a few
milliseconds, which we expect to be sufficient for current practical deployments. Further,
though this paper focuses only on multilingual domain, a functionality defined along
the same lines may be generalized for matching in any domain with a well-specified
taxonomic hierarchy.

1.2 Our Contributions

To summarize, our main contributions in this paper are:

• Motivating the need for, and formulating the notion of, multilingual semantic equal-
ity at the granularity of database attributes.

• Integration of WordNet linguistic resources with relational database systems and a
derived-operator implementation of SemEQUAL, using standard SQL features.

• Optimizing the performance of SemEQUAL, based on WordNet linguistic features,
to a level that appears sufficient for current e-Commerce deployments.

2 Multilingual Semantic Matching

In this section, we provide a brief background on the WordNet linguistic resources,
on which the semantics of our current implementation of the SemEQUAL operator
is based. Subsequently, we describe our strategy for implementing SemEQUAL as a
derived-operator, using standard SQL:1999 features that are available in all commercial
database systems.

2.1 Overview of WordNet

A word may be thought of as a lexicalized concept; simply, it is the written form of a
mental concept that may be an object, action, description, relationship, etc. Formally, it
is referred to as a Word-form. The concept that it stands for is referred to as Word-sense,
or in WordNet parlance, Synset. The defining philosophy in the design of WordNet is that
a synset is sufficient to identify a concept for the user. A short description, similar to the

SemEQUAL: Multilingual Semantic Matching in Relational Systems 217

dictionary meaning, called the Gloss is provided with synsets, for human understanding.
Two words are said to be synonymous, or semantically the same, if they have the same
synset and hence map to the same mental concept. WordNet organizes all relationships
between the concepts of a language as a semantic network between synsets.A lexical ma-
trix that maps word forms to word senses constitutes the basis for mapping a word-form
to synsets. For example, the word-form bird corresponds to several different synsets,
two of which are {a vertebrate animal that can typically fly} and {an aircraft}; each of
these two synsets is denoted differently with subscripts, in Figure 3. The synsets are di-
vided into five distinct categories and we explore below only the Nouns category, as about
a fifth of normal text corpora and majority of query strings are noun-form words [17].

Bird(2)

Mammal Machanical

MouseHuman Flying

Bird

Fauna Artifact

(1)

Man Woman

Mechanishe

Maus

Vogel

Kunstprodukt

Menschlich Flugzeug

Männlicher Weiblicher

Tier

VorrichtungDevice

Machine

Aircraft /

Saugetier

En
gl

ish
 N

ou
n

Hi
er

ar
ch

y
G

egenstandsw
ortcHierarchie

Deutsche

Fig. 3. Sample Inter-linked WordNet Noun Hierarchy

Noun Taxonomical Hierarchy. The nouns in English WordNet are grouped under ap-
proximately twenty-five distinct Semantic Primes [7], covering distinct conceptual do-
mains, such as Animal, Artifact, etc. Under each of the semantic primes, the nouns
are organized in a taxonomic hierarchy, as shown in Figure 3, with Hyponyms links
signifying the is-a relationships (shown in solid arrows).

Several efforts are underway – such as the EuropeanWordNet (EWN) [6] that includes
all major European languages and the Indo-WordNet (IWN) [13, 2] that include all 15
of the official Indian languages – to link up WordNet taxonomic hierarchies of different
languages. A Chinese WordNet (CWN) initiative, along the lines of English WordNet,
is outlined in [3]. A common feature among such initiatives is that they keep the basic
taxonomic hierarchies nearly the same as that of English and provide mapping from
their synsets to that of English. Further, inter-linking of semantically equivalent synsets
between WordNets of different languages (shown as dotted arrows) is available for some
languages currently [6], and is planned for others [13]. Figure 3 shows a simplified
interlinked hierarchy in English and German. Such interlinked hierarchy is used for
defining semantic matching in the following section.

2.2 Semantic Matching Functionality Using Interlinked WordNet

Using the lexical matrix function that is a part of the WordNet linguistic resources, the
operands (i.e., the the multilingual word-forms), may be mapped on to distinct set of

218 A. Kumaran and J.R. Haritsa

synsets associated with the languages of the respective operands. Further, the set of
synsets corresponding to the RHS operand is augmented with synsets that are reachable
using Inter-Lingual-Index (ILI) links, to the target languages. Once augmented, the se-
mantic equality may be defined as follows: A equivalent match is true, if there is
a non-empty intersection between the LHS and RHS sets of synsets. A generalized
match is true, if there is a non-empty intersection between LHS set of synsets and the
transitive closure of the RHS set of synsets in the above taxonomic hierarchy. Such a
definition ensures that in at least one word-sense, the operands may be matched. For ex-
ample, only in ageneralizedmatch, the query (IsbirdSemEQUALArtifact?)
and (Is bird SemEQUAL Fauna?), both would be true.

2.3 Implementing Multilingual SemEQUAL

The summary function implementing SemEQUAL is shown in Figure 4 (details are
available in [16]). The SemEQUAL functionality needs two significant steps (both in
line): computation of the closure of the synsets corresponding to the RHS operand and
testing non-empty intersection of the set of synsets corresponding to the LHS operand
and the computed closure of the RHS operand.

SemEQUAL (StringData, StringQuery , LD , LQ, match, TL)
Input: StringData and StringQuery in languages LD and LQ, match flag, Target Languages
TL
Output: TRUE or FALSE, [Optional] Gloss of Matched Synset

1. (WD ,WQ) ← WordNet Of (LD ,LQ);
2. (SD ,SQ) ← Synsets of (StringData in WD , StringQuery in WQ);
3. if Match is EQUIVALENT then if SD ∩ SQ �= φ return true else return false;

else if Match is GENERALIZED then
T CQ ← TransitiveClosure(SQ, WQ, TL);
if SD ∩ T CQ �= φ return true else ret urn false;

4. [Optional.] return Gloss of the Matched Synset;

Fig. 4. Semantic Matching Algorithm

In the following discussions, we focus on thegeneralizedmatching that requires
a closure computation, which is inefficient in relational systems. The transitive closure is
computed using the (intra-language) Is-A relationships and the (inter-language) ILI rela-
tionships stored in the database. In our derived operator approach, the transitive closure
of the StringQuery on WordNet taxonomic hierarchy is computed using the standard
SQL:1999 recursive SQL constructs. After computing the transitive closure of the RHS
operand, each record is checked for intersection of the synsets corresponding to the LHS
operand and the computed closure, returning all records for which the intersection is
non-empty. While the closure computation may be optimized by generating the closure
only up to the point to determine set membership in the second step, such optimizations
are not possible in the derived operator approach. Also, we restricted the closure com-
putation only to the target languages, thus keeping the complexity linear in the number

SemEQUAL: Multilingual Semantic Matching in Relational Systems 219

of target languages. Testing the set membership in the second step may be implemented
efficiently using well-known hash-table techniques.

2.4 Semantic Matching Example

We present an example to illustrate the derived-operator implementation of the
SemEQUAL function. The WordNet resource is stored in the WL table. The user query,

SELECT Author, Title FROM Books

WHERE Category SemEQUAL ALL ‘History’

InLanguages {English, French, Tamil}

is mapped to the following query, where the transitive closure on WL is computed using
the recursive SQL constructs and the set membership is tested by the SQL IN predicate:

WITH Descendants (child, lang)
(SELECT WL.sub, WL.lang FROM WordNet WL WHERE
WL.super = ‘History’ AND WL.lang IN (‘ENGLISH’,’FRENCH’,’TAMIL’)

UNION ALL
SELECT WL.sub, WL.lang FROM WordNet WL, Descendants Dec WHERE
WL.parent = Dec.child AND WL.lang = Dec.lang)

SELECT Author, Title FROM Books

WHERE Category IN (SELECT child FROM Descendants)

Thus, the user query effectively translates to the following SQL query:

SELECT Author,Title from Books

WHERE Category IN {‘History’,‘Memoir’,‘Autobiography’, ...

‘Histoire’,‘Mémoire’, ... ‘

Here, the values in the IN clause are a few of the subclasses of History, in English
WordNet, and their equivalents in French and Tamil WordNets. Note that any conjunction
(disjunction, respectively) of SemEQUAL predicates can be handled by computing the
intersection (union, respectively) of closures for the IN predicate.

3 Experimental Study

In this section, we describe our experimental setup to measure the performance of the
SemEQUAL derived operator, on a suite of commercial database systems.

3.1 System Setup

A standard Pentium IV workstation with 512 MB memory running Windows NT op-
erating system, was used as the experimental platform. Three database systems, IBM
DB2 Universal Server (Ver. 7.1.0), Microsoft SQL Server (Ver. 8.00.194), and Oracle 9i

‘ ’,‘ ’...

220 A. Kumaran and J.R. Haritsa

(Ver. 9.0.1), were installed with default configurations. Of these three, DB2 and Oracle
support recursive SQL natively, while the functionality is simulated through scripts in
SQL Server. In subsequent sections, the systems are identified randomly as A, B and C,
to conceal their identities.

3.2 WordNet Storage

The entire set of noun taxonomic hierarchies of WordNet (Version 1.5), totaling about
110,000 word forms, 80,000 synsets and about 140,000 relationships between them, was
loaded into each of the database systems, in a simple hierarchy table (asParent-Child
relationships). We calculate the storage space requirements of each WordNet to be about
 MB (including index storage), based on the profile of English Wordnet (shown in
Table 1). Assuming that the WordNet of each language will be similar to that of English
when fully developed, the storage needed to store WordNet in non-Latin script, is about
 MB, due to the need for Unicode format.

Table 1. Statistical Profile of WordNets [2, 6]

Characteristic English French German Spanish Hindi

Word Forms (Words) 114,648 32,809 20,453 50,526 22,522
Word Sense (Synsets) 80,000 22,745 15,132 23,378 7,868
Average Synsets per Word Form 2.236 2.176 2.301 2.360 3.889
Average Word Forms per Synset 1.985 1.442 1.352 2.162 2.286
Equivalence Relations per Synset(to English) 1.000 0.999 1.080 0.908 Not Available

3.3 Query Workload

For profiling the performance of the SemEQUAL operator, we used queries that com-
pute closures of varying sizes, from a few hundreds to a few thousands, on the above
taxonomic hierarchy. Queries based on SQL:1999 recursive SQL constructs (as shown
in Section 2.4) were used, with appropriate query terms to compute closures of the
necessary sizes.

To establish the likely closure size (i.e., the average closure size for likely query
strings), we selected the top-hundred most used nouns in English [1] and the top-fifty
nouns that are used in popular web-search engines [24] and computed the average of
their closure-sizes in English WordNet, which turned out to be around [16]. Hence,
it is realistic to use a figure of around , for a representative closure size, assuming
that a multilingual user would typically want answers in at most three languages.

3.4 Metrics Measured

In all the experiments, we measured the wall-clock runtime of a given query on the given
data set. The queries were run in an SQL or a programming language environment, as
appropriate. The test machine was quiesced except for the database system under study
and the queries were run cold. The average runtime from several identical runs was taken
as the runtime of a specific query (the graphs show mean values with relative half-widths
about the mean of less than 5% at the 90% confidence interval).

SemEQUAL: Multilingual Semantic Matching in Relational Systems 221

It should be noted here that the quality of the retrieval is determined solely by the
coverage (for recall) and the resolution power (for precision) of the WordNet taxonomic
hierarchy. Measurement of such quality is in the domain of behavioral and linguistic
experts, and beyond the scope of our research, which focuses solely on optimizing the
database performance, given the linguistic hierarchies.

4 Results and Analysis

In this section, we report on the performance of a suite of commercial database systems
in computing the SemEQUAL operator, as per the SQL queries described in Section 2.
To profile the performance of SemEQUAL working with fully developed linguistic
resources, we used the following strategy: We first profiled the structural characteristics
of WordNets, as they exist now, and the results are given in Table 1.

The statistics of the individual taxonomic hierarchies indicate a very close match be-
tween the WordNets. In addition, since both Euro and Indo WordNets have conformance
to English WordNet as their stated design goal, it is reasonable to expect their struc-
tures to be similar to that of English WordNet, when fully developed. Since the English
WordNet is the most developed at this point of time, we replicated English WordNet in
Unicode format and created ILI links between every English synset and its correspond-
ing synset in Unicode. The resulting taxonomic hierarchy is used in the performance
experiments.

4.1 Closure Computation – Baseline

For the baseline performance experiments, the interlinked WordNet taxonomic hierarchy
(in Unicode format to simulate multilingual environments, as discussed earlier) was
stored and queried, as specified in Section 3. The query strings for the experiment were
chosen so as to result in the computation of closures of varying sizes. The SQL-Baseline
performance (in seconds) for the basic closure computation in the three database systems
(with out and with B+ tree index) is given in Figure 5 (shown in log-log scale). As can
be observed here, the closure computations for all the systems take up to hundreds of
seconds without index support and up to a few seconds even with an index. Though the
variations in performance may be attributed to the respective algorithms and optimization
techniques – details in [16], the net result is that the performance is unsuitable for e-
Commerce deployments, if the size of the closure exceeds a few hundred items.

In the following sections, we outline two different (and mutually exclusive) opti-
mization techniques that improve the performance in System B, which exhibits the worst
indexed performance.

4.2 Optimization #1: Precomputed Closure

First, we used a standard optimization technique – pre-computing the closures of every
element in WordNet and storing them explicitly as the immediate children of the corre-
sponding element; thus, the closures could be found with a simple scan of the enhanced
table. We also explored the possibility of further reducing the cost of computation by
building an index on the parent attribute of the pre-computed table.

222 A. Kumaran and J.R. Haritsa

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000

T
im

e
 (

S
e

c
.)

Size of Closure

System A (without Index)
System A (with Index)

System B (without Index)
System B (with Index)

System C (without Index)
System C (with Index)

Fig. 5. Baseline Performance

 0.1

 1

 10

 100 1000 10000

T
im

e
 (

S
e

c
.)

Size of Closure

Precomputed Closures (Without Index)
Precomputed Closures (With Index)

Fig. 6. Baseline Performance

 1

 10

 100

 1000

 1 10 100

C
o
u
n
t

Fan-out

English WordNet Fan-out
Hindi WordNet Fan-out

Fig. 7. WordNet Fan-out Plot

 0.01

 0.1

 1

 10

 100

 100 1000 10000

T
im

e
 (

S
e

c
.)

Size of Closure

Reorganized Schema (Without Index)
Reorganized Schema (With Index)

Fig. 8. WordNet Fan-out Plot

 0.01

 0.1

 1

 10

 100

 1000

 0 1 2 3 4 5 6 7 8 9

Ti
m

e
(S

ec
.)

Number of WordNets

Baseline (Without Index)
Baseline (With Index)

Pre-Computed Closure (Without Index)
Pre-Computed Closure (With Index)
Re-organized Table (Without Index)

Re-organized Table (With Index)

Fig. 9. Scaling of Computing Closure

SemEQUAL: Multilingual Semantic Matching in Relational Systems 223

We ran the transitive closure query on the resulting data set, and the performance,
with and without the index, is presented in Figure 6 (the graph is shown in log-log scale).
We observe here an improvement in performance, to about seconds (without index)
for the Unicode WordNet. Understandably, the closure computation takes approximately
the same time for all sizes of the closure, since only a table scan is needed. With the
index, as expected, the runtime is reduced by an order of magnitude from the baseline
index performance, to just under one second. However, this gain comes with the penalty
of enormous storage costs: the space requirements of the taxonomic tables are increased
by about times, to roughly MB (and an additional MB for index).

4.3 Optimization #2: Reorganizing Schema

We now move on to an alternative performance optimization strategy with much smaller
space overheads. This strategy is based on leveraging the distribution of synsets in the
WordNet hierarchy to reduce the calls to the expensive recursive SQL statements. We
first computed and plotted the fan-out of subclasses for every parent node in English
WordNet, as shown in Figure 7. The plot of the fan-out exhibits a characteristic power-
law distribution with an exponent of −.. Further analysis indicated that only a small
number of synsets (less than %) have a large number of children (more than), with
the large majority having only a few children2. This distribution suggests a new, more
efficient organization of WordNet hierarchy, where a certain number of sub-classes may
be inlined. We chose to inline those synsets with upto subclasses in a new taxonomy
table, reducing the number of records in the new taxonomy table to about a tenth of that
of the original table. All synsets with greater than subclasses remained in the original
table. The closure computation algorithm is modified to access the inlined table for all
synsets with less than children, or the original table, otherwise. The overall size of
the table (in terms of number of tuples) reduces by about %, though the storage size
remains about the same as the Baseline (about MB for Unicode WordNets).

For the above schema, the performance of the closure queries – with and without
indexes – are shown in Figure 8 (the graph is drawn to a log-log scale). As can be
observed from the figure, the performance with reorganized schema is speeded up by
 orders of magnitude on the plain table, and by orders of magnitude on the indexed
table, with no perceptible increase in storage requirements from the baseline.

4.4 Scaling of Performance with Languages

Finally, we explore how the performance behaves as function of the number of languages
being considered for query processing. The runtimes for the typical query, computing a
transitive closure of approximately≈ is shown in Figure 9. We observe a near-linear
increase in both pre-computed closure and re-organized tables methodologies, with the
number of languages. Further, even with about languages, the index-based runtimes for
the typical query remained within a few tens of milliseconds, which appears sufficiently
small to support online interaction for a multilingual user.

2 The fan-outs in Hindi and English WordNets (in Figure 7) exhibit a very similar profile differing
only in scale, suggesting the applicability of power-laws in linguistic domains as well.

224 A. Kumaran and J.R. Haritsa

Thus, we show that a new semantic multilingual matching functionality may be added
to current relational database systems by integrating standard linguistic resources, and
leveraging only on existing SQL features. Further, we show the performance of this
matching may be sufficiently optimized to support online-user interactions for multilin-
gual e-commerce applications.

5 Related Research

To the best of our knowledge, multilingual semantic matching of attribute data – by in-
tegrating standard linguistic resources with the database engine, has not been discussed,
previously in the literature. With respect to Semantic Query Processing, no standards
have been specified in SQL and hence there is no uniformity among systems in such
support. All systems support some level of semantic querying, based on NLP techniques,
but are un-suitable for for attribute level matching. The WordNet based approach was
used for semantic information retrieval in [19], where the emphasis was on quality of the
results and not performance; our work on performance of such retrievals is complemen-
tary to this research. There are vast amounts of literature in the Information Retrieval
Research community in the areas of Knowledge-based and Natural-language based re-
trieval. The techniques employed are diverse, ranging from syntactic and morphological
analysis [8] to Machine Translation [5], statistical techniques [9], and Latent Semantic
Indexing [4] for semantic querying in a single language, and to paired dictionaries [20]
techniques for handling cross-language querying. We refer to the Multilingual Informa-
tion Retrieval Track of the ACM SIGIR conference for a survey of current techniques.
Such techniques do not perform well on attribute level data in OLTP type environments.
Initiatives, such as the Semantic Web [21] are appropriate for meta-data management in
the web domain, but not for database query processing. Finally, the existence of several
International WordNet initiatives [3, 6, 13], with a stated objective of following similar
taxonomical structures, is an enabling resource, for realizing our proposal.

6 Conclusions

In this paper, we proposed a new SQL functionality – SemEQUAL – to support seamless
multilingual text data matching, based on semantics, to cater to increasingly multilin-
gual user requirements in e-commerce deployments. Our proposal outlines a light-weight
approach for implementing this feature by adopting and integrating the WordNet linguis-
tic resource in the database system. Multilingual text attribute data are matched after
transforming them to a canonical semantic form, leveraging on the rich cross-linked
taxonomic hierarchies in WordNets. As a side effect, such a methodology provides a re-
peatable and consistent result set for a given data set across different database systems.

We outlined a derived-operator approach for implementing the SemEQUAL op-
erator, using standard SQL:1999 constructs. Our performance experiments with real
WordNet data on three popular commercial database systems, underscored the ineffi-
ciencies in computing transitive closure, an essential component for semantic matching.
The runtimes are in the order of a few seconds, unsuitable for practical deployments.
We proposed optimization techniques, by tuning the storage and access structures to
match the characteristics of linguistic resources, and demonstrated that the closure com-

SemEQUAL: Multilingual Semantic Matching in Relational Systems 225

putation may be speeded up by nearly orders of magnitude – to a few milliseconds
– to make the operator efficient enough for supporting online user query processing.
These results underscore the viability of the SemEQUAL functionality for immediate
practical use. Finally, we expect that for specific applications, semantic matching using
domain-specific ontological hierarchies, may also benefit from a similar approach to
those outlined in this paper.

Acknowledgements. We thank Dr. P. Bhattacharyya, Coordinator of Center for Indian
Language Technology at IIT-Bombay, for providing us with details on Hindi WordNet.

References

1. The British National Corpus, Oxford University Press. http://www.comp.lancs.ac.uk.
2. Centre for Indian Language Technology, IIT-Bombay. http://www.cfilt.iitb.ac.in.
3. H. Chen, C. Lin and W. Lin. Building a Chinese-English WordNet for Translingual Applica-

tions. ACM Transactions on Asian Languages Information Processing, 2002.
4. S. Deerwester, S. T. Dumais and W. C. Ogden. Indexing by Latent Semantic Analysis. Jour.

of American Soc. of Information Sciences, September 1990.
5. The EuroSpider. http://www.eurospider.ch.
6. The Euro-WordNet. http://www.illc.uva.nl/EuroWordNet.
7. C. Fellbaum and G. A. Miller. WordNet: An electronic lexical database (language, speech

and communication). MIT Press, 1998.
8. C. Fluhr et al. Multilingual Database and Crosslingual Interrogation in a Real Internet Ap-

plication. AAAI Sym. on Crosslanguage Text and Speech Retrieval, 1997.
9. F. Gey, A. Chen, M. Buckland and R. Larson. Translingual Vocabulary Mapping for Multi-

lingual Information Access. Proc. of 25th ACM SIGIR Conf., 2002.
10. The Global WordNet Association. http://www.globalwordnet.org.
11. J. Han et al. Some Performance Results on Recursive Query Processing in Relational Database

Systems. Proc. of 2nd ICDE Conf., 1986.
12. Y. Ioannidis. On the Computation of TC of Relational Operators. Proc. of 12th VLDB Conf.,

1986.
13. B. D. Jayaram and P. Bhattacharyya. Report on Indo-WordNet Workshop. Central Institute

of Indian Languages, January 1999.
14. A. Kumaran and J. R. Haritsa. On Multilingual Performance of Database Systems. Proc. of

29th VLDB Conf., 2003.
15. A. Kumaran and J. R. Haritsa. Supporting Multiscript Matching in Database Systems. Prof.

of 9th EDBT Conf., 2004.
16. A. Kumaran and J. R. Haritsa. Multilingual Semantic Operator in SQL. Technical Report

TR-2004-03, DSL/SERC, Indian Institute of Science, 2004.
17. M. Liberman and K. Church. Text Analysis and Word Pronunciation in TTS Synthesis.

Advances in Speech Processing, 1992.
18. The Computer Scope Ltd. http://www.NUA.ie/Surveys.
19. R. Richardson and A. F. Smeaton. Using WordNet in a Knowledge-based Approach to Infor-

mation Retrieval. Working Paper CA-0395, Dublin City University, 1999.
20. D. Soergel. Multilingual thesauri in cross-language text and speech retrieval. AAAI Sym.

on Cross-Language Text and Speech Retrieval, March 1997.
21. The Semantic Web. http://www.w3.org/2001/sw.
22. The WebFountain. http://www.almaden.ibm.com/WebFountain.
23. The WordNet. http://www.cogsci.princeton.edu/w̃n.
24. Word Discover. http://www.worddiscover.com.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 226 – 238, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Metropolis Sampling Method for Drawing
Representative Samples from Large Databases

Hong Guo1, Wen-Chi Hou1, Feng Yan1, and Qiang Zhu2

1 Department of Computer Science, Southern Illinois University, Carbondale IL, 62901
hou@cs.siu.edu

 2 Dept. of Computer & Info. Science, Michigan University-Dearborn, Dearborn, MI 48128
qzhu@umich.edu

Abstract. In this paper, a sampling method based on the Metropolis algorithm
is proposed. It is able to draw samples that have the same distribution as the
underlying probability distribution. It is a simple, efficient, and powerful
method suitable for all distributions. We have performed experiments to
examine the qualities of the samples by comparing their statistical properties
with the underlying population. The experimental results show that the samples
selected by our method are bona fide representative.

1 Introduction

While modern computers become more and more powerful, many databases in social,
economical, engineering, scientific, and statistical applications may still be too large
to handle. Sampling, therefore, becomes a necessity for analyses in such applications.
Sampling has also been used in areas like selectivity estimation [2, 3, 5], clustering [1,
10], and spatial data mining [8]. For applications in OLAP and data mining where
fast responses are required, sampling is also a viable approach for constructing in-core
representations of the data [8, 10]. Due to its wide applications and importance,
sampling is becoming an integral part of modern database systems, e.g., the Oracle 8i.

Uniform random sampling, in which all objects in the data set are treated equally,
has been used in all sorts of applications. However, it is also criticized for its uniform
treatment of objects because there are many applications where objects have non-
uniform probability distributions. Strictly speaking, a uniform sampling method
works only if the data has a uniform probability distribution; otherwise, the selected
sample may not be representative.

To illustrate the issue, let us consider the Gallup poll for a Federal election [7]. The
current dominant method for selecting a sample is by randomly picking residences’
telephone numbers. A careful examination of this method reveals that the sample
selected is not truly representative of the actual voters of the election. A major reason,
among others, is that statistics have shown that most voters between ages 18 and 24
do not cast their ballots, while most senior citizens go to the poll-booths on Election
Day. Since Gallup’s sample does not take this into account, the survey could deviate
substantially from the actual election results. To conduct the poll more accurately, we
ought to assign a different probability to each age group based on the chance that
people in that age group will cast a vote on the Election Day.

Knowing that a uniform sampling method fails to find representative samples for
populations with non-uniform probability distributions, some remedies, such as the
density biased sampling [10] and the Acceptance/Rejection (AR) sampling [9], have
been proposed. The density-biased sampling is specifically designed for applications
where the probability of a group (of similar objects) is inversely proportional to its
size. The AR sampling is based on the “acceptance /rejection” (or “hit and miss”)
approach [11, 12]. It aims at all probability distributions and is probably the most
general approach discussed in the database literature so far.

We are interested in finding a general, efficient, and accurate sampling method
applicable to all probability distributions. In this paper, we develop a Monte Carlo
sampling method based on the Metropolis algorithm [6] to produce representative
samples. As it will be clear in the subsequent sections, the sample generated by this
method is bona fide representative and is better than the samples produced by other
existing methods.

The rest of the paper is organized as follows. In Section 2, we provide some
background on statistical testing. Section 3 presents our Metropolis sampling. We will
also make a brief comparison with the Acceptance/Rejection (AR) sampling, which is
the most relevant work to our approach. In Section 4, we empirically examine the
qualities of the samples drawn by our Metropolis sampling and the AR sampling.
Finally, we present the conclusions in Section 5.

2 Background

Being a representative sample, it must satisfy some criteria. First, the sample mean
and variance must be good estimates of the population mean and variance,
respectively, and converge to the latter when the sample size increases. In addition, a
selected sample must have a distribution similar to the underlying population. In the
following, we briefly describe these properties.

2.1 Mean and Variance Estimation

Let x be a d-dimensional vector representing a set of d attributes that characterizes
an object in a population, and)(xρ the value of x . Our task is to calculate the mean

and variance of ρ of the population. Let 0)(≥xw be the probability distribution of

x , often called a weight function. The population mean of)(xρ , denoted ρ , is

=
xall

xwx

)()(ρρ (1)

The probability distribution is required to satisfy
 1)(

=
xall

xw (2)

Another useful quantity is the population variance, which is defined as

.)())((

22 −=∆
xall

xwx ρρ (3)

The variance specifies the variability of the)(xρ values relative to ρ .

A Metropolis Sampling Method for Drawing Representative Samples 227

2.2 Chi-square Test

To compare the distributions of a sample and its population, we perform the Chi-
square test [11] by computing

=
−=

k

i
iii NwNwr

1

22)/()(χ , (4)

where ir is the number of objects drawn from the ith bin, iw the probability of the

ith bin of the population, Nr
k

i i =
=1

 the sample size, and iNw is the expected number

of sample objects of that bin. A bin here refers to a group or range of values, e.g., an
age group. The larger the 2χ value, the greater is the discrepancy between the sample

and the population distributions. Usually, a level of significance α is specified as the
uncertainty of the test. If the value of 2χ is less than 2

1 αχ − , we are about 1-α confident

that the sample and population have similar distributions. Customarily, 05.0=α . The
value of 2

1 αχ − is determined by the degree of freedom involved (i.e., k 1−).

3 The Metropolis Sampling

In 1953, Metropolis proposed an algorithm, known as the Metropolis algorithm [6],
for studying statistical physics. Since then, it has become the most successful and
influential Monte Carlo Method. Here, we shall use it for constructing representative
samples. In addition, we will also incorporate techniques for finding the best start
sampling point into the algorithm to improve its efficiency. Hereafter, we shall use the
Metropolis algorithm and Monte Carlo method interchangeably.

3.1 Probability Distribution

The probability distribution)(xw plays an important role in the Metropolis

algorithm. Unfortunately, such information is usually unknown or difficult to obtain
due to the infiniteness, incompleteness, or large size of a population. However, the
relative probability distribution or non-normalized probability distribution, denoted
by)(xW , can often be obtained from, for example, preliminary analysis, past

experience, knowledge, statistics, etc. Take the Gallup poll for example. While it
may be difficult or impossible to assign a weight (i.e.,)(xw) to each individual

voter, recalling that it has to satisfy the condition 1)(

=
xall

xw , it can be easily

known from published statistics or other resources that the relative probabilities
)(xW of people to vote on the Election Day are 18.5%, 38.7%, 56.5%, and 61.5%

for groups whose ages fall in 18-24, 25-44, 45-65, and 65+, respectively.
Fortunately, the relative probability distribution)(xW would suffice to construct a

representative sample [4].

228 H. Guo et al.

3.2 Sampling Procedure

Similar to the simple random sampling, objects are drawn one after another to form
the sample. Here, we shall address the issues of selecting the first sample element and
accepting or rejecting a drawn element in each step, called the Monte Carlo step.

3.2.1 Selecting the Starting Point
For numerical calculations, finding the best start point may not be an important issue.
For sampling, the situation may be quite different, especially when the relative
probability distribution)(xW is highly non-uniform. Note that objects with higher

weight are more important than others. If a method does not start with these objects,
we could miss them in the process or take very long time to incorporate them into the
sample, which is formidable in cost and detrimental to accuracy. Selecting a good
starting point is very crucial to the efficiency of sampling and quality of the sample.
In the following, we propose a general approach to selecting a starting point.

We begin with searching for an object that has the maximum value of)(xW . If

there are several objects with the same maximum value, we could just pick any of

them as the “best starting host” 1x . For many applications, such as the Gallup

example, finding the maximal value of)(xW is straightforward, e.g., using the

already-known maximum, by examining the statistics, performing preliminary
analysis, etc. For others, there are several useful methods, such as Golden Section
search, Downhill Simplex method, Conjugate Gradient method [11], for searching for
the maximum of a function. With these methods, we can easily locate the peak of

)(xW and use it as the starting point for our sample. Here, we implement the

Downhill Simplex method because this method requires only simple computations on
)(xW ; it does not require complex derivative computations, and is among the best for

multidimensional functions. The method starts with a simplex, which is a geometrical
figure consisting of d+1 points, where d is the number of dimensions. For example, in
a two dimensional space, a simplex is a triangle. Through function evaluations, the
method makes the simplex roll downhill and contract in the function’s minimum.
Since the maximum of function f is the minimum of function -f, this method works
for searching for a maximum as well. Interested readers please refer to [11] for more
details.

3.2.2 Incorporating Objects into the Sample: The Monte Carlo Step

Let the object last added to the sample be ix . Now, we pick a trial object y from the

population randomly. For example, one can just randomly select it from the neighbors

of ix or through the Fourier transformation such as in the quantum Monte Carlo [4].

In general, there is no restriction on how to select y . The only requirement is that the
random selection method must provide a chance for every element in the entire data
space to be picked.

We now decide if the trial object y should be incorporated into the sample. We

calculate the ratio)(/)(ixWyW=θ . If 1≥θ , we accept y into the sample and let

A Metropolis Sampling Method for Drawing Representative Samples 229

yxi =+1 . That is, y becomes the last object added to the sample. If 1<θ , we

generate a random number R, which has an equal probability to lie between 0 and 1. If

θ≤R , the trial object y is accepted into the sample and we let yxi =+1 .

Otherwise, the trial object y is rejected and we let ii xx =+1 . It is noted that in the

latter situation, we incorporate the just selected object ix into the sample again

(i.e. ii xx =+1). Therefore, an object with a high probability may appear more than

once in our sample. The above step is called a Monte Carlo step.
 After each Monte Carlo step, we add one more object into the sample. The above

Monte Carlo step is repeated to incorporate more objects into the sample until a
predefined sample size N is reached. It is expected that the sample average converges

very fast as N increases and the fluctuation decreases in the order of N/1 [6].
The complete sampling procedure, which includes selecting the starting point and

the Metropolis algorithm, is summarized as follows.

(1) locate an object with the maximum weight)(xW as the first object 1x of the

sample.
(2) for i from 1 to N-1 do
(3) randomly select an object y ;

(4) compute)(/)(ixWyW=θ ;

(5) if 1≥θ then yxi =+1 ;

(6) else generate a random number R;

(7) if θ≤R then yxi =+1 ;

(8) else ii xx =+1 ;

(9) end if;
(10) end if;
(11) end for.

 Fig. 1. The Monte Carlo / Metropolis Sampling

3.2.3 A Gallup Poll Example
Let us use the Gallup poll as an example to illustrate our Monte Carlo/Metropolis
sampling. From the statistics published by the Federal Election Commission [14], we
obtain the turnout rate for each age group on the Election Day as shown in Table 1.

Table 1. Turnout rate in 1998 federal election

Age 18-24 25-44 45-66 65+

% voted 18.5 38.7 56.5 61.3

230 H. Guo et al.

The process may start off by randomly picking a senior citizen (from the 65+
group) as the first element of the sample. Then, the pollster picks another registered
voter, as a trial object. Assume the trial voter is in the 18-24 age group. Then, the ratio
θ of the probability of the 18-24 group to that of 65+ group is 0.3018 (= 18.5 / 61.3).
Since 1<θ , the pollster generates a random number R, which lies between 0 and 1.
If 3018.0≤R , the trial voter is accepted as an element of the sample. If 3018.0>R ,
the trial voter is rejected and the last included sample element is recorded again. The
pollster repeats the above procedure to incorporate more voters into the sample. The
sample can be used throughout the election by the pollsters. Similar to SRSWR,
voters may appear more than once in the sample. This happens because their age
groups have high turnout rates. The selected voters are representatives for their age
groups.

3.3 Properties of a Metropolis Sample

A Monte Carlo/Metropolis sample has several important properties. First, since the
selection starts with an object having the maximum weight)(xW , it ensures that the

sample always includes the most important objects. Second, it is known that the
Monte Carlo sample has a distribution close to that of the population when sample
size is large enough [4]. That is, the expected number of occurrences of object rl in the
sample is proportional to its weight in the population. Finally, it should be pointed out
that when all objects have an equal weight, the Monte Carlo sampling degenerates to
a simple random sampling.

3.4 Estimation of Mean and Variance

Once a sample is formed, we can easily calculate the following quantities as estimates
to the population mean and variance, respectively,

=
>=<

N

i
i Ny

1
,/)(ρρ
 (5)

Ny

N

i
i /))((

1

22

=
><−>=∆< ρρ (6)

where Nyyy ,...,, 21 denote all objects in the sample.

Note that the sample variance >∆< 2 is computed relative to the sample mean
><ρ , as shown in Eq. (4). However, if the sample mean itself is biased, the sample

variance would not be able to show how different the estimates are from the true
population mean. Therefore, instead of comparing the sample variance, the second

moment of ρ , denoted >< 2ρ , is often compared. >< 2ρ is defined as

 222

1

2 /)(><+>∆=<>=<
=

ρρρ Ny
N

i
i

. (7)

3.5 Comparisons and Discussions

Our sampling and Olken’s AR sampling [9] have some similarities, that is, both are
Monte Carlo methods. However, the AR sampling uses the simple “hit and miss” or

A Metropolis Sampling Method for Drawing Representative Samples 231

“rejection” technique [11], while ours is based on the more powerful and
sophisticated Metropolis algorithm.

 In the AR sampling, objects are picked randomly and the probability of a picked
object, say A, being accepted into the sample is W(A)/Wmax, where Wmax is the
maximum weight of the objects. Like our approach, W(A) is compared with a
randomly generated number (between 0 and 1) to determine its acceptance or
rejection. While the AR sampling is very simple, efficiency can be a weakness.
Indeed, it has been shown that the average number of trials for each success (i.e., an
acceptance of an object) is Wmax/Wavg,, where Wavg is the average weight of objects
[9]. Therefore, the more “skewed” the population (i.e., fewer objects having larger
weights, while more objects having smaller weights), the more trial objects need to be
drawn in this process. The quality of the samples selected by the AR method is
certainly of great interest. In Section 4, we will empirically evaluate the quality of the
samples produced by both methods.

4 Experiments

In this section, we report the results of empirical evaluations of our Metropolis
sampling and the AR sampling. We compare the efficiency of the methods and the
quality of the samples generated.

4.1 Criteria and Data

From a statistical point of view, being representative requires the sample not only
yields accurate estimates of the mean and variance of the population, but also has a
distribution similar to the population. We shall use these criteria to measure the
quality of the samples drawn. We opt to choose a family of synthetic data sets for our
experiments because some subtleties may be best illustrated quantitatively and
qualitatively in a more controlled environment. Here, we have chosen the Gaussian
model =)(xw)(2/ 2

)/1(xd e −π , where d is the dimension and 2)(xx =ρ . The mean,

the second moment, and variance are:

 == 2/)(2 dxdxwxρ , (8)

 4/)2()()(2222 ddxdxwx +==ρ , (9)

 2/)(222 d=−=∆ ρρ (10)

Figure 2 is a 2-d Gaussian distribution. It has a high peak at the center. Only a
small region near the center makes significant contributions to the integrations of Eqs.
(8) and (9). As the dimension increases, the peak becomes higher and narrower, and
the distribution becomes more “skewed”.

4.2 Sampling Efficiency

First, let us compare the cost of sampling. As shown in Fig. 3, the AR method roughly
needs 5, 10, 75, and 1,750 trials to accept just one object into the sample in 1, 3, 10,

232 H. Guo et al.

and 20-dimensional cases, respectively. It is noted that the higher the dimension, the
more “skewed” the Gaussian distribution and the greater the Wmax /Wavg value. This
explains why the AR sampling requires more trials as the dimension increases. In
comparison, our Monte Carlo sampling method accepts one object in every trial.

 d=20

 d=10

 d=1

 d=3

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 2k

0.0

400.0k

800.0k

1.2M

1.6M

2.0M

Tr
ia

l
s

Sample Size

 Fig. 2. A Gaussian distribution: d=2 Fig. 3. Cost of AR sampling

4.3 Quality of the Samples

To examine the quality of a sample, we shall examine its mean, variance, and
distribution.

4.3.1 Sample Mean and Variance
We show the second moment of ρ , >< 2ρ , which tells how different the estimates

are from the actual values, especially when the estimate is biased.

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 MC
 AR

−

<
ρ

>

Sample Size

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 MC
 AR

 −
−

<
ρ2

>

Sample Size

 Fig. 4. Sample means for d=1. >< ρ =0.5 Fig. 5. >< 2ρ =0.75 for d=1

As shown in Figures 4 and 5, both methods yield pretty accurate estimates of the
population mean (=0.5) and second moment (=0.75) in one-dimensional case.
Consequently, from Eq. (10), they also give good estimates of the variance. Note that

A Metropolis Sampling Method for Drawing Representative Samples 233

AR sampling, however, requires 5 times more trials than our method to form a sample
of the same size. While the AR sampling may seem to generate excellent estimates, a
careful examination of the results reveals that, most of the time, it slightly
underestimates ><ρ and >< 2ρ , unlike our estimates which fluctuate around the exact
values. While the underestimates may be too small to be worth any attentions, the
frequency of underestimation signals a subtle problem of the AR sampling that will
become more evident when the dimension increases.

As shown in Figures 6 and 7 for d=3, the AR sampling yields estimates around 1.0
and 1.7 for the mean and second moment, respectively, which are below their
respective exact values 3/2 and 15/4. On the other hand, our Monte Carlo sampling
yields quite accurate estimates. As the sample size gets larger, our estimates get closer
to the analytic values, but AR’s do not.

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
0.0

0.5

1.0

1.5

2.0

2.5

 MC
 AR

−

<
ρ

>

Sample Size
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

0

1

2

3

4

5

6

7

 MC
 AR

 −
−

<
ρ2

>

Sample Size

 Fig. 6. Sample means >< ρ =1.5 for d=3 Fig. 7. >< 2ρ =15/4 for d=3

 Similar results are also observed for higher dimensional cases. As shown in
Figures 8 and 9, when d=20, the AR sampling yields estimates around 5.1 and 29 for
the mean and second moment, respectively, which are well below the exact values 10
and 110. As for our method, a sample of size as small as of 10,000 objects already

gives >< ρ ≈ 10 and >< 2ρ ≈ 110.

0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
0

2

4

6

8

10

12

 MC
 AR

−

<
ρ

>

Sample Size
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

0

20

40

60

80

100

120

140

160

 MC
 AR

 −
−

<
ρ2

>

Sam pel Size

 Fig. 8. Sample means >< ρ =10 for d=20 Fig. 9. >< 2ρ =110 for d=20

234 H. Guo et al.

The underestimation of the AR sampling was attributed to two factors: the
acceptance/rejection criterion

max/)(WxW of the AR sampling and the random number

generator. In the Gaussian model described earlier, Wmax appears at the center (i.e.,
0=x), and the weight)(xW diminishes quickly as we move away from the center.

Indeed, the majority of the points have very small weights and thus small
)(

max
2

/)(xeWxW −= ratios, especially when the dimension is high. The low

max/)(WxW values could make the respective points not selectable when compared

with the random numbers generated in the process.
The random number generators on most computers are based on the linear

congruent method, which first generates a sequence of integers by the recurrence
relation caII jj +=+1

 (mod m), where m is the modulus, and a and c are positive

integers [11]. The final random numbers generated have are I1/m, I2/m, I3/m, …. Since
a random number generator generally simulates a probability distribution, it does not
generate 0. Thus the smallest numbers generated is 1/m. As a result, a trial point in the
AR sampling, whose

max/)(WxW is smaller than 1/m, can never be accepted. Since

these “remote” points have larger values than the points near the center, recalling that
2)(xx =ρ , underestimation sets in. The higher the dimension, the more “skewed” the

distribution, the more of this type of “remote” points, and the more serious the
underestimation. Increasing sample size would not help because those points just will
not be accepted.

While it is possible to use a larger m, it raises another issue of the generator - the
randomness. Here, we use the most widely used random generator in the Monte Carlo
simulation community, which is also the one of the best available random number
generators [11]. This random number generator is fast and agile. Therefore, it is at
least probably fair to say that while the AR sampling is theoretically sound, it may
face some difficulty practically when dealing with “skewed” distributions.

 On the other hand, our Monte Carlo sampling uses the weight ratio of the trial and
the last accepted objects. As points away from the center are accepted, the chances of
remote points being accepted increase. Therefore, it is immune from the difficulty
associated with the AR sampling method.

Based on our experiments with the Gaussian distribution, a sufficient minimum
size should be in the neighborhood of 500d to 1,000d, where d is the number of
dimensions for the population (space). For smoother distributions, the results can be
even better.

4.3.2 Distribution
To examine whether a sample has a similar distribution to the underlying population,
a Chi-square test, as defined by Equation (4), is generally performed. Since the Chi-
square test is designed for discrete data, we need to convert the Gaussian Model,
which is a continuous model, into binned data. For one-dimensional case, we limit the
data space to the range 5.35.3 ≤≤− x because points falling outside the range carry a

negligible weight 6)(5.3

5.3

1 101
2 −−

−
<− dxe x

π
. We divide the space into 2b+1 bins, labeled

A Metropolis Sampling Method for Drawing Representative Samples 235

as –b, –b+1,…, b. Each bin has a length D=7/ (2b+1). The jth bin covers a region from
Dj)5.0(− to Dj)5.0(+ and

 dxew xDj

Djj
)()5.0(

)5.0(

21 −+

−
=

π
 (11)

With 2b+1 bins for our test, the degree of freedom ν is 2b, which will be used to

compute the threshold 2
1 αχ − for a given significance level α [13]. Since we convert

continuous data to discrete data, Yates’ correction to the Chi-square test should be
considered [13]. Therefore, Eq.(4) is rewritten as

=
−−=

k

i
iii NwNwr

1

22)/()5.0|(|χ (12)

Figure 10 shows the 2χ -test results of AR’s and our samples. In the test, the data

space is divided into 7 bins and thus the degree of freedom ν is 6. We have chosen
the commonly used significance level α =0.05 in the test.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

 MC
 AR

χ2

Sample Size N

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

MC
AR

χ2

Sample Size N

 Fig. 10. 6,6.122
95.0 == vχ for d=1 Fig. 11 343,3862

95.0 == vχ for d=3

It is observed that when sample size N > 200, our 2χ is below 6.122
95.0

2
1 ==− χχ α

with 6=ν . This indicates agreement between sample and population distributions.

The 2χ value stabilizes as N gets larger. We have also performed tests on other bin
values and the results are similar, all verifying the agreement of the sample
distribution with the population distribution. As for the AR sampling, it also performs
very well, showing a strong agreement of the sample distribution with the underlying
population distribution.

Expanding this test to the three-dimensional Gaussian model, we concentrate on
the cubic space, 5.3|| ≤ix (i=1, 2, 3) and divide it into 34373 = bins. As observed

from Fig. 11, our 2χ values are always less than 2
95.0χ (≈386 with 342=ν),

indicating a good agreement with the population distribution. As for the AR

sampling, it is observed that for samples of any reasonable sizes, their 2χ values well

exceed 3862
95.0 ≈χ for 342=ν , which indicates that the samples have different

.

236 H. Guo et al.

distributions from the population. As explained earlier, this is because the AR
sampling could not include points with very low weights and thus as more points are
included (or as the sample size increases) the more different the sample distribution is
from the population distribution. The results are consistent with the evaluations of
means and variances discussed in the previous sections. For higher dimensions, the
results are similar and we shall not present them here.

As a short summary, the AR sampling may work well when the probability
distribution is not very skewed, but our approach works for all distributions. In
addition, our approach is also more efficient.

5 Conclusions

The Metropolis sampling presented in this paper is a useful and powerful tool for
studying large databases. It can be applied to any probability distribution. We propose
to start the sampling by taking an object from where the probability distribution has
its maximum. This guarantees that the sample always includes the most important
objects and it improves the efficiency of the process. Our experiments also indicate a
strong agreement between the selected sample and the population distributions. The
selected sample is bona fide representative, better than the samples produced by other
existing methods. From our experiments with the Gaussian distribution, we estimate
that the minimum sample size N is about 500d to 1,000d. For smoother distributions,
the results are expected to be much better.

References

1. C. Aggarwal, P. Yu, “Finding generalized projected clusters in high dimensional spaces”,
Proc. ACM SIGMOD Conf., 2000, pp. 70-81.

2. P. Haas and A. Swami, “Sequential sampling procedures for query size estimation”, Proc.
of the ACM SIGMOD Conference, 1992, pp. 341-350.

3. W-C. Hou and G. Ozsoyoglu, “Statistical Estimators for Aggregate Relational Algebra
Queries”, ACM Transactions on Database Systems, Vol. 16, No. 4, 1991, pp. 600 - 654.

4. M. H. Kalos and P. A. Whilock, Monte Carlo Methods, Vol 1., Basic, John Wiley & Sons,
1986.

5. R. Lipton and J. Naughton, “Query size estimation by adaptive sampling”, Proc. of the 9th
ACM SIGACT-SIGMOD-SIGACT Symposium on Principles of Database Systems, 1990,
pp. 40-46.

6. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, “Equation
of State Calculations by Fast Computing Machines”, J. of Chem. Phys., Vol. 21, No. 6,
1953, pp.1087-1092.

7. F. Newport, L. Saad and D. Moor, Where America Stands, John Wiley, 1997.
8. R. T. Ng and J. Han, “Efficient and Effective Clustering Methods for Spatial Data

Mining”, Proc. of the VLDB Conference, 1994, pp. 144-155.
9. F. Olken, “Random Sampling from Databases”, Ph.D dissertation, U. of California, April

1993.

A Metropolis Sampling Method for Drawing Representative Samples 237

10. C. R. Palmer and C. Faloutsos, “Density biased sampling: An improved method for data
mining and clustering”, Proc. of the ACM SIGMOD Conference, Vol.29, No. 2, 2000,
pp.82-92.

11. W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical Recipes in C,
Cambridge University Press, 1994.

12. R. Rubinstein, Simulation and the Monte Carlo Method, John Wiley & Sons, 1981.
13. M. R. Spiegel, Probability and Statistics, McGraw-Hill, Inc., New York,1991.
14. Website of Federal Election Commission, http://www.fec.gov/.

238 H. Guo et al.

Stay Current and Relevant in Data
Mining Research

Haixun Wang1 and Wei Wang2

1 IBM T. J. Watson Research Center, U.S.A
2 Fudan University, China

haixun@us.ibm.com, weiwang1@fudan.edu.cn

In a recent editorial of the Bioinformatics journal, Dr. Pavel Pevzner, a pio-
neering researcher in the field of bioinformatics, made the following statement [1]:
For many years algorithms were taught exclusively to computer scientists, with
relatively few students from other disciplines attending algorithms courses. A bi-
ology student in an algorithms class would be a surprising and unlikely (though
not entirely unwelcome) guest in the 1990s. Things change; some biology students
now take some sort of Algorithms 101. At the same time, curious computer sci-
ence students often take Genetics 101.

Looking back on a decade of progress in database and data mining research,
we find ourselves constantly searching for killer applications through which aca-
demic research can make bigger impacts. Yet it seems that we have not been
very successful. Years ago, in a VLDB Endowment meeting (New York, 1998),
concerns were expressed that the area of database research may lose the pivotal
role it now plays among information system technologies. Although the outcome
is still not very clear, it was agreed that database researchers should maintain
a watch on trends and future directions in the general area of information man-
agement to ensure that database research remain current and relevant.

We have invited the following panelists to share with us their view toward
future directions of database and data mining research. As Dr. Pevzner empha-
sizes the necessity for biology scientists to learn more of computer science, our
panel promotes application awareness and the necessity for database and data
mining researchers to start taking Genetics 101, or other initiatives that will
enable our research work to make real life impact.

– Divyakant Agrawal, Professor and Chair of Department of Computer Sci-
ence, University of California, Santa Barbara, USA.

– Elisa Bertino, Professor of Department of Computer Science, Purdue Uni-
versity, Research Director of CERIAS, USA.

– Jinyan Li, Lead Scientist, Knowledge Discovery Dept. Institute for Info-
comm Research, Singapore.

– Limsoon Wong, Deputy Executive Director of Institute for Infocomm Re-
search, Senior Scientist of Institute of Molecular & Cell Biology, Singapore.

Reference

1. Pavel A. Pevzner: Educating biologists in the 21st century: bioinformatics scientists
versus bioinformatics technicians. Bioinformatics 20 (2004): 2159-2161

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, p. 239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 240 – 252, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Approach to Extracting Approximate
Repeating Patterns in Music Databases

Ning-Han Liu1, Yi-Hung Wu1, and Arbee L.P. Chen2, *

1 Department of Computer Science, National Tsing Hua University,
Hsinchu,Taiwan

2 Department of Computer Science, National Chengchi University,
Taipei, Taiwan

alpchen@cs.nccu.edu.tw

Abstract. Pattern extraction from music strings is an important problem. The
patterns extracted from music strings can be used as features for music retrieval
or analysis. Previous works on music pattern extraction only focus on exact
repeating patterns. However, music segments with minor differences may sound
similar. The concept of the prototypical melody has therefore been proposed to
represent these similar music segments. In musicology, the number of music
segments that are similar to a prototypical melody implies the importance degree
of the prototypical melody to the music work. In this paper, a novel approach is
developed to extract all the prototypical melodies in a music work. Our approach
considers each music segment as a candidate for the prototypical melody and
uses the edit distance to determine the set of music segments that are similar to
this candidate. A lower bounding mechanism, which estimates the number of
similar music segments for each candidate and prunes the impossible candidates
is designed to speed up the process. Experiments are performed on a real data set
and the results show a significant improvement of our approach over the existing
approaches in the average response time.

1 Introduction

For content-based music retrieval and music style analysis, a fundamental requirement
is to extract music features from the raw data of music works. One significant feature of
the music work is the structural feature, which is described as follows. Consider the
classical music works. Most of them are composed according to a particular structure
named musical form in which there is a basic rule: repetition rule [5]. The repetition
rule says that there exist specific sequences of notes, known as motives, repeating in a
movement. For example, the well-known motive “G-G-G-E” repeatedly appears in
Beethoven’s Symphony No. 5. In the previous work [4], a sequence of notes appearing
more than once in the music work is regarded as the structural feature and called the
repeating pattern. Most of the researchers in the musicology agree that repetition is a
universal characteristic in music structure and style analysis [5]. Moreover, the length

* Corresponding author

 An Efficient Approach to Extracting Approximate Repeating Patterns 241

of a repeating pattern is much shorter than that of a music work. Therefore, using
repeating patterns as music features meets both efficiency and effectiveness
requirements for content-based music retrieval.

The problem of finding all the repeating patterns from a music work has been
discussed in [2] with suffix-tree based solutions. Each of these approaches first builds a
suffix-tree, where each path represents a pattern and each leaf node keeps all the
positions of the corresponding pattern located in the music work. After traversing the
suffix-tree, all the repeating patterns can be extracted. These approaches consider the
patterns represented by different paths to be different. As a result, they only find exact
repeating patterns instead of the repeating patterns composed of strings with minor
differences. In [4], a repeating pattern that is not contained in any other repeating
pattern with the same count is called non-trivial. Two approaches based on
correlative-matrix and string-join, are proposed to extract non-trivial repeating patterns.
The former approach lines up the notes of a music piece along the x-axis and y-axis
respectively to form a correlative matrix and uses it to find all the non-trivial repeating
patterns in the music piece. The latter approach joins shorter repeating patterns into
longer ones and prunes the impossible candidates in between. Similarly, both of them
only focus on finding exact repeating patterns. Shih et al. [11] also propose an
algorithm for extracting repeating patterns from music databases. They segment a
music score into bars, which are further encoded for efficiency. As a result, the
computation cost for segment matching is reduced. Except for the encoding mechanism,
this approach adopts the same concept as string-join.

One the other hand, a pattern may repeatedly appear in a music work with some
variations. One popular concept to coordinate such variations is the prototypical
melody, which is a kind of abstraction of the music work to which the corresponding
music segments are similar [10]. The prototypical melody has a great impact on the
way the actual melody is memorized by human. The main goal of this paper is to extract
all the prototypical melodies called approximate repeating patterns from a music work.
Pienimäki [8] considers the music transposition and adopts the algorithm on text
mining to extract all the longest repeating patterns, i.e., the ones that are not contained
in any others. This approach allows the extracted patterns to be discontinuous in the
music piece. In this approach, shorter candidates are first generated with unqualified
ones removed and then combined into longer ones. Experiments show that the
execution time of this approach is considerable due to the huge number of candidates to
be examined. Rolland [9] proposes a flexible similarity measure of music segments and
a dynamic-programming method for extracting approximate repeating patterns. First, a
music segment is regarded as a point in a graph and then the similarity between every
two points in the graph is computed. After that, all the prototypical melodies are found
by counting the number of similar music segments for each point in the graph. This
approach costs a lot on computing the similarities among music segments. For example,
given a music work with 200 notes, if the user restricts the length of a repeating pattern
to the range from 10 to 100, the number of music segments involved will be
(101+191)*91/2=13286. In this case, the number of similarity computations will be
C2

13286, which is close to 108. Moreover, the similarity computation for every two music
segments is also time consuming since its time complexity is O(|m|*|n|), where |m| and
|n| denote the lengths of music segments m and n, respectively.

242 N.-H. Liu, Y.-H. Wu, and A.L.P. Chen

 In this paper, we consider each music segment as a candidate ARP (namely, an
approximate repeating pattern or a prototypical melody). Two constraints, the
maximum and minimum pattern lengths, are set to filter out the candidates that are not
interesting to the user. After that, for each candidate, we use the edit distance and a
threshold to identify all the music segments that are similar to it. Finally, based on the
number of similar music segments and how they overlap each other, we determine
whether a candidate ARP is qualified to be an ARP. For efficiency, we design a
modified R*-tree to prune impossible candidates before the computations of edit
distances. We propose a novel distance measure to approximate the edit distance, by
which we can reduce the number of similar segments for each candidate ARP. In
addition, since it is difficult to set the above constraints and thresholds perfectly at the
first time, enabling the user to tune them without rerunning the entire process is
necessary. We call it the interactive environment. Our modified R*-tree can work in the
interactive environment and avoid rerunning the entire algorithm. According to the
experiment results, especially on the average response time, our approach outperforms
Rolland’s approach [9] in both the normal and interactive environments.

The remainder of this paper is organized as follows. In Section 2, we define the
approximate repeating pattern and formulate the ARP extraction problem. Section 3
presents our approach to the ARP extraction problem. Section 4 shows the experiment
results with discussions. Finally, Section 5 concludes this paper with future research
directions exposed.

2 Problem Formulation

The problem of prototypical melody extraction has been defined in Rolland’s work [9],
where the pattern composed of music segments is called the star-type pattern. In a
star-type pattern, one music segment is its origin called the pivot and the others are
music segments similar to the pivot over a predefined threshold. In this paper, we
regard a pivot as the prototypical melody if it is the origin of a star-type pattern. In the
following, we formulate our problem, where more constraints are specified.

2.1 Data Representation

There are several symbolic representations in digital music. We choose the MIDI [7]
representation because of its popularity. The melody of a music work includes two
kinds of basic information, i.e., pitch and duration. Each note in a MIDI file can be
represented as a triple (p,s,e) where p is the pitch value, s means the starting time of
playing (i.e., note on) and e is the ending time of playing (i.e., note off). As a result, a
MIDI file is an ordered list of triples sorted by the note on time, e.g., (p1,s1,e1),
(p2,s2,e2), ……,(pn,sn,en) where s1 s2 … sn. Two music pieces whose notes have the
same pitches is often considered the same even though their notes have different
durations. Therefore, in our approach, the order instead of the exact time is retained.
Moreover, since two melodies with the same contour are considered the same, we use
intervals as our representation, which is defined as follows.

 An Efficient Approach to Extracting Approximate Repeating Patterns 243

Definition 2.1. Pitch String:
A pitch string P=(p1,p2,…pm) is the ordered list of pitch values pi retrieved from a MIDI
file, where m is the string length denoted as |P|=m.

Definition 2.2. Interval String:
An interval string of a pitch string P=(p1,p2,…pm) is defined as D=(d1,d2,…dm-1), where
di=pi+1-pi, 1 i<m and di is called an interval.

The set of all the distinct interval values in D is denoted as D, whose size is denoted
as | D|. Fig. 1 shows the examples of a pitch string and an interval string.

Definition 2.3. Interval Segment:
An interval segment S[i:j] is a substring of an interval string D=(d1,d2,…dn) from i to j,
i.e., S[i:j]=(di,di+1,…,dj).

For the simplicity of presentation, in the remainder of this paper, we use string and
segment to mean interval string and interval segment, respectively.

Pitch String: 67,64,64, 65,62,62, 60,62,64,65,67,67,67

Interval String: -3, 0, +1, -3, 0, -2, +2,+2,+1,+2, 0, 0

Fig. 1. A pitch string and an interval string

2.2 Approximate Repeating Patterns

If there is no constraint on the music patterns, too many patterns will be extracted and
some of them can be uninteresting to user, e.g., too short and too long patterns.
Therefore, we define five constraints that can filter out unimportant music patterns as
follows.

In a music work, too long segments tend to contain duplicate information, while too
short segments often have little information about the music semantics. Therefore,
allowing users to specify constraints on the pattern length will reduce the unnecessary
costs on duplicate information and a large amount of very short segments. In this paper,
we use two constraints on the pattern length, called the maximum length (max_len) and
the minimum length (min_len), respectively. As a result, segments are generated from
the given string by using sliding widows whose sizes are from min_len to max_len. For
example, given a string (a, b, c, d), the qualified segments are (a, b), (b, c), (c, d), (a, b,
c), (b, c, d) when min_len=2 and max_len=3. Furthermore, we adopt the edit distance to
measure the similarity degree between two segments.

Definition 2.4. Edit Distance:
Based on the definition in [2], three types of edit operations that transform segment P
(denoted as p1…pm) into segment Q (denoted as q1…qn) are insertion, deletion and
replacement. The edit distance between segments P and Q denoted as edit(P,Q), is the
minimum number of edit operations required to transform P into Q.

To determine whether one segment is similar to another segment, a distance
threshold (denoted as δ) is needed. Considering the prototypical melody, the difference

244 N.-H. Liu, Y.-H. Wu, and A.L.P. Chen

between the pivot and a segment S can be compensated by changing a number of notes
on the pivot into those on S. Owing to the definition of edit distance, for a given
segment, the pivot with a long length has more chances to satisfy the distance threshold
than a shorter one even when the numbers of note changes are the same. Therefore, the
similarity measure should take the segment length into consideration. Instead of a
constant value, we use a variable value depending on the segment length to be the
distance threshold.

Definition 2.5. Distance Threshold:
A distance threshold for a pivot P is δP = |P| * γ, where |P| is the segment length of the
pivot and γ is the distance threshold ratio, 0≤ γ <1.

Definition 2.6. Similar Segment:
Given two segments P and Q, satisfying max_len and min_len, Q is a similar segment
of P if edit(P,Q) δP. In this case, the segment length of Q must be at least (|P|-δP). Note
that P is always a similar segment of P since edit(P,P)=0.

For example, if the distance threshold ratio is 50% and the segment length of P is 6,
the distance threshold for P is 6* 0.5=3. In this case, segment Q is similar to P only if
edit(P,Q) is not larger than 3.

When two similar segments overlap to a high degree, they are treated as one
segment. We define a measure called overlapping degree as follows.

Definition 2.7. Overlapping Degree:
Given two similar segments S[a:b] and S[c:d] where a c b, the overlapping degree of
them is (b-c+1)/min(b-a+1,d-c+1) if b<d. Otherwise it equals 1.

Since the overlapping degree also depends on the segment length, we use a variable
value to restrict the maximum overlapping degree among the similar segments.

Definition 2.8. Overlapping Threshold:
An overlapping threshold for two similar segments I and J of a pivot is OIJ = min(|I|,|J|)
* ρ , where |I| and |J| are the segment lengths and ρ is the overlapping threshold ratio,
0 ρ 1.

When ρ is zero, all the similar segments of P should not overlap any others. Another
way to estimate the overlapping degree is to ignore the segment length. For instance, in
Definition 2.7, the overlapping degree can be simplified to (b-c+1). In this paper, we
adopt the measure as Definition 2.7 states.

Definition 2.9. Extension:
Given a pivot P and the set of all its similar segments S, an extension of P (denoted as
Ext(P)) is a subset of S, where every two segments in it satisfy the overlapping
threshold. The number of segments in an extension is called the support and denoted as
|Ext(P)|.

In the application of music classification [6], a constraint on the minimum number of
occurrences for a repeating pattern in a music work makes the discovered patterns
significant. In this paper, the constraint on the support of an extension is called the
support threshold (min_sup).

Definition 2.10. Approximate Repeating Pattern:
A pivot P is called an approximate repeating pattern (abbreviated as ARP) if there
exists at least one Ext(P) satisfying the support threshold, i.e., |Ext(P)| min_sup.

 An Efficient Approach to Extracting Approximate Repeating Patterns 245

Definition 2.11. Problem of ARP Extraction:
Given a string S and min_len, max_len, γ, ρ, and min_sup, extract all the ARPs in S.

3 Our Approach

3.1 Lower-Bounding Distance

Using the dynamic-programming based approach to compute the edit distance between
two strings often costs a lot of time. To reduce it, we define a novel distance measure
that can be efficiently computed. The rationale of the proposed measure is as follows.
From Definition 2.4, we observed that the order of values in segments has great
influence on the edit distance and its computation. Therefore, we ignore the order but
count the number of occurrences of each distinct value in a segment instead. The
differences between such counts computed from two segments can be combined to
approximate the edit distance. Moreover, the distance estimated by our measure is
proved to be lower than the edit distance. In this way, we can build a lower-bounding
mechanism on the index tree to prune the segments with too large distances. At first, we
represent each segment as follows:

Definition 3.1. Histogram Vector:
Let D be a string with ΣD= {a1, a2, …an}, S be a segment of D, and hk

S be the count of ak
in S. The histogram vector (abbreviated as Hvector) is defined as follows:

HV(S) = <h1
S,h2

S,….,hn
S>

All the segments are represented as their Hvectors and the Hvectors form a
multidimensional space called the histogram space, where each dimension refers to a
distinct value in the string and the total number of dimensions is | D|. Fig. 2 shows an
example, where each bin in the histogram indicates the count of a distinct value in the
segment. Note that different segments may be represented as the same Hvector.
Moreover, the segments represented by the same Hvector must have the same length.
From this property, given a Hvector Vp, we can compute the length of the
corresponding segments which is denoted as |Vp|.

String: D=(0,1,1,-2,0,1,1,-2,2,1,1,-1)

 D = {-2,-1,0,1,2}

HV(S)=<2,0,1,6,1>

S=(1,1,-2,0,1,1,-2,2,1,1)

|HV(S)|=10

Fig. 2. Representing a segment as the Hvector

Definition 3.2. Histogram Distance:
We define an insertion to a dimension in the Hvector as increasing that dimension by
one. For two segments S1 and S2 of a string D, the minimum number of insertions
required to make each dimension in HV(S1) not smaller than the corresponding one in
HV(S2), is calculated as follows:

246 N.-H. Liu, Y.-H. Wu, and A.L.P. Chen

Σ

=

>−
==

||

1
21

1212

,))(),((
D

i

S
i

S
i

S
i

S
i

ii
otherwiseo

hhifhh
dwheredSHVSHVins (1)

The distance between the two Hvectors of segments S1 and S2, called the histogram
distance (abbreviated as Hdistance) is formulated as follows:

HD(S1,S2)=max(ins(HV(S1), HV(S2)), ins(HV(S2),HV(S1))) (2)

The Hdistance is guaranteed to be lower than edit distance. The time complexity of
edit distance computation is O(m*n), where m and n denote the two segment lengths.
By contrast, the time complexity of Hdistance computation is O(| D|), which is
independent of the segment lengths. Even if the transformation cost is included, the
time complexity is only O(max(| D|,m,n)). In general, m*n is larger than | D|. As a
result, the Hdistance computation is more efficient than the edit distance computation.

3.2 Indexing Tree

To speed up the retrieval of similar segments for each pivot, we built an R*-tree in the
same way as proposed in [1] to index all the Hvectors. Each leaf node in the R*-tree is
in the form of (I, p-id), where I denotes a minimal bounding rectangle (MBR) and p-id
refers to the Hvectors contained in I. Moreover, each non-leaf node in the R*-tree is in
the form of (I, child-p), where child-p are pointers of all the child nodes and I is an
MBR that covers all the MBRs of the child nodes. Furthermore, we add entries to each
node in the R*-tree such that more nodes can be pruned during the tree traversal for
ARP extraction. The modified R*- tree is called the parametric R*-tree, where the
entries added are as follows:

Definition 3.3. RM Pairs:
A range in string D is denoted as a:b, where a and b are two positions in D and a < b.
Two segments with ranges a:b and c:d are called non-overlapping if b < c or d < a;
otherwise, overlapping. A set of overlapping segments can then be represented as
(R,M), called the RM pair, where R is the union of all their ranges and M is the
minimum of their lengths.

D: (1,2,2,1,1)
Segments with length 2: S1(1,2),S2(2,2),S3(2,1),S4(1,1)
Segments with length 3: S5(1,2,2),S6(2,2,1),S7(2,1,1)

Dimension 1

D
im

ension 2

R1

R3

R2S4

S1,S3

S7

S5 ,S6

I=(0,),(2,2)

={(1:5,2)}

S1, S3

S7

S5,S6

S2

R1

child-p1
child-p2

I=(1,0),(2,1)

={(1:2,2), (3:5,)}

R2

I=(0,2),(1,2)

={(1:4,2)}

R3

Segments

Level 1

Level

S2

S4

Segment
Level

Fig. 3. An example of the histogram space and a parametric R*-tree

For example, S2 (D[2,3]), S5 (D[1,3]), and S6 (D[2,4]) in Fig. 3 are represented as the
RM pair (1:4,2). In the parametric R*-tree, for each node, the segments corresponding

 An Efficient Approach to Extracting Approximate Repeating Patterns 247

to the Hvectors contained by its MBR are distributed into RM pairs such that the
overlapping ones fall in the same RM pair. Fig. 3 shows a parametric R* tree with two
leaf nodes and only one non-leaf node. | D| is 2, i.e., the number of dimensions in the
histogram space. We construct the parametric R*-tree by sliding windows on D, where
min_len and max_len are set to 2 and 3 respectively. As a result, only two leaf nodes are
built to keep all the segments at the bottom level, called the segment level. For instance,
in node R2, the RM pair is computed as follows. Since S7 overlaps S3 and S4, they form
the RM pair (3:5, 2). On the other hand, S1 does not overlap any other segment in R2 and
therefore a RM pair (1:2, 2) is generated.

3.3 Extraction Procedure

In this subsection, our approach to ARP extraction on a music work is introduced. In
our algorithm, there are three main stages. The first stage constructs the parametric
R*-tree as the index tree for subsequent processing. Second, we regard each Hvector in
the index tree as a range query and execute them to generate the candidate ARPs. The
candidate ARPs are recorded as a linked list named CandidateList, which is put into the
last stage. As a result, ARPs satisfying all the constraints are outputted. The last two
stages are repeated until the outputted ARPs fulfill user’s information need.

3.3.1 Index Construction
An interval string is cut into segments by sliding windows according to the two
constraints on segment lengths. After that, each segment is mapped to a Hvector and
then inserted into the parametric R*-tree. The mapping is recorded in a mapping table.
Note that the parametric R*-tree is constructed at the beginning and then updated when
new segments are inserted due to a smaller min_len or a larger max_len.

3.3.2 Candidate Generation
After index construction, we regard each segment in it as a pivot and use its Hvector as
a range query on the parameter R*-tree. The segments that are possible to be the similar
segments of the pivot are returned and called the candidate segments. During the query
processing, some pivots that cannot be ARP are pruned. A pivot that survives after
query processing is called a candidate ARP. For each candidate ARP, we will further
check its candidate segments to determine whether it is an ARP or not.

Given a Hvector of pivot p (denoted as Vp), we retrieval its candidate segments from
the index tree in four steps:

Step 1: Range Query Formulation
Vp triggers a range query in the form of (Vp,δp), where Vp is the center and δp is the
radius of a sphere in the histogram space.

Step 2: MBR Retrieval
When traversing a level of the index tree, all the MBRs overlapping with (Vp,δp) are
retrieved and denoted as overlapping MBRs. Referring to the histogram space in Fig. 3
as an example, the overlapping MBRs of (<2,1>,1) are R1 and R2, which are located at
level 1 and level 2, respectively.

248 N.-H. Liu, Y.-H. Wu, and A.L.P. Chen

Step 3: Estimation for the Maximal Number of Similar Segments
The number of similar segments in an overlapping MBR is estimated in three steps as
follows. First, for each RM pair (RX,MX) in the MBR, the minimal length of similar
segments covered by the range RX is denoted as MLX and computed as follows. From
Definition 2.6, the length of a similar segment of p must be at least |p|-δp. Since MX
records the actual minimal length of segments covered by RX, we set MLX to be the
maximum of these two values, i.e., max(|p|-δp, MX).

Second, for each RM pair (RX,MX) in the MBR, our goal is to estimate the maximal
number of similar segments that can be fitted in RX, such that any two of them satisfy
their overlapping thresholds. This is similar to the following problem.

Refer to the period from a to b on the axis in Fig. 4, we draw a line with the fixed
length L starting from position a. Next, we draw a line with the same length starting
from the position on the right of position a such that the length of its overlap with the
previous line is m. This process is repeating until a line covers position b. The total
number of lines drawn in this period is (n - L) / (L - m) +1, where n=b-a+1. We denote
this number as numX.

Referring to our goal, the above formula can be used to compute the number of
segments with the same length MLX to be fitted into the range RX for m =ρ * MLX, which
m indicates the overlapping threshold.

At last, all the numX estimated for RM pairs X in an MBR R are summed up to
represent the maximum number of similar segments that can be retrieved from R
(denoted as numR).

We continue using the example in Fig, 3 for illustration. Suppose that the pivot is S7,
ρ is set to 0.5, and the range query (<2,1>,1) is performed on R2. There are two RM
pairs (1:2, 2) and (3:5, 2) in R2. For the 1st RM pair, minimal length ML1 = max(3-1,
2)=2, ρ * ML1=0.5*2=1 and num1 = (2-2)/(2-1) +1 = 1. Using the same formula, num2
of second RM pair is 1. The numR2 computed from the example of Fig. 3 is 1+1=2.

1

2

numx

numx-1

numx-2

Axis
a b

Fig. 4. Maximum number of segments fitted into a range

Step 4: Candidate Pruning Before HD Computations
When the range query is processed at the level above the segment level, the numR of
each overlapping MBR R is computed and their sum is denoted as max_num. To the
pivot corresponding to the Hvector Vp, when max_num for the range query (Vp,δp) is
less than min_sup, the computations for the edit distances between it and the other
segments are unnecessary. If max_num is less than min_sup, we terminate the
processing of this query and execute the next range query. Otherwise, this query is
recursively propagated to the lower levels.

 An Efficient Approach to Extracting Approximate Repeating Patterns 249

We continue the example in Fig. 3 and assume the min_sup is set to 3. Segment S7
can be pruned because its max_num at level 2 is only 2 (according to the Step 3).

Step 5: Candidate Pruning After HD Computations
When the range query Vp is processed at the segment level, we compute the Hdistances
between the pivot p and the segments covered by the overlapping MBRs. All the
segments whose Hdistances satisfy δp are permutated to compute the max_num as
mentioned in Step 3 and 4. Similarly, if max_num is less than min_sup, the pivot will be
pruned. Otherwise, the segments are regarded as candidate segments. As a result, the
CandidateList records the candidate ARP and its candidate segments.

After all the range queries have been performed, we will obtain a set of candidate
ARPs and their candidate segments associated in CandidateList, which need to be
processed further in the last stage.

3.3.3 ARP Extraction
The output of our approach includes each ARP and its extensions, which can be used to
verify whether the ARP is a prototypical melody or not by musicians. Given a
candidate ARP and its candidate segments, we first compute the edit distance between
the candidate ARP and each of the candidate segments and then remove the candidate
segments violating the distance threshold to obtain the set of similar segments.

After that, we generate all the extensions of the candidate ARP by considering the
overlapping threshold. Then, if the support of an extension is less than the min_sup, the
extension is not an answer. As a result, by the Definition 2.10, a candidate ARP is an
answer if one of its extensions satisfies the min_sup threshold.

3.4 Dimensions Reduction

In a music work, the large number of distinct intervals leads to a high dimensional
histogram space. Using the R*-tree to index high dimensional data can be
time-consuming. Several methods have been proposed to reduce the dimensions but most
of them spend a lot of time on computing the optimal number of dimensions for static
data [3]. By the contrast, the parametric R*-tree in our approach is constructed
dynamically and the construction time is a part of response time. Therefore, it is not
allowable to spend too much time on optimization of dimension reduction. In our
approach, we use a simple hashing function to reduce the dimensions of histogram space.
In our approach, each interval is divided by a predefined number and the remainder is
regarded as the hash value. In this way, different intervals may have the same hash value
and their counts in a music work are summed up as a result. The Hdistance after the
dimension reduction, denoted as the Hdistance’, is still guaranteed to be the lower bound
of edit distance. For example, given S1 = (1,2,3,1,1,2,3,1,3,4,5,3,4,5) and S2 =
(1,3,1,2,3,1,4,5,2,4,4), HD(S1,S2) and edit(S1,S2) are 4 and 5, respectively. We mod each
value by 3 to transform into (1,2,0,1,1,2,0,1,0,1,2,0,1,2) and (1,0,1,2,0,1,1,2,2,1,1),
respectively. The number of dimensions is reduced from five to three. Moreover, the
Hdistance’ between S1 and S2 is 3, which is smaller than Hdistance. Because the new
lower bound provided by the Hdistance’ is looser, more MBRs will be visited during
query processing over the parametric R*-tree. Such a trade-off depends on the hashing
function and data distribution.

250 N.-H. Liu, Y.-H. Wu, and A.L.P. Chen

4 Performance Evaluation

4.1 Experiment Set-Up

We compare our approach with a modified version of the dynamic-programming
approach named FIExPat [9], which is a famous approach in this field. Four important
factors which have great impacts on ARP extraction are investigated, i.e., maximum
length, minimum length, distance threshold and support threshold. In Rolland’s
experiment [9], the segments are not allowed to overlap, for fair comparison, we did not
consider the performance comparison on the overlapping threshold and set it to zero in
all the experiments. For our approach, the number of reduced dimensions in histogram
space is set to 11, which has the best performance in all the experiments. The
experiment scenario is set up as follows. The user initially sets the constraints and then
the system extracts the ARPs. We name one process of ARP extraction for the
user-specified constraints as one iteration. In each iteration, one of the constraints is
varied such that the influence of that constraint on the elapsed time at different iteration
can be observed.

4.2 Experiment Results

Fig. 5(a) shows the result for the various values of max_len, where the parameters
min_len, min_sup and γ are set to 4, 5 and 25%, respectively. At the first iteration, both
approaches spend more time than the other iterations, which is because ARP has to
build a parametric R*-tree and FIExPat has to construct a graph structure. Our approach
performs better than FIExPat for all iterations. In addition, the elapsed time of our
approach decreases as the max_len increases. The reason is because the segment with a
larger length gets less chance to form a similar segment of the others and can be pruned
by our approach.

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

distance threshold ratio (%)

el
ap

se
d

ti
m

e
(s

ec
)

FIExPat algorithm

Our approach

0

2

4

6

8

10

12

14

10 12 14 16 18 20 22 24 26 28 30

max_len (interval number)

el
ps

ed
 ti

m
e

(s
ec

)

FIExPat algorithm

Our approach

0

2

4

6

8

10

12

14

16

20 18 16 14 12 10 8 6 4

min_len (interval number)

el
ps

ed
 t

im
e

(s
ec

)

FIExPat algorithm

Our approach

0

2
4

6
8

10
12

14
16
18

10 9 8 7 6 5 4 3 2
min_sup

el
ps

ed
 ti

m
e

(s
ec

)

FIExPat algorithm

Our approach

(a) (b)

(c) (d)

Fig. 5. Experiment results

 An Efficient Approach to Extracting Approximate Repeating Patterns 251

Fig. 5(b) shows the result for various values of min_len, where the parameters
max_len, min_sup, and γ are set to 30, 5 and 25%, respectively. Our approach also
performs better than FIExPat except for the first iteration. The elapsed times of both
approaches are increased as the min_len is decreased, because the number of smaller
min_len produces more patterns. If we accumulate the elapsed time of first iteration and
the one of second iteration for both approaches, our approach costs less than FIExPat.
This means our approach is more suitable than FIExPat in the iterative environment.

Fig. 5(c) shows the result for various values of γ, where the parameters max_len,
min_len and min_sup are set to 30, 4 and 5, respectively. This setting means that the
user releases the distance threshold ratio in order to find more ARPs. Our approach
spends more time at the first iteration but less time at the subsequent iterations. The
reason for the observation is that our approach builds the parametric R*-tree only at the
first iteration, but does not modify the index tree at subsequent iterations since the
max_len and min_len are not changed.

Fig. 5(d) shows the result for various values of min_sup, where the parameters
max_len, min_len and γ are set to 30, 4 and 25%, respectively. From the result, our
approach also performs better than FIExPat.

5 Conclusion

Since the approximate repeating pattern can be found in both classical and pop music, it
plays an important role in the representation of music database and the music style
analysis. In this paper, we develop a novel approach to extract the approximate
repeating pattern from the music work. This approach adopts the technique of the range
query processing on the multidimensional data to reduce the execution time. In the
performance study, the execution time of our approach is reduced dramatically when
comparing with the FIExPat approach. Our approach not only can be used in the music
field, but also can be applied in other fields such as patterns extraction on web click
strings or DNA strings.

Some research directions can be considered further. First, improving Hdistance
measure such that we can prune more impossible candidates before the computation of
edit distance, it can make the ARP extraction more efficient. Second, the dimension
reduction sophisticated strategy should be studied to reduce the processing time of
range query. Third, the applications base on the approximate repeating patterns will be
investigated in the future, e.g., the music classification, the music analysis and the
music content-based retrieval.

Acknowledgement

This work was partially supported by the NSC Program for Promoting Academic
Excellence of Universities (Phase II) under the grant number 93-2752-E-007-
004 -PAE, and the NSC under the contract number 93-2213-E-004-012.

252 N.-H. Liu, Y.-H. Wu, and A.L.P. Chen

References

[1] Beckmann, N., H. P. Kriegel, R. Schneider, and B. Seeger, "The R*-tree: An efficient and
robust access method for points and rectangles," in Proceedings of ACM SIGMOD Int'l.
Conf. on Management of Data, 1990.

[2] Gusfield, D., Algorithms on Strings, Trees, and Sequences, Cambridge University Press,
1997.

[3] Han J., and M. Kamber, “Data Mining Concepts and Techniques,” Morgan Kaufmann
Publishers, 2001.

[4] Hsu, J. L., C. C. Liu, and A. L.P. Chen, “Discovering Non-trivial Repeating Patterns in
Music Data,” IEEE Transactions on Multimedia, Vol. 3, No. 3, 2001.

[5] Krumhansl, C. L., Cognitive Foundations of Musical Pitch, Oxford University Press, New
York, 1990.

[6] Lin, C. R., N. H. Liu, Y. H. Wu and A. L.P. Chen "Music Classification Using Significant
Repeating Patterns," in Proceedings of International Conference on Database Systems for
Advanced Applications (DASFAA’04), 2004.

[7] MIDI Manufacturers Association (MMA), MIDI 1.0 Specification, http://www.midi.org/.
[8] Pienimäk, A. “Indexing Music Databases Using Automatic Extraction of Frequent

Phrases,” in Proceedings of the 3rd International Symposium on Music Information
Retrieval (ISMIR’02), 2002.

[9] Rolland, P. Y., “FIExPat: Flexible Extraction of Sequential Patterns,” in Proceedings of the
IEEE International Conference on Data Mining (ICDM’01), 2001.

[10] Selfridge-Field, E., “Conceptual and Representational Issues in Melodic Comparison,” in
Hewlett, W. B. and E. Selfridge-Field (eds.), Melodic Similarity: Concepts, Procedures,
and Applications (Computing in Musicology: 11), The MIT Press, 1998.

[11] Shih, H. H., S. S. Narayanan, and C. C. Jay Kuo, “Automatic Main Melody Extraction
From MIDI Files with a Modified Lempel-Ziv Algorithm,” in Proceedings of International
Symposium on Intelligent Multimedia, Video and Speech Processing, 2001.

On Efficient Music Genre Classification

Jialie Shen1, John Shepherd1, and Anne H.H. Ngu2

1 School of Computer Sci. and Eng., University of New South Wales,
2052 Sydney NSW, Australia

{jls, jas}@cse.unsw.edu.au
2 Department of Computer Sci., Texas State University,

601 University Drive, San Marcos, Texas, USA
angu@txstate.edu

Abstract. Automatic music genre classification has long been an important prob-
lem. However, there is a paucity of literature that addresses the issue, and in
addition, reported accuracy is fairly low. In this paper, we present empirical study
of a novel music descriptor generation method for efficient content based music
genre classification. Analysis and empirical evidence demonstrate that our ap-
proach outperforms state-of-the-art approaches in the areas including accuracy
of genre classification with various machine learning algorithms, efficiency on
training process. Furthermore, its effectiveness is robust against various kinds of
audio alternation.

Keywords: Music Classification, Genre, Human Factor.

1 Introduction

As a fundamental and effective tool for exploring, organising and managing the vast
universe of online music, automatic music genre classification has long been an important
research problem. However, current classification process is mainly relied on manual
labelling, which is very time-consuming and expensive. Moreover, although various
systems have been developed for content-based speech/speaker identification and music-
speech discrimination, there is a paucity of literature that addresses the issue of automatic
genre music classification, and in addition, reported accuracy is fairly low.

The process of automatic music genre classification can be divided into two main
steps: feature extraction and multi-class categorisation. In first step, descriptive infor-
mation is extracted from raw signal via special music analysis schemes. Then, genre
classification can be treated as a multi-class classification problem and we might apply
a classifier, which could be an algorithm or a statistic model, to identify labels of music
based on their computable parameter [4]. Thus, feature extraction is crucial for whole
classification process. In fact, while the extraction of acoustic features from digital music
has a relatively long history, it has so far proved extremely difficult to determine how to
use such features to represent high-level semantic concepts (such as genre) effectively.
The reasons are as follows. First, there exists a large gap between high-level semantic
musical concepts and low-level physical representation [1]. Secondly, there is a wide
variety of features within a music signal (e.g. timbre texture, harmony, rhythm structure

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 253–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

254 J. Shen, J. Shepherd, and A.H.H. Ngu

and pitch). Using a single kind of acoustic feature may not represent characteristic of
music properly. Beside all above difficulties, it is worth to notice that human beings have
an amazing and unique capability to percept music which should be taken into account
for developing effective music information processing (classification and retrieval, in
particular). Unfortunately, few research that addresses the issue of how to effectively
integrate human perception.

In this paper, we present an empirical performance study of a novel feature extraction
method, called InMAF1 [19], on automatic music genre classification. Unlike traditional
approaches which mainly rely on spectrum characteristic of raw music signal, our method
integrates various acoustic feature and human musical perception into the compact (small
size) feature vector to enhance genre categorisation process. Analysis and empirical
evidence suggest that our proposed method outperforms state-of-the-art approaches in
the areas including accuracy of classification with various machine learning algorithms,
efficiency on training process and robustness against audio distortions.

The rest of the paper is organised as follows: Section 2 gives some coverage of related
work and background knowledge. Section 3 presents an overview of the architecture of
one feature extraction method for music data. Section 4 describes the evaluation tech-
niques and gives a detailed analysis of results from a suite of comprehensive experiments
over two large music databases. Finally, section 5 draws some conclusions and indicates
future directions for this research.

2 Related Work

There are various kinds of features which can be used for content management of large
music collections. Those include text labels for the title and performer(s)/composer,
acoustic features, and symbolic representations of melody (e.g. MIDIs and digital music
scores). In this paper, we primarily focus on content-based acoustic features.

Though various systems exist for content-based speech recognition and music-speech
discrimination, much less work has focused on developing compact and comprehensive
music data descriptors for effective categorisation and retrieval. Most of the existing
work is based on spectral features of the raw music signal adapted from earlier work in
speech recognition including Mel-Frequency Cepstral Coefficients (MFCCs), spectral
centroid, linear prediction coefficients, spectral flux, and so on [11]. A typical example
using this approach is the work carried out by Nam and Berger [7], who used three
low-level acoustic features (spectral centroid, short time energy, and zero crossing rate)
for automatic music genre classification. In [4], Logan investigated the effectiveness of
MFCCs for music/speech classification. Li and Khokhar [3] proposed nearest feature
line methods for content based audio retrieval and classification. MARSYAS which was
developed by Tzanetakis et al [2] is the most advanced infrastructure framework for
modelling music signal. In this framework, a set of feature is specifically developed to
characterise different acoustic properties of music signals. They include timbral texture,
pitch content and rhythm. Using a linear concatenation of these features, they achieved
61% classification accuracy for a ten genre sound-data set. More recently, Li et al. [5]

1 InMAF stands for Integrating Mutiple Acoustic Features.

On Efficient Music Genre Classification 255

proposed using Daubechies wavelet histogram technique(DWCHs) to capture local and
global temporal information inside music signal. It used wavelet to decompose music
signal into different subband at first. Then, histogram for each subband is constructed.
Finally, the first three moments of each histogram and energy for each subband are cal-
culated to form DWCHs 2. Due to its effective estimation of probability distribution over
time and frequency via wavelets, DWCHs performs better than MARSYAS’s approach,
and is currently the state-of-the-art in content-based music retrieval. The problem of
above traditional techniques which rely on either single type of physical feature or com-
posite feature, is that they can not provide a “perceptually accurate” representation to
describe music signal. This is because interpreting and processing of music in human
perceptual system involve various kind of acoustic characteristic under complex context.
Thus, single type of physical feature may not provide information which is rich enough
to represent music objects comprehensively. Also, it assumes that linear combination of
different low-level physical feature types can best reflect how human perceive music as
similar. There is lack of evidence for this assumption so far.

3 System Overview

In following section, we present a new approach to extract descriptive information from
music data to support efficient automatic genre classification. Before describing the
system architecture, we firstly present a brief overview of the acoustic features that our
system deals with.

3.1 Feature Extraction

Based on [2], content-based acoustic features for music can be classified into timbral
texture, rhythmic content, and pitch. We use MARSYAS framework as the basis of
implementation to extract different acoustic features and their information are shown
below,

– Timbre: Timbral texture is a global statistical music property used to differentiate a
mixture of sounds. To extract timberal texture, we first divide each music signal into
many short time-frames. Then, different components (mainly spectral characteris-
tics) for each frame are calculated using the Short Time Fourier Transform. These
components include spectral centroid, spectral flux, time domain zero crossings, low
energy, spectral roll-off and Mel-frequency cesptral coefficients (MFCCs). Our tim-
bral texture features are presented as 33-dimensional vectors which contain: means
and variance of spectral centroid, spectral flux, time domain zero crossings and 13
MFCC coefficients (32) plus low energy(1).

– Rhythm: Rhythmic content can be represented as beat strength and its temporal
pattern.We use the beat histogram (BH) proposed by Tzanetakis et al. [2] to represent
rhythmic content features. The 18-dimensional beat feature vector contains: relative
amplitude of the first six histogram peaks (divided by the sum of amplitudes), ratio

2 It means Daubechies Wavelet Coefficient Histograms.

256 J. Shen, J. Shepherd, and A.H.H. Ngu

of the amplitude of five histogram peaks (from second to sixth) divided by the
amplitude of the first one, period of the first six histogram peaks, and overall sum
of the histogram.

– Pitch: Pitch can be used to characterise melody and harmony information inside
music. We use the multi-pitch detection algorithm proposed by Tolonen et al. [6]
to extract pitch histogram which is used for describing pitch features. The signal
is first divided into two frequency bands (below and above 1000Hz). Then, ampli-
tude envelopes are extracted for each frequency and summed to construct a pitch
histogram. The 18-dimensional pitch histogram includes: the amplitude and periods
of the maximum six peaks in the histogram, pitch interval between the six most
prominent peaks, and the overall sums of the histograms.

Music
Object

PCA

PCA

PCA

Timberal

Extraction

Rhythmic

Content
Extraction

Content
Extraction

Pitch

Texture

LayerLayer Layer
Input Hidden Output

Output: Lower Dimensional Vector

Fig. 1. The architecture of a hybrid musical feature dimensions reduction scheme. Output of the
scheme is lower dimensional vectors appearing in the hidden layer of neural network

3.2 The System Architecture

The system utilises a two-tier hybrid architecture: dimension reduction via Principal
Component Analysis followed by a nonlinear neural network using the Quick-prop
learning algorithm [10]. Fig. 1 shows the overall architecture of the system. Feature
vectors for timbre (33 dimension), rhythm (18 dimension) and pitch (18 dimension) are
first extracted from the music data. Each acoustic feature is then analysed by a single PCA
module in the first tier separately. The output of each PCA module are then concatenated
to form a single 25-dimensional feature vector as input to the three-layer perceptron feed-
forward neural network which is the second tier of InMAF. It is equally valid to first
combine the feature vectors into a high-dimensional composite feature vector and then
apply PCA to this composite feature vector to get a reduced vector which are then used
for the neural network. We have tested using this configuration and similar experimental
result has been obtained3.

Principal Component Analysis(PCA). Principal Component Analysis (PCA) is one
of the most widely used dimensionality reduction methods. The advantage of the PCA

3 For detail, please refer to our technical report [17].

On Efficient Music Genre Classification 257

transformation is that it is linear and that any linear correlations presented in the data are
automatically detected. It has been employed to reduce the dimensions of individual fea-
ture vectors so that an efficient index can be constructed for retrieval in image databases.
It has also been applied to image coding (e.g. for removing correlation from highly
correlated data such as face images). In our system, PCA is used as a “pre-processing”
component in a NLDR method where it provides small but information-rich feature
vectors for the three-layer neural network, and thus speeds up the NLDR training time
in the posterior step.

Neural Network(NN). The advantage of using a neural network for NLDR is that the
network can be trained to produce an effective solution based on pre-selected samples. In
this work, a three-layer perceptron neural network with a Quick-prop learning algorithm
is used to perform dimensionality reduction on music features. The network acts as an
non-linear dimensionality reducer. The units in the input layer accept the feature vector
preprocessed by PCA analysis. Hidden layer plays an important role in the process.
It is configured to have fewer units. An encoded and compressed version of the input
data, is produced as the output of hidden layer. The number of units in the output layer
corresponds to the total number of classes in target data collection.

When the network has been successfully trained, the weights that connect the input
and the hidden layers can be treated as entries of a transformation that maps the “raw”
feature vectors v to smaller dimensional vectors. Thus, when a high-dimensional feature
vector is passed through the network, its activation values in the hidden units form a
lower-dimensional vector. Each lower-dimensional feature vector preserves only the
most discriminating information from the original feature vectors.

3.3 Human Musical Perception Integration

The training process in our system consists of two stages: (1) construct a training set
incorporating human musical perception information, and (2) use the training examples
to generate an extractor for music descriptors.

Training Sample Selection. The first stage in using our system is to obtain a training
set of music data items which includes human perceptual information. To do this, we
need to first determine which high-level semantic concept is to be used to classify the
data set. Note that each classification scheme needs its own feature extractor, thus needs
its own training set. In our experiments we used genre based classification. Then, we
select a training set of music pieces from the entire collection which covers all of the
different sub-categories for the classification criterion. This requires us to ask help from
domain expert. In our work, we made use of the classification from music-related online
service providing professional review of a large number of western mainstream music4,
augmented by manual classification for any data items which were not classified on
www.allmusic.com. Manual classification was achieved by using 10 subjects with an
interest in music to classify each item according to the classification scheme, based on
similarity in timbre, pitch and rhythm. If more than 5 people placed a given item in the
same subclass, it was deemed to be a member of that subclass. If not, it was deemed to be

4 In this project, we use service from http://www.allmusic. com

258 J. Shen, J. Shepherd, and A.H.H. Ngu

"unclassified". The size of training set is 10% of target collection and they are randomly
chosen from each of the sub-categories.

Training. To train the system, we first set up a PCA dimension reducer for each type
of the raw feature vectors. Note that we use the entire data set, and not just the training
set, in order to determine the principle components. This has the advantage that the
covariance matrix for each type of feature vector contains the global variance of music
in the database. The number of principal components is determined by the cut-off value
ψ. In this study, ψ is set to 99. Thus, the minimum variance retained after the PCA
dimension reduction is at least 99%. Note that based on our experimental result, the
cut-off value ψ can influence performance in classification. Due to space limitation, we
refer the interested reader to our technical report [17] for details.

The neural network is initialised by setting the weight of each link, connecting two
units in the network, to a random small value. The training then proceeds by iterating over
the music data items in the training set, choosing one item from each subclass in turn.
For each item, we construct a composite feature vector using a linear concatenation
of the PCA-reduced timbre, pitch and rhythm feature vectors. The composite feature
vector and the class number is then presented to the neural network and the weights
in the network then stabilise. Finally, we test the convergence of the network. If the
convergence condition is satisfied, the training process halts. Otherwise, we continue to
present training examples, one at a time. The problem about the convergence of a neural
network system is still an open one and is outside the scope of this paper.

4 Experimental Study

In this section, we demonstrate the superiority of our method by comparing it with
the current best approaches (DWCHs and MARSYAS) in the areas including classi-
fication effectiveness, efficiency on training and robustness against different kinds of
audio distortion. The study considers a range of possible methods for generating mu-
sic descriptors, including our proposed method, DWCHs, and MARSYAS (denoted by
MAR)5. For each of these (except DWCHs), we consider four different combinations of
low-level features (Rhythm+Timbre+Pitch denoted by RTP; Timbre+Rhythm denoted
by TR; Timbre+Pitch denoted by TP; Pitch+Rhythm denoted by PR). In our results, a
system configuration denoted by “xxxx-yy” contains feature extraction method “xxxx”
with feature combination “yy”. For example, “InMAF-RTP” denotes a configuration
using the our proposed method with Rhythm, Timbre and Pitch features. The size of
feature vector generated by pure neural network(NN) and InMAF is 10, which equals
to neuron number in hidden layer of multilayer perceptron. All of the experiments are
conducted on a Pentium III machine with 750 MHz CPU, 256MB RAM and running
Linux.

5 Note that in MARSYAS, linear concatenation is used to construct composite feature vector as
input to different machine-learning based classifiers.

On Efficient Music Genre Classification 259

4.1 Datasets

Two separate music databases were used in this performance study. The first one, called
Dataset I, contains 1000 music data items covering ten genres with 100 songs per genre.
This dataset was used in [5][2]. To ensure variety of recording quality, the excerpts of this
dataset were taken from radio, compact disks, and MP3 compressed audio files. Each
item in this collection belongs to exactly one of ten music genre categories: Classical,
Country, Dance, Hip-hop, Jazz, Reggae, Metal, Blues and Pop.

The second dataset, called Dataset II, includes 2500 music data items. Each item in
this collection belongs to exactly one of nine music genre categories: classical, country,
dance, hip-hop, jazz, reggae, metal, blues and pop. The classical items are further par-
titioned among the sub-classes: choir, orchestra, piano, string quartet, Spanish guitar.
Similarly, the jazz items are further partitioned among the sub-classes: swing, piano,
Latin, bebop. Note that this is a multi-level hierarchy, whereas the classifiers we use are
typically designed for single-level classification problems. We deal with this by defining
three separate classifiers, one for the top-level and the others for the two sub-hierarchies.
There is no overlapping between two datasets. The length of each music item in the two
datasets is 30 seconds and each item in those two dataset is stored as a 22050Hz, 16 bit,
mono audio file.

4.2 Classification Methods and Evaluation Metrics

Music classification can be treated as a multi-class classification problem using music
descriptors as the input. In this study, we carry out the experiments using the following
classifiers: Support Vector Machines (SVMs), K-Nearest Neighbour(KNN), Gaussian
Mixture Models(GMM) and Decision tree. Also, in this study, the metrics for perfor-
mance measures of a classification method is theprecision. Its formula is given as below:

precision =
true positive

true positive + false positive
× 100

4.3 Effectiveness

Table 1 6 shows the results of our experiment to test the accuracy of genre classification
using a variety of music descriptors as input. The classification problems were carried
out on different data sets (the ones described in Section 4.1). For each of the classifiers,
we used ten-fold cross validation to calculate classification accuracy [15]. This means
whole dataset is divided into ten disjoint subsets of (approximately) equal size. For
testing, we trained classifiers on nine of these ten disjoint subsets and then tested on
the one left out, each time leaving out a different one. The above was repeated for
each approach to generate music descriptors, including our InMAF approach (with four
different combinations of acoustic features), the DWCHs method and MARSYAS with
linear concatenation.

The bottom three rows of the Table 1 indicate how the different classifiers performed
if only individual raw acoustic features were used in the descriptor. The poor accuracy

6 SVM1 and SVM2 denote Support Vector Machine with one-versus-the-rest and pairwise ap-
proach. Dec. tree denotes decision tree.

260 J. Shen, J. Shepherd, and A.H.H. Ngu

Table 1. Classification accuracy of the difference learning methods with various features extraction
method. I and II denote accuracy of genre classification on dataset I and dataset II. For bottom
three rows, results are obtained using raw feature

Classification Methods
Feature Extraction SVM1(%) SVM2(%) GMM(%) KNN(%) Dec. tree(%)

I II I II I II I II I II
InMAF-RTP 89.7 91.7 90.2 91.6 81.4 82.3 85.3 86.2 81.7 83.4
InMAF-TR 80.1 81.6 82.6 79.6 70.6 70.3 73.4 75.4 70.8 73.6
InMAF-TP 79.5 80.6 80.5 78.3 71.7 72.7 73.8 72.5 71.2 70.9
InMAF-PR 77.2 75.1 78.5 78.9 71.5 68.1 70.2 69.2 70.3 70.6

DWCHs 75.5 74.7 75.2 75.5 68.2 69.4 68.3 68.6 71.2 72.5
MAR-RTP 68.7 69.7 70.1 69.5 61.7 62.4 59.5 60.8 68.1 69.5
MAR-TR 65.1 64.7 65.7 65.1 60.5 59.8 61.7 61.4 67.3 68.1
MAR-TP 68.2 69.7 68.2 71.2 60.7 61.2 61.3 58.9 68.4 68.9
MAR-RP 65.7 63.9 64.8 62.5 51.2 52.1 54.5 53.7 60.5 62.8

Beat 30.5 30.7 32.1 31.1 36.6 37.6 31.3 32.9 37.8 38.5
Timbral 49.9 50.7 50.7 51.1 45.1 47.6 47.2 49.9 49.5 48.5

Pitch 33.8 35.7 35.7 36.1 38.2 37.3 32.1 33.9 37.2 38.5

observed in this experiment (between 30% and 50% for all classifiers) verifies the claim
that effective music classification cannot be achieved by considering only a single low-
level acoustic feature. The same approach was investigated in [2], where they also reached
the same conclusion.

Some improvement in accuracy can be observed by considering a combination of
low-level features. We considered all different linear concatenations of combinations of
the timbre, pitch and rhythm vectors. The best linear combination (MAR-RTP) uses all
three low-level features and achieves accuracy rates of 68.7% for dataset I and 69.7% for
dataset II with the best classifier (SVMs). The performance with DWCHs is better than
any linear concatenation of acoustic features. This is because DWCHs provides a good
estimation of probability distribution over time and frequency which leads to a better
feature representation.

Using the InMAF for extracting music descriptors results in a significant improvement
in classification effectiveness for all of the different classifiers. For dataset I, the range of
this improvement over DWCHs is from 18% to 24%, depending on the learning method
used. For dataset II, the improvement range is from 15% to 26%.Among all classification
methods, the best classifier is SVMs. The accuracy achieved with the one-versus-the-rest
SVMs for dataset I and dataset II is 89.7% and 91.7% respectively. In fact, based on
Table 1, SVMs is the best classifier, whatever kind of music descriptor is used. It also
shows that the descriptors produced by our proposed method lead to significantly better
accuracy, no matter which classification method is used.

4.4 Efficiency

High dimensionality of input feature vector can make learning process of any classifiers
very inefficient in terms of training time. The small but well discriminative feature vector
generated by our approach not only provides superior classification accuracy but also

On Efficient Music Genre Classification 261

Table 2. Training time of the difference learning methods with various feature combination. I and
II denotes genre classification for dataset I and dataset II

Feature Classification Methods
Extraction SVMs GMM KNN Dec. tree

I II I II I II I II
InMAF-RTP 2.91s 2.93s 2.44s 2.45s 2.43s 2.51s 0.41s 0.46s
InMAF-TR 2.92s 2.94s 2.52s 2.51s 2.42s 2.53s 0.42s 0.38s
InMAF-TP 2.85s 2.86s 2.61s 2.67s 2.34s 2.37s 0.42s 0.42s
InMAF-PR 2.84s 2.88s 2.57s 2.57s 2.41s 2.34s 0.44s 0.41s

DWCHs 4.22s 4.21s 4.43s 4.83s 4.68s 4.97s 0.98s 0.91s
MAR-RTP 4.76s 4.75s 5.15s 5.05s 5.12s 5.07s 1.49s 1.38s
MAR-TR 4.41s 4.51s 4.31s 4.61s 4.16s 4.68s 1.18s 1.31s
MAR-TP 4.42s 4.46s 4.37s 4.87s 4.21s 4.70s 1.21s 1.26s
MAR-PR 3.22s 3.12s 3.81s 3.83s 3.57s 3.38s 1.24s 1.23s
Rhythm 3.21s 3.11s 2.54s 2.53s 2.25s 2.17s 0.67s 0.57s
Timbral 3.86s 3.86s 4.82s 4.83s 3.07s 3.09s 1.21s 1.35s

Pitch 3.23s 3.21s 2.26s 2.16s 2.14s 2.49s 0.67s 0.73s

save a large amount of training time. To further illustrate the performance advantage
of using InMAF, we computed the actual training time for different learning methods
with various feature extraction methods via a thorough experiment. Based on the result
presented in Table 2, the speedup due to hybrid method is remarkable. For example,
training the SVMs with MARSYAS 7 and DWCHs required 4.76s and 4.22s for dataset
I, respectively, to finish. In constract, our proposed approach just needed 2.91s, nearly
38% and 31% saving.

On the other hand, although it can be seen that superior classification accuracy
can be achieved using pure neural network from Table 1, the approach suffers from
very long learning time. This is because time required for typical learning algorithm,
such as back-propagation(BP), grows at super-linear rates with number of input. Thus,
compression of data through certain kind of transformation obtain a great advantage
in term of time complexity. Based on this principle, InMAF uses PCA as first layer
of the hybrid architecture for preprocessing raw music feature vector. Results from
Table 1 and Table 3 show that this approach does not lose significant classification
accuracy but substantially improves the network learning cost: training neural network
to achieve 91.9% with SVMs on dataset I required 6830 epochs to finish. In contrast,
our InMAF approach required 4830 epochs to complete learning process and results in
89.7% classification accuracy. There is up to 29.3% saving on training time. From above,
we can see the InMAF is a highly effective and efficient technique of musical feature
extraction for automatic music genre classification.

4.5 Robustness

Humans have an amazing capability to classify sound or music in the presence of moder-
ate amounts of distortion. This property is potentially useful in real world music database

7 MARSYAS uses linear concatenation of three acoustic features to construct input feature vector.

262 J. Shen, J. Shepherd, and A.H.H. Ngu

Table 3. Training Cost of Dimension Reduction Methods. I and II denote dataset I and dataset II

Dataset Training Cost of Dimension Reduction Methods(epoch)
InMAF-RTP InMAF-TR InMAF-TP InMAF-PR NN-RTP NN-TR NN-TP NN-PR

I 4830 3512 3670 3490 6830 5780 5640 4567
II 3200 2372 2471 2390 4525 3829 3787 3918

applications, where the sound may have its origins in a process like low-quality live
recording. Since the InMAF is being trained to reduce the dimensionality of raw acous-
tic feature vectors, this suggests that we can enhance robustness of the framework by
training it using not only the original music, but also a copy of the music item which has
been altered with noise or distortion.

We modified music data items with different kinds of distortion as learning examples
for training purpose and carried out a series of experiments to test the performance of
our system in the presence of moderate amounts of noise and other kinds of distortion.
During this test, we randomly chose 20% music items from each category in the training
data, applied a number of effects to each item, and included all of the distorted versions
of the item, as well as the original item, in the training data. The neural network was then
trained using all of this data; the aim was to train it recognise not only exact versions of
the original music data, but to allow it to be robust to distortions.

In order to evaluate the effect of this on classification performance, we ran the same
set of tests as described in Section 4.1 for both datasets. However, each music item was
distorted before using it in the classification and the results were compared against the
results obtained from using a non-distorted item. This was repeated for varying levels
of distortion. Figure 2 summarises the genre classification accuracy for the different
descriptor generators under various distortions using SVM with one-versus-the-rest ap-
proach8. It clearly demonstrates that comparing with other approach, InMAF emerges
as the most robust technique performing well on all distortion cases. For example, using
dataset I and SVM with one-versus-the-rest approach, InMAF is robust to echo with
8sec delay time, 6s cropping, 60% volume amplification, 75% volume deamplification,
35dB SNR white background noise and 40dB SNR pink background noise9. In contrast,
DWCHs only can tolerate echo with 11sec delay time, 8s cropping, 30% volume am-
plification, 84% volume deamplification, 60dB SNR white background noise and pink
background noise with SNR 65dB.

5 Conclusion

This paper presents a novel feature extraction method to support efficient content-
based music genre classification. Distinguished from previous approaches, which were

8 Due to space limitation, we only show result for SVMs with dataset I. Similar phenomena can
be observation for other classifiers on different datasets. For detail, please refer to [17].

9 We use equation SNRdB = 10log10
S
N

to calculate signal-to-noise ratio, where S is signal
power, N is noise power and its unit is dB.

On Efficient Music Genre Classification 263

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

)

Echo delay(s)

InMAF
DWCHs

MARSYAS

(a) Echo

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

)

Signal Noise Ratio(dB)

InMAF
DWCHs

MARSYAS

(b) Pink noise addition

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 40 50 60 70 80 90 100

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

)

Volume deamplification(%)

InMAF
DWCHs

MARSYAS

(c) Volume change: Deamplification

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

)

Signal Noise Ratio(dB)

InMAF
DWCHs

MARSYAS

(d) White noise addition

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

)

Length of Sound(s)

InMAF
DWCHs

MARSYAS

(e) Cropping

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 15 30 45 60 75 90 105 120

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(%

)

Volume amplification(%)

InMAF
DWCHs

MARSYAS

(f) Volume change: Amplification

Fig. 2. Robustness of different feature extraction methods for dateset I using SVMs with one-
versus-the-rest approach

based solely on automatically-derived acoustic features, our approach can easily incor-
porates human music perception to generate descriptors that are both efficient (low-
dimensionality) and effective (good discrimination). We are not aware of any other work
that considers semantic classification criteria to enhance categorisation process like our
method. The approach is fully implemented and a series of comprehensive experiments
have been carried out to demonstrate its superiority over state-of-art approaches has been
demonstrated in the areas including effectiveness of genre classification, efficiency of
classification and robustness against audio distortions.

264 J. Shen, J. Shepherd, and A.H.H. Ngu

Acknowledgements

The authors would like to thank Professor George Tzanetakis in University of Victoria,
Canada for kindly sharing his dataset with us.

References

1. D. Byrd and T. Crawford, "Problems of music information retrieval in the real world", Infor-
mation Processing & Management, 33(2):249-272, 2001.

2. G. Tzanetakis and P. Cook, "Musical genre classification of audio signals.", IEEE Transaction
on Speech and Audio Processing, 10(5):293-302, 2002.

3. Guohui Li and Ashfaq A. Khokhar, "Content-based Indexing and Retrieval of Audio Data
using Wavelets", Proc. of IEEE International Conference on Multimedia and Expo(II), 2000.

4. B. Logan, "Mel frequency cepstral coefficients for music modeling", Proc. of International
Symposium on Music Information Retrieval, 2000.

5. Tao Li and Mitsunori Ogihara and Qi Li, "A comparative study on content-based music genre
classification", Proc. of ACM SIGIR Conference, 2003.

6. T. Tolonen and M. Karjalainen, "A computationally efficient multipitch analysis model", IEEE
Transaction on Speech and Audio Processing, 8(4):708-716, 2000.

7. U. Nam and J. Berger, "Addressing the Same but different - different but similar problem
in automatic music classification", Proc. of International Symposium on Music Information
Retrieval, 2001.

8. Gerard Salton and Michael J. McGill, "Introduction to modern information retrieval",
McGraw-Hill, New York, 1983.

9. Keinosuke Fukunaga, "Introduction to statistical pattern recognition", Academic Press, 1990
10. Simon Haykin, "Neural networks: a comprehensive foundation", Prentice-Hall, NJ, 1999.
11. L. Rabiner and B. Juang, "Fundamentals of Speech Recognition", Prentice-Hall, NJ, 1993.
12. J. Pierce, "The science of musical sound", W.H.Freeman, 1992.
13. J. R. Quinlan, "C4.5: Programs for machine learning", Morgan Kaufman. 1993.
14. M. Clynes, "Music, Mind and Brain: The Neuropsychology of Music", Plenum Press, 1982.
15. T. Mitchell, "Machine Learning", McGRAW-Hill, 1997.
16. W. J. Dowling and D . L. Harwood, "Music Cognition", Academic Press, Inc. 1986.
17. J. Shen and J. Shepherd and A.H.H.Ngu, "Combining Multiple Acoustic Features for Effi-

cient Content Based Music Retrieval", Technical Report, School of Computer Science and
Engineering, UNSW, 2004.

18. Chih-Chung Chang and Chih-Jen Lin, "LIBSVM: a library for support vector machines",
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm, 2001.

19. Jialie Shen, John Shepherd and Anne HH. Ngu, "Integrating Heterogeneous Features for
Efficient Content Based Music Retrieval", Proc. of ACM CIKM Conference, 2004.

Effectiveness of Note Duration Information
for Music Retrieval

Iman S.H. Suyoto and Alexandra L. Uitdenbogerd

School of Computer Science and Information Technology, RMIT
GPO Box 2476V, Melbourne, Victoria 3001, Australia

imsuyoto@cs.rmit.edu.au
sandrau@rmit.edu.au

Abstract. Content-based music information retrieval uses features ex-
tracted from music to answer queries. For melodic queries, the two main
features are the pitch and duration of notes. The note pitch feature has
been well researched whereas duration has not been fully explored. In
this paper, we discuss how the note duration feature can be used to al-
ter music retrieval effectiveness. Notes are represented by strings called
standardisations. A standardisation is designed for approximate string
matching and may not capture melodic information precisely. To repre-
sent pitches, we use a string of pitch differences. Our duration standard-
isation uses a string of five symbols representing the relative durations
of adjacent notes. For both features, the Smith-Waterman alignment is
used for matching. We demonstrate combining the similarity in both
features using a vector model. Results of our experiments in retrieval
effectiveness show that note duration similarity by itself is not useful for
effective music retrieval. Combining pitch and duration similarity using
the vector model does not improve retrieval effectiveness over the use of
pitch on its own.

1 Introduction

The field of music information retrieval (MIR) research explores ways in which
users can better find pieces of music in which they are interested. For content-
based MIR, we attempt to find answers to queries that contain a fragment of
music. This music fragment can be of two main types: an audio sample or a set
of notes. The goal of the user could be to find the exact piece of music that they
have heard, or to find music that is similar, such as might occur in copyright
infringement or in arrangements of a piece. The latter is our main interest in
this research.

Current state of the art in content-based MIR has user queries consisting of
sung or symbolically created queries. The ability to extract melodies from an
audio stream consisting of a single voice is at an acceptable level of precision
for matching. The same cannot be said as yet of note extraction from typical
commercial recordings of music. Thus for melody search we mainly work with

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 265–275, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

266 I.S.H. Suyoto and A.L. Uitdenbogerd

collections of symbolically represented music, such as found in Musical Instru-
ment Digital Interface (MIDI) files.

A technique that has been shown to work reasonably well [1] is a three-phase
matching process. First, as most pieces of music are polyphonic, that is, have more
than one note sounding at the same time, representative melodies or themes are
extracted from each piece in the collection. Second, both the pieces and queries
are transformed into a standardised form that retains the salient features for
matching and allows straightforward matching. Third, a similarity measure is
applied to determine the amount of match for each piece, resulting in a ranked
set of answers. Melody matching gives quite good results when a simple string
representation of the pitch of extracted melodies is compared. While there has
been work previously using both pitch and rhythm (see for example Kageyama,
Mochizuki, and Takashima [2], McNab et al. [3], Chen and Chen [4], Lemström,
Laine, and Perttu [5], and Dannenberg et al. [6]), the relative value of these
two aspects of melody for matching have not been quantified for polyphonic
collections, and whether a string-matching approach is of benefit in this situation.
The experiments reported in this paper show that rhythm, when expressed using
an alphabet of five relative values, is quite poor in its own right for matching,
even more so than a three-value alphabet representation of a melody’s pitch
contour. Further, when combined using a vector model, it does not improve the
precision of retrieved answers to queries.

Below we discuss the different melody standardisations used in our experi-
ments (Sec. 2), the dynamic-programming-based matching technique we applied
(Sec. 3), and the experiments that show that simple pitch matching is superior
to a vector-combined pitch and rhythm approach (Sec. 4).

2 Standardisations

To support approximate matching, we convert the melody into searchable repre-
sentations called standardisations. A standardisation is designed for approximate
string matching and may not capture melodic information precisely [1]. In this
paper, we discuss three pitch standardisations and one duration standardisation.
The three pitch standardisations are contour, extended contour, and directed
modulo-12 (see Secs. 2.1, 2.2, and 2.3). For duration, we use both the contour
and extended contour standardisation (see Sec. 2.4).

2.1 Pitch Contour Standardisation

The pitch contour standardisation uses three distinct symbols to represent a
note. The symbols represent the movement direction of the previous note pitch
to the current note pitch [7]. We use the convention “S” for same, “U” for up,
and “D” for down. The first note is not represented. For example, the melody
shown in Fig. 1 is represented as “UUUDDUUDDD”.

Effectiveness of Note Duration Information for Music Retrieval 267

Fig. 1. “Melbourne Still Shines” by ade ishs

2.2 Pitch Extended Contour Standardisation

For finer granularity, the pitch contour standardisation is extended so that there
are small and big up’s (symbolised as “u” and “U”, respectively) and down’s
(“d” and “D”). We use three or more semitones as big intervals. For example,
the melody shown in Fig. 1 is represented as “UUuDDuUddd”.

2.3 Pitch Directed Modulo-12 Standardisation

The directed modulo-12 standardisation uses direction information too. A note
is represented as a value ρ12 which is the interval between a note and its previous
note scaled to a maximum of one octave [7, 8]:

ρ12 ≡ d(1 + ((I − 1) mod 12)) (1)

where I is the interval between a note and its previous note (absolute value) and
d is 1 if the previous note is lower than the current note, −1 if higher, and 0 if
otherwise. For example, the melody shown in Fig. 1 is represented as “7 4 1 -5
-5 2 3 -2 -1 -2”1.

2.4 Duration Contour and Extended Contour Standardisations

Just as in pitch contour-based standardisations, the duration contour and ex-
tended contour standardisations also employ three and five distinct symbols
respectively to represent a note. In the case of duration, we use “S”, “s”, “R”,
“l”, and “L” for “much shorter”, “a little shorter”, “same”, “a little longer”,
and “much longer” respectively . (Analogous to pitch contour standardisation,
the duration contour standardisation does not have “s” and “l” symbols). The
quantisation we use is based on the encoding in Moles [9]. Let λC be the current

Fig. 2. Duration extended contour quantisation. K = λC/λP where λC and λP are
respectively the current and previous note durations

1 Note that a figure is treated as a symbol. Therefore, it is a 10-symbol string.

268 I.S.H. Suyoto and A.L. Uitdenbogerd

note, λP be the previous one, and K = λC/λP . A note is represented based on
the ranges of log2 K as illustrated in Fig. 2. For example, the melody shown in
Fig. 1 is represented as “LSRLSRlRRR”.

3 Retrieval

The use of duration information along with dynamic programming was suggested
by Kageyama, Mochizuki, and Takasima [2]. They suggest that note durations
be used as penalty scores for insertion and deletion operations. How the scores
are calculated is however not formally defined. In this work, we also use a dy-
namic programming approach. In particular, we use the Smith–Waterman align-
ment [10] (also known as local alignment [11]) which is useful to find a substring
with highest similarity. Because query tunes typically translate to short strings
while tunes in the collection typically to long strings, the alignment is more
suitable than global alignment [1].

To calculate the local alignment between two strings s and q, we perform the
following steps:

1. Prepare the data structure.
(a) Construct a matrix of which dimension is (|s|+1)×(|q|+1). We use 0 as

the base index, i.e. the column indices are 0, 1, 2, . . . , |q|, the row indices
are 0, 1, 2, . . . , |s|, and the symbol indices for s and q are respectively
0, 1, 2, . . . , |s| − 1 and 0, 1, 2, . . . , |q| − 1.

(b) Initialise the 0-th row and column with 0.
2. Calculate the score.

(a) For i in 〈1 . . . |s|〉:
i. For j in 〈1 . . . |q|〉:

A. Di,j ← max(0, Di−1,j + I,Di,j−1 + I,Di−1,j−1 + M(si−1, qj−1))
where I is the insertion/deletion score (commonly non-positive)
and M is the match/mismatch function. The values for M and
I that we use in our experiments are detailed in Sec. 4.

The local alignment score is max(Di,j); i ∈ {1 . . . |s|}, j ∈ {1 . . . |q|}. For example,
suppose s = UUDS, q = SSDUU, M(x, x) = 2 (a match), M(x, y)|x
=y = −2 (a
mismatch), and I = −1. The matrix looks like the one shown in Fig. 3. The
local alignment score is the maximum score in the matrix, i.e. 4.

S S D U U
0 0 0 0 0 0

U 0 0 0 0 2 2
U 0 0 0 0 1 4
D 0 0 0 2 1 3
S 0 2 2 1 1 2

Fig. 3. Local alignment between “UUDS” and “SSDUU”

Effectiveness of Note Duration Information for Music Retrieval 269

We are experimenting with a vector model to combine similarity evidences
from both pitch and duration matching. The pitches and durations are symbol-
ised by the respective standardisations. As vectors, they are modelled as being
perpendicular to each other. The overall similarity is indicated by the resultant
similarity vector. The following formula is based on one in our previous work [12],
except that now we also assign weights for both pitch and duration components:

Σ ≡ wπςππ̂ + wδςδ δ̂ (2)

where Σ is the resultant similarity vector, ςπ is the pitch similarity, ςδ is the
duration similarity, wπ and wδ are both weight constants, and π̂ and δ̂ are
respectively pitch and duration unit vectors. Ranking is then based on the mag-
nitude of resultant similarity vector, |Σ| =

√
w2

πς
2
π + w2

δ ς
2
δ . Therefore, the value

of wπ is not meaningful on its own, and neither is wδ. However, the ratio wπ/wδ

(or reciprocally, wδ/wπ) is.

4 Experiments

Our aim with these experiments was to determine how effective rhythm infor-
mation is for melody retrieval using our experimental framework of a polyphonic
MIDI file collection, manual queries, and two sets of relevance judgements [13].

The collection consists of 14,193 MIDI files, which are a superset of those
used in our earlier experiments (such as Uitdenbogerd and Zobel [1, 14], and
Uitdenbogerd, Chattaraj, and Zobel [13]). The query set used here is the set
of 28 manual melody queries created by a musician upon listening to a set of
rendered polyphonic pieces. We used two sets of relevance judgements. The first,
known as automatic, was created by Uitdenbogerd by identifying likely matches
by file-name, and verifying by listening. The second, called manual, was the result
of pooling top answers from several matching techniques, and asking users to
decide upon listening whether the pieces were similar. More detail is found in
Uitdenbogerd, Chattaraj, and Zobel [13].

As a baseline of our experiment, for pitch matching, we use M(x, x) = 1 for a
match, M(x, y)|x
=y = −1 for a mismatch, and I = −2 for an insertion/deletion
(see Sec. 3) as used in Uitdenbogerd and Zobel [1]. For duration matching, we use
39 scoring matrices. The scoring matrices are obtained by varying the variables
a, b, c, . . . , i shown in Fig. 4 as detailed in Table 1. The matrix means if there is

S s R l L
S c d f i h
s d b e g i
R f e a e f
l i g e b d
L h i f d c

Fig. 4. Scoring matrix for duration extended contour standardisation. “S”, “s”, “R”,
“l”, and “L” respectively indicate a “much shorter”, an “a little shorter”, a “same”,
an “a little longer”, and a “much longer”

270 I.S.H. Suyoto and A.L. Uitdenbogerd

Table 1. Scoring schemes for duration extended contour standardisation. For all scor-
ing schemes, a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ g ≥ i ≥ h

Scoring scheme a b c d e f g h i

1 1 1 1 1 −1 −1 −1 −1 −1
2 2 1 1 1 −1 −1 −1 −1 −1
3 3 1 1 1 −1 −1 −1 −1 −1
4 3 2 1 1 −1 −1 −1 −1 −1
5 3 3 1 1 −1 −1 −1 −1 −1
6 3 3 2 1 −1 −1 −1 −1 −1
7 3 3 3 1 −1 −1 −1 −1 −1
8 3 3 3 3 −1 −1 −1 −1 −1
9 3 3 3 2 −1 −1 −1 −1 −1
10 3 3 3 1 −1 −1 −1 −1 −1
11 3 3 3 0 −1 −1 −1 −1 −1
12 3 3 3 −1 −1 −1 −1 −1 −1
13 3 2 1 0 −2 −3 −3 −3 −3
14 3 2 1 0 −3 −3 −3 −3 −3
15 3 2 1 0 −1 −2 −3 −3 −3
17 3 2 1 0 −1 −1 −3 −3 −3
17 3 2 1 0 −1 −1 −2 −3 −3
18 3 2 1 0 −1 −1 −1 −3 −3
19 3 2 1 0 −1 −1 −1 −3 −2
20 3 2 1 0 −1 −1 −1 −3 −1
21 3 2 1 0 −1 −1 −1 −2 −1
22 3 2 1 0 −1 −1 −1 −1 −1

a match “S”-“S”, M(S, S) = c; a mismatch “S”-“s”, M(S, s) = d; etc. At any
time, a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ g ≥ i ≥ h.

5 Retrieval Performance Evaluation

The queries in our experiments are topic-oriented, i.e. for one query there can
be more than one relevant answer.

To evaluate the effectiveness of every matching method, we use a standard
measurement technique for such a task, i.e. using precision and recall :

P ≡ |Rel ∩Ret|
|Ret| (3)

R ≡ |Rel ∩Ret|
|Rel| (4)

where P is precision, R is recall, Rel is the set of relevant tunes and Ret
is the set of retrieved tunes. Precision can be averaged at 11 recall levels,
0.0, 0.1, 0.2, . . . , 1.0, to obtain the 11-point recall-precision average [15]:

Effectiveness of Note Duration Information for Music Retrieval 271

〈
P (r)

〉
r=0.0,0.1,0.2,...,1.0 =

10∑
r=0

Nq∑
i=1

Pi(0.1r)
Nq

11
(5)

which is the measure we use to compare the effectiveness of the techniques in
our experiments. However, since some queries have less than 11 relevant answers,
we use interpolated precision values, which can be calculated using the following
formula [15]:

P (j) = max
j≤r≤j+0.1

P (r) (6)

where j ∈ {0.0, 0.1, 0.2, . . . , 0.9}. Higher 11-point recall-precision average means
more effective retrieval technique.

6 Results and Analysis

In our experiment, queries were matched against all tunes in our collection 23
times, once for pitch matching using the directed modulo-12 standardisation and
22 times for duration matching using the 22 scoring schemes.

Table 2. 11-point recall-precision percentage values for automatic relevance judgments

Baseline performance = 52.15.
wπ/wδ

Scoring scheme 0 1 3 5 7
1 0.87 26.40 49.73 51.32 51.32
2 2.81 18.86 47.92 50.89 51.49
3 1.71 12.67 42.41 51.40 51.41
4 2.22 8.93 38.49 51.23 51.06
5 2.57 5.46 36.00 47.63 49.72
6 2.87 4.18 37.45 46.19 49.72
7 2.47 3.59 36.78 48.39 49.41
8 4.08 7.38 37.56 45.51 50.20
9 3.27 4.36 35.52 46.16 49.50
10 2.47 3.59 36.78 48.39 49.41
11 3.84 2.16 33.48 49.50 50.70
12 3.57 2.07 34.98 50.95 50.86
13 1.35 4.74 36.61 50.23 50.14
14 1.84 4.80 36.51 50.53 50.42
15 1.34 4.09 36.58 51.24 51.07
16 1.16 4.66 34.98 51.95 51.27
17 1.16 4.66 34.98 51.95 51.27
18 1.16 4.66 34.98 51.95 51.27
19 1.16 4.66 34.98 51.95 51.27
20 1.16 4.66 34.94 51.93 51.27
21 1.16 4.66 34.94 51.93 51.27
22 1.04 4.55 34.93 51.93 51.27

272 I.S.H. Suyoto and A.L. Uitdenbogerd

To combine pitch and duration similarities using Eq. 2, We used six different
wπ/wδ values: 0, 1, 3, 5, 7, and ∞. The last one is the baseline performance,
i.e. duration information is ignored (wδ = 0), whereas the first one means pitch
information is ignored (wπ = 0).

For automatic relevance judgments, the baseline performance is an 11-point
recall-precision value of 52.15%. The results of using other wπ/wδ values are
shown in Tables 2. For manual relevance judgments, the baseline performance is
an 11-point recall-precision value of 51.84%. The results of using other wπ/wδ

values are shown in Tables 3.
Taking the best results from each wπ/wδ value, we obtain the graph shown

in Fig. 5. It shows that the peak performance is obtained when wπ/wδ = 5.
From both relevance judgments, duration information by itself is shown to

be not useful for retrieval. In our experiments with automatic relevant judg-
ments, duration information does not improve retrieval performance over that
using pitch information per se, whereas with manual relevance judgments using
wπ/wδ = 5 and scoring schemes 16, 17, 18, and 19, slightly better performance
is obtained. We analyse further whether duration matching improves retrieval
effectiveness using Wilcoxon signed-rank test with one-sided confidence level (α)

Table 3. 11-point recall-precision percentage values for manual relevance judgments

Baseline performance = 51.84.
wπ/wδ

Scoring scheme 0 1 3 5 7
1 0.94 25.24 50.52 52.14 52.14
2 2.60 20.38 48.81 52.04 52.65
3 1.18 13.67 42.87 52.60 52.96
4 1.05 7.83 39.83 52.91 53.13
5 0.67 3.73 36.45 47.23 51.49
6 1.05 3.89 35.95 49.10 51.61
7 0.79 3.84 33.95 48.70 49.81
8 3.57 7.65 36.90 45.49 50.96
9 1.64 4.52 33.71 47.21 50.54
10 0.79 3.84 33.95 48.70 49.81
11 0.40 2.72 31.04 48.30 51.36
12 0.00 2.22 33.62 50.19 52.45
13 0.48 5.40 37.93 52.09 51.54
14 0.49 5.40 37.57 52.03 51.65
15 0.89 4.93 38.30 52.96 53.14
16 0.71 5.71 36.72 53.72 53.42
17 0.71 5.71 36.72 53.72 53.42
18 0.71 5.71 36.72 53.72 53.42
19 0.71 5.71 36.72 53.72 53.42
20 0.71 5.70 36.68 53.70 53.41
21 0.71 5.70 36.68 53.70 53.41
22 0.60 5.57 36.65 53.70 53.41

Effectiveness of Note Duration Information for Music Retrieval 273

Table 4. Compressed standardised string sizes

Uncompressed size = 35.85 megabytes.
Standardisation Compressed size Compression ratio

(megabytes) (%)
Pitch directed modulo-12 8.15 22.74
Pitch extended contour 6.75 18.83
Pitch contour 3.95 11.02
Duration extended contour 3.83 10.69

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 1 2 3 4 5 6 7

〈
P (r)

〉
(%)

wπ/wδ

Automatic

�

�

�
� �

�

Manual

×

×

×
× ×

×
Automatic - baseline

Manual - baseline

Fig. 5. Best 11-point recall-precision values

of 0.05. The null hypothesis is that duration information does not improve re-
trieval effectiveness; with alternative hyptothesis that duration information does
improve retrieval effectivenes. It is found that incorporating duration informa-
tion using the vector model does not imply significant performance gain.

To see how much information is actually contained in the standardised strings
of the tunes in our collection, we compress the strings. The rationale behind this
is that strings that contain more information (thus having higher entropy) are
less compressible than those containing less information. We compress the strings
using the bzip2 program2. In uncompressed state, pitch information occupies
35.85 megabytes and so does duration information. The compressed standardised
string sizes are shown in Table 4. That duration extended contour strings are
more compressible than pitch contour strings reflects that not much information

2 see http://sources.redhat.com/bzip2/

274 I.S.H. Suyoto and A.L. Uitdenbogerd

is contained if tunes are represented only by their note durations despite the
larger alphabet size.

7 Conclusion and Future Work

This paper inspects the performance of combining pitch and duration similarities
using a vector model. The results of our experiment show that:

1. Duration information on its own is not useful for music retrieval.
2. The vector model is not appropriate to combine pitch and duration similari-

ties for the purpose of improving retrieval effectiveness over the use of pitch
information on its own.

Rhythm seems to be insufficiently varied for it to be useful for melody re-
trieval. However, the combination of pitch and rhythm is sometimes needed in
order for humans to distinguish or identify melodies. Using a representation that
combines the pitch and rhythm in a manner that preserves the relative position
of the match in each case may yield better results. This should be subject to
further experimentation.

References

1. Uitdenbogerd, A.L., Zobel, J.: Melodic matching techniques for large music
databases. In Bulterman, D., Jeffay, K., Zhang, H.J., eds.: Proc. ACM Multimedia
Conf., Orlando, USA (1999) 57–66

2. Kageyama, T., Mochizuki, K., Takashima, Y.: Melody retrieval with humming. In:
Proc. Int. Computer Music Conf. (1993) 349–351

3. McNab, R.J., Smith, L.A., Witten, I.H., Henderson, C.L., Cunningham, S.J.: To-
wards the digital music library: Tune retrieval from acoustic input. In: Proc. ACM
Digital Libraries. (1996)

4. Chen, J.C.C., Chen, A.L.P.: Query by rhythm: An approach for song retrieval
in music databases. In: Proc. IEEE Int. Workshop on Research Issues in Data
Engineering. (1998) 139–146

5. Lemström, K., Laine, P., Perttu, S.: Using relative interval slope in music in-
formation retrieval. In: Proc. Int. Computer Music Conf., Beijing, China (1999)
317–320

6. Dannenberg, R.B., Birmingham, W.P., Tzanetakis, G., Meek, C., Hu, N., Pardo,
B.: The MUSART testbed for query-by-humming evaluation. In Hoos, H.H.,
Bainbridge, D., eds.: Proc. Inf. Conf. Music Inf. Retrieval, Baltimore, USA (2003)
41–47

7. Uitdenbogerd, A.L.: Music Information Retrieval Technology. PhD thesis, School
of Computer Science and Information Technology, RMIT, Melbourne, Australia
(2002)

8. Suyoto, I.S.H.: Microtonal music information retrieval. Master’s thesis, School
of Computer Science and Information Technology, RMIT, Melbourne, Australia
(2003)

9. Moles, A.: Information Theory and Esthetic Perception. University of Illinois
Press, Urbana, US (1966)

Effectiveness of Note Duration Information for Music Retrieval 275

10. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147 (1981) 195–197

11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge, UK (1997)

12. Suyoto, I.S.H., Uitdenbogerd, A.L.: Exploring microtonal matching. In Buyoli,
C.L., Loureiro, R., eds.: Proc. Inf. Conf. Music Inf. Retrieval, Barcelona, Spain
(2004) 224–231

13. Uitdenbogerd, A.L., Chattaraj, A., Zobel, J.: Methodologies for evaluation of music
retrieval systems. (INFORMS J. Computing) Originally presented at ISMIR 2000;
to appear.

14. Uitdenbogerd, A.L., Zobel, J.: Music ranking techniques evaluated. In: Proc.
Australasian Computer Sci. Conf., Melbourne, Australia (2002) 275–283

15. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press,
New York, USA (1999)

A Self-Adaptive Model to Improve Average
Response Time of Multiple-Event Filtering for

Pub/Sub System

Botao Wang, Wang Zhang, and Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo,
Komaba 4–6–1, Meguro Ku, Tokyo, 153–8505 Japan

{botaow, zhangw, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. Publish/subscribe system captures the dynamic aspect of
the specified information by notifying users of interesting events as soon
as possible. Fast response time is important for event filtering which
requires multiple step processing and is also one of important factors to
provide good service for subscribers.

Generally the event arrival rate is time varying and unpredictable.
It is very possible that no event arrives in one unit time and multiple
events arrive in another unit time. When multiple events with different
workloads arrive at the same time, the average response time of multiple-
event filtering depends on the sequence of event by event filtering.

As far as we know, significant research efforts have been dedicated
to the techniques of single event filtering, they can not efficiently filter
multiple events in fast response time. In this paper, we first propose a
multiple-event filtering algorithm based on R-tree. By calculating relative
workload of each event, event by event filtering can be executed with
short-job first policy so as to improve average response time of multiple-
event filtering. Furthermore, a self-adaptive model is proposed to filter
multiple events in dynamically changing environment.

The multiple-event filtering algorithm and the self-adaptive model are
evaluated in a simulated environment. The results show that the average
response time can be improved maximum up to nearly 50%. With the
self-adaptive model, multiple events can be filtered with average response
time always same as or close to the possible best time in the dynamically
changing environment.

1 Introduction

Publish/subscribe system provides subscribers with the ability to express their
interests in an event in order to be notified afterwards of any event fired by a
publisher, matching their registered interests [7]. It captures the dynamic aspect
of the specified information. Fast response time is very important for the event
filtering which requires multiple-step processing, there the events need to be
filtered out first as the inputs of operator like join in continuos query, and is also
one of important factors to provide good service for subscribers.

Generally the event arrival rate is time varying and unpredicatable. For exam-
ple, traffic monitoring, ticket reservation, internet access, stock price, weather

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 276–287, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Self-Adaptive Model to Improve Average Response Time 277

reports, etc.. In contrast to stable arrival rate, it’s very possible that multiple
events arrive in one unit time and no event arrives in another unit time.1

In the context of event filtering, even many index techniques such as event
filtering algorithms based on multiple one-dimensional indexes [5] [8] [11] [18]
[21] and event filtering algorithms based on multidimensional index [19][22], have
been proposed, all these techniques are designed to filter single event instead of
multiple events at one time. They can not filter multiple events directly in fast
average response time if those events arrive at the same time with different
workloads. Meanwhile, we found that event filtering based on multidimensional
index [19] [22] is more efficient and flexible than that based on multiple one-
dimensional indexes.

In order to improve average response time of multiple-event filtering, we first
propose a R-tree [4] [9] based multiple-event filtering algorithm. Furthermore a
self-adaptive model is proposed to filter multiple events in a dynamically chang-
ing environment with average response time always same as or close to the best
possible time.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground of this paper. Section 3 describes the algorithm to improve average re-
sponse time. Section 4 proposes the self-adaptive model. In Section 5, the event
filtering algorithm and the self-adaptive model are evaluated in a simulated en-
vironment. Section 6 discusses the related work. Finally, conclusions and future
work are given out in Section 7.

2 Background

In this section, we first explain the reason why R-tree [4] [9] is chosen, and then
introduce the event filtering based on R-tree briefly. We assume that readers
have enough knowledge about R-tree.

– The reasons to choose R-tree
There are two reasons to choose R-tree here. One is performance; another is
space partition strategy.
As introduced in [19] [22], event filtering based on multidimensional index (
UB-tree [2] [3] or R-tree [4] [9]) is feasible, and is much efficient and flexible
than that based on Count algorithm [21], which is one representative event
filtering algorithm based on multiple one-dimensional indexes. Fig.1 shows
a snapshot of performance differences with two examples.2 That’s the first
reason to choose R-tree.
Further UB-tree and R-tree have different partition strategies. Generally, the
search algorithms (except point query) of both index structures traverse mul-
tiple paths from root node to leaf nodes. UB-tree partitions space with space
filling curve. UB-tree’s search algorithm is depth-first and it is not easy to
calculate the number of multiple search paths at one specified middle level.

1 Even logically for most of the events, there exist absolutely different arriving times,
in this paper, we regard the events arriving in the same unit time as the events
arriving at the same time. For example, positions reported every 30 seconds or the
stock prices sampled every second.

2 For details, please refer to [19] [22].

278 B. Wang et al.

Fig. 1. Performance Examples of Event Filtering Based on Different Index Techniques

Contrary to UB-tree, R-tree decomposes the space in a hierarchical manner.
Its search algorithm does not have to be depth-first, so it is easy to calculate
the number of multiple search paths at one specified middle level. Because the
number of multiple search paths will be used to estimate workload of event
filtering in our proposal, we choose R-tree here.

– Event Filtering based on R-tree
The event filtering based on R-tree is executed as a point enclosed query. Sub-
scriptions are hypercubes and events are points here. The dimension number
means the number of attributes used in pub/sub system.
By the way, even the other multidimensional indexes, for example, multilevel
grid file [20], are applicable, as the purpose of this paper is concerned, we will
conentrate on the main idea to filter multiple events with unstable arrival rate
in fast response time.

3 Algorithms to Improve Average Response Time

3.1 Motivation and Main Algorithm

Short-Job First(SJF) is one well-known policy used to improve average response
time while scheduling multiple jobs. The critical thing is to estimate workloads
properly. Meanwhile, the search algorithm of R-tree traverses multiple paths
from root to leaf nodes. Apparently, the number of the multiple search paths
reflects workload relatively.

Our motivation is that, in order to improve average response time of multiple-
event filtering, first estimate workloads of multiple events relatively according to
their numbers of search paths, and then filter these multiple events sequentially
with SJF policy.

Fig. 2. Main Algorithm BatchSearch

A Self-Adaptive Model to Improve Average Response Time 279

Fig.2 shows the pseudo codes of main algorithm. The algorithm is called
BatchSearch. It is an algorithm to filter multiple events, one of whose in-
puts is one array of events (EventArray) instead of one event. The parameter
Level controls the depth to estimate workloads starting from root node Root.
In WorkloadTable (to be introduced later), the events will be sorted in ascend-
ing order of the number of search paths stopped at Level. Line 1 corresponds
to workload estimation. Line 2-6 correspond to event by event filtering with
SJF policy.

Line 4 filters one event with an algorithm similar to the original R-tree point
enclosed query. The differences are that it starts from the nodes obtained at line 3
instead of Root in original point enclosed query, and the point enclosed query is
executed many times (same as the number of nodes corresponding to the search
paths) instead of one time. For this reason, in the following, we only describe
the data structures and algorithms newly defined for workloads estimation which
corresponds to Line 1 of Fig.2.

3.2 Data Structures Used to Estimate Workloads

Two data structures called WorkloadTable and IntersectBuffer, are newly defined
for workloads estimation.

Fig. 3. Data Structures Used to Estimate Workloads

WorkloadTable is an array of items with structure shown in Fig.3-a. Each item
corresponds to one event. The workload is the number of search paths(nodes)
stopped at the specified Level. ”List of nodes” are pointers of the corresponding
nodes. Only one WorkloadTable is used while estimating workloads.

IntersectBuffer (Fig.3-b) is used to record events whose Minimum Bounding
Rectangles (MBR) intersect with those of the items inside one R-tree node.
Each level uses one intersectBuffer while estimating workloads. The items in one
intersect buffer correspond to those of one R-tree node.

3.3 Algorithms to Estimate Workloads

The algorithm (corresponding to line 1 of Fig.2) to fill WorkloadTable is shown
in Fig.4. In function EstimateWorkload, line 1 initializes the IntersectBuffer
of level 0, there is only one item with one pointer pointing to the root node
and all events are assumed to intersect with the MBR of this item, because the
item is root. Line 2 calls a recursive procedure named BatchIntersect to fill
the WorkloadTable. Line 3 sorts the WorkloadTable according to the workloads
in ascending order.

280 B. Wang et al.

In the procedure BatchIntersect, line 1-2 read the parent item of current
node from the IntersectBuffer of last level (the level near to root) and get all
event IDs kept in the item. Line 3 checks the ending condition of the recursive
search and line 4 fills the WorkloadTable with the event IDs obtained at line 1-2
and CurrentNode. Line 7-16 fill the IntersectBuffer of CurrentLevel. Line
18-20 check next level by accessing children nodes of CurrentNode.

Fig. 4. Algorithms to Estimate Workload

4 Self-Adaptive Model

While filtering multiple events with BatchSearch, for the same multiple events,
the average response time depends on the value of Level which controls the depth
to estimate workloads. The number of multiple events arriving at the same time
is not fixed, and the size and data distribution of index change dynamically also.
In this section, we will propose a self-adaptive model to filter multiple events in
the dynamically changing environment.

4.1 Relationship Between Average Response Time and Level

Fig.5-a and Fig.5-b show two examples which reflect the relationship between
average response time and Level. For the details of experiment environment,
please refer to Section 5.1. In order to avoid overlap of results, the time here is the
sum of average response times obtained with different numbers of times(loop).
”Same events” means same EventArrays are used for different Levels. ”Dif-
ferent events” means different EventArrays are used. The height of the index
tree is 7 with 1.5 million subscriptions. The difference of two examples is the
number of multiple events (size of EventArray).

A Self-Adaptive Model to Improve Average Response Time 281

Fig. 5. Relationship between Average Response Time and Level

The point to observe is that, with same EventArrays, the average response
time changes in the shape of concave while level changes from root to leaf. It’s
reasonable considering the two main steps of BatchSearch: estimating work-
loads and event by event filtering with SJF policy. While filtering multiple events
arriving at the same time, time cost to estimate workloads is overhead compared
to the event filtering without workloads estimation. The overhead becomes larger
with value increment of Level. At the same time, because the higher the Level
is, the more accurate of the workloads estimation is. Consequently the efficiency
of SJF becomes more and more higher with value increment of the Level. That
is the reason why the average response time changes in the shape of concave.

Based on the concave, we can say that the best level exits for multiple-event
filtering with BatchSearch if the number of events is fixed. The best level is
the level to get the shortest average response time while using BatchSearch.

On the basis of the above observations (Fig.5-a and Fig.5-b) and analyses.
The logical relationship between average response time and Level is expressed
in Fig.5-c by the line marked Logical. As shown in Fig.5-a and Fig.5-b, the best
level changes with different event numbers. It also depends on the size of index
as shown in the evaluation (Fig.7-a).

In order to get possible best average response time, the BatchSearch should
run with Level valued best in the dynamically changing environment.

4.2 Adjust Best Level Dynamically According to Statistic
Information

The self-adaptive model is shown in Fig.6. The function of the self-adaptive
model is to adjust the best level dynamically for multiple-event filtering in the
dynamically changing environment. It is built for filtering multiple events with
same event number. For multiple events with different event numbers, their
statuses (current best level, numbers of updates, etc.) will be kept in different
buffers.

If the current level is best, we call system is stable. In stable status, Batch-
Search is executed with Level valued best. As shown in the right of Fig.6, for
arriving EventArrays (with same event number), same level CurrentLevel is
used. In stable status, the average response time is the possible best time be-
cause CurrentLevel is best level. The number of update operations (insert and

282 B. Wang et al.

Fig. 6. Self-Adaptive Model

delete) is monitored and counted in stable status. After a lot of update opera-
tions, the height of the index tree or its data distribution might be changed, it is
necessary to check the best level or adjust it if it changed. The system becomes
unstable then. The Threshold shown in Fig.6 is the number to determine the
time when the system enters unstable status from stable status.

Unstable status is the status in which the best level should be checked. In
unstable status, the best level can be checked and gotten by trying all levels
with same EventArrays naively, but it’s not acceptable for a dynamic system in
practice. The overhead is not neglected for a higher index tree or EventArrays
with larger size.

Our solution is that, check the average response times of current level and its
upper level and its lower level (totally 3 levels), based on the ”Logical” concave
line in Fig.5-c. There, BatchSearch filters different EventArrays (same size)
with Level values changed in a loop of round-robin way as shown in the right
of Fig.6. N is the loop counter. In unstable status, multiple events are filtered
with Level valued same as or close to the best level.

The average response times of three different levels are summed up (called
CTime, UTime, LTime in Fig.6 which correspond to current level, upper level
and lower level) and checked after the loop ends. Note that, the EventArrays
are different each time and one EventArray is filtered just one time. If

CTime < UTime && CTime < Dtime

is true, the system will enter stable status, because the current level is the best
according to the concave changes of average response time against level value.
Otherwise, adjust the current level towards to the direction of to best level
(bottom of the concave line marked ”logical”, Fig.5-c) according to the concave
shape and restart a new loop.

Because the contents of EventArrays are different, so it is possible that the
average response times obtained at different levels do not change logically when
the loop counter N is very small, for example, the lines marked by ”Different
events” with loop counter valued 4 and 16 in Fig.5-a . In this case, as expressed
by the line of ”Practical” in Fig.5-c, it is possible for system to enter stable
status even the current level (A) is not best level (C). It is also possible that

CTime > UTime && CTime > LTime

is true as shown at level (B). The self-adaptive model can not work well in these
cases. But, if the value of loop counter N is larger enough, for example 64, the
”Practical” line will change in the same concave shape or close up to ”Logical”

A Self-Adaptive Model to Improve Average Response Time 283

line statistically as shown in Fig.5-a and Fig.5-b. The loop counter is manageable
for a long time running pub/sub system.

5 Results of Evaluation

5.1 Environment

The algorithm is evaluated in main memory structure. Both subscriptions and
events are created randomly. The index size (number of subscriptions) changes
from 0.5 million to 3.0 millions. The number of events arriving at the same time
changes from 2 to 128. The BatchSearch algorithm is implemented on R-tree3

with index node capacity 10 and leaf node capacity 20 in a 12D space.4 The

Fig. 7. Evaluation Results of BatchSearch and Adaptive Model

3 Version 0.62b. http://www.cs.ucr.edu/ marioh/spatialindex
4 The performance doesn’t change drastically if the dimension number is located in

a reasonable range as shown in Fig.1. Dimension number and node capabilities in-
fluence the performance of R-tree itself but do not influence the improvement of
average response time and effectiveness of the self-adaptive model which are mainly
concerned in this paper.

284 B. Wang et al.

hardware platform is Sun Fire 4800 with 4 900MHz CPUs and 16G memory.
The OS is Solaris 8.

5.2 Evaluation of BatchSearch Algorithm

Changing of Best Level. Fig.7-a shows that the best level changes slowly with
increment of index size. It means the Threshold in Fig.6 can be set larger, for
example 100,000, if the insert operation is more frequent than delete operation.
For pub/sub system with balanced insert and delete operations, the value of
Threshold is implementation-dependent. Generally, the update operations are
much less than filtering operation. So in most of time, system can run in stable
status. Fig.7-b shows that the smaller the number of events is, the lower the best
level is.

Improvement of Average Response Time. Fig.7-c and Fig.7-d compare
the average response time of BatchSearch with Level valued best to that
without considering about workloads (”no BatchSearch”. BatchSearch is not
used, multiple events are filtered event by event with original point enclosed
query in a random sequence). Fig.7-c shows that the improvement of average
response time has good scalability with increment of index size. Fig.7-d shows
that the larger the number of events is, the more the average response time
can be improved. The reason is that for the events with uniform distribution of
workloads, the larger the number of events is, the more the SJF can be benefited.
The maximum improvement is nearly up to 50% in our evaluation. Both Fig.7-c
and Fig.7-d also show that the cost to estimate workload (algorithms shown in
Fig.4) can be neglected compared to the improvement of average response time.

Effectiveness of Self-Adaptive Model. Fig.7-e and Fig.7-f compare the per-
formance with the self-adaptive model to that without the self-adaptive model
(same as ”no BatchSearch” in Fig.7-c and Fig.7-d) and the possible best per-
formance. There, the size of index changes from 0.5 million to 2.6 millions, the
Threshold is 300,000, and the loop counter is 64. When the system becomes
stable, 300,000 subscriptions are inserted into the index. So Fig.7-e and Fig.7
show the performance of unstable status. The difference is the number of events.

Fig. 8. One Piece of Unstable Status Performance (event number=8, index
size=2,000,000)

We can find that the average response time with the self-adaptive model is
much better than that without the self-adaptive model (BatchSearch is not
used), the time differences are almost at the same level as those shown in Fig.7-c
and Fig.7-d which are obtained with best level. Even in unstable status, the time

A Self-Adaptive Model to Improve Average Response Time 285

obtained by using self-adaptive model is very close to the possible best time as
shown in Fig.7-e and Fig.7-f. The time difference compared to the possible best
time is so small that is hard to make difference in Fig.7-e and Fig.7-f. Fig.8
shows a piece of details of Fig.7-e where index size is 2 millions (the range of
sequential number is about 1550-3000).

We can say that with the self-adaptive model, multiple events can be filtered
with average response time same as or close to the possible best time.

6 Related Work

A lot of algorithms related to event filtering have been proposed. They are pro-
posed for publish/subscribe systems [1] [8] [12] [18] [19] [21] [22], for continuous
queries [5] [6] [15] and for active database [10] [11].

Predicate indexing techniques have been widely applied. There, a set of one-
dimensional index structures are used to index the predicates in the subscrip-
tions. Mainly, there are two kinds of multiple one-dimensional indexs based algo-
rithms: Count algorithm [21] and Hanson algorithm [10] [11]. The performances
of Count algorithm and Hanson algorithm have same complexity order, they dif-
fer from each other by whether or not all predicates in subscriptions are placed
in the index structures. Meanwhile in [19] [22], event filtering based on multidi-
mensional index is proved to be feasible and efficient compared to the popular
Count algorithm. The conclusions of [19] [22] are the basis of this paper.

The testing networking based techniques [1] [12] initially preprocess the sub-
scriptions into a matching tree. Different from predicate index, [1] and [12] built
subscription trees based on subscription schema. They suffer from the problem
of space and maintenance.

Event filtering is one critical step of continuous queries. In [5], predicate index
is built based on Red-Black tree, there algorithm is similar to bruteforce which
scans the total Red-Black tree every time when event arrives. In [6], Count
algorithm is used. Adaptivity is applied in [15], it implements routing policies to
let faster operators filter out some tuples before they reach the slower operators.
In [17], queries are optimized based on rate of input to minimize response time
by introducing event arrival rates into the optimizer cost model.

As far as we know, the problem of adaptively improving average response time
for multiple events arriving at the same time has not been addressed yet.

7 Conclusions and Future Work

In this paper, in order to improve the average response time of pub/sub sys-
tem with unstable event arrival rate, we first proposed a multiple-event filtering
algorithm based on R-tree. The relative workload of each event is estimated
according to the number of search paths so as to utilize short-job first policy.
Further a self-adaptive model is designed to filter multiple events in dynamically
changing environment.

According to the evaluation results, the improvement of average response time
has good scalability with index size and the larger the number of events is, the
more the average response time can be improved. The average response time
can be improved maximum up to nearly 50%. The results also show that the
overhead derived from workloads estimation can be neglected compared to the

286 B. Wang et al.

improvement of average response time. With the self-adaptive model, multiple
events can be filtered with average response time always same as or close to the
possible best time.

Because the proposed idea and self-adaptive model can be applied to other
multidimensional index structure also, for example, multilevel grid file [20], in the
future, we will try other applicable multidimensional indexs in different update
scenarios and real data.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, T. D. Chandra. Matching
Events in a Content-based Subscription System. Eighteenth ACM Symposium on
Principles of Distributed Computing(PODC), 1999:53-61

[2] R. Bayer. The Universal B-Tree for multidimensional Indexing. Technical Report
TUM-I9637, November 1996

[3] R. Bayer, V. Markl. The UB-Tree: Performance of Multidiemnsional Range
Queries. Technical Report TUM-I9814, June 1998

[4] N. Beckmann, H.-P. Kriegel, Ralf Schneidar, Berhhard Seeger. The R*-Tree:
An Efficient and Robust Access Method for Points and Rectangles. SIGMOD
1990:322-331

[5] S. Chandrasekaran, M. J. Franklin. Streaming Queries over Streaming Data. Pro-
ceedings of the 28th VLDB Conference, Hong Kong, 2002:203-214

[6] J. Chen, D. J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A Scalable Continuous
Query System for Internet Databases. ACM SIGMOD 2000:379-390

[7] P. T. Eugster, P. Felber, R. Guerraoui and A.-M. Kermarrec. The Many Faces of
Publish/Subscribe. Technical Report 200104, Swiss Federal Institute of Technol-
ogy

[8] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, D. Shasha. Filtering
Algorithms and Implementation for Very Fast Publish/Subscribe Systems. ACM
SIGMOD 2001:115-126

[9] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. ACM
SIGMOD 1984:47-57

[10] E. N. Hanson, M. Chaaboun, C.-H., Y.-W. Wang. A Predicate Matching Algo-
rithm for Database Rule Systems. ACM SIGMOD 1990:271-280

[11] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha. Scalable Trigger
Processing. ICDE 1999:266-275

[12] A. Hinze, S. Bittner. Efficient Distribution-Based Event Filtering. International
Workshop on Distributed Event Based Systems. Austrai July 2002:525-532

[13] H. A. Jacobsen, F. Fabret. Publish and Subscribe Systems. Tutorial. ICDE 2001
[14] V. Markl. MISTRAL:Processing Relational Queries using a Multidimensional Ac-

cess Tecnnique. Ph.D. Thesis, TU Munchen, 1999, published by infix Verlag,
St.Augustin. DISDBIS 59, ISBN 3-89601-459-5, 1999

[15] S. Madden, M. Shah, J. Hellerstein, V. Raman. Continuously Adaptive Continu-
ous Queries(CACA) over Streams. ACM SIGMOD 2002:49-60

[16] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, R. Bayer. Intergrating the
UB-tree into a Database System Kernel. VLDB 2000:253-272

[17] S. D. Viglas, J. F. Naughton. Rate-based query optimization for streaming infor-
mation sources. SIGMOD Conference 2002: 37-48

[18] B. Wang, W. Zhang, M. Kitsuregawa. Design of B+Tree-Based Predicate Index
for Efficient Event Matching. APWeb 2003: 548-559

[19] B. Wang, W. Zhang, M. Kitsuregawa. UB-Tree Based Efficient Predicate Index
with Dimension Transform for Pub/Sub System. DASFAA 2004: 63-74

A Self-Adaptive Model to Improve Average Response Time 287

[20] K.Y. Whang, R. Krishnamurthy. The Multilevel Grid File - A Dynamic Hierar-
chical Multidimensional File Structure. DASFAA 1991:449-458

[21] T. W. Yan, H. Garcia-Molina. The SIFT Information Dissemination System. In
ACM TODS 24(4):529-565 1999

[22] W. Zhang. PERFORMANCE ANALYSIS OF UB-TREE INDEXED PUB-
LISH/SUBSCRIBE SYSTEM. Master Thesis. Department of Information and
Communication Engineering, The University of Tokyo. March 2004

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 288 – 299, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Filter Indexing: A Scalable Solution to Large
Subscription Based Systems

Wanxia Xie1, Shamkant B. Navathe1, and Sushil K. Prasad2

1 College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA, USA

{wanxia.xie, sham}@cc.gatech.edu
2 Dept. of Computer Science, Georgia State University

34 Peachtree Street, Atlanta, GA, USA
sprasad@gsu.edu

Abstract. Filtering is a popular approach to reduce information traffic in
subscription-based systems, especially if most subscribers are located on mobile
devices. The filters are placed between the subscribers and the subscription
server. With increasing number of filters from subscribers, filtering may
become a bottleneck and challenge the scalability of such systems. In this
paper, we propose to use filter indexing to solve this problem. We propose and
study four filter-indexing schemes: Ad-Hoc Indexing Scheme (AIS), Group
Indexing Scheme (GIS), Group-Sort Indexing Scheme (GSIS) and B’ Tree
Indexing Scheme (BTIS). We evaluate the performance of these four indexing
schemes with respect to scalability and other factors. Among the proposed
schemes, we find that GSIS is the most efficient indexing scheme for searching
and BTIS has the best performance for updating and inserting filters.

1 Introduction

Currently subscription-based systems are widely used in many application areas.
Filtering is a popular approach to reduce information traffic in these subscription-
based systems. Usually a subscriber1 sends its customized filter to the subscription
management system and the system will filter the information being sent to the
subscriber. Different subscribers have different filter requirements. The same
subscriber may have different filter requirements under different conditions. Filtering
is especially important when the subscriber is located in a mobile device as it reduces
the information traffic and hence reduces the energy consumption of the mobile
device. On the other hand, it is difficult to develop a scalable subscription based
system, as filtering may become the bottleneck.

In [1] and [2], authors propose query grouping and [4] proposes trigger grouping
for continuous queries. However, queries and triggers are applied before the
information is sent to the subscription-based system. Authors in [2] and [3] also

1 A subscriber can be considered an application without any loss of generality.

 Filter Indexing: A Scalable Solution to Large Subscription Based Systems 289

consider filters but their filters are either placed in the data sources (publishers) or as
part of the queries. The filters that we discuss in this paper are applied to the
information received at subscription-management systems.

We envision an environment where distributed publishers continuously push
updates of resource objects to a centralized subscription management system that
manages many resource objects. Based on the filter of a subscriber, the subscription
management system will decide whether the update of the resource object should be
sent to the subscriber. Our motivation comes from the experience of implementing a
hybrid directory server [6] which employs both pull and push interfaces for
information querying and information monitoring respectively. Here, we have
extended the directory service into a general information/resource monitoring system.

With the increasing number of filters in the system, the filtering process becomes
the bottleneck of the system. The system ends up repeating the same process for
similar filters. The goal is to improve filter management and thereby to enhance the
overall performance of the publish/subscribe system by reducing the duplicate effort
in the filtering process for similar filters in the system. Given an update, the problem
that we want to address is to rapidly determine the list of subscribers who are in the
set to receive this update. To focus on this problem, we make a reasonable assumption
that the network is reliable so that the delivery of data is guaranteed.

As there are frequent updates to the resource objects in a system, we need to schedule
the updates being sent to subscribers. It takes a long time to find the real interests (the
number of subscribers who need the update) of each update and this makes scheduling
so difficult that most systems just send the updates in a random order.

Our solution to the problem outlined above can be presented as a combination of
two-pronged techniques: (1) Filter indexing: To speed up the filter process and
remove the duplicate work from processing similar filters, we group and index filters
from different subscribers for each resource object; (2) Scheduling based on filter
index schemes. In this paper, our emphasis will be on the analysis of the first
technique - indexing of filters. We will only outline some important issues related to
the scheduling of the updates.

This paper is organized as follows. Section 2 introduces the system architecture
and filter design. Section 3 describes four filter-indexing schemes. Section 4 presents
the performance evaluation. Section 5 describes the related work. Section 6 contains a
summary and future work.

2 Adaptive Filters

2.1 System Architecture

The overall architecture is described as Fig. 1. Fig. 1 (a) shows a subscription-based
system without filters. All subscribers of the same channel will receive the same
information. Fig. 1 (b) demonstrates a subscription-based system with filters. A
subscriber can define a filter for the information it is interested in. Usually a filter is
installed in the subscription server since only the updates that the subscriber is
interested in will be pushed to the subscriber in this way. Moreover, a subscriber may

290 W. Xie, S.B. Navathe and S.K. Prasad

be located in a resource-poor device such as a PDA. Moving filter processing away
from such subscribers will reduce resource contention and preserve the energy for
battery-powered devices.

The detailed architecture is described as Fig. 2. A subscription server acts as the
coordinator among resource publishers and subscribers. Publishers constantly push
updates of resource objects to the subscription server. Subscribers need the latest
updates of resource objects from the subscription server to make the best decisions.
The subscription server can also aggregate the updates from different publishers so
that publishers are transparent to subscribers.

When the subscription server receives an update from a publisher, it scans the
filters associated with the channel to find the list of subscribers that are interested in
the update. This list forms a derived channel. As the list changes with updates of
resources and filters of subscribers, the derived channel dynamically adapts. In order
to reduce the overhead of scanning filters, we propose an indexing of filters according
to the indexing schemes discussed in Section 3.

Subscription
Server

filter

Publisher

Publisher

Publisher

…

Subscriber

Subscriber

Subscriber

…

(a)

Publisher

Publisher

Publisher

…

Subscriber

Subscriber

Subscriber

…

(b)

filter

filter

Subscription
Server

Resource
Publisher

Push

Updates

Subscriber

Information
Handler

Subscription
Controller

Data

Channel

Control

Channel
Subscription
Server

Derived
Channel

Subscription
Manager

Channel
Coordinator

Filter
Index

Resource DB

Fig. 1. (a) A subscription-based system without filters Fig. 2. Details of the system architecture
(b) A subscription-based system with filters

2.2 Filter Design

A filter is an XML document that is generated in a subscriber and sent to the
subscription server. There are two kinds of filters. One is called simple filter that
only needs to compare with the latest value of the attributes of resource objects. The
other is called historic filter that needs to compare with the past values of the
attributes of resource objects. The most common historic filter is one where the
updated value increases by a constant value or a certain percentage compared with the
old value. Some historic filters may need to apply statistics over a few past values
such as the average or summary of 5 past values. In this paper, we focus on simple
filters - those involving equality and inequality conditions on single attribute values.
When we mention the word “filter”, it will mean a simple filter unless otherwise
specified.

,

 Filter Indexing: A Scalable Solution to Large Subscription Based Systems 291

A channel filter is composed of three parts. The first part is Type, which describes
the filter type. The second part is FromSource, which describes the resource objects
that the filter is related to. The last part is WhereCondition, which describes the
requirement the update of resource objects should meet. So updates of resource
objects will be tested against the WhereCondition to see whether they should be
pushed to the owners of the filter.

To simplify the discussion, we only consider three basic data operators: Greater (>),
Equal (=) and Less (<). Other numerical comparison operators could be built from
these three operators. We consider three logical operators: AND, OR and NO. Operator
‘NO’ means there is only one condition and hence no logical operations are needed.

3 Filter Indexing Techniques

The system model could be simplified as follows. There are N resource objects Oi
(0<=i<N), Mi subscribers and Li filters for the resource object Oi. That means each
update of resource object Oi needs to be compared with Li filters before it is sent to
subscribers.

3.1 Filter Indexing for a Single Attribute of a Resource Object

3.1.1 Ad-Hoc Indexing Scheme (AIS)
In the ad-hoc indexing scheme, filters are grouped by their associated resource
objects. When an update of the resource object arrives, it will be compared with all
filters associated with the resource object, even if some filters may be the same. The
scheme is illustrated in Fig. 3. Let us assume that Filter 1 is the same as Filter 2 and
Filter 3 is the same as Filter 4. To find whether subscriber 1 and 2 should be included
in the derived channel, an update has to be compared with both Filter 1 and Filter 2.
This is a waste of computation as the number of subscribers who have the same filter
increases when the subscribers grow. So we introduce a Group Indexing Scheme in
next section.

3.1.2 Group Indexing Scheme (GIS)
As we discussed in the AIS above, the same filters should be compared only once by
an update of the resource object. All subscribers with the same filter will be added
into the subscriber list of the filter. We call this as a Group Indexing Scheme and it is
illustrated in Fig. 4. Since Filter 1 is the same as Filter 2 and Filter 3 is the same as
Filter 4, they are grouped into two groups instead of four groups.

A variant of this scheme is to use a hash table. Since we need to compare whether
the whole filter is the same, we could use the hash value of the filter to build a hash
table. When a filter arrives at the subscription server, a hash function is applied to the
filter. The hashed value will be used to find the entry of matching filters. The variant
of Figure 5 is illustrated in Table 1.

However, in both situations, when an update of the resource object arrives, it still
needs to be compared with all groups to find all subscribers who are interested in this
update.

292 W. Xie, S.B. Navathe and S.K. Prasad

Filter 1 Subscriber 1

Filter 2 Subscriber 2

Filter n Subscriber n

Filter 3 Subscriber 3

Filter 4 Subscriber 4

Updates

… …

Filter 1(2)

Subscriber 1

Subscriber 2

Filter n Subscriber n

Filter 3(4)

Subscriber 3

Subscriber 4

Updates

… …

Fig. 3. Ad-hoc filter indexing scheme Fig. 4. Group Filter Indexing Scheme

Table 1. Group Filter Indexing with Hash Table

Filter Hashed Value Subscriber List
1, 2 HashFunction(Filter 1) 1, 2
2, 3 HashFunction(Filter 3) 3, 4
… … …
n HashFunction(Filter n) N

3.1.3 Group-Sort Indexing Scheme (GSIS)
Group-Sort Indexing Scheme is designed to avoid comparing with all groups of
filters. In this scheme, filters are grouped by every operator on each attribute of each
resource object. At the same time, filters are also sorted by the value of the attribute
of the resource object, which is set in the filter. This creates linear indices.

As we discussed in Section 2.2, we only consider three basic data operators (>, <, =).
So we have three indexing possibilities for each attribute of the resource object: greater
group-sort index, less group-sort index and equal group-sort index. For greater group-
sort index and equal group-sort index, the values of the attribute are sorted in increasing
order. For less group-sort index, the values of the attribute are sorted by decreasing
order. Every value in the index is associated with a list of subscribers that have the same
filters with this value.

Fig. 5 illustrates greater group-sort index and less group-sort index for value V of
attribute A of the resource object O. Gi (0<i<=n) stands for the filter A>Gi (and Gi >
Gi-1). Pi stands for the pointer to the subscriber list i. Li (0<i<=n) stands for the filter
A<Li, (and Li-1 > Li). When we scan greater group-sort index for the updated value V’
of A, we will include subscriber list 1 to subscriber list i where Gi+1 > V’ (or i
corresponds to the end of greater group-sort index) into the matching subscriber list.
Similarly we will include subscriber list 1 to subscriber list i where Li+1 < V’ (or we
reach the end of less group-sort index) into the matching subscriber list.

In addition, equal group-sort index can also use hash functions instead of sorting. It
is similar to Table 1, but we apply a hash function to the value of the attribute in the
filter instead of the whole filter. When the updated value A’ arrives, we apply hash
function to A’ to get the hashed value of A’. Then we look for the hashed value in the
hash table. We return the associated subscriber list with the hashed value if we find
the matching key in the hash table. Otherwise, the subscriber list will be empty.

,

 Filter Indexing: A Scalable Solution to Large Subscription Based Systems 293

When an update of the resource object arrives, three operator group-sort indices of
each attribute should be searched. For equal group-sort index, we search for the
updated value of the attribute in the index. If we find it, the associated subscriber list
with this value will be returned. For greater group-sort index, we scan the index from
the beginning until we find the updated value of the attribute or meet the key that is
greater than the updated value. All subscriber lists associated with every value we
scan before the end should be added into the returning subscriber list. Searching in
less group-sort index is similar to greater group-sort index.

PnGn

PiGi

P2G2

……

……

P1G1
Subscriber List 1

Greater group-sort index

Subscriber List 2

Subscriber List i

Subscriber List n PnLn

PiLi

P2L2

……

……

P1L1
Subscriber List 1

Less group-sort index

Subscriber List 2

Subscriber List i

Subscriber List n

Fig. 5. Greater group-sort index and less Fig. 6. (a) Internal node of B’ tree

 group-sort index (b) Leaf node of B’ tree

Now, we merge three subscriber lists from three operator group indices of this
attribute into the subscriber list for this attribute. Then we merge subscriber lists of all
attributes into the final subscriber list. This final subscriber list includes all
subscribers that may be interested in this update of the resource object.

3.1.4 B’ Tree Indexing Scheme (BTIS)
When the number of the filters increases, the overhead of searching the key in the
group-sort indexing scheme also increases dramatically. We propose below a slight
variation of B+ tree called B’ tree (pronounced B-prime tree) and use an indexing
scheme based on utilizing the B’ tree. Similar to the group-sort indexing scheme
(which uses linear tabular indexes), we build a B’ tree for each operator for each
attribute of the resource object.

B’ tree is a variant of B+ tree [5]. B’ tree includes two kinds of nodes: internal
node and leaf node. Data pointers are only stored in the leaf nodes. A data pointer
points to the subscriber list associated with the key and the operator. The leaf nodes
have an entry for every value of the attribute that is used with the operator in the
filters, along with a data pointer to the subscriber list associated with the value of the
attribute. The leaf nodes of B’ tree are linked together to provide ordered access on
the attribute to the subscriber lists. The leaf nodes linked list is almost the same as the
index built in the group-sort indexing scheme. The main difference is that the leaf

NqPqKq-1…KiNiPiKi-1…K1N1P1

X

X<K1

X
Ki-1<X<=Ki

X
X>Kq-1

(a)

Kq-1 DPq-1 Nq-1Ni ……Ki PnextDPiN1DP1K1

Subscriber
List 1

Subscriber
List i

Subscriber
List q-1

(b)

Next Leaf
Node

294 W. Xie, S.B. Navathe and S.K. Prasad

node linked list in less B’ tree index is sorted in increasing order, but the less group
indexing scheme sorts the linked list by decreasing order.

The internal nodes of the B’ tree are the second level indices used to search the leaf
node linked list. The structure of the internal nodes of a B’ tree of degree p is
illustrated in Fig. 6 (a). Every internal node is of the form <P1, N1, K1, …, Pq-1, Nq-1,
Kq-1, Pq, Nq> in which Pi is the subtree pointer that points to the subtree i, Ni is the
number of subscribers in the subtree i, Ki is the ith key value of the attribute in the
node, q<=p and K1<K2< …< Kq-1. With the exception of root node, q >= Ceiling (p/2)
in every internal node.

The structure of the leaf nodes of a B’ tree of degree p is illustrated in Fig. 6 (b).
Every internal node is of the form < <K1, DP1, N1>, …, <Kq-1, Pq-1, Nq-1>, Pnext> in
which DPi is the data pointer that points to the ith subscriber list, Ni is the number of
subscribers in the ith subscriber list, Ki is the ith key value of the attribute in the node,
Pnext points to the next leaf node of the B’ tree, Ceiling(p/2)<=q<=p and K1<K2< …<
Kq-1. In addition, all leaf nodes are at the same level.

The main difference between B’ tree and B+ tree is that the B’ tree maintains the
number of subscribers for each subtree or each subscriber list in each node. This
number will be used for scheduling of updates from different resource objects. At the
same time, we need to keep track of the leftmost leaf node.

The filter processing of B’ tree indexing scheme is similar to GSIS. When an
update of the resource object arrives, three operator B’ tree indexes of each attribute
of the resource object are potential candidates to be searched. For equal B’ tree index,
we try to search the updated value of the attribute in the B’ tree starting from the root
node. If we find it, the associated subscriber list with this value will be returned. For
greater B’ tree index, we search the B’ tree index from the root node until we find the
updated value of the attribute or meet the key of the largest value that is less than the
updated value in the leaf node. We identify this key as KA. Then we traverse the leaf
node link list. We start from the leftmost leaf node until we reach Key KA. All
subscriber lists associated with every value we traverse in the leaf node linked list
should be added into the returning subscriber list. Searching in less B’ tree index is
similar as greater B’ tree index.

After searching these B’ tree indexes, we merge three subscriber lists from three
operator- based B’ tree indices of this attribute into the subscriber list for this
attribute. Then we merge subscriber lists of all attributes into the final subscriber list.
This final subscriber list includes all subscribers that may be interested in this update.

3.2 Filter Indexing for Multiple Conditions/Attributes of a Resource Object

Now we look at indexing the filters associated with multiple attributes of a resource
object. Usually such a filter has multiple conditions connected by logical operators
‘AND’ and ‘OR’. As we notice, multiple conditions/attributes in a filter will not affect
AIS and GIS. So we mainly focus the discussion on GSIS and BTIS.

‘OR’ among conditions can be easily satisfied as the union of the subscriber lists
from each condition forms the final subscriber list. ‘AND’ among conditions can be
easily satisfied as the intersection of the subscriber lists from each condition forms the

,

 Filter Indexing: A Scalable Solution to Large Subscription Based Systems 295

final subscriber list. However, since ‘OR’ and ‘AND’ coexist among conditions, we
could not simply union or intersect the subscriber lists returned from each condition
into the final subscriber list.

As we can see, if a filter satisfies one condition of ‘OR’, the owners of the filter
should be included in the subscriber list. However, if a filter satisfies one condition of
‘AND’, it does not necessarily mean that the owners of the filter should be included in
the final subscriber list.

Based on this observation, we design the following scheme. First of all, we set a
flag for all filters including ‘AND’ operator. When an update of the resource object
arrives at the subscription server, we search the operator indices of all attributes of the
resource object. For each search in an operator index, a subscriber list will be
returned. All subscriber lists returned from above searches are merged into two
subscriber lists: the first list with subscribers without flags and the second list with
subscribers with flags. For the second list, we need to check the filters of these
subscribers to make sure all conditions of the filters are satisfied. In this process,
some subscribers in the second list may be thrown out from the list. After this, we
merge these two lists into the final subscriber list.

3.3 Filter Indexing for Multiple Resource Objects

Usually a filter concerns one resource object. When a filter involves multiple resource
objects, there usually are multiple conditions connected by logical operators ‘OR’. If
each ‘OR’ condition concerns a different resource object, we could break down the
filter into multiple separate filters such that each filter concerns only one resource
object. Then we could use the techniques in section 3.1 and 3.2 for each filter.

If a filter does have the conditions related to multiple resource objects, we can use
a similar technique used in section 3.2. At first, we union the subscriber lists returned
by each condition, then we need to double-check the subscribers that have filters
related to multiple resource objects. After this, we can get the final subscriber list.

4 Performance Evaluation

Experiments and simulations were done to study four indexing schemes. We
implemented our prototype in Java SDK 1.4.1. We also built a simulator to simulate a
large number of subscribers and filters to evaluate these indexing schemes.

The experiments are set up in two Dell Precision 360 desktops with Intel Pentium 4 2.8
GHz and 1GB Memory size. A subscription server is located in one desktop and a publisher is
located in the other desktop. The two machines are connected by a 100Mbps Ethernet network.

The publisher sends updates to the subscription server. Then the server will check the
filter indices to find the list of matching filters. We use exponential distribution to control
the frequencies of updates. Frequency f = log(r)/ λ , in which r is a normal random

variable and λ is the variable to control the frequency of updates. Normal distribution is
used to generate values of updates. Value V= u + σ * r, in which u is mean variable,
σ is the variance variable and r is the normal random variable. The values of parameters
are listed as Table 2 unless specified otherwise. Impact of Frequencies of Updates is
omitted for the sake of space. (Please refer to [14] for more details.)

296 W. Xie, S.B. Navathe and S.K. Prasad

Table 2. Experiment Parameters

Parameter Value Description
λ 5 Variable to control the frequency of updates

U1 100 Mean variable to generate values in filters
σ 1 40 Variance variable to generate values in filters
U2 90 Mean variable to generate values in updates
σ 2 50 Variance variable to generate values in updates

Sample size 150 The sample size to compute average search time

At first, we study the cost of building the index. In order to build indices for
200,000 filters, AIS needs 1,652ms, GIS needs 450,789ms, GSIS needs 407,916ms
and BTIS needs 5,207ms. When the number of filters increases, the index building
costs of GIS, GSIS and BTIS increases and the building cost of AIS keeps flat. As the
indices can be built when the subscription server starts, this cost is not the main issue
of our concern.

4.1 Scalability

We study the scalability of four indexing schemes in this section. Experiments are run
for four indexing schemes from 10,000 filters to 900,000 filters. Group sizes are not
controlled. The values of filters are randomly generated so that the number of groups
depends on randomness of the values in filters as is the case in real world. The group
size is not uniform. The search time measures the duration in which the subscription
server finds the matching filters given an update. The average search time is the mean
of results from 150 updates. As we can see from Fig. 7, the four indexing schemes are
keeping the same bar in terms of performance until 600,000 filters are added. At the
900,000 filters, the performance of AIS dramatically drops, GSIS is slightly better

0

1000

2000

3000

4000

5000

6000

7000

0 200000 400000 600000 800000 1000000

Number of Filters

A
ve

ra
g

e
S

ea
rc

h
 T

im
e

(m
s)

AIS GIS GSIS BTIS

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20

Group Size

A
ve

ra
ge

 S
ea

rc
h

T
im

e
(m

s)

GIS GSIS BTIS

Fig. 7. Scalability comparison of four schemes Fig. 8. Impact of group size

,

 Filter Indexing: A Scalable Solution to Large Subscription Based Systems 297

0

2

4

6

8

10

12

0 200000 400000 600000 800000 1000000

Number of Filters

A
ve

ra
g

e
T

im
e

(m
s)

AIS GIS GSIS BTIS

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160

Sample

S
ea

rc
h

T
im

e
(m

s)

d=3 d=4 d=5 d=6 d=7

Fig. 9. Performance comparison of adding a filter Fig. 10. Impact of Degree of B’ Tree

than GIS and BTIS. Surprisingly, BTIS does not outperform GSIS and GIS at
900,000 filters. The reason would be that only 65,000 groups are formed from
900,000 filters. So the impact of number of groups is the issue we want to address in
the next section.

4.2 Impact of Group Size

To investigate the impact of group size and the number of groups, we set up the
experiment with 800,000 filters. As we know, the number of groups * group size =
800,000. In Fig. 8, we generate (800,000 / group_size) unique filters, then make as
many copies as the group_size. As BTIS ran out of memory when the group size is 6,
we only have the performance data from GIS and GSIS when group_size is less than
7. Surprisingly, GSIS always outperforms other two indexing schemes. BTIS’s
dramatic increase in average search time may come from memory contention when
the group size is set as 7 and too many groups are generated.

4.3 Performance Comparison of Adding a New Filter

We also study the performance of adding a new filter. We sampled 100 times of
adding a new filter when the number of total filters range from 10,000 to 900,000.
Fig. 9 shows that GIS needs a much higher overhead to insert a new filter when the
number of filters is more than 50,000. The time for GSIS to insert a new filter is
pretty stable at 1.5ms. The overhead of inserting a new filter in BTIS is very small
and is insignificant when the number of filters exceeds 500,000.

4.4 Impact of Degree of B’ Tree

We also study the impact of degree of B’ tree (block size in B’ tree). The total number
of filters is 900,000. In Fig. 10, we show that the search time of 150 samples for
degrees ranging from 3 to 7. (It is out of memory when the degree is 8.) As we can

298 W. Xie, S.B. Navathe and S.K. Prasad

see, the search time decreases when the degree changes from 3 to 5, then it increases
when the degree from 5 to 7. We do not see a clear pattern as our data is limited.

5 Related Work

The proposed indexing of filters is the extension of the push interface of PeerDS [6]
in the System on Mobile Devices (SyD) ([7], [13]). SyD is a middleware platform to
develop collaborative application over mobile and heterogeneous devices. The push
interface is the proactive directory service to push the updates of resources to the
subscribing clients.

Work in [3] and [8] studies the filters applied in data streaming. But these filters
are installed in the data sources and they mainly reduce the traffic between the data
sources and the subscription server. Our filters are designed to reduce the traffic
between the subscription server and the subscribers. Authors of [9] and [10] study the
event filters between the subscription server and sinks. So their filters are similar to
our filters. However, they did not try to do any optimizations for filter processing.

Query grouping ([1], [2]) and trigger grouping [4] group similar queries between the
subscription server and data sources, remove the duplicate effort in the subscription
server, and reduce the information traffic between the subscription server and data
sources. However, in most subscription systems such as PeerDS, the subscriber cannot
define its own query for a specific data source since there are too many data sources, or
the subscription server wants to keep the data sources transparent to the subscribers. In
this situation, the best way to reduce the information traffic between the subscription
server and subscribers is to install filters customized by the subscribers. Filters between
the subscription server and subscribers can also be combined with query grouping and
trigger grouping to further reduce the information traffic.

There is also work [2] that tries to use grouped filters to reduce the computation for
each data source. Authors in [11] focused on schema based clustering for filters.
Authors in [12] discuss index structures under Boolean Model. Our work focuses on
using filter indexing to reduce the overhead of finding out the list of subscribers for
each update.

6 Conclusion and Future Work

In this paper, we extend the push interface of PeerDS into a general subscription
system. We show that filters could greatly reduce the information traffic between the
subscription server and subscribers. However, the increasing number of filters may
endanger the scalability of the subscription server. So we propose and investigate four
filter indexing schemes: AIS, GIS, GSIS and BTIS. B’ tree is proposed as a minor
variation of the B+ tree. The experiment results show that GSIS is the most efficient
indexing scheme for searching among the proposed schemes and BTIS has the best
performance for updating and inserting filters. BTIS can also help improving the
scheduling of updates. Our future work will investigate scheduling of the updates
based on different policies and experimenting with filters with multiple resource
objects. We also plan to further investigate indexing of historic filters.

,

 Filter Indexing: A Scalable Solution to Large Subscription Based Systems 299

References

[1] J. Chen, D. J. Dewitt, F. Tian and Y. Wang, “NiagaraCQ: A Scalable Continuous Query
System for Internet Databases”. In ACM SIGMOD, 2000.

[2] S. Madden, M. Shah, J. M. Hellerstein and V. Raman, “Continuously Adaptive
Continuous Queries over Streams”. In ACM SIGMOD, 2002.

[3] C. Olston, J. Jiang and J. Widom, “Adaptive Filters for Continuous Queries over
Distributed Data Streams”. In ACM SIGMOD, 2003.

[4] W. Tang, L. Liu and C. Pu, “Trigger Grouping: A Scalable Approach to large Scale
Information Monitoring”, In NCA 2003.

[5] R. Elmasri and S.B. Navathe, “Fundamentals of Database Systems”, 4th Ed, Chap. 14,
Addison Wesley, 2004.

[6] W. Xie, S.B. Navathe and S. K. Prasad, “PeerDS: a scalable directory service”, in
submission.

[7] S. K. Prasad, V. Madisetti, S.B. Navathe, W. Xie, et al., “SyD: A Middleware Testbed for
Collaborative Applications over Small Heterogeneous Devices and Data Stores”, in Proc.
of ACM/IFIP/USENIX 5th International Middleware Conf. (MW-04), Oct. 2004.

[8] V. Kumar, B. F. Cooper, S. B. Navathe, "Predictive Filtering: A Learning-Based
Approach to Data Stream Filtering", Proc. Workshop of Data Manag. for Sensor
Networks with VLDB 2004.

[9] G. Eisenhauer, F. Bustamente and K. Schwan, “A Middleware Toolkit for Client-Initiated
Service Specialization”, Proceedings of the PODC Middleware Symposium, 2000.

[10] Greg Eisenhauer. “The ECho Event Delivery System.” Technical Report GIT-CC-99-08,
College of Computing, Georgia Inst. of Tech..

[11] F. Fabret etl., “Flistering Algorithms and Implemention for Very Fast Publish/Subscribe
Systems”, in ACM SIGMOD,. 2001.

[12] T. W. Yan and H. Garcia-Molina, “Index Structures for Selective Dissemination of
Information Under the Boolean Model”, in ACM Transactions on Database Systems, VOl
19 N0.2 June 1994.

[13] W. Xie, S. B. Navathe and S. K. Prasad, “Supporting QoS-Aware Transactions in a
System on Mobile Devices (SyD)” in Proc. Mobile Distributed Computing, ICDCS 2003.

[14] W. Xie, S.B. Navathe and S. K. Prasad, “Filter Indexing: a Scalable Solution to Large
Subscription Based Systems”, Technical Report, College of Computing, Georgia Inst.
of Tech.

Caching Strategies for Push-Based Broadcast
Considering Consecutive Data Accesses with Think-Time

Wataru Uchida1, Takahiro Hara2, and Shojiro Nishio2

1 Network Laboratories, NTT DoCoMo Inc.,
3-5 Hikarino-oka, Yokosuka-shi, Kanagawa, Japan

uchida@netlab.nttdocomo.co.jp
2 Dept. of Multimedia Eng., Grad. Sch. of Information Science and Tech.,

Osaka Univ. 2-1 Yamadaoka, Suita, Osaka, Japan
{hara, nishio}@ist.osaka-u.ac.jp

Abstract. Recently, there has been increasing interest in research on push-based
information systems that deliver data by broadcast in both wired and wireless
environments. This paper proposes new caching strategies to reduce the response
time of data access by assuming an environment where clients consecutively issue
access requests for multiple data items with think time. The proposed strategies
take into account each client’s access characteristics, such as correlation among
data items and think-time between a data access and the next access request, and
reduce the average response time by caching data items with long expected re-
sponse time. Moreover, we evaluate the effectiveness of the proposed strategies
by simulation experiments.

Keywords: broadcast disk, data correlation, caching strategy, think-time, push-
based broadcast.

1 Introduction

Recently, along with the growth of wired and wireless environments, there has been
increasing interest in research on push-based information systems that deliver data by
broadcast (push-based systems, for short). Figure 1 shows a typical push-based system.
Contrary to pull-based broadcast systems [3, 12], in which a server determines the data
to be broadcast according to clients’ access requests sent to the server, in push-based
information systems each client that wants to access certain data does not send a request
to the server but accesses the data by waiting for its broadcast time. Due to the absence
of communication contention among clients requesting data, a key advantage of “push-
based” mechanisms is the higher throughput for data access in a system with many
clients.

To shorten the response time for data access in push-based systems, several strategies
have been proposed. These strategies are categorized into the following research fields:
strategies to schedule an effective broadcast order of data items in the server side[1, 9],
caching strategies in the client side[2], and combinations of push-based and pull-based
strategies[4]. In this paper, we focus on caching strategies in the client side.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 300–310, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Caching Strategies for Push-Based Broadcast 301

Data Stream

Data1
2 3

4

5

.....

Server

Clients

Broadcast

Fig. 1. Push-based system

Meanwhile, in a real environment, clients often access a certain set of data collec-
tively. That is, correlation exists among data. When clients frequently access a set of
correlated data, scheduling and caching strategies that consider the correlation among
these data can reduce the response time for data access. There are two typical ways in
which clients issue access requests for a set of correlated data: simultaneously and with
some time intervals.

In our previous works[8, 10, 11], we proposed scheduling strategies and a caching
strategy to shorten the average response time by assuming an environment where clients
access multiple correlated data simultaneously. We also proposed scheduling strategies
that assume an environment where clients access multiple correlated data with time
intervals[10]. In this paper, we propose caching strategies that consider each client’s
access characteristics by assuming an environment where clients issue multiple access
requests for a set of correlated data consecutively with time intervals.

In this paper, the following system environment is assumed:

– The system has a single server.
– Data are handled in clusters called data items. For simplicity, all data items are of

the same size.
– The server creates a broadcast schedule consisting ofM kinds of data items (ID:1, ...,

M). It takes one time slot to broadcast one data item.
– No client sends access requests to the server, i.e., pure push.
– Clients have their own caches. The response time for requesting a data item in the

cache is 0 and that for requesting a data item not in the cache is the time remaining
until the item is broadcast next.

– Clients know the broadcast program. This is realized in several ways, e.g., dissem-
inating information on the broadcast program periodically.

– Each client has unique access characteristics, and each client knows its own access
characteristics.

– Data items are not updated.

The reminder of the paper is organized as follows. We describe assumptions on the
correlation among data items and access request in Section 2.We discuss the conventional

302 W. Uchida, T. Hara, and S. Nishio

caching strategies in Section 3 and propose new strategies in Section 4. We evaluate the
proposed strategies in Section 5 and show some related works in Section 6. Finally, in
Section 7, we summarize this paper.

2 Correlation mong Data Items and Access Requests

In a push-based broadcast environment, data are clustered in data items considering
characteristics of each data to reduce the administrative costs for scheduling or caching.
Generally, clients access various data items by issuing multiple access requests for them
collectively, i.e., data items have correlations with each other. Which data items are
accessed collectively depends on how to construct data items.

Let us suppose a situation where the server pushes various WWW pages through a
digital broadcast channel. In this case, although clients actively access WWW pages,
they do not send access requests to the server but wait for their broadcast times. If all
files that construct a WWW page (ex. HTML files and image files) are broadcast together
as a data item, a user who accesses a WWW site first requests a data item for the top
page of the WWW site. If the request is satisfied, the user browses it for a moment and
then requests another page that is linked from the top page. Thus, there exists correlation
between a WWW page and its linked pages, and access requests for these linked pages
are issued with time intervals.

If each data item only includes each of the HTML files and image files that construct a
WWW page, a user who accesses the WWW page simultaneously issues access requests
for the data items that are components of the WWW page. When the client completes to
get all of the requested data items, it consecutively issues access requests for data items
that construct a WWW page which is linked by the previously accessed page with a time
interval.

Based on the above discussion, there are three cases where clients issue access
requests for a set of correlated data items: the requests are issued simultaneously, with
some time intervals, and their combined case. In this paper, we assume the second case,
where every time interval between a data access and the next access request is longer
than one time slot. In the following, this time interval is referred to as “think-time”. For
the sake of simplicity, it is assumed that each client issues at most one access request at
the same time.

The strength of the correlation between items i and j is defined as the probability
that the client requests data item j after accessing data item i. The think-time between a
previous data access and the next access request is determined by the probability density
function based on the elapsed time until the previous data access.

We also assume an environment where a client issues an access request for the first
data item with a constant probability and then issues multiple access requests succes-
sively for data items correlated with the previously accessed data items. We call a set of
such successive data accesses a process and the item accessed first in a process the top
item.

In a real environment, the access characteristics of each client, such as correlations
between data items and probability density functions of think-time, are determined by
logging each client’s own access requests. Moreover, depending on the contents, there are

A

Caching Strategies for Push-Based Broadcast 303

some cases where the access characteristics of each client can be determined analytically
(ex. in the case where WWW pages are broadcast).

3 Conventional Caching Strategy

The PT strategy proposed in [2] is the most famous prefetch-based caching strategy.
The PT strategy assumes that every access request is issued independently of previous
accesses, i.e., data correlation does not exist among data items. The PT strategy replaces
cache as follows:

1. When each data item is broadcast, a client calculates PT values of the broadcast
item and items stored in the cache. The PT value of data item i, Li, is calculated by
the following equation:

Li = pi · (ui(t) − t). (1)

Here, pi is the probability that the client accesses data item i. t is the current time
and ui(t) is the time when data item i is broadcast next after time t.

2. Data item j with the minimum PT value is selected among all cached data items.
Then, if the PT value of broadcast data item b, Lb, is larger than the PT value of data
item j, Lj , data item j is replaced with data item b.

The PT strategy replaces the cache to maximize the total benefit of response time
at the moment when each item is broadcast. However, cache replacement by the PT
strategy is not always optimal in the long term.

4 Caching Strategies Considering Think-Time of Access Request

In this paper, we propose caching strategies by assuming an environment where clients
issue multiple access requests for correlated data items with think-time between one
data access and the next access request.

4.1 RIB-PT (Request Interval Based PT) Strategy

Let cijdenote the probability that a client accesses data item j after accessing i(
∑M

j=1cij=
1). fij(t) denotes the probability density function that the client issues an access request
for data item j with think-time t, under the condition that the client requests data item
j after accessing i (

∫ ∞
0 fij(t)dt = 1, fij(t) = 0 (t < 0)). Moreover, let τ denotes the

current time and ζ denotes the access time of data item i for which the client issued the
latest request.

Let us suppose that the latest access request for i has already been satisfied(ζ ≤ τ)
and that the client has not issued any access request after that. Under the condition that
data item j is requested after accessing i, the probability density function that an access
request for data item j is issued at time t is represented by the following equation:

1
1 −

∫ τ

ζ
fij(t− ζ)dt

fij(t− ζ). (2)

304 W. Uchida, T. Hara, and S. Nishio

Let uj(τ) be the next broadcast time of data item j. The response time of access
request for data item j issued at time t (τ ≤ t ≤ uj(τ)) is uj(τ) − t if j is not in
the cache. Therefore, the expected increase in response time for the next access request
caused by not caching j is expressed by the following equation:

Rj = Sj ·
∫ uj(τ)

τ

fij(t− ζ) · (uj(τ) − t)dt. (3)

Here,

Sj =

cij (τ < ζ)
cij

1 −
∫ τ

ζ
fij(t− ζ)dt

(ζ ≤ τ) . (4)

We call Rj in equation (3) the RIB-PT value. We can also define RIB-PT values for
data items in the cache.

The RIB-PT strategy replace the cache as follows.

1. When each data item is broadcast, a client calculates the RIB-PT values of the
broadcast data item and data items stored in the cache by using equation (3).

2. Data item j with the minimum RIB-PT value is selected among all cached data
items. If the RIB-PT value of the broadcast item b, Rb, is larger than Rj , data item
j is replaced with data item b.

In this way, the RIB-PT strategy replaces the cache to minimize the response time
for the next access request issued for a data item correlated with the target item of the
latest access request.

4.2 Extensions of RIB-PT Strategy

When think-time is short, to improve the cache hit rate, cache replacement has to take
into account not only the next access request but also the one issued after that.

In this subsection, we extend the RIB-PT strategy to consider the response time of
the access request issued after the next one. In the following, we call the response time
of the next access request the first response time and the response time of the access
request issued after that the second response time.

Response Time of Access Request After Next. Let us suppose a situation where the
latest access request was issued for i, i was (will be) accessed at time ζ, and x (x �= i, j)
will be accessed next. The expected response time of the access request issued for j by
the client that accesses x is expressed by the following formula:

∫ uj(τ)

r

cxj · fxj(t− r) · (uj(τ) − t)dt. (5)

Here, r is the access time of x.
When the next access request is issued for x in the cache, the probability density

function that defines r is expressed by the following formula:

Sx · fix(r − ζ). (6)

Caching Strategies for Push-Based Broadcast 305

Consequently, the expected response time of the access request for j issued after access-
ing x in the cache is expressed by the following equation:

Ejx = Sx ·
∫ uj(τ)

τ

fix(r − ζ) ·
∫ uj(τ)

r

cxj · fxj(t− r) · (uj(τ) − t)dtdr. (7)

On the other hand, let us suppose that data item x is not in the cache when it is
requested, the access time, r, of x is its first broadcast time after issuing the request. Let
max(τ, ζ) denote the larger value between τ and ζ, A denote a set of broadcast times of
x between max(τ, ζ) and uj(τ), and vx(t) denotes the previous broadcast times of x at
time t. Accordingly, the probability that x is accessed at x’s broadcast time, r (r ∈ A),
is expressed by the following formula:

Sx ·
∫ r

max(τ,ζ,vx(r))
fix(t− ζ)dt. (8)

In this case, the expected increase in response time caused by not caching j is
expressed by the following equation:

Njx = Sx ·
∑
r∈A

{∫ r

max(τ,ζ,vx(r))
fix(t− ζ)dt

·
∫ uj(τ)

r

cxj · fxj(t− r) · (uj(τ) − t)dt

}
.

(9)

According to the above discussions, if the contents of the cache at the moment when
each data item x is requested are known, the expected second response time of j can
be calculated by summing Ejx or Njx for all data items. However, it is difficult to
predict them. Accordingly, in this paper, we take a heuristic approach that calculates the
second response times approximately and propose two caching strategies called TR-NC
(Two-step RIB-PT, Neglect of Cache) and TR-NSI (Two-step RIB-PT, Neglect of Second
Interval).

TR-NC Strategy. The TR-NC strategy calculates a second response time by assuming
that data item x accessed next is never in the cache. The strategy determines cache
replacement at each time slot as follows:

1. When each data item is broadcast, a client calculates RIB-PT values of the broadcast
data item, Ri, and data items stored in the cache by using equation (3).

2. The TR-NC value of item i, Wi, is calculated by the following equation:

Wi = Ri +
M∑

x=1

Nix. (10)

3. The data item j with the minimum TR-NC value is selected among all cached data
items. If the TR-NC value, Wb, of the broadcast item b is larger than Wj , data item
j is replaced with data item b.

When the cache size is small, item x rarely exists in the cache and the TR-NC strategy
can estimate the summation of the first and second response times fairly accurately.

306 W. Uchida, T. Hara, and S. Nishio

TR-NSI Strategy. The TR-NSI strategy assumes that the contents of the cache do not
change until x’s next broadcast time. In addition, to simplify the calculation of Ejx, it
assumes that the think-time of x is 0.

In this case, the expected response time of an access request issued after next is
expressed not by equation (5) but by cxj(uj(τ)−r). Hence, the expected second response
times when x is in the cache and not in the cache, E′

jx and N ′
jx, are expressed by the

following equations:

E′
jx = Sx ·

∫ uj(τ)

τ

fix(r − ζ) · cxj · (uj(τ) − r)dr, (11)

N ′
jx = Sx ·

∑
r∈A

{∫ r

max(τ,ζ,vx(r))
fix(t− ζ)dt · cxj · (uj(τ) − r)

}
. (12)

More specifically, this strategy determines cache replacement at each time slot as
follows:

1. When each data item is broadcast, a client calculates the RIB-PT values, Ri, of the
broadcast data item and data items stored in the cache by using equation (3).

2. The TR-NSI value of item i, Vi, is calculated by the following equation:

Vi = Ri +
∑
x∈C

E′
ix +

∑
x/∈C,1≤x≤M

N ′
ix. (13)

3. Data item j with the minimum TR-NSI value is selected among all cached data
items. If the TR-NSI value, Vb, of the broadcast data item b is larger than Vj , data
item j is replaced with data item b.

The TR-NSI strategy can estimate the summation of the first and second response
times fairly accurately when the think-time of the data item accessed next is short and
the contents of the cache do not change much until the issue of the next access request.

5 Performance Evaluation

In this section, we evaluate the performances of the proposed strategies with simulation
experiments.

It was reported in [6] that 80% of total access requests are issued for only 20% of data
items in a real environment. Therefore, we set system parameters as follows. The total
number of data items is set to 500, and they are divided into five groups (G1, G2, ..., G5
), each of which consists of 100 data items. cij , the strength of correlation between
data items i and j, is determined randomly as follows. Correlation exists between i
and j with the probability of 10% when i, j ∈ Gk (1 ≤ k ≤ 5) and 40% when
i ∈ Gk, j ∈ Gl, (1 ≤ k, l ≤ 5, k �= l). In each case, for all pairs of two items i and j,
they have the same cij so that

∑
i,j∈Gk

cij = 0.8,
∑

i∈Gk∩j∈Gl∩k
=l cij = 0.2.
Data items in group G1 have 16 times higher qi, the probability that data item i is the

top item in a process, than those in the other groups. The probability that a new process is

Caching Strategies for Push-Based Broadcast 307

issued by a client at each time slot is set to 0.01, and the probability that a client finishes
its process at each time slot is also set to 0.01.

The probability density function of think-time between data items i and j is set to
the following equation:

fij(t) =

30−2(t−m) + 30−1 (m− 30 ≤ t < m)
−30−2(t−m) + 30−1 (m ≤ t ≤ m + 30)
0 (t < m− 30, t > m + 30)

(14)

This equation forms a protuberance connecting (m−30, 0), (m, 30−1), and (m+30, 0)
in the t-fij(t). In the evaluation, m, which is the average think-time between i’s access
and j’s request, is determined based on a uniform distribution with the range of (µ −
10, µ + 10).

In the experiment, it is assumed that the server cyclically broadcasts the program
scheduled by a “random-flat schedule”, which allocates each data item once at a random
position in the program. The number of data items that the client can cache is fixed to
100. For comparison, we also evaluated the performances of the PT strategy. In the PT
strategy, access probability, pi, was set to qi.

In the system environment described above, we measured performances of the pro-
posed strategies during 3, 000, 000 time slots. In the following, we show the simulation
results.

Figure 2 shows average response times of the caching strategies when changing
µ, from 50 to 400. From Figure 2, as µ gets larger, the performances of the proposed
strategies, RIB-PT, TR-NC, and TR-NSI, which replace the cache by considering both
the correlation among data items and the think-time, gets better. This is because when
the think-time is long a lot of data items are broadcast during the think-time and there
are many occasions to cache effective data items.

When the average think-time is short, the TR-NC and the TR-NSI strategies, which
take the second response time into consideration, give better performance than the RIB-
PT strategy. Since the time interval between the next access and the access request after
next is short, the RIB-PT strategy, which considers only the first response time, cannot
sufficiently replace the cache and thus cannot reduce the average response time. Of the
other two strategies that consider the second response time, the TR-NSI strategy gives
better performance. This is because the contents of the cache do not change much until
the next access request as well as the fact that the think-time is nearly 0. That is, the
TR-NSI strategy can calculate the second response time fairly accurately.

On the other hand, the TR-NC strategy gives better performance than the TR-NSI
strategy when the average think-time is very long. This is because the TR-NSI strategy
estimates the second response time longer than the actual one because it assumes that
the think-time of the next access is 0 and this error gets larger as the think-time gets
longer.

The above results show that the optimal strategy must be chosen among the proposed
strategies, i.e., RIB-PT, TR-NC, and TR-NSI, according to the system characteristics and
the requirements of computational time or response time.

308 W. Uchida, T. Hara, and S. Nishio

 20

 40

 60

 80

 100

 120

 140

 160

 180

 50 100 150 200 250 300 350 400

av
er

ag
e

re
sp

on
se

 ti
m

e
(

tim
e

sl
ot

s
)

µ

PT
RIB-PT
TR-NC
TR-NSI

Fig. 2. µ vs. average response time

6 Related Works

There have been many works on prefetching data in various research fields such as
databases and hierarchical storages[5, 7]. However, they do not consider push-based
broadcast environments which we assume in this paper. In these works, it is assumed
that data items are delivered in the one-to-one pull-based manner, i.e., a data item is
delivered in response to an access request issued by an entity which wants to prefetch
the data item.

Remarkable features of prefetch in push-based broadcast environments which differ
much from those in the pull-based environments are listed below:

– Since data items are delivered by means of push-based broadcast, the server has the
initiative in data delivery. Thus, if the server determine the broadcast schedule in
advance, clients can know accurate broadcast time of each data item in the future.

– Since time remaining until each data item is broadcast next varies temporally, a
benefit of prefetching the data item varies dynamically.

– Since access requests are not sent to the server, the cost of prefetch is only the cost
of filtering and receiving the data.

– A client cannot prefetch any other data items except for the broadcast data item in
each time slot.

– There is enough time to determine the behavior of caching if each data item has
large size compared with the broadcast bandwidth, e.g., an image file or a movie
file.

The strategies proposed in this paper are specialized for the push-based broadcast
environments by considering the above features.

Caching Strategies for Push-Based Broadcast 309

7 Conclusions

In this paper, we proposed caching strategies by assuming a push-based system in which
a client accesses correlated data items by issuing consecutive access requests with think-
time. The proposed strategies replace the cache to maximize the total benefit of response
time by estimating the response times of access requests issued next and after next.

We also evaluated the proposed strategies by simulation experiments. The simulation
results show that the proposed strategies can drastically reduce response time below the
levels of the conventional strategies that do not consider the think-time. The performance
of each of the proposed strategies depends on system characteristics such as think-time.

We assume an environment where all of access requests are issued consecutively
with think-time in this paper. However, it is more general that access requests for some
correlated data items are issued simultaneously and those for the others are issued with
time interval. We are also considering new caching and scheduling strategies assuming
such an environment.

Acknowledgment

This research was supported in part by “The 21st Century Center of Excellence Program”,
by Special Coordination Funds for Promoting Science and Technology, and by Grant-in-
Aid for Scientific Research on Priority Areas (16016260) of the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

References

[1] Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast Disks: Data Management for
Asymmetric Communication Environments. Proc. ACM SIGMOD’95 (1995) 199–210

[2] Acharya, S., Franklin, M., Zdonik, S.: Prefetching from a Broadcast Disk. Proc. Int’l Conf.
on Database Engineering (1996) 276–285

[3] Aksoy, D., Franklin, M.: RxW: A Scheduling Approach for Large-Scale On-Demand Data
Broadcast. IEEE/ACM Transactions On Networking, Vol. 7, No. 6 (1999) 846–860

[4] Guo, Y., Das, K. D., Pinotti, C. M.: A New Hybrid Broadcast Scheduling Algorithm for
Asymmetric Communication Systems: Push and Pull Data Based on Optimal Cut-off Point.
Proc. Int’l Workshop on Modeling,Analysis and Simulation of Wireless and Mobile Systems
(2001) 123–130

[5] Kraiss, A., Weikum, G.: Integrated Document Caching and Prefetching in Storage Hierar-
chies Based on Markov-Chain Predictions. VLDB Journal: The Very Large Data Bases, Vol.
7, No. 3 (1998) 141–162

[6] Lin, L., Xingming, Z.: Heuristic Multidisk Scheduling for Data Broadcasting. Proc. Int’l
Workshop on Satellite-Based Information Services (1997) 1–5

[7] Palmer, M., Zdonik, S. B.: Fido: A Cache That Learns to Fetch. Proc. 17th Int’l Conf. on
Very Large Data Bases (1991) 255–264

[8] Uchida, W., Hara, T., Yajima, E., Nishio, S.: Broadcast Scheduling of Correlated Data Con-
sidering Access Frequency in Push-Based Systems. Proc. IASTED Int’l Conf. on Advances
in Communications (2001) 150–155

[9] Vaidya, N. H., Hameed, S.: Scheduling Data Broadcast in Asymmetric Communication
Environments. ACM-Baltzer Journal of Wireless Networks, Vol. 5, No. 3 (1999) 171–182

310 W. Uchida, T. Hara, and S. Nishio

[10] Yajima, E., Hara, T., Tsukamoto, M., Nishio, S.: Scheduling Strategies of Correlated Data in
Push-Based Systems. Information Systems and Operational Research, Vol. 39, No. 2 (2001)
152-173

[11] Yajima, E., Hara, T., Tsukamoto, M., Nishio, S.: Scheduling and Caching Strategies for
Correlated Data in Push-Based Information Systems. ACM Applied Computing Review,
Vol. 9, No. 1 (2001) 22–78

[12] Xu, J., Hu, Q., and Lee, D. L.: SAIU: An Efficient Cache Replacement Policy for Wireless
On-Demand Broadcasts. Proc. ACM Conference on Information and Knowledge Manage-
ment (2000) 46–53

XDO2: A Deductive Object-Oriented Query
Language for XML

Wei Zhang1, Tok Wang Ling1, Zhuo Chen1, and Gillian Dobbie2

1 School of Computing, National University of Singapore,
Lower Kent Ridge Road, Singapore 119260

{zhangwe2, lingtw, chenzhuo}@comp.nus.edu.sg
2 Department of Computer Science, University of Auckland,

Private Bag 92019, Auckland, New Zealand
gill@cs.auckland.ac.nz

Abstract. In the past decade, researchers have combined deductive and
object-oriented features to produce systems that are powerful and have
excellent modeling capabilities. More recently, an XML query language
XTree was proposed. Queries written in XTree are more compact, more
convenient to write and easier to understand than queries written in
XPath. In this paper, we introduce a novel XML query language XDO2
that extends XTree, with deductive features such as deductive rules and
negation, and object-oriented features such as inheritance and methods.
Our XDO2 language is more compact, and convenient to use than current
query languages for XML such as XQuery and XPath because it is based
on XTree, supports (recursive) deductive rules and the not-predicate.
An XDO2 database example is given to motivate the usefulness of the
language. The formal treatment of language syntax and semantics are
presented in the appendices.

Keywords: XML query language, deductive rule, not-predicate nega-
tion, fixpoint semantics.

1 Introduction

In the past decade, a large number of deductive object-oriented database systems
have been proposed, such as F-logic [6], ROL [12] and DO2 [10]. Based on these
proposals and other work in the area of object-oriented data models, such as
O2 [4] and Orion [7], a large number of deductive and object-oriented features
have been investigated. The two most important features are deductive rules and
inheritance.

XML is fast emerging as the dominant standard for data representation and
exchange on the web. Many query languages have been proposed in the past few
years, such as XPath [3], XQuery [1], declarative XML query languages such as
[14] and XTree [2]. Although XPath has been widely adopted for XML querying,
XTree has been recently proposed as a declarative XML query language which is
more compact, more convenient to write and understand than XPath. However,

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 311–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

312 W. Zhang et al.

to the best of our knowledge, there is no XML query language that can support
deductive rules and object-oriented features in the XML querying community.
In this paper, we introduce a novel XML query language XDO2 which extends
XTree with deductive database features such as deductive rules and negation,
and object-oriented features such as inheritance and methods.

In this paper, we present the language XDO2, highlighting its salient features.
We present the full syntax and semantics of the language in the appendices.

The major contributions of the XDO2 query language are:

1. Negation is supported in the XDO2 language with semantics similar to the
not-predicate [8] instead of the conventional logical negation symbol “∼”
which is used in XQuery. A consequence of this decision is that XDO2 is
able to support nested negation and negation of sub-trees.

2. Methods that deduce new properties are implemented as deductive rules.
XDO2 can use the new properties directly. The presence of recursive deduc-
tive rules makes recursive querying possible.

3. Schema querying is made possible with a special term stru : value to ex-
plicitly distinguish the element name from the element value (or element
content). stru binds to the element name and value binds to the element
value. Unlike in XQuery, the name and value pair are bound to the variables
together.

4. Inheritance enables a subclass object to inherit all the attributes and sub-
elements from its superclass objects. These inherited properties can be di-
rectly used in querying.

5. Features such as the binding of multiple variables in one expression, compact
return format and explicit multi-valued variables are supported in the XDO2
language naturally due to the influence of XTree [2].

The rest of this paper is organized as follows. We provide a brief introduction
to XTree in section 2. We introduce an XDO2 database example in section 3.
Section 4 presents and discusses the most salient features of the XDO2 query
language. Section 5 compares our language with related languages. Section 6
summarizes this paper and points out some future research directions. The syn-
tax and semantics of the XDO2 language are presented in the appendices.

2 Background

XTree [2] was recently proposed as an alternative to the XML query language
XPath. The main advantages of XTree over XPath are:

1. XPath describes a linear path to the target XML node set. In the querying
part of a query, one XPath expression can only bind one variable. However,
XTree has a tree structure which is similar to the structure of an XML
document. In the querying part of a query, one XTree expression can bind
multiple variables.

XDO2: A Deductive Object-Oriented Query Language for XML 313

2. XPath cannot be used to define the return format. However, in the result
construction part of a query, one XTree expression can be used to define the
result format. This effectively avoids the nested structure in the query.

3. XPath does not express multi-valued variables explicitly. However, in XTree
expressions, multi-valued variables are explicitly indicated, and their val-
ues are uniquely determined. Some natural built-in functions are defined to
manipulate multi-valued variables in an object-oriented fashion.

Thus, although XPath and XTree have the same expressive power (i.e., any
query that can be expressed by XTree can also be expressed by several XPath
expressions), XTree is more compact and convenient to use than XPath, and
queries based on XTree expressions are shorter in length and easier to write and
comprehend. In short, XTree takes the XML tree structure into consideration
while XPath does not. For more details, please refer to XTree [2].

3 An XDO2 Database Example

In this section, using an example, we demonstrate many of the features of
the XDO2 language. We show an XDO2 database, Person Company Employee,
which combines features from XML, deductive databases, and object-oriented
databases. Section 3.1 presents the database schema, and explains how to express
deductive rules and inheritance in the database. Section 3.2 presents the XML
database data, including the extensional data from XML data element facts,
intensional data from deductive rules, and the class hierarchy relationships. An
XDO2 query with its result is also presented. The syntax and semantics of the
XDO2 language are presented in the appendices.

3.1 Schema and Rules

The ORA-SS schema model [9] is used to represent the schema, with extensions
to model the deductive and inheritance features in Figure 1. In the schema

Fig. 1. Person Company Employee ORASS schema diagram

314 W. Zhang et al.

diagram, there are four object classes person, company, employee and spouse
represented as rectangles. In the person class, we model the age as a derived
attribute indicated by dashed circles. This is because person has an attribute
birthyear, and age can be derived using birthyear. Another derived attribute is
bachelor which can be derived using the person’s sex and spouse. The identifier
of person is pno. The employee class is a subclass of the person class, and inherits
all the attributes and derived attributes from the person class. The inheritance
relationship is denoted by the ISA diamond in the schema diagram. The identifier
of employee is eno. The candidate identifier pno indicated by a filled circle inside
a circle in employee class is from the person object class.

In this example, we can see the two new features that are not present in XML
databases: derived attribute and class inheritance. Class inheritance is supported
in XML schema [5]. We now highlight how to define the derived attributes of
object classes. In object-oriented programming languages, methods are defined
using functions or procedures and are encapsulated in class definitions. In deduc-
tive databases, rules are used instead of functions and procedures. By analogy,
derived attributes or methods in XDO2 are defined using deductive rules and
encapsulated in class definitions.

In the following, we use a deductive rule to define the method age encapsu-
lated in object class person.

$p/age : $a :- /root/person : $p/birthyear : $b, $a = 2005− $b.

This rule says if there is a person element under the root element, and the per-
son has sub-element birthyear, then the age is equal to 2004 minus the birthyear.
In the method age above, the notation “:-” means if a substitution of all variables
to values makes the right hand side true, then the left hand side is also true. In
the method, there are predicates $p/age : $a, /root/person : $p/birthyear : $b,
and $a = 2004 − $b. The notation “:” binds the value of the left hand side to
the right hand side. If the left hand side is an object class, then the right hand
side binds to the object identifier, such as $p binds to the person’s identifier.
Otherwise, it binds to the value of the left hand side. The single-valued variable
is denoted by a “$” followed by a string literal.

The below rule defines the method bachelor encapsulated in object class
person.

$p/bachelor : true :- /root/person : $p/[sex : “Male”, not(spouse : $s)].

This rule says if a person element under root element has an attribute sex
with string value “Male”, and this same person does not have a spouse, then the
derived attribute bachelor of the object class person has boolean value true. The
two boolean values true and false are reserved in the language. The notation
“[]” in the bachelor method above is used to group the attributes, elements
or methods which are directly defined under the same parent element, such as
person in this case. The notation “not”[8] negates the predicate expression.

XDO2: A Deductive Object-Oriented Query Language for XML 315

<root>
<person pno="p1">

<name>John</name>
<address>

<street>King</street>
<city>Ottawa</city>

</address>
<birthyear>1975</birthyear>
<sex>Male</sex>

</person>
<person pno="p2">

<spouse pno="p3" />
<name>Mike</name>
<address>

<street>Albert</street>
<city>Ottawa</city>

</address>
<birthyear>1954</birthyear>
<sex>Male</sex>

</person>
<person pno="p3">

<spouse pno="p2" />
<name>Mary</name>
<address>

<street>Albert</street>
<city>Ottawa</city>

</address>
<birthyear>1958</birthyear>
<sex>Female</sex>

</person>
<company cno="c1">

<name>Star</name>
<employee eno="e1" pno="p1">

<salary>6000</salary>
<hobby>Tennis</hobby>
<hobby>Soccer</hobby>

</employee>
<employee eno="e2" pno="p2">

<salary>4000</salary>
<hobby>Tennis</hobby>

</employee>
</company>

</root>

(a) XML extensional database

% Rule R1 defines that the age of a
% person is 2005 minus his/her
% birthyear.

(R1) $p/age : $a :- /root/person : $p/
birthyear : $b, $a = 2005 - $b.

% Rule R2 defines that a person is a
% bachelor if he is a male and without
% spouse.

(R2) $p/bachelor : true :- /root/
person : $p/[sex : "Male",
not(spouse : $s)].

(b) XML intensional database

employee ISA person
by employee.pno ISA person.pno

(c) XML class hierarchy relationships

Fig. 2. Person Company Employee database

316 W. Zhang et al.

3.2 Data and Query

The data or instance of the Person Company Employee database is shown in
Figure 2. There are three parts to the database: the XML extensional database,
the XML intensional database, and the XML class hierarchy relationships. The
XML extensional database contains the XML data element facts with their tree
structure. The XML intensional database contains the deductive rules which
can be used to derive new XML data elements or attributes from the exten-
sional database. The XML class hierarchy relationships define the object class
hierarchy in the database such as employee is a subclass of person. Multiple in-
heritances are allowed and we can resolve the multiple inheritance conflicts using
the explicit selection technique adopted from [11]. Storing the deductive rules
and class hierarchy relationships in the XML database system, enables querying
using deductive rules and the class hierarchy, as shown in the following example.

Example 1. This query retrieves the age and salary of all employees who are
bachelors, with age less than 30, and salary larger than 5000.

/db/youngRichBachelor : $e/[age : $a, payroll : $s] ⇐ /root/company/
employee : $e/[age : $a, bachelor : true, salary : $s], $a < 30, $s > 5000.

Notice the query format is similar to the deductive rule used to describe
methods. The notation “⇐” separates the return format of the query from the
query and conditional part. The left hand side is used to define the XML result
format, like in the return clause in XQuery, and the right hand side is the
query and the conditional parts like the for, let and where clauses in XQuery.
Therefore, our XDO2 query language is more simple and compact with only one
line of some predicate expressions instead of the FLWR clause in XQuery. With
the deductive rules and the inheritance feature defined in the XML database,
the user can directly query the attributes or methods both in employee and its
superclass person, such as age and bachelor in the example.

Using the XDO2 database in Figure 2, only employee ‘e1’, whose pno is
‘p1’ satisfies the conditions. The youngRichBachelor element and its two sub-
elements age and payroll form the query result as follows.

<db>
<youngRichBachelor eno="e1">

<age>29</age>
<payroll>6000</payroll>

</youngRichBachelor>
</db>

Notice $e binds to the object identifier value of the employee object, i.e., eno
value. The attributes of youngRichBachelor element, age and payroll are from
the derived attribute age of person object ‘p1’ inherited by ‘e1’, and salary of
employee object ‘e1’ respectively.

XDO2: A Deductive Object-Oriented Query Language for XML 317

4 XDO2 Language Features

In the example of section 3, we have shown how to use deductive rules to de-
fine methods so that the query language can be simplified greatly and made
more compact. It also shows the advantages of the inheritance feature. In this
section, we will present some other important features of the XDO2 query
language. Specifically, they are multi-valued variables and aggregat function,
schema querying, negation using the not-predicate [8], and querying using re-
cursive deductive rules.

4.1 Multi-valued Variables

We use the expressions <$var> and {$var} to represent list-valued variables and
set-valued variables respectively. Functions that are defined on lists and sets are
consistently expressed in an object-oriented fashion.

Example 2. Consider the following query that returns the titles of the books
that have more than one author written in XDO2.

XDO2 query expression:
/result/multiAuthorBook/title : $t ⇐

/bib/book/[title:$t, author:<$a>], <$a>.count()>1.

XQuery expression:
for $book in /bib/book, $t in $book/title
let $a in $book/author
where count($a) > 1
return <result><multiAuthorBook>{$t}</multiAuthorBook></result>

In the XDO2 query, the variable <$a> is bound to the list of authors for each
book, and the variable $t is bound to the title of the book. The square brackets
[] enclosing title and author specifies that these two elements are siblings, and
share a common parent.

4.2 Schema Querying

We use the term stru : value to explicitly distinguish the element (or attribute)
name from the value of the element (or attribute). It provides simple and nat-
ural facilities for exploring the structure or schema of the XML data. The user
can put the variable such as $v in the left side of the : symbol to bind to the
attribute name or element tag. Unlike in XQuery, both the structure and value
can be bound to a variable.

Example 3. Consider the following query that finds two sibling element tags
with value “King” and “Ottawa” directly or indirectly under person.

⇐ /root/person//[$ele1 : “King”, $ele2 : “Ottawa”].

318 W. Zhang et al.

In this query, we omit the query result format. The square brackets enclosing
$ele1 and $ele2 specifies that these two elements are siblings. The path abbrevi-
ation “//” is used to indicate they are directly or indirectly under person. The
two variables $ele1 and $ele2 are used to bind the element tags that have the
values as specified. Using the data from Figure 2, $ele1 = street and $ele2 = city
satisfy the query.

4.3 Negation Querying

In deductive databases, negation makes the rules more powerful and queries
more meaningful. However, it complicates the query’s interpretation and evalu-
ation. To represent negation in XDO2, we chose the not-predicate [8] instead of
the conventional logical negation symbol “∼” to express negation. It has been
noted in [8] that the not-predicate is not always equivalent to “∼” in negation
expressions. The main difference between the not-predicate and “∼” lies in the
interpretation of the uninstantiable variables (i.e. variables that do not appear in
any positive expression in the body of the rule or query) in the negation expres-
sion. Otherwise, they are equivalent. Using the not-predicate, the uninstantiable
variables are existentially quantified while they are universally quantified using
“∼”. For the justification, please refer to [16].

As we know, XQuery [1] provides a function not() which needs a boolean
value as its argument and is similar to “∼”, and it does not support the not-
predicate operator. The function not() is usually combined with some and every
quantifiers. However, by using the not-predicate operator alone in XDO2, we can
achieve the same expressive power and make our queries more simple and com-
pact. In addition, the function not() in XQuery can only be applied to one XPath
expression, but not to a sub-tree structure. However since we have tree-structure
expressions in the XDO2 language, we can express the sub-tree structures nat-
urally. Two examples are shown as follows.

Example 4. Consider the following query expressed in XDO2 and XQuery that
retrieves the company name of companies where each employee of the company
has hobby “Tennis”.

XDO2 query expression:
/db/allLikeTennisCom : $n ⇐ /root/company : $c/name : $n,

$c/not(employee/not(hobby : “Tennis”)).
XQuery expression:
for $c in /root/company
where EVERY $e IN $c/employee SATISFIES

SOME $h IN $e/hobby SATISFIES string($h)=“Tennis”
return <db><allLikeTennisCom>{string($c/name)}

</allLikeTennisCom></db>

Example 5. Consider the following query that retrieves the companies which
do not have employees who have sex “Male” and birthyear 1975.

XDO2: A Deductive Object-Oriented Query Language for XML 319

XDO2 query expression:
/db/company : $c ⇐ /root/company : $c/not(employee/

[sex : “Male”, birthyear : 1975]).
XQuery expression:
for $c in /root/company
where NOT (SOME $e IN $c/employee SATISFIES

($e/sex = “Male” AND $e/birthyear = 1975))
return <db>{$c}</db>

As we can see from the two examples, our XDO2 query using the not-
predicate is much more simple and compact compared with the XQuery
expression which needs the key word “EVERY”, “SOME”, “NOT”, “IN”, “SAT-
ISFIES”, “AND” to express the same meaning.

4.4 Recursion Querying

In deductive databases, it is natural to define a recursive query using recursive
deductive rules. Similarly, in XDO2, we also support recursive deductive rules
and make the recursive query possible to extend the expressive power of the
XDO2 language.

Example 6. Suppose there are child sub-elements directly under the person
element. The following deductive rules define descendants of a person.

(R3) $p/descendant : $c :- /root/person : $p/child : $c.
(R4) $p/descendant : $d :- /root/person : $p/child : $c,

$c/descendant : $d.

The rule R4 says for each person bound to $p, if $c is his/her child, then
$c is a descendant of $p. The rule R5 says if $c is a child of $p, and $d is
a descendant of $c, then $d is also a descendant of $p. Note the rule R5 is
recursively defined. Using the rules defined, we can write a recursive query to
retrieve all the descendants of a person with identifier (i.e. pno) value ‘p1’ as
follows,

⇐ /root/person : ‘p1’/descendant : $d.

5 Comparison with Related Work

The success of F-logic [6] was due to the clean combination of the object-oriented
and deductive paradigms. Flora-2 [15] extended F-logic for the semantic web.
However, the underlying data in F-logic and Flora-2 are objects and can not
handle the current popular XML tree data structure. The XDO2 language is de-
signed for the XML tree data while including the deductive and object-oriented
features. Many languages, such as XPath [3], XQuery [1], and XTree [2] have
been proposed for querying XML documents. However, they can not support
(recursive) deductive rules which can be used to derive new properties to sim-
plify the querying as in XDO2. The XML RL [13] for XML is a language with

320 W. Zhang et al.

Table 1. Comparison between XML query languages

XDO2 XQuery XTree
Query

F-logic XML RL

Underlying data XML tree XML tree XML tree Object XML tree
Path expression XTree XPath XTree Path

expression
XTree-like
expression

Deductive rule Yes No No Yes Partial
Recursion recursive

rules
recursive
function

recursive
query

recursive
rule

recursive
query

Negation not-
predicate

logical
negation

logical
negation

logical
negation

logical
negation

Quantification No need Yes Yes Yes Yes
Multi-valued
variable

Yes No Yes No Yes

Direct structure
querying

Yes No Yes Yes Yes

Object-oriented
features

Yes No No Yes No

the deductive features, however this query languages does not support object-
oriented inheritance. Furthermore, since XDO2 is based on XTree, where queries
are more compact, more convenient to write and understand than XPath queries,
the XDO2 inherits these merits. Another major difference between XDO2 and
other logical query languages for XML lies in the use of the not-predicate [8]
for querying. As section 4.2 shows, the XDO2 query using the not-predicate is
much more simple and compact compared with the XQuery expressions.

A summary of the comparison with other XML query languages is shown in
table 1.

6 Conclusion

Deductive databases and object-oriented databases are two extensions of the
current relational database systems. Guided by this, we propose a novel new
XML query language XDO2 with deductive database features such as deductive
rules and negation, and object-oriented features such as inheritance and meth-
ods. Our XDO2 language is more compact, and convenient to use than current
query languages for XML such as XQuery, XPath and XML RL[13] because it is
based on XTree [2], supports (recursive) deductive rules, not-predicate negation
and schema querying. An XDO2 database example is presented to motivate the
usefulness of the language. In the appendices, we present a formal treatment of
the XDO2 language syntax and semantics.

In the future we would like to investigate how to evaluate the queries effi-
ciently, especially for the not-predicate and recursive queries.

XDO2: A Deductive Object-Oriented Query Language for XML 321

References

1. D. Chamberlin, D. Florescu, J. Robie, J. Simon, and M. Stefanescu. XQuery 1.0:
A query language for XML, May 2003. http://www.w3.org/TR/xquery.

2. Zhuo Chen, Tok Wang Ling, Mengchi Liu, and Gillian Dobbie. XTree for declar-
ative XML querying. In Proceedings of DASFAA, pages 100–112, Korea, 2004.

3. J. Clark and S. DeRose. XML path language(XPath) version 1.0, November 2001.
http://www.w3.org/TR/xpath.

4. O. Deux et al. The story of O2. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91–108, 1990.

5. D.C. Fallside. XML schema part 0: Primer, May 2001. http://www.w3.org/
TR/xmlschema-0.

6. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of ACM, 42(4):741–843, 1995.

7. W. Kim. Introduction to object-oriented databases. The MIT Press, Cambridge
Massachusetts, 1990.

8. Tok Wang Ling. The prolog not-predicate and negation as failure rule. New
Generation Computing, 8(1):5–31, 1990.

9. Tok Wang Ling, Mong Li Lee, and Gillian Dobbie. Semistructured Database Design.
Springer, 2005.

10. Tok Wang Ling and W.B.T. Lee. DO2: A deductive object-oriented database
system. In Proceedings of the 9th International Conference on Database and Expert
System Applications, pages 50–59, 1998.

11. Tok Wang Ling and P.K. Teo. Inheritance conflicts in object-oriented systems. In
DEXA, pages 189–200, 1993.

12. Mengchi Liu. The ROL deductive object base language. In Proceedings of Database
and Expert Systems Application, pages 189–200, 1993.

13. Mengchi Liu. A logical foundation for XML. In CAiSE, pages 568–583, 2002.
14. Mengchi Liu and Tok Wang Ling. Towards declarative XML querying. In Pro-

ceedings of WISE, pages 127–138, Singapore, 2002.
15. G.Z. Yang, M. Kifer, and C. Zhao. Flora-2: A rule-based knowledge representation

and inference infrastructure for the semantic web. In CoopIS/DOA/ODBASE,
pages 671–688, 2003.

16. Wei Zhang. XDO2: An XML deductive object-oriented query language. Master’s
thesis, School of Computing, National University of Singapore, 2004.

A XDO2 Language Syntax

Let U be a set of URLs, C be a set of constants, and V be a set of variables. The
set of constants C contain strings enclosed by “ ”, integers, real numbers, two
boolean values and object identifiers enclosed by ‘ ’. The set of variables V are
partitioned into single-valued and multi-valued variables. Single-valued variables
have format $S where S is a string literal. Multi-valued variables include set-
valued variables with format {$S} and list-valued variables with format <$S>
where S is a string literal.

322 W. Zhang et al.

Definition 1. The values are defined as follows,

1. null is a null value.
2. if c∈C then c is a constant value.
3. a set of object ids is a set value.
4. a list of constant values is a list value.

Definition 2. The terms are recursively defined as follows,

1. Let t be an XML attribute name. Then @t is an attribute term.
2. Let t be an XML element tag. Then t is an element term.
3. Let X be an attribute name or a single-valued variable, and Y a constant

value, a set value, a single-valued variable or a set-valued variable. Then @X
: Y is an attribute value term, and Y denotes the value of the attribute X.

4. Let X be an element tag or a single-valued variable, and Y a constant value,
a list value, a single-valued variable or a list-valued variable. Then X : Y is
an element value term, and Y denotes the value of the element X.

5. Let X be a term. Then not(X) is a negation term.
6. Let X1,. . . , Xn, (n ≥ 2) be a set of terms. Then [X1, . . . , Xn] is a grouping

term.
7. Let X1,. . . , Xn, (n ≥ 2) be a set of terms where X1, . . . , Xn−1 are either

element terms or element value terms. Then X1/. . . /Xn is a path term.

Definition 3. The expressions are defined as follows,

1. Let u ∈ U be a URL and P be a path term. Then (u)/P is an absolute path
expression.

2. Let X be a variable or an object id, and P be a term. Then X/P is a relative
path expression. An instantiable relative path expression is a relative path
expression X/P where either X is some object id, or the variable X has been
defined in a positive term (i.e. not negation term).

3. Arithmetic, logical expressions are defined using variables, values, aggregate
functions and operators in the usual way. Instantiable arithmetic, logical ex-
pressions are arithmetic, logical expressions such that all the variables inside
have been defined in a positive term.

Definition 4. A deductive rule has the form H :- L1, . . . , Ln. where H is the
head and L1, . . . , Ln is the body of the rule. H is a positive instantiable relative
path expression and L1, . . . , Ln are either absolute path expressions or instan-
tiable expressions.

Definition 5. A query has the form R ⇐ L1, . . . , Ln. where R is the result
format expression and L1, . . . , Ln are the query or conditional expressions. R
is a positive absolute path expression and L1, . . . , Ln are either absolute path
expressions or instantiable expressions. If there is no result format expression
specified, we use ⇐ L1, . . . , Ln.

B XDO2 Language Semantics

For the language semantics, please refer to [16].

Extending XML with Nonmonotonic
Multiple Inheritance

Guoren Wang1 and Mengchi Liu2

1 College of Information Science and Engineering, Northeastern University, China
2 School of Computer Science, Carleton University, Canada

Abstract. Schema descriptions of XML documents become more and
more complicated and schema documents become longer and longer as
the structure of XML documents becomes more and more complex. This
is mainly because they cannot take full use of object-oriented modeling
abilities. In this paper, we extend XML as follows to solve this prob-
lem. (1) We extend DTD’s type system to provide richer built-in types.
Moreover, a user-defined type can be declared using the ISA mechanism
in which an existing type is used as the base type and the set of values
represented by the derived type is the subset of values represented by the
base type. (2) We extend DTD so that element can be global as well as
local. (3) We extend DTD with element hierarchy with nonmonotonic in-
heritance to support super-element sub-element relationship, overriding
of elements or attributes inherited from super-elements, blocking of the
inheritance of elements or attributes from super-elements, and conflict
handling. (4) We extend XML with polymorphism, which is a funda-
mental feature in object-oriented data models, to support polymorphic
elements, typing of references and polymorphic references. Although we
extend DTD to support some key object-oriented features, there is not
any syntax change of XML documents to fit for our Extended DTD.

Keywords: XML, XML schema languages, nonmonotonic inheritance,
element hierarchy.

1 Introduction

XML is fast emerging as the dominant standard for data representation and
exchange over the Internet. The database community has been paying a lot of
attention to XML data management technology with a lot of research results
published, such as query languages [1, 2, 3], storage management [4, 5], index-
ing [6, 7], query processing and optimization [8, 9, 10, 11], and others [12, 13, 14].
However, little research work has been done in the DB community to extend the
modeling power of XML schema languages, using the matured object-oriented
features, such as multiple inheritance, overriding, blocking, conflict handling,
and polymorphism. More than ten XML schema languages have been proposed
so far to constrain XML data, such as DTD [15], XML Schema [16], SOX [17],
XDR [18], Schematron [19], DSD [20], relax NG [21]. Except for XML Schema

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 323–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 G. Wang and M. Liu

and SOX, they do not support inheritance at all. While XML Schema is an on-
going effort of W3C to define and represent schemas of XML documents, SOX
is an alternate schema language for defining structures and partial semantics of
XML documents by extending DTD in an object-oriented way.

Because XML Schema provides the strongest modeling ability in terms of
inheritance amongst XML schema languages, we briefly discuss its inheritance
mechanisms in the following.

In XML Schema, a schema document may contain type definitions, element
and attribute declarations. A new type can be derived by extending or restricting
the base type which may be either complex or simple. A new simple type can be
derived using the restriction mechanism and the set of values represented by the
new simple type is a subset of values of the base simple type. A new complex
type can be derived with the extension mechanism by inheriting a complex base
type and appending some additional specific element and attribute declarations.
Like the simple type restriction, a new complex type can also be derived using
the restriction mechanism. Restriction of complex types is conceptually the same
as restriction of simple types, and a complex type derived by restriction is very
similar to a base type, except that its declarations are more limited than the
corresponding declarations in the base type. The values represented by the new
type are a subset of the values represented by the base type.

In XML Schema, there is a substitution group, which allows elements to be
substitutable for other elements and can be used to simulate the polymorphic
feature. Figure 1 declares two new elements chineseComment and englishCom-
ment and makes them substitutable for the comment element in the instance
document. Although the substitution mechanism can be used to simulate the
polymorphic feature, it has two shortcomings: (1) for an element hierarchy, the
user has to declare an substitution group for each super-element; (2) if a new
sub-element is added into the element hierarchy, then the declarations of substi-
tution groups of its super-elements have to be modified.

<xsd:element name="chineseComment" type="string"
substitutionGroup="comment"/>

<xsd:element name="englishComment" type="string"
substitutionGroup="comment"/>

Fig. 1. Element substitution in XML Schema

XML Schema provides the redefine mechanism that can be used to support
evolution and versioning of schemas. Unlike the include mechanism which en-
ables users to use external schema components without any modification, the
redefine mechanism allows users to incorporate external schema components
with modifications. Because attribute group definitions and model group def-
initions may be supersets or subsets of their original definitions, the redefine
mechanism can be used to simulate overriding and blocking of element inheri-
tance in an element hierarchy, in a two-steps way. For example, for the element

Extending XML with Nonmonotonic Multiple Inheritance 325

hierarchy with person and student, element addr is overridden with a simple
type in sub-element student. With XML Schema, this can be simulated in two
steps: (1) A temporary type definition student is derived from the base type per-
son with the extension mechanism, and has the same element definitions. The
derived definition is stored as a temporary schema document student tmp.xsd.
(2) The external schema document student tmp.xsd is redefined with necessary
modifications, and then the redefined schema is stored as student.xsd.

The main shortcoming of the two-steps way is that a temporary external
schema document must be generated, because type definitions must use them-
selves as their base type definition in the redefine mechanism.

So far, we have introduced almost all the inheritance facilities in XML Schema.
We can get the following conclusions: (1) XML Schema does not support the in-
heritance of attribute. (2) XML Schema only supports single inheritance, because
only one base type is allowed to be in the extension construct. Since the multiple
inheritance cannot be supported in XML Schema, some concept-level semantics
cannot be directly mapped to XML Schema. (3) Polymorphism is not directly
supported in XML Schema, it is one of the important features of inheritance.
Polymorphism can be indirectly supported by using the substitution mechanism.
(4) XML Schema does not support overriding and blocking directly. But they
can be simulated via the redefine mechanism and a superficious external schema
document has to be generated.

Nonmonotonic inheritance is a fundamental feature of object-oriented data
models [22]. In object-oriented languages with multiple inheritance, a class may
inherit attributes and methods from more than one superclass. One of the prob-
lems with multiple inheritance is that an ambiguity may arises when an attribute
or method is defined in more than one superclass. Therefore, conflict resolution
is important in object-oriented database systems with multiple inheritance and
most systems use the superclass ordering to solve the conflicts [22].

In this paper, we then extend DTD as follows. (1) We extend DTD’s type
system to provide richer built-in types. Moreover, a user-defined type can be
declared using the ISA mechanism in which an existing type is used as the base
type and the set of values represented by the derived type is the subset of values
represented by the base type. (2) We extend DTD so that element can be global
as well as local. (3) We extend DTD with element hierarchy with nonmonotonic
inheritance to support super-element sub-element relationship, overriding of ele-
ments or attributes inherited from super-elements, blocking of the inheritance of
elements or attributes from super-elements, and conflict handling. (4) We extend
XML with polymorphism, which is a fundamental feature in object-oriented data
models, to support polymorphic elements, typing of references and polymorphic
references.

The reminder of this paper is organized as follows. Section 2 extends DTD’s
basic type system including user-defined types. Section 3 extends DTD with in-
heritance, including element hierarchy, overriding, blocking, multiple inheritance
and conflict handling. Section 4 extends DTD with polymorphism, including
polymorphic element and polymorphic reference. Finally, Section 5 concludes
this paper.

326 G. Wang and M. Liu

2 Extension of Basic Types

For the convenience of discussion, we first give a sample Extended DTD in Figure
2 and an XML instance document in Figure 3. They are used throughout the
remainder of this paper. The example shows a typical university application, in
which there are seven kinds of elements: person, student, teacher, TA, course,
underCourse and gradCourse. They construct two element hierarchies, i.e., the
person hierarchy and the course hierarchy. In the former hierarchy, person and
TA are a super-element and a sharing sub-elements of Student and Teacher, re-
spectively. In the latter hierarchy, underCourse and gradCourse are sub-elements
of course.

<DOCTYPE univ [

<!TYPE #PROVINCE ENUM {
Ontario, Alberta, B.C., Manitoba,...}>

<!TYPE #BIRTHDATE ISA
#DATE [1984-01-01..]>

<!TYPE #SALARY ISA
#FLOAT [1000.0..50000.0]>

<!ELEMENT univ (person*, course*)>

<!ELEMENT person (
name, birthdate, addr, homephone)>

<!ATTLIST person pid ID #REQUIRED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT birthdate (#BIRTHDATE)>
<!ELEMENT addr (

street, city, province, postcode)>
<!ELEMENT homephone (#INTEGER)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT province (#PROVINCE)>
<!ELEMENT postcode (#PCDATA)>

<!ELEMENT student ISA person
(addr, dept, takes)>

<!ATTLIST student sno CDATA>

<!ELEMENT addr OF student (#PCDATA)>
<!ELEMENT dept OF student (#PCDATA)>

<!ELEMENT takes EMPTY>
<!ATTLIST takes courses IDREFS course>

<!ELEMENT teaches EMPTY>
<!ATTLIST teaches courses IDREFS course>

<!ELEMENT teacher ISA person (
workphone, salary, dept, teaches)>

<!ATTLIST teacher tno CDATA>

<!ELEMENT phone (
BLOCKED FROM person)>

<!ELEMENT workphone (integer)>
<!ELEMENT salary (#SALARY)>
<!ELEMENT dept of teacher (#PCDATA)>

<!ELEMENT TA ISA
student WITH (dept AS student-dept),
teacher WITH (dept AS teacher-dept)>

<!ELEMENT addr OF TA (
BLOCKED FROM student)>

<!ELEMENT course (
name, desc, takenBy, taughtBy)>

<!ATTLIST course cid ID #REQUIRED>

<!ELEMENT desc (#PCDATA)>

<!ELEMENT takenBy EMPTY>
<!ATTLIST takenBy students

IDREFS student >

<!ELEMENT taughtBy EMPTY>
<!ATTLIST taughtBy teachers

IDREFS teacher >

<!ELEMENT underCourse ISA course () >

<!ELEMENT gradCourse ISA course () >

]>

Fig. 2. A Sample Extended DTD

For element declarations, DTD supports only a basic type #PCDATA. It is
obviously insufficient to model data types in the real world. Therefore, in this
section we first extend the built-in types of DTD for element declarations based
on the built-in types of ODMG [23] and XML Schema [24].

Besides the basic types supported by DTD such as #PCDATA, the Extended
DTD supports new basic types for element declarations: #INTEGER, #FLOAT,
#BOOLEAN, #DATE, #TIME, and enum. Values of these types are defined
in the usual way. Enum is a type generator, which defines a named type that
can take on only the values listed in the declaration. For example, in the part
of type definitions of Figure 2, a new user-defined type PROVINCE is declared
with the enum type generator and element province in addr is declared with the
new declared type.

Extending XML with Nonmonotonic Multiple Inheritance 327

<univ> <birthdate> 1976-08-29 </birthdate>
<addr>

<person pid=“1000”> <street> 440 Albert </street>
<name> Jaonne Barbosa </name> <city> Ottawa </city>
<birthdate> 1965-04-07 </birthdate> <province> Ontario </state>
<addr> <postcode> K1R 6P6 </postcode>

<street> 310 University </street> </addr>
<city> Ottawa </city> <homephone> 2915318 </homephone>
<province> Ontario </state> <workphone> 2502600 </workphone>
<postcode> K1S 5B6 </postcode> <student-dept> CS </student-dept>

</addr> <teacher-dept> SE </teacher-dept>
<homephone> 5073322 </homephone> <takes courses=“CS400” />

</person> <teaches teaches=“CS300” />
</TA>

<student pid=“2000” sno=“S1000”>
<name> Jones Gillmann </name> <course cid=“CS100” >
<birthdate> 1976-02-25 </birthdate> <name> Introduction to CS </name>
<addr> 708D Somerset St </addr> <desc> Continuing Education </desc>
<homephone> 6185708 </homephone> </course>
<dept> Computer Science </dept>
< takes courses=“CS200 CS300” /> <underCourse cid=“CS200” >

</student> <name> Introduction to DBS </name>
<desc> Basic concepts </desc>

<teacher pid=“3000” tno=“I1000”> <takenBy students=“2000” />
<name> Alley Srivastava </name> <taughtBy teachers=“3000” />
<birthdate> 1957-06-26 </birthdate> </underCourse>
<addr> <underCourse cid=“CS300” >

<street> 56 Broson </street> <name> Introduction to SE </name>
<city> Ottawa </city> <desc> Basic concepts </desc>
<province> Ontario </state> <takenBy students=“2000” />
<postcode> K2B 6M8 </postcode> <taughtBy teachers=“3000 4000” />

</addr> </underCourse>
<workphone> 2314343 </workphone>
<salary> 1200.00 <salary> <gradCourse cid=“CS400” >
<dept> Computer Science </dept> <name> DBMS </name>
<teaches courses=“CS200 CS300 CS400”/> <desc> Impl. Techniques </desc>

</teacher> <takenBy students=“4000” />
<taughtBy teachers=“3000” />

<TA pid=“4000” sno=“S2000” tno=“I2000”> </gradCourse>
<name> Alice Bumbulis </name> </univ>

Fig. 3. An XML instance document of the sample Extended DTD

Extension 1. The syntax for enum type declarations is as follows.

‘<!TYPE’ ‘#’type-name ‘ENUM {’ identifier + ‘}>’

where #type-name is the defined new type, identifier is a value of type string,
+ means one or more occurrences. An enum declaration defines a named type
that can take on only the values listed in the declaration.

Besides the extended basic types and the enum type generator, users can
use the ISA mechanism to derive a new simple type in the Extended DTD.
For example, in the part of type definitions of Figure 2 two new derived types
BIRTHDATE and SALARY are declared with the ISA mechanism, and element
birthdate in person and element salary in teacher are declared with these two
new derived types, respectively.

Extension 2. The syntax for a new derived simple type declaration is as follows.

‘<!TYPE’ ‘#’type-name ‘ISA’ ‘#’base-type-name
lowerBound [minVal] ‘..’ [maxVal] upperBound ‘>’

where type-name is used to specify the name of a user-defined type, base-type-
name is used to specify the base type from which type-name is derived, lower-
Bound may be either ‘[’ or ‘(’ and upperBound may be either ‘]’ or ‘)’, ‘[‘ and ‘]’
are used to specify greater than or equal(≥) and less than or equal(≤) while ’(’
and ’)’ are used to specify greater than(>) and less than(<), the clause [minVal]

328 G. Wang and M. Liu

‘..’ [maxVal] is used to specify the value range of the new derived simple type.
The range parameters [minVal] and [maxVal] can be optional to represent a
semi-range and their expressions depends on the type of base-type-name.

For example, in Figure 4 statement (1) declares an enum type #WEEK,
while statement (2) declares a user-defined derived type #WEEKDAY using
the ISA mechanism. Statement (3) declares a positive integer while statement
(4) declares a negative integer.

<!TYPE #WEEK ENUM {Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday }>

<!TYPE #WEEKDAY ISA #WEEK [Monday..Friday]>
<!TYPE #POSITIVEINTEGER ISA INTEGER (0..)>
<!TYPE #NEGATIVEINTEGER ISA INTEGER (..0)>

Fig. 4. Examples of user-defined types

Compared with the restriction mechanism of XML Schema, the ISA mech-
anism for deriving new simple types in our Extended DTD has the following
advantages.

(1) The Extended DTD uses a unified ISA mechanism for both derived simple
and complex types, while XML Schema adopts two mechanisms, extension
and restriction.

(2) The Extended DTD is much more concise than XML Schema. In XML
Schema, more than 20 attributes may be set up for a restriction declaration,
such as minExclusive, minInclusive, maxExclusive, maxInclusive, totalDigits,
fractionDigits. These are very complicated for users to remember.

3 Extension of Elements

In this section, we extend DTD with element hierarchy with overriding and
blocking, which are some fundamental features in OO data models. Then, we
extend DTD to support three kinds of conflict handling mechanisms. But first,
we introduce the concepts of local and global elements.

3.1 Local Element

In DTD, element declarations are global and unique. In other words, we cannot
have two element declarations with the same name even the two elements are
used in different places with different meanings. For example, we cannot define
two name elements: one is for program name and the other is for department
name with different domains. This feature greatly limits the modeling power
of XML. To solve this problem, we distinguish two kinds of elements: global
elements and local elements. Global elements are defined as in DTD while local
elements must have unique names within the elements they appear.

Extending XML with Nonmonotonic Multiple Inheritance 329

Extension 3. An element name is either global or local. A global element name
is just a name. A local element name has the form: name ‘OF’ name, where the
first name is the name of the local element and the second name is the name of
the element in which the local element appears.

3.2 Element Hierarchy

Figure 2 shows an example of the Extended DTD with two element hierarchies.
The definition part for element person is similar to DTD. The definition part for
element student, a sub-element of person, is declared by using the ISA construct
to specify the list of its super-elements. The following gives the extension of DTD
with super-element declarations.

Extension 4. The syntax for element declaration is as follows.

‘<!ELEMENT’ global-element-name [‘ISA’ super-global-element-names-list]
‘(’ element-content-models ‘)>’

In the ISA construct [‘ISA’ super-global-element-names-list] there can be
more than one super-element to be inherited. Also, an element may have no
super-element declaration because the construct is optional. The syntax of
element-content-models is the same as in DTD. But we focus on the sequence
content model in all examples of this paper. In an element hierarchy, a sub-
element inherits elements and attributes from its super-elements, and appends
additional specific elements and attributes into the content model.

A specific component element or attribute in the sub-element overrides the
element or attribute defined in the super-element. Overriding can be used to
modify type, optional vs required and domain constraint for attribute inheritance,
and type and min & max occurence for element inheritance. For example, in
the sub-element student in Figure 2, the component element addr is local and
overrides the inherited element addr with a new simple type. There is no special
syntax extension for overriding of element and attribute.

In the definition part for element teacher in Figure 2, the inheritance of ele-
ment phone is blocked from the super-element person. In addition, three specific
elements, workphone, salary and dept, and one specific IDREFS teaches referenc-
ing to course are defined. The following gives the extensions of DTD for blocking
the inheritance of elements and attributes.

Extension 5. The syntax for element and attribute inheritance blocking is as
follows.

‘<!ELEMENT’ element-name ‘(BLOCKED FROM’ super-element-names-
list) ‘>’

‘<!ATTLIST’ element-name attribute-name ‘BLOCKED FROM’ super-
element-names-list‘>’

Note that element or attribute inheritance blocking is specified using the
construct BLOCKED FROM super-element-names-list. In [22], the return type

330 G. Wang and M. Liu

none is used to specify blocking, but the superclass from which the inheritance
is blocked is not specified. This way can work well in the case of single inheri-
tance, but not in the case of multiple inheritance with selectable blocking, which
means that subclass attributes can be blocked from some superclasses. Another
advantage of the selectable blocking mechanism is that it can be used to resolve
conflicts, described in the next subsection.

3.3 Conflict Handling

With multiple inheritance, conflicts may occur. In this subsection, we discuss
conflict handling mechanisms. In Figure 2, element TA inherits elements and at-
tributes from both super-elements student and teacher. There are two conflicts
to be resolved, since elements addr and dept are declared on both super-elements
student and teacher. In our Extended DTD, three ways can be used to handle
conflicts . In the first way, a conflict resolution declaration is specified explicitly
to indicate from which super-element an element or attribute is inherited, for
example, the construct <!ELEMENT addr (BLOCKED FROM student)> indi-
cates that the declaration of addr is inherited from the super-element teacher
rather than from student. In the second way, the names of elements or attributes
causing conflicts are explicitly re-named in the inheriting element declaration,
for example, in the sub-element TA declaration, the construct “student WITH
(dept AS student-dept)” renames element dept inherited from element student to
student-dept while the construct “teacher WITH (dept AS teacher-dept)” from
teacher to teacher-dept. Finally, if there is a conflict and there is no conflict
resolution declaration, then the element or attribute is inherited from the super-
element in the order the super-elements are listed in the element declaration in
the ISA construct. For example, there is a conflict for element addr. If there is
no explicit conflict resolution declared for it in the declaration of element TA,
then element addr in element student would be inherited.

Extension 6. The ISA construct with the renaming clause for elements and
attributes is as follows.

‘ISA’ { super-element { ‘WITH (’old-element-name|old-attribute-name
‘AS’ new-element-name|new-attribute-name‘)’ }* }+

where *, + mean 0 or more and 1 or more occurrences, respectively.

4 Polymorphism

In object-oriented paradigm, polymorphism is a very useful and important fea-
ture, which provides the possibility of manipulating polymorphic collections.
Consider three classes person, teacher and student. Class person is the common
superclass of teacher and student, and the extents of these three classes are
persons, teachers and students, respectively. Therefore, the set persons contains

Extending XML with Nonmonotonic Multiple Inheritance 331

objects of classes person, teacher and student due to polymorphism. Thus, the
persons extent contains three possible classes of the elements in the collection.
We think it is necessary to extend XML with the polymorphic feature.

We can simulate a polymorphic element by using union and * in any XML
schema language. For example, Figure 5 shows a DTD for element persons,
in which a persons instance may contain person instances, student instances,
teacher instances, and/or TA instances. This design has the following disadvan-
tages.

(1) Even though the union design is a possible way to simulate polymorphism,
it is awkward.

(2) It is not flexible. For example, when a new sub-element is added to an element
hierarchy the content models of all the super-elements of the sub-element
have to be changed.

(3) Sub-elements cannot inherit elements and attributes and have to redefine
them explicitly.

<!ELEMENT persons(person|student|teacher|TA)*>
<!ELEMENT person>
<!ELEMENT student>
<!ELEMENT teacher>
<!ELEMENT TA>

Fig. 5. DTD for element person to simulate polymorphic elements

4.1 Polymorphic Elements

Consider the examples described before, element person has three direct or indi-
rect sub-elements, student, teacher and TA, and element course has two direct
sub-elements underCourse and gradCourse. Figure 6 shows an instance docu-
ment which consists of three element instances of person and one element in-
stance of course. It is obvious that Figure 6 is a valid instance document of the
schema document shown in Figure 2.

However, when polymorphism is introduced into XML, an instance of sub-
element can appear in the place where an instance of super-element is expected
in an instance document, and the instance document should still be valid. If
an element has at least one sub-element, then the element is polymorphic. For
example, person, student, teacher and course are polymorphic elements in the
example. For example, in the instance document shown in Figure 6 the person
element instances can be substituted with instances of student, teacher, or TA.
Similarly, the instance of course can be substituted with an instance of under-
Course and gradCourse. The substituting element instances are referred to as
polymorphic instances. In Figure 2, we can see that element univ can contain a
number of person element instances and a number of course element instances,
because of <!ELEMENT univ (person*, course*)>. Therefore, element univ can

332 G. Wang and M. Liu

<univ>
<person pid=“6000”>

<name> Jaonne Barbosa </name>
<birthdate> 1965-09-21 </birthdate>
<addr>

<street>515 Hast</street> <city> Ottawa </city>
<province> Ontario </province> <postcode> V6B 5K3 </postcode>

</addr>
<homephone> 5073322 </homephone>

</person>
<person pid=“7000”>

<name> Kaushik Dutta </name>
<birthdate> 1954-10-25 </birthdate>
<addr>

<street> 888 Main </street> <city>Bumaby</city>
<province> B.C. </province> <postcode> V5A 1S6 </postcode>

</addr>
<homephone> 2314021 </homephone>

</person>
<person pid=“8000”>

<name> Sam Madden </name>
<birthdate> 1948-07-08 </birthdate>
<addr>

<street> 2400 Bell </street> <city> Sumey </city>
<province> B.C. </province> <postcode> V3T 2W1 </postcode>

</addr>
<homephone> 2389504 </homephone>

</person>
<course cid=“CS900” >

<name> Introduction to Graphics </name>
<desc> Course for continuing education </desc>

</course>
</univ>

Fig. 6. A valid instance document of the sample extended DTD

contain seven component element instances due to polymorphism: (1) person in-
stances; (2) student instances; (3) teacher instances; (4) TA instances; (5) course
instances; (6) underCourse instances; and (7) gradCourse instances.

Therefore, it is necessary to incorporate polymorphism in Extended DTD.

Extension 7. In an instance document, the instance of an element can be substi-
tuted with an instance of its sub-elements. That is, the instance of a sub-element
may occur anywhere an instance of its super-element can occur.

4.2 Polymorphic Reference

In this subsection, we extend DTD with polymorphic reference, which is similar
to polymorphic element. A little bit complicated example for polymorphic ref-
erence is that a teacher may teach several courses including underCourses and
gradCourses, see the definition of element teacher in Figure 2 and its instance
in Figure 3. In the definition of Figure 2, teaches is an IDREFS to course. If
polymorphic references are supported, that is, teaches can also be used to ref-
erence to either underCourse or gradCourse elements as they are sub-elements
of element course, then the following six combinations are valid in the instance
document: (1) a teacher teaches courses; (2) a teacher teaches underCourses;
(3) a teacher teaches gradCourses; (4) a TA teaches courses; (5) a TA teaches
underCourses; and (6) a TA teaches gradCourses.

In DTD, the target element is not specified in the IDREF(s) definitions.
So we first extend the definition of IDREF and IDREFS attribute, shown in
Extension 8, which specifies the reference points from elem to targetElem. Then,
we introduce the concept of polymorphic reference, as shown in Extension 9.

Extending XML with Nonmonotonic Multiple Inheritance 333

Extension 8. An IDREF or IDREFS attribute can be constrained to a given
kind of element, which is represented by the following syntax.

’<!ATTLIST’ element-name attribute-name ’IDREF’ ’[’targetElem’]’ · · · ’>’
’<!ATTLIST’ element-name attribute-name ’IDREFS’ ’[’targetElem’]’· · · ’>’

For example, in the Extended DTD schema defined in Figure 2 the IDREFS
attribute courses of takes is declared as follows.

<!ATTLIST takes courses IDREFS course #IMPLIED>

where courses is allowed to point to just only instances of course.

Extension 9. An IDREF(S) attribute pointing to an element can also point to
instance(s) of its sub-elements. It is referred to as polymorphic reference(s).

For the above example, courses can point to instances of element course as
well as its sub-elements underCourse and gradCourse.

5 Conclusions

In this paper, we extend XML with element hierarchy to support the key fun-
damental object-oriented features such as nonmonotonic inheritance, overriding,
blocking, conflict handling, polymophism, and typing references. Although we
extend DTD to support those key object-oriented features, we do not require
any change to the syntax of XML documents to fit for our Extended DTD.

Acknowledgment. Guoren Wang’s research was supported by the National
Natural Science Foundation of China (Grant No. 60273079 and 60473074), the
Foundation for University Key Teacher and the Teaching and Research Award
Program for Outstanding Young Teachers in High Education Institution of Chi-
nese Ministry of Education. Mengchi Liu’s research is partially supported by
National Science and Engineering Research Council of Canada.

References

1. Chamberlin, D., Florescu, D., Robie, J., Siméon, J., Stefanescu: Qxuery: A query
language for xml. Internet document. http://www.w3.org/TR/xquery (2001)

2. Chamberlin, D., Robie, J., Florescu, D.: Quilt: An xml query language for hetero-
geneous data sources. In: Proceedings of Third International Workshop WebDB.
(2000) 1–25

3. Fankhauser, P.: Xquery formal semantics: State and challenges. SIGMOD Record
30 (2001) 14–19

4. D.Florescu, Kossmann, D.: A performance evaluation of alternative mapping
schemes for storing xml data in a relational database. Technical report(no.3680)
(1999)

5. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: Xrel: A path-based ap-
proach to storage and retrieval of xml documents using relational databases. ACM
Transactions on Internet Technology 1 (2001) 110–141

334 G. Wang and M. Liu

6. Chan, C.Y., Garofalakis, M.N., Rastogi, R.: Re-tree: An efficient index structure
for regular expressions. In: Proceedings of the 28th International Conference on
Very Large Data Bases. (2002)

7. Chung, C., Min, J., Shim, K.: Apex: An adaptive path index for xml data. In:
Proceedings of the 2002 ACM International Conference on Management of Data
SIGMOD. (2002)

8. Lv, J., Wang, G., Yu, J.X., Yu, G., Lu, H., Sun, B.: Performance evaluation of
a dom-based xml database: Storage, indexing and query optimization. (In: Pro-
ceedings of the 3rd International Conference On Web-Age Information Manage-
ment(WAIM2002))

9. McHugh, J., Widom, J.: Query optimization for xml. In: Proceedings of the 25th
International Conference on Very Large Data Bases. (1999) 315–326

10. Wang, G., Sun, B., Lv, J., Yu, G.: Rpe query processing and optimization tech-
niques for xml databases. Journal of Computer Science and Technology 19 (2004)
224–237

11. Wang, G., Liu, M.: Query processing and optimization for regular path expressions.
In: Proceedings of the 12th International Conference on Advanced Information Sys-
tems Engineering (CAiSE2003), Klagenfurt, Austria. Lecture Notes in Computer
Science 2681. (2003) 403–406

12. Li, S., Liu, M., Wang, G., Peng, Z.: Capturing semantic hierarchies to perform
meaningful integration in html tables. In: Proceedings of the 6th Asia-Pacific
Web Conference on Advanced Web Technologies and Applications(APWeb2004),
Hangzhou, China. (2004) 899–902

13. Wang, G., Lu, H., Yu, G., Bao, Y.: Managing very large document collections
using semantics. Journal of Computer Science and Technology 18 (2003) 403–406

14. Wang, G., Liu, M.: Logical foundation for updating xml. In: Proceedings of the
4th International Conference on Web-Age Information Management (WAIM2003),
Chengdu, China. Lecture Notes in Computer Science 2762. (2003) 80–91

15. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler(ed.), E.: Exten
markup language (xml) 1.0 (second edition). internet document.
http://www.w3.org/TR/REC-xml (2000)

16. Fallside(ed.), D.: Xml schema part 0: Primer. Internet document.
http://www.w3.org/TR/xmlschema-0/ (2001)

17. Davidson, A., Fuchs, M., Hedin, M.: Schema for object-oriented xml 2.0. Internet
document. http://www.w3.org/TR/NOTE-SOX (1999)

18. Microsoft: Xml schema developer’s guide. Internet document.
http://msdn.microsoft.com/xml/XMLGuide/schema-overview.asp (2000)

19. Jelliffe, R.: Schematron. Internet document.
http://www.ascc.net/xml/resource/schematron/ (2000)

20. Klarlund, N., Møller, A., Schwartzbach, M.I.: The dsd schema language. Auto-
mated Software Engineering 9 (2002) 285–319

21. Clark, J.: Relax ng compact syntax. Internet document.
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html(2002)

22. Liu, M., Dobbie, G., , Ling, T.: A logical foundation for deductive object-oriented
databases. ACM Transaction on Database Systems 27 (2002) 117–151

23. Cattell, R., Barry, D., Berler, M., Eastman, J., Jordan, D., Russel, C., Schadow,
O., Stanienda, T., Velez, F.: The Object Data Standard: ODMG 3.0. Morgan
Kaufmann Publishers (2000)

24. Biron, P., Malhotra(ed.), A.: Xml schema part 2: Datatypes. Internet document.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/ (2001)

sible

Database Design with Equality-Generating
Dependencies

Junhu Wang

School of Information Technology,
Griffith University, Gold Coast, Australia

J.Wang@griffith.edu.au

Abstract. In relational database systems, traditional normalization tech-
niques (eg, BCNF, 4NF) remove data redundancies from a single relation,
but can not detect and remove redundancies across multiple relations.
However, redundancies among multiple relations are abundant especially
in integrated databases. In this paper, we first propose to detect such
data redundancies using equality-generating dependencies (EGDs) and
propose an extended normal form (ENF) of relational database schema
with respect to EGDs. We show that a database has no potential data
redundancies with respect to EGDs if and only if the schema is in ENF.
For a common special class of EGDs, we provide a set of sound and com-
plete inference rules. A normalization process is presented to losslessly
transform a relational database schema to one in ENF. We then extend
our EGDs and ENF to XML data, and show how similar data redun-
dancy problems can be detected for data-centric XML documents.

Keywords: database design, relations, functional dependency, equality-
generating dependency, data redundancy, normal form, normalization,
XML tree.

1 Introduction

One of the primary goals of relational database design is to generate a set of rela-
tion schemas that allow us to store data without unnecessary redundancy. Data
redundancies are usually caused by dependencies among data such as functional
dependencies (FDs) and multi-valued dependencies. To prevent these data re-
dundancies we usually require the relation to be put in some normal form (NF)
such as BCNF and 4NF. Normalization is the technique that is used to trans-
form arbitrary relation schemas to those in normal form. However, traditional
normal forms are designed for a single relation schema rather than the entire
database, therefore traditional normalization techniques can only remove (or re-
duce) data redundancies in a single relation, but not across multiple relations.
As an example, suppose we have a university database that contains the relations

Student(sNo, sName, address)
UMember(mNo, mName, phone)

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 335–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

336 J. Wang

which represent students and union members, where sNo and mNo represent
student number and union member number respectively, sName and mName
represent student name and member name respectively. Assuming union mem-
bers include both staff and students, and if a student is a union member then
his/her student number is used as his/her member number. Although both re-
lations are in BCNF, there are data redundancies across the two relations if the
student information in the two relations overlap.

The data redundancies in the above example are caused by equality-generating
dependencies (EGDs)[FV84]1. Based on this observation, we propose a normal
form (named ENF) of relational database schema, with respect to EGDs, and
show ENF is necessary and sufficient to prevent potential data redundancies
caused by EGDs. For a very common special case, we provide a sound and com-
plete set of inference rules, and propose a normalization process that can be used
to losslessly transform a relational database schema to one in ENF.

Native XML database, which stores data in the form of XML documents,
has gained popularity in recent years. Like traditional databases, dependencies
among data naturally exist in XML and these dependencies may cause data
redundancies in poorly designed documents. We will define equality-generating
dependencies for XML (XEGDs), and propose a normal form, XENF, that pre-
vents redundancies caused by XEGDs.

To our knowledge, little research has been done on the removal of data redun-
dancies across multiple relations in relational databases. The only works we are
aware of are [LG92] and [MR86], both of which use inclusion dependencies. As
for XML data, we are not aware of any previous work on EGDs, although FDs
have been studied by several groups of researchers, eg, [AL04], and [VLL04].

The rest of the paper is organized as follows. Section 2 provides preliminary
definitions. Section 3 discusses inference rules for EGDs. Section 4 defines our
new normal form (ENF) with respect to EGDs and show that ENF is necessary
and sufficient to prevent potential data redundancies. Section 5 presents the
normalization process. Section 6 extends our EGDs and ENF to XML data.
Section 7 concludes the paper with a brief discussion of further research.

2 Preliminaries

A relation schema consists of a relation name and a list of distinct attributes. If
R is the relation name, and X = (x1, x2, . . . , xn) is the list of attributes, then the
relation schema is denoted R(x1, x2, . . . , xn), R(X) or simply R. Often the list
of attributes in R needs to be treated as a set, so that the set union, difference
and intersection can apply. The domain of attribute xi, denoted dom(xi), is a set
(finite or infinite) of values that xi can take. If X = (x1, x2, . . . , xn) is a list of at-
tributes, we will use dom(X) to denote the set dom(x1)×dom(x2)×· · ·×dom(xn).
Following conventions in database literature, the union (concatenation) of two
sets (lists) of attributes X and Y will be denoted XY . A relation instance r

1 Our EGDs are not limited to a universal relation schema as the EGDs in [FV84].

Database Design with Equality-Generating Dependencies 337

of schema R(x1, x2, . . . , xn) is a subset of dom(x1) × dom(x2) × · · · × dom(xn).
Every element t in the subset r is called a tuple in r. If r is an instance of R,
and X is a list (or subset) of the attributes in R, we will use r[X] to denote
the projection of r to X. Similarly if t is a tuple in r, then t[X] will denote the
projection of tuple t to X.

A database schema D is a set of relation schemas, and a database instance
consists of a set of relation instances, one for each of the relation schemas in D.

General EGDs are special constraint-generating dependencies [BCW99] where
the RHS is a conjunction of equalities. In this paper, we focus on EGDs involving
up to two relations only. But the extension to multiple relations is straightfor-
ward.

Definition 1. An equality-generating dependency (EGD) is an expression of
the form

R1.X1 = R2.X2 → R1.Y1 = R2.Y2

where R1, R2 are relation schemas, Xi, Yi are lists of attributes in Ri (i = 1, 2),
dom(X1) ∩ dom(X2) �= ∅, and dom(Y1) ∩ dom(Y2) �= ∅.

A database instance containing the relation instances r1 of R1 and r2 of R2
is said to satisfy the EGD if ∀t1 ∈ r1, t2 ∈ r2, whenever t1[X1] = t2[X2], we
have t1[Y1] = t2[Y2].

Example 1. In the student and union member example introduced in Section 1,
we can claim there is an EGD

Student .sNo = UMember .mNo → Student .sName = UMember .mName
Due to the above EGD, if there are union members who are also students,

there will be redundancies across the two relations, although no redundancies
exist in either relation.

In the above example, sNo and mNum happen to be keys of the two relations
respectively. But in general, this may not be the case. Also, an attribute may
appear more than once in an attribute list.

Example 2. Suppose we have two relations R1(x1, x2, x3) and R2(y1, y2, y3, y4).
Let the instances r1 of R1 and r2 of R2 be as follows:

x1 x2 x3 y1 y2 y3 y4
— — — — — — —

r1 : 1 1 2 r2 : 2 1 2 2
1 2 2 2 3 3 0
3 2 0 1 1 2 2

Then the following EGDs are satisfied by r1 and r2.

R1.x2 = R2.y2 → R1.x3 = R2.y3
R1.x1 = R1.x2 → R1.x3 = R1.x3
R2.y1 = R2.y2 → R2.y3 = R2.y4
R1.x1x1 = R2.y1y2 → R1.x3x3 = R2.y3y4

338 J. Wang

The last EGD above is often written as

R1.x1 = R2.y1 ∧R1.x1 = R2.y2 → R1.x3 = R2.y3 ∧R1.x3 = R2.y4.

Note that the FD R1 : x2 → x3 (refer to the first EGD) does not hold.

FDs can be regarded as special EGDs where R1 = R2, X1 = X2 and Y1 = Y2.
As seen in Example 1, EGDs can cause data redundancies across relations.

To counter the effects of these EGDs we need another type of constraints, called
exclusion constraints, as defined below.

Definition 2. Let R1(U) and R2(V) be relation schemas, X1 ⊆ U and X2 ⊆ V ,
and dom(X1) ∩ dom(X2) �= ∅. An exclusion constraint (EC) is an expression

R1[X1] ∩R2[X2] = ∅.

A database instance containing the relation instances r1 of R1 and r2 of R2
is said to satisfy the exclusion constraint if r1[X1] ∩ r2[X2] = ∅.

3 Trivial EGDs, Closure Set, and Inference Rules

3.1 Trivial EGDs

Like FDs, an EGD can be trivial, that is, it is satisfied by all possible instances
of R1 and R2. For example, every trivial FD is also a trivial EGD. The EGDs
R1.x1x2 = R2.y1y2 → R1.x1 = R2.y1 and R1.x1x2x2 = R2.y1y1y2 → R1.x1 =
R2.y2 are also trivial.

Generally, let λ be the EGD R1.X1 = R2.X2 → R1.Y1 = R2.Y2, where
X1 = (x1, . . . , xk), X2 = (x′

1, . . . , x
′
k), Y1 = (y1, . . . , ym), Y2 = (y′

1, . . . , y
′
m). Let

C1(lhs(λ)) =
∧

i∈[1,k](t.xi = t′.x′
i),

C1(rhs(λ)) =
∧

i∈[1,m](t.yi = t′.y′
i),

C2(lhs(λ)) =
∧

i∈[1,k](t.xi = t.x′
i),

C2(rhs(λ)) =
∧

i∈[1,m](t.yi = t.y′
i).

Treating the symbols t.xi (t.x′
i, t

′.y′
i etc) as variables from dom(xi) (dom(x′

i),
dom(y′

i) etc), and the above conjunctions of equalities as symbolic constraints,
we can identify trivial EGDs involving R1 and R2 (note R1 and R2 may be the
same relation schema) using the following result.

Proposition 1. If R1 �= R2, then λ is trivial iff C1(lhs(λ)) |= C1(rhs(λ)).
If R1 = R2, then λ is trivial iff C1(lhs(λ)) |= C1(rhs(λ)) and C2(lhs(λ)) |=
C2(rhs(λ)).

Trivial EGDs are of no use in schema design because they put no restrictions
on the data.

Database Design with Equality-Generating Dependencies 339

3.2 Closure Set and Inference Rules

Given a database schema D and a set E of EGDs that hold over D, there
may be other EGDs that are logically implied by E. For example, the EGD
R1.x = R2.x → R1.z = R2.z is logically implied by R1.x = R2.x → R1.y = R2.y
and R1.y = R2.y → R1.z = R2.z. We will use (D,E)+ to denote the set of all
EGDs over D that are logically implied by E, and call it the closure set of E.

In [WTM01] we have shown that for a set of constrained-tuple generating
dependencies (CTGD) Σ to logically imply another CTGD λ, there must be
relevance mappings from the left hand side (LHS) of the CTGDs in Σ to the
LHS of λ. As EGDs are special CTGDs, we can easily prove the following theorem
using the above result.

Theorem 1. Let D be a database schema containing relation schemas R1 and
R2. Let E be a set of EGDs over D. If R1.X1 = R2.X2 → R1.Y1 = R2.Y2 is
logically implied by the EGDs in E, then it is also logically implied by the subset
of EGDs in E which involve only R1 or R2 or both.

Because of the above theorem, to find (D,E)+ we can group the EGDs by
the relation schemas they involve, and compute the closure sets group by group.

If R1 �= R2, we can show that FDs over R1 or R2 contribute nothing towards
the implication of R1.X1 = R2.X2 → R1.Y1 = R2.Y2. Hence to compute the
closure set of a set E1,2 of EGDs involving R1 and/or R2 only, we can divide E1,2
to disjoint sets F1, F2 and E′

1,2 (where Fi is the set of FDs over Ri (i = 1, 2),
E′

1,2 = E1,2 − (F1 ∪ F2)), and compute the closure sets of F1, F2 and E′
1,2

separately. In the common special case where R1 �= R2 and every EGD in E′
1,2

involves both R1 and R2, the closure set of E′
1,2 can be found by repeatedly

applying the following inference rules.

R1 Let λ be R1.X1 = R2.X2 → R1.Y1 = R2.Y2. If C1(lhs(λ)) |= C1(rhs(λ)),
then λ trivially holds.

R2 If R1.X1 = R2.X2 → R1.Y1 = R2.Y2, and R1.Y1 = R2.Y2 → R1.Z1 = R2.Z2,
then R1.X1 = R2.X2 → R1.Z1 = R2.Z2.

R3 If R1.X1 = R2.X2 → R1.Y1 = R2.Y2, and R1.X
′
1 = R2.X

′
2 → R1.Y

′
1 =

R2.Y
′
2 , then R1.X1X

′
1 = R2.X2X

′
2 → R1.Y1Y

′
1 = R2.Y2Y

′
2 .

Using methods similar to the proof of completeness of Armstrong’s inference
rules [Mai83] for FDs, we can prove the following completeness result.

Theorem 2. Suppose R1 �= R2, and E1,2 is a set of EGDs involving both R1
and R2. Then every EGD in the closure set of E1,2 can be found by repeatedly
applying the inference rules R1 – R3.

4 Normal Form with Respect to EGDs

Before defining the normal form ENF with respect to EGDs, let us first recall
BCNF, which is defined with respect to FDs. A relation schema is said to be
in BCNF with respect to a set of FDs if the LHS of every non-trivial FD is a

340 J. Wang

superkey. Since there can never be two distinct tuples agreeing on the superkey,
what the above requirement of BCNF says is that there can never be two distinct
tuples that agree on the LHS of any non-trivial FD.

ENF can be defined along the same line. The following definition of ENF is
a direct extension of BCNF.

Definition 3. A relational database schema D is said to be in extended normal
form (ENF) with respect to a given set E of EGDs, if for every non-trivial EGD

R1.X1 = R2.X2 → R1.Y1 = R2.Y2

in (D,E)+,

– if R1 = R2, X1 = X2 and Y1 = Y2, then X1 is a superkey of R1;
– otherwise, there is a corresponding exclusion constraint R1[X1]∩R2[X2] = ∅

over D.

We now briefly discuss about the above definition. For the EGD in the def-
inition, if R1 = R2, X1 = X2 and Y1 = Y2, it becomes a FD R1 : X1 → Y1.
By requiring X1 to be a superkey of R1 we are demanding that R1 be in BCNF
with respect to the FD. Therefore, the first condition in our normal form is
equivalent to say that all relation schema is in BCNF with respect to the FDs
in (D,E)+. If R1 �= R2, or X1 �= X2, or Y1 �= Y2, then the EGD is not a FD,
and the second condition in our normal form requires that instances of R1 and
R2 must not overlap on the X1 (X2) attributes. In effect, in both cases we re-
quire that there are no distinct tuples t1 ∈ r1 and t2 ∈ r2, where r1 and r2 are
instances of R1 and R2 respectively, such that t1[X1] = t2[X2]. In addition, if
R1 = R2, but X1 �= X2, we also require that t[X1] �= t[X2] for every tuple t; if
R1 = R2, X1 = X2 but Y1 �= Y2, we also require every instance of R1 is empty.

For instance, the database schema in Example 1 is in ENF with respect to
the given EGD if and only if Student [sNo] ∩UMemembr [mNo] = ∅ holds. That
is, there are no students who are also union members.

Thepurpose of normalforms is to ensure alldatabase instances are redundancy-
free. For instance, it has been shown in [Vin99] that BCNF is necessary and
sufficient for ensuring there is no instance of the relation which can have data
redundancies with respect to FDs. Here we provide a similar result about ENF.
Before that, we need to define redundancy first.

Definition 4. Let D be a database schema and E be a set of EGDs over D. Let d
be an instance of D which satisfies E. We say that there is a value redundancy
in d if there is a tuple t in d and an attribute x, such that the value t[x], if
removed from t, can be recovered using E and other values in d.

The next theorem says that ENF is a necessary and sufficient condition to
ensure there are no value redundancies for every instance of D which satisfies E.

Theorem 3. Let D be a database schema and E be a set of EGDs over D.
There exists an instance of D satisfying E, which has value redundancies if and
only if D is not in ENF with respect to E.

Database Design with Equality-Generating Dependencies 341

5 Normalization

In this section, we discuss the normalization process that can be used to loss-
lessly transform a database schema to ENF with respect to a set of EGDs. Here
“lossless” means that there is a one-to-one mapping from instances of the original
schema to instances of the new schema [AHV95]. Due to space limit, we will only
describe the process informally for a common special case, namely the special
case where the EGDs involve two different relation schemas R1(U) and R2(V),
and the lists of attributes in the non-trivial EGDs contain distinct attributes.

Basically, if there is a non-trivial EGD

R1.X1 = R2.X2 → R1.Y1 = R2.Y2

(where, R1 �= R2, X1 ∩ Y1 = ∅, X2 ∩ Y2 = ∅, and every attribute occurs only
once in each of the lists X1, Y1, X2 and Y2) which violates ENF, then we will
replace R2(V) with R′

2(V) and R2,2(X2Z2), where Z2 = V −X2Y2. We also add
the constraints R1[X1] ∩R′

2[X2] = ∅ and R′
2[X2] ∩R2,2[X2] = ∅.

Given instances r1 and r2 of R1 and R2 respectively, we compute instances
r2,2, r′

2 of R2,2, R′
2 as follows:

r2,2 = ΠX2Z2((r1[X1Y1] ∩ r2[X2Y2]) &'X1=X2 r2),
r′
2 = r2 −ΠX1Y1Z2(r1 &'X1=X2 r2,2).

One can verify that the new instances r1, r′
2 and r2,2 satisfy the ECs men-

tioned above, and the original instance r2 can be recovered from the new in-
stances using r2 = r′

2 ∪ΠX1Y1Z2(r1 &'X1=X2 r2,2).
For example, the relation schemas Student(sNo, sName, address) and

UMember(mNo,mName, phone) in Example 1, if not in ENF, can be decom-
posedtoStudent(sNo, sname, address),nonstudentMember(mNo,mname, phone),
and StudentMember(sNo, phone).

If database schema D is not in ENF with respect to a set E of EGDs over D,
we can transform the schema with respect to the non-trivial EGDs in (D,E)+

which violates ENF one by one. However, we should note that some EGDs or
ECs involving an original relation schema may be “inherited” by the new relation
schemas. Therefore, after each step of decomposition, we should compute the new
sets of EGDs and ECs.

We call the above schema transformation process a specialization process
because instances of R2 are horizontally split to two disjoint relations. A dif-
ferent specialization process and a generalization process for normalization are
described in [Wan04].

6 EGDs for XML Data

In this section, we will define EGDs for XML data (called XEGDs), and propose
a corresponding normal form XENF of XML scheme files with respect to these
constraints.

342 J. Wang

Let E1 and E2 be disjoint sets of element names, A be a set of attribute
names, E = E1 ∪E2, and E and A be disjoint. Element names and attribute
names are called labels.

6.1 XML Trees, XML Scheme Files, and Paths

Every XML document can be represented as a labelled tree, referred to as an
XML tree. Formally, we define an XML tree as follows.

Definition 5. An XML tree is defined to be T = (V, lab, ele, att, val, root),
where (1) V is a set of nodes; (2) lab is a mapping from V to E ∪A which
assigns a label to each node in V ; a node v ∈ V is called a complex element
(node) if lab(v) ∈ E1, a simple element (node) if lab(v) ∈ E2, and an attribute
(node) if lab(v) ∈ A. (3) ele and att are functions from the set of complex ele-
ments in V : for every v ∈ V , if lab(v) ∈ E1 then ele(v) is a set of element nodes,
and att(v) is a set of attribute nodes with distinct labels; (4) val is a function
that assigns a value to each attribute or simple element. (5) root is the unique
root node labelled with complex element name r. (6) If v′ ∈ ele(v)∪ att(v), then
we call v′ a child of v. The parent-child relationships defined by ele and att form
a tree rooted at root.

The right side of Figure 1 shows an example XML tree that represents school
students and union members in a university. In the tree, attribute names are
indicated by @, simple element names are indicated by $, and string values are
quoted.

@city
'GC'

root

@street
'Main'

university

school
v1

union
v2

students

v3

@sid
'IT'

@uid
'Chinese'

studentv6

@sno
 's2'

address
$sname
'Ken'

@street
'st2'

@city
'Syd'

members
 V 4

@city
'GC'

V9

studentv5

@sno
 's1'

$sname
'Li'

address

@street
'Main'

V8

memberv7

 @mno
 's1'

$mname
 'Li'

$major
 'IT'

address

v10

r = university
university ::= (school, union)
school ::= {@sid} (students)
student ::= (student)*
student ::= {@sno} ($sname, address)
address::={@street, @city}
unions ::= {@uid} (members)
members::=(member)*
member::={@mno}($mname, $major, address)

Fig. 1. The Uni-School-Union example

As well known, DTDs or XML Schema files (we call them XML scheme files)
can be used to restrict the structure of the XML documents, so they play similar
roles to the relational database schema. The W3C DTD and XML Schema are
rather complicated languages. Therefore, rather than sticking to either of them,
we will define an abstract XML scheme file similar to the DTD in [AL04].

Database Design with Equality-Generating Dependencies 343

Definition 6. An (XML) scheme file is defined to be S = (E1, E2, A, P,R, r)
where E1 ⊆ E1 is a finite set of complex element names; E2 ⊆ E2 is a finite
set of simple element names; A ⊆ A is a finite set of attribute names; P is
a mapping from E1 to element type definitions: ∀τ ∈ E1, P (τ) is a regular
expression

α = ε | τ ′ | α|α | α, α | α∗

where ε is the empty sequence, τ ′ ∈ E1∪E2, and “|” , “,”, and “*” denote union,
concatenation, and the Kleene closure respectively; R is a mapping from E1 to
sets of attributes; for τ ∈ E1, either P (τ) is not ε or R(τ) is not ∅; r ∈ E1 is
the element name of the root, which is the only label in E1 that does not appear
in the alphabet of P (τ) for any τ ∈ E1.

The upper left corner of Figure 1 shows an example XML scheme file.
An XML scheme file restricts the structure of conforming XML documents,

where conformity is defined as below.

Definition 7. An XML tree T = (V, lab, ele, att, val, root) is said to conform to
scheme file S = (E1, E2, A, P,R, r) if

1 lab(root) = r,
2 lab maps every node in V to E1 ∪ E2 ∪A,
3 for every complex element node v ∈ V , if ele(v) = {v1, . . . , vk}, then a

permutation of the sequence of labels lab(v1) · · · lab(vk) (regarded as a string)
must be in the language defined by P (lab(v)); if att(v) = {v′

1, . . . , v
′
m} then

the labels lab(v′
1), . . . , lab(v

′
m) must be in the set R(lab(v)).

For example, the XML tree in Figure 1 conforms to the scheme file in the
same figure.

Next we need to define paths in a scheme file and in an XML tree.
A path in scheme file S is a string l1. · · · .lm, where li ∈ E1 ∪ E2 ∪ A for

i ∈ [1,m], lj is in the alphabet of P (lj−1) for j ∈ [2,m − 1], and lm is in the
alphabet of P (lm−1) or in R(lm−1). A path that starts from a label in P (r)
is called an absolute path. The set of all paths (absolute paths, resp.) in S is
denoted paths(S) (AP (S), resp.).

A path instance in an XML tree T is a dot-separated sequence of nodes
v1. · · · .vk such that vi is a child node of vi−1 for i ∈ [2, k]. If v1. · · · .vk is a path
instance in T , then lab(v1). · · · .lab(vk) will be called a path in T , and we say
v1. · · · .vk is an instance of the path lab(v1). · · · .lab(vk). The set of all paths in
T is denoted paths(T), and the set of all paths in paths(T) which start from the
label of a child of root is denoted AP (T). Clearly, if T conforms to a scheme file
S, then paths(T) ⊆ paths(S), AP (T) ⊆ AP (S), and every path instance in T is
an instance of a path in S.

Let T be an XML tree conforming to S, and v be a node in T . Let p be a
path in S starting with a label in P (lab(v)). Starting from v and following path
p in T we will eventually reach a set v[p] of nodes in T . We call this set the target
set of p wrt v. Formally,

344 J. Wang

v[p] = {vn | ∃v1,...,vn−1 v1 is a child of v, and v1, . . . , vn is an instance of p}

For example, in the XML tree in Figure 1, v3(student.address) = {v8, v9}.

6.2 Comparability and Value Equality

Let S be a scheme file, and T be a conforming XML tree. Let v1 and v2 be two
nodes in T . If v1 and v2 are the same node, we will write v1 = v2. Sometimes
two different nodes may have equal values. For example, the two address nodes
v9 and v10 in Figure 1 are considered to have the same value because they
represent the same address object. To compare two nodes for value equality, the
two nodes must represent the same type of things. Since the labels of nodes are
used to indicate the meaning of the nodes, it has been required in previous work
(such as [BDFH02]) that two nodes must have the same label if they are to be
compared for value equality. However, sometimes two nodes, even if of different
labels, may represent the same type of things. For instance, in Figure 1, suppose
the union member number is the student number whenever the union member
is a student, then a @mno node and a @sno may represent the same type of
things and may have equal values. We will say the nodes labelled @sno and
those labelled @mno (or simply the labels @sno and @mno) are comparable. In
general, we will assume there is a classification ∼ (∼ is an equivalence relation)
of the labels in S, and two nodes v1 and v2 in T are comparable for value equality
if and only if lab(v1) ∼ lab(v2). The definition of value equality is as below.

Definition 8. Let T be an XML tree conforming to S, and v1 and v2 be two
nodes in T . v1 and v2 are said to be value equal, denoted v1 =v v2, if lab(v1) ∼
lab(v2), and

1 v1 and v2 are both attributes or simple elements, and the two nodes have the
same string value, or

2 v1 and v2 are both complex elements, and for every child node a1 of v1, there
is a child node a2 of v2 such that a1 =v a2, and vice versa.

For example, in Figure 1, suppose @sno ∼ @mno, and $sname ∼ $mname,
then the two nodes v8 and v10 are value equal, so are the @sno ($sname resp.)
node under v5 and the @mno ($mname resp.) node under v7.

Note that if v1 and v2 are the same node, then v1 =v v2.

6.3 XML Equality-Generating Dependencies (XEGD)

Let S be a scheme file, S1 be the list of paths p1, . . . , pn, and S2 be the list of
paths p′

1, . . . , p
′
n. Let v1 and v2 be two nodes in an conforming XML tree T . We

will use v1.S1 =v v2.S2 to denote the fact that v1[pi] �= ∅, v2[pi] �= ∅, and every
node v in v1[pi] has a corresponding node v′ in v2[p′

i] such that v′ =v v and vice
versa, for i ∈ [1, n].

Definition 9. An equality-generating dependency (XEGD) over S is an ex-
pression of the form

Q1, Q2 : S1 =v S2 → q1 =v q2

Database Design with Equality-Generating Dependencies 345

where Q1 and Q2 are paths in AP (S), S1 = p1, . . . , pn and S2 = p′
1, . . . , p

′
n are

lists of paths in paths(S), q1 and q2 are also paths in paths(S). In addition, for
every path p in S1∪{q1} (in S2∪{q2} resp.), the concatenation Q1.p (Q2.p resp.)
is in AP (S). The last labels of pi and p′

i (also that of q1 and q2) are comparable.
T is said to satisfy the XEGD if for any two nodes v1 ∈ root[Q1] and

v2 ∈ root[Q2] the following statement is true: if v1.S1 =v v2.S2, then v1[q1] �= ∅,
v2[q2] �= ∅, and v1.q1 =v v2.q2.

Intuitively, Q1 and Q2 define two sets of nodes, and the XEGD says that for
any two nodes v1 ∈ root[Q1] and v2 ∈ root[Q2], if the target sets of the paths in
S1 wrt v1 agree with the target sets of the paths in S2 wrt v2, then the target
set of q1 wrt v1 agrees with the target set of q2 wrt v2.

Example 3. The XML tree in Figure 1 satisfies the following XEGDs
Q1, Q2 : @sno =v @mno → $sname =v $mname,
Q1, Q2 : @sno =v @mno → address =v address,

where Q1 is the path school .students.student ,
Q2 is the path union.memebers.member .

Clearly the XEGDs in the above example cause data redundancies in the
XML tree.

Like EGDs in relational databases, an XEGD over S that is satisfied by
every conforming XML document is said to be trivial. Also, some XEGDs may
be logically implied by others, and we will use (S,F)+ to denote the set of all
XEGDs that are logically implied by a set F of XEGDs over S.

6.4 Normal Form of XML wrt XEGDs

Definition 10. An XML scheme file S is said to be in extended normal form
(XENF) with respect to a set F of XEGDs if for every non-trivial XEGD

Q1, Q2 : S1 =v S2 → q1 =v q2

in (S,F)+, the following constraint holds:

– in every conforming XML tree, there are no distinct nodes v1, v2 such that
v1 ∈ root[Q1], v2 ∈ root[Q2], and v1.S1 =v v2.S2;

– furthermore, if Q1 = Q2, but S1 �= S2 or q1 �= q2, then in every conforming
XML tree, there is no node v ∈ root[Q1], such that v.S1 =v v.S2.

For example, the scheme file in Figure 1 will be in XENF with respect to the
XEGDs in Example 3 iff the following constraint holds: in every conforming tree,
there are no student node s and member node m such that s.@sno =v m.@mno.

Similar to the ENF for relational databases, we can show that XENF is
sufficient and necessary to ensure no data redundancies are caused by XEGDs
in any conforming XML tree.

346 J. Wang

Definition 11. Let S be a scheme file, F be a set of XEGDs over S, and T be
an XML tree conforming to (S,F) (i.e., T conforms to S and satisfies F). We
say that T has data redundancies with respect to F if there is a node v of T such
that the subtree rooted at v, if removed from T , can be fully recovered using other
parts of T , S, and the constraints in F . That is, we can construct a tree T1 (to
be rooted at the position of v) such that v and the root of T1 are value equal.

Similar to Theorem 3, we can prove

Theorem 4. Let S be a scheme file, F be a set of XEGDs over S. There exists
an XML tree conforming to (S,F) which has data redundancies wrt F iff S is
not in XENF with respect to F .

7 Future Work

As part of our future work, we would like to investigate the implication problem
for XEGDs. We would also like to investigate the normalization process of XML
scheme files with respect to XEGDs.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[AL04] M. Arenas and L. Libkin. A normal form for XML documents. ACM
Transactions on Database Systems, 29:195–232, 2004.

[BCW99] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating depen-
dencies. Journal of Computer and System Sciences, 19(1):94–115, 1999.

[BDFH02] P. Buneman, S. B. Davidson, W. Fan, and C. S. Hara. Keys for XML.
Computer Networks, 39(5):473–487, 2002.

[FV84] R. Fagin and M. Y. Vardi. The theory of data dependencies—an overview.
In Automata, Languages and Programming, 11th Colloquium, volume 172
of Lecture Notes in Computer Science, pages 1–22, 1984.

[LG92] T. W. Ling and C. H. Goh. Logical database design with inclusion depen-
dencies. In ICDE’92, pages 642–649, 1992.

[Mai83] D. Maier. The Theory of Relational Databases. Computer Sceince Press,
1983.

[MR86] H. Mannila and K. Räihä. Inclusion dependencies in database design. In
ICDE’86, pages 713–718, 1986.

[Vin99] M. W. Vincent. Semantic foundation of 4NF in relational database design.
Acta Informatica, 36:1–41, 1999.

[VLL04] M. W. Vincent, J. Liu, and C. Liu. Strong functional dependencies
and their applicatiopn to normal forms in XML. ACM Transactions on
Database Systems, 29(3):445–462, 2004.

[Wan04] J. Wang. Logical database design with equality generating dependencies.
Manuscript, Dec 2004.

[WTM01] J. Wang, R. W. Topor, and M. J. Maher. Reasoning with disjunctive
constrained tuple generating dependencies. In DEXA’01, volume 2113 of
Lecture Notes in Computer Science, pages 963–973, 2001.

WDEE: Web Data Extraction by Example

Zhao Li and Wee Keong Ng

Centre for Advanced Information Systems,
Nanyang Technological University

liz@pmail.ntu.edu.sg
awkng@ntu.edu.sg

Abstract. Web data extraction systems in use today transform semi-
structured Web documents and deliver structured documents to end
users. Some systems provide a visual interface to users to generate the
extraction rules. However, to end users, the visual effect of Web docu-
ments is lost during the transformation process. In this paper, we propose
an approach that allows a user to query extracted documents without
knowledge of formal query language. We bridge the gap between visual
effect of Web documents and structured documents extracted by pro-
viding a QBE-like (Query by Example) interface named Wdee. The
principle component of our method is the notion of a document schema.
Document schemata are patterns of structures embedded in documents.
Wdee generates tree skeletons based on schema information and a user
may execute queries by input condition in the skeltons. By maintaining
the mapping relation among schemata of Web documents and extracted
documents, a visual example may be presented to end users. With the
example, Wdee allows a user to construct tree skeletons in a manner
that resembles the browsing of Web pages.

1 Introduction

With the explosion of information on Web, the volume of Web documents has
overcome the capability of human to process them manually. Many intelligent
agent systems provide mediators between a user and Web documents. The princi-
ple components of those systems are Web data extraction systems that transform
semi-structured Web documents and deliver structured documents to users. Fig-
ure 1 is a typical framework for Web data extraction systems. In the framework,
the training set is a set of documents shareing similar structures. From the train-
ing set, an extraction rule generator constructs extraction rules. The extraction
engine interprets extraction rules and extracts structured documents from Web
documents. Extraction rules include information as the following:

1. Schema of Web documents. A schema is a pattern of structures embedded
in documents. In Web documents, we assume that a class of semantic infor-
mation is organized using similar structures. Thus, it is possible to induce a
schema to represent these structures and corresponding information.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 347–358, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

348 Z. Li and W.K. Ng

Extraction
Rules

Training
Set 1 Extraction

Rule
Generator

Extraction
Rules Documents

Output XML
Documents
Target

2 Extraction
Engine

Fig. 1. Web Data Extraction Framework

2. Schema of extracted documents. Schemata of extracted documents provide
an abstract layer to access extracted data. These schemata act like relational
schemata in relational databases. Some Web data extraction systems extract
documents with relational schemata [1]. However, a prominent property of
Web documents is the hierarchical structures in them. It is more natural to
store extracted data using a hierarchical format, especially XML documents.

3. Mapping relation between Web document schema and Extracted document
schema. Given this relation, the extraction engine can map Web documents
to extracted documents.

Some work like Elog [2, 3] and Wdel [4] focuses on how to use a formal
language to represent the schemata of Web documents so that the Web can
be treated like a virtual database and the extraction of data from Web can be
done in the manner of a database query; e.g., “select * from DataClass”, where
DataClass is the name of a schema and all contents in given Web documents with
this schema will be returned. Lixto [5] and Wiccap [6] provide visual interfaces
to generate Elog and Wdel programs semi-automatically. Much research [7, 8, 9]
has devised approaches to detect Web document schema automatically.

Most earlier research suffers from two problems. Firstly, as the heterogeneity
of Web document resources, it is difficult to efficiently execute complicated query
such as join operation given only schemata of Web documents. Few work [1, 10]
stores extracted documents with explicit schemata in a database. Secondly, the
most important merit of Web documents, visual effect rendered by a browser is
lost in the extraction process. A user needs knowledge of formal query language
to access extracted documents. In this paper, we present a new method that
overcomes the two issues to query extracted documents. Our contributions are
summarized as the follows:

– We propose an abstract schema layer over the Web documents and extracted
documents. A schema contains descriptions and attributes of a class of frag-
ments in documents. The schema layer provide a common foundation for
complicated query operations. In particular, each document fragment cor-
responding to a Web document schema defined can be rendered in a Web
browser with visual effect.

– A new framework for Web data extraction, so called Wdee (stands for Web
Data Extraction by Example), is proposed. Wdee query language is a formal
language that query documents in terms of schemata. The syntax of Wdee

WDEE: Web Data Extraction by Example 349

language makes it suitable to generate Wdee programs using a QBE-like in-
terface. In Wdee, the mapping relation among Web document schemata and
extracted document schemata is maintained. Given a schema of extracted
document, a visual Web page may be presented to a user by rendering the
schema of Web documents it maps to. We shall illustrate the method to
generate a Wdee program in the manner of Web browsing.

The rest of this paper is organized as follows: Section 2 introduces the con-
cepts of data model and schema in Wdee to represent documents. In Section
3, query operations based on schema is described and compared with relational
algebra. In the next section, we present a running example of how to exploit
Wdee to query extracted documents in the manner of Web browsing. Section
5 compares Wdee query language with some other Web data extraction lan-
guages. After introducing some related work in Section 6, we conclude the work
in future directions in the last section.

2 Notation

In this section, we present the data model we exploit to represent documents.
We provide the formal definition of schemata that are patterns of structures em-
bedded in documents. The concept of matching between a schema and document
structures is defined. A schema itself can be treated as a query that will return
all structures that match it. With the schemata, it is possible to generate Wdee
programs as complicated queries using interfaces like QBE [11] and QEByE [12].

Unlike QBE and QEByE that prepares examples w.r.t. the relational query
and the nested table query [12] respectively, schema defined here allows us to
generate hierarchical examples. Moreover, the concepts of mapping between a
schema of Web documents and a schema of extracted documents is introduced.
By maintaining the mapping relationship, Web pages may be presented to a user
to aid query generation.

A Web document such as HTML and XML encodes data in a tree structure
and contents are stored in text labels of text nodes. We first define document
tree to model Web documents as below.

Definition 1 (Document Tree). A document tree is a rooted, labeled tree
that can be defined as a 4-tuple: t = 〈V,E, r, γ〉, where V is the set of nodes
corresponding to elements, E is the set of edges connecting these nodes, r is the
root node, γ : V → L is a function that assigns each node a labels, where L is
the label set of t. An edge e is an ordered 2-tuple (u, v) where u, v ⊆ V and u is
the parent node of node v. Root node r has no parent node. Each non-root node
u in V has exact one parent node.

A document tree parsed from a HTML document is a simplified DOM tree.
We restrict our discussion to HTML and XML documents so that we can exploit
DOM parsers to parse documents to trees. During the parsing processing, each
non-text node is labeled with the name of the corresponding element in the
original documents, and each text node is labeled with its value.

350 Z. Li and W.K. Ng

(a) A Sample Page (b) Codes of
Book1

(c) Extracted
Data

Fig. 2. Web pages and the logic view over them

As an example, Figure 2(a) is a HTML document rendered in a browser and
the HTML codes corresponding to the first book is modeled as a document tree in
Figure 2(b). In practice, the text nodes are what really carry data, and non-text
nodes are used to organize data. Thus, given a document tree t = 〈V,E, r, γ〉, we
say 〈V,E, r, γs〉 is the structure of t, where γs is defined on only non-text nodes
and γs(v) = γ(v). The set of labels on text nodes are contents of t.

The main objective of Web data extraction is to extract contents from doc-
ument trees that are relevant to a user’s requirements. Sometimes, structure in-
formation is also important and should be extracted. We refer to the extracted
data as data instances (DI). We store DI in XML documents that can also mod-
elled as document trees; e.g., Figure 2(c). If there is no confusion, we shall not
distinguish Web documents and extracted documents in the following parts of
this paper. While accessing a DI, it is possible to obtain the source Web docu-
ment by maintaining the mapping relationship between them, as defined below:

Definition 2 (Data Instance and Mapping). Given two document tree t =
〈V,E, r, γ〉 and t1 = 〈V1, E1, r1, γ1〉, if V1 ⊆ V , γ1 = γ, r1 = r, leaf nodes in t1
is also leaf nodes of t and e1 = 〈vi, vj〉 ∈ E1 iff there is a path from vi to vj in t,
then t1 is a data instance (DI) of t (or t1 is mapped to t), denoted as η(t1) = t.

In a relational database, a table stores a set of tuples with the same schema.
There are relations among tables and schemata. The similar relations also exist

WDEE: Web Data Extraction by Example 351

on the Web. For instance, DIs corresponding to the first and the second books
in Figure 2(a) have the same structure, with different contents. We say these
DIs match the same schema, as defined below:

Definition 3 (Schema and Matching). A schema s is a 4-tuple 〈V,E, r, γ〉,
where 〈V,E, r, γ〉 is a document tree and γ labels all text nodes with “*”. A DI
t = 〈Vt, Et, rt, γt〉 match with s, denoted as t !→ s, if 〈V,E, r〉 = 〈Vt, Et, rt〉 and
γ(v) = γt(v) if v is a non-text node.

A schema describes a set of DIs. A user may write a simple query like “select
* from schemaA” returns all DIs matching with schemaA. From Definition 3, as
a schema is a special tree, its structure may be exploited to generate a QBE-like
interface, as introduced in Section 3. With the interfaces generated, a user may
submit query without knowledge of formal query language.

3 Query Operations

In this section, we introduce the query language of Wdee. The Wdee language
consists of a set of schemata enhanced based on Definition 3, that has the strictly
larger expressive capbility of MSO datalog [13] and may be used to represent
selection and projection queries. Wdee language are augmented with set oriented
features: union, join and difference.

We begin by defining matching query, followed by its extensions:

Definition 4 (Matching Query). Given a extracted document T , a matching
query M(s) = {t|t !→ s}, where s is a schema and η(t) is a DI of T .

Based on Definition 3, DIs that have the same structure as s will be re-
turned by the matching query. This query is a bit naive and we draw ideas from
[14] to improve the expressive capability of the query by augment schema with
predicates, as defined below:

Definition 5 (Schema and Matching). A schema s is a 4-tuple 〈V,E, r, γ〉,
where 〈V,E, r, γ〉 is a DI and γ labels each node with a predicate formula P (x).
A DI t = 〈Vt, Et, rt, γt〉 match with s, denoted as t !→ s, if 〈V,E, r〉 = 〈Vt, Et, rt〉
and P (v) is true for v ∈ V .

The predicates supported by Wdee are three types:

x = c where x is the label of corresonding node in a DI, c is a constant string;
e.g.,“David Progue”.

e " x where e is a regular expressive and e can generate x. We restrict that
predicates of this type appear on only leaf nodes, such that Definition
5 is equivalent to Definition 3 when e is “*”, where “*” is a whildcard
generating any string label.

x = X where x is the label of corresonding node in a DI and X is a variable
name. This predicate is important to construct join operation, as introduce
in later part of this Section.

352 Z. Li and W.K. Ng

(a) Sel (b) Proj (c) Union

Fig. 3. Examples for Query Operations

In the following part of this section, we present how to use a matching query
to represent those query operations: selection, project, union, difference and join.

Selection (σ) Selection is an unary operation on a schema, denoted as σcondition

(s). It returns all DIs that match the schema and fulfill the given condition.

Suppose Book is a schema of the DI in Figure 2(c), a selection operation
σauthor=“DavidProgue”(Book) returns all data of books in Figure 2(a) with author
“David Progue”. To represent this operation, we use a matching query with the
schema in Figure 3(a). The constant string label c in the figure is the short form
of x = c and a regular expression label e is the short form of e " x. This schema
matchs with the first DI corresponding to the first book in Figure 2(a). Thus,
the matching query will return the first DIs.

Projection (π) Projection is also an unary query operation on a schema,
denoted as π〈fieldlist〉(s).

The 〈filedlist〉 is a list of field with syntax of field :=path‘.’schema, path:=
item‘.’. . .‘.’item, item=regexp|regexp‘[’idx ‘]’, where regexp is a regular expres-
sion over node labels, idx is a natural number and l[i] means the i-th child
nodes with label l of a node.

Definition 6. A schema sp = 〈Vp, Ep, rp, γp〉 is a projection schema of s =
〈V,E, r, γ〉, iff η(sp) = s; i.e., sp maps to s. A projection π〈path1.s1,...,pathn.sn〉(s)
return a set of DIs {t|t !→ sp}, where ep = 〈vi, vj〉 ∈ Ep iff 〈vm, vn〉 ∈ E, or vm

and vn is connected by pathi in E, vm is root of s and the tree rooted from vn

match si.

Suppose the schema for the book DI in Figure 2(c) is sB and the schema
for book title is sT , a projection π〈Book.sT 〉(sB) will return DIs containing only
book’s titles. The schema in gray box of Figure 3 represents this query.

The selection and projection operations are both matching queries. Wdee
distinguishes them by the schemata to be processed. A selection or a projection

WDEE: Web Data Extraction by Example 353

(a) (b)

Fig. 4. Examples for Join Operations

operation returns a set of DIs matching with the given schema. We define three
set-oriented operation below:

Union (
⋃

) Union is a binary query operation on two schema, denoted as s1
⋃
s2.

A union operation merges two DI sets returned by M(s1) and M(s2). It may be
represented as shown in Figure 3(c) and consists of two schemata corresponding
to two types of DIs about book information. If s1 and s2 match with each other,
the two sets are union compatible. If two DI sets are union compatible sets of
DIs, the union operation need to detect overlay DIs to merge them, otherwise,
the union operation simply copy two sets DIs together.

Difference (−) Difference is a binary query operation, denoted as s1 − s2.

A difference operation ask s1 and s2 match with each other; it simply removes
overlay DIs from the DI set returned by M(s1). The difference operation and
join operation introduced below may both be represented using schemata like
those in Figure 3(c). As the three set operations cannot be distinguished only
based on the schemta, a user need to explicitly choose the type of operation.

Join (&'condition) Join is a binary operation, denoted as s1 &' s2.

To join two DI sets, s1 and s2 first need to be combined to s. To combin the
two schemta or DIs, Wdee simply adds a root node as the parent node of
both root nodes of them. For example, the two schemata in Figure 4(a) will be
transformed to Figure 4(b). Wdee allows the join condition of two text nodes
of two DIs share the same label. As an example in Figure 4(a), to join book DIs
and author DIs sharing the same author name, a user may change the label as
Figure 4(b), where =X is the short form of x=X.

We have shown that with different schemata, we may execute various query
operations on extracted documents. By parsing the schemata of extracted DIs
to trees like those in Figure 3, a user can easily modify these trees and generate
schemata to query extracted documents.

354 Z. Li and W.K. Ng

4 A Wdee Running Example

In this section, we present how to build examples corresponding to Wdee query
operations. An example in Wdee consists of two parts: tree skeletons and a
browser view. A tree skeleton is a visualized schema. To submit a query to a
extracted document, a user may give some condition inside the skeleton, while
the browser view presents a sample of Web documents where the document is
extracted from.

The principle merit of Wdee language is that a Wdee program may be
generated within a specific Web browser. When a user choose to query a certain
document extracted, a corresponding Web document will be rendered in the Web
browser. Given the Web page shown, a user may generate a Wdee program by
select texts that are interesting to him.

Concisely, to generate a Wdee program by visual interface consists of three
phases: 1© Select schemata extracted documents to be queried; obtain a sample
of the original Web documents to which the schemata map and generate a docu-
ment tree whose text nodes can be modified by a user, so-called a tree skeleton.
The Web page rendered from the sample Web document and the skeleton to-
gether is called an example. 2© Generate a basic Wdee program by selecting
texts in the Web browser. 3© Input conditions in text nodes of tree skelton to
refine the Wdee program.

As an instance, we present how to generate a Wdee program for an example
query, as described below:

QueryBook. Return book title, price and discount of the books writen by
“David Progue”.

The detailed operations follow the 3-phase Wdee program generation pro-
cedure, as described below:

Fig. 5. A Wdee example

WDEE: Web Data Extraction by Example 355

Fig. 6. A Wdee example

Fig. 7. A Wdee example

1. A user may select a schema using the menu. Suppose the schema book is
selected, a tree skeleton of this schema will be shown, as the one in the left
panel of Figure 5. A schema of Web documents η(book) will be obtained
by search the mapping relation. In turn, a random original Web document
containing this Web schema is selected and shown in the Web browser, as
shown in the right panel of Figure 5. The two panels is an example.

2. The Web page contains some books’ information. A user may denote which
parts should be returned by selecting texts in the page. Here, book title,
price and discount are data to be returned. Initially, all nodes in the tree
skeleton is unselected (denoted as white folder icons). After a user selects the
book title by a mouse in the Web browser, as Figure 6, corresponding parts
in the tree skeleton is selected (those gray folder icon). If the text selection
cover more than one field in the give schema, as Figure 7, multiple nodes in
the tree skeleton will be selected. So far, the schema corresponding to the
skeleton can be used to generate a projection query.

3. After a user selects all texts that are interesting, he can give condition that
must be fullfiled by the returned DIs. Here, a user may input “David Progue”
in the tree skeleton, like the one in Figure 3(a). The schema corresponding
to the modified skeleton can be used to generate a selection query.

356 Z. Li and W.K. Ng

The skeletons generated in the above steps may be directly saved as a Wdee
query program. However, only a subset of the Wdee query language can be
generated using the visual interfaces. For example, in Step 2, the fields generated
contain only strings of labels and will not contain regular expression; i.e., the
syntax of item of field defined in Section 3 will be changed to item:=labelstring |
labelstring ‘[’idx ‘]’. To generate Wdee program with full features, a user may
modify or exploit some techniques [8] to post-process generated Wdee query
program.

5 Expressive Capability and Evaluation Complexity

The objective of Wdee is not to provide a general XML query language like
XPath or XQuery. Wdee’s expressiveness of selection and projection operations
is strictly less than XPath. However, by introducing the concept of schema into
Wdee, it is easier for a user to generate query program quickly in the majority
situations of the Web. We can translate Wdee selection and projection opera-
tions to location paths of XPath in linear time. As shown in [15], location paths
of XPath can be evaluated in polynomial time in the size of query. Thus, the
upbound of Wdee selection and projection query evaluation is polynomial time.
As introduced in Section 3, the union and difference query both can be evaluted
in linear time. Join query evaluated within O(|S1| ∗ |S2|), where |S1| and |S2| are
size of two DI sets to be joined. As the size of a DI set is less than node number,
Wdee queries can be evaulated in polynomial time.

The limited form of Wdee generated by the visual interface can be trans-
lated to Monadic Datalog over the signature introduced in [3]: τr = 〈root, leaf,
(childk)k≤K , (labela)a∈∑ 〉 in linear time, vice versa. Thus, the evaluation com-
plexity of a limited form Wdee query is O(|D| ∗ |Q|), where D is the size of
documents to be queried and Q is the size of query.

6 Related Work

Web data extraction systems are the kernel components of agents providing
mediators between users and Web data resources. In the beginning, the main
purpose of Web data extraction systems is to transform semi-structured Web
documents to relational databases [1] or object-oriented databases [16]. These
systems need users to code by hand using formal languages to extract data from
Web documents. Gottlob et al. [3] introduced an extraction language based on
MSO logic.

Those formal extraction languages provide firm basis for Web data extraction.
However, manually programming is always time-consuming and error-prone. The
appearance of automatic extraction rule generation techniques partially solves
this problem. Kushmerick [17] presents the method using grammar induction
techniques to learn extraction rules. His method assumes documents to be ex-
tracted are organized like relational tables. IEPAD [8], RoadRunner [9] use var-
ious approaches to learn regular expressions as extraction rules. Those methods

WDEE: Web Data Extraction by Example 357

treats documents as flat text. Thus, it is easy to lost structural information.
ExAlg [7] and Skeleton [10] can detect tree patterns, which are more intuitive
and accurate. Wiccap [6] and Lixto [5] proposed supervised learning approaches
based on visual interface to generate extraction program.

Although extraction efficiency can be improved obviously using these meth-
ods, extracted data are still not easy to be accessed. To exploit extracted data,
a user need to program instead of browse the easy-to-read original document
because of two reasons: 1. It is difficult to reverse visual effect from patterns
detected by them; 2. Lack of management of documents, patterns and extracted
data. Wang et al. [18] move the first step to use structured patterns in semi-
structure documents to manager them. In recent years, more detailed structure-
based document management techniques are devised. XRules [18] can classify
semi-structured documents based on embedded subtrees very well. There are
some papers discussing how to measure similarity among XML documents [19,
20]. It is easy to cluster documents based on their similarity. These approaches
provide new ideas of semi-structured document management. However, the struc-
ture patterns considered by them are not easy to be rendered in Web browsers
and generate examples like those in our system. Moreover, there is still no liter-
ature addressing how to exploit those techniques to help Web data extraction.

7 Conclusion

In this paper, we introduced a high level Web data extraction language — Wdee,
and visual interface to generate Wdee queries. Unlike present systems that lost
visual effects of Web documents during the extraction procedure, we suggest an
approach to extract data instances in the manner of Web browsing. Wdee does
not need a user to have knowledge about formal languages. Queries can be per-
formed by fill up some tree skeleton such that no syntactic errors will appear in
the query creation process. What this paper presents is the initial work of a high
level Web data extraction language. How to improve expressive capability to ef-
ficiently query regular tree languages will be studied as part of the furture work.

References

1. Gupta, A., Harinarayan, V., Rajaraman, A.: Virtual database technology. SIG-
MOD Record 26 (1997) 57–61

2. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for
web information extraction. In: Proc. of the 21th PODS. (2002) 17 – 28

3. Gottlob, G., Koch, C.: Monadic queries over tree-structured data. In: Proceedings
of the 17th IEEE Symposium on Logic in Computer Science. (2002) 189 – 202

4. Li, Z., Ng, W.K.: Wiccap: From semi-structured data to structured data. In: Proc.
of 11th IEEE International Conference on the ECBS. (2004)

5. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with
lixto. In: Proc. of 27th International Conference on Very Large Data Bases, Roma,
Italy, Morgan Kaufmann (2001) 119–128

358 Z. Li and W.K. Ng

6. Liu, Z., Li, F., Ng, W.K.: WICCAP data model: Mapping physical websites to log-
ical views. In: Proc. of the 21st International Conference on Conceptual Modelling.
(2002)

7. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In:
Proc. of the 2003 ACM SIGMOD. (2003) 337 – 348

8. Chang, C.H., Lui, S.C.: IEPAD: information extraction based on pattern discovery.
In: Proc. of the 10th WWW Conference. (2001) 681 – 688

9. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data
extraction from large web sites. In: Proc. of 27th International Conference on Very
Large Data Bases. (2001) 109–118

10. Rajaraman, A., Ullman, J.D.: Querying websites using compact skeletons. In:
Proc. of the 12th PODS. (2001) 16 – 27

11. Zloof, M.M.: Query-by-example: A data base language. IBM Systems Journal 16
(1977) 324–343

12. da Silva, A.S., Filha, I.M.E., Laender, A.H.F., Embley, D.W.: Representing and
querying semistructured web data using nested tables with structural variants. In:
Proc. of the 21st International Conference on Conceptual Modelling. (2002)

13. Neven, F.: Automata, logic, and xml. In: Proceedings of the 16th International
Workshop and 11th Annual Conference of the EACSL on Computer Science Logic.
(2002) 2 – 26

14. Bergholz, A.: Querying Semistructured Data Based On Schema Matching. PhD
thesis, Humboldt-University Berlin (2000)

15. Gottlob, G., Koch, C., Pichler, R.: Xpath processing in a nutshell. SIGMOD
Record 32 (2003) 12–19

16. May, W., Himmeröder, R., Lausen, G., Ludäscher, B.: A unified framework for
wrapping, mediating and restructuring information from the web. In: Proceed-
ings of the Workshops on Evolution and Change in Data Management, Reverse
Engineering in Information Systems, and the World Wide Web and Conceptual
Modeling. (1999) 307–320

17. Kushmerick, N.: Wrapper induction: Efficiency and expressiveness. Artificial In-
telligence 118 (2000) 15–68

18. Wang, K., Liu, H.: Discovering structural association of semistructured data. IEEE
Transactions on Knowledge and Data Engineering 12 (2000) 353–371

19. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Detecting structural
similarities between xml documents. In: Proceedings of 5th International Workshop
on the Web and Databases, Madison, Wisconsin, USA (2002)

20. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in xml documents.
In: Proceedings of 5th International Workshop on the Web and Databases. (2002)

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 359 – 371, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Concept-Based Retrieval of Alternate Web Services*1

Dunlu Peng1,2, Sheng Huang1, Xiaoling Wang1, and Aoying Zhou1

1 Department of Computer Science and Engineering,
Fudan University, Shanghai, 200433, P.R.China

 College of Computer Engineering,
University of Shanghai for Science and Technology, Shanghai, 200093, P.R.China

{dlpeng, shhuang, wxling, ayzhou}@fudan.edu.cn

Abstract. Web services have attracted much attention in recent years with the
development of e-commercial technologies over the Internet. Although there are
some standards and protocols for web service technologies, such as WSDL,
UDDI and SOAP, the core technologies underlying Web services need further
study in order to make these technologies practical and flexible. Efficient
services management is the main task for services execution and services com-
position and there is no good solution until now. In this paper, we present a
concept-based method for services management, which is efficient for services
selection and alternative. Our method takes advantage of lattice and retrieves the
optimal alternates for a given Web service efficiently by employing formal
concept analysis and concept lattice. Compared with the former methods, this
method is more efficient and accurate because the underlying semantics of Web
services and users’ requirements are exploited during the processing of retrieval.
Experimental results also verify the efficiency and scalability of our approach.

1 Introduction

As promising e-commercial technologies over the Internet, Web services have
attracted much attention in recent years. Although a set of standards and protocols,
such as WSDL[4], UDDI [15] and SOAP[16], have been designed to make these
technologies practical, the core technologies realizing Web services mostly rely on the
traditional distributed computing techniques, such as remote procedure call (RPC) or
remote method interface (RMI). In order to request a certain Web service successfully,
requestors need to have complete understanding the service provider interface [1,5].
Mostly, requestors have no control over the availability of the Web services. By far,
there is no related services management technology to detect whether a service is
available or not and automatically select another service [2]. As a result, the applica-

* This work is supported by the National Natural Science Foundation of China under Grant No.

60228006, the National Hi-tech R&D Program of China under Grant No. 2002AA116020 and
the Youth Foundation of Shanghai Education Committee for Scientific Research under Grand
No. 04EC35.

2

360 D. Peng et al.

tions of requestors will be unworkable because of the failure of the Web service being
requested. To avoid this case, the service requestors must figure out how to choose the
alternative services when the desired Web service is unavailable.

The challenge in the problem mentioned above is how to develop an efficient and
accurate way to management the services and retrieve the alternates for a certain Web
service from the service repositories. More precisely, it is challenging to effectively
manage and search the Web services satisfying the requestors’ requirements. Currently,
in Web service registries the services were classified manually into different categories
according to their commercial objectives described by WSDL rather than the functions
provided by them [2]. This category-based service-discovery is quite informal and re-
lies extensively on the shared common understanding of publishers and consumers. It
does not provide any support for selecting competing alternate services that could po-
tentially be reused. This paper presents a concept-based method to retrieve the optimal
alternate of Web services automatically at the operation level. The main contributions
are as follows:

1. Formal Concept Analysis (FCA) and concept lattice are explored to semantically
group Web services by using the underlying semantics of Web services. By this
method, we retrieve the alternates of a given Web service with respect to a certain
requestor according to the invoked operations.

2. In order to reduce the scale of the built lattice, we minimize the number of opera-
tions which are considered as attributes in the lattice. We investigate the similarity
between a pair of Web-service operations by considering the evidence drawn from
different sources.

3. Since the service repositories are expanding, algorithms are proposed to mainte-
nance the lattice dynamically for both inserting new services into and removing
services from the lattice. We also develop an efficient algorithm for how to retrieve
the alternate objects for the given Web service in the lattice.

4. Some experiments are conducted to show the efficiency and scalability of our ap-
proaches. The experimental results evaluated with synthetic data set and real data
set. The results show our method has good performance.

This paper is organized as follows. Section 2 formally defines our problem and
describes the foundation of Web services. Section 3 gives a brief overview of the main
basic notations of FAC and concept lattice. We give the approach to generate the
concept set and the concept lattice in section 4. We present our methods to retrieve the
alternates for a given Web service in the lattice in section 5. Section 6 describes the
experiments which we conducted to evaluate our approach. Finally, we introduce the
related work and draw our conclusions in section 7.

2 Problem Definition

Currently, Web services are described by WSDL using four layers of abstraction [4].
The lowest layer presents the data types; the second layer represents the messages,
whose structures are corresponding to the defined data types; the third layer specifies

 Concept-Based Retrieval of Alternate Web Services 361

the service operations with input and output messages; the highest layer is the whole
Web service description, which contains the operations defined in the third layer.
According to the hierarchy, we formally define Web service as follows:

Definition 1. A Web service is a triple WS=(Tplist, Msglist, Oplist) where Tplist is the
set of data types including all the data types used in Msglist and
Msglist={Msg1 part,type) Msg2 Part,type … Msgn part,type } is the set of
messages contained in the Web service specification and defines the data types used in
each message. Messages are composed of “parts” with different data types; Op-
list= Op1(input1,output1 , Op2 input2,output2 ,…,Opn inputn, outputn is the set
of operations, inputi /outputi denote the input/output messages for executing the op-
eration Opi.
 According to definition 1, we can describe a Web service briefly as a set of opera-
tions, WS={Op1,Op2,…,Opn}. Each operation takes a list of input messages, finishes a
certain task, and returns results in the output messages. Table 1 shows the Web services
used as examples in this paper.

Table 1. Web Services and Their Operations

Based on the definition of web service, we define the alternates of a given Web
service.

Definition 2. Given two Web services WSi ={Opi1, Opi2,…,Opin }, WSj
={Opj1,Opj2,…,Opjm }, the set of operations in WSi invoked by the requestors is Rop.
Obviously, all elements in Rop are presented in WSi, which is denoted as Rop ⊆

p WSi. If

Rop ⊆
p WSj holds, then WSj is an alternate of WSi w.r.t Rop, denoted as WSj i

R WSop→ .

Another meaning of WSj i
R

WSop→ is that WSj can take the place of WSi to provide

same functions for the requestors whose applications invoke the operations in Rop.
Table 2 illustrates the alternates of service TempService for different requestors. In
order to distinguish the alternate services for same requestor w.r.t different operations,
we use brackets and commas to partition them. For examples, in last column of the first
row, {(WS2,WS4),(WS4,WS5)} means that both WS2 and WS4 have operation getAir-
Forecast(AF) and both WS4 and WS5 contain operation getDistrict(DT).

Service ID Services Operations
WS1 TempService getAirForecast(AF) , getDistrict(DT),

getTemperature(TP), getZip(ZP)
WS2 TravelService getAirForecast, BookTickets(BT)
WS3 SkatingService getTemperature, OrderEquipment(OE)
WS4 SportService getAirForecast, getDistrict,
WS5 PublicSerivice getDistrict, getHospital(HP)
WS6 TrainService getTrain(TA), getHospital

The Letters in brackets following the operations are their abbreviations

362 D. Peng et al.

In the Internet environment, it’s quite usual for different requestors requesting the
same Web service with different operations, especially for the Web service containing
several operations. With the increasing of services, the Web-service repositories be-
come larger and larger. How to retrieve the alternates of a given Web service for dif-
ferent requestors in the large service repositories efficiently is the problem we solve in
this paper. The formalizing definition of our problem is described as follows.

Table 2. Alternates of TempService(WS1) for Different Requestors

Requestors Invoked Operations Alternate Services
R1 AF,DT {(WS2,WS4),(WS4,WS5)}
R2 AF, DT,TP {(WS2,WS4) ,(WS4,WS5),(WS3)}
R3 DT {(WS4,WS5)}
R4 ZP,TP {Nil, (WS3)}

Nil: means that there is of service in the repository that holds the corresponding operations invoked by the
requestor

Let Rep={WS1, WS2, …,WSn} be a repository of Web services, where WS i∈ Rep
(1<i<n) is a web service. The requestor is denoted as R={R1,R2,…,Rm}. For each R j∈ R
(1<j<m), Ropj ⊆

p WSk is the set of operations of WSk invoked by Rj, then the alternates

of WSk w.r.t Ropj in Rep composes a set of Aj which satisfies Aj ⊆ Rep and ∀ ws∈

Aj ws k
R WSj→ . Our problem is to efficiently retrieve the alternate set A from the

repository Rep of service WSk, when WSk is unavailable.

Our goal is to retrieve efficiently all the items listed in column named ‘Alternate
Services’ which are alternate Web services with respect to the certain operations in-
voked by the requestors in the corresponding column named ‘Requestors’ in table 2.
For example, each combination of (WS2, WS4) and (WS4,WS5) can be used as the al-
ternate of TempService for R1.

We take advantage of Formal Concept Analysis (FCA) to organize the Web services
collection, rather than the unstructured collection of Web services [6, 10, 16]. In our
approach, the concerned Web services are the services with operations similar to the
invoked operations of the processing Web service rather than having high similarity at
entire service. In order to implement concept structure, we borrow lattice technology,
which permits efficiently and accurately retrieve of alternates for a given Web service.
In section 3, we will give a brief overview of FCA and introduce some of its main
notations.

3 Formal Concept Analysis (FCA)

Here we give a brief overview of the main basic concepts of theory for FCA. FCA [8, 9,
10] calculates a concept lattice, which allows queries to be processed efficient, from a
binary relation of objects and attributes.

 Concept-Based Retrieval of Alternate Web Services 363

Definition 3. A context is a triple K (W,O,R) where W and O are two finite sets and R is
a relation between W and O, R ⊆ W × O. W consists of a set of objects and O is the set of
these objects’ attributes.

A context can be visualized as a cross table, named a context table.

Definition 4. The context table T of a context K (W,O,R) is matrix form description of
the R relation:

1

0
i j i j

ij

if w Ro and w w and o O
r

otherwise

∈ ∈
=

 In a service repository, the formal context can be formed by considering services as
objects, operations as attributes and the relation is the presence or absence of an op-
eration in a Web service. Fig.2a is the context table for our examples shown in table 1.

Definition 5. For W ⊆ W and O ⊆ O from a context (W,O,R), the common attributes
are:

}'','|'{)(RowOoWwow ∈∀∈= (2-1)

and common objects are:

}'','|'{)(RowWwOowo ∈∀∈= (2-2)

Concepts are partially ordered and a concept's extent includes the extents of its
sub-concepts and the intent of a concept includes the intents of its super-concepts.

Definition 7. Let c1 = (w1, o1) and c2 = (w2,o2) be two concepts in context (W,O,R), thus,
we have w1, w2 ⊆ W and o1, o2 ⊆ O, the partial order is:

122121 wwoocc ⊆⇔⊆⇔≤ (3)

(1)

Fig. 1. Context Table and Concept Lattice Representation

 Definition 6 A concept c= (W,O) of a context (W,O,R) is a pair where W W , O O,
 w(O)=W, o(W)=O. The extent of c is o(c)=O and the intent of c is I(c)=W. The set of all
concepts of (W,Q, R) is denoted by C(W,O,R) which is the complete lattice of (W,Q, R).

.

{(WS1,WS2,WS3,WS4,WS5,WS6), }

{(WS1,WS2,WS4),(AF)} {(WS5,WS6),(HP)}{(WS1,WS4,WS5), (DT) }{(WS1,WS3), (TP) }

{(WS1,WS4),(AF,DT)} {(WS2),(AF,BT)} {(WS3),(T P,OE) {(WS5),(DT ,HP)} {(WS6),(HP,T A)}

{(WS1),(AF,DT,TP,ZP)}

{ ,(AF,DT ,T P,ZP,BT,OE,HP,T A)}

1

2 3 4 5

6
7 8 9 10

12

13

R AF DT TP ZP BT OE HP TA

WS1 1 1 1 1 0 0 0 0

WS2 1 0 0 0 1 0 0 0

WS3 0 0 1 0 0 1 0 0

WS4 1 1 0 0 0 0 0 0

WS5 0 1 0 0 0 0 1 0

WS6 0 0 0 0 0 0 1 1

(a) An Example of Context Table (b) Concept Lattice

364 D. Peng et al.

where c1 is a lower bound of c2 and c2 is a upper bound of c1. If there does not exist
another concept c in (W,O,R) satisfying c1 ≤ c ≤ c2, then c2 is the least upper bound for
c1.Similarily, if there does not exist c in context (W,O,R) satisfying c1≥ c ≥ c2, then c1 is
the greatest lower bound for c2.

Fig.1b is concept lattice, which can be drawn from the context table in Fig.1a. There
is an edge between c1 and c2 if c1 ≤ c2 and there is no other concept c3 in the lattice such
as c1 ≤ c3 ≤ c2. Each concept in the lattice together forms the paths and denotes an al-
ternate of a Web service for a certain set of operations. By taking advantages of this
property, it is very convenient to retrieve all the alternates among the paths. So the
structure of concept lattice can be used not only to represent semantics stored in a
hidden form in the underlying services, but also to show the alternate relationship
among the objects. This can be used for searching purpose.

4 Generating Concept Lattice

In this section, we use the definitions and theorem described above to generate concept
lattice. Before generating the concept lattice, we present the method to obtain the con-
cept set.

4.1 Generating Concept Set

From the above introduction, we consider Web services as objects and their operations
as attributes in the context area. The context table is built up according to the presence
of the attributes in the Web services, so

 },...,,{
},...,,{

21

21

m

n
OpOpOpO
WSWSWSW

=
=

 (4)

 According to definition 1, an operation of a Web service can be expressed as
Op(input, output). Besides input/output messages, some other information such as
operation text descriptions we can also obtain from the associated WSDL files [4]. In
our approach, we determine the similarity between Web services by combining the
multiple sources of evidence based on the proposal presented in [11]. The method to
measure the similarity for main components considers the following factors:(1)The
similarity (S1 and S2) of Input/output parameter name; (2)The similarity (S3 and S4) of
Input/output concept: (3)The similarity (S5) of Operation description; (4)The similarity
(S6) of Web service description. To evaluate the similarities, we consider the terms in
every component as bags of words and use the TF/IDF (Term Frequency/Inverse
Document Frequency) measure [13].

We measure the overall similarity by summing up the weighted similarities men-
tioned above. The weight for a given similarity is dependent on the relevance between
it and the overall similarity. Thus, the overall similarity can be defined as:

 Sim(Opi,Opj)=
=

6

1k
kk Sw (5)

 Concept-Based Retrieval of Alternate Web Services 365

where wk is the weight assigned to similarity Sk. Currently, wk is set manually based on
the analysis of the results from different trial. To reduce the number of operations, we
use the pruning rule that if the overall similarity between an new extracted operation
Opi and another operation Opj existing in the attribute set O , Sim (Opi,Opj), is no less
than the similarity threshold s, that is, Sim(Opi,Opj)≥ s, then Opi will not be added into
the attribute set O.

4.2 Generating Concept Lattice

There exists several algorithms to compute all concepts from a context K (W,O,R). For
example, Ganter use an ordering relation to generate the concept lattice [8]. It is not
practical by using static approaches to build the lattice because the number of Web
services increases rapidly over the Internet. In our approach, we propose an optimized
incremental algorithm to take account of the expanding of service repositories.

4.2.1 Basic Ideas
Building concept set in an incremental mode is based on the following rule: Every
concept intent (definition 6), after inserting a new object into the context, is the result of
intersecting the new objects’ attribute set with some intent set already present in the
concept set.
 Let K be the concept lattice of the context (W,O,R). The nodes in K satisfy the partial
order defined in definition 7. Given a new Web service w(oplist) where w is name of the
service and oplist is its operation set. We use K* representing the concept lattice gen-
erated after adding w. The basic steps about computing K* from K are:

1. Modify the nodes (W,O) in K satisfying O ⊆ oplist by adding w into W;
2. No changing the nodes (W,O) in G if O⊄ oplist;
3. Create the new nodes (W ∪ w, O∧ oplist) satisfying the nodes (W,O) are in K

and O∧ oplist is not in K.

Thus, we conclude that the new nodes are generated from the nodes (W,O) which are
called generators [14] in K* such that O⊄ oplist and O ∧ oplist don’t appear in any node
of K.

4.2.2 Algorithms for Building Concept Lattice
In this section, we describe the algorithm Building_WSLattice shown in Fig.2. By the
algorithm we can build the concept lattice for an incremental Web-service repository. Let
K be the original concept lattice corresponding to the context (W,O,R). Given a new Web
service w(oplist) where w is name of the service and oplist is its operation set. The algo-
rithm updates K by modifying old nodes(lines 4-11) and/or creating new nodes (line
13-16) to obtain the concept lattice K* corresponding to the new context (W ∪ {w},O ∪
oplist,R). The top and the bottom of the concept lattice are known and the lattice is ini-
tialized with these two nodes. The bottom is the concept with the intent O and an empty
extent. The top is the concept with the smallest ele entof O, all the Web services belong to
the exten of this concept. updated in the lattice.During the process of generation, the edges
in the original are also updated as the new nodes joined in the lattice (in Fig.3. algorithm

366 D. Peng et al.

UpdateEdge). The complexity of the algorithm is O(n2⋅|W|⋅|O|), where n is min(|W|,|O|),
|W| is the number of services, and |O| is the number of operations of context (W,O,R).

Algorithm Building_WSLattice (w,oplist,K)
 Input: w-the identification of the new Web service
 oplist-the operation set of w
1. M ← 0 /*M contains the modified or new nodes in K* */
2. for each node (Wi,Oi) in K
3. do N ← (Wi,Oi)
4. if O I ⊆ oplist
5. then W i← Wi ∪ {w} /* modify the node*/
6. M ← M ∪ N
7. if O i= oplist
8. then return;
9. else Oi’ ←Oi ∧ oplist
10. if ∃ (W’, O’) ∈ M
11. then W’ ← W ’∪ Wi ∪ {w} /* modify node (W’,O’)*/
12. else
13. do Nn ← (W i∪ {w}, Oi’) /* create new node Nn */
14. M ← M ∪ Nn
15. {create an edge between N and Nn}
16. UpdateEdge(M,Oi’,N,Nn)
17. if Oi’=oplist
18. then return;
19. return

Fig. 2. Algorithm Building_WSLattic

Algorithm UpdateEdge (M,O’,N,Nn)
Input:M-the set of modified or new node in K*
 O’-the intersecting set of operations between new Web service and the generator
 N-the current node in K
 Nn-the new node in K*

1. for each element (W1,O1) in M
2. Ne1 ← (W1,O1)
3. do if O1 ⊆ O’
4. then IsParent←true; /*Ne1 may be a parent of Nn*/
5. for each element (W2,O2) in Sons(N e 1) do
6. if O2 ⊆ O’
7. then do IsParent ← false
8. break;
9. if IsParent
10. if Ne1 is a parent of N
11. then remove the edge between Ne1 and N
12. add an edge between Ne1 and Nn
13. return

Fig. 3. Algorithm UpdateEdge

 Concept-Based Retrieval of Alternate Web Services 367

5 Retrieving Alternate Services

In this section, we introduce how to retrieve alternate Web services for a given Web
service in a concept lattice. Firstly, we will introduce some definitions about alternate
services.

5.1 Optimal Alternate Set

The Web services with their operations stored in the repository form the context in-
ducing the concept lattice. By the lattice, we perform retrieval of the alternates for a
given Web service efficiently and response optimal feedback to its users. Before dis-
cussing our approach, some definitions are given.

Definition. 8. Let WS={w1(oplist1) ,…,wn(oplistn)} and WS’= {w1’(oplist1’),…,
wm’(oplistn’)} be two sets of Web services. The correlation between WS and WS’ is
defined as:

Definition 9. Given a Web service ws(oplist), the set of operations invoked by its re-
questors is o ⊆ oplist, o ⊆O is a retrieval of lattice (W,O,R).A set w’ ⊆ W satisfies the
retrieval if for each ws’(oplist’)∈ w’,oplist’∩ o ≠ ∅ and Cor ({ws},w’) is maximum
corresponding to context K (W,O,R). w’ is called an instance of alternate set for ws w.r.t
o in context K (W,O,R).

Definition 10. Let w={ws1,ws2,…wsn} be an instance of alternate set for ws w.r.t the
invoked operation set o in context K (W,O,R). If there does not exist w’= (ws1,…w sk) ⊂
w satisfying Cor (ws,w’) = Cor(ws, w), then w is an optimal alternate set for ws w.r.t. o
in context K(W,O,R)

It is meaningful to response the optimal alternates to the requestors. Definition 10
shows that an alternate set with minimal size and maximum correlation to the proc-
essing Web service is an optimal alternates set. For example, in table 1 and table 2, the
candidate set of alternates WS1 w.r.t the invoked operations{AF,DT,TP,ZP} is
WS={W1={WS2,WS3,WS5},W2={WS2WS3,WS4}, W3=WS3,WS4,WS5},W4= {WS3,WS4}}.
For each Wi in WS, the correlation between it and WS1, Cor(Wi, WS1), equals to 75%.
The elements in Wi are all 3 except for W4 which are 2, so the optimal alternate set for
WS1 is W4.

5.2 Retrieval Implementation

In Fig.4, algorithm Retrieving_Alternates traverse the lattice in breadth- first manner
from top to bottom (lines 1-16). For example, we first process nodes {2, 3, 4, 5} in
Fig.1b, then {6} and finally {12} if we want to search the alternates for WS1. In order to
obtain an optimal alternate set, the services are selected with a greedy method: in each
step we only save the services having the largest common operations with the invoked

(6)
)(

)'()(

)',(

0

11

i

n

i

i

m

i
i

n

i

oplist

oplistoplist

WSWSCor

=

===

368 D. Peng et al.

operations of the Web service being processed, which is denoted as ws in the algorithm
(lines 9-14). We only need to access the concepts in the upper bounds of the concept C
whose intent equals to the invoked operations in ws (see definition 6 and 7). According
to this fact, if some Web services providing the same operations with that invoked in
the Web service being processed, then stop traversing the lattice (15-16). To reduce the
number of services in the alternate set, we remove the services with same operations
except one (lines 17-22). Finally, we return the optimal alternates in line 22. In worst
case, we need to traverse all the nodes in the lattice once, so the complexity of our
algorithm is O(n2), where n is the size of lattice.

Algorithm Retrieving_Alternates(K,ws,o)
Input:K-the concept lattice;
 ws-the service being processed;
 o-the invoked operations in ws
output: the optimal alternates of ws w.r.t. o
1. maxlevel←the longest path from top to bottom of K;
2. for i ← 0 to maxlevel
3. do leve l[i] ← {all the concepts with level i};/* the longest length for top to the concept*/
4. TMP ← ∅’; / * TMP contains the services WS(oplist) satisfying oplist ∩ o ≠ ∅*/
5. for i ← 0 to maxlevel
6. do for each C ← (W,O) ∈leve l[i]
7. do if ws ∈ W and o ∩ O ⊆ o
8. do if W- {ws} ≠ ∅
9. then do O’← o ∩ O;
10. for each ws’ ∈ TMP
11. do oplist ← the set of operations contained in ws’;
12. if o ∩ oplist ⊆ O’ and ws’∉W
13. then do TMP ← TMP-{ws’};
14. TMP ← TMP ∪ (W-{ws});
15. if O’ = o
16. then goto 17;
17. for each pair wsi, wsj ∈ TMP, i ≠ j;*/
18. do oplist i← the set of operations contained in wsi
19. oplist j← the set of operations contained in ws’
20. if oplist I ∩ o = oplistj ∩ o
21. then do TMP ← TMP-{wsi}
22. return TMP;

Fig. 4. Algorithm for Retrieval of Alternate Web Service

6 Experiments

6.1 Experimental Setup

We carried out a set of experiments to evaluate the performance of our approach. All
the experiments were implemented in Java and executed on a 1.4GHz Pentium III PC
with 256MB memory running Windows 2000 professional. The data sets include the

 Concept-Based Retrieval of Alternate Web Services 369

synthetic data generated by a WSDL generator we developed and the real data crawled
from the main authoritative UDDI repositories. The synthetic data contained about
2000 Web services with 2030 operations described in 2000 WSDL files. In real data,
2000 WSDL files present 2000 Web services with 2400 operations.
 The experiments we conducted to: i) measure the efficiency of our method by
comparing it with a possible solution, such as keyword searching; iii) Evaluate the
effects of the similarity threshold used to prune the operations on the performance of
our approach, such as the lattice size and the time for building the lattice.

6.2 Experimental Results

6.2.1 Efficiency Evaluation
We first evaluate the efficiency of our approach by comparing the response time of
retrieving the alternates with that of keyword searching. The response time here refers
to the time from submiting a request to finishing retrieval all the alternates for the Web
service in a given repository. We regard the name of each invoked operation and that of
the Web service being processed as the keywords during keyword searching. In our
test, the number of services varied from 1000 to 2000, and each time 200 services were
added into the repositories. Because of the large difference of the response time be-
tween keyword searching and our approach, the common logarithm was exploited to
represent the values when we drew the graphs (see Fig.5). The figures illustrate that
keyword searching is more time consuming than our approach both in synthetic data
and real data. It means that our proposal can retrieve the optimal alternates of a given
Web service efficiently.

6.2.2 Evaluating Effects of Operation Similarity Threshold on Lattice
In section 4, we have discussed that the lattice can be built in a cost effectively way by
pruning the operations when we generate the concept set. According to the pruning rule
given in section 4.1, we know that the most important factor influencing the size of
lattice is the threshold of overall similarity between operations. We did some experi-
ments to investigate the effects of the threshold on both the size and the time for

(a) Synthetic Data Set (b) Real Data Set

Eifficiency Evaluation with Different Data Set Fig . 5.

370 D. Peng et al.

building the lattice by varying the threshold from 0.2 to 0.9, and keeping the size of the
repositories constantly. The experiments were also conducted with synthetic data
(Fig.6a) and real data (Fig.6b).

 The figures show that the more the threshold is, the larger the size of lattice will be
and more time is needed to build the lattice. It is because as the similarity threshold
growth the pruned operations become less and less, in other words, the operations
added into the attribute set become more and more. As a result, the number of nodes in
the concept lattice also increases and it leads to the time for building the lattice becomes
longer and longer.

7 Conclusions and Related Work

Some approaches for discovery the similar Web service for a given Web service have
been proposed recently. In [11], the authors developed a clustering algorithm that
groups names of parameters of Web service operations into semantically meaningful
concepts. These concepts were leveraged to determine similarity of inputs (or outputs)
of web-service operations. Wang etc. [3] obtained the similar Web services based on
the similarity between services measured with information retrieval and structure
matching. In order to retrieval Web services in large-scale and expanding repositories
with flexible way, [7] solved the issue by means of an orthogonal service space and
establishing the multi-valued specialization relationships between services.
 In this paper, we propose a novel method to retrieve all the optimal alternates of a
given Web service with respect to its invoked operations. Formal Concept Analysis
(FCA) and concept lattice are employed to semantically group Web services by using
the underlying semantics of Web services. We also took the extension of Web services
into account and proposed some algorithms for establishing and maintaining the con-
cept lattice incrementally. Our approach can be used to retrieve the alternates in an
efficient, accurate and scalable way which has been demonstrated by the experi-
ments.In our future work, we will study an optimizer for our retrieval approach, such as
clustering Web services with the domain knowledge based on our service concept lat-
tice, since some category information can be obtained from the UDDI repositories.

(b) Real Data Set (a) Synthetic Data Set

Fig. 6. Effects of Operation Similarity on the Size of Lattice

 Concept-Based Retrieval of Alternate Web Services 371

References

[1] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris and D. Orchard.
Web services Architecture. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/, 2004.

[2] D. Chappell, T. JeWell. Java Web service. O’Reilly, 2002.pp:22-25.
[3] Y. Wang, E. Stroulia. Flexible Interface Matching for Web-Service Discovery. Proceed-

ings of the Fourth International Conference on Web Information Systems Engineer-
ing(WISE 2003). Alta, Canada, December 2003

[4] E. Christensen, F. Curbera, G. Meredith, and S.Weerawarana. Web service Description
Language (WSDL). http://www.w3.org/TR/wsdl.

[5] W. Liu, W.Jia and A.PuAdd Exception Notification Mechanism to Web services. Pro-
ceedings Fifth International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP’02), Beijing, China , October, 2002.

[6] L. Kovics, P.Baranyi. Document clustering Based On Concept Lattice. Proceedings of
IEEE International Conference on Systems, Man and Cybernetics, October 2002.

[7] H. Zhuge, J.Liu. Flexible retrieval of Web service. The journal of Systems and Software,
2004(70):106-117

[8] B. Ganter and R.Wille. Formal Concept Analysis, Mathematical Foundation. Spinger
Verlag, 1999.

[9] [9] I.Kovacs. Efficiency Analysis of Building Concept Lattice. Proceedings of 2nd ISHR on
Computation Intelligence, Budapest, 2001

[10] R.Wille. Concept lattice and conceptual knowledge systems. Computers and Mathematis
Applications, 23, Number 6-9, pp. 493-515, 1992.

[11] X. Dong, A.Halevy, J. Madhavan, E. Nemes and J. Zhang. Similarity Search for Web ser-
vice, Proceedings of the 30th VLDB conference, Toronto, Canada, August 2004.

[12] R.Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In
Rival, editor, Ordered Sets, pages 445-470. Reidel,1982.

[13] G. Salton, A. Wong and C.S. Yang. A Vector-space Model for Information Retrieval.
Journal of the American Society for Information Science, 1975(18):13-620.

[14] R.Godin, R.Missaoui, and H. Alaoui. Incremental Concept Information Algorithms Based
on Galois (Concept) Lattice. Computational Intelligence, 11(2):246-267, 1995.

[15] T.Bellwood,L.Clément.C.Riegen. Universal Description, Discovery & Integration (UDDI)
Version 3.0. http://uddi.org/pubs/uddi_v3.htm

[16] M.Gudgin, M. Hadley, N.Mendelsohn, J.J.Moreau, H.F.Nielsen. Simple Object Access
Protocol (SOAP) Version 1.2 . http://www.w3.org/TR/soap/

WSQuery: XQuery for Web Services Integration�

Zhimao Guo, Xiaoling Wang, and Aoying Zhou

Dept. of Computer Science and Engineering, Fudan University, China
{zmguo, wxling, ayzhou}@fudan.edu.cn

Abstract. Web services integration is one of key issues in many B2B ap-
plications. Yet, current approaches to this problem tend to use a general-
purpose programming language, thus incur type mismatches between the
type system of XML schema and the object-oriented type system. In this
paper, we present a uniform method for integrating Web services. We pro-
pose an extension of XQuery, referred to as WSQuery, which can contain
Web service calls. We first present the conceptual evaluation strategy of
WSQuery programs. Then, for speeding up the evaluation, we propose
to schedule Web service calls to exploit parallelism. We carry out depen-
dency analysis to determine dependency relations among Web service
calls. The for loops, if branches and unknown parameters pose particu-
lar challenges for dependency analysis and scheduling. We use unfolding
techniques to deal with them.

1 Introduction

XML is the preeminent data exchange format on the Internet. Web services
are becoming the standard building blocks for distributed computing over the
Internet[2, 3, 1]. XML and Web services together provide a framework for dis-
tributed information management[7]. With the emergence of Web services, many
companies are beginning to expose their business functionalities as Web services.
Many applications in the context of B2B frequently demand seamless access to
heterogeneous and distributed information. In this paper, we will consider the
service integration problem in the Web environment. XML greatly facilitates the
development as well as access and integration of Web services. However, current
approaches to Web services integration tend to use an existing, general-purpose
programming language. That incurs type mismatches between the type system
of XML schema and the object-oriented type system[16]. In this paper, we pro-
pose a new architecture and some techniques which enable the use of XQuery
as an essential tool for Web services integration.

Let us consider the following part-suppliers scenario. Assume each kind of
parts has its name p name and id p id. The site A provides a Web service

� This work is supported in part by 863 Program 2002AA116020 and NSFC 60403019
and 60228006. Part of the work was done while the first author was visiting Hong
Kong University of Science and Technology.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 372–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

WSQuery: XQuery for Web Services Integration 373

Wa which contains an operation opa which takes a given p name as input, and
returns the corresponding p id. The site B provides a Web service Wb which has
an operation opb which takes p id as input, and produces all vendors which can
offer this kind of parts. Here each vendor is indicated by the URL location of
its WSDL file[4]. Each part supplier provides a Web service W such that one
can ask its operations for the price of the part p id, the supplier’s name and its
contact information. The prototypes of these operations are shown below:

A: (Wa, getPartID, p name)
B : (Wb, getVendors, p id)
Vendor : (W, getPrice, p id)
Vendor : (W, getVendorInfo)

Because each part supplier provides Web service interfaces to its business
partners, the partners’ application systems can directly query the price of ma-
chine parts offered by the supplier. If one wants to find out which supplier pro-
vides a certain kind of parts with the lowest price, he can compose an XQuery
program Q for this purpose. Q should have a parameter $part name, then it can
also be used for other kind of machine parts. Q is shown below:

1. let $v1 := callws(Wa, getPartID, $part name) return
2. let $v2 := callws(Wb, getVendors, $v1) return
3. let $v3 := { for $v4 in $v2 return callws($v4, getPrice, $v1) } return
4. let $v5 := min($v3) return
5. for $v6 in $v2 return {
6. let $v7 := callws($v6, getPrice, $v1) return
7. if ($v7 = $v5) then { $v7, { let $v8 := callws($v6, getVendorInfo)
8. return $v8 } }
9. else () }

XQuery[5] is the standard way for querying XML data. It has evolved into a
fairly complex language, and is going to play a more important role in many ap-
plication contexts. The future architecture of B2B platforms will take the SOA
(Services-Oriented Architecture) approach, which is defined as a collection of
software services, available to other applications across the network and acces-
sible using a standard interface. We envision that in the future, there will be a
Web portal for each industry community. An XML schema, which consists of
user-defined types in this community, is kept inside the portal, and known by
all members. All members of this community have agreed on this XML schema.
It would be an important step towards conducting B2B over the Internet fully
automatically. Via the portal, when they want to obtain the part supplier with
the lowest price, users can select a program Q in the portal, and specify the part
name, then submit this program. After a while, the result is returned to users, or
displayed in browsers. We believe that, XQuery, originally designed for querying
and constructing XML data, is well suited for this kind of applications. More
precisely, we embed Web services calls into XQuery main modules, which is the
basic idea of our approach. The overall system architecture of our approach is
depicted in Fig. 1.

374 Z. Guo, X. Wang, and A. Zhou

Portal
(Many XQuery programs)

Vendor1 Vendor2 Vendorn

Client1 Client2 Clientm

SOAP messages

...

...

Fig. 1. The system architecture of our approach

As shown in Fig. 1, many extended XQuery programs are kept inside the por-
tal. In order to evaluate an extended XQuery program Q, some parameters must
be specified first. Hence, they are called parameterized XQuery programs, termed
as WSQuery in this paper. There are some Web services calls embedded in Q.
These services calls will invoke Web services residing in remote service providers,
e.g., vendors in our example. Service calls are static concepts, while service invo-
cations are dynamic ones. That is, service calls are embedded in programs, and
these calls will be invoked during evaluation. The processing engine of the portal
will send SOAP requests to service providers, and receive SOAP responses. For
services integration, it is usual that Q needs to access different service providers,
or invoke the same Web service with different parameter values.

Our approach is a practical one for several reasons. Ordinary users own little
technical knowledge, such as that of XML, Web services and XQuery, etc. The
programs in the community portal are developed and maintained by domain
experts as well as experienced programmers, who know technical terms and
business logic very well. Our architecture features in several distinct points: 1)
if a vendor makes minor modifications to its internal system, so long as its
Web service interface does not change, nothing outside of the vendor’s system is
required to change; 2) even if the Web service interfaces of a vendor are changed,
the staff who maintain the portal can change all affected WSQuery programs
accordingly, which is transparent to all users; 3) XQuery is one of declarative
languages. It is not a unusual case that an XQuery program of dozens of lines can
complete the same task as does a Java program of hundreds of lines. Therefore,
our approach can increase the productivity of application developers.

Further, we investigate how to reduce the evaluation time of WSQuery pro-
grams. In order to achieve that, intra-query parallelism is exploited. We consider
the latency between service requests and responses as one of the most important
factors of the total evaluation time. Our focus will not be on the cost of XPath
expressions. In the distributed environment, the unstable network condition and
many other unanticipated factors affect the evaluation time much more than
does the typical XPath navigation.

Related Work. [16] proposed to use XQuery to handle the messaging layer, thus
give the application a more direct access to the original Web service content and
semantics. Their work also provides a framework for distributed XQuery process-

WSQuery: XQuery for Web Services Integration 375

ing. We study how to reduce the total evaluation time by exploiting intra-query
parallelism within a similar framework. XL[12, 11] is a platform for Web services,
which provides a high-level language for Web services development, but does not
provide details about how to connect to the existing Web services infrastructure.
However, we focus on the service integration problem. Thus, the optimization
efforts reported in [11] are aimed at totally different goals from ours. [8] devel-
oped a middle-tier Web services architecture to optimize the exchange of large
XML data volumes. The authors focused on the data exchange problem. Finally,
in the context of the ActiveXML project[7, 14, 15, 6], the authors study dynamic
XML documents, where some of the data is given explicitly while other parts
are defined only intensionally by means of embedded Web service calls. They
focused on devising strategies to distribute and replicate dynamic documents in
a P2P architecture, and also studied efficient evaluation of XPath queries over
such documents.

Data dependency analysis is a fundamental compiler analysis tool for op-
timizing programs on parallel architectures. It supports many transformation
strategies, and can be applied to important optimization problems such as par-
allelization, compiler memory hierarchy management, and instruction schedul-
ing. For a comprehensive treatment of dependency analysis techniques and their
application, one can refer to [13]. However, these techniques are mainly aimed at
fully utilizing processor capabilities, and only take little consideration of network
latency. Thus, they cannot be directly applied to our new problem.

Organization. The outline of the paper is as follows. In Section 2, we introduce
the concepts and notions of Web services and request-response operation types.
In Section 3, we give the definition of WSQuery, and present its conceptual
evaluation strategy. In Section 4, we describe dependency analysis techniques
for WSQuery expressions, and in Section 5, we discuss parallel evaluation of
WSQuery expressions. Finally, our conclusion and a discussion of future work
are in Section 6.

2 Preliminary

Since there exists no established and all-agreed-upon definition of Web services,
we first present our definition of Web services which will be used in this paper.
Intuitively, a Web service is a software module which can be invoked over the
Web remotely. From a very low level, this software module takes SOAP messages
as input, then produces SOAP messages as responses; from a higher and more
abstract level, a Web service takes several parameters of some types, defined
in the type system of XML schema, then generates a result of some pre-defined
type. The parameters and results fit well together with the type system offered in
XML schema. XQuery expressions also work in the same type system. Therefore,
XQuery is an appropriate language for dealing with Web services integration.

Definition 1 (Web service). Given an XML schema S, there is a set T of
simple, atomic or compound types defined in S. A Web service W = (url, oplst),

376 Z. Guo, X. Wang, and A. Zhou

where url indicates the location of W’s description file (i.e., its WSDL file),
oplst = (op1, op2, . . . , opn) is the list of operations provided in W. An operation
op = (name, parlst, rst), where parlst is the list of parameters (para1, para2, . . .),
rst represents op’s result. Each parameter para = (v, t), where v is its value, and
t ∈ T is its type, and v should conform to t. The components of rst are similar
to those of para. �

Following the definition of Web services, we define operation types of Web
services. In this paper, we consider only the most commonly-used operation type,
that is, request-response type. Other operation types, such as one-way, solicit-
response and notification will be investigated in our future work. An operation
of request-response type receives a request, then returns a response.

Definition 2 (Request-response operation type). Let W be the Web ser-
vice to be invoked. More precisely, let op be the operation of W to be invoked.
In a typical service invocation concerning op, first all real parameters are passed
into op; then after the latency lat(W, op), the result is returned to the caller.
During this process, the value of each parameter should be type-compliant, and
the result conforms to the pre-defined returning type, too. �

XQuery is originally designed to query XML sources or other sources which
have been exported as XML views. In this paper, however, we extend XQuery
to integrate different Web services. Thus, the built-in function fn:doc is replaced
by a new function fn:callws, whose prototype is of the following form

fn:callws(url as xsd:string, op as xsd:string, para1, para2, . . .),

where url is the URL location of the WSDL file, whose purpose is to locate the
Web service W, op is the operation name of W to be invoked. op is followed by
one or more parameters which are required by op.

In the rest of the paper, the extended XQuery is referred to as WSQuery,
which is named after “XQuery extended with W eb Service calls”. The syntax
and formal semantics of WSQuery are nearly the same as those of XQuery, except
for the fn:callws construct and its corresponding semantics. Thus, we describe
the semantics of fn:wscall here in an informal way. First, we discuss its static
semantics. The input parameters’ types should be compliant with the operation
op of W. The returning result should work well with other parts of the WSQuery
program, with respect to their types. Then, we present the dynamic semantics
of fn:callws. When it encounters an fn:callws, the evaluation procedure of a
WSQuery program cannot proceed until the returning result is received. More
specifically, all parameters must have obtained their value before the remote
operation is invoked. After the invocation, the evaluation procedure has to wait
for its returning result. In this sense, the Web service invocation in our paper is a
synchronous one. We believe that it is practical in most real-world applications.

WSQuery: XQuery for Web Services Integration 377

3 WSQuery

This section defines the syntax and semantics of WSQuery. As mentioned above,
WSQuery is an extension of XQuery with embedded Web services calls. For easy
discussion, we present several notations before we introduce WSQuery. First, we
give the definitions of simple paths and conditions.

Definition 3. A path expression with no variables is called a simple path, e.g.,
a/b/c, a/*/c, etc. �

Definition 4. An elementary condition is either of the form $x/π◦c, exists $x
/π, or $x/π ◦ $y/π′, where c is a string, an integer, a decimal, or a double, π
and π′ are simple paths, and ◦ ∈ {=, <,>,≤,≥}. A condition is a boolean
combination of elementary conditions using “and”, “or”, “not” and “true”. �

For simplicity of discussion, we investigate the extension of a subset of XQuery
in this paper, though the techniques proposed here can be easily extended to
deal with larger subsets of XQuery.

Definition 5. Essentially, a WSQuery program is an expression e with some
global parameters. An expression e is recursively defined as follows1:

1. e is a literal constant ;
2. e is a variable $var;
3. e is a path expression $var/π, where π is a simple path;
4. e is an empty sequence ();
5. e is a concatenation of several expressions e1, e2, . . . , en;
6. e is a for expression

for $var in e1 return e2;

7. e is a let expression

let $var := e1 return e2;

8. e is an if expression

if (cond) then e1 else e2,

where cond is a condition;
9. Particularly, e is a Web service call, which is of the form

fn:callws(url as xsd:string, op as xsd:string, para1, para2, . . .).

As can be understood easily, all the cases but the last one are very similar to those
of the standard XQuery[5]. The last case, Web service call fn:callws, is an exten-
sion function, with the first parameter url denoting the location of the WSDL
file, op being the operation to be invoked, and a list of parameters for op. �

1 We omit some cases here, e.g., max(), min(), arithmetic expressions, etc.

378 Z. Guo, X. Wang, and A. Zhou

We assume that there are no two distinct variables with the same name in a
WSQuery program Q. It is not a significant restriction since a variable in Q can
be easily renamed without affecting the semantics of Q at all. Obviously, there
are three methods to introduce a new variable: the first is via global parameters
of Q; the second via for constructs; the third via let constructs. It is worth
mentioning that the for construct also introduces an iteration, while does the
let construct not. This is the most significant difference between for and let.

In this work, special attention is given to the last case fn:callws. Given a
WSQuery Q, if the url and op parameters of all Web service calls are specified
literally, i.e., their values are known before the running time, then Q is called
simple WSQuery. Otherwise, Q is called complex WSQuery. In a complex WS-
Query Q, there exists at least one Web service call wsc, such that one cannot
decide wsc’s provider or the operation to be invoked during the compiling time.

Since service providers did not, or were reluctant to, offer any API inter-
faces to external applications for querying any statistics information, the portal
itself has to maintain the latency between a service request and its response.
A reasonable approach to maintaining this kind of statistics is building a hash
table H. Each entry in H is a pair (wo, lat), where lat is the latency collected
by the monitoring engine of the portal, and wo is itself a pair (ws, op), where
ws denotes a Web service, and op is its operation. At first, since no historical
data have been collected, we simply set lat to 0. After successfully requesting an
operation of a Web service, this statistics information is refreshed. For figuring
out the time delay of the operation op of the Web service W, the processing
engine would examine if the entry for (W, op) already exists in H. If the entry
already exists, its lat field will be made use of; If the entry is not in H yet, a
specific latency = 0 will be used, and a new entry for (W, op) is inserted into
H. When the invocation is completed, the new entry will be refreshed to reflect
the current system status.

Now we present the definition of WSQuery tree. Given an WSQuery program
Q, its WSQuery tree T is its parse tree, such that

– The root node r of T corresponds to Q;
– For each non-leaf node v of T , assuming that v corresponds to the subex-

pression e of Q, v’s children correspond to components of e. Note that v’s
children are ordered. For example, if e is a for expression, then v will have
three children c1, c2 and c3. c1 corresponds to the $var part, c2 corresponds
to e1, and c3 corresponds to e2.

– Leaf nodes of T are either constants or Web services calls.

3.1 Conceptual Evaluation

For each expression e, there are three crucial components. The first component
is a set of free variables fvs = {$v1, $v2, . . . , $vn}. A variable v is called a free
variable with respect to a given expression e if v’s value has to be passed into e
for evaluating e. In other words, the variable v is only referenced in e, instead of
being defined in e. This concept of free variable is similar to that in mathematical

WSQuery: XQuery for Web Services Integration 379

logics. In running time, the set fvs is also called a running context. The second
component is a directed acyclic graph (also known as dependency graph) which
represents the dependency relations among different Web services calls inside
e. The third component is e’s returning value. Hence, a straightforward way for
evaluating an expression e is as following: the evaluation procedure cannot begin
until each free variable has obtained its concrete value; Web services calls will be
invoked in a reverse topological order according to the dependency graph. The
free variables of the WSQuery program Q are global parameters, which need to
be specified by users before triggering Q. The dependency graph of Q consists of
dependency relations among Web services calls embedded in Q. The returning
result of Q is what users want.

We next present the dynamic semantics of a WSQuery program Q by de-
scribing a conceptual evaluation strategy, which is a rather straightforward one.
We also call it the logical evaluation plan of Q, since we will obtain optimized
evaluation plan based on this conceptual evaluation plan. And the relationship
between the twos is much like that between the corresponding terms for query
evaluation in database management systems. Given the global parameters of Q,
Q is recursively evaluated guided by the WSQuery tree of Q:

1. If e is a literal, since e is a constant, it can be evaluated directly, and return
the result immediately.

2. If e is a variable $var, $var must have obtained its value, therefore, the
evaluation of e can return its result immediately.

3. If e is a path expression $var/π, π has to be evaluated over $var before e
returns the result. As the evaluation of path expression is not our focus, in
fact, this cost is trivial if compared with the invocation latency, we also deem
that e can be evaluated immediately.

4. If e is (), it can return at once.
5. If e is a concatenation of e1, e2, . . . , en, all ei for 1 ≤ i ≤ n will first be

evaluated in order, then the concatenation of their result forms the returning
result of e.

6. If e is “for $var in e1 return e2”, first e1 is evaluated and return a sequence s.
For the first item i1 in s, one assigns i1 to $var, and the information of $var
is added to the current running context to form a new running context. Then
e2 will be evaluated in this new running context. If s has the next item, the
above procedure happens once again At last, the result in each iteration
of evaluating e2 is concatenated, then returned.

7. If e is “let $var := e1 return e2”, e1 is first evaluated in the current running
context. Then e1’s result is assigned to $var. The running context is updated
accordingly. After that, e2 is evaluated in this new runtime context, and its
evaluation result is returned also as the result of e.

8. If e is “if (cond) then e1 else e2”, the branch condition cond is first evaluated,
then according to its result, either e1 or e2 will be evaluated.

9. If e is a Web service call, real parameters of fn:callws can be calculated
without or with only simple computation. They are passed to the service
provider decided by the parameters url and op. The evaluation process can-
not proceed until it receives the response.

380 Z. Guo, X. Wang, and A. Zhou

There are three interesting points in the above conceptual evaluation strategy.
The first is that the evaluation process is a single-threaded one. Actually, this is
one of obvious drawbacks of conceptual evaluation. Going from single-threaded
evaluation to multi-threaded evaluation will be a significant improvement. Only
with a multi-threaded mechanism, intra-query parallelism can be fully exploited.
The second is that a stack of runtime contexts should be maintained during the
entire evaluation process. First, an initial context which consists of all global
parameters is pushed into the stack. For evaluating for or let expressions, which
introduce new variables, a new runtime context will be created based on the
current one. The new context contains the information of the new variable. After
accomplishing the evaluation of the for or let expression, the runtime context
created just now is popped away, and the top context on the stack becomes the
new current runtime context. The third is that a WSQuery program has some
global parameters. Hence, it cannot be evaluated until all of its global parameters
have got real values.

3.2 Cost Estimation

Here we consider three non-trivial cases, concatenation, let and Web service call,
and defer the discussions on for and if expressions to later sections. Let cost(e)
denote the total evaluation time of e.

Concatenation. Let e ← e1, e2, . . . , en. Since ei’s are evaluated in order, cost(e)
=

∑n
i=1 cost(ei).

Let. Let e ← let $var := e1 return e2. e1 is first evaluated, followed by the
evaluation of e2. Thus, cost(e) = cost(e1) + cost(e2).

Web service call. Let e ← fn:callws(url, op, . . .). After sending out the request,
the evaluation process of e cannot proceed until the response is received. Hence,
cost(e) = lat(url, op). As discussed above, lat(url, op) is unknown at the begin-
ning. Only after a successful invocation, during which the monitoring engine of
the portal recorded its statistics information, lat(url, op) will hold a concrete
non-zero value, which is an estimate of cost(e).

4 Dependency Analysis

The essence of the evaluation process for an WSQuery program is how to eval-
uate an expression. Let e be an expression with free variables {$fv1, $fv2, . . .}.
For evaluating e, the values of these free variables should be known before. In
the application scenario of integrating a variety of Web services, the above re-
quirement means that the relevant Web services must have been invoked, and
the responses must have been received by the caller before evaluating e. This re-
quirement also applies to the entire WSQuery program, whose global parameters
should get values before the evaluation. Therefore, the dependency of an expres-
sion on Web service invocations is a crucial point for the analysis of WSQuery
programs.

WSQuery: XQuery for Web Services Integration 381

As discussed in Section 3.1, one of essential components of WSQuery pro-
grams is dependency relations. There are both control flow and data flow during
the evaluation process. We construct two graphs to represent control flow and
data flow, respectively. The graph for control flow is the WSQuery tree, and the
one for data flow is a directed acyclic graph Gdf = (V,E). Each Web service call
is represented by a vertex of Gdf . A directed edge e = (u, v) ∈ E indicates that
the Web service call wscu represented by u should be invoked before the service
call wscv represented by v. We say that wscv is dependent on wscu.

Considering a Web service invocation wsc, it requires real parameters. These
parameters’ value must have been determined before the invocation wsc. It is
either specified by users or intermediate result. The intermediate result is ob-
tained during the previous evaluation. Thus, wsc is dependent on other service
invocations.

Web service invocation is a dynamic concept, instead of a static one. An
invocation is decided by not only the Web service and the operation, but also
by the value of its parameters. Different parameters would result in different
invocations. Generally speaking, even if the operation and its parameters have
been fixed, the result of one invocation may be different from that of another
one. The reason is that the application system of the service provider can update
its data or there maybe exist some Web services and operations through which
users can change them. It is conceivable that there are two kinds of Web services,
one of which is for querying information, the other one of which is for modifying
information. In this paper, we consider only the former kind of Web services. We
do not consider the time factor. That is, the same invocation will always return
a fixed result. Since the result does not vary with time, this makes it feasible
caching the result of Web service invocations.

WSQuery expressions can be composed arbitrarily. Hence, Web service in-
vocations can occur within any subexpression and their parameters can be any
previously computed result. During the evaluation of WSQuery, there are two
kinds of dataflow: one is top-down, and the other is bottom-up. Let e be an ex-
pression, and e′ be e’s subexpression. The top-down dataflow consists of passing-
by of data from e to e′, while the bottom-up dataflow from e′ to e. The input
parameters of an WSQuery program Q specified by users would be passed to
Q’s subexpressions, then subexpressions of Q’s subexpressions,

5 Parallel Evaluation

In this section, we investigate how to exploit intra-query parallelism for evalu-
ating WSQuery programs. We begin by considering basic WSQuery programs,
which do not involve for and if conditional expressions.

Considering a basic WSQuery program Q, in which the url and op parameters
of each Web service call are specified. Thus, each service provider is known
beforehand. We can devise its dependency graph. Then, the problem of finding
a desirable evaluation plan is cast to the classical scheduling problem. Therefore,
we state formally the problem as following:

382 Z. Guo, X. Wang, and A. Zhou

Given a set of Web service invocations S = {s1, s2, . . . , sn}, and a set of
service providers P = {p1, p2, . . . , pm}. Each invocation si for i = 1, 2, . . . , n can
only be executed in certain provider pj specified by a mapping site : S → P .
A dependency relation dep ⊆ S × S is also specified. If dep(si, sj) holds, the
invocation si cannot be evaluated before sj . In other words, si depends on sj .
There must not be cycles in the dependency relation dep because an invocation
cannot directly or indirectly depend on itself. A mapping dur : S → R+ is also
given. The invocation si would take dur(si) time period to complete.

Our goal is to find the optimal schedule such that the total evaluation time
is the least. However, the problem of finding the optimal schedule is NP-hard.
We can use some heuristics, e.g., similar to [10], to obtain an approximation to
the optimal schedule.

Next we discuss how to deal with for loops and if conditional expressions.
Our basic idea is to examine for and if nodes level by level. We propose two
strategies.

Lazy Evaluation. Given a WSQuery program Q, its WSQuery tree TQ is con-
structed. Some nodes of TQ are for or if nodes. This strategy involves many
iterations. Let n be a for or if node of TQ. In the first iteration, we do not study
the nodes below n. If n is a for node, assuming the corresponding expression is
“for $v in e1 return e2”, we introduce a dummy variable $vd, whose name should
not conflict with names of existing variables, and rewrite this for expression as
“$vd ← e1”. We apply the same rewriting technique for all for nodes, then ob-
tain a new WSQuery tree T ′. One can derive the dependency relation of T ′, and
obtain an approximately optimal evaluation plan. Then Q is evaluated partially.
After that, all dummy variables have got their values. These intermediate results
are kept in main memory.

In the second iteration, we study all the topmost for and if nodes. We do
not examine the non-topmost for and if nodes which have not been examined
yet. Considering a for expression e, because the value of the dummy variable v
is known now, we can unfold it according to |v|. Let the loop body be denoted
by eb. In fact, the unfolding result is |v| eb’s. If only considering the effect on
scheduling, these |v| eb’s are the same as their concatenation. Considering a if
expression e, because the condition can be calculated easily, we pick the correct
branch, and ignore the other one. Since this process is called unfolding, if a for
or if node has been examined, we say it has been unfolded.

After unfolding, we obtain a forest of separate trees, whose roots are for or if
nodes. It can be proved that there exists no dependency relations among different
trees. Therefore, we only need to investigate dependency relations on each indi-
vidual tree. Applying the same techniques as before, we derive all dependency
relations, then schedule these Web service invocations. During the entire evalua-
tion process, an approach is followed which interleaves unfolding and evaluation.
This idea is similar to that adopted in [9].

Eager Evaluation. The second strategy is based on eager evaluation. With this
strategy, we try to unfold for and if expressions as early as possible. Compared

WSQuery: XQuery for Web Services Integration 383

with the second strategy, the first strategy seems to be a lazy one. In the second
strategy, once e1 has been evaluated, the for expression “for $v in e1 return
e2” is unfolded; similarly, once cond’s truth value is known, the branch to be
evaluated can be unfolded.

Discussion. Challenges arise if the url or op parameter of any Web service invo-
cation involves variables. If url contains variables, the service provider cannot be
determined; if op contains variables, the latency cannot be decided, because we
do not know which operation will be invoked. We propose to adopt the following
policy similar to eager evaluation. Assume that the url or op parameter involves
a variable $v. Once $v’s value has been worked out, we compute the parameter.
If both url and op of a Web service invocation have already been determined,
this invocation is immediately added to the set of service invocations which need
scheduling.

6 Conclusion

In this paper, we have presented a new paradigm for Web services integration.
We extend XQuery to integrate Web services from different service providers.
The extension of XQuery is called WSQuery. We conduct dependency analy-
sis on WSQuery expressions. Then we try to reduce the total evaluation time
by scheduling service invocations, and exploiting parallelism among providers.
To deal with for loops, if conditions, lazy or eager evaluation strategy can be
adopted. As part of our future work, we would like to explore a more accurate
cost model which takes into consideration network latency, the size of SOAP
messages, and the cardinality of results, etc.

Acknowledgments. We want to address our thanks to Qiong Luo at Hong
Kong University of Science and Technology for helpful comments on previous
drafts of the paper.

References

1. BEA Systems, Inc. http://www.bea.com/.
2. IONA Technologies. http://www.iona.com.
3. Ipedo, Inc. http://www.ipedo.com/.
4. Web services description language (wsdl) version 2.0 part 1: Core language. W3C

Working Draft, Aug. 2004. http://www.w3.org/TR/wsdl20/.
5. XQuery 1.0: an XML query language. W3C Working Draft, July 2004.

http://www.w3.org/TR/xquery/.
6. S. Abiteboul, O. Benjelloun, B. Cautis, et al. Lazy query evaluation for active

XML. In Proc. of SIGMOD, 2004.
7. S. Abiteboul, O. Benjelloun, I. Manolescu, et al. Active XML: Peer-to-peer data

and web services integration. In Proc. of VLDB, 2002.
8. S. Amer-Yahia and Y. Kotidis. A web-services architecture for efficient xml data

exchange. In Proc. of ICDE, 2004.

384 Z. Guo, X. Wang, and A. Zhou

9. M. Benedikt, C. Y. Chan, W. Fan, et al. DTD-directed publishing with attribute
translation grammars. In Proc. of VLDB, 2002.

10. M. Benedikt, C.-Y. Chan, W. Fan, et al. Capturing both types and constraints in
data integration. In Proc. of SIGMOD, 2003.

11. D. Florescu, A. Grünhagen, and D. Kossmann. XL: a platform for web services.
In Proc. of CIDR, 2003.

12. D. Florescu, A. Grünhagen, D. Kossmann, and S. Rost. XL: a platform for web
services. In Proc. of SIGMOD (demo), 2002.

13. K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architectures.
Morgan Kaufmann, 2001.

14. T. Milo, S. Abiteboul, B. Amann, et al. Dynamic XML documents with distribution
and replication. In Proc. of SIGMOD, 2003.

15. T. Milo, S. Abiteboul, B. Amann, et al. Exchanging intensional XML data. In
Proc. of SIGMOD, 2003.

16. N. Onose and J. Siméon. XQuery at your web service. In Proc. of WWW, 2004.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 385– 397, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A New Indexing Method for High Dimensional Dataset

Jiyuan An1, Yi-Ping Phoebe Chen1, Qinying Xu2, and Xiaofang Zhou3

1 Deakin University, Australia
2 University of Tsukuba, Japan

3 University of Queensland, Australia
{jiyuan,phoebe}@deakin.edu.au
qinying@kslab.is.tsukuba.ac.jp

zxf@itee.uq.edu.au

Abstract. Indexing high dimensional datasets has attracted extensive attention
from many researchers in the last decade. Since R-tree type of index structures
are known as suffering “curse of dimensionality” problems, Pyramid-tree type
of index structures, which are based on the B-tree, have been proposed to break
the curse of dimensionality. However, for high dimensional data, the number of
pyramids is often insufficient to discriminate data points when the number of
dimensions is high. Its effectiveness degrades dramatically with the increase of
dimensionality. In this paper, we focus on one particular issue of “curse of di-
mensionality”; that is, the surface of a hypercube in a high dimensional space
approaches 100% of the total hypercube volume when the number of dimen-
sions approaches infinite. We propose a new indexing method based on the sur-
face of dimensionality. We prove that the Pyramid tree technology is a special
case of our method. The results of our experiments demonstrate clear priority of
our novel method.

1 Introduction

Multimedia objects, such as images, video and audio clips, are often mapped into a
high dimensional space, such that similarity search among these multimedia objects
are translated into distance-based queries in the high dimensional feature space. To
facilitate efficient search in very large amount of multimedia datasets, it is necessary
to use a high dimensional index mechanism that must be able to scale not with the
amount of the data, but more importantly, also with the number of dimensionality. R-
tree and its variations are commonly used index methods for multi-dimensional data-
sets [8][6]. The basic idea of R-tree and its variations can be briefly described as the
following. Firstly, a multi-dimensional space is partitioned recursively into a hierar-
chical structure according to data distribution. Secondly, the partitioned subspaces are
permitted to overlap with each other. However, the idea of permitting overlapping
sibling subspaces brings a serious drawback for high dimensional spaces, as the over-
lapping extent of sibling R-tree nodes in the directory increases rapidly to about 90%
of their entire volume when the dimensionality is increased to 5 [4][1][2]. That de-
feats the purpose of hierarchical indexing completely, as most nodes can not be
pruned in the searching process. This type of indexes also suffers another problem.

386 J. An et al.

The fan out of a node becomes very small due to the large size of coordinates for high
dimensional data. Consequently, the performance of such an index structure degrades
and its effectiveness is sometimes worse than linear scan. Many improvements have
been proposed (e.g.[4]), but the problems mentioned above still exist for most known
attempts.

If an indexing method requires keeping all coordinates of data items in the index,
the size of the index structure is, of course, proportional to the dimensionality. To
reduce the size of index, Bechtold et al proposed a method called the Pyramid-tree [5]
[11][13], where high dimensional data is mapped into a linear space such that some
classical index structures, such as B+-tree, can be used. This results a better perform-
ance than the X-trees and other R-tree inspired multidimensional indexes. However,
for one pyramid, it is known that most data items concentrate on its base. The slices in
each pyramid can not make the index more discriminative, as the data points in one
pyramid always have the same index value.

In a Pyramid tree, one data point is associated with one pyramid, and a data point
is indexed by a base of pyramid. If the dimensionality is d, the base of pyramid is

)1(−d -D hyperplane. In this paper, we generalize the ideal of using)1(−d -D

hyperplane to using)(id − -D hyperplane)1(di ≤≤ . The number of index values

will be increased in such a way to make the index more discriminative for a better
search performance. This paper, to the best of our knowledge, proposes the first solu-
tion to index high dimensional data based on surfaces. We will demonstrate its sig-
nificantly improved efficiency comparing to the traditional Pyramid tree indexing. We
also show that the Pyramid tree is a special case of our surface-based indexing
method.

Section 2 of this paper describes the motivation of surface index structure. In Sec-
tion 3, we discuss the structure of a novel surface-based spatial index method. In
Section 4, we propose a method for the allocation of pyramids for the data points on
the boundary. Section 5 shows the results of experiments comparing with the Pyra-
mid-tree technique.

2 Motivation

Because of the limitation of visual, no one can see more than 3 dimensional spaces.
We can only image them from 2- or 3-D space. However, we give some examples to
show that high dimensional space is not imaginable from 2- or 3-D space. Throughout
this paper, the data space is normalized into]1,0(. So our objective data space is a

hypercube. Its length of edges is 1.

2.1 Non-intuition of High Dimensionality

High dimensional data can be found everywhere. Time series is a traditional high
dimensional data. We can also use high dimensional data to describe an object, such
as, a people can be described using his features (tall, weight, age, and etc.). If two
objects are similar, we consider they are corresponded to two near data points in high
dimensional space even we can no be seen. The axes of the dimensional space consist

 A New Indexing Method for High Dimensional Dataset 387

of the feature vectors. However, high dimensional data has own characters which are
different with data in 2- or 3-D space. Fig. 1(A) shows a circle of r radius and its
circumscribed quadrilateral. The distance from a vertex of quadrilateral to circle is
denoted by a, where a holds the following inequality in 2- or 3-D space.

ar ≥

However, as the dimension increases, this inequality becomes inappropriate. For
example, in the case of 16-D space, a has 3 times length of r (a=3r). It can easy be
calculated by the following equation.

16

222)(rrar ++=+ (1)

Our visual field used to be in 3-D space. It is difficult to understand these kinds of
phenomena. Many researchers try to extend spatial index method R-tree, which is
originally used in 2-D dataset [8]. When these methods proved unavailable, the term
“curse of dimensionality” was cited [3].

Fig. 1. (a) The relation between radius and diagonal. (B) Surface and volume

2.2 Distribution of High Dimensional Dataset

To constitute the node of an index tree, the data space is partitioned. When the dimen-
sionality increases, the exponential changes of the volume need to be considered. For
example, the d-D hypercube of e edge has volume devol = . In the case of 0 < e < 1,
the volume decreases exponentially according to d, on the other hand, when e > 1, the
volume expands exponentially. Now we consider the distribution of data points in a
hypercube. That is, how many percentage of volume is occupied by its surface? Fig.
1(B) shows a square of edge 1.

Table 1. The volume of surface

The number of dimensionality Volume of surface
2 190.09.01 2 =−
3 271.09.01 3 =−

.

.

50 994846.09.01 50 =−

(A)

r
a

r
a

1

0.05

1

0.05

(B)

388 J. An et al.

The volume of the margin layer has a thickness of 0.05. Table 1 shows the volume of
various aspects of dimensionality. From the table, we can find that 99.5% volume is
in the surface of a 50-D hypercube. In this kind of high dimensional space, if a dataset
is distributed uniformly, it can be said that most of the data points are in the surface,
not in the interior of the hypercube. This is the motivation for this paper. To cope
with this “important” surface, a surface based index structure for high dimensional
space is proposed.

If the number of dimensions is d, the surface of a hypercube consists of d-1, d-2, ...
,1, 0-D hyperplanes. For example, a 3-D cube consists of 6 squares (2-D), 12 edges
(1-D) and 8 vertexes (0-D). These (hyper) planes anchor the index high dimensional
data. The next Subsection explains this in detail.

2.3 Vertexes, Edges and Hyperplanes in Hypercube

A square (2-D) consists of 4 edges and 4 vertexes; a cube (3-D) consists of 6 squares,
12 edges and 8 vertexes. In general, the number of (d-1)-D hyperplanes in a d-D hy-
percube is 2d. We can also say the hypercube is covered by 2d hyperplanes. One
hyperplane is also covered by consists of (d-2)-D hyperplanes. Therefore, the relation
of all hyperplanes is: Two (d-1)-D hyperplanes intersect at a (d-2)-D hyperplanes.
Three (d-1)-D hyperplanes intersect at a (d-3)-D hyperplanes. At the end, d-1 (d-1)-D
hyperplanes intersect at a line. The number of hyperplanes which cover a hypercube
is given in Lemma 1.

LEMMA 1. A d-D hypercube is covered by 0, 1, … , (d-1)-D hyperplanes, The num-
ber of i-D hyperplanes is i

d
i C×2 .

Table 2. The number of hyperplanes of 20-D hypercube

The number of dimensionality of
hyperplanes

Shape of hyperplanes The number of hyperplanes

19 Hyper-plane 40
18 Hyper-plane 760
17 Hyper-plane 9,120
16 Hyper-plane 77,520
15 Hyper-plane 496,128
14 Hyper-plane 2,480,640
13 Hyper-plane 9,922,560
12 Hyper-plane 32,248,320
11 Hyper-plane 85,995,520
10 Hyper-plane 189,190,144
9 Hyper-plane 343,982,080
8 Hyper-plane 515,973,120
7 Hyper-plane 635,043,840
6 Hyper-plane 635,043,840
5 Hyper-plane 508,035,072
4 Hyper-plane 317,521,920
3 Hyper-plane 149,422,080
2 Plane 49,807,360
1 Line 10,485,760
0 Vertex 1,048,576

 A New Indexing Method for High Dimensional Dataset 389

As dimension increases, the number of hyperplanes expands rapidly. This number
is usually beyond the size of most datasets. It is therefore possible that one data point
corresponds to one hyperplane of the hypercube. The hyperplane becomes the index
key of a data point. Searching similar data points becomes searching near hyper-
planes. We can employ pyramid tree technique to map data point to one hyperplane;
that is, partitioning the data space (or hypercube) by pyramids whose tops are the
centres of hypercube and whose bases are the hyperplanes. Since most data points are
in the surface of data space, the data points in the pyramid can be represented with its
base (a hyperplane). If the hyperplanes are ordered in a sequence, the data points
within pyramids can be indexed with linear index structure B+-tree. That is, a high
dimensional data changes to linear data. When a range query is given, to search for
similar data points becomes to find the pyramids overlapping with the query range.

3 Surface Based Spatial Index Structure

Data space is assumed to be normalized into a hypercube having edge 1. The bases of
two opposite pyramids are perpendicular to an axis ix . They can be expressed with

0=ix and 1=ix . In a pyramid whose base is 0=ix , every data point
),...,,(110 −dxxx satisfies

)1,...,1,1,...,1,0()1,min(−+−=−≤ diijwherexxx jji
 (2)

Based on equation (2), for a given data point, the pyramid which the data point be-
longs to can be determined. We use the order number of the pyramid as index key.
Then B+-tree linear index structure is used to search for similar data.

3.1 Order of Pyramid

A d-D hypercube is covered by (d-1)-D hyperplanes. We assume its axes are

,,, 110 −dxxx . The order numbers of the pyramids are assigned in Table 3. The

order number of pyramid is determined by its base. Fig. 2 shows a 3-D cube. The

pyramid with base 00 =x has an order number of 0, illustrated by 0p . Its opposite

pyramid is denoted by 3p .

Fig. 2. The order of pyramid. A 3-D cube. The bases 00 =x and 10 =x are assigned the
order number 0 and 3 respectively. Corresponding pyramids are denoted as 0p and 3p

0 3

x0

x1

x2

p 0

0 3

x0

x1

x2

p 0

390 J. An et al.

Table 3. The order of pyramids in d-D hypercube

Hyperplane order Order of pyramids

00 =x 0 0p

10 =x d dp

01 =x 1 1p

11 =x d+1 1+dp

01 =−dx d-1 1−dp

11 =−dx 2d-1 12 −dp

3.2 Constitution of Index Key

The index keys of all data are initialized with null. For a given data point, it must
belong to one pyramid. (If the data point is on the boundary of two or more pyramids,
its belongingness will be discussed in Section 4). When a hypercube is partitioned, the
order number of a pyramid is appended to the index key. The process is done recur-
sively. Fig. 3 shows how to constitute key in a 3-D cube. The given data point as-

sumed be in the pyramid 01 =x . First, the index key is initialized with null. Second,

since the data point belongs to the pyramid whose base is 01 =x , the order number

“1” (refer the Table 3) is appended to the index key as shown in subfigure (A). To
partition data space recursively, the data point is projected into the pyramid's base as
illustrated in the subfigure (B). The base is partitioned into 4 triangles. Since the data
point is in No. 3 triangle (described in Table 3), the index key becomes longer by add-
ing “3” as shown in subfigure (C). Finally, we assume the triangle is divided into 8
slices. The slice number “2” is appended into the data key. The total index key of the
given data point consists of “1”, “3”, “2” as shown in subfigure (D). It can easily be
combined to an integer, such as (1*4+3)*8+2=58. In this formula, the coefficients “4”
and “8” are total numbers of lines and slices shown in the subfigure (C), (D) respec-
tively. The index key is easy to be decoded and find which pyramids the data points
belong to. In general, the partitioning process can be described with the 2 steps below.

1. A d-D hypercube is partitioned into 2d pyramids, their tops are the center
points of the hypercube, and their bases are (d-1)-D hyperplanes.

2. Within one pyramid, we projected all data into its base. Step 1 is repeated
within the base of the pyramid. The base is also a hypercube. Its dimension is
(d-1). The base can be split into 2(d-1) pyramids as shown in step 1.

Along with more partition to be done, the index key becomes longer by appending
the order number of its pyramid. On the last partition, the slice number which the data
belongs to is appended to the index key. This algorithm is inspired by pyramid-tree
technique [5]. However, pyramid-tree only partitions the hyper cube only one time.

 A New Indexing Method for High Dimensional Dataset 391

Fig. 3. Construction of key. The data space is partitioned recursively, key of a data is composed
the order of bases of the pyramids which the data in

3.3 Range Search

By using the constitution of index key described in Section 3.2, the index values are
lined on one sequence. We can use classical index structure B+-tree to do range
search. Given a query range, we can calculate the pyramids overlapping with the
query range. If we denote a given d-D range as],[max0min0 XX ,],,[max1min1 XX ,

the method calculating the overlapping pyramids can be described using Fig. 4 as
below.

Fig. 4(A) shows the conditions of pyramid)0(dip i ≤≤ which overlap the query

range. The following formula describes the conditions:

)4(1

)3(

minmin

maxmin

ji

ji

XX

XX

−≤

≤

X0

X1

X2

The order of pyramid’s base is appended to data key

Data points

All data points in the pyramid are projected on the base

X0

X2

The order of triangle’s bottom is the appended to data key

Data points

The slice number is appended to the data key

key

Initalize with null

key

1

key

1 3

key

1 3 2

(A)

(B)

(C)

(D)

X0

X1

X2

The order of pyramid’s base is appended to data key

Data points

All data points in the pyramid are projected on the base

X0

X2

The order of triangle’s bottom is the appended to data key

Data points

The slice number is appended to the data key

key

Initalize with null

key

1

key

1 3

key

1 3 2

(A)

(B)

(C)

(D)

392 J. An et al.

Fig. 4. Finding overlapping pyramid. The pyramids overlapping with search range can be cal-
culated with the formula shown at below

As shown in subfigure (A) pyramid pi overlaps with query range. The Equation 3

and 4 are satisfied. For the other side of a pyramid)0(dip id ≤≤+ , as shown in

Fig. 4 (B). The condition of overlapping with query range can be explained using the
following formula.

)6(11

)5(1

minmax

maxmax

ji

ji

XX

XX

−≤−

≤−

The above computing process should be done recursively just like a computing in-
dex key. All pyramids overlapping with query range will be searched by using B+-tree
index structure. Fig. 5 illustrates the pyramids (or index keys) translated from a given
query range. The pyramids p0 and p2 do not overlap with query range. We can omit to
check their sub pyramids. After two partitions, we find kj pppp ′′′′′′ 10 overlap with

query range. We have to make search for these index keys. The more time partition,
the more index keys are needed to search. This is the reason that we can not do more
partition of hypercube, although the accuracy of index keys approve, when more
partition done.

Fig. 5. Translation from query range to index keys. The mark “X” means a pyramid does not
overlap with query range. In the second partition, only overlapping pyramids are checked
whether their sub pyramids overlap with query range or not

ip

……

…X X …
0p 2p1p

X X

First partition

Second partition

0p′ 1p′ jp′ 0p ′′ 1p ′′ kp ′′

ip

……

…X X …
0p 2p1p

X X

First partition

Second partition

0p′ 1p′ jp′ 0p ′′ 1p ′′ kp ′′

Xjmax

Ximin

1-Xjmin

Xi

Xj

minmin

maxmin

1 ji

ji

XX

XX

−≤

≤

minmax

maxmax

11

1

ji

ji

XX

XX

−≤−

≤−

Pi

(A)

Pd+i

Xjmax

1-Ximax

1-Xjmin

Xi

Xj

(B)

Xjmax

Ximin

1-Xjmin

Xi

Xj

minmin

maxmin

1 ji

ji

XX

XX

−≤

≤

minmax

maxmax

11

1

ji

ji

XX

XX

−≤−

≤−

Pi

(A)

Pd+i

Xjmax

1-Ximax

1-Xjmin

Xi

Xj

(B)

 A New Indexing Method for High Dimensional Dataset 393

4 Boundary of Pyramids Apportionment

A boundary of pyramids belongs to more than two pyramids. As an effective index
structure, it is necessary to apportion one boundary to only one pyramid. Moreover,
the boundary should be averagely apportioned. In the case of a 2-D square, there are 4
boundary lines which can be divided into 4 triangles, as shown in Fig. 6. For example,

the boundary line OA is apportioned into the triangle OAD∆ . OB ,OC , OD are

apportioned into OAB∆ , OBC∆ , ODC∆ respectively.

Fig. 6. Boundary lines apportion for a square

In the 3-D case, there are 6 pyramids. They intersected with 12 triangle planes as
shown in Fig. 2. These 12 boundary planes can be divided into the 6 pyramids by 2.
However, the problem is how to apportion line boundaries. There are 8 line bounda-
ries which can not be equally divided into 6 pyramids. One reasonable apportion is
distribute the 8 line boundaries 2, 2, 1, 1, 1, 1 into these pyramids.

When a data point is in a boundary of pyramids, a policy must be determined
which pyramid the data point should be included in. Similarly, when the query range
spans a boundary of pyramids, only one pyramid is considered. To solve the problem,
a concept radiant value is introduced in this paper as a criterion how to divide a
boundary to pyramids.

Fig. 7. Boundary graph. A boundary line in a 3-D Cube

A hyperplane (or line, vertex) boundary is the intersection of more than 2 pyra-
mids. If a data point is on a boundary, it is simple to compute which pyramids con-
struct the boundary by using Equation 2. A graph can be constructed for a boundary
as shown in Figure 7. It illustrates 6 pyramids of a cube. Every pyramid (p0,p1,...,p5) is
denoted as a point in the graph. Two pyramids which are connected by a line in Fig. 7
are intersected. For example, p1 and p2 intersected. It is assumed that the points are put

A B

CD

4

1

2

3
o

A B

CD

4

1

2

3
o

P1
P0

P2

P3 P4

P5

P1
P0

P2

P3 P4

P5

394 J. An et al.

in counter clockwise order. Figure 7 shows a boundary which is constructed by three
pyramids p1, p2, p3. Note that a boundary is shown a complete sub-graph in the bound-
ary graph. In principle, boundaries should be balanced distributed to pyramids. In
other words, all pyramids are apportioned an average number of boundaries. The
concept of radiant value defined by Definition 1 is used to determine a boundary
belongs to which pyramid.

Definition 1 The radiant value of a vertex p is a binary number. It is initialized with
null. All other points are traced in clockwise order and if a line is connected with p,
then 1 is appended. Otherwise, 0 is appended.

Therefore, for the boundary in Fig. 7, the point p0 has the radiant value “000111”.

The following steps express how to determine a pyramid for a boundary.

• The boundary graph is drawn and their radiant values of all points are computed.
• The data point is assigned to the pyramid having the least radiant value. If 2 or

more pyramids have the same smallest radiant value, the point having the smaller

subscript is chosen. For example, ji pp , have the same least radiant value, ip

is chosen, where ji ≤ .

In Fig. 7, point p0 has the smallest radiant value, so the boundary intersecting three
pyramids is distributed to pyramid p0.

5 Experimental Evaluation

To evaluate the effectiveness of the new surface index structure, a collection of range
queries for high dimensional dataset are performed. The surface spatial index struc-
ture is implemented based on GiST C++ Package [9] on GNU/Linux (Pentium-IV,
1GHz).

5.1 The Relation Between the Size of Candidate Set and CPU Time

Surface based index technique; include pyramid–tree which is a special case of our
method, filters out non-related data points for a similarity query. Smaller candidate set
is desirable. It is because that we have to consume I/O and CPU costs to refine every
candidate to get exact answers. If the data space (or hypercube) is partitioned more
times, the index keys are more accuracy and the candidate set becomes smaller. How-
ever, as mentioned Section 3.2, we have to make more queries as shown in Fig. 5.
That is a trade-off between accuracy of keys and query times.

We use a real dataset to show the trade-off. The real data is hue histogram exacted
from color images. The dimension is 8 and the size of dataset is 100,000. Query data
points were picked up from dataset randomly. The query range was set 1%. The more
query range returns too more answers, analogically, too small query range returns
only itself. The 1% query range returns about 10-100 answers which suggest mean-
ingful for similarity search.

Fig. 8 shows the number of candidates and CPU time according to three different
partitions. If we stop at the first partition, candidate set is bigger. We have to use more

 A New Indexing Method for High Dimensional Dataset 395

CPU time to refine candidates to get real answer. If we partition hypercube by 3
times, we have a small candidate set. However, too many pyramids overlapping with
query range. We must consume more CPU time in B+-tree. In the result, we found two
time partition is the best one for the real dataset. Its CPU time is the smallest as
shown in Fig. 8 (B).

CPU cost for 8-D data set

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 2 3

Partition times
el

ap
se

d
 t

im
e(

se
co

n
d

)

1

2

3

Fig. 8. The number of candidates and I/O cost for real data set

5.2 The Number of Page Access and CUP Time

To evaluate our index method on different dimensional space, we generate 15, 20, 25,
.., 85-D dataset. The data is normalized into)1,0[. Their sizes are 100,000. The query

ranges are 2% of the data space. This query range returns properly number of answer
10-50. The node size of B+-tree was set at 8K bytes. Similarity search range 1000 data
points were randomly selected.

Fig. 9. (A) The number of page access. (B) Range search time

Fig. 9(A) shows the relationship between the number of page accesses and the num-
ber of dimensions. Note that the pyramid-tree index is a special case when the
hypercube partition in “1 times”, its pyramid’s base is (d-1)-D hyperplane. From the
number of page access, we also found “partition 2 times” is the more effective than
others. Fig. 9(B) shows the search time in three spatial index structures. It is clear that,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

The number of Dimensions

P
ag

e
A

cc
es

s
P

ro
p

o
ti

o
n

(%
)

Pyramid

partition 2 times

partition 3 times

0

20

40

60

80

100

120

140

160

180

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

The number of Dimensions

C
P

U
 t

im
e(

se
co

n
d

)

Pyramid
partition 2 times
partition 3 times

(A) (B)

(A) (B)

Candates of 8-D data set

0
1000
2000
3000
4000
5000
6000

1 2 3

Partition times

T
h

e
n

u
m

b
er

 o
f

ca
n

d
id

at
es

396 J. An et al.

again, the patition-2-times method has the best performance, much better than “parti-
tion 1 time method” (i.e., the Pyramid trees). Fig. 9(B) shows the search time in three
spatial index structures. It is clear that, again, the “partition 2 times” is the best selec-
tion, much more effective than partition 1 time (i.e., the Pyramid trees).

6 Conclusions

In this paper, we have proposed a new index structure based on recursive partitioning
space. To break the curse of dimensionality, high dimensional data points are trans-
formed to 1-dimensional values. Therefore, classical index structures such as the B+-
tree can be adapted. By partitioning the space recursively, our approach overcomes
the restriction of 2d pyramids in the Pyramid-tree. More pyramids are partitioned and
the selection of key is improved. In future work, we will estimate the optimal number
of partitions required to construct an index structure considering data distribution.

Acknowledgments

The work reported in this paper was partially supported by the Australian Research
Council's Discovery Project Grants DP0344488 and DP0345710.

References

1. An, J., Chen, H., Furuse, K., Ishikawa, M., and Ohbo. N.: The convex polyhedra tech-
nique: An index structure for high-dimensional space. Proc. of the 13th Australasian Data-
base Conference (2002) 33-40.

2. An, J., Chen, H., Furuse, K., Ohbo. N.: CVA-file: An Index Structure for High-
Dimensional Datasets, Journal of knowledge and Information Systems. to appear.

3. Beyer, K. S., Goldstein, J., Ramakrishnan, R. and Shaft, U.: When Is "Nearest Neighbor"
Meaningful. When Is "Nearest Neighbor" Meaningful (1999) 217-235

4. Berchtold, S., Keim, D., Kriegel, H.-P. : The X-tree: An Index Structure for High-
Dimensional Data. 22nd Conf. on Very Large Database, 1996. Bombay, India, pp. 28-39.

5. Berchtold, S., Keim, D., Kriegel, H.-P.: The pyramid-Technique: Towards Breaking the
Curse of Dimensional Data Spaces. Proc. ACM SIGMOD Int. Conf. Managment of Data,
Seattle, 1998, pp. 142-153

6. Beckmann, N., Kriegel, P. H. Schneider, R., and Seeger, B.: The R*-tree: an efficient and
robust access method for points and rectangles. Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data (1990) 322-331.

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree:An Efficient Access Method for Similarity
Seach in Metric Spaces. Proc. 23rd Int. Conf. on Very Large Data Bases, Athens, Greece,
1997, pp. 426-435.

8. Guttman, A.: R-tree: a dynamic index structure for spatial searching. Proceedings of the
1984 ACM SIGMOD International Conference on Management of Data (1984) 47-57.

9. Hellerstein, J. M., Naughton, J. F., Pfefer, A.: Generalized search trees for database sys-
tems. Proc. of the 21th VLDB conference, Zurich, Switzerland, Sept. 1995, pp. 562-573.

 A New Indexing Method for High Dimensional Dataset 397

10. Katayama, N. and Satoh, S.: The SR-tree: An index structure for high-dimensional nearest
neighbour queries. Proceedings of the 1997 ACM SIGMOD International Conference on
Management of Data (1997) 369-380.

11. Ooi, B. C., Tan, K. L. Yu, C. and Bressan S.: Indexing the Edges - A Simple and Yet Effi-
cient Approach to High-Dimensional Indexing. PODS 2000: 166-174

12. Weber, R. Schek, J. H. and Blott, S.: A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. Proceedings of 24th International
Conference on Very Large Data Bases (1998) 194-205.

13. Zhang, R. Ooi, B. C. Tan, K. L.: Making the Pyramid Technique Robust to Query Types
and Workloads. ICDE 2004: 313-324

BM+-Tree: A Hyperplane-Based Index Method
for High-Dimensional Metric Spaces

Xiangmin Zhou1, Guoren Wang1, Xiaofang Zhou2, and Ge Yu1

1College of Information Science and Engineering,
Northeastern University, China

2School of Information Technology & Electrical Engineering,
University of Queensland, Australia

Abstract. In this paper, we propose a novel high-dimensional index
method, the BM+-tree, to support efficient processing of similarity search
queries in high-dimensional spaces. The main idea of the proposed index
is to improve data partitioning efficiency in a high-dimensional space by
using a rotary binary hyperplane, which further partitions a subspace
and can also take advantage of the twin node concept used in the M+-
tree. Compared with the key dimension concept in the M+-tree, the bi-
nary hyperplane is more effective in data filtering. High space utilization
is achieved by dynamically performing data reallocation between twin
nodes. In addition, a post processing step is used after index building to
ensure effective filtration. Experimental results using two types of real
data sets illustrate a significantly improved filtering efficiency.

Keywords: Similarity search, Multidimensional index, Binary hyper-
plane, Range query, K-NN query.

1 Introduction

With the rapidly growth of various types of multimedia information, the need
for fast processing of content-based similarity search queries in large databases
has increased dramatically, and will increase at a much faster pace in the future.
Since retrieving multidimensional data always incurs very high, and sometimes
prohibitively high, costs for large datasets, the search for effective index struc-
tures to support high dimensional similarity query has been at the frontiers of
database research in the last decade[13]. Most efficient multidimensional indexing
structures originated from managing low-dimensional geographical data (such as
R-tree and it variants[1, 2, 3, 4]) are not efficient in managing high dimensional
data.

The approach supporting multidimensional similarity search can be classi-
fied into two categories: position-based indexes and metric-based indexes. The
R-tree and its variants are representatives of the former, which deal with the
relative positions in a vector space. The second type of indexes, on the other

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 398–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

BM+-Tree: A Hyperplane-Based Index Method 399

side, include the VP-tree[5], the MVP-tree[7], the M-tree[6, 8], and its optimized
indexes[9, 10, 11]. These indexes manage the data based on the relative distances
between objects. Among the metric-based indexes, VP-tree is the first hierar-
chical index structure which supports similarity search by utilizing the relative
distance between objects and triangular inequality. It is of great significance
for reducing the cost of similarity search. However, the query performance of
VP-tree is severely suffered from a large quantity of distance calculation due
to the small fanout (thus a very tall index tree). It should be pointed out that
distance calculation in this type of application is typically very complex and
CPU intensive. The MVP-tree is proposed to overcome these problems, by in-
troducing multiple vantage points instead one. This idea significantly lowered its
height. Both the VP-tree and the MVP-tree are constructed in a top-down way.
That means they cannot support insertion and deletion of data once the index
is created.

The M-tree represents a significant step forward, and is representative of
metric-based indexes. It is a paged and balanced tree which adopts the bottom-
up construction strategy with node promotion and split mechanisms. Therefore,
it is suitable as a secondary storage index structure and can handle data up-
dates gracefully without reconstructing the whole index when a media object
is inserted or deleted. The M-tree is also the first one to recognize the high
cost of distance calculation, and most distances are pre-computed and stored in
the index tree, thus query-time distance calculation can be avoided. The large
extent of subspace overlapping among M-tree sibling nodes, however, is a notice-
able problem. Different from other high dimensional indexes, the M+-tree has
subspace overlapping minimization and tree height minimization as its aim. It
improves the M-tree from the following points: (1) the concept of key dimen-
sion is proposed to eliminate the overlapping between twin nodes and to reduce
the overlapping across subspaces; (2) the concept of twin nodes are introduced
to lower the height of tree; (3) the idea of key dimension shift is proposed to
achieve optimal space partitioning; and (4) a brand new idea of associating an
index entry with twin subtrees for more efficient filtering during search.

This paper proposes a binary M+-tree, called BM+-tree, which improves the
data partitioning method used in the M-tree. Like M-tree, BM+-tree is a dynami-
cally paged and balanced index tree. It inherits the node promotion mechanism,
triangle inequality and the branch and bound search techniques from M-tree.
BM+-tree also fully utilizes the further filtering idea as used in M+-tree. How-
ever, BM+-tree uses a rotatable binary hyperplane, instead of a key dimension,
to further partition the twin subspaces and to perform filtration between them.
This novel idea, as we shall discuss in this paper, can improve the query pro-
cessing performance significantly comparing to M-tree and M+-tree.

The rest of the paper is organized as follows. In Section 2, we give some
definitions for similarity searches. Section 3 introduces a new partition strategy.
We describe BM+-tree in Section 4, including its key techniques and algorithms.
Section 5 presents performance evaluations. Section 6 concludes this paper.

400 X. Zhou et al.

2 Similarity Queries

In this section, we follow the conventions used in [8] and give basic definitions
related to the BM+-tree, including r-neighbor search, k-nearest neighbor search.

R-neighbor search and k-nearest neighbour search are two basic types of
similarity queries. Commonly, the former is to obtain all objects within certain
distance from the query object, while the latter is to find k objects which have
the minimum distances to a given query object. They can be defined as follows.

Definition 1. r-neighbor search. Given a query object q ∈ O and a non-negative
query radius r, the r-neighbor search of q is to retrieve all the objects o ∈ O
such that d(q, o) ≤ r.

Definition 2. k-nearest neighbor search. Given a query object q ∈ O and an
integer k ≥ 1, the k-NN query is to retrieve k objects from O with the shortest
distances from q.

The purpose of indexing a data space is to provide an efficient support for
retrieving objects similar to a reference (query) object (for r-neighbor search
or k-NN search). Here, for a given query, our main objective is to minimize
the number of distance calculations, I/O operations and priority queue accesses,
which are usually very expensive for many applications.

3 Data Partitioning Using Binary Hyperplane

The Strategy of data partitioning using binary hyperplanes is the main idea of
BM+-tree. This section will introduce this technique, including how to choose
the binary hyperplanes, how to use the binary hyperplanes for data partitioning,
and how to use the binary hyperplanes for filtering during the search process.

3.1 Construction of Binary Hyperplanes

Generally speaking, because of different data distributions, different dimensions
carry a different weight in distance computation. Based on this fact, M+-tree
partitions a subspace into twin subspaces according to the selected key dimension
which is the dimension that affects distance computation most. Different from
M+-tree, BM+-tree uses a binary hyperplane to partition a subspace into twin
subspaces. The binary hyperplane idea extends the (single) key dimension con-
cept of the M+-tree to make use of two key dimensions. This new data partition
strategy is mainly based on the following observation.

Observation 1. For most applications, except for the first key dimension, there
is commonly another dimension which may also contains a large quantity of in-
formation. Cancelling the second dimension would cause great loss of informa-
tion. Just as in the process of dimensionality reduction, we usually maintain the
first few dimensions, instead of just the first one. Therefore, when performing
further data partitioning, it is advisable to keep two dimensions that have maxi-
mal value variances and construct a binary hyperplane by using two dimensions.

BM+-Tree: A Hyperplane-Based Index Method 401

X

Y

X1

Fig. 1. A sample of data distribution

Figure 1 gives an example set of data (the shaded area). Obviously, the
extent of objects along x1 is longer than that along x (which is in turn longer
than that along y). The key dimension based data partitioning will divide data
along x dimension. It is clear that much more information can be obtained if the
partitioning is done using a binary hyperplane vertical to x1.

The selection of a hyperplane has to conform to the following rules in order
to achieve optimal data partitioning, i.e., trying to keep the objects having the
minimal distances in the same subspace while minimizing the overlap between
twin subspaces. In the process of binary hyperplane construction, the selection
of two key dimensions and the decision of the coefficients of them are the two
major issues. We consider two binary hyperplane construction strategies: m-
RAD-2 based strategy and max-distance based strategy. The former is based on
the fact that in the M-tree the query performance of index is optimal when it
adopts the m-RAD-2 partitioning strategy. This strategy ensures the maximum
of the radii of the two subspaces split minimal. The latter one, on the other
side, is based on our observation that the distances between objects along the
max-distance dimension can usually keep maximal quantity of information.

The BM+-tree adopts the following steps to determine the hyperplane:

1. Choose two reference points in the following way. Use the center points of the
two subspaces according to the m-RAD-2 partition strategy [8], and when
these two points have the same feature value, one can compute the distances
among objects in the subset, and choose two points from the subset such
that the distance between the selected points is the maximal;

2. Compute the distance along each dimension between these two points; and
3. Choose two dimensions which have the biggest absolute values as the key

dimensions, and consider the differences between the two center points of
the two key dimensions as the coefficients of them respectively.

3.2 Binary Hyperplane Based Further Data Partition

Data partition strategy is one of the most important issues which directly affect
the performance of indexes. Before introducing the binary hyperplane based data
partitioning, we need to introduce another concept.

Definition 3. Twin nodes. In the M+-tree and the BM+-tree, an internal entry
has two pointers pointing to two subtrees. These two subtrees are called twin
subtrees, and the roots of the twin subtrees are called twin nodes.

In Figure 2 (a) and (b), subspaces 1 and 2 correspond to the twin nodes of
the tree. Figures 2(a), (b) and (c) show the data partitioning of the BM+-tree,

402 X. Zhou et al.

(a) (b) (c)

1

2

1

2

Fig. 2. Data partitioning for BM+-tree, M+-tree and M-tree

the M+-tree and the M-tree respectively. The M-tree adopts distance-based data
partition strategy which partitions a data space into two subspaces according
to the distances between objects. Among the proposed partitioning methods in
the M-tree, partitioning by m-RAD-2 is proved to be the best. The M+-tree
improves the data partition methods of the M-tree by adopting two steps data
partition strategy, i.e., partitioning with m-RAD-2 way proposed in the M-tree
first and then further partitioning the two subspaces into two pairs of twin nodes
according to the selected key dimensions (which can be different for different
subspaces). The twin nodes are expressed through two boundary values of a key
dimension which are the maximal key dimension value of the left twin space and
the minimal key dimension value of the right twin space.

The BM+-tree also adopts two steps data partition strategy. Different to the
M+-tree, it uses a rotatable binary hyperplane rather than the key dimension to
further partition the twin subspaces, i.e. the binary hyperplane can be different
for the two data spaces and the direction of it can change according to the data
distribution in the data subspace considered. The binary hyperplane construction
strategy proposed in this paper ensures the binary hyperplane rotatable, deciding
the key dimensions and coefficients of them according to the data distribution
of a subspace. That is, the key dimensions and their coefficients are not fixed,
but modifiable in the whole data space.

The data partitioning strategy in the BM+-tree can be described as follows:
(1) the twin spaces are regarded together as a whole space and then it is parti-
tioned with the m-RAD-2 way, as in the M-tree. As a result, two new sub-spaces
are produced; and (2) each subspace is further partitioned into twin sub-spaces
according to the selected binary hyperplane.

Figure 2 shows that to achieve the same level of data grouping, the M-tree
needs three levels of partitioning, while the BM+-tree and the M+-tree only
need two levels. Meanwhile, it is obvious that the data partition strategy in the
BM+-tree has the better clustering effect. The distance between objects along
the data partitioning direction of the BM+-tree is much bigger than that of the
M+-tree. This figure gives the intuition that the binary hyperplane based data
partitioning can keep much more distance information.

3.3 Data Filtering Using Binary Hyperplanes

The filtering using binary hyperplanes is carried out on the basis of distance from
an object to a hyperplane and the triangular inequality property. Comparing the
cost of calculating the distance between two points in multidimensional space,

BM+-Tree: A Hyperplane-Based Index Method 403

the cost of computing the distance to a binary hyperplane is quite trifling. Some
inactive subtrees can be filtered out according to the hyperplanes, thus avoiding
some distance calculations. The process of filtering by binary hyperplane is not
complex. We sketch the process below.

Let Nl and Nr be twin nodes, k1 and k2 be the key dimensions of the subspace,
C1 and C2 be the coefficients of hyperplane in k1 and k2 dimensions respectively.
Let Lmax and Rmin be the maximal value of the binary hyperplane for the
left node and the minimal value of that for the right node respectively. Let
C =

√
C2

1 + C2
2 . Then the hyperplane of this subspace is as equation (1)

Xk1 ∗ C1 + Xk2 ∗ C2 = HP (1)

Then, for the left part, HP is equal to Lmax. While for the right, HP is Rmin.
Suppose that the n dimensional query object is O(x1 · · ·xn) and the search

radius is r. Then, the distance from O to the left and right binary boundary
hyperplanes can be expressed as (2)(a) and (b) respectively.

dL = |HP − Lmax|/C (a) dR = |HP −Rmin|/C (b) (2)

For the filtering process, if HP ≥ Lmax, the query object is outside the area
of the left; thus it is possible to filter out the left. Likewise, if HP ≤ Rmin, the
right can be filtered out. Therefore, we only consider the following case.

d
′
L = (HP − Lmax)/C (a) d

′
R = (Rmin −HP)/C (b) (3)

If d
′
L ≥ r, the left node does not contain any query results, and can be pruned.

Likewise, if d
′
R ≥ r, the right can be filtered out. Obviously, the cost to compute

d
′
L or d

′
R is much less than computing the distance in the high dimensional space.

It is similar to process k-NN following the filtering discussions above.

4 BM+-Tree

There are two types of node objects in a BM+-tree: routing objects and leaf
objects. Each leaf entry has the the same structure as that of M-tree. A routing
object includes the following parts: the feature value of the routing object Or;
the covering radius of Or, r(Or); the distance of Or to its parent, d(Or, P (Or);
an array DNO which contains two key dimension numbers; another array C
containing the coefficients corresponding to the two key dimension numbers re-
spectively; the pointers lTwinPtr to the left twin sub-tree, and rTwinPtr to
the right twin; the maximal value of binary hyperplane in the left twin sub-tree
Mlmax and the minimal value of binary hyperplane in the right Mrmin.

4.1 Building the BM+-Tree

To insert an object into BM+-tree, the appropriate node should be found first by
performing the subtree choosing algorithm . If the node is not full, the object can

404 X. Zhou et al.

be inserted directly. If one of the twin nodes is full, the entries will be reallocated
between the twins. If the twins are both full, they will be considered as a whole
and split by performing distance based splitting and binary hyperplane splitting.

When a new node is inserted, how to choose this appropriate node is vital for
the performance of the index. The subtree selection follows the optimal principal:
(1) Choosing the node of which the distance from query object to routing object
is minimal if the covering radius of the subtree need not increase; (2) Choosing
the subtree of which the covering radius increases most slightly, if no subtree
can keep the same when an object is inserted; and (3)Trying to keep the gap
between twins maximal while the subtree choosing between them are performed.

BM+-tree grows in a bottom-up way by adopting a bottom-up split strategy.
It shares the promotion strategy with M-tree and adopts a two-steps split strat-
egy: first, splitting using the m-RAD-2 strategy; and second, splitting by the
binary hyperplane. In the node splitting, the BM+-tree adopts two strategies
to choose binary hyperplane: (1) m-RAD-2 based binary hyperplane choosing
strategy; and (2) Max-Distance based binary hyperplane choosing strategy.

Split(entry(On), PEntry)
1 Let S be a set, Np be the parent node
2 S←entries(PEntry→lTNode)

⋃
entries(PEntry→ rTNode)

⋃
entry(On)

3 Reallocate a new node N
′

4 PromoteEntriesAndPartitionByDist
5 ChooseBHAndPartitionByHyperplane
6 if Np is not a root
7 then switch
8 case TwinsOf(Np) full : Split
9 case Np is not full : InsertIntoParentNode

10 case DEFAULT : ReallocateTheTwins
11 else if Np is full
12 then SplitRootByBHyperplane
13 else InsertIntoParentNode

ChooseBinaryHyperplane(D1NO, D2NO, C1, C2)
1 GetTwoObjectsBymMRad
2 GetTwoMaxDiffByComputingAndSorting
3 if Diff [0] == Diff [1]
4 then GetTwoObjectsByMaxDistance
5 GetTwoMaxDiffByComputingAndSorting
6 SetMaxDimNoAndCoefToThem;

4.2 Query Processing

BM+−tree supports two types of similarity search: r-range search and k-NN
search.The range search starts from the root of the BM+−tree and implements
the process recursively until the leaf of the tree, and keeps all matching objects.

BM+-Tree: A Hyperplane-Based Index Method 405

For a certain request, in non-leaf nodes, range search needs to perform two
steps filtering. First, filtering according to the distances between objects among
sibling nodes; and Second, filtering according to the binary hyperplane between
twin nodes. For leave nodes, a two-steps filtering operations is used. The whole
process is similar to that used by M+−tree. But it is different from the M+−tree
for filtering according to a binary hyperplane instead of a key dimension.

For k-NN search, BM+-tree uses PR, a priority queue that contains pointers to
active sub-trees, and NN, an array used to store the final search results.The BM+-
tree uses a heuristic criteria to select the priority node to access the priority queue
and choose the next sub-tree to search. In this process, the binary hyperplane
based filtering is used to reduce the I/O access and queue access of index. Due to
our more effective data partitioning strategy, a binary hyperplane can be more
discriminative than a key dimension.

The k-NN search using the BM+-tree can be carried out according to the
following steps: (1) keeping the root in the priority queue, PR, and the maximal
distance in array NN; (2) choosing a priority node from PR; (3) searching the
active subtree in the priority node. Here, the active subtree choosing follows (a)
for a internal node, deciding the active subtree; (b) deciding when to update
the result array NN; and (c)for a leaf node, deciding the matching objects; (4)
repeating the subtree choosing process until the minimal distance of objects in
PR from q is greater than NN[k-1] or PR is null. At the end of this query process,
all pointers in PR will be removed and NN will be returned.

5 Performance Evaluation

This sectionpresents an empirical study to evaluate the performance of BM+−tree.
Extensive experiments are conducted to compare the BM+−tree with other com-
petitors, including M-tree and M+−tree. Our objectives of this study are:

(1) to study the scalability with number of dimensions;
(2) to evaluate the scalability with dataset sizes;
(3) to study the relative performance with the M-tree and the M+-tree.

We use two types of real datasets: color histogram and color layout.

(1) The color histogram dataset contains vectors of Fourier coefficients of a set
of images. We choose 10 sets of data with the dimensionality from 4 to 40;

(2) The color layout dataset comprises of color layout features from 20,000 im-
ages, which are 12-d data obtained by MPEG-7 feature extraction tool.

All the experiments were tested on a Pentinum IV 2.5GHz PC with 256MB
of memory. All data are stored in an object database system XBase [12].

5.1 Effect of the Dimensionality

We performed experiments to evaluate the impact of dimensionality and com-
pare the performance of BM+-tree and that of M+-tree. The experiments were

406 X. Zhou et al.

0

20

40

60

80

100

120

140

160

180

4 8 12 16 20 24 28 32 36 40

Number of Dimensions(a)

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M+

BM+

0

2

4

6

8

10

12

4 8 12 16 20 24 28 32 36 40

Number of Dimensions(b)

D
i
s
t
a
n
c
e

C
a
l
c
u
l
a
t
i
o
n
(
k
)

M+

BM+

0

5

10

15

20

25

30

4 8 12 16 20 24 28 32 36 40

Number of Dimensions(c)

N
u
m
b
e
r

o
f

I
O
(
*
1
0
0
)

M+

BM+

0

2

4

6

8

10

12

14

16

18

4 8 12 16 20 24 28 32 36 40

Number of Dimensions(d)

Q
u
e
u
e

A
c
c
e
s
s
(
*
1
0
0
)

M+

BM+

Fig. 3. The effect of dimensionality

performed on the 4 to 40-d histogram data, and the size of dataset is 20,000.
As mentioned in M+-tree[11], the number of queue accesses is also a key fac-
tor which affects the performance of k-NN search for these trees. Therefore, the
performance is measured by (1) the response time of a query; (2) the average
number of distance calculations required to execute the query; (3) the average
number of disk accesses for the query; and (4) the average number of queue
accesses. The query is to find 10 nearest neighbors of the query object.

Figure (3) shows the performance of BM+-tree comparing with that of M+-
tree. It is obvious that BM+-tree responses more quickly than M+-tree irrespec-
tive of the varying of dimensionality, and BM+-tree outperforms M+-tree by up
to 35% . While the number of I/Os, distance calculations and queue accesses
for BM+-tree and M+-tree also increase with increasing number of dimensions,
those of BM+-tree are growing at a much slower rate. BM+-tree outperforms
M+-tree since the rotary binary hyperplane in BM+-tree has a stronger filtering
ability comparing against the key dimension in M+-tree; consequently, some of
sub-queries can be pruned and its search space covers fewer points. Moreover,
Figure(3)(b) also shows the fact that, when the dimensionality is high enough,
the number of distance calculations keeps steady irrespective of further increas-
ing of dimensionality for a query has to scan the whole index for both of them.

5.2 Effect of Data Sizes

Now we compare the performance of the M+-tree and the BM+-tree with varying
dataset sizes. The dataset size of the 10-d color histogram data was set from
10,000 to 90,000. Figure (4) shows the results.

From Figure (4), we can see that both the BM+-tree and the M+-tree incurred
higher I/O cost and CPU cost with increasing data set sizes. As before, the
performance of the BM+-tree degrades much slower than that of the M+-tree,
and the BM+-tree remains superior over the M+-tree. Noticeably, compared

BM+-Tree: A Hyperplane-Based Index Method 407

0

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50 60 70 80 90

Size of DataSet(k)(a)

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M+

BM+

0

2

4

6
8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90

Size of DataSet(k)(b)

D
i
s
t
a
n
c
e

C
a
l
c
u
l
a
t
i
o
n
(
k
)

M+

BM+

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90

Size of DataSet(k)(c)

N
u
m
b
e
r

o
f

I
O
(
*
1
0
0
)

M+

BM+

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90

Size of DataSet(k)(d)

Q
u
e
u
e

A
c
c
e
s
s
(
*
1
0
0
)

M+

BM+

Fig. 4. The effect of dataset sizes

with the M+-tree, The BM+-tree saves a large number of distance calculations,
I/Os and queue accesses, which combined improve the query performance. This
improvement based on using the BM+-tree originates from the stronger filtering
ability of the rotary binary hyperplane, thus the number of IO can be reduced
greatly. As a result, despite that, for a single operation, the comparison between
binary hyperplane is a little bit slower than that of key dimension, the BM+-tree
still responses more quickly up to 40% than the M+-tree for a k-NN search.

5.3 Comparison with M+-Tree and M-Tree

Next we examine the experiments to compare the k-NN search and range search
using the BM+-tree, the M-tree and the M+-tree by using a 12-d real dataset

2

3

4

5

6

10 20 30 40 50

Number of Retrieved Objects(b)

D
i
s
t
a
n
c
e

C
a
l
c
u
l
a
t
i
o
n
(
k
)

M+

BM+

M

5

6

7

8

10 20 30 40 50

Number of Retrieved Objects(c)

N
u
m
b
e
r

o
f

I
O
(
k
)

M+
BM+
M

3

4

5

6

7

8

9

10

10 20 30 40 50

Number of Retrieved Objects(d)

Q
u
e
u
e

A
c
c
e
s
s
(
*
1
0
0
) M+

BM+
M

15

25

35

45

10 20 30 40 50

Number of Retrieved Objects(a)

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

M+
BM+
M

Fig. 5. k-NN search using BM+-tree, M+-tree and M-tree

408 X. Zhou et al.

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2 0.25

Range Search Radius(a)

D
i
s
t
a
n
c
e

C
a
l
c
u
l
a
t
i
o
n
(
k
)

M+

BM+

M

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25

Range Search Radius(b)

N
u
m
b
e
r

o
f

I
O
(
k
) M+

BM+

M

Fig. 6. Range search using BM+-tree, M+-tree and M-tree

which consists of the color layout information of 20,000 images. Figure (5) shows
the results. First, we can see that, from the response time, for k-NN search, the
BM+-tree performs the best, with the M+-tree following it, and the M-tree per-
forms significantly worse than the other two. Second, from distance calculations
and queue access, the BM+-tree outperforms its competitors to different extent,
followed by the M+-tree which is superior than the M-tree remarkably. Third,
we note that the BM+-tree and the M+-tree need more I/O than the M-tree
due to the heuristic criteria used in k-NN search to select the priority node to
access the priority queue and choose the next sub-tree to search. The heuristic
criteria set the search radius from maximal value, which leads to inferior filtering
effect for both of them. Since the filtering ability of binary hyperplane degrades
to a lower extent than that of key dimension, the BM+-tree needs fewer I/O
when comparing against the M+-tree. All factors considered, the BM+-tree out-
performs the M+-tree. For the M-tree, although it needs fewer I/O operations,
while taking other decisive factors into account, the BM+-tree saves up to 30%
of distance calculations and half of the queue accesses, thus have much better
query performance which is shown on Figure(5)(a).

Figure (6) shows the performance of the BM+-tree, the M+-tree and the
M-tree for range search. From this figure, we can see that, comparing with the
M+-tree, the BM+-tree saves about 20% of I/Os while only 5% of distance
calculation. Compared with the M-tree, the BM+-tree needs much less distance
calculations, even a quarter of that for M-tree, while the slight improvement of
I/Os. In additon, with the increase of search radius, the filtering ability of key
dimension degrades rapidly, thus the number of I/Os needed by the M+-tree
increases noticeably and exceeds that of the M-tree. The BM+-tree remains the
least of I/Os for the stronger filtering ability of binary hyperplane. Therefore,
the BM+-tree always outperforms the M+-tree and the M-tree taking the I/O
and distance computation into account. The superiority of the BM+-tree is clear.

6 Conclusions

In this paper, we have proposed an improved high dimensional indexing method,
the BM+-tree, which is a dynamically paged and balanced metric tree. This
index method partitions a subspace into two non-overlapping twin subspaces
by utilizing two binary hyperplanes. An optimized method has been proposed

BM+-Tree: A Hyperplane-Based Index Method 409

for choosing binary hyperplanes for data partitioning. We have also given the
algorithms to use the BM+-tree based on rotary binary hyperplanes to perform
effective filtering between twin nodes.

Experimental results obtained from using the two types of real datasets show
that the BM+-tree has a significantly better query processing performance. Com-
paring with the M-tree, the query efficiency has been improved by more than
30% on average, and up to 10 times in some cases. Comparing with the M+-
tree, the BM+-tree reduces about 10-20% of I/O operations, about 5% distance
calculations, and about 20% of queue access for K-NN search queries.

Acknowledgment. This research was supported by the National Natural Sci-
ence Foundation of China (Grant No. 60273079 and 60473074), the Foundation
for University Key Teacher and the Teaching and Research Award Program for
Outstanding Young Teachers in High Education Institution of Chinese Ministry
of Education, and the Australian Research Council (Grant No. DP0345710).

References

1. N. Berkmann, H.-P. Krigel. R. Schneider, and B. Seeger. (1990) “The R∗-tree: an
Efficient and Robust Access Method for Points and Rectangles” ACM SIGMOD
90, pages 322-331.

2. N. Katayama and S. Satoh. (1997) “The SR-tree: an Index Structure for High-
dimensional Nearest Neighbor Queries ACM SIGMOD 97, pages 369-380.

3. D. A. White and R. Jain.(1996) “Similarity Indexing with the SS-tree” ICDE 96,
pages 516-523.

4. K.-I. Lin, H. V. Jagadish, and C. Faloutsos. (1994)“The TV-tree: An Index Struc-
ture for High-Dimensional Data” VLDB Journal, Vol. 3, No. 4, pages 517-542.

5. J. K. Uhlmann.(1991) “Satisfying General Proximity/ Similarity Queries with Met-
ric Trees”, Information Processing Letters, vol 40, pages 175-179.

6. P. Zezula, P. Ciaccia, and F. Rabitti.(1996) “M-tree: A Dynamic Index for Simi-
larity Queries in Multimedia Databases” TR 7, HERMES ESPRIT LTR Project.

7. T. Bozkaya, M. Ozsoyoglu.(1997) “Distance-based Indexing for High-dimensional
Metric Spaces” ACM SIGMOD 97, page 357-368.

8. P. Ciaccia, M. Patella, P. Zezula.(1997) “M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces” VLDB 97, Greece.

9. M. Ishikawa, H. chen, K. Furuse, J. X. Yu, N. Ohbo (2000) “MB+tree: a Dynami-
cally Updatable Metric Index for Similarity Search” WAIM 2000, page 356-366.

10. C. Traina Jr, A. Traina, B. Seeger, C. Faloutsos (2000) “Slim-trees: High Per-
formance Metric Trees Minimizing Overlap Between Nodes. EDBT 2000, pages
51-65.

11. X. Zhou, G. Wang, J. X. Yu, G. Yu (2003) “M+-tree: A New Dynamical Multidi-
mensional Index for Metric Spaces” Proc of 14th Australasian Database Conference
(ADC2003), pages 161-168.

12. G. Wang, H. Lu, G. Yu, Y. Bao (2003). “Managing Very Large Document Col-
lections Using Semantics.” Journal of Computer Science and Technology, 18(3):
403-406.

13. C. Böhm, S. Berchtold, D. A. Keim (2002), “High-dimensional Spaces - Index
Structures for Improving the Performance of Multimedia Databases”. ACM Com-
puting Surveys, 2002.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 410 – 421, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Approaching the Efficient Frontier: Cooperative
Database Retrieval Using High-Dimensional Skylines

Wolf-Tilo Balke1, Jason Xin Zheng1, and Ulrich Güntzer2

1 Electrical Engineering & Computer Science,
University of California, Berkeley, CA 94720, USA
{balke, xzheng}@eecs.berkeley.edu

2 Institut für Informatik,
Universität Tübingen, 72076 Tübingen, Germany

guentzer@informatik.uni-tuebingen.de

Abstract. Cooperative database retrieval is a challenging problem: top k re-
trieval delivers manageable results only when a suitable compensation function
(e.g. a weighted mean) is explicitly given. On the other hand skyline queries of-
fer intuitive querying to users, but result set sizes grow exponentially and hence
can easily exceed manageable levels. We show how to combine the advantages
of skyline queries and top k retrieval in an interactive query processing scheme
using user feedback on a manageable, representative sample of the skyline set
to derive most adequate weightings for subsequent focused top k retrieval.
Hence, each user’s information needs are conveniently and intuitively obtained,
and only a limited set of best matching objects is returned. We will demonstrate
our scheme’s efficient performance, manageable result sizes, and representa-
tiveness of the skyline. We will also show how to effectively estimate users’
compensation functions using their feedback. Our approach thus paves the way
to intuitive and efficient cooperative retrieval with vague query predicates.

1 Introduction

In today’s information systems instead of just retrieving all objects from databases
that exactly match a user’s query, often a set of objects best matching a set of query
predicates has to be retrieved. To cater for this retrieval model, objects in the underly-
ing database(s) are assigned a degree of match with respect to each ‘soft’ query predi-
cate. Based on this paradigm cooperative information systems retrieve best compro-
mises between (often mutually unsatisfiable) user needs by gradually relaxing soft
constraints, where traditional SQL-based systems would just return empty result sets.
Thus cooperative systems can even efficiently process overspecified queries and a
tedious manual query refinement process is avoided. Consider a short example:

Example: A researcher from the Bay Area is planning a conference trip to New York.
The basic ‘hard’ constraints for the trip are given by the dates and location of the
conference. All necessary characteristics for e.g. booking a suitable flight can be
evaluated relative to these constraints. For instance the flight has to arrive before the
conference starts, but preferably close to the start date. Similarly the flight has to

 Approaching the Efficient Frontier: Cooperative Database Retrieval 411

depart from a Bay Area airport and arrive in or at least close to New York. Usually
the price should be minimized. Thus we have a mix of hard and soft constraints.

Retrieving best matches for such requests containing vague predicates is difficult:
top k retrieval techniques efficiently answer vague queries, if adequate weightings of
a compensation function (the ‘utility function’) are specified. However, expressing
preferences by numerical weightings is neither intuitive, nor sensible without know-
ing the relationships between query predicates as reflected by the underlying database
instance. In contrast skyline queries do offer intuitive querying by just specifying a
user’s basic query predicates, not exact weightings. Still, skylines guarantee to deliver
all best objects with respect to all query predicates. But this advantage comes at a
price: skyline sizes are known to grow exponentially with the number of query predi-
cates and thus can exceed manageable levels already for fairly simple queries.

In this paper we propose to combine the advantages of intuitive skyline queries and
manageable top k answer sets for cooperative retrieval systems by introducing an
interactive feedback step presenting a representative sample of the (high-dimensional)
skyline to users and evaluating their feedback to derive adequate weightings for sub-
sequent focused top k retrieval. Hence, each user’s information needs are conven-
iently and intuitively obtained, and only a limited set of best matching objects is re-
trieved. However, the huge size of skyline sets and the necessary time for their calcu-
lation remains an obstacle to efficient sampling for getting user feedback. Therefore
we propose a novel sampling scheme to give users a first impression of the optimal
objects in the database that is representative of the skyline set, manageable in size
and efficient to compute, without computing the actual skyline. We will prove these
characteristics and show how to subsequently estimate a user’s compensation func-
tions by evaluating feedback on objects in the sample. Our innovative approach prom-
ises to overcome the drawbacks of today’s cooperative retrieval systems by utilizing
the positive aspects of skyline queries in databases efficiently for the first time.

2 Intuitive Querying Versus Manageable Results

Cooperative retrieval systems generally feature a query model that allows the combi-
nation of ‘hard’ constraints and ‘soft’ constraints like shown in e.g. [14]. Since hard
constraints can be quite efficiently evaluated using SQL, our sampling scheme will
focus on the processing of soft constraints only. We will use a numerical query
model, where each soft predicate of the query is evaluated by assigning a score in [0,
1] to each database object expressing the objects degree of match with respect to the
predicate. Database objects can thus be understood as points in [0, 1]n with n as the
number of soft constraints in a query. We assume that attribute values for soft predi-
cates can always be mapped to numerical scores. For instance for our traveling re-
searcher a flight’s arrival time/date can be scored using the relative difference to the
conference start, centered around the best possible arrival time. The choice of an air-
port in the Bay Area can similarly either be achieved by e.g. using the relative dis-
tance to our traveler’s home for direct scoring, or assigning relative scores for an
explicit statement of our traveler’s preference as shown in [14].

412 W.-T. Balke, J.X. Zheng, and U. Güntzer

2.1 Related Work in Cooperative Retrieval

The idea of extending exact-match querying frameworks by cooperative retrieval is
generally based on the principle of query relaxation (see e.g. [13]). The idea of coop-
eration arises naturally due to necessary tedious query refinements in the case of
empty result sets (overspecified query) or a flood of result objects (under-specified
queries). Research focuses on two paradigms: Top k retrieval and skyline queries.

By aggregating all predicate scores with a single compensation function, top k re-
trieval (see e.g. [9], [7], and [5]) provides a simple, direct way to cooperative re-
trieval. Generally any monotonic function (like an average or weighted sum) to ag-
gregate the basic scores into a single value (often called utility) can be used. The basic
idea is to compensate between different aspects of objects, i.e. a good object in one
predicate can afford to be worse in another. Thus objects become comparable by their
respective utility to the individual user and the k best matching objects can be re-
turned. However, expressing information needs a-priori as compensation functions is
usually not very intuitive leading to a limited effectiveness of top k retrieval.

Skyline queries present a more intuitive paradigm: users only specify all important
predicates for a query. The skyline then is the set of all objects that are not dominated
with respect to all dimensions. This notion is well known in economical applications
as Pareto-optimality and several basic algorithms for skylining in databases have been
proposed, see e.g. [4], [421], or [1]. The exponential growth of skyline sets with the
number of query predicates, however, limits the paradigm’s applicability. [8] presents
rough bounds for skyline sizes assuming independently distributed scores and shows
that positive correlation of scores usually decreases and anti-correlation increases
skyline sizes. However, no analytical model is known yet to accurately estimate sky-
line sizes for a given query and database instance. Moreover, post-processing skylines
to get a minimum set cover with a difference of at most some fixed value between
any skyline object and some object in the set cover has been proved NP for more than
3 dimensions [11].

Computing convex hulls over datasets (or data envelopment analysis) is a related
problem, since all vertices of the convex hull over points in [0, 1]n form a subset of
the respective skyline (for an efficient multi-dimensional algorithm see [3]). Thus, a
convex hull could provide a coarse impression of the skyline. However, especially for
anti-correlated predicates, many actual skyline objects may reside far from the convex
hull, whereas desirable objects on the convex hull may not exist in the database.

2.2 Basic Query Models of Top k and Skyline Queries

Though top k retrieval is a cooperative and efficient way to answer queries, users first
have to define individual utility functions. However, it is hard to guess ‘correct’
weightings for this function. Consider the example of our traveling researcher: usually
a lot of different flights will be available, but most trade-offs are difficult to assess.
What does it mean that a closer airport is 0.46 times more important than a less ex-
pensive ticket? Moreover, a really good bargain might compensate for most other
inconveniences, but assigning high weightings to the price from the start might not be
a good strategy, if the database only contains rather similar priced flights.

 Approaching the Efficient Frontier: Cooperative Database Retrieval 413

0

10

20

30

40

50

10000 100000
size of database

p
er

ce
n

ta
g

e
o

f
d

at
ab

as
e 3

5

10

Fig. 1. Skyline sizes (in % of database retrieved) for 3, 5 and 10 soft query predicates

To overcome these problems retrieving a set of optimal objects with respect to all
characteristics (‘skyline’ queries) has been established in query processing. However,
the size of result sets generally strongly depends on the number of query predicates.
Experiments in [1] show that the skyline grows exponentially and even for relatively
small numbers of predicates already contains a vast portion of the entire database (cf.
fig. 1 for the case of independently distributed scores). So, for practical applications
the entire skylining paradigm often proves useless due to prohibitive result sizes:

Example (cont.): The query our researcher will pose to get an adequate flight will
usually have to optimize several soft predicates: the flight booking will generally
include predicates on the airport in the Bay Area, the departure/arrival date/time for
the flight, the airport in New York, the departure date/time for the return flight, the
specific airline and the respective ticket price. On all these predicates usually prefer-
ences exist (closest time for flight dates and distance for airports, specific airlines for
frequent traveler programs and a minimum price). Even stating only the bare necessi-
ties we thus already are left with 6 soft predicates for the basic query rapidly increas-
ing, if we also take class/upgrades, shortest traveling times, number of stops, etc. into
account. The same applies for booking a suitable hotel, the predicates here may con-
tain the hotel’s preferred category, distance to the conference venue, amenities and
price. And even if some of these characteristics (like a hotel’s category and its price)
are correlated limiting down the skyline size, we will nevertheless experience many
independently distributed dimensions (like arrival date and choice of airports).

3 Sampling Skylines and Refining Queries with User Feedback

We have seen that even simple skyline queries may already contain many predicates.
Though intuitive to ask, skylines are inefficient to compute and even if they could be
computed in acceptable time, it would still not be sensible to return something like
25-50% of the entire database to the user for manual processing. Our approach aims at
combining the advantages of both top k retrieval and skylining. Fig. 2 shows their
respective strengths. The basic idea is to form an interactive workflow for cooperative
retrieval using samples of the skyline to give users an overview of the best possible
objects, evaluate their feedback and perform focused, yet meaningful top k retrieval.

414 W.-T. Balke, J.X. Zheng, and U. Güntzer

 intuitive querying manageable result set
skyline queries
top k retrieval

Fig. 2. Characteristics of top k retrieval vs. skyline queries

Bridging the gap between efficient retrieval and vague query predicates has already
occurred in query processing. For instance in multimedia databases describing images
for retrieval is quite a hard problem that is often dependent on inherent features like
color histograms or textures used for content-based retrieval (see e.g. [6] or [16]).
Whenever users are not able to directly express query needs by stating exact values
for query predicates, it has proven helpful to let users pick some representative exam-
ples from the database collection and then retrieve objects similar to the chosen ex-
amples. The algorithms used are generally quite similar and rely on the idea to evalu-
ate common characteristics of the examples to derive some abstract values for im-
proving the retrieval. We will rely on the basic techniques for database retrieval by
multiple examples as presented in [10] for the application in our cooperative querying
framework. For simplicity we focus only on positive feedback, but also explicit nega-
tive feedback on disliked objects could be used and exploited in step 3:

Generic Algorithm for Query by Example:

1. Derive a suitably small set of examples (documents, images, etc.) from the data-
base collection (randomly or given by the skyline of a first tentative query)

2. Get the user’s feedback on preferred objects within the example set.
3. Derive the characteristics of a query that would have scored all positive exam-

ples most successfully (feature selection, re-weighting)
4. Re-evaluate this new query over the database collection and return the best ob-

jects to the user
5. If the user is not yet satisfied with the result set returned, take the set of step 4 as

new examples and repeat the algorithm from step 2.

Please note that in contrast to e.g. query by visual example (usually starting with
random images) our application in cooperative retrieval already starts with a skyline
query. The feedback on subsequently retrieved examples is usually already of suffi-
cient quality to deduce a final top k query, because users will never be offered domi-
nated objects as examples. Hence, feedback can already be expected to be sufficiently
focussed allowing to skip step 5. To demonstrate this advantage we will compare our
skyline samples to randomly chosen samples from the entire set in section 4.1.

Still, one problem when using skylines to get user feedback is their prohibitive size
and computation costs. Deriving a good sample of the skyline for getting feedback is
therefore essential. Our work in [1] has laid the foundation to derive skyline samples
without actually having to compute the entire skyline set. Since skylines tend to be
still manageable in smaller dimensional problems, we propose to use the skylines of
subsets of query predicates. We will now present a new algorithm for query process-
ing and in the next section show that the sample derived is of sufficient quality. In the
following we will assume that the parameter q is chosen sufficiently high to allow for

 Approaching the Efficient Frontier: Cooperative Database Retrieval 415

each score list to be in at least one choice of subsets and that m is chosen adequately
to produce low-dimensional subsets of the query predicates (m < n). Please note that
the algorithm will output only roughly k objects depending on the numbers of regions
of interest derived from the feedback. We will assume that the result set should con-
tain at least a single object from each region of interest specified in the feedback.

Algorithm: Cooperative Querying with Reduced Dimensions Skylines Samples

0. Given a top k query with n query predicates, where each predicate can be evalu-
ated by assigning numerical scores to all objects in the collection, and given a
score list Si (1 i n) for each such predicate ordered by descending scores. Ini-

tialize two sets P, F := to contain sample and feedback objects together with
their scores, a set W of n-dimensional vectors of weightings and a counter for
regions of interest as given by feedback. Initialize a counter j := 0.

1. Randomly select q subsets of score lists, each containing m different lists, such
that each of the n lists occurs in at least one of the q subsets as shown in [2].

2. For each m-dimensional subset do
2.1. Calculate the complete skyline Pi with respect to the m score lists in the

subset and for all objects retrieve their missing scores from the other (n -
m) dimensions

2.2. Compare any two objects in Pi that have equal values with respect to all m
dimensions pairwise. If an object is dominated by another, discard the
dominated object from Pi.

2.3. Union the reduced dimension skyline with the sample set P := P ∪ Pi (du-
plicates are eliminated).

3. Deliver the objects in set P as a sample of the n-dimensional skyline to the user
,and allow the user to pick a set F ⊆ P of objects from the sample.

4. Calculate the difference set D between P and F, i.e. D := P\F
5. While F is not empty do
5.1. Set j := j+1
5.2. Remove an object o from F, add it to a new set Fj and calculate the minimum

distance d from o to any object in D.
5.3. Remove all objects, whose Euclidian distance from o is smaller than d, from F

and add them to Fj.
5.4. Calculate the n-dimensional vector wj of weightings for the best query point

having the minimum distance from the objects in Fj with respect to the genera-
lized ellipsoid distance as shown in [10]. Add wj to set W.

6. If k > j choose k’ as closest integer number larger than k divided by j, else k’:=1.
7. For all j elements in W initiate a top k’ search using the arithmetical average

weighted with wj as utility function and return all results as query result.

In our experiments sampling with three-dimensional subsets (m = 3), values of q =
10 for ten score lists (n = 10) and q = 15 for 15 score lists (n = 15) has already pro-
vided sufficient sampling quality. Section 4.1 will deal in detail with an experimental
evaluation of our sampling scheme’s quality using different score distributions. Deriv-
ing optimal query weightings from feedback objects has been in deep investigated by
[10] for the case of a single region of interest.

416 W.-T. Balke, J.X. Zheng, and U. Güntzer

4 Theoretical Foundations and Practical Analysis

We bridge the gap between top k retrieval and skylining by providing a first impres-
sion of the database that allows for an automatic deriving of weightings from user
feedback. To facilitate this, our skyline samples have to fulfil several conditions:

• No dominated objects: Positive feedback on already dominated objects may
lead to weightings inconsistent with optimal solutions in the final result.

• Practical runtime: Retrieving final result sets needs user feedback, thus de-
riving samples in a timely manner is essential for good overall runtimes.

• Manageable size: Sample sizes have to be quite limited to allow for manual
feedback, while staying representative enough of the actual skyline.

• Representativeness: To provide a good impression of the database content
samples must be representative of the entire skyline set and not biased.

Let us now consider the conditions that we posed for our sampling scheme. The fol-
lowing theorem states that -without having to calculate the high-dimensional skyline-
our sampling nevertheless always contains only actual skyline objects.

Theorem 1 (Samples contain no dominated objects):
Every object o in the sample P chosen by our retrieval algorithm in step 2 is an actual
skyline object with respect to all query predicates.

Proof:
We have to show that only skyline objects are added to P in step 2.3. Assume that we
have chosen an arbitrary subset of score lists and then calculate the skyline Pi of this
subset like shown in step 2.1. Let us further assume that we have derived set Pi’ by
pairwise comparing objects with equal scores in the chosen subset of dimensions for
domination and discarding all dominated objects like shown in step 2.2. Since the set
Pi’ is added to P after step 2.2, we have to show that it contains only objects of the
higher dimensional skyline.

Now for the sake of contradiction let o be any object of Pi’ and assume that o is not
a skyline object with respect to all dimensions, i.e. some object p exists dominating o.
Thus, for all lists Si (1 i n) and the respective scores si we get si(p) si(o) due to
the definition of domination. If, however, some index h would exist with sh(p) > sh(o)
and h would be the index of any score list within the chosen subset, p would already
dominate o with respect to the chosen subset in contradiction to o ∈ Pi’. Thus o and p
have to have equal scores with respect to the chosen subset and since we have com-
pared all the objects with equal scores in the subset pairwise for domination and dis-
carded the dominated ones from Pi’, we have to conclude that p cannot exist.

Since we have shown Pi’ to contain only skyline objects with respect to all query
predicates independently of the specific choice of the subset, also the union of diffe-
rent choices of subsets contains only skyline objects.

4.1 Performance Experiments and Quality Analysis

We have already proved our samples to contain no dominated objects, but guarantee-
ing the remaining requirements does not seem as obvious without empirical support:

 Approaching the Efficient Frontier: Cooperative Database Retrieval 417

• The runtime and the size of the samples can be measured directly.
• Since there is no established method of directly measuring the representa-

tiveness of samples especially in high dimensions. We will assess the quality
of representation with two measures: the set coverage and a cluster analysis.

• Deducing users’ preferences involves two steps: grouping user feedback into
regions of interest, and then deriving a weighting vector w for each region.
Quality issues of deriving weightings for a single region has often been in-
vestigated (see e.g. [10]). Therefore we will focus on how well these tech-
niques adapt when users have more than one region of interest.

Throughout this section, our testing environment uses a database containing
100,000 objects in different synthesized score distributions for 10 or 15 query predi-
cates. We take the union of 10 or 15 samples, each querying 3 randomly chosen di-
mensions. We then take averages over 50 runs with newly generated synthetic data.
Real databases often contain correlated data. In our traveling researcher example, the
distance of a trip will be correlated to the traveling time, and a hotel’s price may be
correlated to its category. Therefore we investigate different types of data distribution:
independent distribution, positive correlation, and anti-correlation. In correlated data-
bases we correlate 6 dimensions pairwise (3 pairs of correlative dimensions) with
correlation factor 0.7. Similarly, the anti-correlative datasets correlate 6 dimensions
pair-wise with factor -0.7. All tests were run on a single-CPU, 2.2 GHz Pentium-4 PC
with 512MB of RAM under MS Windows 2000 and Sun Java VM 1.4.2.

1

10

100
1000

10000

100000

10-dim 15-dim 10-dim 15-dim
 total runtime [in sec] total size [number of objects]

sample

skyline

Fig. 3. Comparison for runtime for skyline computation (left) and respective skyline size (right)

Total Runtime and Sample Size
Though the actual runtime will vary depending on the hardware/software used, com-
paring the runtime of skyline sampling versus computing the entire skyline will give
us a good idea of our sampling scheme’s performance. In Figure 3 (left), we show the
comparison of runtime measured in seconds on a logarithmic scale. Our sampling
scheme is generally two to three orders of magnitude faster than computing the entire
skyline. Note that the sampling scheme can even be parallelized for further runtime
improvement, since all subsets are independent in computation and I/O.

Similar to the runtime, the manageability can be directly measured as the size of
the result set. Figure 3 (right) shows the average sizes of sample sizes and the actual
size of 10 and 15 dimensional skylines. Once again, we see a difference of two orders

418 W.-T. Balke, J.X. Zheng, and U. Güntzer

of magnitude between our sample and the actual skyline. Although a few hundred
objects are much more manageable than tens of thousands of objects, going through
the entire sample set may still seem challenging. Taking fewer numbers of subsets for
the sample would further reduce the size of the sample set. However, it is hard to
reduce the size without sacrificing the representativeness of the sample.

20%

30%

40%

50%

60%

70%

independent correlated anti-correlated

online algorithm skyline sample random sample

Fig. 4. Set coverage [in percent] with respect to an unbiased random sample

Representativeness of Skyline Samples: Set Coverage and Cluster Analysis
The most representative sampling method is taking random samples of the actual
skyline. Here no particular region is favored, but obtaining such a random sample
requires computing all skyline objects, which is prohibitive in terms of runtime. Pre-
vious attempts to give users a first impression of the skyline proposed online algo-
rithms, e.g. [12], where starting with some first examples users were able to steer the
computation of the next skyline object towards certain areas of interest, thus resulting
in a biased sample. Also our proposed sampling scheme will show some bias in con-
trast to perfect random samples. The notion of set coverage investigates this bias:

Definition of Set Coverage:
Let S be the set of objects in [0, 1]n and s, s ⊆ S two sets with similar cardinality. For
each o ∈ s determine an object o ∈ s , such that the Euclidian distance between o and
o is minimized. The set coverage of s over s is the percentage of objects from s that
have been assigned to objects of s.

Measuring the set coverage between independently drawn random samples of the
actual skyline set gives us a good impression of the normal coverage between unbi-
ased sets. For our experiments we considered different score distributions (independ-
ent, correlated, anti-correlated) and took averages over several runs in each instance
choosing a random sample and comparing the respective set coverage of a second
independent random sample, our sample and set delivered from the online algorithm
in [12]. In all cases the sets were chosen with similar cardinalities, generally different
runs show an insignificant variance. Figure 4 presents the results, where the y-axis is
the percentage of the objects in the random sample of the actual skyline that are cov-
ered by the sample from the online algorithm, our skyline sample and a second inde-
pendently drawn random sample. With very little variance in all score distributions
the best set coverage between two unbiased random samples is around 60%. Clearly
the set coverage for our sampling scheme is almost as good showing values around

 Approaching the Efficient Frontier: Cooperative Database Retrieval 419

54% with small variance, while being much better than the online algorithm’s ranging
between 30-40% and showing a relatively large variance with the score distributions.

Though we have seen our sample to cover randomly drawn samples quite well, we
also have to focus on how the objects are distributed over the score space, i.e. if our
samples closely represent the entire skyline and not just some portions of it. Our clus-
ter analysis measures the representativeness of a sample grouped by the relative distri-
bution of objects. Scores for each query predicate are partitioned into two buckets: [0,
0.5) and [0.5, 1] leading to e.g. 2n different buckets in the case of n query predicates.
The bucket assigned gives a rough idea where objects are located in n-dimensional
space. For each sample, we count the number of objects in each bucket and compare
the respective numbers using histograms. Thus we can ascertain that clusters of skyline
objects are also represented by our sample. Since we cannot show such histograms
(already 1024 buckets for 10 dimensions) we use the score space’s symmetry and ag-
gregate the buckets having a similar position with respect to the main diagonal. That
means we aggregate all buckets with the same numbers of ‘upper’ score buckets, lead-
ing to n dimensional histograms for n query predicates. Figure 5 shows the histograms
assessing the percentage of objects with respect to the sample size in each aggregated
bucket (the connecting lines are just inserted to make the histograms more easily com-
parable). Focusing again on our three different score distributions, figure 5 plots the
object distribution over the aggregated buckets of the actual skyline, our skyline sam-
ple and a complete random sample of the entire database (to show the normal bell-
shaped object distribution under our symmetrical aggregation). We can easily see that
unlike the complete sample our sample’s distribution aligns smoothly with the original
skyline, both showing a distinct shift to the higher buckets. This shift even becomes
more pronounced for correlated score distributions (Fig. 5, right). Again our sample
resembles the proportions of the actual skyline very well. The diagram for the anti-
correlated case is similar, but omitted for brevity.

0,0%

10,0%

20,0%

30,0%

40,0%

0 2 4 6 8 10

skyline
skyline sample
complete sample

0,0%

10,0%

20,0%

30,0%

40,0%

0 2 4 6 8 10

skyline
skyline sample
complete sample

Fig. 5. Cluster analysis for independent (left) and correlated (right) score distributions

4.2 Querying Multiple Regions of Interest

Usually in query by example the user selects interesting data objects (e.g. images) and
the query is reposed taking the characteristics of selected items into account. How-
ever, in skyline sets users might be interested in objects of multiple regions. Therefore

420 W.-T. Balke, J.X. Zheng, and U. Güntzer

we extended the MindReader re-weighting technique for single regions of interest
[10] by setting a threshold for the maximum allowable distance between example
objects in a single region and thus separating the selected examples into multiple
regions (compare steps 4-7 in our algorithm in section 3). As threshold we chose the
minimum Euclidian distance between a chosen example and any example not chosen.
We then apply the MindReader algorithm with all chosen examples within this thres-
hold as input and get the optimal weightings for a subsequent top k search. To inves-
tigate our query processing algorithm’s effectiveness, we set up an experiment on a
database containing 100.000 objects. Assuming the existence of three preferred ob-
jects in the actual skyline, we randomly selected three ‘perfect’ objects from the sky-
line. Ascertaining a certain maximum distance dist to at least one of the ‘perfect’
objects we then picked all eligible objects from the sample drawn and fed these as
positive feedback to our re-weighting scheme (please note that the sample may, or
may not contain any ‘perfect’ object). After grouping the examples into regions of
interest using the minimum distance to any non-picked object in the sample, we cal-
culated the best weightings (query points) for a top k query and subsequently re-
trieved the best objects. We then counted how many of the initial perfect objects are
in the direct vicinity (again using maximum distance dist) of the objects retrieved.

In our experiments for independent score distributions the samples sizes were
336.52 on average, of which an average of 13.52 objects were picked as positive
feedback (at an initial value of dist = 0.75). These objects had an average distance of
0.579 to the closest ‘perfect’ object. Our algorithms on average grouped the positive
feedback into 9.88 distinct groups leading to the determination of optimal query
points with an average distance of 0.580 to the ‘perfect’ objects. The subsequent top k
retrieval for each query point retrieved objects with an average 86.67% of all ‘perfect’
objects in the direct vicinity (within distance dist) of some of them. The experiments
for correlated and anti-correlated data distributions show similar results, with in-
creased numbers of positive feedback objects and even higher numbers of correctly
retrieved objects in the vicinity of ‘perfect’ objects, on average over 90%.

5 Summary and Outlook

Cooperative retrieval with vague predicates in databases today uses two techniques:
top k retrieval and skyline queries. But whereas top k result sets are well-defined,
choosing appropriate compensation functions without detailed knowledge of a data-
base instance is difficult. In contrast posing skyline queries is very simple and intui-
tive, but result sets grow exponentially with the number of query predicates and thus
quickly become unmanageable. In this paper we focused on the efficient utilization of
high-dimensional skylines to allow for intuitive querying with vague predicates in
information systems, while at the same time guaranteeing manageable result sets.

Starting with a normal skyline query we designed an interactive scheme using
feedback on a representative sample of the skyline for subsequent focused top k re-
trieval guaranteeing manageable result sets. Thus our query processing scheme com-
bines the best of both techniques. We have proven our query processing scheme to
quickly derive manageable, but highly representative skyline samples containing no
dominated objects. Evaluating feedback on these samples we have then extended an

 Approaching the Efficient Frontier: Cooperative Database Retrieval 421

efficient query by example algorithm to cater for the need in cooperative retrieval to
separately investigate several regions of interest. Detailed practical experiments show
that our sample can be derived up to two orders of magnitude faster than the actual
skyline and is almost as representative as a similar-sized random sample of the actual
skyline. Moreover, we showed our focused top k searches to deliver result sets, where
over 85% of the actual objects of interest are arbitrarily close to the objects retrieved.

Applications focus on cooperative query processing in information systems for a
variety of areas like E-commerce, digital libraries or service provisioning. Our future
work will concentrate on further exploiting the scheme and opening up the query by
example capabilities for multi-objective retrieval in databases, e.g. [1]. Moreover, we
will investigate our sampling scheme’s capability for interactively deriving meaning-
ful user preferences that can be used as long-term profiles in specific domains.

References

1. W.-T. Balke, U. Güntzer. Multi-objective Query Processing for Database Systems. Intern.
Conf. on Very Large Data Bases (VLDB’04), Toronto, Canada, 2004.

2. W.-T. Balke, J. Zheng, U. Güntzer. Efficient Distributed Skylining for Web Information
Systems. Conf. on Extending Database Technology (EDBT’04), Heraklion, Greece, 2004.

3. C. Böhm, H. Kriegel. Determining the Convex Hull in Large Multidimensional Databases.
Conf. on Data Wareh. and Knowledge Discovery (DaWaK’01), Munich, Germany, 2001.

4. S. Börzsönyi, D. Kossmann, K. Stocker. The Skyline Operator. Intern. Conf. on Data En-
gineering (ICDE’01), Heidelberg, Germany, 2001.

5. N. Bruno, L. Gravano, A. Marian. Evaluating Top k Queries over Web-Accessible Data-
bases. Intern. Conf. on Data Engineering (ICDE’02), San Jose, USA, 2002.

6. A. Chianese, A. Picariello, L. Sansone. A System for Query by Example in Image Data-
bases. Int. Workshop on Multimedia Information Systems (MIS’01), Capri, Italy, 2001.

7. R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algorithms for Middleware. ACM
Symp. on Principles of Database Systems (PODS’01), Santa Barbara, USA, 2001.

8. P. Godfrey. Skyline Cardinality for Relational Processing. Int Symp. on Foundations of In-
formation and Knowledge Systems (FoIKS’04), Wilhelminenburg Castle, Austria, 2004.

9. U. Güntzer, W.-T. Balke, W. Kießling: Optimizing Multi-Feature Queries for Image Data-
bases. Int. Conf. on Very Large Data Bases (VLDB’00), Cairo, Egypt, 2000.

10. Y. Ishikawa, R. Subramanya, C. Faloutsos. MindReader: Querying Databases through
Multiple Examples. Conf. on Very Large Data Bases (VLDB’98), New York, USA, 1998.

11. V. Koltun, C. Papadimitriou. Approximately Dominating Representatives. Int. Conf. on
Database Theory (ICDT’05), Edinburgh, UK, 2005.

12. D. Kossmann, F. Ramsak, S. Rost. Shooting Stars in the Sky: An Online Algorithm for
Skyline Queries. Conf. on Very Large Data Bases (VLDB’02), Hong Kong, China, 2002.

13. J. Minker. An Overview of Cooperative Answering in Databases. Int. Conf. on Flexible
Query Answering Systems (FQAS’98), Springer LNCS 1495, Roskilde, Denmark, 1998.

14. A. Motro. VAGUE: A User Interface to Relational Databases that Permits Vague Queries.
ACM Transactions on Information Systems. Vol. 6(3), 1988.

15. D. Papadias, Y. Tao, G. Fu, B. Seeger. An Optimal and Progressive Algorithm for Skyline
Queries. Int. Conf. on Management of Data (SIGMOD’03), San Diego, USA, 2003.

16. S. Santini, R. Jain. Beyond Query by Example. Int. ACM Conf. on Multimedia (MM’98),
Bristol, England, 1998.

False-Negative Frequent Items Mining from
Data Streams with Bursting

Zhihong Chong1, Jeffrey Xu Yu2, Hongjun Lu3,
Zhengjie Zhang1, and Aoying Zhou1

1 Fudan University, China
{zhchong, zhjzhang, ayzhou}@fudan.edu.cn,

2 Chinese University of Hong Kong, China
yu@se.cuhk.edu.hk

3 Hong Kong University of Science and Technology, China
luhj@cs.ust.hk

Abstract. False-negative frequent items mining from a high speed trans-
actional data stream is to find an approximate set of frequent items with
respect to a minimum support threshold, s. It controls the possibility
of missing frequent items using a reliability parameter δ. The impor-
tance of false-negative frequent items mining is that it can exclude false-
positives and therefore significantly reduce the memory consumption for
frequent itemsets mining. The key issue of false-negative frequent items
mining is how to minimize the possibility of missing frequent items. In
this paper, we propose a new false-negative frequent items mining algo-
rithm, called Loss-Negative, for handling bursting in data streams. The
new algorithm consumes the smallest memory in comparison with other
false-negative and false-positive frequent items algorithms. We present
theoretical bound of the new algorithm, and analyze the possibility of
minimization of missing frequent items, in terms of two possibilities,
namely, in-possibility and out-possibility. The former is about how a fre-
quent item can possibly pass the first pruning. The latter is about how
long a frequent item can stay in memory while no occurrences of the item
comes in the following data stream for a certain period. The new pro-
posed algorithm is superior to the existing false-negative frequent items
mining algorithms in terms of the two possibilities. We demonstrate the
effectiveness of the new algorithm in this paper.

1 Introduction

Mining frequent itemsets from transactional data streams is challenging due to
the nature of the exponential explosion of itemsets and the limit memory space
required for mining frequent itemsets [4, 6]. The techniques for mining frequent
itemsets largely rely on the techniques for mining frequent items by scanning data
once from a high speed data stream with limit memory space. The up-to-date
techniques for mining frequent items can be categorized into two classes, namely,
false-positive and false-negative. The former controls memory consumption with

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 422–434, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

False-Negative Frequent Items Mining from Data Streams with Bursting 423

Table 1. Bounds and Types

Algorithm Bound Type

Charilar et al [1] O(k
ε2

ln(n/δ)) false-positive
Sticky-Sampling [4] O(1

ε
lg(1

s
1
δ
)) false-positive

Lossy-Counting [4] O(1
ε
lg(εn)) false-positive

Group Test [2] O(k lg(k + lg(1
δ

lg(M))) false-positive
FDPM-1 [6] O(2 + 2 ln(2/δ)/s) false-negative
LN (this paper) O(1

s
ln(s−1δ−1)) false-negative

an error parameter ε, and treats items with support below the specified minimum
support s but above s−ε counted as frequent items [1, 2, 3, 4]. The latter controls
the possibility of missing frequent items above the specified minimum support
s using a reliability parameter δ [6]. Table 1 shows the memory bounds for
false-negative algorithms is lower than the bounds for false-positive algorithms.
The main advantage of false-negative approaches is that they significantly reduce
the exponential explosion of itemsets, because they do not maintain any possible
itemsets that include items below the minimum support s but above s−ε, which
can be very large.

In [6], we showed a false-negative algorithm FDPM-1 that is designed on
top of the Chernoff bound which assumes data independent. Also, we demon-
strated that FDPM-1 can handle dependent data streams in our expensive perfor-
mance studies using a technique called probabilistic-inplace [3]. In the following
discussions, for easy of discussions, we denote the algorithm of FDPM-1 with
probabilistic-inplace as FDPM-I.

In this paper, we study a very important issue on false-negative algorithms –
how to minimize the possibility of missing frequent items in the presence of bursts
in high speed data streams. Here, by bursts we mean that a frequent item may
repeatedly appears together in a short time and disappears for a long time. When
such bursts occur in a high speed data stream, the possibility of missing frequent
items can be higher. It is because that the item can be possibly pruned before its
next burst comes. We show a real application below. Here, we consider finding
frequent items (words) from Reuters news collection using a data archive we
collected through the Reuters real-time datafeed. The dataset contains 365,288
news stories and 100,672,866 (duplicate) words. We removed all articles such as
”the” and ”a” and preprocessed the data collection by term stemming. Fig. 1 (a)
shows the distribution of top 500 frequent words, which is a Zipf distribution with
a Zipf factor of 1.5. Fig. 1 (b) shows three burst patterns for three words, repre-
sented as integers 13151, 54449 and 256421 from the 1176-th document to the
1197-th document, provided that we receive documents in order. For this dataset,
FDPM-1 does not perform well because of data dependency, whereas FDPM-I per-
forms well because it is enhanced with the technique of probabilistic-inplace.
However, it is unknown theoretically how robust FDPM-I is when bursts occur.

424 Z. Chong et al.

(a) Word Distribution (b) Burst Patterns

Fig. 1. A Reuters news collection

The main contribution of this paper is summarized below. We propose a new
false-negative algorithm, called Loss-Negative and denoted LN, with a theoretical
bound on its memory consumption. The theoretical bound of memory consump-
tion for LN is marginally higher than that of FDPM-1 [6], but the real memory
consumption, in practice, for LN is noticeably less than that of FDPM-1 (FDPM-I).
Furthermore, we analyze the burst control of the new false-negative algorithm
in terms of two possibilities, called in-possibility and out-possibility. The former
is about how a frequent item can possibly pass the first pruning. The latter is
about how long a frequent item can stay in memory while no occurrences of the
item comes in the following data stream for a certain period. We show that LN
is better than FDPM-1 (FDPM-I) in terms of the two possibilities. In addition, we
demonstrate that LN consumes even small memory than FDPM-1 (FDPM-I) in our
extensive performance study using synthetic and real data sets.

The remainder of the paper is organized as follows. Section 2 defines the
problem. Section 3 introduces the proposed new false-negative frequent items
mining algorithm. A performance study is given in Section 4. We conclude this
paper in Section 5

2 Problem Definition

A transactional data stream, D, is a sequence of incoming items, (t1, t2, · · · , tn),
where ti is an item and n is a unknown large number. The number of occurrences
of an item ti in D is called the support of ti, denoted as sup(ti). An item ti is
frequent, if and only if sup(ti) ≥ sn, where s = sup(ti)/n is a threshold called a
minimum support such that s ∈ (0, 1).

The problem of frequent items mining is to find an approximate set of frequent
items in D with respect to a given support threshold, s. The approximation is
controlled by two parameters, ε and δ, where ε (∈ (0, 1)) controls errors and
δ (∈ (0, 1)) controls reliability.

In this paper, we propose a false-negative algorithm. A false-negative frequent
items mining algorithm must mine frequent items from a high speed data stream
with limited memory while guarantees the following two conditions: i) none of

False-Negative Frequent Items Mining from Data Streams with Bursting 425

the support of the output items is less than s, and ii) each item whose support
is no less than s is output with at least 1 − δ probability. It is worth of noting
that false-negative approaches control memory using δ with ε = 0, whereas false-
positive approaches mainly control memory using ε.

3 A New False-Negative Algorithm

We propose a new false-negative oriented algorithm, called LN, in Algorithm 1
to mine frequent items from a data stream. We first outline the main idea of
the algorithm, and discuss the details later. Consider receiving data from a data
stream in a unit of buckets. The width of buckets is the number of entries, where
an entry is a pair of item and its count. We denote the width of buckets as ω. LN
keeps only a single bucket of items in memory. The main idea of the algorithm is
as follows. It expects that a frequent item will appear at least once in a unit of
bucket. At the end of the b-th bucket, LN prunes those items that do not appear b
times where b = �n/ω�. If a burst of an item t appears in a bucket, then it can be
kept in memory for a long time, even though it does not appear in the following
buckets. LN does not prune those items, t, that appear more than b times, such
as sup(t)/n ≥ b/n = �n/ω�/n = 1/ω. As stated above, LN attempts to use ω
entries to maintain frequent items, t, in memory, such as sup(t)/n ≥ 1/ω.

The details of Algorithm 1 are discussed below. LN takes two parameters, a
minimum support s and a reliability parameter δ, and outputs frequent items in
F with their recorded frequency. Each entry of F is in the format of (t, f) where
t is an item and f is its count. In line 1-2, LN initializes the number of items,
n, it receives from a data stream and F . In line 3, LN decides the width of the
buckets, ω, using s and δ (Eq. (1)). We will explain how to determine ω later.
The derived ω guarantees that LN can hold every frequent item in a bucket at
least once with probability of at least 1−δ. The ω shows the bound of LN. In the

Algorithm 1 LN(s, δ)
1: n ← 0;
2: F ← ∅;
3: ω ← � ln(s−1δ−1)

s
�;

4: while an item, t, arrives do
5: n ← n + 1;
6: either insert a new entry for (t, 1) into F or increase f of the existing entry (t, f)

by 1;
7: prune those entries from F if their support f/n < 1/ω at the end of each bucket;
8: end while
9: output frequent items in F on demand if their counts ≥ sn;

while statement, LN creates a new entry for an item t in F if it does not appear
in F and its count is initialized as 1; otherwise, LN increases the count for t by
1. In line 7, LN prunes those entries from F , if their supports are less than 1/ω.

426 Z. Chong et al.

On demand, LN outputs all items whose support ≥ sn. Note: no false positives
are reported. In Algorithm 1, the time complexity for inserting a new item is
O(1), and time complexity for pruning items at the end of a bucket is also O(1)
because LN only maintains ω items at most.

Next, we show how to determine w below. First we have Lemma 1 as reported
in [5, 6].

Lemma 1. The number of frequent items found in a data stream is no more
than 1/s, where s is the minimum support.

Lemma 1 is held, because if there are more than 1/s items and each appears
at least s · n times, then 1/s · s · n > n which is impossible. The memory bound
of LN is shown in Theorem 1.

Theorem 1. The memory bound of LN is ω = � 1
s ln(s−1δ−1)� to mine frequent

items with probability of at least 1 − δ.

We sketch our proof as follows. The width of buckets, ω, is determined as
to keep every frequent item in every bucket with at least 1 − δ probability. LN
divides the data stream into buckets of the width ω, and needs the number of
b = �n/ω� buckets to receive n items. Recall a frequent item should appear more
than or equal to sn times. Assume the probability of a frequent item in a bucket
is nearly 1/b, the chance of a frequent item not to appear in any bucket is less
than

(1 − 1
b
)sn = (1 − 1

n
ω

)sn = (1 − 1
n
ω

)
n
ω ωs ≈ (

1
e
)ωs

Because there are at most 1/s frequent items in a data stream based on Lemma
1, the probability that none of the frequent items is located in any bucket is
at most (1

e)ωs 1
s . Based on the notion of reliability, the probability of missing a

count needs to be no more than δ, such as (1
e)ωs 1

s ≤ δ. Therefore,

ω ≤ ln(s−1δ−1)
s

(1)

LN maintains items whose support is no less than (n/ω)/n = 1/ω, and needs
only 1/(1/ω) = ω entries in F .

|F | ≤ ω ≤ ln(s−1δ−1)
s

(2)

Therefore, Theorem 1 holds. As shown in Theorem 1, the width of buckets, ω,
is determined by both the minimum support s and the reliability parameter δ.
The width ω becomes larger, when either s or δ becomes smaller. When ω is
a larger value, the probability of keeping a frequent item in a bucket becomes
higher, because 1− δ becomes larger. For example, when s = 0.1% and δ = 0.1,
then ω = 9, 210.3; and when s = 0.01% and δ = 0.1, ω = 115, 129.3. That is,
if an item is frequent, it is most likely that the item will appear every ω on
average. Obviously, LN does not miss a frequent item, even though the frequent

False-Negative Frequent Items Mining from Data Streams with Bursting 427

item may not appear in every bucket, because the frequent item may appear
in some buckets more than once. Also, the probability that an item does not
appear in consecutive m buckets is small, (1/e)m → 0, when m is large.

We analysis the possibility that LN misses frequent items in the following two
possibilities: in-possibility and out-possibility. The in-possibility is about how a
frequent item can possibly pass the first pruning. The out-possibility is about
how long a frequent item can stay in memory while no occurrences of the item
comes in the following data stream for a certain period. We show that LN is
better than FDPM-1 in terms of the two possibilities.

3.1 In-Possibility

Suppose that an item t first appears m times in the current bucket b = �n/ω�. It
will be held in memory when LN cross the boundary of the bucket if the following
condition is true.

m ≥ n

ω
(3)

It shows that it would be more difficult for a frequent item to appear lately when
i) the bucket is full and ii) n becomes larger. Still, LN is better than FDPM-1 in
terms of the two issues, i) and ii). For i), the theoretical memory bound of LN
is marginally larger than that of FDPM-1 as shown in Table 1. For ii), FDPM-1
allows an item t to be in memory if

m ≥ (s− εn)n (4)

When n becomes large, the running error variable εn approaches zero, and can
be ignored. Therefore,

m ≥ s · n (5)

Compare Eq. (3) with Eq. (5), it is difficult for a frequent item to be pruned
in LN than FDPM-1, if 1/ω < s. In other words, it means that LN requests a
smaller m for a frequent item to be in memory. Based on Theorem (1), when
ω = ln(s−1δ−1)

s , 1/ω < s if s · δ < 1/e. That is, s · δ < 0.367879, which can be
always true, for example, when δ = 0.1.

3.2 Out-Possibility

Consider how long an item can be kept in memory, we define a d-robust as
follows. A potential frequent item t is d-robust at a point of n, if the item t
can not be pruned until n + d, while no occurrence of t appears from n + 1 to
n + d. Without loss of generality, we consider n as the data point at the end of
a bucket, because that is the time to prune items.

Consider a potential frequent item t at n. Assume that the count of the item
t is c. Because the item t is still in F , it has at least �n/ω� occurrences until n
as shown in Algorithm 1. Therefore, c ≥ �n/ω�.

d = (c− �n
ω
� + 1) · ω > c · ω − n = ln(s−1δ−1) · c

s
− n (6)

428 Z. Chong et al.

Eq. (6) shows that when c = �n/ω�, the item t will be kept until at least the
end of next bucket. The larger the count c is, the longer period the item t can
be kept in memory. Because c = �n/ω� is the minimum count for any potential
item at any bucket, therefore, LN is ω-robust.

Some comments can be made on FDPM-1. For FDPM-1, it must satisfy Eq. (7)
to hold the item t in memory as shown in [6].

c

n + d
≥ s− εn+d (7)

Here, c/(n + d) is sup(t)/(n + d) at the point of n + d, and εn+d is the running
error at the point of n + d. Recall εn → 0 when n becomes large. Therefore, we
obtain

d ≤ c

s
− n (8)

Comparing Eq. (6) for LN with Eq. (8) for FDPM-1, LN is more robust than FDPM-1
when ln(s−1δ−1) ≥ 1. Like the discussions on in-possibility, it implies s · δ <
1/e. FDPM-I is more robust than FDPM-1 based on our extensive performance
studies as shown later in the paper. Because FDPM-I is a variant of FDPM-1 using
probabilistic-inplace, it is difficult to analyze its d-robust.

3.3 Discussions on Bucket: False-Positive Versus False Negative

Some comments on buckets are given below. First, both false-positive and false-
negative approaches can use buckets for frequent items mining. The widths of
buckets have great impacts on the memory bound. Second, false-positive and
false-negative approaches use different ways to determine the widths of buckets,
and therefore the memory bounds. For instance, as a false-positive algorithm,
Loss-Counting uses �1/ε� to control the memory bound. As a false-negative
algorithm, LN uses � ln(s−1δ−1)

s � to control the memory bound. Third, like FDPM-1
(Table 1), the theoretical memory bound of LN is irrelevant to the length of a
data stream, n. But, the memory bound of Lossy-Counting is related to n as
shown in Table 1.

4 A Performance Study

We implemented our new false-negative algorithm LN as well as the false-positive
algorithms LC (Lossy-Counting) and SS (Sticky-Sampling) [4] and the best re-
ported false-negative algorithm FDPM-1 (FDPM-I) [6], using Microsoft Visual C++
Version 6.0. We used the same data structures and subroutines in all imple-
mentations in order to minimize any performance difference caused by minor
differences in implementation.

We tested above algorithms on both the synthetic data generated with various
Zipfan distributions and the Reuters news collection as given in the introduction.
The default length of a data stream is 1, 000, 000 items.

We conducted all testings on a 1.7GHz CPU Dell PC with 1GB memory. We
report our results in terms of memory consumption (the number of entries) and

False-Negative Frequent Items Mining from Data Streams with Bursting 429

(a) Memory (Zipf = 0.5) (b) Memory (Zipf = 1.5)

(c) CPU (Zipf = 0.5) (d) CPU (Zipf = 1.5)

Fig. 2. Memory and CPU time

CPU time (seconds), as well as recall and precision. The recall and precision are
defined as follows. Given a set of true frequent items, A, and a set of obtained
frequent items B, the recall is |A∩B|

|A| and the precision is |A∩B|
|B| .

4.1 Testing on Synthetic Data Sets

Varying Support. In this part, we test minimum support in a range from
0.01% to 10% with a fixed δ = 0.1, using Zipf = 0.5 and Zipf = 1.5, respectively.
Note that false-negative algorithms, LN and FDPM-1 (FDPM-I) do not use ε. We
fix ε = s/10 for LC and SS only.

The memory consumption and CPU time are shown in Fig. 2. All algorithms
behave similarly over different Zipf distributions. The memory consumption is
higher when data is not highly skewed (Zipf = 0.5) in comparison with that
when data is rather skewed (Zipf = 1.5). SS consumes most memory with the
smallest CPU time. FDPM-1 and FDPM-I perform the same in terms of CPU time.

It is important to note that LN consumes less memory than FDPM-1 (FDPM-I),
as shown in Fig. 2, despite the theoretical memory bound of FDPM-1 is smaller
than that of LN. The main reason is that FDPM-1 (FDPM-I) unnecessarily main-

tains those items whose support is above s − εn, where εn =
√

2s ln(2/δ)
n . Con-

sider the case when n is rather small. Because εn > s, FDPM-1 (FDPM-I) uses
s− εn (< s) to keep infrequent items and consumes more memory than LN.

430 Z. Chong et al.

Table 2. Recall (R) and Precision (P) (Zipf = 1.5)

s(%) LC SS FDPM-1(FDPM-I) LN
R P R P R P R P

0.01 1.00 0.91 1.00 0.91 1.00 1.00 1.00 1.00
0.1 1.00 0.96 1.00 0.96 1.00 1.00 1.00 1.00
1 1.00 0.92 1.00 0.92 1.00 1.00 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(a) Zipf = 1.5 (b) Zipf Distributions (δ = 0.1)

Fig. 3. The Impacts of δ on Memory Consumption (s = 0.1%)

Table 2 shows the recall and precision for Zipf = 1.5. As shown in the table,
false-positive algorithms, LC and SS always achieve 100% recall, while false-
negative algorithms FDPM-1 (FDPM-I) and LN always achieve 100% precision.
Also, all false-negative algorithms LN and FDPM-1 (FDPM-I) achieve 100% recall,
whereas the false-positive algorithms LC and SS do not always 100% precision as
expected.

Varying δ. The key point for false-negative algorithms is how to avoid missing
frequent items, which is controlled by the reliability parameter δ. We tested
the impacts of δ for the false-negative algorithms, LN and FDPM-1 (FDPM-I),
while fixing the minimum support s = 0.1%. Fig. 3 (a) shows that LN consumes
significantly less memory than FDPM-1 (FDPM-I) with Zipf = 1.5. In this testing,
all false-negative algorithms achieve both 100% recall and precision. Fig. 3 (b)
shows the memory consumptions using different Zipf distributions, from Zipf
= 0.5 to Zipf = 3, while δ = 0.1. In a similar way, LN consumes significantly
less memory than FDPM-1 (FDPM-I). LN as well as FDPM-I achieves 100% recall
whereas FDPM-1 achieves at least 98% recall.

4.2 Testing on a Real Dataset

The arrival order of data item in a synthetic dataset is usually random indepen-
dent and false-negative algorithms can behave well. As given in introduction,
we test a real dataset using the Reuters news collection we collected through
the Reuters real-time datafeed. The dataset contains 365,288 news stories and

False-Negative Frequent Items Mining from Data Streams with Bursting 431

(a) Varying s (b) Varying length (s = 0.1%)

Fig. 4. Memory Consumption

100,672,866 (duplicate) words (items). This dataset demonstrates burst pat-
terns that do not show in synthetic dataset, because the words have meanings
and may appear frequently in some documents but not all documents. We select
5,829 consecutive news stories to make a stream of 1, 000, 000 words. The aver-
age length of a news story is 172 words. The words are converted into an integer
representation in our testing beforehand.

Varying s. We first tested LN and FDPM-1 (FDPM-I) as well as SS and LC using
different minimum supports s (δ = 0.1). Fig. 4 (a) shows the memory consump-
tion by varying s (0.01%, 0.1% and 1%). LN consumes the least memory in all
the cases followed by LC, FDPM-1, FDPM-I and SS. Its recalls (R) and precisions
(P) are shown in Table 3. The two false-positive algorithms SS and LC perform
the same and reach at least 0.89 precision. The performance of false-negative
algorithms perform differently. The recall of FDPM-1 can reach rather low recall
0.74, when s = 0.1%, because it is designed to handle independent data. With
the help of technique of probabilistic-inplace, FDPM-I improves the recall when
s = 0.1% to 0.85. but it does not improve any when s = 1%. The proposed LN
significantly outperforms FDPM-1 (FDPM-I), and reaches at least 0.98 recall. LN
is shown to be able to handle bursts in data streams.

Varying Length of Data Stream n. We also test all algorithms by varying
the length of data stream from 1,000k to 5,000k, while fixing s = 0.1% and
δ = 0.1. SS and LC use ε = s/10. Fig. 4 (b) shows that, except SS, the memory

Table 3. Recall (R) and Precision (P)

s(%) LC SS FDPM-1 FDPM-I LN
R P R P R P R P R P

0.01 1.00 0.93 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 0.89 1.00 0.89 0.74 1.00 0.85 1.00 0.98 1.00
1 1.00 1.00 1.00 1.00 0.75 1.00 0.75 1.00 1.00 1.00

432 Z. Chong et al.

Table 4. The effectiveness of the length of data streams (Max/Min/Avg are %)

l(k) FDPM-1 FDPM-I LN
T R Min Max Avg R Min Max Avg R Min Max Avg

1,000 149 0.75 0.10 0.21 0.13 0.85 0.10 0.15 0.11 0.98 0.10 0.11 0.11
2,000 171 0.52 0.10 0.24 0.15 0.79 0.10 0.18 0.12 0.92 0.10 0.18 0.13
3,000 165 0.43 0.10 0.31 0.16 0.72 0.10 0.21 0.13 0.92 0.10 0.22 0.14
4,000 165 0.39 0.10 0.37 0.16 0.63 0.10 0.27 0.14 0.93 0.11 0.25 0.16
5,000 157 0.36 0.10 0.41 0.17 0.56 0.10 0.32 0.15 0.92 0.10 0.26 0.17

Table 5. d-robust

Placement Item 51 (s = 0.106%)
Head Tail FDPM-1 FDPM-I LN

99% 1% any any any
95% 5% any any any
90% 10% any any any
70% 30% 830,000 any any
50% 50% 870,000 any any
30% 70% 490,000 any any
10% 90% 420,000 any 960,000
5% 95% any any any
1% 99% any any any

consumption of all algorithms does not change while the length of data varies.
The memory consumption of SS increases significantly when the length of data
becomes longer. LN performs the best and LC performs the second best.

We report the recall (R) of false-negative algorithms in Table 4 with the
details of missed frequent items, because the precision for false-negative algo-
rithms is 1. The column T lists the number of true frequent items. The columns
of Max, Min and Avg shows the max, min and average sup(t)/n (%), for the
missing frequent items t.

The recall for FDPM-1 decreases significantly when the length (n) of the data
stream becomes longer, because it cannot handle dependent data streams. When
n = 5, 000k, the recall of FDPM-1 is 0.36 which is very low. The max support
for the missing frequent item can be high to 0.41%, which means that it may
miss important frequent items. FDPM-I improves the recall of FDPM-1. When
n = 5, 000k, the recall of FDPM-I is 0.56. The max support for the missing
frequent item is lower 0.32%. Even though the improvement is noticeable, it is
not satisfactory. The new proposed LN significantly outperforms FDPM-I as well
as FDPM-1, and reaches at least 0.92 recall. The precisions for SS and LC are the
similar. They are 0.89, 0.85, 0.87, 0.92, and 0.88, for the length of data stream
from 1,000k to 5,000k.

False-Negative Frequent Items Mining from Data Streams with Bursting 433

4.3 d-Robust Testing

We test d-Robust using a synthetic data set of length n = 1, 000, 000 with Zipf
= 1.5. We choose an item 51 which appears 1,060 times (0.106%). We arrange
all the occurrences of the item 51 in the head and tail of the data stream to
simulate two extreme bursts, namely, head-burst and tail-burst.

Table 5 shows d-values for FDPM-1 (FDPM-I) and LN using s = 0.1% and δ =
0.1. In Table 5, the column Head (Tail) indicates x% (1-x%) of 1,060 occurrences
is placed at the beginning (near the end) of the data stream. The values shown
in the columns of FDPM-1, FDPM-I and LN are the d values of the d-robust. A
d-value is the max distance from the last occurrence of the item 51 at the end of
the head burst and the first occurrence of the item in the tail burst. The larger
d-value the better. The value “any” means that the corresponding algorithm
can reach 100% recall no matter where the first occurrence of the tail burst is
placed in the data stream of 1, 000, 000 long. Table 5 shows the d-values in three
cases. First, when the head burst is large consisting of at least 90% of the 1,060
occurrences, all three false-negative algorithms do not miss it, because it is heavy
head burst. Second, when the head burst is very small only consisting of up to
5% of the 1,060 occurrences, all three false-negative algorithms do not miss it,
because the tail burst is still large enough. Recall the minimum support used
is 0.1% whereas 51’s is 0.106%. Third, when the head burst is between 10% to
70%, the impacts become noticeable, because the head burst is large and cannot
be ignored. When the head burst is 10%, the d value for FDPM-1 is 420,000,
which means that if the first occurrence in the tail burst is any father from it,
FDPM-1 will miss the frequent item 51. For the same case of 10%, the d-value of
LN is more than double of that for FDPM-1. In this testing, FDPM-I outperforms
LN, its d value is about 30,000 larger than that of LN, because FDPM-I does not
consume all its memory. The testing confirms that LN has large d-robust than
FDPM-1. As future work, we will analyze the d-robust for FDPM-I.

5 Conclusion

In this paper, we proposed a new false-negative frequent items mining algorithm
LN, which is designed to handle bursts in high speed data streams. We showed
that it consumes less memory than other algorithms, and can effectively handle
bursts with support of analytical studies and experimental results.

References

1. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. In Proc. of the 29th ICALP, 2002.

2. G. Cormode and S.Muthukrishnan. What’s hot and what’s not: Tracking most
frequent items dynamically. In Proc. of PODS’03, 2003.

3. E. Demaine, A. López-Ortiz, and J. I. Munro. Frequency estimation of internet
packet streams with limited space. In Proc. of 10th Annual European Symposium
on Algorithms, 2002.

434 Z. Chong et al.

4. G. S. Manku and R. Motwani. Approximate frequency counts over data streams.
In Proc. of VLDB’02, 2002.

5. S. S. Richard M. Karp, Christos H. Papadimitrlou. A simple algorithm for finding
frequent elements in streams and bags. In ACM Transactions on Database Systems,
volume 28, pages 51–55, 2003.

6. J. X. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or false negative: Mining
frequent itemsets from high speed transactional data streams. In Proc. of VLDB’04,
2004.

Adaptively Detecting Aggregation Bursts
in Data Streams

Aoying Zhou, Shouke Qin, and Weining Qian

Department of Computer Science and Engineering
Fudan University, 220 Handan Rd, Shanghai, China

{ayzhou, skqin, wnqian}@fudan.edu.cn

Abstract. Finding bursts in data streams is attracting much attention
in research community due to its broad applications. Existing burst de-
tection methods suffer the problems that 1) the parameters of window
size and absolute burst threshold, which are hard to be determined a pri-
ori, should be given in advance. 2) Only one side bursts, i.e. either increas-
ing or decreasing bursts, can be detected. 3) Bumps, which are changes
of aggregation data caused by noises, are often reported as bursts. The
disturbance of bumps causes much effort in subsequent exploration of
mining results. In this paper, a general burst model is introduced for
overcoming above three problems. We develop an efficient algorithm for
detecting adaptive aggregation bursts in a data stream given a burst
ratio. With the help of a novel inverted histogram, the statistical sum-
mary is compressed to be fit in limited main memory, so that bursts on
windows of any length can be detected accurately and efficiently on-line.
Theoretical analysis show the space and time complexity bound of this
method is relatively good, while experimental results depict the applica-
bility and efficiency of our algorithm in different application settings.

1 Introduction

Detecting bursts robustly and efficiently poses a challenge in many applications
of online monitoring for data streams, such as telecommunication networks, traf-
fic management, trend-related analysis, web-click streams analysis, intrusion de-
tection, and sensor networks. Many methods have been proposed to detect bursts
or changes in a time period, called a window, in E-mail [9], Gamma ray [12] and
networks traffic [3, 10] data streams. However, these methods are not adaptive
enough for many real-life applications, since they need fixed parameter setting
for window size and absolute threshold of bursting. Furthermore, only one-side
bursts can be detected by these methods.

We argue that ratio threshold for bursting measurement and adaptive window
size is more suitable for data stream analysis applications. In network traffic
monitoring, for example, when attacks occur, the workload of package routing
to an IP address or requests to a server within a certain time period may increase
remarkably compared with last certain time period. An absolute threshold may
cause false report of bursts in a rush time and missing of attacks when the

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 435–446, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

436 A. Zhou, S. Qin, and W. Qian

workload is low. Furthermore, the lasting time varies in different kinds of attacks,
which are all interested by monitors. Fig.1 shows the double-side bursts with
various peak height and window size.

Though, a natural solution for adaptively detecting aggregation bursts is to
apply existing algorithms on different window sizes, peak heights, and both in-
creasing and decreasing side simultaneously, apparently it may consume much
storage and computation resources. Furthermore, as any other data stream min-
ing tasks, it is required that burst detection algorithm should be accurate, while
use limited storage space and scan a data stream sequentially only once. We
present a novel method for adaptively detecting aggregation bursts in data
streams. It relies on the efficient algorithms for construction and maintenance
of a compact summary data structure, called inverted histogram, or IH. It is
proved that the bucket error of the histogram is bounded, while the space and
computation complexity for maintaining the histogram is low.

Fig. 1. Bursts with various peak height and window size. In the stream, data in window
w0 are not burst, while data in w1 are a small burst, compared with those in w0. Data
in w2 are another burst compared with those in w1. Furthermore, w3 and w4 depict
another two bursts, whose window sizes are larger than bursts w1 and w2

Bursts found by existing approaches at large time scales are not necessarily
reflected at smaller time scales. That is because those bursts at large time scales
are composed of many consecutive bumps which are those positions where the
values are high but not high enough to be bursts. In this paper, a general burst
model is introduced for overcoming the problem.

1.1 Related Work

Monitoring and mining data stream has attracted considerable attention recently
[9, 12, 3, 10, 2]. An efficient work for statically detecting bursts in data stream
with normal distribution based on sliding window is presented in [12]. Kleinberg
focuses on modelling and extracting structure from text stream in [9]. There
is also work in finding changes on data stream [3, 10, 2]. Although, they have
different objectives and different application backgrounds, the same thing is that
they can only monitor one window with a given size. The method in [12] can
monitor multiple windows with different sizes. But, the maximum window size
and window number is limited.

Adaptively Detecting Aggregation Bursts in Data Streams 437

Some of the above approaches detect bursty behaviors of aggregate results [12,
3, 10]. The amount of streaming data is too large to maintain in main memory.
This prompts a need to maintain a synopsis of the stream to all the methods.
The work in [3, 10] is based on sketch. Haar wavelets can also be used to compute
aggregates [7], and their error are bounded in [5]. The burst detecting method in
[12] is based on wavelets. However, it can only monitor the monotonic aggregates
with respect to the window size, such as sum. The non-monotonic ones, such as
average, cannot be monitored with it.

Histograms have been used widely to capture data distribution, to present
the data by a small number of buckets. V-optimal histograms can be maintained
with dynamic programming algorithms which running in quadratic time and
linear space. Over data stream model, the approximate V-optimal histograms
can support the point queries, aggregate queries and range sum queries [8, 6, 11].
If the stream is ordered, namely the values of data elements are non-negative,
the work of [8] has the cheapest space O(k2 log nR2

ε) and time O(nk2 log nR2

ε). It
provides an (1 + ε) approximation for the V-optimal histogram with k levels, n
is the length of stream and R is the maximum value of data elements.

1.2 Our Contributions

Our contributions can be summarized as follows:

– First, we put forward a novel definition of burst. To the best of our knowl-
edge, this is the first work considering such adaptive burst model on data
stream. This model is more general and fit for the real world applications.

– Second, we design both false positive and false negative algorithms for find-
ing bursts accurately in high speed data streams. They can detect bursts
dynamically with double side alarm domain and avoid being disturbed by
bumps on overall stream.

– Third, we propose a novel histogram—IH, with relative error guaranteed in
each bucket, which can answer burst queries accurately with very cheap cost
of space and time. We note that IH is an interesting data structure in its
own right and might find applications in other domains.

– Fourth, we complement our analytical results with an extensive experimental
study. Our results indicate that the new method can indeed detect the bursts
accurately within an economic space and time cost.

The remainder of this paper is organized as follows. Section 2 presents the
problem and definition of the paper. Section 3 presents our algorithms for de-
tecting bursts. Section 4 presents a novel histogram which is the base of burst
detecting algorithms. Section 5 show the results and analysis of experiments.
Section 6 concludes the paper.

438 A. Zhou, S. Qin, and W. Qian

2 Problem Statements

In this section, we present the model and definition of the problem for clarifying
the objectives in this paper. As described in the introduction, bumps can induce
bursts at large time scales. We can show it through a small example. In Fig.2.(a),
the current stream length is 6. x6 is a new comer and its value is 20.5. The relative
threshold is denoted by β, which is a positive ratio. Here, aggregate function F
is sum and β = 1.1(for detecting increasing bursts). From Fig.2.(a), x4 and
x6 are all bumps. They cannot induce burst on the 1-length window, for x4 =
20.5 < βx3 = 1.1 ∗ 19 = 20.9 and x6 = 20.5 < βx5 = 1.1 ∗ 19 = 20.9. But they
induce bursts on 2-length and 3-length window respectively, such as Fig.2.(b)
and Fig.2.(c), for (x3 +x4) > β(x1 +x2) and (x4 +x5 +x6) > β(x1 +x2 +x3). In

(a) Window Length = 1 (b) Window Length = 2 (c) Window Length = 3

Fig. 2. Bumps Can Induce Bursts at Large Time Scales

that, if burst does not occur in window L(window length), window L+ 1 should
not be detected. Because remnant bursts, if had, are all induced by bumps.

A data stream can be considered as a sequence of points x1, ..., xn in increas-
ing order. Each element in stream can be a value in the range [0..R]. To detect
bursts on overall data stream needs only caring about the latest two consec-
utive subsequences with the same length when each new value xi comes. The
formal definition of adaptively detecting bursts on data stream model is shown
as follows. In the example of bumps above, as Definition 1, s′

1 = x5, s1 = x6,
s′
2 = x3, x4, s2 = x5, x6 and s′

3 = x1, x2, x3, s3 = x4, x5, x6.

Definition 1. F is an aggregate function. s′
i and si are the latest two con-

secutive subsequences of a stream with the same length of i, 1 ≤ i ≤ n
2 . An

increasing burst occurs on i-length window when xn comes, if ∀j ∈ 1..i, β > 1,
F (sj) ≥ βF (s′

j). An decreasing burst occurs on i-length window when xn comes,
if ∀j ∈ 1..i, 0 < β < 1, F (sj) ≤ βF (s′

j).

3 Algorithms for Detecting Bursts

We begin to present our algorithms for detecting bursts in this section. These
algorithms can be based on the approximate V-optimal histogram in [8](AVOH in

Adaptively Detecting Aggregation Bursts in Data Streams 439

short) or IH. IH is a novel histogram proposed by us whose details are presented
in section 4. Due to limited space allowed to detect bursts on data stream,
approximate burst detecting can take two possible approaches, namely, false
positive oriented and false negative oriented. The former includes some unreal
bursts in the final result, whereas the latter misses some real bursts. In the real
world, different application requirements need false positive oriented algorithm
and false negative oriented algorithm respectively.

3.1 False Positive Algorithm

The aggregate result wi of the latest i-length window (1 ≤ i ≤ n) can be got from
AVOH or IH. In fact, F (si) = wi = fss(i) and F (s′

i) = w2i−wi = fss(2i)−fss(i).
fss(i) = Σn

j=n−i+1xj , it is the suffix sum which is the sum of the last n− i + 1
values of stream x when xn arrives. Therefore, the criteria of increasing burst
and decreasing burst in Definition 1 can be depicted by wi ≥ β(w2i−wi) (β > 1)
and wi ≤ β(w2i −wi) (0 < β < 1) respectively. They can also be transformed to

w2i ≥ (β + 1)(w2i − wi), (β > 1) (1)

w2i ≤ (β + 1)(w2i − wi), (0 < β < 1) (2)

Detecting bursts false positively is achieved by augmenting the left side of in-
equality (1) and the right side of inequality (2) relatively. This is fulfilled by two
functions. One is IH.getLargerValue(i) which returns a value larger than real wi

from IH. The other is IH.getSmallerValue(i) which returns a value smaller than
real wi from IH. It can be seen that the accuracy of our method is only affected
by these two functions. Their details and bounds are introduced in section 4.

When xn comes and is inserted into histogram, this algorithm is called for
detecting bursts induced by xn. The algorithm has no input parameter. Its out-
put is the alarm information. Here, we just return the number of bursts. The
algorithm behaves level wise detection from level 1 to level n

2 . Each level is a pair
of the latest two consecutive windows with the same length on stream x. In level
i, the algorithm detects burst between such two windows with length i. That is
accomplished by two steps. The first step is to compute wi and w2i with the two
functions above, just as the statements in Line 4 and Line 5. The second step
is to detect the occurrence of a burst by inequality (1) as the statement in Line
6. The level wise detection is broken at Line 9 when inequality (1) is not met,
for remnant bursts are all induced by bumps. Because of different applications
oriented, there are at least three algorithms can be shown. First one is to detect
increasing bursts only. Second one is to detect decreasing bursts only. Third one
is to detect both two kinds of bursts. For the limitation of space, we show only
the first algorithm to which the others are similar.

Algorithm 1 can catch all bursts induced by xn on overall stream in O(k)
time, k(0 ≤ k ≤ n

2) is the number of bursts found by it. Therefore, it takes time
O(nk) for detecting all bursts in a stream with length n. If we just want to know
whether one burst occurs or not when xn comes instead of on which window

440 A. Zhou, S. Qin, and W. Qian

Algorithm 1 detectBurstsFalsePositively
1: burstNum ← 0;
2: winSize ← 1;
3: while winSize ≤ n

2 do
4: temp1=IH.getLargerValue(winSize);
5: temp2=IH.getSmallerValue(2 ∗ winSize);
6: if temp2 ≥ (β + 1)(temp2-temp1) then
7: increase burstNum and winSize by 1;
8: else
9: break;

10: end if
11: end while
12: return burstNum;

burst occurs or how many bursts are induced on overall stream, the time cost
can be O(1). We can claim the following theorem by denoting the space cost of
a B-bucket histogram with B and its updating cost for each xi with TB .

Theorem 1. Algorithm 1 can detect bursts false positively on data stream in
O(n(TB + k)) time and O(B) space.

3.2 False Negative Algorithm

Similar to the analysis in the above section, detecting bursts false negatively
is achieved by abating the left side of inequality (1) and the right side of in-
equality (2) relatively. Algorithm 1 can be capable of detecting bursts false
negatively when given minor modification. We can just put the statements,
temp1=IH.getSmallerValue(winSize)and temp2=IH.getLargerValue(2∗winSize),
instead of Line 4 and Line 5 in Algorithm 1. The analysis of its cost is same as
that of Algorithm 1. We can claim the following theorem.

Theorem 2. We can detect bursts false negatively on data stream in O(n(TB +
k)) time and O(B) space.

It is clear that in addition to sum, the two algorithms above can monitor not
only monotonic aggregates with respect to the window size for example max,
min, count and spread, but also non-monotonic ones such as average.

4 Buckets Order Inverted Histogram—IH

In this section, we begin to introduce a novel histogram, called Inverted His-
togram (i.e., IH in brief). It is the base of burst detecting algorithms presented
in section 3. At the beginning, a simple histogram is introduced. It is better
than the existing approximate V-optimal histograms for its cheap space and time
when being used to answer burst queries. But both the existing approximate V-
optimal histograms and the simple histogram are facing the great challenge that

Adaptively Detecting Aggregation Bursts in Data Streams 441

the everlasting increasing of absolute error in buckets will decay the accuracy of
burst detection rapidly. Later, we introduce the enhanced histogram—IH, which
not only has cheap space and time, but also answers burst queries precisely.

4.1 A Simple Histogram

Each point of stream x′
1, ..., x

′
n we read can be thought of the prefix sum of

x1, ..., xn with x′
i = fps(i). fps(i) is the prefix sum of stream x when xi comes,

fps(i) = Σi
j=1xj . Details of our idea are as follows. What we want is to partition

stream x′ into B intervals(buckets), (ba
1 , b

b
1), ..., (b

a
B , bb

B). bi is the i-th bucket,
1 ≤ i ≤ B. ba

i and bb
i are the minimum and maximum value within bucket bi

respectively. It’s possible that ba
i = bb

i . We also want to bound the relative error δ
in each bucket. The maximum relative error in bi is δ = bb

i−ba
i

ba
i

. One bucket should
maintain ba

i , b
b
i and the number of values in it, namely, its width. Furthermore,

the buckets are disjoint and cover x′
1..x

′
n. Therefore, ba

1 = x′
1 and bb

B = x′
n.

During the processing, bb
i ≤ (1+δ)ba

i is maintained. The algorithm on seeing the
n’st value xn, will compute x′

n = fps(n) = bb
B + xn. We just have to update the

last bucket, either by setting bb
B = x′

n when x′
n ≤ (1 + δ)ba

B , or creating a new
bucket when x′

n > (1 + δ)ba
B , with ba

B+1 = bb
B+1 = x′

n. The algorithm is quite
simple. It will not be shown here.

Theorem 3. We can build the simple histogram with O(log n+log R
log(1+δ)) space in

O(n) time. The relative error in each bucket is at most δ.

Although the simple histogram can be built with cheap cost of time and space,
the absolute error and size of the last bucket are getting larger and larger as the
increasing of stream length. Thus, the errors induced by using these buckets to
compute aggregates are also increasing. When a new value xn comes, we use the
bucket from the last one to the first one to estimate wi from 1-length window
to n

2 -length window. Therefore, the errors of aggregates on small windows are
much larger than those on large windows. According to Definition 1, provided
that the aggregate of window L is computed falsely, the bursts of windows whose
sizes are larger than L may be neglected. In consequence, the greater the stream
length is, the more error the detecting methods will suffer.

4.2 Enhanced Histogram—IH

To detect bursts more accurately, we want the recent bucket has higher precision,
in other words, the recent bucket has smaller width. Our idea is to invert the
buckets order which uses the smaller bucket to store the newer points, such as
in Fig.3.(b). The oldest point x′

1 and the latest point x′
n of stream x′ are in b1

and bB respectively. In Fig.3.(a), x′
i = fps(i). In Fig.3.(b), x′

i = fss(i). fss(i)
is the suffix sum, fss(i) = Σn

j=ixj . Fig.3.(a) is the bucket series of our simple
histogram and approximate V-optimal histogram. The size of the last bucket in
Fig.3.(a) is getting larger and larger as time goes on.

442 A. Zhou, S. Qin, and W. Qian

(a) Normal Buckets Order (b) Inverted Buckets Order

Fig. 3. Buckets Orders of Approximate V-optimal Histogram and IH

Algorithm 2 updateIH(xn)
1: increase bucket number B by 1;
2: j ← B;
3: create a new bucket and put xn into it;
4: for i = B − 1 to 1 do
5: add xn to both ba

i and bb
i ;

6: if bb
i ≤ (1 + δ)ba

j then
7: bb

j ← bb
i ;

8: add width of bi to width of bj ;
9: delete bi;

10: decrease bucket number B by 1;
11: end if
12: decrease j by 1;
13: end for

Same as the simple histogram, we want to minimize the bucket number with
relative error guaranteed in each bucket. The only difference is the stream we
read can be thought of as x′

i = fss(i). Details of our idea is similar to that
of the simple histogram. IH can be built with Algorithm 2. It has an input
parameter xi and no output. On seeing a new value xn, it has to update all
buckets, namely, O(log n+log R

log(1+δ)) buckets by executing the statements from Line
4 to 13. First, at Line 3, it creates a new bucket for xn and puts the bucket on
the last position of buckets series. Then, at Line 5, it updates the maximum and
minimum value of all the buckets by adding xn to them from the new created one
to the oldest one. In the process of updating, from Line 6 to 11, the algorithm
merges consecutive buckets bi and bj when bb

i ≤ (1+δ)ba
j , with bb

j = bb
i . In fact, IH

can also be constructed by the simple histogram algorithm feeded with inverted
data stream xn, .., x1. That is a very nice situation, the maximum relative error
in each bucket of IH can be bounded and the space and time cost are still cheap.
We claim the following theorem to guarantee these.

Theorem 4. Algorithm 2 can build an IH with O(log n+log R
log(1+δ)) space in O

(n(log n+log R)
log(1+δ)) time. The relative error in each bucket is at most δ.

The precision of IH can be improved by considering the values within a
bucket are equidistant. To guarantee false positive or false negative detection, we
need to maintain maxD and minD within each bucket. maxD is the maximum

Adaptively Detecting Aggregation Bursts in Data Streams 443

distance between two consecutive point within the bucket. minD is the minimum
distance between two consecutive point within the bucket. Provided that the
real value of wi is within bucket bj , IH.getLargerValue(i) returns the value of
min(bb

j , b
a
j + maxD(i − Σi−1

k=1Wid(bk) − 1)) and IH.getSmallerValue(i) returns
ba
j +minD(i−Σi−1

k=1Wid(bk)−1). Based on Theorem 1, Theorem 2 and Theorem
4, we can get the following corollary.

Corollary 1. We can detect bursts false positively or false negatively on data
stream in O(n(log n+log R

log(1+δ) + k)) time and O(log n+log R
log(1+δ)) space.

5 Performance Evaluation

In this section, our empirical studies show the adaptive method in this paper
can efficiently give accurate alarms to bursts with just a small cost of space.

5.1 Experimental Setup

All the algorithms are implemented by using Microsoft Visual C++ Version 6.0.
We conducted all testing on a 2.4GHz CPU Dell PC with 512MB main memory
running Windows 2000. Due to the limitation of space, we report the results for
only two representative data sets here:

– Web Site Requests (Real): This data set is obtained from the Internet Traffic
Archive [1, 3]. It consists of all the requests made to the 1998 World Cup
Web site between April 26, 1998 and July 26, 1998. During this 92 days
period of time the site received 1,352,804,107 requests. Our basic window,
namely, an item xi is the requests number in one second. So, the stream
length is n = 92 ∗ 24 ∗ 3600 = 7, 948, 800s. It is denoted by D1.

– Network Traffic (Synthetic): This data set is generated with the burst arrival
of data stream using a pareto[4] distribution, which is often used to simulate
network traffic where packets are sent according to ON OFF periods. The
density function of pareto distribution is P (x) = aba

xa+1 , where b ≥ x and
a is the shape parameter. The expected burst count, E(x), is ab

a−1 . The
tuple arrive rate λ1 is driven by an exponential distribution and the interval
λ2 between signals is also generated using exponential distribution. We set
expect value E(λ1) = 400tuples/s, E(λ2) = 500tuples, a = 1.5, b = 1. The
size of this time series data set is n = 10, 000, 000s. It is denoted by D2.

In the experiments, two accuracy metrics are measured: recall and precision.
Recall is the ratio of true alarms raised to the total true alarms should be
raised. Precision is the ratio of true alarms raised to the total alarms raised. Our
aggregate function F is sum.

5.2 Performance Study

Firstly, we study the precision of detecting bursts false positively based on IH
and AVOH on D1 and D2 respectively. In this experiment, we set δ = 0.01. It

444 A. Zhou, S. Qin, and W. Qian

β β

(a) varying β on D1 (b) varying β on D2

Fig. 4. Precision of burst detection based on IH and AVOH varying β (δ = 0.01)

(a) varying data set size on D1 (b) varying data set size on D2

Fig. 5. Precision and Recall of FP and FN varying data set size (β = 1.1, δ = 0.01)

can be confirmed from Fig.4 that the burst detecting method based on IH is far
more accurate than that based on AVOH at any setting of threshold β.

Secondly, we test the precision and recall of both false positive algorithm(FP
in short) and false negative algorithm(FN in short) on D1 and D2 respectively.
We set β = 1.1, δ = 0.01. It can be seen from Fig.5 that on both data sets the
precision of FP are at least 99.99% and with recall guaranteed 1, and the recall
of FN are also at least 99.99% and with precision guaranteed 1. In Fig.5.(a), we
see the precision and recall of FP and FN are all 1 when stream length is 1k.
When stream length is 10k, precision and recall are all 99.99% for occurring an
error. Because the accuracy of burst detection does not decay with the increasing
of stream length, the precision and recall are always above 99.99% and getting
better as time goes on. The same result can be got from Fig.5.(b). Therefore,
our method can give highly accurate answers to burst detection in data stream.

Thirdly, we discuss the setting of β and δ. From that, we can know the most
appropriate setting of δ, if β have been set. It means with that setting of δ we can
use the most economic space and time to find bursts accurately under relative
threshold β. It can be seen from Fig.6 that the most adaptable setting of δ on
each data set is max(β−1

10 , 0.01). The same heuristic result is also got from other
experiments we have made. Fourthly, we study the space cost of IH and AVOH
on condition that both of them have the same maximum relative error in their

Adaptively Detecting Aggregation Bursts in Data Streams 445

δ

β=0.5
β=0.9
β=1.01
β=1.1
β=1.5
β=2.0

β=0.5
β=0.9
β=1.01
β=1.1
β=1.5
β=2.0

δ

(a) varying δ on D1 (b) varying δ on D2

Fig. 6. Precision of detecting bursts false positively (varying δ and β, on D1 and D2)

δ δ

(a) varying δ on D1 (b) varying δ on D2

Fig. 7. Space cost of IH and AVOH (varying δ on D1 and D2)

(a) varying data set size on D1 (b) varying data set size on D2

Fig. 8. Processing Time of FP and FN varying data set size (β = 1.1, δ = 0.01)

buckets. Here, we set k = 1 for AVOH and vary the maximum relative error δ in
each bucket of both IH and AVOH from 0.1 to 0.001. In this experiment, β has
no influence on results. It can be seen from Fig.7 that IH consumes less memory
than AVOH on any condition of δ. The space saved by IH is getting larger and
larger as the decreasing of δ. Therefore, the IH is more adaptable to be used to
detect bursts in data stream.

At last, by varying size of data sets, we study the time cost of our algorithms
on D1 and D2 respectively. In this experiment, we set β = 1.1, δ = 0.01. Our

446 A. Zhou, S. Qin, and W. Qian

method is very efficient. This is confirmed in Fig.8, where the processing time
of FP and FN are same. The method of us can process 400 ∗ 107 tuples in 20
seconds. This means that it is easily capable of processing traffic rates on 100Mbs
links, and with some work then 1Gbps and higher are within reach.

6 Conclusions and Future Work

In this paper, we studied the problem of detecting bursts in data streams. A
novel concept of adaptive aggregation burst is introduced for precisely modelling
real-life data streams. This burst model empowers us to detect double-side rel-
ative bursts dynamically without disturbed by bumps. We propose the effective
algorithms for accurately detecting such bursts under false positive and false
negative constraints. The algorithms are developed based on a space and time
efficient histogram, IH, which can be maintained with low overhead while be-
ing more suitable for burst detection than other popular histograms. Intensive
experiments on both synthetic and real-life data sets show that our method is
quite efficient on space and time for analyzing high speed data streams. Future
work includes the study of extension of current IH-based burst detection method
on multiple correlated data streams and burst forecasting.

References

1. Internet traffic archive. http://ita.ee.lbl.gov/.
2. S. Ben-David, J. Gehrke, and D. Kifer. Detecting change in data streams. In Proc.

of VLDB, 2004.
3. G. Cormode and S. Muthukrishnan. Whats new: Finding significant differences in

network data streams. In Proc. of INFOCOM, 2004.
4. M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavy-tailed probability distri-

butions in the world wide web. A practical guide to heavy tails: STATISTICAL
TECHNIQUES AND APPLICATIONS, pages 3–26, 1998.

5. M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. In
Proc. of SIGMOD, 2003.

6. A. C. Gilbert and et al. Fast, small-space algorithms for approximate histogram
maintenance. In Proc. of STOC, 2002.

7. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets
on streams: One-pass summaries for approximate aggregate queries. In Proc. of
VLDB, 2001.

8. S. Guha, N. Koudas, and K. Shim. Datastreams and histograms. In Proc. of
STOC, 2001.

9. J. Kleinberg. Bursty and hierarchical structure in streams. In Proc. of SIGKDD,
2002.

10. B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change detection:
Methods, evaluation, and applications. In Proc. of IMC, 2003.

11. S. Muthukrishnan and M. Strauss. Rangesum histograms. In Proc. of SODA, 2003.
12. Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In Proc.

of SIGKDD, 2003.

Communication-Efficient Implementation of Join
in Sensor Networks

Vishal Chowdhary and Himanshu Gupta

SUNY, Stony Brook, NY 11754
{vishal, hgupta}@cs.sunysb.edu

Abstract. A sensor network is a wireless ad hoc network of resource-
constrained sensor nodes. In this article, we address the problem of
communication-efficient implementation of the SQL “join” operator in
sensor networks. We design an optimal join-implementation algorithm
that provably incurs minimum communication cost under certain rea-
sonable assumptions. In addition, we design a much faster suboptimal
heuristic that empirically delivers a near-optimal solution. We evaluate
the performance of our designed algorithms through extensive simula-
tions.

1 Introduction

A sensor network consists of sensor nodes with a short-range radio and on-board
processing capability forming a multi-hop network of an irregular topology. Each
sensor node can sense certain physical phenomena like light, temperature, or vi-
bration. There are many exciting applications [3, 13, 14] of such sensor networks,
including monitoring and surveillance systems in both military and civilian con-
texts, building smart environments and infrastructures such as intelligent trans-
portation systems and smart homes. In a sensor network, sensor nodes gener-
ate data items that are simply readings of one or more sensing devices on the
node. Thus, a sensor network can be viewed as a distributed database system
where each sensor node generates a stream of data tuples. Appropriately enough,
the term sensor database is increasingly being used in research literature. Like
a database, the sensor network is queried to gather and/or process the sensed
data tuples. Database queries in SQL are a very general representation of queries
over data, and efficient implementation of SQL queries is of great significance
because of the enormous amount of data present in a typical sensor network.
Since sensor nodes have limited battery energy, the distributed implementation
of SQL queries in sensor networks must minimize the communication cost in-
curred, which is the main consumer of battery energy [31].

In this article, we address how to efficiently execute database queries in a
sensor network, when the data distributed across sensors in a sensor network is
viewed as relational database tables. In particular, we address communication-
efficient in-network processing of the join operator, which is essentially a carte-
sian product of the operand tables followed by a predicate selection. We design

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 447–460, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

448 V. Chowdhary and H. Gupta

an optimal algorithm for a join operation that provably incurs minimum com-
munication cost in dense sensor networks under some reasonable assumptions of
communication cost and computation model. We also design a much faster sub-
optimal heuristic that empirically performs very close to the optimal algorithm,
and results in significant savings over the naive approaches.

The rest of the paper is organized as follows. We start with modeling the
sensor network as a database in Section 2. In Section 3, we present various
algorithms for in-network implementation of the join operator, along with certain
generalizations. We present our experiment results in Section 4. Related work is
discussed in Section 5, and concluding remarks presented in Section 6.

2 Sensor Network Databases

A sensor network consists of a large number of sensors distributed randomly in a
geographical region. Each sensor has limited on-board processing capability and
is equipped with sensing devices. A sensor node also has a radio which is used
to communicate directly with some of the sensors around it. Two sensor nodes
S1 and S2 can directly communicate with each other if and only if the distance
between them is less than the transmission radius. Sensor nodes may indirectly
communicate with each other through other intermediate nodes – thus, forming
a multi-hop network. We assume that each sensor node in the sensor network
has a limited storage capacity of m units. Also, sensors have limited battery
energy, which must be conserved for prolong unattended operation. Thus, we
have focused on minimization of communication cost (hence, energy cost) as the
key performance criteria of the join implementation strategies.

2.1 Modeling the Sensor Network as a Database

In a sensor network, the data generated by the sensor nodes is simply the read-
ings of one or more sensing devices on the node. Thus, the data present in a
sensor network can be modeled as relational database tables, wherein each sen-
sor produces data records/tuples of a certain format and semantics. In some
sense, a relational database table is a collection of similar-typed tuples from a
group of sensors in the network. Due to the spatial and real-time nature of the
data generated, a tuple usually has timeStamp and nodeLocation as attributes.
In a sensor network, relational database tables are typically stream database
tables [2] partitioned horizontally across (or generated by) a set of sensors in the
network.

In-Network Implementation. A plausible implementation of a sensor network
database query engine could be to have an external database system handle all
the queries over the network. In such a realization, all the data from each sensor
node in the network is sent to the external system that handles the execution of
queries completely. Such an implementation would incur very high communica-
tion costs and congestion-related bottlenecks. Thus, prior research has proposed

Communication-Efficient Implementation of Join in Sensor Networks 449

query engines that would execute the queries within the network with little exter-
nal help. In particular, [18] shows that in-network implementation of database
queries is fundamental to achieving energy-efficient communication in sensor
networks. The focus of this article is communication-efficient in-network imple-
mentation of the join operator. As selection and projection are unary operators
and operate on each tuple independently, they could be efficiently implemented
using efficient routing and topology construction techniques. Union operation
can be reduced to duplicate elimination, and the difference and intersection op-
erations can be reduced to the join operation. Implementation of other database
operators (aggregation, duplicate elimination, and outerjoins) is challenging and
is the focus of our future work.

Querying and Cost Model. A query in a sensor network is initiated at a node
called query source and the result of the query is required to be routed back to
the query source for storage and/or consumption. A stream database table may
be generated by a set of sensor nodes in a closed geographical region. The op-
timization algorithms, proposed in this article, to determine how to implement
the join operation efficiently, are run at the query source. As typical sensor net-
work queries are long running, the query source can gather all the catalogue
information needed (estimated sizes and locations of the operand relations, join
selectivity factor to estimate the size of the join result, density of the network)
by initially sampling the operand tables. As mentioned before, we concentrate on
implementations that minimize communication cost. We define the total com-
munication cost incurred as the total data transfer between neighboring sensor
nodes.

3 In-Network Implementation of Join

In this section, we develop communication-efficient algorithms for implementa-
tion of a join operation in sensor networks. We start with assuming that the
operand tables are static (non-streaming). Later in the section, we describe how
our algorithms can be generalized for stream database tables, as data in sensor
network is better represented as data stream tables.

The SQL join operator is used to correlate data from multiple tables, and
can be defined as a selection predicate over the cross-product of a pair of ta-
bles; a join of R and S tables is denoted as R �� S. Consider a join operation,
initiated by a query source node Q, involving two static (non-streaming) tables
R and S distributed horizontally across some geographical regions R and S in
the network. We assume that the geographic regions are disjoint and small rel-
ative to the distances between the query source and the operand table regions
(see [10] for a discussion on relaxation of this assumption). If we do not make
any assumptions about the join predicates involved, each data tuple of table R
should be paired with every tuple of S and checked for the join condition. The
joined tuple is then routed (if it passes the join selection condition) to the query
source Q where all the tuples are accumulated or consumed. Given that each

450 V. Chowdhary and H. Gupta

sensor node has limited memory resources, we need to find out appropriate re-
gions in the network that would take the responsibility of computing the join. In
particular, we may need to store and process the relations at some intermediate
location before routing the result to the query source.

A simple nested-loop implementation of a join used in traditional databases
is to generate the cross product (all pairs of tuples), and then extract those pairs
that satisfy the selection predicate of the join. More involved implementations
of a join operator widely used in database systems are merge-sort and hash-
join. These classical methods are unsuitable for direct implemention in sensor
networks due to the limited memory resources at each node in the network.
Moreover, the traditional join algorithms focus on minimizing computation cost,
while in sensor networks the primary performance criteria is communication
cost. Below, we discuss various techniques for efficient implementation of the
join operation in sensor networks.

Naive Approach. A simple way to compute R �� S could be to route the tuples
of S from their original location S to the region R, broadcast the S-tuples in the
region R, compute the join within the region R, and then route the joined tuples
to the query source Q. We refer to this approach as the Naive approach. Note
that the roles of the tables R and S can be interchanged in the above approach.

Centroid Approach. Centroid approach is to compute the join operation in
a circular region around some point C in the sensor network. In particular, let
Pc be the smallest circular region around C such that the region Pc has at least
|R|/m sensor nodes to store the table R. First, we route both the operand table
to C. Second, we distribute R and broadcast S in the region Pc around C. Lastly,
we compute the join operation, and route the resulting tuples of (R �� S) to the
query source Q. Since the communication cost incurred in the second step is
independent of the choice of C, it is easy to see that the communication cost
incurred in the above approach is minimized when the point C is the weighted
centroid of the triangle formed by R,S, and Q. Here, the choice of the centroid
point C is weighted by the sizes of R,S, and (R �� S).

3.1 Optimal Join Algorithm

In this section, we present an algorithm that constructs an optimal region for
computing the join operation using minimum communication cost. We assume
that the sensor network is sufficiently dense that we can find a sensor node at
any point in the region. To formally prove the claim of optimality, we need to
restrict ourselves to a class of join algorithms called Distribute-Broadcast Join
Algorithms (defined below). In effect, our claim of optimality states that the
proposed join algorithm incurs less communication cost than any distribute-
broadcast join algorithm.

Definition 1. A join algorithm to compute R �� S in a sensor network is a
distribute-broadcast join algorithm if the join is processed by first distributing

Communication-Efficient Implementation of Join in Sensor Networks 451

Q

S

Table R Table S

Cq

PCr
Cs

R

Pr
Ps

Po

(a)

Q

SR

Table R Table S

PCr

Cs

Cq

Cq2

Pr

Ps

(b)

Fig. 1. Possible Shape of an Optimal Join-Region

the table R in some region P (other than the region R storing R)1 of the sensor
network followed by broadcasting the relation S within the region P to compute
the join. The joined tuples are then routed from each sensor in the region P to
the query source.

As before, consider a query source Q and regions R and S that store the static
operand tables R and S in a sensor network. The key challenge in designing an
optimal algorithm for implementation of a join operation is to select a region
P for processing the join in such a way that the total communication cost is
minimized. We use the term join-region to refer to a region in the sensor network
that is responsible for computing the join.

Shape of an Optimal Join-Region. Theorem 1 (see [10] for proof) shows
that the join-region P that incurs minimum communication cost has a shape as
shown in Figure 1 (a) or (b). In particular, the optimal join-region P is formed
using three point Cr, Cs, and Cq in the sensor network (typically these points
will lie within the $RSQ). More precisely, given three points Cr, Cs, and Cq in
the sensor network, the region P takes one of the following forms:

1. Region P is formed of the paths Pr = (Cr, Cq) and Ps = (Cs, Cq), the line
segment CqQ, and a circular region PO of appropriate radius around Q. See
Figure 1 (a).

2. Region P is formed of the paths Pr = (Cr, Cq) and Ps = (Cs, Cq), and a
part of the line segment CqQ. See Figure 1 (b).

The total number of sensors in the region P is l = |R|/m, where |R| is the
size of the table R which will be distributed over the region P , and m is the
memory size of each sensor node.

Theorem 1. The shape of the join-region P used by a distribute-broadcast join
algorithm that incurs optimal communication cost is as described above or as
depicted in Figure 1 (a) or (b).

1 Else, the algorithm will be identical to one of the Naive Approaches.

452 V. Chowdhary and H. Gupta

Theorem 1 restricts the shape of an optimal join-region. However, there are
still an infinite number of possible join-regions of shapes depicted in Figure 1.
Below, we further restrict the shape of an optimal join-region by characterizing
the equations of the paths Pr and Ps, which connect Cr and Cs respectively to
Q. We start with a definition.

Definition 2. The sensor length between a region X and a point y in a sensor
network plane is denoted as d(X , y) and is defined as the average weighted dis-
tance, in terms of number of hops/sensors, between the region X and the point
y. Here, the distance between a point x ∈ X and y is weighted by the amount of
data residing at x.

Optimizing Paths Pr and Ps. Consider an optimal join-region P that imple-
ments a join operation using minimum communication cost. From Theorem 1,
we know that the region P is of the shape depicted in Figure 1 (a) or (b). The
total communication cost T incurred in processing of a join using the region P
is

|R|d(R, Cr) + |S|d(S, Cs) + |R �� S|d(P,Q) + |R||P |/2 + |S||P |,
where the first two terms represent the cost of routing R and S to Cr and
Cs respectively, the third term represents the cost of routing the result R �� S
from P to Q, and the last two terms represent the cost of distributing R and
broadcasting S in the region P . Here, we assume that lack of global knowledge
about the other sensors’ locations and available memory capacities preclude the
possibility of distributing or broadcasting more efficiently than doing it in a
simple linear manner. Now, the only component of cost T that depends on the
shape of P is |R �� S|d(P,Q). Let P ′ = P−Pr−Ps, i.e., the region P without the
paths Pr and Ps. Since the result |R �� S| is evenly spread along the entire region
P , we have d(P,Q) = 1

|P | (|P ′|d(P ′, Q) + |Pr|d(Pr, Q) + |Ps|d(Ps, Q)), where the
notation |B| for a region B denotes the number of sensor nodes in the region
B. For a given set of points Cr, Cs, and Cq, the total communication cost T is
minimized when the path Pr is constructed such that |Pr|d(Pr, Q) is minimized.
Otherwise, we could reconstruct Pr with a smaller |Pr|d(Pr, Q), and remove/add
sensors nodes from the end2 of the region P ′ to maintain |P | = |R|/m. Removal
of sensor nodes from P ′ will always reduce T , and it can be shown that addition
of sensor nodes to the end of the region P ′ will not increase the cost more
than the reduction achieved by optimizing Pr. Similarly, the path Ps could be
optimized independently.

We now derive the equation of the path Pr that minimizes |Pr|d(Pr, Q) for
a given Cr and Cq. Consider an arbitrary point R(x, y) along the optimal path
Pr. The length of an infinitesimally small segment of the path Pr beginning at
R(x, y) is

√
(dx)2 + (dy)2, and the average distance of this segment from Q is√

x2 + y2, if the coordinates of Q are (0, 0). Sum of all these distances over the

2 Here, by the end of the region P ′, we mean either the circular part PO or the line
segment CqCq2 depending on the shape.

Communication-Efficient Implementation of Join in Sensor Networks 453

path Pr is F =
∫ x2

x1

√
x2 + y2

√
(1 + (y′)2 dx. To get the equation for the path

Pr, we would need to determine the extremals of the above function F . Using
the technique of calculus of variations [15], we can show that the extremal values
of F satisfy the Euler-Lagrange differential equation. The equation of the path
Pr can thus be computed as (we omit the details):

β = x2 cosα + 2xy sinα− y2 cosα

where the constants α and β are evaluated by substituting for coordinates of Cr

and Cq in the equation.

Optimal Join Algorithm. Given points Cr, Cs, Cq, and Q, let Pr and Ps be
the optimized paths connecting Cr and Cs to Cq respectively as described above.
For a given triplet of points (Cr, Cs, Cq), the optimal join-region P is as follows.
Let l = |R|/m and lY = |Pr| + |Ps| + |CqQ|.

– When lY < l, P = Pr ∪ Ps ∪ CqQ ∪ PO, where PO is a circular region
around Q such that |PO| = l − (|Cq, Q| + |Pr| + |Ps|). See Figure 1 (a).

– When lY ≥ l, P = Pr ∪ Ps ∪ CqCq2, where Cq2 is such that |CqCq2| =
l − (|Pr| + |Ps|). See Figure 1 (b).

Now, we can construct an optimal join-region to compute a join operation
for tables R and S and the query source Q, by considering all possible triples of
points Cr, Cs, and Cq in the sensor network, and picking the triplet (Cr, Cs, Cq)
that results in a join-region P (as describe above) with minimum communication
cost. The time complexity of the above algorithm is O(n3), where n is the total
number of sensor nodes in the sensor network.

Suboptimal Heuristic. The high time complexity of the optimal algorithm
described above makes it impractical for large sensor networks.

Thus, we propose a suboptimal heuristic that runs

Q

SR

Table R Table S

Cr

Cs

Cq

M

|R|d(R, Cr) = |S|d(S, Cs)

Fig. 2. Heuristic

in O(n3/2) time, and incidentally performs very
well in practice. Essentially, for a given Cr, we
stipulate that Cs should be symmetrically (|R|d(R,
Cr) = |S|d(S, Cs)) located in the $RQS. In ad-
dition, we approximate paths Pr and Ps to be
straight line segments, and choose the point Cq on
the median of the $CrCsQ. See Figure 2. Thus, for
each point as Cr in the sensor network, we deter-
mine Cs and search for the best Cq on the median
of $CrCsQ.

3.2 Join Implementation for Stream Database Tables

In the previous subsection, we discussed implementation of the join operation
in a sensor network for static database tables. Since, sensor network data is
better represented as stream database tables, we now generalize the algorithms

454 V. Chowdhary and H. Gupta

to handle stream database tables. First, we start with presenting our model of
stream database tables in sensor networks.

Data Streams in Sensor Networks. As for the case of static tables, a stream
database table R corresponding to a data stream in a sensor network is associated
with a region R, where each node in R is continually generating tuples for the
table R. To deal with the unbounded size of stream database tables, the tables
are usually restricted to a finite set of tuples called the sliding window [1, 12, 27].
In effect, we expire or archive tuples from the data stream based on some criteria
so that the total number of stored tuples does not exceed the bounded window
size. We use WR to denote the sliding window for a stream database table R.

Naive Approach for Stream Tables. In the Naive Approach, we use the
region R (or S) to store the windows WR and WS of the stream tables R and
S.3 Each sensor node in the region R uses WR/(|WR| + |WS |) fraction of its
local memory to store tuples of WR, and the remaining fraction of the memory
to store tuples of WS . To perform the join operation, each newly generated tuple
(of R or S) is broadcast to all the nodes in the region R, and is also stored in
some node of R with available memory. Note that the generated data tuples of
S need to be first routed from the region S to the region R. The resulting joined
tuples are routed from R to the query source Q.

Generalizing Other Approaches. The other approaches viz. Centroid Ap-
proach, Optimal Algorithm, and Suboptimal Heuristic, use a join-region that is
separate from the regions R and S. These algorithms are generalized to handle
stream database tables as follows. First, the strategy to choose the join-region P
remains the same as before for static tables, except for the size of the join-region.
For stream database tables, the chosen join-region is used to store WR as well
as WS , with each sensor node in the join-region using WR/|WR|+ |WS | fraction
of its memory to store tuples of WR, and the rest to store tuples of WS . Each
newly generated tuple (of R or S) is routed from its source node in R or S to the
join-region P , and broadcast to all the nodes in P . The resulting joined tuples
are then routed to Q. As part of the broadcast process (without incurring any
additional communication cost), each generated tuple of R (or S) is also stored
at some node in P with available memory.

4 Performance Evaluation

In this section, we compare the performance of Naive Approach, Centroid Algo-
rithm, Optimal Algorithm, and Suboptimal Heuristic. In our previous discussion,
we have assumed dense sensor networks where we can find a sensor node at any
desirable point in the region. On real sensor networks, we use our proposed algo-
rithms in conjunction with the trajectory based forwarding (TBF) routing tech-

3 If the total memory of the nodes in R is not sufficient to store WR and WS , then
the region R is expanded to include more sensor nodes.

Communication-Efficient Implementation of Join in Sensor Networks 455

2000

4000

8000

16000

5*10-4 10-3 0.005 0.01 0.05 0.1T
o
t
a
l

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
s
t

(
x

1
0
3
)

Join Selectivity Factor

Naive
Centroid

Suboptimal Heuristic
OptBased

(a) t = 0.13 units

1000

2000

3000

4000

5000

5*10-4 10-3 0.005 0.01 0.05 0.1T
o
t
a
l

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
s
t

(
x

1
0
3
)

Join Selectivity Factor

Naive
Centroid

Suboptimal Heuristic
OptBased

(b) t = 0.15 units

500

1000

2000

3000

5*10-4 10-3 0.005 0.01 0.05 0.1T
o
t
a
l

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
s
t

(
x

1
0
3
)

Join Selectivity Factor

Naive
Centroid

Suboptimal Heuristic
OptBased

(c) t = 0.18 units

Fig. 3. Total communication cost for various transmission radii (t), and fixed �RSQ

nique [28], which works by forwarding packets to nodes closest to the intended
path/trajectory. More specifically, to form the Pr, Ps, and CqQ (or CqCq2) parts
of the join-region, we use nodes that are closest to uniformly spaced points on
the geometrically constructed paths. In addition, each algorithm is generalized
for stream database tables as discussed in Section 3.2. We refer to the generalized
algorithms as Naive, Centroid, OptBased, and Suboptimal Heuristic respectively.

Definition 3. Given instances of relations R and S and a join predicate, the
join-selectivity factor (f) is the probability that a random pair of tuples from R
and S will satisfy the given join predicate. In other words, the join selectivity
factor is the ratio of the size of R �� S to the size of the cartesian product, i.e.,
f = |R �� S|/(|R||S|).

Parameter Values and Experiments. We generated random sensor networks
by randomly placing 10,000 sensors with uniform transmission radius (t) in an
area of 10×10 units. For the purposes of comparing the performance of our algo-
rithms, varying the number of sensors is tantamount to varying the transmission
radius. Thus, we fix the number of sensors to be 10,000 and measure performance
for different transmission radii. Memory size of a sensor node is 300 tuples, and
the size of each of the sliding windows WR and WS of stream tables R and S is
8,000 tuples. For simplicity, we chose uniform data generation rates for R and S
streams. In each of the experiments, we measure communication cost incurred in
processing 8000 newly generated tuples of R and S each, after the join-region is
already filled with previously generated tuples. We use the GPSR [19] algorithm
to route tuples. Catalogue information is gathered for non-Naive approaches by
collecting a small sample of data streams at the query source. In the first set
of experiments, we consider a fixed $RSQ and calculate the total communica-
tion cost for various transmission radii and join-selectivity factors. Next, we fix
the transmission radius and calculate the total communication cost for various
join-selectivity factors and various shapes/sizes of the $RSQ.

Fixed Triangle RSQ. In this set of experiments (Figure 3), we fix the loca-
tions of regions R, S, and query source Q and measure the performance of our

456 V. Chowdhary and H. Gupta

algorithms for various values of transmission radii and join-selectivity factors.
In particular, we choose coordinates (0,0), (5,9.5), and (9.5,0) for R,Q, and S
respectively.

We have looked at three transmission radii viz.

1000

2000

3000

4000

5000

0.13 0.18 0.25 0.35 0.5 1.0T
o
t
a
l

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
s
t

(
x

1
0
3
)

Transmission Radius

Naive
Centroid

Suboptimal Heuristic
OptBased

Fig. 4. Here, f = 0.05

0.13, 0.15, and 0.18 units. Lower transmission
radii left the sensor network disconnected, and
the trend observed for these three transmission
radii values is sufficient to infer behavior for larger
transmission radii (see Figure 4). From Figure 3
(a)-(c), we can see that the Suboptimal Heuris-
tic performs very close to the OptBased Algo-
rithm, and significantly outperforms (upto 100%)
the Naive and Centroid Approaches for most pa-
rameter values. The performance of the Naive ap-
proach worsens drastically with the increase in

the join-selectivity factor, since the routing cost of the joined tuples from the
join region (R or S) to the query source Q becomes more dominant.

Fixed Transmission Radius (0.15 Units). We also observe the performance
of various algorithms for different size and shapes of $RSQ. In particular, we
fix the transmission radius of each sensor node in the network to be 0.15 units,
and generate various $RSQ’s as follows. We fix locations of regions R and
S, and select many locations of the query source Q with the constraint that
the area of the $RSQ is between 10% to 50% of the total sensor network
area. For each such generated $RSQ, we run all the four algorithms for three
representative join-selectivity factor values viz. 10−4, 5 ∗ 10−3, and 10−2. See
Figure 5. Again we observe that the Suboptimal Heuristic performs very close
to the OptBased Algorithm, and incurs much less communication cost than the
Naive and Centroid Approaches for all join-selectivity factor values.

Summary. From the above experiments, we observe that the Suboptimal Heuris-
tic performs very close to the OptBased Algorithm, but performs substantially

250

500

1000

 10 15 20 25 30 35 40 45

T
o
t
a
l

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
s
t

(
x

1
0
3
)

Area of Triangle QRS

Naive
Centroid

Suboptimal Heuristic
OptBased

(a) f = 10−4

1000

2000

4000

 10 15 20 25 30 35 40 45

T
o
t
a
l

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
s
t

(
x

1
0
3
)

Area of Triangle QRS

Naive
Centroid

Suboptimal Heuristic
OptBased

(b) f = 5 ∗ 10−3

1000

2000

4000

 10 15 20 25 30 35 40 45

T
o
t
a
l

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
s
t

(
x

1
0
3
)

Area of Triangle QRS

Naive
Centroid

Suboptimal Heuristic
OptBased

(c) f = 10−2

Fig. 5. Total communication cost for various �RSQ. Here, t = 0.15

Communication-Efficient Implementation of Join in Sensor Networks 457

better than the Centroid and Naive Approaches for a wide range of sensor net-
work parameters. The savings in communication cost reduce with the increase in
join-selectivity factor and/or transmission radius. We expect the join-selectivity
factor to be relatively low in large sensor networks because of large sizes of
operand tables and data generated having only local spatial and temporal data
correlations. Moreover, since sensor nodes have the capability to adjust transmis-
sion power, effective topology control [30, 32] is used to minimize transmission
radius at each node to conserve overall energy. Thus, the Suboptimal Heuristic
is a natural choice for efficient implementation of join in sensor networks, and
should result in substantial energy savings in practice.

5 Related Work

The vision of sensor network as a database has been proposed by many works [5,
16, 26], and simple query engines such as TinyDB [26] have been built for sensor
networks. In particular, the COUGAR project [5, 33, 34] at Cornell University
is one of the first attempts to model a sensor network as a database system.
The TinyDB Project [26] at Berkeley also investigates query processing tech-
niques for sensor networks. However, TinyDB implements very limited function-
ality [25] of the traditional database language SQL. A plausible implementation
of an SQL query engine for sensor networks could be to ship all sensor nodes’
data to an external server that handles the execution of queries completely [21].
Such an implementation would incur high communication costs and congestion-
related bottlenecks. In particular, [18] shows that in-network implementation
of database queries is fundamental to conserving energy in sensor networks.
Thus, recent research has focussed on in-network implementation of database
queries. However, prior research has only addressed limited SQL functionality
– single queries involving simple aggregations [22, 24, 34] and/or selections [25]
over single tables [23], or local joins [34]. So far, it has been considered that cor-
relations such as median computation or joins should be computed on a single
node [4, 25, 34]. In particular, [4] address the problem of operator placement for
in-network query processing, assuming that each operator is executed locally and
fully on a single sensor node. The problem of distributed and communication-
efficient implementation of join has not been addressed yet in the context of
sensor networks.

In addition, there has been a large body of work done on efficient query
processing in data stream processing systems [6, 8, 9, 27]. In particular, [11] ap-
proximates sliding window joins over data streams and [17] has designed join
algorithms for joining multiple data streams constrained by a sliding time win-
dow. However, a data stream processing system is not necessarily distributed
and hence, minimizing communication cost is not the focus of the research.
There has been a lot of work on query processing in distributed database sys-
tems [7, 20, 29], but sensor networks differ significantly from distributed database
systems because of their multi-hop communication cost model and resource
limitations.

458 V. Chowdhary and H. Gupta

6 Conclusions

Sensor networks are capable of generating large amounts of data. Hence, efficient
query processing in sensor networks is of great importance. Since sensor nodes
have limited battery power and memory resources, designing communication-
efficient distributed implementation of database queries is a key research chal-
lenge. In this article, we have focussed on implementation of the join operator,
which is one of the core operators of database query language. In particular, we
have designed an Optimal Algorithm that incurs minimum communication cost
for implementation of join in sensor networks under certain reasonable assump-
tions. Moreover, we reduced the time complexity of the Optimal Algorithm to
design a Suboptimal Heuristic, and showed through extensive simulations that
the Suboptimal Heuristic performs very close to the Optimal Algorithm. Tech-
niques developed in this article are shown to result in substantial energy savings
over simpler approaches for a wide range of sensor network parameters.

References

1. D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data
stream management. The VLDB Journal, 12(2):120–139, 2003.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), 2002.

3. B. Badrinath, M. Srivastava, K. Mills, J. Scholtz, and K. Sollins, editors. Special
Issue on Smart Spaces and Environments, IEEE Personal Communications, 2000.

4. B. Bonfils and P. Bonnet. Adaptive and decentralized operator placement for
in-network query processing. In Proceedings of the International Workshop on
Information Processing in Sensor Networks (IPSN), 2003.

5. P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In
Proceeding of the International Conference on Mobile Data Management, 2001.

6. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-
braker, N. Tatbul, and S. Zdonik. Monitoring streams - A new class of data
management applications. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), 2002.

7. S. Ceri and G. Pelagatti. Distributed Database Design: Principles and Systems.
MacGraw-Hill (New York NY), 1984.

8. S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. Tele-
graphCQ: Continuous dataflow processing. In Proceedings of the ACM SIGMOD
Conference on Management of Data, 2003.

9. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable continu-
ous query system for internet databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data, 2000.

10. V. Chowdhary and H. Gupta. Communication-efficient implementation of join
in sensor networks. Technical report, SUNY, Stony Brook, Computer Science
Department, 2004.

Communication-Efficient Implementation of Join in Sensor Networks 459

11. A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over data
streams. In Proceedings of the ACM SIGMOD Conference on Management of
Data, 2003.

12. L. Ding, N. Mehta, E. Rundensteiner, and G. Heineman. Joining punctuated
streams. In Proceedings of the International Conference on Extending Database
Technology, 2004.

13. D. Estrin, R. Govindan, and J. Heidemann, editors. Special Issue on Embedding
the Internet, Communications of the ACM, volume 43, 2000.

14. D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar. Next century challenges:
Scalable coordination in sensor networks. In Proceedings of the International Con-
ference on Mobile Computing and Networking (MobiCom), 1999.

15. I. Gelfand and S. Fomin. Calculus of Variations. Dover Publications, 2000.
16. R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin, and S. Shenker.

The sensor network as a database. Technical report, University of Southern Cali-
fornia, Computer Science Department, 2002.

17. M. Hammad, W. Aref, A. Catlin, M. Elfeky, and A. Elmagarmid. A stream
database server for sensor applications. Technical report, Purdue University, De-
partment of Computer Science, 2002.

18. J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan. Building efficient wireless sensor networks with low-level naming.
In Symposium on Operating Systems Principles, 2001.

19. B. Karp and H. Kung. Gpsr: greedy perimeter stateless routing for wireless net-
works. In Proceedings of the International Conference on Mobile Computing and
Networking (MobiCom), 2000.

20. D. Kossmann. The state of the art in distributed query processing. ACM Com-
puting Surveys, 32(4), 2000.

21. S. Madden and M. Franklin. Fjording the stream: An architecture for queries over
streaming sensor data. In Proceedings of the International Conference on Database
Engineering (ICDE), 2002.

22. S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A tiny aggregation
service for ad-hoc sensor networks. In Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI), 2002.

23. S. Madden and J. M. Hellerstein. Distributing queries over low-power wireless
sensor networks. In Proceedings of the ACM SIGMOD Conference on Management
of Data, 2002.

24. S. Madden, R. Szewczyk, M. Franklin, and D. Culler. Supporting aggregate queries
over ad-hoc wireless sensor networks. In Workshop on Mobile Computing and
Systems Applications, 2002.

25. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of
an acquisitional query processor for sensor networks. In Proceedings of the ACM
SIGMOD Conference on Management of Data, 2003.

26. S. R. Madden, J. M. Hellerstein, and W. Hong. TinyDB: In-network query pro-
cessing in tinyos. http://telegraph.cs.berkeley.edu/tinydb, Sept. 2003.

27. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,
C. Olston, J. Rosenstein, and R. Varma. Query processing, approximation, and
resource management in a data stream management system. In Proceedings of the
International Conference on Innovative Data Systems Research (CIDR), 2003.

28. B. Nath and D. Niculescu. Routing on a curve. In Proceedings of the Workshop
on Hot Topics in Networks, 2002.

29. M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, 1999.

460 V. Chowdhary and H. Gupta

30. J. Pan, Y. T. Hou, L. Cai, Y. Shi, and S. X. Shen. Topology control for wire-
less sensor networks. In Proceedings of the International Conference on Mobile
Computing and Networking (MobiCom), 2003.

31. G. Pottie and W. Kaiser. Wireless integrated sensor networks. Communications
of the ACM, 43, 2000.

32. R. Ramanathan and R. Rosales-Hain. Topology control in multihop wireless net-
works using transmit power adjustment. In Proceedings of the IEEE INFOCOM,
2000.

33. Y. Yao and J. Gehrke. The cougar approach to in-network query processing in
sensor networks. In SIGMOD Record, 2002.

34. Y. Yao and J. Gehrke. Query processing for sensor networks. In Proceedings of the
International Conference on Innovative Data Systems Research (CIDR), 2003.

Zoned-RAID for Multimedia Database Servers

Ali E. Dashti1, Seon Ho Kim2, and Roger Zimmermann3

1 Electrical and Computer Engineering Department, Kuwait University, Safat, 13060,
Kuwait

dashti@eng.kuniv.edu.kw
2 Department of Computer Science, University of Denver, Denver, CO 80208, U.S.A

seonkim@cs.du.edu
3 Department of Computer Science, University of Southern California, Los Angeles,

CA 90089, U.S.A
rzimmerm@usc.edu

Abstract. This paper proposes a novel fault-tolerant disk subsystem
named Zoned-RAID (Z-RAID). Z-RAID improves the performance of
traditional RAID system by utilizing the zoning property of modern
disks which provides multiple zones with different data transfer rates
in a disk. This study proposes to optimize data transfer rate of RAID
system by constraining placement of data blocks in multi-zone disks.
We apply Z-RAID for multimedia database servers such as video servers
that require a high data transfer rate as well as fault tolerance. Our
analytical and experimental results demonstrate the superiority of Z-
RAID to conventional RAID. Z-RAID provides a higher effective data
transfer rate in normal mode with no disadvantage. In the presence of a
disk failure, Z-RAID still performs as well as RAID.

1 Introduction

Recent years have witnessed the proliferation of multimedia databases, especially
handling streaming media types such as digital audio and video, with the wide
acceptance of the public and the industry. These media have become a part of
everyday life including not only electronic consumer products but also online
streaming media services on the Internet. Due to 1) successful standards for
compression and file formats, such as MPEG (Motion Picture Expert Group), 2)
increased network capacity for local area networks (LAN) and the Internet, and
3) advanced streaming protocols (e.g., Real Time Streaming Protocol, RTSP),
more and more multimedia database applications, combined with the Internet,
are providing streaming media services such as remote viewing of video clips.

Streaming media (SM) have two main characteristics. First, SM data must
be displayed at a pre-specified rate. Any deviation from this real-time require-
ment may result in undesirable artifacts, disruptions, and jitters, collectively
termed hiccups. Second, SM objects are large in size. For example, the size of
a two-hour MPEG-2 encoded digital movie requiring 4 Mb/s for its display is
3.6 GBytes. Due to these characteristics, the design of SM servers has been dif-
ferent from that of conventional databases, file servers, and associated storage

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 461–473, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

462 A.E. Dashti, S.H Kim, and R. Zimmermann

systems [5, 3] to provide a hiccup-free display, a higher throughput, a shorter
startup latency, and a more cost-effective solution.

Magnetic disk drives have been the choice of storage devices for SM servers
due to their high data transfer rate, large storage capacity, random access ca-
pability, and low price. Therefore, many studies have investigated the design of
SM servers using magnetic disk drives [5, 3]. Due to the essential role of disk
storage systems in SM servers, understanding recent trends in disk technologies
can be helpful. First, the capacity and speed of magnetic disk drives have im-
proved steadily over the last decade. According to [9] on the recent trends in
data engineering, the storage capacity of magnetic disks has increased at the
rate of about 60% per year. At the same time, the data transfer rate of magnetic
disks has increased at the rate of about 40% per year. Thus, the imbalance be-
tween disk space and data transfer rate has widened. Because data transfer rate
(bandwidth) is the scarce resource in the applications that intensively access
disks, one wants to optimize for bandwidth rather than for space [9].

Another important physical characteristic of modern disks is Zoned record-
ing (or zoning). This is an approach utilized by disk manufactures to increase
the storage capacity of magnetic disks [12]. This technique groups adjacent disk
cylinders into zones. Tracks are longer towards the outer portions of a disk plat-
ter as compared to the inner portions, hence, more data can be recorded in the
outer tracks when the maximum linear density, i.e., bits per inch, is applied to
all tracks. A zone is a contiguous collection of disk cylinders whose tracks have
the same storage capacity, i.e., the number of sectors per track is constant in the
same zone. Hence, outer tracks have more sectors per track than inner zones.
Different disk models have different number of zones. Different zones in a disk
provide different transfer rates because: 1) the storage capacity of the tracks
for each zone is different, and 2) the disk platters rotate at a fixed number of
revolutions per second. We can observe a significant difference in data transfer
rates between the minimum and maximum (around 50% difference) [3, 7, 12].

Last, since disk prices are approaching tape prices and tape backup takes a
far longer time, disks are replacing tapes for backup and fault tolerant systems.
Thus, many applications have been using RAID (Redundant Array of Indepen-
dent Disks) [14]. Out of multiple levels of RAID, especially, both RAID level 1
and level 5 have been commonly used for a fault tolerant disk system [9].

In large scale multimedia database servers in support of streaming media,
it is obviously critical both to optimize disk bandwidth and to provide disk-
based fault tolerance. Many studies [16, 1, 6, 17, 7] discussed data placement on
multi-zone disks to maximize the effective data transfer rate. [10] provided MRS
(Multi-Rate Smoothing) data placement on multi-zone disks for a smooth trans-
mission of variable-bit-rate data over network. However, none of above studies
includes reliability issue. RAID has been widely used for faut-tolerant streaming
servers as well as conventional file servers. Various reliability strategies in video
servers, including RAID, were surveyed and compared in [4]. However, no study
considered one of the most important characteristics of disk drives, variable data
transfer rates from multiple zones in a disk. Therefore, conventional techniques

.

Zoned-RAID for Multimedia Database Servers 463

place data blocks without any constraints inside a disk. This may result in less
optimized disk performance because the data transfer rate significantly varies
depending on the location of data block in multi-zone disks.

This study proposes a novel data placement scheme to optimize the data
transfer rate of RAID systems using multi-zone disks by constraining data place-
ment, especially for streaming media server that require a high data transfer rate
as well as fault tolerance. To our knowledge, combining data placement on RAID
with multi-zone disks is a new approach. The main ideas of the proposed con-
strained data placement are 1) to store primary data blocks (for normal access)
in faster zones and secondary blocks or parity blocks (for standby in case of
a disk failure) in slower zones, and 2) to store frequently accessed data blocks
(such as popular video clips) in faster zones and infrequently accessed blocks in
slower zones. Our experimental results demonstrate a significant increase in the
effective data transfer rate of RAID in normal mode with no disk failure.

2 Z-RAID

Since RAID [14] was proposed in 1988, it has been widely implemented in many
systems requiring fault tolerance. Originally, RAID levels 1-5 were proposed but
many variants such as level 0 and 6 have been studied and commercialized.
However, level 1 (mirroring) and 5 (block-based parity encoding) received most
attention in many applications due to their cost-effectiveness and implementa-
tion efficiency [9]. Thus, this study focuses on extending RAID level 1 and 5 to
our proposed Zoned-RAID (Z-RAID) approach.

A multi-zone disk can be modelled as follows: A disk with total space, S, has
n zones, where zone 0 is the innermost (slowest) and zone n−1 is the outermost
(fastest). The number of cylinders in each zone is Cyl(i), 0 ≤ i < n, and the total
number of cylinders is Cyl. Cylinders are numbered from the innermost to the
outermost. The size of a cylinder is S(i) bytes, 0 ≤ i < Cyl−1. The data transfer
rate of each cylinder is Rc(j), 0 ≤ j < Cyl, (Rc(0) ≤ Rc(1) ≤ ... ≤ Rc(Cyl−1)).
Note that all cylinders in the same zone have the same data transfer rate. A
rotational latency, lrot, is one disk revolution time of a disk. A seek time between
two locations in a disk, say x cylinders apart, can be calculated using a practical
non-linear approximation, seek(x) [15]. Then, an actual block retrieval time
consists of a seek time, a rotational latency, and block reading time.

2.1 Z-RAID Level 1

RAID level 1 utilizes a replication of disks, called mirroring. When we have two
disks, d0 and d1, then a primary copy of a block, Bi, is placed on d0 and the
secondary copy, say B′

i, is placed on d1. Blocks are arbitrarily distributed across
cylinders inside a disk. This implies the system uses the average data transfer rate
of a multi-zone disk and the average seek time (one half of the worst seek which is

464

B'1

B 0

B'0

B4 1B B5

B'5

d0 d1

B'3

B2

B'2

B6 3B B7

d2 d 3

B'4 B'7 B'6

P0

P1

Fig. 1. Z-RAID level 1 with four disks

B p

B 0 B5

d0 d1 d2 d 3

P0

P1

d 4

B p

B 1 B6

B p

B 2 B7 B 3 B8

Bp

B 4 B9

0-3Bp
4-7

...

...

...... ...

......

...

Fig. 2. Z-RAID level 5 with five disks

from the outermost cylinder to the innermost cylinder). Then, the effective data
transfer rate of a disk with no overhead (no seek time, no rotational latency) is:

RR =
Cyl−1∑

i=0

(Rc(i) ×
S(i)
S

) (1)

In a streaming media server whose access unit is a block (B), each block access
includes the worst seek time and rotational latency to support realtime block
retrieval even in the worst case [5, 8]. Thus, the effective data transfer rate of
RAID level 1 in a streaming media server is:

RRB =
B

seek(Cyl) + lrot + B/RR
(2)

Z-RAID level 1 also uses mirroring like RAID level 1. However, it utilizes
only faster zones of disks for primary copies of blocks. All secondary copies are
placed on slower zones. With Z-RAID 1, each disk is divided into two logical
partitions of equal size (P0 = P1 = S/2), P0 which occupies the faster zones
(S/2 from the outermost cylinders) and P1 which occupies the slower zones
(remaining S/2). All primary blocks, Bi, are assigned to P0 while all secondary
blocks, B′

i, are stored in P1, see Figure 1. Let us say that P0 consists of cylinders
from m to Cyl − 1, where m is the cylinder number that divides the disk space
in half (i.e.,

∑m−1
i=0 S(i) = S/2). Note that the value of m and Cyl should be

determined using real disk characteristics because different disk models have
different zone characteristics. A more general allocation of blocks is as follows:
when Z-RAID consists of k disks, if Bi resides on P0 of disk j, B′

i is stored in
P1 of disk (j + 1) mod k.

In normal mode without disk failure, blocks are retrieved from P0s of disks.
Because P0s are located in faster zones of a disk, Z-RAID will increase the ef-
fective data transfer rate of the disk. Moreover, because the maximum cylindrical

A.E. Dashti, S.H Kim, and R. Zimmermann.

Zoned-RAID for Multimedia Database Servers 465

distance inside P0 is far shorter than Cyl, Z-RAID will decrease the required
seek time between two adjacent block retrievals. Both will result in a significantly
enhanced effective data transfer rate:

RZR =
Cyl−1∑
i=m

(Rc(i) ×
S(i)
S/2

) (3)

RZRB =
B

seek(Cyl −m− 1) + lrot + B/RZR
(4)

2.2 Z-RAID Level 5

RAID level 5 uses a block-based parity encoding. It distributes parity blocks
across disks in a parity group so that both normal blocks and parity blocks can
be placed on a disk. Blocks are arbitrarily distributed in a disk. Thus, in normal
mode, the effective data transfer rate of RAID level 5 is identical to RAID level
1, i.e., Equations 1 and 2.

Z-RAID level 5 follows the same way as RAID level 5 to distribute parity
blocks across disks. However, the location of parity blocks inside a disk is con-
strained to the slower zone areas. For example, when we form a parity group
with 5 disks, 4 data blocks and a parity block will be distributed across 5 disks.
Thus, 20% of each disk space consisting of corresponding innermost tracks will
store all parity blocks while 80% of the disk space with outer tracks stores data
blocks. For example, each disk has two logical partitions, P0 (outer 80% of disk
space) and P1 (inner 20% space). Normal data blocks are stored in P0 and all
parity blocks are in P1, see Figure 2. The same advantages of Z-RAID level 1 in
Section 2.1 are expected: higher effective data transfer rate and shorter average
seek time in normal mode.

When d disks are in a parity group, 1/d of each disk space will be used to
store parity blocks. Then, P0 consists of cylinders from m (where

∑m−1
i=0 S(i) =

S/d) to Cyl − 1. Equation 3 and 4 for Z-RAID level 1 can be used for Z-RAID
level 5 with a different value of m that is a function of d.

2.3 Z-RAID for Multimedia Databases

Because Z-RAID can provide a higher effective data transfer rate with the same
fault tolerant disk system compared to a conventional RAID, it can be used
where ever a RAID can be used. However, some applications such as streaming
applications that require a large page (block) size mostly benefit from Z-RAID
because a block retrieval time depends more on data transfer time than other
near constant factors such as seek time and rotational latency. Note that B/RZR

becomes a dominant factor (see Equation 4) as B grows larger.
Another important observation in real streaming applications is that objects

may have different popularity or access frequency. For example, in a movie-
on-demand system, more than half of the total user requests might reference
only a handful of recently released hot movies. It is widely understood that the

466

popularity distribution among objects in video-on-demand systems can be well
represented by the Zipf distribution [13], which is a very skewed distribution.

Z-RAID can well take advantage of this skewed popularity distribution
because the distribution of data transfer rates across zones is also skewed. With
n objects in the system, one can sort objects in descending order based on their
popularity. Then one assigns blocks of objects from the outermost tracks in a
disk which has the fastest data transfer rate towards the inner tracks, track by
track. When the blocks of the first, most popular, object are all assigned, then
the next object is assigned in the same way from the next track. This process is
repeated until all objects are assigned.

3 Comparisons

In our experiments, we used two Seagate disk models, the Cheetah X15 and the
Barracuda 7200.7 plus. The Cheetah X15 provides one of the fastest rotation
speeds at 15,000 revolutions per minute (RPM), with a very short average seek
time of 3.6 milliseconds. This model exemplifies a typical high performance disk
and was introduced in 2000. The Barracuda 7200.7 is a typical cost-effective
high capacity disks with 7,200 RPM and 8.5 milliseconds of average seek time
(introduced in 2004). Table 1 and Figure 3 show the zone characteristics of
Cheetah X15 and Barracuda 7200.7.

3.1 Analytical Comparison

First, we calculated and compared the effective data transfer rates of RAID and
Z-RAID with the two disk drives detailed in Table 1 using equations from Sec-
tions 2.1 and 2.2. We compared our design with two conventional approaches
widely used for streaming media servers. With the guaranteed approach that
supports 100% hiccup-free displays, one must assume the worst case seek time
and the maximum rotational latency for each data block retrieval. Many round
robin data placement and retrieval schemes [5, 8] follow this guaranteed ap-
proach, hence they fall into the category of worst case analysis. To quantify
the effective data transfer rates of this approach, we performed a worst case
analysis assuming the maximum seek time (7.2 ms for Cheetah X15 and 17 ms
for Barracuda 7200.7) and the worst rotational latency (4 ms for Cheetah X15
and 8.3 ms for Barracuda 7200.7). Second, with the statistical approach that tol-
erates a non-zero hiccup probability, one can take advantage of the average seek
time and average rotational latency per data block retrieval. Many random data
placement and retrieval schemes [11] follow this statistical approach to enhance
the performance of the system at the expense of a minor degradation of display
quality, i.e., occasional hiccups. For this approach, we performed an average case
analysis assuming the average seek time (3.6 ms for Cheetah X15 and 8.5 ms for
Barracuda 7200.7) and average rotational latency (2 ms for Cheetah X15 and
4.16 ms for Barracuda 7200.7).

It is well established that the performance of streaming media servers –
especially their disk subsystems – significantly varies depending on the data

A.E. Dashti, S.H Kim, and R. Zimmermann.

Zoned-RAID for Multimedia Database Servers 467

Table 1. Parameters for two Seagate disks

Model ST336752LC ST3200822A
Series Cheetah X15 Barracuda 7200.7 plus
Manufacturer Seagate Technology Seagate Technology
Capacity S 37 GB 200 GB
Transfer rate Rc See Table 3.a See Table 3.b
Spindle speed 15,000 rpm 7,200 rpm
Avg. rotational latency 2 msec 4.16 msec
Worst case seek time 7.2 msec 17 msec

Zone Size Read Transfer
(GB) Rate (MB/s)
0 12 57.5
1 3.5 55.4
2 3.0 54.7
3 4.0 52.7
4 3.0 50.6
5 2.5 48.1
6 3.0 45.6
7 2.5 43.6
8 2.5 41.9

Zone Size Read Transfer
(GB) Rate (MB/s)
0 48 65.2
1 17 63.8
2 14 61.5
3 21 58.2
4 9 56.0
5 12 54.1
6 14 52.4
7 9 50.6
8 6 49.5
9 13 46.8
10 9 44.1
11 6 42.2
12 8 39.7
13 8 37.6
14 6 35.3

a. Cheetah X15 b. Barracuda 7200.7

Fig. 3. Zoning information of two Seagate disks

block size that is the unit of access to the disks. Thus, we calculated the effective
data transfer rate as a function of the data block size varying from 128 Kbytes
to 8 Mbytes (a reasonable range for streaming media servers).

Figure 4 shows the effective data transfer rates of RAID and Z-RAID with
the Cheetah X15. RAID1 denotes the traditional RAID level 1, Z-RAID1 means
the proposed Z-RAID level 1, and Z-RAID5 refers to the proposed Z-RAID level
5. Note that the effective rate of RAID5 in normal mode is identical to that
of RAID1 because all data blocks are arbitrarily distributed across all zones
without any constraints. In our calculation, the size of the parity group of Z-
RAID5 was 5 disks so that 20% of disk space (from the slowest zone) in each
disk is dedicated to store parity blocks. Figures 4.a and 4.b show the results from
the worst case and the average case analysis, respectively. Compared to RAID1,
Z-RAID1 demonstrates enhanced rates from 10.5% to 38.6% in the worst case
analysis, and from 9.5% to 33.1% in the average case analysis. Compared to
RAID5, the percentage enhancement of Z-RAID5 ranges from 4.8% to 12.7% in
the worst case analysis, and from 4.5% to 11.4% in the average case analysis.
Figure 5 shows the analytical results with the Barracuda 7200.7. The results and
trends are similar to those of the Cheetah X15. Z-RAID1 improves over RAID1
from 18.5% to 46.8% in the worst case analysis, and from 16.5% to 43.6% in
the average case analysis. Compared to RAID5, the percentage enhancement of

468

0

10

20

30

40

50

60

0.13 0.25 0.5 0.75 1 2 4 8

Block Size (MB)

E
ff

ec
ti

ve
R

at
e

(M
B

/s
)

RAID1(W) Z-RAID1(W) Z-RAID5(W)

0

10

20

30

40

50

60

0.13 0.25 0.5 0.75 1 2 4 8

Block Size (MB)

E
ff

ec
tiv

e
R

at
e

(M
B

/s
)

RAID1(A) Z-RAID1(A) Z-RAID5(A)

a. Worst analysis b. Average analysis

Fig. 4. Effective data rate of a Seagate X15 disk

0

10

20

30

40

50

60

0.13 0.25 0.5 0.75 1 2 4 8

Block Size (MB)

E
ff

ec
ti

ve
R

at
e

(M
B

/s
)

RAID1(W) Z-RAID1(W) Z-RAID5(W)

0

10

20

30

40

50

60

0.13 0.25 0.5 0.75 1 2 4 8

Block Size (MB)

E
ff

ec
ti

ve
R

at
e

(M
B

/s
)

RAID1(A) Z-RAID1(A) Z-RAID5(A)

a. Worst analysis b. Average analysis

Fig. 5. Effective data rate of a Seagate 7200.7 disk

Z-RAID5 ranges from 7.9% to 14.7% in the worst case analysis, and from 7.3%
to 14.1% in the average case analysis.

As shown, for all comparisons, Z-RAID outperforms RAID. The percentage
improvement of the effective data transfer rate is greater for small block sizes
where the reduced seek time is the dominant factor in determining the rate. The
dominant factor shifts from the seek time to the actual block reading time as
the block size increases, see the divisors in Equations 2 and 4. The reduced seek
time is also the reason why Z-RAID1 gains a higher percentage increase than
Z-RAID5. With Z-RAID5, the performance enhancement decreases as the size
of the parity group increases. With a smaller group such as three disks, a higher
effective rate is achieved than with larger groups.

3.2 Simulation Results

The analytical models of the previous section provide some compelling evidence
that Z-RAID provides increased performance. However, they cannot encompass
the full complexity of a storage system and hence are based on some arguable
simplifying assumptions. Hence, to further evaluate the performance of the Z-

A.E. Dashti, S.H Kim, and R. Zimmermann.

Zoned-RAID for Multimedia Database Servers 469

Table 2. Experimental parameters for the Z-RAID Level 1 simulator

Z-RAID Level 1 18 Disks
(Seagate Cheetah X15)

Block size B 0.25, 0.5, 1, 2, 4, 8 MB
Time period Tp (B

1.5Mb/s) sec
Throughput NT ot < 4800
No. of stored clips 47
Object type MPEG-1 (1.5 Mb/s)
Object size (length) 675 MB (1 hour)
Access distribution Zipf

RAID technique we implemented a simulator. It includes a detailed disk model
that was calibrated with parameters extracted from commercially available disk
drives. To model user behavior, the simulator included a module to generate
synthetic workloads based on various Poisson and Zipf distributions [18].

The simulator was implemented using the C programming language on a
Sun server running Solaris and it consists of the following components. The
disk emulation module imitates the response and behavior of a magnetic disk
drive. The level of detail of such a model depends largely upon the desired
accuracy of the results. Our model includes mechanical positioning delays (seeks
and rotational latency) as well as variable transfer rates due to the common
zone-bit-recording technique. The file system module provides the abstraction of
files on top of the disk models and is responsible for the allocation of blocks and
the maintenance of the free space. Either random or constrained block allocation
were selectable with our file system. The loader module generates a synthetic
set of continuous media objects that are stored in the file system as part of
the initialization phase of the simulator. The scheduler module translates a user
request into a sequence of real-time block retrievals. It implements the concept of
a time period and enables the round-robin movement of consecutive block reads
on behalf of each stream. Furthermore, it ensures that all real-time deadlines
are met. Finally, the workload generator models user behavior and produces
a synthetic trace of access requests to be executed against the stored objects.
Both, the distribution of the request arrivals as well as the distribution of the
object access frequency can be individually specified. For the purpose of our
simulations, the request inter-arrival times were Poisson distributed while the
object access frequency was modeled according to Zipf’s law [18].

For the evaluation of RAID1 and Z-RAID1, the simulator was configured
with a total of 18 disks of the Cheetah X15, each with 37 GB of space. Table 3.2
summarizes the rest of the simulation parameters.

For regular RAID1 mirroring, the data blocks were randomly distributed
across all the zones of a disk. For Z-RAID1 mirroring, the primary copies of the
data were constrained to the faster half of the disk drives. We tested retrieval
block sizes of 0.25, 0.5, 1, 2, 4, and 8 MB and we executed the simulation with
a nominal workload of λ = 2, 000 requests per hour. The simulated database
consisted of video clips whose display time was one hour long and which required
a constant retrieval rate of 1.5 Mb/s (e.g., MPEG-1). This resulted in a uniform

470

0

10

20

30

40

50

60

70

80

90

100

0.25 0.5 1 2 4 8

Block Size (MB)

U
til

iz
at

io
n

(%
)

RAID1 Z-RAID1 RAID5 Z-RAID5

Fig. 6. Simulation results using Seagate Cheetah X15 disks

storage requirement of 675 Mbytes per clip. We also performed simulations of
RAID5 and Z-RAID5 with the parity group size 5.

The frequency of access to different media clips is usually quite skewed for
a video-on-demand system, i.e., a few newly released movies are very popular
while most of the rest are accessed infrequently. The distribution pattern can
be modeled using Zipf’s law, which defines the access frequency of movie i to
be F (i) = c

i1−d , where c is a normalization constant and d controls how quickly
the access frequency drops off. In our simulations, d was set to equal 0.271,
which was chosen to approximate empirical data for rental movies [2]. For each
experiment, the server had to service requests that arrived based on a Poisson
distribution to simulate human behavior.

We focused on the disk utilization to compare the two techniques. A lower
disk utilization – given a fixed workload – indicates a higher effective data trans-
fer rate and a higher maximum throughput for the overall system. Because the
effective bandwidth of a disk drive increases with larger block sizes, we expected
to see a drop in disk utilization with increased block sizes. Figure 6 shows the
results of the simulations using 18 Cheetah X15 disks, which depicts the reduc-
tion of the overall disk utilization of Z-RAID1 and 5 with a constant workload as
compared with standard RAID 1 and 5. Z-RAID1 and 5 outperformed RAID1
and 5, respectively. For example, when the block size is 0.5 megabytes, the disk
utilization of RAID1 was 64% while that of Z-RAID1 was 56% to service the
same number of request. The percentage reduction of disk utilization between
Z-RAID1 and RAID1 ranges from 11.1% (8 Mbytes of block size) to 13.6% (0.25
Mbytes of block size). Similar to the analytical comparisons, Z-RAID5 was per-
forming lower than Z-RAID1 but still performing higher than RAID5.

We performed more simulations with different configuration using the Bar-
racuda 7200.7. We used 33 disks and the workload was the same, λ = 2, 000
requests per hour. Figure 7 shows similar results as the previous simulations
with the Cheetah X15. The percentage reduction of disk utilization between Z-

A.E. Dashti, S.H Kim, and R. Zimmermann.

Zoned-RAID for Multimedia Database Servers 471

0

10

20

30

40

50

60

70

80

90

100

0.25 0.5 1 2 4 8

Block Size (MB)

U
til

iz
at

io
n

(%
)

RAID1 Z-RAID1 RAID5 Z-RAID5

Fig. 7. Simulation results using Seagate Barracuda 7200.7 disks

RAID1 and RAID1 ranges from 16.8% (8 Mbytes of block size) to 17.9% (0.25
Mbytes of block size).

Finally, we compared the performance of two disk models using RAID1
and Z-RAID1. The configuration used 18 disks and the workload was λ = 1, 500
requests per hour. With a small block size the X15 provided a lower utilization
than the 7200.7, because of its exceptionally small retrieval overhead (seek time
plus rotational latency). However, as the block size increases the higher transfer
rate of the 7200.7 becomes the dominant factor and allows it to achieve a lower
utilization than the X15.

4 Conclusion

Our proposed Z-RAID system constrains the data block placement in a RAID
system utilizing the zone characteristics of multi-zone disk drives. The con-
strained data placement and retrieval incur a shorter seek time between two
adjacent block retrievals, which results in a reduced overhead for each block re-
trieval. Moreover, because the blocks are retrieved from the faster zones of a disk,
the effective data transfer rate is increased further. Our analytical and simulation
results for a streaming media server application demonstrate that both Z-RAID
level 1 and 5 outperform the traditional RAID level 1 and 5, respectively.

The practical aspect of Z-RAID can be a more cost-effective and affordable
system. Typically, RAID systems have been constructed from high performance
disk drives such as SCSI disks. In general, those disks provide a higher trans-
fer rate than other inexpensive disks such as IDE models. The drawback is
a higher price. For cost-effectiveness, more economical RAIDs with IDE disks
(IDE-RAID) have been recently introduced. We conclude that a Z-RAID sys-
tem with IDE disks can provide the same high performance as a RAID system

472

with high-end SCSI disks, but at the lower cost of IDE-RAID. Considering the
recent trend showing that the performance gap between SCSI disks and IDE
disks is narrowing (while the price gap still remains very significant), Z-RAID
can provide an even better solution for a disk subsystem with inexpensive disks.

References

1. Y. Birk. Track-pairing: a novel data layout for vod servers with multi-zone-
recording disks. In IEEE International Conference on Multimedia Computing and
System, June 1995.

2. A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling Policies for an On-Demand
Video Server with Batching. In Proceedings of the ACM Multimedia, pages 391–
398, 1994.

3. Ali Dashti, Seon Ho Kim, Cyrus Shahabi, and Roger Zimmermann. Streaming
Media Server Design. Prentice Hall PTR, 2004.

4. J. Gafsi and E. W. Biersack. Modeling and Performance Comparison of Reliabil-
ity Strategies for Distributed Video Servers. IEEE Transactions on Parallel and
Distributed Systems, 11(4):412–430, 2000.

5. D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A. Rowe. Multi-
media Storage Servers: A Tutorial. IEEE Computer, May 1995.

6. S. Ghandeharizadeh, S. H. Kim, C. Shahabi, and R. Zimmermann. Placement of
Continuous Media in Multi-Zone Disks. In Soon M. Chung, editor, Multimedia
Information Storage and Management, chapter 2. Kluwer Academic Publishers,
Boston, August 1996. ISBN: 0-7923-9764-9.

7. S. Ghandeharizadeh and S.H. Kim. A Comparison of Alternative Continuous Dis-
play Techniques with Heterogeneous Disks. In Proceedings of the International
Conference on Information and Knowledge Management, pages 442–449, 1999.

8. S. Ghandeharizadeh, S.H. Kim, W. Shi, and R. Zimmermann. On Minimizing
Startup Latency in Scalable Continuous Media Servers. In Proceedings of Multi-
media Computing and Networking, pages 144–155. Proc. SPIE 3020, Feb. 1997.

9. Jim Gray and Prashant Shenoy. Rules of thumb in data engineering. In Proceedings
of IEEE International Conference on Database Engineering, Feb. 2000.

10. S. Kang and H.Y. Yeom. Storing Continuous Media Objects to Multi-Zone Record-
ing Disks Using Multi-Rate Smoothing Technique. IEEE Transactions on Multi-
media, 5(3):473–482, 2003.

11. R. Muntz, J. Santos, and S. Berson. RIO: A Real-time Multimedia Object Server.
ACM Sigmetrics Performance Evaluation Review, 25(2), Sep. 1997.

12. S. W. Ng. Advances in Disk Technology: Performance Issues. IEEE Computer
Magazine, pages 75–81, May 1998.

13. J. Nussbaumer, B. Patel, F. Schaffa, and J. Sternbenz. Network Requirement for
Interactive Video-on-Demand. IEEE Transactions on Selected Areas in Commu-
nications, 13(5):779–787, 1995.

14. D. Patterson, G. Gibson, and R. Katz. A case for Redundant Arrays of Inexpensive
Disks (RAID). In Proceedings of the ACM SIGMOD International Conference on
Management of Data, May 1988.

15. C. Ruemmler and J. Wilkes. An Introduction to Disk Drive Modeling. IEEE
Computer, March 1994.

A.E. Dashti, S.H Kim, and R. Zimmermann.

Zoned-RAID for Multimedia Database Servers 473

16. M.F. Mitoma S.R. Heltzer, J.M. Menon. Logical data tracks extending among a
plurality of zones of physical tracks of one or more disk devices. In U.S. Patent
No. 5,202,799, April 1993.

17. W.-C. Wang and et al. Fast data placement scheme for video servers with zoned-
disks. In Proceedings of Multimedia Storage and Archiving Systems II, pages 92–
102. Proc. SPIE 3229, 1997.

18. G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley,
Reading MA, 1949.

Randomized Data Allocation in Scalable
Streaming Architectures�

Kun Fu and Roger Zimmermann

Integrated Media Systems Center, University of Southern California,
Los Angeles, California 90089
{kunfu, rzimmerm}@usc.edu

Abstract. IP-networked streaming media storage has been increasingly
used as a part of many applications. Random placement of data blocks
has been proven to be an effective approach to balance heterogeneous
workload in multi-disk steaming architectures. However, the main dis-
advantage of this technique is that statistical variation can still result
in short term load imbalances in disk utilization. We propose a packet
level randomization (PLR) technique to solve this challenge. We quantify
the exact performance trade-off between PLR approach and the tradi-
tional block level randomization (BLR) technique through both theoret-
ical analysis and extensive simulation. Our results show that the PLR
technique can achieve much better load balancing in scalable streaming
architectures by using more memory space.

1 Introduction

Large scale digital continuous media (CM) servers are currently being deployed
for a number of different applications. Magnetic disk drives are usually the stor-
age devices of choice for such streaming servers and they are generally aggregated
into arrays to enable support for many concurrent users. Multi-disk CM server
designs can largely be classified into two paradigms: (1) Data blocks are striped
in a round-robin manner [1] across the disks and retrieved in cycles or rounds
for all streams. (2) Data blocks are placed randomly [5] across all disks and the
data retrieval is based on a deadline for each block. The first paradigm attempts
to guarantee the retrieval or storage of all data. It is often referred to as deter-
ministic. With the second paradigm, a disk may briefly be overloaded, leading
to a few missed deadlines. This approach is often called statistical.

We focused on the statistical approach because of its many advantages. For
example, a much higher resource utilization can be achieved. Moreover, the sta-
tistical approach can be implemented on widely available platforms such as Win-
dows or Linux that do not provide hard real time guarantees. It can also naturally

� This research has been funded in part by NSF grants EEC-9529152 (IMSC ERC),
IIS-0082826 and CMS-0219463, and unrestricted cash/equipment gifts from Intel,
Hewlett-Packard, Raptor Networks Technology and the Lord Foundation.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 474–486, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Randomized Data Allocation in Scalable Streaming Architectures 475

support a variety of different media types that require different data rates (both
constant (CBR) or variable (VBR)) as well as interactive functions such as pause,
resume and fast-forward. Moreover, it has been shown that the performance of
a system based on the statistical method is on par with that of a deterministic
system [6]. Finally, it can support on-line data reorganization more efficiently [3],
which is very crucial for scalable storage systems. Even though the statistical
approach is very resource efficient and ensures a balanced load across all disk
devices over the long term, short term load fluctuations may occur because oc-
casionally consecutive data blocks may be assigned to the same disk drive by the
random location generator. During the playback of such a media file, the block
retrieval request queue may temporarily hold too many requests such that not
all of them can be served by their required deadline.

In this paper we introduce a novel packet-level randomization (PLR) tech-
nique that significantly reduces the occurrence of deadline violations with ran-
dom data placement. PLR is the focus of the remainder of this paper which is
organized as follows. Section 2 reviews the related work. Section 3 presents our
proposed design. Performance analysis and evaluation are contained in Section 4
and 5, respectively. Finally, Section 6 outlines our future plans.

2 Related Work

Three techniques have been proposed to achieve load balancing in striped multi-
disk multimedia storage systems. One approach is to use large stripes that ac-
cess many consecutive blocks from all disks at a single request for each active
stream [8]. It provides perfect load balancing because the number of disk I/Os is
the same on all the devices. However, it results in extremely large data requests
with large number of disks. Furthermore, it does not efficiently support unpre-
dictable access patterns. The second approach uses small requests accessing just
one block on a single disk, with sequential requests cycling over all the disks [1].
This technique does not support unpredictable access patterns well. The third
technique randomly allocates data blocks to disks blocks [6, 7], and therefore
supports unpredictable workloads efficiently. To our knowledge, no prior work
has quantified the exact trade-off between the randomization at the packet and
block levels when fine-grained load balancing is desired or required.

3 Design Approach

We assume a multi-disk, multi-node streaming media server cluster design sim-
ilar to the one used in our previous research activities. Our first prototype
Yima [7], was a scalable streaming architecture to support applications such
as video-on-demand and distance learning on a large scale. Our current gener-
ation system, termed the High-performance Data Recording Architecture (HY-
DRA) [10] improves and extends Yima with real time recording capabilities. For
load-balancing purposes, without requiring data replication, a multimedia ob-

476 K. Fu and R. Zimmermann

ject X is commonly striped into blocks , e.g., X0, X1, . . . , Xn−1, across the disk
drives that form the storage system [4, 8]. Because of its many advantages, we
consider randomly allocating data to the disk drives.

Randomized Block
to Disk Mapping

Packet to Block
Aggregation

Packets

Blocks

1
2
3
4

1 2 3
4 5 6

Randomized Packet
to Disk Mapping

Packets

Blocks

Packet to
Block
Aggregation

Packet to
Block
Aggregation

Packet to
Block
Aggregation

1
2
3
4

2
3
9

1
5
6

4
7

8

2 3 9 1 5 6 4 7 8

Fig. 1(a): Block Level Random-
ization (BLR)

Fig. 1(b): Packet Level Random-
ization (PLR)

Fig. 1. Two different randomization schemes that can be applied in a Recording Sys-
tem, e.g. HYDRA [10]. Note that in this example, each block contains 3 packets

3.1 Packets versus Blocks

Packet-switched networks such as the Internet transmit relatively small quanta
of data per packet (for example 1400 bytes). On the other hand, magnetic disk
drives operate very inefficiently when data is accessed in small amounts. This is
due to the fact that disk drives are mechanical devices that require a transceiver
head to be positioned in the correct location over a spinning platter before any
data can be transferred. The seek time and rotational latency are wasteful [10].
Consequently, media packets need to be aggregated into larger data blocks for
efficient storage and retrieval. Traditionally this is accomplished as follows.

Block-Level Randomization (BLR): Media packets are aggregated in se-
quence into blocks (see Figure 1(a)). For example, if m packets fit into one block
then the data distribution algorithm will place the first m sequential packets into
block X0, the next m packets into block X1, and so on. As a result, each block
contains sequentially numbered packets. Blocks are then assigned randomly to
the available disk drives. During retrieval, the deadline of the first packet in each
block is essentially the retrieval deadline for the whole block. The advantage of
BLR is that only one buffer at a time per stream needs to be available in mem-
ory across all the storage nodes. In order to allow high disk utilization while still
reducing the probability of hot-spots we propose a novel technique as follows.

Packet-Level Randomization (PLR): Each media packet is randomly as-
signed to one of the storage nodes, where they are further collected into blocks
(Figure 1(b)). One advantage is that during playback data is retrieved randomly
from all storage nodes at the granularity of a packet. Therefore, load-balancing

Randomized Data Allocation in Scalable Streaming Architectures 477

is achieved at a very small data granularity. The disadvantage is that memory
buffers need to be allocated concurrently on all nodes per stream. In the next
section we quantify the load-balancing properties of both BLR and PLR.

4 Performance Analysis

We evaluate PLR and BLR with three metrics: (1) the uniformity of data dis-
tribution on each disk, (2) the disk I/O imbalance across every disk during a
streaming experiment, and (3) the memory size and potential caching effects.

Table 1. List of terms used repeatedly in this study and their respective definitions

Term Definition Units
ND Total number of disks
M Total data size MB
SP Packet size MB
SB Block size MB
MB Total data size in blocks
MP Total data size in packets
DP LR The amount of data assigned to a disk in PLR MB
DBLR The amount of data assigned to a disk in BLR MB
X The number of packets assigned to a disk in PLR
Y The number of blocks assigned to a disk in BLR

R Ratio of block size and packet size, i.e., SB
SP

NC The number of concurrent clients supported by the storage server
NS Total number of storage server nodes
Smem

blr Memory size required for BLR MB
Smem

plr Memory size required for PLR MB
α The number of disks attached to each server node 1, i.e. α = ND

NS

4.1 Data Placement Imbalance Analysis

With PLR, let the random variable X denote the number of packets assigned to a
specific disk. As proposed in [3], uniformity of data distribution can be measured
by the standard deviation and the coefficient of variation (CV) of X, represented
by σX and CV (X), respectively. CV (X) can be derived from dividing σX by the
mean value of X, µX . If we consider the random assignment of a packet to a disk
as a Bernoulli trial, which has probability p = 1

ND
to be successfully allocated

to a specific disk, then the total number of successful Bernoulli trials could be
naturally mapped to X. Intuitively, X follows a Binomial distribution, where
the number of Bernoulli trials is the total number of packets to be assigned, and
denoted as MP . Note that MP can be computed as MP = M

SP
, where M is the

total data size and SP is the packet size. Therefore, we can obtain

µX = M
SP ×ND

, σX =
√

M×(ND−1)
SP ×N2

D

, CV (X) =
√

(ND−1)×SP

M × 100 (1)

With BLR, let Y denote the number of blocks assigned to a disk. Furthermore,
MB represents the total data size in blocks. MB can be calculated as MB = M

SB
,

where SB denotes the block size. Similar to PLR, we obtain

µY = M
SB×ND

, σY =
√

M×(ND−1)
SB×N2

D

, CV (Y) =
√

(ND−1)×SB

M × 100 (2)

478 K. Fu and R. Zimmermann

Let DPLR and DBLR denote the amount of data assigned to a disk with PLR
and BLR, respectively. Then, DPLR and DBLR can be calculated by

DPLR = XSP , DBLR = Y SB (3)

Using Equations 1 and 3, we obtain the mean, standard deviation and coefficient
of variation of DPLR as expressed in Equation 4.

µDP LR
= M

ND
, σDP LR

=
√

S3
P

M(ND−1)
N2

D

, CV (DPLR) =
√

(ND−1)×S3
P

M × 100

(4)
Similarly, with Equation 3 and 2, we can obtain the mean, standard deviation
and coefficient of variation of DBLR as Equation 5.

µDBLR
= M

ND
, σDBLR

=
√

S3
B

M(ND−1)
N2

D

, CV (DBLR) =
√

(ND−1)×S3
B

M × 100

(5)
Finally, from Equations 4 and 5, we obtain:

µDBLR
= µDP LR

,
σDBLR

σDP LR
= CV (DBLR)

CV (DP LR) = R
3
2 (6)

where R = SB

SP
. There are two important observations we obtain from Equation 6.

First, the mean values of DBLR and DPLR are the same, which confirms that
both the BLR and PLR schemes achieve the same level of load balancing in the
long run as expected. Second, with respect to short term load balancing, PLR
has a significant advantage over BLR.

Impact of Block to Packet Size Ratio R: Figure 2 shows the ratio of load
imbalance σDBLR

σDP LR
as a function of the block to packet size ratio R. When R

increases from 1 to 2, 000, σDBLR

σDP LR
increases sharply from 1 to approximately

90, 000. The figure clearly indicates the significant performance gain of PLR
over BLR. In fact, 2, 000 packets in one block is not unusual. For example, a
512 byte packet size and a 1 MB block size are a quite common configuration in
streaming servers [7].

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
at

io
 o

f l
oa

d
im

bl
an

ce
 in

 B
LR

 a
nd

 P
LR

Number of packets in a disk block

Fig. 2. Load imbalance ratio
σDBLR
σDP LR

, with different block to packet size ratio R = SB
SP

Randomized Data Allocation in Scalable Streaming Architectures 479

Table 2. Parameters for movie “Twister” used in analysis

Parameters Configurations
Test movie “Twister” MPEG-2 video, AC-3 audio

Average bandwidth 698,594 bytes/sec
Length 115 minutes
Throughput std. dev. 308,283.8
RTP packet size 512 bytes
Total number of RTP packets 10,740,000

-5

-4

-3

-2

-1

 0

 1

 2

 3

 20 40 60 80 100 120 140 160 180 200lo
ad

 im
bl

an
ce

 in
 L

og
rit

hm
 b

as
e

10
 (

M
B

)

Number of disks

PLR

BLR

-4

-3

-2

-1

 0

 1

 2

 3

 0 20 40 60 80 100lo
ad

 im
bl

an
ce

 in
 L

og
rit

hm
 b

as
e

10
 (

M
B

)

Data size (GB)

PLR

BLR

Fig. 3(a): Impact of the number
of disks ND based on DVD movie
“Twister” (see Table 2).

Fig. 3(b): Impact of data size M ,
with ND = 4, SP = 512 bytes, and
R = 2, 000.

Fig. 3. Impact of the number of disks ND and data size M on the standard deviation
σDBLR and σDP LR . Note that the figures are logarithmic in scale

Impact of the Number of Disks ND: Figure 3(a) shows the standard de-
viation of the amount of data assigned to a disk in BLR and PLR, i.e., σDBLR

and σDP LR
, respectively, as a function of the number of disks ND on a logarith-

mic scale. Note that the data assigned is from the DVD movie “Twister” (see
Table 2). As shown in the Figure 3(a), σDBLR

is larger than σDP LR
by several

orders of magnitude, which implies that PLR allocates the movie data much
more evenly across all the disks than BLR. Furthermore, when the total number
of disks ND increases from 2 to 200, σDBLR

decreases from 35 MB to 5 MB.
Similarly, σDP LR

also follows this trend. In fact, we can formally prove that, if
ND ≥ 2 and as ND increases, σDBLR

and σDP LR
both decrease monotonically

as given in Lemma 4 2.

Lemma 4 1 Let A(n) =
√

n−1
n ,∀n ≥ 2, A(n + 1) < A(n).

Proof. ∀n ≥ 2, A(n) > 0, thus, we need to prove Equation 7,

A(n + 1)
A(n)

< 1 ⇐⇒
√

n3

(n + 1)2(n− 1)
< 1 (7)

To prove Equation 7, we need to show Equation 8.

n3 − (n + 1)2(n− 1) < 0 (8)

.

. .

480 K. Fu and R. Zimmermann

Equation 8 can be rewritten as −[(n − 1)2 + (n − 2)] < 0, which is always true
for all n > 2.

Lemma 4 2 ∀ND ≥ 2, if M , SP and SB are fixed, both σDP LR
and σDBLR

monotonically decrease as ND increases.

Proof. Because SP and M are constant, using Equation 4 and Lemma 4 1, it is
straightforward to prove that, as ND increases, σDP LR

monotonically decreases.
Similarly, since SB and M are fixed, and using Equation 5 and Lemma 4 1, we
can prove that, as ND increases, σDBLR

monotonically decreases.

Impact of the Data Size M : Figure 3(b) shows the load imbalance metric
for both schemes as a function of the data size M . In the analysis, the total
number of disks ND = 4, packet size SP = 512 bytes for PLR, and block to
packet ratio R = 2, 000 for BLR. As illustrated, as the data size M increases
from 0 to 100 GB, the load imbalance metric of BLR σDBLR

increases sharply
from 0 to more than 120 MB. Similarly, the load imbalance metric of PLR σDP LR

also increases, but because it is several orders of magnitude smaller than σDBLR
,

σDP LR
is still less than 2 Kbytes for M = 100 GB. This figure confirms that,

when more data are loaded or recorded into the storage system, the imbalance of
the amount of data assigned across all the disks will increase significantly, which
explicitly shows the great performance gain of PLR. Next, we compare the disk
load imbalance through the analysis of a streaming experiment.

Client movie playout duration

BLR

PLR

timeline

block consumption

F(B1) F(B3) F(B5) F(B7)
F(B4) F(B6)

disk I/O
(block fetching)

disk I/O
(block fetching)

block consumption

t1t0 t2 t3 t4 t5 t6 t7 t8 t9 t10

Block Placement

d1 d2
d2

d1
d3

d3

F(B1)

F(B3)

F(B2)
d1

d2

d3

F(B4)

F(B6)

F(B5)
d1

d2

d3

F(B7)

F(B9)

F(B8)
d1

d2

d3

Bi client consume block Bi

fetching block Bi from diskiF(Bi)

di

B10 B11 B12

t11 t12 t13

B1 B2 B3 B4 B5 B6 B7 B8 B9

d1 d2 d3

B12B8

B1 B5

B11B9

B3 B4

B10B7

B2 B6

d1 d2 d3

B10B7

B1 B4

B11B8

B2 B5

B12B9

B3 B6B10

B11

B12

B7

B8

B9

B4

B5

B6

B1

B2

B3

F(B2)

d3

F(B10)

F(B12)

F(B11)
d1

d2

d3

F(B8)

d1

F(B10)

d3

F(B9)

d2

F(B11)

d2 F(B12)

d1

movie
start playingstartup

latency

Fig. 4. Illustration of the disk I/O load imbalance during the playback of a CBR movie
with ND = 3 and MB = 12 for both the BLR and PLR schemes

4.2 Disk I/O Imbalance Time Analysis

As suggested by [2], the disk load imbalance during a predefined measure-
ment period is characterized by the Global Standard Deviation σBdisk

, which is

.

.

. .

Randomized Data Allocation in Scalable Streaming Architectures 481

defined as the utilized disk I/O bandwidth of all the ND disks 1, shown in
Equations 9.

σBdisk
=

√∑ND

i=1
(Li−µBdisk

)2

ND
(9)

where Li denotes the utilized disk I/O bandwidth during the measurement pe-
riod for disk i, i ∈ [1, ND] and µBdisk

represents the mean value of the utilized
disk I/O bandwidth and can be computed as:

µBdisk
=

1
ND

ND∑
i=1

Li (10)

Our experimental setup is as follows. Three disks (ND = 3) are attached
to a server. A client streams a constant bit rate (CBR) movie from the server,
and the movie contains 12 blocks (MB = 12) of size SB = 1 MB. The movie
consumption rate is 1 MB/s. Therefore, a block is consumed every second during
the movie playback, and the movie length is 12 seconds. The server employs
random data placement with deadline driven disk scheduling algorithm. Recall
that the deadline of each block is set to the first packet in each block. A simple
double buffering scheme is adopted for memory management.

Figure 4 shows a detailed analysis of all the disk I/O events during the
playback of the movie. During the movie startup period, which is between time
t0 and t1, the server prefetches some blocks. Because of double buffering, in BLR
two blocks, B1 and B2, are prefetched, while in PLR six blocks are prefetched. A
client starts the movie playback at time t1. With BLR, after every second when
one block is consumed, the server fetches the next block. This process continues
until the end of the movie. In PLR, the process is similar to BLR except that
it takes 3 seconds from t1 to t4 for the client to consume blocks B1, B2 and
B3. Note that because the randomness granularity is at the packet level, these
three blocks are consumed almost at the same time. Subsequently, at time t4,
blocks B7, B8 and B9 are fetched in parallel. A similar procedure is repeated
at time t7 for blocks B10, B11 and B12. Note that PLR exploits the disk I/O
parallelism naturally in this multi-disk environment. Table 3 summarizes the
computed load imbalance for BLR and PLR based on Equations 9 and 10 for
each second during the movie playback. Throughout the movie playback session,
PLR perfectly balances the load, while BLR suffers from load imbalance with
a global standard deviation value of 0.471 MB/s during more than 80% of the
playout time. Next, we compare the impact of the memory size and its usage.

4.3 Memory Usage Analysis

Memory Size Requirement. Assuming that the same number of disks are
attached to each storage server node and let NS denote the total number of server

1 We believe that in the analysis of storage systems, the absolute values are intuitively
more understandable. Thus, we do not normalize the Global Standard Deviation by
the mean value.

482 K. Fu and R. Zimmermann

Table 3. Disk I/O imbalance computation results during the playback of a 12 seconds
CBR movie for both BLR and PLR scheme

Parameters Time Slots
Scheme Statistics t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

(MB/s) -t1 -t2 -t3 -t4 -t5 -t6 -t7 -t8 -t9 -t10 -t11 -t12 -t13
L1 1 0 0 0 1 0 0 1 0 0 0 1 0
L2 0 0 1 1 0 0 0 0 1 0 1 0 0

BLR L3 1 0 0 0 0 1 1 0 0 1 0 0 0
µBdisk

0.67 0 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0
σBdisk

0.471 0 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0.471 0
L1 2 0 0 0 1 0 0 1 0 0 0 0 0
L2 2 0 0 0 1 0 0 1 0 0 0 0 0

PLR L3 2 0 0 0 1 0 0 1 0 0 0 0 0
µBdisk

2 0 0 0 1 0 0 1 0 0 0 0 0
σBdisk

0 0 0 0 0 0 0 0 0 0 0 0 0

nodes. Let us further assume that double buffering techniques are adopted in the
system. In the PLR, the blocks from multiple disks within one server node can be
accessed in parallel even for a single stream. Therefore, two buffers per disk are
necessary for each stream. However, in BLR, because the blocks from multiple
disks within one server node will be accessed sequentially for a single stream, only
two buffers per server node are required for each stream. Accordingly, Smem

blr

and Smem
plr, the memory size required for BLR and PLR, can be computed as

Smem
blr = 2× SB ×NC ×NS , Smem

plr = 2 × SB ×NC ×ND (11)

where NC denotes the number of concurrent clients. We define α as the ratio
between the total number of disks ND and NS , i.e, α = ND

NS
. Therefore, we obtain

Splr
mem

Sblr
mem

= α, which means that PLR requires more memory resources than BLR
when more than one disk is attached to each server node.

Client movie playout duration

BLR

PLR

B1 B2 B3 B4 B5 B6 B7 B8 B9

B1

B2

B3

B4

B5

B6

B7

B8

B9

Blocks

B1

B5

B8

B3

B4

B9

B2

B6

B7

Block Placement

B1

B4

B7

B2

B5

B8

B3

B6

B9

duration

Fig. 5. Illustration of the memory access duration during the playback of a CBR (con-
stant bit rate) movie with ND = 3 and MB = 9 for both the BLR and PLR techniques

Memory Access Duration. Figure 5 shows the memory access duration during
the playback of a CBR (constant bit rate) movie with ND = 3 and MB = 9 for
both the BLR and PLR techniques. It clearly shows that the access duration

Randomized Data Allocation in Scalable Streaming Architectures 483

for a block in PLR is ND times that of the BLR scheme. Intuitively, due to the
finer granularity of randomness, the buffered blocks from multiple disks are used
simultaneously, which naturally leads to much longer consumption time for each
memory buffer. Because the memory access duration is the minimum time that
the corresponding blocks must be kept in memory, we believe that PLR could
potentially result in greater caching effects in the server.

5 Performance Evaluation

5.1 Experimental Setup

To evaluate the performance of PLR and BLR in a more practical environment,
we integrated both the BLR and PLR methods into a simulation system. Fig. 6
illustrates the structure of our experimental setup.

Fig. 6. Experimental system setup

Note that we did not integrate a full fledged streaming server into our simu-
lation system to reduce the number of factors that would influence the results.
The WorkLoad Generator produces stream requests based on a Poisson process
with a mean inter-arrival time of λ = 2 seconds. Each stream retrieval produces
data block requests based on either the PLR or BLR schemes with associated
disk I/O deadlines according to movie traces from the Movie Trace Library. The
movie blocks are allocated to disks in BLR or PLR schemes. The block requests
are forwarded to the corresponding disk by the Disk Access Scheduler at the
set times. The Measure & Report module generates the measured result. In a
deadline driven streaming system, one of the most important parameters is the
probability of a disk I/O request deadline miss, denoted piodisk. In the output
report, both the number of requests with missed deadlines and the total number
of disk block requests are collected. Furthermore, the ratio between these two
numbers, which represents the fraction of the missed deadline requests, is inter-
preted as the probability of missed deadlines piodisk. The WorkLoad Generator
has two configurable parameters: the mean inter-arrival time λ and the number

484 K. Fu and R. Zimmermann

Table 4. Parameters used in the experiments

Parameters Configurations
Test movie “Saving Private Ryan” MPEG-2 video, AC-3 audio

Average bandwidth 757,258 bytes/sec
Length 50 minutes
Throughput std. dev. 169,743.6

Disk Model “Seagate Cheetah X15” Model ST336752LC
Capacity 37 GB
Spindle speed 15,000 rpm
Avg. rotational latency 2 msec
Worst case seek time ≈ 7 msec
Number of Zones 9
Transfer rate See Fig.1(b) in [9]

Mean inter-arrival time λ of streaming request 2 seconds
Data Packet size SP 0.5 KB
Disk block size SB 1.0 MB
Number of disks ND 4
Number of concurrent clients NC 1, 2, 3, . . ., 230

of movie streams NC . In the experiments, we used the DVD movie “Saving Pri-
vate Ryan,” whose profile is shown in Fig.1(a) in [9]. Our disk system simulates
four independent Seagate Cheetah X15 disk drives. Table 4 summarizes all the
used parameters.

5.2 Experimental Results

Comparison Based on Global Standard Deviation σBdisk
: Figure 7 shows

the global standard deviation measured during streaming experiments with the
number of concurrent clients NC being 10, 20, 50, and 100, respectively. In all
these four scenarios, PLR significantly improves the load balancing over BLR in
the multi-disk system. For example, with 50 concurrent streams, PLR decreases
the global standard deviation from 1.0721 MB/s to 0.3263 MB/s with NC = 50
and from 1.4982 MB/s to 0.4593 MB/s with NC = 100.

Figure 8(a) compares the general trend of the average global standard devi-
ation during each experiment as a function of the number of concurrent streams
NC . As NC increases, the average global standard deviation increases, which
verifies our analysis results in Section 4.1. That is, as the data size M increases
the imbalance also increases. Note that in all these measurement, PLR reduces
the load imbalance significantly.

Comparison Based on the Probability of a Disk I/O Request Missed
Deadline piodisk: To evaluate the performance impact of the two schemes BLR
and PLR at the system level, we compared the measured results based on the
probability of a disk I/O request missing its deadline. Figure 8(b) shows the
measured piodisk as a function of the number of concurrent streams NC for
both PLR and BLR. With PLR, the system always experiences fewer disk I/O
requests that missed their deadlines. For example, with 205 concurrent streams,
the system reported 0% of the total I/O requests that missed their deadlines
with PLR, compared to 37.91% with the BLR scheme. This implies that with
the PLR scheme, the system can support more concurrent streams than with

Randomized Data Allocation in Scalable Streaming Architectures 485

 0

 1

 2

 3

 4

 5

 1000 1200 1400 1600 1800 2000 2200 2400

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Movie Playout Time (Seconds)

BLR

PLR

 0

 1

 2

 3

 4

 5

 1000 1200 1400 1600 1800 2000 2200 2400

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Movie Playout Time (Seconds)

BLR

PLR

Fig. 7(a): NC = 10 streams. Fig. 7(b): NC = 20 streams.

 0

 1

 2

 3

 4

 5

 1000 1200 1400 1600 1800 2000 2200 2400

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Movie Playout Time (Seconds)

BLR

PLR

 0

 1

 2

 3

 4

 5

 1000 1200 1400 1600 1800 2000 2200 2400

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Movie Playout Time (Seconds)

BLR

PLR

Fig. 7(c): NC = 50 streams. Fig. 7(d): NC = 100 streams.

Fig. 7. Disk load imbalance across time for different number of concurrent DVD
streams (“Saving Private Ryan”), where NC = 10, 20, 50, and 100 respectively

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100

G
lo

ba
l S

ta
nd

ar
d

D
ev

ia
tio

n
(M

B
/s

)

Number of streams

BLR

PLR

 0

 0.2

 0.4

 0.6

 0.8

 1

 180 185 190 195 200 205 210 215 220 225 230

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 M

is
se

d
D

ea
dl

in
e

Number of streams

BLR

PLR

Fig. 8(a): The average disk load im-
balance in terms of the global stan-
dard deviation with different number
of streams.

Fig. 8(b): Probability of a request
missed deadline with different number
of streams.

Fig. 8. Important experimental results

the BLR scheme. Assuming that the end user can tolerate up to 1% of disk I/O
request missed deadlines, then with PLR, the current experimental system setup
could support 206 streams, but it can only support 199 streams with the BLR
scheme, which is approximately a 3.5% improvement in terms of the number of
supportable streams.

486 K. Fu and R. Zimmermann

6 Conclusions

Load balancing is important to ensure overall good performance in a scalable
multimedia storage system. This paper identifies and quantifies the performance
trade-off of the packet level randomization (PLR) scheme over the traditional
block level randomization (BLR) scheme. Both BLR and PLR ensures long term
load balancing. But PLR achieves much better short term load balancing over
BLR by utilizing more memory space. However, we believe the benefit of PLR
outweighs its disadvantage since the cost of memory is continually decreasing.
Therefore, PLR is a promising technique for high-performance media servers.
Furthermore, we plan to implement the PLR approach into our streaming pro-
totype, HYDRA, and evaluate its performance with real measurements.

References

1. S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Staggered Striping in Mul-
timedia Information Systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1994.

2. Antonio Corradi, Letizia Leonardi, and Franco Zambonelli. Diffusive load-
balancing policies for dynamic applications. IEEE Concurrency, 7(1):22–31,
January-March 1999.

3. A. Goel, C. Shahabi, S.-Y. D. Yao, and R. Zimmermann. SCADDAR: An Efficient
Randomized Technique to Reorganize Continuous Media Blocks. In Proceedings of
the 18th International Conference on Data Engineering, pages 473–482, February
2002.

4. V.G. Polimenis. The Design of a File System that Supports Multimedia. Technical
Report TR-91-020, ICSI, 1991.

5. J. R. Santos and R. R. Muntz. Performance Analysis of the RIO Multimedia
Storage System with Heterogeneous Disk Configurations. In ACM Multimedia
Conference, Bristol, UK, 1998.

6. J. R. Santos, R. R. Muntz, and B. Ribeiro-Neto. Comparing Random Data Alloca-
tion and Data Striping in Multimedia Servers. In Proceedings of the SIGMETRICS
Conference, Santa Clara, California, June 17-21 2000.

7. C. Shahabi, R. Zimmermann, K. Fu, and S.-Y. D. Yao. Yima: A Second Generation
Continuous Media Server. IEEE Computer, 35(6):56–64, June 2002.

8. F.A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID-A Disk Array
Management System for Video Files. In First ACM Conference on Multimedia,
August 1993.

9. Roger Zimmermann and Kun Fu. Comprehensive Statistical Admission Control
for Streaming Media Servers. In Proceedings of the 11th ACM International Mul-
timedia Conference, Berkeley, California, November 2-8, 2003.

10. Roger Zimmermann, Kun Fu, and Wei-Shinn Ku. Design of a large scale data
stream recorder. In The 5th International Conference on Enterprise Information
Systems (ICEIS 2003), Angers - France, April 23-26 2003.

Trace System of iSCSI Storage Access and
Performance Improvement

Saneyasu Yamaguchi1, Masato Oguchi2, and Masaru Kitsuregawa1

1 IIS, The University of Tokyo
{sane, kitsure}@tkl.iis.u-tokyo.ac.jp

2 Ochanomizu University
oguchi@computer.org

Abstract. In this paper, an IP-SAN access trace method is proposed
and its evaluation is presented. IP-SAN and iSCSI are expected to rem-
edy problems of Fibre Channel (FC)-based SAN. Servers and storage
cooperatively work with communications through TCP/IP in IP-SAN
system, thus an integrated analysis of both sides is considered to be
significant for achieving better performance.

Our system can precisely point out the cause of performance degra-
dation when IP-SAN is used for a remote storage access. In experiment
of parallel iSCSI access in a high-latency network, the total performance
is limited by a parameter in an implementation of the SCSI layer in
the iSCSI protocol stack. Based on the result obtained with our IP-SAN
access trace system, the parameter in the layer is modified. As a result,
more than 30 times performance improvement is achieved compared with
the default value case. Thus it is effective to monitor all the layers in
the iSCSI protocol stack and execute an integrated analysis, using our
system.

1 Introduction

Recently, storage management cost is one of the most important issues of com-
puter systems [1, 2]. Since periodical backup is required for management of stor-
age, if the storage is distributed among many servers, its management cost is
extremely high. Storage Area Network (SAN), a high speed network for storage,
is introduced to resolve this issue. Each server is connected to consolidated stor-
age devices through SAN. Management cost can be significantly decreased by
the consolidation of storage, thus SAN has already become an important tool
in the business field. However, current generation SAN based on FC has some
demerits; for example, (1) the number of FC engineers is small, (2) installation
cost of FC-SAN is high, (3) FC has distance limitation, (4) the interoperability
of FC is not necessarily high.

The next generation SAN based on IP (IP-SAN) is expected to remedy these
defects. IP-SAN employs commodity technologies for a network infrastructure,
including Ethernet and TCP/IP. One of the promising standard data transfer
protocol of IP-SAN is iSCSI [3], which was approved by IETF [4] in February

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 487–497, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

488 S. Yamaguchi, M. Oguchi, and M. Kitsuregawa

2003. IP-SAN has following advantages over FC-SAN [5, 6, 7]: (1) the number of
IP engineers is large, (2) initial cost of IP-SAN is low, (3) IP has no distance
limitation, (4) Ethernet and IP have no interoperability problem. However, the
problem of low performance and high CPU utilization is pointed out as demerits
of IP-SAN [6, 7, 8]. Thus improving its performance and keeping CPU utilization
at low rate [6, 9] are critical issues for IP-SAN.

We clarify the performance issue of iSCSI in this paper. As an instance of
evaluation, an iSCSI access in a high-latency network environment is investi-
gated. This is because performance decline caused by network latency is pointed
out in IP-SAN [2, 10], although iSCSI achieves almost comparable performance
with that of FC-SAN in a LAN environment [5, 11]. A SCSI access over a high-
latency network is an important in practice, since iSCSI has no distance limit.
However, this issue has not been discussed enough, as far as we know.

An iSCSI storage access in IP-SAN is composed of many protocols, that is
“SCSI over iSCSI over TCP/IP over Ethernet”. The protocol stack of iSCSI
is complicated and the storage access is executed through all these layers, so
that any layers can be a performance bottleneck of end-to-end performance.
Consequently, all these layers should be observed for improving iSCSI storage
access performance. In addition, integrated analysis of the behavior of both
server computers and storage appliances is important because iSCSI is composed
of the protocol stack in both sides. In IP-SAN system, server computers and
storage appliances work cooperatively via iSCSI protocol. However, they are
monitored separately in general, because they have their own OSs. It is difficult
to understand the whole system’s behavior by monitoring only one side, thus
the integrated analysis is inevitable.

In this paper, we propose an “IP-SAN trace system”, which can monitor all
the layers in IP-SAN protocol stack and show the integrated analysis of the whole
IP-SAN system. Next, we apply the system to be proposed to parallel iSCSI
accesses in a high-latency network, and demonstrate the system can point out the
cause of performance decline. In our experiment, significant iSCSI performance
improvement is achieved using the system.

Studies for CPU utilization during communications can be found in the liter-
atures [6, 7, 9, 12, 13]. We do not discuss hardware-supported TCP processing in
this paper, because literatures [5, 6, 7] concluded that although such hardware is
effective for reducing CPU utilization, it does not achieve better performance
than that of the software-based approach. We also evaluated the hardware-
supported TCP processing by ourselves and obtained a similar result: In our
experiments, TCP/IP communication throughput and CPU utilization with
software TCP/IP implementation are 70.4 [MB/sec] and 27.5 %, respectively.
Throughput and CPU utilization with TCP/IP offload engine (TOE) are 63.1
[MB/sec] and 10.4%, respectively.

The rest of this paper is organized as follows. We propose “IP-SAN Trace
System” in Section 3, and present its evaluation by an actual adaptation of the
system in Section 4. Section 2 introduces the related work. In Section 5, we
conclude this paper.

Trace System of iSCSI Storage Access and Performance Improvement 489

2 Related Work

Some studies present performance evaluation of IP-SAN using iSCSI [2, 5, 6, 7,
10, 11]. These evaluations and discussions are significantly important for un-
derstanding IP-SAN performance and impact of each factor on performance.
However, these studies are obtained by executing various workloads outside the
IP-SAN system. Consequently, these studies do not reveal accurate behaviors
inside IP-SAN systems. Our work presents very exact behaviors inside the IP-
SAN system including those in kernel space, for example process scheduler, the
SCSI layer, iSCSI layer and the TCP/IP layer. This monitoring is the novelty
of our work. In addition, our work can point out the cause of performance de-
cline by applying the proposed system while existing studies give experimental
results. This is another novel point of our work. Our work analyses IP-SAN from
broad perspective to focused perspective. In broad perspective, the system can
trace from issuing system call at an initiator host to a storage access in a target
host, and it can visualize a whole access. In focused perspective, the system can
trace a behavior at kernel source code level. Thus, very detailed behaviors can
be monitored. These are also characteristic points of our work.

Fujita et al. [8] presented an analysis of iSCSI targets. The work gave out
not only performance evaluations but also discussions including the iSCSI tar-
get implementation and kernel implementation. This discussion also mentions
behaviors inside IP-SAN system, but the objective of their work and that of
our work are different. Their work highlights the analysis of an iSCSI target
while our objective is constructing an integrated trace system including both an
initiator and a target.

3 IP-SAN Trace System

In this section, we will introduce the proposed “IP-SAN Trace System” in detail.
We have implemented a monitoring system which monitors behaviors of all

the layers in IP-SAN. We have also constructed an integrated trace system which
comprehensively analyzes logs recorded in both server computes and storage ap-
pliances. In our experiments, open source codes of an OS implementation and an
iSCSI driver are used. We inserted monitoring codes into these implementations
for recording IP-SAN system’s behavior. Linux (kernel version 2.4.18) is adopted
as an OS implementation and iSCSI reference implementation (version 1.5.02)
[14] developed by University of New Hampshire’s InterOperability Lab [15] (we
call this implementation “UNH”) is used as an iSCSI driver.

Figure 1 shows an example of a visualized iSCSI trace obtained by the trace
system. In the figure, Y-Axis stands for the state transition of iSCSI storage
access. Each label beside Y-Axis indicates each layer in the iSCSI protocol stack.
Meanings of these labels (Init syscall, Init raw dev and so on) are; 1) system
calls issued by applications, 2) the raw device layer, 3) the SCSI layer, 4) the
iSCSI layer, 5) the TCP/IP layer, 6) Packet transmission by the Ethernet layer,
7) the TCP/IP layer, 8) the iSCSI layer, 9) the SCSI layer, 10) HDD device

490 S. Yamaguchi, M. Oguchi, and M. Kitsuregawa

Fig. 1. iSCSI Access Trace

access from the top to the bottom respectively. The labels from 1) to 5) belong
to processes in server computers (iSCSI initiator) and the labels from 7) to 10)
belong to processes in storage appliance (iSCSI target). In this case, we have
used raw device mode instead of file system mode in the iSCSI initiator. The
iSCSI target works with “File Mode” of UNH implementation1, thus the trace
in the lowest layer is not that of HDD device access but that of file access in the
target OS’s file system. X-Axis stands for the time of each trace.

Figure 1 helps to understand IP-SAN’s behavior. For example, Figure 1 indi-
cates which process in iSCSI protocol stack dominantly consumes time, in which
layer processes are waiting for I/O responses, and a block of the issued I/O re-
quests are divided into small blocks by some layers. In the case of this figure,
an application issues a system call read() with 2MB block size. The raw device
layer divides it into 4 blocks of 512KB, then issues 512KB I/O requests one by
one to the lower layer (the SCSI layer), finally it returns I/O responses to the
upper layer (the system call layer) after completing 4 requests. After the SCSI
layer receives 512KB I/O requests, it divides the requests into multiple 32KB
SCSI read commands and transfers them to the lower layer (the iSCSI layer).
iSCSI tx thread is activated when requests are sent from the SCSI layer, and
the iSCSI layer transfers the requests to the TCP/IP layer. The TCP layer sends
data segments to the Ethernet layer, and the Ethernet layer sends them to the
storage appliance (target computer).

1 UNH implementation can export a local file to initiator as a storage image.

Trace System of iSCSI Storage Access and Performance Improvement 491

Fig. 2. Visualized Trace of Parallel iSCSI
Access: (A)

Fig. 3. Trance of Linux SCSI Layer:
“drivers/scsi/scsi lib.c”

Figure 2 shows an example of a visualized traces in the case of parallel
iSCSI accesses (the area surrounded by the dotted line will be mentioned in
Section 4.3). According to the figure, each system call issued at the initiator is
received at the target and processed on it. Cooperation of the initiator and the
target can be understood easily with this figure.

The proposed system monitors the IP-SAN’s behavior by insertion of monitor
codes into the source codes, thus the system can observe the behavior of the
kernel and the iSCSI driver at source code level. For example, this system records
which way is selected in a branch like Figure 3. These figures will be mentioned
in Section 4.3 again.

As shown above, the whole IP-SAN’s behavior can be easily understood with
the trace system.

4 Evaluation

In this section, we evaluate the proposed system by actually applying it to IP-
SAN. In addition, we show that the proposed system can point out the cause of
performance decline.

4.1 Experimental Setup

The proposed system is applied to a short block of parallel iSCSI accesses in a
high-latency network environment. We have constructed a high-latency IP-SAN
environment by inserting a network delay emulator between an iSCSI initiator
(server computer) and an iSCSI target (storage appliance). The network delay
emulator is constructed with FreeBSD Dummynet [16]. The initiator and the tar-
get establish TCP connection over the delay emulator and an iSCSI connection
is established over this TCP connection.

The connections between the initiator and the delay emulator, and between
the delay emulator and the target, are established with Gigabit Ethernet. The
UNH iSCSI implementation (refer to Section 3) is employed as iSCSI initiator

492 S. Yamaguchi, M. Oguchi, and M. Kitsuregawa

and target implementation. Since the iSCSI target works with “File Mode”, the
following experiments do not include actual HDD device accesses. One way delay
time is 16 ms.

The initiator, the Dummynet and the target are built with PCs. The detailed
specifications of the initiator and the target PC are as follows: CPU Pentium4
2.80GHz, Main Memory 1GB, OS Linux 2.4.18-3, NIC Gigabit Ethernet Card
Intel PRO/1000 XT Server Adapter. The detailed specifications of Dummynet
PC are as follows: CPU Pentium4 1.5GHz, Main Memory 128MB, OS FreeBSD
4.5-RELEASE, NIC Intel PRO/1000 XT Server Adapter×2.

We have executed the following benchmark in this experimental environment.
The benchmark software iterates issuing system call read() to raw device which
is established with an iSCSI connection. The block size of the read requests is
512 Bytes. The addresses to be read do not have an impact on experimental
performance because of file system cache on target side (which will be men-
tioned later in this section). We executed multiple processes simultaneously and
measured total performance of all processes. Each benchmark process iterates
2048 times system call read(). In this environment, the issued system calls are
always transmitted to the SCSI layer in the target side without any cache hit in
the initiator side, because the benchmark processes issue system calls to the raw
device. These experiments are executed when target storage image in file (the
iSCSI target is executed with “File Mode”) is stored in file system’s cache on the
target (worm cache). Consequently, all read requests issued from the initiator
reach the SCSI layer in the target side and hit file system cache on the target
side, thus it does not include HDD device access. We have employed the file
mode iSCSI target in order to separate the efficiency of the behavior of IP-SAN
system from that of the HDD device. Although behavior of HDD device is also
important in IP-SAN performance study, it strongly depends on implementa-
tion of the product and it is not the dominant factor in a high-latency network
environment.

Experiments in Section 4.2 and Section 4.4 are executed without the moni-
toring system, thus the performances shown in Fig. 4 and Fig. 8 are not effected
by the monitoring system.

4.2 Experimental Results

The experimental results with default setup, which does not have any tuning, are
shown as “can queue = 2 (default)” in Fig. 4. The other line (can queue=30)
is explained later in Section 4.4. X-Axis in the figure stands for the number
of processes executed simultaneously. Y-Axis stands for the number of total
transactions of all processes per second. The number of transactions means the
number of 512 Bytes system calls read().

The result shows that performance improvement with increasing number of
processes stops when the number of processes is two. It indicates that a layer
in the protocol stack restricts number of simultaneous process to two in parallel
access.

Trace System of iSCSI Storage Access and Performance Improvement 493

Fig. 4. Experimental Result A: Total performance of parallel I/O, 16ms (default setup)

4.3 Trace Analysis of Parallel iSCSI Access

In this subsection, we present an analysis of the trace to determine a cause of
the restriction for parallel processing and demonstrate that the proposed system
can point out the cause of performance decline.

Analysis of the Trace Across Multiple Layers. The trace is analyzed across
multiple layers of iSCSI at first. Figure 2 is obtained by analyzing traced logs
of the experiment in Section 4.1 and Section 4.2. The number of processes is
three. The trace lines of “Initiator Thread” are drawn discontinuously in the
figure. This is because context switches are issued by OS’s process scheduler,
and the processes are suspended and resumed on these lines. Plots at 0.010
[sec] and 0.040 [sec] also indicate context switches by the process scheduler.
Although the scheduler allocates CPU resources to the processes at these points,
the processes are waiting for I/O response at that time, thus they immediately
invoke context switches and release CPU resources. According to the figure, only
two I/O requests are sent from the initiator to the target within RTT (32ms).
This indicates the number of I/O requests processed concurrently is restricted
in the initiator side.

Figure 5 is obtained by magnifying the area surrounded by the dotted line
in Fig. 2. Figure 6 shows the magnified view of the area surrounded by the
dotted line in Fig. 5. In these figures, three processes running concurrently are
drawn, labeled as “I/O(A)”, “I/O(B)”, and “I/O(C)”. Traced lines are shown
discontinuously like Fig. 2. The lines terminate when context switch occurs and
processes resume. Figure 5 shows that I/O(A), (B), and (C) issue a system call at
0.000 [sec], 0.015 [sec] and 0.015[sec] respectively. According to the figure, three
system calls can be issued within one RTT, without receiving any response from
the target.

The trace of “I/O(A)” shows that the request by “I/O(A)” is transferred
through the raw device layer, the SCSI layer, and the iSCSI layer, then the

494 S. Yamaguchi, M. Oguchi, and M. Kitsuregawa

Fig. 5. Visualized Trace of Parallel iSCSI
Access: (B)

Fig. 6. Visualized Trace of Parallel iSCSI
Access: (C)

iSCSI layer issues a request to the TCP/IP layer. Figure 6 shows that “I/O(C)”
issues a system call at 0.01485 [sec], and the request is transferred up to the
iSCSI layer and sent to the network.

On the other hand, in the case of “I/O(B)”, the issued request is not sent to
the iSCSI layer. A system call is issued by “I/O(B)” at 0.01494 [sec], and the raw
device layer also issues the I/O request to the lower layer (the SCSI layer) after
the issue of the system call. However, the SCSI layer returns without issuing
a SCSI command even though the layer has received the request. This result
indicates that the maximum number of SCSI commands issued simultaneously
is restricted to two in the SCSI layer, which is considered to be the cause of the
upper limit of total performance.

Analysis of the Trace Inside a Layer. The trace is analyzed more precisely,
focusing on a particular layer, which is determined in the previous analysis. The
proposed system can trace the behavior inside an IP-SAN system in source code
level.

The branch point of the first two requests (I/O(A) and (C)) and the third
request (I/O(B)) is in “drivers/scsi/scsi lib.c” in the implementation of
Linux SCSI layer, as shown in Fig. 3. This part in Linux SCSI implementation
compares “host busy” 2, the number of active commands, and “can queue” 3,
the maximum number of SCSI commands the lower layer (iSCSI driver imple-
mentation inourcase)can receive simultaneously.Thedefaultvalue of“can queue”
in the UNH iSCSI implementation is 2.

At the beginning, “host busy” is 0. In the cases of the first two I/O requests
(I/O(A) and (C)), “host busy” are 0 and 1 respectively, thus the route labeled
as “host busy<can queue” in the figure is traced. In this route, incrementing

2 “host busy” is explained as “commands actually active on low-level” in Linux SCSI
implementation “drivers/scsi/hosts.h”.

3 “can queue” is explained as “max no. of simultaneously active SCSI
commands driver can accept” in the UNH iSCSI implementation
“initiator/iscsi initiator.c”.

Trace System of iSCSI Storage Access and Performance Improvement 495

Fig. 7. Trance of Linux SCSI Layer:
“drivers/scsi/scsi.c”

Fig. 8. Experimental Result C: Total per-
formance of parallel I/O, 16ms

“host busy” at line 914 and issuing a SCSI command at line 1046 are recorded.
In the case of the third I/O request (I/O(B)), “host busy” is 2, thus the route
labeled as “host busy>=can queue” in the figure is traced. In this route, a
SCSI command is not issued as shown in the figure.

These analyses of the SCSI layer, which are determined in the proposed analy-
sis system, point out that the upper limit of the total performance of parallel I/O
requests is decided by the iSCSI implementation’s default value of “can queue”.

4.4 Resolving the Pointed Out Issue

We measure the total performance of concurrent iSCSI accesses with “can queue”
= 30 and obtained “can queue = 30” in Fig. 4. The total performance of all
processes increases linearly from single process to eight processes. Four times
performance improvement is achieved when the number of processes is greater
than 8 by resolving the cause (problem) of the performance decline pointed out
by the proposed analysis system.

4.5 Analysis After Resolving the Issue

The restriction of number of simultaneous processing can reach eight. We adopt
the proposed system again for resolving the next restriction. It can be found
that the next restriction also exists in the SCSI layer by analysis of the trace
across multiple layers. Analysis of the trace inside a layer shows that the branch
point is in “scsi allocate devide” in “drivers/scsi/scsi.c” in the Linux
SCSI layer implementation (refer to Fig. 7).

This part of the implementation works for finding a free SCSI command
block from a block queue and creating a SCSI command block. In the cases of
the previous eight requests, the routes labeled with “a free command block is
found” are recorded. A free block is found at line 417 (SCpnt is not NULL) and a

496 S. Yamaguchi, M. Oguchi, and M. Kitsuregawa

SCSI command block is created. On the other hand, in the cases of after the ninth
request, The routes labeled with “a free command block is not found” is
recorded. Although a free block is searched at line 416, no free block is found
and NULL is returned. In other words, creating a new SCSI command block fails.
These trace analysis indicates that the restriction to eight is caused by the length
of a queue for command blocks. The queue length is called “queue depth” in
Linux implementation and it is specified by the lower layer implementation (the
UNH iSCSI implementation in this case). The default value of “queue depth”
is eight.

4.6 Resolving the Pointed Out Issue

We got the result shown in Fig. 8 with “can queue”=100 and “queue depth”
= 100. The total performance improves almost linearly to 69 simultaneous pro-
cesses by resolving the pointed out issue. The total performance with 69 processes
and 98 processes are 1992.9 [Trans/sec] and 2195.0 [Trans/sec], respectively. The
performance before adopting the proposed system is 61.9 [Trans/sec], then 32.2
times and 35.3 times performance up were gained, respectively.

As we have shown, the integrated analysis of both server computers and
storage appliances, monitoring all layers from application’s system calls to HDD
device access in the iSCSI protocol stack, is an effective method for improving
iSCSI performance. We have demonstrated it by applying the system to an actual
IP-SAN system so that the proposed system can properly point out the cause
of performance limit, and the performance is significantly improved by resolving
the pointed out issue.

5 Conclusion

In this paper, we proposed an integrated IP-SAN trace method, implemented
a system based on the idea, and demonstrated that the system could precisely
point out the cause of performance decline. It has been proved that iSCSI per-
formance can be significantly increased by resolving the pointed out issue. In
the case of our experiments, more than 30 times performance improvement has
been obtained in the case of simultaneous read calls. Thus we can say that mon-
itoring all the layers in the iSCSI protocol stack and executing an integrated
analysis including both server computers and storage appliances are effective for
improving iSCSI performance.

We plan to explore the following matters as a future work. In this paper, we
selected raw device as an upper layer of the SCSI layer. The iSCSI target driver
worked with “File Mode”. We plan to analyze IP-SAN’s behavior using a file
system and actual HDD devices. We also plan to evaluate an overhead of the
proposed analysis system.

Trace System of iSCSI Storage Access and Performance Improvement 497

References

1. Neema, F., Waid, D.: Data Storage Trend. In: UNIX Review, 17(7). (1999)
2. Ng, W.T., Shriver, B.H.E., Gabber, E., Ozden, B.: Obtaining High Performance

for Storage Outsourcing. In: Proc. FAST 2002, USENIX Conference on File and
Storage Technologies. (2002) 145–158

3. Satran, J., et al.: Internet Small Computer Systems Interface (iSCSI),
http://www.ietf.org/rfc/rfc3720.txt (2004)

4. : IETF Home Page, http://www.ietf.org/ (2004)
5. Aiken, S., Grunwald, D., Pleszkun, A.: A Performance Analysis of the iSCSI

Protocol. In: IEEE/NASA MSST2003 Twentieth IEEE/Eleventh NASA Goddard
Conference on Mass Storage Systems and Technologies. (2003)

6. Sarkar, P., Uttamchandani, S., Voruganti, K.: Storage over IP: When Does Hard-
ware Support help? In: Proc. FAST 2003, USENIX Conference on File and Storage
Technologies. (2003)

7. Sarkar, P., Voruganti, K.: IP Storage: The Challenge Ahead. In: Proc. of Tenth
NASA Goddard Conference on Mass Storage Systems and Technologies. (2002)

8. Tomonori, F., Masanori, O.: Analisys fo iSCSI Target Software. In: SACSIS
(Symposium on Advanced Computing Systems and Infrastructures) 2004. (2004)
(in Japanese).

9. Mogul, J.C.: Tcp offload is a dumb idea whose time has come. In: 9th Workshop
on Hot Topics in Operating Systems (HotOS IX). (2003)

10. Radkov, P., Yin, L., Goyal, P., Sarkar, P., Shenoy, P.: A performance Comparison
of NFS and iSCSI for IP-Networked Storage. In: Proc. FAST 2004, USENIX
Conference on File and Storage Technologies. (2004)

11. Lu, Y., Du, D.H.C.: Performance Study of iSCSI-Based Storage Subsystems. IEEE
Communications Magazine (2003)

12. Clark, D.D., Jacobson, V., Romkey, J., Salwen, H.: An Analysis of TCP Processing
Overhead. IEEE Communications Magazine 27(6) (1989) 94–101

13. Shivam, P., Chase, J.S.: On the Elusive Benefists of Protocol Offload. In: Proceed-
ings of the ACM SIGCOMM workshop on Network-I/O convergence: Experience,
Lessons, Implications. (2003) 179–184

14. : iSCSI reference implementation,
http://www.iol.unh.edu/consortiums/iscsi/downloads.html (2004)

15. : University of new hampshire interoperability lab,
http://www.iol.unh.edu/ (2004)

16. Rizzo, L.: dummynet,
http://info.iet.unipi.it/~luigi/ip dummynet/ (2004)

CoCache: Query Processing Based on
Collaborative Caching in P2P Systems

Weining Qian, Linhao Xu, Shuigeng Zhou, and Aoying Zhou

Department of Computer Science and Engineering, Fudan University
{wnqian, xulh, sgzhou, ayzhou}@fudan.edu.cn

Abstract. In this paper, we propose CoCache, a P2P query process-
ing architecture that enables sophisticated optimization techniques. Co-
Cache is different from existing P2P query processing systems in three
ways. First, a coordinator overlay network (CON) maintaining the sum-
mary of the whole system is constructed by applying DHT technique to
query plan trees. CON protocol ensures the efficiency for handling dy-
namic environments. Second, a preliminary cost-based optimization tech-
nique for retrieving appropriate cached copies of data is studied. With
the help of CON, we show the possibility of fine optimization in even
large scale and dynamic environments. Third, the collaborative caching
strategy is presented, with which even small portion of cache storage
on each peer may result in great improvement on query processing per-
formance. Extensive experiments over real-world and synthetic settings
show the effectiveness and efficiency of CoCache.

1 Introduction

Enabling query processing is a natural extension of key and keyword based search
in existing P2P systems [2, 8, 1, 5, 12]. There are several challenges to implement
complex query answering functionalities in P2P systems. First of all, as in any
P2P system, peers can join and leave the system anytime, anywhere and any-
how, which results in a purely dynamic and ad hoc network environment. Thus,
the underlying protocol should be robust enough to handle peer and network
failure. Secondly, a full decentralized process must be adopted for query process-
ing. In a dynamic P2P environment, due to the lack of global knowledge, both
query execution and optimization become difficult. At last, the collaboration of
autonomous peers is essential to fully take advantage of the resources in the
system. This usually involves more optimization issues, such as coordination,
locality-aware peer clustering, and load balancing. In summary, P2P query pro-
cessing should be effective and efficient for handling a large scale of autonomous
peers in dynamic and distributed networks.

In this paper, we present CoCache, a query processing system with col-
laborative cache. Caching or replication is widely adopted in centralized and
distributed systems, which has several advantages. First, data is available even
when the source is temporarily inaccessible. Second, since the retrieval of cached

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 498–510, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CoCache: Query Processing Based on Collaborative Caching 499

data is usually much cheaper than that of the source, caching is often used as
an optimization technique for decreasing latency. Finally, in distributed systems,
cached objects become partial copies of source that can serve different requests
from different machines at different time. Hence, caching is also employed in
many P2P systems and studied intensively [4, 14, 3, 12].

CoCache is different from existing P2P systems using cache. First, each peer
collaborates with other ones to determine what to be cached. Intuitively, a peer
tends to the cache data complementary to cached data in nearby peers. Fur-
thermore, both the caching process and query processing, i.e. the process to find
cached or source data, are fully decentralized based on a distributed hash table
(DHT) scheme, called CON, for Coordinator Overlay Network. The third differ-
ence is the cost-based optimization employed in dynamic environments. Query
answering performance is improved greatly with low overhead for maintaining
CON. In summary, our contributions are as follows:

– A P2P query processing framework, CoCache, is designed with a DHT-
based subnet, CON, which is used to index both data sources and caches.

– A cost-based optimization scheme is introduced to CoCache. With low over-
head of statistics exchanging, query performance can be improved greatly.

– An implementation of the collaborative caching strategy and experimental
results show that even a small portion of storage devoted for caching on each
peer can improve the performance of query processing greatly.

The rest of the paper is organized as follows. Section 2 introduces the archi-
tecture and protocol of CoCache. Section 3 presents both query processing and
optimization scheme. Section 4 describes the details of implementation for col-
laborative caching. Section 5 shows the experimental evaluation of CoCache.
Section 6 reviews the related work and Section 7 concludes the paper.

2 The Architecture of CoCache

2.1 The CoCache and CON Networks

A peer may take different roles in CoCache network: a requester is a peer who
issues one or more queries. A source peer is a peer whose database is accessible
by other ones. A caching peer is a requester who caches result(s) of its queries
or subqueries. Both source peers and caching peers are called providers. A co-
ordinator is a peer in charge of maintaining information about a specific query
expression. The information includes the providers that can provide data to an-
swer the query, the locality information of the providers, and the coordinators
corresponding to the sub- and super-expressions. The coordinators are also re-
sponsible to coordinate the requesters to determine which part of data to be
cached by which peer.

Figure 1 (a) illustrates the architecture of a CoCache network. A CoCache
network can be an arbitrary peer-to-peer network1. Each peer may share its data

1 Currently, CoCache is developed based on BestPeer[7].

500 W. Qian et al.

Fig. 1. Archiecture of CoCache network and nodes

with other peers and pose queries. Each node in the query plans is mapped to
a specific node via distributed hash table (DHT), who will become the coordi-
nator of the query expression. A coordinator maintains a finger table in which
each entry points to the coordinator of a super- or sub-query expression. The
coordinators form a virtual coordinator overlay network (CON), that is embed-
ded in CoCache. The architecture of a node in CoCache network is shown in
Figure 1 (b). Different from other peer data management systems, each node is
equipped with two modules called Local Negotiator and Coordination Module.
The former module takes the responsibility of negotiating with coordinators to
determine what data should be cached, while the later is in charge of the coor-
dination among the requesters for collaborative caching when the node becomes
a coordinator.

A query is represented by a relational calculus expression2, which can be
transformed to a query tree. The peer identifier p(v) of the coordinator corre-
sponding to a node v in the tree is determined by using the following rules:

1. If v is a leaf node, p(v) = h(v), in which h() is a general purpose hash
function, such as MD5 or SHA.

2. For node v corresponding to a unitary operator, such as σ or π, p(v) = p(v′)
in which v′ is the child of v.

3. For node v corresponding to a binary operator, i.e. &', p(v) = p(v1)|p(v2),
in which v1 and v2 are the children of v, and | means bitwise OR of two bit
strings.

Thus, given a query, the coordinator of each sub-query can be determined by
using consistent hashing h(). Coordinator p(v) is also called the host of node v.

Each coordinator maintains a finger table, in which entries are coordina-
tors corresponding to parent and children nodes in the query tree. Formally,

2 In this paper, we do not consider the equivalence of two query expressions.

CoCache: Query Processing Based on Collaborative Caching 501

given a query q, v is a node in the query tree, while v′, v1 and v2 are parent,
children nodes of v respectively. Then, < v′, v, p(v′) >, < v, v1, p(v1) > and
< v, v2, p(v2) > are three entries in peer p(v)’s finger table. Note that for coor-
dinators corresponding to more than one query expressions, the hosts of parent
and children nodes in each query should be included in the finger table. The
peers in the finger table are called its neighboring coordinators.

The coordinators are logical peers. In a P2P network, it is possible that there
is no peer whose identifier is the same as the identifier of a specific coordinator.
Different P2P platforms use different ways for handling this kind of problems.
Chord, for example, uses the peer whose peer-id is the first one follows a specific
identifier in the identifier space to be responsible for the tasks assigned to that
specific identifier [13]. Another popular P2P platform CAN uses the closest peer
in the torus-like identifier space to take over the tasks for a specific identifier
[10]. CoCache is implemented on top of a hybrid P2P system, BestPeer [7], in
which superpeers, called LIGLO servers, are responsible for this physical-logical
identifier mapping task. It should be noted that although BestPeer is chosen as
the bottom platform, CoCache is independant of underground layer. It can be
moved to other P2P platforms with few modifications.

Peer Join. When joining a CoCache network, a requester first determines
the coordinators corresponding to its queries. Then, the queries along with the
peer information, such as peer identifier, locality information and other statis-
tics about the peer, is sent to the coordinators. The requester also collects in-
formation about the cached data from the coordinators. Thus, a query plan is
generated, and evaluated by retrieving data from providers in the query plan3.
If a requester agrees to cache data, it informs the coordinators of the cache. The
coordinators updates their local index when new caching peer’s notification is
received. When a coordinator has collected a set of updates of caching peers, it
initiates a re-caching process, which is introduced in Section 4.

It is possible that a new arrival peer’s identifier is more suitable for a logical
coordinator than the current one’s. The new peer takes over the information of
the old coordinator including the finger table. Then, it sends update information
to all neighboring coordinators, so that they can update their finger tables.

Peer Leave. For the leave of a requester or provider, or the drop of a query by
a requester, the leaving peer informs the coordinators to update their indexed
information. If the leaving peer is a coordinator, it contacts the next suitable
peer in the system to take over the coordination information. It also informs its
neighboring coordinators to update their finger tables to point to the new one.

Failure Handling. A peer may leave the system due to power, hardware or
network failure. In such cases, a peer may not be able to inform other peers or
coordinators. A failure may be detected by various ways. The failure of a coor-
dinator may be found due to a connection failure of a neighboring coordinator

3 The details of query processing are introduced in the next section.

502 W. Qian et al.

or a requester, while the failure of a provider may be detected when a requester
tries to retrieve data from the failed peer. In CoCache, each requester sends the
information about its queries to the coordinators periodically. When a coordina-
tor fails, the information is routed to the new coordinator, which takes over the
work of failed one automatically. When a peer notices the failure of a provider,
it informs the corresponding coordinators to update the index. The coordinator
then forward this message to all requesters that are registered to retrieve data
from the failed peer4.

3 Query Processing in CoCache

A cache is a binary tuple (v,N), in which v is the logical expression, and N is a
multiset of peers, which is called the container of the cache. For each occurance
p ∈ N , peer p contributes fixed size of storage space to caching data of logical
expression v. Note that a source peer can be treated as a special cache, whose v
is the data source, and N is the set only having the peer itself.

A query plan of a query q is a set of caches P{(vi, Ni)}satisfied that
⋃

iR(vi) ⊇
R(q), in which R(vi) and R(q) mean the relations with logical expressions vi and
q respectively. The cost of a query plan is defined as

costq(q|P) =
∑

i,vi∈P

c(vi → pq) + C({vi}, q) (1)

in which c(vi → pq) is the cost for transmitting cache (vi, Ni) to requester pq,
while C({vi}, q) is the computation cost to evaluate query q given cached data.

Algorithm 1 Query processing in CoCache
Input: query Q, cost threshold t Output: query plan P

1: send(p(Q),Q);C ← {< Q, p(Q) >};V ← Q;{Send query q to coordinator p(q)}
2: R ←retrieve(p(Q),“select C(vi, Ni) from CACHE where vi = Q”);
3: best ← choose(R);
4: while costq(best) > t do

5: for all < v0, c >∈ C do
6: C′ ← C′ ⋃

retrieve(c,“select < v′, p > from FT(v, v′, p) where v = v0”);
7: end for
8: C ← C′;
9: for all < v′, c′ >∈ C do
10: R ← R

⋃
retrieve(c′,“select C(vi, Ni) from CACHE where vi = v′”);

11: end for
12: best ← choose(R);
13: end while
14: returen best;

In implementation, c(vi → pq) is estimated using |R(vi)|×bvi,pq , where |R(vi)|
is the size of the relation, and bvi,pq

is the cost to transfer one unit of data from
peers in the container to the requester. Assuming that peers in a container is
close to each other in a subnet, bvi,pq

can be approximated by using bpj ,pq
, in

4 The details about cache selection and registration is introduced in the next section.

CoCache: Query Processing Based on Collaborative Caching 503

which pj is an arbitrary peer in the container. Ping-pang protocol can be used
for estimating bpj ,pq

.
Having received a query, after the host of the query is determined, a re-

quester sends the query along with the peer information to the coordinator, and
retrieves the part of index about available caches. In case the caches cannot sat-
isfy the query processing request, the neighboring coordinators corresponding
to the sub-queries are contacted, and more information of caches is collected.
This process is iterated until a query plan satisfying the cost request is found
(Algorithm 1).

4 Collaborative Caching

A cache plan is a set of valid caches, P{(vi, Ni}. Its cost is defined as

costc(P) =
∑

vi∈P

costq(vi|Pvi) (2)

in which Pvi
is the query plan to answer query (cache) vi satisfying that Pvi

∈ P .
The aim of collaborative caching is to minimize the cost of the cache plan. Note
that the purpose of query processing is different from that of caching in that the
former aims at optimizing a specific query on a specific peer, while the later tries
to coordinate different peers to achieve a globally optimized caching solution.

The caching process is driven by the coordinators. When a coordinator has
collected a set of updates about the requesters, it starts a re-caching process.
Otherwise, when detecting a new requester that agrees to cache some data, the
coordinator assigns it to the cache in the query plan whose c(vi → pq) is the
maximum. The main process of caching can be roughly divided into three phases:
cache plan initialization by CON, negotiation, and construction of cache.

4.1 Cache Plan Initialization by CON

A coordinator partitions requesters with common sub-query v, and being willing
to cache, into k groups based on their locality information. Thus, peers within
the same group can communicate to each other via high-bandwidth connections.
Then, the small groups N that are not capable enough to cache the subquery,
i.e. (v,N) is not a valide cache, are assigned to nearby groups of peers.

The partitions of requesters are populated in CON with K levels, which is
called coordination level. Thus, each coordinator has collected a set of candidate
caches P ′{(vi, Ni)}, in which each vi is a logical expression and Ni is a group of
peers. Each coordinator greedily choose caches with maximum cost gain per unit
of storage for queries {vi}. Here, cost gain of a cache c for a specific query q is
defined as ∆q(c) = costq(q|P)−costq(q|P ∪{c}). Thus, the cost gain is evaluated
using ∆(c) =

∑
vi∈P ′ ∆vi

(c). The chosen caches are put into the candidate cache
plan P , and the record of free space on a requester is decreased. This process is
iterated until no requester has free space or no valid cache remained.

504 W. Qian et al.

The caches (vi, Ni) in the candidate cache plan whose logical expression vi is
the same as that of the coordinator are chosen as initial caches. This process is
conducted in the spare time of the coordinators.

4.2 Negotiation for Caching

A coordinator informs the peers in the containers of initial caches. A requester
may receive several notifications from different coordinators. It chooses the caches
with logical expressions closest to that of the query of the requester to cache,
until no free space is left. The requester sends the feedback to the coordinators.
The coordinator removes the peers do not agree to cache from the containers,
and checks if the cache is still a valid one. The requesters in the valid caches are
informed, so that they retrieve the data for caching. For those invalid caches, a
coordinator informs the requesters in the containers, so that the requesters can
reassign the spaces left for the invalid cache for other caches.

4.3 Cache Construction

When a requester receives is notified for caching by a coordinator, it begins the
cache construction process. If the free storage space is large enough for caching all
result of the logical expression, the requester evaluates the query corresponding
to the expression, and caches the result. Otherwise, the requester chooses the
portion of result that are not cached by other peers in the container. In CoCache
implementation, data are partitioned into chunks with identifiers. The identifiers
are assigned to the peers in the container via hashing. Furthermore, each caching
peer multicast its cached chunks to those peers in the same container. Each
peer in the container is responsible for maintaining the cache, and serve other
requesters. Since only nearby peers are put into the same container in cache plan
initialization process, the peers in the container may serve each other efficiently.

4.4 Query Processing Implementation

Each CoCache peer is equiped with a query engine5. Queries are written in
standard SELECT-FROM-WHERE form without aggregation. Some peers may
share the common schema of data. Each requester knows the schema of data to
be queried. We believe that this setting is common in many applications, such as
information management in large enterprises. The problem of schema discovery
can be solved using information retrieval style method introduced by PeerDB[8].

The logical query expressions are translated to SQL queries for query process-
ing. For retrieval of data in caches, a query is transformed to a set of SQL queries
for chunks respectively, and then sent to the caching peers in the container. In
case that a caching peer fails, the corresponding subquery is sent to data source
to retrieve the missing chunks. The caches are retrieved simultaneously. After
obtaining all the data cached (or from data sources), the query is evaluated, and

5 Current implementation of CoCache uses IBM DB2 UDB 7.1 as query engine.

CoCache: Query Processing Based on Collaborative Caching 505

the result is returned to users. Cache construction is similar to query processing.
A requester or caching peer periodically re-evaluate its query. The problem of
ensures consistency of query result in P2P systems is left as open problems for
further study.

5 Empirical Study of CoCache

5.1 Simulation Experiments

For synthetic data, we generate a table with 32 columns and 128 rows blocks, in
which each block is in the same size, and is marked with coordinate (rid, cid).
Thus, given a quadruple (top, left, bottom, right), the blocks whose coordinate
satisifies left ≤ cid ≤ right and top ≤ rid ≤ bottom are determined. Each peer
generates such a quadruple to determine the data to be stored, while each query
is also a quadruple. The data overlapped by a query is the answer to the query. If
any blocks on any single peer only overlaps part of the blocks of a query, the data
on different peers must be joined together. The query with maximum number
of joins involves data on sixteen peers to be joined. The synthetic data set is
tested in a P2P system simulator with 1,000 peers6. In addition to CoCache,
PeerDB [8] without caching (PDB-NC) is used as baseline, while PeerDB with
caching (PDB-C) is compared with CoCache. Note that in the later case, each
peer devotes the same size of storage space for caching.

Fig. 2. Workload on coordinators with different coordination levels

In Figure 2 (a), the minimum, average and maximum runtime of cache plan
intialization is shown. It is obvious that the runtime is ascendant with the in-
creasing of coordination level K. For some coordinators with few corresponding
requesters, the process may be very fast. Furthermore, it is shown that even K
is set to 3, the average runtime of coordinators does not increase much. Since
in worst case, the candidate cache plans collected by a coordinator is explosive
to K, the performance goes bad when K is larger than 4. However, the average

6 The topology is generated by the program downloaded from
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz.

506 W. Qian et al.

Fig. 3. The cost of query processing, view construction compared with PDB-NC and
PDB-C, with different settings of caching space and coordination level

Fig. 4. Cost gain comparison of CoCache and PDB-C, divided by that of PDB-NC

runtime is linear to K in our experiments. In Figure 2 (b), the requesters a coor-
dinator should negotiate with is shown. The larger K is used, the less requesters
a coordinator should negotiate with. The reason is that by exchanging candi-
dates caches, a coordinator may drop a lot of caches that are not preferred for
their limited contribution for increasing cost gain. It is shown that when K is
equal or larger than 2, the view candidate refinement process eliminates a large
amount of view candidates. Thus, setting K = 2 may save both computation
and communication cost.

Figure 3 (a) shows the query processing cost comparison between CoCache
and PDB-NC, in the condition that caches are constructed, while the cache con-
struction cost is shown in Figure 3 (b). It is shown that both query processing
and cache construction cost is quite small when compared with the query pro-
cessing cost of PDB-NC. In Figure 3 (c), CoCache is compared with PDB-C
on query processing cost. CoCache outperforms PDB-C when each peer con-
tributes limited storage for caching (2 blocks/peer). Even when the storage for
caching is large enough for the whole query result (8 blocks/peer), CoCache
is slightly better than PDB-C on average. If collaborative caching is less frequent

CoCache: Query Processing Based on Collaborative Caching 507

Fig. 5. Experiments in a real P2P environment: CoCache vs. PDB-NC

than query processing, such as applications of continuous query processing, Co-
Cache is more efficient than PDB-NC and PDB-C, and its advantage is much
more obvious when cache space is limited.

The cost gains under different K’s and different block-size settings are shown
in Figure 4. Here, CoCache-Best means the cost gain obtained when each
coordinator knows the status of the whole system, which is an ideal condition
and is impossible to be reached in applications, while PDB-C Best means the
cost gain obtained for all the peers while PDB-C means the cost gain obtained
only for those peers participating in collaborative caching. The figures show that
the cost gain increases along with K. In any cases, the cost gain of CoCache is
at least half of that obtained under ideal environment. When it is impossible to
store the required data locally, CoCache always outerperforms PDB-C. Even
all query results can be cached, CoCache is still a little better than PDB-C,
since only raw data are cached in PeerDB.

5.2 Experiments in a Real P2P Environment

DBLP data set is transformed from DBLP XML records7, in which the total
number of tuples are more than 600,000, and the corresponding storage space is
more than 200MB. The data set is partitioned and assigned to the peers. Further-
more, the quries are generated by a generator. Totally 144 queries are generated
to be used in experiments, in which the number of joins varies from zero to five.
The details of the data set partition and query generation are introduced in [9].

The DBLP data set is tested in a LAN environment with 40 peers, each of
which is a PC with Pentium 1.4 GHz processor and 128MB RAM. The peers
are divided into four groups. Within each group, ten peers are connected with
one hub, and the hubs are connected by campus network with each other. Co-
Cache is developed using Java, and running under Microsoft Windows 2000
Workstation. IBM DB2 UDB 7.1 is used as database engine. In experiments on
DBLP data set, two schemes of block sizes are tested. In C1 scheme, each peer
contributes a large storage space for caching (512KB per query), while in C2

7 http://dblp.uni-trier.de/xml/

508 W. Qian et al.

scheme, only a small storage space is devoted for caching on each peer (128KB
per query). Furthermore, the scheme of PDB-NC is used as baseline.

The response time, volume of data transfered, and throughput for 144 queries
are recorded and shown with their summaries in Figure 5. It is interesting that
the volume of data transfered in C1 scheme is more than that in C2 scheme.
This is because that in C1 scheme, more cachess are established, which presumes
more overhead and cache-to-cache data transfer. However, it is shown that the
response time of C1 is better than C2, since cache-to-cache data transmission is
usually cheap. Even in C2 scheme, the performance is not far worse than that
in C1 scheme. The result is quite consistent with that obtained in simulation.
It can be concluded that by collaborating, few contribution on each peer can
gain much improvement on performance. The throughput of C2 scheme does
not win PDB-NC scheme much. Since only part of data with maximum cost can
be stored in caches, requesters still need to obtain data from some data sources
that are not very far away.

6 Related Work

There are several popular P2P platforms that support key-based search, such
as Chord [13], CAN [10], Pastry [11] and BestPeer [7]. Caching is supported by
some such platforms [13, 10]. However, the key-based caching scheme is usually
too coarse to support complex query processing.

Query processing in P2P systems is a hot research topic and some proto-
type systems have been developed with different purposes, such as, interactive
query processing (PeerDB [8]), DHT-based query execution (PIER [2]), schema
mapping based query rewriting and processing (PIAZZA [1]), and data mapping
based query processing (Hyperion [6]). In PIER, authors assume that schema
information can be obtained in advance by requesters [2]. However, CoCache
employs a different method to facilitate query processing with partial results
obtained from nearby peers with common subqueries.

Caching in P2P systems is extensively studied for its advantages for per-
formance improvement. SQUIRREL [3] and BuddyWeb [14] are two prototype
systems that allow peers to share their Web caches with one another in the
same community. PeerOLAP [4] is designed for online analytical query pro-
cessing, where data are partitioned into aligned chunks for caching. Different
caching strategies are studied, and the efficiency is shown under the setting
of a self-configurable P2P network. The work closest to our research is range
query result caching [12]. The ranges in a one-dimensional space are mapped
to a two-dimensional CAN. Efficient search algorithm is developed to find the
cached ranges. However, the methods above suffer from the disadvantage of each
peer caching data blindly with other peers, while CoCache uses collaborative
caching based on information collected via CON. Furthermore, CON indexes
combinations of both dimensionality and peers.

CoCache: Query Processing Based on Collaborative Caching 509

7 Conclusions

In this paper, a query processing framework called CoCache is designed to
utilize the limited storage devoted by various peers. The collaborative caching
scheme adopted is a natural extension of key-based caching. With the help of
DHT-based coordinator overlay network, peers can obtain summary information
of the related queries and providers’ information. Thus, collaborative caching
can serve the queries more efficiently than existing caching schemes in P2P
systems. Furthermore, the coordinator overlay network enables the cost-based
optimization with low maintenance overhead. Experimental results show that
CoCache is especially effective when each peer has limited storage for caching,
which is a great challenge in real-life applications.

Acknowledgement

This work is supported by Infocomm Development Authority of Singapore (IDA).
The authors would like to thank Jianfeng Yin, Wenyuan Cai and Tian Xia for
their help in implementing the previous version of CoCache, called PeerView,
and Dr. Wee Siong Ng for providing the source code of PeerDB.

References

1. A. Halevy, Z. Ives, P. Monk, and I. Tatarinov. Piazza: Data management infras-
tructure for semantic web applications. In Proceedings of the 12th World-Wide
Web Conference (WWW’2003), 2003.

2. R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.
Querying the internet with pier. In Proceedings of the 29th International Confer-
ence on Very Large Databases (VLDB’2003), 2003.

3. S. Iyera, A. Rowstron, and P. Druschel. Squirrel: A decentralized, peer-to-peer web
cache. In Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing (PODC’2002), 2002.

4. P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L. Tan. An adaptive peer-to-
peer network for distributed caching of olap results. In Proceedings of ACM SIG-
MOD 2002 International Conference on Management of Data (SIGMOD’2002),
2002.

5. A. Kementsietsidis, M. Arenas, and R. J. Miller. Managing data mappings in
the hyperion project. In Proceeding of IEEE Conference on Data Engineering
(ICDE’2003), 2003.

6. A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer
systems: Semantics and algorithmic issues. In Proceedings of ACM SIGMOD 2003
International Conference on Management of Data (SIGMOD’2003), 2003.

7. W. S. Ng, B. C. Ooi, and K.-L. Tan. Bestpeer: A self-configurable peer-to-peer
system. In Proceedings of IEEE Conference on Data Engineering (ICDE’2001).
IEEE Press, 2002.

8. W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Peerdb: A p2p-based system for
distributed data sharing. In Proceedings of IEEE Conference on Data Engineering
(ICDE’2003). IEEE Press, 2003.

510 W. Qian et al.

9. W. Qian, L. Xu, S. Zhou, and A. Zhou. Peerview: View selection for
query processing in p2p systems. Technical report, Dept. of Computer
Science and Engineering, Fudan Univeristy, Available at http://www.cs.
fudan.edu.cn/wpl/memeber/wnqian/, 2004.

10. S. Ratnasamy, P. Francis, K. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of the ACM SIGCOMM 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation (SIGCOMM’2001), 2001.

11. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware’2001), pages
329–350, 2001.

12. O. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. A peer-to-peer framework for
caching range queries. In Proceedings of the 20th IEEE International Conference
on Data Engineering (ICDE’2004), 2004.

13. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: a
scalable peer-to-peer lookup service for internet applications. In Proceedings of the
ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM’2001), pages 149–160.
ACM Press, 2001.

14. X. Wang, W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Buddyweb: A p2p-
based collaborative web caching system. In Proceedings of Peer-to-Peer Computing
Workshop (Networking 2002). IEEE Press, 2002.

Multi-represented kNN-Classification
for Large Class Sets�

Hans-Peter Kriegel, Alexey Pryakhin, and Matthias Schubert

Institute for Computer Science, University of Munich,
Oettingenstr. 67, 80538 Munich, Germany

{kriegel, pryakhin, schubert}@dbs.ifi.lmu.de

Abstract. The amount of stored information in modern database ap-
plications increased tremendously in recent years. Besides their sheer
amount, the stored data objects are also more and more complex. There-
fore, classification of these complex objects is an important data mining
task that yields several new challenges. In many applications, the data
objects provide multiple representations. E.g. proteins can be described
by text, amino acid sequences or 3D structures. Additionally, many real-
world applications need to distinguish thousands of classes. Last but
not least, many complex objects are not directly expressible by feature
vectors. To cope with all these requirements, we introduce a novel ap-
proach to classification of multi-represented objects that is capable to
distinguish large numbers of classes. Our method is based on k nearest
neighbor classification and employs density-based clustering as a new ap-
proach to reduce the training instances for instance-based classification.
To predict the most likely class, our classifier employs a new method to
use several object representations for making accurate class predictions.
The introduced method is evaluated by classifying proteins according to
the classes of Gene Ontology, one of the most established class systems
for biomolecules that comprises several thousand classes.

Keywords: Multi-represented objects, classification, instance based
learning, k nearest neighbor classifier.

1 Introduction

Modern information systems are collecting enormous amounts of data every day.
In addition to the sheer amount of data, the complexity of data objects increases
as well. Companies store more detailed information about their costumers, satel-
lites take pictures with additional frequency spectra, and HTML-documents pro-
vide embedded multimedia content which makes them much more complicated

� Supported by the German Ministery for Education, Science, Research and Technol-
ogy (BMBF) under grant no. 031U212 within the BFAM (Bioinformatics for the
Functional Analysis of Mammalian Genomes) project which is part of the German
Genome Analysis Network (NGFN).

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 511–522, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

512 H.-P. Kriegel, A. Pryakhin, and M. Schubert

than ordinary text documents. The analysis of large collections of complex ob-
jects yields several new challenges to data mining algorithms.

One of the most important tasks of data mining is classification. Classifica-
tion learns a function Cl : O → C that maps each object o ∈ O to the class c ∈ C
that it most likely belongs to. The class set C is a predefined set of categories.
In order to make a class prediction, a classifier has to be trained. For the clas-
sification of complex objects, there are various important applications, e.g. the
classification of proteins into functional catalogues or secure personal identifica-
tion using several biometric characteristics. These applications yield interesting
challenges to novel classification techniques.

First of all, the more complex a data object is, the more feature transforma-
tions exist that can be used to map the object to a representation suitable for
data mining. Furthermore, many objects are describable by different aspects, e.g.
proteins can be described by text annotations and amino acid sequences. This
yields a problem for data mining in general because it is not clear which of these
aspects is most suited to fulfill the given task. Therefore, it would be beneficial if
a classification algorithm could employ all of the given representations of an ob-
ject to make accurate class predictions. Another important aspect is that many
classification algorithms rely on an object representation providing feature vec-
tors. However, complex objects are often represented in a better way by treating
them as sequences, trees or graphs. Last but not least, the number of classes
in the given example applications can be exceptionally high. Gene Ontology [1],
one of the most established class systems for proteins, currently has more then
14,000 classes and biometric databases will have to identify one special person
among thousands of people. Though this problem is not directly connected to the
complexity of the given data objects, it often co-occurs in the same application
and should therefore be considered when selecting the classification method.

To cope with these challenges, we introduce a new classification technique
based one k nearest neighbor (kNN) classification [2]. A kNN classifier decides
the class of an object by analyzing its k nearest neighbors within the training
objects. kNN classifiers are well-suited to solve the given problem because they
do not have to spend additional effort for distinguishing additional classes. The
new training objects are simply added to the training database and are only
considered for classification if they are among the nearest neighbors of the object
to be classified. Additionally, kNN classifiers can be applied to any type of object
representation as long as a distance measure is available. Unfortunately, kNN
classification has a major drawback as well. The efficiency of classification is
rapidly decreasing with the number of training objects. Though the use of index
structures such as the M-tree [3] or the IQ-Tree [4] might help to reduce query
times in some cases, it does not provide a general solution. Another approach to
limit the problem is the reduction of the training objects to some basic examples
as proposed in [5]. However, these approaches are aimed at limited training data
and are therefore very inefficient when applied to large training sets.

Thus, to apply kNN classification to the described classification scenario, we
introduce a more efficient method to speed up kNN classification by employing

Multi-represented kNN-Classification for Large Class Sets 513

density-based clustering to reduce the necessary training instances. Afterwards,
we introduce a new method for the classification of multi-represented (MR)
objects. The idea of the method is to determine the k nearest neighbors in a
database for each representation. Then, the class prediction is derived by con-
sidering the normalized distances within each result. To demonstrate the good
performance, we apply our new method to four scenarios of protein classification.
Each protein is represented by an amino acid sequence and a text annotation.
Our results demonstrate that density-based clustering outperforms other meth-
ods of reducing the training set for kNN classification. Furthermore, the achieved
results indicate that our new decision rule for multi-represented kNN classifica-
tion yields better accuracy than other classification methods that are suitable
for large class sets.

The rest of the paper is organized as follows. In section 2, we discuss related
work on speeding up kNN classification and classification of multi-represented
objects. Section 3 describes the use of density-based clustering to reduce the
number of training instances without losing essential concepts. Additionally, our
new approach to combine multi-represented classification is introduced. Section
4 provides an experimental evaluation based on protein data that consists of
sequential and text representations. The last section sums up the introduced
solutions and gives some directions for future work.

2 Related Work

k Nearest Neighbor Classifier. The k nearest neighbor (kNN) classification [2]
mentioned above classifies a new data object o by finding its k nearest neighbors
with respect to a suitable distance function. In its basic form, kNN classification
predicts the class that provides the most training objects within the k-nearest
neighbors. To the best of our knowledge, there exists no form of kNN classifica-
tion that is directly applicable to multi-represented data objects. The common
approach to apply kNN classification to this kind of data is to build a joint dis-
tance measure on the complete MR object. However, we argue that this method
is not suitable to derive good results because it is not capable to weight the
different representations on the basis of the given object.

Instance Reduction. In the last decades, the research community introduced
several methods for instance reduction [5, 6, 7, 8, 9]. All approaches try to re-
duce the number of instances in the training set in a way that the classifier
provides comparable or even better accuracy and demands less processing time.
In [8] the authors discuss several reduction techniques and [10] illustrates an
experimental evaluation of these algorithms on 31 data sets. This evaluation
demonstrates that the RT3 algorithm [8] outperforms other techniques of in-
stance reduction for many data sets. Another approach to instance reduction is
called iterative case filtering (ICF)[5]. This novel and effective approach to data
reduction employs two steps. The first step performs so-called ”Wilson edit-
ing”. It detects all instances that are classified incorrectly by the kNN classifier.
These instances are afterwards removed. The second step calculates for each re-

514 H.-P. Kriegel, A. Pryakhin, and M. Schubert

maining object the so-called reachability and coverage [5]. Every object o with
|reachable(o)| < |coverage(o)| is removed. The second step is iterated until no
removable object exists. A broad experimental evaluation [11] on 30 databases
compares ICF with the reduction technique RT3 [8]. Both algorithms achieve the
highest degree of instance reduction while maintaining classification accuracy.

GDBSCAN. GDBSCAN [12] is a density-based clustering algorithm. Clusters
are considered as dense areas that are separated by sparse areas. Based on two
input parameters (ε and MINPTS), GDBSCAN defines dense regions by means
of core objects. An object o ∈ DB is called core object, if its ε-neighborhood
contains at least MINPTS objects. Usually clusters contain several core objects
located inside a cluster and border objects located at the border of the cluster. In
addition, the objects within a cluster must be “density-connected”. GDBSCAN
is able to detect clusters by one single pass over the data. The algorithm uses
the fact, that a density-connected cluster can be detected by finding one of its
core-objects o and computing all objects which are density-reachable from o. To
determine the input parameters, a simple and effective method is described in
[13]. This method can be generalized and used for GDBSCAN as well.

Classifier Fusion. The task of learning from objects, when more than a single
classifier has beeen trained, has recently drawn some attention in the pattern
recognition community [14, 15, 16]. In [15], the author describes the method of
classifier fusion to combine the results from multiple classifiers for one and the
same object. Furthermore, [15] surveys the four basic combination methods and
introduces a combined learner to achieve combination rules offering better ac-
curacy. In [17], a method for the hierarchical classification of MR objects was
introduced. Though this method provides superior accuracy to the compared
methods, it is not suitable for our described scenario because the efficiency of
the method relies on the existence of a class hierarchy that can be exploited.
Furthermore, the proposed classifier is based on Support Vector Machines that
are not as generally applicable as kNN classification.

3 kNN Classification of Complex Objects

As mentioned in the introduction, classification of complex objects into large
class sets yields the following challenges. First of all, the selected classification
approach has to cope with the large number of classes without losing perfor-
mance. Second, complex objects might be described by multiple representations.
Furthermore, these representations might consist of varying object types, e.g.
vectors, sequences and graphs. A good approach to handle these problems is
kNN classification which does not need to spend additional efforts for distin-
guishing additional classes. Another benefit of kNN classifiers is that they do
not rely on a special data type but can cope with any object type as long as
there is a distance function. A drawback of kNN classification is that the classi-
fication time strongly depends on the number of training objects. Therefore, the
number of training objects should be kept as low as possible to ensure efficient
classification. In this paper, we discuss a method to reduce training instances

Multi-represented kNN-Classification for Large Class Sets 515

based on density-based clustering. Furthermore, we introduce a new method for
the classification of multi-represented objects that is capable of achieving signif-
icantly better accuracy than the classification based on only one representation
or related methods of classification.

In the following, we present a brief problem description. Afterwards, we intro-
duce an approach to reduce the given training data with the help of density-based
clustering. Finally, we use multiple object representations to derive accurate class
predictions.

3.1 Problem Definition

In our given application scenario, we want to find a classifier Cl : O → C that
maps each data object o ∈ O to its correct class c ∈ C. The data space O is given
by the cartesian product of m representations R1×. . .×Rm. Each representation
Ri consists of a feature space Fi∪{−}. A feature space Fi may consist of varying
data types. For comparing two objects u, v ∈ Fi, there exists a distance measure
disti : Fi×Fi → R

+
0 . To apply our method, it is necessary that disti is symmetric

and reflexive. The symbol {−} denotes that a particular object representation
is missing. However, for a usable class prediction a tuple should provide at least
one instance ri ∈ Fi. To conclude, the task of multi-represented classification is
to find a function Clmr : (R1 × . . . × Rm) → C that maps as many objects o
to their correct class c ∈ C as possible. For training, a set T of tuples (o, c) of
objects o = (r1, . . . , rm) and their correct classes c are given to the classifier, the
so-called training set. We denote in further sections the correct class of an object
o by c(o) and the class detected by multi-represented classification as Clmr(o).

3.2 Density-Based Instance Reduction

The performance of kNN classification depends on the number of objects in
the training set. Though a lot of methods that reduce the training data for kNN
classification have been proposed so far, most of these techniques perform poorly
for large amounts of training data. In order to reduce the number of available
training objects more efficiently, we suggest a novel approach – density-based
instance reduction (DBIR).

The DBIR-algorithm works as follows. For each representation and each class,
the training data is clustered by using the algorithm GDBSCAN. Let us note that
the input parameters can be chosen as described in [13]. GDBSCAN provides
a set of clusters Clust = {Clust1, . . . , Clustj , . . . , Clustl}, where j = 1, . . . , l
is the index of the cluster, and additionally a set of objects N that are noise,
i.e. objects that cannot be associated with any clusters. An important charac-
teristic of GDBSCAN for our problem is that the number of found clusters l
is not predefined, but a result of the clustering algorithm. Thus, the number of
important concepts is determined by the algorithm and not manually. Another
important advantage of GDBSCAN is that it is capable to cluster any data type
as long as there is a reflexive and symmetric distance measure to compare the
objects. After clustering, DBIR iterates through the set Clust and determines

516 H.-P. Kriegel, A. Pryakhin, and M. Schubert

Fig. 1. (a) Objects before data reduction, (b) Objects after reduction by using of DBIR.
The density-based cluster C can be reduced to a representant ΩC . The noise object d

is not removed. However, it can not change the decision of a kNN classifier with k > 2

for each cluster Clustj a representant Ωj . The representant Ωj is the centroid
of the cluster Clustj in the case of a representation given by a vector space and
the medoid of the cluster Clustj otherwise. Afterwards, all objects belonging to
the set Clustj \Ωj are removed from the data set.

Like most other instance reduction methods, we assume that the training
data for each class contains all important examples to specify a given class.
To reduce the number of training objects without losing accuracy, we have to
discard the training objects that are likely to represent a concept that is not
typical for the given class. Furthermore, if a typical concept is described by
several training objects, we reduce the representatives of this concept to a single
one to save classification time. We argue that a density-based clustering of the
training objects for a given class is sufficient to decide both cases. Objects that
are not typical for a given class do not have any close neighbors and are usually
separated from the rest of the training set. Thus, the noise objects in a density-
based clustering are likely to correspond to these objects. Of course, it is possible
that a noise object alone is an important concept. However, a single object is
not likely to change the decision of a kNN classifier and the decision would
most likely be wrong even without the deletion. Important concepts that are
represented by several training objects are usually located very closely to each
other in the feature space. Thus, these concepts are likely to correspond to
a density-connected cluster in our density-based clustering. For each of these
clusters it is sufficient that the training set contains a single object to represent
it. Figure 1 displays both effects in a two dimensional example.

Our method has a runtime complexity of O(
∑

cj∈C |{o ∈ O | c(o) = cj}|2)
for the case that it is not supported by index structures. ICF has a runtime

Multi-represented kNN-Classification for Large Class Sets 517

complexity of O(2× (#Iteration)× |DB|2) where #Iteration is the number of
iterations (in our experiments it was between 9 and 12) and |DB| is the size of
the database. Thus, our method is considerably faster than other state of the
art feature reduction techniques.

As described above, we apply the DBIR-algorithm separately to the training
objects in one representation and for one class. Afterwards we integrate all in-
stances of a representation i into one training database DBi. Let us note that
it is possible to speed up k nearest neighbor queries in each of these training
databases as long as there are suitable index structures for the given object type.
For example, if the distance function is metric it might be beneficial to further
increase the classification time by employing a metric tree like the M-Tree [3].

3.3 kNN-Classification of Multi-represented Objects

Based on the training databases for each representation, we apply the follow-
ing method of kNN-based classification. To classify a new data object o =
(ri, . . . , rm), the kNN sphere spherei(o, k) in each representation with ri �= ”−”
is determined. Formally, the spherei(o, k) can be described as follows:

spherei(o, k) = {o1, . . . , ok | o1, . . . , ok ∈ DBi ∧ �o
′ ∈ DBi \ {o1, . . . , ok}

∧�ξ, 1 � ξ � k : disti(o
′
, ri) � disti(oξ, ri)}

To combine these kNN spheres and achieve accurate classification, we first of
all derive a confidence vector cvi(o) from each available spherei(o, k). Let c(o)
denote the correct class of object o and let dnorm

i (u, v) be a normalized distance
function. Then the confidence vector for an object o with respect to its kNN
sphere spherei(o, k) for the representation i is defined as follows:

cvi(o) = (cvi,1(o), . . . , cvi,|C|(o)), (1)

∀j, 1 � j � |C| : cvi,j(o) =

∑
u∈spherei(o,k)∧c(u)=cj

1
dnorm

i (o,u)2∑|C|
k=1 cvi,k(o)

(2)

To normalize our distance function for each representation, we apply the follow-
ing modification:

dnorm
i (o, u) =

disti(o, u)
maxv∈spherei(o,k) disti(o, v)

(3)

where disti is the distance function between two objects in the i-th representa-
tion. The normalization in formula 3 maps the distance values for each represen-
tation to the range [0, 1] with respect to the radius of spherei(o, k). Thus, the
confidence vector of the i-th representation at the j-th position (cf. formula 2)
is a normalized sum of the inverse quadratic distances.

After we have determined the confidence vectors cvi(o) for each representa-
tion i, we use a weighted linear combination for combining them. Let us note that

518 H.-P. Kriegel, A. Pryakhin, and M. Schubert

Table 1. Details of the test environments

Set 1 Set 2 Set 3 Set 4
Name Enzyme Ac-

tivity
Metabolism Transferase Cell

Growth
Number of
Goal Classes

267 251 62 37

References to
proteins

16815 19639 4086 4401

the combination of confidence vectors to achieve multi-represented classification
has been proposed in [15]. However, the used weights in the former approaches
do not adjust to the individual classification object. We argue that in order to
use each representation in a best possible way, a multi-represented decision rule
must weight the influence of all available representations individually for each
object.

To achieve this individual weighting, our classification rule is built as follows:

Clmr(o) = max
j=1,...,|C|

m∑
i=1

wi · cvi,j(o) (4)

where m is the number of representations and

wi =

0 , if ri = ”− ”
1+

∑|C|
j=1(cvi,j(o)·log|C| cvi,j(o))

∑m
k=1(1+

∑|C|
j=1(cvk,j(o)·log|C| cvk,j(o)))

, otherwise
(5)

The idea of our method is that a kNN sphere containing only a small number
of classes and several objects of one special class is ”purer” than a kNN sphere
containing one or two objects for each of the classes. Thus, the ”purer” a kNN-
sphere for a representation is, the better is the quality of the class prediction
that can be derived from this representation. To measure this effect, we employ
the entropy with respect to all possible classes. The weight is now calculated by
normalizing the entropy of its kNN sphere with respect to the entropy of the
kNN spheres in all representations. As a result the weights of all representations
add up to one. In conclusion, our decision rule for multi-represented objects
measures the contribution of each available representation by the entropy in the
local kNN spheres of all available representations.

4 Experimental Evaluation

4.1 Test Bed

In order to demonstrate the advantages of our approach, we carried out a versa-
tile experimental evaluation. All algorithms are implemented in Java and were
tested on a work station that is equipped with a 1.8 GHz Opteron processor

Multi-represented kNN-Classification for Large Class Sets 519

Table 2. Experimental results Classification accuracy (in %) of kNN classifier on:
unreduced data, data reduced by DBIR and ICF. Rune time (in sec.) and reduction
rate (in %) reached by DBIR and ICF. (Using two representations Rep. 1 and Rep. 2.)

Classification Accuracy (in %)
Set 1,
Rep. 1

Set 2,
Rep. 1

Set 3,
Rep. 1

Set 4,
Rep. 1

Set 1,
Rep. 2

Set 2,
Rep. 2

Set 3,
Rep. 2

Set 4,
Rep. 2

kNN 64.43 61.41 72.01 76.2 46.6 43.9 47.48 62.92
kNN
DBIR

61.95 60.29 72.56 73.91 44.5 45.5 48.97 56.58

kNN
ICF

46.44 35.56 47.92 40.72 37.85 33.21 31.37 34.58

Runtime of Instance Reduction (in sec.)
DBIR 163.0 253.9 8.0 27.5 275.9 1069.6 36.6 119.9
ICF 12,809.1 15,616.7 590.0 632.0 93,416.8 112,248.24,258.0 3,772.0

Reduction Rate (in %)
DBIR 26.1 27.4 33.1 32.0 28.1 22.9 33.8 35.0
ICF 57.0 64.3 71.8 77.7 37.8 46.5 64.0 65.5

and 8 GB main memory. We used the classification accuracy to measure the
effectiveness of algorithms and 5-fold cross-validation to avoid overfitting.

The properties of each test bed are shown in table 1. The 4 test beds consist
of 37 to 267 Gene Ontology[1] classes. The corresponding objects were taken
from the SWISS-PROT [18] protein database and consist of a text annotation
and an amino acid sequence of a protein. In order to obtain a flat class-system
with sufficient training objects per class, the original environment was pruned.

We employed the approach described in [19] to extract features from the
amino acid sequences. The basic idea is to use local (20 amino acids) and global (6
exchange groups) characteristics of a protein sequence. To construct a meaningful
feature space, we formed all possible 2-grams for each kind of characteristic,
which generated us the 436 dimensions of our sequence feature space. For text
descriptions, we employed a TFIDF [20] vector for each description that was
built of 100 extracted terms. We used the cosine distance function as distance
measure for both representations.

4.2 Experimental Results

To demonstrate that DBIR is suitable for large data sets w.r.t. efficiency, we
compared the run time needed for data reduction by using DBIR and ICF on
single-represented data. As presented in table 2, the DBIR outperforms ICF in
terms of efficiency, e.g. on the 1st representation of data set 1, DBIR needed
only 163 sec. whereas ICF spends 12,809.1 sec. for the data reduction.

To show the effectiveness of DBIR, we compared the classification accuracy
achieved by the kNN classifier on unreduced data, data reduced by DBIR and
data reduced by ICF (cf. table 2). All these experiments were performed on

520 H.-P. Kriegel, A. Pryakhin, and M. Schubert

Table 3. Classification accuracy (in %) and average classification time per object (in
msec.) of our approach (MR-kNN DBIR) compared to: kNN on single representations
reduced by DBIR; Naive Bayes (NB) on single representations and on multiple repre-
sentations combined by sum rule [15]; kNN classifiers combined by sum rule

Classification accuracy (in %)
Set 1 Set 2 Set 3 Set 4

1st Representation, kNN DBIR 61.95 60.29 72.56 73.91
2nd Representation, kNN DBIR 44.5 45.5 48.97 56.58
1st and 2nd Representations, MR-kNN DBIR 67.65 65.17 75.52 76.8
1st Representation, NB 43.45 39.95 58.41 41.08
2nd Representation, NB 28.44 22.36 32.87 31.35
1st and 2nd Rep., NB with sum rule fusion 39.64 35.47 51.15 36.03
1st and 2nd Rep., kNN classifier fusion by sum rule 62.1 63.18 64.14 74.67

Average classification time per object (in msec.)
1st Representation, kNN DBIR 196.1 198.87 38.22 39.86
2nd Representation, kNN DBIR 740.5 907.78 160.42 161.88
1st and 2nd Rep., MR-kNN DBIR 1,005.4 1,105.4 198.3 201.6
1st Representation, NB 45.06 43.54 15.4 9.04
2nd Representation, NB 155,91 150,75 48,34 29,62
1st and 2nd Rep., NB with sum rule fusion 206.37 198.3 61.54 36.73
1st and 2nd Rep., kNN classifier fusion by sum rule 1,251.3 1,456.2 295.6 316.8

single-represented data. The accuracy achieved by the kNN classifier on data
reduced by using DBIR was for all of the data sets comparable to the unreduced
data set. In contrast to these results, the classification accuracy achieved while
using ICF was considerably lower. E.g. on the 1st representation of data set 1,
the kNN classification on the data reduced by DBIR reaches 61.95% accuracy,
whereas the kNN classification on the data reduced by ICF reaches only 46.44%
accuracy. Though the reduction rate achieved by ICF is higher than that of
DBIR, the clearly superior accuracy that is achieved by using DBIR indicates
that ICF removed important information from the training data set.

In order to demonstrate the effectiveness of the proposed multi-represented
kNN classifier (MR-kNN DBIR), we compared it to the kNN classifier on single
representations, naive Bayes (NB) on unreduced single-represented data, NB
classification combined by the sum rule and kNN classification combined by
the sum rule. The sum rule described in [15] adds up the confidence vectors
delivered by classifiers responsible for single representations. Table 3 illustrates
the experimental results of this comparison. Our method showed the highest
classification accuracy on all data sets and achieved a significant increase of
accuracy in comparison to single-represented classification, e.g. on the first set
the kNN classifier delivered 61.95% accuracy on the first and 44.5% accuracy on
the second representation whereas our approach achieved a significantly higher
accuracy of 67.65%. NB showed in our experiments low accuracy both on single

Multi-represented kNN-Classification for Large Class Sets 521

representations and when combining single NB classifiers employing the sum
rule. Our method outperforms also the combination of kNN classifiers using the
sum rule in all test environments (cf. table 3).

5 Conclusions

In this paper, we proposed a novel approach for classifying multi-represented
data objects into flat class-systems with many classes. Our method aims at a
common application scenario that can be described by the following characteris-
tics: First, objects in modern applications often provide multiple representations
which are derived from multiple views of the same data object. Second, complex
objects might be described by representations that are not necessarily in feature
vector form. Thus, a classifier should cope with a variety of data types. Last but
not least, novel applications often provide large class sets that distinguish huge
amounts of classes. Therefore, classifiers should be able to distinguish additional
classes with a minimum of additional training and classification effort. To cope
with these requirements, our new method for classification of multi-represented
objects employs kNN classification because this approach is naturally able to
handle the last two requirements. An important contribution of our method is a
new way of instance reduction to limit the number of employed training objects
and thus to speed up classification time without significantly loosing accuracy.
To integrate the information of several representations, we present a new deci-
sion rule that employs a weighted combination of confidence values to derive a
class prediction. The idea of the used weighting is to measure the entropy of each
kNN sphere and thus representations are weighed in a different way for different
data objects. In our experimental evaluation, we compared our new instance re-
duction technique called DBIR to one of the best performing instance reduction
techniques so far, ICF. Our results indicate that DBIR is capable to reduce the
training database faster and provides better accuracy than ICF. To demonstrate
the effectiveness of our multi-represented kNN classifier, we compared the clas-
sification accuracy using related methods and employing classification based on
single representations. The results demonstrate that our new method is capa-
ble of outperforming the compared approaches and significantly increases the
accuracy by integrating all representations.

For future work, we plan to examine the use of various index structures
to speed up classification. Furthermore, we plan to apply our method on the
second application area mentioned in the introduction, biometric identification.
This area yields several individual challenges like the combination of different
classification methods. For example, facial features can be checked by kNN clas-
sification. However, in order to recognize a person by its speech pattern other
ways like hidden Markov models are reported to provide better accuracy. Thus,
a flexible model should support different classification algorithms. Another in-
teresting direction is to further speed up classification by employing only some of
the representations. For example, it might be unnecessary to query the sequence
database if the text database provides sufficient confidence.

522 H.-P. Kriegel, A. Pryakhin, and M. Schubert

References

1. Consortium, T.G.O.: ”Gene Ontology: Tool for the Unification of Biology”. Nature
Genetics 25 (2000) 25–29

2. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
information Theory IT-13 (1967) 21–27

3. Ciaccia, P., Patella, M., Zezula, P.: ”M-tree: An Efficient Access Method for Sim-
ilarity Search in Metric Spaces”. In: Proc. of the 23rd Int. Conf. on Very Large
Data Bases, Morgan Kaufmann, San Francisco, CA, USA (1997) 426 – 435

4. Berchtold, S., Böhm, C., Jagadish, H., Kriegel, H.P., Sander, J.: ”Independent
Quantization: An Index Compression Technique for High-Dimensional Spaces”.
In: Int. Conf. on Data Engineering, ICDE 2000. (2000)

5. Brighton, H., Mellish, C.: On the consistency of information filters for lazy learning
algorithms. In: PKDD. (1999) 283–288

6. Gates, G.: The reduced nearest neighbour rule. IEEE Transactions on Information
Theory 18 (1972) 431–433

7. Ritter, G., Woodruff, H., Lowry, S.R. Isenhour, T.: An algorithm for the selective
nearest neighbor decision rule. IEEE Transactions on Information Theory 21
(1975) 665–669

8. Wilson, H., Martinez, T.: Instance pruning techniques. In: Proc. 14th Int. Conf.
on Machine Learning, Morgan Kaufmann Publishers (1997) 403–411

9. Aha, D.: Tolerating noisy, irrelevant and novel attributes in in instance-based
learning algorithms. Int. Jurnal of Man-Machine Studies 36 (1992) 267–287

10. Wilson, H., Martinez, T.: Machine Learning, 38-3. Reduction Techniques for
Instance-Based Learning Algorithms. Kluwer Academic Publishers, Boston. (2000)

11. Brighton, H., Mellish, C.: Data Mining and Knowledge Discavery, 6. Advances
in Instance Selection for Instance-Based Learning Algorithms. Kluwer Academic
Publishers. (2002)

12. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: ”Density-Based Clustering in Spatial
Databases: The Algorithm GDBSCAN and its Applications”. In: Data Mining and
Knowledge Discovery, Kluwer Academic Publishers (1998) 169–194

13. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: ”A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. In: Proc. KDD’96,
Portland, OR, AAAI Press (1996) 291–316

14. Kittler, J., Hatef, M., Duin, R., Matas, J.: ”On Combining Classifiers”. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 226–239

15. Duin, R.: ”The Combining Classifier: To Train Or Not To Train?”. In: Proc. 16th
Int. Conf. on Pattern Recognition, Quebec City, Canada). (2002) 765–770

16. Kuncheva, L., Bezdek, J., Duin, R.: ”Decision Templates for Multiple Classifier
Fusion: an Experimental Comparison”. Pattern Recognition 34 (2001) 299–314

17. Kriegel, H.P., Kröger, P., Pryakhin, A., Schubert, M.: Using support vector ma-
chines for classifying large sets of multi-represented objects. In: Proc. SIAM Int.
Conf. on Data Mining, Lake Buena Vista, Florida, USA. (2004) 102–114

18. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger,
E., Martin, M., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider,
M.: ”The SWISS-PROT Protein Knowledgebase and its Supplement TrEMBL in
2003”. Nucleic Acid Research 31 (2003) 365–370

19. Deshpande, M., Karypis, G.: ”Evaluation of Techniques for Classifying Biological
Sequences”. In: Proc. of PAKDD’02. (2002) 417–431

20. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley (1989)

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 523 – 535, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Enhancing SNNB with Local Accuracy Estimation
and Ensemble Techniques

Zhipeng Xie1, Qing Zhang1, Wynne Hsu2, and Mong Li Lee2

1 Department of Computing and Information Technology,
Fudan University, Shanghai, P. R. China, 200433

xiezp@fudan.edu.cn
2 School of Computing, National University of Singapore,

3 Science Drive 2, Singapore, 119260
{whsu, leeml}@comp.nus.edu.sg

Abstract. Naïve Bayes, the simplest Bayesian classifier, has shown excellent
performance given its unrealistic independence assumption. This paper studies
the selective neighborhood-based naïve Bayes (SNNB) for lazy classification,
and develops three variant algorithms, SNNB-G, SNNB-L, and SNNB-LV, all
with linear computational complexity. The SNNB algorithms use local learning
strategy for alleviating the independence assumption. The underlying idea is,
for a test example, first to construct multiple classifiers on its multiple
neighborhoods with different radius, and then to select out the classifier with
the highest estimated accuracy to make decision. Empirical results show that
both SNNB-L and SNNB-LV generate more accurate classifiers than naïve
Bayes and several other state-of-the-art classification algorithms including
C4.5, Naïve Bayes Tree, and Lazy Bayesian Rule. The SNNB-L and SNNB-LV
algorithms are also computationally more efficient than the Lazy Bayesian Rule
algorithm, especially on the domains with high dimensionality.

1 Introduction

Naïve Bayes [6] is a probability-based classification method, which assumes that at-
tributes are conditionally mutually independent given the class label. Despite this
clearly unrealistic assumption, naïve Bayes has surprisingly good performance in a
wide variety of domains. In addition, naïve Bayes is robust to noise and irrelevant at-
tributes and the learnt theories are easy for domain experts to understand. Due to all
the advantages, naïve Bayes is widely employed for classification.

No doubt naïve Bayes succeeds in some domains with violations of the attribute
independence assumption, but it fails in many. Recently, a lot of researchers have at-
tempted to alleviate this unrealistic assumption. Their research work can be broadly
divided into three main categories.

The first category aims to improve naïve Bayes by transforming the feature space
through the techniques such as feature subset selection and constructive feature gen-
eration. Kononenko’s semi-naïve Bayesian classifier [11] performed exhaustive
search by iteratively joining pairs of attribute values to generate constructive features
based on statistical tests for independence. The constructive Bayesian classifier [13]

524 Z. Xie et al.

employed a wrapper model to find the best Cartesian product attributes from existing
nominal attributes, and possible deletion of existing attributes. Langley and Sage [12]
used the Forward Sequential Selection (FSS) method to select a subset of the avail-
able attributes, with which to build a naïve Bayes classifier. It is shown that such at-
tribute selection can improve upon the performance of the naïve Bayes classifier
when attributes are inter-dependent, especially when some attributes are redundant.

The second category of research extends naïve Bayes by relaxing the attribute in-
dependence assumption explicitly. This covers many classification methods based on
Bayesian network. Friedman and Goldszmidt [9] explored the Tree Augmented Naïve
Bayes (TAN) model for classifier learning, which belongs to a restricted sub-class of
Bayesian network by inducing a tree-structure network.

The third category employs the principle of local learning to naïve Bayes. It does
not intend to break this assumption, but expect it to (approximately) come true in lo-
cal areas (or subspaces). It is well-established that large, complex databases are not
always amenable to a unique global approach to generalization. This is because dif-
ferent models may exist specific to different data points. A typical example in this
category is the naïve Bayes tree, NBTREE [10], which used decision tree techniques
to partition the whole instance space (root node) into several subspaces (leaf nodes),
and then trains a naïve Bayes classifier for each leaf node. Zheng Zijian, et al [18]
presented the Lazy Bayesian Rule (LBR) classification method to construct a Bayesian
rule for each specific target example in order to solve the small disjunct problem of
NBTREE. Another more recent work is the algorithm LWL [8], which is a locally
weighted version of naïve Bayes.

Besides the work described above, a lot of other research still exists. For example,
Zheng [17] presented a method to generate naïve Bayes Classifier Committees by
building individual naïve Bayes classifiers using different attribute subsets in sequen-
tial trials. Majority vote of the committees was applied in the classification stage.

On the other hand, we can divide classification methods into two types: eager
learning and lazy learning, depending on when the major computation occurs [1].
Lazy learning is distinguished by spending little or no effort during training and de-
laying computation until classification time, while eager learning replaces the training
inputs with an abstraction expression, such as rule set, decision tree, or neural net-
work, and uses it to process queries. The majority of the methods to extend naïve
Bayes are eager, except for LBR and LWL. We also observe that most existing tech-
niques for improving the performance of the naïve Bayesian classifier require com-
plex induction processes.

LBR can construct highly accurate classifier, competitive to other methods, such as
TAN and NBTREE. However, the computational complexity is quadratic to the num-
ber of attributes. Similarly to LBR, Xie et al [16] designed a new lazy learning strat-
egy, (SNNB) belonging to the third category above, motivated by Nearest Neighbor
algorithm. The underpinning is to construct multiple naïve Bayes classifiers on multi-
ple neighborhoods by using different radius values for a target test example, and then
to select the most accurate one to classify the test example. In the framework of
SNNB, three variants of algorithm will be developed here. The first called the Selec-
tive Neighborhood naïve Bayes with Global Accuracy Estimation (SNNB-G). The
second is an enhanced version, SNNB with local accuracy estimation (SNNB-L). And
the third one, SNNB-LV, improves SNNB-L with majority vote strategy. All the

 Enhancing SNNB with Local Accuracy Estimation and Ensemble Techniques 525

algorithms have the linear complexity to the size of training set for lazily classifying a
test example. Experimental results show that all the three algorithms have achieved
rather satisfactory accuracy.

The rest of the paper is organized as follows. Section 2 briefly reviews the frame-
work of selective neighborhood-based naïve bayes and then presents two accuracy es-
timation techniques to materialize the framework of SNNB. In section 3, we describe
a specifically designed ensemble technique for SNNB. In section 4, we evaluate the
algorithms on datasets from the UCI Repository for accuracy and computational com-
plexity, and follow it by conclusions and future work in Section 5.

2 Selective Neighborhood-Based Naïve Bayes

Consider a domain where instances are represented as instantiations of a vector A={a1,
a2, …, am} of m nominal variables. Here, each instance x takes a value ai(x) from do-
main(ai) on each ai. Further, an example (or instance) x is also described by a class la-
bel c(x) from domain(c). Let D={(xi, c(xi)) | 1≤i≤n} denote the training dataset of size
n. The task of classification is to construct a model (or classifier) from the training set
D, which is a function that assigns a class label to a new unlabelled example.

The classifier constructed from the training set D using the naïve Bayes method is
denoted by NB(D). This classifier, also represented by NB(x, D), assigns a value from
domain(c) to an example x.

To alleviate the independence assumption and expect it to come true in a local area
(or neighborhood), the Selective Neighborhood based naïve Bayes (SNNB) was first
developed in [16]. The underlying idea is, for a test example, first to construct multi-
ple classifiers on its multiple neighborhoods with different radius, and then to select
out the classifier with the highest estimated accuracy to make decision.

For any two examples x and y, the distance between them is normally defined as
the number of the attributes on which x and y take on the different values, that is,

distance(x, y)=|{ai∈A|ai(x) ≠ ai(y)}|. (1)

For an input test example x, its k-neighborhood consists of all the examples in
training set D with the distance to x not larger than k, denoted as

NHk(x)={xi∈D|distance(xi, x) ≤ k} (2)

We call the naïve Bayes classifier k-NBx=NB(NHk(x)), trained on NHk(x), as the k-
th local naïve Bayes classifier of x. Clearly, for any input example x, m-NBx is trained
on the whole training set NHm(x)=D, so it is also called the global naïve Bayes
classifier.

Due to the fact that naïve Bayes is quite stable, and insensitive to the small change
in the training set, not all the (m+1) local naïve Bayes classifiers are necessary and in-
formative enough to construct, for the consideration of efficiency. In other words, we
are only interested in a restricted subset of the (m+1) possible neighborhoods, with
each neighborhood of interest called a candidate neighborhood. For Simplicity, we
use the subscripts in descending order, S={S[1]=m, S[2], …, S[p]} with S[i] >S[i+1]
for 1≤i<p, to denote the subset of neighborhoods {NHS[1], NHS[2], …, NHS[p]}. We
speak of the subset as restricted because it must satisfy two constraints that follow. On

526 Z. Xie et al.

the one hand, due to the stability of naïve Bayes, S[i+1] is the maximal number satis-
fying |NHS[i+1]| ≤ θ × |NHS[i]|, where θ is the support difference threshold (0.5 as the
default value) controlling the difference degree of two adjacent candidate neighbor-
hood. This is the support difference constraint. On the other hand, for a small value of
k, the k-neighborhood of x may consist of too few examples, making the correspond-
ing k-th local naïve Bayes lack of generalization ability. Therefore, we request that the
neighborhood NHS[p] have enough training examples, that is, |NHS[p] |≥ ϕ. Here, ϕ is
the support threshold (30 as the default value), and this kind of constraint is called the
support constraint.

Input: Training set D and target example x;
Output: Predicted classes label of x;
Step 1. Calculate all the candidate neighborhoods
for the test example x.
Step 2. For each candidate neighborhood, learn the
corresponding local naïve Bayes classifier and cal-
culate its estimated accuracy.
Step 3. Choose the local naïve Bayes classifier
with the highest estimated accuracy to make the
decision.

Fig. 1. The framework of selective neighborhood-based naïve Bayes

The skeleton of selective neighborhood-based naïve Bayes is shown in figure 1. To
instantiate the skeleton, we will use two different accuracy estimation techniques,
namely, global accuracy estimation and local accuracy estimation, in this paper. Two
variant algorithms, SNNB-G and SNNB-L, are generated as a result.

2.1 Global Accuracy Estimation

Given a data set D1 and the classifier NB(D1), the global accuracy is the accuracy es-
timated with the leave-out-one technique, that is,

ACCG(NB(D1))=|{x∈D1|NB(x, D1−{x})=c(x)}|/|D1| (3)

To check whether NB(x, D1−{x})=c(x) holds, we must first leave the example x

out of D1 to get NB(D1−{x}) in time O(m), then use NB(D1−{x}) to predict the class

label of x in time O(m), and finally put x back to restore NB(D1) in time O(m).
Thereby, the complexity of global accuracy estimation is O(|D1|×m).

It is evident but seldom stated that a classifier performs quite differently in differ-
ent regions (or subspaces) of the instance space. The global accuracy estimation takes
it for granted that a classifier performs equally well everywhere. This measure ex-
presses the overall “goodness” of a classifier. But for a specific point in the instance
space, what we need is a domain expert, namely, a classifier doing best in the local
region of the instance. To further justify the local accuracy estimation, let us consider
the Nearest Neighbor algorithm (NN) in traditional machine learning. NN algorithm
has been widely adopted to make classification with the philosophy that if two exam-

 Enhancing SNNB with Local Accuracy Estimation and Ensemble Techniques 527

ples look similar, they are probably of the same class label. Analogously in this paper,
we extend this philosophy to that if a classifier can correctly make the decision for the
examples that are most similar to the example x, then we think it can also make the
correct decision for x. Such an idea leads to the local accuracy estimation employed in
the algorithm SNNB-L as follows.

2.2 Local Accuracy Estimation and Point Accuracy Estimation

Similarly, for a subset D2⊆D1, the local accuracy of NB(D1) on D2 is

ACCL(NB(D1), D2)=|{x∈D2|NB(x, D1−{x})=c(x)}|/|D2| (4)

Point accuracy estimation is defined based on local accuracy estimation. For a test
example x, let S={S[1]=m, S[2], …, S[p]} be the set of candidate neighborhoods. We
define the point accuracy of S[i]-th local naïve Bayes on x as the local accuracy of
S[i]-th local naïve Bayes on the S[p]-th neighborhood of x, that is

ACCP(NB(NHS[i](x)), x)=ACCL(NB(NHS[i](x)), NHS[p](x))

 =|{y∈ NHS[p](x)|NB(y, NHS[i](x)−{y})=c(y)}|/| NHS[p](x)|
(5)

Evidently, the complexity of point accuracy estimation is O(|NHS[p](x)|×m)
=O(ϕ×m), where ϕ is the support threshold.

2.3 Complexity Analysis

We now begin to analyze the complexity of the algorithms. Let m be the number of
attributes and n be the number of objects. The SNNB framework consists of three
main steps, as listed in figure 1.

The first step calculates the candidate neighborhoods, S={S[1]=m, S[2], …, S[p]}.
Most computation occurs in computing the distance between the input test example x
and each training example y in training set D, and storing all the training examples
according to their distances to x. So the complexity is O(m×n).

After step 1, let us assume that all the examples of distance dist to x have been
stored in OWD[dist]. Therefore, we have

NHS[i](x)=NHS[i+1](x) ∪
][

1]1[

][
iS

iSj

jOWD
++=

.

The work in step 2 consists of two parts. The first part is to learn a local naïve
Bayes classifier for each candidate neighborhood. The complexity is O(m×n), because
we can construct the S[i]-th local classifier from S[i+1]-th local classifier by incre-

mentally adding the examples in
][

1]1[

][
iS

iSj

jOWD
++=

. The second part is to estimate the

accuracy of each local classifier. When global accuracy estimation is used, the com-
putation involved is

θ
θ

−
××≤××≤×

−

== 1

1
)|)((|

1

01
][nmnmmxNH

p

i

i
p

i
iS .

528 Z. Xie et al.

With point accuracy estimation applied, the involved computation is

ϕ×m×p≤ϕ×m×log2n. As a result, the complexity of step 2 is O(
θ−

××
1

1
nm) for

SNNB-G, while O(m×ϕ×log2n+m×n)) for SNNB-L.
The last step uses the local classifier with the highest estimated accuracy to make

the decision for x. It can be done in O(m).
From the analysis above, conclusion can be drawn that:
Because θ and ϕ are preset and remain constant during running, both SNNB-G and

SNNB-L have the same computational complexity, O(m×n).

3 Improving SNNB-L with Ensemble

A large body of research work revealed that ensemble techniques are very effective
for improving accuracy. However, the results in [4] and [2] both suggested that en-
semble techniques that involve any significant degree of resampling or replication of
training examples (for example, Bagging or Boosting) will not work with the nearest
neighbor classifier or naïve Bayes classifier. SNNB-L, as a hybrid algorithm of naïve
Bayes and nearest neighbor, is likely to bear this characteristic. Our experiments in
section 4 will show that Bagging technique does not work for SNNB-L too. This sec-
tion is to present an effective ensemble method for improving SNNB, which leads to a
new algorithm SNNB-LV when applied to SNNB-L. It is based on manipulating the at-
tribute of attribute set.

 (1) Firstly, randomly generate s different attribute
subsets, {B1, B2, …, Bs}. Each subset is generated with
the following method: Randomly select one feature ai in
A and mark it. Repeat the selection |A| times and set B
as the set of all the marked attributes in A.
(2) For each Bi, 0≤i≤s,
 (2.1) Calculating all the Bi-candidate neighborhoods
 (2.2) For each candidate neighborhood, learning the
corresponding local naïve Bayes classifier with the
whole attribute A, and calculating its estimated accu-
racy.
 (2.3) Voting on the class label predicted by the
local classifier with the highest estimated point accu-
racy. This estimated accuracy is the confidence of the
vote.
(3) Return the class label with the maximum votes. The
vote with the highest confidence is used to break the
tie.

Fig. 2. The algorithm SNNB-LV

In previous sections, the definitions of distance and neighborhood are both defined
with the whole attribute set A. Here, for an attribute subset B⊆A, we define the B-

 Enhancing SNNB with Local Accuracy Estimation and Ensemble Techniques 529

distance function: distanceB(x, y)=|{b∈B: b(x)≠b(y)}|, and (B, k)-neighborhood of x:
NHB, k(x)={xi∈T|distanceB(xi, x)≤k}. Accordingly, we can also define B-candidate
neighborhoods with the support difference threshold and support threshold.

With s as the size of ensemble, the algorithm SNNB-LV goes as follows.

4 Experimental Evaluations

With the constraint that each dataset should contain at least 300 examples, we se-
lected 22 datasets from UCI machine learning repository [3] to evaluate the algo-
rithms in this paper. Table 1 lists all the datasets used and the related characteristics.
Three-fold cross validation was executed on each dataset to obtain the results. For
comparison of these algorithms, we made sure that the same cross-validation folds
were used for all the different learning algorithms involved in the comparison. All the
algorithms were coded in Visual C++ 6.0 with the help of standard template library.

Table 1. Datasets Information

DATA SET #EXMP #ATT #ATT2 #CLS DATA SET #EXMP #ATT #ATT2 #CLS

ADULT 48842 14 13 2 PIMA 768 8 5.33 2
ANNEAL 898 38 37.33 5 SATIMAGE 6435 36 36 6
AUSTRALIAN 690 14 13.33 2 SEGMENT 2310 19 17 7
CHESS 3196 36 36 2 SHUTTLE-SMALL 5800 9 7 6
GERMAN 1000 20 14.67 2 SICK 2800 29 26 2
HYPO 3163 25 22.67 2 SOLAR 323 12 9 6
LED7 3200 7 7 10 SOYBEAN-LARGE 683 35 35 19
LETTER 20000 16 15 26 TIC-TAC-TOE 958 9 9 2
MUSHROOM 8124 22 22 2 VEHICLE 846 18 18 4
NURSERY 12960 8 8 5 VOTE 435 16 16 2
PENDIGITS 10992 16 16 10 WAVEFORM 5000 21 19 3

#EXMP: the total number of examples;
#ATT: The number of conditional attributes before preprocessing;
#ATT2: The averaged number of conditional attributes after preprocessing over the three

folds;
#CLS: the number of class labels.

The algorithms evaluated here include:

 SNNB-G, SNNB-L, SNNB-LV: The algorithms described in this paper.

 SNNBLBAG: The bagging version of SNNB-L.

 C4.5: the well-known decision tree algorithm [14], which has been studied
most widely.

 NB: the naïve Bayes algorithm used in this paper, which serves as baseline.

 NBTREE: our implementation of the naïve Bayes Tree algorithm in [10].

530 Z. Xie et al.

 LBR: the Lazy Bayesian Rule algorithm. We ported the implementation
version in Weka suite [15] from Java language to C++, in order to make
the running time comparison more meaningful.

Since the current implementation of our algorithms can only deal with nominal at-
tributes, the entropy-based discretization algorithm [7] were employed to discretize
the numeric attributes in the training set for a given fold, as pre-processing.

4.1 Error Rate Comparison

The detailed error rates on individual datasets are presented in Figure 3. Table 2 lists
the mean error rates across the experimental domains.

Table 2. Mean error rates across all the experimental domains

NB C4.5 NBTREE LBR SNNB-G SNNB-L SNNBLBAG SNNB-LV
15.25% 13.66% 11.81% 12.04% 12.59% 11.72% 11.76% 11.01%

The following facts have been observed during the experiments, which follow:

(1) Of the seven learning algorithms, SNNB-LV achieves the lowest average error
rate across the 22 domains, and SNNB-L gets the second. The ensemble tech-
nique employed has successfully improved the mean error rate of SNNB-L
from to 11.72% to 11.01%. At the same time, SNNB-L with the local accuracy
estimation performs much better than SNNB-G with the global accuracy esti-
mation.

(2) Compared with NB for error rate, SNNB-L wins in 18 out of the 22 domains,
and loses only in 3; while SNNB-LV wins also in 18, and loses in 4. Compared
with LBR, SNNB-LV gets 16 wins and 4 loses; while SNNB-L gets 14 wins and
6 loses. Compared with NBTREE, SNNB-L wins in 13 and loses in 9; while
SNNB-LV wins in 14 and loses in 7.

(3) Bagging does not work for SNNB-L, while SNNB-LV works well. there is al-
most no difference in error rate between the SNNB-L and its bagged version
SNNBLBAG. On the other hand, SNNB-LV has successfully improve the aver-
aged error rate of SNNB-L from 11.72% to 11.01%

(4) LBR is less accurate than NBTREE, which is contrary to the results in [18].
This is possibly because that Zheng & Webb [18] did the experiments with 10-
fold cross validation, while we do with 3-fold. We conjecture that LBR’s
accuracy improves faster than NBTREE, with the increasing size of training
set. In order to support this conjecture, we apply 10-fold cross validation on
TIC-TAC-TOE domain. The Accuracy of LBR is 87.16% compared with 81.11%
for 3-fold cross validation; while the accuracy of NBTREE is 80.58%, even a
little lower than 81.52% for 3-fold cross validation. Further justification is
beyond the scope of this paper, and we will do deeper research in the future.

 Enhancing SNNB with Local Accuracy Estimation and Ensemble Techniques 531

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V
0.0%

5.0%

10.0%

15.0%

20.0%

Adult

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0%

2%

4%

6%

8%

10%

12%

Anneal

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%
16.0%

Australian

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0%

2%

4%

6%

8%

10%

12%

14%

Chess

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

German

N
B

C
4.

5 N
B

T
re

e
L

B
R

S
N

N
B

-G
S

N
N

B
-L

S
N

N
B

-L
V

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%
1.2%
1.4%
1.6%

Hypo

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Led7

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0%

5%

10%

15%

20%

25%

30%

Letter

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

Mushroom

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0%

2%

4%

6%

8%

10%

12%

Nursery

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

Pendigits

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Pima

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%

5.0%

10.0%

15.0%

20.0%

Satimage

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0%
1%
2%
3%
4%
5%
6%
7%
8%

Segment

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.00%
0.05%
0.10%
0.15%
0.20%
0.25%
0.30%
0.35%
0.40%

Shuttle-small

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V
0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

Sick

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Solar

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0%

2%

4%

6%

8%

10%

Soybean-Large

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Tic-tac-toe

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0%

10%

20%

30%

40%

50%

Vehicle

N
B

C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Vote

N
B C
4.

5
N

B
T

re
e

L
B

R
S

N
N

B
-G

S
N

N
B

-L
S

N
N

B
-L

V

0%

5%

10%

15%

20%

25%

30%

Waveform

Fig. 3. Error rate comparison on individual datasets

532 Z. Xie et al.

4.2 Computational Costs

In section 2 and 3, we have analyzed that the three algorithms of this paper all have
linear computational complexity to both the number of training examples and the
number of attributes. However, this analysis does not give any indication of actual
running times on real datasets. Therefore in table 3 we list the actual running times on
the experimental domains. For lazy algorithm, the running time is the classification
time per example; while for eager algorithm, the running time is the training time for
one trial. All the experiments were done on a laptop with Intel P4 1.2G processor,
256Mb Memory and WinXP platform.

From table 3, the three worst cases for SNNB-L (with respect to execution time of
classifying one example) are 0.035 seconds in LETTER, 0.030 seconds in ADULT, and
0.020 seconds in SATIMAGE. These three domains have 20000, 48842 and 6435 ex-
amples; 16, 14 and 36 attributes; 26, 2 and 6 classes; respectively. Evident from table
3, all the 3 algorithms in this paper run much faster than LBR whose complexity is
quadratic to the number of attributes.

Table 3. Computational costs (in CPU seconds)

CLASSIFICATION TIME FOR LAZY
ALGORITHM

TRAINING TIME FOR EAGER
ALGORITHM

SNNB-G SNNB-L SNNB-LV LBR NB C4.5 NBTREE

ADULT 0.1190 0.0296 0.2677 1.7325 0.020 3.148 7.344
ANNEAL 0.0083 0.0055 0.0519 0.3413 0.003 0.047 1.816
AUSTRALIAN 0.0017 0.0013 0.0131 0.0224 0.00 0.013 0.060
CHESS 0.0227 0.0071 0.0676 2.0130 0.003 0.097 5.368
GERMAN 0.0026 0.0017 0.0170 0.0315 0.003 0.03 0.074
HYPO 0.0106 0.0063 0.0680 0.3410 0.007 0.043 0.854
LED7 0.0113 0.0058 0.0720 0.0951 0.000 0.02 0.18
LETTER 0.4372 0.0350 0.3581 3.6175 0.013 1.993 55.957
MUSHROOM 0.0364 0.0087 0.0847 0.6984 0.003 0.100 2.781
NURSERY 0.0491 0.0093 0.0727 0.1866 0.00 0.117 1.923
PENDIGITS 0.1059 0.0147 0.1450 0.6664 0.007 0.514 10.699
PIMA 0.0007 0.0007 0.0063 0.0047 0.00 0.00 0.017
SATIMAGE 0.1201 0.0203 0.1895 1.2235 0.007 0.714 25.063
SEGMENT 0.0196 0.0066 0.0646 0.1557 0.007 0.047 1.599
SHUTTLE-SMALL 0.0164 0.0048 0.0522 0.0681 0.003 0.017 0.658
SICK 0.0116 0.0052 0.0569 0.4531 0.00 0.057 1.578
SOLAR 0.0011 0.0015 0.0094 0.0119 0.00 0.01 0.043
SOYBEAN-LARGE 0.0307 0.0197 0.1956 0.7961 0.003 0.08 4.363
TIC-TAC-TOE 0.0018 0.0011 0.0108 0.0115 0.00 0.01 0.07
VEHICLE 0.0052 0.0031 0.0304 0.0977 0.00 0.037 0.474
VOTE 0.0015 0.0014 0.0132 0.0275 0.00 0.003 0.113
WAVEFORM 0.0253 0.0063 0.0597 0.2299 0.0033 0.217 1.799

 Enhancing SNNB with Local Accuracy Estimation and Ensemble Techniques 533

SNNB-L runs much faster than LBR. The best case is in the CHESS domain with 36
attributes, where SNNB-L is about 284 times faster than LBR. The worst case is in the
PIMA domain with 5.33 attributes after discretization, with SNNB-L around 6.8 times
faster than LBR. The number of attributes is an important factor in influencing the
running time ratio, due to their computational complexity. Another factor is the aver-
age size of the antecedents of Bayesian rules for LBR, for the computational complex-
ity of LBR is also linear to the average size.

Table 4. How many examples can be lazily classified with SNNB-L during the time of training a
NBTREE classifier

ADULT 248.2 PIMA 24.6
ANNEAL 332.4 SATIMAGE 1233.6
AUSTRALIAN 45.4 SEGMENT 242.2
CHESS 758.3 SHUTTLE-SMALL 137.3
GERMAN 42.7 SICK 305.8
HYPO 136.2 SOLAR 28.9
LED7 31.1 SOYBEAN-LARGE 221.1
LETTER 1598.5 TIC-TAC-TOE 65.0
MUSHROOM 319.0 VEHICLE 150.5
NURSERY 207.0 VOTE 81.9
PENDIGITS 729.9 WAVEFORM 286.5

In addition, we also compared the SNNB-L algorithm with NBTREE by measuring
how many examples can be lazily classified with SNNB-L during the time of training
an NBTREE classifier, namely, the ratio between the training time of NBTREE and the
classification time of SNNB-L. Such information is listed in table 4. SNNB-L is more
advisable for the domain with higher ratio. And we also find that the domains with a
large number of attributes often have big ratio values, such as the CHESS and
SATIMAGE domains. Such phenomenon is because the computational complexity of
NBTREE is quadratic to the number of attributes.

Let us consider the problem of choosing between a lazy algorithm and a non-lazy
one without regard to accuracy. In practical application domain, new data are gener-
ated from time to time, and training data needs to be updated regularly. The updating
frequency is normally determined by changing speed of pattern buried in the data. If
only a few (or precisely, no more than the ratio in table 4) classifications are
performed between two updates, then the lazy algorithm may have an advantage.

5 Stability in Computational Costs

The involved computation in SNNB-L has been analyzed detailedly in section 2. Here,
one more factor, the number of classes, is introduced to help model the computational
cost of SNNB-L. Let q be the number of classes and t be the time used to classify a test
example. The computational complexity of point accuracy estimation is also linear to
the number of classes. Since the number of candidate neighborhoods is at most

534 Z. Xie et al.

log2(n), we have the formula:
n

nq
kk

nm

t 2
21

log×
×+=

×
, where k1 and k2 are two co-

efficients fixed for a given computer.
Next in the figure 4, we draw a graph to describe the relationship of running time

of SNNB-L with the characteristics of the experimented dataset. Each dot in the graph
represents a dataset. The y-
coordinate represents the

value of
nm

t

×
 in seconds,

while the x-coordinate repre-
sents the value of

n

n
q 2log

× . Evidently, this

graph manifests that the em-
pirical running time of
SNNB-L fits the formula very
well.

6 Conclusions and Future Work

We introduced SNNB, a framework for improving naïve Bayes. In SNNB, multiple lo-
cal classifiers are trained on multiple neighborhoods with different radius with respect
to the target test example, and the local classifier with the highest estimated accuracy
is then used to make decision.

Two variant algorithms SNNB-G and SNNB-L, in the framework of SNNB, are in-
stantiated with two accuracy estimation techniques. We also investigated an ensemble
technique, and got the algorithm SNNB-LV by applying it to SNNB-L. Those algorithms
incorporate some desirable properties of the nearest neighbor classifier and naïve
Bayes classifier. Empirical results show that the SNNB algorithms are effective in im-
proving the accuracy and efficient in computational cost.

Future work includes:
(1) New metrics for accuracy estimation. One possible way, motivated by [8], is

locally weighted accuracy estimation.
(2) Internal vote strategy. It seems promising to integrate statistical significance

test [5] into the comparison of different local classifiers, and then to use the vote
strategy of multiple local classifiers to make decision.

(3) Application to other classification algorithms. Beside the naïve Bayes algo-
rithm in this paper, how about applying the idea of SNNB to other classification meth-
ods, such as decision tree and neural network, and will it still work well?

Acknowledgments. Thanks are given to Professor Geoffrey Webb in Monash Uni-
versity, who kindly provided the LBR software to the author. This work was funded in
part by the Science & Technology Commission of Shanghai Municipality under grant
number 03ZR14014, and by the project sponsored by SRF for ROCS, SEM.

Fig. 4. Relationship between the running time of SNNB-L

 Enhancing SNNB with Local Accuracy Estimation and Ensemble Techniques 535

References

[1] Aha, D. W.: Lazy learning. Kluwer Academic Publishers (1997)
[2] Bauer, E., & Kohavi, R.: An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants. Machine Learning, 36 (1999) 105-142.
[3] Blake, C. L., & Merz, C. J.: UCI repository of machine learning databases. University of

California, Irvine, CA (1998) http://www.ics.uci.edu/~mlearn/MLRepository.html
[4] Breiman, L.: Bagging predictors. Machine Learning, 24 (1996) 123-140.
[5] Dietterich, T. G.: Approximate statistical tests for comparing supervised classification

learning algorithms. Neural Computation, 10 (1998) 1895-1924.
[6] Duda, R. O., & Hart, P. E.: Pattern classification and scene analysis. New York: John

Wiley (1973)
[7] Fayyad, U. M., & Irani, K. B.: Multi-interval discretization of continuous-valued attrib-

utes for classification learning. Proceedings of the Thirteenth International Joint Confer-
ence on Artificial Intelligence, Morgan Kaufmann (1993) 1022-1027

[8] Frank, E., Hall, M., & Pfahringer, B.: Locally weighted naive Bayes. Proceedings of the
19th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann (2003) 249-
256

[9] Friedman, N., & Goldszmidt, M.: Building classifiers using Bayesian networks. Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence, AAAI Press/ MIT
Press (1996) 1277-1284

[10] Kohavi, R.: Scaling up the accuracy of naïve-Bayes classifiers: a decision-tree hybrid.
Proceedings of the Second International Conference on Knowledge Discovery & Data
Mining, Cambridge/Menlo Park: AAAI Press/MIT press (1996) 202-207

[11] Kononenko, I.: Semi-naïve Bayesian classifier. Proceedings of the Sixth European Work-
ing Session on Learning, Berlin: Springer-Verlag (1991) 206-219

[12] Langley, P., & Sage, S.: Induction of selective Bayesian classifiers. Proceedings of the
Tenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann (1994)
339-406

[13] Pazzani, M.: Constructive induction of Cartesian product attributes. Proceedings of the
Conference ISIS96: Information, Statistics and Induction in Science, Singapore: World
Scientific (1996) 66-77

[14] Quinlan, J. R.: C4.5: Programs for machine learning. Morgan Kaufmann (1993)
[15] Witten, I. H., & Frank, E.: Data Mining: Practical machine learning tools with Java im-

plementations. San Francisco: Morgan Kaufmann (2000)
[16] Xie, Z., Hsu, W., Liu, Z., & Lee, M.-L.: SNNB: a selective neighborhood-based naïve

Bayes for lazy classification. Lecture Notes in Computer Science 2336, Springer-Verlag
(2002) 104-114

[17] Zheng, Z.: Naïve Bayesian classifier committees. Proceedings of the Tenth European
Conference on Machine Learning, Berlin: Springer-Verlag (1998) 196-207

[18] Zheng, Z., & Webb, G. I.: Lazy learning of Bayesian rules. Machine Learning, 41 (2000)
53-84

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 536 – 547, 2005.
© Springer-Verlag Berlin Heidelberg 2005

MMPClust: A Skew Prevention Algorithm for
Model-Based Document Clustering*

Xiaoguang Li, Ge Yu, and Daling Wang

School of Information Science and Engineering, Northeastern University,
Shenyang 110004, P.R.China

yuge@mail.neu.edu.cn

Abstract. To support very high dimensionality, model-based clustering is an
intuitive choice for document clustering. However, the current model-based
algorithms are prone to generating the skewed clusters, which influence the
quality of clustering seriously. In this paper, the reasons of skew are examined
and determined as the inappropriate initial model, the unfitness of cluster model
and the interaction between the decentralization of estimation samples and the
over-generalized cluster model. This paper proposes a skew prevention
document-clustering algorithm (MMPClust), which has two features: (1) a
content-based cluster model is used to model the cluster better; (2) at the
re-estimation step, a part of documents most relevant to its corresponding class
are selected automatically for each cluster as the estimation samples to break this
interaction. MMPClust has less restrictions and more applicability in document
clustering than the previous methods.

1 Introduction

In recent years, high-quality document clustering plays more and more important role
in the applications such as information retrieval, Web data mining, and Web data
management. In general, document clustering can be divided into the similarity-based
approach and the model-based approach. Due to the very high dimensionality and the
sparsity of document features, the former met with a great challenge. Strehl [1] has
proved that the traditional similarity functions are not adaptable to high-dimensional
space. Moreover, a cluster in the similarity-based approach is represented by a medoid
or mean commonly, which is almost meaningless for document clustering. In contrast,
probabilistic model-based clustering is a natural choice for very high-dimensional data
and has shown the promising results [2~15]. In model-based clustering, a cluster is
described by a representative probabilistic model, which provides a probabilistic
interpretation. Typically, model-based clustering can be divided into the partitioning
approach and the hierarchical approach. In this paper, we focus on the latter.

In practice, model-based clustering, as well as similarity-based clustering, quite
often generates some skewed clusters that are empty or extremely small, especially

* Supported by the National Natural Science Foundation of China under Grant No.60173051 and

the Teaching and Research Award Program for Outstanding Young Teachers in Higher
Education Institution of the Ministry of Education, China

 MMPClust: A Skew Prevention Algorithm for Model-Based Document Clustering 537

when data is in high dimensional (>100) space [15]. The skewed clusters influence the
quality of clustering seriously. Even though feature selection technique applied, a
document has approximately ten thousands dimensions so that it is prone to generating
the skewed clusters for document clustering. To prevent the skewed clusters, the
balanced clustering methods [2, 14, 15, 16, 17] were proposed in the past. Generally,
their idea is to set the proportion of each cluster to the whole data as the algorithm’s
constraint, and they are applied mostly into the situations where the clusters have the
comparable size. Actually it is difficult to set this constraint in most cases, and the
previous works do not study further why the skewed clusters generate, and just consider
it as a constraint-based optimization problem.

Our basic idea is to design a clustering algorithm that can group the documents
into the clusters of inherent size without any balancing constraint. With the analysis, we
consider that there are three factors to the occurrence of skewed clusters: the
inappropriate initial model, the unfitness of cluster model and the interaction between
the decentralization of estimation samples and the over-generalized cluster model. Our
solution focuses on the last two factors and propose a content-based partial
re-estimating document-clustering algorithm (MMPClust), which has two features:
firstly, to solve the unfitness problem, MMPClust applies a two-component mixture
model (topic-based model and general model), which can model document content
more accurately and shows a goodness of fit with the experiments. Secondly, to solve
the over-generation problem, for each cluster, in stead of all the documents, but a part
of documents that most relevant to the corresponding class, are selected automatically
as the samples to re-estimate the cluster model. It reduces the decentralization of
estimation samples, and then prevents the model to be estimated over-generally.
Compared with the previous works, MMPClust doesn’t need the prior knowledge about
the proportion of each cluster, and is more feasible in the practical applications. The
experiments show that MMPClust prevents the skewed clusters in a great degree, and
its Macro-F1 measure outperforms the previous’ methods.

The rest of the paper is organized as follows. Section 2 introduces briefly
probabilistic model-based partitioning clustering. Section 3 gives some definitions and
conception, and examines how the skewed clusters generate. Section 4 proposes the
MMPClust algorithm. The experiments to evaluate its performance are provided in
section 5. Section 6 discusses the related works. Section 7 gives the conclusions and our
future works.

2 Overview of Probabilistic Model-Based Partitioning Clustering

In this section, we introduce briefly model-based partitioning clustering. Given data
collection X = {x1, x2…xn}, for model-based clustering, the data xi∈X is considered to
be a sample independently drawn from a mixture model [18] θ = {θ 1, θ 2,…, θ k}. The
main assumption is that data points are generated by, first, randomly picking a model θj
with probability P(θ j), and second, by drawing a data xi from a corresponding
distribution. Each cluster j is associated with the corresponding distribution model θ j,
called cluster model, and each data point carries not only its observable attributes, but

538 X. Li, G. Yu, and D. Wang

also a hidden cluster. The overall likelihood of the data collection X is its probability to
be drawn from a given mixture model θ, and then model-based clustering boils down to
finding the maximum likelihood estimation of θ.

In general, the partitioning clustering can be divided into three categories: hard
clustering, soft clustering and stochastic clustering [2]. Due to its simplicity, hard
clustering has been applied widely into document clustering [2, 10, 11, 12]. The most
popular probabilistic models in document clustering are the multivariate Bernoulli
model [2], the multinomial model [2, 12] and the von Mises-Fisher (vMF) model [10,
11]. Of the three types of models, the vMF leads to the best performance and the
multivariate Bernoulli the worst, and the multinomial model is a bit worse than the
vMF. However, the parameter estimation of the vMF model is computationally much
more expensive, multinomial distribution is used widely as the underlying cluster
model for document clustering. In this paper, the multinomial model-based partitioning
hard clustering, denoted by multiK-means, is selected as the baseline algorithm [2].

3 Analysis of Clustering Skew

Given a document collection X and a inherent criteria R for X to evaluate the relevance
between documents, suppose that there are k inherent classes in X with respect to R. Let
li, i =1~k be a class and L={l1, l2… lk} be the class set. For the model-based clustering,
each class li ∈L is associated with a class model θ i, and let θ be a class model set. A
partitioning clustering constructs k partitions of X, where each partition represents a
cluster, denoted as ci, i =1~k. Let C = {c1, c2…ck} be a cluster set. The documents
assigned to cluster ci construct the sample set Xi, which satisfies ∪ Xi = X Λ Xi ∩ X j =
Φ, i =1~k, I ≠ j. Each ci ∈ C is associated with a cluster model θ’i obtained by a
clustering algorithm, and letθ’ be a cluster model set. Without the loss of generality, let
each ci∈C be associated with li∈L correspondingly.

Definition 1. (Estimation sample) For a cluster, the estimation sample is the data used
to re-estimate the cluster model’s parameters.

Definition 2. (Decentralization of estimation sample) For a cluster ci, if its estimation
samples contain many documents x ∈ lj, j ≠ i, we call it the decentralization of
estimation sample.

Definition 3. (Over-generalization of cluster model) If a cluster model θ’j reflects not
only the characteristic of lj, but also that of other li, i ≠ j, especially when
P(x|θ’j)>P(x|θ’i) , x∈li, it is called over-generalization of cluster model θ’j.

Definition 4. (Clustering skew) Given X, L and C, if there is a subset C’⊂ C, where the
cluster ci ∈ C’ contains so many documents satisfying x∈Xi Λ x ∉ li as to generate
empty or extremely small cluster cj ∉ C’ Λ cj ∈ C, called Clustering skew.

In general, there exists the “winner-take-all” behavior for high dimensional space.
For similarity-based clustering, it has been argued in [19, 20] that given two targets,
one target is prone to winning most of data and few of data are assigned to the other,
since the contrast between the distances of different data points does not exist. This
behavior also appears in model-based clustering so that if an inappropriate model

 MMPClust: A Skew Prevention Algorithm for Model-Based Document Clustering 539

applied, most of data are prone to being grouped into a few wrong clusters. An
appropriate model here has two points:

(1) The model initialization. Since clustering is an unsupervised learning process,
there is not enough prior knowledge to select a perfect initial model. There are many
initialization techniques proposed in the past, but none of them perform well [12].

(2) The fitness of cluster model. The task of document clustering is to group the
documents with respect to the content-based relevance, so the model should reveal the
characteristic of content. The more fitness to content characteristic a cluster model is,
the more documents can be grouped into correct clusters, and the less the
decentralization occurs. Generally, the current cluster model assumes that the
document is generated by one and only one component, but it is well-known that the
content of document is determined by the multiple factors such as topic, background,
general knowledge of writing, styles, context etc. It is more appropriate to using
multi-component to model the cluster.

Ideally, the model θ ’j of cluster cj will approach gradually to the distributional
characteristic of class lj. However, because of the inappropriate cluster model
mentioned above, at the assignment stage, especially the first assignment stage, most of
data are prone to being assigned to a few wrong clusters, denoted by C’, and then it
results in the decentralized samples Xc for each cluster c∈ C’. If all the decentralized
samples Xc are used as the estimation samples, as the current model-based methods do,
the cluster model θ ’c is most likely to be estimated over-generally, and then with this
θ ‘c, the more data x ∉ lc are assigned to c at the next assignment step. With the
interaction between the decentralization of estimation samples and the
over-generalization of cluster model, the skewed clusters are generated ultimately.

4 MMPClust Algorithm

Naturally, to prevent the skewed clusters, in addition to select an appropriate initial
model, there are two more works to do. One is to model the cluster properly to reveal
the content-based characteristic so as to make the samples more centralized at the
assignment stage. The other is that at the model re-estimation stage a part of documents
that are the most relevant to the corresponding class for each cluster, are selected as the
estimation samples to break the interaction between the decentralization and the
over-generalization. Actually, even though the decentralized samples occur in some
clusters on account of the inappropriate initial model, with the estimation samples
selection, this influence will not expand further.

4.1 Content-Based Cluster Model

In this paper, suppose that the document feature is the word independent with each
other. On selecting a word to describe the content, only topic and general knowledge
are taken into account. General knowledge is referred to as the knowledge irrelevant to
topic but helpful to describe the content, e.g. how to choose an adjunct. We assume that
the content of each cluster and document is related to only one topic. The cluster model
is mixture model combined the topic model with the general model, whose parameters
are denoted by θT and θG respectively. Certainly, in addition to these two factors, there
are many factors to determine the document characteristic, yet the two-component

540 X. Li, G. Yu, and D. Wang

mixture model is easy to implement, and still achieves the significant performance
much better than the single-component model. Here, we assume both the topic model
and the general model are multinomial distribution. Note that other probabilistic
distributions, such as Bernoulli, vMF, etc., also can be applied. The multinomial
distribution is selected in this paper just for its good performance in document
clustering [2].

We define the latent variable z that takes two values: T and G, representing the
topic model and the general model respectively. Given document x and cluster cj, the
probability that cj generate x is:

∏∏
∈ =∈

==
xt GTz

j
zj

xt
jjjj zPzctPctPcxP

},{

'')();,|();|();|(θθθ (1)

Because the latent variable exists, the EM algorithm is applied to estimate θT and
θG. However, EM algorithm exhibits slow convergence and is costly, so some

simplifications are made as follow:);,|(j
Tj TzctP θ= and);,|(

j
Gj GzctP θ= are

estimated with the maximum likelihood ==

'

),'(

),(
);,|(

t
j

jj
TjML Xtc

Xtc
TzctP θ

and

∈ ∈

∈==

Xx xt

Xxj
GjML xtc

xtc

GzctP

' ''

)','(

),(

);,|(θ , where c(t, Xj) is the counts of word t

occurring in Xj. After this simplification, only P(z) is required to be estimated. The

detailed algorithm is as follow. Note that in algorithm 1,);,|(,|
j

TjMLTct TzctP
j

θθ =≡

and);,|(,|
j

GjMLGct GzctP
j

θθ =≡ .

Algorithm 1: Cluster model estimation
Input: Xj for cluster cj.
Output: P(z) for cj

1. Initialize P0(z=T) and P0(z=G)
2. Do until convergence {
 //E-step

−

− =
==

'

)1(
',|

)1(
,|)(

)'(

)(
)|(ˆ

z

i
zct

i
Tcti

zP

TzP
tTzP

j

j

θ

θ
; −

− =
==

'

)1(
',|

)1(
,|)(

)'(

)(
)|(ˆ

z

i
zct

i
Gcti

zP

GzP
tGzP

j

j

θ

θ
;

 //M-step:

===
'

)()()'|(ˆ)'(
1

)(
t

ii tTzPtn
N

TzP ; ===
'

)()()'|(ˆ)'(
1

)(
t

ii tGzPtn
N

GzP ;}

3. Return P(z=T) and P(z=G);

4.2 Estimation Samples Selection

This subsection will show how to select the most relevant part of documents as the
estimation samples to prevent the model from being estimated over-generally.

 MMPClust: A Skew Prevention Algorithm for Model-Based Document Clustering 541

Definition 5. For a cluster cj and the corresponding document set Xj, if a document
x∈Xj belongs to class lj, we call it as that x matches the cluster cj, otherwise, x
mismatches cj and is called a noise data of cluster cj.

We define the matching function ∆: X → R + as: Given the cluster set C = {c1,
c2…ck}, for x∈X,

=
−==∆

ki
iki cxPkicxPMaxx

~1

1)|(}~1|)|({)((2)

Given cj and Xj, the function ∆ (x) measures the matching degree between x∈Xj
and cj. In general, given x1, x2 ∈ Xj, if x1 belongs to lj, but x2 not, then ∆ (x1) > ∆ (x2). If
the ∆ of document is near to zero, it is difficult to judge which cluster it belongs to. Note
that, it is not true for all cases, i.e. given x1, x2 ∈ Xj and x1 ∈ lj, x2 ∉ lj, ∆ (x1) may be
smaller than ∆ (x2), but as discussed as follow, according to the matching degree we
could select the estimation samples where the probability of matching the cluster is
higher than that of mismatching.

We define the variable z that takes two values: r and r , which represent “match”
and “mismatch” respectively.
From a lot of experiments we
found that for each cluster cj, the ∆
distribution of the documents that
match cj can be modeled as a
normal distribution (Formula 3),
while the ∆ distribution of the
documents that mismatch cj can be
modeled as an exponential
distribution (Formula 4). The Fig.
1 illustrates the ∆ distribution in
one of our experiments.

()−∆
−==∆

2

2

2
exp

2

1
);|(

j

j

j

jcrzP
δ
µ

δπ
 (3)

()∆−==∆ jjjcrzP λλ exp);|((4)

The EM algorithm is used to estimate the parameters jµ̂ , jδ̂ and jλ̂ .

Theorem 1. Given jµ̂ , jδ̂ , jλ̂ ,)(rPj and)(rPj , for x∈ Xj, if

)4()()4(2
2
12

2
1 baaxbaa −+<∆<−− , then));(|());(|(jj cxrPcxrP ∆>∆ , where

)ˆˆˆ(2 2
jjja δλµ += ,)(/)(ˆˆ2lnˆ2ˆ 22 rPrPb jjjjjj δλπδµ += .

Proof:

() ())5(0)()()()(ˆexpˆ)(
ˆ2

ˆ)(
exp

ˆ2

1

)()|)(()()|)(());(|());(|(

2
)2(

2

2

)1(

<+∆−∆∆−>
−∆

−

∆>∆∆>∆

bxaxrPxrP
x

rPrxPrPrxPcxrPcxrP

jjjj

j

j

j

jjjj

λλ
δ

µ
δπ

0
0.2

0.4
0.6
0.8

1

10 20 30 40

Pr
o

ba
bi

li
ty

match

mismatch

Fig. 1. ∆ distribution of matching and mismatching

542 X. Li, G. Yu, and D. Wang

where (1) applies the Bayes rule; (2) takes the logarithm for both sides of the

inequation, and then)ˆˆˆ(2 2
jjja δλµ += ,)(/)(ˆˆ2lnˆ2ˆ 22 rPrPb jjjjjj δλπδµ += . The

inequation 5 is a one variable quadratic inequation, its solution

is)4()()4(2
2
12

2
1 baaxbaa −+<∆<−− .

When)4()(2
2
1 baax −+>∆ , though it doesn’t satisfy Theorem 1,);|(jcrP ∆ is

usually so small as to be close to zero, we can ignore it and set the threshold for the
cluster cj as

εj =)4(2
2
1 baa −− (6)

The algorithm of computing the selection threshold is given as follows. Note that
in the step 1, all ∆(x), x∈Xj are sorted descending, and the 2/3 highest ∆ in Xj are used to
compute the mean and variance as the initial value of jµ and jδ . The initial value of

jλ is the mean over Xj and P0(r) = 0.5 empirically. In the step 2, N = | Xj |.

Algorithm 2: Compute the selection threshold
Input: cluster model θ={θ1, θ2,…, θk} and Xj for cluster cj
Output: threshold ε for Xj
1. Initialize the 0µ , 0δ and 0λ ;
2. Do until convergence {

//E-step

)()|()()|(

)()|(
)|(ˆ

1111

11

rPrPrPrP

rPrP
rP

iiii

ii
i

−−−−

−−

∆+∆
∆=∆

;

)()|()()|(

)()|(
)|(ˆ

1111

11

rPrPrPrP

rPrP
rP

iiii

ii
i

−−−−

−−

∆+∆
∆=∆ ;

//M-step

∆

∆

∆

∆∆
=

'
)'|(ˆ

)|(ˆ

rP

rP
i

i
iµ ;

∆

∆

∆

−∆∆
=

'

2

)'|(ˆ

))(|(ˆ

rP

rP
i

ii
i

µ
δ ;

')'|(ˆ

)|(ˆ

'
∆∆

∆
=

∆

∆

rP

rP
i

i

iλ ;

∆

∆=)|()(1 rPrP i
N

i ;)(1)(rPrP ii −= ;}

3. Compute ε by Formula 6;
4. Return ε;

4.3 MMPClust Algorithm

Like other model-based partitioning algorithms, the MMPClust algorithm mainly
consists of document assignment step and cluster model re-estimation step. Unlike the
previous algorithms, MMPClust adopt content-based cluster model and the estimation
samples selection.

Algorithm 3: MMPClust
Input: X = {x1, x2…xn}.
Output: Trained cluster model θ={θ1, θ2…θk}, and a partition of X given by the cluster
identity vector Y = {y1, y2…yn}, yi∈{1,…,k}.

 MMPClust: A Skew Prevention Algorithm for Model-Based Document Clustering 543

1. Initialize θ 0, Pt
0 and m = 0;

2. For each t∈V, V = {t’|t’∈x, for all x∈X}

3. Compute

∈ ∈

∈=

Xx xt

Xx
ML xtc

xtc
GtP

' ''

)','(

),(
)|(;

4. Do until convergence {
//Assignment step

5. Compute m
jPt , j = 1~k by the algorithm 1;

6. For each xi∈X, i = 1~n,

7. ()
∈

−+=
ixt

m
jML

mm
jjML

m

j
i PtGtPPtTctPy)1)(|(),|(logmaxarg ;

//Re-estimation step
8. For j = 1~k, do {
9. Let Xj = {xi | yi = j};
10. Compute εj by the algorithm 2;
11. Let Xj’= {xi | yi = jΛ∆(xi)> εj};

12. =+

'

'

'
1

),'(

),(
),|(

t
j

j
jML

m

Xtc

Xtc
TctP ;}

13. m++;}
14. Return θ and Y;

Note that in the step 5, when training the P(T), its initial value is set to 0.9
empirically, and then P(G) is 0.1. Moreover, in the step 7, for the word t appears in x
but not in cj, i.e. xtVt j ∈∧∉ ,),|(TctP jML is usually estimated by a small value, e.g.
1/|V|, V = V1∪…∪Vk, or zero. The paper adopts the latter.

5 Performance Experiment

In this section, we first introduce the experiment method, and then give our experiment
results and make analysis.

5.1 Experiment Method

20NG [21] and BINGLE [22] are selected as testing corpus. In order to evaluate the
algorithm’s performance on the different datasets, 7 datasets are constructed from these
two corpuses. All the words are stemmed, and then the stop words are removed
according to an artificial dictionary. The summary of datasets is shown in the Table 1.

Because of the constraints on the cluster size, the results obtained by the balanced
methods aren’t skewed certainly. So MMPClust is not compared with the balanced
methods, but with multiK-means. In order to evaluate the performance of the
content-based cluster model and the estimation samples selection respectively, we
design another algorithm using the content-based model only, called mmK-means, and
compare the mmK-means, MMPClust with multiK-means on the 7 datasets. These
three algorithms are initialized with the same models selected at random.

544 X. Li, G. Yu, and D. Wang

In this paper we use the
confusion matrix and Macro-F1 as
evaluation criteria. The confusion
matrix can reflect intuitively whether
the clustering skew or not, and
Macro-F1 can evaluate the overall
quality of clustering.

5.2 Result and Analysis

Due to the space limitation, only the
confusion matrix of the three
algorithms in BG3C600 is given, as
shown in Fig. 2. In the 1st-iteration, of all three algorithms, the cluster #3 appears the
decentralization, while with the content-based cluster model the decentralization is
reduced greatly, as shown in Fig. 2(b) and Fig. 2(c). In the 3rd-iteration, no further
improvements are achieved by multiK-means and mmK-means, but with the estimation
sample selection the decentralization in the cluster #3 are reduced further by
MMPClust. At last, MMPClust avoids the skew clusters, much better than mmK-means
does.

Table 2 summarizes the Macro-F1 measure of three algorithms. For the
multiK-means algorithm, the clustering skew appears in 20NG4C4000, TALK4C4000,
SCI4C4000, BG3C600, BG6C120 and BG10C1000, but not in BG2C1000. BG2C1000
dataset includes two classes: art and networks with high inter-similarity and low
intra-similarity, so multiK-means performs better in the BG2C1000 dataset than on the
others. The average Macro-F1 of multiK -means is 0.447, which is much lower than
that of mmK-means and MMPClust.

Both mmK-means and MMPClust prevent the clustering skew in a great degree.
The average Macro-F1 of mmK-means is 0.589, 31.77% higher than that of
multiK-means. On the whole, mmK-means reduces the clustering skew, especially in
the 20NG4C4000 dataset, where the Macro-F1 of mmK-means is 118.09% higher than
that of multiK-means. But in SCI4C4000, it also generates the clustering skew. The
reason is that there are multi-topics in each class, which doesn’t satisfy our assumption
that each cluster only focuses on one topic. MMPClust performs best among the three
algorithms. It prevents the clustering skew in all the 7 datasets. The average Macro-F1
of MMPClust is 0.732, 24.28% higher than that of mmK-means, furthermore 63.76%
higher than that of multiK-means. Especially in the SCI4C4000 dataset, MMPClust
prevents the clustering skew and achieves significant performance improvement,
101.2% and 253.8% higher than those of mmK-means and multiK-means respectively.

6 Related Work

Although the clustering skew often occurs in high-dimensional data clustering and
influences the quality of clustering seriously, it is surprising that there are few studies

Table 1. Summary of datasets

Dataset K
Number of

documents

Number of

words

20NG4C4000 4 3995 14077

TALK4C4000 4 3997 12186

SCI4C4000 4 4000 13427

BG2C1000 2 987 14256

BG3C600 3 585 10380

BG6C120 6 120 2559

BG10C1000 10 1000 17142

 MMPClust: A Skew Prevention Algorithm for Model-Based Document Clustering 545

focusing on it in the past. To prevent the clustering skew, current solutions is to set the
size constraints on each cluster and to consider the clustering as constraint-based
optimization problem.

In [15] a balanced clustering method assumes that the data points satisfy the
balancing constraint. Reference [14] also constrains each cluster to be assigned at least
a minimum number m (<N/k) of data points. The data assignment problem is
formulated as a minimum cost flow problem. Zhong [2] proposes a balanced
model-based hard clustering framework that is applied to any distribution. They [16]
also propose a soft balancing strategy built on a general soft model-based clustering
framework. Instead of constraining the actual number of data objects in each cluster to
be equal, they constrain the expected number of data objects in each cluster to be equal.

In [17] the approach to obtain balanced clusters is to convert the clustering problem into

Table 2. Summary of Macro-F1

dataset multiK-means mmK-means MMPClus t
mmK -means vs.

multiK -means

MMPClust vs .

mmK -means

MMPClus t vs.

multiK -means

20NG4C4000 0.293 0.639 0.785 +118.09% +22.8% +167.9%

SCI4C4000 0.145 0.255 0.513 +75.86% +101.2% +253.8%

TALK4C4000 0.383 0.509 0.607 +32.9% +19.3% +58.5%

BG2C1000 0.92 0.93 0.94 +1.09% +1.08% +2.17%

BG3C600 0.502 0.68 0.853 +35.46% +25.4% +69.9%

BG6C120 0.477 0.617 0.721 +29.35% +16.86% +51.15%

BG10C1000 0.411 0.49 0.703 +19.22% +43.47% +71.05%

Avg. 0.447 0.589 0.732 +31.77% +24.28% +63.76%

 <1 > < 2> <3> <1 > <2> <3 > <1> <2 > < 3>

1 75 1 5 22 #1 3 8 2 4 # 1 17 2 3

2 17 1 21 12 #2 1 0 1 26 6 # 2 8 12 2 6

3 10 4 5 6 1 63 #3 14 8 64 18 7 # 3 1 71 6 8 1 88

1 st- ite ration 3rd - ite ra tio n Clus te r in g res ults

(a) m ulitK-m ean s

 <1 > < 2> <3> <1 > <2> <3 > <1> <2 > < 3>

1 92 2 0 21 #1 9 9 17 2 1 # 1 99 1 4 21

2 17 1 26 12 #2 1 6 1 32 1 2 # 2 16 13 5 12

3 87 4 6 1 64 #3 8 1 43 16 4 # 3 81 4 3 1 64

1 st- ite ration 3rd - ite ra tio n Clus te r in g res ults

(b) mm K-m ean s

 <1 > < 2> <3> <1 > <2> <3 > <1> <2 > < 3>

1 92 2 0 21 #1 12 6 18 1 4 # 1 1 62 5 13

2 17 1 26 12 #2 3 1 39 2 # 2 4 15 5 3

3 87 4 6 1 64 #3 6 7 35 18 1 # 3 30 3 2 1 81

1 st- ite ration 3rd - ite ra tio n Clus te r in g res ults

(c) MMP Clu st
Fig.2. Clustering process of three algorithms in BG3C600

546 X. Li, G. Yu, and D. Wang

a graph-partitioning problem, and proposed the “min-cut” algorithms that incorporate a
balancing constraint.

These algorithms focus on the efficiency and scalability, and are only applicable
for some applications where the constraints can be obtained in advance, such as
segmenting customers into the groups of rough equal size in market analysis. Differed
from above methods, MMPClust need not the prior knowledge about the proportion of
each cluster, but with the content-based cluster model and the automatic selection of
samples, to prevent the skewed clusters. These features make it more feasible in the
practical usages.

7 Conclusion and Future Work

In this paper we analyze the reason of skew generating in document clustering, and
propose the MMPClust algorithm to prevent the clustering skew. Different from the
current cluster model, our model is derived from the viewpoint of document content,
and both the topical content and the general content are taken into account. It has been
proved to be effective in our experiments. In order to avoid the influence of estimation
samples decentralization we automatically select samples within a cluster to
re-estimate model, which needn’t set the parameters manually and achieves a further
improvement on the clustering results. Compared with the balanced methods in
previous work, MMPClust has less restrictions and more applicability for document
clustering.

In next step, we will further develop the MMPClust method in three aspects: (1)
the efficiency can be further improved, e.g. the estimation samples selection needn’t be
done at every iteration whenever the skew disappears; (2) the multi-topic situation will
be supported, while the current algorithm supports only one topic; (3) the performance
of the algorithm will be validated by applying it into text mining applications.

References

1. A. Strehl, J. Ghosh, and Mooney, R., Impact of Similarity Measures on Web Page
Clustering, In Proc. 17th National Conf. On artificial Intelligence: Workshop of Artificial
Intelligence for Web Search, 2000.

2. S. Zhong, Probabilistic Model-Based Clustering of Complex Data, PhD thesis, The
University of Texas at Austin, 2003.

3. S. Zhong and J. Ghosh, A Unified Framework for Model-based Clustering, Machine
Learning Research, 2003.

4. S. Kamvar, D. Klein, and C. Manning, Interpreting and Extending Classical Agglomerative
Clustering Algorithms Using A Model-based Approach. In Proc. 19th Int. Conf. Machine
Learning, 2002.

5. J. D. Banfield and A. E. Raftery, Model-based Gaussian and non-Gaussian Clustering,
Biometrics, 1993.

6. C. Fraley, Algorithms for Model-based Gaussian Hierarchical Clustering, SIAM Journal on
Scientific Computing, 1999.

 MMPClust: A Skew Prevention Algorithm for Model-Based Document Clustering 547

7. S. Vaithyanathan and B. Dom, Model-based Hierarchical Clustering, In Proc. 16th Conf.
Uncertainty in Artificial Intelligence, 2000.

8. M. Ramoni, P. Sebastiani, and P. Cohen, Bayesian Clustering by Dynamics, Machine
Learning, 2002.

9. I. V. Cadez, S. Ganey, and P. Smyth, A General Probabilistic Framework for Clustering
Individuals and Objects. In Proc. 6th ACM SIGKDD, 2000.

10. I. S. Dhillon and D. S. Modha, Concept Decompositions for Large Sparse Text Data Using
Clustering, Machine Learning, 2001.

11. A. Banerjee and J. Ghosh, Frequency Sensitive Competitive Learning for Clustering on
High-Dimensional Hyperspheres, In Proc. IEEE Int. Joint Conf. Neural Networks, 2002.

12. M. Meila and D. Heckerman, An Experimental Comparison of Model-Based Clustering
Methods. Machine Learning, 2001.

13. A. K. Jain, M. N. Murty, and P. J. Flynn, Data Clustering: A Review, ACM Computing
Surveys, 1999

14. P. S. Bradley, K. P. Bennett, and A. Demiriz, Constrained k-means Clustering, Technical
Report MSR-TR-2000-65, Microsoft Research, Redmond, WA, 2000.

15. A. Banerjee and J. Ghosh, On Scaling Up Balanced Clustering Algorithms, In Proc.2nd
SIAM Int. Conf. Data Mining, 2002.

16. S. Zhong and J. Ghosh, Model-based Clustering with Soft Balancing, ICDM 2003.
17. G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning

irregular graphs, SIAM Journal on Scientific Computing, 1998.
18. G. McLachlan and D. Peel, Finite Mixture Models, John Wiley & Sons, 2000.
19. Beyer K., Goldstein J., Ramakrishnan R., Shaft U., When is Nearest Neighbors Meaningful?

ICDT, 1999.
20. Charu C. Aggarwal, Alexander Hinneburg, Daniel A. Keim, On the Surprising Behavior of

Distance Metrics in High Dimensional Spaces. ICDT 2001.
21. http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
22. http://net.pku.edu.cn/~yanqiong/

Designing and Using Views
to Improve Performance of Aggregate Queries

(Extended Abstract)

Foto Afrati1, Rada Chirkova2,�, Shalu Gupta2, and Charles Loftis2

1 Computer Science Division, National Technical University of Athens,
157 73 Athens, Greece
afrati@cs.ece.ntua.gr

2 Computer Science Department, North Carolina State University,
Raleigh, NC 27695, USA

{chirkova, sgupta5, celoftis}@csc.ncsu.edu

Abstract. Data-intensive systems routinely use derived data (e.g., in-
dexes or materialized views) to improve query-evaluation performance.
We present a system architecture for Query-Performance Enhancement
by Tuning (QPET), which combines design and use of derived data in
an end-to-end approach to automated query-performance tuning. Our
focus is on a tradeoff between (1) the amount of system resources spent
on designing derived data and on keeping the data up to date, and (2)
the degree of the resulting improvement in query performance. From
the technical point of view, the novelty that we introduce is that we
combine aggregate query rewriting techniques [1, 2] and view selection
techniques [3] to achieve our goal.

1 Introduction

Derived data, such as materialized views or indexes, are routinely used in data-
intensive systems to improve query-evaluation performance. In this context, the
problem of designing derived data can be stated as follows: Given a set of queries,
a database, and a set of constraints on derived data (e.g., view-maintenance
costs), return definitions of derived data that, when materialized in the database,
would satisfy the constraints and reduce the evaluation costs of the queries.
Automated design of materialized views and indexes to answer queries is an
important component of automated query-performance tuning, where a system
addresses the performance requirements of current important queries by period-
ically redesigning the stored derived data. For this reason, developing techniques
for designing derived data to improve query-answering performance is a recog-
nized research direction in self-administering data-intensive systems [4, 5, 6]. In

� This author’s work on this material has been supported by the National Science
Foundation under Grant No. 0307072.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 548–554, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Designing and Using Views to Improve Performance of Aggregate Queries 549

this extended abstract1 we outline our approach and an implementation and
preliminary evaluation of it on the extensible system architecture for Query-
Performance Enhancement by Tuning (QPET) [8].

Generally, spending more time on designing derived data tends to pay off,
as greater query-evaluation performance improvement can thereby be achieved.
At the same time, often it is not practical to obtain sets of derived data that
would globally minimize the evaluation costs of the input queries [9, 10, 3]. Several
approaches (see, e.g., [10, 3, 11, 12]) have been proposed to design good-quality
sets of derived data for SQL queries. Unfortunately, it is not always possible to
use algorithms in the literature in automated query-performance tuning. The
reason is, in many practical scenarios limited system resources are available for
(1) designing derived data, and for (2) keeping the stored derived data up to
date.

We study design and use of materialized views and indexes in automated
query-performance tuning in relational data-management systems. Our objec-
tive is to minimize the evaluation costs of a given query workload by designing
and using derived data, subject to given restrictions on design time and on the
maintenance time for the stored derived data. To address the tradeoff between
these time constraints and the quality of the resulting views or indexes, our
approach is to develop specialized algorithms for specific practically important
query types. In this paper we present techniques for designing and using mate-
rialized views; the techniques are applicable to a practically important class of
range-aggregate queries on star-schema data warehouses.

We give an example to show how aggregate query rewriting techniques can
contribute to a better view design.

Example 1. Consider a data warehouse with three stored relations:

Sales(CustID,DateID,ProductID,SalespersonID,QtySold,Discount)
Customer(CustID,CustName,Address,City,State,RegistrDateID)
Time(DateID,Month,Year)

Sales is the fact table, and Customer and Time are dimension tables.
Let the query workload of interest have two star-schema queries, Q1 and Q2.

Query Q1 asks for the total quantity of products sold per customer in the second
quarter of the year 2004. Q2 asks for the total product quantity sold per year for
all years after 1997 to customers in North Carolina.

Q1: SELECT c.CustID, SUM(QtySold) Q2: SELECT t.Year, SUM(QtySold)
FROM Sales s, Time t, Customer c FROM Sales s, Time t, Customer c
WHERE s.DateID=t.DateID WHERE s.DateID=t.DateID
AND s.CustID=c.CustID AND Year=2004 AND s.CustID=c.CustID
AND Month >= 4 AND Month <= 6 AND Year > 1997 AND State = ‘NC’
GROUP BY c.CustID; GROUP BY t.Year;

We can use techniques from [1] to find that the following view V1 can be used
to answer both queries.

1 A full version [7] of this paper is available online.

550 F. Afrati et al.

V1: SELECT CustID,DateID,State,SUM(QtySold) AS SumQS FROM Sales
GROUP BY CustID,DateID,State;

A rewriting R1 of the query Q1 uses a join of V1 with Customer and Time:
R1: SELECT c.CustID, sum(SumQS) FROM V1, Time t, Customer c

WHERE V1.DateID = t.DateID AND V1.CustID = c.CustID AND Year = 2004
AND Month >= 4 AND Month <= 6 GROUP BY c.CustID;

Moreover, techniques from [1] can handle query workloads which do not have
the same relation in the FROM clause. Earlier algorithms (e.g., [3]) focused on the
datacube and did not consider this more general setting. Note that our approach
is also applicable to aggregate queries of a more general type than star-schema
queries [7].

Contributions. Our contributions are as follows. (1) We propose a system archi-
tecture for automated query-performance tuning in data-management systems,
by periodically designing derived data that reduce the evaluation costs of cur-
rent prevalent queries. (2) We present a theoretical study of the problem of
designing materialized views subject to input restrictions on design time. (3) We
present a parameterized algorithm for designing and using materialized views
subject to input restrictions on design time. Our algorithm uses algorithms such
as BPUS [3] as a subroutine and is applicable to a more general class of aggregate
queries than just queries on star-schema data warehouses. (Our approach can be
easily extended to designing materialized views and indexes, by using, instead
of BPUS, its extension described in [11]. In addition, the approach can be used
to design derived data that satisfy view maintenance-cost requirements.) (4) We
experimentally validate the approach using our QPET implementation [8] of the
proposed system architecture.

Related Work

Designing and using derived data to improve query-evaluation performance has
long been a direction of research and practical efforts. Over time, a wealth of
theoretical results (see [13] for a survey) and practical solutions (e.g., [14, 10])
have been accumulated on using derived data in query answering. The problem of
answering aggregate queries using views has been considered in relation to data
warehouses and data cubes [15, 16, 17, 18]; some results are presented in [19, 20].

Considerable work has been done on efficiently selecting views and indexes
for general SQL queries [10] and for aggregate queries (e.g., [3, 11, 12, 1]). [10]
has introduced an end-to-end approach for designing and using derived data
to answer queries. In our framework we extend the architecture of [10]; to the
best of our knowledge, we are the first to address architectural issues in periodic
redesign of derived data. In addition, we show that to design derived data under
constraints, one has to consider the design and use (i.e., rewriting) problems
together. In the next subsection we discuss further this issue.

Designing and Using Views to Improve Performance of Aggregate Queries 551

Discussion of the Technical Content of Our Contribution

Recent work [1, 2] has considered the problem of rewriting aggregate queries us-
ing multiple views and has provided sound and complete algorithms for obtaining
natural rewritings of aggregate queries using views. Moreover, in [1], the problem
of view selection has been considered as closely related to the problem of query
rewriting using views. Therein, algorithms have been provided for selecting a
compact set of views which can be used to rewrite all queries in a given work-
load. The set is compact in the sense that the algorithm is based on techniques
that search for views that can be used to answer as many queries as possible from
the workload under certain template constraints. In addition, these techniques
make use of common subexpressions among the queries in the workload.

2 Using QPET to Design and Use Derived Data

In this section we outline our system architecture, QPET.2 We use the architec-
ture of [10] to implement and validate our work in designing and using derived
data to improve the evaluation performance of frequent and important queries.
Our concentration and contributions in the system architecture are threefold.
First, we use specialized algorithms for defining and using views and indexes for
specific practically important classes of queries, such as the star-schema queries
we discuss in this paper. Thus, our framework for designing and using derived
data is extensible. We argue that specialized algorithms are required to ensure a
guaranteed degree of improvement in query-evaluation performance, with respect
to the best possible performance for the queries. In addition, different specialized
algorithms are needed under different constraints on derived data materialized
in the system, such as a storage limit on materialized views.

Second, we look in particular into developing a system architecture for pe-
riodic online (re)design of materialized views and other derived data in data-
management systems. In that context, it is imperative that algorithms for de-
signing and using derived data be lightweight, efficient, and scalable. Moreover,
we argue the need to consider the interaction and interdependence of techniques
for generating derived data with techniques for rewriting the given queries using
the data that end up being materialized. For instance, while simple rewriting
techniques can be used for star-schema query workloads, they would not be
sufficient for more general aggregate queries [1].

The third contribution of our approach is a component of the system ar-
chitecture that determines the “format” of views that should be materialized,
based on the rewriting types considered for the given queries. This compo-
nent of QPET, view-format manager, is used at the stage of designing de-
rived data to determine the search space of derived data considered for
materialization.

2 For details please see the full version of the paper [7].

552 F. Afrati et al.

3 Complexity and Parameterized Algorithm

We now outline an approach we use within our QPET framework to improve
the efficiency of evaluating aggregate queries without self-joins, using specially
designed aggregate views. Using the results in [1], we generalize the approach
of [3] into an approach that uses one or more views to answer each query and
that applies to a more general class of queries that aggregate the same table. In
this framework, when looking for views that are potentially usable in computing
given queries, we take into account (unlike [3]) that it might be more efficient to
use two or more views to answer a query. This is done by considering rewritings
of the queries using views [1, 2].

The idea of our approach is to extract, from a workload of aggregate queries,
view templates, which serve as input queries to the view-selection algorithm that
we use as a subroutine. (In our current implementation of QPET, this subroutine
is the BPUS algorithm of [3].) The views returned by the subroutine are then
materialized and used to automatically construct rewritings of the workload
queries; the rewritings have one or more relations in their FROM clause and may
or may not be aggregate queries [1]. This approach can be tuned to explore
different subspaces of the search space of views, depending on the constraints
such as the amount of system resources available for designing derived data. See
full version of the paper [7] for the complexity results and our parameterized
algorithm for designing materialized views.

4 Implementation and Experimental Evaluation

Fig. 1. Query runtimes

Our implementation of the QPET frame-
work [8] is based on an open-source re-
lational data-management system Post-
greSQL [21]. Using the TPC-H database
benchmark [22], we have conducted pre-
liminary experiments to evaluate the sys-
tem architecture and techniques. Due to
space constraints, we give here just a brief
summary of the experiments; a detailed ac-
count of the experimental setup and results can be found in the full version of
the paper [7]. The preliminary experimental results show the following. (1) Us-
ing materialized views designed by our fact-table approach, see Figure 1, results
in query runtimes comparable to runtimes of the queries using views output by
the BPUS algorithm, which we used for comparison purposes. (2) Disk-space
requirements for storing materialized views in our approach are acceptable. (3)
Finally, the time required to design views in our approach can be, in certain
cases, drastically lower than the time required to design BPUS views for the
same queries — e.g., in cases where the queries in the workload can be rewritten
using only a few views. We are currently working on a full-scale implementation

Designing and Using Views to Improve Performance of Aggregate Queries 553

and further theoretical exploration to precisely quantify the advantages of our
approach and provide a complete characterization of specific query types where
our approach outperforms earlier approaches.

References

1. Afrati, F., Chirkova, R. Selecting and using views to compute aggregate queries.
In: Proceedings of ICDT (2005)

2. Cohen, S., Nutt, W., Serebrenik, A. Rewriting aggregate queries using views. In:
Proceedings of PODS (1999) 155–166

3. Harinarayan, V., Rajaraman, A., Ullman, J. Implementing data cubes efficiently.
In: Proc. SIGMOD (1996) 205–216

4. Shasha, D., Bonnet, P. Database Tuning: Principles, Experi-
ments, and Troubleshooting Techniques. Morgan Kaufmann (2002)
http://www.distlab.dk/dbtune/.

5. Microsoft Research AutoAdmin Project: Self-Tuning and Self-Administering
Databases. (http://research.microsoft. com/dmx/autoadmin/default.asp)

6. IBM Autonomic Computing. (http://www.research.ibm.com/autonomic/)
7. Afrati, F., Chirkova, R., Gupta, S., Loftis, C. Designing and Using Views to Im-

prove Performance of Aggregate Queries. Technical Report NCSU CSC TR-2004-
26, http://www4.ncsu.edu/∼rychirko/Papers/techReport090904.pdf (2004)

8. Chirkova, R., Gupta, S., Kim, K.H., Sandhu, S. Extensible framework for query-
performance enhancement by tuning. Code downloads and documentation are
available from http://research.csc.ncsu.edu/selftune/ (2004)

9. Chirkova, R., Halevy, A., Suciu, D. A formal perspective on the view selection
problem. VLDB Journal 11 (2002) 216–237

10. Agrawal, S., Chaudhuri, S., Narasayya, V. Automated selection of materialized
views and indexes in SQL databases. In: Proceedings of VLDB (2000) 496–505

11. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J. Index selection for OLAP.
In: Proceedings of ICDE (1997) 208–219

12. Shukla, A., Deshpande, P., Naughton, J. Materialized view selection for multidi-
mensional datasets. In: Proceedings of VLDB (1998) 488–499

13. Halevy, A.Y. Answering queries using views: A survey. VLDB Journal 10 (2001)
270–294

14. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K. Optimizing queries
with materialized views. In: Proceedings of the Eleventh International Conference
on Data Engineering (ICDE) (1995) 190–200

15. Widom, J. Research problems in data warehousing. In: Proceedings of CIKM
(1995)

16. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.
Data cube: A relational aggregation operator generalizing Group-by, Cross-Tab,
and Sub Totals. Data Mining and Knowledge Discovery 1 (1997) 29–53

17. Chaudhuri, S., Dayal, U. An overview of data warehousing and OLAP technology.
SIGMOD Record 26 (1997) 65–74

18. Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton, J., Ramakrishnan,
R., Sarawagi, S. On the computation of multidimensional aggregates. In: Proceed-
ings of VLDB (1996) 506–521

554 F. Afrati et al.

19. Gupta, A., Harinarayan, V., Quass, D. Aggregate-query processing in data ware-
housing environments. In: Proceedings of VLDB (1995) 358–369

20. Srivastava, D., Dar, S., Jagadish, H., Levy, A. Answering queries with aggregation
using views. In: Proc. VLDB (1996) 318–329

21. PostgreSQL (Open source database-management system)
http://www.postgresql.org/.

22. TPC-H: TPC Benchmark H (Decision Support). (Available from
http://www.tpc.org/tpch/spec/tpch2.1.0.pdf)

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 555 – 560, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Large Relations in Node-Partitioned Data Warehouses

Pedro Furtado

DEI /CISUC, Universidade de Coimbra, Portugal
pnf@dei.uc.pt

http://eden.dei.uc.pt/~pnf

Abstract. A cheap shared-nothing context can be used to provide significant
speedup on large data warehouses, but partitioning and placement decisions are
important in such systems as repartitioning requirements can result in much
less-than-linear speedup. This problem can be minimized if query workload and
schemas are inputs to placement decisions. In this paper we analyze the prob-
lem of handling large relations in a node partitioned data warehouse (NPDW)
with a basic placement strategy that partitions facts horizontally and replicates
dimensions, with the help of a cost model. Then we propose a strategy to im-
prove performance and show both analytical and TPC-H results.

1 Introduction

Clusters of low-cost nodes can be used to process efficiently large databases, provided
good data allocation, query processing and load balancing algorithms are used. How-
ever, some access patterns do not benefit linearly (linear speedup) from parallel archi-
tectures, requiring expensive massively parallel hardware to be fast. The basic parti-
tioning problem is simply stated as follows: consider relations R1 and R2 to be joined
as part of the query processing: 21 RAR . Consider also that R1 is fully horizontally
partitioned into nodes and each node or processor out of N should process only 1/N of
the total work in order to take full advantage of parallel execution. If both relations
are partitioned by the same equi-join key, the join can be processed locally and this is
the fastest alternative. The expression 21 RAR is processed as (2111 RAR) U …
U (nRAnR 21), each part of this expression in a different node/processor. This is

because the join between two fragments in different nodes is an empty set
(e.g. φ=2211 RAR). But if they are not equi-partitioned, at least one of the relations
must be moved. If relation R1 is partitioned on the join key, we can dynamically parti-
tion the other relation on the same key and proceed with the parallel equi-join. This
repartitioning is accounted as an extra overhead, increasing total work and response
time. Alternatively, relation R2 can be fully replicated into all nodes. This strategy
adds processing costs to each node, as it must deal with one full relation while proc-
essing the join. Finally, if neither relation is partitioned by the equi-join key, it is
necessary to repartition both relations. Workload-based placement algorithms aim at
determining the best partitioning key to favor local joins. We analyze the problem of
handling large relations in a node partitioned data warehouse with a basic placement
strategy that partitions facts horizontally and replicates dimensions, with the help of a
simple cost model. We also show how a better partitioning can be used to improve

556 P. Furtado

performance. For lack of space, we briefly review only some related work. Related
work on query processing in parallel and distributed databases includes [1,2,4,6].
Issues are raised concerning mainly join processing and communication overheads
[4,6]. Parallel Hash Join [1,4] and Placement Dependency [2] improve on these prob-
lems. Data placement is discussed in [3, 8] and also reviewed in [7].

2 Schema Placement

Data warehouse schemas can frequently be described as star schemas with large cen-
tral facts (F) and small dimensions (D), for which a simple partitioning can be based
on replicating dimensions and randomly partitioning the fact, as in Figure 1a. A good
example of a more complex schema (not a pure star schema at all) and query set is the
one illustrated in Figure 1b. (TPC-H [5]), which represents ordering and selling activ-
ity (LI-lineitem, O-orders, PS-partsupp, P-part, S-supplier, C-customer).

(a) Basic Placement (b) Complex Schema (TPC-H)

Fig. 1. Basic Placement

The objective of the basic placement of Figure 1a is to allow nodes to process their
part of the query independently to achieve a speedup expected to be near to linear
with the number of nodes. Each node applies exactly the same initial query on its
partial data and the results are merged by applying the same query again at the merg-
ing node with the partial results coming from the processing nodes.

That basic placement does not work well for Figure 1b. The TPC-H query set
includes frequent joins between two or more large relations. The basic node partition-
ing strategy defines that P, S and C be copied into each node. On the other hand, rela-
tions LI, PS and O can be horizontally partitioned into the nodes using round-robin or
random partitioning. Although joins involving a single partitioned relation and any
number of replicated relations require no data exchange, the frequent join (at least half
TPC-H queries) between very large relations (LI, O, PS) requires extensive repartition-
ing overhead. Even if two facts are co-located, queries involving a third one must incur
repartitioning. This issue must be dealt with by the placement algorithm if possible.

3 Cost Model

Cost models for analyzing part of these matters in shared-nothing environments were
given in [4] and [6]. They typically include a partitioning or repartitioning cost (PC,
RC), needed for data re-organization during query processing. It is associated with

S

P
PS

Partkey

Supkey

ok ck

LI

O
C

F1

D

D
D

D
F1i

D D

D D

Copy D rows

Divide
rows

 Large Relations in Node-Partitioned Data Warehouses 557

retrieving the relation or partition from secondary memory, dividing it into fragments
by applying a hash function to a join attribute and assigning buffers for the data to
send to other nodes. We assume the (re)partition cost to be monotonically increasing
on the relation size. The local processing cost (LC) is also assumed monotonically
increasing with the size of the relations involved. As in [4] and [6] we also define
weighting parameters: , for local processing cost and , for repartitioning cost. The
smaller the value of , the smaller the repartitioning cost relative to the local process-
ing cost. The total cost expression is: LCPC TC ×+×= αβ . Parameter must account
not only for the network speed but also for queuing, messaging, buffering the data
that is exchanged between nodes. In [4] the value =2 was obtained experimentally.
This simplified cost model is useful for analysis purposes and does not dispense a
more complete cost model of the optimizer taking into account other costs such as
CPU instructions for I/O, processing and network, network delays.

Multiple Facts: consider NPDW with fact size F, N nodes and the linear cost model.
The fact fragment size is F/N. The join-processing cost for queries requiring the join
between equi-partitioned facts with sizes Fi and dimensions di is:

Costequipart = +++× ldd
N

F
...1α ≈ ×

N

Fα , where F is the sum of facts (1)

In this expression we are assuming the dimensions have insignificant size, so they
can be ignored in the cost expression. The cost when facts are not equi-partitioned
considering a switched network is:

Costrepart= ×+×≈×+×−
N

F

N

IR

N

F

N

IR

N

IR αβαβ
2

if N large. (2)

This expression accounts for local processing cost of 1/N of the fact (assuming
small dimensions), and repartitioning overhead of an intermediate result IR. IRi can
be a fact or more frequently the result of locally computed joins and restrictions with
replicated dimensions. Considering many joins, the total repartitioning cost is based
on the sum of intermediate results. The increase in cost if (2) is required instead of (1)
is therefore β×

N

IR , which depends on intermediate result selectivity and should be
minimized.
Large Dimensions: large dimensions cause large performance degradation in the
basic partitioning scheme. If they are fully-partitioned instead, the fact or intermediate
results will typically need to be repartitioned before being joined with the partitioned
dimension (dL is the sum of sizes of dimensions with significant size):

+×+×≈+×+×−
N

F

N
Ld

N

IR

N

F

N
Ld

N

IR

N

IR αβαβ
2

if N large. (3)

This expression accounts for repartitioning overhead of an intermediate result IR
and the local processing cost of fact and large dimension fragments. If we compute
when it is better to replicate from (1) (3):

N

IR
d L />

α
β

 (5)

558 P. Furtado

This simple result shows that if the ratio between repartitioning and local process-
ing cost parameters is larger than the size ratio between the large dimension(s) and the
intermediate result(s), it is better to have replicated dimensions. Otherwise it is better
to have partitioned dimensions while repartitioning intermediate results. The size of
IR depends on each query and the best execution path for the query.

4 Improved Placement in NPDW

The inputs to an improved strategy are the set of facts and dimensions from a generic
schema and a query workload. Dimensions with size dj<dsmall are replicated into all
nodes. Above this threshold, dimensions are partitioned into all nodes. If a dimension
size is not too big dj<dvery_arge, it can simultaneously be replicated into all nodes to
allow different processing alternatives. The different combinations of equi-join keys
from facts and partitioned dimensions are the input to a partitioning key decision
algorithm (partitioning by hashing the keys):

FOR EACH Dimension di IF size dj<dsmall, dimension is to be replicated;
ELSE IF size di>dvery_large, dimension is to be partitioned by its key;
ELSE Assume Redundant replicate and partition;

FOR EACH fact that is to be partitioned

Determine its equi-join attributes with other relations from the workload (or given metadata) Ai

FOR EACH possible placement PAj = combination of partitioning attributes between relations

FOR EACH query in the workload
Estimate best execution path and cost Ci (consider alternative paths for redundant dimen-

sions)
 END FOR

 Increment sum of costs PAi+=Ci

Choose PAi with the minimum cost;

5 Experimental Analysis

For the cost model experiments, we consider one or two 50GB facts and 5 to 10 small
(up to 150MB), medium (500MB) or large (2.5GB) dimensions, depending on the
features we wanted to test, = 2 , the selectivity of IRs=10% and also tested varia-
tions of from 0.5 to 2 and variations of selectivity between 1% and 50%.

Figure 6 shows speedup for varying number of nodes and dimension sizes (5-100
MB), considering a single fact and replicated dimensions.

These results show that the speedup deteriorates significantly as the number of
nodes and dimension size increases. This is because replicated dimensions become
almost as large as fact fragments. The next results concern IR selectivity and parti-
tioned medium-sized dimensions (D is for dimension replication instead).

These results show that replicated medium-sized dimensions (D) prevent accept-
able speedup to be achieved and the importance of IR selectivity. If selective condi-
tions are applied locally before repartitioning, the speedup will be nearer to linear.
The unfilled dots in Figure 3(a) show when the partitioned dimension is slower than
the replicated one. Repartitioning dimensions is very effective with many nodes.

 Large Relations in Node-Partitioned Data Warehouses 559

0

10

20

30

40

50

5 10 25 50 75 100
MB

Sp
ee

du
p

50

100

150

200

250

5 10 25 50 75 100
MB

S
pe

ed
up

Fig. 2. Speedup with Dimension Sizes - Replicated

0

10

20

30

40

50

D 75% 50% 10% 5% 1%
IR Selectivity (%)

Sp
ee

du
p

0

50

100

150

200

250

D 75% 50% 10% 5% 1%
IR Selectiv ity (%)

Sp
ee

du
p

(a) 5-50 nodes (b) 100-250 nodes

Fig. 3. Speedup for IR (medium-sized dimensions)

Our next experiments were based on a 50GB TPC-H [5] run. We partitioned the
relations using the algorithm described in this paper and obtained near-to-linear
speedup for queries accessing a single fact, shown in Figure 4b.

 LI O PS P S C nodes Q1 Q6 Q11 Q15
Type, Size F, 35 F, 8.7 F,4.6 D,1 D,0.05 D,0.75 10 9.4 9.2 9.7 9.1
Partition Okey Ckey Pkey Pkey Replicated Redundant 25 24.7 28.3 29.1 29.4

(a) Partitioning Keys <(F-fact, D-dimension), size> (b) Speedup, single fact

Fig. 4. Experimental Setup and Speedup on Single-fact Queries

0.0

5.0

10.0

15.0

20.0

25.0

30.0

q3 q4 q5 q7 q8 q12 q18

S
p

ee
d

up

NPDW

W-NPDW(F)
W-NPDW

(a) With Large Dimensions (b) with Multiple Facts

Fig. 5. Speedup Large Dimensions / Multiple Facts

0

5

10

15

20

25

30

35

40

45

Q2 Q1 Q14 Q19

S
pe

ed
up

NPDW (10)
W-NPDW (10)
NPDW (25)
W-NPDW (25)

50 nodes

25 nodes

5 nodes

250 nodes

100 nodes

50 nodes

25 nodes

5 nodes

250 nodes

100 nodes

560 P. Furtado

Figure 5a shows the speedup when a single fact and at least one large dimension was
also accessed. The advantage of partitioning the dimension (W-NPDW) versus repli-
cating it (NPDW) is large, as replicated dimensions hurt speedup. Figure 5b shows the
speedup for multiple facts in TPC-H. NPDW stands for the basic strategy with ran-
dom partitioning of facts (L, O, PS) and replication of dimensions (P, C, S); W-
NPDW is the improved partitioning. W-NPDW(F) uses the improved strategy for
facts but replicates dimensions. W-NPDW had much better results than NPDW again,
which incurred higher repartitioning costs. and W-NPDW(F) reveals the contribution
of fact partitioning to that.

6 Conclusions and References

In this paper we have analyzed placement factors influencing performance in a node-
partitioned data warehouse. We used a cost model to study the problem, proposed an
effective partitioning and placement strategy and engaged in analytical and experi-
mental (TPC-H run) evaluation of the issue and the proposal, with good results.

References

1. Kitsuregawa M., H. Tanaka, and T. Motooka. Application of hash to database machine and
its architecture. New Generation Computing, 1(1):66-74, 1983.

2. Liu, Chengwen, Hao Chen, Warren Krueger, “A Distributed Query Processing Strategy Us-
ing Placement Dependency”, Proc. 12th Int'l Conf. on Data Eng, pp. 477-484, Feb. 1996.

3. Rao, Jun., Chun Zhang, Nimrod Megiddo, Guy M. Lohman: Automating physical database
design in a parallel database. SIGMOD Conference 2002: 558-569.

4. Shasha, D.,Wang, T.-Li: Optimizing Equijoin Queries (…) where Relations are Hash-
Partitioned. ACM Transactions on Database Systems, V.16, No.2, pp. 279-308, June 1991.

5. Transaction Processing Council Benchmarks, www.tpc.org.
6. Yu, Clement T., Keh-Chang Guh, Weining Zhang, Marjorie Templeton, David Brill, Arbee

L. P. Chen: Algorithms to Process Distributed Queries in Fast Local Networks. IEEE Trans-
actions on Computers 36(10): 1153-1164 (1987).

7. Zhou S., M.H. Williams, "Data Placement in Parallel Database Systems," Parallel Database
Techniques, IEEE Computer Society Press, 1997.

8. Zilio, Daniel C., Anant Jhingran, Sriram Padmanabhan, Partitioning Key Selection for a
Shared-Nothing Parallel Database System IBM Research Report RC 19820 (87739)
11/10/94 ,T. J. Watson Research Center, Yorktown Heights, NY, October 1994.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 561 – 567, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Mining Frequent Tree-Like Patterns in Large Datasets

Tzung-Shi Chen and Shih-Chun Hsu

Department of Information and Learning Technology,
National University of Tainan,

Tainan 700, Taiwan
chents@mail.nutn.edu.tw

Abstract. In this paper, we propose a novel data mining scheme to explore the
frequent hierarchical structure patterns, named tree-like patterns, with the relationship
of each item on a sequence. By tree-like patterns, we are clear to find out the relation
of items between the cause and effect. Finally, we discuss the different characteristics
to our mined patterns with others. As a consequence, we can find out that our
addressed tree-like patterns can be widely used to explore a variety of different
applications.

Keywords: Data mining, frequent patterns, sequential patterns, tree-like patterns,
World Wide Web.

1 Introduction

Over the past decade, many research are contributed to mining the sequential patterns
or frequent patterns in time-related dataset [1][4][5][7][8]. Most of schemes are to
exploit association rules or market-basket analysis in terms of extracting the frequent
patterns. Web mining [2][3] is of a typical case for mining the sequential patterns. By
these explored frequent patterns, we can discover the users’ traversal behaviors on the
Internet. Furthermore, more complex structures, such as tree and graph structures, in a
dataset are discussed. In [6][8], they proposed the mining schemes to discover the
tree-type patterns on a given dataset.

Tree type of structure is a special hierarchical structure widely applied to many
domains. Sequential patterns are a list of subsequences. In this paper, we concentrate
the mined pattern on a tree-like form which is conceptualized from a sequence. We
employ the particular hierarchical form to represent the relation between cause and
effect of items. In addition, based on the tree-like form, we intend to extract the
potential partial order relationships from the tree-like form. As our knowledge, this
kind of structures is first to discuss and exploit.

The main contribution of this paper is to present a novel data mining scheme for mining
the frequent tree-like patterns on a sequence database. We exploit the structure to represent

This work is supported by National Science Council under the grants NSC-93-2213-E-024-005
and NSC-93-2524-S-156-001, Taiwan.

562 T.-S. Chen and S.-C. Hsu

relationship of items. There are not only full ordered but partial ordered on the tree-like
patterns. In support values counting, we propose an efficient scheme to count the support
value. Moreover, we count the weighted support values efficiently by dynamic programming
approach. Due to limitation of paper length, we omit to address these approaches here.

The rest of this paper is organized as follows. In Section 2, we illustrate basic
concepts and terminology definitions. The mining algorithm and the mined pattern are
proposed in Section 3. In Section 4, we compare our proposed scheme with others.
Finally, we conclude in Section 5.

2 Basic Concepts and Terminologies

Let I be a set of m distinct items composed of the alphabet. A sequence has k items
belonging to I. }1,1,,,,|{ 1 NlkjIiiiSSD jkllT ≤≤≤≤∈>=<= is defined as a
collected database with sequences, where N is the size of database, denoted
by NDT = . For example, we suppose that I={A, B, C, D, E, F, G}. Five sequences as
in Table 1 are in database DT. The size of database DT is |DT|=5.

Table 1. An example of database

Sequence
ID

Item (Sequence)

S1
<A, B, D, B, C, A, B, A, B,

D>
S2 <A, B, C, B, A, B, C>
S3 <A, B, D, B, C>
S4 <A, E, G, H, A, B>
S5 <A, E, G, E, F, E, G, H>

Fig. 1. Examples of a structure of a web
site as well as the traversal path

The sequential patterns mining is applied widely to many kinds of applications and
datasets collected. Here, we only take the application on a web structure into
consideration. For example, there is a web site with 8 pages as in Figure 1. When users
surf the web site, they probably are visited many different traversal paths. For example,
the traversal path from A to G is as shown in Fig. 1. The traversal sequence is S=<A, B,
C, B, D, B, A, E, F, E, G, H, G>. We exploit the front-and-rear relationships of items on
the sequence. According to the support value, we probably discover different tree-like
patterns from a database.

There is a non-contiguous subsequence >< kttt ,,, 21 , called tree-like pattern with
k vertices, from given a sequence, Iti ∈ , ki ≤≤1 ; however, 1t is a root, it has a parent
between 1t and 1−it , where ki ≤<1 , as well as it has children or non between 1+it and kt ,
where ki <≤1 . Here, a k-tree is denoted as kT . Additionally, there are many different
kinds of k-tree patterns in the same sequences, when 3≥k . There are two main
relationships. One is for the parent-child; another is for the siblings. For example, a
sequence <A, B, C> implies the sequence with two kinds of 3-tree, T3, patterns as in
Figs. 2(a) and 2(b), respectively.

 Mining Frequent Tree-Like Patterns in Large Datasets� 563

(a) (b)

Fig. 2. Examples of different relationships from sequence <A, B, C>

3 Mining Frequent Patterns

We will address how to mine the frequent tree-like patterns from a database in this
section. Consider the database in Table 1 as a running example. We use kC to present
the set of k-tree pattern candidates. Each k-tree candidate is of length k, lk ≤≤1 ,
where the value of l is the maximum number of the nodes. In addition, we use kF to
present the set of large k-trees, each with the number of occurrences appeared in
database TD being equal to or larger than the given minimum support value.
Throughout this paper, we suppose the min_sup %60=σ , i.e., each of frequent
patterns is appeared more than 3 times in all sequences because |DT|=5. The formal
mining algorithm is described in below.

Algorithm: Mining a set of frequent k-tree patterns
Input: Database TD and min-sup σ
Output: All of frequent k-tree patterns
1. 1F ← detect all of frequent 1-trees in TD
2. k ← 2
3. while ∅≠−1kF do
4. ←kC generate_candidate(1−kF)
5. for each candidate k

k CT ∈ do
6. { }T

k
k

k
k DTCTF σ≥∈←)sup(

7. k ← k+1
8. return lFFF ,,, 21

At first, we scan the database TD to generate the set of frequent 1-tree patterns. Next,
we employ join method to generate 2-tree candidate. After that, we count the support of
each candidate and prune down the infrequent patterns. When we generate 3-tree pattern
candidates, we enumerate all the relational patterns (including the parent-child and
siblings) by join method. We repeatedly generate (k+1)-tree pattern candidates, until the
set of frequent k-trees was empty or produce the empty set of next larger candidates.

For example as depicted in Table 1, we obtain the frequent 1-trees (i.e. A, B, and C)
as shown in Fig. 3. Next, we join 1-tree with each other to generate candidates and then
to get the frequent 2-trees as shown in Fig. 4. In generating 3-tree candidates, we
consider the relationships for items, parent-child and siblings. Finally, we explore the
frequent 3-trees as shown in Fig. 5. No more next step exists.

In what follows, we will discuss how to generate the candidates automatically. We
use join operation to produce the larger tree-like patterns increasingly. Here we have
the set of candidates lkFFC kkk ≤≤×= −− 1,11 . Thus, it is important for us how to
generate the next larger candidates, k-trees, from the frequent (k-1)-trees.

564 T.-S. Chen and S.-C. Hsu

1
iT

1
iT

Fig. 3. Scanning TD to produce the sets of

1C and 1F

2
iT

2
iT

Fig. 4. Scanning TD to produce the sets of

2C and 2F

3
iT

3
iT

Fig. 5. Scanning TD to produce the sets of 3C and 3F

Before describing how to join Fk-1 by itself, we define how two patterns can be
joined together. According to the order and type of both patterns, two kinds of
relationship between two subtrees are defined, one for equivalent subtrees and the other
for strongly ordered subtrees. Note that the k-tree, kT , is qualified as a frequent tree if
all of (k-1)-subtrees of kT are frequent.

Suppose that we have two different k-trees k
iT and k

jT , where ji ≠ . k
iT and k

jT
remove a node to form (k-1)-subtrees patterns 1−k

nT and 1−k
mT , respectively, where

kmkn ≤≤≤≤ 1,1 . If all of nodes and relationships of 1−k
nT are the same as those of

1−k
mT , 1−k

nT and 1−k
mT are called the equivalent subtrees, denoted by 11 −− ≡ k

mR
k

n TT .
For example, the equivalent subtrees are shown as in Fig. 6(a). 4

iT and 4
jT are

removed the different nodes B and E, from themselves, respectively. We got
3

nT and 3
mT , called the equivalent subtrees, 33

mRn TT ≡ .

33
mRn TT ≡

4
iT 4

jT
3

nT 3
mT

33

mRn TT >

A

D

C

E

4
iT

A

D

E

3
nT

A

D E

3
mT

A

B

D E

4
jT

Fig. 6. (a) An example of equivalent subtrees; (b) an example of strongly ordered subtree

Suppose that we have two different k-trees k
iT and k

jT , where ji ≠ . k
iT and k

jT are
removed a node, maybe different, from themselves to produce (k-1)-subtrees 1−k

nT and
1−k

mT , respectively, where kmkn ≤≤≤≤ 1,1 . Suppose that all of items in 1−k
nT are the

 Mining Frequent Tree-Like Patterns in Large Datasets� 565

same as those in 1−k
mT , but relationships are slightly different. It means that these exists

all nodes of relationship of 1−k
nT being parent-child (strongly ordering) and the

relationship of 1−k
mT being siblings (partially ordering). We can know that the strongly

ordered, parent-child relationship, is more stronger than that of siblings. Therefore, we
can find out the relationship of 1−k

nT is more strongly ordered than that of 1−k
mT , denoted

by 11 −− > k
mR

k
n TT . For example, suppose that 4

iT and 4
jT are removed the only one

different nodes C and B from themselves, respectively. The order of 3
nT is stronger

than the order of 3
mT as in Fig. 6(b).

Below we will discuss how to perform the join operation between two k-tree
patterns. The symbol ⊗is denoted as the joining operator. At first, we compare any pair
of two k-trees, k

iT and k
jT . Suppose that k-1 nodes are the same in the two k-trees except

one node. Next, we remove the different nodes from their corresponding k-trees to
produce the (k-1)-trees, denoted as 1−k

nT and 1−k
mT , respectively. If the two (k-1)-tree

patterns conform to one of the situations mentioned above, we try to join two k-trees to
generate (k+1)-tree candidates. If we have 11 −− > k

mR
k

n TT with the strongly ordered
subtrees, we let 1−k

nT , which is the stronger ordered, be as the key k-tree pattern. If we
have 11 −− ≡ k

mR
k

n TT with the equivalent subtrees, we will let them be as the key tree with
each other. Here we have different a pair of join patterns to be created to k-trees since
the positions of the different nodes would be existed either in leaf node or in internal
node. Thus, we have four types for the positions of the different nodes to discuss, i.e.,
leaf-leaf (L-L for short), internal-leaf (I-L for short), leaf-internal (L-I for short), and
internal-internal (I-I for short). Since the two kinds of types I-L and L-I for the
equivalent subtrees to generate candidates are the same, we only discuss one for the
type of I-L.

In the following, we only discuss how to generate the candidates for the case of two
equivalent subtrees with type L-L due to the limitation of paper length. For two k-trees,
we remove the different nodes to form two equivalent subtrees, 11 −− ≡ k

mR
k

n TT as in Figs.
7(a) and 7(b), respectively. First of all, we attach these two different nodes to the parent B
to generate a candidate as in Fig. 7(c). In addition, we know that X may be either in the
front of or back of Y; however, B is definitely as the parent or grandparent of X and Y.
Thus, we have to generate these two situations. We attach one of the different nodes to the
other, i.e., either X is the parent of Y or Y is the parent of X shown in Figs. 7(d) and 7(e),
respectively. But, if the different nodes be connected to different parents, there exists only
one candidate, i.e., the different nodes are attached to their corresponding parents.

⊗

Fig. 7. L-L and 11 −− ≡ k
mR

k
n TT

566 T.-S. Chen and S.-C. Hsu

4 Discussions

We will compare our method with other more related work about mining the tree
structure [8] and traversal patterns [2][3]. To sum up, we compare these schemes in
terms of the scopes of characteristics as depicted in Table 2.

Table 2. Comparisons to different patterns

Mined patterns
Characteristics

Tree-like (ours) Tree [10] Path [2] Trip [3]

Non-contiguous
subsequence allowed

Partial order
Repeated occurrences

of an item

Significance of
sequences

Applications
Web mining,
e-learning, purchase
behaviors, etc.

Web mining,
bioinformatics,
XML documents

Web mining,
e-learning

Web mining,
e-learning

5 Conclusions

In this paper, we proposed a novel data mining scheme for mining the large k-tree
patterns. Finally, we addressed the different characteristics to our mined patterns with
others. As a result, we can find out that our proposed k-tree patterns can be widely used
to explore a variety of applications.

References

1. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In Proceedings of the 1995
International Conference on Data Engineering, Taipei, Taiwan (1995) 3-14

2. Chen, M.-S., Park, J.-S., Yu, P.-S.: Efficient Data Mining for Path Traversal Patterns. in
IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 2 (1998) 209-221

3. Chen, T.-S.: Mining Traversal Patterns on the Internet. In IEICE Transactions on
Information and Systems. Vol. E86-D, No. 12 (2003) 2722-2730

4. Cheng, H., Yan, X., Han, J.: IncSpan: Incremental Mining of Sequential Patterns in Large
Database. In Proceedings of 2004 International Conference on Knowledge Discovery and
Data Mining, Seattle, WA (2004) 527-532

5. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M-C.: FreeSpan: Frequent
Pattern-Projected Sequential Pattern Mining. In Proceedings of 2000 International
Conference on Knowledge Discovery and Data Mining, Boston, MA (2000) 355-359

6. Kubat, M., Hafez, A., Raghavan, V. V., Lekkala, J. R., Chen, W.-K.: Itemset Trees for
Targeted Association Querying. In IEEE Transactions on Knowledge and Data
Engineering, Vol. 15, No. 6 (2003) 1522-1534

7. Lin, X., Liu, C., Zhang, Y., Zhou, X.: Efficiently Computing Frequent Tree-like Topology
Patterns in a Web Environment. In Proceedings of the 31st International Conference on
Technology of Object-Oriented Languages and Systems, Nanjing, China (1999) 440-447

 Mining Frequent Tree-Like Patterns in Large Datasets� 567

8. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.:
Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. In IEEE
Transactions on Knowledge and Data Engineering, Vol. 16, No. 10 (2004) 1424-1440

9. Yang, J., Wang, W., Yu, P. S.: STAMP: On Discovery of Statistically Important Pattern
Repeats in Long Sequential Data. In Proceedings of the 3rd SIAM International Conference
on Data Mining, San Francisco, CA, USA (2003) 224-238

10. Zaki, M. J.: Efficiently Mining Frequent Trees in a Forest. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton,
Alberta, Canada (2002) 71-80

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 568 – 575, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Approach for Mining Fault-Tolerant
Frequent Patterns Based on Bit Vector Representations

Jia-Ling Koh and Pei-Wy Yo

Department of Information and Computer Education
National Taiwan Normal University, Taipei, Taiwan

jlkoh@ice.ntnu.edu.tw

Abstract. In this paper, an algorithm, called VB-FT-Mine (Vectors-Based
Fault–Tolerant frequent patterns Mining), is proposed for mining fault-tolerant
frequent patterns efficiently. In this approach, fault–tolerant appearing vectors
are designed to represent the distribution that the candidate patterns contained
in data sets with fault-tolerance. VB-FT-Mine algorithm applies depth-first
pattern growing method to generate candidate patterns. The fault-tolerant
appearing vectors of candidates are obtained systematically, and the algorithm
decides whether a candidate is a fault-tolerant frequent pattern quickly by
performing vector operations on bit vectors. The experimental results show that
VB-FT-Mine algorithm has better performance on execution time significantly
than FT-Apriori algorithm proposed previously.

1 Introduction

Among the various data mining applications, mining association rules is an important
one [1]. Several efficient algorithms have been proposed for finding frequent patterns
and association rules are derived from the frequent patterns, such as the Apriori[1],
DHP[3], and FP-growth[2]. When mining frequent patterns, an expected minimum
support may cause only few frequent patterns are discovered because real-world data
tends to be dirty. Although much more specific frequent patterns could be obtained by
lowering the minimum supports, no general information about the representative
frequent patterns is returned. The problem of mining fault-tolerant frequent patterns
(itemsets) was defined and solved in [5] by proposing FT-Apriori algorithm. FT-
Apriori algorithm was extended from Apriori Approach, in which downward closure
property is applicable for mining fault-tolerant frequent patterns. Similar to Apriori-
like[1] algorithms, FT-Apriori algorithm suffered from generating a large number of
candidates and repeatedly scanning database. Moreover, fault toleration usually
introduces much huge number of candidates when increasing the fault tolerance or
decreasing the support thresholds.

In this paper, an algorithm, called VB-FT-Mine (Vector-Based Fault–Tolerant
frequent patterns Mining), is proposed for speeding up the process of mining fault-
tolerant frequent patterns. In this approach, fault–tolerant appearing vectors are
designed to represent the distribution that the candidate patterns contained in data sets

 An Efficient Approach for Mining Fault-Tolerant Frequent Patterns 569

with fault-tolerance. VB-FT-Mine algorithm applies depth-first pattern growing
method to generate candidate patterns. The fault-tolerant appearing vectors of
candidate patterns are obtained systematically, and the algorithm decides whether a
candidate is a fault-tolerant frequent pattern quickly by performing vector operations
on bit vectors. The experimental results show that VB-FT-Mine algorithm has better
performance significantly on execution time than FT-Apriori algorithm[5] proposed
previously.

The remaining of this paper is organized as follows. The problem of fault-
tolerant frequent pattern mining is defined in Section 2. In Section 3, the bit vector
representation is introduced and applied to develop the proposed VB-FT-Mine
Algorithm. The performance study of VB-FT-Mine is reported in Section 4, which
shows the efficiency comparison with FT-Apriori. Finally, Section 5 concludes
this paper.

2 Preliminaries

The following definitions refer to [1]. Let I = {i1, i2, …, im} be a set of literals, called
items. A set of items is called an itemset. Itemsets containing k items are called k-
itemsets. Let DB be a database of transactions, where each transaction T in DB is an
itemset such that T⊆I. For a given itemset X⊆I, we say that a transaction T contains
itemset X if and only if X⊆T. The support count of an itemset X in DB, denoted as
SupX, is the number of transactions in DB containing X. Given a minimum support
threshold s, an itemset X is called a frequent pattern in DB if SupX ≥ s. Otherwise, X
is named an infrequent pattern.

Transaction
ID

Items

T1 BDEF

T2 ACDE

T3 BEFG

T4 CFG

T5 ABDEG

(a)

Item Appearing Vector
A <0,1,0,0,1>
B <1,0,1,0,1>

C <0,1,0,1,0>
D <1,1,0,0,1>
E <1,1,1,0,1>
F <1,0,1,1,0>
G <0,0,1,1,1>

(b)

Fig. 1. Sample database TDB and its appearing vector table

Example 1. In the transaction database TDB shown in Figure 1(a), if the minimum
support threshold is set to 4, E is the only one frequent pattern. Although lowering the
minimum support threshold to 3 will get 7 frequent patterns (B, D, E, F, G, BD, and
DE), the result still consists of short patterns and which is less representative (with
lower support). However, observe the transactions in database TDB closely, three
transactions T1, T3, and T5 contain four out of the five items: B, D, E, F, and G.
Therefore, when checking whether a transaction containing a pattern with

570 J.-L. Koh and P.-W. Yo

fault-tolerance(contain 4 out of 5 items), a longer “approximate” pattern (BDEFG)
with support count 4 is obtained. This problem of mining fault-tolerant frequent
patterns was defined in [5].

Definition 1 (Fault-tolerant support): Given a fault tolerance (>0) and an
itemset P. A transaction T (tid, S) is said to FT-contain itemset P under fault
tolerance iff there exists P´⊆P such that P´⊆S and |P´|≥(|P|-). The number of
transactions in a database DB which FT-contain itemset P is called the FT-support of
P under fault tolerance , denoted as FT-sup (P). The set of transactions
FT-containing P is called the FT-body of P, denoted as FT-body (P). For each item
p in itemset P, the number of transactions in FT-body (P) containing item x is called

the item support of x in FT-body (P), denoted as Item-Sup δ
P (x).

Definition 2 (Fault-tolerant frequent pattern): Given a fault tolerance , a FT-
support threshold min-supFT, and a frequent-item support threshold min-sup item. An
itemset P is called a fault-tolerant frequent pattern iff

1) FT-supδ (P) ≥ min-sup FT; and

2) For each item x∈ P, Item-Sup δ
P (x) ≥min-supitem .

3 Bit Vector Representations

3.1 Appearing Vectors

Let |DB| denote the number of transactions in database. For each item x, the
appearing vector of x, denoted as Appearx, is a binary vector of |DB| dimensions. If x
is contained in the ith transaction, the ith dimension in its appearing vector is set to be
1; otherwise, the dimension is set to be 0. Then, an appearing vector table, which
consists of appearing vectors of various items, is constructed to represent the
distribution of items in a transaction database.

Consider the sample database TDB shown in Table 1. There are 7 various items
and 5 transactions in the database. Item A is contained in transactions T2 and T5, thus
the appearing vector of A, denoted as AppearA, is <0,1,0,0,1>. Similarly, the
appearing vectors of B, C, D, E, F, and G are obtained to construct the appearing
vector table of TDB, as shown in Table 2.

For each item x, the number of dimensions with value 1 in Appearx implies its
support count in the database. This value could be obtained by performing a support
counting function, Count(), which computes an inner product operation on Appearx
and a |DB|-dimensional vector with 1s in all the dimensions (denoted as I|DB|).

An appearing vector is also applied to represent the distribution of an itemset P in
transactions of a database. Suppose itemset P consists of k items: i1,i2 ...,and ik . The
appearing vector of P is obtained by performing AND operations on appearing
vectors of its k elements. Similarly, support count of P could be obtained quickly by
performing the same support counting function.

 An Efficient Approach for Mining Fault-Tolerant Frequent Patterns 571

3.2 FT_Appearing Vectors

Given a fault tolerance δ, the FT-appearing vector of an itemset P is denoted as FT-
AppearP(δ). If the ith transaction FT-contains itemset P, the ith dimension in FT-
AppearP(δ) is set to be 1; otherwise, the dimension is set to be 0. The appearing vector
of itemset P is regarded the FT-appearing vector of P under fault tolerance 0.

The dimensions in FT-AppearP(δ) with 1s imply the corresponding transactions in
FT-body (P). Thus, the FT-support of an itemset P under fault tolerance could be
obtained by inputting FT-AppearP(δ) to the support counting function, Count(),
introduced in section 3.1. In addition, for each item x in P, Item-Sup δ

P (x) equals to

the number of dimensions with 1s after performing AND operation on FT-AppearP(δ)
and Appearx. That is, Item-Sup δ

P
(x) could be obtained by performing an inner product

operation on FT-AppearP(δ) and Appearx.

3.3 Generation of FT-Appearing Vectors

Given a fault tolerance , a transaction T FT-contains an itemset P means T contains
at least |P|- items in P. The cost is significant to compute the appearing vectors of

these C ||
||

P
P δ− subsets and perform (C ||

||
P
P δ−

 -1) OR operations among these vectors when

the number of elements in P is large. For solving this problem, the following theorem
provides a property for generating FT_appearing vectors recurrently.

[Theorem 1] Let P denote a nonempty itemset and P´=P∪{x}, where x is an item not
in P. A transaction T FT-contains P´ under fault tolerance iff

1) T FT-contains P under fault tolerance (-1), or
2) T contains x and FT-contains P under fault tolerance .

Suppose itemset P´ is obtained by inserting an item x into a nonempty itemset P.
According to theorem 1, the FT-appearing vector FT-AppearP´ could be computed
from FT-AppearP and Appearx according to the following definition of recurrent
function.

Recurrent Function for FP-Appearing Vectors:
Input: Itemset P, item x(x∉P), FT_appearing vectors of P, Appear x, and fault

tolerance δ.
Output: the appearing vectors of P´, where P´=P∪{x}.

 P´=P∪{x};
If | P´|≤δ, FT-AppearP´(δ) = I|DB|;
If δ =0, FT-AppearP´(δ)=AppearP´=FT-AppearP(0)∧Appear x;
Otherwise, FT-Appear P´(δ)=FT-AppearP(δ)-1)∨(FT-AppearP(δ))∧Appear x).

That is, for any given pattern P and an item x, where x is not in P, FT-appearing
vectors of the pattern P´=P∪{x} with various fault tolerances could be obtained when
all the FT-appearing vectors of P with fault tolerance from 0 to are known.

572 J.-L. Koh and P.-W. Yo

3.4 VB-FT-Mine Algorithm

VB-FT-Mine algorithm is designed based on the FT-appearing vectors representation
and the recurrent relation introduced in Section 3.3. First, the transactions in database
are read in one by one to construct an appearing vector table. Then the candidates are
generated by performing depth-first pattern growing method. For each newly
generated candidate pattern, the recurrent function defined in Section 3.3 is performed
to obtain its FT-appearing vectors with various tolerances. The FT-support and item-
supports of a pattern are thus checked efficiently by performing inner product
operations on appearing vectors as introduced in Section 3.2. The VB-FT-Mine
algorithm is shown as follows.

Algorithm VB-FT-Mine
Input: Transaction database DB, min-supitem, min-supFT, and fault tolerance δ.

Output: the complete set of FT-patterns.
1. Scan DB once to construct the appearing vector table.
2. Compute the support count for each item x. An item x is global frequent iff

DB
xSup ≥ min-supitem. Let the global frequent items be denoted as x1,x2,..., xn.

3. For i=1 to n {
(a) Initialization: Set P = {xi}; FT-AppearP(0) =Appearxi ;

Set j= i+1; Push (P, FT-appearing vectors of P, j) into stack;
(b) While (stack is not empty){

 (b-1) Generate a candidate pattern P´= P ∪ {xj};
 FT-AppearP’(0) = FT-AppearP(0)∧Appearx;

For (k = 1 to δ)
{ If | P´|≤k, FT-AppearP´(k) = I|DB| ;

 else FT-Appear P´(k) =FT-AppearP(k-1)∨(FT-AppearP(k)∧Appearxj)}
(b-2) Compute FT-supδ(P´) = FT-AppearC(δ) ⋅ I|DB|;
(b-3) If FT-supδ(P´)≥min-supFT,

for (each item x in P´) performs FT-AppearP´(δ)⋅AppearX to obtain Item-
Sup δ

'P (x);
(b-4) If Item-Sup δ

'P (x)≥min-supItem
for (each x in P´) { Output P´ as a result;

Set P = P´ and j=j+1;
If j≤n Push(P, FT-appearing vectors of P, j) into stack;}

 else Repeat
{ Pop(P, P’s FT-appearing vectors, j) from stack; j=j+1;}

until ((j≤n) or (stack is empty))
} /* end while

 } /* end for

4 Performance Evaluation

In order to show the efficiency and effectiveness of our approach by comparing with
FT-Apriori[5] algorithm, both algorithms are implemented using Microsoft Visual
C++ 6.0. The experiments are performed in a PC with an Intel Pentium4 2.4GHz CPU
and 256MB main memory, running Microsoft Windows XP Professional. The

 An Efficient Approach for Mining Fault-Tolerant Frequent Patterns 573

min-sup FT=|D|*15%
min-sup item=|D|*10%

0
2000
4000
6000
8000

10000

FT_Apriori

FFT-Mine

FT_Aprior
i

287 1158 3422 8143

FFT-Mine 9 70 335 1081

1 2 3 4

min-sup FT=|D|*15%

min-sup item=|D|*10%

0

300

600

900

1200

1500

|D|*(10k)

ru
n

 t
im

e(
se

c)

FT_Apriori

FFT-M ine

FT_Apriori 117 322 484 645 1336

FFT-Mine 5 11 13 23 43

20 40 60 80 100

experiments were performed on synthetic data generated by the IBM synthetic
market-basket data generator.

(a) T10I8D100kN450 (b) T10I8D10kN1k

(c) T10I8D100kN450 (d) T10I8N450

(e) T10I8D100k

Fig. 5. Experimental Results

min-sup FT=|D|*10%

0

3000

6000

9000

12000

15000

min_sup item =|D|*%

FT-Apriori

FFT-M ine

FT-Apriori 14107 7335 3567 1606 974

FFT-Mine 488 246 109 50 29

5 6 7 8 9

min-sup item=|D|*2.5%

0

1000

2000

3000

4000

5000

6000

min-sup FT=|D|*%

FT-Apriori

FFT-Mine

FT-Apriori 5210 4427 1583 652 425 252 152

FFT-Mine 129 129 87 37 14 6 3

4 5 6 7 8 9 10

min-sup FT=|D|*10%
min-sup item=|D|*6%

|D|=100000

0

500

1000

1500

2000

|N|

ru
n

tim
e

(s
ec

)

FT-Apriori

FFT-Mine

FT-Apriori 1884 248 108 23 2

FFT-Mine 61 9 4 1 1

500 600 700 800 900

ru
n

 t
im

e(
se

c)

ru
n

 t
im

e(
se

c)
ru

n
 t

im
e(

se
c)

574 J.-L. Koh and P.-W. Yo

In the following experiments, the three run-time parameters (min-supitem,min-
supFT , and) are controlled individually for observing their effects on execution
time of the two mining algorithms. In addition, the execution times on different data
sets with various setting on database size and number of items are evaluated in the
other two experiments.

Figure 5(a) shows that the execution time of VB-FT-Mine is much less than the
time of FT-Apriori. When the setting on min-sup item is decreased, more candidate
itemsets are generated. Therefore, the execution time of both algorithms increases as
min-supitem is decreased. Moreover, the increasing rates of both algorithms are similar.
However, VB-FT-Mine is about 30 times faster than FT-Apriori with the same
support threshold settings. Figure 5(b) shows, when the setting on min-supFT is
decreased, there are also more candidate itemsets generated. Thus, the execution time
of both algorithms increases as min-sup FT is decreased. The execution time of FT-
Apriori increases significantly when min-supFT is lower than |D|*6%. However, the
execution time of VB-FT-Mine keeps stable when min-supFT is below |D|*5%. When
the fault tolerance δ increases, much more candidates are generated. As Figure 5(c)
shows, a minor increase of fault tolerance increases the execution time of FT-Apriori
algorithm dramatically. The growing ratio of VB-FT-Mine is less than FT-Apriori,
which indicates the scalability of VB-FT-Mine with respect to fault tolerance.VB-
FT-Mine algorithm scans the database only once. The result in Figure 5(d) shows, as
expected, the execution time of VB-FT-Mine glow more slowly than the one of FT-
Apriori as the size of database increases. As the number of various items in database
|N| increases, the average size of the transactions remains 10, the data distribution in
the database becomes sparser. Figure 5(e) shows that, execution times of both
algorithms decrease as N increases because less frequent patterns are generated in the
mining process. As the figure shows, for FT-Apriori algorithm, the costs to handle a
huge number of candidate patterns are more and more significant when |N| is below
600. However, this factor does not influence the execution time of FT-Apriori very
much. From the above experiments, in general, VB-FT-Mine algorithm outperforms
FT-Apriori on execution time with respect to various parameters setting. Especially,
the VB-FT-Mine has better scalability on execution time with respect to support
thresholds and fault tolerance than FT-Apriori.

5 Conclusion

In this paper, an algorithm named VB-FT-Mine is proposed for mining fault-tolerant
frequent patterns efficiently. VB-FT-Mine algorithm is designed based on the bit
vector representations. According to the depth-first pattern growing strategy, the
FT_supports and item supports of candidate patterns could be obtained by performing
vector operations on FT_appearing vectors efficiently. The experimental results show
our approach has significant improvement on execution time than FT-Apriori
algorithm. To extend VB-FT-Mine algorithm by applying the strategies for mining
frequent patterns in data streams provide a good solution for this problem, which is
under our study currently.

 An Efficient Approach for Mining Fault-Tolerant Frequent Patterns 575

References

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” in Proc. of
Int. Conf. on Very Large Data Bases, 1994.

[2] J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach”, Data Mining and Knowledge Discovery,
8(1):53-87, 2004.

[3] J.S. Park, M.S. Chen, and P.S. Yu, “An Effective Hash-based Algorithm for Mining
Association Rules,” in Proc. of the ACM SIGMOD International Conference on
Management of Data (SIGMOD'95), May, pages 175-186, 1995.

[4] J. Pei, A.K.H. Tung, and J. Han, “Fault-Tolerant Frequent Pattern Mining: Problems and
Challenges,” in Proc. of ACM-SIGMOD Int. Workshop on Research Issues on Data
Mining and Knowledge Discovery (DMKD'01), 2001.

[5] S.-S. Wang and S.-Y. Lee, “Mining Fault-Tolerant Frequent Patterns in Large Database,”
in Proc. of Workshop on Software Engineering and Database Systems, International
Computer Symposium, Taiwan, 2002.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 576 – 581, 2005.
© Springer-Verlag Berlin Heidelberg 2005

NNF: An Effective Approach in Medicine Paring
Analysis of Traditional Chinese Medicine Prescriptions1

Li Chuan1, Tang Changjie1, Peng Jing1, Hu Jianjun1
Jiang Yongguang2, and Yong Xiaojia2

1 The Data Base and Knowledge Engineering Lab (DBKE),
Computer School of Sichuan University,

{lichuan, tangchangjie}@cs.scu.edu.cn
2 Chengdu University of Traditional Chinese Medicine

{cdtcm, rainjia}@163.com

Abstract. Medicine Paring Analysis is one of the most important tasks in the
research of Traditional Chinese Medicine Prescriptions. The most essential and
difficult step is to mine associations between different medicine items. This
paper proposes an effective approach in solving this problem. The main
contributions include: (1) proposing a novel data structure called indexed
frequent pattern tree (IFPT) to maintain the mined frequent patterns (2)
presenting an efficient algorithm called Nearest Neighbor First (NNF) to mine
association rules from IFPT (3) designing and implementing two optimization
strategies that avoid the examinations of a lot of subsets of Y that can’t be the
left part of any association rule of the form X Y – X and thus achieving a
wonderful performance and (4) conducting extensive experiments which show
that NNF runs far faster than Apriori algorithm and has better scalability. And
finally we demonstrate the effectiveness of this method in Medicine Paring
Analysis.

Keywords: New Application, Data Mining and Knowledge Discovery,
Traditional Chinese Medicine, Medicine Paring Analysis

1 Introduction

Traditional Chinese Medicine (TCM) has a long therapeutic history of thousands of
years and the therapeutic value of which, especially on chronic diseases, has been
winning wider and wider acknowledgement in the World [1]. However, despite its
existence and continued use over many centuries, and its popularity and extensive use
during the last decades, its chemical background and formula synergic effects are still

1 This work was supported by Grant from National Science Foundation of China (60473071),

Specialized Research Fund for Doctoral Program by the Ministry of Education (SRFDP
20020610007), and the grant from the State Administration of Traditional Chinese Medicine
(SATCM 2003JP40). LI Chuan, PENG Jing, HU Jianjun are Ph. D Candidates at DB&KE
Lab, Sichuan University. Jiang Yongguang is a Professor at Chengdu University of
Traditional Chinese Medicine. And TANG Changjie is the associate author.

 NNF: An Effective Approach in Medicine Paring Analysis 577

a mystery at least in theoretical sense because of its complex physiochemical [2]. In
this study, we propose an effective approach in solving this problem. Our
performance study shows that the NNF algorithm is by far faster than other methods
such as Traverse, Linear, Apriori etc. and has better scalability. And we also present
results of applying this algorithm to spleen-stomach prescriptions as is an important
part of the whole TCM Dictionary, which shows the effectiveness of our method.
Interested readers are referred to references [3]-[11] for related studies. Due to space
limitation, the experimental part has to appear elsewhere [12].

The remaining of the paper is organized as follows. Section 2 presents the IFPT
structure. Section 3 details the design and implementation of NNF. Section 4 exhibits
the applications of NNF in Medicine Paring Analysis of Traditional Chinese
Medicine. And Section 5 concludes the paper.

2 Indexed Frequent Patterns Tree

2.1 A Different Frequent Patterns Tree

Definition 2.1 Frequent Patterns Tree (FPT) is a tree structure that satisfies the
following properties:

1 FPT consists of a root node and a set of sub-trees. Each node in the sub-trees
contains the item and the item’s support count (frequency of occurrences).
2 FPT is an ordered tree in that: (a) if N1 is a child of non-root node N, N1.item
N.item (b) if N1 and N2 are both children of non-leaf node N and N1 is the left sibling
of N2, N2.item N1.item.
3 Each frequent pattern X corresponds to a single node N and hence the single path
from root to that node: if X = {a1, a2,, ..., ak } is a frequent pattern, there exists one
and only one node N in FPT such that the items of the path starting from root to node
N (not including the root node) are a1, a2,, ..., ak respectively and the support count of
N, N.count is equal to the support count of frequent pattern X and vice versa.

It’s notable that the FPT is rather different from the FP-Tree proposed in paper [4]
by Han. Traditional FP-Tree is constructed directly from transaction database and
each node, factually the path from root to that node, represents an existing transaction.
But there’s no correspondence between theses paths and frequent patterns. However,
in FPT each node is the one and only one representative of a frequent pattern and vice
versa. Therefore, FPT is a truly frequent pattern tree whereas FP-Tree is merely a
transaction tree.

2.2 Indexed Frequent Patterns Tree (IFPT)

FPT has the following valuable property that for any frequent pattern Y, nodes of all
of its sub-patterns can’t be found to its left. Formally, we have the following
definition and lemma.

Definition 2.2 Suppose N1 and N2 are two different nodes in FPT. Node N1 positions
to the left of N2 if and only if at least one of the following criteria holds:

578 Li. C et al.

(1) Both N1and N2 are children of the same parent node and N2. item
N1.item (namely, N1is the left sibling of N2)

(2) There exist nodes N1’ and N2’ that are ascendants of N1 and N2
respectively such that N1’ and N2’ have the same parent node and
N2.item N1.item.

Lemma 2.1 Suppose X and Y are both frequent patterns with corresponding paths in
FPT to be P1 and P2, if X ⊂ Y, P1 can’t position to the left of P2.

So as to take better advantage of FPT, we introduce indexes onto FPT, and put
forward the concept of IFPT.

Definition 2.3 IFPT is an indexed FPT with the following links:

1 Node-link: node link is formed by linking all the nodes of the same item
from left to right

2 Leaf-link: leaf-link links all the leaves from right to left
3 Sub-pattern-link: Suppose N to be a non-leaf node, with corresponding

pattern to be Y. M (suppose its corresponding pattern to be X) lies in the
sub-pattern-link if and only if:
a) X is a sub-pattern of Y,
b) N positions to the left of M,
c) M.item=N.item, and
d) N.count/M.count min_conf

3 Nearest Neighbor First

3.1 Optimization Strategies

Lemma 3.1 Suppose Y to be a frequent pattern, X ⊂ Z, X ≠ ∅. If X Z X is not a
strong rule, for any Y, Y ⊃Z, X Y X is not strong.

Lemma 3.1 shows an interesting anti-tonal that if X can’t pass the confidence test
against Z (i.e. X Z X is not a strong association rule), for any super-pattern of Z,
denoted as Y, X can’t pass the confidence test against Y either. And by further
deepening from lemma 3.1, we get the following optimization strategy:

Optimization 3.1. When investigating the supper-patterns of Z, all the sub-patterns X
that can’t be the left part of X=>Z-X should be ignored.

Lemma 3.2 Suppose Y to be a frequent pattern, X ⊂ Y, X ≠ ∅. If X Y X is not
strong, for any X’ ⊂ X, X’ Y X’ is not strong.

Lemma 3.2 proves another interesting anti-tonal different from that of lemma 3.2
that if X can’t pass confidence testing against Y, for any sub-patterns of X, denoted as
Z, Z can’t pass the confidence test against Y either. Lemma 3.2 tells us the following
optimization strategy:

 NNF: An Effective Approach in Medicine Paring Analysis 579

Optimization 3.2 When investigating frequent pattern Y, if frequent pattern X can’t
be the left part of the rule X Y X, any sub-pattern of X should be ignored.

3.2 NNF Algorithm

The main idea of NNF algorithm is sketched as follows:
NNF (Nearest Node First) algorithm processes every branch one by one from right

to left across IFPT. Since every path of length m (there are m nodes in the path from
root to that node) has m-1 sub-paths from root to that node with length no less than 2,
NNF investigates the nodes nearest to root first (i.e. suppose the frequent pattern
represented by that node to be Y and produce all possible association rules in the
following steps by judging if any sub-pattern of Y, namely, X can pass the confidence
test against Y) in order to better utilize optimization strategy 1 and when considering
the sub-patterns of Y, investigate the longest sub-patterns first in order to make full
use of optimization 3.2.

Algorithm NNF: Mining the complete set of strong association rules with minimum
confidence min_conf in a transaction database.

Input: IFPT
Output: The complete set of strong association rules
Procedure:

(1) for (each unprocessed node M in the IFPT)
(2) RuleGen(N);

Function RuleGen(N) {

(3) Suppose node N correspond to pattern Y, with its support count to be c
(4) for (each node Q in the node-link of N) {
(5) Suppose node Q corresponds to pattern X, with its support count to be c1
(6) if (X passes test with min_conf) {
(7) Output an association rule: X Y X, its support c/|D| and confidence c/c1
(8) if N is a non-leaf node link Q into the sub-pattern link of node N
(9) }}
(10) Let p point to the parent node of N
(11) while (p != root) {
(12) Suppose the node pointed by p is P P corresponds to frequent pattern Z with

support count to be c1
(13) if (Z passes test with min_conf) {
(14) Output an association rule: Z Y Z together with its support c/|D| and

confidence c/c1
(15) for (each node Q in the sub-pattern-link of P) {
(16) Suppose Q corresponds to frequent pattern X with its support to be c1
(17) if (X passes test with min_conf)
(18) Output an association rule X Y X its support c/|D| and confidence c/c1
(19) }
(20) p points to the parent of P

580

(21) } else break
(22) }}

Theorem 3.1 Given minimum confidence threshold, min_conf, algorithm NNF can
generate the complete set of association rules correctly.

4 Applications in Medicine Paring Analysis

By introduction of dual-direction association NNF can be used to mine and get
closely related medicine pairs and groups. E.g. by mining a subset of Spleen-stomach
prescriptions database we got the result shown as below, where support is set to 7%
(for too high support will vacate the analysis result) and the confidence is set to 30%.

It’s notable that a quite large portion of the result is meaningful and interpretable
by TCM theory. E.g. ginseng and atractylodes rhizome are the major ingredients of a
Spleen stomach prescription which clears up heat and excretes damp and suitable for
patients with yellowish and slimy tongue coating, soggy and rapid pulse.

5 Conclusion

Medicine Paring Analysis is one of the most important tasks in research of Traditional
Chinese Medicine Prescriptions. In this study, we propose an effective approach in
solving this problem. The main contributions are as follows: (1) we propose a novel
data structure called indexed frequent pattern tree (IFPT) to maintain the mined
frequent patterns (2) we present an efficient algorithm called Nearest Neighbor First
(NNF) to mine association rules from IFPT (3) we design and implement two
optimization strategies that avoid the examinations of a lot of subsets of Y that can’t
be the left part of any association rule of the form X Y – X and thus achieve a good
performance (4) we conduct extensive experiments to test the efficiency and
effectiveness of NNF. And finally we present results of applying this algorithm to
spleen-stomach prescriptions as is an important part of the whole TCM Dictionary,
which shows the effectiveness of our method.

ginseng<-> atractylodes rhozome (12%, 75%/66%)

atractylodes rhozome<-> cork-tree bark (25%, 40%/44%)

chrysanthemum, amur<-> cork-tree bark (8% 56%/39%)

coptis root, fresh rehmannia root <-> lotus seed (9% 54%/43%)

tangerine peel <->nandina fruit (7%, 54%/52%)

Li. C et al.

 NNF: An Effective Approach in Medicine Paring Analysis 581

References

1. General Guidelines for Methodologies on Research and Evaluation of Traditional
Medicine, http://www.who.int/medicines/library/trm/who-edm-trm-2000-1/who-edm-trm-
2000-1.pdf

2. Guste Editors’ Notes on the special issue, http://www.sinica.edu.tw/~jds/preface.pdf
3. FAN Ming, LI Chuan, Mining Frequent Patterns in an FP-tree Without Conditional

FP-tree Generation, Journal of Computer Research and Development, 40th Vol. 2004
4. J. Han, J. Pei and Y. Yin. Mining frequent patterns without candidate generation. Proc.

2000 ACM-SIGMOD Intl. Conf. on Management of Data, pages 1-12. May 2000.
5. LI Chuan, FAN Ming, A NEW ALGORITHM ON MULTI-DIMENSIONAL

ASSOCIATION RULES MINING, Journal of Computer Science, Aug. 29th Vol. A
Complement, page 1-4, 2002

6. LI Chuan, FAN Ming, GENERATING ASSOCIATION RULES BASED ON
THREADED FREQUENT PATTERN TREE, Journal of Computer Engineering and
Application, 4th Vol., 2004

7. FAN Ming, LI Chuan, A Fast Algorithm for Mining Frequent Closed ItemSets, submitted
to ICDM’04

8. LI Chuan, FAN Ming Research on Single-dimensional Association Mining, Full Paper
Data Base of Wanfang Network

9. R. Agrawal and R. Srikant. Fast algorithms for Mining association rules. Proc. 1994 Int’l
Conf. on Very Large Data Bases, pages 487-499, Sept. 1994.

10. Jian Pei, Jiawei Han, and Runying Mao. CLOSET An Efficient Algorithm for Mining
Frequent Closed Itemsets. Proc. 2000 ACM-SIGMOD Int. 2000 ACM SIGMOD Intl.
Conference on Management of Data. page 8-10.

11. http://www.ics.uci.edu/~mlearn/MLRepository.html
12. http://teacher.scu.edu.cn/~chjtang/buf/download/test/lichuan.zip

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 582 – 587, 2005.
© Springer-Verlag Berlin Heidelberg 2005

From XML to Semantic Web

Changqing Li and Tok Wang Ling

Department of Computer Science, National University of Singapore
{lichangq, lingtw}@comp.nus.edu.sg

Abstract. The present web is existing in the HTML and XML formats for
persons to browse. Recently there is a trend towards the semantic web where
the information can be can be processed and understood by agents. Most of the
present research works focus on the translation from HTML to semantic web,
but seldom on XML. In this paper, we design a method to translate XML to
semantic web. It is known that ontologies play an important role in the semantic
web, therefore firstly, we propose a genetic model to organize ontologies, and
based on this model, we use three steps, viz. semantic translation, structural
translation and schematic translation, to translate XML to semantic web. The
aim of the paper is to facilitate the wide use of semantic web.

1 Introduction

Today, the web is increasingly moving to the semantic web [13], where the web in-
formation is annotated with concepts from sharing ontologies [10], thus the semantics
of information can be understood and consumed by agents. Researchers [5, 7] have
focused on how to annotate the HTML information. XML is another important format
to store the current web information, but seldom researches are about how to translate
XML to semantic web.

The rest of the paper is organized as follows. Section 2 reviews the related work,
and Section 3 describes the preliminary and motivation of this paper. In Section 4, we
propose a genetic model for ontology organization. Section 5 discusses the three steps
of translations. The conclusion to this research is in Section 6.

2 Related Work

Resource Description Framework (RDF) [8] organizes information in a Subject-Verb-
Object (SVO) (or Resource-Property-Resource triples) form, thus the RDF files can
be processed semantically.

Some primitives are defined in RDF Schema (RDFS) [1] and the successors of
RDFS: viz. DARPA Agent Markup Language (DAML) [11], Ontology Inference
Layer (OIL) [6], DAML+OIL [4] and Web Ontology Language (OWL) [3]. OWL has
three increasingly-expressive sublanguages: OWL Lite, OWL DL (Description Logic)
and OWL Full. These languages all follow the RDF structure.

When the ontology languages are ready, the ontologies for different domains can
be created. And based on the ontologies, the web information can be annotated for
agents to process, which is today’s semantic web. Most of the current techniques

 From XML to Semantic Web 583

focus on the annotations of the information in HTML. SHOE Knowledge Annotator
[5] and AeroDAML [7] are two tools to annotate HTML.

SHOE Knowledge Annotator is a manual tool. The user needs to manually select
ontologies and concepts to annotate the HTML information, which is tedious. On the
other hand, AeroDAML annotates HTML information based on the using frequency
of an ontology concept and it is an automatic tool without any human interference.
This tool uses a single predefined ontology to include all the concepts for different
domains in. Therefore, when searching ontologies for annotations of HTML, all the
concepts in this predefined ontology have to be traversed.

Another important format for the current web is XML. OntoParser [2] is a tool
which only translates the structure of XML to satisfy the RDF structure.

3 Preliminaries

If an XML file confirms to an XML schema, it is said to be a valid XML file, other-
wise it is an invalid XML file. For valid XML files, we can firstly translate their
schemas to satisfy the semantic web requirement, then the valid XML files can be
easily translated when confirming to the new translated schema, i.e. keep the changes
of the XML schemas and update them into the XML files. For invalid XML files, we
have to translate them individually.

3.1 ORA-SS Model

The XML Schema and DTD are two main schema definition languages for XML
data. But they lack semantics. We employ the semantic rich model ORA-SS (Object-
Relationship-Attribute Model for Semi-structured Data) [9] which distinguishes
whether the relationship among the elements is binary or n-ary, and whether an attrib-
ute belongs to an element object class or to the relationship type among elements.

In Figure 1, student, course and part_time are treated as object classes. The id,
name, contact_no, grade and position are treated as attributes. The filled circles are
the object identifiers. The label “sc, 2, 3:8, 4:n” means: there is a binary relationship
type named “sc”, where one student
may take 3 to 8 courses and one
course should be taken by at least 4
students.

The “sc” label near the edge from
course to grade indicates that the
grade is an attribute belonging to the
relationship type “sc” rather than the
object class course.

3.2 Motivating Example

Figure 1 shows that both the “student” and “course” have the “name” attribute, but
they are different in semantics. It is easy for a person to distinguish the semantics of

sc,
2, 3:8, 4:n

sc

Fig. 1. The ORA-SS schema diagram

2, 0:1, 0:n

id name contact_no

code name position grade

student

course part_time

584 C. Li and T.W. Ling

the two “name”s, but the agent will identify them as the same string if there is no
semantic processing to the two “name”s.

The “part_time” and “position” show that the “student” may also be a part time
employee, thus the semantics of “student_employee” is clearer than “student”.

There is a relationship type “sc” between “student” and “course”, but the semantics
of “sc” is not clear. We do not know whether the student takes a course or drops a
course. And the ORA-SS schema does not require the relationship to be an element
name in the XML file, for example, the relationship type “sc” does not necessarily
appear in a student XML file. That is to say, the semantics of the relationship between
“student” and “course” is not clear.

We will address these problems in this paper.

4 A Genetic Model for Ontology Organization

We propose a genetic model to organize ontologies. This genetic model includes the
following operators, viz. inheritance, block, atavism and mutation.

In Figure 2, Ontologies reuse the primitives of ontology languages e.g. RDF, RDFS
and OWL based on the inheritance operator. And lower level ontologies reuse the
concepts of higher level ontologies, e.g. Employee Ontology inherits Person Ontol-
ogy. The concept “home_phone” of Person Ontology is blocked by Employee Ontol-
ogy because the home phone of an employee should not be public. The “con-
tact_number” in Employee Ontology (refers to “office_phone”) is a mutation of the
“contact_number” in Person Ontology (refers to “home_phone”).

The atavism operator is used to show that the “home_phone” of grandparent (Per-
son) ontology blocked by parent (Employee) ontology is reused in the grandchild

Atavism Block

Inheritance

Inheritance
Inheritance

Inheritance

…

…

Fig. 2. Ontology hierarchy

Inheritance

Block

Mutation

…

contact_
number

Person
Ontology

Employee
Ontology

Employee-
WorkingHome

Ontology

home_phone

per.home_phone

office_phone
per:home
_phone

per:contact
_number

Student
Ontology

Inheritance

emp:contact _number …

OWL

Course
Ontology

Inheritance

Inheritance

Inheritance

Student-
Employee
Ontology

RDF

RDFS

 From XML to Semantic Web 585

(EmployeeWorkingHome) ontology. The atavism operator in this model is absent in
other inheritance mechanisms.

Furthermore, StudentEmployee ontology inherits both Student and Employee on-
tologies. StudentEmplyee Ontology blocks the “emp:contact_number” and inherits
the “contact_number” from Student Ontology in the multiple inheritance. For the
multiple inheritance, we assume that the concept from only one parent ontology is
inherited, and the conflict concepts from all the other parent ontologies are blocked.
Course Ontology does not inherit Person Ontology etc., but directly inherits OWL.

The “per”, “emp” etc. in Figure 2 are namespaces [12] referring to Person and Em-
ployee ontologies etc.

5 The Translations

5.1 Semantic Translation

The Semantic Translation (SemT) from an XML file or schema to a semantic web file
or schema in this paper means that the XML elements, attributes and values are
replaced with concepts from ontologies.

Rule SemT 1 (Rule for that only one matched concept is returned from ontolo-
gies). The XML element, attribute or value is replaced with this only returned concept.

Rule SemT 2 to 4 are used for that more than one matched concepts are returned.

Rule SemT 2 (Rule for Multiple Inheritance and Block). If the child ontology
inherits several parent ontologies, the concept from that unblocked parent ontology is
selected for the replacement.

Rule SemT 3 (Rule for Atavism). If the concept of the grandparent or ancestor on-
tology is an atavism in the grandchild or descendant ontology, the concepts in the
grandchild or descendant ontology are used for the replacement.

Rule SemT 4 (Rule for Mutation). If a concept in the parent ontology is a mutation
in the child ontology, the concept in the child ontology is used for the replacement.

Example 1. If an XML is about student employee, the StudentEmplyee ontology is
specified for search, and the ancestor ontologies of this specified ontology will be
searched also. The “contact_number” from Student Ontology is used for replacement.

Rule SemT 5 (Rule for that no matched concept are returned from ontologies). If
the element, attribute or value cannot be found in the ontologies, our system suggests
adding new concepts into the ontologies (adding new concepts needs the confirmation
from the domain expert).

Rule SemT 1 to 5 can be applied to the XML values also. The next two rules are
for some special values.

Rule Sem 6 (Rule for Numbers). If the values in the XML are numbers, such as the
contact_no “9876543”, they need not be searched in ontologies.

Rule Sem 7 (Rule for Person Names). If the values in the XML are person names
(or company names etc.), such as “John”, they need not be searched in ontologies.

586 C. Li and T.W. Ling

Since we use a top-down method for the replacement, the student “name” element
will be replaced to “per:name” firstly (“per” is the namespace [12]), then later we
know the value (“John”) of element “per:name” is a person name. We do NOT need a
person name dictionary for this case.

5.2 Structural Translation

Structural Translation (StrT) in this paper refers to the translation of an XML file or
schema to a file or schema complying with the RDF structure, i.e. SVO format.

Rule StrT 1 (Rule for checking structure). For any path of the XML from the root
to the leaf, if the nesting is not resource, property, resource, property, resource etc.
interleaved, this XML does not satisfy the RDF structure.

Rule StrT 2 (Rule for modifying structure). If resources or properties are required
to be inserted in the XML to satisfy the RDF structure, the resources or properties are
searched in the ontology hierarchy based on the domain and range of properties (not
based on name).

5.3 Schematic Translation

Schematic Translation (SchT) in this paper means that some features of the XML
schema are translated to follow the RDF, RDFS and OWL languages.

Rule SchT 1 (Rule for ID and ID reference). For the object identifier of ORA-SS or
the ID attribute of DTD, it will be translated to the “rdf:ID” (an identification primi-
tive of RDF) and the value for the object identifier will be kept unchanged. We use
the “rdf:resource” to refer to the referenced object.

Rule SchT 2 (Rule for default and fixed values). If the value of an attribute is a
default or fixed value, it is kept unchanged.

Rule SchT 3 (Rule for order sensitive, composite and disjunctive attributes). The
order sensitive attribute is translated to the “rdf:Seq”, the composite attribute to the
“rdf:Bag”, and the disjunctive attribute to the “rdf:Alt”.

Rule SchT 4 (Rule for cardinality). The cardinality to constraint the objects and
attributes is kept unchanged after translation. Thus the structure information of the
original XML schema can be kept.

Fig. 3. The ORA-SS schema diagram after the three-step translations

rdf:ID

stu:
contact_number

per:name

cou:name emp:positioncou:grade

cou:take,
2, 3:8, 4:n

emp:part_time
2, 0:1, 0:n

rdf:ID
cou:take

stu_emp:Student_Employee

cou:Course emp:Job

 From XML to Semantic Web 587

After the semantic, structural and schematic translations, the ORA-SS schema in
Figure 1 becomes the schema in Figure 3 where “stu_emp”, “per”, “cou” and “emp”
are namespaces to refer to Student_Employee, Person, Course and Employee ontolo-
gies, and “rdf” is the namespace to refer to the RDF ontology language. The “take”,
“Job” etc. are concepts defined in Course, Employee ontologies etc.

6 Conclusion

In this paper, we use three steps, viz. semantic translation, structural translation and
schematic translation, to translate XML to semantic web. For a valid XML, their
schemas are translated firstly, then the XML files confirming to the schemas can be
translated easily, which improves the efficiency of translation. More important, we
organize ontologies based on the genetic model. The searching to ontologies is only at
several related paths of the genetic model, thus less concepts need to be traversed and
less confused concepts will be returned, and the rules introduced in this paper make
the semantics of the returned concepts clearer.

References

1. Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Specifica-
tion 1.0, W3C Candidate Recommendation 27 March 2000.

2. Avigdor Gal , Ami Eyal, Haggai Roitman, Hasan Jamil, Ateret Anaby-Tavor, and
Giovanni Modica. OntoParser: an XML2RDF translator of OntoBuilder ontologies, Onto-
Builder project. 2004.

3. Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-
Schneider and Lynn Andrea Stein. OWL Web Ontology Language Reference.

4. Frank van Harmelen, Peter F. Patel-Schneider, and Ian Horrocks. Reference description of
the DAML+OIL (March 2001) ontology markup language

5. Jeff Heflin and James Hendler. A Portrait of the Semantic Web in Action. IEEE Intelligent
Systems, 16(2), 2001.

6. I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van Harmelen,
M. Klein, S. Staab, R. Studer, and E. Motta. The Ontology Inference Layer OIL.

7. Paul Kogut, and William Holmes. AeroDAML: Applying Information Extraction to Gen-
erate DAML Annotations from Web Pages. K-CAP 2001 Workshop, October 21, 2001.

8. Ora Lassila and Ralph R. Swick: Resource description framework (RDF). 1999.
9. Tok Wang Ling, Mong Li Lee, Gillian Dobbie. Semistructured Database Design, Springer,

2005
10. Robert Neches, Richard Fikes, Timothy W. Finin, Thomas R. Gruber, Ramesh Patil, Ted

E. Senator, William R. Swartout: Enabling Technology for Knowledge Sharing. AI Maga-
zine 12(3): 36-56 (1991)

11. Lynn Andrea Stein, Dan Connolly, and Deborah McGuinness. DAML Ontology language
specification. October 2000

12. Namespaces in XML, World Wide Web Consortium 14-January-1999.
13. http://www.w3.org/TR/REC-xml-names/
14. The SemanticWeb Homepage. http://www.semanticweb.org

A Hybrid Approach for Refreshing Web Page
Repositories

M. Ghodsi, O. Hassanzadeh, Sh. Kamali, and M. Monemizadeh
{ghodsi, hassanzadeh, kamali, monemi}@ce.sharif.edu

Computer Engineering Department
Sharif University of Technology, Tehran, Iran

Abstract. Web pages change frequently and thus crawlers have to down-
load them often. Various policies have been proposed for refreshing local
copies of web pages. In this paper, we introduce a new sampling method
that excels over other change detection methods in experiment. Change
Frequency (CF) is a method that predicts the change frequency of the
pages and, in the long run, achieves an optimal efficiency in comparison
with the sampling method. Here, we propose a new hybrid method that
is a combination of our new sampling approach and CF and show how
our hybrid method improves the efficiency of change detection.

Keywords: web crawling, change detection, sampling, change frequency,
hybrid algorithm

1 Introduction

Crawlers and spiders download and accumulate web pages to be categorized and
ranked fast by search engines in response to users’ queries. On the other side,
web pages are updated frequently; new pages appear and old pages disappear
quite often. To refresh web repositories, crawlers have to download new pages,
clean the page archive from disappeared pages and update it with the new ones.

In [4] Change Frequency (CF) method was introduced for estimating the
frequency of changes in web pages. Based on the past change history of the
pages, this method estimates how often a page changes and decides on how
often it must be revisited.

Sampling method is another approach for downloading web pages [5]. In this
method, a small number of pages from each web site is sampled and the number of
changed pages is then estimated. Based on the estimates, the download resource
for each web site is allocated accordingly.

In this paper, we propose a hybrid model that commences to sampling, in
the beginning, based on an improved sampling algorithm. With the passage of
time, when the sampling resources reduce and when it gains a complete history
of the page changes, our algorithm switches to CF and allocates more resources
to this method.

In the remainder of the paper, in Section 2, we present our new sampling
algorithm. Section 2 describes the CF method followed by the overall hybrid

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 588–593, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Hybrid Approach for Refreshing Web Page Repositories 589

method which is proposed in Section 3. Our experimental results are presented
in Section 5.

2 Improved Sampling Method

We suppose that all pages are equal in size and the resource available for crawling
is counted based on the maximum number of pages we can download. We also
assume that there are L web sites each having the same number of pages, denoted
by M . The problem is to decide how we can best refresh the repository. Our
measure for the optimality of an algorithm is its efficiency which is measured
by the fraction of total number of downloaded items that have been changed.

Our iterative sampling method proceeds as follows. In each iteration, a frac-
tion R pages (called the sampling size) of each site is downloaded uniformly at
random. We estimate ρi, the percentage of the downloaded pages of site i that
have been changed.

Let P (ρi) be the probability of downloading another R pages from each site
i. We continue the above iteration and download further R pages from site i
with this probability.

We propose the following estimate for P (ρi) to be calculated in each iteration.

P (ρi) =
tanh(10(ρi − ρ0) + 1)

2
(1)

where ρ0 is the point of inflection. Reducing the resources available for sampling
is done by increasing the value of ρ0.

Here we justify the choice of equation 1. We would like to choose values
for P (ρi) that maximizes the number of detected changed pages in site i and
considering our limited resource. For this, we calculate Ni, the average number
of detected changed pages in site i, as follows.

We first assume that ρi is equal in all iteration. In other words, we assume
the estimation of ρi is without error; we relax this assumption later. Ni is then
computed as follows:

Ni = Rρi + Rρi

k∑
t=2

tP t−1(ρi)(1 − P (ρi))

= Rρi ∗ [1 − P k(ρi) +
P (ρi)

1 − P (ρi)
(P k−1(ρi) − 1) − (k − 1)P k(ρi) + P (ρi)]

where k is the maximum number of iterations which is equal to M
R .

Let N be the total number of detected changed pages. Then,

N = R∗
L∑

i=1

ρi∗[1−P k(ρi)+
P (ρi)

1 − P (ρi)
(P k−1(ρi)−1)−(k−1)P k(ρi)+P (ρi)] (2)

The best choice for P (ρ) that maximizes the expression in equation 2, taking
into account the limited number of pages we can download, is a pulse function
(Figure 1.1).

590 M. Ghodsi et al.

(1) (2)

Fig. 1. (1) Diagram of P (ρ) if ρ is estimated without error, (2) Diagram of P (ρ).

The pulse function is the best choice when we can estimate the percentage
of changed pages in the site without error. But in practice, this estimation is
not exact and contains error. This error can affect the efficiency of our algorithm
specially near ρ0. To remedy this effect we can smooth the diagram of P (ρi) near
this point. The result is shown in figure 1.2. The diagram of figure 1.2 is very
similar to the diagram of equation 2. This justifies why we choose tanh function
to represent P (ρi).

3 Change Frequency Method

Here, we briefly describe the CF phase. To help our discussion, we first borrow
some notation from [4]. We assume n is the number of accesses to the page in
interval I and X is the total number of changes detected within these accesses.
Let f be the frequency at which we access the element and its value is f = 1

I . λ,
the change frequency of a page, is the number of times that the page was changed
during a specific time. Now we can define the frequency ratio r = λ

f , the ratio
of the change frequency to the access frequency. We can estimate frequency
ratio r = λ

f first and estimate λ indirectly from r. We use the estimator r̂ =

− log(X̄+0.5
n+0.5), where X̄ = n−X is the number of accesses that the element did

not change, because it is more useful as shown in [4]. Consider two queues and
call them Normal and Slow. Slow queue contains all pages that change rarely
and we guarantee to crawl them in every one month, i.e., I = 30. The other
pages are placed in Normal queue which are guaranteed to be crawled twice per
month, i.e., I = 15. Over time, pages commute between Normal and Slow queues
based on their estimated change frequency.

After creation of Normal and Slow queues, the algorithm works as follows: We
crawl pages approximately twice per month in Normal queue and once per month
in Slow queue. For each page p in each queue, we download p and compare p
with the local copy to determine if it has changed, then calculate the new change
frequency for it. If the new change frequency of page was still greater than some

A Hybrid Approach for Refreshing Web Page Repositories 591

adaptive threshold, we append the page to the end of Normal queue, otherwise
the page falls down into Slow queue.

4 The Hybrid Algorithm: An Overall View

4.1 Definitions

We denote a cycle to be an interval consisting of a sampling phase and a CF
phase. For each site in a sampling phase a sequence of steps are defined where a
step is an interval that the algorithm samples a specified number of pages from
the site.

4.2 Towards Change Frequency

Sampling performs well without knowing the change history of pages. In contrast,
frequency-based policy suffers from poor performance with insufficient knowledge
of change history. This happens at the beginning which we have a poor estimation
of change frequencies. But as time passes on, its performance improves over the
sampling, as the history of changes converges to its more accurate values. So,
it seems that we can gain more efficiency if we allocate more resources to CF
as our crawling progresses. The migration towards CF should be done slowly.
This is an important part of our algorithm whose overall view is described in
the following algorithm.

Algorithm: HybridAlgorithm()
Input:
ρ0: The inflection point that takes its value from [0..1].

1 Crawl all pages in the beginning and store them in repository REP
2 while True
3 do Increase ρ0 one step
4 Call SamplingPhase
5 Call ChangeFrequencyPhase

Above algorithm is based on allocating resources between its two phases.
We define a function that shows the used resource in the sampling phase. By
adjusting the value of this function we can migrate from sampling to CF. For
this purpose, we adjust the value of parameter ρ0. As we increase it, the diagram
of P shifts to the right. Let U(ρk) be the average number of sampling phases in
a cycle that we download from site k.

U(ρk) =

M
R∑

i=2

iP (ρk)i−1(1 − P (ρk)) + 1 (3)

The total number of resources that will be used in sampling phase is
∑L

i=1 RU(ρi).
Thus, by reducing the probability P (ρi), the value of U(ρi) will be dwindled and
eventually tends to one.

592 M. Ghodsi et al.

5 Experimental Results

For evaluating the various strategies as discussed above, we conducted a number
of experiments. In this section, we first describe the distribution of our data-set
and then compare various algorithms from the perspective of efficiency.

5.1 Our Data-Set

We collected over 100,000 pages (1000 web pages in 100 web sites) and kept
track of their changes over two months. We crawled every site twice per month.
It seems that 4 cycles for tracing the changes is relatively small, but based on
the previous works [4, 5], we extend our cycles up to 500 cycles (i.e., we repeated
the 4 cycles 125 times without actual downloading). We then simulated adaptive
sampling, our new sampling, and hybrid algorithms on our data-set.

5.2 Comparison of Algorithms

As you see in figure 2, adaptive sampling has an efficiency of around 75 percent.
Our new sampling, the first algorithm presented in this paper, has efficiency
of approximately 81 percent. The other algorithm is hybrid algorithm which is
a combination of improved sampling and CF and has the average efficiency of
about 87 percent over time. As we observe in the figure, still there is a narrow
fluctuation in the diagram of CF.

0.6

0.7

0.8

0.9

1

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494

Hybrid algorithm

Adaptive Sampling

Improved sampling

Efficiency

Download Cycle

Fig. 2. Comparison of the various download policies over time

6 Conclusion

In this paper, we studied how we can detect changes effectively using a hybrid
policy. We introduced a new sampling method that excels over other change de-
tection methods in experiments and suggested improvements to Change

A Hybrid Approach for Refreshing Web Page Repositories 593

Frequency(CF) in order to increase its efficiency. We also proposed a new hybrid
method that is a combination of our new sampling and CF and finally showed
how the new method improves efficiency of change detection.

References

1. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
In Proc. WWW conf., April 1998.

2. J. Cho and H. Garcia-Molina. The evolution of the web and implications for an
incremental crawler. In Proc. 26th VLDB Conf. , September 2000.

3. J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness. In
Proc. SIGMOD Conf., May 2000.

4. J. Cho. Crawling the web: Discovery and maintenance of a large-scale web data.
PhD. Thesis, Stanford University, 2001.

5. A. Ntoulas and J. Cho. Effective change detection using sampling. In Proc. 28th
VLDB Conf., Hong Kong, China, 2002.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 594 – 599, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Schema Driven and Topic Specific Web Crawling1

Qi Guo, Hang Guo, Zhiqiang Zhang, Jing Sun, and Jianhua Feng

Tsinghua University, Beijing, China
{guoqi00 guohang02, jing-sun00}@mails.tsinghua.edu.cn

{zqzhang, fengjh}@tsinghua.edu.cn

Abstract. We propose a new approach to discover and extract topic-specific
hypertext resources from the WWW. The method, called schema driven and
topical crawling, allows a user to define schema and extracting rules for a
specific domain of interests. It supports automatically search and extract
schema-relevant web pages from the web. Different from common approaches
that surf solely on web pages, our approach supports crawler to surf on a virtual
network composed by concept instances and relationships. To achieve such a
goal, we design an architecture that integrates several techniques including web
extractor, meta-search engine and query expansion, and provide a toolkit to
support it.

1 Introduction

The traditional web search engines treat the World Wide Web as a huge documents
collection, and process queries by keyword matching. Due to the properties of large
size, dynamic nature and diversity of the web, the keyword-based query usually
returns hundreds of web pages. Hence, it is rather difficult to find the required
information for a user from such a data mountain.

Based on above observation, we propose a novel approach to build powerful search
engines for a specified topic. In this approach, user interested data from the web form
a topic which is modelled by a schema, and queries are expressed on the schema and
processed against the data extracted from topic-relevant web pages. The key part of
the approach is to find the data relevant to the schema from the web. To achieve this
goal, we build a system, called Schema Driven and Topic Specific Web Crawler, to
allow a user to give schema definition and extracting rules for a topic. The crawler
can then selectively seek out web pages relevant to the schema, and extract the data
automatically. The extracted data is stored in a database, so can be queried through a
structural query language.

Different from the common crawler that surfs the web graph composed by HTML
pages and hyperlinks, our approach supports the crawler to surf on a virtual network
formed by concept instances and relationships. The system uses web extractors to find
the concept instances from fetched web pages, and uses meta-search engine and query

1This research work is part of the ALVIS project of EU's 6th Framework Programme and
funded by the Ministry of Science and Technology of China.

 Schema Driven and Topic Specific Web Crawling 595

expansion techniques to search the schema relevant web pages that contain at least
one concept instance defined by the schema.

In the remaining part of this paper, first we introduce the method to represent a
topic by a data schema, and then briefly describe the architecture of the crawler,
followed by technical discussions on information extracting and searching of relevant
web sources. Finally, we conclude the paper and indicate future works.

2 Related Works

Many different solutions have been proposed in the recent years. One popular
approach, called focused crawling [1], collects domain-specific documents from the
web selectively. The approach cares a narrow fragment of the web that is likely to be
relevant to the specific domain, and avoids irrelevant regions of the web. The method
leads to significant savings in resources, and the search results are considered to be
more relevant to users who are interested in the specific domain. The pioneer focused
crawler introduced by Chakrabarti [1] used a topical taxonomy, learning from
examples, and use graph distillation to track topical hubs. Later works focused on the
web search algorithms to increase the efficiency and quality [1,2,3,4,6]. To overcome
the lower recall and less diverse caused by the existence of web communities [3,7],
Bergmark proposed to use tunneling technology[7] to address the problem. Qin and
Zhou proposed a meta-search enhanced focused crawler [6] to achieve both high
precision and high recall.

There are many other approaches to encapsulate the heterogeneity by information
extractor, through which the meaningful data are fetched from the documents of
various format. One kind of these approaches restructure the original HTML into an
intern representation, and provide a specific wrapper generation language for users,
for instances, WebOQL[8], FLORID[9], WebL [10], etc. To reduce manual efforts,
XWrap [11], Lixto [12], and NoDoSE[13] use an interactive tool to determine the
document structure by users’ hierarchical actions. The work of the Data Extraction
Group[14] at BYU built a domain ontology to describe the data of interest, including
relationships, lexical appears, and content keywords. But their approach focused on
extracting semi-structured data from unstructured documents which are rich in data
and narrow in ontological breath.

3 The Proposed Techniques

3.1 The Concept Schema

Because of the dynamic nature of the web, it is difficult to define an exact schema for
a domain. In our previous work, we adopted a simple and flexible method using
concept schema at a logical level to describe user interested data on the web. Figure 1
illustrates a concept schema example. To see the detail for concept schema, please
refer to [15].

596 Q. Guo et al.

Fig. 1. The Concept Schema Example

3.2 System Architecture

The next figure shows the architecture of the crawler.
The core component of the system is the Schema Manager. It provides an interface

for managing data schema of specific topic and rules to search and extract relevant
pages. The Concept Queue Manager maintains a queue of concept instances for
finding and extracting. The task of Concept Selector is to select a concept instance
from web pages obeying defined rules. The Concept Seeker searches the web pages
that possibly contain the data of concept instances. The Page Fetcher downloads
schema-relevant pages to temporary storage, and the Page Extractor locates concept
instances and extracts them from web pages.

Fig. 2. System Architecture

3.3 Concept Seeking

We use the concept schema in Figure 1 to show this process. At the very beginning,
the crawler is given some seeding web pages that contain concepts of the schema, say
PAPER. Starting from these seeding pages, the seeking of other concepts,
RESEACHER for example, will be proceeded by the crawler in following way.

 Schema Driven and Topic Specific Web Crawling 597

1) The Page Extractor analyzes the seeding page and finds the attribute values of
PAPER instance. For the attribute Author which forms the relationship between
PAPER and RESEACHER, the extractor locates the text region of the attribute and
annotates it as potentially relevant page to the RESEARCHER concept. These
relevant pages will be put in the Concept Queue for further exploring. In same way,
the crawler can use the attribute Derivation of PAPER, the attribute Affiliation of
RESEARCHER to find the concepts of CONFERENCE and UNIVERSITY of the
schema in Figure 1.

2) The crawler uses the meta-search method to find new instances and get data for
concept instances from relevant pages. For example, given an author’s name, the
crawler can use Google or Yahoo to get a publication list from the author’s home
page. This list gives the crawler more PAPER instances to be included in the
CONCEPT QUEUE. In finding the data of a paper, the crawler posts the text, such as
a paper’s title, to Google or Yahoo, and picks up relevant URLs from the results.

3) To improve the efficiency, we adapt query expansion technique to reduce
irrelevant pages returned by the general search engines. For example, when searching
a PERSON concept, the system will merge the person’s name with some string such
as “Home Page”, “Email”, etc, to refine the result set. In practice, the crawler may try
several times with differently expanding strings to reduce more irrelevant results.

3.4 Concept Extracting

The major task of concept extracting is to discover the schema defined data from
HTML pages, including concept instances, attribute values and relationships. In our
approach, the system needs to acquire data from diverse data sources distributed on
the web, so it is not acceptable to build individual extractors for each web site. We
need adaptable extractors for the concepts of the schema rather than for each web site.
In our previous works, we built highly adaptable wrappers for solving this problem.
For the detail, please refer to [16][17].

4 Experiments

We conducted a set of experiments to test the performance of Page Extractor, Concept
Selector, and Concept Seeker of the crawler. The metrics for this performance testing
are commonly used concept of recall and precision from IR area. For these
experiments, a simple topic composed of two concepts PAPER, and RESEARCHER
was created as the schema. Because of the space limitation, in this section, we only
give the performance testing result of Concept Seeker. The test shows when given the
value of key attribute of a concept instance, how many relevant pages the Concept
Seeker can find from the web..

We created 2 sets of test cases, one containing 1000 Paper titles and the other
containing 1000 Researcher names. Firstly, we posted the text of the paper title and
researcher name to Google directly, and selected the top 5 result for each query, and
sent to Page Extractor to determine whether it is relevant or not. The concept PAPER
got a recall of 77.2%, and the concept RESEARCHER got a recall of 64.3%. Next,
we expanded each query by appending the strings “Home Page” and “Abstract”

598 Q. Guo et al.

respectively. The recall of concept PAPER increased to 81.1%, and the recall of
concept RESEARCHER increased to 73.0%. The result seems to be acceptable. It
also shows that the query expansion doesn’t improve the effect significantly in this
experiment. After analysis on the results, we found that some cases got a better result
after query expansion, but some cases did not because more noises were introduced.
To see the detail, please refer to [16] [17].

5 Conclusion and Future Work

In this paper, we describe the architecture and discuss some technical issues of our
schema driven and topic specific crawling approach and the crawler. The major
contributions of this work are:

1) Unlike common crawlers that usually travel on the hyperlinks between web
pages, the proposed approach uses data schema to model the topic, and navigate in the
virtual network composed by concepts and relationships. The fetched data is the
structural data extracted from web pages, so the structural query could be supported.

2) We propose the concept extension model, and design an architecture that closely
integrates a number of techniques including information extracting, meta-search
engine and query expansion to implement the model.

3) We introduce a concept seeking method enhanced with meta-search engine and
query expansion.

Our ultimate goal is to provide a database view for the web, thus, query the web
just like query a database. The next steps of our work include:

1) To improve the precision and coverage of concept seeking through error
feedback mechanism.

2) To develop a user friendly interface to facilitate the configuration and
management of the crawler.

References

[1] Chakrabarti, S., van den Berg, M. and Dom, B. Focused crawling: a new approach to
topic-specific Web resource discovery,” in Proc. of the 8th International World Wide
Web Conference, Toronto, Canada, 1999.

[2] Flake, G. W., Lawrence, S. and Giles, C. Efficient Identification of Web Communities.
in Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Boston, Massachusetts, USA. 2000

[3] Flake, G. W., Lawrence, S. and Giles, C. Efficient Identification of Web Communities. in
Proc. of the 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Boston, Massachusetts, USA. 2000

[4] McCallum, A., Nigam, K., Rennie, J. and Seymore, K. Building Domain-Specific Search
Engines with Machine Learning Techniques. in Proc. AAAI-99 Spring Symposium on
Intelligent Agents in Cyberspace.

[5] Jialun.Qin, Yilu Zhou, Michael Chau: Building domain-specific web collections for
scientific digital libraries: a meta-search enhanced focused crawling method.
International Conference on Digital Libraries, Proceedings of the 2004 joint ACM/IEEE
conference on Digital libraries

 Schema Driven and Topic Specific Web Crawling 599

[6] Chau, M. and Chen, H. Comparison of Three Vertical Search Spiders, IEEE Computer,
36(5), 56-62. 2003

[7] Bergmark, D., Lagoze, C. and Sbityakov, A. Focused Crawls, Tunneling, and Digital
Libraries. in Proc. of the 6th European Conference on Digital Libraries, Rome, Italy,
2002

[8] G. O. Arocena, A. O. Mendelzon. WEBOQL: Restructuring Documents, Databases, and
Webs. In proceedings of the 14th IEEE International Conference on Data Engineering.
pp. 24-33.

[9] Wolfgang May, Rainer Himmeröder, Georg Lausen, Bertram Ludäscher. A Unified
Framework for Wrapping, Mediating and Restructuring Information from the Web.
International Workshop on International Workshop on the World-Wide Web and
Conceptual Modeling (WWWCM'99), pp. 307-320.

[10] T. Kistler and H. Marais. WebL - A programming language for the Web, in: Proceedings
of WWW7, pages 259-270, 1998

[11] L. Liu, C. Pu, W. Han. XWrap – An XML-enabled Wrapper Construction System for
Web Information Sources, Proceedings of the 16th International Conference on Data
Engi-neering (ICDE'2000)

[12] R. Baumgartner, S. Flesca, G. Gottlob. Visual Web Information Extraction with Lixto,
Paper for the 27th International Conference on Very Large Data Bases (VLDB 2001)

[13] B.Adelberg. Nodose – a tool for semi-automatically extraction structured and semi-
structured data from text documents. ACM SIGMOD, 1998

[14] D.W. Embley, D. M. Campbell, Y.S. Jiang, S.W.Liddle, Y. Kaing, D.Quass, R.D.Smith.
Conceptual-Model-Based Data Extraction from Multiple-Record Web Pages. Data and
Knowledge Engineering 31, 3(1999), 227-251

[15] Zhiqiang Zhang, Cunxiao Xing, Lizhu Zhou and Jianhua Feng, “A New Query
Processing Scheme in a Web Data Engine”, 2nd International Workshop on Databases in
Networked Information Systems (DNIS 2002), LNCS 2544, pp 74-87, Japan December
16-18, 2002.

[16] Qi Guo, Lizhu Zhou, Zhiqiang Zhang and Jianhua Feng, “A Highly Adaptive Web
Extractor.” Proc. of the 6th Asia Pacific Web Conference. 2004

[17] Qi Guo. Technique Report of GQML. http://dbroup.cs.tsinghua.edu.cn/sesq/

Towards Optimal Utilization of Main Memory
for Moving Object Indexing

Bin Cui, Dan Lin, and Kian-Lee Tan

School of Computing & Singapore-MIT Alliance,
National University of Singapore

{cuibin, lindan, tankl}@comp.nus.edu.sg

Abstract. In moving object databases, existing disk-based indexes are
unable to keep up with the high update rate while providing speedy re-
trieval at the same time. However, efficient management of moving-object
database can be achieved through aggressive use of main memory. In
this paper, we propose an Integrated Memory Partitioning and Activity
Conscious Twin-index (IMPACT) framework where the moving object
database is indexed by a pair of indexes based on the properties of the
objects’ movement - a main-memory structure manages active objects
while a disk-based index handles inactive objects. As objects become ac-
tive (or inactive), they dynamically migrate from one structure to the
other. Moreover, the main memory is also organized into two partitions
- one for the main memory index, and the other as buffers for the fre-
quently accessed nodes of the disk-based index. Our experimental study
shows that the IMPACT framework provides superior performance.

1 Introduction

Over the years, many data structures have been proposed for moving object in-
dexing [4, 6, 8, 10, 12, 13]. Most of these indexing techniques are disk-based and
tend to leave memory exploitation to independent buffering strategies. Main
memory is much faster than disk and becomes increasingly voluminous and in-
expensive. However, it remains a scarce resource with increasingly sophisticated
software and the rapid buildup of huge datasets. Buffer management is effec-
tive in gaining faster access to the main memory, and tends to result in the
better memory utilization by loading popular paths of the index into memory.
Nevertheless, most buffering strategies do not guarantee that the main memory
is being utilized in an optimal fashion. Capturing continuous locations of mov-
ing objects would entail either performing very frequent updates or recording
outdated, inaccurate data. Therefore, the traditional buffering scheme may not
work efficiently for the moving object index structures.

To better manage moving object databases, we need to improve the utilization
of the main memory. Our solution is based on three observations. First, the
moving objects can be classified into two groups, active objects and inactive
objects. Typically, active objects tend to have relatively higher speed and change

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 600–611, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Optimal Utilization of Main Memory for Moving Object Indexing 601

velocity frequently, and trigger relatively more updates. Second, we observe that
most of the moving objects are inactive. Our analysis of the dataset generated
by the City Simulator [5] reveals that only a small portion of users are active at
a time, while the majority of the users are inactive. Third, although the active
objects constitute a small fraction of the dataset, they incur the fast enlargements
of MBRs (minimum bounding rectangle) in the TPR-tree like indexes [10, 12],
which results in severe overlaps and degenerates the index performance.

Now, the first and third observations suggest that we should consider ac-
tive and inactive objects separately. The second observation suggests that active
objects can potentially be kept in the main memory. Thus, in this paper, we
propose a novel framework, called Integrated Memory Partitioning and Activity
Conscious Twin-indexing (IMPACT), that combines two mechanisms to make
aggressive use of the main memory. First, a pair of indexes manages the moving
object database based on the objects’ activities - active objects are managed by
a main memory index, while inactive objects are stored in a disk-based struc-
ture. As objects become active or inactive, they dynamically migrate from one
structure to another. Second, the main memory is split into two partitions –
one for the main memory index, and the other as buffers for the frequently ac-
cessed nodes of the disk-based index. In this way, active objects can be processed
efficiently in memory, while there will be less activities occurring on the disk.

To realize the framework, we employ a grid structure for the main memory
index and the TPR*-tree [12] as the disk-based structure. We also use an OLRU
buffering strategy [9] to cache frequently accessed nodes of the TPR*-tree. For
memory partitioning, we devise a scheme to optimally allocate space for the
main memory index and buffers. We implemented the proposed framework, and
evaluated its performance. Our experimental study shows that the proposed
IMPACT framework significantly outperforms the TPR*-tree.

The rest of the paper is organized as follows: in Section 2, we review some
related work, including buffering algorithms and existing moving object index
structures. In Section 3, we present our proposed IMPACT framework and its
realization. Section 4 reports the experimental results. Finally, we concludes our
work in Section 5 .

2 Related Work

In this section, we shall first review buffering algorithms, and then look at some
index structures for moving objects.

Buffer management for indexes has been reported in the literature [3, 9]. ILRU
(Inverse LRU) and OLRU (Optimal LRU) are studied in [9], and are shown to be
better than the classic LRU. We shall briefly describe the OLRU strategy which
we adapted in our work. In the OLRU strategy, the index pages are logically
partitioned into L independent regions. Whenever an index page at level i is
accessed, it is kept in region i of the buffer, or in the single free buffer in the case
of coalesced regions. In general, the OLRU scheme allocates the available buffer
according to reference frequency of nodes. Therefore this strategy can guarantee

602 B. Cui, D. Lin, and K.-L. Tan

that top-level pages of a tree have higher priority compared to those further from
the root. As reported in [9], OLRU shows near optimal performance for both
uniform and skew data.

According to the type of data being stored, the indexes [1, 6, 7, 10, 11, 12, 13]
for moving objects can be classified into two categories: indexing the past po-
sitions of objects (i.e. trajectories) and indexing the current and anticipated
future positions of objects. We focus on related works in the latter category
because our methods belong to it. To index the current and near-future posi-
tions of moving objects, most existing approaches describe each object’s location
as a simple linear function, and update the database only when the predicted
position deviates from the actual position larger than a threshold. One represen-
tative indexing is the time-parameterized R-tree (TPR-tree) [10]. The bounding
rectangles in the TPR-tree are functions of time, as are the moving objects being
indexed. Intuitively, the bounding rectangles are capable of continuously follow-
ing the enclosed data points or other rectangles as these move. Most recently,
the TPR*-tree [12] is proposed in order to optimize the TPR-tree. Next, Patel
et al. [8] propose an indexing method, called STRIPES, which indexes predicted
trajectories in a dual transformed space. The Q+R-tree makes use of the to-
pography and the patterns of object movement and handles different types of
moving objects separately [13]. In the Q+R tree, quasi-static objects are stored
in an R*-tree and fast-moving objects are stored in a Quad-tree. Another recent
index is the Bx-tree [4] which enables B+-tree to manage moving objects effi-
ciently. The performance of the above index structures are all largely influenced
by active objects which dominate the enlargements of MBRs or query windows.

3 The IMPACT Framework

This section presents the IMPACT (Integrated Memory Partitioning and Ac-
tivity Conscious Twin-index) framework and the specific data structures and
algorithms that we have employed to realize its implementation.

3.1 The Basic Framework

As observed in the introduction, a small portion of active moving objects have
high speed and incur frequent updates. This prompted us to design the proposed
IMPACT framework which comprises the following components:

1. A twin-index structure to dynamically manage the moving objects. One of
the indexes is a main memory structure used to index active objects. An-
other index structure is a disk-based structure to index the inactive objects.
Separating the active and inactive objects is expected to improve the overall
system performance: (a) Active objects contribute to both high update cost
and degrade query performance, and so keeping them away from the main
bulk of the database can reduce the load on the database. (b) Managing
active objects in main memory can further facilitate their processing, while

Towards Optimal Utilization of Main Memory for Moving Object Indexing 603

managing the inactive objects on disk also leads to less activities on the disk
portion.

2. A buffering scheme for the disk-based structure to cache frequently and
recently accessed paths or nodes. This is necessary as accesses to the disk-
based structure would be costly if frequently accessed paths or nodes are not
buffered.

3. A memory partitioning mechanism to optimally allocate the main memory
to the memory-resident index and the buffer. Clearly, from the above point,
allocating all the space to the main memory index is not likely to lead to
good performance. Similarly, ignoring the main memory index reduces the
problem to traditional buffering of a single disk-based index which, as we
have argued, is not optimal either.

The IMPACT framework is generic. Any index structure can be used as the
main memory index and/or disk-based index. In fact, the two structures can be
different. Similarly, any existing index buffering strategies can also be employed.
Moreover, we note that the memory partitioning mechanism is dependent on the
structures used.

In this work, we employ a grid structure as the main memory index. Grid
structure is preferred to be stored in the memory since (a) grid structure works
well with hashing techniques to provide random and direct access; (b) each grid in
memory only needs to store pointers to objects instead of storing full information
of objects when residing in disk; (c) grid structure requires duplicating an object
across all grids that it intersects, which speeds up query processing while results
in poor update performance if it is disk-based.

For the disk-resident index, we employ the TPR*-tree. The TPR*-tree is
built on the ideas of the TPR-tree, and has been shown to be a near-optimal
structure for large moving object databases. To keep the commonly traversed
index nodes in the cache, we adapted the OLRU scheme for our purpose. OLRU
is chosen because it gives greater priority to the nodes of the tree nearer to the
root. Furthermore, it is simpler and is reported to yield good performance.

L2

L1

L1

L0

N0

OLRU Buffer

Disk TPR*−tree

Grid Object information

In−memory Hashing Structure

N6

N2

N1

N0

N6N5N4N3

N2N1

Fig. 1. The IMPACT structure

604 B. Cui, D. Lin, and K.-L. Tan

Figure 1 provides a pictorial representation of how the different data struc-
tures are related to one another. The figure contains two parts: the top portion
shows that the available main memory space is split into two regions, one for
the grid structure and the other for the OLRU; the bottom portion shows the
disk-based TPR*-tree. Both the TPR*-tree and grid structure store the mov-
ing objects with different velocities, while the OLRU buffer manages frequent
accessed nodes of the disk-based TPR*-tree. We note that as objects’ activities
change, they may be migrated from one structure to the next.

For the rest of this section, we shall first present the grid structure for active
objects. Then we present the query and update algorithms on the twin-index
structure. Finally, we will describe how we determine the memory allocation
between the grid structure and the buffer for the TPR*-tree.

3.2 In-Memory Grid Structure

To manage the active moving objects in main memory, we employ a grid struc-
ture to capture these objects’ current and future positions. Basically, we partition
the two-dimensional domain space into a regular grid structure where each cell is
a bucket. To support queries on future positions, we calculate the future trajec-
tories of objects in a given time length and store the objects in the buckets their
trajectories intersect. To define how far the trajectories need to be indexed, we
use three time parameters as in [10], i.e. query interval (I), index usage time
(U) and time horizon (H). Thus we can see that H represents how far into the
future the index may reach and it is the upper limit of the index valid period.
The grid structure must support queries that reach up to H time units into the
future.

Each object may be hashed into several cells in the grid because of the ex-
istence of the trajectory. The entire grid is implemented as an array of cells,
which efficiently supports random accesses to individual cells. To efficiently uti-
lize the memory space, we do not store the detail information of moving objects
in each corresponding bucket, but only keep the object identifier ID in the grid
which can reduce memory consumption. A separate hash table with the key ID
is used for the storage of objects, which supports fast random access to the de-
tail information of moving objects. In case of a system crash, we backup these
objects information to the disk periodically. The position of a moving object is
represented by a reference position (x, y), a corresponding velocity vector v, and
reference time t. The overall grid structure is shown in Figure 2.

We present two algorithms to deal with the insert and query in the grid
structure, i.e. Insert hash() and RangeQuery hash(). To insert a new object
O, we first store the details of object into the hash table. Then we map the
object into the cell and save its ID in the mapped cell. After that, we compute
the trajectory of the object movement within time horizon H, and insert its
ID into each intersected cells. When a range query is issued at time t, we hash
the lower bound and upper bound points of the query rectangle to the cells
in the grid, and retrieve the objects in the buckets overlapping with the query
rectangle.

Towards Optimal Utilization of Main Memory for Moving Object Indexing 605

Grid Array Hash table

Item(ID, x, y, t, v)Item(ID)

Fig. 2. The in-memory grid structure

3.3 Managing Moving Objects with the Twin-Index

We are now ready to look at how the twin-index is used to support moving
objects. We shall address the primitive operations for construction, update and
search. Delete operation is very simple: locate the object (either in memory or
on disk), then delete the object accordingly, and so we omit the details here.
In this discussion, we shall assume that certain amount of memory has been
allocated to the grid structure. We defer how this amount is determined to the
next subsection.

Building the Twin-Index. To build the twin-index, we first need to deter-
mine what constitutes an active object. We introduce a self-adaptive velocity
threshold (V) for this purpose: those objects moving with velocities larger than
the threshold will be stored in main memory, and those moving with lower speed
are indexed on disk. Using speed as a splitting metric is effective because (a)
no matter how frequently they change directions, fast objects may lead to huge
expansion of MBRs; (b) slow moving objects which change directions frequently
do not affect the TPR*-tree’s performance but only introduce a few update
numbers.

If we underestimate V , then the memory can be filled up. In this case, we will
raise the threshold V . If we overestimate V , the memory will be under-utilized,
and hence we have to decrease the value of V . Initially, we can estimate V as
follows. We first get a sample from the dataset and store the statistic information
of the speed with a histogram. The histogram partitions the speed domain into
several sub-domains (called buckets) and counts the number of objects that fall
into each bucket. According to the velocity distribution and available memory
space, we get the initial V . We update the histogram for each object insertion,
and V can be adjusted during the construction.

As shown in Figure 3, to construct the twin-index, the first step is to initiate
the threshold V . As the V is self-adaptive, we can randomly select an initial
value for it. However, to predict the V more precisely, we apply a sampling
mechanism and calculate the initial value via the velocity histogram. For each
object, we check whether the moving object is active. If the object is active
and there is free space in memory, we insert the object into the in-memory

606 B. Cui, D. Lin, and K.-L. Tan

grid structure; otherwise the new object has to be inserted into the TPR*-tree
on disk. During this process, we maintain a speed histogram in memory, and
the velocity threshold can be adjusted periodically. Therefore, we can index the
majority of active objects in memory.

Algorithm Construction()
Input: the moving object dataset
1. get a sample dataset;
2. initialize velocity histogram and V ;
3. for each object O in dataset
4. if (Ov > V)
5. if (Memory has free space)
6. invoke Insert hash(O);
7. else
8. insert O to the TPR*-tree;
9. update the velocity histogram;
10. adjust V if necessary;

Fig. 3. Construction algorithm

Range Query. The search operation consists of three steps: search the grid
structure (which we have already described in the previous subsection), search
the TPR*-tree (see [12]), and finally combine the answers. We expect the algo-
rithm to be efficient because (a) the search in memory is much faster, (b) the
search on the TPR*-tree is also faster (compared to a pure TPR*-tree that
indexes all moving objects) since our structure only indexes inactive objects.

Moving Object Update. Whenever an update occurs, we need to determine
whether to migrate the object that changes its activity status. Because the ve-
locities of the moving objects may change from time to time, sometimes we need
to switch the objects between the grid structure and the TPR*-tree to improve
the efficiency. We deal with the objects in the main memory and disk using dif-
ferent policy since moving objects with high velocities tend to change the speed
more frequently. To avoid oscillating between memory and disk too frequently,
a moving object is allowed to reside in the memory even if its speed is less than
the threshold. However, we tag these objects as inactive objects and store their
IDs in an inactive object queue. Since we only store IDs in the queue, the space
overhead is low. Whenever the speed of an object on disk exceeds the threshold
and the main memory has no free space, these tagged objects will be replaced.
In this way, we can fully utilize the memory space, and reduce the frequency of
switch between memory and disk. The update algorithm is shown in Figure 4.

To update an object, we first locate the object to be updated. If the object
is in memory, we update the object, and tag it as inactive (put its ID in the
inactive object queue) if the new speed is less than the velocity threshold. If the
object is on disk and still inactive, we just update the object in the TPR*-tree.

Towards Optimal Utilization of Main Memory for Moving Object Indexing 607

Algorithm Update(O)
Input: O is the object to be updated
1. locate the object O;
2. if (O is in memory)
3. update O in hash structure;
4. if (Ov < velocity threshold V)
5. tag O as inactive object;
6. insert O to the inactive object queue;
7. else
8. if (Ov < V)
9. update O in the TPR*-tree;
10. else
11. if (memory has free space)
12. delete O from the TPR*-tree;
13. invoke Insert hash(O);
14. else
15. if (∃ O′ tagged as inactive)
16. switch(O, O′);
17. else
18. update O in the TPR*-tree;
19. update the velocity histogram;
20. adjust V if necessary;

Fig. 4. Update algorithm

Otherwise, if there is free memory space, we move the object into memory. If
there is no more memory space but there are inactive objects in memory, we
replace the inactive objects with the new ones. In the last case, we have to
update the object in the TPR*-tree even if the object becomes active. For each
update, we adjust the counter of corresponding bucket in the velocity histogram
and update the velocity threshold V if necessary.

Our algorithm is flexible even if the speed distribution is not constant. For
example, the average speed of vehicles during the rush hour may be lower than
that during the off-peak period. To reflect the variation of the speed distribution,
the twin-index can automatically adjust the velocity threshold with respect to
the objects’ movements. This is done during the update operations with the aid
of the speed histogram. According to the counter of V , when there are too many
fast objects, we increase the value of V ; otherwise, we decrease it.

3.4 The Memory Partitioning Strategy

In this subsection, we present how the main memory can be allocated optimally
to the main memory grid structure and the buffer for the TPR*-tree. We note
that there is a relationship between the space allocated for buffering the TPR*-
tree and that allocated for the main memory grid structure. Clearly, more space
allocated to the buffer implies less space is left for the grid structure (i.e. fewer
fast objects can be stored in memory). While this contributes to reduced I/O cost

608 B. Cui, D. Lin, and K.-L. Tan

to retrieve data from the TPR*-tree, it also means that the TPR*-tree is larger
(since fewer objects can be retained in the main memory structure). Therefore,
our goal is to solve this dilemma and achieve optimal memory utilization.

We analyze the performance of the twin-index and reveals the factors that
determine the query cost, and then give the optimal memory allocation ratio
between the grid structure and the OLRU buffer1. Based on the cost analysis,
we found that it is more beneficial to buffer the top two levels of the TPR*-
tree but use the remainder memory space to index active objects for uniformly
distributed data. Note that, the optimal memory allocation, i.e. buffering top
two levels, may not be optimal for data with different distribution. However,
this result suggests that a buffering strategy that gives priority to higher levels
of index structure is preferred.

4 An Experimental Study

In this section, we report results of an experimental study to evaluate the IM-
PACT framework. As reference, we compare the IMPACT scheme against the
TPR*-tree). For the TPR*-tree, all the available memory is used to buffer the
index nodes/paths according to OLRU buffering scheme. We run 200 Range
queries (4% of the space), and use the average I/O cost as the performance met-
rics. All the experiments are conducted on a 1.6G Hz P4 machine with 256M of
main memory. Page size is set to 4KB and the default memory size is 8M bytes.
Our evaluation comprises both uniform and skew datasets with 1M points. The
default values of H (time horizon) and I (query interval) are 120 and 60 respec-
tively.

4.1 Performance on Uniform Dataset

In this set of experiments, we use randomly distributed uniform dataset as in
[10], i.e., the objects are uniformly distributed in the space 1000×1000, and also
the velocities of moving objects are uniformly distributed between 0 and 3.

Effect of Memory Allocation. Given a fixed amount of memory space avail-
able for the processing of moving objects, we would like to study how the twin-
index’s performance is affected by the allocation of memory space between the
grid structure and the OLRU buffer under varying amount of main memory. We
fix the total memory to 8M. The results are shown in Figure 5 (a).

As expected, the results show that the twin-index yields better performance
as more memory is allocated to the grid structure. When all the memory is used
for the OLRU buffer, the twin-index behaves like the TPR*-tree. The active
objects introduce heavy overlap in the disk index structure which degrades the
query performance. As more memory is allocated to the grid structure, more
active objects are kept in memory. This in turn significantly reduces the activities

1 For the details of cost analysis, interested readers are referred to [2].

Towards Optimal Utilization of Main Memory for Moving Object Indexing 609

250

300

350

400

450

500

550

0 80K 100K 200K 400K 1M 4M 8M

Memory allocated to buffer

Q
ue

ry
 I/

O
s

IMPACT

(a) Varying memory allocation

0

100

200

300

400

500

600

700

1M 2M 4M 8M 16M

Memory size

Q
ue

ry
 I/

O
s

TPR*
IMPACT

(b) Varying memory size

0

5

10

15

20

25

10 20 30 40 50 60

Time units

U
pd

at
e

I/O
s

TPR*
IMPACT

(c) Update

0

100

200

300

400

500

600

0 0.5 1 1.5 2

Zipf distribution with different theta

Q
ue

ry
 I/

O
s

TPR*
IMPACT

(d) Varying velocity distribution

Fig. 5. The experimental results

on the disk structure. Moreover, query processing on the grid structure is fast. We
also observe that the difference in performance can be more than 40% between
the two extreme memory allocations (either all for the OLRU buffer or all for the
grid structure). The results suggest that even traditional buffering schemes that
perform well (such as OLRU) may not cope well in moving object databases.

We also note that the best performance appears when we use around 80K
memory space for OLRU buffer which is sufficient to keep the top two level nodes
of the disk-based TPR*-tree in the buffer. From the view of buffer, buffering
the top two levels is very effective. It does not cost much memory space, but is
very helpful to improve the disk-based index performance, because most of these
nodes have to be accessed by queries. Additionally, this OLRU buffer size is small
compared to the overall memory available. The gain on the buffer surpasses the

610 B. Cui, D. Lin, and K.-L. Tan

loss on the disk-based TPR*-tree, because the TPR*-tree has to index a bit more
objects whose space is occupied by the buffer. Therefore the optimal memory
allocation is a compromise of these factors.

Effect of Memory Size. In this experiment, we compare the IMPACT against
the TPR*-tree as we vary the total available memory size from 1M to 16M. We
only show the performance of IMPACT with optimal memory allocation.

As shown in Figure 5 (b), both the schemes’ performances improve with the
increasingly lager memory size. When the available memory size is small (< 1M),
the IMPACT is only marginally better than the TPR*-tree. This is because the
small main memory allocated to the grid structure in the IMPACT does not
hold enough active objects to result in significant workload reduction on the disk-
based structure (as a large portion of the objects are still disk-based). However, as
the memory size reaches beyond a certain point (> 2M), the IMPACT performs
better than the TPR*-tree. The performance difference widens as the memory
space increases. Indexing the active objects in main memory can significantly
improve the efficiency of the disk portion (i.e. disk-based TPR*-tree) of the
IMPACT. Additionally, the OLRU portion of IMPACT can still benefit from
the buffering despite its small buffer size. The IMPACT can be 100% better
than the TPR*-tree when the available memory space is larger than 8M. This
study again confirms that traditional buffering techniques does not effectively
utilize the main memory.

Effect of Update. In this experiment, we investigate the update cost of the
two schemes. Figure 5 (c) compares the average update cost as a function of the
number of updates. The performance of these methods decreases with increasing
number of updates. Each update needs to conduct a query to retrieve the object
to be updated, and this query cost increases with the number of updates because
the updates will degenerate the efficiency of the index. However, the IMPACT
outperforms the TPR*-tree and yields better scalability. It has two advantages
over the TPR*-tree. First, since the IMPACT indexes the active objects in mem-
ory, most of the updates are restricted in memory and can be performed quickly.
Second, the IMPACT can locate the inactive objects faster on disk, because the
inactive objects introduce less overlap and slower MBR enlargement.

4.2 Performance on Skew Dataset

In the previous experiments, the objects and their velocities are uniformly dis-
tributed. However, most of the objects do not move at high speeds most of the
time, i.e., a large portion of objects are in inactive state most of the time. We
first test the effect of speed distribution on the query performance, shown in
Figure 5 (d). The skew data is generated by varying the θ of the Zipf distribu-
tion, e.g. θ = 2 means 80% of the objects fall in the 20% low velocity of the
domain. The active objects are the main culprits for the heavy overlap in the
index structure, and hence the range query has to search more nodes. When the
data is skewed, all the indexes yield better performance, however the gain (in
terms of percentage) between the IMPACT and the TPR*-tree is widened. As

Towards Optimal Utilization of Main Memory for Moving Object Indexing 611

the skew dataset has fewer active objects, it is possible to index a larger propor-
tion of the active objects in the main memory. Thus, the IMPACT can benefit
more from the velocity skewness.

5 Conclusion

In this paper, we have revisited the problem of moving object indexing. We pro-
pose a framework, called IMPACT, that integrates efficient memory allocation
and a twin-index structure to manage moving objects. The IMPACT partitions
the dataset into active objects and inactive objects and then processes the mov-
ing objects respectively. To efficiently support the query in memory, we apply a
grid structure to index the active objects. To reduce the disk I/O, the remain-
der memory space is used as an OLRU buffer that allows frequently accessed
nodes of the disk index to remain in main memory. We also conducted a series
of experiments which shows convincingly that the proposed framework can lead
to better performance.

References

1. H. D. Chon, D. Agrawal, and A. El Abbadi. Query processing for moving objects
with space-time grid storage model. In Proc. MDM, pages 121–128, 2002.

2. B. Cui, D. Lin, and K.L. Tan. Towards optimal utilization of memory for moving
object indexing. In Technical Report, National University of Singapore, 2004.

3. C. H. Goh, B. C. Ooi, D. Sim, and K. L. Tan. GHOST: Fine granularity buffering
of index. In Proc. VLDB, pages 339–350, 1999.

4. C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient B+-Tree based
indexing of moving objects. In Proc. VLDB, 2004.

5. J. Kaufman, J. Myllymaki, and J. Jackson. City Simulator spatial data generator.
http://alphaworks.ibm.com/tech/citysimulator, 2001.

6. D. Kwon, S. J. Lee, and S. H. Lee. Index the current positions of moving objects
using the lazy update R-tree. In MDM, pages 113–120, 2002.

7. M. L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Supporting frequent
updates in R-Trees: A bottom-up approach. In Proc. VLDB, pages 608–619, 2003.

8. J. M. Patel, Y. Chen, and V. P. Chakka. Stripes: An efficient index for predicted
trajectories. In Proc. ACM SIGMOD, pages 637–646, 2004.

9. G. M. Sacco. Index access with a finite buffer. In Proc. VLDB, pages 301–309,
1987.

10. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. lopez. Indexing the positions
of continuouslu moving objects. In Proc. ACM SIGMOD, pages 331–342, 2000.

11. Z. Song and N. Roussopoulos. Hashing moving objects. In Proc. MDM, pages
161–172, 2001.

12. Y. Tao, D. Papadias, and Jimeng Sun. The TPR*-Tree: An optimized spatio-
temporal access method for predictive queries. In Proc. VLDB, pages 790–801,
2003.

13. Y. Xia and S. Prabhakar. Q+Rtree: Efficient indexing for moving object databases.
In Proc. DASFAA, pages 175–182, 2003.

Aqua: An Adaptive QUery-Aware Location Updating
Scheme for Mobile Objects

Jing Zhou1, Hong Va Leong1, Qin Lu1, and Ken C.K. Lee2

1 Department of Computing, Hong Kong Polytechnic University, Hong Kong
{csjgzhou, cshleong, csluqin}@comp.polyu.edu.hk

2 Penn State University, Pennsylvania, USA

Abstract. Conventionally, the problem of location updates for moving objects
has been addressed by adjusting the location reporting frequency or setting the
uncertainty bound, according to object mobility patterns. This induces an obvious
tradeoff between the communication cost and the uncertainty bound in querying
moving object locations. Most existing works are focused on the object mobility
pattern, without exploring the interdependency between queries and location up-
dates. Furthermore, they take the precision of query results for granted as a result of
a negotiated deviation threshold for reporting. TheAqua (Adaptive QUery-Aware)
location updating scheme proposed in this paper exploits the interdependency be-
tween queries and updates. In particular, our scheme is adaptive to changes in both
object mobility patterns and query characteristics, thereby resulting in significant
performance improvement in terms of communication cost and query process-
ing precision. We performed simulation studies and demonstrated that Aqua can
produce desirable performance in most situations.

1 Introduction

To furnish a class of innovative context-aware services (e.g., location-aware advertising,
proactive tourist services), there is a fundamental need to develop a comprehensive
infrastructure, in which the locations of moving objects are to be managed effectively.
For example, to process a typical spatial query on moving objects like “Report all taxicabs
which are within 500m of my current position”, the positions of both the moving query
issuer and all taxicabs should be made available to the service system.

In a mobile environment, moving object locations are maintained by a location
server, which supports location-aware query processing and is assumed to be based
on a moving-object database (i.e., MOD). Moving objects may be passively tracked by
the communication infrastructure or actively reporting their locations to the server. To
reduce extensive resource consumption, object movement modeling [8] and threshold
techniques [13] have been proposed.

There is a tradeoff between location update frequency and uncertainty bound. Exten-
sive research work in location management has been focused on addressing the trade-
off between the accuracy of the maintained location records in MOD and the update
frequency from a large moving object population. Compared with traditional location
updating approach such as distance-based update scheme in personal communication

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 612–624, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Aqua: An Adaptive QUery-Aware Location Updating Scheme 613

network [1], deviation-based policy [13] could attain dramatic resource saving while
maintaining the same level of location uncertainty bound.

Despite recent research efforts, there are two issues remaining unaddressed. First,
none of the existing methods address the combined effect of object movement patterns
and query characteristics to the location updating schemes, though the two inter-related
factors have been investigated separately. Second, the issue on improving the precision
of the query results returned to the requesting user with respect to the tradeoff has largely
been ignored. Existing updating schemes merely establish an agreement with the user
for a service of reporting the object position within a certain deviation.

To address these limitations, we propose an efficient adaptive location updating
scheme for moving object location updating and query processing. Our work is moti-
vated by the observation that query processing on moving objects is the major subscriber
to moving object location tracking. We are more interested in the positions of moving
objects returned for these queries. Frequent location updates to objects which are sel-
domly included in a result set are unnecessary. Appropriately reducing the deviation
threshold for objects which are frequently returned in a result set can yield better query
precision with only slight increase in updating traffic. As a result, an integrative frame-
work of location updating strategy and query processing could lead to reduced resource
consumption and improved query precision.

In this paper, we realize our observation by specializing on the location updating
scheme for moving objects, into the Aqua (Adaptive QUery-Aware) location updating
scheme. The goal is to achieve improvement in not only reducing communication cost,
but also enhancing query processing precision. We then study Aqua via simulated ex-
periments and uncover its huge potential in performance improvement. The remainder
of this paper is organized as follows. Section 2 gives a survey on related research in
location management. Section 3 describes our research problem, with a formulation of
our Aqua scheme. We propose the concept of QUery-Adjustable moving SAfe Region
(quasar) and define mathematically the size of the quasar. The system model on which
Aqua is realized through the use of quasar is defined in Section 4. We then evaluate the
performance of Aqua with extensive experiments in Section 5. Finally, we conclude this
paper briefly with our future research directions.

2 Related Work

The research issue of how to accurately maintain the current location of a large number
of moving objects while minimizing the number of updates is not trivial, given that the
location of a moving object changes continuously but the database cannot be updated
continuously. Different update strategies were proposed for MOD [12]. To reduce the
update cost, a linear function f(t) is used for expressing object movement and position
estimation at different moment. The database is updated only when the function param-
eters change. This scheme avoids excessive location updates because no explicit update
is required unless the parameters in f(t) change [12]. In real applications, however, it is
difficult to define a good function to describe the object movement. If the simple linear
function cannot describe the complex movement, a lot of updates are generated with
parameter changes. To better fit for practical systems, threshold techniques are adopted

614 J. Zhou et al.

in the update scheme of moving objects. An alternative deviation-based policy for loca-
tion updating in MOD was proposed [10], based on the MOST data model for moving
objects [9]. As with [12], it represents and records the position of a moving object as
a function of time and updates the location record in database whenever the distance
between the current location and the stored location exceeds a given threshold. However,
the stored location is no longer a static value, but a timely changing one computed by
an appropriate location function.

With threshold techniques, the actual position of a moving object can deviate from
its position computed by the server. There always exists a tradeoff between update
communication cost and position error bound in the sense that the more update messages
sent, the lower the position error bound is. Bearing this in mind, much research work has
been conducted in determining the appropriate update frequency to balance the update
communication cost and positioning error cost in query answering. An information
cost model that captures uncertainty, deviation and communication is proposed in [11],
based on which a set of dead-reckoning policies is designed. Performance of those
dead-reckoning policies is studied [5]. The performance of deviation-based policy with
a predefined threshold setting has also been studied, under the assumption that the
threshold setting in most practical systems is up to the choice of users [13]. The work
targets at reducing the communication cost as much as possible while living with the
agreed level of location uncertainty. The deviation-based policy is shown via simulated
experiments to be up to 43% more efficient than the commonly used distance-based
policy in terms of messaging cost. However, query precision issues were not addressed.

There are a range of update techniques to process individual updates more effi-
ciently [3]. Moving objects can also be clustered into groups so that the group leader
will send location update on behalf of the whole group, thereby reducing the expensive
uplink updates from the objects to the location server [4].

3 The Adaptive Location Management Problem

The adaptive location management problem that Aqua is designed to solve is related
to two interdependent issues: location updating and query processing. It is focused on
reducing the communication cost while maintaining a similar service level in terms of
positioning error bound and query precision. Our motto is to invest the resource (update)
wisely. Note that this differs from existing work that ensures the same error bound [11].

Consider an Intelligent Transportation Systems launched in a city for answering
queries from drivers, passengers, police and other interested parties. Typical queries
include “What is the congestion level on I-10 near downtown Los Angeles?” and “What
are the nearest taxicabs to me when I am at the junction of State Street and Second
Street?”. It can be expected that the querying pattern exhibits a strong temporal and
spatial property, namely, more queries would be issued during the peak hours in early
morning or late afternoon and against downtown area. In this example, the downtown
area is a hot-spot for queries. One should distinguish moving objects that are seldomly
queried (like those far away from downtown) from those frequently queried (residing in
downtown area). Intuitively, in the former case, it is not necessary to update the object
location since almost no one is interested. Very infrequent update or paging technique

Aqua: An Adaptive QUery-Aware Location Updating Scheme 615

can be adopted to return the object location. In the latter case, a higher update frequency
should be made, despite the relatively slower movement of the object due to traffic jam,
thereby reducing the uncertainty or error bound and hence enhancing the precision of
the query result. This is the central idea behind our novel Aqua scheme. Incidentally,
this observation has not been exploited in existing location management schemes.

Aqua is built upon the concept of quasar (QUery-Adjustable moving SAfe Region).
A safe region is one in which a moving object can be found located. A safe region will
expand in size in the absence of location update and it shrinks with an update from
the moving object. An adaptive safe region expands with different speed according to
the speed of the moving object [6]. We extend adaptive safe region further into quasar
by allowing the center and hence the whole safe region to move. Conceptually, quasar
is defined as a moving circular region out of which the object should send an update
message to the location server. The area or covering scope of quasar is defined adaptively
for different moving objects and at different moment for the same object.

Formally, a quasar is expressed as 〈RC,RR〉, where RC and RR are the region
center and region radius respectively. RC is a moving point which indicates the predicted
position of a moving object, while RR bounds the maximum allowable deviation from the
predicted position. RC is modeled as a function of time f(t) as with previous work. The
actual region center RC should be computed on-the-fly according to a specific function
whenever the quasar is used.

The adaptive nature of quasar comes from the adjustable setting of RR. Location-
aware services built upon the location management system often define a minimal re-
quirement on the uncertainty bound of moving object position. Given a user-defined
uncertainty threshold τ , the object is requested to issue an update to the server when
its actual movement deviates by more than the required uncertainty bound τ from the
server record. Similar to previous work, Aqua accepts τ as an input parameter which
captures the user’s primary requirement to the system performance. For every object, τ
is assumed to be the same. However, RR values for different objects are set adaptively
according to the query pattern. Intuitively, the more frequently an object is involved in
query results, the smaller its RR value should be.

We characterize the query pattern by the query arrival rate, qr. For a specific moving
object, the larger qr is at a specific moment, the smaller RR should be defined for its
quasar. Whether a query arrival rate qr is large depends on the overall query arrival
rate over time, qr. Thus, RR = g(τ, qr, qr), where g is a generic function to be defined
properly. We pictorialize the general idea in Figure 1, and examine the relationship
among the three factors more clearly. The reason of defining maxRR is to set a bound
on the size of quasar for the extreme cases. For example, when the current query arrival
rate qr of an object is equal to or close to 0, RR will be unreasonably large, depriving of
the need of updates from that object and leading to unacceptable location precision.

Among common functions, e.g., power function, exponential function, logarithmic
function, a decreasing power function (P (x) = x−β with β > 0) appears to be a most
appropriate one for g, since both P and g match the general relationship among the three
factors for RR, with similar function properties. We thus define RR as:

RR = min(τ(
qr

qr
)−β ,maxRR) (1)

β is a system parameter for performance tuning. τ and qr are known to the system.

616 J. Zhou et al.

qr

maxRR

RR

qr

Fig. 1. General relationship among factors affecting RR

By setting RR adaptively, Aqua actually trades the communication cost of infre-
quently queried object for those frequently queried ones. The immediate benefit is re-
duction in communication cost when the query distribution is skewed with some hot
objects (objects moving around hot areas). A large amount of location updating mes-
sages from less interested objects can be eliminated. Even no communication cost can
be saved, reducing the quasar size can lead to better precision result. Despite the simple
power function adopted, Aqua performs surprisingly well in delivering a satisfactory
performance under the shadow of inevitable communication cost and precision tradeoff.

4 System Model

After defining the Aqua scheme with quasar, we now describe the system model that
realizes Aqua. Figure 2 depicts a mobile computing system that supports location man-
agement of moving objects and corresponding querying processing. The location server
communicates with the moving objects via a low bandwidth network and records their
locations. Queries issued by users are sent to the location server which performs query
processing and returns the query results to users. It is the responsibility of the moving
objects to generate update reports on their locations to the server. Cooperation between
the server and moving objects is needed to compute the size of the quasar for every
update because the objects possess no up-to-date knowledge on the query pattern of the
whole system. The models for moving object and server are described next.

DataBase

IBM Compatible

Satellite dish

Radio Tower

Lo
ca

tio
n

Upd
at

e

Ser
ve

r

Bro
ad

ca
st

Location
Server

Fig. 2. System model for a mobile computing environment

Aqua: An Adaptive QUery-Aware Location Updating Scheme 617

4.1 Moving Object Model

In our conceptual system, we assume that moving objects make continuous movement
within a two-dimensional space. They can also determine their location and velocity via
devices such as GPS. Upon each update, moving object o sends a report with a quadruple:
〈oid, p,v, RR〉, where oid is the unique object identifier, p is the current position, v is
the predicted velocity vector for determining RC, and RR is a value that o computes
for defining its quasar. Besides sending the quasar to the server, o also stores the value
of RC and RR and keeps monitoring its current position. Whenever o moves out of the
boundary of its quasar, another update is issued.

According to Equation 1, to compute RR, o needs its qr, the overall qr, and the
system parameter τ . τ is defined based on user or application requirement and is known
in advance. qr depends on the current system conditions and can be obtained periodically
from server broadcast. qr depends on the current position of o and can be conveyed by
the server via regional broadcast.

4.2 Server Model

The location server maintains a database to record the current positions of all moving
objects. The database may adopt different location modeling for a moving object, e.g.,
an exact point-location, or an area in which the object is located. Aqua stores the quasar
for each object which is known to lie within the quasar. With the quasar for the objects,
the server can perform query processing and object filtering to answer queries.

To process a query, the server computes the current quasar for each moving object
that overlaps with the range query and returns the result set based on this approximate
position. Figure 3a illustrates an example of processing a range query. The quasar for o1
does not overlap with q and can be filtered. o2 is definitely included in the query range
and is returned as a correct result. o3 and o4 overlap partially with the range query. The
degree of overlapping reflects the probability that these objects reside in the query range
and hence belong to the result set. An approximated result set is computed based on a
heuristic threshold which filters the result set to achieve a higher query precision. If the
threshold is small (unwilling to miss a potential object), both will be returned. If the
threshold is large, both will not be returned. With a medium value, o4 may be returned
while o3 may not be returned. In Figure 3b, both objects will be returned as correct result
for a large query range but would not be returned for a small query range.

r 2r

o1

o2
q

(b)

q

o3

o4 o1
o2

 (a)

Fig. 3. Range query processing

618 J. Zhou et al.

texttexttexttexttext

a
a

Entire Region GMoving Object

One Grid

Area with Higher qr

Area with Lower qr

Fig. 4. Grid model of unevenly distributed queries in spatial domain G

In order to provide moving objects with proper query arrival rate information to
compute their RR, the location server collects the query pattern information and delivers
them to the moving objects accordingly. The server maintains the historical knowledge
of queries and thus is able to compute the expected average query arrival rate qr based on
the long-time historical data. This information should be propagated to moving objects,
for example, via broadcasting.

It is more interesting for the server to propagate the query pattern to the moving
objects. In fact, the definition of query pattern can vary with different query types. We
consider here a most common query type, namely, range queries. Range queries are
concerned with specific spatial regions and the query distribution is characterized by the
spatial distribution of the query areas. Let G be the spatial domain, i.e., the entire region
covered by the mobile computing environment, within which moving objects can freely
move around. Certain sub-regions inG are of stronger interests (witnessing higher query
arrival rates) than others, which we call “hot regions”. The query rates in “hot regions”
are higher and moving objects residing around these hot regions should be informed that
a higher query arrival rate qr prevails.

To manage query arrival rates for different regions efficiently, the spatial domain
G is conceptually fragmented into sub-regions, according to query distribution. For
simplicity, we adopt a grid model to realize this space fragmentation. Figure 4 illustrates
the grid model. The entire domain is divided into square grid cells of size a by a, where
a is a system parameter. Each object can map its current position to the grid cell it just
moves in and set its qr value to the corresponding value of the grid cell. The qr value
for each grid cell is either pre-stored into moving object as default value, or obtained
on-the-fly via wireless channels from the server. The former method consumes less
downlink bandwidth but is not flexible because the hot and cold sub-regions are only
relative and may change over time when query patterns change. The latter can adapt the
“temperature” of sub-regions to changing query patterns and deliver the changes to the
moving object appropriately, at the expense of higher communication cost.

Aqua: An Adaptive QUery-Aware Location Updating Scheme 619

5 Performance Studies

In this section, we compare Aqua with the deviation-based policy which is regarded as
producing the best performance in location updating for moving objects [13]. In partic-
ular, we measure two standard metrics to demonstrate the performance improvements:
the number of update messages (measuring the uplink bandwidth consumption) and the
query precision rate (indicating the observed accuracy to a query). The query precision
is defined as the ratio of the number of correct objects to the total number of objects
returned in the result set, based on the corresponding quasar of the moving objects in
the database. Here, a correct object is one which is actually residing within the scope of
the query.

Table 1. Simulation parameters

Parameter Value range Default value
Number of moving objects 1000 to 10000 5000
Object velocity 0.2, 0.5, 1, 1.5, 2 1
Percentage of objects changing direction 75%
Mean to query distribution, µq 50
Standard derivation to query distribution, σq 5 to 100 10
Query range, rq 0.5, 1, 1.5, 2 1
Deviation threshold, τ 0.1 to 1 0.5
Quasar parameter, β 0.1, 0.5, 1, 2

The parameters adopted in our simulations are depicted in Table 1. Each experi-
ment models the movement of the objects for 1000 time units. The spatial domain G
of interest is a square-shaped region of size 100 by 100. The domain is fragmented into
5 by 5 grids. The number of moving objects ranges from 1000 to 10000. These ob-
jects are initially placed randomly in the entire domain G. The total number of queries
is 50000. These parameters can basically be scaled up without much effect on our
conclusions from our experiments, as long as the object density remains unchanged.
We assume range queries, with circular-shaped querying region. The center of each
range query is randomly distributed in G, following a 2-dimensional Gaussian distri-
bution, with a mean µq = 50 and standard deviation σq ∈ [5, 100], modeling a range
of highly skewed query sets to the almost uniformly distributed ones. The movement
of objects is modeled similar to MobiEyes [2]. We assign randomly a velocity to each
object uniformly from the list 〈0.2, 0.5, 1, 1.5, 2〉. The velocity of each object is constant
throughout each simulation. Their initial moving directions are set randomly. In each
time unit, we pick a number of objects at random and change their movement direc-
tion to a new random one. Other objects are assumed to continue with their existing
motion.

We conducted four sets of experiments to evaluate the performance of our Aqua
scheme (Aqua) with differentβ values against the best performing deviation-based policy
(Deviation). The experimental parameter settings are listed in Table 2.

620 J. Zhou et al.

Table 2. Experimental parameter settings

Parameter Number of objects Threshold τ Query range rq σq β

Experiment #1 1000, 5000, 10000 0.05 to 1 1 10 0.1, 0.5, 1, 2
Experiment #2 1000 to 10000 0.1, 0.5, 1 1 10 0.1, 0.5, 1, 2
Experiment #3 5000 0.05 to 1 1 5 to 100 0.1, 0.5, 1, 2
Experiment #4 5000 0.05 to 1 0.5, 1, 1.5, 2 10 0.1, 0.5, 1, 2

5.1 Experiment #1: Effect of Threshold

We study in our first experiment the influence of different deviation thresholds. In general,
it can be observed from Figure 5 that all schemes perform better in terms of number of
updates but worse in terms of query precision with increasing τ . With smaller τ , update is
more frequent, leading to a smaller deviation between the real location of a moving object
and its predicted one in database. Query processing based on the more accurate location
information leads to a better precision result. With respect to updates, Aqua performs
much better than Deviation for small to medium τ . Even with very large τ , all except one
Aqua schemes are superior. Interestingly, when query precision is concerned, all Aqua
schemes outperform Deviation under all scenarios and the performance gap widens with
larger τ . The key performance gain in Aqua lies in the adaptivity of the quasar size with
respect to an accurate query arrival rate, so as to gain more in one metrics, while losing
less in the other for each query set. In summary, Aqua is effective in reducing message
cost without sacrificing precision with small τ and improving query precision without
sacrificing message cost with large τ .

We now investigate the impact of β. It is obvious from Figure 5 that its value does
not lead to much difference in the number of updates, but is much more significant
with respect to query precision. Furthermore, its impact is amplified with larger value
of τ , which is not surprising, since at a larger τ , the quasar size increases, producing a
bigger impact on the observed performance. Smaller value of β leads to fewer updates
but yields lower query precision and vice versa. It is apparent that a medium to large

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold
of objects: 1k

of

 t
ot

al
 u

pd
at

es
 (

k

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Update M essages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold
of objects: 1k

Q
ue

ry
 P

re
ci

si
on

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Query Precision

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold
of objects: 5k

of

 t
ot

al
 u

pd
at

es
 (

k

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Update M essages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold
of objects: 5k

Q
ue

ry
 P

re
ci

si
on

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Query Precision

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold
of objects: 10k

of

 t
ot

al
 u

pd
at

es
 (

k

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Update M essages

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold
of objects: 10k

Q
ue

ry
 P

re
ci

si
on

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Query Precision

Fig. 5. Effect of threshold

Aqua: An Adaptive QUery-Aware Location Updating Scheme 621

value of β seems to yield a better aggregated performance. Our final observation is that
the relative shapes of performance curves of Deviation and Aqua remain similar with
different number of moving objects, especially from medium to large number.

5.2 Experiment #2: Effect of Number of Objects

We examine the effect of the number of objects in the second set of experiments, as
depicted in Figure 6. It is understandable that the number of update messages increases
linearly with the number of objects. However, there is a corresponding non-linear drop in
query precision, though one would expect a relatively flat curve. The main reason behind
this phenomenon on higher precision with fewer objects is due to the variation in query
selectivity. With fewer objects, the chance for a range query to select zero object is higher;
returning no object will lead to a 100% precision, thus boosting the overall precision
metrics. The performance gap between Deviation and the Aqua schemes widens with
higher threshold τ . The variation in performance with respect to β is similar to that in
Experiment #1, namely, lower β leads to fewer updates but lower precision, and vice
versa. Nevertheless, Aqua is more effective in both performance metrics than Deviation.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0# of objects

Threshold: 0.1

of

 to
ta

l u
pd

at
es

 (k
)

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Update Messages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0# of objects

Threshold: 0.1

Q
ue

ry
 P

re
ci

si
on

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Query Precision

0
200
400
600
800

1000
1200
1400
1600
1800

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0# of objects

Threshold: 0.5

of

 to
ta

l u
pd

at
es

 (k
)

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Update Messages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0# of objects

Threshold: 0.5

Q
ue

ry
 P

re
ci

si
on

Deviation Policy Aqua (=0.1)
Aqua (=0.5) Aqua (=1)
Aqua (=2)

Query Precision

0

200

400

600

800

1000

1200

1400

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0# of objects

Threshold: 1

of

 to
ta

l u
pd

at
es

 (k
)

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Update Messages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000
0# of objects

Threshold: 1

Q
ue

ry
 P

re
ci

si
on

Deviation Policy Aqua (=0.1)
Aqua (=0.5) Aqua (=1)
Aqua (=2)

Query Precision

Fig. 6. Effect of number of objects

5.3 Experiment #3: Effect of Query Distribution Skewness

Aqua is designed to take advantage of query distribution. The skewness of query (affected
by the standard deviation σq on the distribution), thus, plays an important role to its
effectiveness. When σq is large, the behavior becomes similar to queries issued randomly
and almost uniformly throughout the domain. Our third set of experiments is conducted
to examine the influence of the query distribution skewness to the improvement achieved
by Aqua. The results are shown in Figure 7. With larger σq, the improvement brought
about by Aqua is curtailed. Under those scenarios, Aqua starts to exhibit the familiar
behavior of tradeoff between update cost and precision at a scale close to Deviation.
There exist different breakeven points for the performance between Aqua with different

622 J. Zhou et al.

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100

Standard Deviation of Query Distribution
Threshold: 0.1

of

 a
ve

ra
ge

 u
pd

at
es

 (
k)

Deviation Policy

Aqua (=0.1)

Aqua (=0.5)

Aqua (=1)

Aqua (=2)

Update Messages

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Standard Deviation of Query Distribution
Threshold: 0.1

Q
u

er
y

P
re

ci
si

on

Deviation Policy

Aqua (=0.1)

Aqua (=0.5)
Aqua (=1)

Aqua (=2)

Query Precision

50

70

90

110

130

150

170

190

0 10 20 30 40 50 60 70 80 90 100

Standard Deviation of Query Distribution
Threshold: 0.5

of

 a
ve

ra
ge

 u
pd

at
es

 (
k

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Update M essages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100

Standard Deviation of Query Distribution
Threshold: 0.5

Q
ue

ry
 P

re
ci

si
on

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Query Precision

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 60 70 80 90 100

Standard Deviation of Query Distribution
Threshold: 1

of

 a
ve

ra
ge

 u
pd

at
es

 (
k Deviation Policy Aqua (=0.1)

Aqua (=0.5) Aqua (=1)
Aqua (=2)

Update Messages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90 100

Standard Deviation of Query Distribution
Threshold: 1

Q
ue

ry
 P

re
ci

si
on

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)

Aqua (=1)
Aqua (=2)

Query Precision

Fig. 7. Effect of skewness in query distribution

β values against Deviation. Among all Aqua schemes, those with smaller β seem to yield
a closer behavior to Deviation. The situation for Aqua is worsen with higher threshold τ .

5.4 Experiment #4: Effect of Query Size

Our final set of experiments studies the effect of the scope of the range query (reflected
by the query range rq). As illustrated by Figure 8, the query size has no impact on the
number of update messages. This is because the quasar size does not depend on the
query range rq. Aqua scheme with a higher β value has a higher precision, and yet pays
a higher penalty in updating, but Deviation is able to close the gap with larger threshold.
Interestingly, better query precision for all the schemes can be resulted when queries
with larger range are issued. This can be explained by the query selectivity factor. With
a larger query range rq, its selectivity among the moving objects becomes larger. We
can observe in our experiments that a normal moving object tends to maintain a smaller
quasar compared with the query region. It is reasonable to expect a better precision for a
query with a larger selectivity because the number of objects actually returned is larger.
Taking the example in Figure 3b, an object that is deemed incorrectly returned for a
small query with rq = r will be considered correctly returned for a larger query with
rq = 2r. Therefore, the query precision can be improved in general.

6 Conclusion and Future Work

Upon considering existing location update reporting strategies for moving objects, two
unaddressed issues have been identified: 1) no existing method considers the possible
interaction of query patterns to the location update schemes; 2) the issue on improving
the precision of the query results returned has been ignored. To address these limitations,
we propose in this paper the novel Aqua location updating scheme, which is adaptive to
query distribution in the sense that it differentiates the location updating frequency for
different moving objects according to their own querying characteristics. Aqua is able to

Aqua: An Adaptive QUery-Aware Location Updating Scheme 623

0

50

100

150

200

250

300

350

400

450

500

Threshold: 0.1

of

 a
ve

ra
ge

 u
pd

at
es

 (
k

Deviation
Policy

Aqua
(=0.1)

Aqua
(=0.5)

Aqua
(=1)

Aqua
(=2)

Update M essages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 1 1.5 2

Query Radius
Threshold: 0.1

Q
ue

ry
 P

re
ci

si
on

Deviation Policy

Aqua (=0.1)

Aqua (=0.5)
Aqua (=1)

Aqua (=2)

Query Precision

0

20

40

60

80

100

120

140

160

180

Threshold: 0.5

of

 a
ve

ra
ge

 u
pd

at
es

 (
k

Deviation
Policy

Aqua
(=0.1)

Aqua
(=0.5)

Aqua (=1)

Aqua (=2)

Update M essages

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 1.5 2

Query Radius
Thres hold: 0.5

Q
u

e
ry

 P
re

ci
si

o
n

Deviation Policy
Aqua (=0.1)
Aqua (=0.5)
Aqua (=1)
Aqua (=2)

Query Precision

0

20

40

60

80

100

120

Threshold: 1

of

 a
ve

ra
ge

 u
pd

at
es

 (
k

Deviation
Policy

Aqua
(=0.1)

Aqua
(=0.5)

Aqua (=1)

Aqua (=2)

Update M essages

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 1 1.5 2

Query Radius
Threshold: 1

Q
ue

ry
 P

re
ci

si
on

Deviation Policy Aqua (=0.1)
Aqua (=0.5) Aqua (=1)
Aqua (=2)

Query Precision

Fig. 8. Effect of query size

improve existing methods by investing on preferred objects so that the communication
cost is paid for updating those who can get more precision gain. A higher precision
level is maintained for location of objects interested by more queries. In other words,
we follow the motto to invest our “money” wisely for maximal return.

The improvement brought about by Aqua are two-folded. First, much fewer location
update messages from moving objects to the server are generated. This is particularly
important in a mobile environment, where communication is expensive. Less frequent
location updating also reduces the consumption of precious energy for moving objects.
Second, the precision of query processing can be improved without much tradeoff. The
significant improvement in this aspect can be attained when the queries display some
form of skewness, as exhibited in most real practical environments.

We plan to build up a comprehensive location management model based on our
adaptive location update models, including Aqua and GBL [4]. Another issue is about
the extension of the Aqua framework to cater for more practical situations such as road
networks in a city rather than based on the free movement assumption for objects.

References

1. A. Bar-Noy, I. Kessler and M. Sidi. Mobile users: To update or not to update? ACM-Baltzer
Journal on Wireless Networks, 1(2):175–186, 1994.

2. B. Gedik and L. Liu. MobiEyes: Distributed processing of continuously moving queries on
moving objects in a mobile system. In Proc. EDBT, pages 67–87, 2004.

3. C.S. Jensen and S. Saltenis. Towards increasingly update efficient moving-object indexing.
Special Issue on Indexing of Moving Objects, IEEE Data Engineering Bulletin, 25(2):35–40,
2002.

4. G.H.K. Lam, H.V. Leong and S.C.F. Chan. GBL: Group-based location updating in mobile
environment. In Proc. DASFAA, pages 762–774, 2004.

5. K. Lam, O. Ulusoy, T.S.H. Lee, E. Chan and G. Li. An efficient method for generating location
updates for processing of location-dependent continuous queries. In Proc. DASFAA, pages
218–225, 2001.

624 J. Zhou et al.

6. K.C.K. Lee, H.V. Leong andA. Si.Approximating object location for moving object database.
In Proc. MDC’03 (ICDCS Workshop), pages 402–407, 2003.

7. E. Pitoura and G. Samaras. Locating objects in mobile computing. IEEE TKDE, 13(4):571–
592, 2001.

8. A.P. Sistla, O. Wolfson, S. Chamberlain and S. Dao. Modeling and querying moving objects.
In Proc. ICDE, pages 422–432, 1997.

9. A.P. Sistla, O.Wolfson, S. Chamberlain and S. Dao. Querying the uncertain position of moving
objects. Temporal Databases, pages 310–337, 1997.

10. O. Wolfson, S. Chamberlain, S. Dao, L. Jiang and G. Mendez. Cost and imprecision in
modeling the position of moving objects. In Proc. ICDE, pages 588–596, 1998.

11. O. Wolfson, A.P. Sistla, S. Chamberlain and Y. Yesha. Updating and querying databases that
track mobile units. Distributed and Parallel Databases, 7(3):257–287, 1999.

12. O. Wolfson, B. Xu, S. Chamberlain and L. Jiang. Moving objects databases: Issues and
solutions. In Proc. SSDBM, pages 111–122, 1998.

13. O. Wolfson and H. Yin. Accuracy and resource consumption in tracking moving object. In
Proc. SSTD, pages 325–343, 2003.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 625–636, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Spatial Index Using MBR Compression and Hashing
Technique for Mobile Map Service

Jin-Deog Kim1, Sang-Ho Moon2, and Jin-Oh Choi2

1 Dept. of Computer Eng., Dongeui Univ., Busanjin-gu, Busan, 614-714, Korea
jdk@deu.ac.kr

2 Dept. of Computer Eng., Pusan University of Foreign Studies, Wooam-dong
Nam-gu, Busan, 608-738, Korea

{shmoon87, jochoi}@pufs.ac.kr

Abstract. While the volumes of spatial data are tremendous and spatial opera-
tions are time-intensive, mobile devices own limited storages and low computa-
tional resources. Therefore, a spatial index for mobile map services should be
small and efficiently filter out the candidate objects of a spatial operation as
well. This paper proposes a spatial index called MHF(Multilevel Hashing File)
for the mobile map service. The MHF has a simple structure for storage utiliza-
tion and uses a hashing technique for search efficiency. This paper also designs
a compression scheme of MBR(Minimum Bounding Rectangle) called HMBR.
Although the HMBR scheme reduces the volume of MBR to almost a third, it
still achieves a good filtering efficiency because of no information loss by
quantization in case of small objects that occupy a major portion. Our experi-
mental tests show that the proposed MHF with HMBR is appropriate for mobile
devices in terms of the volume of index, the number of the MBR comparisons,
the filtering efficiency and the execution time of spatial operations.

1 Introduction

The volume of spatial data and the computational cost of spatial operations are very
tremendous, but on the other hand the mobile devices own a limited memory and a
low computational capacity than the PC. Therefore, a spatial index for the mobile
devices should be small and achieve good filtering efficiency as well. The existing
spatial indices based on the PC, such as R-tree, are not applicable to the mobile de-
vices based on memories. In the mobile device’s applications, since the data transmit-
ted from servers always reside in the memory of the mobile devices and disk accesses
are not required for data retrievals, the working mechanism of an index for the mobile
devices is quite different from that of the existing indices. The indices based on disks
hold a node structure for paged I/O and use clustering techniques in order to reduce
the number of disk seeks. On the other hand, because search operations in the indices
based on the memory are irrelevant to disks accesses, the node structure and the clus-
tering which are important factors of performance improvements of the existing indi-
ces maybe yields contrary results in the mobile devices. Also, the great volume of the
existing spatial indices is not appropriate for the mobile devices.

626 J.-D. Kim, S.-H. Moon, and J.-O. Choi

In addition to that, the low utilization of each node of the existing indices is due to
the property of dynamic update. Because the applications of the mobile devices are
mostly bounded to retrieval, not update, the property of dynamic update is an obstacle
of performance improvements in the mobile devices. The update is generally proc-
essed by servers in the mobile map service.

In this paper, we propose a spatial index structure for the mobile devices, which is
so simple and small that shows good storage utilization and filtering efficiency as
well. We take the small memory and low computing capacity of the mobile devices
into consideration. We also propose a new compression scheme of MBR, which oc-
cupies about 80% of the spatial index volume in the two dimensional case, in order to
maximize storage utilization. We would like to prove that the deterioration of per-
formances has not occurred regardless of the MBR compression.

In order to evaluate the performances of the proposed spatial indexing method and
the MBR compression schemes in comparison with R*-tree, several experiments are
conducted on the Sequoia 2000 benchmark data [9]. The items of the performance
evaluations are the volume of each spatial index, the number of MBR comparison in
the filter step, filtering efficiency and the total operation time. The results of the ex-
periments clearly show that we can decide a suitable spatial index for the mobile
devices and the proposed methods are also expected to be important technology for
the mobile map services to be wide used recently.

The rest of this paper is organized as follows. In section 2, we investigate the re-
lated works on spatial index based on disks and memories respectively. In section 3,
we propose a spatial index structure based on memory for the sake of the mobile map
services. In section 4, we also introduce MBR compression schemes to cut down the
volume of a spatial index. In section 5, the results of experiments are presented and
analyzed. Finally, we give conclusions in section 6.

2 Related Works

The size of spatial objects in a relation varies extremely. In order to deal with such
large objects and at the same time to preserve spatial locality in pages, spatial access
methods organize only approximations of objects as an index instead of the exact
representation. The minimum bounding rectangle(MBR) of an object is a very com-
mon approach for an approximation. A spatial query is processed in two steps, called
filter and refinement step [5]. Because the refinement step applies the exact represen-
tation to check procedures, it is very time-consuming. Therefore, it is had better cut
down the number of candidate objects in the filter step if possible.

Spatial indices are used for the efficient processing of the filter step. Many re-
searches on spatial indices have been studied so far. The index in these literatures,
however, is almost based on the disks [1,2,5,8,10,15]. The R*-tree called a representa-
tive spatial index based on disks is studied in [1]. The low utilization of each node
may be a fatal defect in the mobile devices with limited storages. Besides, the overlap
of each node in R*-tree brings about inefficiency for the display of a given rectangle
area required frequently in the applications of the mobile devices. In spite of these
drawbacks, the performance of the R*-tree is derived from a paged I/O and natural
clustering which reduce the number of seek operations. The A-tree [15] index struc-

 A Spatial Index Using MBR Compression and Hashing Technique 627

ture which uses a relative approximation scheme is proposed for similarity searches in
high-dimensional data. Its VBR can be quite compactly and thus affect the reduction
of the number of node accesses. In spatial indices based on memory, however, there is
no longer any reason for such paged I/O mechanism to exist.

There have been many works on indices of main memory database systems re-
cently global [3,4,6,7,8]. The T-tree global [4] is the binary tree of which each node
maintains several number of data and just two number of link fields in order to maxi-
mize storage utilization. It can accommodate text data, but it is impossible for T-tree
as an index to hold multidimensional spatial data.

The CR-tree [3] based on main memory is the cache-conscious version of the R-
tree. To pack more entries in a node, the CR-tree compresses MBRs. While the
QRMBR proposed in CR-tree saves memory, it yields low filtering efficiency which
is a fatal drawback in the mobile devices.

The literature [11,12] proposed a clustering-based map compression method which
adapts a dictionary to a given dataset. The proposed method achieves lower error than
a static dictionary compression such as the one used by the FHM algorithm[13]. This
research is different from our study in that it does not treat index structures.

3 Spatial Index Based on Memory for Mobile Devices

The requirements of the spatial index for the mobile devices are as follows. : First,
small volume and simple structure. Second, quick response for spatial queries. Third,
easy to load all the objects of a rectangle region in order to display the map of the
screen size of the mobile devices. Fourth, easy to manage non-uniformly distributed
data.

We propose a new spatial index, MHF(multi-level hashing file) to obey above four
requirements. This index delivers high storage utilization due to its simple structure,
and it also has small number of the MBR comparison due to the hash-based indexing
technique. Although it takes regular decomposition, it manages non-uniformly dis-
tributed data very well.

The MHF hashes the overall space on the basis of X and Y coordinates of each ob-
ject. The hash functions are as follows. The Xmin, Ymin, Xmax and Ymax mean the
extents of the overall space. The Nx and Ny are the numbers of buckets of X and Y
axes respectively.

 Hx(x) = int[(x - Xmin)/(Xmax-Xmin)*Nx]
 Hy(y) = int[(y - Ymin)/(Ymax-Ymin)*Ny]

The hash table is two dimensional structure and the second(or subsequent) hashing
is executed to prevent a bucket overflows as shown in figure 1. To load all the objects
located in a rectangle area for simple display is straightforward because the MHF
decomposes data space regularly. Even though the data distribution is non-uniformed
and skewed, therefore the reasonable response time is guaranteed without severe
delay for spatial queries.

The second hash function is similar to the first hash function except for the min
and max values of the extents. The min and max values in the second function are
changed the extent of entire data space into the extent of the overflowed bucket. The

628 J.-D. Kim, S.-H. Moon, and J.-O. Choi

third or more hashing is executed successively until no longer overflows. We assume
that the Nx and Ny of second or more hashing are a half of those of first hashing re-
spectively. The capacity(M) of a bucket is determined by the combinations of the
whole number of the objects, the desired volume of the index and the desired search
time.

The header of the MHF consists of an extent of entire map and the number of
buckets of both X and Y axes as shown in figure 2. A bucket entry holds the number
of objects and the pointers to indicate each object in data file. The pointer is classified
by the number of objects as follows.

 [# of Obj. = 0] Empty Bucket Condition : Pointer is NULL
 [# of Obj. 1~ M] Normal Condition : Pointer to indicate each bucket

Each bucket holds following information
<MBR of Object, Pointer to Object> * # of Obj.

 [# of Obj. > M] Overflow Condition : Pointer to sub hash table

Hx(X)

Hy(Y)

0 0.25 0.5 0.75 1

1

0.75

0.5

0.25

0

Overflow
(2nd hashing)

Bucket(1,1) Bucket(1,Ny)

Bucket(Nx,1) Bucket(Nx,Ny) • • • •

• • • • • • • • • • • •

• • • •

Map Extent Nx Ny

#of Obj. Pointer to Bucket

Xmin Ymin Xmax Ymax

 Fig. 1. Hash Table Fig. 2. Header Format

In the following, we introduce the procedures of a point query and a region query
used frequently in the map service applications.

Procedure Point_Query()
Input : Header, Point(query point)
Output : selected objects
Read Extent from Header
X = Hx(Point.x); Y = Hy(Point.y); // Hash X,Y
Read Information of Bucket(X,Y)
CASE(# of Obj.)
 [0] : “Not Found”
 [>M] : Bucket_Header = Pointer_to_Bucket;
 Point_Query(Bucket_Header, Point)
 // Recursive Call
 [1~M] : S = Pointer_to_Bucket;
 FOR(all Obj. ∈ S) // from 1 to # of Obj.
 IF(Obj.MBR ∩ Point ≠ ∅)
 Result += Obj.
end of Procedure

 A Spatial Index Using MBR Compression and Hashing Technique 629

Procedure Region_Query()
Input : Header, Region(query region)
Output : selected objects
Read Extent from Header
Xlow = Hx(Region.Xmin); Xmax = Hx(Region.Xmax);
Ylow = Hy(Region.Ymin); Ymax = Hy(Region.Ymax);
FOR(X = Xlow ~ Xmax)
 FOR(Y = Ylow ~ Ymax)
 Read Information of Bucket(X,Y)
 CASE(# of Obj.)
 [0] : Continue
 [>M] : Bucket_Header = Pointer_to_Bucket;
 Region_Query(Bucket_Header, Region)
 // Recursive Call
 [1~M] : S = Pointer_to_Bucket;
 FOR(all Obj ∈ S) // from 1 to # of Obj.
 IF(Obj.MBR ∩ Region ≠ ∅)
 Result += Obj.
end of Procedure

4 Compression Schemes of MBR

One of the most important characteristics of GIS data in view of the mobile device is
that the volume of spatial data is tremendous. To filter efficiently candidate objects,
spatial indices usually use MBRs organized by the coordinates of low left corner and
upper right corner as the approximation of each spatial object. The 16 byte MBR is
generally used for two-dimensional key because a coordinate of each axis takes a 4
byte number. The existing spatial indices are usually too big to use in the mobile
devices. The MBR keys also occupy almost 80% of their indices. Therefore, we focus
on the MBR compression scheme for the sake of a small index.

We now introduce some kinds of the MBR compression schemes : The relative
representation of MBR(RMBR), the quantized representation of MBR(QMBR) [3],
the hybrid representation of MBR(HMBR) proposed newly in this paper.

The proposed schemes are also useful for compressing the exact geometry of spa-
tial objects with a little modification. However, as the purpose of this paper is con-
cerned, it is not necessary to discuss the compression of exact geometry.

 4.1 Relative Representation of MBR : RMBR

A normal MBR represented by absolute coordinate system occupies 16 bytes in figure
3. On the contrary, we can save 8 bytes per MBR with relative representation because
each coordinate can be represented by 2 bytes instead of 4 bytes in figure 4.

4.2 Quantized Representation of MBR : QMBR

The QMBR achieves better storage utilization than RMBR. Figure 5 shows the
QMBR with quantization level 13(x axis) and 9(y axis) respectively. The quantization
level means each axis is divided by a given number. If the quantization level is less

630 J.-D. Kim, S.-H. Moon, and J.-O. Choi

than 256, each coordinate can be represented by quantized value of 1byte. It means
the QMBR achieves compression effects four times in comparison to normal MBR

(70818, 70552)

(70240, 70223)

(70119, 70121)
(70400, 70173)

(70000, 70000)

(71000, 70800)

B

A

(818,552)

(240, 223)

(119,121)
(400, 173)

(70000, 70000)

(71000, 70800)

B

A

 Fig. 3. Normal MBR Fig. 4. RMBR

On the contrary, the QMBR brings about the enlargement of MBR of each object.
This enlargement causes the increase of the number of candidate objects in refinement
step after filter step. Eventually, the QMBR results in the increase of the query time,
particularly in the mobile devices with low computational resources. As the size of a
spatial object is small, the percentage of the enlargement becomes large.

(1,1)

(70000, 70000)

(71000, 70800)

A

B

(3,3)

(5,2)

(12,8)

(119,121)+(121,102)

(400, 173)+(226,224)

(70000, 70000)

(71000, 70800)

A

B

Fig. 5. QMBR Fig. 6. HMBR

4.3 Hybrid Representation of MBR : HMBR

The HMBR newly proposed in this paper takes the hybrid representation scheme that
makes use of the merit of not only reasonable storage utilization but also good filter-
ing efficiency. The low left corner of HMBR is identical with that of RMBR, but the
upper right corner of HMBR is represented by the lengths(width, height) of MBR.

 HMBR = Xmin(2byte) + Ymin(2byte) + Width(1byte) + Height(1byte)

In order to represent the width and height of MBR by means of 1 byte respectively,
a following method is introduced. If the length of MBR is smaller than threshold
value(β), the length is represented by actual value just as it is. If not, the length is

 A Spatial Index Using MBR Compression and Hashing Technique 631

represented by a quantized value. The β is determined by quantization level. The β is
255-n, where n is quantization level. The procedure to generate HMBR is as follows.

Procedure Generate_HMBR()
Input : normal_MBR, Ext_of_Bucket, Quant_level
Output : HMBR
 HMBR.Xmin = MBR.Xmin – Ext_Bucket.Xmin
 HMBR.Ymin = MBR.Ymin – Ext_Bucket.Ymin
 β = 255 – Quant_level
 X_Length_Obj = MBR.Xmax – MBR.Xmin
 X_quant_length = Ext_Bucket.Xmax - Ext_Bucket.Xmin
 IF (X_Length_Obj <= β)
 HMBR.Width = X_Length_Obj
 ELSE HMBR.Width = β + X_Length_Obj / X_quant_length
 Y_Length_Obj = MBR.Ymax – MBR.Ymin
 Y_quant_length = Ext_Bucket.Ymax - Ext_Bucket.Ymin
 IF (Y_Length_Obj <= β)
 HMBR.Height = Y_Length_Obj
 ELSE HMBR.Height = β + Y_Length_Obj / Y_quant_length
end of Procedure

For example, figure 6 depicts HMBR derived from normal MBR of figure 3. While
the lengths of MBR of object A are represented by actual values, the lengths of MBR
of object B are represented by quantized values when n is 50 in figure 6.

A HMBR can be represented by means of 6 bytes. Although the storage utilization
of HMBR is slightly lower than that of QMBR, the filtering efficiency of HMBR is
superior to that of QMBR. If the lengths of most spatial objects are smaller than β
value, the HMBR of these objects doesn’t bring about the enlargement of MBR of
objects. The big objects with quantized lengths are generally infrequent. The quan-
tized length yields the enlargement of MBR, and then deteriorates filtering efficiency.
The impacts of this enlargement will be examined in chapter 5.

5 Performance Evaluation

The test data for performance evaluation are Sequoia 2000[9] which is widely used as
benchmark data. The H/W platform is Compaq iPAQ with 32 Mbyte memories for
data area. The point and region query are carried out 1000 times respectively.

5.1 Volume of Index

Figure 7 graphs the volumes of the two indices, R*-tree and MHF, with the proposed
compression schemes. The node size of R*-tree is 512 bytes and the M of top level of
MHF is 50, the capacities of second and more levels are assigned a value decreased
by 5 compared with that of previous level. The quantization levels of QMBR and
HMBR are 256 and 50 respectively. The Nx and Ny of MHF are both 50.

The following results are obtained from figure 7. First, the MHF outperforms the
R*-tree in the storage utilization aspect when an identical MBR representation scheme

632 J.-D. Kim, S.-H. Moon, and J.-O. Choi

is used by each index. For example, the volume of MHF with QMBR is almost 50 %
of that of R*-tree with the same MBR scheme.

Second, compared with the volume of spatial index according to the MBR com-
pression schemes, the QMBR outperforms the others as might have been expected.
However, the filtering efficiency of spatial index with QMBR is not good at all. You
will see this problem in section 5.3. Additionally, figure 7 tells us that HMBR also
achieves a good compression effect which is placed after QMBR.

5.2 Number of MBR Comparison in Filter Step

Figure 8 depicts the number of the MBR comparison operations which means search
performance in the filter step of point query. First, the MHF generally outperforms the
R*-tree. More precisely, the MHF with either HMBR or QMBR requires almost 50%
of MBR comparison of R*-tree.

Second, the QMBR requires more MBR comparison than the others. It was found
from the experimental results that the enlargement of MBR is strongly related to dete-
rioration of the performance of filter step. Particularly, the R*-tree with QMBR may
be worst case because the enlargement of MBR of R*-tree occurred from high level to
leaf node brings about excessive overlapped regions.

0

500

1000

1500

2000

2500

3000

MBR RMBR QMBR HMBR

KByte

R*

MHF

40

60

80

100

120

140

160

MBR RMBR QMBR HMBR

of MC

R*

MHF

 Fig. 7. Size of Spatial Indices Fig. 8. Number of MBR Comparison Operations

Consequently, the MHF usually outperforms the R*-tree in the aspect of MBR
comparison of filter step. HMBR also achieves an overwhelming performance in
comparison with the others. The performance of region query is also quite similar to
that of point query, so we will leave that results out of consideration.

5.3 Filtering Efficiency of MBR Compression Schemes

The aim to use spatial indices is to execute efficiently filter step as well as to mini-
mize the candidate objects participated in the refinement step. If the low computa-
tional resource of the mobile devices is taken into consideration, the number of the
candidate objects is strongly related to overall execution time of spatial operations.
Table 1 summarizes the average number of candidate objects after filter step of point
and region query. The areas of the query region are 0.1%, 0.4 and 1% of the whole
data space respectively. The experimental results indicate that the number of candi-

 A Spatial Index Using MBR Compression and Hashing Technique 633

date objects is almost irrelevant to the kind of spatial indices, but it depends on the
compression schemes. The QMBR with the enlargement increases the number of
candidate objects compared with the others. Particularly, in case of the point query
and the region query with very small region, the performance of QMBR is more infe-
rior to the others. On the contrary, even if HMBR uses the quantization technique like
QMBR, the number of the candidate objects in HMBR is almost identical with that of
normal MBR because this quantization is only used for big objects.

Table 1. Number of Candidate Objects

Query Region
MBR Rep.

PointQuery 0.1% 0.4% 1%

MBR/RMBR 3.2 187.4 521.3 1038.9
QMBR 7.3 318.5 672.5 1266.7
HMBR 3.5 201.3 553.8 1052.0

5.4 Query Execution Time

Table 2 describes the average execution time of QMBR and HMBR. Generally,
HMBR improves the performance of about 40% percents in comparison with QMBR.
It is for this reason that the candidate objects increased by QMBR causes long execu-
tion time in the refinement step as shown in table 1. The results obtained from
experiments coincide with what was expected. Table 2 also shows that the query
execution time have nothing to do with the area of query region mostly.

Table 2. Query Execution Time(unit : ms)

Query
MBR Rep.

Point
Query

0.1% 0.4% 1%

R*-tree(QMBR) 106.2 901.7 1278.3 1934.9
R*-tree(HMBR) 69.1 543.8 881.2 1215.2
MHF(QMBR) 78.8 792.3 1159.1 1773.2
MHF(HMBR) 46.8 451.8 782.9 1103.0

5.5 Data Loading Time with Various Data Distribution

Table 3 summarizes the time to load the results of point and region queries of MHF
and R*-tree without refinement step. The region for data loading is occupied with 1%
of entire data space. Each query is performed in random area and skewed area respec-
tively. We define the skewed area as where to hash 3 or more times subsequently. The
results clearly show that the MHF generally outperforms the R*-tree for the simple
display to load all the objects in a rectangle region. Far from our anticipation, the
MHF carries out region queries for data loading well in case of skewed area. More-
over, the performance of point query of MHF is also superior to that of R*-tree regard-
less of data distribution.

634 J.-D. Kim, S.-H. Moon, and J.-O. Choi

Table 3. Data Loading Time(unit : ms)

 MHF with HMBR R*-tree with HMBR
Random Area(1%) 313.5 427.9
Skewed Area(1%) 1805.2 1814.8

Point(Random) 32.0 53.7
Point(Skewed) 44.3 56.2

5.6 HMBR : Impacts of Bucket Capacity

The Nx, Ny and M are the consideration points in MHF design. Large Nx, Ny and
small M bring about low performance due to excessive subsequent hashing and the
redundancy of objects caused by multiple assignment[14]. Also, small Nx, Ny and
large M bring about low performance due to extended search space. That is, when the
values of Nx, Ny and M are almost equal, the performance of MHF is enhanced.

The 100 percent cell utilization can be possible in the text data and uniform dis-
tributed spatial data, but it is not probable in the non-uniformly distributed spatial data
due to frequent overflow and sub hashing. Therefore, we assume the cell utilization to
be about 65 ~75%. The cell utilization is defined as follows. For example, in case of
sequoia 2000 benchmark data and above condition, the proper numbers of Nx, Ny and
M are about 50.

 Cell_Utilization #_of_Objects / [(Nx*Ny)*M] where Nx, Ny and M are equal

700

750

800

850

900

950

1000

1050

1100

20 30 40 50 60 70

M

Vol.(Kb)

0

50

100

150

200

250

300

20 30 40 50 60 70

M

#of MC
Point Query

Region Query(0.1%)

 (a) (b)

Fig. 9. Impacts of Bucket Capacity. (a) Volume of MHF, (b) Number of MBR Comparison

Figure 9 shows that this seems to be a realistic assumption. Figure 9(a) depicts the
volume of MHF with various bucket capacities(M). The Nx and Ny are assumed to be
50. As M increases, the volume of MHF with HMBR decreases. Figure 9(b) depicts
the number of MBR comparison in filter step with various M. When M is 50, the
number of MBR comparison is minimized. Therefore, when the Nx, Ny and M are 50,
the volume of index and the number of MBR comparison are improved as expected.

 A Spatial Index Using MBR Compression and Hashing Technique 635

5.7 HMBR : Effects of Enlargement of MBR

Table 4 shows the effects of enlargements of HMBR with various quantization levels.
When the quantization level is so small, the number of candidate objects increases
due to large quantum. When the level is so large, the number of candidate objects also
increases due to the increase of the objects with the enlarged MBR. Consequently, if
the quantization level is neither too small nor large, the performance is enhanced.

Table 4. Effect of Enlargement of MBR in HMBR

n

of enlarged
Object(%)

Increment of Candidates(%) :
region query(0.1%)

10 0.8 14.3
30 0.9 7.3
50 1.1 7.1

100 3.6 13.8
256 100 68

From what has been discussed above, following conclusions were obtained : 1)
The MHF achieves better storage utilization than R*-tree. The storage required by
MHF is less than half of R*-tree. 2) The HMBR outperforms the others in terms of
filtering efficiency and overall execution time. Even though the storage efficiency of
QMBR is slightly better than that of HMBR, the low filtering efficiency of QMBR
deteriorates whole performance. To sum up the results so far achieved, the MHF with
HMBR may be a reliable spatial index for the mobile devices.

Undoubtedly, the R*-tree outperforms MHF in dynamic update operations. In the
mobile applications, however, the spatial data is updated by servers, not the mobile
devices. The dynamic update problems are not addressed here.

6 Conclusions

We would like to propose a reliable spatial index for the mobile map service. The
requirements of this are high storage utilization, quick response time and easy simple
display.

In this paper, a new spatial index called MHF is proposed. The MHF has simple
structure for storage efficiency and uses a hashing technique, which is direct search
method, for search efficiency. Furthermore, the newly proposed HMBR compression
scheme not only saves storages but also doesn’t bring out the lowing of performance
caused by the enlargements of MBR at all in case of small objects.

The experimental results indicate that the R*-tree, one of the most efficient spatial
index based on disk, is possible to be inefficient in memory based mobile device sys-
tem. On the contrary, the proposed MHF outperforms R*-tree due to the MHF’s high
storage utilization and retrieval efficiency. The proposed HMBR compression scheme
requires small storages and achieves high filtering efficiency. The MHF consumes
about 50% less memory space in comparison with R*-tree, and the number of MBR
comparison in filtering step of HMBR is about 50% less than that of R*-tree. In the

636 J.-D. Kim, S.-H. Moon, and J.-O. Choi

MBR compression aspects, the spatial index with HMBR requires about 50% smaller
than the spatial index with normal MBR. The performance of HMBR is enhanced by
as much as about 2 times over that of QMBR.

In summary, it seems reasonable to conclude that the proposed spatial index struc-
ture is appropriate for the spatial index in the mobile devices with small memory
space and low processing capacity. Furthermore, the index is expected to be useful for
mobile map service, ITS(Intelligent Transportation System), LBS(Location Based
Service) to have been increasingly studied recently.

References

1. N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger : R*-tree : An Efficient and Robust
Access Method for Points and Rectangles : Int. Conf. on ACM SIGMOD(1990) 322-331

2. E.G. Hoel, H. Samet : A Qualitative Study of Data Structures for Large Line Segment Da-
tabases. Int. Conf. on ACM SIGMOD(1992) 205-214

3. K.H. Kim, S.K. Cha, K.J. Kwon : Optimizing multidimensional index trees for main mem-
ory access. Int. Conf. on ACM SIGMOD(2001)

4. T.J. Lehman, M.J. Carey : A Study of index structures for main memory database man-
agement system. Int. Conf. on VLDB(1986) 294-303

5. H. Lu, B.C. Ooi : Spatial Indexing : Past and Future. IEEE Data Engineering Bulletin, Vol.
16, No. 3(1993) 16-21

6. J. Rao, K.A. Ross : Cache conscious indexing for decision-support in main memory. Int.
Conf. on VLDB(1999) 78-89

7. J. Rao, K.A. Ross : Making B+-trees cache conscious in main memory. Int. Conf. on ACM
SIGMOD(2000) 475-486

8. A. Shatdal, C. Kant, J.F. Naughton : Cache conscious algorithms for relational query proc-
essing. Int. Conf. on VLDB(1994) 510-521

9. M. Stonebraker, J. Frew, K. Gardels, J. Meredith : The SEQUOIA 2000 Storage Bench-
mark. Int. Conf. on ACM SIGMOD(1993) 2-11

10. K.Y. Whang, R. Krishnamurthy : The Multilevel Grid Files – a Dynamic Hierarchical
Multidimensional File Structure. Int. Conf. on Database Systems for Advanced Applica-
tions(1991) 449-459

11. S. Shekhar, Y. Huang, J. Djugash : Dictionary Design Algorithms for Vector Map Com-
pression. Proc. of Data Compression Conf(2002) 471

12. S. Shekhar, Y. Huang, J. Djugash, C. Zhou : Vector Map Compression : A Clustering Ap-
proach. ACM Int. Symposium on Advances in GIS(2002) 74-80

13. P.W. Wong, J. Koplowitz : Chain Codes and Their Linear Reconstruction Filters. IEEE
Trans. On Information Theory, Vol. 38, No. 2(1992) 268-280

14. X. Zhou, D. J. Abel, David Truffet : Data Partitioning for Parallel Spatial Join Processing.
Int. Conf. on SSD(1997) 178-196

15. Y. Sakurai, M. Yoshikawa, S. Uemura, H. Kojima : Spatial indexing of high-dimensional
data based on relative approximation. VLDB J. 11(2002) 93-108

Indexing and Querying Constantly Evolving
Data Using Time Series Analysis�

Yuni Xia1, Sunil Prabhakar1, Jianzhong Sun2, and Shan Lei1

1 Computer Science Department, Purdue University
2 Mathematics Department, Purdue University

{xia, sunil, leishan}@cs.purdue.edu, sunj@purdue.edu

Abstract. This paper introduces a new approach for efficiently indexing
and querying constantly evolving data. Traditional data index structures
suffer from frequent updating cost and result in unsatisfactory perfor-
mance when data changes constantly. Existing approaches try to reduce
index updating cost by using a simple linear or recursive function to de-
fine the data evolution, however, in many applications, the data evolution
is far too complex to be accurately described by a simple function. We
propose to take each constantly evolving data as a time series and use
the ARIMA (Autoregressive Integrated Moving Average) methodology
to analyze and model it. The model enables making effective forecasts
for the data. The index is developed based on the forecasting intervals.
As long as the data changes within its corresponding forecasting interval,
only its current value in the leaf node needs to be updated and no further
update needs to be done to the index structure. The model parameters
and the index structure can be dynamically adjusted. Experiments show
that the forecasting interval index (FI-Index) significantly outperforms
traditional indexes in a high updating environment.

1 Introduction

Constantly evolving data arises in numerous applications, for example, a moving
objects database stores the current positions for millions of moving objects and
these data change frequently over the time. A stock database stores the latest
quotes for a large collection of stocks and they vary by minute or even second.
The constant changing nature of the data brings challenges to a wide range of
issues such as data storing, indexing, querying, mining and so on. In this paper,
we focus on indexing and querying constantly evolving data.

Existing dynamic index structures perform satisfactorily for traditional
database applications where updates are infrequent in comparison to queries.
They are designed mainly for the purpose of efficiently supporting query pro-
cessing. For evolving data applications that are characterized by numerous and

� Portions of this work were supported by NSF CAREER grant IIS-9985019, NSF
grant 0010044-CCR, NSF grant 9988339-CCR.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 637–648, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

638 Y. Xia et al.

frequent data updates, these indexes suffer from high updating overhead and
result in poor performance. In order to reduce the index updating cost, most ex-
isting approaches use a simple linear or recursive function to describe the data
changing patterns. However, the changing patterns in many situations (for ex-
ample the stock prices) are too complex to be described by a simple function
that changes infrequently.

In this paper, we propose to use time series analysis techniques to model
and forecast constantly evolving data. We choose Box-Jenkins’s autoregressive
integrated moving average (ARIMA) methodology to identify the models, esti-
mate model parameters and make N-step ahead predictions for each data. The
index is built based on the forecasting interval for each data. Since the ARIMA
model can efficiently capture the patterns of the data evolutions, the forecasting
intervals are expected to be accurate and tight. An index built based on the
forecasting intervals can accommodate data evolutions and substantially reduce
index updating cost.

The rest of the papers proceed as following: section 2 discusses the related
work for constantly evolving data indexing. In section 3, we propose a frame-
work to use ARIMA technique to model and forecast the data and develop index
based on the predicated intervals. We also explain the index details including its
construction, updating and query processing. In section 4, we propose a mathe-
matical model to determine the optimal interval size by balancing the indexing
updating and querying cost. Experimental evaluation of the proposed approach
is presented in section 5 and section 6 concludes the paper.

2 Related Work

Developing efficient index structures for constantly evolving data is an impor-
tant research issue of databases. Most works in this area so far focus on moving
object environment, where the positions of objects keep changing. As a simple
approach, multi-dimensional spatial index structures can be used for indexing
the positions of moving objects, however, they are not efficient because of fre-
quent and numerous update operations. To reduce the number of updates, many
approaches describe the moving object location by a linear function. Saltenis et
al. [1] proposed the time-parameterized R-tree (TPR-tree). In this scheme, the
position of a moving point was represented by a reference position and a cor-
responding velocity vector. Later, Tao et al [2] presented TPR∗, which extends
the idea of TPR-trees by employing a different set of insertion and deletion al-
gorithms in order to minimize the query cost. Recently, Tao et al [3] proposed
a novel recursive motion function to support a broad class of non-linear motion
patterns. They also proposed a general client-server architecture for answering
typical spatio-temoral queries and STP-tree for indexing the expected trajecto-
ries. Kollios et al. [4] proposed an efficient indexing scheme using partition trees.
Tayeb et al. [5] introduced the issue of indexing moving objects to query the
present and future positions and proposed PMR-Quadtree for indexing moving
objects. Agarwal et al.[6] proposed various schemes based on the duality and

Indexing and Querying Constantly Evolving Data 639

developed an efficient indexing scheme to answer approximate nearest-neighbor
queries. All these techniques use linear or recursive functions to describe the
data changing patterns, however, in many applications, the data evolutions are
far more complicated to be defined by simple linear or recursive functions.

Other techniques have been proposed to reduce the index updating cost. In
[7], Kwon propose the lazy Rtree. The index structure is updated in a lazy way
that is, if the point is still within the current MBR, then just update the old
position to new position and no further update is needed to be done to the
index structure. Only when the new position is out of the current MBR, the old
position should be deleted and the new position should be inserted into the index.
In [8], a bottom-up approach is proposed to improve the updating performance.
The strategy improves the robustness of R-trees by supporting different levels
of index reorganization ranging from local to global during updates, thus using
expensive top-down updates only when necessary.

In time series area, numerous work had been done on various issues includ-
ing classification, clustering, representation, anomaly detection, similarity-based
query, whole-sequence and sub-sequence matching, time sequence indexing, sta-
tistical monitoring and so on. Our work distinguishes itself from above in that
we go beyond the idea of time series modeling and forecasting. We use the mod-
eling and forecasting intervals to develop an index for the constantly evolving
data and effectively reduce index updating cost and improve the index perfor-
mance.

3 Indexing Constantly Evolving Data

In this section, we explain the time series modeling and forecasting process and
the details of the index construction, updating and querying procedures.

Our index uses the lazy-update Rtree [7], as shown in figure 1. It consists of
two components, a regular Rtree as the primary index and an secondary index
mapping the data ID to its page in the primary index. With the secondary index,
it takes constant I/O to find the page for each data given its ID. In practice,
the secondary index is usually put in memory. When the new value V inew for
data i arrives, The index is updated in a lazy way that if V inew is still within
the MBR of the old value V iold, then just update V iold to V inew and no further
update is need to be done to the index structure. Only when V inew is out of the
MBR of V iold, V iold is deleted and V inew is inserted to the index.

We propose to take each evolving data as a time series and use time series
analysis tools to identify the model for each data based on its history and make
n-step ahead forecasts (V1, V2, ..., Vn) for it. The forecasting interval (FI) is the
smallest interval (Ilow, Ihigh) that contains (V1, V2, ..., Vn). An Rtree index is
built based on the forecasting intervals for each data. We call it the Forecasting
Interval Rtree (FI-Rtree). The leaf node of the FI-Rtree stores both the forecast-
ing interval and the current value for each data. When the new value V inew for
data i arrives, it is checked against its forecasting interval (Ilow, Ihigh), if it is
within (Ilow, Ihigh), just update its old value V iold in the leaf node to V inew and

640 Y. Xia et al.

out of the interval (Ilow, Ihigh), the interval needs to be adjusted and the index
should be updated.

The time series modeling tool is time or error triggered, which means it
is triggered to run at certain time interval, for example, every n minutes, or
when the newly arriving data values are different from the forecasted intervals
by some thresholds. When the newly arriving data are quite different from the
forecasted interval, it could be an indication that the data evolving patterns
changes, therefore, the time series modeling process should be rerun by taking
the recently history into consideration and determine if the model should be
changed or the model parameters should be adjusted. The framework we propose
for indexing constantly evolving data is shown in figure 2.

Fig. 1. Indexing Constantly Evolving Data Fig. 2. FI-Rtree Index Structure

3.1 Time Series Modeling

A discrete time series is a set of time-ordered data (xt1 , xt2 , ..., xtn
) obtained

from observations of some phenomenon over time. An intrinsic feature of a time
series is that typically, adjacent observations are dependent. We choose ARIMA
for time series modeling because it covers a wide variety of patterns, including:
stationary time series, which is in statistical equilibrium and fluctuates around a
constant mean with constant variance. non-stationary time series, which has no
natural mean, but tends to increase or decrease over time. seasonal time series,
which repeat at regular intervals. Stationary series are described by Autoregres-
sive Moving Average ARMA(p,q) models, non-stationary series by Autoregres-
sive Integrated Moving Average ARIMA(p,d,q) models and seasonal series by
ARIMA(p, d, q) × (P,D,Q)S multiplicative models.

An ARMA(p,q) model captures two types of correlation via two main com-
ponents, show in the following Equation:

Xt = φ0+φ1x(t−1)+φ2x(t−2)+...+φpx(t−p)+εt+θ1ε(t−1)+θ2ε(t−2)+...+θqε(t−q)

The autoregressive (AR) component describes the most p significant correla-
tions between the current observation X(t) and the past observations x(t-1), ...,

no further update need to be done to the index structure. Only when V inew is

Indexing and Querying Constantly Evolving Data 641

x(t-p). Here, we assume observations that are close together are more likely to
be correlated than those are far apart. The moving average (MA) component de-
scribes the most q significant correlations between the current observations y(t)
and the past noise terms e(t-1), ..., e(t-q).These noise represents uncertainty and
are used to estimate the non-deterministic characteristics in time series. They
are assumed to be normally distributed with zero mean and constant variance.
(φ1, φ2, ...φp) and (θ1, θ2, ...θq) are autoregressive (AR) coefficients and moving
average (MA) coefficients respectively and they express the magnitudes of cor-
relations.

The arma(p,q) model can be extended to be the arima(p,d,q) model by in-
serting the number of differencing transformations d. It indicates that, after
transforming the series d times, the final series will be stationary and will have
p autoregressive terms and q moving average terms. Seasonal series can also be
transformed via differencing to become stationary, just similar to non-stationary
series. Here, the differencing interval (i.e. the gap between two differenced ob-
servations) is the season length S. To represent seasonal series, the arima(p, d,
q) model can be further extended to include a seasonal component (P,D,Q)S .
This component specifies that after D seasonal differencing with a season length
S, the correlation structure among those differenced observation pairs that are
separated by S is stationary, with P autoregressive and Q moving average terms.
The ARIMA(p, d, q) × (P,D,Q)S model is also known as the general ARIMA
model because it can represent all three types of series, namely stationary, non-
stationary and seasonal and their combinations. Note that ARIMA(p, 0, q) X(0,
0, 0) model is simply the ARMA(p, q).

The usual approach to fit an ARIMA model to a time series includes three
steps:

1. Model Identification: There are two important parameters for identifying
time series, Autocorrelation Function (ACF) ρk and Partial Autocorrelations
(PACF) φkk. ACF is represented as a plot of the autocorrelation as a function
of lag. The autocorrelation is simply the correlation of a time series with itself
at a specified lag. The partial autocorrelation (PACF) at a given lag is the
autocorrelation that is not accounted for by autocorrelations at shorter lags.
Details of computing ACF and PACF can be found in [9].

2. Parameter Estimation: Once a model is identified, the next step is to es-
timate the parameters, which are the magnitudes of the p and P autoregressive
terms and the q and Q moving average terms. To find the correlation magni-
tude, also known as the model coefficients, common technique include maximum
likelihood estimation and least squares. We choose the least square approach.

3. Forecasting: Based on the estimated parameters and the model structure,
we can produce n-step ahead forecasts (ŷ(t + 1), ŷ(t + 2), ..., ŷ(t + n)) for each
data. The n-step ahead forecasting interval for each data is (Ilow, Ihigh), in which
Ilow = min(ŷ(t + 1), ŷ(t + 2), ..., ŷ(t + n)) and Ihigh = max(ŷ(t + 1), ŷ(t +
2), ..., ŷ(t + n)).

642 Y. Xia et al.

3.2 Index Construction

Assume there are m constantly evolving data (o1, o2, ..., om) in the database, after
the timer series modeling and forecasting, we obtain the n-step ahead predictions
intervals for each data (I1, I2, ..., Im). The index is then built based on these
intervals. The leaf nodes of the index contain both the actual values as well as
the forecasting intervals for each data and the MBRs of the index are computed
based on the forecasting intervals instead of the actual data values. Please note
that when history data is not available, we can still make simple initial forecast
for each data. Although the initial forecasting interval might be inaccurate in
the beginning, as data stream in and more history data become available for
modeling, the forecasting intervals will become more accurate.

As mentioned earlier, the index we propose is a lazy-update Rtree with a
secondary index. Each entry in the secondary index maps a data ID to its page
number in the Rtree. Therefore, for each data ID, we put in the secondary
index the corresponding page number which identifies the page in the Rtree that
contains that data.

3.3 Index Update

When a data changes and the new value arrives, first, the secondary index is
looked up to find out its the page number in the Rtree corresponding to that
data. According to the page number, we can immediately retrieve the page that
contains that data and find out its old value and its forecasting interval. If the
new data value is still within its forecasting interval, the old value is updated
to the new value and no further update is needed to be done to the index
structure. This is because that the MBRs of the FI-index is computed based on
the forecasting intervals instead of the accurate data values. Thus as long as the
data changes within its forecasting interval, the index structure remains correct
and no need for updating.

When the new data value moves out of its forecasting interval, we will check
if it deviates from the forecasting interval by a certain threshold, or if the Fore-
castMissCount has reached a certain threshold (ForecastMissCount is a counter
that records how many times the forecasting interval fail to accommodate the
data changes). All these indicate that the time series model for that data may
be outdated. In that case, the time series modeling and forecasting process is
triggered to rerun by taking the recent history into consideration and the new
forecasting interval is obtained. If the new data value is out of the forecasting
interval, but it does not deviate from it by a certain threshold; we will simply
enlarge the forecasting interval to accommodate the new data value and increase
the ForecastMissCount by 1, which means forecasting interval fails to enclose the
data changes for one more time. The reason we keep an ForecastMissCount is
that we do not hope one or two outliers or noise data trigger the time series mod-
eling process to rerun. After the new forecasting interval is obtained, the Rtree
index is updated in a lazy way, that is, if the new forecasting interval is within
the MBR of the old forecasting interval, just update the old interval with the
new one and no further update to the index is needed. When the new forecasting

Indexing and Querying Constantly Evolving Data 643

interval is out of the MBR of the old interval, the old interval together with the
old data value should be deleted, and the new forecasting interval with the new
data value will be inserted. The pseudo code of the index updating procedure is
given in the algorithm 1. Our index is developed to for the purpose of reducing
index updating cost when data changes. Since we analyze and model the data
evolutions and make effective forecasts and build index based on the forecasting
intervals, the data are very likely to change within the forecasting intervals and
do not incur additional update to the index structure.

Algorithm 1 Index Updating Algorithm
1: Read in the new value Vi−new for data i
2: Look up the secondary index and find the page number Pi for data i
3: Read in Page Pi from the Primary Rtree index, find its interval

(Iold−low, Iold−high, Vi−old)
4: if V i − new ∈ (Iold−low, Iold−high) then
5: Update Vi−old to Vi−new

6: Return;
7: else
8: if (Vi−new ≤ Iold−low − Threshold) or (Vi−new ≥ Iold−high + Threshold) or

ForecastMissCount[i]≥T then
9: (Inew−low, Inew−high)=TimeSeriesModeling()

10: ForecastMissCount[i] = 0;
11: else
12: (Inew−low, Inew−high)=ExpandInterval(Vi−new)
13: ForecastMissCount[i]++;
14: end if
15: if (Inew−low, Inew−high) is within the MBR of (Iold−low, Iold−high) then
16: Update (Iold−low, Iold−high, Vi−old) with (Inew−low, Inew−high, Vi−new)
17: Return;
18: else
19: Delete (Iold−low, Iold−high, Vi−old)
20: Insert (Inew−low, Inew−high, Vi−new)
21: end if
22: end if

3.4 Query Processing

In this section, we explain how the forecasting interval index (FI-Index) supports
querying. We start with the range query. A range query (a, b) searches for all
data items that falls within the interval (a,b). To process a range query, we first
check the query (a,b) against MBRs of the nodes in this tree. A node N is pruned
when it is guaranteed that no item in the subtree rooted at N can satisfy (a, b).
Let Ilow−min be the minimal of the interval lower ends over all the forecasting
interval in the subtree of N and Ihigh−max be the maximal of all the interval
high ends in the subtree. Note that the MBR for N is [(Ilow−min,Ihigh−max)]. if
the query (a, b) does not overlap with [(Ilow−min,Ihigh−max)], we can say the
no data items in the subtree of N overlap with query (a,b) and the subtree of N

644 Y. Xia et al.

can be safely pruned. The reason is that the forecasting interval for each data
covers the its current value, therefore, if the interval does not intersect with the
query, then the data can not fall in the query range (a,b) either.

The same pruning approach can be used for other queries such as point
queries and nearest neighbor queries. For nodes that can not be pruned, if it is
a leaf node, all the data items it contained will be compared with the query; if
it is an internal node, its children nodes should be retrieved and this pruning
process will run recursively.

4 Optimal Interval Size

In this section, we give an analysis to the performance of the FI-Index and give
insight on how to determine the optimal interval size the index should choose.
The disc I/O cost consists of two main components:

– Update: Both the current value and the old value of the data could be
retrieved through the secondary index, based on the range stored in the
corresponding page, we decide whether to update the tree or not. Hence the
disc I/O cost is 1+ {updating cost} if we need to update the tree, otherwise
just 1, where the update tree cost includes the cost to search the object
in the R-tree and the cost to insert the object into the R-tree. We use the
following heuristic formula to calculate the average cost of the disc I/O:

1 + R(x)({average updating cost}),

where R(x) is the probability that the update operation is a non-lazy one,
that is, the probability that the new data value falls out of the interval.
Obviously, this probability depends on the interval size x. The larger the
interval size x, the smaller the probability. We assume R(x) is inversely
proportional to x, R(x) = µ

x+λ . To make it cover the case of the traditional
R-tree and the lazy updating cases, let R(0) correspond to the traditional
R-tree which is built based on the current value of the data with interval size
0. The disc I/O cost for one update tree operation is usually proportional to
the height of the tree, hence

{average updating cost} = (Cs + Ci)�logF Nobj� ,

where F is the average fan-out, Cs is a constant depending on the search
performance of the R-tree, and Ci is a constant depending on the insertion
performance of the R-tree, Cs and Ci can be decided by experiments.

– Query: The cost of one range query is related to the size of the query and
the search of the boundary data. Assume the total number of pages covered
in the average range is T, We use the following heuristic formula to bound
the average cost of the range query disc I/O cost:

CsQ(x)(T +
T

F
+

T

F 2 + ... + 1) =
CsQ(x)T

1 − 1
F

Indexing and Querying Constantly Evolving Data 645

where Cs is the search cost. T, T
F , T

F 2 , ... are the number of nodes need to be
accessed in different levels. T is the number for the leaf level, T

F for the level
above the leaf, and so on, till the root level, which is 1. Q(x) is an increasing
function depends on the average variance of the total objects. Let Q(0) = 1
correspond to the traditional R-tree. Obviously, the larger the intervals are,
the less precise the index is, and the less efficient the index is for supporting
query processing. We assume Q(x) is proportional to x and since Q(0) = 1,
we define Q(x) = κx+1, where κ is a constant depending on the selectivity.
{ total pages covered in the average range} depends on the size of the query
and the probability distribution of the objects.

To simplify the analysis, we assume the objects stay in [0, 1] follow the uniform
distribution, and the moving of every object follows the normal distribution
N(0, σ̄), The average query size is assumed to be fq in sense of the total length
of the query interval, hence

{ total pages covered in the average range} = �Nobjfq

F
�.

The sum of the updating cost and query cost in term of disc I/O is

II/O = Nu(1+R(x, u)(Cs+Ci)�logF Nobj�+NqCsQ(x)(
Nobjfq

F
+
Nobjfq

F 2 +...+1)

Since R(x) = µ
x+λ and Q(x) = κx + 1, then

II/O = Nu(1+
µ

x + λ
(Cs+Ci)�logF Nobj�+NqCs(κx+1)(

Nobjfq

F
+
Nobjfq

F 2 +...+1)

To get the minimum value of II/O, we make dI
dX = 0, therefore

−Nu(Cs + Ci)�logF Nobj�µ(x + λ)−2 + NqCsκ(
Nobjfq

F
+

Nobjfq

F 2 +... + 1) = 0.

We obtain the optimal interval size for the data is:

x =

√
Nu(Cs + Ci)�logF Nobj�µ

NqCsκ(Nobjfq

F + Nobjfq

F 2 + ... + 1)

From the above formula, we can see that the optimal interval size is propor-
tional to the number of updates and inversely proportional to the number of the
queries. This is natural since the larger the intervals are, the less likely the data
values will move out of the intervals and the less update needs to be done on the
index structure, however, the query performance will be worse due to the impre-
ciseness of the data, which leads to less pruning. Therefore, when the number
of the update operations is much larger than the query, the index should take
large intervals, while when queries operations are dominant, the index should
take smaller intervals.

646 Y. Xia et al.

5 Experimental Evaluation

Three index structures are evaluated in our experiments: the traditional R-tree;
the lazy Rtree (The traditional R-tree augmented with lazy updating using the
secondary index structure) and the FI-Rtree. Our experiments are based real
stock data. 25,000 stocks time series, each of which contains over 200 data points
are used in the experiments. The first 100 data points of each stock are used for
ARIMA modeling and forecast. Based on the forecasting intervals, we build the
FI-Rtree. Once the FI-Rtree is built, the remaining data points are modeled as
dynamic updates to the FI-Rtree, as well as other R-tree variants. At the same
time, a number of range queries are generated and evaluated. Each range query
has its central location chosen randomly and has a query size a fraction of the
price range.

Since these are disk-based index structures, the number of page I/Os is the
natural metric for measuring the performance of the indexes. We measure the
number of page I/Os for reads and writes of both dynamic updates and queries
during the simulation. The secondary index of the LazyRtree and the FI-Rtree
is assumed to be in the main memory. For the time series modeling, we used the
TsModeler, an automatic ARIMA Time Series Modeling Tool. [10].

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 100 200 300 400 500 600 700 800 900 1000

D
is

k
I/O

s

Update/Query Ratio

RTree
Lazy Rtree

FI-RTree

Fig. 3. Overall Disk I/Os

We study the relative performance of the various index structures as the
relative number of queries and updates is varied. Figure 3 shows the total number
of page I/Os performed for querying and updating the R-tree, the lazy-R-tree,
and the FI-Rtree. The performance is measured under the same query generation
rate but different update arrival rates. As the ratio of update rate over the query
rate is increased from 0 to 1000, all four indexes show an increase in the number
of I/Os. This is because increasing the update rate implies more demands on the
index, and consequently more I/Os are needed.

When the update/query ratio is very low, the FI-Rtree takes more I/Os than
the other R-tree variants. The reason is that the R-tree and the lazy-R-tree
uses actual data values, while the FI-Rtree employs data intervals and result

Indexing and Querying Constantly Evolving Data 647

in a worse query performance. Towards the right end of the graph, when the
update workload dominates the query workload, the FI-Rtree has a significant
improvement over other R-tree variants. In fact, the number of I/Os needed
by all three R-trees increases sharply, whereas the FI-Rtree gracefully handles
the high update burden. When updates are much more frequent than queries,
which is a typical scenario in sensor and moving object databases, the R-tree
suffers from expensive updates. The distinction between the R-tree and the lazy-
R-tree begins to show in this high update setting as the secondary index yields
significant gains from cheaper updates. The FI-Rtree clearly outperforms the
other indexes in this high update environment since its structure is inherently
designed to maximize tolerance to changes in data values. The advantage of
better update performance more than compensates for the slightly poorer query
performance. As the update/query ratio increases, the improvement of the FI-
Rtree over R-trees is more obvious. In particular, when the update/query ratio
is 1000, the number of I/Os required by the FI-Rtree is only one-fourth that of
the lazy Rtree, and one-fifth that of the R-tree.

Fig. 4. Query I/Os vs. Query Size

We also studied how the query size affects the query performance of the
FI-Rtree and the traditional Rtree. Note that since the lazy-R-tree and the tra-
ditional R-tree have almost identical query performance, here we compare the
query I/Os of FI-Rtree with only the traditional Rtree. Figure 4 shows the query
I/Os for FI-Rtree and traditional Rtree over different query sizes. The query size
is varied from 0.1% to 15% of the domain. We find that the FI-Rtree always re-
quires more query I/Os than the traditional R-tree. However, as the query size
increases, the performance of the FI-Rtree gets closer to that of the R-tree. The
reason is that with a large query area, the probability that a given region will
be covered by a query increases. Thus the advantage of having a small MBR is
diminished with larger queries.

648 Y. Xia et al.

6 Conclusions and Future Work

This paper proposes a new approach for efficiently indexing and querying con-
stantly evolving data. Each data is considered as a time series and we apply the
ARIMA methodology to model it. The model enables making effective forecasts
for the data and the index structure is developed based on the forecasting in-
tervals. The model parameters and the index can be dynamically adjusted. Our
experiments show that the FI-index significantly outperforms traditional indexes
in a high-updating environment. In ongoing work, we would explore processing
time series with noise or uncertainty and developing index that support temporal
and window queries.

References

1. Saltenis, S., Jensen, C., Leutenegger, S., Lopez., M.: Indexing the position of
continuously moving objects. Proceedings of ACM SIGMOD Conference (2000)
261–272

2. Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An optimized spatio-temporal
access method for predictive queries. Proceedings of the 29th International Con-
ference on Very Large Databases(VLDB) (2003) 790–802

3. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving
objects with unknown motion patterns. Proceedings of the SIGMOD (2004) 611–
622

4. Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. (1999)
261–272

5. Tayeb, J., Ulusoy, O., Wolfson., O.: A Quadtree-based dynamic attribute indexing
method. The Computer Journal (1998) 185–200

6. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. (2000) 175–186
7. Kwon, D., Lee, S.J., Lee, S.: Indexing the current positions of moving objects

using the lazy update R-tree. The 3rd International Conference on Mobile Data
Management (2002)

8. Lee, M.L., Hsu, W., Jensen, C.S., Cui, B., Teo, K.L.: Supporting frequent up-
dates in R-trees: A bottom-up approach. Proceedings of the 29th International
Conference on Very Large Databases(VLDB) (2003) 608–620

9. Box, G.E., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis Forecasting and
Control. Englewood Cliffs, N.J.: Prentice Hall (2004)

10. Tran, N., Reed, D.A.: Arima time series modeling and forecasting for adaptive I/O
prefetching. Proceedings of the 2001 International Conference on Supercomputing
(2001) 473–485

Mining Generalized Spatio-Temporal Patterns

Junmei Wang, Wynne Hsu, and Mong Li Lee

School of Computing,
National University of Singapore, Singapore 117543

{wangjunm, whsu, leeml}@comp.nus.edu.sg

Abstract. Spatio-temporal databases offer a rich repository and opportunities to
develop techniques for discovering new types of spatio-temporal patterns. In this
paper, we introduce a new class of spatio-temporal patterns, called the generalized
spatio-temporal patterns, to describe the repeated sequences of events that occur
within small neighbourhoods. Such patterns are crucial to the understanding of
habitual patterns. To discover this class of patterns, we develop an algorithm
GenSTMiner based on the idea of pattern growth approach, and introduce some
optimization techniques that are used to reduce the number of candidates generated
and minimize the size of the projected databases. Our performance study indicates
that GenSTMiner is highly efficient and outperforms PrefixSpan.

1 Introduction

Spatio-temporal databases offer a rich repository of information, and opportunities to
develop techniques for discovering new types of patterns that capture the multi-states
(i.e. past, present and future states) information in relation to their spatial locations. In
particular, repeated sequences within some small neighborhood regions typically reveal
some interesting habitual patterns. For example, knowing the sequence of neighborhood
places visited by terrorists allows one to understand their mindsets and habits.

Previous studies mainly focus on the discovery of spatial patterns [4, 8, 11] or se-
quential patterns [6, 2, 10]. Both types of patterns do not have the ability to encode
a sequence of events in the context of spatial locations. Recently, [12] introduced the
flow patterns that aim to capture the evolution of events in neighboring regions over
time. While flow patterns can clearly capture the flow of events to some degree, they
rely heavily on the assumption that these events will repeat themselves in exactly the
same locations. However, we observe that in some applications, the absolute locations
in which event e has occurred are not important. Rather, it is the relative locations of
events with respect to the event e that are interesting.

In this paper, we introduce a new class of spatio-temporal patterns called generalized
spatio-temporal patterns to summarize the sequential relationships between events that
are prevalent in sharing the same topological structures. We adopt the pattern growth ap-
proach and develop an algorithm called GenSTMiner to discover the generalized spatio-
temporal patterns. To increase the efficiency of the mining process, we also present
two optimization techniques. One is conditional projected databases to prune infeasible
events and sequences. The other is the pseudo projection to reduce the memory require-

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 649–661, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

650 J. Wang, W. Hsu, and M.L. Lee

ment. The performance study indicates that GenSTMiner is highly efficient, and the
optimization techniques dramatically reduce many unnecessary patterns.

The paper is organized as follows. Section 2 defines some preliminary concepts.
Section 3 reviews the projection based sequence mining. We present the algorithm and
optimization techniques in section 4. Section 5 describes the experiments. Section 6
reviews the related work, and section 7 concludes the paper.

2 Problem Statement

Spatio-temporal databases capture events in both time and space dimensions. The space
dimension can be partitioned into a set of disjoint grid cells similar to [8, 9]. Each
cell represents a spatial region (or location), denoted as (x, y). Let R denote a spatial
neighborhood relation over the set of partitioned cells. Two cells (x1, y1) and (x2, y2)
are said to be neighbours, denoted as 〈(x1, y1), (x2, y2)〉 ∈ R, if |x1 − x2| ≤ nr and
|y1 − y2| ≤ nr where nr is the number of grid cells. Similarly, the time dimension can
be divided into disjoint time windows or time periods of width W . Time t1 is said to be
a neighbour of t2 if t1 and t2 are in the same time window, denoted as (t1, t2) ∈ W .

An event, e, occurring in the location (x, y) at time t is denoted as e(x, y, t), and
abbr. as e(x, y) when the sequential context is clear. Two events e1(x1, y1, t1) and
e2(x2, y2, t2) are said to be CloseNeighbours iff 〈(x1, y1), (x2, y2)〉 ∈ R and (t1, t2) ∈
W , denoted as 〈e1(x1, y1, t1), e2(x2, y2, t2)〉 ∈ (R,W).

An eventset is defined as a set of events occurred at the same time, denoted as E =
〈e1(x1, y1), . . . , em(xm, ym)〉. Two eventsetsE1 andE2 are said to be CloseNeighbours
iff each event in E1 is a CloseNeighbour of each event in E2.

Figure 1 shows an example of spatio-temporal databases which records the various
locations where cyclones and storm occur over time. The space is partitioned into 25
disjoint locations, and the time is divided into 3 disjoint time windows. Figure 1(a) shows
the events {a, b, c, d, etc} that are observed at various locations over time.

A flow pattern[12] is defined as a sequence of eventsets such that any two consecutive
eventsets are CloseNeighbours. Some sequences in Figure 1(a) that satisfy the flow
pattern definition are shown in Figure 1(c). Each of the above flow patterns occurs only
once and will be discarded by most mining algorithms. However, a closer examination
reveals that these patterns actually convey some interesting behavior of the cyclones,
i.e., “event a in an area that has been hit by the storm always leads to event f in its north
neighbours and event d in its northeast neighbours. In other words, the absolute locations
in which event a has occurred are not important. Rather, it is the relative locations of
event d or f with respect to event a that are interesting.

We note that relative addresses play an important role in capturing the invariant
topological relationships of a pattern. In order to incorporate the concept of relative
addresses, we first select a reference location, denoted as lref = (xref , yref). For each
occurring event e1(x1, y1), e2(x2, y2), . . . , em(xm, ym), we map them to their corre-
sponding relative occurring locations as e1(x1 − xref , y1 − yref), e2(x2 − xref , y2 −
yref), . . . , em(xm − xref , ym − yref).

A RelativeEventset is a set of mapped events that occur at the same time t, denoted as−→
E = E〈e1(x1 −xref , y1 − yref), e2(x2 −xref , y2 − yref), . . . , em(xm −xref , ym −

Mining Generalized Spatio-Temporal Patterns 651

Time
(day)t1

15 4530

c g

c g

t2 t3

g
a
f

d

c
c

a g c

t4 t5 t6 t7

g

c

c

a
f da

f ddf
a
df

a x

y

Space
0 2 4

2

4

(a) Space-time view

Win.ID Time Eventsets
t1 a(0, 0), c(3, 2), f(0, 1)

1 t2 a(1, 2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)
t3 d(2, 3), g(3, 4)

2 t4 a(1, 1), f(1, 2), g(0, 0)
t5 a(1, 1), c(4, 3), d(3, 0), f(1, 2)

3 t6 a(0, 2), c(2, 1), c(3, 4), d(2, 2), f(0, 3), g(3, 3)
t7 a(0, 4), c(2, 2), c(4, 4), d(1, 3), g(2, 4)

(b) Datasets of Events

Observed Flow Patterns
〈a(0, 0), f(0, 1)〉 → d(1, 1)
〈a(1, 2), f(1, 3)〉 → d(2, 3)
〈a(1, 1), f(1, 2)〉 → d(2, 2)
〈a(0, 2), f(0, 3)〉 → d(1, 3)

(c) flow patterns

Fig. 1. Example spatio-temporal database (W = 15days, R = 1)

yref)〉. We assume that all the events in a RelativeEventset are listed alphabetically. A

RelativeEventset
−→
E p is a CloseNeighbour of a RelativeEventset

−→
E q if every event in

−→
E p is a CloseNeighbour of every event in

−→
E q, denoted as (

−→
E p,

−→
E q) ∈ (R,W).

Definition 1. (Generalized spatio-temporal pattern)
A generalized spatio-temporal pattern is a sequence of RelativeEventsets, and all the
RelativeEventsets are CloseNeighbuors of each other, denoted as,

−→
E 1 →

−→
E 2 → · · · →−→

Em, s.t. ∀i, j ∈ (1..m), (
−→
E i,

−→
E j) ∈ (R,W).

Note that the generalized spatio-temporal patterns can be specialized to spatial pat-
terns and sequential patterns. When the space is reduced to a single location (i.e.S → 0),
the spatio-temporal pattern is simply the sequential pattern. On the other hand, if we
limit the time window to a snapshot (i.e. t → 0), we will have the co-located events
among the spatial neighbuorhoods [8].

A generalized spatio-temporal pattern is said to be frequent if there are at least t-
minsup (i.e. temporal support) different occurrences of the pattern over time, and in
each time window, there are at least s-minsup (i.e. spatial support) patterns occurring
in the space. A generalized spatio-temporal pattern involving k different events is called
a k-generalized spatio-temporal pattern.

Given two generalized spatio-temporal patterns, P =
−→
E 1 → . . . → −→

Em and
Q =

−→
E ′

1 → . . . → −→
E ′

m. Let P ′ be generated by concatenating P with Q, denoted as
P ′ = P ·Q. P is called the prefix of P ′ and Q, suffix of P ′. Q can be concatenated with
P in two ways, namely Q is an eventset extension, i.e.

−→
E 1 → . . . → (

−→
E m ∪ −→

E ′
1) →−→

E ′
m; or Q is a sequence extension, that is

−→
E 1 → . . . → (

−→
E m → −→

E ′
1) → . . . → −→

E ′
m.

652 J. Wang, W. Hsu, and M.L. Lee

sid. Sequence
s1 〈a, c, f〉 → 〈a, c, d, f, g〉 → 〈d, g〉
s2 〈a, f, g〉
s3 〈a, c, d, f〉 → 〈a, c, d, f, g〉 → 〈a, c, d, g〉

(a) Sample sequence database

sid. Sequence
s1a 〈‡, c, f〉 → 〈a, c, d, f, g〉 → 〈d, g〉
s2a 〈‡, f, g〉
s3a〈‡, c, d, f〉 → 〈a, c, d, f, g〉 → 〈a, c, d, g〉

(b) a-projected database

Fig. 2. Projection sequential pattern mining

Suppose there is a lexicographic ordering ≤ among the set of events in the spatio-
temporal database. Given two events e1(x1, y1) and e2(x2, y2), e1(x1, y1) ≤ e2(x2, y2)
if and only if (i) e1 ≤ e2, or (ii) e1 = e2, x1 ≤ x2, or (iii) e1 = e2, x1 = x2, y1 ≤ y2.

In this work, we focus on finding the frequent generalized spatio-temporal patterns
by exploiting its similarity to sequence patterns. We use the pattern growth approach
because it has been shown to be one of the most effective method for frequent pattern
mining and is superior to the candidate-maintenance-and-test approach, especially on
the dense database or with low minimum support threshold [1, 3].

3 Projection-Based Sequential Pattern Mining

The sequential pattern mining algorithm PrefixSpan[6] provides a general framework of
the pattern growth method. The basic idea is to use a set of locally frequent items to grow
patterns. Figure 2(a) shows a sample sequence database. The set of frequent items F1 =
{a, c, d, f, g} when minsup = 2. Figure 2(b) shows the a-projected database, where
only the subsequence prefixed with the first occurrence of a is considered. By scanning
a-projected database once, we get LFa = {〈‡c〉, 〈‡f〉, a, c, d, f, g}, and generate the
corresponding 2-sequences with prefix a, i.e., 〈a, c〉, 〈a, f〉, a → a, a → c, a → d,
a → f and a → g. Then, we can further partition the set of frequent patterns prefixed
with a into |LFa| = 7 subsets, construct their corresponding projected databases, and
mine them recursively.

Let us examine how PrefixSpan can be used to discover generalized spatio-temporal
patterns. First, it finds all the frequent sequential patterns that satisfy t-minsup. Next,
it scans each time window and checks if there are s-minsup spatial-sequences which
are instances of the frequent sequential patterns and all eventsets in a spatial-sequence
are close neighbors, and adds them into the candidate sets. Finally, all the frequent
generalized spatio-temporal patterns are obtained by mapping the spatial-sequences in
the candidate sets into their relative addresses, where their support is larger than or equal
to s-minsup.

Although PrefixSpan could find all the frequent generalized spatio-temporal patterns,
it is neither efficient nor scalable as it needs to generate a set of candidates before pruning
the infrequent ones. This requires maintaining a large number of candidates in memory,
and scanning the database more than twice.

Mining Generalized Spatio-Temporal Patterns 653

Wid Sid Sequences Prefix
1 1 〈‡, c(3, 2), f(0, 1)〉 → 〈a(1, 2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉 a(0, 0)

2 〈‡, c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉 a(1, 2)
2 1 〈‡, f(1, 2), g(0, 0)〉 a(1, 1)

1 〈‡, c(4, 3), d(3, 0), f(1, 2)〉 → 〈a(0, 2), c(2, 1), c(3, 4), d(2, 2), f(0, 3), g(3, 3)〉 a(1, 1)
→ 〈a(0, 4), c(2, 2), c(4, 4), d(1, 3), g(2, 4)〉

3 2 〈‡, c(2, 1), c(3, 4), d(2, 2), f(0, 3), g(3, 3)〉 → 〈a(0, 4), c(2, 2), c(4, 4), d(1, 3), g(2, 4)〉 a(0, 2)
3 〈‡, c(2, 2), c(4, 4), d(1, 3), g(2, 4)〉 a(0, 4)

Fig. 3. The projected database of event a

4 GenSTMiner Algorithm

In this section, we describe an efficient algorithm called GenSTMiner that follows the
framework of pattern growth methods and finds the complete set of generalized spatio-
temporal patterns directly without maintaining a large number of candidates. We also
devise optimization techniques that will eliminate redundant candidates, and reduce
the size of the projected database so that it will fit into the memory. The GenSTMiner
algorithm consists of the following three steps:

1. Find the set of frequent events F1 (1-general spatial-sequences) by scanning the
database once, and sort them according to their lexicographic order.

2. Next, divide the set of frequent patterns into |F1| partitions and retrieve the projected
database PDBe of each event e ∈ F1 from the database D. Then, for each sequence
in PDBe, choose its reference location and map events in it into their relative
locations. The transformed PDBe is called the generalized projected database,
denoted as GDBe.

3. Finally, based onGDBe, find all the frequent k-generalized spatio-temporal patterns
prefixed with e by constructing and mining the projected databases of the length-k
generalized spatio-temporal patterns recursively.

The spatial support of an event e in a time window is decided by the number of
different locations where it occurs, and its temporal support is equal to the number of
different time windows where it is spatially frequent. Only when the temporal support
of an event is larger than t-minsup, it is said to be frequent.

Note that in the second step, we use all the instances of an event e regardless of its
location in an input sequence in the database to retrieve the projection database of the
event e. For the same instances of the event e (same location), we only consider the first
occurrence of it. This differs from PrefixSpan which considers only the first occurrence
of the event e in an input sequence.

Consider Figure 1(c). Suppose R = 1, W = 15days, and the input sequence s1 =
〈a(0, 0), c(3, 2), f(0, 1)〉 → 〈a(1, 2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3),
g(3, 4)〉. Suppose we want to retrieve the projection of s1a. Since there are two instances
of a in s1, namely a(0, 0) and a(1, 2), the projection of s1a consists of two subse-
quences: 〈‡, c(3, 2), f(0, 1)〉 → 〈a(1, 2), c(3, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3),
g(3, 4)〉 and 〈‡, c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(2, 4)〉. Figure 3 shows
the a-projected database obtained from Figure 1(c).

654 J. Wang, W. Hsu, and M.L. Lee

Wid Sid Sequences
1 1 〈‡, c(3, 2), f(0, 1)〉 → 〈a(1, 2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉

2 〈‡, c(3, 2), d(0, −1), f(0, 1), g(1, 0)〉 → 〈d(1, 1), g(2, 2)〉
2 1 〈‡, f(0, 1), g(−1, −1)〉

1 〈‡, c(3, 2), d(2, −1), f(0, 1)〉 → 〈a(−1, 1), c(1, 0), c(2, 3), d(1, 1), f(−1, 2), g(2, 2)〉
→ 〈a(−1, 3), c(1, 1), c(3, 3), d(0, 2), g(1, 3)〉

3 2 〈‡, c(2, −1), c(3, 2), d(2, 0), f(0, 1), g(3, 1)〉 → 〈a(0, 2), c(2, 0), c(4, 2), d(1, 1), g(2, 2)〉
3 〈‡, c(2, −2), c(4, 0), d(1, −1), g(2, 0)〉

Fig. 4. Generalized projected database of event a

Having obtained the projected database of the frequent events, we need to choose
the reference locations of the sequences, and then map events in a sequence into their
relative locations. However, the problem is how to choose the reference location.

4.1 Choice of Reference Location

We can either use the location of the event e or the base location of a sequence as the
reference location. The base location of a sequence s is given by {(x, y)|∀xij ∈ s, yij ∈
s, x = min(xij), y = min(yij)}. If we use the base location of a sequence as the
reference location, then we may change the center of the topological structure to another
event since the base locations of the sequences in the projected database may not be the
locations of the event e.

For example, the a-projected database consists of two sequence s1 = d(0, 1) →
〈a(1, 2), g(2, 2)〉 and s2 = a(1, 2) → 〈f(1, 3), g(2, 2)〉, and base(s1) = (0, 1), base(s2)
= (1, 2). If we choose the base locations of the sequences as the reference locations, then
the center of the topological structure of s1 is changed to the event d, instead of a.

Hence, to keep all the events in the generalized spatio-temporal patterns consistent
in their topological structure, we use the location of the event e as the reference location.
Figure 4 shows the generalized projected database of the event a.

4.2 Mining k-Generalized Spatio-Temporal Patterns

Having obtained the generalized projected database of an event e, we proceed to discover
the frequent k-generalized spatio-temporal patterns (k ≥ 2) that are prefixed with it. We
first find the set of the locally frequent events LFe. Then, for each valid event in LFe,
we generate the (k + 1)-generalized spatio-temporal patterns, construct its projected
database, and mine it recursively. Note that in the projected database of a length-k
generalized spatio-temporal pattern, the spatial support of a local event at time window
i is decided by the number of sequences in the projected databases that contain it, and
the temporal support is up to the number of time windows where it is spatially frequent.

Figure 5 shows the GenSTMiner algorithm. It first scans the database once to find
the frequent 1-generalized spatio-temporal patterns F1(line 2), treats each ek ∈ F1
as a prefix, builds its projected database PDBek

, and then transforms PDBek
into

GDBek
(lines 3-5). Next, it calls the subroutine Ptn-growth method (line 6). Subroutine

Ptn-growth method recursively calls itself and works as follows: For prefix e, scans its
projected database once to find its locally frequent events (line 9), grows e with each
valid locally frequent event to get a new prefix e′ and builds the projected database for
the new prefix, and calls itself recursively (lines 12-16).

Mining Generalized Spatio-Temporal Patterns 655

Algorithm GenSTMiner(D,R,W ,s-minsup,t-minsup)
1. M = ∅;
2: F1 = {all the frequent events};
3: for each ek ∈ F1 do
4: PDBek = projected database(D, ek);
5. Convert PDBek into GDBek ;
6: Call Ptn-growth(ek,GDBek ,s-minsup,t-minsup);
7: return M

Subroutine Ptn-growth(α, PDBα,s-minsup,t-minsup)
8: M = M ∪ α;
9: Scan PDBα once and get all frequent LF ;
10: if LF is empty then
11: return;
12: for each ej ∈ LF do
13: if ∀ei ∈ α, (ei, ej) ∈ (R, W) then
14: α′ = α · ej ;
15: PDBα′ = projected database (PDBα, α′);
16: Call Ptn-growth(α′,PDBα′ ,s-minsup,t-minsup);
17: return

Fig. 5. GenSTMiner Algorithm

Compared to PrefixSpan, GenSTMiner can find the complete set of generalized
spatio-temporal patterns by generating much smaller set of candidates. The following
section describes optimization techniques that are further used to reduce the number of
candidates generated and to reduce the memory requirement.

4.3 Conditional Projected Database

We observe that not every event or eventset in the sequence in the database participates
in a generalized spatio-temporal patterns. In order to eliminate those non-promising
events or eventsets in the projected database of an event, we introduce the concept of
the conditional database with respect to an event e.

Given a sequence s in the database, the conditional spatial-sequences w.r.t. an event e
of s is the set of subsequences of s prefixed with e, and each of them is a spatial-sequence
and every eventset in these subsequences is CloseNeighbour of the event e.

For example, given the sequences = 〈a(0, 0), c(3, 2), f(0, 1)〉 → 〈a(1, 2), c(4, 4),
d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉, and R = 1, W = 15days. We want to
retrieve the conditional spatial sequence of the event a. Notice that there are only two
instances of a in s, i.e. a(0, 0) and a(1, 2). First, for the instance a(0, 0), there are only
two events f(0, 1) and d(1, 1) in s that can form a conditional spatial sequence together
with a(0, 0); and for the instance a(1, 2), the events d(1, 1), f(1, 3), g(2, 2) and d(2, 3)
are valid. Hence, the final sa consists of two sequences 〈a(0, 0), f(0, 1)〉 → d(1, 1) and
〈a(1, 2), d(1, 1), f(1, 3), g(2, 2)〉 → d(2, 3).

The collection of all the conditional spatial-sequences w.r.t. an event e in the database
D forms the conditional database w.r.t. an event e. All the conditional spatial-sequences
are ordered according to their time.

656 J. Wang, W. Hsu, and M.L. Lee

GenSTMiner obtains the projected database of an event e from its conditional database,
instead of database D. This effectively remove unpromising events from the projected
databases of the event e. For simplicity, we call the projected databases of an event e
retrieved from the conditional database as the conditional projected databases w.r.t the
event e or e-conditional projected databases.

While the conditional database can be used to remove unpromising events from the
event e-projected database, there are still unpromising events when we further construct
the projected database of length-k (k > 2) generalized spatio-temporal patterns. We use
the Apriori checking as in [6] to prune events during the construction of the projected
databases of length-k generalized spatio-temporal patterns.

To construct the P -conditional projected database, where P is a length-l generalized
spatio-temporal pattern, let E be the last element of P and P ′ be the prefix of P such
that P = P ′ · E.

If P ′ · x is not frequent, then event x can be excluded from projection. For example,
if we know that a(0, 0) → g(0, 1) is not frequent, then event g(0, 1) can be excluded
from construction of a(0, 0) → d(1, 1)-conditional projected databases.

However, if P ′ · x is frequent, but there ∃e ∈ P, s.t.〈e, x〉 /∈ R, then event x can be
excluded from projection. For example, let R = 1 and 〈a(0, 0), g(−1,−1)〉 is frequent,
but since 〈f(0, 1), g(−1,−1)〉 /∈ R, we can remove g(-1,-1) from the construction of
〈a(0, 0), f(0, 1)〉-conditional projected database.

Moreover, let E′ be formed by substituting any item in E by x. If P ′ · E′ is not
frequent, then event x can be excluded from the first element of suffix of that ele-
ment is a superset of e. For example, suppose a(0, 0) → 〈b(0, 1), f(1, 1)〉 is not fre-
quent. To construct a(0, 0) → 〈b(0, 1), c(0, 1)〉-projected database, conditional spatial-
sequence a(0, 0) → 〈(b(0, 1), c(0, 1), f(1, 1), g(1, 1)〉 → d(0, 1) should be projected
to 〈‡, g(1, 1)〉 → d(0, 1).

4.4 Pseudo Projection

In general, we obtain the projected databases by scanning the sequences at each time
window in the databases. However, after scanning the projected databases, we have
known the time windows in which the locally frequent event e is not spatially frequent,
and we can stop retrieving projection of sequences prefixed with e at those time windows.
To realize this, for each locally frequent event e, we use a bitmap to record the time
windows in which it is frequent. We only retrieve the projection of the sequences from
the time windows where its corresponding value in the bitmap is set to 1. Moreover, we
could get the frequent period of a generalized spatio-temporal pattern by scanning the
bitmap once.

In addition, when we retrieve the conditional projected database of an event e, we
observed that an event ek in the sequence in the database may appear many times in the
e-conditional projected database. The cost of the projection (constructing the conditional
projected database recursively) becomes a major cost in GenSTMiner. We can use the
pseudo projection to reduce the cost of the projection.

In PrefixSpan, the pseudo projection is used to avoid physically copying suffixes.
When the database can be held in main memory, instead of constructing a physical
projection by collecting all the suffixes, the pseudo-projection uses pointers referring to

Mining Generalized Spatio-Temporal Patterns 657

s = 〈a(0, 0), c(3, 2), f(0, 1)〉 → 〈a(1, 2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉
prefix physical projection pseudo projection

sa a(0, 0) 〈‡, f(0, 1)〉 → d(1, 1) 〈pointer to s, 3, 10010000, (0,0)〉
a(1, 2) 〈‡, d(1, 1), f(1, 3), g(2, 2)〉 → d(2, 3) 〈pointer to s, 6, 11110, (1,2)〉

Fig. 6. Example of pseudo projection

the sequences in the database. Every projection consists of two pieces of information
〈pointer, offset〉, where pointer points to the sequence in database and offset indicates
the start position of the suffix in the sequences. Unlike in PrefixSpan where only the first
occurrence of an item is considered, GenSTMiner needs to consider the suffixes in an
input sequence prefixed with different instances of the event e. Hence, the problem of
pseudo projection becomes more complicated.

In GenSTMiner, every projection consists of 4 pieces of information: 〈pointer, offset,
bitmap, refloc〉, where pointer points to the sequence in the database; offset indicates the
start position of the suffixes in the sequence, and bitmap indicates the appearance of the
events in the suffixes of the sequence in the event e conditional spatial sequence, and the
size of bitmap is equivalent to the number of events in the suffixes of the sequence; and
refloc stores the reference location of the conditional spatial sequence. Figure 6 shows
an example of the pseudo projection of the sequence in the database.

5 Performance Evaluation

We implement the algorithms in C++ and evaluate their performance on both synthetic
and real-life datasets. The experiments are carried out on a Pentium 4, 1.6 GHZ processor
with 256MB memory running Windows XP.

5.1 Experiments on Synthetic Dataset

We augment the IBM Quest synthetic data generator 1 to include spatial information by
generating N item using F spatial features and L locations. We generate datasets by
setting N=10,000, F=1,000, L=100. Other parameters include D, number of of sliding
windows (= size of Database); C, average number of Eventsets per sliding window; and
T , average number of events per Eventsets.

We test the performance of GenSTMiner on the datasetC10T10D10k by varying the
parameters R, t-minsup, and s-minsup. We evaluate the performance of GenSTMiner
with and without optimization techniques and compare it with PrefixSpan. The results
are shown in Figure 7. The results indicate that GenSTMiner outperforms PrefixSpan,
especially when it uses optimization techniques. This is expected as the pruning tech-
niques we use in GenSTMiner not only reduce the size of the projected databases, but
also eliminate infeasible events and sequences.

Figure 7(a) examines the efficiency of the algorithms by varying the size of R from 1
to 9. It shows that the runtime of GenSTMiner grows linearly as spatial neighbour relation
R increases. This is because when R is large, the number of spatial neighbourhoods of
an event tends to be large, and the length of the frequent patterns becomes longer.

1 http://www.almaden. ibm.com/software/quest

658 J. Wang, W. Hsu, and M.L. Lee

Figure 7(b) shows that GenSTMiner requires more time to find the frequent patterns
when t-minsup tends to be small. This is due to more local frequent patterns become
globally frequent when t-minsup is small. As a result, the size of the frequent patterns
become larger. Similarly, Figure 7(c) indicates that GenSTMiner requires more time to
find the frequent patterns when s-minsup tends to be small. Finally, Figure 7(d) shows
the runtime of the GenSTMiner by varying the parameter D (i.e. number of sliding
windows) from 20k to 100k. From the figure, we could see that GenSTMiner grows
linearly with the increase of database sizes.

5.2 Comparative Study

This set of experiments aims to show the usefulness of the generalized spatio-temporal
patterns as compared to flow patterns using a real-life dataset. We obtain 3 years of
standard meteorological data from 5 stations that are closely located in space from the

1 2 3 4 5 6 7 8 9

200

300

400

500

600

700

800

spatioal neighbor relation R (tsup = 0.1, ssup = 2)

tim
e
 (

s)

C10T10D10k

GenSTMiner with Opt
GenSTMiner
PrefixSpan

(a) Runtime vs. R

10 20 30 40 50 60
50

100

150

200

250

300

350

400

450

500

550

minimum temporal support (%) (ssup = 2, R = 5)

tim
e

 (
s)

C10S10I10D10k

GenSTMiner with Opt
GenSTMiner
PrefixSpan

(b) Runtime vs. t-minsup

2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

900

tim
e

(s
)

C10T10D10k

GenSTMiner with Opt
GenSTMiner
PrefixSpan

minimum spatial support (tsup = 0.1, R = 5)

(c) Runtime vs. s-minsup

10 20 30 40 50 60 70 80

500

1000

1500

2000

2500

3000

of sliding windows

tim
e

 (
s)

C10T10
tsup = 0.5, ssup = 2, R =5

(d) Scalability

Fig. 7. Synthetic dataset

Mining Generalized Spatio-Temporal Patterns 659

0 1 2 3

0

1

2

3

l5

l2

l7

l12

l15

l10

(a) Neighbour relations

Flow Patterns
A ↑ (l2) → 〈G ↑ (l7), S ↑ (l7)〉 → 〈G ↓ (l12), S ↓ (l12)〉

〈A ↑ (l10), A ↑ (l12)〉 → 〈G ↑ (l15), S ↑ (l15)〉
〈G ↑ (l10), S ↑ (l10)〉 → A ↑ (l15)

〈G ↑ (l7), S ↑ (l7)〉 → 〈A ↑ (l10), A ↑ (l12)〉
〈G ↑ (l10), S ↑ (l10)〉 → 〈G ↓ (l15), S ↓ (l15)〉

Generalized Spatio-Temporal Patterns
A ↑ (0, 0) → 〈G ↑ (1, 1), S ↑ (1, 1)〉
〈G ↑ (0, 0), S ↑ (0, 0)〉 → A ↑ (1, 1)

〈G ↑ (0, 0), S ↑ (0, 0)〉 → 〈G ↓ (1, 1), S ↓ (1, 1)〉

(b) Interesting frequent patterns

Fig. 8. Comparison of flow patterns and generalized spatio-temporal patterns

Nation Data Buoy Center. The dataset has 10 features that are recorded hourly. After
discretization, the final dataset contains 30 features. With these 30 features, we define
a set of meteorological events. A sample of the events defined are as follows. A ↑ (la)
(or A ↓ (la)): denote the event that the air temperature at location la has increased (or
decreased); S ↑ (la) (or S ↓ (la)): denote the event that the wind speed at location la
has increased (or decreased); and G ↑ (la) (or G ↓ (la)): denote the event that the gust
speed at location la has increased (or decreased).

We divide the whole space into 4 × 4 grids so that the 5 locations are distributed
uniformly. Figure 8(a) shows the geographical positions of the 5 locations, namely
l2, l7, l10, l12 and l15. FlowMiner[12] and GenSTMiner are applied on this dataset with
t-minsup = 10, s-minsup = 2, W = 6days and R = 2. Figure 8(b) summarizes some of
the interesting patterns we have found.

We observe that flow patterns are able to capture the flow of events such as: an increase
of air temperature at location l2 leads to an increase in wind speed and gust speed at
location l7; and an increase of air temperature at location l10 leads to an increase in wind
speed and gust speed at location l15. However, the usefulness of these flow patterns
is rather limited as they are unable to provide a general trend. On the other hand, the
generalized spatio-temporal pattern reveals the trend that whenever there is an increase
of air temperature at a specific location, we can expect an increase in wind speed and
gust speed at its Northeast neighbor. By knowing the general trend, the meteorologist is
able to perform more accurate forecast of the weather.

6 Related Work

Spatial data mining and sequence mining have received a lot of attention. Much research
has focused either on discovering spatial patterns, such as spatial association patterns
[4] and co-location patterns [8], geographical features of co-location patterns [11], etc;
or sequential patterns, such as mining frequent sequential patterns [2, 6], mining closed
sequential patterns [10] etc. Recently, with many applications of spatio-temporal data,
knowledge discovery in spatio-temporal databases becomes more important.

660 J. Wang, W. Hsu, and M.L. Lee

Previous work on spatio-temporal data mining can be divided into two directions:
(i) approaches focusing on finding frequent movements of objects over time, and (ii)
approaches engaged in the discovery of evolution patterns of natural phenomena, such
as forest coverage. In the case of multiple moving objects where trajectories are typically
concatenated to a single long sequence, [7] proposed a method to optimize the mobile
systems by finding the frequent motion patterns of objects. [5] studied the problem
to optimize the spatio-temporal queries through the discovery of the spatio-temporal
periodic patterns.At the same time, many methods proposed to find the evolution patterns
of natural phenomena. [9] studied the discovery of frequent patterns related to changes
of natrual phenomena in spatial regions. [12] introduced the discovery of flow patterns,
which describe the change of the events over the space and time.

Our work is different from [12], because the generalized spatio-temporal patterns is
locally frequent patterns, while the flow patterns are global ones. Moreover, the algorithm
in [12] cannot be used to mine the generalized spatio-temporal patterns directly. While
with some minor modifications, it can be used to mine the generalized spatio-temporal
patterns, the complexity of its performance will be very high and it does not scale very
well with respect to the number of frequent generalized spatio-temporal patterns, since
it also follows the candidate-maintenance-and-test approach.

7 Conclusions

In this paper, we have introduced a new class of spatio-temporal patterns, called gen-
eralized spatio-temporal patterns. We have presented a framework GenSTMiner based
on the methodology of the pattern growth method to discover the generalized spatio-
temporal patterns. Some optimization techniques are presented to improve the efficiency
of the GenSTMiner. Our experimental study indicates that with the optimization tech-
niques, GenSTMiner improved its performance by an order of magnitude, and has a
linear scalability in terms of the database size.

References

1. R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth first generation of long patterns.
ACM SIGKDD, 2001.

2. J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential pattern mining using a bitmap repre-
sentation. ACM SIGKDD, 2002.

3. J. Han, J. Pei, and Y. Yin. Mining frequent patterns by pattern-growth: Methodology and
implications. ACM SIGKDD, 2001.

4. K. Koperski and J. Han. Discovery of spatial association rules in geographic information
databases. SSD, 1995.

5. N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. Cheung. Mining,
indexing, and querying historical spatiotemporal data. ACM SIGKDD, 2004.

6. J. Pei, J. Han, and B. Mortazavi-Asl. Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth. ICDE, 2001.

7. W. Peng and M. Chen. Developing data allocation schemes by incremental mining of users
moving patterns in a mobile computing system. IEEE TKDE, 2003.

8. S. Shekhar and Y. Huang. Discovery of spatial co-location patterns. SSTD, 2001.

Mining Generalized Spatio-Temporal Patterns 661

9. I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns. SSTD, 2001.
10. J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. ICDE, 2004.
11. J. Wang, W. Hsu, and M. L. Lee. Discovering geographical features for location-based

services. DASFAA, 2004.
12. J. Wang, W. Hsu, M. L. Lee, and J. Wang. Flowminer: Finding flow patterns in spatio-temporal

databases. ICTAI, 2004.

Exploiting Temporal Correlation in Temporal
Data Warehouses�

Ying Feng, Hua-Gang Li, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science,
University of California, Santa Barbara

{yingf, huagang, agrawal, amr}@cs.ucsb.edu

Abstract. Data is typically incorporated in a data warehouse in increasing order
of time. Furthermore, the MOLAP data cube tends to be sparse because of the
large cardinality of the time dimension. We propose an approach to improve the
efficiency of range aggregate queries on MOLAP data cubes in a temporal data
warehouse by factoring out the time-related dimensions. These time-related di-
mensions are handled separately to take advantage of the monotonic trend over
time. The proposed technique captures local data trends with respect to time by
partitioning data points into blocks, and then uses a perfect binary block tree as
an index structure to achieve logarithmic time complexity for both incremental
updates and data retrievals. Experimental results establish the scalability and ef-
ficiency of the proposed approach on various datasets.

1 Introduction

Most applications such as environmental studies, census databases and telecommunica-
tion systems generate large amounts of temporal data. The notion of time is critically
involved in such applications and its semantics has been recently discussed to make
decision-making queries in data warehouses more efficient. In fact, data items often
have time-related attributes, e.g., time of a sales transaction or an order and the shipping
date of a product.

Temporal datasets distinguish themselves due to the existence of one or more time
dimensions. First of all, these time dimensions are usually of high cardinality, which
implies that the datasets are sparse when taking the time dimension into consideration.
Thus if we just consider the data at one time slice, say the records at one specific date in
a daily transaction summary data cube, there might be only one record. Second, there
is typically a correlation between the value of time attribute and other attributes of the
data items incorporated into the data collections. For example, sales transactions are
recorded in a timely manner and hence the earlier a sales transaction posted, the earlier
the shipping date. Another example is that the stock price may increase over a period
of time and may keep on falling during another period. We refer to such datasets as

� This work has been supported by the NSF under grant numbers CNF-04-23336, IIS-02-23022
and EIA-00-80134.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 662–674, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exploiting Temporal Correlation in Temporal Data Warehouses 663

append-only data [9] since the updates can only affect data items with the latest time
coordinate. Third, time evolving data grow rapidly, thus requiring rapid integration into
the data warehouses.

These characteristics of temporal datasets impose challenges to data analysis in
MOLAP data cubes. The time dimension and its correlated dimensions lead to a high
degree of sparsity in a traditional array-structure [14] based MOLAP data cubes, like
the prefix sum cube [6] and hierarchical cubes [3]. Either the result induces huge storage
costs because of the large cardinality of time-related dimensions [6], or large query
overhead to answer time-parameterized range queries for a data cube is involved to
retrieve all data points in the query range.

The temporal aggregation problem was studied in [12, 11, 13, 10] to address the
challenges of temporal data. These works concentrate on one time-related attribute and
most deal with time-interval data. In addition, Riedewald et al. [9] proposed efficient
range aggregation in temporal data warehouses by exploiting the append-only property
of the time-related dimension. In practice we also observe that many datasets have
multiple time-related attributes and they usually have some semantic relationship. One
such semantics is referred to as the Multi-Append-Only-Trend (MAOT) property in
[8]. [8] studied the range aggregate queries over datasets with multiple append-only
dimensions. The solution assumes some ε-bound to restrict the MAOT property in the
datasets, i.e. two time-related attributes cannot deviate by more than ε from each other. In
this paper, we show that such restriction is not necessary, and propose a general approach
for efficiently answering range aggregate queries over several time-related dimensions
in temporal data warehouses.

Multiple range aggregate queries make trend analysis possible. For instance, “what
is the total value of all orders in California which were ordered in the first half of July
2002 and shipped in August or later?”. Our approach factors out the time-correlated di-
mensions to reduce the sparsity of MOLAP data cubes. For the time-related dimensions,
we capture the local trend by partitioning points into blocks and index blocks with a
perfect binary block tree. Our index structure allows efficient integration and aggrega-
tion of append-only data with logarithmic incremental update and search complexity.
Moreover, they can be maintained in an online fashion, which may be used to provide
real-time analysis for human analysts in massive data streaming applications [4].

The rest of the paper is organized as follows. In Section 2, a general model for MAOT
datasets is presented. In Section 3, we propose data structures exploiting the semantics of
time-correlated dimensions, on which the range aggregate query processing algorithm
in Section 4 is based. In Section 5, we empirically evaluate our technique by using
both synthetic and real datasets. Conclusions and future research work are provided in
Section 6.

2 A Data Model

In this section, we propose a simplified and general data model for Append-Only-With-
Trend datasets. Let D denote a data set with d dimensional attributes δ1, . . . , δd. Let
(Xd, v), Xd = (x1, . . . , xd), refer to a data point in D and its measure value is v. A
multi-dimensional range query RQuery(Ld, Ud) specifies a lower-bound query point

664 Y. Feng et al.

Time

Value

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

P

V'

V

V

V

V

V

time value measure

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

7
9

10
12
11
9

10
12
15
16
18
14
15
18
19
21
20
19
22
24

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(a) A 2-d dataset with an increasing trend (b) Virtual points
Time

Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

IBlk

DBlk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

A
0

B
0

C0

D
0

E
0

F0

Fig. 1. Example of append-only-with-trend data sets

Ld = (L1, . . . , Ld) and an upper-bound query point Ud = (U1, . . . , Ud). The query
selects all data points Xd that satisfy Li ≤ xi ≤ Ui for all dimensions δi. A range
aggregate query applies an aggregate operator (e.g. SUM) over the measure values
of all the data points selected. It is called as prefix range aggregate query when the
lower-bound query point is (0, . . . , 0). The d-dimensional datasetD is an Append-Only-
With-Trend dataset if it has the following properties:

1. One of its dimensions, say δ1, is a temporal dimension (T-dimension). Data points
are always appended on T-dimension.

2. dv of its dimensions, say δ2, . . . , δdv+1, are value dimensions (V-dimensions), which
are time-correlated dimensions. The V-coordinates maintain either a non-decreasing
or a non-increasing trend approximately.

3. v is the measure dimension, on which the aggregate operators could apply.

The value dimension here also captures the valid time dimension in bitemporal
databases [7]. The approximate trend implies that the probability that a data point is
off the trend decreases as the distance increases.

Figure 1 shows an example of a two-dimensional append-only dataset, which exhibits
an append-only trend on the time dimension and approximately increasing trend in the
value dimension. RQuery((0, 0), (12.5, 17)) is a (prefix) range aggregate query whose
T-dimension range is [0, 12.5] and V-dimension range is [0, 17].

In the paper, we mainly discuss the case whendv = 1, that is, there is oneV-dimension
in addition to the temporal dimension, since there is an important class of applications
with two time-related dimensions, for example, the bitemporal databases [7]. To simplify
the following discussion, we assume that no two data points have the same coordinate
in the T-dimension. We will discuss later how to deal with two data points with the same
T-coordinates. Furthermore, our discussion is based on the aggregate operator of SUM.
However it can be easily extended to incorporate other invertible aggregate operators
such as COUNT and AVG [9].

Exploiting Temporal Correlation in Temporal Data Warehouses 665

3 Data Structures for Range Queries

In this section we present how to store and index two dimensional append-only-with-
trend datasets for efficient range aggregate query processing. The main idea is to partition
the dataset into monotonic blocks and then index these blocks using a perfect binary
block tree.

3.1 Partitioning Data Points

Range queries on a sequence of data points can be performed efficiently using binary
search if the data are monotonic in all dimensions. In order to exploit this monotonic
property to support efficient range queries, we partition the datasets into blocks. Each
block contains a sequence of consecutive data points with a non-decreasing or non-
increasing trend. Particularly in terms of a two-dimensional append-only-with-trend
dataset, the monotonic trend of a block can be differentiated w.r.t. the V-coordinates
of data points as the T-coordinates always follow a non-decreasing trend. Depending
on the monotonicity, each block can be categorized as either IBlk or DBlk, where
IBlk represents a non-decreasing block and DBlk represents a non-increasing block.

In Figure 1(a), the data points are partitioned into six blocks according to the trend of
their V-dimension values. Since the dataset follows an overall non-decreasing trend
approximately in this example, there are more IBlk blocks than DBlk blocks, and
DBlk blocks contain fewer data points than IBlk blocks.

Partitioning an append-only-with-trend dataset can be performed in an online manner.
When a new data point is appended, it is compared with the most recent data point in
the current block. If it does not follow the trend of the current block, the current block is
ended and the new data point starts a new block. Each block contains at least two data
points, since at least two data points determine a trend.

3.2 Maintaining Aggregate Information in Blocks

In order to avoid aggregation on-the-fly when answering range aggregate queries, we
maintain cumulative information for each data point so that the range aggregate query
can be answered by accessing a constant number of points [6]; Therefore each data point
P maintains two kinds of aggregate information: (1) the aggregates of all data points
occurring until data point P , named the prefix sum (PSUM); (2) the aggregates of those
data points occurring until data point P with V-dimension values no greater than data
point P ’s V-dimension value, named the partial prefix sum (PPSUM).

Suppose there is a range sum query, whose T-dimension range is [7,10] and V-
dimension range is [11, 17]. The range sum query falls into block C0 shown in Figure 1.
Hence the query result is the difference between the PSUM of data point (10, 16) and the
PSUM of data point (8, 12). For another example query ((0, 0), (8, 10)), the PPSUM of
data point (7, 10) in Figure 1 is the answer.

From the above, we observe that if all the data points within the T-dimension query
range are also within the V-dimension query range, the query can be answered using the
PSUM of the data point closest to the T-dimension boundary. Otherwise, some of the data
points within the T-dimension query range might jump out of the V-dimension query
range. In this case, we need to find the data point closest to both the T-dimension and V-

666 Y. Feng et al.

that data point as an answer. However, it is possible that the data point closest to the T-
dimension boundary is not closest to the V-dimension. For the query ((0, 0), (12.5, 17))
in Figure 1(b), data point β is closest to T-dimension boundary 12.5. However, the
earlier point θ is closer to the V-dimension boundary than β. So we introduce the notion
of virtual points by mapping the V-coordinate of point θ at point β.

A virtual point at point P is the projection of an earlier data point at point P , whose
V-dimension values fall in the interval between point P and its immediately previous
point. For example, the virtual point Vθ at point β is the projection of point θ at point
β. When the V-dimension values are monotonic w.r.t the T-dimension, no virtual points
need to be kept. The smoother the data points, the less virtual points are kept. Figure 1(b)
shows all the virtual points (represented by empty dots) added.

The following summarizes the aggregate information maintained for each data point
and the aggregate information stored at an example block D0 is shown in Figure 2.

– the PSUM of data point P : the aggregate information of all data points whose T-
coordinates are no greater than the T-coordinate of P .

– the PPSUM of data point P : the aggregate information of all data points whose T-
coordinates are no greater than the T-coordinate of P and V-coordinates are no
greater than the V-coordinate of P .

– the V-coordinates of virtual points at point P : the V-coordinates of all data points
which are earlier than data point P and whose V-coordinates are between the V-
coordinate of P and the V-coordinate of the data point preceding P .

– the PPSUM of each virtual point at point P : the PPSUM of the virtual point whose
T-coordinate is no greater than that of data point P and V-coordinate is maintained
as above.

The aggregate information and virtual points above can be maintained in an online
fashion. We keep a list of all V-dimension values. When a new data point arrives, we
check the list to derive the virtual points and their partial prefix sums. The PSUM and
PPSUM of the new data point can be computed by its own measure value and the aggregate
information of its preceding point. The time complexity to maintain the information
above for a new data point is bounded by log(n) + k, where n is the number of data
points and k is the number of virtual points in the interval. In worst case, the number
of virtual points for the new data point is no more than min{n,D}, where D is the
cardinality of the V-dimension. If a data set follows some trend approximately, the
actual virtual points are much fewer as analyzed later.

3.3 The Index Structure

We index blocks which contain data points using a perfect binary block tree. Each leaf
node corresponds to a block with its summary information including the interval in the
V-dimension and the end point, as well as a pointer to the block as shown in Figure 2.
For example leaf node A0 in Figure 2 corresponds to block A0 in Figure 1(a).

Every two leaf nodes at level 0 are grouped together by an internal node at level 1.
An internal node contains the union of V-dimension intervals of its child nodes. Every
two consecutive nodes at level i are grouped together as a node at level i+1 recursively
until reaching the root node. For example, in Figure 2, the internal node A1 contains

dimension upper boundaries of a range aggregate query, so that we can use the PPSUM of

Exploiting Temporal Correlation in Temporal Data Warehouses 667

Time

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3
4

5

6
7

8

9
10

11

12
13

14
15

16

17
18

19

20
21

22
23

24

A
0

B0

C
0

D0

E0

F
0

Value

End Pnt (4,12)
INTVL: [7,12]

End Pnt (6,9)
INTVL: [9,11]

End Pnt (11,18)
INTVL: [10,18]

End Pnt (16,21)
INTVL: [14,21]

INTVL: [7, 12]

Perfect Binary Block Tree (PBBT)

End Pnt (20,24)
INTVL: [22,24]

A 0 B0 C 0 D0 E0 F0

A 1 B1 C 1

A 2 B2

A 3

G 0

D1

Level 0

Level 1

Level 2

Level 3

End Pnt (18,19)
INTVL: [19,20]

data point
directory

. . . data point
directory

INTVL: [10, 21] INTVL: [19, 24]

INTVL: [7, 21] INTVL: [19, 24]

INTVL : [7, 24]

INTVL: [...]

End Pnt (...)
INTVL: [...]

data point
directory

. . .

 P(15,19) PSUM: 15 PPSUM: 15

 P(14,18) PSUM: 14 PPSUM: 14

 P(12,14) PSUM: 12 PPSUM: 9

 P(13,15) PSUM: 13 PPSUM: 11P(12,15) PPSUM:10

P(12,16) PPSUM:11

Data point directory (DPD)

P(14,16) PPSUM:12

Virtual points

Virtual points

 P(16,21) PSUM: 16 PPSUM: 16

ZOOM IN

Fig. 2. Perfect binary block tree

the V-dimension intervals of data points in both block A0 and block B0 in Figure 1(a),
which is the union of the V-dimension intervals of node A0 and B0 at the leaf level (level
0). It is possible that the last node at each level could be the only child node (left child)
of its parent node, such as node C1 shown in Figure 2, which is the only single left child
node of node B2.

A perfect binary block tree (PBBT) has some nice properties since it is based on a
perfect binary tree. The level of the PBBT tree is no more than �log2NB�, where NB is
the number of blocks. The total number of internal nodes is no more than NB .

When a new block is appended as a new leaf node, the perfect binary block tree can
be updated online as follows.

– If the last node in the leaf level is the only child of its parent, the new block is
inserted as the sibling of the last node. Then the V-dimension interval of their parent
node is updated accordingly to be the union of both nodes’ V-dimension intervals.
Then their parent node propagates the updates to their ancestor nodes level by level
until the root node is reached.

– If every leaf node has a sibling, a new parent node is created in level 1 for the new
block with the same V-dimension interval as that of the new block. Similarly this
process is propagated level by level until the root node is reached. If a new node
needs to be added to the topmost level, the number of levels is increased by one.

Since the total number of levels is �log2NB�, the time complexity to append a new
block is logarithmic. For the example in Figure 2, if a new leaf node, G0, is added, a
new node D1 will be added as G0’s parent. Thus node G0 will be the only child of node
D1 which has the same V-dimension interval as node G0. If node D1 is added at level
1, it is grouped with the only child node of C1 and the V-dimension intervals of all their
ancestor nodes will be updated accordingly to include node D1’s V-dimension interval.

4 Range Aggregate Query Processing

We start with prefix range aggregate queries, represented as ((0, 0), (Ut, Uv)) and ex-
tend to the general range aggregate queries later. The underlying idea of prefix query

668 Y. Feng et al.

processing is to find data points close to the upper boundaries of the query such that their
aggregate information is sufficient to answer the query exactly. In particular, three data
points need to be identified sequentially for a prefix query RQuery((0, 0), (Ut, Uv)).

– the anchor point is the data point whose T-coordinate is the largest but no greater
than Ut. Note that its V-dimension value could be greater than or less than Uv .

– the cross point is the data point whose V-coordinate is on the other side of the V-
dimension boundary w.r.t the anchor point and T-coordinate is closest but less than
that of the anchor point. Thus if the anchor point is within the range, the cross point
is out of query range and vice versa.

– the closest point is the virtual data point stored at the successor of the cross point,
whose V-coordinate is closest to and within the V-dimension boundary. If it does
not exist, it can be either the cross point or the successor as explained later.

4.1 Prefix Query Processing Algorithm

The general idea of the prefix range query algorithm is to find the closest point by finding
the anchor point and its cross point. With respect to the relative position of its anchor
point, prefix queries can be classified into two categories: (1) Anchor-out prefix query if
the anchor point Pa(at, av) is outside the V-dimension query boundary, i.e., av > Uv;
(2) Anchor-in prefix query if the anchor point is below the V-dimension query upper
boundary, i.e., av ≤ Uv .

Anchor-Out Prefix Query Processing For this case, the cross point, Pcross, is the data
point within the query having the greatest T-coordinate. It can be obtained by searching
the prefect binary block tree as follows.

First we check if the start point of BlkU is inside the query. If so, it means the cross
point is inBlkU and a binary search is performed to find it. Otherwise a bottom-up search
process from BlkU is performed as follows. From BlkU in level 0, traverse the perfect
binary block tree through the parent links until reaching a node which has a left sibling
whose V-dimension interval covers Uv or the root node. If the root node is reached,
there is no cross point and hence the query returns zero as the query result. Otherwise, a
top-down search process is performed from the node’s left sibling to identify the block
BlkC in level 0, whose V-dimension interval covers Uv . Note that in the top-down
search process, the right branch of a node is always searched first as it contains points
with greater T-dimension values. Once BlkC is obtained, a binary search is performed in
the data point directory ofBlkC to identifyPcross. The general algorithm for identifying
the cross point from the anchor point is in Appendix.

If the cross point is close enough to the V-dimension boundary Uv , that is, no other
point within the query range is closer to Uv , the cross point is chosen as the closest
point and its PPSUM is used to answer the query. However, if there exists such data point
within the range whose V-coordinate is closest to Uv , its V-coordinate must be within
the V-dimension interval between the cross point and its successor and its T-coordinate
must be smaller than the cross point. In this case, the data point is stored as a virtual
point as described previously, and hence we choose the virtual point corresponding to
the data point closest to Uv as the closest point.

Consider the prefix query RQuery((0, 0), (16.5, 17)) shown in Figure 3(a). BlkU ,
block D0(Figure 1) is first identified by a binary search. Then the anchor point Panchor

Exploiting Temporal Correlation in Temporal Data Warehouses 669

Time

Value

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2
3

4
5
6

7
8
9

10
11

12
13
14

15
16

17
18
19

20
21
22

23
24

P

anchor point

cross point

closest point

(a) An anchor-out prefix query

Time

Value

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2
3

4
5
6

7
8
9

10
11

12
13
14

15
16

17
18
19

20
21
22

23
24

P

anchor point

cross point

closest point

(b) An anchor-in prefix query

Fig. 3. Two types of prefix queries

(16, 21) is identified by a binary search in the data point directory maintained inD0. Since
the V-coordinate of Panchor(16, 21) is greater than the upper bound of V-dimension, 17,
it is an anchor-out prefix query. Now the cross point needs to be identified by traversing
the perfect binary block tree (Figure 2) as described before. In this example, as the V-
dimension interval ofD0 covers 17, traversing the tree is not needed.A binary search can
be performed directly in the data point directory maintained in D0 to identify the cross
point, which is Pcross(13, 15). Then virtual points at Psuccessor whose V-coordinate is
between the cross point and its next point are searched to identify the closest point, which
results in a virtual point Pclosest(14, 16). The query returns Pclosest(14, 16).PPSUM as
the result. The process is formalized in the prefix search algorithm in Appendix.

Anchor-In Prefix Query Processing Anchor-in prefix queries can be processed in a
similar way to anchor-out prefix queries. The cross point is out of boundary in this case
as shown in Figure 3(b) and can be found in the same way as before.

If the cross point exists, it is the data point which is outside theV-dimension range with
the greatest T-coordinate. If no such cross point exists, then every data point preceding
the anchor point must be within the given query range. Hence, Panchor.PSUM gives the
query result. The successor point of the cross point,Psuccessor, must have a V-coordinate
less than or equal to the V-dimension upper bound. If any virtual point at Psuccessor,
whose V-coordinate is the largest but less than the V-dimension upper bound, it is the
closest point. Otherwise, Psuccessor is the closest point.

As Pclosest.PPSUM gives the aggregate information of all those data points preceding
Psuccessor (inclusive) within the query and (Panchor.PSUM −Psuccessor.PSUM) gives
the aggregate information of all those points after Psuccessor, the query answer is the
Pclosest.PPSUM + (Panchor.PSUM −Psuccessor.PSUM). The processing of the example
query shown in Figure 3(b) is similar to the example query in Figure 3(a). The complete
prefix query algorithm is summarized in Appendix.

670 Y. Feng et al.

4.2 Discussion

RangeAggregate Queries Processing Given anyd-dimensional range aggregate query,
it can be decomposed into 2d prefix range aggregate queries which select half-open
ranges in all dimensions. Specifically, a 2-dimensional query ((Lt, Lv), (Ut, Uv)) is
decomposed into four prefix queries [6]: ((0, 0), (Ut, Uv))− ((0, 0), (Lt, Uv))− ((0, 0),
(Ut, Lv)) + ((0, 0), (Lt, Lv)). Since they share some boundaries, the processing of the
four prefix queries can be further optimized. The details are omitted due to space limit.

The Complexity of theAlgorithm We present the result of the algorithm analysis briefly
here. The detailed proof is omitted due to the space limit. Let n denote the number of
data points.

The time complexity of our range aggregate query algorithm is O(log(n)). This is
because only three data points are retrieved and the time complexity to search in the
perfect binary block tree is bounded by O(log(n)).

The perfect binary block tree, whose size is bounded by O(n), usually could reside
in memory. The block containing the data point of interest can be retrieved from disk.
If the V-dimension follows a monotonic trend approximately, the disk space needed for
the pre-computed aggregate information is O(n) with high probability. Moreover, if
the V-dimension values are from a finite domain, the space complexity is also O(n).
However, in the worst case, that is, the domain is infinite and the virtual points stored at
each data point increase linearly over time, the disk space cost can be O(n2).

Data Points with Common T-coordinates The assumption that no two data points has
the same T-coordinates can be relaxed as follows. Suppose k data points with the same
T-coordinate Ti, and their next data point has T-coordinate Ti+1. If the current block at
Ti is IBlk , that is, non-decreasing block, we order the k data points according to the
ascending V-coordinates, otherwise, sort them in the descending order of V-coordinates.
We replace the T-coordinates of ordered k data points with T(i+1),1, T(i+1),2,..., T(i+1),k
accordingly. The new T-coordinates satisfy Ti < T(i+1),1 < T(i+1),2 < ... < T(i+1),k <
Ti+1. Since the domain size on the T-dimension does not affect the complexity of the
algorithm, the asymptotic cost is not affected by this transformation.

Limiting the Size of Each Block If a long sequence of data points follows the same
trend, the block size might grow too large. The size of each block does not affect the
logarithmic time bound of range aggregate query processing, but we need to load a large
block into memory. In this case, we could split the block into several blocks by imposing
a threshold on the number of data points in the block. Since our algorithm does not
require two consecutive blocks to have different trends, the correctness of our algorithm
still holds.

5 Experimental Evaluation

We perform experiments on both synthetic datasets and real datasets and compare our
perfect binary block tree (PBBT) with R∗ tree [1], which is the most popular multi-
dimensional index structure and implemented in commercial RDBMS. Note that for a

Exploiting Temporal Correlation in Temporal Data Warehouses 671

Range Aggregate Query Time

0

50

100

150

200

250

0 200000 400000 600000 800000 1000000 1200000

Number of data points

A
ve

ra
g

e
ru

n
n

in
g

 t
im

e
p

er
 q

u
er

y
(m

s)

R-tree PBBT

(a) per query time vs. dataset size

Space Usage for Index+Data
(Synthetic Datasets phi=0.5, beta = 0.7, variance = 500)

0

100000

200000

300000

400000

500000

600000

700000

800000

1.
00

E+0
3

1.
00

E+0
4

1.
00

E+0
5

2.
00

E+0
5

4.
00

E+0
5

6.
00

E+0
5

8.
00

E+0
5

1.
00

E+0
6

Number of data points

S
p

ac
e

fo
r

In
d

ex
+D

at
a

(K
B

) R-tree PBBT

(b) space required vs. dataset size

Fig. 4. Evaluating the impact of the dataset size

d-dimensional dataset, we assume two time-related dimensions. We measure the total
space cost for both data and index structure, and the average per query time cost. We
study how performance changes with varying dataset size and the degree of randomness,
as explained in Section 5.1.

The implementations of both approaches are in Gnu C++. We use the R*-tree im-
plementation by M. Hadjieleftheriou [5]. The experiments are performed on Mandrake
Linux 9.0 running on AthelonXP1800 1533MHZ PC with 1G RAM and 50G disk. We
assign the same amount of memory to both implementations for fair comparisons.

Two kinds of queries are used in the experiments: uniform queries and biased queries.
The uniform queries are generated by choosing the T-dimension query range uniformly
from tmin to tmax and the V-dimension range from vmin to vmax. The biased queries
follow the distribution of data points, so that the query selectivity can be controlled.
The query boundaries are generated using Gaussian distribution with the expected query
range. The details of experimental setup are omitted due to space limit.

5.1 Experiments on Synthetic Datasets

We evaluate the effect of the dataset size and the degree of randomness using synthetic
datasets with uniform queries, which contain queries with different levels of selectivity.

The synthetic datasets are generated from some popular time series models [2]:
random walk and Auto-Regression model (AR(1)). We need to add a linear trend to the
stationary AR(1) model to satisfy our append-only-with-trend data model. These two
models can be captured with the equation below with different parameter settings:

V(t) = φ*V(t-1) + β ∗ t + αt

where αt is a random variable following the normal distribution (a.k.a white noise) with
mean 0. The variance of αt represents how widely the random factor can go. When
φ = 1 and β = 0, it is a random walk. When φ is within the range (−1, 1) and β = 0, it
is a stationary AR(1) time series model. β represents the linear trend of the time series
data. φ represents how the current value is correlated to the previous value. When φ = 1
as in the case of a random walk, the data are smoother than the case of |φ| < 1 in AR(1)

672 Y. Feng et al.

Range Aggregate Query Time

0

5

10

15

20

25

0.1 100.1 200.1 300.1 400.1 500.1 600.1 700.1

Variance

A
ve

ra
g

e
ru

n
n

in
g

 t
im

e
p

er
 q

u
er

y
(m

s)

R-Tree PBBT

(a) per query time vs. randomness

Space Usage for Index+Data
(Synthetic Datasets phi = 0.5, beta = 0.7)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

25 100 175 400 625
Variance

S
p

ac
e

fo
r

In
d

ex
+D

at
a

(K
B

)

R-tree PBBT

(b) space required vs. randomness

Fig. 5. Evaluating the impact of randomness

model. The experimental results on random walk data always outperform the results for
AR(1) model with linear trend. Given the lack of space, we only report the experiments
on the latter case.

Figure 4 demonstrates the scalability of our approach (PBBT) with increasing dataset
size. The parameters in the synthetic dataset are fixed at φ = 0.5 and β = 0.7 and the
variance of the random variable is 500. We can see our approach is fairly scalable even
when the dataset size increased from 1K to 1M, the per query time does not increase
more than three times as shown in Figure 4(a). The space in Figure 4(b) increases linearly
with the dataset size. This is consistent with our analysis of linear space and logarithmic
time complexity. The query time grows linearly for R*-tree, since the number of nodes
accessed is proportional to the dataset size in the case. Also the rate of increases in space
for R*-tree is significantly larger than that of our approach.

The query time saving of our approach comes from two aspects: precomputed aggre-
gate information and fewer disk I/Os resulting from constant number of disk accesses.
We use the perfect binary block tree to decide the block of data that needs to load into
memory, so the disk access time is constant per query if the binary tree can always be
accommodated in memory. Since the perfect binary tree has the same number of internal
nodes as blocks and each node contains only the boundary information, the total size of
the index structure is actually small enough to fit in the main memory in practice.

Another factor we consider is the randomness of the data (Figure 5). We change
the variance of the random variable α from 25, 100, 175, 400 to 625. More points will
jump off the trend further with the increased randomness. In this case, more virtual
points need to be stored and the space cost increases. However, since the query time
complexity is logarithmic to the number of points as analyzed before, the query time
deteriorates slightly with the increased randomness(variance of the trend).

5.2 Experiments on Real Dataset

We also evaluate the performance of the proposed approach on a real dataset: the daily
industry average open price of the Dow Jones stocks for the last 74 years. It is available
from http://finance.yahoo.com/. There are 18,656 data points in the dataset and the value

Exploiting Temporal Correlation in Temporal Data Warehouses 673

Real dataset analysis (Dowj Open)
(N = 18175)

0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 0.9 1.1

Query selectivity

A
ve

ra
g

e
ru

n
n

in
g

 t
im

e
p

er
 q

u
er

y
(m

s)

R-Tree PBBT

Fig. 6. per query time on stock price dataset

ranges from 41.63 to 11719.19. To maintain the precision to 0.01, we enlarge the domain
size 100 times. The time-related dimensions are the date and the daily open price, while
we use the stock volume as the measure dimension.

We evaluate the query performance with the selectivity using biased queries. The
experiment results in Figure 6 show that our approach has fairly stable query time
w.r.t query selectivity. The query time using R*-tree index increases linearly with the
selectivity. The reason is that R*-tree needs to visit all data points in the range. In contrast,
our approach (PBBT) only used 4M bytes disk space and R*-tree used more than 14M
bytes. In summary, the experiments demonstrate the effectiveness of our approach in a
variety of time series datasets.

6 Conclusion

We proposed an effective approach for range aggregate query processing in append-
only datasets with two time-related dimensions. Our approach improves the MOLAP
efficiency on the sparse append-only datasets by factoring out the two time-related di-
mensions and makes the query cost independent of the query length. A novel data struc-
ture, the perfect binary block tree, is proposed to allow logarithmic time complexity to
append data and query processing. This idea can be extended to multiple time-correlated
dimensions. However, this naïve extension of the two-dimensional algorithm compro-
mises the performance efficiency. In this case, the logarithmic time complexity for query
processing cannot be guaranteed. How to improve the efficiency on more time-related
dimensions is one of our future works.

References

1. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r* -tree: An efficient and ro-
bust access method for points and rectangles. In Proc. Int. Conf. on Management of Data
(SIGMOD), pages 322–331, 1900.

2. P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting. Springer, 2002.
3. C.-Y. Chan and Y.E. Ioannidis. Hierarchical cubes for range-sum queries. In Proc. Int. Conf.

on Very Large Data Bases (VLDB), pages 675–686, 1999.

674 Y. Feng et al.

4. Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah, and Jianyong Wang. Multi-
dimensional regression analysis of time-series data streams. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 323–334, 2002.

5. Marios Hadjieleftheriou. C++/java spatial index library. http://www.cs.ucr.edu/ mar-
ioh/spatialindex/index.html, 2004.

6. C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in olap data cubes. In Proc.
Int. Conf. on Management of Data (SIGMOD), pages 73–88, 1997.

7. C. S. Jensen and et al. Temporal Databases - Research and Practice, volume 1399 of LNCS,
chapter The Consensus Glossary of Temporal Database Concepts, pages 367–405. Springer
Verlag, 1998.

8. Hua-Gang Li, Divyakant Agrawal, Amr El Abbadi, and Mirek Riedewald. Exploiting the
multi-append-only-trend property of historical data in data warehouses. In Proc. Int. Symp.
on Spatial and Temporal Databases (SSTD03), pages 179–198, 2003.

9. M. Riedewald, D. Agrawal, and A. El Abbadi. Efficient integration and aggregation of histor-
ical information. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 13–24,
2002.

10. Yufei Tao, Dimitris Papadias, and Christos Faloutsos. Approximate tempral aggregation. In
Proc. Int. Conf. on Data Engineering (ICDE), 2004.

11. Jun Yang. Temporal Data Warehousing. PhD thesis, Stanford University, 2001.
12. Jun Yang and Jeniffer Widom. Incremental computation and maintenance of temporal aggre-

gates. In Proc. Int. Conf. on Data Engineering (ICDE), 2001.
13. Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios Gunopulos, and Bern-

hard Seeger. Efficient computation of temporal aggregates with range predicates. In Proc.
Int. Conf. on Principles of Database Systems(PODS), 2001.

14. Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous
multidimensional aggregates. In Proc. Int. Conf. on Management of Data (SIGMOD), pages
150–170, 1997.

Semantic Characterization of Real World Events

Aparna Nagargadde1, Sridhar Varadarajan1, and Krithi Ramamritham2

1 Applied Research Group, Satyam Computer Services Limited,
Entrepreneurship Centre, IISc Campus, Bangalore - 560012, INDIA

{aparna nagargadde, sridhar}@satyam.com
2 Indian Institute of Technology-Bombay Powai, Mumbai 400 076, INDIA

krithi@cse.iitb.ac.in

Abstract. Reducing the latency of information delivery in an event
driven world has always been a challenge. It is often necessary to com-
pletely capture the attributes of events and relationships between them,
so that the process of retrieval of event related information is efficient. In
this paper, we discuss a formal system for representing and analyzing real
world events to address these issues. The event representation discussed
in this paper accounts for the important event attributes, namely, time,
space, and label. We introduce the notion of sequence templates that not
only provides event related semantics but also helps in semantically an-
alyzing user queries. Finally, we discuss the design for our Query-Event
Analysis System, which is an integrated system to (a) identify a best se-
quence template given a user query; (b) select events based on the best
sequence template; and (c) determine content related to the selected
events for delivering to users.

1 Introduction

Real world events are of interest to people with diverse interests. For exam-
ple, when the event ‘Cricket match’ is in progress, the queries from users could
span a wide-range such as “What’s the current run-rate?,” “How many wickets
are down?,” “What was the highest total chased successfully on this ground?,”
“What is the history of matches played here?,” and so on. The ability to seman-
tically characterize the events enhances the scope and flexibility of the event
management system in answering these complex queries.

There is a need to formally address the issues related to representation and
analysis of real-world events. Some of these issues include (a) Characterization
of event attributes (b) Identification of event relationships (c) Identification of
composite and derived events (d) Derivation of additional information from a set
of events (e) Closures on real world events, and (f) Processing of event related in-
formation in order to answer user queries, based on a set of events. In this paper,
we describe a formal framework to clearly address these issues. In building our
formal framework, we draw upon the various advances in the fields of temporal
semantics, spatial semantics and event composition in distributed systems. How-
ever, though these advances address the various facets of the issue of semantics

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 675–687, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

676 A. Nagargadde, S. Varadarajan, and K. Ramamritham

of real world events, there is no comprehensive formalization of representation
of real world events. Real world events are characterized by temporal, spatial
and label attributes; the lack of even one attribute would result in an incomplete
characterization of the event. For example, the event “Kaif hits half-century at
Lords” is incomplete without the time stamp 13th July 2002, location Lords and
an event tag (label) half-century by Kaif. The formalism presented in this paper
represents a holistic approach to the analysis of the temporal, spatial and label
attributes of real world events.

The main contributions of this work include a) Event representation in terms
of temporal, spatial and label attributes b) The use of domain-specific hierarchies
along temporal, spatial and label dimensions for enhanced semantic analysis,
c) The definition of event closures in conjunction with these domain specific
hierarchies in order to recognize the similarities between otherwise unrelated
events d) The use of comprehensive sequence templates for semantic analysis of
events and e) A system that aggregates, creates events with a view to answer
diverse user queries. We also discuss the problem of event analysis in a real
world scenario and present a methodology of identifying meta events from an
event history by means of sequence templates. Most of the scenarios in this
paper are drawn from the realm of international cricket, in particular from the
NATWEST series in 2002 [14] A table of the various terms used in the realm of
cricket is found in the technical report [3].

1.1 Related Work

Event representation and analysis has been an area of active research. In par-
ticular, the temporal nature and properties of events have been widely studied.
The representation of time and temporal relationships has been addressed in sev-
eral papers, notably [2]. Though the temporal and spatial attributes of events
have been widely studied, there are very few event specification languages that
support a unified view of both these attributes in the case of real world events.
Composite event detection by means of using event templates has also been pro-
posed in several papers [4], [5], [12]. But the proposed event templates do not
consider the temporal, spatial and label event attributes holistically. Table. 1
depicts a comparison of the related work in this sphere. Derived events repre-
sent all those events that can be generated using the various event operators
and closures. In the real world, event input is received through several loosely
coupled event sensors/detectors. We employ the temporal frameworks suggested
in [11], [12] to order the event input for processing. We subscribe to the use of
interval-based semantics [1] for composite event detection. Two aspects are im-
portant in the case of real world events: event attributes and event content. Event
attributes must be able to provide adequate cues for the automatic generation
and dissemination of event contents. For example, in the case of an event Six
by a batsman in an ODI match, it is required to automatically generate a video
clip depicting the batsman hitting the ball directly outside the boundary line.
We suggest that the sequence templates, introduced in this paper, can play an
important role in this content generation activity. In our related papers [6],[13],
we have described issues related to content generation and dissemination.

Semantic Characterization of Real World Events 677

Table 1. Comparison of related work

Event Graphs

Full power
coloured petri

nets

Coloured petri
nets

 Behavioural
Models

Specified Using
Bilbvideo Query

Language

Sequence
Templates

defined for event
expressions

9

5, 8

4

7

Our
Work

--

Considered in
broader context of

event attributes
 Spatial Dimension of

multiple objects in
event scene are

based on bounding
box description

Region Semantics
based on formalisms

such as [9]

Event Type used to identify
other attributes

 Used in description of
objects within the video

Value along label dimension
is part of real world events.
Operations are defined on

label attribute to derive
additional events

Event expressions
using temporal
relationships

--

Spatiotemporal
relationships

between objects in
 multiple scenes us-
ed to derive events

 Events derived
using closure

operations and
relationships along

TSL dimensions

Interval
Based

Semantics

Detection
Based

Semantics

Interval
Based

Semantics

1

Ref Spatial Dimension
Additional Event

Dimensions
Derived Events

Temporal
Dimension

Model used to
capture Derived

Events

2 Events and Their Representations

We describe an algebra for real world events, and in this respect, every real world
happening is an event. Event related information can be categorized into two
kinds: formal attributes and informational attributes. Formal attributes form the
basis for formally analyzing events. On the other hand, informational attributes
provide more information regarding events. An example is a video clip associated
with an event. Informational attributes can also be viewed as a bag of attributes.
In this paper, we consider time, space and label as part of the formal attribute set
of events. Accordingly, we define an event to be characterized along three event
dimensions, namely, time, space, and label dimensions. It is apparent that the
event specification is complete when an event possesses attribute values along
these three dimensions. Hereafter, we shall refer to the time, space and label
dimensions as T, S, and L dimensions, and the respective attributes as TSL
attributes of an event. We now provide an analysis of the event dimensions and
event compositions, and further describe closures related to a set of events.

2.1 Event Dimensions

The three event dimensions of time, space and label are each unique and distinct
in their characteristics.

The time dimension is continuous and dynamic. The temporal attribute of
an event can either specify a time point of occurrence or a time-interval over
which the event was observed. The granularity of a time point depends on the

678 A. Nagargadde, S. Varadarajan, and K. Ramamritham

event space1 within which the event is defined. For example, the time attributes
‘2004:08:03:05:xx:xx’ and ‘2004:08:03:xx:xx:xx’ can both be considered as time
points, depending on whether the time granularity is in hours or days. Since
events are detected by a distributed network of sensors/detectors; it would be
simplistic to presuppose the existence of a global clock. In this paper, we resort
to temporal modelling assuming a global reference time as proposed in [11].

We define the spatial attribute as a region that exhibits a physical contiguity
and can be well defined using 2D/3D bounds. Using the lower-level representa-
tions of spatial attributes, in terms of bounding boxes as a basis [10], we can
define the semantics of region bounding operators to describe ‘regions’. How-
ever, we attach names to these regions for the sake of simplicity. For example,
the region ‘Trent-bridge’ can be described using a set of 2D/3D points that sat-
isfy its region-attributes. Similar to the temporal dimension, the granularity of
space attribute is also determined by the event space. Depending on the granu-
larity, a region could comprise of other smaller regions, with well defined spatial
relations defining the orientation of the component regions with each other. A
few relational operations (touch, inside) are described in [7]. The various spa-
tial relationships can be automatically derived using the procedural semantics
associated with these regions [10].

Event labels are used to categorize events that occur. Every domain is associ-
ated with a set of generic event labels that categorize the various events in that
domain. For example, the domain of soccer is associated with event labels such
as Goal, Penalty, Match, etc. Event labels can be represented as a hierarchical
set, with the root being a generic label, and each child node being a special-
ization of the corresponding parent. Label hierarchies form an important tool
in determining relationships between events, as well as in analyzing composite
events. They can also be used to provide some additional information about
events such as their frequency, location, sensitivity, and criticality. If label l1 is
a specialization of a label l2, then l1 → l2. l1 ↔ l2 indicates the existence of
an alias. Logical operations and, or and not(¬) are defined on label attributes.

An event that can be detected by an event sensor is called a basic event.
Basic events could be sensed or detected automatically, or could be provided as
input by an event originator.

2.2 Event Composition and Event Sequences

A composite event is an event that is derived using one or more events. The
two fundamental event composition operations are disjunction and conjunction.
Event composition along the temporal dimension is a well researched topic. We
follow the same temporal semantics as presented in [1]. These semantics follow
from the 7 well known relational operators [2] along the temporal dimension
namely, before, during, starts, finishes, overlaps, meets and equals. We define
the spatial and label semantics for conjunction and disjunction of events. A

1 An event space ψ is defined as the space encompassing a time interval T = < Ts, Tt >,
a region � and a set of label hierarchies L[3].

Semantic Characterization of Real World Events 679

detailed description of the semantics as well as the relationships on which these
semantics are based can be found in the technical report [3]. A more generic
event composition operation is the sequence operation.

Event Sequence : e3
t3,s3,l3

= e1
t1,s1,l1

�k e2
t2,s2,l2

An event e3 composed of two events e1 and e2 with a well defined temporal
ordering forms an event sequence. By the natural definition of a sequence, t1 ≤ t2
is a constraint that needs to be satisfied. The other constraints to be specified
could include constraints such as t2 − t1 ≤ ∆; locations s1, s2 ε R, etc. The
sequence operator is �. The subscript k represents the set of constraints along
the TSL dimension that must be satisfied by the two adjacent events in an event
sequence. The time of occurrence of the sequence is given by the time interval
t3 =< min(t1, t2),max(t1, t2) >2. The region of occurrence of the sequence is
given by s3 = s1 ∪ s2), where s3 represents the total region encompassed by the
individual regions s1 and s2.

An event sequence π can be generalized as an ordering of events {e1
t1,s1,l1

�k1

e2
t2,s2,l2

�k2 e3
t3,s3,l3

, . . . , en
tn,sn,ln

}. The set of all events belonging to a sequence
π is represented by Eπ. κπ = {k1, k2, . . . kn} represents the set of all constraints
satisfied by the events in the event sequence π. An example of a generic event-
sequence is the ‘run-out’ event (see Fig. 1 on page 682). A generic event sequence
is referred to as a meta-event, and the label of a meta-event is called meta-label.
Further explanations on meta-events follow in section 3.3.

2.3 Event Closure

Various types of event closures can be defined on real world events so as to
enable a quick retrieval of the related events based on a query. We discuss below
two types of event closures, namely, logical closure and sequence closure. The
logical closures help in retrieving the events that are logically related along the
TSL dimensions. Logical closures can be used in analyzing various aspects of
basic, conjunct, disjunct, and negation events. The sequence closure describes
the closure rules for event sequences. Sequence closures help in determining
alternate sequences that can be constructed from logical closures of events in a
given sequence π. Event closures are defined only for basic events.

Logical Closure: We categorize logical closure into two categories: generic clo-
sure and semantic closure.

Generic closure, CG(e), of an event e is used to identify those events that
are contained within an occurred basic event. The generic closure on an event
et,s,l is given by

CG(e) = {et1,s1,l1 | et,s,l ∧ (t1 ε t) ∧ (s1 ⊆ s) ∧ (l → l1)}
Consider the event ea

<2004:03:24:16:30:xx,2004:03:24:18:30:xx>,cricket−field,rain. Let
event ea represent rains over the region cricket-field during the time interval

2 < t1, t2 > represents a continuous interval of time beginning at t1 and ending at t2.

680 A. Nagargadde, S. Varadarajan, and K. Ramamritham

16:30 to 18:30 on the 24th of March 2004. The pitch is a rectangular area of the
ground between two bowling creases and is at the center of the cricket-field. The
batsmen hit the balls bowled to them and run between the wickets on the pitch
to score the runs. Since the location pitch is contained in the region cricket-field,
by generic closure, we have: e1

2004:03:24:16:45:xx,pitch,rain ε CG(ea).
Semantic closures, CS(e), are closures based on logical implication. Semantic

closures have been defined in order to allow the closures related to description of
time, space attributes such as today, yesterday, this city, and this block. Semantic
closure also addresses the issue of alias along the label dimension. For example,
on the 25th of March 2004, the semantic label yesterday refers to any point of
time on the 24th of March 2004. Therefore, eyesterday,cricket−field,rain ε CS(ea).
The semantic closure of an event e is defined as:

CS(e) = {et1,s1,l1 | et,s,l ∧ t → t1 ∧ s → s1
3 ∧l ↔ l1}.

Sequence Closure: A sequence closure CQ is used to determine the closure of
a sequence of events in terms of individual events of the sequence. In other words,
a sequence closure of an event sequence π is the set of all possible sequences that
can be constructed using the events present in the closures of individual events
in the sequence such that the sequence constraints are not violated.
Sequence closure of an event sequence π is given by

CQ(π) = {π1 | ∀ e1εEπ1 ∃ eεEπ ∧ (e1εCG(e) ∨ e1εCS(e)) ∧ κπ = κπ1}
Let e be an event in the sequence. Then, the sequence closure is used to

determine whether there exists any other event e′ which can be substituted for
e, while still satisfying all the sequence constraints. . It is apparent that if such
an event e′ exists, it must belong to the closure of event e. π, π1 are the two
event sequences. The events belonging to these sequences are represented by Eπ

and Eπ1
respectively. Every element in the event sequence π1, belongs to the

generic or semantic closures of the events in the event sequence π. κπ = κπ1

indicates that both π and π1 satisfy the same set of constraints. (Refer sections
2.2 and 2.3 for the notations used.)

Note that the generic and semantic closures are defined only for basic events.
As a result, every event that is generated using the closure operation is a valid
event and can be derived from the event history H (see 3.2). Sequence closures
represent the valid sequences that can be generated by permutations of events
generated by logical closures on events of an elementary sequence.

3 Event Analysis

In the previous section, we discussed, in general, about events and event rela-
tionships from the point of view of basic events. However, while dealing with real

3 Let ς denote a verbose translation of a region with respect to an observer; examples
include here, this city etc. We have s → ς if s belongs to the region R that is referred
to by ς. A more detailed explanation of semantic closure is found in [3].

Semantic Characterization of Real World Events 681

world events and trying to answer queries based on such real world events, there
is a need for detailed analysis of the observed events. For example, consider the
event set: {e1

2004:07:07:12:46:30,Manchester,Bowl:V aughan, e2
2004:07:07:12:46:55,Manchester,

Miss:Sangakara, e3
2004:07:07:12:47:15,Manchester,BallHitsPad, e

4
2004:07:07:12:47:50,Manche−

ster,OutCalled:Umpire}. In order to deduce that the above set of events depicts an
lbw [3] event, a proper semantic analysis of the observed events needs to be car-
ried out. The event analysis is done based on an event history H that is compiled
from event sets received from one or more event detectors in different locations.

3.1 Event History

Event history H is a set of observed, basic events. Event history H is also asso-
ciated with a corresponding event space ψ (Recall that event space ψ defines a
bound on temporal, spatial, and label dimensions). Typically an event needs to
be analyzed in the context of those events that occurred prior to the event under
consideration and those that could occur after the event consideration. Such an
analysis is required as observed or basic events are quite primitive and are not
sufficient to answer the complex user queries. The objective of event analysis is
to analyze the events contained in H to derive the interesting meta-events. Note
that some of these meta-events could arise due to closure operations, some due
to composition operations, and some more due to sequence operations.

3.2 Derived Events

Event history H is a set of only the observed, basic events. In order to be able to
process queries, it is necessary to augment H and in this subsection, we briefly
discuss this augmentation process. In the previous subsections, we discussed
several operations related to a set of events and repeated application of one or
more of these operations on H is one of the ways to augment H. Specifically,
closure and composition operations are helpful in expanding H. The derivation
rules for deriving events from H are given below:

1. e ε H → H " e
2. e ε H ∧ e1 ε CG(e) → H " e1
3. e ε H ∧ e1 ε CS(e) → H " e1
4. H " e1 ∧ H " e2 → H " e1 op e2, where op represents the conjunction,

disjunction or sequence operator.

Note that, ‘a " b’ is used to denote that given a, the derivation of b is possible
by using a set of inference rules.

3.3 Identification of Meta-Events in H

In order to semantically characterize H, we need some additional information
about event space ψ. In this section, we propose the notion of capturing event
semantics in the form of sequence templates. A sequence template is semantic
characterization of a meta event that addresses the temporal and spatial rela-
tionship of a set of events from a semantic point of view. An illustrative sequence

682 A. Nagargadde, S. Varadarajan, and K. Ramamritham

1 2 3

Bowler X1
bowls ball

Batsman
X2 hits ball

Batsman
X2 runs

Some Constraints
Edge 1-2 T2 - T1 ~= 0.5 secs L2 = L1 = Within Stadium and on field
Edge 2-3 T3 - T2 ~= 0.1 secs L2 = L3 = Within Stadium and on field
Edge 8-9 T9 - T8 > 0 secs L9 = L8 = Within Stadium and on field

S

Start
Node

4
Fielder X3
stops ball 5 6

Bowler X1 throws
ball to wickets

10
Batsman

X2 run out

E

End
Node

7
8

Ball in Air

Ball hits
stumps

9

Batsman X2
reaches crease

Meta event - run out
Fielder X3 throws
ball at bowler end

Fig. 1. Example Sequence Template

template is depicted in Fig. 1. Note that, as Fig. 1 depicts a sequence template,
the actual event attributes are left unspecified. Furthermore, a sequence template
defines certain important constraints on the event attributes such as temporal
and spatial constraints.

Based on domain and related queries of interest, multiple sequence templates
are defined and are made part of the Sequence Template Database (ST Database).
The objective is to analyze H with respect to ST Database to generate the GS ,
which is a semantic characterization of H. A meta event in GS is depicted by
using only the initial event(ei) and final event(ef) of the sequence template
and a directed edge from ei to ef . The label of this directed edge holds the
information of the instantiated sequence template corresponding to the actual
meta-event that has transpired.

The event history H, the ST Database and the corresponding semantic rep-
resentation GS are used to develop a query-event analysis system.

4 Query-Event Analysis System (QEAS)

In this section we discuss a query and event processing system that is based on
events contained in H. Query Event Analysis System is a formal system that
generates responses to user queries using either H or GS as input. Fig. 2 depicts
the functional description of QEAS. The QEAS has two basic functions namely
a) Analysis of input events and b) Analysis of user queries. Every new observed
event must be made a part of the event history H. The event aggregator adds
the new event e to H. It also dispatches e to ST State Machine, in order to verify
whether the event e is a part of a meta-event. The ST State Machine matches
the event e to the available sequence templates in ST, and suitably updates GS .
A user query Q is first analyzed with respect to the available sequence templates.
If a matching template is found, the query is analyzed using GS as input. Else,
the query is analyzed by the Query Processing System using H as input. The
result of a query is the set of one or more events that match the query. The
appropriate content associated with these events is sent to the user.

Semantic Characterization of Real World Events 683

Event
Aggregator

H

ST Data Base
Use

r

Query
Analysis and
ST Selection

Query
Processing

Gs

ST State
Machine

ST analysis and
query

processing

Event Content
Generation and
Dissemination

q
a

q
a

e

QUERY

EVENT

Q
U

E
R

Y

S
T

EVENT

Fig. 2. Functional description of QEAS

4.1 Event Analysis

Events are analyzed by using state machines associated with the sequence tem-
plates, in order to identify the instantiated meta-events. A new state machine is
instantiated when the start of a new meta event is detected. The occurrence of
an event could (a) Cause one or more state machines to terminate successfully
(b) Cause one or more state machines to make a legal transition (c) Invalidate
one or more state machines. (d) Instantiate a new state machine m, which cor-
responds to a sequence template of a meta-event. Every time a state machine
terminates, GS is updated to reflect the meta events that have taken place. Lapse
of time/space constraints could also cause state machine invalidation. The algo-
rithm to generate GS is shown in fig 3(a).
Theorem 1 : With the assumption that no two events occur simultaneously, an
occurred event alone is adequate to derive all consequential meta-events in GS .
A proof of the same is to be found in the technical report [3]. Note that, when
two or more events can occur concurrently, the set of concurrent events has to
be processed together; and all possible permutations of the concurrent events
must be taken into account while deducing the possible transitions.
Corollary 1 : If a sequence of events E that cause valid transitions on any state
machine M appears in the event history H, then the events e ε E are consumed
by M to recognize the corresponding meta-event.

4.2 Query Analysis

Every event query can be represented as an ordered pair (E, ψ), where E is
the event expression and ψ is the event space that corresponds to the user

684 A. Nagargadde, S. Varadarajan, and K. Ramamritham

For every new event e{
anal:
 for all m M{
 if (e can cause valid transitions on m) {
 make the transition
 if m terminates successfully {
 Identify ei, ef for the meta event E
 Create a graph g, using ei and ef as nodes
 Add directed edge from ei to ef, with appropriate label
 M := M-m
 Gs := Gs + g
 e := E, goto anal } } }
 for all st ST{
 if(e can initiate new meta-event){
 initiate state machines mnew corresponding to st
 M = M + mnew } } }

Express Q as an event expression X,
and associated event space

J =
For every event e in X {
 if (e is a basic event)
 Je = {all instances of e in H}
 else if (e is a meta-event)
 Je = {all instances of e in Gs}
 if n(Je) = 0 {
 determine E' = {e’ | e G(e') or e C(e')}
 Je = {all instances of (e' E') in H, Gs}
 }
 J = J + Je
}
Use J to evaluate X and generate the result

H - Event History Gs - Event graph, depicting semantic characterisation of H
ST - Set of sequence templates M - Set of active state machines Q - User Query
ei - Initial event ef - Terminal event J, Je - Event Sets

(b) Query Analysis -Algorithm(a) Event Analysis -Algorithm

Fig. 3. Algorithms for event and query analysis

query. As depicted in Fig. 2, Query analysis begins by comparing the input
query with sequence templates contained in ST database. As sequence templates
capture semantics, using them in query processing enables semantic analysis of a
query. The objective of comparison is to select a sequence template st that best
matches with the input query. This st is used in generating the query answer
(qa) using H and GS . Finally, the content database is analyzed to extract the
relevant content using st and qa to generate the most appropriate event related
content that is delivered to user. The algorithm for query analysis is shown in
Figure 3(b). The QEAS analyzes every user query as being equivalent to an
event expression. An event expression consists of one or more events combined
using the conjunction, disjunction and sequence operations along with the related
constraints. The safety and liveness properties of QEAS have been proved in the
technical report [3].

In general,query processing involves three distinct steps namely (a) query
pre-processing (b) retrieval of event information using SQL queries and (c) post
processing. The pre processing step involves identification of (a) meta event
labels (b) temporal characteristics and (c) spatial characteristics of the input
query, and the TSL hierarchies associated with each domain play a significant
role in this process. Observe that the input events are analysed in real time
to update H, GS (refer Fig. 2, Fig. 3) which are stored in the database as the
basic and meta event tables respectively. The retrieval of event information using
SQL queries mainly uses these two tables. Post processing involves filtering and
rearrangement of events to suit the user requirements. Such a three step query
processing system would help in answering complex queries such as “Generate
a 30 minute highlight of the first innings of the cricket match between England
and Sri Lanka on the 27th June, 2002 at Trent-Bridge”.

Semantic Characterization of Real World Events 685

Distributed
Event Manager

Input Events

Domain Specific
Event Manager - A

Databases

Event Processing
Clusters

Dispatch Event to
domain specific
event manager

Domain Specific
Event Manager - C

Domain Specific
Event Manager - B

Fig. 4. Illustration of distributed event processing

As an example, consider the following query that was posed after the first
innings of the match between England and SriLanka on the 27th June, 2002:
“Generate the highlights of all boundaries hit by each SriLankan player today?”
The query can be mapped to the event-expression:
E = (etoday, trent−bridge, boundary by SriLankan player X)+ and the corresponding
event space ψ = {today, trent-bridge, {Set of labels in the domain ‘cricket’} }
The simplification of the Event expression, which gets evaluated for every Sri-
Lankan player X is shown below:
e = e(today,trent−bridge,boundary:X)
= e(today, trent−bridge,four:X) | e(today,trent−bridge,six:X) (by generic closure)
= e(<2002:06:27:10:30:xx,2002:06:27:13:30:xx>, trent−bridge,four:X) |
e(<2002:06:27:10:30:xx,2002:06:27:13:30:xx>,trent−bridge,six:X) (by semantic closure)
The events four:X and six:X are meta-events and are a part of GS . The QEAS
looks for the events in GS in order to evaluate the event expression.

4.3 Distributed Event Processing

It is easy to see that the event analysis and query processing have to meet real
time constraints. The processing of any event should preferably be completed
before its real time successor occurs. In a scenario wherein there are a consid-
erable number of incoming events belonging to different domains, a distributed
event processing network can provide a substantial increase in processing speed.
Fig. 4 shows an illustration of a hierarchical event processing system. There exist
several clusters of Domain Specific Event Managers that process the events oc-
curring within a particular domain. The Distributed Event Manager routes the
incoming events to the domain specific event managers for further processing.
The domain specific event Manager manages several event processing clusters
and it identifies a suitable cluster to process an input event based on the at-
tributes of the event. For example, location attribute could be used to cluster
events that occur in a particular locale.

686 A. Nagargadde, S. Varadarajan, and K. Ramamritham

5 Conclusions and Future Work

In this paper, we have described an approach for representing and analyzing real
world events. Events are characterized along three dimensions, namely, time,
space, and label dimensions. Such a multidimensional characterization helps in
better syntactic and semantic analysis of events. We have defined the notion
of event closures and have categorized them into logical closures and semantic
closures. We have also introduced the notion of sequence templates that are
useful in (a) providing a semantic structure (GS) to an otherwise a collection
of events H; and (b) characterizing content related to meta events. We have
described the main steps involved in the generation of GS given H and have
illustrated the use of GS in answering queries related to real world events. The
broad outline of Query Analysis System also describes an important step of
event related content identification and dissemination. We have illustrated the
proposed formal and query analysis system with the help of a set of real world
events.

From the point of view of event related content dissemination, it is required
to be able to derive the meta events that are of interest to users as soon a
basic event occurs. We are focusing our efforts on how to (a) identify all such
meta events; (b) identify related content; (c) identify users who are interested in
the occurred and meta events; and (d) efficiently and effectively deliver content.
Observe that some of the users could be mobile demanding effective caching
and transcoding techniques. Our objective in event representation and analysis
is to ultimately deliver content to mobile users with minimum delay. We are
in the process of implementing a system for the dissemination of event related
information based on the formalism presented in this paper.

References

1. R. Adaikkalavan, Snoop Event Specification: Formalization Algorithms, And Im-
plementation Using Interval-Based Semantics. MS thesis, The University of Texas
At Arlington, 2002.

2. J. F. Allen, “Time and time again: the many ways to represent time,” International
Journal of Intelligent Systems, vol. 6, pp. 341–355, 1991.

3. Aparna Nagargadde, Sridhar. V, Krithi Ramamritham.,“Syntactic and Semantic
characterisation of real world events,” Technical Report, Satyam Computer Services
Limited, SCSL/ARG/2004/1, Sept. 2004

4. P. Bates., “Debugging heterogeneous distributed systems using event-based models
of behavior,” ACM Transactions on Computer Systems, pp. 1–31, 1995

5. Branding. H, Buchmann. A. P, Kudrass. T, Zimmermann. J., “Rules in an Open
System: The REACH Rule System,” in Procs of 1st Intl. Workshop on Rules in
Databases, (Edinburgh), Sept. 1993.

6. Darshan Gujjar, Amit Thawani, Srividya Gopalan, Sridhar V., “An Efficient
Web based Event Management System for Distributed Multimedia Services”, The
IASTED International Conference on Internet And Multimedia Systems and Ap-
plications (EuroIMSA 2005), (Grindelwald, Switzerland), 2005 (to appear)

Semantic Characterization of Real World Events 687

7. Dönderler. M. E, Ulusoy. Ö, Güdükbay. U., “Rule based spatiotemporal query
processing for video databases,” The VLDB Journal, vol. 12, pp. 86–103, 2004.

8. Gatziu. S, K. R. Dittrich, “SAMOS: an Active Object-Oriented Database System,”
IEEE Quarterly Bulletein, Jan 1993.

9. M. Z. Hasan, The Management of Data, Events, and Information Presentation for
Network Management. PhD thesis, University of Waterloo, 1996

10. Kuijpers. B, Paredaens. J, Vandeurzen. L., “Semantics in Spatial Databases,” Se-
mantics in Databases, LNCS 1358, pp. 114–135, 1998.

11. C. Liebig, M. Cilia, A. Buchmann., “Event Composition in Time-dependent Dis-
tributed Systems,” in Procs of the 4th IFCIS (CoopIS 99), 1999.

12. Pietzuch. P. R, Shand. B, Bacon. J., “Composite Event Detection as a Generic
Middleware Extension,” IEEE Network Magazine, Special Issue on Middleware
Technologies for Future Communication Networks, pp. 44–55, 2004.

13. A. Thawani, S. Gopalan, Sridhar. V, “Event driven semantics based ad selection,”
in Procs of IEEE International Conference on Multimedia and Expo (ICME’2004),
(Taipei, Taiwan), June 2004.

14. http://plus.cricinfo.com/link to database/Archive/2002/OD Tourneys
/NWS/Scorecards/ENG SL NWS ODI7 07JUL2002 BBB-COMMS.html.

Learning Tree Augmented Naive Bayes
for Ranking

Liangxiao Jiang1,�, Harry Zhang2, Zhihua Cai1, and Jiang Su2

1 Department of Computer Science, China University of Geosciences,
Wuhan, China 430074

2 Faculty of Computer Science, University of New Brunswick,
P.O. Box 4400, Fredericton, NB, Canada E3B 5A3

Abstract. Naive Bayes has been widely used in data mining as a simple
and effective classification algorithm. Since its conditional independence
assumption is rarely true, numerous algorithms have been proposed to
improve naive Bayes, among which tree augmented naive Bayes (TAN)
[3] achieves a significant improvement in term of classification accuracy,
while maintaining efficiency and model simplicity. In many real-world
data mining applications, however, an accurate ranking is more desirable
than a classification. Thus it is interesting whether TAN also achieves sig-
nificant improvement in term of ranking, measured by AUC(the area un-
der the Receiver Operating Characteristics curve) [8, 1]. Unfortunately,
our experiments show that TAN performs even worse than naive Bayes
in ranking. Responding to this fact, we present a novel learning algo-
rithm, called forest augmented naive Bayes (FAN), by modifying the
traditional TAN learning algorithm. We experimentally test our algo-
rithm on all the 36 data sets recommended by Weka [12], and compare it
to naive Bayes, SBC [6], TAN [3], and C4.4 [10], in terms of AUC. The
experimental results show that our algorithm outperforms all the other
algorithms significantly in yielding accurate rankings. Our work provides
an effective and efficient data mining algorithm for applications in which
an accurate ranking is required.

Keywords: data mining and knowledge discovery, learning algorithms,
Bayesian networks, decision trees.

1 Introduction

Classification is one of the most important tasks in data mining. In classification,
a classifier is built from a set of training examples with class labels. The predic-
tive ability of a classifier is typically measured by its classification accuracy on
the testing examples. In fact, most classifiers can also produce probability esti-
mates or “confidence” of the class prediction. Unfortunately, this information is
often ignored in classification.

� This work was done when the author was a visiting scholar at University of New
Brunswick.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 688–698, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning Tree Augmented Naive Bayes for Ranking 689

In many data mining applications, however, the classifier’s accuracy are not
enough, because they cannot express the information how “far-off” (be it 0.45
or 0.01?) is the prediction of each example from its target. For example, in
direct marketing, we often need to promote the top X% of customers during
gradual roll-out, or we often deploy different promotion strategies to customers
with different likelihood of buying some products. To accomplish these tasks, we
need more than a mere classification of buyers and non-buyers. We often need a
ranking of customers in terms of their likelihood of buying. Thus, a ranking is
more desirable than just a classification.

A natural question is how to evaluate a classifier in terms of its ranking
performance, rather than classification accuracy. Recently, the area under the
Receiver Operating Characteristics curve [8, 1], or simply AUC, has been used for
this purpose and received a considerable attention. AUC compares the classifiers’
performance cross the entire range of class distributions and error costs and is
a good “summary” for comparing two classifiers. Hand and Till [4] show that,
for binary classification, AUC is equivalent to the probability that a randomly
chosen example of class − will have a smaller estimated probability of belonging
to class + than a randomly chosen example of class +. They present a simple
approach to calculating the AUC of a classifier G below.

Â =
S0 − n0(n0 + 1)/2

n0n1
, (1)

where n0 and n1 are the numbers of negative and positive examples respectively,
and S0 =

∑
ri, where ri is the rank of ith positive example in the ranked list.

From Equation 1, it is clear that AUC is essentially a measure of the quality of a
ranking. For example, the AUC of a ranking is 1 (the maximum value of AUC)
if there is no positive example preceding a negative example.

In classification, an example E = (a1, a2, · · · , an), where ai is the value of
attribute Ai, is classified into the class C with the maximum posterior class
probability P (C|E) (or simply, class probability), as shown below.

Cpb(E) = arg
C

maxP (C|E). (2)

Assume that all the attributes are independent given the value of class, called
conditional independence assumption and shown in Equation 3. The resulting
classifier, called naive Bayes, is shown in Equation 4. Figure 1 shows an example
of naive Bayes.

P (a1, · · · , an|C) =
n∏

i=1

P (ai|C). (3)

Cnb(E) = arg
C

maxP (C)
n∏

i=1

P (ai|C). (4)

The structure of naive Bayes can be extended to represent the dependences
among attributes. Tree Augmented naive Bayes (TAN) is an extended tree-like

690 L. Jiang et al.

 C

A A A A1 2 3 4

Fig. 1. An example of naive Bayes

naive Bayes [3], in which the class node directly points to all attribute nodes
and an attribute node can have only one parent from another attribute node
(in addition to the class node). Figure 2 shows an example of TAN. In TAN,
each node has at most two parents (one is the class node). TAN outperforms
naive Bayes in terms of accuracy [3] and still maintains a considerably simple
structure.

 C

A A A A1 2 3 4

Fig. 2. An example of TAN

One interesting question is whether TAN is also a good model for ranking.
In this paper, we investigate the ranking performance of TAN. Unfortunately,
the traditional TAN learning algorithm does not produce high quality ranking.
We propose a new TAN learning algorithm and our experiments show that our
algorithm performs better not only than the traditional TAN learning algorithm,
but also other popular state-of-the-art algorithms designed for yielding accurate
ranking.

The rest of the paper is organized as follows. In Section 2, we introduce
the related work on improving naive Bayes and on improving decision tree for
ranking. In Section 3, we present our new algorithm. In Section 4, we describe
the experimental setup and results in detail. In Section 5, we make a conclusion.

2 Related Work

It is obvious that the conditional independence assumption in naive Bayes is
rarely true in many applications. Therefore, researchers have made a substan-
tial amount of effort to improve naive Bayes in classification. Research work to
improve the naive Bayes can be broadly divided into two approaches below.

Learning Tree Augmented Naive Bayes for Ranking 691

1. Select attributes subsets in which attributes are conditionally independent.
For example, Langley and Sage [6] presented an algorithm, called Selective
Bayesian Classifiers (simply SBC), to improve naive Bayes. They used a
forward greedy search method to select a subset of attributes.

2. Relax the conditional independence assumption by extending the structure
of naive Bayes to represent the dependences among attributes. TAN is an
example of this approach. TAN is a specific case of general augmented naive
Bayesian networks (ANB), in which the class node also directly points to
all attribute nodes, but there is no limitation on the links among attribute
nodes (except that they do not form any directed cycle).

Unfortunately, learning an optimal ANB is intractable. Thus, TAN is a good
trade-off between the model complexity and learnability in practice. A number of
TAN learning algorithms have been proposed, among which the ChowLiu algo-
rithm (CL-TAN) [3] and the SuperParent algorithm (SP-TAN) [5] performs sig-
nificantly better than naive Bayes in classification. SP-TAN is a greedy heuristic
search algorithm in which an arc of achieving the highest accuracy improvement
is selected in each step. One disadvantage of SP-TAN is its time complexity of
O(mn3), where m is the number of training examples and n is the number of
attributes. However, CL-TAN has the time complexity of O(mn2), a consider-
able advantage over SP-TAN. CL-TAN is depicted below, which is the base of
our work.

Algorithm CL-TAN
1. Compute IP̂D

(Ai, Aj |C) between each pair of attributes, i �= j.
2. Build a complete undirected graph in which nodes are attributes A1, · · ·,

An. Annotate the weight of an edge connecting Ai to Aj by IP̂D
(Ai;Aj |C).

3. Build a maximum weighted spanning tree.
4. Transform the resulting undirected tree to a directed one by choosing a

root attribute and setting the direction of all edges to be outward from
it.

5. Construct a TAN model by adding a node labeled by C and adding an
arc from C to each Ai.

In the preceding algorithm, IP̂D
(Ai, Aj |C) is an estimate of the conditional

mutual information which will be defined in Section 3.
Both SP-TAN and CL-TAN outperforms naive Bayes significantly in classi-

fication. Moreover, the ranking performance of SP-TAN has been studied [14].
Since CL-TAN is more efficient than SP-TAN, it is more practical in data mining
applications. In this paper, we focus on the ranking performance of CL-TAN.

Decision tree learning algorithms are a major type of effective learning al-
gorithms in data mining. However, traditional decision tree algorithms, such as
C4.5 [11], have been observed to produce poor estimations of probabilities [10].
Aiming at this fact, Provost and Domingos [10] presented an algorithm, called
C4.4, to improve C4.5’s performance in ranking measured by AUC. In detail,
they used two techniques to improve the AUC of C4.5: smooth probability es-
timates by Laplace correction and turn off pruning. Their experiments show

692 L. Jiang et al.

that C4.4 performs significantly better than C4.5 in ranking. In this paper, we
compare our new algorithm with C4.4.

3 Forest Augmented Naive Bayes: FAN

At first, let us introduce the definitions of mutual information and conditional
mutual information used in this paper.

Definition 1. Let X,Y are two variables,then the mutual information between
X and Y is defined by the following equation [3].

IP (X;Y) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
. (5)

Roughly speaking, this function measures how much information Y provides
about X.

Definition 2. Let X,Y,Z are three variables,then the conditional mutual infor-
mation between X and Y given Z is defined by the following equation [3].

IP (X;Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y, z)P (z)
P (x, z)P (y, z)

. (6)

Roughly speaking, this function measures the information that Y provides about
X when the value of Z is known.

In a TAN, the class probability P (C|E) is estimated by the following equa-
tion:

P (C|E) = P (C)
n∏

i=1

P (Ai|Aip, C) (7)

where Aip is the parent of Ai and

P (Ai|Aip, C) =

{
P (Ai|Aip, C) {Aip} �= ∅

P (Ai|C) {Aip} = ∅
(8)

An instance is classified into the class with the maximum class probability.
We experimentally investigate the ranking performance of CL-TAN, mea-

sured by AUC. Unfortunately, CL-TAN yields poor AUC (see Table 1 and 2,
although its accuracy is higher than naive Bayes (see Table 3 and 4). By exper-
iments, we observe that there are two factors contributing this fact:

1. The directions of edges in a TAN are crucial. In Step 4 of the CL-TAN
algorithm, an attribute is randomly chosen as the root of the tree and the
directions of all edges are set outward from it. Notice that the selection of
the root attribute actually determines the structure of the resulting TAN,
since a TAN is a directed graph. It is interesting that the directions of edges
in a TAN do not affect the classification accuracy significantly. In contrast,
however, AUC is quite sensitive to it. Thus the selection of the root attribute
is important for building a TAN with accurate ranking.

Learning Tree Augmented Naive Bayes for Ranking 693

2. Irrelevant edges may exist in a CL-TAN. In Step 3 of the CL-TAN, a maxi-
mum weighted spanning tree is built. Thus, the number of the edges is fixed
to n− 1. Sometimes, it might overfit the data, since some edges may not be
necessary to exist in the TAN.

Based on the preceding observations, we modify the CL-TAN algorithm cor-
respondingly as follows.

1. We choose the attribute Aroot with the maximum mutual information with
class, defined by Equation 1, as the root. That is,

Aroot = arg
Ai

max IP (Ai;C), (9)

where i = 1, · · · , n. It is natural to use this strategy, since intuitively the
attribute which has the greatest influence on classification should be the
root of the tree.

2. We filter out the edges that have a conditional mutual information less than
a threshold. To our understanding, those edges have a high risk to overfit the
training data, and thus undermine the probability estimation. More precisely,
we use the average conditional mutual information Iavg, defined in Equation
10, as the threshold. All the edges with the conditional mutual information
less than Iavg are removed.

Iavg =

∑
i

∑
j,j
=i IP (Ai;Aj |C)
n(n− 1)

, (10)

where n is the number of attributes.

Since the structure of the resulting model is not a strict tree, we call our
algorithm forest augmented naive Bayes (FAN), depicted in detail as follows.

Algorithm FAN
1. Calculate the conditional mutual information IP (Ai;Aj |C), j �= i be-

tween each pair of attributes, and calculate the average conditional mu-
tual information Iavg, defined in Equation 10.

2. Build a complete undirected graph in which nodes are attributes Ai, i =
1, 2, . . . , n. Annotate the weight of an edge connecting Aj to Ai by
IP (Ai;Aj |C).

3. Search a maximum weighted spanning tree.
4. Calculate the mutual information IP (Ai;C), i = 1, 2, . . . , n between each

attribute and the class, and find the attribute Aroot that has the maxi-
mum mutual information with class, according to Equation 9.

5. Transform the resulting undirected tree to a directed one by setting Aroot

as the root and setting the directions of all edges to be outward from it.
6. Delete the directed edges with the weight of the conditional mutual in-

formation below the average conditional mutual information Iavg.
7. Construct a FAN model by adding a vertex labeled by C and adding an

directed arc from C to each Ai, i = 1, 2, . . . , n.

694 L. Jiang et al.

The time complexity and space complexity of FAN are O(n2 · N) and
O(|C|(n|V |)2), respectively, where n is the number of attributes, N is the num-
ber of training instances, |C| is the number of classes, and |V | is the average
number of values for an attribute. Both of them are same as the CL-TAN al-
gorithm. However, our experiments, described in next section (Section 4) that
FAN improves the ranking performance of CL-TAN significantly.

4 Experimental Methodology and Results

We conduct our experiments on all the 36 data sets recommended by Weka
[13], which come from the UCI repository [7]. We download these data sets in
format of arff from main web of Weka. All the preprocessing stages of data sets
were carried out by the Weka system. They mainly include the following three
processes:

1. We use the filter of ReplaceMissingValues in Weka to replace the missing
values of attributes.

2. We use the filter of Discretize in Weka to discretize numeric attributes.
3. It is well-known that, if the number of values of an attribute is almost equal

to the number of instances in the data set, this attribute does not contribute
any information to classification. So we use the filter of Remove in Weka
to delete these attributes. In these 36 data sets, there only exists three this
type of attributes, namely Hospital Number in data set horse-colic.ORIG,
Instance Name in data set Splice and Animal in data set zoo.

We conduct experiments to compare our algorithm (FAN) with naive Bayes,
SBC [6], TAN [3], and C4.4 [10] in AUC . All algorithms are implemented within
the Weka framework. Multi-class AUC has been calculated by M-measure in [4].
The AUC of each classifier is measured via the ten-fold cross validation for all
data sets. Runs with the various classifiers were carried out on the same training
sets and evaluated on the same test sets. In particular, the cross-validation folds
are the same for all the experiments on each data set. Throughout, we compare
our algorithm with each other algorithm via two-tailed t-test with significantly
different probability of 0.95, because we speak of two results for a data set as
being “significantly different” only if the difference is statistically significant at
the 0.05 level according to the corrected two-tailed t-test.

Table 1 shows the AUC and standard deviations of each classifier on the test
sets of each data set, and the average AUC and deviation are summarized at
the bottom of the table. Table 2 shows the results of two-tailed t-test between
each pair of algorithms, and each entry w/t/l means that the algorithm at the
corresponding row wins in w data sets, ties in t data sets, and loses in l data
sets, compared to the algorithm at the corresponding column.

The detailed results displayed in Table 1 and Table 2 show that our algorithm
outperforms significantly all the other algorithms in AUC. Now, we summarize
the highlights as follows:

Learning Tree Augmented Naive Bayes for Ranking 695

Table 1. Experimental results on AUC. FAN: Forest Augmented naive Bayes;
NB: naive Bayes; SBC: Selective Bayesian Classifiers; CL-TAN : Tree Augmented naive
Bayes with smoothed parameter of 5.0; C4.4: C4.5 with Laplace correction and without
tree pruning

Data set FAN NB SBC CL-TAN C4.4
anneal 96.4±0.51 95.9±1.3 94.7±3.92 92.97±2.51 93.78±2.9
anneal.ORIG 95.1±2.93 94.49±3.67 94.35±4.31 85.42±7.04 92.69±3.15
audiology 70.92±0.59 70.96±0.73 70.98±0.67 70.16±0.55 70.58±0.63
autos 92.13±5.24 89.18±4.93 90.43±3.43 90.28±2.59 90.73±4.52
balance-scale 84.46±4.1 84.46±4.1 84.46±4.1 76.47±7.56 63.06±6.18
breast-cancer 68.04±12.43 69.71±15.21 67.67±12.63 67.4±10.4 59.3±12.03
breast-w 99.15±0.94 99.19±0.87 99.16±0.62 98.74±1.32 97.85±1.86
colic 85.25±6.16 83.71±5.5 84.86±7.13 50.6±8.29 85.02±7.03
colic.ORIG 74.91±9.77 80.67±6.98 81.82±4.9 62.89±7.73 80.56±8.94
credit-a 91.3±3.36 92.09±3.43 87±3.75 63.3±13.3 89.42±3.1
credit-g 78.25±6.42 79.27±4.74 77.41±4.67 60.18±6.84 69.62±5
diabetes 82.71±5.65 82.31±5.17 82.79±5.04 74.18±5.87 75.5±5.76
glass 79.03±7.02 80.5±6.65 80.97±8.37 84.79±4.34 82.36±4.38
heart-c 83.95±0.71 84.1±0.54 83.87±0.64 82.96±1.12 83.1±1.19
heart-h 83.66±0.8 83.8±0.7 82.83±1.38 82.69±0.72 83.04±0.85
heart-statlog 90.42±5.36 91.3±4.19 87.98±6.91 80.12±11.94 81.36±9.15
hepatitis 85.91±11.52 88.99±8.99 83.62±12.29 53.83±14.97 82.03±14.04
hypothyroid 86.69±9.61 87.37±8.52 85.25±8.16 84.03±12.22 81.58±8.8
ionosphere 98.48±1.47 93.61±3.36 92.26±5.26 72.05±7.4 93.1±3.76
iris 98.58±2.67 98.58±2.67 99±1.46 94.17±5.51 97.33±2.63
kr-vs-kp 98.12±0.9 95.17±1.29 96.41±0.78 87.21±1.49 99.95±0.06
labor 93.33±14.05 98.33±5.27 65.83±32.5 68.33±40.41 74.17±31.04
letter 98.28±0.19 96.86±0.24 97.03±0.23 94.5±0.25 95.39±0.39
lymph 89.95±1.57 89.69±1.49 88.14±3.35 85.56±6.98 87.26±3.75
mushroom 100±0 99.79±0.04 99.98±0.02 99.87±0.04 100±0
primary-tumor 78.9±1.03 78.85±1.35 78.88±1.45 76.39±1.9 75.48±2.33
segment 99.55±0.27 98.51±0.46 98.93±0.42 95.35±1.06 98.85±0.32
sick 98.22±0.77 95.91±2.35 94.5±4.28 73.25±2.73 99.07±0.35
sonar 85.96±10.19 85.48±10.82 79.89±13.1 67.4±13.83 77.01±8.59
soybean 99.61±0.64 99.53±0.6 99.08±0.74 96.73±1.59 91.43±2.6
splice 99.47±0.32 99.41±0.22 99.14±0.36 97.72±0.68 98.14±0.72
vehicle 89.05±2.99 80.81±3.51 81.31±4.02 76.86±3.8 86.5±2.28
vote 98.03±1.51 96.56±2.09 94.26±4.14 93.49±1.38 96.77±2.96
vowel 99.51±0.26 95.81±0.84 96.12±0.59 92.33±1.23 91.28±2.46
waveform-5000 94.92±0.63 95.27±0.58 95.12±0.76 78.9±2.03 80.83±1.24
zoo 89.88±4.05 89.88±4.05 89.06±4.49 89.88±4.05 88.88±4.5
Mean 89.95±3.795 89.61±3.54 87.92±4.746 80.58±5.991 85.92±4.708

1. FAN outperforms naive Bayes significantly: It wins in 9 data sets, ties in 27
data sets and loses in 0 data set. The average AUC for FAN is 89.95%, it
is slightly higher than the average AUC 89.61% of naive Bayes. This fact is
understandable, since the conditional independence among attributes have

696 L. Jiang et al.

Table 2. Results of two-tailed t-test on AUC. An entry w/t/l means that the
algorithm at the corresponding row wins in w data sets, ties in t data sets, and loses in
l data sets, compared to the algorithm at the corresponding column. The significantly
different probability of two-tailed t-test is 0.95

NB SBC CL-TAN C4.4
FAN 9/27/0 11/25/0 24/12/0 13/20/3
NB - 1/31/4 23/12/1 13/20/4
SNB - - 20/16/0 9/22/5

CL-TAN - - - 4/20/12

been relaxed and represented in FAN. Thus, the class probability estimates
of FAN are expected to be more accurate than those of naive Bayes.

2. FAN also outperforms C4.4 significantly: It wins in 13 data sets, ties in 20
data sets and loses in 3 data sets. The average AUC for C4.4 is 85.92%,
lower than that of FAN. Since C4.4 is the state-of-the-art decision tree al-
gorithm designed specifically for yielding accurate rankings, this comparison
also provides evidence to support FAN.

3. FAN outperforms significantly SBC and TAN. It wins in 11 data sets, ties in
25 data sets and loses in 0 data set, compared with SBC; and it wins in 24
data sets, ties in 12 data sets and loses in 0 data set, compared with TAN.
Notice that, although SBC and TAN improve naive Bayes’ performance in
classification, they do not improve naive Bayes’ performance in ranking.

In our experiments, we also observe the classification accuracy of each algo-
rithm, shown in Table 3, and Table 4 shows the results of two-tailed t-test with
confidence level of 95% between each pair of algorithms in terms of accuracy.
We can see that our experiment repeats experimental results of SBC [6] and CL-
TAN [3], both of which improve the classification performance of naive Bayes. It
is also interesting to notice that FAN also slightly outperforms all the algorithms
in terms of accuracy.

5 Conclusions

In this paper, we investigate the ranking performance of the CL-TAN learning
algorithm, and find that CL-TAN performs even worse than naive Bayes in rank-
ing. Responding to this problem, we present a novel TAN learning algorithm FAN
to build a TAN for accurate ranking. We experimentally test our algorithm mea-
sured by AUC, using all the 36 data sets recommended by Weka, and compare
our algorithm FAN with naive Bayes, SBC, TAN, and C4.4. The experimental
results show that our algorithm improves significantly naive Bayes’ performance
in ranking, and outperforms some widely used extended naive Bayes algorithms,
such as SBC and CL-TAN and the state-of-the-art decision tree learning algo-

Learning Tree Augmented Naive Bayes for Ranking 697

Table 3. Experimental results on accuracy. FAN: Forest Augmented naive Bayes;
NB: naive Bayes; SBC: Selective Bayesian Classifiers; CL-TAN: Tree Augmented naive
Bayes with smoothed parameter of 5.0; C4.4: C4.5 with Laplace correction and without
post pruning

Data set FAN NB SBC CL-TAN C4.4
anneal 97.1±1.5 94.32±2.38 96.88±2.5 96.66±2.35 99±0.98
anneal.ORIG 90.98±3.64 87.53±4.69 88.75±3.72 87.98±3.62 91.76±3.07
audiology 71.19±5.14 71.23±7.03 76.01±7.05 75.16±8.45 78.3±8
autos 77.55±8.11 64.83±11.18 67.71±11.27 76.07±10.01 81.45±7.48
balance-scale 91.36±1.38 91.36±1.38 91.36±1.38 86.08±3.18 69.3±4.25
breast-cancer 68.21±5.11 72.06±7.97 73.45±8.91 66.82±7.01 68.57±7.49
breast-w 97.13±2.03 97.28±1.84 96.42±2.26 96.71±1.79 92.99±3.66
colic 81.25±5.31 78.81±5.05 81.77±4.89 77.18±7.04 80.17±5.95
colic.ORIG 72.57±6.5 75.26±5.26 75.53±6.15 75.51±7.15 76.08±8.74
credit-a 84.49±3.99 84.78±4.28 85.51±4.16 84.64±5.03 83.19±3.5
credit-g 75.6±5.15 76.3±4.76 74.1±3.87 73.4±4.12 68.6±4.3
diabetes 75.4±6.61 75.4±5.85 75.53±5.07 75.13±4.71 69.54±5.12
glass 59.87±7.98 60.32±9.69 57.99±6.89 55.71±10.81 58.83±7.73
heart-c 81.13±7.8 84.14±4.16 82.47±7.61 77.53±7.41 74.26±11.46
heart-h 82±5.94 84.05±6.69 79±9.77 79.97±6.39 72.78±11
heart-statlog 82.59±6.77 83.7±5 79.26±9.75 81.11±3.68 75.93±8.95
hepatitis 83.17±9.66 83.79±8.79 80.63±6.8 83.83±8.05 81.25±11.52
hypothyroid 93.19±0.78 92.79±1.02 93.53±0.66 92.79±1.06 92.5±0.58
ionosphere 92.61±4.64 90.89±3.49 91.17±4.12 90.6±3.83 84.63±4.45
iris 94.67±8.2 94.67±8.2 97.33±4.66 90.67±11.42 92.67±5.84
kr-vs-kp 92.52±2.09 87.89±1.81 94.34±1.23 93.18±1.6 99.41±0.45
labor 88.33±15.81 93.33±11.65 77±11.91 88±11.46 77.67±15.64
letter 76.77±0.78 70±0.81 70.57±0.88 80.45±0.91 80.56±0.87
lymph 83.14±7.22 85.67±9.55 79±6.84 84.38±9.1 74.29±12.56
mushroom 99.4±0.27 95.57±0.45 99.67±0.23 99.77±0.12 100±0
primary-tumor 46.31±2.33 46.89±4.32 46.02±5.19 48.37±5.83 38.91±4.97
segment 94.37±1.59 88.92±1.95 90.43±1.96 86.36±2.36 92.86±1.39
sick 97.67±0.47 96.74±0.53 97.59±0.69 97±0.4 97.83±0.61
sonar 78.5±16 77.5±11.99 70.71±12.97 71.62±12.64 67.69±10.94
soybean 95.76±1.61 92.08±2.34 91.79±2.72 93.41±2.1 92.68±1.56
splice 95.3±1.48 95.36±1 94.76±1.6 95.39±1.35 91.57±1.37
vehicle 69.98±3.29 61.82±3.54 60.65±4.73 69.86±3.47 69.03±2.63
vote 92.66±4.65 90.14±4.17 95.18±3.93 93.12±4.02 94.96±3.83
vowel 92.42±2.2 67.07±4.21 68.69±3.47 83.43±3.84 75.66±5.18
waveform-5000 82±1.24 79.96±1.92 81.32±1.54 81.52±1.21 64.86±1.83
zoo 97.09±4.69 94.18±6.6 93.18±7.93 97.09±4.69 92.18±8.94

rithm C4.4. In a word, our work provides an effective and efficient data mining
algorithm especially when a ranking is more desirable than just a classification.

698 L. Jiang et al.

Table 4. Results of two-tailed t-test on accuracy. the results of two-tailed t-test
between each pair of algorithms, each entry w/t/l means that the algorithm at the
corresponding row wins in w data sets, ties in t data sets, and loses in l data sets,
compared to the algorithm at the corresponding column. The significantly different
probability of two-tailed t-test is 0.95

NB SBC CL-TAN C4.4
FAN 10/26/0 5/29/2 4/30/2 12/21/3
NB - 1/29/6 4/26/6 11/15/10
SNB - - 4/28/4 7/22/7

CL-TAN - - - 7/15/4

References

1. Bradley, A. P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition 30 (1997) 1145-1159

2. Cohen, W. W., Schapire, R. E., Singer, Y.: Learning to order things. Journal of
Artificial Intelligence Research, 10 1997 243-270

3. Friedman, N., Greiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine
Learning 29 (1997) 103–130

4. Hand, D. J., Till, R. J.: A simple generalisation of the area under the ROC curve
for multiple class classification problems. Machine Learning 45 (2001) 171-186

5. Keogh, E., Pazzani, M. : Learning augmented bayesian classifiers. Proceedings of
Seventh International Workshop on AI and Statistics. (1999) Ft. Lauderdale.

6. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. in Proceedings of
the Tenth Conference on Uncertainty in Artificial Intelligence, 1994, pp. 339-406.

7. Merz, C., Murphy, P., Aha, D.: UCI repository of machine learn-
ing databases. Dept of ICS, University of California, Irvine (1997).
http://www.ics.uci.edu/ mlearn/MLRepository.html

8. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: com-
parison under imprecise class and cost distribution. Proceedings of the Third In-
ternational Conference on Knowledge Discovery and Data Mining. AAAI Press
(1997) 43-48

9. Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for com-
paring induction algorithms. Proceedings of the Fifteenth International Conference
on Machine Learning. Morgan Kaufmann (1998) 445-453

10. Provost, F. J., Domingos, P.: Tree Induction for Probability-Based Ranking. Ma-
chine Learning 52(3) (2003) 199-215

11. Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann: San
Mateo, CA (1993)

12. http://prdownloads.sourceforge.net/weka/datasets-UCI.jar
13. Witten, I. H., Frank, E.: Data Mining –Practical Machine Learning Tools and

Techniques with Java Implementation. Morgan Kaufmann (2000)
14. Ling, C. X., Zhang, H.: Toward Bayesian classifiers with accurate probabilities.

Proceedings of the Sixth Pacific-Asia Conference on KDD. Springer (2002) 123-
134

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 699–710, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Finding Hidden Semantics Behind Reference Linkages :
An Ontological Approach for Scientific Digital Libraries*

Peixiang Zhao1, Ming Zhang2, Dongqing Yang2, and Shiwei Tang2

1 Department of Systems Engineering and Engineering Management,
 The Chinese University of Hong Kong,

Hong Kong SAR, China
pxzhao@se.cuhk.edu.hk

2 Department of Computer Science and Technology, Peking University,
Beijing, China

{mzhang, ydq}@db.pku.edu.cn
tsw@pku.edu.cn

Abstract. The contents and topologies of inter-document linkages, such as
citations and references among scientific literature, have received increasing
research interests in recent years. Some technologies have been fully studied
and utilized upon this meaningful information to improve the organization,
analysis and evaluation of scientific digital libraries. In this paper, we present a
CiteSeer-like system to access scientific papers in computer science discipline
by reference linking technique. Moreover, implicit semantics behind reference
indices are mined and organized to improve accessibility of scientific papers. In
order to model scientific literature and their interlinked relationships, we
develop a domain-specific ontology to analyze contents and citation anchor
context of scientific papers. Compared with abstract of a specific paper written
by authors themselves, we introduce an automatic summary generation
algorithm to create objective descriptions from other scholars’ perspectives
based on the ontology. Semantic queries can also be asked to discover
interesting patterns in scientific libraries in order to provide a comprehensive
and meaningful guidance for users.

1 Introduction

With the rapid development of Internet and the increasing ripeness of the Web, more
and more scientific papers appear on the Web in digital form instead of paper-based
form. These digitized scientific documents have greatly facilitated the Web to be an
efficient repository of up-to-date information. However, as the availability of
scientific literature greatly improves, the inability of people to disseminate, share and
profitably utilize such a large amount of information becomes more and more severe.
Published scientific papers available on the Web are widely spread and are often
poorly organized, neither comprehensively indexed nor interlinked in terms of logical
correlations among them. People get limited supports in searching, reviewing, and

* This research is funded in part by NSFC grant 90412010 as well as grant 60221120144.

700 P. Zhao et al.

analyzing scientific literature from academic perspectives. This problem is now
becoming an important research issue both in computer science and in digital
libraries.

One original approach for managing such a huge volume of scientific literature is
by reference linking different papers from bibliographic perspectives. Reference
indices are useful for a number of purposes, such as literature dissemination, search,
analysis and evaluation. Fig.1 shows main components of a reference index and a
sample of reference linking. The left diagram gives a link topology among different
scientific papers denoted by node A, B, C, D, E, F and G. The right diagram shows
article D cites article G. Components of a reference index between D and G are
citation anchor context in D and the corresponding bibliographic entry in the
reference section of D. Through a reference link from “citing” papers to the “cited”
one, users can find citation patterns and relationships among different documents. By
navigating backward and forward though reference indices, users can promptly find a
series of papers and perceive a thorough understanding of related research. The
context of a citation in citing papers is quite illuminating in judging the motivation of
reference, the contributions of the cited paper and the usefulness of a paper for a
given query [11]. Reference indices are now widely used in reference linking [4], link
analysis [3,7], hypertext and web mining [6], text classification [12] etc. The potential
usefulness of reference indices contained in scientific literature has now been widely
convinced and related services are provided in a range of applications, especially in
scientific digital libraries.

Fig. 1. A reference linking sample: from the time perspective

In resent years, several digital libraries have established large repositories of
scientific literature, such as ISI SCI®, CiteSeer.IST [10], CORA [2], and ML Papers
[13] etc. These projects pay much attention to interlinking different scientific papers
via reference indices. However, few of them richly utilize semantic information
hidden behind reference linkages. HITS [9,3] and PageRank [17] algorithms are
widely applied to identify “important” web pages or papers in the web and digital
libraries by analyzing link topologies of hyperlink or citation graph, but both of them
neglect to analyze contents of web pages and scientific papers. In this paper we
present a reference linking prototype for automatically linking scientific literature in
computer science discipline. We develop a domain-specific ontology that models

 Finding Hidden Semantics Behind Reference Linkages : An Ontological Approach 701

scientific literature and interlinked reference indices in order to identify semantics
behind reference linkages. As to a specific scientific paper, we use descriptions
derived from citation anchor context of citing ones to automatically generate
summary which includes information of research theme and motivation, research
topics, research background, research impact and applied fields etc. Compared with
the abstract written by authors themselves, the summary is objective from different
scholars’ perspectives. Thus it is quite helpful for researchers to understand the
literature better. Further reasoning upon the ontology is also provided by semantic
query form in order to reveal new facts in scientific digital libraries. In this way, users
can perceive a comprehensive understanding of a specific research domain, but not
merely one scientific paper.

The reminder of this paper is organized as follows. Section 2 describes how to
interlink scientific literature with metadata information. In section 3 there is a detailed
description of the domain-specific ontology construction. Based on this ontological
knowledge base, section 4 comments on how to automatically generalize summary
information of a scientific paper and to provide further reasoning upon the ontological
knowledge base by semantic queries. Section 5 shows experiments and evaluations of
the prototype system. The final section presents conclusions of our work.

2 Reference Linking with Metadata

Reference linking means turning references within a scientific paper into “live
reference” so that you can follow them in citing article to other accessible cited ones
[4]. In order to facilitate reference linking in scientific literature, the first task is to
extract metadata precisely and automatically from papers. Our metadata definition of
scientific literature is derived form Dublin Core [5], which consists of title, author
information, abstract, keywords, content of paper, bibliographic information, citation
anchor context and appendix etc. Due to the inconsistency of metadata formats in
scientific literature, we use information extraction techniques to improve the parsing
of documents.

We use heuristic rules and regular expression matching technique to extract
metadata from scientific papers. Extraction rule database is applied to accommodate
various bibliographic styles appeared in scientific literature. We also use databases of
author name, journal/conference name and domain name to help identify metadata.
Font information and layout clues are quite helpful to determine specific metadata,
such as title of a scientific paper. Different granularity strategies during metadata
extraction are applied. For metadata such as title, abstract, content etc., coarse
granularity strategy is used because these metadata could be extracted within one
path. Metadata such as author information and bibliographic information should be
extracted by fine granularity strategy in order to identify subfields of metadata. As
shown in Fig.1, a reference index has two components: the detailed reference
information in the bibliographic entry and citation anchor context (the sentences
occurring near the citation tag) in the content of citing papers. Thus a reference index
should be matched with its corresponding citation anchor context for further analysis.

After metadata extraction and reference/context matching, metadata of scientific
papers are stored in citation database. Fig.2 shows the detailed metadata information

702 P. Zhao et al.

of a scientific paper “Hierarchical Clustering for Data Mining” retrieved by a
standard SQL query. The “Cited Paper(s)” section lists a paper “Probabilistic
Hierarchical Clustering with Labeled and Unlabeled Data” who cites “Hierarchical
Clustering for Data mining” and the “Context of citations to this paper” section lists
corresponding citation anchor context. The “References” section lists scientific papers
cited by “Hierarchical Clustering for Data mining”

Fig. 2. Metadata of a scientific paper “Hierarchical Clustering for Data mining”

3 The Domain-Specific Ontology Construction

Ontology is the study of “things that exist” that began as a branch of philosophy and
is now popular in the field of knowledge management [8]. We are developing an
ontology that models scientific literature and their interlinked relationships toward
producing an indexing and evaluation system for scientific digital libraries, as shown
in Fig.3. By analyzing contents of cited paper and citation anchor context of citing
ones, we automatically identify concepts with the aid of the ontological knowledge
base. We also extract implicit claims concerning cited paper’s motivations,
contributions and relationships to corresponding research issues by analyzing citation
anchor context of citing papers,. The interlinked concepts, together with semantic
claims are modeled to form ontology for scientific literature in computer science
discipline. This ontological knowledge base is powerful to intelligently communicate,
analyze and reason over concepts and knowledge of scientific literature.

 Finding Hidden Semantics Behind Reference Linkages : An Ontological Approach 703

3.1 Topic Distillation by WordNet and Ontological Knowledge Base

We want to build ontology that models concepts in scientific literature and their
relationships described in citation anchor context. Thus we have to extract concepts,
namely topics from scientific papers. We analyze title and keywords of cited paper,
together with descriptions in citation anchor context of all citing papers to distill
research topics. Because title and keywords are written by authors themselves
whereas citation descriptions by other scholars and researchers, a combination of
analyses both from subjective perspective and from objective one is proved to be
convincing.

Fig. 3. The construction process of the ontological knowledge base that models scientific
literature in computer science discipline

As to keywords of cited paper, we simply separate each keyword from the other.
Since title and citation anchor text are always sentences describing cited paper, and
the most common type of concept is a sequence of proper nouns or noun phrases, we
use WordNet [14], a successful concept ontology, to parse contents of these
sentences. After proper stemming and sense-tagging by WordNet, nouns and noun
phrases are extracted from sentences. These nouns and noun phrases, together with
the separated keywords, are candidate concepts of cited paper for further analysis.

While WordNet is a general purpose concept ontology, it can not be expected to
provide exhaustive coverage of concepts in some specific domains. We develop an
ontological knowledge base in computer science discipline to help distill research
topics from candidate concepts. This knowledge base is a concept hierarchical tree-
like ontology derived from ACM CCS (Computing Classification System) [1], an
existing knowledge base in computer science discipline. Each candidate concept of
paper will be mapped on the node of the knowledge base and those with a complete
match are topics of related scientific papers. We calculate weights for each topic that
represents its importance as a descriptor for paper. Concept weight is calculated using
the metric based on TFIDF, a standard term-weighting measure from the information
retrieval research community.

t

t
t N

n
w

log1 +
= (1)

704 P. Zhao et al.

Where wt is the weight of the concept t completely matched with corresponding node
in the knowledge base. nt is the number of times concept t appeared in title, keywords
of cited paper and in citation anchor context of citing papers. Nt is the number of
documents concept t appears.

3.2 Ontological Knowledge Base Construction

As mentioned in section 3.1, we develop an ontological knowledge base in computer
science discipline to help extract research topics from scientific literature. Based on
ACM CSS, our knowledge base has a hierarchical tree-like structure. There are two
relations between concepts in knowledge base: the “Is-a” relation in the same
categorization sub-tree and the “Similar” relation between different categorization
sub-tree. As shown in Fig.4, the concept “Statistical database” has a “Is-a” relation
with “Database Management” and has a “Similar” relation with “Probability &
Statistics” in another categorization sub-tree. A hash table is built to facilitate concept
matching process between candidate concepts and nodes in knowledge base.

Fig. 4. The ontological knowledge base in computer science discipline

Upon the knowledge base, we define operations to identify semantic relations
between different nodes. From a concept node in knowledge base, we could find more
general or specific concepts by Parent operation or Child operation respectively and
those similar concepts could also be retrieved by Similar operation. Sim operation
provides anther approach to measure similarities of different concepts by calculating
semantic distances in the knowledge base. In the following equations, X, Y and Z
denote concepts of the knowledge base.

Parent (X) = { Y | where X has a direct “Is-A” relation with Y} (2)

 Child (X) = { Y | where Y has a direct “Is-A” relation with X} (3)

 Similar (X) = {Y | where Y has a direct “Similar” relation with X} (4)

 Finding Hidden Semantics Behind Reference Linkages : An Ontological Approach 705

 Dist (X, Y) = number of “Is-a” relation links between X and Y
 in the same categorization sub-tree

(5)

 Sim (X , Y) = Dist (X, Z) + Dist (Y, Z), where Z is
 the nearest parent node of both X and Y

(6)

Based on the ontological knowledge base mentioned above, we could conveniently
extract research topics from scientific papers in computer science discipline. In the
next section, we will analyze citation anchor context to find citation motivations and
relationships between cited paper and citing ones.

3.3 Citation Motivation Extraction and Analysis

Citation anchor context of citing papers are “meaningful” text which can provide
detailed descriptions and evaluations to the cited one. It is quite helpful to find out
“why” and “how” a particular scientific paper is cited and relationships to other
papers in the literature. We extract citation motivations from citation anchor context
and classify them into several types in order to assign semantic meanings to
interlinked reference indices in scientific literature. [18] proposed 15 categories for
the reasons of citation, but we classify reference motivations into the following 5
categories:

• Providing background knowledge

• Identifying methodology

• Pointing out problems or drawbacks

• Indicating or predicting future research

• Others

Similar to [15], we make rules for each category and extract reference motivations
based on cue phrases. When a cue phrase is identified in citation anchor context, we
classify the citation motivation of this reference index into the category which the cur
phrase belongs to. For example, if the phrases in citation anchor context such as
“make use of”, “present”, “applied to” etc. are identified, corresponding reference
indices are classified to the “Identifying methodology” category; if the phrases with
“little influence”, “inconsistent with”, “raise problems” etc. are identified, the
reference indices are classified to the “Pointing out problems or drawbacks” category.
For each citation motivation, we assign an attribute to identify attitudes of authors
toward the cited paper: 1 for positive attitude, -1 for negative attitude and 0 if the
attitude can not be identified. By analyzing content of citation anchor context,
especially those verbs mentioned above, and adjectives or adverbs, such as
“extensively”, “efficiently”, “difficultly” etc., attributes of citation attitude could be
extracted which implies inclinations of authors whether to recommend or criticize
related research described in the cited paper.

After citation motivation extraction and analysis, semantic meanings are identified
and assigned to reference indices in scientific literature. It offers intellectual linkage
among different papers and it is helpful for users to learn more from citing papers
about the cited one by descriptions and evaluations from other researchers’
perspectives. It also provides us with meaningful linkage among concepts of our own

706 P. Zhao et al.

ontological knowledge base. Further analysis will be applied upon the ontological
knowledge base to infer interesting citation/reference patterns in scientific literature.

4 Analyses and Reasoning Upon the Ontology

4.1 Automatic Summary Generation

As shown in Fig. 3, based on research topics extracted from scientific papers and
citation motivations from interlinked reference indices, we develop an ontological
knowledge base to model scientific literature and their relationships. This knowledge
base is efficient to communicate, analyze and reason over concepts and knowledge of
scientific literature. One of the most important applications upon it is automatic
summary generation.

A summary of a scientific paper is very helpful and instructive for readers to know
what has been studied. As writing a summary or a survey by manual work is quite
time-consuming, it is desirable to generate comprehensive summaries for scientific
papers automatically. In our prototype system, summary of a scientific paper is
composed of four components:

• research theme and motivation

• research topics

• research background

• research impact and applied fields

Based on the ontology of scientific literature in computer science discipline, we
apply automatic summary generation algorithm to get each component of summary
for scientific papers. As to the component “research theme and motivation”, we have
got results by analyzing citation anchor context of citing papers in section 3.3. The
results are grouped by different citation categories and ordered by attributes of
authors’ attitudes. Users could follow hyperlinks to examine detailed descriptions in
citation anchor context of each citing papers. As to the component “research topics”,
we have got results by topic distillation with the aid of WordNet and ontological
knowledge base in section 3.2. Research topics are ordered by concept weight defined
in equation (1). Because research topics are matched with concepts in the knowledge
base, we can apply operations defined from equation (2) to (6) upon corresponding
concepts of the knowledge base to get additional information for topics of scientific
papers. For example, while referring to subordinate topics of “Information Systems”,
we can get research issues such as “Database Management”, “Information Retrieval”,
“Digital Library” etc. While referring to similar topics of “File”, we can get topics
such as “File Systems Management”, “Database Management” etc., which may share
research similarities with the topic “File” but are quite different issues in some other
research background. As to the component “research background” and “research
impact and applied fields”, we simply organize research topics of cited papers and
citing ones, respectively. The topics are also grouped and ordered by concept weight.
Fig. 5 presents a summary automatically generated by our algorithm. The summary
consists of four components mentioned above which gives a comprehensive

 Finding Hidden Semantics Behind Reference Linkages : An Ontological Approach 707

description for the scientific paper “Melodic matching techniques for large music
databases”. Users can follow hyperlinks to get detailed information of related
research issues and corresponding scientific papers.

Fig. 5. Summary of the paper “Melodic matching techniques for large music databases”

4.2 Reasoning by Semantic Queries Upon the Knowledge Base

In addition to automatic summary generation, the ontological knowledge base also
makes it possible to infer knowledge in scientific literature. In our prototype, the
ontological knowledge base enables discoveries of implicit information by semantic
queries which are described as OWL QL [16] query patterns, namely a set of triples
of the form (<property> <subject> <object>). Each triple is mapped to several
operations of the ontological knowledge base or standard SQL statements on the
citation database. Our prototype system provides limited triples describing the most
common operations upon the ontology and the citation database. For example, to find
scientific papers a research organization has published, we can follow:

Query: (“Scientific papers published by research organization A”)

Query Pattern: {(is-author ?a ?p)(work-for ?a ?o) (equal ?o “A”)}

Must-Bind Variables List: (? p)

May-Bind Variables List: ()

Don’t-Bind Variables List: (? a)

Where variables a stands for author names, p stands for scientific papers and o stands
for research organizations. And, withal, is-author, work-for and equal etc. are
semantic queries supported by our prototype system.

Taking advantage of the expressive power of the ontological knowledge base built
upon scientific literature, the prototype system can provide structural queries, such as
queries asking of super-class, subclasses and similar classes of a given concept in
computer science. All these structural queries are formulated to operations upon the

708 P. Zhao et al.

ontological knowledge base. We also provide complicated queries involving concepts
not expressible in the ontological knowledge base such as “Which organizations are
research communities in information retrieval research domain?” or “Who are noted
authorities on data mining?” These complicated queries are constructed by those
system-supported query triples. Users can write their own semantic queries in OWL-
QL query patterns by means of combining different system-supported queries into
more complicated and comprehensive ones. Heuristic rules are also provided to solve
analytical queries. For example, to answer the query “which research subfields are
quite relevant to digital library research?” We define that “quite relevant” subfields
to “digital library” are those research topics with a similarity link to the node “digital
library” in the ontological knowledge base or research topics whose similarity
distances to the node “digital library” measured by Sim operation are less than or
equal to 2. The number 2 represents user definable thresholds.

5 Experimental Evaluation

In our prototype system, we locate and download over 10,000 scientific papers in
computer science discipline from Internet by web crawler. After preprocessing,
metadata extraction and reference/context matching, metadata information is stored in
citation database implemented by PostGreSQL. In order to improve the accessibility
of reference linking, documents without full text that can not be parsed or those with
less than 3 in-degrees are eliminated from database. There are finally 7,973 scientific
papers in our citation database.

The effectiveness of reference linking in scientific literature heavily relies on
precision of metadata extraction. We do several experiments to evaluate our
extraction technique and final extraction results. We choose 1430 scientific papers in
CiteSeer.IST. After preprocessing, 293 papers with errors are eliminated from test
beds. The metadata extraction results are shown in Table 1.Our extraction precision is
a litter higher than CiteSee.IST and Opcit [4].

Table 1. Metadata extraction precision results of sceintific articles

While extracting topics from scientific literature described in section 3.1, one of
the important steps is to distill candidate concepts with the aid of the ontological
knowledge base. However, there is a possibility that some candidate concepts are not
perfectly matched with those appeared in knowledge base. We do an experiment to
investigate how well candidate concepts from titles, keywords and citation anchor
context match with concepts in the ontological knowledge base. We choose 200
scientific articles from ML Papers, 150 for training and 50 for testing. We manually
choose concepts from title, keywords and reference anchor context in the training

Metadata of Scientific Papers Automatic
Metadata
Extraction Title

Author
Information

Abstract Keywords Content Reference Appendix

Extraction
Precision

92.1% 87.8% 98.9% 100% 100% 83.3% 100%

 Finding Hidden Semantics Behind Reference Linkages : An Ontological Approach 709

paper set in order to train our ontological knowledge base, especially in machine
learning research field. Fig.6. shows concept matching results in the test bed. Each
left column shows numbers of concepts that should be extracted and corresponding
right column shows numbers of concepts that are perfectly matched and extracted by
the ontological knowledge base.

Title Keywords Citation Anchor
Context

Concepts

Matched Concepts

Fig. 6. Concept matching results in the test bed

As shown in Fig.6, concepts matching precisions from title, keywords and citation
anchor context sections of scientific papers in the test bed are 74.8%, 82.3% and
58.5%. Compared with concept matching precisions in title and keywords section,
that in citation anchor context is low. That is partially because the ontological
knowledge base does not contain newly emerging concepts from citation anchor
context and some of keywords fall out of machine learning classification sub-trees.

6 Conclusions

In Recent years the Web has developed to be a medium for scientific literature
dissemination, retrieval and evaluation. However, experience show that hundreds of
thousands of scientific papers are neither comprehensively indexed nor interlinked in
terms of citation/reference semantics. In scientific digital libraries domain, reference
indices are increasingly being applied to improve the ability of management, analysis
and evaluation of scientific literature. In this paper we investigate the usage of a
domain-specific ontology to improve semantic linking of scientific literature via
reference indices among different scientific papers. The ontological knowledge base
is consisted of concepts extracted from papers and reference motivations derived from
citation anchor context. Moreover, we utilize automatic summary generation
algorithm upon the ontological knowledge base to give an objective description for
cited paper from scholars’ perspectives. Further reasoning is also provided by system-
supported or user-defined semantic queries upon the knowledge base in order to
reveal new facts and interesting patterns in scientific libraries.

Our prototype system is implemented and some experiments are conducted. We are
now encouraged to apply ontology techniques in scientific digital libraries and further
research in this field is ongoing.

710 P. Zhao et al.

Acknowledgements

The authors would like to thank Prof. Jian Pei in Department of Computer Science
and Engineering, University of Buffalo, the Sate University of New York for his
comments on an early version of this paper.

References

[1] ACM CCS. http://www.acm.org/class/
[2] Andrew Kanchites McCallum, Kamal Nigam, Jason Rennie and Kristie Syemore.

“Automating the construction of Internet portals with machine learning”. Information
Retrieval Journal. Volume 3. Pages 127 -163. 2000.

[3] Ding C., Zha H., He X., Husbands P., and Simon H. “Analysis of hubs and authorities on
the web”. Lawrence Berkeley Nat’l Lab Tech Report 47847(www.nersc.gov/~cding
/hits.ps). 2001

[4] Donna Bergmark. “Automatic extraction of reference linking information from online
documents”. Technical Report TR 2000 -1821, Cornell Computer Science Department.
October 2000

[5] Dublin Core Metadata Initiative http://purl.oclc.org/dc/
[6] Flake, G. W., Lawrence, S., and Giles.C.L. “Efficient identification of web communities”.

Sixth ACM SIGKDD International conference on Knowledge Discovery and Data Mining.
Pages 150-159, 2000

[7] Gerard Salton. “Automatic indexing using bibliographic citations”. Journal of
Documentation, Volume 27. Pages 98-110. 1971

[8] Guarino, N. “Formal Ontology and Information Systems”. in Proc. FOIS’98 trento. Italy.
6-8 June

[9] Jon Kleinberg. “Authoritative sources in a hyperlinked environment”. In Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. 1998

[10] Kurt D. Bollacker, Steve Lawrence, C. Lee. Giles. “CiteSeer: an autonomous web agent
for automatic retrieval and identification of interesting publications”. Proceedings of 2nd
International Conf. on Autonomous Agents. ACM Press. Pages 116-123. May 1998.

[11] Lempel R. and Moran S. “SALSA: stochastic approach for link-structure analysis and the
TKC effect”. ACM Trans. Information Systems. Volume 19. Pages 131-160. 2001

[12] Lu Q. and Getoor L. “Link-based classification”. In Proc of ICML-03, 2003
[13] ML Papers. http://www.ai.mit.edu/people/ayn/cgi/vpapers
[14] Miller G.A., Beckwith R., Felbaum C. Gross D. and Miller K. “Introduction to WordNet:

An On-line Lexical Database”. International Journal of Lexicography. Volume 3. Pages
235-244. 1990

[15] Nanba, H., and Okumura M. “Towards Multi-paper Summarization Using Reference
Information”. Proceedings of the 16th International Joint Conferences on Artificial
Intelligence (IJCAI-99). Pages926-931. 1999

[16] R. Fikes, P.Hayes and I. Horrocks. “OWL-QL – a language for deductive query
answering on the semantic web”. Technical Report KSL-03-14, Knowledge Systems Lab,
Stanford University, CA, USA. 2003

[17] Sergey Brin and Lawrence Page. The Anatomy of a Large-scale Hypertextual Web Search
Engine. In the Seventh International World Wide Web Conference. 1998.

[18] Weinstock, N. “Citation indexes, in Kent A (Ed.)”. Encyclopedia of Library and
Information Science, New York. Pages 16-41. 1971.

Xandy: Detecting Changes on Large Unordered
XML Documents Using Relational Databases

Erwin Leonardi1, Sourav S. Bhowmick1, and Sanjay Madria2

1 School of Computer Engineering,
Nanyang Technological University, Singapore

{pk909134, assourav}@ntu.edu.sg
2 Department of Computer Science,

University of Missouri-Rolla, Rolla, MO 65409
madrias@umr.edu

Abstract. Previous works in change detection on XML documents are
not suitable for detecting the changes to large XML documents as it
requires a lot of memory to keep the two versions of XML documents
in the memory. In this paper, we take a more conservative yet novel
approach of using traditional relational database engines for detecting
the changes to large unordered XML documents. We elaborate how we
detect the changes on unordered XML documents by using relational
database. To this end, we have implemented a prototype system called
Xandy that converts XML documents into relational tuples and detects
the changes from these tuples by using SQL queries. Our experimental
results show that the relational approach has better scalability compared
to published algorithms like X-Diff. The result quality of our approach
is comparable to the one of X-Diff.

1 Introduction

Detecting changes to XML data is an important research problem. Cobena et
al. [3] proposed an algorithm, called XyDiff, for detecting changes on ordered
XML documents by using the signature and weight of nodes. XMLTreeDiff [2]
is also proposed for solving the problem of detecting changes for ordered XML
documents by using DOMHash. In [10], the authors presented X-Diff, an algo-
rithm for detecting the changes on unordered XML documents. In this paper,
we focus on detecting the changes on the unordered XML documents.

The changes on unordered XML documents can be classified into two types:
changes to the internal nodes and changes to the leaf nodes. An internal node
does not contain textual data. For example, consider the two versions of an XML
document in Figure 1. Nodes 2 and 7 in Figure 1(a) are the internal nodes. The
changes that occur in the internal nodes are called as structural changes as they
modify the structure but do not change the textual data content. There are two
types of structural changes for unordered XML documents: insertion of internal
nodes, and deletion of internal nodes. For instance, node 102 in Figure 1(b)
is an example of internal nodes insertion. A leaf node is the node/attribute
which contains textual data. For example, node 3 is a leaf node which has name

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 711–723, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

712 E. Leonardi, S.S. Bhowmick, and S. Madria

product

category

name

description

price

Storage

USB Mini Cruzer

128MB USB 2.0

US$ 32

product

category

name

description

price

Memory

V-GEN 2700/256

256MB PC-2700

US$ 42

products

product

category

name
price

Modem

56K Internal

US$ 42

product

category

name
price

Memory

V-GEN 256MB PC2700

US$ 42

product

category

name

descriptionprice

MP3 Player

APPLE iPod

15GB MP3 Player

US$ 335

products

(b) Second Version (T2)

product

category

name

price

MP3 Player

APPLE iPod 15GB

US$ 335

(a) First Version (T1)

1

2

3 (1)

4 (2)

5 (3)

6 (4)

7
8 (5)

9 (6)

10 (7)
11

13 (9)

12 (8)

14 (10)

15
(11)

101

102

103 (1)

104 (2)

105
(3)

107 (4)
106

108 (5)

109 (6)

110 (7)

111

112 (8)
114
(10)113 (9)

Update Insertion Deletion

node id (leaf order)
node id

1 2 3 1 2 3

sibling order

Fig. 1. Example

“category” and textual content “Memory”. The changes in the leaf nodes are
called content changes as they modify the textual data content. There are three
types of content changes for unordered XML documents: insertion of leaf nodes,
deletions of leaf nodes, and content update of a leaf nodes. For example, a leaf
node 5 is a deleted leaf node. In this paper, we present a novel technique for
detecting the content and structural changes in unordered XML using RDBMS.

The main-memory-based approaches have some limitations as far as change
detection is concerned. First, they require the entire trees (i.e., DOM trees)
of both versions of an XML document to be memory resident. This problem is
exacerbated by the fact that these trees are typically much larger than their XML
documents. Thus, the scheme is not scalable for very large XML documents. In
fact, the scheme is inefficient. We need to parse an XML document multiple times
whenever we want to compare it with more than one document at different times.

The above limitations coupled with the recent success in storing XML data in
relational databases [4, 8, 7] force us to ask whether we can address these prob-
lems by using relational techniques to detect the changes on XML documents. In
our preliminary effort in [5, 1], we have demonstrated that it is indeed possible to
use the relational database to detect the changes to ordered XML data. In [5, 1],
we present relational approaches for detecting the content changes on ordered
XML documents. However, the underlying relational schema of [1] is simplistic
and is not efficient for path expressions query processing. Ideally, a change de-
tection system build on top of a relational database should also support efficient
insertion and extraction of XML documents and efficient execution of path ex-
pression queries. Hence, our approach in [5] uses SUCXENT schema that enables
us to insert, extract, and query XML data efficiently [7].

In this paper, we present a novel relational approach for detecting the changes
on unordered XML documents called Xandy (Xml enAbled chaNge Detection
sYstem). Our approach differs from our previous efforts in two ways. First, we
focus on unordered XML documents. To the best of our knowledge, currently,
there is no published approach for detecting the change on unordered XML
documents by using relational database. Detecting changes on unordered trees
are substantially harder than that on ordered trees [10]. Second, we detect both
content and structural changes.

Xandy: Detecting Changes on Large Unordered XML Documents 713

2 Background

In this section, we present the relational database scheme used for storing two
versions of XML documents. We have extended the relational schema of our XML
storage system called SUCXENT (Schema UnConcious XML ENabled SysTem)
[7]. We chose SUCXENT because we have shown in [7] that our approach out-
performs significantly the current state-of-the-art model mapping approaches
like XParent [4] as far as storage size, insertion time, extraction time, and
path expression queries are concerned 1. The SUCXENT schema is shown in Fig-
ure 2(a). We use the Document table for storing the names of the documents
in the database. This allows us to store multiple versions of XML documents.
The Path table is used to record the all paths from the root to the leaf nodes.
It maintains the path ids and the relative path expressions as instances of the
PathID and PathExp attributes respectively.

DOC_ID

1
1
1
1
2
2
2
2

DOC_ID

1
1
...
1
2

2
...

2

DOC_ID DOCNAME
product01.xml1
product02.xml2

AncestorInfo

LeafValue

Path

Document

...

Document (DocID, DocName)

Path (PathID, PathExp)

LeafValue (DocId, LeafOrder,
PathId, LeftSibIxnLevel,
SiblingOrder, LeafValue)

AncestorInfo (DocId, NodeLevel,
MinSibOrder, MaxSibOrder,
NodeName)

(a) SUCXENT Original Schema

(b) SUCXENT Modified Schema

Document (DocID, DocName)

Path (PathID, PathExp)

LeafValue (DocId, LeafOrder,
LeafValue, LeftSibIxnLevel,
Level, PathId, SiblingOrder)

AncestorInfo (DocId, NodeLevel,
MinSibOrder, MaxSibOrder,
NodeName)

(c) XML Documents in Relational Database

LEAFVALUE

Memory
V-GEN 2700/256
...
US$ 32
Modem

Memory
...

US$ 42
...

LEFTSIB
IXNLEVEL

-1
-1
...
1
-1

1
...

1
...

SIBLING
ORDER

1
1
...
3
1

1
...

3
...

LEVEL

3
3
...
3
3

3
...

3
...

PATH_ID

1
2
...
4
1

1
...

4
...

LEAF
ORDER

1
2
...
11
1

8
...

10
...

PATH_ID
1
2
3
4

PATHEXP
./products./product./category
./products./product./name
./products./product./description
./products./product./price

NODE
NAME

products
product
product
product
products
product
product
product

NODE
LEVEL

1
2
2
2
1
2
2
2

MIN
SIBORDER

1
1
2
3
1
1
2
3

MAX
SIBORDER

3
1
2
3
3
1
2
3

Fig. 2. XML Documents in Relational Database

The LeafValue table is used for storing the information of the leaf nodes. The
DocID attribute indicates which XML document a particular leaf node belongs
to. The PathID attribute maintains the id of the path of a particular leaf node
stored in the Path table. The LeafOrder attribute is used to record the node
order of the leaf nodes in an XML tree. For example, consider the XML tree in
Figure 1(a). When we parse the XML document, we will find the leaf node “cat-
egory” with value “Memory” as the first leaf node in the document. Hence, we
assign the LeafOrder equal to “1” for this leaf node. The LeafOrder of the next
leaf node (node “name” with value “V-GEN 2700/256”) is equal to “2”. Two leaf
nodes have the same SiblingOrder if they share the same parent. For example,
the leaf nodes with LeafOrder equal to “1”, “2”, “3”, and “4” shall have the
same SiblingOrder (equal to “1”) since they share the same parent node (node
2). The dotted boxes in Figure 1 indicate the leaf nodes that have the same
SiblingOrder. The LeftSibIxnLevel (Left Sibling Intersection Level) is the

1 Jiang et al. has shown in [4] that XParent outperforms various existing model map-
ping approaches.

714 E. Leonardi, S.S. Bhowmick, and S. Madria

level at which the leaf nodes belonging to a particular sibling order intersect the
leaf nodes belonging to the sibling order that comes immediately before. For ex-
ample, consider the leaf nodes with SiblingOrder equal to “2” in the XML tree.
These leaf nodes shall intersect with the leaf nodes having SiblingOrder equal to
“1” at the node “products” (id=1) which is at level 1. The LeafValue stores the
textual content of the leaf nodes. Note that the attribute LeftSibIxnLevel in
this table is only useful for constructing the XML documents from the relational
database [7]. We use the AncestorInfo table for storing the information of the
internal nodes. The DocID attribute indicates which XML document a particular
ancestor node belongs to. We record the names and the level of ancestor nodes
in the NodeName and NodeLevel attributes respectively. The MinSibOrder and
MaxSibOrder store the minimum and maximum sibling orders of the leaf nodes
under a particular ancestor node respectively. For example, the node “products”
(id=1) in Figure 1(a) has MinSibOrder and MaxSibOrder equal to “1” and “3”
respectively. Node “product” (id=7) has MinSibOrder and MaxSibOrder equal
to “2” and “2” respectively.

For detecting the changes in unordered XML documents, we need to modify
the SUCXENT schema. We add the attribute Level in the LeafValue table to
store the level of the leaf nodes. The modified SUCXENT schema is depicted in
Figure 2(b). Figure 2(c) shows the tables containing the two shredded XML
documents in Figure 1 (partial view only).

3 Phase 1: Finding the Best Matching Subtrees

Suppose we have two versions of an XML tree, T1 and T2. The objective of this
phase is to find the most similar subtrees in T1 and T2. First, the algorithm
determines the matching leaf nodes in in T1 and T2 by issuing a SQL query
against the database. Then it starts to match the ancestor nodes of the matching
leaf nodes up to the root nodes. Note that the algorithm issues several SQL
queries to match the subtrees. The most similar subtrees are considered as the
best matching subtrees. This first phase results a set of best matching internal
nodes at which the best matching subtrees are rooted. We use the information
of the best matching subtrees to determine the minimum delta. In this section,
we shall elaborate this phase further.

Definition 1. [Matching Leaf Nodes] Let L(T1) and L(T2) be two sets of the
leaf nodes in T1 and T2 respectively. Let name(�), level(�), and value(�) be the
node name, node level, and textual content of a leaf node � respectively. Then �1
and �2 are matching leaf nodes (denoted as �1 ↔ �2) if name(�1) = name(�2),
level(�1) = level(�2), and value(�1) = value(�2), where �1 ∈ L(T1) and �2 ∈ L(T2).

Next, we define the notion of matching sibling orders. A set of leaf nodes
that have the same parent node will have the same sibling order. The matching
sibling orders can summarize the information of matching leaf nodes. Hence, the
storage space needed for storing the matching information is reduced.

Xandy: Detecting Changes on Large Unordered XML Documents 715

Input:
 did1 : document id of first
 version of document
 did2 : document id of second
 version of document
 theta : similarity threshold
Output:
 the MATCHING table

1 if (!isRootNodeMatched(did1, did2)) {
2 return;
3 }
4 findPossibleMatchingSiblingOrder(did1, did2);
5 maxLevel = getInternalNodeMaxLevel(did1, did2);
 // the level of root node is equal to 1
6 for (curLevel=maxLevel; curLevel>=1;
 curLevel--) {
7 findPMatchingIntNodes(did1,did2,curLevel);
8 maximizeSimilarityScore(did1,did2,curLevel);
9 deleteUnMacthingNodes(did1, did2,
 curLevel, theta);
10 }

1 SELECT
2 D.LEVEL, D.SO1, D.SO2, D.COUNTER*2 AS COUNTER,
3 V1.TOTAL+V2.TOTAL AS TOTAL
4 FROM
5 (SELECT T.LEVEL, T.SO1, T.SO2, COUNT(T.SO1) AS COUNTER
6 FROM
7 (SELECT
8 L1.LEVEL, L1.LEAFORDER AS LO1, L2.LEAFORDER AS LO2,
9 L1.PATH_ID, L1.LEAFVALUE,
10 L1.SIBLINGORDER AS SO1, L2.SIBLINGORDER AS SO2
11 FROM
12 LEAFVALUE AS L1, LEAFVALUE AS L2
13 WHERE
14 L1.DOC_ID = did1 AND L2.DOC_ID = did2 AND
15 L1.PATH_ID = L2.PATH_ID AND
16 L1.LEAFVALUE = L2.LEAFVALUE) AS T
17 GROUP BY T.LEVEL, T.SO1, T.SO2) AS D,
18 (SELECT L1.LEVEL, L1.SIBLINGORDER,
19 COUNT(L1.LEAFORDER) AS TOTAL
20 FROM LEAFVALUE AS L1 WHERE L1.DOC_ID = did1
21 GROUP BY L1.LEVEL, L1.SIBLINGORDER) AS V1,
22 (SELECT L1.LEVEL, L1.SIBLINGORDER,
23 COUNT(L1.LEAFORDER) AS TOTAL
24 FROM LEAFVALUE AS L1 WHERE L1.DOC_ID = did2
25 GROUP BY L1.LEVEL, L1.SIBLINGORDER) AS V2
26 WHERE
27 V1.LEVEL = D.LEVEL AND V2.LEVEL = D.LEVEL AND
28 V1.SIBLINGORDER = D.SO1 AND V2.SIBLINGORDER = D.SO2

(b) Finding Matching SiblingOrder

(a) Algorithm findBestMatchingSubtree

1 SELECT
2 A1.NODELEVEL,
3 A1.MINSIBORDER AS MINSO1,
4 A1.MAXSIBORDER AS MAXSO1,
5 A2.MINSIBORDER AS MINSO2,
6 A2.MAXSIBORDER AS MAXSO2,
7 SUM(T.COUNTER) AS COUNTER,
8 SUM(T.TOTAL) AS TOTAL
9 FROM
10 ANCESTORINFO AS A1,
11 ANCESTORINFO AS A2, TEMPSO AS T
12 WHERE
13 A1.DOC_ID = did1 AND
14 A2.DOC_ID = did2 AND
15 T.SO1 BETWEEN A1.MINSIBORDER AND
 A1.MAXSIBORDER AND
16 T.SO2 BETWEEN A2.MINSIBORDER AND
 A2.MAXSIBORDER AND
17 A1.NODELEVEL = A2.NODELEVEL AND
18 A1.NODENAME = A2.NODENAME AND
19 A1.NODELEVEL = level
20 GROUP BY
21 A1.NODELEVEL, A1.MINSIBORDER,
22 A1.MAXSIBORDER, A2.MINSIBORDER,
23 A2.MAXSIBORDER

(c) Finding Possible Matching Internal Node

Fig. 3. Algorithm findBestMatchingSubtree and SQL Queries

Definition 2. [Matching Sibling Orders] Let so1 and so2 be two sibling or-
ders in T1 and T2 respectively. Let P = {p1, p2, ..., px} and Q = {q1, q2, ...,
qy} be two sets of leaf nodes, where ∀pi ∈ P have the same sibling order so1,
and ∀qj ∈ Q have the same sibling order so2. Then so1 and so2 are the match-
ing sibling orders (denoted by so1 ⇔ so2) if ∃pi ∃qj such that pi ↔ qj where
pi ∈ P and qj ∈ Q.

After determining the matching sibling orders, we are able to find the possible
matching internal nodes at which the possible matching subtrees are rooted.
Informally, the possible matching subtrees are the subtrees in which they have
at least one matching sibling orders. Note that the subtrees in T1 are possible
to be matched to more than one subtrees in T2.

Definition 3. [Possible Matching Subtrees] Let I(T1) and I(T2) be two sets
of the internal nodes in T1 and T2 respectively. Let S1 and S2 be two subtrees
rooted at nodes i1 ∈ I(T1) and i2 ∈ I(T2) respectively. Let name(i) and level(i)
be the node name and node level of an internal node i respectively. S1 and S2
are the possible matching subtrees if the following conditions are satisfied: 1)
name(i1) = name(i2), 2) level(i1) = level(i2), and 3) ∃P ∃Q such that P ⇔ Q
where P ∈ S1 and Q ∈ S2.

We only consider matching subtrees in the same level for the same reason as
in [10]. Next, we determine the best matching subtrees from a set of possible
matching subtrees. Consequently, we have to measure how similar two possible
matching subtrees are. Formally, similarity score can be defined as follows.

Definition 4. [Similarity Score] The similarity score � of two subtrees t1 and
t2 as follows: �(t1, t2) = 2|t1∩t2|

|t1∪t2| where |t1 ∪ t2| is the total number of nodes of
subtrees t1 and t2, and |t1 ∩ t2| is number of matching nodes.

The similarity score will be between 0 and 1. Based on the similarity score, we are
able to classify the matching subtree into three types: 1)Isomorphic Subtrees
(�(t1, t2) = 1). We say two subtrees are isomorphic if they are identical except
for the orders among siblings. 2)Unmatching Subtrees (�(t1, t2) = 0). We say

716 E. Leonardi, S.S. Bhowmick, and S. Madria

Level

TempSO (Level, SO1, SO2, Counter, Total)

SO1 SO2 Counter Total

3 1 3 4 7
3 2 2 4 7

Matching (DID1, DID2, MinSO1, MaxSO1,
 MinSO2, MaxSO2, Level,
 Counter, Total, Score)

Level
Min
SO1

Max
SO1

Counter Total

1 1 3 8 14
2 2 2 4 7

Min
SO2

Max
SO2

1 3
2 2

2 1 1 2 71 1

DID1 DID2

1 3
2 2
3 3

(a) Attributes of The TempSO and
Matching Tables

(b) TempSO Table

(c) Matching Table

2 1 1 4 73 33 3

ID1

1
7
2
2

ID2

1
106
102
111

3 1 1 2 7

Score

0.5714
0.5714
0.2857
0.5714

(d) Tables and Attributes (e) Description of Attributes

DID1
DID2

NAME
LEVEL
MINSO
MAXSO

SIBLINGORDER
PATH_ID
VALUE

SO1
SO2

VALUE1
VALUE2

Attribute

DEL_INT (DID1, DID2, NAME, LEVEL, MINSO, MAXSO)
INS_INT (DID1, DID2, NAME, LEVEL, MINSO, MAXSO)
DEL_LEAF (DID1, DID2, LEVEL, SIBLINGORDER, PATH_ID, VALUE)
INS_LEAF (DID1, DID2, LEVEL, SIBLINGORDER, PATH_ID, VALUE)
UPD_LEAF (DID1, DID2, LEVEL, SO1, SO2, PATH_ID, VALUE1, VALUE2)

The document id of the first document
The document id of the second document
The internal node's name
The node's level
The minimum sibling order of a internal node
The maximum sibling order of a internal node
The sibling order of a leaf node
The path id of a leaf node
The leaf node's value
The sibling order of an updated leaf node in the first version
The sibling order of an updated leaf node in the second version
The old value of an updated node
The new value of an updated node

Description

Fig. 4. The TempSO and Matching Tables, and Table Description

two subtrees are unmatching if they are totally different. 3)Matching Subtrees
(0 < �(t1, t2) < 1). The matching subtrees have some parts in the trees that are
corresponded each other.

After we are able to determine how similar the possible matching subtrees
are, the best matching subtrees can be determined. The formal definition of the
best matching subtrees is as follows.

Definition 5. [Best Matching Subtrees] Let t ∈ T1 be a subtree in T1 and
P ⊆ T2 be a set of subtrees in T2. Also t and ti ∈ P are possible matching
subtrees ∀ 0 < i ≤ |P |. Then t and ti are the best matching subtrees (denoted
by t � ti) iff (�(t, ti) > �(t, tj)) ∀ 0 < j ≤ |P | and i �= j.

The algorithm for determining the best matching subtrees is depicted in Fig-
ure 3(a). Given two XML trees T1 and T2 shredded in a relational database as
shown in Figure 2 and the similarity score threshold (say θ=0.25), the findBest-
MatchingSubtree algorithm starts finding the matching best subtrees by checking
the root nodes of T1 and T2 (lines 1-3, Figure 3(a)). If they have different names,
then both XML documents are considered as different. Consequently, the delta
only consists of a deletion of T1 and an insertion of T2. Otherwise, the algo-
rithm finds the matching sibling orders (line 4, Figure 3(a)). The SQL query
for retrieving the matching sibling order is depicted in Figure 3(b). The results
are stored in the TempSO table (Figure 4(b)) whose attributes are depicted in
Figure 4(a).

Next, the findBestMatchingSubtree algorithm determines the deepest level
maxLevel of the root nodes of subtrees in T1 and T2 (line 5, Figure 3(a)). For each
level curLevel starting from level maxLevel to the level of the root nodes of the
trees (level=1), the algorithm starts by finding the best matching subtrees (lines
6-10, Figure 3(a)). First, the algorithm finds the possible matching internal nodes
(line 7, Figure 3(a)). The SQL query shown in Figure 3(c) is used to retrieve
the possible matching internal nodes. We store the results in the Matching table
whose attributes are depicted in Figure 4(a). The Matching table of T1 and T2
is depicted in Figure 4(c).

The next step is to maximize the similarity scores of the possible matching
internal nodes at level curLevel at which the possible matching subtrees are
rooted (line 8, Figure 3(a)) since we may have some subtrees and sibling orders
at (curLevel+1) in T1 that can be matched to more than one subtrees and sibling
orders in T2 respectively, and vice versa. The maximizeSimilarityScore algorithm
is similar to the Smith-Waterman algorithm [9] for sequence alignments. Due to
the space constraints, we do not present the maximizeSimilarityScore algorithm

Xandy: Detecting Changes on Large Unordered XML Documents 717

here. It can be found in [6]. For instance, the score of possible matching subtrees
rooted at nodes 1 and 101 at level 1 is maximized if t2 � t111 and t7 � t106. The
The corresponding tuple of the possible matching subtrees which are not used
in maximizing the score are deleted (highlighted row, Figure 3(c)).

4 Phase 2: Detecting the Changes

In the second phase, first, we detect the inserted and deleted internal nodes.
Then we find the inserted and deleted leaf nodes. Finally, we detect the updated
leaf nodes from the inserted and deleted leaf nodes as they can be decomposed
into pairs of deleted and inserted leaf nodes. The formal definitions of types of
changes can be found in [6].

Insertion of Internal Nodes. Intuitively, the inserted internal nodes are the
internal nodes that are in the new version, but not in the old version. Hence,
they must be not the root nodes of the best matching subtrees as they are in
both versions. The SQL query depicted in Figure 5(a) (did1 and did2 refer to
the first and second versions of the document respectively) detects the set of
newly inserted internal nodes. Consider the example in Figure 1. We notice that
the subtree rooted at node 102 in T2 is inserted. The inserted internal nodes
are retrieved by the SQL query depicted in Figure 5(a) and are stored in the
INS INT table as shown in Figure 6(a).

Deletion of Internal Nodes. We can use the same intuition to find the deleted
internal nodes that are in T1, but not in T2. The deleted internal nodes can be
detected by slightly modifying the SQL query depicted in Figure 5(a). We re-
place the “did2” in line 6 with “did1”. The “MINSO2” and “MAXSO2” in line 8 are
replaced by “MINSO1” and “MAXSO1” respectively. In the example shown in Fig-
ure 1, we observe that the subtree rooted at node 11 in T1 is deleted. The deleted
internal nodes are retrieved by the SQL query depicted in Figure 5(a) (after some
modification) and are stored in the DEL INT table as shown in Figure 6(b).

1 SELECT
2 did1, did2, A.NODENAME, A.NODELEVEL,
3 A.MINSIBORDER, A.MAXSIBORDER
4 FROM ANCESTORINFO AS A
5 WHERE
6 A.DOC_ID = did2 AND
7 (A.NODELEVEL,A.MINSIBORDER,

 A.MAXSIBORDER) NOT IN
8 (SELECT LEVEL, MINSO2, MAXSO2
9 FROM MATCHING
10 WHERE DID1 = did1 AND DID2 = did2)

(a) Insertion of Internal Nodes

1 SELECT DISTINCT
2 did1, did2, L.LEVEL, L.SIBLINGORDER,

L.PATH_ID, L.LEAFVALUE
3 FROM LEAFVALUE AS L,
4 (SELECT DISTINCT
5 M.MINSO1, M.MAXSO1, M.MINSO2, M.MAXSO2,

 L.PATH_ID, L.LEAFVALUE
6 FROM MATCHING AS M, LEAFVALUE AS L
7 WHERE M.DID1 = did1 AND M.DID2 = did2 AND
8 L.DOC_ID = did2 AND
9 L.LEVEL = M.LEVEL+1 AND
10 L.SIBLINGORDER BETWEEN M.MINSO2 AND M.MAXSO2
11 EXCEPT ALL
12 SELECT DISTINCT
13 M.MINSO1, M.MAXSO1, M.MINSO2, M.MAXSO2,

 L.PATH_ID, L.LEAFVALUE
14 FROM MATCHING AS M, LEAFVALUE AS L
15 WHERE M.DID1 = did1 AND M.DID2 = did2 AND
16 L.DOC_ID = did1 AND
17 L.LEVEL = M.LEVEL+1 AND
18 L.SIBLINGORDER BETWEEN M.MINSO1 AND M.MAXSO1) AS D
19 WHERE
20 L.DOC_ID = did2 AND
21 L.SIBLINGORDER BETWEEN D.MINSO2 AND D.MAXSO2 AND
22 L.PATH_ID = D.PATH_ID AND L.LEAFVALUE = D.LEAFVALUE

(c) Insertion of Leaf Nodes (2)

1 SELECT DISTINCT
2 did1, did2, L.LEVEL,
3 L.SIBLINGORDER, L.PATH_ID,
4 L.LEAFVALUE
5 FROM LEAFVALUE AS L, INS_INT AS I
6 WHERE
7 L.DOC_ID = did2 AND
8 I.DID1 = did1 AND
9 I.DID2 = did2 AND
10 L.SIBLINGORDER BETWEEN I.MINSO

 AND I.MAXSO AND
11 L.LEVEL = I.LEVEL+1

(b) Insertion of Leaf Nodes (1)

1 SELECT T.*
2 FROM MATCHING AS M,
3 (SELECT
4 D.DID1, D.DID2, D.LEVEL,
5 D.SIBLINGORDER AS SO1,
6 I.SIBLINGORDER AS SO2,
7 D.PATH_ID, D.VALUE AS VALUE1,
8 I.VALUE AS VALUE2
9 FROM DEL_LEAF AS D, INS_LEAF AS I
10 WHERE
11 D.DID1 = did1 AND
12 D.DID2 = did2 AND
13 I.DID1 = did1 AND
14 I.DID2 = did2 AND
15 D.PATH_ID = I.PATH_ID AND
16 D.VALUE != I.VALUE AND
17 D.LEVEL = I.LEVEL) AS T
18 WHERE
19 M.DID1 = did1 AND
20 M.DID2 = did2 AND
21 T.SO1 BETWEEN M.MINSO1 AND M.MAXSO1 AND
22 T.SO2 BETWEEN M.MINSO2 AND M.MAXSO2 AND
23 T.LEVEL = M.LEVEL+1

(d) Updated Leaf Nodes

Fig. 5. SQL Queries for Detecting the Changes

718 E. Leonardi, S.S. Bhowmick, and S. Madria

NAME
product

(a) Inserted Internal Nodes

(b) Deleted Internal Nodes

DID1
1

DID2
2

LEVEL
2

MINSO
1

MAXSO
1

NAME
product

DID1
1

DID2
2

LEVEL
2

MINSO
1

MAXSO
1

DID1

1

DID2

2

LEVEL

3

SIBLING
ORDER

1
1 2 3 1
1 2 3 1
1 2 3 2
1 2 3 2

1 2 3 3
V-GEN 256MB
PC2700

(c) Inserted Leaf Nodes

DID1

1

DID2

2

LEVEL

3

SIBLING
ORDER

1
1 2 3 1
1 2 3 2
1 2 3 3
1 2 3 3
1 2 3 3

(d) Deleted Leaf Nodes

1 2 3 3

VALUE

V-GEN 2700/256
256MB PC-2700
APPLE iPod 15GB
Storage
USB Mini Cruzer
128MB USB 2.0
US$ 32

VALUE1

(e) Updated Leaf Nodes

PATH_
ID

1
2
4
2
3

2

PATH_
ID

2
3
2
1
2
3
4

PATH_ID

VALUE

Modem
56K Internal
US$ 42
APPLE iPod
15GB MP3 Player

APPLE iPod 15GB2
V-GEN 2700/2562

VALUE2
APPLE iPod
V-GEN 256MB PC2700

DID1 DID2 LEVEL SO1 SO2
1 2 3 2 2
1 2 3 1 3

Fig. 6. Detected Delta

Insertion of Leaf Nodes. The new leaf nodes are only available in the second
version of an XML tree. These new nodes should be either in the best matching
subtrees or in the newly inserted subtrees. Consider the Figure 1. The leaf nodes
103, 104, and 105 belong to the newly inserted subtree rooted at node 102.
The leaf node 109 is also inserted in the new version but it is contained in the
best matching subtree rooted at node 106. Note that this subtree is not newly
inserted one. We use two SQL queries to detect the two types of inserted leaf
nodes as depicted in Figures 5(b) and (c). The SQL query shown in Figure 5(b)
is used to detect the inserted leaf nodes that are in the newly inserted subtrees.
The inserted leaf nodes that are in the matching subtrees are detected by using
the SQL query shown in Figure 5(c). The result of the queries is stored in
the INS LEAF table as shown in Figure 6(c). Note that the highlighted tuples
in Figure 6(c) are actually updated leaf nodes. However, they are detected as
inserted nodes.

Deletion of Leaf Nodes. The deleted leaf nodes are only available in the first
version of an XML tree. These deleted nodes should also be either in the best
matching subtrees or in the deleted subtrees. Consider the Figure 1. The leaf
nodes 12, 13, 14, and 15 belong to the deleted subtree rooted at node 11. The
leaf node 5 is also deleted but it is contained in the best matching subtree rooted
at node 2. We also use two SQL queries for detecting these two types of deleted
leaf nodes. These SQL queries are generated by slightly modifying the queries
in the Figures 5(b) and (c). We replace “INS INT” in line 5 in Figure 5(b) with
“DEL INT”. We also replace the “did2” in line 7 in Figure 5(b) and in lines 8 and
20 in Figure 5(c) with “did1”. The “did1” in line 16 in Figure 5(c) is replaced by
“did2”. We also replace “MINSO2” and “MAXSO2” in lines 10 and 21 in Figure 5(c)
with “MINSO1” and “MAXSO1” respectively. The “MINSO1” and “MAXSO1” in line 18
in Figure 5(c) are replaced by “MINSO2” and “MAXSO2” respectively. Figure 6(d)
depicts the result of the queries which is stored in the DEL LEAF table. Note
that the highlighted rows are actually updated leaf nodes which are detected as
deleted leaf nodes.

Content Update of Leaf Nodes. Intuitively, an updated node is available in
the first and second versions, but its value is different. As the updated leaf nodes
are detected as pairs of deleted and inserted leaf nodes, we are able to find the
updated leaf nodes from two sets of leaf nodes: the inserted leaf nodes and the
deleted leaf nodes respectively. In addition, we also need the information of the

Xandy: Detecting Changes on Large Unordered XML Documents 719

A

B B B

A

B B B

T1 T2

V1 V2 V3 VA V1 VB

DID1

..

DID2

..

LEVEL

..
..

SO1

..

..

SO2

..

..

(b) Updated Leaf Nodes

..

..
..
..

..

..

VALUE
1

V2
V2
V3
V3

VA
VB

VALUE
2

VA
VB

(a) Example

1 SELECT
2 U.SO1, U.SO2, U.PATH_ID,
3 U.VALUE1, U.VALUE2
4 FROM UPD_LEAF AS U,
5 (SELECT DID1, DID2, SO1,
6 SO2, PATH_ID,
7 VALUE1, COUNT(VALUE1)
8 FROM UPD_LEAF
9 WHERE DID1 = doc_id1 AND
10 DID2 = doc_id2
11 GROUP BY DID1, DID2, SO1, SO2,
12 PATH_ID, VALUE1
13 HAVING COUNT(VALUE1)>1) AS T
14 WHERE
15 U.DID1 = doc_id1 AND
16 U.DID2 = doc_id2 AND
17 U.SO1 = T.SO1 AND
18 U.SO2 = T.SO2 AND
19 U.PATH_ID = T.PATH_ID AND
20 U.VALUE1 = T.VALUE1
21 FETCH FIRST 1 ROWS ONLY
22 OPTIMIZE FOR 1 ROWS

Input: Table UPD_LEAF, doc_id1, doc_id2
Output: Corrected Table UPD_LEAF

1 Algorithm updateCorrector {
2 while (result R of query Q1 is not empty){
3 correctUpdateTable(R);
4 }
5 while (result R of query Q2 is not empty){
6 correctUpdateTable(R);
7 }
8 }

(d) SQL Query (1)

(c) Algorithm updateCorrector

1 DELETE FROM UPD_LEAF
2 WHERE
3 DID1 = doc_id1 AND DID2 = doc_id2 AND
5 SO1 = R.SO1 AND SO2 = R.SO2 AND
6 PATH_ID = R.PATH_ID AND
7 ((VALUE1 = R.VALUE1 AND VALUE2 != R.VALUE2) OR
9 (VALUE1 != R.VALUE1 AND VALUE2 = R.VALUE2))

(e) SQL Query (2)

PATH_
ID

..

..

..

..

Dataset
Code

Sigmod-01
Sigmod-02
Sigmod-03
Sigmod-04
Sigmod-05
Sigmod-06
Sigmod-07
Sigmod-08
Sigmod-09
Sigmod-10

Nodes

331
554
890

1,826
2,718
4,717
8,794

18,866
37,725
89,323

(f) Sigmod Dataset

Filesiz
e (KB)

13
21
34
70

104
180
337
721

1,444
3,431

Fig. 7. Example Uncomplete Results of Update Query and Datasets

best matching subtrees in order to guarantee the updated leaf nodes are in the
best matching subtrees. Note that we only consider the update of the content of
the leaf nodes. Similar to [10], the modification of the name of an internal node
is detected as a pair of deletion and insertion. The SQL query for detecting the
updated leaf nodes is depicted in Figure 5(d) and the results are in the UPD LEAF
table. The updated leaf nodes of the example in Figure 1 are shown in Figure 6(e)
(the UPD LEAF table). We observe that the result of this SQL query may not be
correct result in some cases. Let us elaborate further. Suppose we have two trees
as depicted in Figure 7(a). The result of the SQL query depicted in Figure 5(f)
is shown in Figure 7(b) (partial view only). We notice that nodes B with values
“V2” and “V3” are detected as updated leaf nodes twice. This is because the
sub query in lines 3-17 in Figure 5(d) only finds the leaf nodes which have the
same paths, but different values. We use the updateCorrector algorithm that is
depicted in Figure 7(c) to correct the result by finding the incorrect tuples. A
tuple t is an incorrect tuple if one and only one of the following conditions is
satisfied: 1) the VALUE1 of tuple t is equal to VALUE1 of tuple R, 2) the VALUE2 of
tuple t is equal to VALUE2 of tuple R. The algorithm iteratively issues the SQL
queries depicted in Figures 7(d) and (e) until no incorrect tuple is found.

5 Performance Study

We have implemented Xandy entirely in Java. The Java implementation and the
database engine were run on a Microsoft Windows 2000 Professional machine
having Pentium 4 1.7 GHz processor with 512 MB of memory. The database
system was IBM DB2 UDB 8.1. Appropriate indexes on the relations are cre-
ated. We used a set of synthetic XML documents based on SIGMOD DTD (Fig-
ure 7(f)). Note that we focus on the number of nodes in the datasets as the higher
the number of nodes the database engine will join more number of tuples. The
experimental results that support this decision are available in [6]. We generated
the second version of each XML document by using our own change generator.
We distributed the percentage changes equally for each type of changes. We
compared the performance of Xandy to the Java version of X-Diff 2.

2 downloaded from www.cs.wisc.edu/∼yuanwang/xdiff.html

720 E. Leonardi, S.S. Bhowmick, and S. Madria

(a) Finding Matching Subtree (3%) (b) Detecting The Changes (3%) (c) Overall Performance (3%)

(d) Finding Matching Subtree (12%) (e) Detecting The Changes (12%) (f) Overall Performance (12%)

0.1

1

10

100

1000

10000

100 1000 10000 100000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
) Xandy

X-Diff

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
) Xandy

X-Diff

0.1

1

10

100

1000

10000

100 1000 10000 100000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
) Xandy

X-Diff

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
) Xandy

X-Diff

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Xandy

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Xandy

0.00

0.20

0.40

0.60

331 544
Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

)

Deletion Internal Nodes Insertion Internal Nodes
Deletion Leaf Nodes Insertion Leaf Nodes
Update X-Diff

0

2

4

6

8

890 1826

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Update

Insertion Leaf
Nodes

Deletion Leaf
Nodes

Insertion Internal
Nodes

Deletion Internal
Nodes

Finding Best
Matching Subtrees

X-Diff

(g) Detecting Changes Phase (h) Overall Performance

Fig. 8. Execution Time vs Number of Nodes (Logarithmic Scale)

Execution Time Versus Number of Nodes. In this set of experiments, we
study the performance of Xandy for different number of nodes. The percentages
of changes are set to “3%” and “12%” and the threshold θ is set to “0.0” which
shall give us the upper bound of the execution time. Figures 8(a) and (d) show
the performance of the first phase (Finding Best Matching) when we set the
percentages of changes to 3% and 12% respectively. For XML documents that
have less than 5000 nodes, the execution time of the first phase is less than 12
seconds. Figures 8(b) and (e) show the performance of the second phase (Detect-
ing the Changes) compared to X-Diff when we set the percentage of changes to
3% and 12% respectively. We observe that Xandy performs better than X-Diff
except for the smallest data set. Figure 8(g) depicts the performance comparison
between X-Diff and second phase of Xandy for “Sigmod-01” and “Sigmod-02”.
We observe that most of the execution time of the second phase is taken by
finding the updated leaf nodes, detecting the inserted leaf nodes, and detect-
ing the deleted leaf nodes. Even then, it is faster than X-Diff (for “Sigmod-02”
dataset). In this experiment, X-Diff is unable to detect the changes on the XML
documents that have number of nodes over 5000 nodes due to lack of the main
memory. Figures 8(c) and (f) show the overall performance of Xandy compared
to X-Diff when we set the percentages of changes to 3% and 12% respectively.
We notice that the difference of execution time between Xandy and X-Diff re-
duces as the number of nodes increases. Finally, Xandy becomes faster than
X-Diff after the number of nodes is greater than 1000 nodes. This is because the

Xandy: Detecting Changes on Large Unordered XML Documents 721

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

Percentage of Changes(%)

E
xe

cu
ti

o
n

 T
im

e(
s)

Xandy

0

1

2

3

4

5

0 10 20 30 40 50 60 70

Percentage of Changes(%)

E
xe

cu
ti

on
 T

im
e(

s)

Xandy

X-Diff

1

2

3

4

5

0 10 20 30 40 50 60 70

Percentage of Changes(%)

E
xe

cu
ti

o
n

 T
im

e(
s) Xandy

X-Diff

(a) Finding Matching Subtree (b) Detecting The Changes (c) Overall Performance

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70

Percentage of Changes

R
at

io

X-Diff+ / Xandy
 X-Diff / Xandy

(d) Result Quality (1)

0.9

1.0

1.1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6

Theta

R
at

io

6 Percent

18 Percent

30 Percent

60 Percent

(e) Result Quality (2)

Fig. 9. Execution Time vs Percentage of Changes and Result Quality

<SigmodRecord>
 <issue>
 <volume>12</volume>
 <number>1</number>
 <articles>
 <article>
 <title>Query Optimization

 Using Local Completeness
 </title>
 <initPage>11</initPage>
 <endPage>28</endPage>
 <authors>
 <author>R. Caballol</author>
 <author>Wolfgang Beitz</author>
 </authors>
 </article>
 </articles>
 </issue>
</SigmodRecord>

<SigmodRecord>
 <issue>
 <volume>12</volume>
 <number>1</number>
 <articles>
 <article>
 <title>XQuery Optimization

 Using Local Completeness
 </title>
 <initPage>21</initPage>
 <endPage>27</endPage>
 <authors>
 <author>Satoshi Aoki</author>
 <author>Brian Becker</author>
 <author>Sam Bayer</author>
 </authors>
 </article>
 </articles>
 </issue>
</SigmodRecord>

(a) First Version (b) Second Version

<SigmodRecord>
 <issue>
 <volume>12</volume>
 <number>1</number>
 <articles>
 <article>
 <title>
 XQuery Optimization Using Local Completeness
 <?UPDATE FROM "Query Optimization Using Local Completeness"?>
 </title>
 <initPage>21<?UPDATE FROM "11"?>
 </initPage>
 <endPage>27<?UPDATE FROM "28"?></endPage>
 <authors>
 <author>Satoshi Aoki<?UPDATE FROM "R. Caballol"?></author>
 <author>Brian Becker<?UPDATE FROM "Wolfgang Beitz"?></author>
 <author><?INSERT author?>Sam Bayer</author>
 </authors>
 </article>
 </articles>
 </issue>
</SigmodRecord>

(c) Delta of X-Diff+

Fig. 10. Example

query engine of the relational database is still able to process the data efficiently
as the increment of the size of data is not significant. Figure 8(h) depicts the
comparison between X-Diff and of Xandy for the third and fourth datasets. We
observe that the first phase takes up to 70% of the overall execution time in av-
erage. Xandy is able to detect the changes on XML documents with over 89,000
nodes. From these experiments, we conclude that Xandy has better scalability
than X-Diff. For small datasets, Xandy has comparable performance compared
to X-Diff. Xandy has better performance than X-Diff for the large datasets.

Execution Time Versus Percentage of Changes. In this set of experi-
ments, we use the dataset “Sigmod-03” and the threshold θ is set to “0.0”. We
vary the percentages of changes from “3%” to “60%”. Figure 9(a) depicts the
execution time of the first phase in Xandy. We observe that the percentage
of changes influence the execution time for finding the best matching subtrees.
This is because there will be more number of matching sibling orders when the
documents are changed slightly. On the other hand, when the documents are
changed significantly, we will have lesser number of matching sibling orders.
Figure 9(b) depicts the execution time of the second phase in Xandy. We ob-
serve that Xandy outperforms the X-Diff. We also notice that the execution

722 E. Leonardi, S.S. Bhowmick, and S. Madria

times of Xandy and X-Diff are affected by the percentage changes. Figure 9(c)
shows the overall performance. X-Diff is faster than Xandy for the percentage
of changes less than around 20%. As the percentage of changes is larger than
20%, Xandy becomes faster than X-Diff. This is because the time for finding
the best matching subtrees is reduced as the percentage of changes is increased.

Result Quality. In the first experiment, we examine the effect of the percentage
of changes on the result quality by using “Sigmod-03” as the data set. A series of
new versions are generated by varying the percentage of the changes. Xandy, X-
Diff, and X-Diff+ 3 were run to detect the changes on these XML documents. The
number of nodes involved in the deltas is counted for each approach. We compare
the number of nodes in the deltas detected by Xandy to the one detected by
X-Diff, and X-Diff+. The ratios are plotted in Figure 9(d). We observed that
Xandy detects the same deltas as X-Diff+ until the percentage of the changes
reaches 15%. The quality ratios of X-Diff+ and Xandy are smaller than 1 when
the percentage of the changes is larger than 15%. This happens because X-Diff+
detects a deletion and insertion of subtrees as a set of update operations. For
example, we have two versions of an XML document as depicted in Figures 10(a)
and (b). Figure 10(c) depicts the delta detected by X-Diff+. Xandy detects
as a deletion of an article and an insertion of an article. We notice that the
quality ratios of X-Diff and Xandy are larger than 1 when the percentage of
the changes are larger than 30%. This is because X-Diff does not calculate the
minimum editing distance. Consequently, X-Diff may detect as a deletion of a
subtree if it is changed significantly. Note that this does not happen on X-Diff+
as it calculates the minimum editing distance.

In the second experiment, we study the effect of the similarity threshold θ in
our approach on the result quality by using “Sigmod-04” data set. Then a series
of new versions are generated by setting the percentages of the changes to 6%,
18%, 30%, and 60%. For each percentage of changes, Xandy was run by varying
threshold θ. The number of nodes involved in the deltas is counted for each
threshold θ. We compare the number of nodes in the deltas detected by Xandy
with θ = 0.0 to the one detected by Xandy with 0.10 ≤ θ ≤ 0.50. The ratios are
plotted in Figure 9(e). We observe that the threshold θ may not affect the result
quality if the documents are changed slightly. On the other hand, the result
quality is affected by the threshold θ if the documents are changed significantly.
When the percentage of changes is set to 60%, the result quality becomes worse
as the threshold θ ≥ 0.25. We conclude that the result quality of the deltas
detected by Xandy is influenced by the percentage of changes, the distribution
of the changes, and the threshold θ. The distribution of the changes influences
the result quality in the following way. Suppose we have a subtree t1 in which the
changes are concentrated. t2 is the matching subtree of t1. The similarity score
�(t1,t2) will be reduced as t1 and t2 have less common nodes. Consequently, t1
and t2 may be considered as unmatching subtrees if �(t1,t2)< θ.

3 We activate the option “-o” of X-Diff so it calculates the minimum editing distance
in finding the matchings.

Xandy: Detecting Changes on Large Unordered XML Documents 723

6 Conclusions

The relational approach for unordered XML change detection system in this
paper is motivated by the scalability problem of existing main memory-based
approaches. We have shown that the relational approach is able to handle XML
documents that are much larger than the ones detected by using main-memory
approaches. In summary, the number of nodes and the percentage of changes
influence the execution time of all approaches. Xandy is able to detect the
changes on XML documents with over 89,000 nodes, while X-Diff is only able to
detect the changes the XML documents with up to 5,000 nodes. We also show
that the execution of Xandy is faster than X-Diff for large data sets. This shows
that the powerful query engine of the relational database can be utilized for the
detecting the changes. The result quality of Xandy is comparable to the one of
X-Diff. In Xandy, the result quality depends on the threshold θ, the percentage
of changes, and the distribution of the changes.

References

1. Yan Chen, S. Madria, S. S. Bhowmick. DiffXML: Change Detection in XML
Data. DASFAA 2004, Jeju Island, Korea, 2004.

2. Curbera, D. A. Epstein. Fast Difference and Update of XML Documents.
XTech’99, San Jose, 1999.

3. G. Cobena, S. Abiteboul, A. Marian. Detecting Changes in XML Documents.
ICDE 2002 , San Jose, 2002.

4. H. Jiang, H. Lu, W. Wang, J. Xu Yu. Path Materialization Revisited: An Effi-
cient Storage Model for XML Data. Australasian Database Conference, Melbourne,
Australia, 2002.

5. Erwin Leonardi, S. S. Bhowmick, S. Madria. Detecting Content Changes on
Ordered XML Documents Using Relational Databases. DEXA 2004, Zaragoza,
Spain, 2004.

6. Erwin Leonardi, S. S. Bhowmick. Xandy: Detecting Changes on Large Un-
ordered XML Documents Using Relational Database. Technical Report, Center
for Advanced Information System, Nanyang Technological University, Singapore,
2004. http://www.cais.ntu.edu.sg/∼erwin/docs/

7. S. Prakash, S. S. Bhowmick, S. Mardia. SUCXENT: An Efficient Path-based
Approach to Store and Query XML Documents. DEXA 2004, Spain, 2004.

8. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J.
F. Naughton Relational Databases for Querying XML Documents: Limitations
and Opportunities. The VLDB Journal, 1999.

9. T. F. Smith and M. S. Waterman Identification of common molecular subse-
quences. Journal Molecular Biology 147:195-197, 1981.

10. Y. Wang, D. J. DeWitt, J. Cai. X-Diff: An Effective Change Detection Algo-
rithm for XML Documents. ICDE 2003, Bangalore, 2003.

FASST Mining: Discovering Frequently
Changing Semantic Structure from

Versions of Unordered XML Documents

Qiankun Zhao and Sourav S. Bhowmick

School of Computer Engineering, Nanyang Technological University, Singapore
{pg04327224, assourav}@ntu.edu.sg

Abstract. In this paper, we present a FASST mining approach to ex-
tract the frequently changing semantic structures (FASSTs), which are
a subset of semantic substructures that change frequently, from versions
of unordered XML documents. We propose a data structure, H-DOM+,
and a FASST mining algorithm, which incorporates the semantic issue
and takes the advantage of the related domain knowledge. The distinct
feature of this approach is that the FASST mining process is guided by
the user-defined concept hierarchy. Rather than mining all the frequent
changing structures, only these frequent changing structures that are
semantically meaningful are extracted. Our experimental results show
that the H-DOM+ structure is compact and the FASST algorithm is ef-
ficient with good scalability. We also design a declarative FASST query
language, FASSTQUEL, to make the FASST mining process interactive
and flexible.

1 Introduction

Frequent substructure mining [3, 5] is one of the most well researched topics in
the area of XML data mining. Current research on frequent substructure mining
is to extract substructures that occur frequently in individual XML document
or in collections of XML documents. However, most of the existing research of
frequent substructure mining focuses on snapshot data collections, while XML
data is dynamic in real life applications.

The dynamic nature of XML leads to two challenging problems. First, is the
maintenance of frequent substructures. For this problem, incremental data min-
ing techniques [1] can be applied to maintain the mining results. Second, is the
discovery of novel knowledge such as association rules and frequent changing
structures, which are hidden behind the historical changes to XML data as de-
scribed in [6]. The frequent changing structure (FCS) is defined as substructures
in the XML versions that change frequently and significantly in the history. In
[6], we proposed a novel approach to discover the frequently changing structures
from the sequence of historical structural changes to unordered XML. The use-
fulness and importance of such frequently changing structures, with correspond-
ing applications, have also been discussed. To make the structure discovering

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 724–735, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

FASST Mining: Discovering Frequently Changing Semantic Structure 725

process efficient, an expressive and compact data model, Historical-Document
Object Model (H-DOM), is proposed. Using this model, two basic algorithms,
which can discover all the frequently changing structures with only two scans
of the XML version sequence, were designed and implemented. We deal with
unordered XML documents since the unordered model of XML is more suitable
for most database applications [4]. Hereafter, whenever we say XML, we mean
unordered XML.

However, discovering all the frequently changing structure is challenging due
to the presence of exponential number of substructures, while the mining re-
sults of our previous approach include any arbitrary substructure that change
frequently. We observed that not all the frequently changing substructures are
semantically significant and meaningful. Usually, in a specific domain, users are
interested in only some specified structures that corresponding to certain seman-
tic concepts. To reduce the number of structures in the mining results and keep
all the meaningful structures, we propose to incorporate the semantic constraints
in the form of user-defined concept hierarchy into the frequently changing struc-
ture mining process.

In this paper, we defined a subset of frequently changing structures as Fre-
quently chAnging Semantic STructures (FASSTs) based on the dynamic metrics
and concept hierarchy. Given a sequence of XML documents (which are different
versions of the same XML document), the objective of FASST mining is to dis-
cover the frequently changing structures according to the user specified semantic
concepts.

2 The FASST Mining Problem

In this section, we present the preliminaries and problem statement for the
FASST mining problem. First, a set of dynamic metrics is proposed to mea-
sure the changes to XML structural data. After that, the concept of semantic
structure is presented. Lastly, we formulate the FASST mining problem. Details
and examples of the definitions are available in [6], only a brief introduction is
presented here.

2.1 Dynamic Metrics

We model the structures of XML documents as unordered, labeled, rooted trees.
We denote the structure of an XML document as S = (N,E, r), where N is
the set of labeled nodes, E is the set of edges, r ∈ N is the root. We do not
distinguish between elements and attributes, both of them are mapped to the
set of labeled nodes. Each edge, e = (x, y) is an ordered pair of nodes, where x
is the parent of y. The size of the structure S, denoted by |S|, is the number of
nodes in N .

Definition 1 (Substructure). A structure s = (N ′, E′, r′) is a substructure
of S = (N,E, r), denoted as s * S, provided i) N ′ ⊆ N , and ii) e = (x, y) ∈ E′,
if and only if x is the parent of y in E.

726 Q. Zhao and S.S. Bhowmick

Definition 2 (Structural Delta). Let Si and Si+1 be the tree representations
of two XML documents Xi and Xi+1. The structural delta from Xi to Xi+1
is represented as $i, where $i is a structural edit script 〈o1, o2, · · · , om〉 that
transforms Si into Si+1, denoted as S1

o1→ s1
o2→ · · · om→ Si+1.

Definition 3 (Consolidate Structure). Given two structures Si and Sj, where
ri = rj. The consolidate structure of them is Si+Sj, where i) Nsi�sj

= Nsi
∪Nsj

,
ii) e = (x, y) ∈ Esi�sj

, if and only if x is the parent of y in Esi
∪ Esj

.

We observed that different substructures of the XML document might change
in different ways at different frequencies. To evaluate their historical behaviors,
we propose a set of dynamic metrics. The first metric is called structure dynamic.

Definition 4 (Structure Dynamic). Let 〈Si, Si+1〉 be the tree representations
of XML documents 〈Xi, Xi+1〉. Suppose s * Si. The structure dynamic of s
from document Xi to document Xi+1, denoted by Ni(s), is defined as: Ni(s) =

|�si
|

|si�si+1| .

Here Ni(s) is the structure dynamic of s from version i to i+ 1. Ni(s) is the
percentage of nodes that have changed from Xi to Xi+1 in s against the number
of nodes in its consolidation structure. A larger value of structural dynamic
implies that the more significantly the substructure changed.

Definition 5 (Version Dynamic). Let 〈S1, S2, · · · , Sn〉 be the tree representa-
tions of XML documents 〈X1, X2, · · ·Xn〉. Suppose s * Sj. The version dynamic
of s, denoted as V (s), is defined as:

V (s) =
∑n−1

i=1 vi

n− 1
where vi =

{
1, if |$si

| �= 0;
0, if |$si

| = 0;

Similarly, it can also be observed that the larger the value of version dynamic
is, the more frequently the substructure changed in the history.

Definition 6 (DoD). Let 〈S1, S2, · · · , Sn〉 be the tree representations of XML
documents 〈X1, X2, · · · , Xn〉. Suppose s * Sj, Ni(s) and V (s) are the values of
structure dynamic and version dynamic of s; α is the pre-defined threshold for
structure dynamic. The DoD for s is defined as:

DoD(s, α) =
∑n

i=1 di

(n− 1) ∗ V (s)
where di =

{
1, if Ni ≥ α
0, if Ni < α

The metric DoD is defined based on the threshold of structure dynamic.
It represents the fraction of versions, where the structure dynamic values for
the substructure are no less than the predefined threshold α, against the total
number of version the substructure has changed over the history. Extended from
the structure dynamic, the value of DoD implies the overall significance of the
substructure, the larger the value is, the more significant the changes are.

FASST Mining: Discovering Frequently Changing Semantic Structure 727

COMPANY

PRODUCT CLIENT ORDER

P-ID P-NAME C-ID C-NAME ADDRESS O-ID AMT PRICE

Fig. 1. An Example of Concept Hierarchy

2.2 Semantic Structure

One of the distinctive features of XML is that XML is semantic. Tags within the
XML documents are self-describing. However, if we represent an XML document
as a tree structure, not all the substructures are semantically significant to users.
For example, users in the e-commerce domain may be more interested in the
substructures corresponding to products and clients than other substructures
such as Name. In this section, we define the semantic structure to represent
substructures that are semantically meaningful.

Definition 7 (Semantic Structure). Given a concept C in a specific domain,
a structure s is a semantic structure of concept C, denoted as s , C, if s provides
the required information of the concept C.

Based on the definition, it is obvious that the semantic structures are based on
the underlining concepts, which is domain dependent. There are two approaches
to obtain such concepts. The first approach is to extract interesting concepts
from ontology in the corresponding domain. Another approach is to build the
concepts based on DTDs (Document Type Definitions) used in this domain.
Recently, DTDs are widely used to specify the legal building blocks in XML
documents. Each legal building block corresponds to a concept in ontology.

However, users may not be interested in all the semantic concepts/ structures
while the number of concepts/structures can be huge. Moreover, even in the same
domain, different users may have different interests. For instance, in the e-commerce
domain, the material control people may be more interested in the semantic struc-
ture products than others; while the marketing people may be more interested
in the semantic structure clients than others. Given a set of semantic concepts/
structures, users can specify the concepts they are interested in.

Our research focuses on extracting the frequently changing structures that
are semantically meaningful. The set of user-specified concepts is used to guide
the FASST mining process. Similar to [2], interested concepts are represented
in a hierarchy that specifies the relation among them. Nodes of the hierarchical
structure can be classified as primitive or nonprimitive. The primitive concepts,
which represent the basic elements in a domain, reside in the lowest level in
the hierarchy; all nonprimitive concepts, which consist of a conglomeration of
the primitive concepts, reside in the higher level of the hierarchy. The higher
the node’s level, the more complex is the concepts it represents. Figure 1 shows
an example of concept hierarchy. The leaf nodes such as P-ID, and P-NAME are

728 Q. Zhao and S.S. Bhowmick

primitive concepts; while internal nodes and root node such as CLIENT and
COMPANY are nonprimitive concepts. In our FASST mining, we assume that
the specified concept hierarchy is provided by users.

2.3 Problem Statement

In our previous work [6], we have defined the frequently changing structures
(FCS) based on the dynamic metrics as substructure that have version dynamic
and degree of dynamic values no less than the user-defined thresholds. Simi-
larly, here we give a formal definition of Frequent chAnging Semantic STructure
(FASST).

Definition 8 (FASST). Let 〈 S1, S2, · · ·, Sn 〉 be the tree representations of
XML documents 〈X1, X2, · · · , Xn〉; H is a concept hierarchy that contains a
set of concepts {c1, c2, · · ·, ci}; the thresholds for structure dynamic, version
dynamic and DoD are α, β, γ respectively. A structure s * Sj is a FASST in
this sequence if and only if i) V (s) ≥ β, ii)DoD(s, α) ≥ γ, and iii) s , cm,
where 1 ≤ m ≤ i.

The FASST is defined based on the predefined thresholds of the dynamic
metrics and a set of user-defined concepts. To be a FASST, it must be a se-
mantic structure (defined by H) and change at certain frequency (defined by β)
and corresponding changes must be significantly enough (defined by α and γ).
The FASST mining problem is to discover all the FASSTs from a sequence of
XML documents with the user-defined concepts and thresholds for the dynamic
metrics.

3 Algorithm

In this section, we present our FASST mining algorithm. First, we introduce
the H-DOM+ data structure to store and represent relevant historical structural
information. After that, detail of the FASST algorithm is presented.

3.1 The H-DOM+ Structure

The structure of an XML document can be represented and stored as a tree
such as the DOM tree proposed by W3C. In this section, we present an H-
DOM+ model to represent the history of changes to XML data. The H-DOM+

is an extension of the DOM model with some historical properties so that it can
compress the history of changes to XML into a single H-DOM+ tree. Formally,
we define an H-DOM+ tree as follows:

Definition 9 (H-DOM+). An H-DOM+ tree is a 4-tuple H = (N, A, v, r),
where N is a set of object identifiers; A is a set of labelled, directed arcs (p, l, c)
where p, c ∈ N and l is a string; v is a function that maps each node n ∈ N
to a set of values (Cn, Cv), Cn is an integer and Cv is a set of integers; r is a
distinguished node in N called the root of the tree.

FASST Mining: Discovering Frequently Changing Semantic Structure 729

We now elaborate on the parameters Cn and Cv. The two parameters are
introduced to record the historical changes for each substructure. Cn is an integer
that records the number of versions that a substructure has changed significantly
enough (the structure dynamic is no less the corresponding threshold). Cv is a
set of integers that represents the versions where the substructure has changed in
the history. For instance, a value of “ i ” denotes that the structure has changed
from version i to version i + 1. Differ from the H-DOM model in [6], the types
of changes are specified using integers with “ + ” and “ − ” in H-DOM+. Such
knowledge will be used in our proposed FASST query language, FASSTQUEL,
to mine different types of FASSTs. A value of “ −i ” in Cv means the structure is
“deleted” in version i+1 while a value of “ +i ” means the structure is “inserted”.
In the H-DOM+ tree, the Cv value for each structure is finally updated by using
the formula: Cv(s) = Cv(s1) ∪Cv(s2) ∪ · · · ∪Cv(sj), where s1, s2, · · · , sj are the
substructures of s. In the updating process, insertion and deletion of a structure
is determined by the majority of the changes to its substructures (if the number
of insertions among its substructures is no less than deletions, then we consider
it as an “insertion” in that version. Otherwise, it is considered as a “deletion”).

With Cv and Cn, the values of structure dynamic, version dynamic, and DoD
can be calculated based on this model as follows.
– Ni(s) = 1

|si�si+1|
∑

Cv(sj)[i], where sj is the list of substructures of s,
Cv(sj)[i] is 1 if any of ±i is in Cv(sj), otherwise it is 0.

– V (s) = 1
n−1

∑n−1
i=1 Cv[i], where Cv(s)[i] is 1 if any of ±i is in Cv(s), otherwise

it is 0; n is the total number of XML documents.
– DoD(s) = Cn(

∑n−1
i=1 Cv[i])

−1
, where Cv(s)[i] is 1 if any of ±i is in Cv(s),

otherwise it is 0; n is the total number of XML documents.

3.2 FASST Mining

There are three major phases in our FASST mining. The H-DOM+ construc-
tion phase, the FASST extraction phase, and the visualization phase. Since the
visualization phase is straightforward, we discuss the first two phases in turn.

The H-DOM+ Construction Phase: Figure 2 (a) describes the phase of
H-DOM+ construction. Given a sequence of historical XML documents, the H-
DOM+ tree is initialized as the structure of the first version. After that, the
algorithm iterates over all the other versions by extracting the structural changes
and mapping them into the H-DOM+ tree. The SX-Diff function is a modification
of the X-Diff [4] algorithm that generates only the structural change from two
different versions of a document. The structural changes are mapped into the
H-DOM+ tree according to mapping rules described in Figure 2 (a). The SX-Diff
function and the mapping phase iterate until no more XML document is left in
the sequence. Finally, the H-DOM+ tree is returned as the output of this phase.
Figure 2 (b) is an example of an H-DOM+ tree.

Given an XML document and the corresponding DTD, according to the DTD,
it is possible to know that some of the elements (attributes) cannot be changed
individually. For example, in a DTD, some elements (attributes) may be defined

730 Q. Zhao and S.S. Bhowmick

Algorithm 1 H-DOM+ Construction

Input:
〈X1, X2, · · · , Xn〉: A sequence of XML
S(D): Tree representation of the DTD

Output:
H: H-DOM+ Tree

Description:

1: H ← (S(X1) ∩ S(D2))

2: for (k = 2; k ≤ n; k + +) do

3: 	 = SX-Diff(Xk, Xk−1)

4: H = Mapping(H,)

5: end for
6: Return(H)

Home

ProductsServices
… Clients About

…

P8
...

C9
…

(1, {2})

(1, {2})

(0, { })

(1, {1})

(2, {1, 2})

(2, {1, 2})

(0, { })

(a) H-DOM+ construction (b) Part of an H-DOM+ Tree

Fig. 2

as required with exactly one occurrence. Such nodes cannot be inserted or deleted
individually, which means they can only change with the insertion or deletion
of their parent nodes. Based on this observation, elements (attributes) in the
XML documents can be classified into two groups. Elements (attributes) that
cannot be inserted or deleted individually are classified into group 1, others are
in group 2. In the initialize process, rather than store the entire structure of the
first version, we only map nodes that belong to group 2. Nodes in group 1 are
ignored.

Algorithm 2 in Figure 2 (a) describes the mapping function. Given the H-
DOM+ tree and the structural changes, this function is to map the structural
changes into the H-DOM+ tree and return the updated H-DOM+ tree. The idea
is to update the corresponding values of the nodes in the H-DOM+ tree. The
values are updated according to following rules:

i) If the node does not exist in the H-DOM+ tree, then the node is inserted.
The value of ±i is inserted into Cv where i is the version number of the structural
delta. In addition, the Ni value is calculated. If Ni ≥ α, then Cn is set to 1 and
the Cn values of its parent nodes are incremented by 1 until Ni is less than α.
Otherwise, Cn is set to 0 and the process terminates.

ii) For nodes that exist in the H-DOM+, the value of Cv is updated by
inserting the value ±i into Cv if ±i is not in Cv. The value of Cn is also updated
based on Ni and α. Similarly, If Ni ≥ α, then Cn is incremented by 1 and the
Cn values of its parent nodes are updated based on the same rule until Ni is less
than α. Otherwise, Cn does not change and the process terminates.

The FASST Extraction Phase: In this phase, given the H-DOM+ tree, the
FASSTs are extracted based on the user-defined concept hierarchy. First the
substructures are compared with the user-specified concept hierarchy as shown
in line 3 in Figure 3 (b). If the structures are instances of the concepts in the hi-
erarchy, then the values of the required parameters (version dynamic, and DoD)
for each node are calculated and compared against the predefined thresholds as
shown in lines 5 and 6. Since for a FASST, both its version dynamic and DoD
should be no less than the thresholds, we first calculate only one of the parame-
ters and determine whether it is necessary to calculate the other parameter. In
our algorithm, the version dynamic for a node is checked against the correspond-

FASST Mining: Discovering Frequently Changing Semantic Structure 731

Algorithm 2 Mapping Algorithm 3 FASST Extraction
Input:

H: H-DOM+ Tree
α: Threshold of structure dynamic
	: Structural delta

Output:
H: The updated H-DOM+ tree

Description:

1: for all ni ∈ 	 do

2: if ni /∈ H then

3: update Cn(ni)

4: end if
5: if AAAA then
6: BBBB
7: else
8: if CCC then
9: DDD

10: else
11: EEE
12: end if
13: end if
14: if Ni(ni) ≥ α then

15: update Cv(ni)
16: ni = ni.parent(H)
17: end if
18: end for
19: Return(H)

Input:
H: H-DOM+ Tree
T : User specified concept hierarchy
β, γ: Threshold of version dynamic and DoD

Output:
F : A set of nodes where FASSTs are rooted

Description:

1: for all nj=Bottom-upTrav(H)�= null do

2: while Ti=Bottom-upTrav(T)�= null

3: if S(nj) � Ti , then

4: for all s S(nj) do

5: if Cn < γ × V (s), {nj = nj.next, break}

6: if V (nj) ≥ β & DoD(nj) ≥ γ, {F = F
∪nj}

7: end for

8: break; end if

9: end for

10: Return(F)

(a) Mapping Algorithm (b) FASST Extraction Algorithm

Fig. 3

Considering the traversal strategy of the H-DOM+ tree, we use the bottom-up
method since the set of interesting concepts is represented in a hierarchical man-
ner with primitive concepts in the lower level. Guided by the concept hierarchy,
the FASST extraction phase can be more efficient.

Lemma 1. Let S1 and S2 be any two structures, S2 * S1. Given the threshold
for DoD as γ, the necessary condition for structure S1 to be a FASST is that
Cn(S1) ≥ γ × V (S2).

From the above lemma, we observed that it is not necessary to traverse the
entire H-DOM+ tree. We can skip checking some structures that cannot be
FASSTs. Based on this lemma, for any nodes, rather than calculate its version
dynamic value, the Cn value of the node is checked against the value of γ×V (Si),
where Si is any of its substructures. If Cn < γ × V (Si), then it is not necessary
to calculate the version dynamic and DoD for this structure since it cannot be
a FASST. This pruning technique is shown in Figure 3 (b) in lines 5 and 6.

4 FASSTQUEL: Query Language for FASST

To make the FASST mining process interactive, we design a FASST query lan-
guage called FASSTQUEL. In this section, we discuss the syntax of the language
and how it is useful.

The FASST query language consists of the specifications of four major param-
eters in FASST extraction from a sequence of XML documents. They are types

ing threshold first. If it is no less than the threshold, then we check its DoD.

732 Q. Zhao and S.S. Bhowmick

– “EXTRACT 〈structure type〉” specifies that the FASSTs to be discovered are
of type “〈 structure type 〉”. The following types of FASSTs are supported
in our query language:
• Insertion-based (Only insertions are considered as changes)
〈structure type〉 :: = Ins FASST

• Deletion-based (Only deletions are considered as changes)
〈structure type〉 :: = Del FASST

• FASST (Both insertions and deletions are considered as changes)
〈structure type〉 :: = All

– “FOR 〈concepts〉” specifies that the concept hierarchy to be used to guide the
FASST mining. The concept hierarchy can be stored in an XML document.

– “FROM 〈source〉” specifies on which dataset the FASST extraction should be
performed. It can the entire sequence or from version i to version j, which
are specified as All and [i, j] respectively.

– “WHERE THRESHOLD = 〈N, V, DoD〉” specifies the thresholds for structure
dynamic, version dynamic, and DoD. If the any of the threshold values is
not specified by the user, then a default value is used.

For example, given a hierarchy of concepts H, to extract all types of FASSTs
from a sequence of n XML documents with the thresholds for structure dynamic,
version dynamic and DoD are specified as 0.3, 0.4, and 0.75 respectively. The
FASST query can be formulated as shown in Figure 1(j). The FASST query
language is proposed for interactive FASST mining. That is users may not be able
to get their desired knowledge at the first hit. Based on the mining results, users
can specify and modify their requirements explicitly using this query language.
Moreover, the FASST query language makes the interactive mining process more
efficient.

5 Performance Evaluation

Experiments are conducted on a P4, 1.7GHz PC with 256M RAM, running Mi-
crosoft Windows 2000 Professional. The algorithm is implemented in Java. In
the following experiments, the real data, SIGMOD XML document, is down-
loaded from UW XML repository 1. Based on this XML document, sequences of
synthetic XML versions are generated using our synthetic XML delta generator.
Similar to the experiments in [6], we vary the characteristics and the parameters
for the algorithm to evaluate the performance of FASST mining. All the datasets
are generated based on the basic dataset generated from the SIGMOD XML.
The basic dataset, D1 in Figure 4 (i), consists of 40 versions of XML documents,
with an average number of 2500 nodes. The average percentage of changes be-

1 http://www.cs.washington.edu/research/xmldatasets

syntax for the FASST query language is defined in a simplified BNF grammar
(words in type writer font represents keywords) as shown in Figure 1 (i):

of FASST, relevant source, a hierarchy of concepts, and threshold values. The

FASST Mining: Discovering Frequently Changing Semantic Structure 733

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

Total number of nodes (100K)

R
un

ni
ng

 ti
m

e
 (S

)

NoN NoV

0

10

20

30

40

50

60

4 8 12
Number of nodes (100K)

P
e

rc
en

ta
ge

 o
f c

o
st

 (
%

)

SX-Diff Mapping FASST extraction

25

26

27

28

29

30

31

32

0 0.2 0.4 0.6 0.8 1
Total number of nodes (100K)

R
u

nn
in

g
 ti

m
e

 (S
)

Structure dynamic Version Dynamic DoD

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4
Dataset

S
iz

e
(k

b
)

Original XML sequence H-DOM+

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6
Total number of nodes (100K)

R
u

n
n

in
g

tim
e

 (S
)

FCS FASST

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

Total number of nodes (100K)

N
u

m
be

r
o

f s
tr

u
ct

u
re

s
(K

)

FCS FASST

0

10

20

30

40

50

60

70

80

90

6 12 18 24 36
Percentage of changes

C
o

m
p

re
ss

io
n

 r
at

io

Dataset NoV NoN PoC

D1

D2

D3

D4

40 2500 18%

2500 18%

40

2500

18%

40

varying

varying

varying

(a) (b) (c)

(d) (e) (f)

(g)

(h)

��������������

���������	
��
����
����

���������
�

���	��	�����

�����������������������������

(i)
���������	

�

�����

���	�	

���������������������������������

(j)

Fig. 4. Experiment Results

Figure 4 (a) shows how the running time changes by varying the total number
of nodes in the XML sequence. There are two ways of increasing the total number
of nodes in the sequence. One way is to increase the number of versions (NoV)
in the XML sequence, another way is to increase the average number of nodes
(NoN) in each version. Datasets D2 and D3 are used in the following experiments.
The threshold values for structure dynamic, version dynamic, and DoD are fixed
to 0.2, 0.2, and 0.2 respectively. Both results show good scalability with the
total number of nodes, while the running time is more sensitive to the number
of versions in the XML sequence than the average number of nodes in each
version. This is due to the fact that the change detection process is the major
cost for FASST mining, as we can see from Figure 4 (b). The first three datasets
in Figure 4 (i) are used. As shown in Figure 4 (b), among three processes: SX-
Diff, Mapping, and FASST Extraction, we observed that the SX-Diff process is
the most expensive process that takes more than half of the running time.

Figure 4 (c) shows how the running time changes by varying the thresholds
for the dynamic metrics. The D1 dataset is used. In the three experiments, we

tween any consecutive versions is 18% in the basic dataset, which consists of 9%
of insertion and 9% of deletion.

734 Q. Zhao and S.S. Bhowmick

vary one of the thresholds and fixed the thresholds for the other two to 0.2. It
can be observed that the running time does not change significantly when the
thresholds of dynamic metrics change. This is due to the fact that the most
expensive process, SX-Diff, is independent on the thresholds.

Figure 4 (d) shows the size of the H-DOM+ tree comparing with the original
size of the XML sequence in previous experiments. From the result it can be
concluded that our H-DOM+ model is very compact (around 50% of the origi-
nal XML sequence). By varying the characteristics of the datasets, we find out
that the compactness of the H-DOM+ structure is sensitive to the percentage
of changes in the dataset, while the number of versions and the average number
of nodes in each version do not affect the compactness. As shown in Figure 4
(e), when the percentage of changes increases the compactness of the H-DOM+

structure will decrease. It is because that when the percentage of changes in-
creases, the overlap among the XML sequence will decrease. Consequently, the
space saved by H-DOM+ structure will decreases. The dataset D4 is used in this
experiment. Although the compactness of the H-DOM+ data structure depends
on the datasets, but it is guaranteed that the size of the H-DOM+ is no larger
than the original datasets in the worst case.

Figures 4 (f) and (g) show the performance comparison of FCS and FASST.
Figure 4 (f) shows the comparison of the running time. The two set of exper-
iments are conducted with the same threshold values for the dynamic metrics
using the D1 dataset. It can be observed that the running time of FASST has
been improved significantly. Figure 4 (g) shows the number of structures in the
mining results with the same thresholds for the dynamic metrics. It shows that
the number of structures in FASST mining result is reduced by almost 40% from
the FCS mining result. This two results shows that the object of our FASST min-
ing has been achieved successfully.

6 Conclusions

In this paper, we propose an approach to extract the FASSTs from a sequence
of historical XML documents. We propose an H-DOM+ to store and represent
the historical structural information of the XML documents sequence. Using
the H-DOM+, an algorithm is proposed to mine the FASSTs. Experimental
results show that FASST has good scalability and efficiency. We also propose a
declarative FASST query language to make the mining process interactive.

References

1. V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON: Mining and monitoring
evolving data. In Proc. IEEE ICDE, pages 439–448, 2000.

2. J. Han and Y. Fu. Dynamic generation and refinement of concept hierarchies for
knowledge discovery in databases. In Proc. KDD Workshop, pages 157–168, 1994.

3. A. Inokuchi, T. Washio, and H. Motoda. An apriori based algorithm for mining
frequent substructures from graph data. In Proc. PKDD, pages 13–23, 2000.

FASST Mining: Discovering Frequently Changing Semantic Structure 735

4. Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-diff: An effective change detection algo-
rithm for XML documents. In Proc. ICDE, pages 519–530, 2003.

5. M. J. Zaki. Efficiently mining frequent trees in a forest. In Proc. ACM SIGKDD,
pages 71–80, 2002.

6. Q. Zhao, S. S. Bhowmick, M. Mohania, and Y. Kambayashi. Discovering frequently
changing structures from historical structural deltas of unordered XML. In Proc.
ACM CIKM, pages 188–198, 2004.

Mining Positive and Negative Association Rules
from XML Query Patterns for Caching

Ling Chen, Sourav S. Bhowmick, and Liang-Tien Chia

School of Computer Engineering, Nanyang Technological University,
Singapore, 639798

Abstract. Recently, several approaches that mine frequent XML query
patterns and cache their results have been proposed to improve query
response time. However, frequent XML query patterns mined by these
approaches ignore the temporal sequence between user queries. In this
paper, we take into account the temporal features of user queries to dis-
cover association rules, which indicate that when a user inquires some
information from the XML document, she/he will probably inquire some
other information subsequently. We cluster XML queries according to
their semantics first and then mine association rules between the clus-
ters. Moreover, not only positive but also negative association rules are
discovered to design the appropriate cache replacement strategy. The ex-
perimental results showed that our approach considerably improved the
caching performance by significantly reducing the query response time.

1 Introduction

Extensible Markup Language (XML) has emerged as a standard for data rep-
resentation and exchange on the World Wide Web. With the rapid growth of
XML applications, there is a pressing need to swiftly retrieve information from
remote XML sources. Consequently, issues related to efficient processing of XML
queries have received considerable attentions.

Recently, caching XML queries has been recognized as an orthogonal ap-
proach to improve the performance of XML query engines [3] [11]. Three basic
issues are involved in XML query caching: 1) Containment Relationship: When
a new XML query is issued, decisions should be made whether it is contained by
any cached queries so that answers to it can be retrieved from the local cache.
2) Query Rewriting : If the new XML query is contained by or overlapping with
some cached queries, it should be rewritten with respect to these cached ones. 3)
Replacement Strategy : A value function should be applied to each query region.
When additional space is required in the cache, regions with the lowest values
will be the victims. In this paper, we focus on the third problem.

1.1 Motivation

As the cache space is a limited resource, appropriate replacement strategy should
be designed to discard data to free space for new data while keeping the cache

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 736–747, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mining Positive and Negative Association Rules from XML Query 737

title
year

author

fn ln

price

section+

title para*
section*

publihser

ID T1 T2
1 Q1 = book / title Q2 = book / author
2 Q3 = book [year = " 2004 "] / title Q4 = book / price
3 Q5 = book / section Q6 = book / section / title
4 Q7 = book / title Q8 = book / author / ln
5 Q9 = book [title=" XML"] / author / ln Q10 = book / section

(a) (b)

Fig. 1. DTD and Queries

performance. FastXMiner [11] mined frequent XML query patterns from the user
queries. Once the cache is full, query regions of infrequent query patterns will
be purged first. However, frequent query patterns may not always be reliable in
predicting the subsequent queries, as the frequent query pattern-based technique
in [11] ignores the temporal feature of user queries. Consider the XML DTD
tree in Figure 1 (a) and two sequential queries of five users (expressed as XPath
query for ease of exposition) at time points T1 and T2 in Figure 1 (b). Applying
FastXMiner [11] here will result in the following two cases.

– If we apply FastXMiner at T1, then we consider the queries in the second
column of the table in Figure 1 (b). Suppose the minimum support is 0.4. We
discover that book/title is a frequent query pattern. Unfortunately, caching
answers to book/title cannot benefit the processing of queries at T2, as none
of the users inquires the information of book/title.

– If we apply FastXminer at T2, then we consider all the queries in the sec-
ond and third columns of the table in Figure 1 (b). Suppose the minimum
support is 0.2. We discover that book/title, book/author, book/author/ln and
book/section are all frequent query patterns. However, if the cache space is
not enough to accommodate all these frequent queries, FastXMiner cannot
break ties to improve the cache performance.

Hence, in this paper, we consider the sequence between user queries to discover
association rules. We use the association rules to predict the subsequent user
queries and the confidence of the rules to break ties.

However, few users issue the exactly same queries sequentially. For example,
consider the queries in Figure 1 (b) again. If only the exactly same queries are
considered, then no association rule will be discovered as no two rows are same.
Hence, rather than mining association rules between exactly same queries, we
mine association rules between semantically related queries. The intuition is
that although users may not issue the exactly same queries sequentially, it is
possible that they inquire the similar information in sequence. For example, the
first and the forth rows in Figure 1 (b) are different in the queries at time T2.
One is book/author and the other is book/author/ln. Since the two queries are
semantically related, we can cluster them into a group representing the queries
about the information of book author. Then, an association rule between queries

738 L. Chen, S.S. Bhowmick, and L.-T. Chia

about book title and queries about book author may be discovered from the
table in Figure 1 (b). According to this rule, we can predict that users will
probably query the information of book author subsequently if they queried the
information of book title. Then we can delay the eviction of the information of
book author if they are cached before.

1.2 Overview and Contributions

Firstly, we cluster user queries so that queries about similar information are
grouped together. Next, we mine association rules between the clusters. Partic-
ularly, we mine association rules between singular query clusters. That is, there
is only one cluster on both sides of our association rules. This restriction frees
us from maintaining too many historical queries of a user to predict his subse-
quent query, and significantly reduce the complexity of the mining process. In
addition to positive association rules, we also mine negative association rules,
which indicate when a user issue some query, she/he probably will not issue
some other query subsequently. Finally, we design an appropriate replacement
strategy based on the knowledge obtained from the discovered rules.

The main contributions of this paper are summarized as follows.

– We proposed to mine association rules from user queries for XML caching,
which is the first that captures the temporal features of user queries to
discover knowledge for optimizing caching strategy.

– We designed a novel method to cluster XML queries based on their semantics.
– We implemented our approach and conducted various experiments. Experi-

mental results showed that the replacement strategy incorporated with dis-
covered association rules had better performance than existing approaches.

The rest of the paper is organized as follows. Section 2 briefly discuss some
related work of XML query caching in the literature. Sections 3 and 4 present
our approach in two stages, clustering user queries based on their semantics
and mining association rules. Section 5 shows the experimental results and the
comparison with other algorithms. We conclude the paper and outline future
directions of research in Section 6.

2 Related Work

Due to its flexibility, semantic caching was popular in XML query caching [6] [3].
Hristidis and Petropoulos [6] proposed a compact structure, modified incomplete
tree (MIT), to represent the semantic regions of XML queries. ACE-XQ [3] is a
holistic XQuery-based semantic caching system. The authors discussed how to
judge whether a new query is contained by any cached query and how to rewrite
the new query with respect to the cached queries. However, this work did not
consider using the knowledge mined from historical user queries to design the
replacement function.

Recently, intelligence has been incorporated into Web/XML query caching by
constructing predictive models of user requests with the knowledge mined from

Mining Positive and Negative Association Rules from XML Query 739

historical queries [7] [2] [11]. Lan et al. [7] mined association rules from Web
user access patterns. Then they prefetched Web documents based on discovered
associations and current requested documents. They focused on the placement
strategy (fetching and prefetching) while we focused on the replacement strat-
egy. Bonchi et al. [2] mined association rules from Web log data to extend the
traditional LRU replacement strategy. However, their work cannot be applied
in XML query caching directly because answers to XML query do not have ex-
plicit identifiers such as URL. Hence, our work is different from this one in that
we mine association rules between query groups in which queries are semanti-
cally close. Furthermore, we also use negative association rules to demote the
replacement values of corresponding query regions.

3 Query Clustering

Due to the intuition that few users issue the exactly same queries sequentially
while many users may inquire similar information consecutively, we cluster the
queries based on their semantics before mining association rules. In this section,
we discuss our clustering method.

3.1 Clustering Criterion

An XML query can be represented as a node labeled tree. For example, consider
the query Q1 expressed in XQuery syntax in Figure 2 (a). The semantics of query
Q1 are composed of two essential parts: the predicate part (for -where clauses)
and the result part (return clause). Both parts can be represented as a tree and
the query tree can be constructed by combining the two trees. For example, the
query tree of Q1 in Figure 2 (a) is shown in Figure 2 (b).

After representing each XML query as a query tree, the semantics of the
query is captured by its query tree structure. For example, the query tree of Q1
in Figure 2 (b) indicates that Q1 inquires the information of the title, author,
section and price of the book. Hence, for the purpose of clustering queries based
on their semantics, we can cluster them based on their tree structures.

Existing approaches of clustering tree structures usually employ the agglom-
erative clustering technique [8] [4]. They are different in defining the similarity

book

+

Q1:
 for $x in doc (book.xml) / book
 where $x / section [title = XQuery]
 and $x / price > 50
 return <result>
 { $x / title, $x / author, $x / section }
 </result>

=

(a) (b)

predicate tree result tree

section price

title

query tree

book

title author section

book

title author section
price

Fig. 2. XQuery Tree

740 L. Chen, S.S. Bhowmick, and L.-T. Chia

book

title

T1

book

title

RT1

book

author

RT2

book

author

RT3

ln

book

section

RT4

book
T6

section

title

book
T2

author

book

title

T7

book

title

T3

year

book

T5

sectionbook

T4

price

book

title

T9

author

ln

author

book
T8

ln

book
T10

section

C1={ T1, T3, T7, T9 }
 C2={ T2 }

C3={ T8, T9 }

 C4={ T6, T5, T10 }

Fig. 3. Initial Clusters

between two trees or clusters. Basically, the definitions of the similarity can be
divided into the following two categories: node-based [4] and edge-based [8]. In
order to achieve better accuracy in clustering trees, in this paper, we base our
similarity measure on considering the common rooted subtrees between XML
query trees. Intuitively, query trees sharing larger common rooted subtree should
be semantically closer.

3.2 Clustering Method

Now, we discuss the clustering method. Basically, we cluster query trees by using
a “cluster-centered” method [9] [5] rather than an agglomerative method. We
employ such a clustering strategy here as it is revealed in [5] that the “cluster-
centered” method can distinguish the documents of different semantics better
and achieve higher clustering accuracy.

In order to employ such a clustering method, we should discover the fre-
quent rooted subtrees before clustering user queries. We borrow the algorithm
FastXMiner [11] to discover frequent rooted subtrees from XML queries.

Example 3.1 Consider the ten queries in Figure 1 (b), whose query tree struc-
tures are redrawn in the upper part of Figure 3. Suppose the minimum sup-
port δ is 0.2. Four rooted subtrees, book/title, book/author, book/author/ln and
book/section, are frequent as shown in the lower part of Figure 3.

After discovering frequent rooted subtrees from the collection of query trees,
our method constructs clusters in the following three steps: initializing clusters,
disjointing clusters and pruning clusters.

Initializing Clusters. In this step, we construct the initial clusters. We use
the frequent rooted subtrees as the labels of the initial clusters. A query tree
will be assigned to an initial cluster if the label of the cluster is the maximal

Mining Positive and Negative Association Rules from XML Query 741

book

title author

ln

(1) (2)

(2)

book

year title author

ln

(1) (4) (1)

(1)

(a) (b)

C1 = { T1, T3, T7, T9 }
Q1 = book / title
Q3 = book [year = " 2004 "] / title
Q7 = book / title
Q9 = book [title=" XML"] / author / ln

C3 = { T8, T9 }
Q8 = book / author / ln
Q9 = book [title=" XML"] / author / ln

Fig. 4. Intra-cluster Dissimilarity

frequent rooted subtree included by the query tree1. For example, consider the
query T8 in Figure 3. Two frequent rooted subtree are included by it, RT2 and
RT3. We assign T8 to the initial cluster of RT3 since RT2 is not the maximal
frequent rooted subtree included by T8. If a query tree does not contain any
frequent rooted subtree, such as T4, the semantic of the query is not significant
in the collection of queries and the query tree will be treated as an outlier. Initial
clusters may not be disjoint because a query tree may contain more than one
maximal frequent rooted subtrees, such as T9. Thus, T9 is assigned to the two
corresponding initial clusters.

Disjointing Clusters. We make the initial clusters disjoint in this step. For
each query tree, we identify the best initial cluster and keep the query only in
the best cluster. We define the goodness of a cluster for a query tree based on
the intra-cluster dissimilarity. We measure the intra-cluster dissimilarity based
on the number of infrequent edges in the cluster. That is, we merge all query
trees in a cluster into a tree structure. For the merged tree, each edge e is
associated with a support, denoted as supp(e), which is the fraction of query
trees containing it. Given a minimum cluster support ξ, an edge in the merged
tree is infrequent if its support is less than ξ. Then, we define the intra-cluster
dissimilarity as follows.

Intra(Ci) =
|{e ∈ Mi|supp(e) < ξ}|

|{e ∈ Mi}|
where Mi is the merged tree of all query trees in cluster Ci. The value of Intra(Ci)
ranges from 0 to 1. The higher the Intra(Ci), the more dissimilar the query trees
in cluster Ci. We assign a query tree to a cluster such that the intra-cluster
dissimilarities are exacerbated least. That is, a query tree Ti is kept in cluster
Cj if

Cj = argminCj∈C,Ti∈Cj
Intra(Cj)

1 A frequent rooted subtree is not maximal w.r.t. a query tree if it is included by any
other frequent rooted subtree included by the query tree.

742 L. Chen, S.S. Bhowmick, and L.-T. Chia

title

C4= { T5, T6, T10 }

Label: RT4=book/section

book

section

title

(3)

(1)

C1 = { T1, T3, T7 }

Label: RT1= book/title

book

title year
(2) (1)

C2= { T2 }

Label: RT2= book/author

book

author
(1)

C3= { T8, T9 }

Label: RT3=book/author/ln

book

author
(1)

ln

(2)

(2)

Fig. 5. Clusters after Disjointing

Example 3.2 For example, T9 is assigned to both initial clusters C1 and C3.
The merged trees for the two clusters are shown in Figure 4. Let the minimum
cluster support ξ be 0.6. Grouping T9 in C1 generates the Intra(C1) = 0.75,
whereas grouping T9 in C3 results in the Intra(C3) = 0.66. Hence, we remove
T9 from cluster C1. After this step, the initial clusters in Figure 3 are adjusted
as shown in Figure 5, where each cluster is represented as a merged tree of all
query trees in it.

Pruning Clusters. If the minimum support δ is small, many frequent rooted
subtrees will be mined from the user queries. Then there may be many clusters
while only some of them are semantically close. Hence, in this step, we perform
cluster pruning to merge close clusters.

We measure the inter-cluster similarity based on the number of frequent edges
the clusters share. Given a minimum cluster support ξ, the set of frequent edges
of cluster Ci, denoted as FCi

, are the edges in the merged tree of Ci with their
support no less than ξ. That is, FCi

= {e|e ∈ Mi ∧ supp(e)≥ ξ}, where Mi is the
merged tree structure of cluster Ci. Then, we define the inter-cluster similarity
as follows.

Inter(Ci → Cj) =
|{e|e ∈ FCi , e ∈ FCj}| − |{e|e ∈ FCi , e /∈ FCj}|

|{e|e ∈ FCi
}|

That is, the more overlap in their frequent edges, the closer the two clusters.
The value of Inter(Ci→Cj) ranges from -1 to 1. If Inter(Ci→Cj) is greater than
0, cluster Ci is semantically close to cluster Cj . We merge two clusters Ci and
Cj if not only Inter(Ci→Cj) but also Inter(Cj→Ci) are greater than 0. Fur-
thermore, we select the cluster label of Cj as the label of the merged cluster if
Inter(Ci→Cj) > Inter(Cj→Ci).

Example 3.3 Consider the clusters C2 and C3 in Figure 5 again. Let ξ=0.6.
Then, FC2 ={(book, author)} and FC3 ={(book, author), (author, ln)}. Thus,
Inter(C2→C3) = (1-0)/1 = 1 because the frequent edge in C2 is frequent as
well in C3. Whereas, Inter(C3→C2) = (2-1)/2 =0.5 because the frequent edge
(author, ln) in C3 is infrequent in C2. Hence, we merge C2 and C3 and use
book/author/ln as the cluster label of the new cluster.

The final clustering result of the ten queries in Figure 1 (b) is shown in
Figure 6 (a). The semantics of the queries in a cluster can be approximately
represented by the cluster label.

Mining Positive and Negative Association Rules from XML Query 743

ID T1 T2
1 C1 C2
2 C1 NULL
3 C3 C3
4 C1 C2
5 C2 C3

(b)

Q1,Q3,Q7

C1

Q2,Q8,Q9

C2

Q5,Q6,Q10

C3

(a)

ID T1 T2
1 Q1 Q2
2 Q3 Q4
3 Q5 Q6
4 Q7 Q8
5 Q9 Q10

Fig. 6. Association Mining

4 Association Rule Mining

In this section, we discuss the second stage of our approach: mining positive and
negative association rules between the clusters. The input of this stage is the
set of 2 -cluster sequences, which is generated by replacing the queries with the
corresponding clusters created in the first stage. For example, using the final
clustering results as in Figure 6 (a), the initial XML queries in Figure 1 (b) is
transformed to a set of five 2 -cluster sequences as shown in Figure 6 (b). Note
that, outlier queries, such as query Q4, are replaced with NULL.

In this paper, we employed the metric interest on top of the support-confidence
framework as in [10] to define positive and negative association rules. We rep-
resent 1 -cluster sequences as <Ci, > or < ,Ci> to distinguish the different
positions of cluster Ci. A sequence of clusters <Ci, Cj> supports two 1 -cluster
sequences <Ci, > and < ,Cj>, and one 2 -cluster sequence <Ci, Cj>. Let D be a
database of sequences of 2-cluster over C= {C1, ..., Ck}. Let supp(<Ci, Cj>) be
the fraction of sequences in D that support it, conf (<Ci, Cj>) = supp(<Ci,Cj>)

supp(<Ci,>) ,

interest(<Ci, Cj>)= supp(<Ci,Cj>)
supp(<Ci,>)supp(<,Cj>) . Given the user defined minimum

support α, minimum confidence β and minimum interest γ, Ci⇒Cj is a positive
association rule if 1) supp(<Ci, Cj>)≥ α; 2)conf(<Ci, Cj>)≥β; 3) interest(<Ci,
Cj>))> γ. A negative association ruleCi ⇒ ¬Cj can be defined similarly. In-

Algorithm 1 Positive and Negative Association Rule Generation
Input: D, min supp, min conf, min interest
Output: PR: A set of positive association rules, NR: A set of negative association rules
Description:1: scan D to find frequent 1-sequence (F1) /*supp(<Ci,>) or supp(<,Ci>)≥min supp*/
2: P2 = F1��F1 /*candidate frequent 2-cluster sequence*/
3: for each <Ci, Cj> ∈ P2 do
4: if supp(<Ci, Cj>)≥min supp then
5: if (confidence(Ci ⇒ Cj) ≥min conf)&& (Interest(Ci ⇒ Cj)≥ min interest) then
6: PR = PR ∪ {Ci ⇒ Cj}
7: end if
8: else
9: if supp(<Ci, ¬Cj>)≥min supp then

10: if (confidence(Ci ⇒ ¬Cj) ≥min conf)&& (Interest(Ci ⇒ ¬Cj)≥ min interest) then
11: NR = NR ∪ {Ci ⇒ ¬Cj}
12: end if
13: end if
14: end if

15: end for

744 L. Chen, S.S. Bhowmick, and L.-T. Chia

Table 1. Parameter List & Clustering Accuracy

N Number of query trees 1K-10K
L Number of potential frequent rooted subtrees 8
P Maximum overlap between frequent rooted subtrees 0.5
O The ratio of outliers 0.05
D Average depth of query trees 4
F Average fanout of query trees 4

(a)

N DS IS
1K 0.026 0.082
2K 0.022 0.080
4K 0.047 0.096
6K 0.038 0.112
8K 0.051 0.128

(b)

stead of discovering frequent 2 -cluster sequences first and then deriving possible
rules as commonly done by traditional association rule mining algorithm, we dis-
cover positive and negative association rules directly. The algorithm is presented
in Algorithm 1.

Finally, we discuss how to design the replacement strategy with discovered
association rules. Without loss of generality, we assume that “the most recent
value for clusters”, Vtop, is incremented by one, each time a new query Qi is
issued. Suppose Qi is semantically contained by or close to an existing cluster
Ci, a positive association rule Ci ⇒ Cj with confidence σ was discovered, and
the current replacement value of Cj isVj . Then, we calculate a new replacement
value for Cj as Vj’ = Vj+(Vtop-Vj)×σ. Since Vj ≤ Vj’ ≤ Vtop, we delayed
the eviction of queries in cluster Cj based on the rule. It is similar for negative
association rules. For example, with a negative rule Ci ⇒ ¬Cj , we update Vj’
= Vj+(Vj-Vtop)×σ. As Vj’<Vj , we actually hasten the the purge of queries in
cluster Cj .

5 Performance Study

In this section, we evaluate the performance of our approach with some prelimi-
nary experimental results. We implemented our approach in Java. Experiments
are carried out on a Pentium IV 2.8GHz PC with 512 MB memory. The operating
system is Windows 2000 professional.

5.1 Performance of Query Clustering

Firstly, we investigate the performance of our query clustering method. Given
a DTD file, We generate synthetic query trees in the following steps: 1) A set
of potential frequent rooted subtrees is generated by controlling the overlap
between them. 2)We also create some infrequent rooted subtrees as outliers. 3)
Finally, we generate the query trees based on the rooted subtrees produced in
the first two steps. The parameters we used in the data set generation process
are summarized in Table 1 (a), where the third column shows the default values.

We conducted experiments to evaluate the accuracy, efficiency and scalability
of our clustering method respectively by varying different parameters.

– Accuracy Study. We evaluate the accuracy of our clustering method by vary-
ing the number of query trees from 1,000 to 8,000. The minimum global

Mining Positive and Negative Association Rules from XML Query 745

0

1000

2000

3000

4000

10 20 40 60 80 100

Number of Query Trees (K)

E
xe

cu
ti

on
 T

im
e

 (
se

c)
0

500

1000

1500

2000

2500

3000

3500

100 200 300 400 500

Query Numbers

E
xe

cu
tio

n
 T

im
e

(S
e

c) LRU

LRU_FQPT

LRU_AR

0

100

200

300

400

500

600

700

800

1.5 2.5 3.5 4.5 5.5

Cache Size (M)

A
v

g
R

es
po

ns
e

Ti
m

e
 (

S
ec

)

LRU

LRU_FQPT

LRU_AR

(a) (b)

(c) (d)

0

100

200

300

400

500

1 2 4 6 8 10

Number of query trees (K)

E
xe

cu
ti

on
 T

im
e

 (
se

c)

Disjointing

Pruning

Total Time

Fig. 7. Performance of Clustering

support is set as 5% and the minimum cluster support is set as 25%. Ta-
ble 1 (b) shows the average intra-cluster dissimilarity (DS) and the average
inter-cluster similarity (IS) of the resulting clusters. We observed that our
clustering method can achieve small intra-cluster dissimilarity and small
inter-cluster similarity.

– Efficiency Study. We evaluated the efficiency of the clustering method by
showing the time cost of different phases in Figure 7 (a) except the cost
of initialization step which is very trivial. The main cost of our clustering
method is the disjointing step as it recursively optimizes the intra-cluster
dissimilarity.

– Scalability Study. We evaluate the scalability of the clustering method by
duplicating the query trees until we get 100K query trees. Figure 7 (b) shows
that our clustering algorithm scales well with respect to the number of query
trees.

5.2 Performance of Replacement Strategy

We then show the effectiveness of our replacement strategy with discovered asso-
ciation rules. We used a simple XQuery processor [1] that process queries directly
from the source XML file. In our experiment, we generated a fragment of DBLP
data as the source XML document. The file size is 10.5M and there are totally
248,215 nodes. We first generate a training data set of 2 -cluster sequences to
discover positive and negative association rules. Then, we generate a testing data
set of 2 -cluster sequences to evaluate the performance of caching.

746 L. Chen, S.S. Bhowmick, and L.-T. Chia

Two sets of experiments were carried out to investigate the effect of vary-
ing the number of queries and varying the size of cache respectively. We com-
pared our association rule based LRU replacement strategy (LRU AR) with an-
other two strategies, LRU and LRU with frequent query patterns mined by [11]
(LRU FQPT). We use the Average Response Time, which is the ratio of total
execution time for answering a set of queries to the total number of queries in
this set, as the metric.
– Variation of Query Numbers. Because of the limited power of the query

processor, we vary the number of queries from 100 to 500 and the cache size
is fixed at 2.5MB. As we can see from Figure 7 (c), when the number of
queries is large, the average response time of LRU AR surpasses the other
two strategies.

– Variation of Cache Size. We vary the size of cache from 1.5M to 5.5M, and
the number of queries is fixed at 300. As shown in Figure 7 (d), the more
limited the cache size, the greater gap in average response time between
LRU AR and the other two competitors.

6 Conclusions

In this paper, we presented an approach that mines association rules from XML
queries for caching. Since our association rules address the temporal sequence
between user queries, it is more reliable in predicting future queries than the
approaches that address the frequency or recency only. Due to the intuition that
few users issue the exactly same queries sequentially, we cluster queries based on
their semantics first and then discover the positive and negative associations be-
tween them. The knowledge obtained from the discovered rules are incorporated
in designing appropriate replacement strategies. As verified by the experimental
results, our approach improved the cache performance significantly.

References

1. http://www.cs.wisc.edu/ mcilwain/classwork/cs764/.
2. F. Bonchi, F. Giannotti, C. Gozzi, and G. Manco et al. Web log data warehous-

ing and mining for intelligent web caching. In Data and Knowledge Engineering,
39(2):165-189, 2001.

3. L. Chen, E. A. Rundensteiner, and S. Wang. Xcache-a semantic caching system
for xml queries. In Demo in ACM SIGMOD, 2002.

4. T. Dalamagas, T. Cheng, K. Winkel, and T. K. Sellis. Clustering xml documents
by structure. In Proc. of SETN, 2004.

5. B. C. M. Fung, K. Wang, and M. Ester. Hierarchical document clustering using
frequent itemsets. In Proc. of SDM, 2003.

6. V. Hristidis and M. Petropoulos. Semantic caching of xml databases. In Proc. of
the 5th WebDB, 2002.

7. B. Lan, S. Bressan, B. C. Ooi, and K. L. Tan. Rule-assisted prefetching in web-
server caching. In Proc. of ACM CIKM, 2000.

Mining Positive and Negative Association Rules from XML Query 747

8. W. Lian, D. W. Cheung, N. Mamoulis, and S. Yiu. An efficient and scalable
algorithm for clustering xml documents by structure. In IEEE TKDE, vol. 16,
No. 1, 2004.

9. K. Wang, C. Xu, and B. Liu. Clustering transactions using large items. In Proc.
of ACM CIKM, 1999.

10. X. Wu, C. Zhang, and S. Zhang. Mining both positive and negative association
rules. In Proc. of ICML, 2002.

11. L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining of xml query patterns for
caching. In Proc. of 29th VLDB, 2003.

Distributed Intersection Join of Complex
 Interval Sequences

Further examples of interval sequences residing on different, independently working
computers which are connected to each other via local or wide area networks (LANs or
WANs) comprise distributed mobile networks, sensor networks or vehicle manufactur-
ers, where the development agencies are located at different places, distributed all over
the world. For instance, international companies such as DaimlerChrysler have some
development agencies which are located in Europe, some in Asia, and some located in
the US. When applied to space-filling curves, interval sequences naturally represent

Hans-Peter Kriegel, Peter Kunath, Martin Pfeifle, and Matthias Renz

University of Munich, Germany
{kriegel, kunath, pfeifle, renz}@dbs.ifi.lmu.de

Abstract. In many different application areas, e.g. space observation systems or
engineering systems of world-wide operating companies, there is a need for an
efficient distributed intersection join in order to extract new and global
knowledge. A solution for carrying out a global intersection join is to transmit all
distributed information from the clients to a central server leading to high transfer
cost. In this paper, we present a new distributed intersection join for interval
sequences of high-cardinality which tries to minimize these transmission cost.
Our approach is based on a suitable probability model for interval intersections
which is used on the server as well as on the various clients. On the client sites,
we group intervals together based on this probability model. These locally
created approximations are sent to the server. The server ranks all intersecting
approximations according to our probability model. As not all approximations
have to be refined in order to decide whether two objects intersect, we fetch the
exact information of the most promising approximations first. This strategy helps
to cut down the transmission cost considerably which is proven by our
experimental evaluation based on synthetic and real-world test data sets.

Keywords: Distributed intersection join, probability model, interval sequences.

1 Introduction

After two decades of temporal and spatial index research, the efficient management of
one- and multi-dimensional extended objects has become an enabling technology for
many novel database applications. The interval, or, more generally, the sequence of
intervals, are basic datatypes for temporal and spatial data. Interval sequences are used
to handle finite domain constraints [10] or to represent periods on transactions or valid
time dimensions [11]. Typical applications of one-dimensional interval sequences in-
clude the temporal tracing of user activity for service providers. In general, any time
series may be aggregated to an interval sequence, such as periods of “high” stock prices
for technical chart analysis (cf. Figure 1).

spatially extended objects with even intricate shapes (cf. Figure 1). By expressing spa-
tial region queries as interval sequence intersections, vital operations for the digital

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 748–760, 2005.
© Springer-Verlag Berlin Heidelberg 2005

mock-up of vehicles and airplanes [5], haptic simulations in virtual product environ-
ments [8] or engineering data management can be supported. In these areas as well as in
the areas of two-dimensional GIS and environmental information systems [7] the locally
collected data can only, with great difficulty, be transmitted to a central site to be joined
centrally there. Meeting the need of all these application ranges, we will present a dis-
tributed interval intersection join in this paper which extracts global knowledge while
taking limited bandwidth and security aspects into account.

The remainder of this paper is organized as follows. In Section 2, we present the
related work on distributed interval intersection joins. In Section 3, we shortly sketch
our general idea, followed by the presentation of the basic definitions and theorems in
Section 4. In Section 5, we show how to group different intervals together to coarser
approximations on the client site in order to reduce the overall transmission cost. After
having transmitted these approximations to the server, we present in Section 6, the serv-
er-side join algorithm trying to avoid as many as possible further client accesses for
fetching the exact interval sequence objects. In Section 7, we will present convincing
experimental results demonstrating the superiority w.r.t. low transmission cost of our
new algorithm compared to less sophisticated algorithms. We will close this paper in
Section 8 with a short summary and a few remarks on future work.

 complex objects represented by interval sequences
1 10 20 40 50 30

spatial objects
time series

web-logs

2 Related Work

Several different approaches to provide efficient interval joins already exist in the
literature, especially in the field of temporal applications [3]. For instance, Seidl et al.

Fig. 1. Interval sequences

Similarly, considerable work has been done in the area of distributed data manage-
ment [9], for instance in the area of Distributed Data Mining (DDM) [4]. Generally,
distributed databases constitute a very important and emerging research area which cru-
cially depends on efficient query processing.

proposed an interval intersection join based on the Relational Interval Tree which can
easily be implemented on top of any relational database system [2]. Furthermore, there
exist specialized index structures suitable for detecting intersecting interval sequences
[6] which can be used as foundation for an index-based nested loop join.

Distributed Intersection Join of Complex Interval Sequences 749

Unfortunately, to the best of our knowledge, there has been no work published which
brings the two independent research areas of “distributed databases” and “join process-
ing of interval sequences” together.

At first all clients collect statistical information reflecting the interval distributions
of the data residing at their own local site. Then, the clients send this statistical informa-
tion to the server (step 1). At the server site the local client statistics are merged into a
global statistic reflecting the interval distribution of all local clients. This global statistic
is sent back to each client (step 2). Each client groups “black” intervals belonging to the
same interval sequence together to coarser approximations called “gray” intervals
(step 3). This grouping process is decisively based on the data distribution of the join
partners residing on the other local clients which is reflected by the global statistic minus
the own local client statistic. The resulting statistic is not only used for the grouping
process but also for a fast filter step on the client sites. If by means of this statistic a
global intersection of a gray interval cannot be ruled out, the hull of the gray interval
along with additional aggregated information, i.e. the density of the gray interval and the
number of bytes required for sending the corresponding (compressed) exact informa-
tion, is sent to the server (step 4). The server detects all intersecting gray intervals based
on their hulls (step 5). Based on the intersection length of the hulls and the density of the
gray intervals the server computes a probability that not only the gray intervals intersect
but also the corresponding black intervals. The pairs of gray intervals with intersecting
hulls are ranked ascendingly according to a combination of the determined probability
value and the transmission cost of the exact information. The server iteratively refines
the top-listed pairs by fetching the exact information, i.e. the (compressed) black inter-

3 General Idea

The goal of this paper is to present a distributed algorithm which detects intersecting
interval sequences residing on different local clients. Note that determining pairs of
intersecting interval sequences located at the same local site is a rather straightforward
task which can be handled independently by the corresponding local clients. These lo-
cally determined result sets can easily be combined with the global result set
determined by the distributed intersection join presented in this paper. In this section,
we shortly sketch the complete distributed intersection join process (cf. Figure 2).

transmitting

client histograms

to server

transmitting

server histogram

to clients
build gray interval approximations

reloading of exact
object information
on demand

server-side

approximations (filter step) (refinement step)

step 1 step 2

on the clients

step 3

transmitting

local approximations

to the server
step 4 step 5

intersection join based on

step 6

Fig. 2. Distributed Intersection Join on Interval Sequences

750 H.-P. Kriegel et al.

vals, belonging to the corresponding gray intervals from the local clients (step 6). Gray
interval pairs which belong to object pairs already known to intersect do not have to be
refined. Thereby, we can enormously save on the overall transmission cost.

Definition 1 (gray interval sequence objects). Let id be an object identifier and W =
{(l, u) IN2, l u} be the domain of intervals which we call black intervals throughout
this paper. Furthermore, let b1 = (l1, u1), …, bn = (ln, un) W be a sequence of intervals
with ui +1 < li+1 for all i {1, …, n – 1}. Moreover, let m n and let i 0, i1, i2, …, im
IN such that 0 = i 0 < i1 < i 2 < …< im = n holds. Then, we call Ogray = (id,

, , …,) a gray interval sequence ob-
ject of cardinality m . If m equals n, we denote Ogray also as a black interval sequence
object Oblack. We call each of the j = 1, …, m groups of O gray a gray
interval Igray . If ij-1+1 equals ij, we denote Igray also as a black interval Iblack .

In the next definition, we introduce a few useful operators on gray intervals which
we will use frequently throughout the remainder of this paper.

Black object interval sequence (representing complex objects)

Gray object interval sequence (obtained from grouping black intervals together)

1 10 20 40 50 30

1 10 20 30 40 50

I 1 I 2 I 3 I 4 I 5

Operators on gray intervals according
to Definition 2 for the gray interval I1: D (I1)= 5/6 G (I1) = 1 H(I1) = (3, 8)

bi0 1+ ,...,bi1
bi1 1+ ,...,bi2

bim 1– 1+ ,...,bim

bij 1– 1+ ,...,bij

4 (Gray) Interval Sequences

In this section, we formally introduce interval sequence objects. Furthermore, we
propose an intersection probability model, which is used for the client-side grouping
approach (cf. Section 5) as well as for the server side join processing (cf. Section 6). We
start with the definition of some notions.

4.1 Definitions

Interval sequences representing complex objects often consist of very short intervals
connected by short gaps (cf. Figure 3). For instance, in the case of high resolution
linearized spatial objects the interval sequences may contain several hundred thousands
of small intervals per object. When the server request the objects from the clients, the
huge amount of interval data would lead to high transmission cost due to a low transfer
rate of the network connection. In order to overcome this obstacle, it seems promising
to pass over some “small” gaps and approximate the interval sequence by much less
intervals. In this paper, we confine ourselves to integer boundary values for intervals, as
in all investigated domains, e.g. for time series, stock charts, or spatially extended
objects linearized via space-filling curves, only integers are used due to the use of a
finite resolution.

Fig. 3. Gray object interval sequence

Distributed Intersection Join of Complex Interval Sequences 751

Definition 2 (operators on gray intervals). For any gray interval Igray = (lr ,ur),…,
(ls ,us) we define the following operators:

Density: D (Igray =

Gap: G (Igray =

Hull: H (Igray (lr ,us)

Figure 3 exemplarily demonstrates the values of these operators for a gray interval
I1. In the following, we define intersect predicates for intervals, interval sequences and
gray intervals:

Definition 3 (object intersection). Let W = {(l, u) IN2, l u} be the domain of inter-
vals, and let I = , …, and I = , …, be two gray intervals. Furthermore,
let O = (id, , , …,) and O = (id , , , …,) be two gray interval se-
quence objects. Then, the notions intersect and interlace are defined in the following
way (cf. Figure 4):

1a. Two intervals, b = (l, u) and b = (l , u) intersect if l u and l u.
1b. The intersection length intersectlength ((l, u), (l , u) of two intervals is equal to

max(0, min(u, u max(l, l
2a. Two gray intervals I and I intersect if for any i {1, …, n}, j {1, …, n } the

black intervals and intersect.
2b. Two gray intervals I and I interlace, if their hulls, H(I) and H(I) intersect.
3a. Two objects O and O intersect if for any i {1, …, m}, j {1, …, m }, the gray

intervals and intersect.
3b. Two objects O and O interlace if for any i {1, …, m}, j {1, …, m }, the gray

intervals and interlace.

Lemma 1 (non-intersecting gray intervals). Let I = , …, and I = , …,
be two gray intervals. Then the following statement holds:

interlace(I, I’) intersect(I, I’)

ui li– 1+ us lr– 1+
i r s=

0 r s=
max 1 li ui 1––+ i r 1 s+= else

b1 bn b'1 b'n'
I1 I2 Im I'1 I'2 I'm'

a)

no interlacing
no intersection

interlacing
but no intersection

interlacing
and intersection

b) c)

bi b'j

Ii I'j

Ii I'j

b1 bn b'1 b'n'

4.2 Intersection Detection

In this section, we first present two rather obvious lemmas which state whether two
gray intervals intersect or not, based on relatively little information. The first lemma
can be used as filter for detecting intersecting interval sequence objects (cf. Figure 4a).

Fig. 4. Gray object interval sequences
a) non interlacing, b) interlacing but no intersection, c) intersection

752 H.-P. Kriegel et al.

Proof. First, interlace(I, I’) intersect(I, I’) is equivalent to intersect(I, I’)
interlace(I, I’). Then, intersect(I, I’) (bi, b’j) {{b1, .., b n} {b’1, .., b’n’}}: inter-
sect(bi, b’j) = true . Let bi = (li, ui), bj = (lj , uj), H(I)=(l, u), and H(I’)=(l , u), then
l li uj u and l’ l’j ui u holds which proves that I and I’ interlace (cf. case 1a
and 2b in Definition 3).■

Let us note that the we cannot pinpoint any intersecting interval sequence objects by
means of Lemma , as interlace (I, I’) intersect(I, I’) does not hold (cf. Figure 4b).
Thus, a refined evaluation of the intersect predicate is necessary when two gray intervals
interlace. Only in the rare case where both gray intervals have maximum density, we can
abstain from this refinement step.

Lemma 2 (intersecting gray intervals). Let I = , …, and I = , …, be
two gray intervals. Then the following statement holds:

(D(I) = 1 D(I’) = 1 interlace(I, I’)) intersect(I, I’)

Proof. According to Definition 1 and 2: D(I) = 1 n = 1 and D(I’) = 1 n’ = 1.
According to Definition 3: interlace(I, I’) intersect(b1, b’1) intersect(I, I’). ■

Lemma 2 shows that we can sometimes pinpoint whether two gray interval pairs
intersect based on relatively little information. Unfortunately, as in most cases the pre-
condition of Lemma 2 does not hold, we will not be able to apply it very often. Never-
theless, it is still helpful if we can predict how probable an intersection of interlacing
gray intervals might be.

Theorem 1 (intersection probability). Let I and I be two gray intervals with densities
D = D(I) and D’ = D(I’). Furthermore, let L = intersect length(H(I), H(I’)). Then the prob-
ability P (I, I’) that the two gray intervals I and I’ intersect is equal to:

Proof. Let x be one of the points in the interlacing area. Obviously, the probability that
this point is covered by an interval contained in I is equal to the density D. Subsequently,
the probability that two intervals I and I’ intersect at the point x is P x = D D’. The prob-
ability, that either x or another point y x is covered by intervals from I and I’ is
P{x,y} = D D’ + (1 - D D’) D D’. As we assume that the interval bounds are mapped
to discrete integer values, the probability that I and I’ share at least one point can be
computed as follows:

b1 bn b'1 b'n'

P I I 1 1 D D–
L

–=

P I I D D 1 D D–
i

i 0=

L 1–
D D

1 1 D D–
L

–
1 1 D D––
-- 1 1 D D–

L
–= = = ■

4.3 Intersection Probability

The probability model introduced in this section is easy to compute and will be applied
in various different forms throughout our approach. The model is equal to the coin-toss
experiment, i.e. it is a Bernoulli experiment. It assumes that the intervals and gaps
covered by a gray interval are equally distributed.

 Distributed Intersection Join of Complex Interval Sequences 753

Note that Lemma 1 and 2 can be derived from the above theorem by setting the
interlacing length L to 0 (Lemma 1) or setting D and D’ to 1 (Lemma 2). Similar to the
above reasoning, we are going to derive the probability that one gray interval I0 inter-
sects at least one of n other gray intervals I1, .., In.

Theorem 2 (combined intersection probability). Let I0 be a gray interval that intersects
with n other gray intervals Ii, i 1..n, with a probability P(I0, Ii). Then, the total prob-
ability P(I0) that I0 intersects with at least one of the other gray intervals can be com-
puted by

Proof. The probability P’(I0) that none of the gray intervals I1, .., In intersect with I0 is
P’(I0) = (1-P(I0, I1)) ... (1-P (I0, In)). Consequently, the total probability P(I0) that I0
intersects with at least one of the other gray intervals is P(I0) = 1-P’(I0). ■

Definition 4 (intersection probability histogram). Let IB = [0, max IN] be a domain
of interval bounds. Let the natural number IN denote the resolution, and = max/
be the corresponding bucket size of the histogram. Let b i, = [1 + (i – 1)· ,1 + i·) de-
note the span of bucket i, i {1, …, }. Let further DB be a database of interval se-
quence objects and the function (oj, bi,) denotes the sum intersectlength(, bi,) over
all intervals of the interval sequence object oj. Then, (DB,) = (n1, , n) IN is
called the intersection probability histogram on DB with resolution , iff for all
i {1,.., }:

P I0 1 1 P I0 Ii–
i 1=

n
–=

ni 1= 1
oj bi--------------------------–

oj DB

–

5 Client-Side Approximation of Interval Sequences

The central question is how to group the interval sequence of a client object into gray
intervals serving as suitable object approximations. In this section, we first introduce
probability histograms which are used to estimate the intersection probability of gray
intervals. Secondly, we present our cost model which takes the probability histograms
as well as the transmission cost into account. Finally, we present a cost-based grouping
algorithm which aims at minimizing the overall transmission cost.

5.1 Estimation of the Intersection Probability

We use simple statistics of the interval sequence objects to estimate the probability
P(I

gray
) that any gray interval I

gray
 intersects with at least one other gray interval located

on a different client. In order to cope with arbitrary interval distributions, histograms
can be employed to capture the data characteristics at any desired resolution. The
expected intersection probability P(I

gray
) can be determined by using an appropriate

intersection probability histogram which reflects aggregated information over all
interval sequence objects distributed over all local clients.

754 H.-P. Kriegel et al.

In the above definition, we map an interval sequence object to gray intervals
congruent to the histogram buckets each having a density . This density
corresponds to the probability that one point x bi, is intersected by the interval
sequence object of oj. Theorem 2 shows that the value ni in Definiton 4 reflects the
probability that x bi, is intersected by at least one interval sequence object of the
domain DB.

All local clients send their own intersection probability histogram to the server. The
server computes for each client Cj a specific global intersection probability histogram

j.

Definition 5 (global intersection probability histogram). Let DB1, .., DBm be the data
sets of m different local clients with congruent intersection probability histograms

(DBs,) = (n1,s, , n ,s), s {1,.., m}. Then, the global intersection probability
histogram j(,) = (n1

j, , n j) for the client C j can be computed as follows:

Similar to the argumentation following Definition 4, the value ni
j of j in

Definition 5 reflects the probability that x bi, is intersected by at least one interval
sequence object located at a client Cs where s {1,.., m}\j.

The overall join cost costjoin related to a gray interval I gray are composed of two
parts, the filter cost costfilter and the refinement cost refine:

costjoin(Igray) = cost filter(Igray) + costrefine(Igray).

Filter Cost. The filter cost costfilter(Igray) related to a gray interval Igray depends
mainly on the cost required to transmit the aggregated information of Igray to the server.
Furthermore, transmission includes the necessary identifier of Igray, the hull H(Igray) and
the density D (Igray). The total size of the transmitted data is constant, thus, we penalize
each transmission by a constant ctrans which reflects the transmission cost related to one
gray interval.

Refinement Cost. The refinement cost related to Igray depend on whether the server asks
for the exact information of Igray during the join process or not. Obviously, the probabil-
ity that the server asks for the exact information depends on the probability whether Igray
intersects at least one gray interval or not. Thus we can estimate the refinement cost as
follows:

costrefine(Igray) = costtrans(Igray),

oj bi

DBs
s 1 m=
s j ni

j
1 1 ni s–

s 1=
s j

m
–=

1 1 P Igray Ii–
i 1=

–

5.2 Cost Model

The approximation quality has a significant influence on the performance of the
multi-step join process. If we adjust the approximation quality too low, for example by
taking one-value approximations, the filter step is not very selective, thus many exact
object informations have to be requested from the server. On the other hand, if we
choose very accurate approximations, the initial transmission cost for sending the
aggregated information of the gray intervals to the server are very high.

 Distributed Intersection Join of Complex Interval Sequences 755

where costtrans(Igray) denotes the cost required to transmit the gray interval Igray from
client C j to the server. Furthermore, denotes a gray interval having the extension of
the histogram bucket and a density equal to the value ni

j of j (cf. Definition 5).
 denotes the probability that Igray intersects at least one gray interval in the

bucket stored at a client Cs where s {1,.., m}\j (cf. Theorem 1). The probability
that Igray intersects at least one gray interval in any bucket can be computed by means of
Theorem 2 which is reflected in the above equation for costrefine(Igray).

rank(I, I’) = (1 - P(I, I’)) (costtransmit(I) + cost transmit(I’))

Thereby, the intersection probability P(I, I’) between two interlacing gray intervals
is computed according to Theorem 1. Note that all transmitted information is stored on
the server site. Therefore, for each gray interval I which has already been transmitted
from a local client to the server costtransmit(I) is equal to 0.

Ii
bi

P Igray Ii
bi

GroupIS (Igray,
j(DB,v)) {

interval_pair := split_at_maximum_gap(Igray);
Ileft := interval_pair.left; Iright := interval_pair.right;
costgray := costjoin(Igray);
costdec := costjoin(Ileft) + costjoin(Iright);

if costgray > costdec then return GroupIS (Ileft,
j(DB,v)) GroupIS(Iright,,

j (DB,v));
else return Igray; }

5.3 Grouping Algorithm

Our cost-based grouping algorithm depicted in Figure 5 is a greedy approach which is
performed in top-down fashion. It starts with a one-value approximation of the input
interval sequence, i.e. all intervals are grouped into one large gray interval I

gray
. At first

we search the largest gap of I
gray

 and split it at this gap into two smaller gray intervals I
left

and I

right
. As long as the estimated transmission cost of the resulting gray intervals are

smaller than the cost according to the unsplitted interval I
gray

, the algorithm is applied
recursively to both gray intervals I

left
 and I

right
.

6 Server-Side Join Algorithm

The server-side join algorithm is based on the multi-step query processing paradigm.
First, we detect all interlacing objects (cf. Definition 3). In order to decide whether an
interlacing object pair intersects, it suffices to detect one intersecting gray interval pair
of this object combination. Consequently, all remaining intersection tests according to
these two objects can be discarded and the corresponding transmission cost can be
saved. Therefore, it is desirable to rank interlacing gray intervals according to their
intersection probability and their transmission cost. Obviously, the intersection proba-
bility should be high and the transmission cost should be low for a top-ranked
interlacing gray interval pair. Thus, we compute the ranking value for a pair (I, I’) as
follows:

Fig. 5. Grouping algorithm GroupIS

756 H.-P. Kriegel et al.

The interlacing gray interval pairs are organized in ascending order according to
their ranking value in a sorted list SortList. The join algorithm iteratively carries out the
refinement step for the top-listed gray interval pair. After the exact information of a gray
interval I was transmitted from a local client to the server, rank(I, Ii) of all gray interval
pairs (I, Ii) stored in SortList is updated. Furthermore, if an object intersection is detected
during the refinement step of the top-listed gray interval pair, all gray interval pairs
belonging to the corresponding object pair are deleted from SortList.

Test Data Sets. The tests are based on a test data set CAR which consists of 200 high-res-
olution 3D CAD objects provided by our industrial partner, a German car manufacturer.
These voxelized objects have been linearized via a space filling curve leading to 200
interval sequence objects. Each of these objects consists of approximately 50,000 black
intervals. Furthermore, we used an artificial test data set ART consisting of 1,024 inter-
val sequence objects each represented by 10,000 black intervals. Th e objects are equally
distributed in a range [0..227-1] and the gap lengths inside an object follow a normal dis-
tribution. During the experiments, the objects of both test data sets were equally distrib-
uted on the available clients.

Grouping. We used two different grouping strategies for forming the gray intervals.
The MaxGap approach tries to minimize the number of gray intervals while not allow-
ing that a maximum gap G(Igray) of any gray interval Igray exceeds a given MAXGAP
parameter. By varying this MAXGAP parameter, we can find the optimum trade-off be-
tween the two opposing grouping goals of Section 5.2, namely accurate approximations
but a small number of gray intervals. A one-value interval approximation is achieved
by setting the MAXGAP parameter to infinite. If the parameter is set to zero, each gray
intervals is identical to one black interval. Furthermore, we used the GroupIS approach
according to Figure 5, where we set the resolution of the used histograms to 10,000
buckets by default.

1,E+00

1,E+01

1,E+02

1,E+03

1,E+00 1,E+03 1,E+06
1,E+00

1,E+01

1,E+02

1,E+03

1,E+00 1,E+02 1,E+04 1,E+06 1,E+08

NONE

ZLIB

MAXGAP

GroupIS

tr
an

sm
is

si
on

 c
os

t [
M

B
yt

e]

MaxGap

Packer

a) b)

NONE ZLIBNONE ZLIB

NONE

ZLIB

MAXGAP

MaxGap GroupIS

Packer

tr
an

sm
is

si
on

 c
os

t [
M

B
yt

e]

7 Experiments

In this section, we evaluate the performance of our approach with a special emphasis on
the overall transmission cost which are measured in bytes. All experiments were
performed on a Pentium 4/2600 machine with IDE hard drives.

Fig. 6. Grouping strategies using (un)compressed data
(a) CAR and (b) ART which are equally distributed on 4 local clients

Distributed Intersection Join of Complex Interval Sequences 757

Client-Side Grouping. In a first set of experiments, we compare our different cli-
ent-side grouping strategies to each other. Figure 6 shows that for the MaxGap approach
we have rather high transmission cost when using too small or two large MAXGAP
parameters. When the parameter is two small many hulls have to be transmitted. On the
other hand, when the parameter is very high the filter selectivity is very bad leading to
high transmission cost during the refinement step of the server-side join algorithm. Fig-
ure 6 shows that by applying suitable packers for compressing the exact information of
the gray intervals, these cost can dramatically be reduced. Note that our GroupIS ap-
proach does not produce higher transmission cost than the “optimal” MaxGap approach
independent whether a packer (ZLIB [1]) is used or not (NONE).

In another experiment, we investigated the dependency of the different grouping
approaches for a varying number of clients. In this experiment, we transmitted the exact
information of the gray intervals in a compressed way. Figure 7 shows that our GroupIS
approach yields optimum results independent of the number of used clients. Again, for
low MAXGAP values, the number of hulls sent to the server is quite large and dominates
the overall transmission cost. High MAXGAP values lead to a very small number of
gray intervals per object, thus, almost all join candidates have to be refined.

Server-Side Join. In Figure 8 it is shown how the ranking function influences the trans-
mission cost of the refinement step. Thereby, we compare our cost-based ranking ap-
proach (CBR) with the following methods which differ in the order in which the join

1,E+00

1,E+01

1,E+02

1,E+00 1,E+02 1,E+04 1,E+06 1,E+082 4 8 162 4 8 16
1,E+00

1,E+01

1,E+02

1,E+00 1,E+02 1,E+04 1,E+06 1,E+08
MAXGAPtr

an
sm

is
si

on
 c

os
t [

M
B

yt
e]

GroupISMaxGap

Clients

a) b)

tr
an

sm
is

si
on

 c
os

t [
M

B
yt

e]

MAXGAP

GroupISMaxGap

Clients

0
10
20
30
40
50
60
70
80

CBR PBR LBR RND
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5

CBR PBR LBR RNDtr
an

sm
is

si
on

 c
os

t [
M

B
yt

e]

tr
an

sm
is

si
on

 r
eq

ue
st

s
[x

 1
00

0]a) b)

Fig. 7. Different grouping strategies on the two datasets (ZLIB)
(a) CAR and (b) ART which are equally distributed on 2, 4, 8 and 16 local clients

Fig. 8. Different join strategies (4 Clients, ZLIB, GroupIS, ART)
(a) transmission cost (b) transmission requests

758 H.-P. Kriegel et al.

of transmission requests, i.e. our cost-based ranking approach produces the smallest ad-
ditional communication overhead. Note that we made similar results for the CAR data
set, a varying number of clients, and if we transmit the exact information uncompressed.

In our future work, we plan to develop an even more efficient approximative distrib-
uted intersection join allowing fuzzy query responses.

8 Conclusion

In this paper, we presented an intersection join for complex objects represented by
interval sequences. Thereby the objects are assumed to be distributed on clients located
at different sites. The intersection join is executed at a central server which is connected
to all clients via local or wide area networks. The main goal of our approach is to
minimize the client-server-communication cost incurred by the server side join process.
Our proposed solution is based on generating approximations of the interval sequence
data which are transmitted from the clients to the server site for a filter step. In contrast
to existing solutions, e.g. error-bound approaches, our statistic driven proposal
achieves a good trade-off between the communication cost of the filter and the
refinement step. It adapts automatically to different client-server characteristics, e.g.
different data sets, varying number of clients, or the used compression technique.
Another contribution of this work is a cost based strategy for the refinement step. The
experiments show that our approach leads to a speed-up of more than one order of
magnitude compared to the use of one-value approximations or the use of no
approximations at all.

References

1. Deutsch P.: RFC1951, DEFLATE Compressed Data Format Specification.
ht-tp://rfc.net/rfc1951.html, 1996.

2. Enderle J., Hampel M., Seidl T.: Joining Interval Data in Relational Databases, Proc. ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD'04), Paris, France, 2004.

3. Gao D., Jensen C. S., Snodgrass R. T., Soo M. D.: Join Operations in Temporal Databases,
A Time Center Technical Report (TR-71), 2002.

4. Kargupta H., Chan P.: Advances in Distributed and Parallel Knowledge Discovery,
AAAI/MIT Press, 2000.

5. Kriegel H.-P., Pfeifle M., Pötke M., Seidl T.: Spatial Query Processing for High Resolutions,
Proc. 8th Int. Conf. on Database Systems for Advanced Applications (DASFAA), Kyoto,
Japan, pp. 17-26, 2003.

6. Kriegel H.-P., Pötke M., Seidl T.: Interval Sequences: An Object-Relational Approach to
Manage Spatial and Temporal Data, Proc. 7th Int. Symposium on Spatial and Temporal
Databases (SSTD), LNCS 2121: pp. 481-501, 2001.

7. Medeiros C. B., Pires F.: Databases for GIS, ACM SIGMOD Record, 23(1): pp. 107-115,
1994.

8. McNeely W. A., Puterbaugh K. D., Troy J. J.: Six Degree of Freedom Haptic Rendering
Using Voxel Sampling, ACM SIGGRAPH, pp. 401-408, 1999.

Distributed Intersection Join of Complex Interval Sequences 759

candidates are refined: Ordered exclusively by the intersection probability (PBR), by
the transmission cost (LBR), or in a randomized order (RND). This experiment shows
that our approach achieves the lowest transmission cost, as well as the lowest number

9. Özsu T., Valduriez P.: Principles of Distributed Database Systems, Prentice Hall, ISBN
0-13-659707-6, 1999.

10. Ramaswamy S.: Efficient Indexing for Constraint and Temporal Databases, Proc. 6th Int.
Conf. on Database Theory (ICDT), LNCS 1186, pp. 419-413, 1997.

11. Tansel A. U., Clifford J., Gadia S., Jajodia S., Segev A., Snodgrass R.: Temporal Databases:
Theory, Design and Implementation, Redwood City, CA, 1993.

760 H.-P. Kriegel et al.

Using Prefix-Trees for Efficiently Computing Set Joins

Ravindranath Jampani and Vikram Pudi

Center for Data Engineering,
International Institute of Information Technology, Hyderabad, India

ravi@students.iiit.net, vikram@iiit.net

Abstract. Joins on set-valued attributes (set joins) have numerous database appli-
cations. In this paper we propose PRETTI (PREfix Tree based seT joIn) – a suite
of set join algorithms for containment, overlap and equality join predicates. Our
algorithms use prefix trees and inverted indices. These structures are constructed
on-the-fly if they are not already precomputed. This feature makes our algorithms
usable for relations without indices and when joining intermediate results during
join queries with more than two relations. Another feature of our algorithms is
that results are output continuously during their execution and not just at the end.
Experiments on real life datasets show that the total execution time of our algo-
rithms is significantly less than that of previous approaches, even when the indices
required by our algorithms are not precomputed.

1 Introduction

Set-valued attributes are a natural and concise representation for many real life mod-
els. Object Oriented and Object Relational DBMS require the support of set-valued
attributes. Efficient execution of queries involving these attributes is therefore an impor-
tant problem [14]. Set join [11, 10, 7, 6, 13] is perhaps the most important operator on
set-valued data since it is useful in several real-world problems, while at the same time
being difficult to compute [2]. A set join between two relations R and S, retrieves pairs
of records (tR,tS), tR ∈ R and tS ∈ S, for which tR.p θ tS .q returns true, where p
and q are set-valued attributes and θ can be any boolean valued function over two sets.
Examples of such functions include set containment, set equality and set overlap.

As an example of a set containment join, consider the join of a relation students
with a relation courses, where students has a set-valued attribute coursesTaken, and
courses has a set-valued attribute prerequisites. This join finds all students eligible for
taking each course when the predicate is courses.prerequisites ⊆ students.courses.
Overlap joins can be very useful in any match-making domain. One example is to find
pairs of customers of amazon.com who purchase at least 5 books in common.

A number of partition based [11, 10] and inverted index based approaches [7, 6, 13]
have been proposed for set joins. These studies were a welcome first step in addressing
the problem of efficient computation of set joins. The partition based approaches do not
require any precomputed index, but they are in general not as efficient as the inverted
index based approaches [7]. The state-of-the-art inverted index based approaches, while
being more efficient, have the drawback of requiring a precomputed index – this slows
down database updates.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 761–772, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

762 R. Jampani and V. Pudi

Our contributions in this paper are as follows:

1. We propose PRETTI (PREfix Tree based seT joIn) – a suite of novel algorithms for
set containment, overlap and equality joins.

2. Our algorithms use prefix trees [4] in addition to inverted index structures. This
helps utilize overlaps in records resulting in less rework.

3. Our algorithms build the required prefix trees and inverted indices “on-the-fly”.
This makes them usable for relations without indices and when joining intermediate
results during join queries with more than two relations.

4. Computing indices on-the-fly instead of precomputing them means that there is no
maintenance cost in terms of disk-space or time for updates.

5. Our algorithms can beneficially utilize precomputed indices if they are available. We
note that our algorithms out-perform previous approaches even when our algorithms
build the indices on-the-fly.

6. Join results are output continuously during the execution of the algorithm and not
just at the end. In experiments on real life datasets where the join results are huge
the (initial) response was almost instantaneous.

7. The output of our algorithms is organized without special effort in the following
fashion: the output corresponding to records (in one of the relations) that have
the same set contents are clumped together. Further, the output corresponding to
“prefixes” of a record appear just before the output corresponding to that record.
This organization of output helps in making sense of large join results.

We assume a nested representation of the data [11]. In this representation all the set
elements are stored at the same place, facilitating efficient joins on them.

Organization. In Section 2, we formally define the set join problem. Next, in Section 3,
we motivate the use of prefix tree and inverted index structures for the computation of
set joins and their on-the-fly construction. In Section 4, we present the proposed set
join algorithms. Related work is described in Section 5. The performance of the set join
algorithms is evaluated in Section 6. Finally, in Section 7, we summarize the conclusions
of our study.

2 Problem Definition

Definition 1 (Set Join). The set join of two relations R and S is defined as R &'pθq S
where p and q are set-valued attributes, and θ is a join condition. A pair of records
tR ∈ R and tS ∈ S will be present in the join result, if θ is satisfied for tR.p and tS .q.

For pedagogical reasons, we assume that relations R and S contain only two attributes:
(1) the set-valued attribute that they are joined on, and (2) the record identifier (rid).
Hence, each record t contains a set, which we refer to as t.set. For convenience, we use
tR to represent tR.p and tS to represent tS .q.

In this paper we study set containment, equality and overlap joins. The set contain-
ment join retrieves all pairs of records (tR,tS), for which tR ⊆ tS . In equality join,
(tR,tS) is in the result iff tR and tS are exactly the same. Set overlap join retrieves all

Using Prefix-Trees for Efficiently Computing Set Joins 763

pairs (tR,tS), for which tR and tS has at least one common element. We also handle the
more general overlap join called as ε-overlap, where tR and tS should have at least ε
common elements.

3 Index Structures for Set Joins

In this section, we motivate the use of prefix trees [4] and inverted indices [5] for the
computation of set joins. We also discuss how they can be computed efficiently on-
the-fly, instead of precomputing them. As mentioned in the Introduction, this is useful
because no disk-space is reserved for the index, and database updates require no extra
work in keeping the index up-to-date.

3.1 Prefix Trees

Prefix trees have been used in [4] to store sets for the purpose of mining frequent
itemsets. This has resulted in several elegant algorithms [4, 3] for that task. Prefix trees
can similarly be used to store sets for set-join applications. Since prefix trees store
(ordered) sequences and sets are unordered, an ordering is imposed upon the set-elements
based on their frequency of occurrence (in a given relation).

Each node n in the tree (except root) holds a set-element (referred to as n.element).
The node n also represents a set (referred to as n.set) – containing the elements stored in
n and its ancestors. We also store in n, an rid-list containing the rids (record identifiers)
of all records whose content is the same as n.set. We refer to this list as n.ridlist. The
structure is compact because a common prefix of several sets is represented only once.
Ordering the set-elements based on their frequency helps in identifying more and longer
common prefixes.

In addition to saving space, a prefix tree also saves on time because tasks that need to
be performed over all the sets can be performed just once for each common prefix. Thus
prefix trees help avoid redundant work. Our algorithm to construct prefix trees (adapted
from [4]) is as follows:

First the root node of the prefix tree is created. Each record t of the relation is then
inserted into the tree as follows: The elements of t are first sorted in decreasing order
of their frequency in the relation. Starting from the root of the tree, we follow a path P
as long as the sequence of elements in the nodes of P is a prefix of the sorted record t.
We finally reach a node n such that n.set is the longest prefix of t currently represented
in the tree. Then we add a path P ′ of nodes, as descendants of n, to hold the remaining
elements of t. The last node in the entire path P + P ′ from the root now represents the
newly inserted record t. The rid of t is appended to the ridlist of this node.

The above algorithm is sufficient if the entire prefix tree fits in main memory.
Otherwise, we logically divide the database into horizontal partitions such that the
prefix tree built on that partition fits in main memory. This reduces the efficiency of the
above approach because common prefixes between records across partitions are not used.

3.2 Inverted Indices

Inverted indices were first used in [6] for the computation of set joins. A recurring task
in set join computation is to find all the records that contain a given set. It is possible to

764 R. Jampani and V. Pudi

do this efficiently using an inverted index, in which for each element in the domain D
a list of record-identifiers (rids) of records having that element is maintained. Thus, the
records containing a given set can be found by just intersecting the lists corresponding
to each element in the set.

The inverted index can be constructed by making a single pass over the data. We
build a list for each set-element x containing the rids of records containing x. We refer
to this list as the inverted list of x and represent it by xlist. Using the inverted index, the
list of records that contain a given set X (referred to as the inverted list of X , or Xlist)
can be computed by simply intersecting the inverted lists of each element in X .

As noted earlier, if the entire index does not fit in main memory, the database is
logically divided into horizontal partitions such that the index constructed over that
partition fits in main memory. Note that this partitioning of the database differs from the
vertical partitioning in [7]. There, the set-elements were divided into disjoint partitions,
whereas here, the records are divided into disjoint partitions.

Precomputing Indices. Building the above index structures (both prefix trees and in-
verted indices) on-the-fly has a cost of Θ(N), where N is the total number of elements
in all records of the relation. The constant factor involved is reasonably small. For prefix
trees, the constant factor would include log(k) – the additional cost for sorting elements
of each record of length k. A similar cost (with a still smaller constant factor) would be
incurred for simply reading a precomputed index from disk. We feel that in most cases,
the additional cost for building indices on-the-fly is justified by the index maintenance
costs in terms of disk space and update time. However, we note that if a pre-computed
index is available, our algorithms described in the next section can make use of it directly
instead of building it on-the-fly.

4 The PRETTI Algorithms

In this section we present the PRETTI (PREfix Tree based seT joIn) suite of algorithms
for set containment, overlap and equality joins between two relations R and S. These
algorithms use a prefix tree on R and an inverted index on S, unless otherwise specified.
For equality join we give an additional algorithm using prefix trees on both R and S.

Algorithm PRETTI: Nested Loop(R, S)

1 for each partition PR in R
2 RPT = build prefixTree(PR)
3 for each partition PS in S
4 SIL = build invertedList(PS)
5 Set Join(RPT , SIL)

Fig. 1. Partition Nested Loop Set Join

If the main memory is insufficient, a nested loop join is used, as shown in Figure 1.
In the nested loop join, each relation is partitioned horizontally so that indices con-
structed on each pair of partitions (PR, PS), PR ∈ R and PS ∈ S, fit in main memory.

Using Prefix-Trees for Efficiently Computing Set Joins 765

The required join algorithm is performed on each such pair. Therefore, without loss of
generality, we assume that the relations to be joined can be processed in main memory.

4.1 Set Containment Join

A set containment join, represented by R &'p⊆q S, is one of the important operators
among set joins. It was shown in [7] that set containment joins using inverted indices
on S are more efficient than signature-based and partition-based approaches. In our
approach, we retain this idea of using an inverted index on S (represented as SIL) and
in addition use a prefix tree on R (represented as RPT).

We need to find pairs of records (tR, tS) from R and S such that tR ⊆ tS . That
is, for each node n of RPT , we need to find n.setlist – the records in S that contain
n.set. To do this we need to intersect the inverted lists (from SIL) of all elements in
n.set. Now, it is clear that n.set = {n.element} ∪m.set where m is the parent of n.
Therefore, n.setlist = n.elementlist ∩m.setlist. It follows that for each node n, we
can compute n.setlist by processing the nodes of RPT in a depth-first traversal, since
in such a traversal the parent m of n is visited before n.

The pseudo-code of the above algorithm is shown in Figure 2. The function Set
Containment is a recursive implementation of depth-first traversal over RPT . Initially
it is called separately for each child n of the root of RPT with the following arguments –
(1) n itself, and (2) n.setlist (initially equal to n.elementlist from SIL). It first outputs
pairs of rids of records (ridR, ridS) such that ridR ∈ n.ridlist and ridS ∈ n.setlist

(lines 1–3 of Figure 2). Then, for each child c of n, it computes c.setlist by intersecting
n.setlist with c.elementlist, which is obtained from SIL (lines 5–7).

Algorithm PRETTI:Set Containment(n, n.setlist)

1 for each ridR in n.ridlist do
2 for each ridS in n.setlist do
3 output(ridR, ridS)
4
5 for each child c of n do
6 c.setlist = n.setlist ∩ c.elementlist

7 Set Containment(c, c.setlist)

Fig. 2. Set Containment Join

4.2 Set Overlap Join

The set overlap join retrieves all pairs of records (tR, tS) from relations R and S, for
which |tR ∩ tS | ≥ 1. A more general form is ε-overlap where |tR ∩ tS | ≥ ε, where ε is
a user-specified parameter. We again use a prefix tree on R and an inverted index on S.
However, for pedagogical reasons, we first explain the algorithm without using a prefix
tree on R.

Without Prefix Trees. For each record tR in R, we need to determine all the records
tS in S such that tR and tS share ε elements. To do this, we build an array CountS
that holds for each record in S, the number of elements it contains in common with tR.

766 R. Jampani and V. Pudi

This array can be built by simply scanning each rid in the inverted lists (in SIL) of all
elements in tR and incrementing its counter in CountS . If and when the count of an rid
in CountS reaches ε, that rid along with the rid of tR is output because then they share
ε elements in common.

The above approach does a lot of redundant work – if two records are identical, the
above operation can be performed just once for both records. Even if the two records
are not exactly equal, but share several elements in common, much of the work can
be reused. Using a prefix tree on R can help identify such common elements between
transactions and avoid redundant work. We now describe this approach.

With Prefix Trees. An immediate benefit that is obtained by using a prefix tree is that
the above operation of building the CountS array, etc. needs to be done only once for
all records in the ridlist of each node. In addition, since the set corresponding to a
node n shares all the elements of its parent node m, we can reuse the CountS array of
m for processing n – this CountS array is up-to-date with respect to the inverted lists
of all elements in m. We only need to update the CountS array by scanning each rid
in n.elementlist and incrementing its counter. We note that partial results are output
as soon as the value of a counter reaches ε, instead of waiting till CountS is updated
completely for node n.

In the above procedure, we observe that if the CountS array for node m has an entry
whose count equals or exceeds ε, then it would automatically equal or exceed ε even for
n. Therefore, we maintain the rids corresponding to such entries of CountS separately
in an array called Cursol. Then, while processing node n, we output the pairs of rids in
Cursol and n.ridlist, without further processing.

The above paragraphs describe how the CountS array of a parent node can be reused
at a given node. In a depth-first traversal of the prefix tree, a node n and all its children
are visited before the next sibling of n is visited. In order to ensure that theCountS array
is usable by the next sibling of n, we need to undo changes made to it while processing
n (and its children). This is achieved by simply scanning each rid in n.elementlist and
decrementing its counter, after the processing over n has been completed. Finally, if this
decrement operation causes an entry in CountS to fall below ε, the corresponding rid
needs to be removed from Cursol.

The pseudo-code of the algorithm described above is shown in Figure 3. Like the
set containment join (Figure 2), the overall structure of this algorithm is a recursive
implementation of a depth-first traversal over RPT . It is initially called with the root of
RPT as the first argument. The CountS array described above is the second argument
and is initialized to zeros before calling the function for the first time. The third argument
to the function is Cursol, which as described above, is an array of rids corresponding to
the entries of CountS whose values equal or exceed ε. It is initially empty.

4.3 Set Equality Join

The set equality join retrieves all pairs of records (tR, tS) from relations R and S, for
which tR == tS . We present two different algorithms for set equality join. The first
algorithm is a variant of the set containment join presented in Section 4.1 and therefore
uses a prefix tree on relation R and an inverted index on S. The second algorithm uses
prefix trees on both relations and no inverted index.

Using Prefix-Trees for Efficiently Computing Set Joins 767

Algorithm Set Overlap (n, CountS , Cursol)

1 for each child c of n do
2 for each ridS in c.elementlist

3 CountS [ridS] + + // increment
4 if CountS [ridS] == ε
5 append ridS to Cursol

6 for each ridR in c.ridlist do
7 output(ridR, ridS)
8
9 Set Overlap (c, CountS , Cursol)
10
11 for each ridS in c.elementlist

12 CountS [ridS] − − // decrement
13 if CountS [ridS] == ε − 1
14 delete ridS from Cursol

Fig. 3. Set Overlap Join

Using a Prefix Tree and an Inverted Index. The set equality join can be considered to
be a special case of the set containment join – we first find all pairs (tR, tS) fromR and S
such that tR ⊆ tS and among these pairs, we output only those for which |tR| == |tS |.
We can obtain |tR| from the depth of the node corresponding to tR in the prefix-tree.
The value of |tS | can be precomputed and stored while building the inverted index on S
– this results in a small memory overhead.

Using Two Prefix Trees. An equality join can be computed efficiently when both re-
lations R and S are sorted on the join attribute. We achieve this by constructing prefix
trees RPT and SPT on R and S, respectively. A depth-first traversal on RPT or SPT

yields the sets stored in it in a sorted lexicographic order, as explained below.
As mentioned in Section 3.1, the individual set elements are ordered based on their

frequency in each relation. Here, we order them based on their total frequency in both
relations. We then define the lexicographic ordering of sets with respect to this frequency-
based ordering of individual set elements. Note that prefix tree construction is more
efficient than generic sorting since it requires only Θ(N) time (see Section 3).

The equality join algorithm then merely consists of a simultaneous depth-first traver-
sal over both RPT and SPT . Let the current nodes during the traversals be nR and
nS in RPT and SPT , respectively. If nR.set < nS .set, then the traversal over SPT is
suspended until nR.set == nS .set. Similarly, if nR.set > nS .set, then the traversal
over RPT is suspended. As long as nR.set == nS .set, the pairs of rids in the ridlists
of nR and nS are output.

Note that for each node n in a prefix tree, we do not store n.set in the node. Instead,
this is computed on the fly during the depth-first traversal by forming the union of the
element fields stored at n and its ancestors.

768 R. Jampani and V. Pudi

5 Related Work

Set join operators received significant attention recently. In [2], the authors showed that
set-joins are one of the hardest operators to optimize. Several nested loop join techniques
were evaluated in [5] and signature-hash join was found to be the best among them. A
recent work [13] studied more complex varieties of similarity joins on set valued data.
Applicability of set division operator for containment join on set-data in first normal form
is discussed in [12]. The Apriori algorithm [1] for mining frequent itemsets has been
suggested for containment joins since it counts the occurances of “candidate itemsets”
in set-data.

Several partition based approaches for set joins have been proposed such as PSJ [11],
APSJ, DCJ and ADCJ [9, 10]. In these approaches, the relations are partitioned based
on hash functions such that pairs of records in the output fall in the same partition.
Although faster than signature based methods, their performance heavily depends on
the number of partitions and the hash function used. A bad partitioning can make these
approaches perform near the worst case quadratic time complexity due to false drops.
Though adaptive approaches [10] have been proposed to overcome the first drawback,
the problem of false drops still remains. Also, most adaptive approaches perform better
than PSJ only in cases of very large average set cardinality [9].

Block Nested Loop Join (BNL) was proposed in [7]. It first constructs an inverted
index SIL over the relation S. Then, for all elements in each record tR ∈ R, the
corresponding inverted lists are intersected to get the records in S that contain tR. Since
the complete relation S may not fit in main memory SIL is vertically partitioned into a
number of blocks such that each block fits in main memory. Each partition has inverted
lists of a subset of the total elements in the domain.

In BNL, instead of loading R record by record, a page of records is read. For each
page of R all blocks of SIL are loaded one by one and processed. Since all elements in
a record of R need not belong to a single block of S, temporary files are used to store
the partial results for each block.

The major drawbacks of BNL (w.r.t. PRETTI) are: (1) In BNL, overlaps between
records are not taken into account. (2) Due to the vertical partitioning approach, BNL
needs to maintain temporary files. The sizes of these files can be of the order of output
size, which can be quadratic over the size of the relations. (3) To build a complete
vertical partition, the entire database needs to be scanned. This excludes the possibility
of constructing a vertical partition on-the-fly.

6 Experiments

In this section we compare our proposed algorithms with BNL [7] and partition based
PSJ [11] and APSJ [10] algorithms. We mainly compare our approach with BNL since
it was shown [7] to outperform partition based PSJ. In this section we always perform
self-joins, i.e. R = S. We also assume that R is the outer relation and S is the inner
relation. All the experiments are performed on a 2.6 GHz Celeron PC with 256 MB main
memory, running Red Hat Linux 2.4.20-8.An illusion of limited main memory is created
by limiting the buffer size and also ensuring that Linux does not cache S during nested

Using Prefix-Trees for Efficiently Computing Set Joins 769

loop joins – we made several copies of S and used a different one for each iteration of
the nested loop join.

For comparison with APSJ, we used the Set Containment Join Testbed [8]. We im-
plemented the BNL suite of algorithms as described in [7] in which we incorporated the
functionalities such as compression, pipelining and pruning using set cardinalities. We
study these algorithms for varying buffer and relation sizes. In experiments where we
do not vary buffer sizes, we fix it to 25% of the corresponding relation size.

For the datasets used in our experiments, the output of set joins are huge. Writing
this to disk would over-shadow the actual join processing cost. To avoid this, we only
count the number of pairs in the solution, instead of writing them to screen or disk.

BMS Dom. Avg. Set Relation Max. Set Set Card. Set Card. Set Card. Set Card. Rel.
Dataset Size Card. Card. Card. ≥ 10 ≥ 20 ≥ 50 ≥ 100 Size

WebView1 497 2.5 59,602 267 2098 411 72 34 588KB
WebView2 3340 5 77,512 161 10971 2574 160 8 1.5MB

POS 1657 6.5 515,597 164 128098 29934 955 37 11MB

Fig. 4. Dataset Characteristics

For our experiments, we used the real life datasets BMS-POS, BMS-WebView1 and
BMS-WebView2 from Blue Martini Software [15]. These datasets originated from a dot-
com company called Gazelle.com, a leg-wear and leg-care retailer and contains several
months of click-stream data. Figures 6 shows the characteristics of these datasets.

The major criteria [11] to test join algorithms are their scalability with increasing
relation cardinality, domain cardinality and record length. BMS WebView1 has a small
domain cardinality but some records are very long. BMS WebView2 has a large domain
cardinality of 3340. Both the domain size and relation cardinality are large in BMS POS.

6.1 Set Containment Join

In this section we compare the performance of PRETTI with BNL, PSJ and APSJ for set
containment joins. The first experiment, Figure 5a, tests the scalability of the algorithms
w.r.t. relation cardinality. Note that the y-axis is shown in log-scale. The dataset R is
constructed by taking random samples from BMS-POS of increasing cardinalities. The
buffer size was set to 25% of the size of S. We see that the response time of PRETTI
increases very slowly for larger relations. This can be attributed to the overlaps between
new records and old records in R.

On the other hand, we see that the performance of BNL deteriorates significantly
as the relation cardinality increases. The major reason for this is its inability to exploit
overlaps between records inR.Another reason is that as the relation cardinality increases,
inverted lists become longer, resulting in fewer lists loaded into memory each time, which
in turn results in large temporary files.

Figure 5b shows the running times of PRETTI and BNL for increasing buffer sizes
on WebView1 and WebView2 datasets. We see that PRETTI consistently outperforms
BNL. The response times for WebView2 show that PRETTI is well suited for datasets

770 R. Jampani and V. Pudi

Fig. 5. Experimental Results

 1

 10

 100

 1000

 10000

 50 200 350 500

Re
spo

nse
 Tim

e (s
ec)

Relation Cardinality (in 1000s)

5(g) Equality: Scalability
PRETTI-POS

BNL-POS
TreeJoin-POS

 0

 2

 4

 6

 8

 10

 12

 14

 20 40 60 80 100

Re
spo

nse
 Tim

e (s
ec)

Buffer Size (Percentage size of R)

5(h) Equality: Buffer Size
PRETTI-Web1

BNL-Web1
TreeJoin-Web1

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 2 4 6 8 10

Re
spo

nse
 Tim

e (s
ec)

Length of Overlap

5(e)Overlap:PRETTI250K-BNL20K
PRETTI-POS-250K

BNL-POS-20K

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10

Re
spo

nse
 Tim

e (
sec

)

Length of Overlap

5(f) Overlap : Length of Overlap
PRETTI-Web2

BNL-Web2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 50 200 350 500

Re
spo

nse
 Tim

e (
sec

)

Relation Cardinality (in 1000s)

5(c) Overlap: Scalability
PRETTI-POS

 0.1

 1

 10

 100

 1000

 10000

 20 40 60 80 100

Re
spo

nse
 Tim

e (
sec

)

Buffer Size (Percentage size of R)

5(d) Overlap : Buffer Size
PRETTI-Web1-20K

BNL-Web1-20K

 1

 10

 100

 1000

 10000

 50 200 350 500

Re
spo

nse
 Tim

e (
sec

)

Relation Cardinality (in 1000s)

5(a) Containment: Scalability
PRETTI-POS

BNL-POS

 0

 2

 4

 6

 8

 10

 12

 14

 20 40 60 80 100

Re
spo

nse
 Tim

e (
sec

)

Buffer Size (Percentage size of R)

5(b) Containment: Buffer Size
PRETTI-Web1

BNL-Web1
PRETTI-Web2

BNL-Web2

Using Prefix-Trees for Efficiently Computing Set Joins 771

Table 1. Containment Join (Set Card. Vs Resp. Time)

Set Card. 10 20 40 60 80 100
PRETTI 10s 20s 39s 66s 84s 123s

APSJ 977s 812s 276s 158s 156s 172s
PSJ 479s 714s 1139s 1095s - -

with large domains. We also see that as the buffer size decreases, BNL performs much
worse since it needs to rely more on large temporary files.

Table 1 compares PRETTI, PSJ and APSJ on a 100K record dataset generated by the
testbed used in [8]. We see that PRETTI outperforms PSJ and APSJ significantly.

6.2 Set Overlap Join

Set overlap join is the most time-consuming operation among the three join types studied
in this paper. Figure 5c shows the performance of PRETTI on the POS dataset. We see
that PRETTI can handle large datasets even for overlaps. Due to the very large temporary
files, BNL could not be run on this dataset.

Figure 5d (y-axis in log-scale) shows the running times of the algorithms for increas-
ing buffer sizes on the WebView1 dataset. Figure 5e shows the running time of PRETTI
for increasing values of ε for a relation of 250K records. We see that PRETTI is scalable
for high values of ε. The difference in the response time is due to the varied cost in main-
taining Cursol for different ε. To compare PRETTI and BNL, we show the response
time for BNL on 20K records. Figure 5f shows the performance of the algorithms for
varying overlap sizes on the WebView2 dataset.

In these graphs, PRETTI clearly outperforms BNL. For each record of R, BNL
computes the union of inverted lists of all its elements. Since long records are common
in real datasets, the resulting list explodes and can reach the worst case size (the relation
cardinality). Further, the sizes of temporary files needed to eliminate duplicates (and
hence the time to process them) can be quadratic on the relation cardinality.

6.3 Set Equality Join

For equality join, we compare the two PRETTI algorithms in Section 4.3 with BNL. We
refer to the PRETTI algorithm that uses two prefix trees as “tree-join”. Figure 5g (y-axis
in log-scale) shows the algorithms’ scalability with increasing relation cardinality.

As expected, we see that the response time of PRETTI and BNL is similar to their set
containment join counter-parts. Surprisingly, we find that PRETTI outperforms tree-join
in most cases. This is due to the maintenance of two prefix trees in main memory. Each
node occupies three times space compared to that of a single element. This results in
more partitions on R and S, which increases the number of iterations in the join. This
experiment also shows that PRETTI outperforms BNL by a large margin.

Figure 5h shows response times of these algorithms on WebView1 for increasing
buffer sizes. The rapid increase in response time of BNL as the buffer size decreases can
be attributed to large temporary files.

772 R. Jampani and V. Pudi

7 Conclusions

In this paper we proposed the PRETTI suite of algorithms for set containment, over-
lap and equality joins. We investigated the use of prefix trees and inverted indices for
performing set joins efficiently. Our algorithms do not require these structures to be
stored on the disk, but instead build them on the fly. This property makes them useful
in computing joins of intermediate results (which have no indices) in large join queries.
Our results show that our algorithms significantly outperform previous approaches.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of Intl.
Conf. on Very Large Databases (VLDB), September 1994.

2. J. Cai, V.T. Chakaravarthy, R. Kaushik, and J.F. Naughton. On the complexity of join predi-
cates. In ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, 2001.

3. G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In IEEE
ICDM Workshop on Frequent Itemset Mining Implementations (FIMI), 2003.

4. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc. of
ACM SIGMOD Intl. Conf. on Management of Data, 2000.

5. S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms for joins with set
comparison join predicates. In Proc. of Intl. Conf. on Very Large Databases (VLDB), 1997.

6. S. Helmer and G. Moerkotte. A study of four index structures for set-valued attributes of low
cardinality. Technical report, University of Mannheim, 1999.

7. N. Mamoulis. Efficient processing of joins on set-valued attributes. In Proc. of ACM SIGMOD
Intl. Conf. on Management of Data, 2003.

8. S. Melnik. Set containment joins: Testbed. http://www-db.stanford.edu/ melnik/scj.
9. S. Melnik and H. Garcia-Molina. Divide-and-conquer algorithm for computing set contain-

ment joins. In Intl. Conf. on Extending Database Technology, 2002.
10. S. Melnik and H. Garcia-Molina. Adaptive algorithms for set containment joins. ACM

Transactions on Database Systems (TODS), 28(2), 2003.
11. K. Ramasamy, J.M. Patel, J.F. Naughton, and R. Kaushik. Set containment joins: the good,

the bad and the ugly. In Proc. of Intl. Conf. on Very Large Databases (VLDB), 2000.
12. R. Rantzau. Processing frequent itemset discovery queries by division and set containment

join operators. In 8th ACM SIGMOD DMKD Workshop, 2003.
13. S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, 2004.
14. M. Stonebraker. Object-relational DBMS: The Next Great Wave. Morgan Kaufmann, 1996.
15. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms.

In Intl. Conf. on Knowledge Discovery and Data Mining (KDD), 2001.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 773 – 778, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Maintaining Semantics in the Design of Valid and
Reversible SemiStructured Views

Ya Bing Chen, Tok Wang Ling, and Mong Li Lee

School of Computing, National University of Singapore
{chenyabi, lingtw, leeml}@comp.nus.edu.sg

Abstract. Existing systems that support semistructured views do not maintain
semantics during the process of designing views. Thus, there is no guarantee
that the views obtained are valid and reversible views. In this paper, we propose
an approach to designing valid and reversible semistructured views. We employ
four types of view operators, namely, select, drop, join and swap operators, and
develop a set of rules to maintain the semantics of the views when the swap
operator is applied. We also examine the reversible view problem and develop
rules to guarantee the designed views are reversible. Finally, we examine the
possible changes to the participation constraints of relationship types and
propose rules to keep the participation constraints correct.

1 Introduction

Existing systems [1, 2, 3, 4, 7, 9, 10, 11, 12] for semistructured views do not maintain
semantics during the process of designing views. Thus, they cannot guarantee the
validity and reversibility of the views. [5, 6] propose a novel approach to design valid
views over semistructured data. A conceptual schema for source data is first extracted
based on a semantically rich data model, the Object-Relationship-Attribute model for
Semi-Structured data (ORA-SS) [8]. Semistructured views are created by applying
four transformation operators on the source ORA-SS schema. The operations are
select, drop, join and swap.

In this paper, we develop a complete set of rules to ensure that the designed views
are meaningful and reversible back to the original source schema when the swap
operator is applied. We also develop additional rules to keep the participation
constraints correct for relationship types in the views. To the best of our knowledge,
this is the first work to address the problem of maintaining semantics in the design of
valid and reversible semistructured views.

The rest of the paper is organized as follows. Section 2 reviews the ORA-SS
data model and highlight the semantics that are captured in ORA-SS for the
design of valid and reversible semistructured views. Section 3 presents the design
rules for the swap operator. Additional rules for the evolution of the participation
constraints of object classes in relationships are given in Section 4, and we
conclude in Section 5.

774 Y.B. Chen, T.W. Ling, and M.L. Lee

2 Motivating Example

The ORA-SS model comprises of three basic concepts: object classes, relationship
types and attributes, and captures richer semantics compared to models such as OEM
and XML DTD/Schema.

Example 1. Figure 1 depicts an ORA-SS source schema. This schema has 4 object
classes: course, student, lecturer and tutor. Each object class has a key attribute,
which is denoted by filled circle. The attribute hobby of student is a multi-valued
attribute which is indicated by an asterisk inside the circle. There is a binary
relationship type between object class course and student, which is labeled as “cs, 2,
1:n, 1:n” on the incoming edge of student. In the label, cs denotes the name of the
relationship type, 2 indicates the degree of the relationship type, the first “1:n”
indicates the parent participation constraints in the relationship type, and the second
“1:n” indicates the child participation constraints in the relationship type. The
relationship type has an attribute grade attached to student with label cs on the
incoming edge of the attribute, which implies a functional dependency stuNo, code →
grade. Similarly, there is a ternary relationship type “cst, 3, 1:n, 1:n” labeled on the

course

student lecturer

tutor

code title

*

stuNo name hobby grade

stfNo office feedback

stfNo name office work load

cs,2,1:n,1:n

cst,3,1:n,1:n

cl,2,1:n,1:n

cs

cst

cl

student

course lecturer

tutor

stuNo name
*

code title

gradehobby

stfNo office feedback

stfNo name office work load

cs,2,1:n,1:n

cst,3,1:n,1:n

cs

cst

student

course

lecturer
tutor

stuNo name
*

code title grade

hobby

stfNo office feedback stfNo name office work load

cs,2,1:n,1:n

cst,3,1:n,1:ncs

cst

cl, 2, 1:n, 1:n

cl

incoming edge of tutor. The relationship type involves three object classes course,
student and lecturer. In this case, the first “1:n” indicates the participation constraints
of the relationship type cs in the ternary relationship type. The second “1:n” indicates
the participation constraints of the object class tutor in the ternary relationship type.

Based on the ORA-SS schema in Figure 1, let us design a view by swapping
course and student. The attributes of the two object classes will move with their
owner object classes respectively. The attribute grade which belongs to the
relationship type cs will move with student if we design the view based on XML
DTD/Schema or OEM graph. This is because XML DTD/Schema or OEM do not
differentiate between attributes of object classes and attributes of relationship types.
For illustration purposes, the view in Figure 2 attaches grade to student to show such
a case, which violates the functional dependency implied in the source schema, i.e.,

Fig. 1. ORA-SS source Fig. 2. Invalid ORA-SS view
obtained by swapping course
and student in Figure 1

Fig. 3. Valid reversible ORA-
SS view obtained by swapping
course and student in Figure 1

 Maintaining Semantics in the Design of Valid and Reversible SemiStructured Views 775

stuNo, code → grade. The view in Figure 2 is invalid since it violates the semantics
in the source schema.

The above example shows that invalid views arise when important semantics are
not expressed in the underlying data model. Figure 3 shows a valid ORA-SS view
when the swap operator is applied on the same source schema in Figure 1. In Figure
3, the attribute grade is moved down and attached to course to keep the functional
dependency of the relationship type cs intact. The object class lecturer also needs to
move down with course to keep all the three participating object class of cst in one
hierarchical path. Thus, the semantics of the relationship type cst is kept intact.

3 Design Rules for Swap Operator

Valid semistructured views considered in this work can be obtained by applying four
view operators on an ORA-SS schema. The four operators are select, join, drop and
swap. As a subset of XQuery, these operators fulfill most of the data-centered query
requirements for XML. [5] develops a set of rules to guarantee the validity of
semistructured views when the operators select, join, drop are applied, and gives an
initial proposal of how the validity of views can be maintained when swap operator is
applied. In this section, we will detail how valid semistructured views can be designed
with swap operator. The swap operator restructures an ORA-SS source schema by
exchanging the positions of a parent object class and its child object class.

Rule Swap_1: If an object classes Oi and its descendant object class Oj in a source
schema are swapped in designing a view; then the attributes of Oi and Oj must remain
attached to Oi and Oj respectively in the view.

Rule Swap_1 is straightforward and ensures that the attributes of two object classes Oi
and Oj do not become meaningless in the view after Oi and Oj are swapped. More
importantly, we observe that the relationship types in an ORA-SS source schema that
involve Oi and/or Oj are also affected since the hierarchical positions of Oi and Oj
have been interchanged after a swap operator is applied. Given two object classes Oi
and Oj where Oj is a descendant of Oi in an ORA-SS schema, the relationship types
that are affected after a swap of Oi and Oj can be classified into three categories.

The first category is the set of relationship types which do not involve any other
object classes but Oi and/or Oj and/or the ancestors of Oi or Oj in the ORA-SS source
schema. In another words, these relationship types involve object classes that occur in
the straight path of Oi and Oj (see Figure 4).

The second category is the set of relationship types which involve at least both Oi
and object classes in the branch paths between Oi and the parent of Oj, as shown in
Figure 5. The third category is the set of relationship types which involve at least both
Oj and its descendants, as shown in Figure 6. The three categories of affected
relationship types are handled by the rules Swap_2, Swap_3 and Swap_4 respectively.

Rule Swap_2: Suppose an object classes Oi and its descendant object class Oj in a
source schema S are swapped in designing a view. Let S be the set of relationship
types which do not involve any other object classes but Oi and/or Oj and/or the
ancestors of Oi or Oj in the source schema. For each relationship type R in S, the
attributes of R are attached to the lowest participating object class of R in the view.

776 Y.B. Chen, T.W. Ling, and M.L. Lee

Oa

Oj

Oi

Ob

Oc

Ok

The First
Category

Od

Oa

Oj

Oi

Ob

Oc

Ok

The Second
Category

Od

Oa

Oj

Oi

Ob

Oc

Ok

Od
The Third
Category

Rule Swap_3: Suppose an object class Oi in a source schema is swapped with its
descendant object class Oj in designing a view. If there exists a relationship type
which involves at least Oi and Oc, where Oc is a descendant of an object class Oa that
lies in the path between Oi and Oj (including Oi) but Oc does not lie in the path
between Oi and Oj in the ORA-SS source schema, then the subtree rooted at Oc is
attached to Oi in the view.

Rule Swap_4: Suppose an object class Oi in a source schema is swapped with its
descendant object class Oj in designing a view. For each child Od of the object class
Oj, let T be the subtree that is rooted at Od. Let S be the set of relationship types which
involve at least Oj and its descendants in T. If Ol is the lowest participating object
class among all the relationship types in S that lie in the path between Oi and Oj after
the swap, then the subtree rooted at Od is attached to Ol in the view.

The swap operator also introduces the issue of reversible views in semistructured
data. A valid view schema V of a source schema S is called a reversible view if S can
be produced back from V through applying our view operators, i.e. select, drop, join
and swap. Here, we only consider swap operator for the issue of reversible view.

We observe that the rules Swap_3 and Swap_4 not only maintain the semantics of
a semistructured view so that it is kept valid, but they also guarantee that the view is
reversible. For example, let us now apply another swap operator to the view in Figure
3 to swap student and course again. Applying the rules Swap_1 and Swap_2, the
attributes of student and course will move with their owner object classes. The
relationship attribute grade is thus attached to the object class student again. Applying
the rule Swap_4, the object class lecturer will move up with course as a whole since
course is the lowest participating object class of dcl. On the other hand, tutor will be
attached to student because student is the lowest participating object class of cst. In
this way, the semantics of the two relationship types are kept intact. Furthermore, the
view obtained is the same as the original source schema in Figure 1. Thus, the view in
Figure 3 is a reversible view because we can produce the original source schema back
by applying swap operator on it.

Fig. 4. First category of
relationship types

Fig. 5. Second category
of relationship types

Fig. 6. Third category
of relationship types

 Maintaining Semantics in the Design of Valid and Reversible SemiStructured Views 777

4 Participation Constraints in Views

During the design of semistructured views, new relationship types may be derived
from existing relationship types. The view may change the order of participating
object classes of an existing relationship type. Thus, we need to determine the
participation constraints of the relationship type in the view. We design four rules to
handle the participation constraints for relationship types in semistructured views
under the four view operators.

We use p and c to denote the parent and child participation constraints of an
original relationship type R respectively. Likewise, we use p’ and c’ to denotes the
parent and child participation constraints of a derived relationship type R’.

The first rule handles the case when a swap operator is applied on two
participating object classes of a binary relationship type. The order of the two
participating object classes will be reversed in the view schema. Thus, in the new
relationship type in the view, the participation constraints will also be reversed.

Rule PC_1: If R’ is derived in the view by swapping two participating object classes
of an existing binary relationship type R in the source schema; then p’ = c and c’ = p.

Rule PC_2: If R’ is derived in the view by swapping two participating object classes
in an existing n-ary (n>2) relationship type R in the source schema, and O1, O2, …,
On is participating object classes of R’ in the order from ancestor to descendant in the
view schema; then

for p’: If there exists a functional dependency {O1, O2, … On-1} On, then set p’
to be 1:1, otherwise set p’ to be 0:n (or *).

for c’: if there exists a functional dependency: On {O1, O2 … On-1}, then set c’
to be 1:1, otherwise c’ is set 0:n (or *).

Rule PC_3: If R’ is derived in the view by projecting an existing relationship type R
in the source schema, and O1, O2, …, On is participating object classes of R’ in the
order from ancestor to descendant in the view schema; then

for p’: If there exists a functional dependency {O1, O2, … On-1} On, then set p’
to be 1:1, otherwise set p’ to be 0:n (or *).

for c’: if there exists a functional dependency: On {O1, O2 … On-1}, then set c’
to be 1:1, otherwise c’ is set 0:n (or *).

Rule PC_4: If R’ is derived in the view by joining one relationship type R1 (O11, O12,
…, O1n) with another relationship type R2 (O21, O22, …, O2m), where O1n = O21 is the
common object class they are joined on, then

for p’: If there exists a functional dependency {O11, O12, …, O1(n-1), O22, …,O2(m-1)}
 O2m, or a functional dependency {O22, O23, …, O2(m-1)} O2m, or the two

functional dependencies {O11, O12, …, O1(n-1)} O1n and {O21, O22, …, O2(m-1)}
O2m; then set p’ to be 1:1, otherwise, set p’ to be 0:n.

for c’: If there exists a functional dependency O2m {O11, O12, …, O1(n-1), O22,
…,O2(m-1)}, then set c’ to be 1:1, otherwise set c’ to be 0:n (or *).

The second rule handles the case where the order of participating object classes of
n-ary (n>2) relationship types is changed. The third rule then handles the case where
new relationship types are derived by projecting existing relationship types. Finally,

778 Y.B. Chen, T.W. Ling, and M.L. Lee

the last rule handles the case where new relationship types are derived by joining
existing relationship types.

5 Conclusions

Existing systems for semistructured views do not maintain semantics at all in the
process of designing the views. Thus, they cannot guarantee the validity and
reversibility of the views. This paper proposes a novel approach to solve the two
issues based on a semantically rich semistructured data model – ORA-SS. The swap
operator is unique in semistructured data as it interchanges the positions of parent and
child object classes, and raises the issue of view reversibility. In this paper, we have
developed a complete set of rules for the swap operator and show that the proposed
approach can maintain the evolution and integrity of relationships. We also examine
the possible changes for participation constraints of the relationship types and propose
rules to keep the participation constraints correct in the view. To the best of our
knowledge, this approach is the first work to employ a semantic data model for
maintaining semantics of semistructured views and solving the reversible view
problem. By considering the validity and reversibility of semistructured views, this
approach provides for a more robust view mechanism so that we can greatly exploit
the potential of XML/semistructured data to exchange data on the Web.

References

1. Serge. Abiteboul, S. Cluet, L. Mignet, et. al., “Active views for electronic commerce”,
VLDB, pp.138-149, 1999.

2. Chaitanya. Baru, A. Gupta, B. Ludaescher, et. al., “XML-Based Information Mediation
with MIX”, ACM SIGMOD Demo, 1999.

3. Michael. Carey, J. Kiernan, J. hanmugasundaram, et. al., “XPERANTO: A Middleware for
Publishing Object-Relational Data as XML Documents”, VLDB, pp. 646-648, 2000.

4. Michael. Carey, D. Florescu, Z. Ives, et. al., “XPERANTO: Publishing Object-Relational
Data as XML”, WebDB Workshop, 2000.

5. Ya Bing. Chen, Tok Wang Ling, Mong Li Lee, “Designing Valid XML Views”, ER
Conference, 2002

6. Ya Bing Chen, Tok Wang Ling, Mong Li Lee, “Automatic Generation of SQLX
Definitions from ORA-SS Views”, DASFAA, 2004.

7. Sophie. Cluet, P. Veltri, D. Vodislav, “Views in a large scale xml repository”, VLDB, pp.
271-280, 2001.

8. Gillian. Dobbie, X.Y Wu, T.W Ling, M.L Lee, “ORA-SS: An Object-Relationship-
Attribute Model for SemiStructured Data”, Technical Report TR21/00, School of
Computing, National University of Singapore, 2000.

9. Mary. Fernandez, W. Tan, D. Suciu, “Efficient Evaluation of XML Middleware Queries”,
ACM SIGMOD, pp. 103-114, 2001.

10. Mary. Fernandez, W. Tan, D. Suciu, “SilkRoute: Trading Between Relations and XML”,
World Wide Web Conference, 1999.

11. Philip. Bohannon, H. Korth, P. Narayan, S. Ganguly, and P. Shenoy. Optimizing view
queries in ROLEX to support navigable tree results. VLDB, 2002.

12. Alin. Deutsch and V. Tannen. MARS: A System for Publishing XML from Mixed and
Redundant Storage. VLDB, 2003.

University of Stuttgart, Institute of Parallel and Distributed Systems
Universitätsstraße 38, 70569 Stuttgart, Germany

Abstract. The WWW provides an overwhelming amount of information,
which – spatially indexed – can be a valuable additional data source for loca-
tion-based applications. By manually building a spatial index, only a fraction
of the available resources can be covered. This paper introduces a system for
the automatic mapping of web pages to geographical locations. Our web ro-
bot uses several sets of domain specific keywords, lexical context rules, that
are automatically learned, and a hierarchical catalogue of geographical loca-
tions that provides exact geographical coordinates for locations. Spatially in-
dexed web pages are used to construct Geographical Web Portals, which can
be accessed by different location-based applications. In addition, we present
experimental results demonstrating the quantity and the quality of automati-
cally indexed web pages.

Location-based applications adapt their behavior to the spatial context of the user, e.g.
by providing local maps and navigational information. They rely on spatial data that has
previously been gathered and preprocessed to fit their needs. This data is often expen-
sive because it has to be manually collected, edited and updated. Therefore, automatic
gathering of spatial information is needed to efficiently serve mobile applications.

In this paper we present a solution for providing web pages which are related to the
spatial context of a user. To achieve that, an index for web pages with references to geo-
graphical locations must be generated. We use a three stage process, depicted in
Figure 1, for providing location-based applications with spatially indexed web pages.
First, our web robot, DCbot, crawls the web and gathers pages with references to geo-
graphical locations (). It analyses page content using domain specific keywords and
lexical context rules. The result of this first step is a repository of spatially indexed web
pages.

After this, we generate so called Geographical Web Portals (GWP), that represent
web pages, which are related to a specific region (). GWPs can be used for location-
based augmentation of maps. If a mobile user enters the visibility area of a GWP, it be-
comes visible on his map. Finally, GWPs have to be made available to mobile applica-
tions. We use our location-based service platform (Nexus) [9], to provide applications

1

2

,

Mihály Jakob, Matthias Grossmann, Daniela Nicklas,
 and Bernhard Mitschang

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 779–790, 2005.
© Springer-Verlag Berlin Heidelberg 2005

DCbot: Finding Spatial Information on the Web

1 Introduction

{jakobmy , grossmms , danickla , mitsch}@informatik.uni-
stuttgart.de

with spatial context information (). The Nexus platform federates local world models
and stores virtual objects [10] on Spatial Model Servers. Location-based applications

3

are served with maps and virtual objects (like GWPs) by Spatial Model Servers and can
access web pages directly on the web following web references on GWPs ()

We describe our solution in detail in the following sections. Section 2 covers related
work and projects. In Section 3, we present the architecture and analysis methods of
DCbot. In Section 4 we discuss experiments and first experiences gained with these
techniques and assess our approach. Section 5 presents postprocessing steps describing
the selection of the best spatial reference from a web page and the generation of GWPs.
Finally, Section 6 concludes the paper.

The problem of linking web pages to geographical positions has already been subject to
other research.

The approach presented in [3] exploits two different kinds of information: Names
of locations like cities and states on a web page and the structure of links between web
pages. It is based on a hierarchical location model which allows to generalize locations.
Location names are weighted, a web page is considered to be more relevant to a location
if a higher fraction of all location names on the page reference this location or a ‘geo-
graphical child’ of this location (according to the hierarchical location model) and if the
location names on the page are distributed uniformly across all ‘geographic children’ of
this location. The consequence of the latter criterion is that a page mentioning ‘New
York’ several times (and no other location) is relevant to the location ‘New York’ and
not to the more general location ‘US’. The exploration of the link structure uses an ap-
proach similar to standard web search engines. A web page is considered relevant to a
particular location if it is referenced by other pages relevant to this location. The algo-
rithm proposed in [3] weighs links in a similar way as location names.

Fig 1. Usage scenario

4

.

780

2 Related Work

M. Jakob et al.

While the approach presented in [3] uses locations on the city and more coarse lev-
els, we assume that the results are not precise enough for mobile users. Our experiments
have shown that several thousands of pages can be found referencing a city of about
600,000 inhabitants, so that searching for finer grained location information – e.g. by
parsing addresses – seems to be more promising, even if such methods usually have to
be tailored to specific languages and countries. There are probably only a few cases
where generalizations of location information on fine grained levels like addresses is
possible. Furthermore, we assume that in general for our scenario of mobile users gen-
eralization is not desirable since we consider fine-grained location information to be
more valuable.

‘Google Search by Location’ [6] is an extension to the Google web search engine
and is currently in a test stage. It allows search results to be restricted to web pages rel-
evant to a specified location. While an exact description of the search method is current-
ly not available, tests suggest that searching for and parsing of addresses seem to be an
important part of the algorithm. This is probably the reason why this service currently
only works within the US.

The Information Extraction System RAPIER [2] searches information items by
means of so-called filler patterns. A filler pattern describes a sequence of words, it can
consist of an enumeration of the matching words (e.g. ‘the’ or ‘a’ followed by ‘bridge’),
or of part of speech (e.g. an article followed by a noun) or even semantic descriptions.
The pre-filler and post-filler patterns describe the words preceding and following the in-
formation item, the filler pattern the information item itself. DCbot uses keyword and
pattern-recognition methods (see Section 3.3), which work in a similar way, but are re-
stricted to comparing words.

In [8], an architecture for mapping web pages to locations is presented. It consists
of three stages. In the first stage, an initial set of possible locations for a page is deter-
mined, the second stage removes presumably wrong locations from the set and merges
the remaining locations, the third stage improves the mapping by evaluating link struc-
tures. The geospatial search engine based on this architecture performs a combined key-
word and location search. The page rank is calculated based on different weights for the
relevance of the page for the keyword and its distance from the desired location. In this
paper, we focus on detecting location information in individual pages, basically corre-
sponding to the first stage in [8], where we propose the use of more sophisticated meth-
ods like parsing of addresses and learning lexical contexts of geographical location
names. For determining the correct location (corresponding to the second stage), we
rank the spatial references found on a page and select the best one.

The Semantic Web [1] is an extension to the WWW, which adds semantic informa-
tion in machine-understandable form. It relies on the web page authors to describe the
semantics of their pages using the Resource Description Framework (RDF) [12] or the
Web Ontology Language (OWL) [13]. For the more specific problem of describing the
location for which a web page is relevant, the Dublin Core Metadata Initiative [4] al-
ready provides a solution, which is less complex than an RDF or OWL description.
However, our experiments show that even simple metadata tags for providing location
information are rarely used, thus we believe that – at least for the near future – it is nec-
essary to analyze web page contents.

DCbot: Finding Spatial Information on the Web 781

Web pages have a simple mechanism for providing meta-data about their content: meta-
tags. Our initial approach for finding spatial references in web pages was to analyze the
meta-data provided by web site creators in meta-tags. Besides commonly known tags
such as keywords or description there are a lot of other ones, some of them even bun-
dled into meta-data standards such as the Dublin Core Metadata Element Set [4].

We implemented a web robot, called DCbot (DC stands for Dublin Core), that
searches for meta-tags and uses the Dublin Core meta-data element DC.Coverage to get
spatial information about the corresponding web page. However, we found that only a
tiny percentage of web pages use the DC.Coverage tag containing spatial information
[11]. This is probably due to the fact that spatially aware applications aren’t yet wide
spread, thus there is little need for web site creators to provide spatial information for
their web pages. Therefore, we decided to enhance DCbot to also analyze other page
parts such as the URL, the title and the body section. We developed and implemented
several analysis methods for application to different page parts. Our result was a web
robot successfully locating spatial information in web pages using basic techniques of
natural language processing and machine learning.

The basic idea behind DCbot and the resulting architecture, shown in Figure 2, is sim-
ple. DCbot crawls the web and carries out a set of actions for each web page (). After
the initial parsing, relevant page parts such as the title, meta-tags or the body are tem-
porarily stored. Analyzed web page parts are described in Section 3.2. Hyperlinks of the
page are extracted and stored on the hyperlink stack for further processing (). As the
name hyperlink stack suggests, we don’t merely store the URL but also the texts of hy-
perlinks allowing us to examine them. Next, the Content Handler () applies DCbot’s
four analysis methods, which we will introduce in Section 3.3. These analysis methods
use special keywords and patterns () to extract geographical reference candidates
from each web page. These candidates can be proper names of

• geographical sites (e.g. names of lakes or mountains)
• institutions or buildings (e.g. cultural, educational or government institutions)
• political regions (e.g. counties, cities or districts)
• administrative areas (e.g. postal code areas).

After the extraction, geographical reference candidates are cross-checked with
DCbot’s geographical database, called GeoBase (). We will introduce GeoBase in
Section 3.4.

After the evaluation of a web page, meta-data extracted from the page is stored in a
repository of spatially indexed web pages (). Such a repository can be used for many
different purposes. One of them is the creation of Geographical Web Portals, that rep-
resent a set of web pages related to a region. We describe the creation and storage of
GWPs in Section 5.2. After the examination of a web page DCbot continues with the
next hyperlink from the hyperlink stack.

1

2

3

4

5

6

.
.

.

782

3 DCbot

3.1 Architecture

M. Jakob et al.

As we already mentioned, a previous version of DCbot concentrated on the analysis of
web page meta-tags that explicitly specified geographical information. We analyzed
web pages using the DC.Coverage tag from the Dublin Core Metadata Element Set. Re-
sults of several test runs have shown that only 0.07% of web pages actually provide an
explicit geographical reference [11]. Therefore, we extended our analysis to the follow-
ing web page parts:

Hyperlink Text. During the analysis of web pages DCbot stores not only URLs but also
the hyperlink texts of each examined web page on its hyperlink stack. That gives us
the opportunity to look for geographical references in the text of the hyperlink
pointing to a web page and to associate the result with this particular page.

URL. Sometimes domain names give a hint about the content of a web site. An example
is http://www.stuttgart.de, which leads to a web site about the capital of the federal
state Baden-Württemberg in Germany.

Title. The title of a web page is one of the most important places to look for geograph-
ical references. In most cases it reflects the content of the web page at hand. For this
reason search engines pay high attention to page titles. If a spatial reference is found
in the title it should be treated as a rather valuable one.

Meta-Tags. As we already mentioned before there are some meta-tags that can explic-
itly provide geographical information. However, they are very rarely used. Never-
theless, it is reasonable to examine more common tags such as the keywords and de-
scription tags, which can provide valuable information about the page content.

Body. The text content of a web page usually contains a significant number of words
and sentences. While dealing with a page part containing only a few words or phras-
es it is possible to cross-reference all of them using DCbot’s geographical database.
However we need to use more sophisticated methods for a larger page part such as
the body section. Instead of treating each word or phrase as a possible geographical

Fig 2. DCbot architecture.

DCbot: Finding Spatial Information on the Web 783

3.2 Analyzed Web Page Parts

reference candidate, we have to identify those that are likely to be ones. For that rea-
son DCbot uses keywords and patterns that enable it to identify possible candidates.

As previously mentioned in Section 3.1, the first step of calculating the best geograph-
ical reference on a web page is to extract geographical reference candidates from the
page. In this section we introduce methods, which DCbot uses to identify these candi-
dates.

It is unlikely to find an explicit reference to a geographical location (i.e. geograph-
ical coordinates) on a web page. Therefore DCbot searches for proper names of loca-
tions. Examples are names of institutions, names of important landmarks or postal ad-
dresses. DCbot uses the following methods to identify such proper names:

Noun Recognition. This component concentrates on finding one word proper names on
web pages. The main aspect is the identification of nouns, which is an easy task in
German because of their capitalization. In other languages an appropriate grammat-
ical tagging tool has to be used. Depending on the size of a web page part, all nouns
are extracted or only the first n nouns are extracted. Additionally, most frequent
nouns can be determined and added to the list of geographical reference candidates.

Keyword Recognition. The previous method concentrates on the extraction of one-
word proper names. However, there are a lot of names that consist of several words.
This method identifies such composed names based on a set of keywords, which in-
dicate a possible proper name. Currently, DCbot uses three types of keywords to
identify:

• natural geographical sites (e.g. lakes, mountains, ...)
• institutions or buildings (e.g. museums, universities, ...)
• postal addresses

Examples for keywords we use are Museum or Brücke (bridge). Proper names often
contain such keywords. An example of a composed proper name is Deutsches Mu-
seum. If a keyword is detected on a web page, then several geographical reference
candidates are extracted from its lexical environment and added to the list of geo-
graphical reference candidates.

Pattern Recognition. The building of context patterns is one of the more sophisticated
methods used by DCbot. It stores lexical context patterns for each successfully ver-
ified geographical reference. For example if a proper name of a geographical loca-
tion was found on a web page after the term ‘near to’, then one of the patterns ex-
tracted would be ‘near to <geo_ref>’. Upcoming web pages are searched for such
patterns. Thus, if the term ‘near to’ is encountered again, the expression matching
<geo_ref> is treated like a geographical reference candidate. The frequency of pat-
terns is a quality indicator allowing DCbot to rate patterns and to use a continuously
improving set of patterns. This set of patterns is persistently stored and with each
analyzed web page it becomes further refined.

.
.

.

784

3.3 Methods of Analysis

M. Jakob et al.

Address Recognition. As previously mentioned, DCbot uses a list of keywords indi-
cating possible postal addresses. Examples for such keywords are Straße (street) or
Platz (square). An example for a partial address is Alexanderplatz. If such keywords
are encountered, then the address recognition is triggered. The address recognition
algorithm tries to parse a postal address composed of a house number, the street
name, the postal area code and the city name. This is achieved by cross-checking
the address components with DCbot’s geographical database leveraging the hierar-
chical structure of the database.

Geographical reference candidates, that were extracted from web pages have to be con-
firmed. To achieve that DCbot uses a geographical database containing geographical lo-
cations. This database, GeoBase, is our own hierarchically organized catalogue inspired
by The Getty Thesaurus of Geographic Names [5]. It provides for each entry the name
of the represented geographical location, the location type, geographical coordinates,
and the spatial extent of the location. GeoBase has a hierarchical structure. For each en-
try a reference to the parent location is stored. The hierarchical structure of GeoBase
allows the verification of complex geographical references such as postal addresses,
where the different parts of the address (city, postal area code, street) stand in a spatial
child-parent relationship.

At the moment the most important entries in GeoBase are entries representing
states, cities, and postal code areas from Germany as well as streets, institutions and ser-
vice facilities from Stuttgart. Note that the number of entries in the database is crucial
for finding pages with geographical references. Only those geographical reference can-
didates can be confirmed, that have a corresponding entry in GeoBase.

Currently DCbot is set up to analyze web pages in German describing german regions.
However, the modular design of DCbot allows – after simple adjustments – the analysis
of web pages in other languages and from other regions as well. Language-dependent
parts such as the keyword lists or the names of locations in GeoBase are easily extensi-
ble. Additionally, the address recognition, that is obviously culture- and region-depen-
dent has to be replaced.

In this section, we present results of a test run, in which we let DCbot analyze 25000
web pages. As we already pointed out, DCbot can only recognize geographical refer-
ences on web pages if these are in DCbot’s catalogue, GeoBase. Since GeoBase is not
an extensive geographical database, our experimental results should merely demon-
strate, that finding web pages with geographical references using DCbot is an easy task.
However, if a large percentage of web pages related to a region should be found, one
has to use a geographical catalogue containing all the locations in that region.

DCbot: Finding Spatial Information on the Web 785

3.4 GeoBase

3.5 Customizing DCbot

4 Experiments

This experiment focuses on German web pages from the region of the state capital,
Stuttgart. This is reflected by the region-specific contents of GeoBase as well as by the
region specific start URL for the search.

Our experiments were run on a Sun UltraSparc-60 with 640 MB RAM. GeoBase and
the data, which DCbot collected, were stored in IBMs DB2 UDB V7.2 running on the
same computer. The main entries in GeoBase were German geographical locations:

We set up DCbot to analyze 25000 web pages starting from a Google result page
showing the first 100 web pages having ’Stuttgart’ in their title. An additional setting
instructed DCbot not to go further than five hyperlinks from the start page.

DCbot successfully analyzed 87.81% of the web resources behind the 25000 URLs. The
remaining 12.42% of the URLs were pointing to irregular or not existent web pages or
automated analysis by a robot was denied. More than half (52.13%) of the successfully
analyzed web pages contained some kind of geographical reference. These pages held
in average 3.65 references.

The majority of geographical references on web pages (81.73%) were city names.
The second largest group were postal addresses. DCbot recognized several hundred
complete addresses from Stuttgart (1.66%) and several thousand addresses from other
parts of Germany (9.3%), where the street entry was missing in GeoBase and DCbot
could only recognize the postal area code and the city name. The third largest group
were universities and college references (6.4%). However, the majority of theses pages
belonged to the University of Stuttgart, which resulted from the location specific start
URL. Other groups were lakes and mountains (0.75%) and museums, theaters and li-
braries from Stuttgart (0.17%).

Section 3.2 describes which web page parts are analyzed by DCbot and which
methods it uses to extract geographical reference candidates. Figure 3 shows the distri-
bution of geographical references by these aspects.

The majority of geographical references were found in the body part of web pages
followed by the keywords and description meta-tags (Figure 3a). The unusually high
percentage of geographical references in URLs originates from the location-specific
start URL. Many pages had ‘Stuttgart’ in their host name.

Nationwide Locations:
16 states
6345 cities
8264 postal code areas
114 colleges and universities
74 mountains and lakes

Locations in Stuttgart:
4197 streets
134 hotels and restaurants
75 theatres, museums and libraries

786

4.1 Experimental Setup

4.2 Experimental Results

M. Jakob et al.

Figure 3b also shows that the noun extraction method found over 60% of the geo-
graphical references. This is a result of the overwhelming majority of city names among
geographical references on web pages. City names are in most cases one word referenc-
es found by noun recognition.

Beside the distribution of geographical references by web page parts and extraction
methods, we were interested in the quality of extracted references. We examined over
nine hundred geographical references originating from over seven hundred web pages
by hand in order to review DCbot’s results. We selected only geographical references
to locations with a small spatial extent (museums, universities, postal addresses, ...), be-
cause locations having a large extent, such as cities are not very useful for mobile ap-
plications interested in their immediate spatial context.

Quality measurements are shown in Figure 4. For the rating process we defined
three categories for the quality of a geographical reference:

• good references, where the content of the web page was strongly related to the ref-
erenced location (black)

• mediocre references, where the content of the web page was somewhat related to
the referenced location (dark grey)

• false references, where the content of the web page was not related to the refer-
enced location (light grey)

Figure 4 illustrates the quality of geographical references for each web page part
and for each extraction method. As Figure 4a shows, references extracted from the title,
from the keywords meta-tags and from the description meta-tags are of excellent qual-
ity. Geographical references found in the first few sentences of the page body and in
hyperlink texts are still in most of the cases strongly or somewhat related to the refer-
enced location.

Figure 4b shows the quality distribution of references by the extraction method. For
each method it is separately indicated if references were extracted from the first few
words or sentences of the corresponding web page part or if they were found further be-
hind. Postal addresses and references extracted by keyword recognition from the first
few words and sentences of web page parts are significantly better than those extracted

Fig 3. Distribution of geographical references by web page parts (a) and by analysis methods (b)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

body meta-tag url title hyperlink

%

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

noun
recognition

address
recognition

pattern
recognition

keyword
recognition

%

(a) (b)

.

DCbot: Finding Spatial Information on the Web 787

.

.

.

from further behind. The overall percentage of false geographical references is rather
low.

In this section we describe how the best geographical reference from a web page is se-
lected, how Geographical Web Portals (GWP) are generated and which methods can
further improve the presentation of web pages to mobile users. These postprocessing
steps operate on spatially indexed web pages, that were gathered and indexed by DCbot.

DCbot builds a repository of spatially indexed web pages. For each web page all geo-
graphical references are stored. In this manner, several strategies for the selection of the
best geographical reference can be applied. Our current algorithm for rating geograph-
ical references and choosing the best reference in a web page is based on a weight ma-
trix. The rows of the matrix correspond to extent sizes of geographical locations, the
columns to web page parts. For each geographical reference, the corresponding weight
from the weight matrix is selected. In the end the geographical reference candidate with
the largest weight wins. One should of course set larger weights for web page parts, that
are known for providing good geographical references (see Figure 4a).

Our goal is to provide mobile users with web pages related to their local environment.
In our Nexus platform we use Virtual Information Towers (VIT) [7], to augment maps
with additional information. We created for the presentation of web pages to users
GWPs, which are light-weight VITs having a location and a visibility area. Each GWP
covers a specific region. If the best geographical reference on a web page falls into the
region of a GWP, it becomes associated with the region’s GWP. If there is no existing
GWP for a region, a new one is created.

GWPs are virtual objects, that can be used to augment maps. If a user is within the
visibility area of a GWP, then it is visible on the users electronic map. He can access
the GWP and receive a list of web pages related to his current environment.

Fig 4. Quality of geographical references by web page parts (a) and by analysis methods (b)

0%

20%

40%

60%

80%

100%

title keywords description body
(first)

body
(rest)

hyperlink

0%

20%

40%

60%

80%

100%

 (first) (rest) (first) (rest) (first) (rest)

address recognition pattern recognition keyword recognition

(a) (b)

.

788

5 Postprocessing

5.1 Selection of Geographical References

5.2 Generating Geographical Web Portals

M. Jakob et al.

DCbot treats every web page as a stand alone resource. The web presence of a company
or a facility like a museum, however, typically consists out of many web pages. Our ex-
periments show that DCbot tends to find the same location information on all pages be-
longing to a single web presence, e.g. because it is part of the URL or of a standard page
layout used by all pages. As a consequence, the search results presented to a user may
be overcrowded by dozens of web pages belonging to a single company. Especially for
mobile devices with small displays, it would be better just to present one summary page
for the whole web presence, from which all other pages can be reached. To implement
this behavior, all web pages belonging to the same location have to be analyzed. Pages,
which have significant parts of their URL in common can be assumed to belong to the
same web presence and are assigned to the same summary page. Two problems have to
be solved: What are ‘significant parts’ of the URL and what is a ‘summary page’.

The most simple approach to solve the first problem is to compare the host parts of
the URLs, but this fails for small organizations, which may share the domain of their
provider, or for large organizations, which may use more than one domain. A more ad-
vanced approach is to search common parts within the complete URL.

The most simple solution for the second problem assumes the web page with the
fewest components in the path part to be the root page of the web presence and takes
this page as the summary page. More advanced approaches may try to analyze the link
structure between the web pages, but this can be very costly.

Tapping the ubiquitous WWW in order to considerably enhance the information pro-
vided to applications and users is an ever lasting task. In this paper, we described an ap-
proach to achieve this for the class of spatial information. We devised a set of technol-
ogies and a system architecture to automatically map web page content to the associated
spatial location. In doing so, we described how web pages related to specific locations
can be found, how the best geographical reference on a web page can be selected and
how a mobile application could present location-specific web pages to users and thus
benefit from this additional information.

Early experiences gained from a first prototype evaluation clearly show that geo-
graphical references found in the title, in the keywords meta-tag or in the description
meta-tag are of high quality. Special meta-tags, that can be used to explicitly provide a
geographical reference (e.g. DC.Coverage), are very rarely used. While more than half
of the geographical references found at the beginning of the body part have a high qual-
ity, the quality of references found in subsequent parts is significantly lower. It seems
to be reasonable to restrict the search for geographical references to the beginning of the
body, which also would speed up the search process, as only a fraction of the page has
to be analyzed.

The evaluation of our analysis methods has shown that methods using domain spe-
cific knowledge such as the keyword recognition or the address recognition perform
significantly better than the usage of domain independent lexical context patterns.

DCbot: Finding Spatial Information on the Web 789

5.3 Future Methods

6 Conclusions and Future Research

Because the gathering and the analysis of web pages are done in advance, the per-
formance of DCbot is not crucial to system effectiveness. However, the number of in-
dexed web pages can be easily multiplied by running several DCbot instances in paral-
lel. We also discovered, that retrieving web pages from the WWW is the system bottle-
neck. Thus efficiency can be further boosted by running several instances that retrieve
the web documents and fewer instances that perform the analysis.

There are still many open issues. One we are still working on is the selection of the
best geographical reference on a web page. Our approach is based on the web page part,
in that the reference was found, and the extent of the referenced location. However, if
several references to different locations occur on a web page, then the selection of the
best reference can also be based on the homogeneity or the heterogeneity of the geo-
graphical references.

The Nexus project is funded by the German Research Association (DFG) as Center of
Excellence (SFB) 627.

[1] T. Berners-Lee, M. Fischetti: Weaving the web. 1. paperback ed., HarperCollins, 2000
[2] M. E. Califf, R. J. Mooney: Relational Learning of Pattern-Match Rules for Information

Extraction. Proceedings of AAAI 1998 Spring Symposium on Applying Machine Learn-
ing to Discourse Processing, March 23-25, 1998

[3] J. Ding, L. Gravano, N. Shivakumar: Computing Geographical Scopes of Web Resources
26th International Conference on Very Large Databases (VLDB), September 10-14, 2000

[4] Dublin Core Metadata Element Set: http://www.dublincore.org/documents/dces/
[5] The Getty Thesaurus of Geographic Names: http://www.getty.edu/research/ conduct-

ing_research/vocabularies/tgn/
[6] Google Search by Location: http://labs.google.com/location
[7] A. Leonhardi, U. Kubach, K. Rothermel: Virtual Information Towers --- A metaphor for

intuitive, location-aware information access in a mobile environment. Proc. of third In-
ternational Symposium on Wearable Computers, San Francisco, CA, 1999

[8] A. Markowetz, T. Brinkhoff, B. Seeger: Geographic Information Retrieval. 3rd Interna-
tional Workshop on Web Dynamics, 2004

[9] D. Nicklas, M. Großmann, T. Schwarz, S. Volz, B. Mitschang: A Model-Based, Open
Architecture for Mobile, Spatially Aware Applications. 7th International Symposium on
Spatial and Temporal Databases (SSTD), Redondo Beach, CA, USA, 2001.

[10] D. Nicklas, B. Mitschang: On building location aware applications using an open plat-
form based on the Nexus Augmented World Model. Software and Systems Modeling, 3(4),
2004.

[11] M. Sütö: Ortsbasierter Web-Zugriff. (In German). University of Stuttgart, 2002
[12] W3C: Resource Description Framework (RDF). http://w3.org/RDF/
[13] W3C: Web Ontology Language (OWL). http://w3.org/2004/OWL/

790

Acknowledgements

References

M. Jakob et al.

Improving Space-Efficiency in Temporal Text-Indexing

Kjetil Nørvåg� and Albert Overskeid Nybø

Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway

Abstract. Support for temporal text-containment queries is of interest in a number
of contexts. In previous papers we have presented two approaches to temporal text-
indexing, the V2X and ITTX indexes. In this paper, we first present improvements
to the previous techniques. We then perform a study of the space usage of the
indexing approaches based on both analytical models and results from indexing
temporal text collections.These results show for what kind of document collections
the different techniques should be employed. The results also show that regarding
space usage, the new ITTX/VIDPI technique proposed in this paper is in most
cases superior to V2X, except in the case of patterns of high number of new
documents relative to number of updated documents.

1 Introduction

Temporal text indexes are used to reduce the cost of performing temporal text-
containment queries, i.e., query for all versions of documents that contained one or
more particular words at a particular time. The importance of such indexes will increase
as the ability to manage timestamped or temporal documents becomes common. For
example, an increasing amount of documents in companies and other organizations is
now only available electronically, and exist in several versions updated at different times.
These documents can be in a number of formats like plain text, HTML, XML, Microsoft
Word, Adobe PDF, etc. Many organizations already have searchable repositories or in-
tranet search engines that can be used to retrieve documents based on keywords search,
and possibly also other searchable parameters like create or update. Another example is
web warehouses which collect web pages from a number of sites at regular intervals,
and whose information contents can be queried and analyzed.

We have previously proposed two text-indexing techniques for transaction-time tem-
poral document database systems: the V2 temporal text index (V2X) [1] used in the
V2 temporal document database system, and the interval-based temporal text index
(ITTX) [2]. V2X is a combination of full-text indexes and time indexes for performing
efficient text-containment queries, and is most suitable for documents with few versions
or with a high degree of change between versions. In the ITTX, word occurrences and
stored in a way that is particular space-efficient when most documents have several
versions and the change between versions is relatively small.

� Email of contact author: Kjetil.Norvag@idi.ntnu.no

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 791–802, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

792 K. Nørvåg and A.O. Nybø

This paper is the first comparative study of temporal text-indexing techniques, and
the contributions of this paper are 1) a more detailed study of the space usage of the
indexing approaches, 2) improvements to the ITTX, and 3) a study for what kind of
document collections the different techniques should be employed.

The organization of the rest of this paper is as follows. In Sect. 2 we give an overview
of related work. In Sect. 3 we give an overview our two basic techniques for temporal
text indexing, the V2X and ITTX indexes. In Sect. 4 we present several improvements
to the ITTX approach. In Sect. 5 we study the space usage of the different indexing
alternatives, and for what document collection types the different alternatives should be
used. Finally, in Sect. 6, we conclude the paper.

2 Related Work

There has been a large amount of research on indexing temporal data in context of
traditional data types, see [3] for an extensive survey. However, as explained in detail
in [1], the traditional temporal indexing methods are not directly applicable to temporal
text indexing.

The only research work we are aware of that directly focuses on access methods
for general temporal document querying, is the proposal from Anick and Flynn [4] on
how to support versioning in a full-text information retrieval system. In their proposal,
the current version of documents are stored as complete versions, and backward deltas
are used for historical versions. This gives efficient access to the current (and recent)
versions, but costly access to older versions. They also use the timestamp as version
identifier. This is not applicable for transaction-based document processing where all
versions created by one transaction should have same timestamp. In order to support
temporal text-containment queries, they based the full-text index on bitmaps for words
in current versions, and delta change records to track incremental changes to the index
backwards over time. This approach has the same advantage and problem as the delta-
based version storage: efficient access to current version, but costly recreation of previous
states is needed. It is also difficult to make temporal zig-zag joins (needed for multi-word
temporal text-containment queries) efficient.

Related to the task of temporal full-text indexing, is indexing temporal XML doc-
uments [5]. In this case the focus is on improving path queries. It should be noted that
temporal full-text indexes like the ones presented in our paper can also be used to improve
performance of temporal XML queries, and this is described in more detail in [6].

The inverted file indexes used as basis in our work is based on traditional text-indexing
techniques, see for example [7].

3 Basic Temporal Text-Indexing Techniques

The basic lookup operation in non-temporal text indexing is to retrieve the document
identifiers of all documents that contain a particular word w. The most common access
method for text indexing is the inverted file, which is also the basis of our approaches.

An inverted file index is a mapping from a term (text word) w to the documents
d1, d2, . . . , dj where the term appears. Inverted files are also the basis of our approaches.

Improving Space-Efficiency in Temporal Text-Indexing 793

In the inverted file index, a posting list PL = (w, d1, d2, . . . , dm) is created for each
index term, wherew is the text word, anddi are the document identifiers of the documents
the term appears in. The tuple P = (w, di), i.e., an index term and a document identifier,
is called a posting.

In order to make this paper self-containing, and provide the context for the rest of this
paper, we will in this section give a short overview of theV2 index (V2X) and the interval-
based temporal text index (ITTX). Both the V2X and ITTX have been implemented in
temporal document database prototypes built on top of Berkeley DB [8].

TheV2X Temporal Text-Index. A document version stored inV2 is uniquely identified
by a version identifier (VID). In order to support partial retrieval of documents, the
document versions are chunked and stored in a B-tree-based document-version index.
The VID is essentially a counter, and given the fact that each new version to be inserted
is given a higher VID than the previous versions, the document-version index is append-
only and always compact. A document is identified by a document name. Conceptually,
the document name index has for each document name some metadata related to all
versions of the document, followed by specific information for each particular version,
including both timestamp and VID for each version. Thus, the document name index can
be used to retrieve particular versions of a particular document by providing the VIDs
to be used in the lookup in the document-version index.

The words in the document versions are indexed by variants of inverted lists, which
essentially provides a mapping from a word to theVIDs of all document versions contain-
ing the word. In order to support efficient temporal text-containment queries, a separate
index called VIDPI is employed. The VIDPI provides the mapping from VID to validity
period (start- and end-timestamp), which is the timestamp of the document version iden-
tified by VID and the timestamp of the next version (or time of deletion) of the particular
document.

Temporal text-containment queries using the VIDPI-index-based approach can be
performed by the following two-step algorithm:

1. A text-index query using the text index that indexes all versions in the database. The
result is a set of VIDs of all document versions containing the particular word.

2. A time-select operation selects the actual versions (from stage 1) that were valid at
the particular time or time period. For this purpose the VIDPI is used. One lookup
is needed for each of the VIDs returned in stage 1.

The ITTX Temporal Text-Index. One problem with the V2X is that each unique word
in a document version requires a separate posting in the text index. This makes the
size of the text index proportional to the size of the document version database. In a
document database with several versions of each document, the size of the text index
can be reduced by noting the fact that the difference between consecutive versions of
a document is usually small: frequently, a word in one document version will in also
occur in the next (as well as the previous) version. Thus, we can reduce the size of the
text index by storing word/version-range mappings, instead of storing information about
individual versions.

794 K. Nørvåg and A.O. Nybø

In order to benefit from the use of intervals, we use document version identifiers
(DVIDs) instead of the version identifiers used in theV2X. Given a version of a document
with DVID=v, then the next version of the same document has DVID=v+1. In contrast to
a VID that uniquely identifies a document version stored in the system, different versions
of different documents can have the same DVID, i.e., the DVIDs are not unique between
different versions of different documents. In order to uniquely identify (and to retrieve)
a particular document version, a document identifier (DID) is needed together with the
DVID, i.e., a particular document version in the system is identified by (DID||DVID).
In this way, consecutive versions of the same document that contain the same word can
form a range with no holes.

Conceptually, the text index that use ranges can be viewed as a collection of
(w,DID,DVIDi,DVIDj)-tuples, i.e., a word, a document identifier, and a DVID range.
Note that for each document, there can be several tuples for each word w, because words
can appear in one version, disappear in a later version, and then again reappear later. A
good example is a page containing news headlines, where some topics are reoccurring.

When a new document version with DVID=DVIDi is inserted, and it contains a word
that did not occur in the previous version, a (w,DID,DVIDi,DVIDj) tuple is inserted
into the index. DVIDi is the DVID of the inserted version, but DVIDj is set to a special
value UC (until changed). In this way, if this word is also included in the next version
of this document, the tuple does not have to be modified. This is an important feature (a
similar technique for avoiding text index updates is also described in [4]). Only when
a new version of the document that does not contain the word is inserted, the tuple has
to be updated. It is important to note that using this organization, it is impossible to
determine the DVIDs of the most recent versions from the index. For the [DVIDi,UC]
intervals only the start DVID is available, and we do not know the end DVID. As will
be described later, this makes query processing more complicated.

In order to save some space and increase performance of queries for current docu-
ments, a separate index is used for the entries that are still valid, i.e., where the end of
the interval is UC. In this index the end value UC is implicit, so that only the start DVID
needs to be stored. We denote the index for historical entries HTxtIdx and the index for
valid entries CTxtIdx.

One of the main reasons why the VIDPI is very attractive in the context of V2, is
that storing the time information in the VIDPI is much more space efficient than storing
the timestamps replicated many places in the text index (once for each word). However,
when intervals are used, one timestamp for each start- and end-point of the intervals is
sufficient, and the increase in total space usage, compared with using a VIDPI index,
should be less than what is the case in V2 (although, as we shall see later in this paper,
this is unfortunately not always the case). It could also be more scalable, because the
V2 approach is most efficient when the VIDPI index can always be resident in main
memory. To summarize, our final solution for the ITTX as presented in [2] was to store
(w,DID,DVIDi,DVIDj ,TS ,TE) in the HTxtIdx (where TS and TE are the start- and
end-timestamps of the interval [DVIDi,DVIDj>), and to store (w,DID,DVID,TS) in the
CTxtIdx. In [2] we outline the algorithms to be applied when inserting, updating and
deleting documents, as well as algorithms for temporal text-containment queries using
the ITTX.

Improving Space-Efficiency in Temporal Text-Indexing 795

4 Improving the Interval-Based Temporal Text Index

After some experimenting with the ITTX we have discovered that for many types of
temporal document collections the assumption that ITTX is usually more space-efficient
than the V2X does not hold. As a result, we have developed several variants of ITTX
where the space efficiency is improved. The ITTX improvements will now be presented
together with a discussion about space usage of the variants. We start with the original
ITTX, which we from now on will denote ITTX-24/14 in order to avoid any confusion
between the variants.

ITTX-24/14. In the original implementation of ITTX we used 4 bytes to represent DIDs
and DVIDs, and 6 byte for each timestamp. This means a total of 24 bytes to represent a
posting interval in the historical index, and 14 bytes in the current index where the end
of interval is not known and therefore does not have to be stored. In V2X, on average
just a little over 2 bytes where needed to represent a posting. This means that in order to
be competitive, the ITTX posting intervals need to cover on average at least 12 versions
in order to be competitive compared to the V2X. For many application areas this was
not the case, and the space usage when using the ITTX was much higher than if V2X
was used.

ITTX-16/11. One way to reduce the space usage is to use a compressed representation
of the identifiers. In traditional non-temporal posting lists, the difference is often small
between two consecutive document identifiers in large posting lists. This makes it pos-
sible to encode the identifiers very efficiently, for example using Elias encoding [9] or
variable length encoding [10]. In the case of the intervals in ITTX this is more difficult,
but one possible approach is to reduce the size of the representation of the DVIDs. In-
stead of using 4 bytes for each DVID, we can use 3 bytes for the start DVID, and 1 byte
to represent the difference between the end DVID and start DVID. The consequences
of using this representation is that we can only have 224 ≈ 16 million versions of each
document, and that no interval can have more than 256 versions. It is not very likely
that a document in a document database should have more than 16 million versions, and
intervals over 256 versions can simply be represented by two or more intervals instead.
The result of this representation is 16,7% reduced space usage.

Using the same difference-based technique to reduce space usage of timestamps is
not possible. The problem is that by using 1 byte to represent a difference, the technique
is only useful if most differences is less than what 1 byte represents, which is only
about 7 minutes. This will definitely not be the case in general. Even 2 bytes is not
sufficient, as it only increases the possible difference to 18 hours. However, in the case
of document databases it should be enough with a coarser granularity than the one
provided by the 6 bytes for each timestamp that were used in the original ITTX. Similar
to the V2X, 4-byte-timestamps with resolution of 1 second should suffice. The result is
then that the space needed for storing a posting interval, i.e., DID/DVID/DVID/T/T, is
4 + 3 + 1 + 4 + 4 = 16 bytes, a total reduction of 33% from the original size.

ITTX/VIDPI. The improvements proposed so far are fairly simple and give only a
moderate reduction of space. In order to reduce the size more drastically, some change
to the indexing architecture itself is necessary. One possibility is to make the text index

796 K. Nørvåg and A.O. Nybø

itself “non-temporal” by not including the timestamps in the main index, but instead
using a strategy similar to the VIDPI [1] approach used in V2. The result is that it is
sufficient to store the time interval once for each version, instead of once for each interval
in the text index. The text index itself still contains intervals of version identifiers, thus
still has the property of not increasing proportional to the version database size which
was the case of the index used in V2.

Using the ITTX/VIDPI approach, each posting interval in the index is a
DID/DVID/DVID record, using 4 + 3 + 1 = 8 bytes. The records in the new VIDPI
index are DID/DVID/T/T structures, using 16 bytes each assuming 4 byte large times-
tamps. In order to support efficient search in this index, the records should be sorted on
DID/DVID. Similar to what is done in the VIDPI index in V2, DVIDs are sequential so
they do not really have to be stored. In addition, the end timestamp of one version is the
start timestamp of the next, so only one timestamp for each version needs to be stored,
i.e., 8 bytes is sufficient for each version.

There is one important difference between the VIDPI index used in V2 and the one
proposed here: in V2 the VIDPI index was sorted on VIDs and was append-only, thus
having very low update cost. In the ITTX/VIDPI approach this is not the case, so the
update will have a higher cost, approximately one block to be update per version, instead
of one per transaction as was the case for V2. However, compared to the cost of indexing
words in documents, the VIDPI update cost is only marginal.

ITTX/ND. During a temporal text-containment query using the implemented version
of ITTX (the ITTX-24/14 variant), a lookup in the text index returns for each document
where the word appears, an interval of versions (DVID,DVID) and a time period (T,T).
In order to determine the actual versions, a separate lookup in the document name index
is necessary. The DVDIs can be used to reduce the amount of work during the lookup in
the document name index, but are not strictly necessary. The reason for still including
the DVIDs in the ITTX, is that they are needed to support efficient removal of individual
versions from the database. If removal of intermediate versions will not occur, it is
possible to omit explicit storage of the DVID interval in the index, and instead having a
DID together with the time interval. In this case, only 8 byte is needed for an entry in
the CTxtIdx, and 12 bytes in the HTxtIdx.

5 Evaluation of Space Usage

In this study the main focus will be on reducing space usage, instead of studying the
access cost directly. When using the indexes discussed in this paper, the space usage
also indirectly determines the access cost because access cost is a function of posting
list/interval sizes and buffer-hit probability. We will now first describe the test data that
is used in the study, then the evaluation approach will be described, and an evaluation
of space usage will be performed.

5.1 Test Data

Acquiring real-world temporal document collections is difficult. In some of our previous
studies in temporal document databases, we have used a document collection that is

Improving Space-Efficiency in Temporal Text-Indexing 797

Table 1. Space usage of different indexing alternatives. The numbers in paranthesis are the number
of bytes used to represent the fields in the index. Number of historical intervals is denoted NIH,
intervals in CTxtIdx is denoted NIC, and number of postings in total is denoted NP

Index type HTxtIdx CTxtIdx Space
ITTX-24/14 DID(4) DVID(4) DVID(4) T(6) T(6) DID(4) DVID(4) T(6) NIH ∗ 24 + NIC ∗ 14
ITTX-16/11 DID(4) DVID(3) DVID(1) T(4) T(4) DID(4) DVID(3) T(4) NIH ∗ 16 + NIC ∗ 11
ITTX/VIDPI DID(4) DVID(3) DVID(1) DID(4) DVID(3) NIH ∗ 8 + NIC ∗ 8
ITTX/ND DID(4) T(4) T(4) DID(4) T(4) NIH ∗ 12 + NIC ∗ 8
V2X VID(2) VID(2) NP ∗ 2

based on the evolution of pages from a set of web sites. Even though that collection
was sufficient for the use in our previous work, it has a number of shortcomings that
makes it less satisfactory for the purpose of this paper: it has a very high number of
documents that are never updated, and it only presents one application area (temporal
web warehouses). When comparing different indexing approaches, it is necessary with
a number of test collections with different characteristics/statistical properties, and is
also an advantage if we know and can control these characteristics, in order to make it
easier to explain the results. For this purpose we have developed TDocGen, temporal
document generator.

TDocGen creates a temporal document collection whose characteristics are decided
by a number of configurable parameters. For example, the probability of update, average
number of new documents in each generation, etc., can be configured. One of the impor-
tant properties of TDocGen is that the documents it creates have vocabulary, vocabulary
size, and words distribution according to what is expected in the real world. The created
documents contain real words taken from histograms based on real (but non-temporal)
documents and follows empirical laws like Heaps’ law and Zipf’s law. In order to capture
the aspect of dynamic and static documents, every new document created by TDocGen
is characterized as being dynamic or relatively static. The percentage of documents in
each partition and the probability of updates to each partition is configurable. In a typical
configuration 20% of the documents are defined to be dynamic, and 80% of the updates
are performed on dynamic documents. TDocGen is described in more detail in [11].

5.2 Evaluation Method and Validation

Our approach to comparison is to use the simple disk usage models as summarized
in Tab. 1 as basis for calculating the space usage (note that the extra space needed
for the VIDPI indexes in the case of the ITTX/VIDPI and V2X alternatives is very
small compared to the rest of the index structure and is therefore omitted from the
space usage models, the same is the case for the start-VID of each chunk in the V2X
index). In order to calculate the space usage for the different indexing alternatives, the
models will be instrumented with words, validity intervals, etc., based on the document
collections created by TDocGen. The statistics is acquired by inserting the collections
into an IDDB database and using the statistics from the ITTX index.

In order to have confidence in the result using our evaluation methods, a validation of
the approach is necessary. The modeling approach is the same for all the ITTX-variants,

798 K. Nørvåg and A.O. Nybø

so validation of one of them suffices. The ITTX-24/14 variant is implemented in the
IDDB prototype, and we insert one of the test collections into an IDDB database and
compare the actual disk space usage of the ITTX index in IDDB with the predicted
values resulting from instrumentation of the model as described above.

In order to predict the actual space us-

 0 MB

 200 MB

 400 MB

 600 MB

 800 MB

 1000 MB

 1200 MB

 1400 MB

0 10 20 30 40 50 60 70 80 90 100

In
de

x
si

ze

Days

IDDB
IDDB-100%FF
ITTX-24/14

Fig. 1. Space usage of storing a test collec-
tion in IDDB for different amounts of data

age from the values described in the previous
section, page utilization and page overhead
has to be taken into account. Figure 1 illus-
trates space usage of storing a test collection
in IDDB for different amounts of data. The
uppermost curve shows the actual disk space
used for data stored in the IDDB system (hav-
ing page fill factor of 67%), the second curve
shows space usage adjusted for page utiliza-
tion (i.e., space usage if fill factor was 100%),
and the lower curve shows the space usage as
predicted by the model which assumes 100%
fill factor. The discrepancy between the model
and real values is the space occupied by keys (words) and overhead on each page.

The effects of page utilization and space for keys and overhead is approximately the
same for the indexing alternatives, so in the rest of this study we will use the values
predicted from the models. These values reflects space usage after a reorganization of
the database, which would bring page utilization close to 100%. Figure 1 shows that the
accuracy of the model is good, and the small difference also gives high confidence in
the models for the indexing techniques that are not actually implemented (ITTX-16/11,
ITTX/VIDPI, and ITTX/ND).

A similar approach is followed to validate the V2X model. With the test data we have
studied, the difference between predicted and real values is approximately 3%, this is
the result of omitting the start VID of each chunk in the V2X index from the model.

5.3 Space Usage

Different document database applications have different access pattern and document
characteristics. A big advantage of having document collections created by a synthetic
document generator is that we are able to produce collections reflecting the different
applications. We will now study space usage for a number of different temporal docu-
ment collections. Our application case that is behind the parameters, is a company or
department involving a number of persons that each day create and update a certain
number of documents. The starting point for the study is a document collection created
by TDocGen using the parameters in Tab. 1. These parameters can for example reflect a
group of 10 people where each of them every day on average creates 2 new documents
and updates 10 documents, and once in a while delete documents. Assuming 50 lines on
a page, a typical new document has 3 pages, and an update is typically addition of text
equivalent to one new page, and removal of text equivalent to half a page. In addition to
performing a study using the default parameters in Tab. 1, we have also changed some
of the parameters to understand how these changes will affect space usage.

Improving Space-Efficiency in Temporal Text-Indexing 799

Table 2. Default document generator parameters

Default Normal distributed
Parameter value Average Std. dev.
Number of documents first that exists the first day 20
Percentage of documents being dynamic 20
Percent of updates applied to dynamic documents 80
Number of words in each line in document 10
Number of new documents created/day 20 10
Number of deleted documents/day 3 1
Number of updated documents/day 200 75
Number of lines in new document 150 50
Number of new lines when updating 50 10
Number of deleted lines when updating 20 5

The results are presented in Fig. 2. In all graphs, the space usage for the index is
presented as a function of document collection size, which is given as number of days
there have been actions performed on the database. In order to make it easier to see
details in the graphs, we have only included the interesting part of the range (days), i.e.,
up to the interesting points of crossing. The actual document collection size at the end
of each experiment is typically in the order of 15 times the space usage of the V2X, i.e.,
between 1 GB and 4 GB (depending on number of days and update/create patterns).

Figure 2(a) illustrates space usage using the default parameters as presented in Tab. 1.
As can be seen in the figure, already early in the experiment it becomes obvious that
using the default parameters, the interval-bases indexing techniques based on the ITTX
excel.

The default parameters represent a quite aggressive update pattern in terms of amount
of updated documents, although the percentage of documents that are updated decreases
as the size of the database grows larger. In order to study the effect of the update rate, we
have run the experiments based on the default parameters, but with number of updated
documents each day reduced to 100. The results are illustrated in Fig. 2(b), and shows
that the space usage of the V2X does not increase at the same very high rate as in
Fig. 2(a). It also shows that it takes a longer time before the difference between V2X and
the other techniques becomes significant. However, the difference increases with time,
so it is obvious there are great benefits gained from using intervals-based indexes also
in this case.

Figure 2(c) shows the space usage when the update rate is further reduced, to 50
updates documents per day. It illustrates well the fact that the V2X is best when most
documents have few updates, because short intervals make the interval-based indexes
inefficient. The same aspect can also be illustrated by increasing the number of new
documents created each day, instead of reducing the update rate. This is illustrated
in Fig. 2(d), which shows space usage when the number of new documents has been
increased to 40. What happens is essentially that new documents are created so fast that
it is not possible to update all old documents with the given update rate. For the values as
shown in Fig. 2(c) and 2(d), there is not a very significant difference between ITTX/ND,
ITTX/VIDPI, and V2X, and access performance can be just as important as space when

800 K. Nørvåg and A.O. Nybø

 0 MB

 20 MB

 40 MB

 60 MB

 80 MB

 100 MB

 120 MB

0 10 20 30 40 50 60 70 80 90 100

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(a) Default parameters.

 0 MB

 20 MB

 40 MB

 60 MB

 80 MB

 100 MB

 120 MB

 140 MB

 160 MB

 180 MB

 200 MB

0 50 100 150 200 250 300

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(b) Number of updated documents/day re-
duced to 100.

 0 MB

 20 MB

 40 MB

 60 MB

 80 MB

 100 MB

 120 MB

 140 MB

 160 MB

 180 MB

 200 MB

0 50 100 150 200 250 300 350 400

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(c) Number of updated documents/day re-
duced to 50.

 0 MB

 50 MB

 100 MB

 150 MB

 200 MB

 250 MB

 300 MB

0 50 100 150 200 250 300

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(d) Number of new documents/day in-
creased to 40.

 0 MB

 50 MB

 100 MB

 150 MB

 200 MB

 250 MB

 300 MB

0 10 20 30 40 50 60 70

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(e) Increasing intial number of document
and the update rate.

 0 MB

 20 MB

 40 MB

 60 MB

 80 MB

 100 MB

 120 MB

 140 MB

0 10 20 30 40 50 60 70

In
de

x
si

ze

Days

ITTX-24/14
ITTX-16/11
ITTX/ND
ITTX/VIDPI
V2X

(f) Pattern consisting of mostly small up-
dates.

Fig. 2. Space usage for different temporal document collections

Improving Space-Efficiency in Temporal Text-Indexing 801

choosing which index to use. However, when the number of new documents relative to
number of updated documents increases even more, using the V2X will become more
and more beneficial. The extreme parameters are when there are no updates, only new
created documents. In that case, a new interval has to be created for each document,
and space usage will increase linearly with increasing document collection size for the
interval-based indexes as well. However, an interval occupies much larger space in the
index than just a VID as is the case for the V2X, so V2X will in total have a much lower
space usage in that case.

In order to study how the index structures scales to a larger number of documents,
we increased the number of documents at the start to 1000, and the number of updated
documents each day to 400. The space usage is illustrated in Fig. 2(e), and the difference
between V2X and the interval-based alternatives is significant.

In addition to the experiments presented so far on basis of the parameters in Tab. 1,
we have also studied the impact of varying the other parameters. One interesting case is
when most updates are very small, i.e., only one line added by during each update. One
possible application area where this could occur is a CV database. This is essentially a
best-case for the interval-bases index, and is very obvious when we see the graphs in
Fig. 2(f): very little increase in index size of the interval-based approaches, but very high
increase in space usage for the V2X approach.

6 Discussion and Conclusions

Support for temporal text-containment queries is of interest in a number of contexts, both
temporal document databases and temporal XML databases[6]. In this paper, we have
presented improvements to the previous temporal text-indexing techniques and studied
in more detail the space usage of the indexing approaches. As has been shown, regarding
space usage the ITTX/VIDPI is in most cases superior to V2X, except in the case of:

– High number of new documents relative to number of updated documents. In that
case, many intervals will be one-version intervals, which are expensive in terms of
space usage.

– Possibility of physically deleting historical versions from the database, for example
if granularity reduction [12] or vacuuming is performed (note that in the case of
ordinary/logical deletions of documents, previous versions will be retained in the
database). In that case, intervals will be destroyed and the relative space usage of
interval-based approaches will be very high.

For both ITTX/VIDPI and V2X, a query has to be performed by a lookup in the text
index followed by a lookup in the VIDPI index. As long as the VIDPI index can fit in
main memory the cost of the VIDPI lookup is not significant and does not have to be
taken into account. In this case, choice of index structure can be based on create/update
pattern. However, if the number of document versions is very large, the VIDPI index
might not fit in main memory. This can for example be the result of a very large document
collection, but can also happen in the case of a small collection that contains many small
documents. In this case, the extra lookups in the VIDPI index can contribute much to the
overall access time, and using an index variant without the need up the extra lookup can

802 K. Nørvåg and A.O. Nybø

be beneficial. The ITTX/ND normally occupies more space than an ITTX/VIDPI index,
but the difference is small enough to consider it a good alternative when the VIDPI index
does not fit in main memory.

The proposed indexing techniques work well even for large document collections.
However, we believe there still are possible ways of improving indexing performance in
the case of very large document collections, and our current work focuses on designing
index structures that are truly scalable. These indexes will be needed when the document
collection and indexes are of such sizes that only small parts of the index structures can
be assumed to be resident in main memory.

References

1. Nørvåg, K.: Supporting temporal text-containment queries in temporal document databases.
Journal of Data & Knowledge Engineering 49 (2004) 105–125

2. Nørvåg, K.: Space-efficient support for temporal text indexing in a document archive context.
In: Proceedings of the 7th European Conference on Digital Libraries (ECDL’2003). (2003)

3. Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data. ACM
Computing Surveys 31 (1999) 158–221

4. Anick, P.G., Flynn, R.A.: Versioning a full-text information retrieval system. In: Proceedings
of SIGIR’1992. (1992)

5. Mendelzon, A.O., Rizzolo, F., Vaisman, A.A.: Indexing temporal XML documents. In:
Proceedings of VLDB’2004. (2004)

6. Nørvåg, K.: Algorithms for temporal query operators in XML databases. In: Workshop on
XML-Based Data Management and Multimedia Engineering. (2002)

7. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann (1999)

8. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley DB. In: Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference. (1999)

9. Elias, P.: Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory IT-21 (1975) 194–203

10. Fraenkel, A., Klein, S.: Novel compression of sparse bit-strings — preliminary report. In:
Combinatorial Algorithms on Words, NATO ASI Series Volume 12. Springer Verlag (1985)

11. Nørvåg, K., Nybø, A.O.: Creating synthetic temporal document collections. Techni-
cal Report IDI 6/2004, Norwegian University of Science and Technology. Available from
http://www.idi.ntnu.no/grupper/DB-grp/ (2004)

12. Nørvåg, K.: Algorithms for granularity reduction in temporal document databases. (Accepted
for publication in Information Systems)

Nearest Neighbours Search Using the PM-Tree

Tomáš Skopal1, Jaroslav Pokorný1, and Václav Snášel2

1 Charles University in Prague, FMP, Department of Software Engineering,
Malostranské nám. 25, 118 00 Prague, Czech Republic, EU

tomas@skopal.net, jaroslav.pokorny@mff.cuni.cz
2 VŠB–Technical University of Ostrava, FECS, Dept. of Computer Science,

tř. 17. listopadu 15, 708 33 Ostrava, Czech Republic, EU
vaclav.snasel@vsb.cz

Abstract. We introduce a method of searching the k nearest neighbours
(k-NN) using PM-tree. The PM-tree is a metric access method for sim-
ilarity search in large multimedia databases. As an extension of M-tree,
the structure of PM-tree exploits local dynamic pivots (like M-tree does
it) as well as global static pivots (used by LAESA-like methods). While
in M-tree a metric region is represented by a hyper-sphere, in PM-tree
the ”volume” of metric region is further reduced by a set of hyper-rings.
As a consequence, the shape of PM-tree’s metric region bounds the in-
dexed objects more tightly which, in turn, improves the overall search
efficiency. Besides the description of PM-tree, we propose an optimal
k-NN search algorithm. Finally, the efficiency of k-NN search is experi-
mentally evaluated on large synthetic as well as real-world datasets.

1 Introduction

The volume of multimedia databases rapidly increases and the need for efficient
content-based search in large multimedia databases becomes stronger. In partic-
ular, there is a need for searching for the k most similar documents (called the
k nearest neighbours – k-NN) to a given query document.

Since multimedia documents are modelled by objects (usually vectors) in
a feature space U, the multimedia database can be represented by a dataset
S ⊂ U, where n = |S| is size of the dataset. The search in S is accomplished by
an access method, which retrieves objects relevant to a given similarity query.
The similarity measure is often modelled by a metric, i.e. a distance d satisfying
properties of reflexivity, positivity, symmetry, and triangular inequality. Given
a metric space M = (U, d), the metric access methods (MAMs) [4] organize
objects in S such that a structure in S is recognized (i.e. a kind of metric index
is constructed) and exploited for efficient (i.e. quick) search in S. To keep the
search as efficient as possible, the MAMs should minimize the computation costs
(CC) and the I/O costs. The computation costs represent the number of (com-
putationally expensive) distance computations spent by the query evaluation.
The I/O costs are related to the volume of data needed to be transfered from
secondary memory (also referred to as the disk access costs).

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 803–815, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

804 T. Skopal, J. Pokorný, and V. Snášel

In this paper we propose a method of k-NN searching using PM-tree, which
is a metric access method for similarity search in large multimedia databases.

2 M-Tree

Among the MAMs developed so far, the M-tree [5, 7] (and its modifications) is
still the only dynamic MAM suitable for efficient similarity search in large mul-
timedia databases. Like other dynamic and paged trees, the M-tree is a balanced
hierarchy of nodes. Given a metric d, the data objects Oi ∈ S are organized in a
hierarchy of nested clusters, called metric regions. The leaf nodes contain ground
entries of the indexed data objects, while the routing entries (stored in the inner
nodes) describe the metric regions. A ground entry is denoted as:

grnd(Oi) = [Oi, oid(Oi), d(Oi,Par(Oi))]

where Oi ∈ S is the data object, oid(Oi) is identifier of the original DB object
(stored externally), and d(Oi,Par(Oi)) is precomputed distance between Oi and
the data object of its parent routing entry. A routing entry is denoted as:

rout(Oi) = [Oi, ptr(T (Oi)), rOi
, d(Oi,Par(Oi))]

where Oi ∈ S is a routing object (local pivot), ptr(T (Oi)) is pointer to the
covering subtree, and rOi is the covering radius. The routing entry determines a
hyper-spherical metric region (Oi, rOi) in M, for which routing object Oi is the
center and rOi

is the radius bounding the region. In Figure 1 see several data
objects partitioned among (possibly overlapping) metric regions of M-tree.

Fig. 1. Hierarchy of metric regions and the appropriate M-tree

2.1 Similarity Queries in M-Tree

The structure of M-tree was designed to support similarity queries (proximity
queries actually). We distinguish two basic kinds of queries. The range query is
specified as a hyper-spherical query region (Q, rQ), defined by a query object
Q and a covering query radius rQ. The purpose of range query is to select all
objects Oi ∈ S satisfying d(Q,Oi) ≤ rQ (i.e. located inside the query region). The

Nearest Neighbours Search Using the PM-Tree 805

k nearest neighbours query (k-NN query) is specified by a query object Q and a
number k. A k-NN query selects the first k nearest (most similar) objects to Q.
Technically, the k-NN query can be formulated as a range query (Q, d(Q,Ok)),
where Ok is the k-th nearest neighbour. During query processing, the M-tree
hierarchy is traversed down. Given a routing entry rout(Oi), the subtree T (Oi)
is processed only if the region defined by rout(Oi) overlaps the query region.

Range Search. The range query algorithm [5, 7] has to follow all M-tree paths
leading to data objects Oj inside the query region, i.e. satisfying d(Q,Oj) ≤ rQ.
In fact, the range query algorithm recursively accesses nodes the metric regions
of which (described by the parent routing entries rout(Oi)) overlap the query
region, i.e. such that d(Oi, Q) ≤ rOi + rQ is satisfied.

2.2 Nearest Neighbours Search

In fact, the k-NN query algorithm for M-tree is a more complicated range query
algorithm. Since the query radius rQ is not known in advance, it must be de-
termined dynamically (during the query processing). For this purpose a branch-
and-bound heuristic algorithm has been introduced [5], quite similar to that one
for R-trees [8]. The k-NN query algorithm utilizes a priority queue PR of pend-
ing requests, and a k-elements array NN used to store the k-NN candidates and
which, at the end of the processing, contains the result. At the beginning, the
dynamic radius rQ is set to ∞, while during query processing rQ is consecutively
reduced down to the ”true” distance between Q and the k-th nearest neighbour.

PR Queue. The priority queue PR of pending requests[ptr(T (Oi)),dmin(T (Oi))]
is used to keep (pointers to) such subtrees T (Oi), which (still) cannot be ex-
cluded from the search, due to overlap of their metric regions (Oi, rOi

) with
the dynamic query region (Q, rQ). The priority order of each such request is
given by dmin(T (Oi)), which is the smallest possible distance between an object
stored in T (Oi) and the query object Q. The smallest distance is denoted as the
lower-bound distance between Q and the metric region (Oi, rOi

):

dmin(T (Oi)) = max{0, d(Oi, Q) − rOi
}

During k-NN query execution, requests from PR are being processed in the
priority order, i.e. the request with smallest lower-bound distance goes first.

NN Array. The NN array contains k entries of form either [oid(Oi), d(Q,Oi)]
or [−, dmax(T (Oi))]. The array is sorted according to ascending distance values.
Entry of form [oid(Oi), d(Q,Oi)] on the j-th position in NN represents a candi-
date object Oi for the j-th nearest neighbour. In the second case (i.e. entry of
form [−, dmax(T (Oi))]), the value dmax(T (Oi)) represents upper-bound distance
between Q and objects in subtree T (Oi) (in which some k-NN candidates could
be stored). The upper-bound distance dmax(T (Oi)) is defined as:

dmax(T (Oi)) = d(Oi, Q) + rOi

806 T. Skopal, J. Pokorný, and V. Snášel

Since NN is a sorted array containing the k nearest neighbours candidates (or
at least upper-bound distances of the still relevant subtrees), the dynamic query
radius rQ can be determined as the current distance stored in the last entry
NN[k]. During the query processing, only the closer candidates (or smaller upper-
bound distances) are inserted into NN array, i.e. such candidates, which are
currently located inside the dynamic query region (Q, rQ).

After insertion into NN, the query radius rQ is decreased (because NN[k]
entry was replaced). The priority queue PR must contain only the (still) relevant
subtrees, i.e. such subtrees the regions of which overlap the dynamic query region
(Q, rQ). Hence, after the dynamic radius rQ is decreased, all irrelevant requests
(for which dmin(T (Oi)) > rQ) must be deleted from PR.

At the beginning of k-NN search, the NN candidates are unknown, thus all
entries in the NN array are set to [−,∞]. The query processing starts at the
root level, so that [ptr(root),∞] is the first and only request in PR. For a more
detailed description of the k-NN query algorithm we refer to [7, 10].

Note: The k-NN query algorithm is optimal in I/O costs, since it only accesses
nodes, the metric regions of which overlap the query region (Q, d(Q,NN[k].dmax)).
In other words, the I/O costs of a k-NN query (Q, k) and I/O costs of the equiv-
alent range query (Q, d(Q,NN[k].dmax)) are equal.

Fig. 2. An example of 2-NN search in M-tree

Example 1

In Figure 2 see an example of 2-NN query processing. Each of the depicted phases
shows the content of PR queue and NN array, right before processing a request

Nearest Neighbours Search Using the PM-Tree 807

from PR. Due to the decreasing query radius rQ, the dynamic query region
(Q, rQ) (represented by bold-dashed line) is reduced down to (Q, d(Q,O5)). Note
the algorithm accesses 5 nodes (processing of single request in PR involves a
single node access), while the equivalent range query takes also 5 node accesses.

3 PM-Tree

Each metric region in M-tree is described by a bounding hyper-sphere. How-
ever, the shape of hyper-sphere is far from optimal, since it does not bound
the data objects tightly together and the region ”volume” is too large. Rela-
tively to the hyper-sphere volume, there are only ”few” objects spread inside
the hyper-sphere – a huge proportion of dead space [1] is covered. Consequently,
for hyper-spherical regions the probability of overlap with query region grows,
thus query processing becomes less efficient. This observation was the major mo-
tivation for introduction of the Pivoting M-tree (PM-tree) [12, 10], an extension
of M-tree.

3.1 Structure of PM-Tree

Some metric access methods (e.g. AESA, LAESA [4, 6]) exploit global static piv-
ots, i.e. objects to which all objects of the dataset S (all parts of the index struc-
ture respectively) are related. The global pivots actually represent ”anchors” or
”viewpoints”, due to which better filtering of irrelevant data objects is possible.

In PM-tree, the original M-tree hierarchy of hyper-spherical regions (driven
by local pivots) is combined with so-called hyper-ring regions, centered in global
pivots. Since PM-tree is a generalization of M-tree, we just describe the new facts
instead of a comprehensive definition. First of all, a set of p global pivots Pt ∈ S

must be chosen. This set is fixed for all the lifetime of a particular PM-tree
index. A routing entry in PM-tree inner node is defined as:

routPM (Oi) = [Oi, ptr(T (Oi)), rOi , d(Oi,Par(Oi)),HR]

The new HR attribute is an array of phr intervals (phr ≤ p), where the t-th
interval HR[t] is the smallest interval covering distances between the pivot Pt and
each of the objects stored in leaves of T (Oi), i.e. HR[t] = 〈HR[t].min, HR[t].max〉,
HR[t].min = min{d(Oj , Pt)}, HR[t].max = max{d(Oj , Pt)}, ∀Oj ∈ T (Oi). The
interval HR[t] together with pivot Pt define a hyper-ring region (Pt,HR[t]); a
hyper-spherical region (Pt,HR[t].max) reduced by a ”hole” (Pt,HR[t].min).

Since each hyper-ring region (Pt, HR[t]) defines a metric region bounding all
the objects stored in T (Oi), the intersection of all the hyper-rings and the hyper-
sphere forms a metric region bounding all the objects in T (Oi) as well. Due to the
intersection with hyper-sphere, the PM-tree metric region is always smaller than
the original hyper-spherical region. The probability of overlap between PM-tree
region and query region is smaller, thus the search becomes more efficient (see
Figure 3). A ground entry in PM-tree leaf is defined as:

grndPM (Oi) = [Oi, oid(Oi), d(Oi,Par(Oi)),PD]

808 T. Skopal, J. Pokorný, and V. Snášel

Fig. 3. (a) Region of M-tree. (b) Region of PM-tree (sphere reduced by 3 hyper-rings)

The new PD attribute stands for an array of ppd pivot distances (ppd ≤ p)
where the t-th distance PD[t] = d(Oi, Pt). The distances PD[t] between data
objects and the global pivots are used for simple sequential filtering in leaves,
as it is accomplished in LAESA-like methods. For details concerning PM-tree
construction as well as representation and storage of the hyper-ring intervals
(HR and PD arrays) we refer to [12, 10].

3.2 Choosing the Global Pivots

Problems about choosing the global pivots have been intensively studied for a
long time [9, 3, 2]. In general, we can say that pivots should be far from each
other (close pivots give almost the same information) and outside data clusters.
Distant pivots cause increased variance in distance distribution [4] (the dataset is
”viewed” from different ”sides”), which is reflected in better filtering properties.

We use a cheap but effective method of pivots choice, described as follows.
First, m groups of p objects are randomly sampled from the dataset S, each
group representing a candidate set of pivots. Second, such group of pivots is
chosen, for which the sum of distances between objects is maximal.

3.3 Similarity Queries in PM-Tree

The distances d(Q,Pt), ∀t ≤ max(phr, ppd) have to be computed before the query
processing itself is started. The query is processed by accessing nodes, the regions
of which are overlapped by the query region (similarly as M-tree is queried, see
Section 2.1). A PM-tree node is accessed if the query region overlaps all the
hyper-rings stored in the parent routing entry. Hence, prior to the standard
hyper-sphere overlap check (used by M-tree), the overlap of hyper-rings HR[t]
against the query region is tested as follows (no additional distance is computed):

phr∧
t=1

d(Q,Pt) − rQ ≤ HR[t].max ∧ d(Q,Pt) + rQ ≥ HR[t].min (1)

Nearest Neighbours Search Using the PM-Tree 809

If the above condition is false, the subtree T (Oi) is not relevant to the query,
and can be excluded from further processing. At the leaf level, an irrelevant
ground entry is determined such that the following condition is not satisfied:

ppd∧
t=1

|d(Q,Pt) − PD[t]| ≤ rQ (2)

In Figure 3 see that M-tree region cannot be filtered out, but PM-tree region
can be excluded from the search, since the hyper-ring HR[2] is not overlapped.

4 Nearest Neighbours Search in PM-Tree

The hyper-ring overlap condition (1) can be integrated into the original M-tree’s
range query as well as into k-NN query algorithms. In case of range query the
adjustment is straightforward – the hyper-ring overlap condition is combined
with the original hyper-sphere overlap condition (we refer to [12]).

The M-tree’s k-NN algorithm can be modified for the PM-tree, we only need
to respect the changed region shape. As in the range query algorithm, the check
for overlap between the query region and a PM-tree region is combined with
the hyper-ring overlap condition (1). Furthermore, to obtain an optimal k-NN
algorithm, there must be adjusted the lower-bound distance dmin (used by PR
queue) and the upper-bound distance dmax (used by NN array), as follows.

The requests [ptr(T (Oi)), dmin(T (Oi))] in PR represent the relevant subtrees
T (Oi) to be examined, i.e. such subtrees, the parent metric regions of which
overlap the dynamic query region (Q, rQ). Taking the hyper-rings HR[t] of a
PM-tree region into account, the lower-bound distance is possibly increased, as:

dmin(T (Oi)) = max{0, d(Oi, Q) − rOi
, dlow

HRmax, d
low
HRmin}

dlow
HRmax= max

phr⋃
t=1

{d(Pt, Q)−HR[t].max} dlow
HRmin= max

phr⋃
t=1

{HR[t].min−d(Pt, Q)}

where max{dlow
HRmax, d

low
HRmin} determines the lower-bound distance between the

query object Q and objects located in the farthest hyper-ring. Comparing to
M-tree’s k-NN algorithm, the lower-bound distance dmin(T (Oi)) for a PM-tree
region can be additionally increased, since the farthest hyper-ring contains all
the objects stored in T (Oi).

The entries [oid(Oi), d(Q,Oi)] or [−, dmax(T (Oi))] in NN represent the cur-
rent k candidates for nearest neighbours (or at least the still relevant sub-
trees). Taking the hyper-rings HR[t] into account, the upper-bound distance
dmax(T (Oi)) is possibly decreased, as:

dmax(T (Oi)) = min{d(Oi, Q)+rOi , d
up
HR} dup

HR = min

phr⋃
t=1

{d(Pt, Q)+HR[t].max}

810 T. Skopal, J. Pokorný, and V. Snášel

where dup
HR determines the upper-bound distance between the query object Q

and objects located in the nearest hyper-ring.
In summary, the modification of M-tree’s k-NN algorithm for the PM-tree

differs in the overlap condition, which has to be additionally combined with the
hyper-ring overlap check (1) and (2), respectively. Another difference is in the
construction of dmax(T (Oi)) and dmin(T (Oi)) bounds.

Fig. 4. An example of 2-NN search in PM-tree

Example 2

In Figure 4 see an example of 2-NN query processing. The PM-tree hierarchy
is the same as the M-tree hierarchy presented in Example 1, but the query
processing runs a bit differently. Although in this particular example both the
M-tree’s and the PM-tree’s k-NN query algorithms access 4 nodes, searching the
PM-tree saves one insertion into the PR queue.

Note: Like the M-tree’s k-NN query algorithm, also the PM-tree’s k-NN query
algorithm is optimal in I/O costs, since it only accesses those PM-tree nodes,
the metric regions of which overlap the query region (Q, d(Q,NN[k].dmax)). This
is guaranteed (besides usage of the hyper-ring overlap check) by correct modifi-
cation of lower/upper distance bounds stored in PR queue and NN array.

Nearest Neighbours Search Using the PM-Tree 811

5 Experimental Results

In order to evaluate the performance of k-NN search, we present some experi-
ments made on large synthetic as well as real-world vector datasets. The query
objects were selected randomly from each respective dataset, while each partic-
ular test consisted of 1000 queries (the results were averaged). Euclidean (L2)
metric was used in all tests. The I/O costs were measured as the number of
logic disk page retrievals. The experiments were aimed to compare PM-tree with
M-tree – a comparison with other MAMs was out of scope of this paper.

Abbreviations in Figures. Each label of form ”PM-tree(x,y)” stands for a
PM-tree index where phr = x and ppd = y. A label ”<index> + SlimDown” de-
notes an index subsequently post-processed by the slim-down algorithm [11, 10].

5.1 Synthetic Datasets

For the first set of experiments, a collection of 8 synthetic vector datasets of
increasing dimensionality (from D = 4 to D = 60) was generated. Each dataset
(embedded inside unitary hyper-cube) consisted of 100,000 D-dimensional tuples

Table 1. PM-tree index statistics (synthetic datasets)

Construction methods: SingleWay + MinMax (+ SlimDown)
Dimensionalities: 4,8,16,20,30,40,50,60 Inner node capacities: 10 – 28

Index file sizes: 4.5 MB – 55 MB Leaf node capacities: 16 – 36
Pivot file sizes: 2 KB – 17 KB Avg. node utilization: 66%

Node (disk page) sizes: 1 KB (D = 4, 8), 2 KB (D = 16, 20), 4 KB (D ≥ 30)

Fig. 5. Number of pivots: (a) I/O costs. (b) Computation costs

812 T. Skopal, J. Pokorný, and V. Snášel

Fig. 6. Number of pivots: (a) I/O costs. (b) Computation costs

Fig. 7. Dimensionality: (a) I/O costs. (b) Computation costs

distributed uniformly among 1000 L2-spherical uniformly distributed clusters.
The diameter of each cluster was d+

10 (where d+ =
√
D). These datasets were in-

dexed by PM-tree (for various phr and ppd) as well as by M-tree. Some statistics
about the created indices are shown in Table 1 (for details see [11]). Prior to k-NN
experiments, in Figure 5 we present index construction costs (for 30-dimensional
indices), according to the increasing number of pivots. The increasing I/O costs
depend on the hyper-ring storage overhead (the storage ratio of PD or HR arrays
to the data vectors becomes higher), while the increasing computation costs de-
pend on the object-to-pivot distance computations performed before each object
insertion.

In Figure 6 the 20-NN search costs (for 30-dimensional indices) according
to the number of pivots are presented. The I/O costs rapidly decrease with the
increasing number of pivots. Moreover, the PM-tree is superior even after post-

Nearest Neighbours Search Using the PM-Tree 813

processing by the slim-down algorithm. The decreasing trend of computation
costs is even quicker than of I/O costs, see Figure 6b.

The influence of increasing dimensionality D is depicted in Figure 7. Since
the disk pages for different (P)M-tree indices were not of the same size, the I/O
costs as well as the computation costs are related (in percent) to the I/O costs
(CC resp.) of M-tree indices. For 8 ≤ D ≤ 40 the I/O costs stay approximately
fixed, for D > 40 they slightly increase. In case of D = 4, the higher PM-tree
I/O costs are caused by higher hyper-ring storage overhead.

5.2 Image Database

For the second set of experiments, a collection of approx. 10,000 web-crawled
images [13] was used. Each image was converted into 256-level gray scale and
a frequency histogram was extracted. As indexed objects the histograms (256-
dimensional vectors) were used. The index statistics are presented in Table 2.

Table 2. PM-tree index statistics (image database)

Construction methods: SingleWay + MinMax (+ SlimDown)
Dimensionality: 256 Inner node capacities: 10 – 31
Index file sizes: 16 MB – 20 MB Leaf node capacities: 29 – 31
Pivot file sizes: 4 KB – 1 MB Avg. node utilization: 67%

Node (disk page) size: 32 KB

Fig. 8. Number of pivots: (a) I/O costs. (b) Computation costs

In Figure 8a the I/O search costs for increasing number of pivots are pre-
sented. The computation costs (see Figure 8b) for p ≤ 64 decrease. However,
for p > 64 the overall computation costs grow, since the number of necessarily
computed query-to-pivot distances (i.e. p distance computations for each query)
is proportionally too large. Nevertheless, this observation is dependent on the

814 T. Skopal, J. Pokorný, and V. Snášel

Fig. 9. Number of neighbours: (a) I/O costs. (b) Computation costs

database size – obviously, for million of images the proportion of p query-to-pivot
distance computations would be smaller, when compared with the overall com-
putation costs. Finally, the costs according to the increasing number of nearest
neighbours are presented in Figure 9.

6 Conclusions

We have proposed an optimal k-NN search algorithm for the PM-tree. Experi-
mental results on synthetic and real-world datasets have shown that searching
in PM-tree is significantly more efficient, when compared with the M-tree.

Acknowledgements. This research has been partially supported by grant 201/
05/P036 of the Czech Science Foundation (GAČR) and the National programme
of research (Information society project 1ET100300419).

References

1. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

2. B. Bustos, G. Navarro, and E. Chávez. Pivot selection techniques for proximity
searching in metric spaces. Pattern Recognition Letters, 24(14):2357–2366, 2003.

3. E. Chávez. Optimal discretization for pivot based algorithms. Manuscript.
ftp://garota.fismat.umich.mx/pub/users/elchavez/minimax.ps.gz, 1999.

4. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúin. Searching in Metric
Spaces. ACM Computing Surveys, 33(3):273–321, 2001.

5. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Athens Intern.
Conf. on VLDB, pages 426–435. Morgan Kaufmann, 1997.

Nearest Neighbours Search Using the PM-Tree 815

6. M. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour
approximating and eliminating search algorithm (aesa) with linear preprocessing
time and memory requirements. Pattern Recognition Letters, 15(1):9–17, 1994.

7. M. Patella. Similarity Search in Multimedia Databases. PhD thesis, University of
Bologna, 1999.

8. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Pro-
ceedings of the 1995 ACM SIGMOD International Conference on Management of
Data, San Jose, CA, pages 71–79, 1995.

9. M. Shapiro. The choice of reference points in best-match file searching. Commun.
ACM, 20(5):339–343, 1977.

10. T. Skopal. Metric Indexing in Information Retrieval. PhD thesis, Technical Univer-
sity of Ostrava, http://urtax.ms.mff.cuni.cz/~skopal/phd/thesis.pdf, 2004.

11. T. Skopal, J. Pokorný, M. Krátký, and V. Snášel. Revisiting M-tree Building
Principles. In Proceedings of the 7th East-European Conference on Advances in
Databases and Information Systems (ADBIS), Dresden, Germany, LNCS 2798,
Springer-Verlag, pages 148–162, 2003.

12. T. Skopal, J. Pokorný, and V. Snášel. PM-tree: Pivoting Metric Tree for Similar-
ity Search in Multimedia Databases. In Local proceedings of the 8th East-European
Conference on Advances in Databases and Information Systems (ADBIS), Bu-
dapest, Hungary, pages 99–114, 2004.

13. WBIIS project: Wavelet-based Image Indexing and Searching, Stanford University,
http://wang.ist.psu.edu/.

Deputy Mechanism for Workflow Views�

Zhe Shan1, Qing Li1, Yi Luo2, and Zhiyong Peng2

1 Department of Computer Engineering and Information Technology,
City University of Hong Kong, Kowloon, Hong Kong

{zshan0, itqli}@cityu.edu.hk
2 State Key Lab of Software Engineering, Wuhan University, Wuhan, China

luo guo02@hotmail.com, zypeng@public.wh.hb.cn

Abstract. Adapted from the concept of views in databases, workflow views are
derived from workflows as a fundamental support for workflow inter-operability
and visibility by external parties in a e-service environment. However, until now
there are few works focusing on its realization mechanism, i.e. the communica-
tion between views and their source entities. In this paper, we extend the object
deputy model to the workflow deputy model supporting the interaction of work-
flow views in a systematic way. In this workflow deputy model, we formally
specify the deputy class and the deputy algebra for workflow classes. Accord-
ing to the process meta-model of XPDL, deputy operations are defined for each
kind of workflow component class specifically. Based on this deputy mechanism,
workflow views are presented in forms of deputy classes. Lastly, several modeling
issues are discussed.

1 Introduction

Workflow views [6] are derived from workflows as the fundamental support for workflow
inter-operability and visibility by external parties [7][5]. The components of a workflow
view include the process flow graph, input/output parameters, documents, and so on,
which are also contained in a workflow. Hence, workflow view encloses the information
about business process structure and contents. Based on specific business collaborations,
a company may derive corresponding workflow views based on the local workflow
system. Such a workflow view includes all the necessary information of the company for
this business. It can be used as the interaction interface in a business transaction which
is carried out with external parties. However, until now there is no formal modeling
mechanism existing for defining and executing workflow views.

In our previous work [11], the object deputy model [8] was adopted to support the
functions of workflow views. In a SmallTalk based environment, workflow components
were added to support the workflow functions and the realization of workflow views. In

� This research is supported by the State Key Lab of Software Engineering (Wuhan Uni-
versity, China) under grant: SKLSE03-01, National Natural Science Foundation of China
(60273072,60473076) and Hubei Natural Science Foundation for Distinguished Youth
(2002AC003).

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 816–827, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Deputy Mechanism for Workflow Views 817

this paper we further extend the object deputy model and formally define the workflow
deputy model as shown in Figure 1. In this model, we formally define workflow algebra
classes based on general workflow classes. Then, workflow deputy algebra is designed,
which includes four operations: Project, Extend, Union and Join. In XPDL, the underly-
ing process model of our work, there are seven kinds of components. And, each kind of
components has different properties. Hence, specific workflow component deputy class
is defined for each of them. Lastly, workflow views are presented in forms of deputy
classes.

Workflow View Class

Workflow Deputy Class

Workflow Class

Workflow Deputy Algegra

Workflow Component
Deputy Class

Fig. 1. Workflow View Model based on Deputy Mechanism

The remainder of the paper is organized as follows. Section 2 details the workflow
deputy model, which includes workflow deputy class, workflow deputy algebra, work-
flow component deputy class and workflow view class. Section 3 discusses semantic
constraints and structure conformance issues. Section 4 investigates the works related
to this paper and Section 5 concludes the paper with future research issues.

2 Workflow Deputy Model

2.1 Underlying Process Model

XML Process Definition Language (XPDL) [12] is the language proposed by the Work-
flow Management Coalition (WfMC) to interchange process definitions between differ-
ent workflow products. XPDL has been widely accepted in the workflow community
and has been adopted by many commercial and open-source workflow products. In this
work, we adopt XPDL as the process model of workflow views.

The Meta-model describes the top-level entities contained within a workflow defi-
nition, and their relationships and attributes. The top-level entities are shown in Figure
2. The Workflow Process Definition entity provides contextual information that applies
to other entities within the process. A process definition consists of one or more Work-
flow Process Activity, each comprising a logical, self-contained unit of work within the
process. Activities are related to one another via flow control conditions (Transition

818 Z. Shan et al.

Information). Workflow Participant Declaration provides descriptions of resources that
can act as the performer of the various activities in the process definition.Workflow Appli-
cation Declaration provides descriptions of the IT applications or interfaces which may
be invoked by the workflow service to support, or to wholly automate, the processing
associated with each activity and/or identified within the activity by an application as-
signment attribute (or attributes). Workflow Relevant Data defines the data that is created
and used within each process instance during process execution.

Workflow Process Definition

System and Environmental Data Workflow Relevant Data Workflow Process Activity

Activity Set

Workflow Participant Specification

Workflow Application Declaration Transition Information

Resource Repository or Organizational Model

Block Activity

Sub-Process Definition

Atomic Activity

1

*

1

*

1

*

1

*

1

*1

*

-performed by

-Invoke

-From -To

1
*

1

*

Fig. 2. XPDL Workflow Process Meta-model

2.2 Workflow Deputy Class

According to the meta-model in Figure 2, there are seven basic component classes

for entities, which are Process Class (
p

C), Activity Class (
a

C), Transition Class (
t

C),

Participant Class (
r

C), Application Class (
c

C), Relevant Data Class (
d

C), and Activity Set

Class (
s

C). A workflow definition W is defined as a set of these classes, namely W = (
p

C

, {
a

C}, {
t

C}, {
r

C}, {
c

C}, {
d

C}, {
s

C}). All these classes are called Workflow Classes, which
are different from the general classes of the OO paradigm. Workflow classes have no
method but they have two kinds of properties, one is called attribute which describes
the class and the other is called list which shows the composition or some complicated
properties of the class. The formal definition of Workflow Classes is given immediately
below.

Definition 1. Each workflow object has an identifier, attributes, and lists. Schema of
objects with the same attributes and lists is defined by a workflow class which consists
of a name, an extent and a type. The extent of a class is a set of objects belonging to it,
called its instances. The type of a class consists definitions of its attributes and lists. A
class named as C is represented as:

Deputy Mechanism for Workflow Views 819

C = 〈{o}, {Ta : a}, {l : {Te : e}}〉

1. {o} is the extent of C, where o is an instance of C.
2. {Ta : a} is the set of attribute definitions of C, where a and Ta represent name and

type of an attribute, respectively. The value of attribute a of object o is expressed by
o.a. For each attribute Ta : a, there are two basic methods: read(o, a) for reading
o.a and write(o, a, v) for writing o.a with the new value v, expressed as follows:

read(o, a) ⇒↑ o.a

write(o, a, v) ⇒ o.a := v

Here, ⇒, ↑ and := stand for operation invoking, result returning and assignment,
respectively.

3. {l : {Te : e}} is a list of various properties, where l and {Te : e} are list name and
a set of elements included in this list. For each element Te : e, there are also two
basic methods: read(o, l.e) for reading o.l.e and write(o, l.e, v) for writing o.l.e
with the new value v, expressed as follows:

read(o, l.e) ⇒↑ o.l.e

write(o, l.e, v) ⇒ o.l.e := v

Workflow deputy objects are defined as an extension and customization of workflow
objects. An workflow object can have many deputy objects that are used to customize
workflow objects for different applications or represent many facets of its nature (e.g.
specialization, generalization, and aggregation). The schemas of deputy objects are de-
fined by deputy classes that are derived by creating deputy objects as their instances,
generating switching operations for inheritance of attributes and lists, and adding defi-
nitions for their additional attributes and lists. A formal definition of deputy objects and
deputy classes is given as follows.

Definition 2. A deputy object is defined based on object(s) or other deputy object(s).
The latter is called source object(s) of the former. A deputy object must inherit some
attributes from its source object. The schema of deputy objects with the same properties
is defined by a deputy class, which includes a name, extent and type. Deputy classes
are derived from classes of source objects called source classes. In general, let Cs =
〈{os}, {Tas : as}, {ls : {Tes : es}}〉 be a source class. Its deputy class Cd is defined
as:

Cd = 〈{od|(od → os) ∨ (od → · · · × os × · · ·) ∨ (od → {os}),

pp(os) ∨ jp(· · · × os × · · ·) ∨ up({os}) == true},

{Tad : ad} ∪ {Tad
+

: ad
+}, {ld : {Ted : ed}} ∪ {ld+ : {Ted

+
: ed

+}}〉

1. {od|(od → os) ∨ (od → · · · × os × · · ·) ∨ (od → {os}), pp(os) ∨ jp(· · · × os ×
· · ·)∨up({os}) == true} is the extent of Cd, where (od → os)∨(od → · · ·×os×
· · ·)∨ (od → {os}) representing the od is the deputy object of os , · · · × os × · · · or
{os}; pp, jp and up represent project, join and union predicate, respectively.

820 Z. Shan et al.

2. {Tad : ad} ∪ {Tad
+

: ad
+} is the set of attribute definitions of Cd.

(a) {Tad : ad} is the set of the attributes inherited from {Tas : as} of Cs, of which
switching operations are defined as:

read(od, ad) ⇒↑ fTas �→T
ad

(read(os, as)),
write(od, ad, vd) ⇒ write(os, as, fT

ad �→Tas (vd))

(b) {Tad
+

: ad
+} is the set of the additional attributes of Cd, of which the basic

methods are defined as:

read(od, ad
+) ⇒↑ od.ad

+,
write(od, ad

+, v
d
+) ⇒ od.ad

+ := vd
+

3. {ld : {Ted : ed}} ∪ {ld+ : {Ted
+

: ed
+}} is the set of list definitions of Cd.

(a) {ld : {Ted : ed}} is the set of the lists inherited from {ls : {Tes : es}} of Cs, of
which switching operations are defined as:

read(od, ld.ed) ⇒↑ fTes �→T
ed

(read(os, ls.es)),
write(od, ld.ed, vd) ⇒ write(os, ls.es, fT

ed �→Tes (vd))

(b) {ld+ : {Ted
+

: ed
+}} is the set of the additional lists of Cd, of which the basic

methods are defined as:
read(od, ld+.e

d
+) ⇒↑ od.ld+.e

d
+,

write(od, ld+.e
d
+, v

d
+) ⇒ od.ld+.e

d
+ := vd

+

2.3 Workflow Deputy Algebra

A deputy class is derived by creating deputy objects as its instances, generating switching
operations for inheritance of attributes and lists, and adding definitions for its additional
attributes and lists. The object deputy model provides an object deputy algebra for deputy
class derivation, which consists of the following four operations.

The Project operation is used to derive a deputy class which only inherits part of
attributes and lists of a source class.

Definition 3. Let Cs = 〈{os}, {Tas : as}, {ls : {Tes : es}}〉 be a source class, {Tas
− :

as
−}and{ls− : {Tes

− : es
−}}be subsets of attributes and lists ofCs that can be inherited. A

deputy class derived by the Project operation is represented asCd = Project(Cs, {Tas
− :

as
−}, {ls− : {Tes

− : es
−}}), where

1. The extent of Cd is the set of deputy objects of instances of Cs, expressed as

{od|od → os}

2. The set of attributes of Cd is defined as {Tad
−

: ad
−}, which are inherited from the

attributes {Tas
− : as

−} of Cs. The switching operations for inheriting Tas
− : as

− in

the form of Tad
−

: ad
− are realized in the following way:

read(od, ad
−) ⇒↑ fTas

−
�→T

ad
−

(read(os, as
−)),

write(od, ad
−, v

d
−) ⇒ write(os, as

−, fT
ad

−
�→Tas

−
(vd

−))

Deputy Mechanism for Workflow Views 821

3. The set of lists of Cd is defined as {ld− : {Ted
−

: ed
−}}, which are inherited from the

lists {ls− : {Tes
− : es

−}} of Cs. The switching operations for inheriting ld− : {Ted
−

:

ed
−} in form of ls− : {Tes

− : es
−} are realized in the following way:

read(od, ld−.e
d
−) ⇒↑ fTes

−
�→T

ed
−

(read(os, ls−.e
s
−)),

write(od, ld−.e
d
−, v

d
−) ⇒ write(os, ls−.e

s
−, fT

ed
−

�→Tes
−

(vd
−))

The Extend operation is used to derive a deputy class of which instances are extended
which additional attributes and lists that can not be derived from a source class.

Definition 4. Let Cs = 〈{os}, {Tas : as}, {ls : {Tes : es}}〉 be a source class, {Tad
+

:

ad
+} and {ld+ : {Ted

+
: ed

+}} be sets of additional attributes and lists. A deputy class

derived by the Extend operation is represented as Cd = Extend(Cs, {Tad
+

: ad
+}, {ld+ :

{Ted
+

: ed
+}}).

1. The extent of Cd is the set of deputy objects of instances of Cs, expressed as:

{od|od → os}

2. The set of attributes of Cd is defined as union of attributes {Tad : ad} inherited from
the attributes {Tas : as} of Cs and its additional attributes {Tad

+
: ad

+}, expressed

as {Tad : ad} ∪ {Tad
+

: ad
+}.

(a) The switching operations for inheriting Tas : as in form of Tad : ad are realized
in the following way:

read(od, ad) ⇒↑ fTas �→T
ad

(read(os, as)),
write(od, ad, vd) ⇒ write(os, as, fT

ad �→Tas (vd))
(b) For each additional attribute Tad

+
, the following two basic methods are realized,

which are operated independently of the source object:

read(od, ad
+) ⇒↑ od.ad

+,
write(od, ad

+, v
d
+) ⇒ od.ad

+ := vd
+

3. The set of lists of Cd is defined as the union of lists {ld : {Ted : ed}} inherited
from the lists {ls : {Tes : es}} of Cs and its additional lists {ld+ : {Ted

+
: ed

+}},

expressed as {ld : {Ted : ed}} ∪ {ld+ : {Ted
+

: ed
+}}.

(a) The switching operations for inheriting ls : {Tes : es} in the form of ld : {Ted :
ed} are realized in the following way:

read(od, ld.ed) ⇒↑ fTes �→T
ed

(read(os, ls.es)),
write(od, ld.ed, vd) ⇒ write(os, ls.es, fT

ed �→Tes (vd))

(b) For each additional list ld+ : {Ted
+

: ed
+}, the following two basic methods are

realized, which are operated independently of the source object:

read(od, ld+.e
d
+) ⇒↑ od.ld+.e

d
+,

822 Z. Shan et al.

write(od, ld+.e
d
+, v

d
+) ⇒ od.ld+.e

d
+ := vd

+

The Union operation is used to derive a deputy class of which the extent consists of
deputy objects of instances of more than one source class.

Definition 5. Let Cs
1 = 〈{os

1}, {Tas
1

: as
1}, {ls1 : {Tes

1
: es

1}}〉, ..., Cs
m = 〈{os

m}, {Tas
m

:
as

m}, {lsm : {Tes
m

: es
m}}〉 be source classes, {Tas : as} = {Tas

1
: as

1}∩...∩{Tas
m

: as
m}

and {ls : {Tes : es}} = {ls1 : {Tes
1

: es
1}} ∩ ... ∩ {lsm : {Tes

m
: es

m}} be common sets
of attributes and lists of Cs

1 ,...,Cs
m. A deputy class derived by the Union operation is

represented as Cd = Union(Cs
1 , ..., C

s
m), where

1. The extent of Cd is the union of sets of deputy objects of instances of Cs
1 ,...,Cs

m,
expressed as:

{od
1|od

1 → os
1} ∪ ... ∪ {od

m|od
m → os

m}

2. The set of attributes of Cd is defined as {Tad : ad}, which are inherited from the
common attributes Tas : as of Cs

1 ,...,Cs
m. The switching operations for inheriting

Tas : as in form of Tad : ad are realized in the following way:

read(od
1, a

d) ⇒↑ fTas �→T
ad

(read(os
1, a

s)),
write(od

1, a
d, vd) ⇒ write(os

1, a
s, fT

ad �→Tas (vd))
...

read(od
m, ad) ⇒↑ fTas �→T

ad
(read(os

m, as)),
write(od

m, ad, vd) ⇒ write(os
m, as, fT

ad �→Tas (vd))

3. The set of lists of Cd is defined as {ld : {Ted : ed}}, which are inherited from the
common lists {ls : {Tes : es}} ofCs

1 ,...,Cs
m. The switching operations for inheriting

ls : {Tes : es} in the form of ld : {Ted : ed} are realized in the following way:

read(od
1, l

d.ed) ⇒↑ fTes �→T
ed

(read(os
1, l

s.es)),
write(od

1, l
d.ed, vd) ⇒ write(os

1, l
s.es, fT

ed �→Tes (vd))
...

read(od
m, ld.ed) ⇒↑ fTes �→T

ed
(read(os

m, ls.es)),
write(od

m, ld.ed, vd) ⇒ write(os
m, ls.es, fT

ed �→Tes (vd))

The Join operation is used to derive a deputy class of which instances are deputy
objects for aggregating instances of source classes according to a join predicate.

Definition 6. Let Cs
1 = 〈{os

1}, {Tas
1

: as
1}, {ls1 : {Tes

1
: es

1}}〉, ..., Cs
n = 〈{os

n}, {Tas
n

:
as

n}, {lsn : {Tes
n

: es
n}}〉 be source classes. A deputy class derived by the Join operation

is represented as Cd = Join(Cs
1 , ..., C

s
n, jp), where

1. jp is a join predicate.
2. The extent ofCd is the set of deputy objects of aggregations of instances ofCs

1 ,. . . ,C
s
n,

satisfying the join predicate jp, expressed as:

{od|od → os
1 × . . .× os

n, jp(o
s
1 × . . .× os

n) == true}

Deputy Mechanism for Workflow Views 823

3. The set of attributes of Cd is defined as the union of attribute sets {Tad
1

: ad
1}, . . . ,

{Tad
n

: ad
n} inherited fromCs

1 , . . . , C
s
n respectively, and is expressed as {Tad

1
: ad

1}∪
. . . {Tas

n
: ad

n}. The switching operations for attributes {Tad
1

: ad
1} ofCs

1 , . . . , {Tas
n

:
as

n} of Cs
n are realized in the following way:

read(od, ad
1) ⇒↑ fTas

1
�→T

ad
1
(read(os

1, a
s
1)),

write(od, ad
1, v

d
1) ⇒ write(os

1, a
s
1, fT

ad
1

�→Tas
1
(vd

1)
. . .

read(od, ad
n) ⇒↑ fTas

n
�→T

ad
n

(read(os
n, a

s
n)),

write(od, ad
n, v

d
n) ⇒ write(os

n, a
s
n, fT

ad
n

�→Tas
n
(vd

n)

4. The set of lists of Cd is defined as the union of list set {ld1 : {Ted
1

: ed
1}}, . . . , {ldn :

{Ted
n

: ed
n}} inherited fromCs

1 , . . . , C
s
n respectively, and is expressed as {ld1 : {Ted

1
:

ed
1}}

⋃
· · ·

⋃
{ldn : {Ted

n
: ed

n}}. The switching operations for lists {ld1 : {Ted
1

:
ed
1}}, . . . , {ldn : {Ted

n
: ed

n}} respectively inherited from the lists {ls1 : {Tes
1

: es
1}}

of Cs
1 , . . . , {lsn : {lsn : {Tes

n
: es

n}} of cs
n are realized in the following way:

read(od, ld1 .e
d
1) ⇒↑ fTes

1
�→T

ed
1
(read(os

1, l
s
1.e

s
1)),

write(od, ld1 .e
d
1, v

d
1) ⇒ write(os

1, l
s
1.e

s
1, fT

ed
1

�→Tes
1
(vd

1))
...

read(od, ldn.e
d
n) ⇒↑ fTes

n
�→T

ed
n

(read(os
n, l

s
n.e

s
n)),

write(od, ldn.e
d
n, v

d
n) ⇒ write(os

n, l
s
n.e

s
n, fT

ed
n

�→Tes
n
(vd

n))

The result of each of the above operations is a deputy class that can be manipulated
by algebra operations(i.e. deputy classes have first-class citizen status and can be used as
source classes for deriving new deputy classes); which achieves the same flexibility as
the relational algebra. Specialization can be realized by the algebraic operationsProject
and Extend, generalization can be realized by Union, and aggregation can be realized
by Join.

2.4 Workflow Component Deputy Class

According to the introduction in Section 2.1, there are seven kinds of workflow com-
ponent classes, which have different semantics. Each kind of component classes has
different sets of attributes and lists. Therefore, considering workflow views, only spe-
cific operations are allowed on each of them.

1. Process, Activity and Transition

For process, activity and transition, let
x

Cs= 〈{os}, {Tas : as}, {ls : {Tes : es}}〉
be a source process class. Some of its attributes and lists may be disclosed, but others

may be protected, i.e., Project(
x

Cs, {Tas
− : as

−}, {ls− : {Tes
− : es

−}}). The deputy
process class may have some additional attributes and lists, which are not included

in the source class, i.e., Extend(
x

Cs, {Tad
+

: ad
+}, {ld+ : {Ted

+
: ed

+}}). A deputy

824 Z. Shan et al.

process class may also involve several source classes which are connected in some

activities (as in the case of cross-organizational workflows), i.e., Join(
x

Cs
1 , ...,

p

Cs
n

, jp). Therefore, the deputy class of these component classes
x

Cd is defined as:
x

Cd= {
x

C |
x

C= Project(
x

Cs, {Tas
− : as

−}, {ls− : {Tes
− : es

−}})

∨
x

C= Extend(
x

Cs, {Tad
+

: ad
+}, {ld+ : {Ted

+
: ed

+}})

∨
x

C= Join(
x

Cs
1 , ...,

x

Cs
n, jp)}, where x = p, a or t.

2. Participant and Application

For participant and application, let
x

Cs= 〈{os}, {Tas : as}, {ls : {Tes : es}}〉 be a

source participant class. The deputy class of these component classes
x

Cd can thus
be defined as:

x

Cd= {
x

C |
x

C= Project(
x

Cs, {Tas
− : as

−}, {ls− : {Tes
− : es

−}})

∨
x

C= Extend(
x

Cs, {Tad
+

: ad
+}, {ld+ : {Ted

+
: ed

+}})

∨
x

C= Union(
x

Cs
1 , ...,

x

Cs
m)}, where x = r or c.

3. Relevant Data and Activity Set

For relevant data and activity set, let
x

Cs= 〈{os}, {Tas : as}, {ls : {Tes : es}}〉

be a source relevant data class. The deputy class of these component classes
x

Cd is
therefore defined as:

x

Cd= {
x

C |
x

C= Project(
x

Cs, {Tas
− : as

−}, {ls− : {Tes
− : es

−}})

∨
x

C= Extend(
x

Cs, {Tad
+

: ad
+}, {ld+ : {Ted

+
: ed

+}}), where x = d or s.

2.5 Deputy Class for Workflow View

This section presents the definitions of restricted views and composition views, which
are two fundamental categories in the taxonomy of workflow views. They provide a
framework for the definition and development of further detailed categories of workflow
views.

As introduced in Section 2.3, the result of each operation is a deputy class that can
be manipulated by deputy algebra operations (i.e., deputy classes can be used as source
classes for deriving new deputy classes). In order to simplify the descriptions in the
following paragraphs, we define the iterative deputy operation of workflow classes. Let
w

Cs be a source workflow class, its iterative deputy operation
w

Cd∗
is defined as:

w

Cd∗
= {

w

C |
w

C=
w

Cs ∨
w

C=
w

Cd ∨
w

C= (
w

Cd)d ∨ ...∨
w

C= ((
w

Cd)d...)d},

where

w = p, a, t, r, c, d ors.

Deputy Mechanism for Workflow Views 825

As a workflow restriction view is a structurally correct subset of a workflow definition,
it can be defined as the interface for such purposes as internal control, external interaction,
etc.

Definition 7. Let W = (
p

C, {
a

C}, {
t

C}, {
r

C}, {
c

C}, {
d

C}, {
s

C}) be a workflow definition.
Its restriction workflow view W v

r is defined as

W v
r = (

p

Cd∗
, {

a

Cd∗}, {
t

Cd∗}, {
r

Cd∗}, {
c

Cd∗}, {
d

Cd∗}, {
s

Cd∗})

On the other hand, a workflow composition view is a virtual workflow composed of
properties from different workflows, which may span across organizational boundaries.

Definition 8. Let W1 = (
p

C1, {
a

C1}, {
t

C1}, {
r

C1}, {
c

C1}, {
d

C1}, {
s

C1}),..., Wm = (
p

Cm

, {
a

Cm}, {
t

Cm}, {
r

Cm}, {
c

Cm}, {
d

Cm}, {
s

Cm}) be a set of workflow definitions. Their com-
position workflow view W v

c is defined as

W v
c = (

p

Cd
J , {

a

Cd∗
1 , ...,

a

Cd∗
m }, {

t

Cd∗
1 , ...,

t

Cd∗
m }, {

r

Cd∗
1 , ...,

r

Cd∗
m }, {

c

Cd∗
1 , ...,

c

Cd∗
m }, {

d

Cd∗
1

, ...,
d

Cd∗
m }, {

s

Cd∗
1 , ...,

s

Cd∗
m }),

where
p

Cd
J= Join(

p

Cd∗
1 , ...,

p

Cd∗
m , jp)

3 Remarks on Modeling Related Issues

3.1 Semantic Constraints

There are several semantic constraints between objects and their deputy objects that
are defined as predicates of deputy classes: 1) Existence Dependence (i.e. only when
the source object satisfies some special condition, its deputy object can exist); 2) Key
Equivalence (sometimes, the key equivalence between objects and their deputy objects
is required in order to avoid generating deputy objects that have no relationships with
their source objects); 3) Indirect Relativity (i.e. where there are semantic constraints be-
tween deputy objects of the same objects). In order to enforce these semantic constraints
to maintain consistencies between deputy objects and their source objects, data update
propagations between deputy objects and their source objects need to be supported. The
following data update propagations are supported by the workflow deputy model: a)
Updates on the source objects should be reflected in their deputy objects; b) Updates on
the deputy objects should be propagated to their source objects. Hence, both directions
of update propagation can follow automatically if updates do not cause dynamic clas-
sification, namely, addition and deletion of deputy objects of an object. There are three
basic types of update operations which may cause dynamic classification, these being
addition, deletion of an object and modification of attribute values of an object.

826 Z. Shan et al.

3.2 Structure Conformance

Same as workflows, workflow views should be structurally correct, which means activi-
ties and transitions are well connected and the activity-transition net satisfies some pre-
defined requirements. For example, in the specification of XPDL, loop-blocked means
that the activities and transitions of a workflow definition form an acyclic graph.Although
we have provided the deputy mechanism for workflow views, it can not prevent work-
flow views from these structural problems. Additional tools similar to the verification
tools provided for the design of workflows are needed to test the structural correctness
of workflow view definitions. The details of such facilities and their implementations
are out of the scope of this paper.

4 Related Work

There have been some earlier works in the area of workflow views. Liu and Shen [9]
presented an algorithm to construct a process view from a given workflow, but did not
discuss its correctness with respect to inter-organizational workflows. A preliminary ap-
proach of workflow views has been presented in [6]. From then, workflow views have
been utilized as a beneficial approach to support the interactions of business processes in
E-service environment [7][5]. However, most of these works focused on the conceptual
level. The realization issues are largely neglected. Van der Aalst and Kumar [2] pre-
sented an approach to workflow schema exchange in an XML dialect called XRL but it
does not include the support for workflow views. Besides, van der Aalst [1] modelled
inter-organizational workflows and the inter-organizational communication structures
by means of Petri Nets and message sequence charts (MSCs), respectively. The sound-
ness and consistency of the inter-organizational workflow can be analyzed by checking
the consistency of Petri Nets against target MSCs. Since the author abstracted from data
and external triggers, the proposed communication protocol is not as complete as the
inter-operation protocol presented in the workflow view approach [5]. To address the
derivation of private workflows from inter-organizational workflows, Van der Aalst and
Weske [3] used the concept of workflow projection inheritance introduced in [4]. A cou-
ple of derivation rules are proposed so that a derived workflow is behaviorally bisimilar
to the original workflow based on branching semantics, in contrast to the trace semantics
adopted in the workflow view model.

Until now, these is few work on the realization mechanism of workflow views. [10]
considered communication aspects of workflow views in terms of state dependencies
and control flow dependencies. They proposed to tightly couple private workflow and
workflow view with state dependencies, whilst to loosely couple workflow views with
control flow dependencies. A Petri-Net-based state transition method was proposed to
bind states of private workflow tasks to their adjacent workflow view-task. This approach
only consider the state aspect of workflow views. Moreover, it is difficult to accomplish
the explicit modelling of state mapping.Against it, our workflow deputy model is a much
more comprehensive and systematic solution.

Deputy Mechanism for Workflow Views 827

5 Conclusion

Workflow views are derived from workflows as a fundamental support for workflow inter-
operability and visibility by external parties in a web services environment. However,
until now there are no formal mechanisms existing for defining and executing workflow
views. In this paper, we extended the object deputy model [8] to the workflow deputy
model, supporting the realization of workflow views. After introducing the background
of workflow views, we formally defined the deputy class and the deputy algebra (viz.
Project, Extend, Union and Join) for workflow classes. Then, specific deputy operations
were designed for each kind of workflow component classes. Based on these operations,
we presented the realization workflow views through the deputy mechanism. Lastly, we
discussed two modeling related issues.

Our future work will focus on the workflow view enactment with public E-services
environments, such as ebXML and BPEL4WS. We are especially interested in the data
management issues occurring in the B2B enactment interface.

References

1. W.M.P. van derAalst. Interorganizational workflows:An approach based on message sequence
charts and petri nets. Systems Analysis - Modelling - Simulation, 34(3):335–367, 1999.

2. W.M.P. van der Aalst and A. Kumar. Xml based schema definition for support of inter-
organizational workflow. Information Systems Research, 14(1):23–46, 2003.

3. W.M.P. van der Aalst and M. Weske. The p2p approach to interorganizational workflows.
In 13th International Conference Advanced Information Systems Engineering (CAiSE 2001),
volume 2068 of Springer LNCS, pages 140–156, Interlaken, Switzerland, 2001.

4. T. Basten and W.M.P. van der Aalst. Inheritance of behavior. Journal of Logic and Algebraic
Programming, 47:47–145, 2001.

5. Dickson K.W. Chiu, S.C. Cheung, Sven Till, Kamalakar Karlapalem, Qing Li, and Eleanna
Kafeza. Workflow view driven cross-organizational interoperability in a web service envi-
ronment. Information Technology and Management, to appear, 2005.

6. Dickson K.W. Chiu, Kamalakar Karlapalem, and Qing Li. Views for inter-organization work-
flow in an e-commerce environment. In Semantic Issues in E-Commerce Systems, IFIP
TC2/WG2.6 Ninth Working Conference on Database Semantics, Hong Kong, 2001. Kluwer.

7. Dickson K.W. Chiu, Kamalakar Karlapalem, Qing Li, and Eleanna Kafeza. Workflow view
based e-contracts in a cross-organizational e-services environment. Distributed and Parallel
Databases, 12(2-3):193–216, 2002.

8. Yahiko Kambayashi and Zhiyong Peng. An object deputy model for realization of flexible
and powerful objectbases. Journal of Systems Integration, 6:329–362, 1996.

9. Duen-Ren Liu and Minxin Shen. Modeling workflows with a process-view approach. In
Database Systems for Advanced Applications, 2001. Proceedings. Seventh International Con-
ference on, pages 260–267, 2001.

10. Karsten A. Schulz and Maria E. Orlowska. Facilitating cross-organisational workflows with
a workflow view approach. Data & Knowledge Engineering, 51(1):109–147, 2004.

11. Zhe Shan, Zhiyi Long, Yi Luo, and Zhiyong Peng. Object-oriented realization of workflow
views for web services - an object deputy model based approach. In The Fifth International
Conference onWeb Age Information Management,WAIM 2004, LNCS 3129. Springer-Verlag,
2004.

12. XPDL. Xml process definition language, http://www.wfmc.org/standards/xpdl.htm.

Automatic Data Extraction from Data-Rich Web Pages

Dongdong Hu and Xiaofeng Meng

School of Information
Renmin University of China

{hudd, xfmeng}@ruc.edu.cn

Abstract. Extracting data from web pages using wrappers is a fundamental prob-
lem arising in a large variety of applications of vast practical interests. In this
paper, we propose a novel technique to the problem of differentiating roles of
data items from Web pages, which is one of the key problems in our automatic
extraction approach. The problem is resolved at various levels: semantic blocks,
sections and data items, and several approaches are proposed to effectively iden-
tify the mapping between data items having the same role. Intensive experiments
on real web sites show that the proposed technique can effectively help extracting
desired data with high accuracies in most of the cases.

1 Introduction

The World Wide Web has become one of the most important connections of various
information sources. A large proportion of data on the web is embedded in various
HTML documents. The HTML language serves the visual presentation of data in Web
browsers, while it is not suitable for automated, computer-assisted information man-
agement systems. This is not expected to change soon, even when XML is more and
more popular today. Thus if data from different sources needs to be integrated, it is nec-
essary to develop special and often complex programs to extract data from Web pages.
To achieve this goal, people have developed wrappers, which are specialized programs
that can automatically extract data from web pages and convert the information into a
structured format.

There have been many works on semi-automatic and manual data extraction [1][2][3]
[4] [5], in the past years. These approaches require human interactions to build sample
mappings between the output results (or schemas) and items in the HTML pages, after
that extraction rules will be induced for extracting pages having similar structures. Be-
sides the flexibility of these approaches, there are still many challenges in constructing
such wrappers. Firstly, the user should have good knowledge of contents in the web
pages and should try to select more proper samples to cover more possible situations;
also, another important problem is how to maintain existing wrappers if the correspond-
ing web pages take changes on their layouts.

There still exists several other automatic approaches, Exalg [6] and Roadrunner
[7], which can automatically extract data from data-intensive [7] web sites. Pages
from data-intensive sites are created through encoding values, from the underground
database, into web pages using templates [6]. In other words, such pages usually have
the same schema and accordingly similar structures. Either Roadrunner or Exalg use

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 828–839, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automatic Data Extraction from Data-Rich Web Pages 829

the structure information of sample pages to induce HTML tags-based templates (see
Section 5). A template covers the constant parts of the HTML sources’ string sequence,
and the left parts which are variant are viewed as the right data to be extracted.

(a) Sample 1

(b) Sample 2

(c) Sample 3

Fig. 1. Sample HTML fragments from Buy

Unlike the previous work described above, we propose a novel automatic approach
to generate wrappers without any user interactions. Firstly we break up the problem of
automatically constructing a wrapper into four subproblems:

1. Discovering blocks (called semantic block in this paper, which corresponds to an
instance of the schema) containing data to be extracted from sample pages;

2. Differentiating roles of data items in the semantic blocks;
3. Inducing schema describing the contents in the pages;
4. Computing extraction rule and generating wrappers.

Among these four steps, a simple way to tackle problem (1) is to use a technique of
tree comparing for discovering data-rich sections [8]. For example, in Fig. 1 are three
extracted blocks from sample pages from www.buy.com. Problem (3) is introduced
in [9], and problem (4) is widely discussed in almost all the previous work of data
extraction. In the previous work [3] we proposed an XQuery [10] based extraction
rule system. Our work focuses on problem (2), which serves as the key step for the
extraction problem. Once we have got a set of semantic blocks, which can be viewed as
a set of instances of the schema, which describes the contents in the page, to be induced
in the next step. To induce the schema from the instances, we firstly differentiate the
roles of data items in them. In other words, for a data item in a sematic block, we
want to find out the data items taking the same role, corresponding to the same schema
element, in all other semantic blocks. For example, referring to Fig. 1, the items of
“Head First Java” and “Thinking in Java with CDROM” are both corresponded to the
schema element Title. The process of differentiating roles are named Identification in
this paper. After all the data items are identified, each one is assigned a label indicating

830 D. Hu and X. Meng

its role. Data items having the same roles have the same labels. Note that the label here
does not provide any semantic information, but a symbol representing the role of a data
item.

This paper is structured as follows. In the next section the challenges of we faces
and some preliminary knowledge is described, in section 3 we introduce the tech-
nique of simple identification. Section 4 discusses the complex identification, and sec-
tion 5 compares our work to the related work. In section 6 we report the experimen-
tal results. Finally in section 7 we highlight the conclusion and future research
direction.

2 Challenges and Our Approach

The HTML pages are parsed into a tree representation in our work. Considering the
DOM [11] model, a non-leaf node corresponds to a pair of HTML tags, such as
“<tr>...</tr>”. Nodes are ordered according to their occurrence sequence in the
HTML page. Each leaf node is either of type PCDATA, or a single tag such as “<tr>”.
All the values are contained in the text nodes, and can be uniquely defined to be an
element in the tree with an XPath [12] expression.

An important characteristic of pages belonging to the same site and encoding data
of the same schema, is that the data encoding is done in a consistent manner across
the pages. For example, in Fig. 1 each of the three fragments represents a record from
database and is a semantic block conforming to the same schema {Book{Title, Price,
Availability, Author|Authors{Person+}, Publisher?, PubTime?, Format}}. Intuitively a
semantic block of a schema can be viewed as an instance of the corresponding schema
in the web pages. In the semantic blocks are a set of data items without being identified
their roles. For example, from Fig. 1(a) we get the following data items: “Head First
Java”, “Our Low Price:”, “$26.56”, “Availability:”, ..., “Paperback”. Here some text
nodes are not included, e.g. text nodes containing the sequence number of the record,
and text nodes containing only the symbol ‘&’.

As we saw in Fig. 1, the underlying schema for the contents of pages contains three
kinds of special situations: iterations, optionals and disjunctions. To induce a schema
which can precisely describe the data in the pages, we should be able to detect all these
three situations when identifying data items.

Iterations means that the instances of these schema elements can iteratively appear
in the page. Iterations are the most common cases in the real web pages, e.g. the element
Person in the schema for Fig. 1.

Optionals indicate the cases that given a schema element, we cannot find corre-
sponding data values in every semantic blocks. Optionals are represented by the cardi-
nality “?”. For instance, the element Publisher in in the schema describing Fig. 1 is
optional.

Disjunctions can be represented by “|”, e.g. “a|b”, which means at the corresponding
relative position can be “a” or “b”, but only one of them. An example for disjunction is
in Figure 1, which used Author for single author, while Authors for multi-authors.
As to the corresponding schema, there can be a schema element of Author|Authors.

Automatic Data Extraction from Data-Rich Web Pages 831

3 Simple Identification via HTML Path

The simple identification handles the situation that the pages have relatively regular
layouts. From the point of tree structure, the pages that simple identification
faces have the common feature that all the data items of the same role have the
same HTML paths(in XPath [12] expressions), which start from the roots of the
subtrees containing the semantic blocks and end at the nodes of the data items.
Based on this characteristic, the following rule are used for identification data
items in such pages.

Rule of HTML Path: Two data items with the same HTML path inside the semantic
blocks have the same role.

Our experiments reveal that pages from most of web sites can be simply identified by
this rule. For instance, pages from CDplus (http://www.cdplus.com, see Fig. 2) can be
perfectly identified using this rule, each semantic block of which takes a row in the table
and the data items having the same role locate in the same column, correspondingly with
the same HTML path inside the semantic block.

Fig. 2. Fragment of sample pages from CDPlus.com

4 Complex Identification

Some situations that cannot be handled by simple identification, e.g. items with same
role but different HTML paths, or different roles but with the same HTML path, are re-
solved in complex identification. The complex identification tries to divide the semantic
blocks into smaller cells for improving the reliability of identification, thus the identi-
fication can be conducted inside matched cells without having to deal with the entire
semantic blocks. This guarantees that the identification will not completely fail if the
blocks can be divided.

Firstly we give the definition of Occurrence Path. An occurrence-path [6] of a data
item is the path from the root to the certain node in the HTML tree. The only difference
between an HTML path and a Occurrence path is that the former has predicates in
the path expression. Our experiments show that data items having different occurrence
paths usually have various roles in most of the complex pages. Two neighboring data
items are divided into two path-groups if they do not have the same occurrence path.
For instance, the three co-authors are assigned in one path-group for their common
occurrence paths //table/tr/td/#text.

832 D. Hu and X. Meng

4.1 Block Segmentation Using Template Items

Based on the observation that web pages are designed to be consumed by human users,
and therefore they usually contain text strings, i.e. annotations (labels) [14] [15], whose
goal is to explicate to the final user the intentional meaning of the published data [13].
These kinds of strings are used to divide the semantic blocks into small cells in our
approach.

Discovering Possible Template Items. The items in the semantic blocks can be clas-
sified into two categories: (i) Template items, which may be contents of the template
of the pages, e.g. annotations, or some invariant strings; (ii) Data values, which are the
exact values we want to extract from web pages.

The following features are used to find template items from the semantic blocks:

1. Template items of the same role have the same value in all the semantic blocks if
occurring.

2. Template items of the same role have the same occurrence paths inside the semantic
blocks.

3. The syntactic features, mainly the patterns of the template items in the semantic
blocks are usually similar. For instance, all the annotations in 1 start with a capital
letter and end with a colon.

The algorithm for searching possible template items starts from one of the blocks,
and scans all other semantic blocks for discovering candidates by checking the above
features. Meanwhile, all the discovered candidates are sorted by the order they occur in
the semantic blocks. Turning to the example pages in Fig. 1, we get seven possible tem-
plate items with their occurring order: “Our Low Price:”, “Availability:”,
“Author:”, “Authors:”, “Publisher:”, “Publish Date:”, “Format:”. We
also get a list of template items from each semantic block. Note that in this step it is
not necessary to precisely find out all the template items. The key purpose of the pos-
sible template items are used to divide semantic blocks into smaller sections for future
operations.

Dividing Semantic Blocks into Sections Using Template Items. Since the discovered
template items are expected to repeatedly occur in the semantic blocks. They can be
used as markers to divide the semantic blocks to smaller sections. Furthermore, from
the point of visual effect, sections between common template items’ pair provide similar
information.

Before dividing the real semantic blocks, we firstly build a full-division on all the
possible template items. The full-division confirms that each template item may have
a section containing data items on each of both sides. Fig. 3 shows the full-division
of the example in Fig. 1, in which each section is assigned an ID using the sequence
number.

Thus each semantic block is divided by comparing the list of discovered template
items with the full-division (suppose the function Id(section) gets the ID of a section).

1. For each pair of neighboring template items ti and ti+1 in a semantic block, we
first find out all the sections {sj , ..., sk} contained between ti and ti+1 in the full-

Automatic Data Extraction from Data-Rich Web Pages 833

division. After that, the ID of the section s′ between ti and ti+1 is assigned to be
(Id(sj)-Id(sk));

2. As to the section s′ just before the first template item t0 in the semantic blocks,
we first find the section sj just before t0 in the full-division, then the ID of s0 is
assigned to be (0-Id(sj)); conversely the last section is handled.

Consequently the relation between a section s′ in a semantic block and a section s in the
full-division can be one of the follows: (i) If Id(s) = Id(s′), the two sections have the
same role. (ii) Id(s) is included by Id(s′), which means that Id(s) locates at the range
specified by the starting ID and ending ID of Id(s′), we know that there exists situation
of optionals. In other words, at least one of sections included in the full division do not
appear in the corresponding semantic block to be divided. Other, if the intersection of
the ranges of two sections’ ID is not empty, the two sections are called matched. And
there exists at least one pair of data items having the same role in the two matched
sections.

Considering our running example, the results of this step are shown in Fig. 4(a). For
instance, the section between “Availability:” and “Authors:” is assigned to be
2-3 because the corresponding starting section’s ID is 2 and the ending section’s ID is 3
in the full-division. The ID containment here indicates that the semantic block does not
contain one of the sections next to the template item “Author:” in the full-division.

{0} Our Low Price: {1} Availability: {2} Author: {3}
Authors: {4} Publisher: {5} Publish Date: {6} Format: {7}

Fig. 3. The full-division

{0} Our Low Price: {1} Availability: {2-3} Authors: {4-5}
Publish Date: {6} Format: {7}

(a) Buy sample 1

{0} Our Low Price: {1} Availability: {2} Author: {3-5}
Publish Date: {6} Format: {7}

(b) Buy sample 2

{0} Our Low Price: {1} Availability: {2-3} Authors: {4}
Publisher: {5} Publish Date: {6} Format: {7}

(c) Buy sample 3

Fig. 4. Semantic blocks divided into sections

4.2 Mapping Data Items in Matched Sections

Computing Similarities Between Data Items.To identify the data items in the matched
sections, several additional rules are employed besides the rule of HTML path. All the

834 D. Hu and X. Meng

rules are considered under the condition that the mappings to be verified are between
matched sections.

Rule of Occurrence-Path: (i) Two items from different semantic blocks with different
occurrence paths usually have different roles; (ii) Two items in the same section with
different occurrence paths usually have different roles;

In practice, this rule is proved to be true in most of the situations. For example, the
three co-authors in Fig. 1(a) have the same occurrence path //table/tr/td/#text and have
the same role. An extension to this rule is that consecutive items with the same occur-
rence paths may possibly have the same role. In other words, there may be iterators, e.g.
the example of three co-authors in Fig. 1(a). The rule may fail in several special cases,
e.g. we report an exception in the sample pages of uefa(teams) in Section 7.2.

Rule of Visual Information: Two data items having the same role usually have the
same visual information.

The visual information is also very important to the extraction problem. In real
pages, data items having same role usually have the same appearances to keeping con-
sistence on visual effects. In our work, we consider the following visual information: (i)
Whether the data items use the same font and have the same font size; (ii) Whether the
data items use the same color in the pages. (iii) Whether the data items have hyperlinks
on them.

Rule of Context: Data items with incompatible contexts have different roles.
This rule captures the fact that the contents in the semantic blocks conforming to the

same schema, which guarantees that data items of a role always occurs at the relatively
same position comparing with other data items. The contexts of two items are said
compatible if the contexts of one item can be contained by the other item’s. For instance,
items in unmatched sections always have different roles.

Rule of Syntactic Feature: Data items having the same role usually have same syntac-
tic features.

This rule is based on the fact that items of the same role often have the same syn-
tactic features [16] [14], e.g. the data items “In Stock: Usually Ships in 1 to 2 business
days” and “Pre-Order Now: Get Yours First” in Fig. 1 can both be defined by the regu-
lar expression “[A-Z]([\\w]|[\\s])* (:)([\\w]|[\\s])*” indicating that each item starts
with a capital letter and contains a colon inside the strings. More details about comput-
ing regular expressions of data items can refer to [16].

To judge if two data items, d1 and d2, matches, we compute an aggregate similarity
of them, denoted as Sim(d1, d2), based on all the four above rules.

λ1 ∗RO(d1, d2) + λ2 ∗RC(d1, d2) + λ3 ∗RS(d1, d2) + λ4 ∗RV (d1, d2). (1)

Here the functions RO, RC, RS and RV correspond to the four rules presented above.
For each of them, it takes value 1 if the two data items satisfy the certain rule, else its
value is 0. λi(i = 1, 2, 3, 4) is the weight of each rule which shows the importance of
the rule in the process. For simplicity, the values of all of them are 0.25 (The values
of them can be configured for better representing the real situations when extracting).
Thus if the similarity are larger than a pre-given threshold, we know that the data items
match most of the above rules and are considered to have the same role. Moreover, the

Automatic Data Extraction from Data-Rich Web Pages 835

aggregate similarity greatly decreases the chance that one of the rule’s failure resulting
an incorrect identification.

Detecting Iterations, Optionals and Disjunctions Iterators inside a path-group is de-
tected by computing the similarity of all the data items in it. For example, suppose
there’re two matched path-groups p = {d1, d2, d3} and p′ = {d′

1, d
′
2}, with d1 matches

d′
1 and d2 matches d′

2. Meanwhile, if the similarity Sim(d1, d2, d3) and similarity
Sim(d′

1, d
′
2) are larger than the pre-given threshold, we say that there can be itera-

tions inside p and p′, and the two existing matchings are transformed into an extended
matching that {d1, d2, d3} matches {d′

1, d
′
2}. Note that we take into account here only

the possible iterators inside path-groups. In fact, if a page contains more than one se-
mantic blocks, it’s also an iterator at the granularity of blocks. On other hand, separators
are also used to discover possible internal iterations, e.g. the symbol ‘&’ in Fig. 1 can
be used as separator for discovering internal iterations.

The optionals can be naturally discovered. (i) At the granularity of sections in se-
mantic blocks, optionals are detected by the ID containment judging (see Section 4.2).
(ii) At the granularity of path groups and data items, the situation is that the data items
having the same role do not appear in all the compatible sections.

The problem of detecting disjunctions can be transformed into the problem of dis-
covering optionals under the environments of web pages. For instance, suppose we find
a case of disjunction in a page, which can be expressed as (a?|b?) or (a|b). Since the
page itself has determined that only one or zero of a and b can appear in a semantic
block. The situation can also be described in (a?, b?) without losing correctness.

Consequently, the complex identification problem is achieved through differentiat-
ing roles of sections, and then differentiating roles of path-groups and data items inside
the set of matched path-groups. The results of this step are that each data item in the se-
mantic blocks is assigned a label, may not have semantic meaning, which corresponds
to a element in the schema describing the contents of the pages.

5 Related Work

There have been lots of work on data extraction [17]. These work can be classified
by the degree of needs of human interaction (manual, semi-automatic and automatic
approaches), sources of information targeted (human made v.s. machine generated),
etc. In this paper, we mainly focus on the works on automatic approaches: Exalg [6]
and Roadrunner [7].

Both Exalg and Roadrunner use the page creation model of encoding values into
web pages using templates. The Roadrunner approach starts from the entire first input
pages as the initial template. Then, for each subsequent sample page, it checks if the
page can be generated by the current template, otherwise, it modifies the current tem-
plate using mismatch technique to ensure that the updated template can generate all the
pages seen so far. The Exalg approach works in two stages. In the first stage, it discovers
“equivalence classes”, sets of tokens associated with the same type constructor in the
(unknown) template for creating the input sample pages. In the second stage, it uses the
above sets to deduce the template by continuously growing the LFEQs (for Large and
Frequently occurring EQuivalence classes) using several heuristic rules.

836 D. Hu and X. Meng

The key features differ our work from them are the followings:

1. Both Exalg and Roadrunner focus on inducing tag-based template from the in-
put HTML tag sequences. While the problem of tag-based template is that too
less template tokens may making it unable to precisely locate the data items en-

“<{Name:∗
,(Email:∗
)?,(Organization:∗
)?,(Update:∗
)?>” for

with each type constructors. This kinds of problems can be perfectly resolved by
dividing semantic blocks into sections using template items in our approach.

2. Both Exalg and Roadrunner treat the input HTML document as a token sequence
without considering the characteristic of tree structure of HTML document. They
also ignore the following features, e.g. visual information, syntactic features, for
assisting the extraction problem.

3. Roadrunner assumes that the “grammar” of the template used to generate the pages
is union-free, which means that it cannot deal with pages with disjunctions in the
page schema. Moreover, the complicated heuristic search involving “backtracking”
for dealing the situation that the current template does not generate an input page
makes Roadrunner difficult to low the complexity of the algorithm, since the search
is exponential in the size of the schema of the pages.

On the other hand, some work related to wrapper maintenance [16] [14] [15] also
take the step of locating data items in the changed web pages for repairing broken
wrappers. While these were under the direction of pre-defined schema or pre-acquired
features of data items, e.g. pre-computed syntactic features, pre-computed extraction
rule, etc.

6 Experiments

Based on the techniques of item identification above, we have developed a prototype
system. Several intensive experiments have been conducted on collections of real web

Table 1. Experimental results of our collections

No. source #n #a #c #p #i #b #t(ms) extr. #size(K)

1 amazon(hotel) 10 3 3 0 0 20 17.36 yes 86.5
2 buy(bag) 10 5 5 0 0 50 73.15 yes 241
3 buy(book) 10 8 8 0 0 50 86.16 yes 231
4 cdplus 10 5 5 0 0 40 12 yes 88.8
5 cnn(search) 10 3 3 0 0 30 28.93 yes 61.2
6 ebay(buy it now) 10 6 6 0 0 100 50 yes 241
7 ebay(auction) 10 6 5 0 1 100 58.29 yes 233
8 ecampus 10 8 8 0 0 20 28.89 yes 66.9
9 hotels 3 11 11 0 0 50 121.65 yes 476
10 yahoo(people) 10 3 3 0 0 20 19 yes 96.4
11 yahoo(shopping) 10 6 4 2 0 20 21.82 yes 130

the reason that this template contains too less, just two template tokens, associated

coded in them. For example , Exalg fails to extract the 4 attributes in the template

Automatic Data Extraction from Data-Rich Web Pages 837

pages. All the experiments have been conducted on a machine with an Intel Pentium IV
processor working at 2GHz, with 256 MBytes of RAM, running Windows 2000 Server
and Sun JDK 1.4. For each collection, the experiment contains the following steps:

1. Manually build a schema for presenting the data values to be extracted from the
pages. The schema has nothing to do with the process of extraction, but only for
verifying the extracted results.

2. Run the system to extract data values from the pages. Firstly the system automat-
ically induces an wrapper from exactly two sample pages, and then the wrapper is
applied on other pages in the collection.

3. Manually check the results.

The web pages for experiments were collected from two means: (i) Pages collected
by ourselves from the various well-known site (see Table 1); (ii) Pages ever used in the
related works (see Table 2). The pages collected by ourselves are universally larger in
size and more complex structures than the pages from the related works.

6.1 Evaluation Metrics

Based on the manually built page schema, we evaluate the effectiveness of our approach
using the three cases of Correct, Partially-Correct and Incorrect for each schema ele-
ment. (i) Correct: All the data values corresponding to the schema element are correctly
extracted and identified; (ii) Partially Correct: Only parts of the data values matching
the schema element are extracted from the pages; (iii) Incorrect: Otherwise, the schema
element is classified as incorrect.

6.2 Effectiveness Results

Table 1 shows the results on the pages collected by ourselves, and Table 2 provides the
results on the pages from the related works. Both tables contain the following elements:
(i) source: short description of each collection, #n: the number of sample pages; (ii) #a:
the number of elements in the manually built schema; #c, #p and #i showing the cases
of correct, partially-correct and incorrect; (iii) #b the number of semantic blocks in the
two sample pages for creating wrapper; #t is the total time needed to inducing schema
from the pages, starting from finding semantic blocks and ending after inducing the
schema, and #size is the total size of the two sample pages used for inducing wrapper;
(iv) finally extr. conclude that if the collection can be automatically extracted.

As it can be seen from the table, for most of the collections, the system was able to
correctly induce a schema using only very short time. Let us describe some more details:
Firstly, there’re totally 2 reports of failing to induce a correct wrapper from the sam-
pling. We conclude the reasons into two aspects: (i) The example of Barn.&Nob.(sw)
fails because the system fails to discover the semantic blocks. Thus even the system can
correctly extract one data items from each semantic block, it still fails to successfully
built a correct wrapper. (ii) The failure on tennis can due to that the we can hardly
get a good pair of sample pages for inducing wrapper. The pages in the collection do
not have a consistent schema, making the system fail to induce a correct schema, and

838 D. Hu and X. Meng

Table 2. Experimental results of collections from related works

No. source #n #a #c #p #i #b #t(ms) extr. #size(K)

1 amazon(cars) 21 3 3 0 0 11 17.5 yes 53.1
2 Barn.&Nob.(sw) 10 3 1 2 0 39 33.55 no? 77
3 buy(prod) 10 8 8 0 0 2 5.33 yes 44.1
4 MLB(player) 10 4 4 0 0 141 65.5 yes 77.9
5 rpmfind(by dist.) 20 3 3 0 0 29 15.5 yes 8.93
6 rpmfind(by main.) 20 3 0 3 0 39 19 yes 15
7 tennis 10 - - - - - - no? -
8 uefa(teams) 20 8 7 1 0 2 7.05 yes 11.8
9 uefa(play) 20 1 1 0 0 2 10.67 yes 22.1
10 wine(acc) 10 3 3 0 0 16 13 yes 68.2
11 wine(prod) 10 4 0 0 0 37 19.6 yes 120

accordingly a correct wrapper. Thus the induced wrapper can only extract randomly
some data items. In fact, Exalg [6] also extract only parts of the data items.

There’re still several examples that the system cannot build a perfect wrapper. On
Yahoo Shopping in Table 1, there are two data items having different roles taking
the same occurrence path (the only difference between the HTML path of them are the
predicates on the text node, e.g. the difference between “//text[0]” and “//text[1]”), the
system happened to identify them as a case of iteration. On eBay(auction), the se-
lected sample pages for inducing wrapper contain only 5 data items of total 6 items, re-
sulting the wrapper cannot extract the left one from several pages. The induced wrapper
for another example uefa(teams) in Table 2 can only partially extract one of the data
items since the data item takes different occurrence paths (“//#text” vs. “//span/#text”)
in the two sample page, making the system falsely identifying a case of disjunction.
And rpmfind(by main.) extract only partial information for all the 3 data items
because the system can not discover all the semantic blocks.

7 Conclusion

In this paper, we propose a novel technique to the problem of item identification, which
is one of the key problems in our automatic extraction approach. The identification
problem is distinguished into simple identification and complex identification based on
the complexity of the pages we face. The problem is resolved at various levels: semantic
blocks, sections, path-groups and data items, and several approaches are proposed to
effectively identify the mapping between them. Experiments on real pages have proved
the effectiveness of the approach of item identification.

Future work will focus on the following two aspects: (i) How to automatically an-
notate the extracted data items; (ii) How to automatically detect fails in the process of
extraction, and how to adopt user interactions for satisfactory results.

Automatic Data Extraction from Data-Rich Web Pages 839

Acknowledgements

This research was partially supported by the grants from 863 High Technology Foun-
dation of China under grant number 2002AA116030, the Natural Science Foundation
of China (NSFC) under grant number 60073014, 60273018, the Key Project of Chi-
nese Ministry of Education (No.03044) and the Excellent Young Teachers Program of
M0EP.R.C (EYTP).

References

1. Baumgartner, R., Flesca, S., Gottlob, G.: Visual web information extraction with lixto. In:
Proceedings of VLDB. (2001) 119–128

2. Liu, L., Pu, C., Han, W.: Xwrap: An xml-enabled wrapper construction system for web
information sources. In: Proceedings of ICDE. (2000) 611–621

3. Meng, X., Wang, H., Hu, D., Li, C.: A supervised visual wrapper generator for web-data
extraction. In: Proceedings of COMPSAC. (2003) 657–662

4. Sahuguet, A., Azavant, F.: Building intelligent web applications using lightweight wrappers.
Data Knowl. Eng. 36 (2001) 283–316

5. Muslea, I., Minton, S., Knoblock, C.A.: Hierarchical wrapper induction for semistructured
information sources. Autonomous Agents and Multi-Agent Systems 4(1/2) (2001) 93–114

6. Arasu, A., Garcia-Molina, H.: Extracting structure data from web pages. In: Proceedings of
SIGMOD. (2003) 337–348

7. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data extraction from
large web sites. In: Proceedings of VLDB. (2001) 109–118

8. Wang, J., Lochovsky, F.H.: Data extraction and label assignment for web databases. In:
Proceedings of WWW. (2003) 187–196

9. Grumbach, S., Mecca, G.: In search of the lost schema. In: Proceedings of ICDT. (1999)
314–331

10. : Xml query language (xquery). (http://www.w3.org/TR/xquery/)
11. : Xml path language (xpath) 2.0. (http://www.w3.org/TR/xpath20/)
12. : Document object model (dom) level 2 core specification. (http://www.w3.org/TR/DOM-

Level-2-Core)
13. Arlotta, L., Crescenzi, V., Mecca, G., Merialdo, P.: Automatic annotation of data extracted

from large web sites. In: Proceedings of WebDB. (2003) 7–12
14. Meng, X., Hu, D., Li, C.: Schema-guided wrapper maintenance for web-data extraction. In:

Proceedings of ACM WIDM. (2003) 1–8
15. Meng, X., Wang, H., Hu, D., Gu, M.: Sg-wram: Schema guided wrapper maintenance. In:

Proceedings of ICDE. (2003) 750–752
16. Lerman, K., Minton, S.: Learning the common structure of data. In: Proceedings of

AAAI/IAAI. (2000) 609–614
17. Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., Teixeira, J.S.: A brief survey of web

data extraction tools. SIGMOD Record 31 (2002) 84–93

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 840–850, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Customer Information Visualization via Customer Map

Ji Young Woo1, Sung Min Bae2, Chong Un Pyon1, and Sang Chan Park1

1 Department of Industrial Engineering, Korean Advanced
Institute of Science and Technology

Guseong-dong, Yusaong-gu, Daejeon, Republic of Korea
{jywoo,pcu,sangchanpark}@major.kaist.ac.kr

2 Department of Industrial & Management Engineering, HANBAT National University,
DuckMyoung-dong, Yusaong-gu, Daejeon, Republic of Korea

loveiris@hanbat.ac.kr

Abstract. Many data mining techniques which are non-visual methods have
been proved their virtues on various customer data. However, there have been
hardly applications of visualization methods onto the customer information in
spite of their ability of quick and easy knowledge discovery. In this paper, we
propose a data visualization method for customer information using a customer
map. To develop the customer map, we integrate numerous customer data from
various data sources, perform data analyses using data mining techniques and
finally visualize the information derived by the former analyses. The customer
map makes it possible to mange diverse and complex data sets under the unified
goal of value creation through customers. It also affords the ability to make
quick observation of current state and the change of customer distribution based
on their information without preconception. We applied the customer map to
the credit card company, and suggested managerial implications from the cus-
tomer maps obtained from its data.

1 Introduction

Many data mining techniques have been proved useful in revealing important patterns
from large data sets. One of the best data mining technologies might be visualization
because graphical display methods often offer superior results compared to other
more conventional data mining techniques [3]. Visual tools have traditionally been
used by high-end intelligence agencies, but have recently become accessible and
useful as a practical, cost-effective approach for many businesses and corporate [3].

According to the recent customer-centric business environment, customer data be-
came an emerging area of data mining techniques. Especially, the urgent importance
of the customer in the company is demanding novel and improved methods for quick
and explicit knowledge derivation from numerous data. Visualization offers new ways
to slice, dice, and analyze huge amounts of customer data. Visualization is specialized
in views, graphs, charts, and reports of customer data better than the conventional
methods of textual, tabular presentation [9]. Especially to top managers, visualization
tools are very useful for quick and easy knowledge discovery without preconception
[3]. Furthermore, the combination of visualization technologies with traditional data

 Customer Information Visualization via Customer Map 841

mining and data warehousing will present the great value to customer-related market-
ing area. However, existing models and mining techniques related customer data are
lack of ability of knowledge presentation to visualize and present the mined knowl-
edge to decision-makers.

In association with customer-related marketing in management, customer targeting
is one of major issues to create value through customers [5], [8]. Considering the
importance of customer targeting, companies began to concentrate on the right cus-
tomer not whole customers. Target market identification, evaluation, and selection are
considered to be necessarily undertaken prior to determining specific strategies in the
customer-centric environment. For target selection, customers have been examined
and segmented in terms of their information. The exciting segmentation and targeting
methods failed in integrating all kinds of customer data and deriving homogeneous
target groups with all aspects. In respect of visualization, existing methods which is
mostly based on self-organizing feature map is good at segmenting customers, but it
is hardly to find visualization method for targeting itself.

When the dimensionality of the data is large like the customer data, it is more
needed to synthesize and visualize the data. However, it is difficult to visualize the
data with traditional visualization techniques because visualization on multi-
dimensional data is incomprehensible. To overcome this multi-dimensional problem,
dimensionality reduction techniques such as clustering and projection method, which
focus on data structure, have been examined [7]. For better interpretability of the
visualization, data reduction techniques should be combined with the domain knowl-
edge of the customer data. We will consider the 3-dimensional visualization because
of its comprehensibility, and suggest strategic building model for data reduction based
on implicit knowledge of customer data. On the strategy-building model, customer
data is categorized and analyzed following the suggested processes.

In this paper, we propose the data visualization method for customer targeting in
terms of customer information using the customer map. To develop the customer map
following visual mining steps, we integrate numerous customer data from various
data sources, perform data analyses using data mining techniques and finally visualize
the information derived by the former analyses. We will apply the customer map in a
credit card company, and suggest managerial implications from the customer maps
obtained from its data.

2 Visualization Techniques in Management

The application of advanced information visualization in management era has
attracted a great deal of attention. One of the major applications of visualization tech-
niques to management has been financial data. Many data mining techniques includ-
ing visual methods have been proved their virtues on financial data [7]. One of the
major methods is Self Organizing Map (SOM), which is the non-parametric neural
network method with visualization ability. SOM has been deployed in segmenting
companies in terms of their financial states [7]. The other outstanding method is link
analysis, which is the process of building up networks of interconnected object
through relationship in order to expose patterns and trends [3]. It contributes to detect-
ing money laundering activities and fraud detection [3].

842 J.Y. Woo et al.

On the marketing era, visual mining has been used to achieve better customer satis-
faction and retention. Visualization is useful in understanding the characteristics of
discovered segments to determine the appropriate marketing approach. Network rep-
resentation using SOM has been used for product segmentation and customer segmen-
tation in terms of all possible data fields. Geopositional display has been used for
geographical placement of customers, departments, product consumption and so on to
expose abstract trends within complex data sets. The 3D cube method has been intro-
duced to represent the customer buying patterns. Each axis of the cube was set ac-
cording to decision makers’ view such as the frequency of visits, the frequency of
buying and the monetary amount of buying.

In today’s e-business environment, e-CRM has been emerging. On-line transaction
data such as click streams data and buying patterns are major applications of visuali-
zation [9]. The graphical depiction of web sites and their contents is originated for
navigational purpose.

In recent, many data visualization applications are available in the commercial
markets and some of them enhance their function combined with database mining
techniques such as OLAP function. Some case studies which adapted commercial
products such as Netmap [3], Visualmine [15], and Advizor [1] in visual analysis
have proved the virtues of visualization in fraud detection, marketing data analysis,
and other decision-making problems.

3 Customer Information Visualization for Customer Targeting

3.1 Prerequisite for Customer Map

To build customer-targeting strategy based on visual data mining, we propose a busi-
ness strategy building model. The strategy building model is organized with three
axes of goal, monitor, and control factor and is also organized with three-layers of
basic processing, analysis, and strategic planning. When decision-makers build a
strategy, they need a goal to achieve through the strategy, they should control any
factors which will affects to the goal, and they monitor the affect of their actions. The
goal factor is what they are pursuing, so should be achieved at the end. The control
factor is the environmental factor which affects to the goal. The monitor factor means
what they should do and also means the criteria which they can evaluate the perform-
ance of what they do with.

Turning to customer targeting issue, the goal component represents value creation
through the customer that they are pursuing via the customer map. The control com-
ponent indicates which customers they should target to achieve the goal and the moni-
tor component is customer needs which corporate can do for the customer to achieve
the goal and which can be monitored according to its actions.

Fig. 1 shows the business strategy building model. The proposed model empha-
sizes the three major axes to build the business strategy. Also, it says that there should
be a process flow from basic processing, analysis to strategic planning. The basic
processing includes data integration which combines the multiple data sources and
data selection where relevant data to the analysis task are retrieved from databases.

 Customer Information Visualization via Customer Map 843

The analysis is the process to mine the raw data and extract the useful information
from the integrated data sources. Strategic planning is to build a business strategy
based on the results of the above analyses.

Analysis

Strategic
Planning

Goal FactorGoal Factor

Business Strategy

Basic
Processing

Monitor FactorMonitor Factor

Control FactorControl Factor

Fig. 1. Business strategy building model

Based on the business strategy building model, the proposed targeting model per-
forms data sources integration, data selection, and data analysis.

3.2 Data Sources Integration

We apply the customer map to customer information for customer targeting. In order
to facilitate the customer targeting, the data sources maintained by the separate busi-
ness units should be integrated as a basic processing. Hence, customer information
should be examined with respect to data sources and information characteristics.
It is for integrating customer information across distributed data sources so that the
company can target the customers based on the integrated information. Decision-
makers should check all customer related databases and derive critical information to
describe their customers.

Customer information can be classified into three categories; customer profiles,
customer needs, and customer value, based on information characteristics [2]. In
terms of this classification, data integration is taken to incorporate customer profiles,
customer needs, and customer value from various data sources.

The customer profile is all kinds of customer-related data that can define and de-
scribe the customer such as demographics, socioeconomics, psychographics, life
styles, preferences or behaviors. Demographics and socioeconomics can be retrieved
from the customer information database, psychographics, life styles or preferences
from the survey database and the customer information database, and behaviors from
the transaction database. Demographics and socioeconomics are contained within
customer information databases which are obtained when the customer accesses the
company such as customer name, age, income, gender, education and so on. The
customer information databases, the transaction database and the survey database can
be integrated by the customer identification.

844 J.Y. Woo et al.

Customer needs are retrieved from customer complaints which are occurred in the
customer contact center and from the evaluation of customer satisfaction which is
acquired from customer surveys. These data are stored in their own databases such as
Voice of Customer (VOC) and Customer Satisfaction Index (CSI) databases. VOC
has the advantage that it is monitored at all times, but VOC is possibly biased by
active customers. CSI is an evaluator of company performance in term of customer
satisfaction. It has the advantage that survey results can be a representative of whole
customers when sampling is conducted appropriately. To supplement the shortages of
VOC and CSI, two sources should be investigated together for derivation of customer
needs. We integrate two sources by word mapping. Each names of the VOC code
structure which defines VOC is matched to the questionnaire.

The customer value can be evaluated from histories of customers’ transactions.
Most of companies maintain the customer value as forms of profit, cost or loyalty
value.

These three categories of customer data have been used for building customer-
centric strategies and especially used for customer segmentation. They organize the
three axes of the customer map. To build a strategy for customer targeting, we set the
goal as customer value, the control factor as customer characteristics and the monitor
factor as customer needs.

Customer Information
Categories

Customer
characteristics

Customer needs

Customer value

Customer Info

Survey
(Satisfaction,

Attitude,
Preference)

Transaction

VOC

Usage

Behaviors

Demographics&
Socioeconomics

Psychographics

Complaints

Satisfaction

Data Sources

Fig. 2. Three categorized customer data from various sources

3.3 Data Selection and Formulation

To decide pivots of the customer map, data selection and formulation should be un-
dertaken after the data source integration. The value components are formulated in a
form of Frequency, Recency, Amount, and Type (FRAT). FRAT is an extended ver-
sion of Recency, Frequency, and Monetary value (RFM) [11], which has been used to
estimate the profitability associated with each customer. To overcome bias that is
occurred by assuming value as mere profitability, we add Type attribute to the value
component to reflect cost aspect too. When the type sets to current value, frequency,
and recency will be calculated from the purchase date field, and the amount will be

 Customer Information Visualization via Customer Map 845

derived from the dollar amount field. When the type sets to cost, the occurrence date
field should be selected from VOC table to estimate the frequency and the recency,
and the dollar amount field which records how much the VOC costs should selected
to estimate the amount.

The main idea of organizing customer profiles is to target very specific group of
customers with controllable information. To access a target, the customer profile
should be actionable rather than be just descriptive. Demographics, geographics, and
socio-economics that were major sources of customer information in the past have
been proved that it is not easy to extract discriminators between different customers
using this information. Transaction behavior information is more actionable and dif-
ferentiable. This information is the habitual behavior which can be recorded when the
purchase occurs in the contract database, which is a sort of customer information
databases. In the credit card company, transaction information includes payment
method, billing method, the number of possessed cards, the kinds of possessed cards
and so on. This information is useful for internal customers, but has a drawback that is
not available for customers of other companies or latent customers. Instead, psycho-
graphic data such as lifestyle, preference, and attitudinal data is available for external
customers. For an unbiased strategy for internal and external customers, the transac-
tion behaviors and psychographics should be combined to identify characteristics of
target customers and to access and control them.

Customer needs are formulated as a form of Family of Measurement (FOM) [10]
for well-balanced measurement. FOM is organized with five measures: quantity,
quality, timeliness, resource, and customer satisfaction. In the case of VOC, FOM
defined quantity as the frequency of VOC occurrence, quality as importance onto
customer satisfaction, timeliness as the average time for improvement, resource as the
average dollar amount for improvement and customer satisfaction as the degreed of
contribution onto customer satisfaction. VOC code field, the dollar amount field and
the time amount field should be selected from VOC table. For quality and customer
satisfaction, the response value field of the questionnaire matched to specific VOC
from CSI table.

3.4 Customer Data Analysis

In this phase, we derive key factors to build the customer map. We examine and inte-
grate customer needs analysis, customer characteristics analysis, and customer value
analysis on the targeting issue. Once the data selection has been done from the inte-
grated data sources, key factor derivation is performed from the selected data. Cus-
tomer data analysis derives key customer needs and customer characteristics which
are critical to customer value. In this case, one of FRAT value which represents cus-
tomer value is determined, and then customer needs analysis and customer character-
istics analysis are performed.

As a first step, data reduction is undertaken to customer preference which has nu-
merous continuous variables [6]. After checking the correlation matrix of the vari-
ables, we apply factor analysis, especially principal component analysis. In key driver
analysis for customer characteristics, selected preference variables and all transaction
behavior variables are analyzed together to check whether they affect to the goal fac-

846 J.Y. Woo et al.

tor or not. Upon the dependent variable of customer value, these variables are ana-
lyzed by the discriminant analysis.

For key driver analysis for customer needs, all measures in FOM are enumerated
based on the selected raw data. The importance of a VOC is measured in terms of
partial correlation of CS on the VOC onto customer satisfaction. It indicates the pure
effect of a VOC to CS without interference of other VOC. The contribution on cus-
tomer satisfaction of a VOC is enumerated following the formula (1). It indicates how
much overall customer satisfaction will be increased as a result of improving
customer satisfaction on a specific VOC.

ositionatcurrentpCSonVOC CSonVOC

OverallCS
onContributi

δ
δ

δ 0
lim

→
= (1)

3.5 Visual Representation via Customer Map

Once key factors have been derived from the three-categorized customer data, we
visualize the key factors onto the customer map. The customer map evaluates the
customer value distribution across customers based on customer profiles and cus-
tomer needs. To implement the customer map, we organize a two-dimensional plane
using a key customer profile and a key customer need. All customers are allocated in
the space constituted with (x, y) coordinates geometrically. Then, the value compo-
nent sets up the third dimension, z axis. The average value which is enumerated from
the value component of customers in each grid conforms the third dimension value in
the map. With the connection of all neighboring girds, the customer map exposes a
3D contour plot.

Fig. 3. Three dimensional customer map

We also reflect a cubic graph into a two-dimensional plane by expressing altitude

as colors. The two dimensional contour map is easier to interpret than the three-
dimensional map. The difference of customer value can be recognized through the
difference of the color.

 Customer Information Visualization via Customer Map 847

Fig. 4. Two dimensional customer map

3.6 Knowledge from Customer Map

The customer map indicates target customer segments which are homogenous in view
point of three major axes of customer information: customer needs, customer charac-
teristics, and customer value. Based on the customer map, marketers can derive vari-
ous marketing strategies. From the value distribution on the customer map, we can
diagnose portfolio of customers and determine what factors relate to value. Then, we
can build strategies to increase customer satisfaction of the target based on their
needs, and to eventually connect their satisfaction to value stream.

The target segment includes the most profitable or the most cost-consuming custom-
ers. Target identification ensures that better customers are separated from other custom-
ers to enable the company to focus the target and to maximize profits from them. We
consider Pareto rule, which urges that top 20% of customers generate 80% of profits,
when defining the target. Target customers are defined as the customers whose z dimen-
sional value reaches to 80% of total altitude in the map. The highest area in a 3D map
like Fig. 3 or the highlighted part in a 2D map like Fig. 4 indicates the target segment.
There are three check points geometrically in the customer map. The height which
represents the average of a value component in each position is a measure to evaluate
the value of each target. The magnitude of the target indicates how big the base the
target has, and the degree of homogeneousness within the target. The distance between
targets on a map with same axes is a criterion which measures similarities in terms of
the customer need and the customer characteristic between the targets.

Once we define a target group, differential profiles and needs of the target cus-
tomer are identified. The profile and the need of the target are derived by just reading
the (x,y) position of the target on the map. The identification of profiles and needs of
the target provides a basis for developing efficient and effective marketing strategies
for keeping and gaining profitable customers or avoiding cost-consuming customers.

4 Application to Credit Card Company

We applied the visualization mining tool for customer targeting to a service operation
especially to a credit card company. The company deals numerous VOC in the call

848 J.Y. Woo et al.

center and performs the CSI survey twice in a year. Also, it maintains numerous and
various customer information in the enterprise data warehouse. From VOC and CSI,
we could derive key customer needs to build the customer map. We collected the 235
thousand sampling VOC data and used 3200 data from the two customer surveys.
Other surveys such as preference and attitude surveys supported the selection of cus-
tomer characteristics. The company updates the customer value as forms of the cur-
rent value and the life time value.

The results of the examination using FOM ranked “payback/receipt” and
“limit/approval” as top key customer needs. As customer characteristics, we used the
preference factor from CSI survey data. We derived “nobility” and “benefits pursing”
propensities as the key preference factor based on their impacts onto customer value.
We adapted current value which is calculated based on the amount of card usage as
the customer value.

From the customer maps built based on the results of data analyses, we could de-
rive retention and churn strategies. Retention strategy is for the customers who are
profitable currently or have potentials, so should be retained. In Fig. 5, we can detect
two targets. One target includes customers who show weak preference for the benefit
and have low satisfaction on the “payback and receipt” service. The other target in-
cludes customers who show strong preference for the characteristic factor and have
high satisfaction in the quality factor. We conclude that retention strategy should be
built for customers who show medium above preference of the benefit. Especially for
customers who pursue benefits strongly, the “payback/receipt” service should be
satisfied.

Fig. 5. Customer map for retention strategy

Churn strategy is designed to attract customers of other competitive, so we need to
compare two customer maps with the same axes. In this case, we take the examination
on the distance between two high-ends, and take comparison on the height difference
of two segments. The closer the distance is, the easier it is to attract customers of the
competitive. In Fig. 6, the high-end of company A is close to one of company C, so it
is easy to attract the high-end customers of company C than those of company B for
company A. When we target company C, it is required a little improvement of the
service of the “payback/receipt” service because the target customers are a little more
nobility pursuers and they are a little more sensitive to the quality of the pay-
back/receipt. When we target company B, it is important to emphasize nobility which

 Customer Information Visualization via Customer Map 849

Fig. 6 Customer map for churn strategy

the credit card expresses and to provide additional services. Also, they should achieve
a big improvement on the service of “payback and receipt”.

5 Conclusion

We suggested the visualization method for customer targeting based on the customer
three-categorical information. The visualization method was implemented as the cus-
tomer map. To build the customer map, we suggest the business strategy building
model which defines the required factors and the required processes for successful
business strategy. Following the model, we integrated customer data from multiple
sources and classified customer data into the customer profile, the customer need and
the customer value. Then, we conducted data analyses on these data and derive key
information to build the customer map. The customer map is a visualized tool that
indicates the target which is homogeneous in terms of the need, the characteristic, and
the value.

The customer map has three important meanings. First of all, it enables mangers to
target right customers and to keep them. Secondly, the customer map helps marketers
to mange diverse and complex data sets under the unified goal of value creation
through customers and it also enables marketers to integrate the analytical process
which have been conducted individually according to customer data sources. Thirdly,
it affords them the ability to make quick observation of current state and its change of
customer distribution based on their information without preconception due to the
visualization ability of the customer map. We applied the customer map to a credit
card company. We did research on interpretation and application onto deriving mar-
keting strategies from the customer map that we got from the application.

References

1. Advizor Solution, Inc. URL: http://www.advizorsolutions.com
2. Chung-Hoon Park, Young-Gul Kim : A Framework of Dynamic CRM: Linking Marketing

with Information Strategy. Business Process Management Journal, Vol. 9. No.5 (2003)
652-671

3. Christopher Westphal, Teresa Blaxton : Data Mining Solution. John Wiley & Sons, Inc.
(1998) 123-147

.

850 J.Y. Woo et al.

4. David Adams : Data Visualization. URL: http://www.CFOProject.com
5. Jedid-Jah Jonker, Nanda Piersma, Dirk Van den Poel : Joint Optimization of Customer

Segmentation and Marketing Policy to Maximize Long Term Profitability. Expert Systems
with Applications, Vol. 27 (2004) 159-168

6. Jiawei Han, Micheline Kamber : Data Mining : Concepts and Techniques. Morgan Kauf-
mann Publishers (2001) 2-8

7. Kohonen, T. & Deboeck, G.: Visual Exploration in Finance with Self-Organizing Maps.
Springer (1998)

8. Market Segmentation Revised Edition. Probus Publishing Company (1994)
9. Shobha Ganapathy, C. Ranganathan, Balaji Sankaranarayanan: Visualization Strategies

and Tools for Enhancing Customer Relationship Management. Communication of ACM,
Vol.47, No.11 (2004)

10. Thomas Teal : Service Comes First: An Interview with USAA’s Robert F. McDermott.
Harvard Business Review (1991)

11. Uzay Kaymak : Fuzzy Target Selection using RFM Variables. IEEE (2001)
12. VisualMine, URL: http://www.visualmine.com

Finding and Analyzing Database User Sessions

Qingsong Yao, Aijun An, and Xiangji Huang�

Department of Computer Science, York University, Toronto M3J 1P3 Canada
{qingsong, aan}@cs.yorku.ca, jhuang@yorku.ca

Abstract. A database user session is a sequence of queries issued by a user (or
an application) to achieve a certain task. Analysis of task-oriented database user
sessions provides useful insight into the query behavior of database users. In this
paper, we describe novel algorithms for identifying sessions from database traces
and for grouping the sessions different classes. We also present experimental
results.

1 Introduction

A database user session is a sequence of queries issued by a user (or an application)
to achieve a certain task. It consists of one or more database transactions, which are in
turn a sequence of operations performed as a logical unit of work. Analysis of sessions
allows us to discover high-level patterns that stem from the structure of the task the user
is solving. The discovered patterns can be used to predict incoming user queries based
on the queries that the user has already issued [1, 2, 3] and to redesign and rewrite the
queries within a user session to achieve a better performance [4, 5].

In this paper, we are interested in identifying and clustering database user sessions
from database workloads. We use a language modeling based algorithm to identify
database sessions, and a distance-based clustering algorithm is proposed to group the
user sessions into different session classes. Our contributions in this paper are summa-
rized as follows. (1) We use a language statistical modeling based algorithm to identify
database sessions. Three types of learning methods, namely, supervised, semi-supervised
and unsupervised learning, are introduced to learn language models. These learning
methods are designed to suit the different characteristics of real log data sets. (2) We
propose a distance-based session clustering algorithm to cluster session instances. The
distance between two session instances is measured according to three similarity scores:
coefficient score, alignment score and neighborhood score. This approach considers not
only the local similarity between sessions (coefficient score, alignment score), but also
the global similarity (neighborhood score).

The rest of the paper is organized as follows. Related work is discussed in Section
2. We describe the language modeling based session identification algorithm in Section
3. In Section 4, a distance-based session clustering algorithm is proposed. We give
experimental results in Section 5. Finally we conclude the paper in Section 6.

� This work is supported by research grants from Communications and Information Technol-
ogy Ontario (CITO) and the Natural Sciences and Engineering Research Council of Canada
(NSERC).

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 851–862, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

852 Q. Yao, A. An, and X. Huang

2 Related Work

Finding database user behaviors is a subject of workload characterization. There is a
large variety of techniques used for workload characterization. Functionally, the work-
load characterization can be classified into two categories: static analysis and dynamic
analysis. Static techniques explore the intrinsic characteristics of the workload, such as
the static parameters related to hardware and software resource consumptions and the
correlation between workload parameters, which do not change over time. On the other
hand, dynamic techniques, such as neural network based prediction, Markov models,
user behavior graphs, customer behavior model graph and regression methods, focus
on analyzing the behavior of the workload and the way it fluctuates over time. These
techniques usually analyze the historical data of the workload and aid to forecasting
its behavior in the future. Surveys on workload characterization techniques on different
computer systems, such as file servers and database systems, can be found in [6, 7]. In
this paper, we focus on analyzing database user behaviors within the user session level,
i.e, the queries submitted by a user within a user session.

The most commonly used session identification method is called timeout, in which
a user session is defined as a sequence of requests from the same user such that no two
consecutive requests are separated by an interval more than a predefined threshold. This
session identification method suffers from the problem that it is difficult to set the time
threshold. According to [8], timeout method is the only method provided by database
vendors to keep track of sessions for electronic library database products. They reported
that timeout values can vary widely between vendors, ranging from 7 to 30 minutes
on average. Recently, an n-gram statistical language modeling based session detection
method has been proposed in [9]. The method has been demonstrated to be more effective
than the timeout and two other methods in discovering interesting association rules in a
Web mining domain. However, some open issues, such as how to select parameters and
how to measure the session identification results, are still unsolved. A review of N-gram
modeling can be found in [10].

Data clustering is a subject of active research in several fields such as statistics
analysis, pattern recognition, and machine learning. A review of clustering techniques is
given in [11]. A survey on data clustering algorithms can be found in [12]. The session
clustering algorithm presented in the paper is based on the idea of Jaccard Coefficient
measurement [13], sequence alignment [14], and common neighbors between sessions
[15]. Similar algorithms can be found in [15, 16, 17].

3 Database User Session Identification

First, we briefly discuss the procedure of finding and clustering user sessions from
database workloads. The database workload contains many database connections, and
each connection contains a sequence of queries. We assume that queries within a user
session have the same connection id, and there is no interleave between two sessions of
a connection. Thus, the query sequence of a connection corresponds to a sequence of
user sessions. Language modeling provides a simple, natural approach to segmenting
template sequences. Since the submitted SQL queries usually have certain format, they

Finding and Analyzing Database User Sessions 853

can be classified into different query templates (step 1). In particular, we replace each
data value embedded in a SQL query with a wildcard character ’%’, and obtain a query
template. The query template represents a set of queries that have the similar format. By
replacing a submitted SQL statement with the corresponding query template, we obtain
a set of query template sequences, referred to as template sequences (step 2 and 3),
each for one database connection. The template sequences are the input of the session
identification algorithm. For example, the session instance shown in Table 1 corresponds
to a template sequence: 30-09-10-20-47-49. Learning from session instances can help
us to predict, prefetch and rewrite the queries in the session (see [2] for details).

Table 1. An instance of schedule display session procedure

Label Statement

30 select authority from employee where employee id =’1025’
09 select count(*) as num from customer where cust num = ’1074’
10 select card name from customer t1,member card t2 where 1.cust num = ’1074’ and

t1.card id = t2.card id
20 select contact last,contact first from customer where cust num = ’1074’
47 select t1.branch ,t2.* from record t1, treatment t2 where t1.contract no = t2.contract no

and t1.cust id =’1074’ and check in date = ’2002/03/04’ and t1.branch =’scar’
49 select top 10 contract no from treatment schedule where cust id = ’1074’ order by

checkin date desc

3.1 N-Gram Statistical Language Modeling

In this section, we present a session detection method based on language models. The
method does not rely on any time intervals when identifying session boundaries. Instead,
it uses an information theoretic approach to identifying session boundaries dynamically
by measuring the change of information in the sequence of requests. The method was
originally proposed for detecting session boundaries in Web logs [9].

Statistical language modeling was originally used in speech recognition, where the
goal is to predict the probability of natural word sequences. The most successful statis-
tical language model is the n-gram language model. In n-gram language modeling, it is
assumed that the probability of a word only depends on its at most previous n-1 words.
Thus, given a word sequence, s = w1w2...wN , its probability can be written as:

P (s) = P (w1)..P (wN |w1..wN−1) =
N∏

i=1

P (wi|w1..wi−1) =
N∏

i=1

P (wi|wi−n+1..wi−1)

A statistical language model, then, is a specific choice of conditional probabilities for
all possible n-grams: P (wi|wi−n+1...wi−1). The quality of a given statistical language
model can be measured by its empirical entropy on a given word sequence s , where the
empirical entropy is defined as

Entropy(s) = − 1
N

log2P (s)

854 Q. Yao, A. An, and X. Huang

That is, we would like the language model to place high probability on natural test
sequences, and hence obtain a small value of empirical entropy.

In database applications, queries are issued sequentially in a particular order, similar
to the word sequences that occur in a natural language. If we consider each query as a
basic unit, like a word or character in natural language, we can then attempt to estimate
the probability of query sequences using the same language modeling tools described
above. Imagine a set of queries for a task/session that are frequently issued one after
another. In this case, the entropy of the sequence is low. However, when a new query is
observed in the sequence that is not relevant to the original task (but in fact indicates a
shift to a new task), the introduction of this new query causes an increase in the entropy
of the sequence because it is rarely issued after the preceding sequence of queries. If
the change in entropy passes a threshold, a session boundary could be placed before
the new query. In other words, the uncertainty (which is measured by entropy) within
a session should be roughly constant, allowing for a fixed level of variability within a
topic. However, whenever the entropy increases beyond a threshold, this presents a clear
signal that the user’s activity has changed to another topic. Thus, we should set a session
boundary at the place where the entropy changes. The change in entropy is measured by
the relative change in entropy values, defined as

Entropy(s1) − Entropy(s0)
Entropy(s0)

where s0 is a sequence of requests and s1 contains s0 plus the next request following s0
in the test data sequence. Based on this definition, a threshold value of 0.20 means that
if the change in entropy is over 20%, there is a boundary at the end of s0.

Fig. 1 shows the entropy evolution of a query sequence within a database connection
from our OLTP application, where the X-axis is the sequence represented by query
template ids, Y-axis is the entropy of the sequence from the first query to the current
query, and the threw curves are based on the n-gram models trained in the unsupervised,
supervised and semi-supervised modes (explained in next section), respectively. As one
can see, the entropy changes radically at some points, although it remains stable in other
places. This figure gives an intuition how entropy could be used for session boundary
detection.

3.2 Training Data and Learning Methods

The probabilities in an n-gram model come from the data it is trained on. The training
data need to be carefully designed. If the training data is too specific to one task, the
probabilities may be too narrow and do not generalize well to other tasks. If the training
data is too general or too small, the probabilities may not reflect the task or the domain
efficiently. A good training data should contain enough information about the observed
application or user, i.e., the training data should reflect the dynamic behavior of the
observed application or the users.

There are three kinds of training data, separated training data, un-separated training
data and partially separated training data. In separated training data, sessions have been
identified and thus the training data consists of a set of sessions. We refer to the n-gram
learning method that is based on the separated training data as supervised learning

Finding and Analyzing Database User Sessions 855

method. In some situations, it is very difficult, if not impossible, to obtain a separated
training data set. In this case, we can estimate request frequencies based on the un-
separated data sequence, and the corresponding n-gram model contains both the inter-
session and the intra-session request frequencies. The corresponding learning method
is called the unsupervised session detection method. The unsupervised learning is more
sensitive to the selection of parameters, such as the entropy threshold and the n-gram
order (as shown in Fig. 1). In a third type of situation, the training data are partially
separated by the boundary points such as use login/logout. In this case, we can build an
n-gram model by estimating the probabilities based on the partially separated training
data. We refer to this method as semi-supervised learning method.

 7 50 37 24 30 54 54 54 54 54 45 20 43 43 43 43 43 43 43 43 43 43 45 20 43 43 43 43 43 43
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

sequence

en
tr

op
y

Unsupervised
Supervised
Semi−Supervised

Fig. 1. Entropy evolution in one data set

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 30 50 70 90 12
0

20
0

Threshold(%)

Value

F-Measure

Cross-Entropy

Fig. 2. Correlation between F-measure and cross-
entropy

3.3 Performance Measurement Metrics

After an n-gram model is built over the training data, it can be used to divide an unsepa-
rated template sequence into sessions. Performance measures are needed to evaluate the
accuracy of the session detection. In this section, we propose to use two performance mea-
sures and discuss their correlations. The first measure is referred to as F-measure, which
has been used in information retrieval to measure the retrieval performance. Suppose we
know the true session boundaries in the test sequence, then F-measure is defined as

F-Measure =
2 ∗ precision ∗ recall
precision + recall

,

where precision is defined as the ratio of the number of correctly detected session bound-
aries to the total estimated boundaries, and the recall is the hit-rate, that is, the ratio of
the number of correctly detected true session boundaries to the total number of true
boundaries, A higher F-measure value means a better overall performance.

The second measure is called cross entropy. Given a set of estimated sessions T =
{t1, ..., tm}, detected by using a model P (wi|wi−n+1...wi−1), the cross entropy of T is
define as:

Hp(T) =
∑

i(|ti| × entropy(ti))∑
i |ti|

856 Q. Yao, A. An, and X. Huang

The cross-entropy value can be interpreted as the average number of bits needed to encode
T by using the compression algorithm associated with model P (wi|wi−n+1...wi−1). A
smaller cross-entry value means a better compression algorithm, and a better session
separating model as well. Fig. 2 shows the inverse correlation between F-measure and
cross entropy. It depicts how the performance of the n-gram based session identification
method, measured by both performance measures, changes with the value of the entropy
threshold on a data set used in our application. An advantage of using cross entropy to
measure the performance of an n-gram model for session detection is that we do not
need to know the true session boundaries in test data to calculate the cross entropy. This
feature makes it possible to make use of cross entropy as a performance measure on
the test data set for adjusting the parameters of an n-gram model. However, the n-gram
model should be trained in the supervised mode (i.e. on the separated data set) in order
for cross entropy to be a reliable performance measure on test data.

3.4 Parameter Selection

There are two parameters in the language modeling based session detection method.
One is the order of the n-gram model, which is n. The other is the entropy change
threshold used in segmenting the test sequence. Threshold selection is a critical task of
the language modeling based session boundary detection method. If the threshold is too
large, many session boundaries are missed and the recall of the detection is low. On
the other hand, a small threshold causes many non-boundary events to be mistreated as
session boundaries, which results in low precisions. In both cases, the performance in
term of F-Measure is low. To see how threshold selection is important, we compared
the performances of the n-gram method based on different threshold values. The result
is shown in Fig. 3. We can observe that the performance of an n-gram model greatly
depends on the threshold value.

To achieve good performance, we propose an automatic method for choosing a
threshold value for our language model session detection method. Suppose that the test
data sequence has m sessions and N events. After we estimate the entropy value of
each sequence in the test data, we can calculate and sort the relative entropy difference
values in decreasing order. If our language model can find all m-1 session boundaries
correctly, then the corresponding relative entropy difference values will occupy the first
m-1 positions in the sorted list. Thus, the mth value in the sorted list is the estimated
threshold value. In practice, we may not know the actual value of m. However, if we
know the average session length (avgLen), we can estimate m to be N/avgLen and
thus choose the (N/avgLen)th value in the sorted list as the threshold value. For super-
vised learning, we can estimate the average session length from the training data. For
unsupervised or semi-supervised learning, we can use the development set to estimate
the average session length. Also, for different n-gram orders, the estimated threshold
values are different.

Fig. 4 illustrates how the performance of an n-gram method changes with the order
of the model on one of our test data sets. Since different data sets may achieve the
best performance at different order values, an automatic method for order selection is
necessary. We propose the following method to select the best n-gram order for a data
set. For supervised learning, we train a set of n-gram models with different n values,

Finding and Analyzing Database User Sessions 857

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16 18 20 40 60 80 10
0

Threshold(%)

F-Measure
2-gram

3-gram

4-gram

5-gram

6-gram

7-gram

Fig. 3. Performance change with different
old values

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

N-Gam Order

F-Measure

Threshold:
0.10
0.12
0.14
0.16
0.18

Fig. 4. Performance change with different n–
gram orders

say from 2 to 8, on the training data set. We then test each model on the unseparated test
data sequence with an entropy threshold selected using the automatic threshold selection
method. The performance of each model on the test sequence is measured in terms of
cross entropy. The model with the smallest cross entropy is selected. Cross entropy,
instead of F-measure, is used as the performance measure in this process because it
can be calculated without knowing the true boundaries in the test data sequence. For
unsupervised or semi-supervised learning, a set ofn-gram models with differentn values
is trained on the unseparated or partially separated training data. Then each model is
tested on the development set. The performance of each model on the development
set is measured by F-measure. The model with the highest F-measure is chosen. Note
that we cannot use the test data sequence and cross entropy to test the models as in
supervised learning because the models are trained on the unseparated data and thus the
unseparated test data sequence will have the smallest cross entropy. Using F-measure
on the development set is more reliable in this situation.

4 Database Session Clustering

4.1 Session Similarity Scores and Distance Function

Given a set of database session instances, s = s1, s2, ..., sn, where each session instance
contains a sequence of requests, i.e., si =< ri1ri2rim

>, our task is to group the
session instances into meaningful session classes. The idea of our distance-based session
clustering algorithm is described as follows. We first consider each session instance as a
session class, and calculate the distance between them. Then, session groups are merged
according to their intra-group distances, and group distances are updated correspond-
ingly. The clustering procedure stops when all intra-group distances are more than a
pre-defined distance threshold β1. The distance between two session instances si and sj

is defined as:

1.0 − α1 × csim(si, sj)− α2 × asim(si, sj)− α3 × nsim(si, sj), (1)

thresh

858 Q. Yao, A. An, and X. Huang

where csim, asim, nsim are the coefficient score, the alignment score, and the neighbor-
hood score, respectively. α1, α2, and α3 are the distance parameters, the sum of which
is 1.0. The coefficient score csim(si, sj), for two session instances si and sj , is defined

as |si∩sj |
|si∪sj | , where |si ∩ sj | is the number of the requests appearing in both si and sj ,

and |si ∪ sj | is the total number of requests appearing in si or sj . The coefficient score
is based on the Jaccard Coefficient measure [13] that treats sessions as un-ordered sets.
The similarity between two sessions in this measure is defined as the fraction of common
requests.

We observe that if two session instances belong to the same session class, they are very
likely to have similar template sequence. Therefore, we propose another scoring schema
based on the idea of sequence alignment. In sequence alignment, two or more strings are
aligned together in order to get the highest number of matching characters. Gaps may
be inserted into a string in order to shift the remaining characters into better matches.
In this paper, we use the Needleman-Wunsch algorithm [14], a well-known sequence
alignment algorithm, to align two sessions, and assign a score based on aligned session
sequences, referred as the alignment score. We assume that the sessions are controlled
by certain programming codes. The codes may contain branches (such as if/else and
switch-case statements) or cycles (such as for-loop and do-while statements) that may
cause the requests to be executed repeatedly. The branches and cycles can be observed
from the aligned session instances. For example, given two session instances, ABCDD
and ABED, the aligned sequences are ABCDD

ABED− . We observe that the sequences contain
two matches (A and B), one branch (C/E) and one cycle (DD/D). We assign each
match with a score of 2, each branch with a score of 1, and each cycle with a score of
1. To normalize the alignment score, we divide the assigned value by the length of the
aligned sessions. The length is defined as 2 * (num. of matches + num. of branches +
num. of cycles). Thus, the final alignment score of the two sequences is 6/8 = 0.75. The
hidden logic/code in the real application may be complex than in the above example,
but the principle is still applicable.

In some situations, two sessions are in the same session class but their distance is
not so “near". Thus, simply applying the two similarity scores as the distance metric
is not enough. It is necessary to take global similarity into consideration. We call two
session instances si and sj ”neighbors" if the local-distance between them is within a
pre-defined threshold β2. The local-distance can be estimated by using the combination
of the coefficient score and the alignment score by assuming that the neighborhood score
is 0. Thus, each session has a set of neighbors. Each session pair, < si, sj >, has a value,
nsim(si, sj), which is the faction of common neighbors between them. This score is
called the neighborhood score.

4.2 Distance-Based Session Clustering Algorithm

The step of session distance computing has a high space and time complexity. For ex-
ample, given a data set that contains k session instances, k2 scores need to be calculated.
Meanwhile, to align two sequences with length m and n, the Needleman-Wunsch algo-
rithm requires O((m + 1) × (n + 1)) space to store the matrix, and O(m × n) time
to compute the matrix and then O(m + n) time to find an optimal path. In this section,
several strategies are proposed to solve the problem.

Finding and Analyzing Database User Sessions 859

First, we observe that there are some repeated session instances in the data set, which
have the same template sequences. These session instances are in the same session class.
Thus, we can represent repeated sessions by using a single session si associated with
the occurrence frequency, freq(si).

The next strategy is concerned with session class representation. It is implausible to
use all session instances to represent a session class. Thus, we use two sets, the request
set, rset(gj), and the session set, sset(gj) together, to represent a session class gi.
rset(gj) contains all distinct requests appeared in gj , and sset(gj) contains a set of the
representative session instances. We observe that if session group gi and gj are likely to
be merged, they should have a large portion of common requests. Thus, we use formula
|rset(gi)∩rset(gj)|
|rset(gi)∪rset(gj)| > β3 to pre-eliminate un-related groups when merging them. The sset
is used to compute the distance between session groups. Frequent session instances are
usually in sset. The distance between two session groups is then defined as:∑

sm∈sset(gi)
∑

sn∈sset(gj) distance(sm, sn) × freq(sm)× freq(sn)∑
sm∈sset(gi)

∑
sn∈sset(gj) freq(sm)× freq(sn)

(2)

When two session groups are merged, the sset and rest are changed correspondingly.
Data sampling is used to reduce computing complexity and space requirement. Fi-

nally session classes with small number of session instances (the number is smaller than
a predefined threshold) are treated as noise and are removed.

5 Experimental Results

To test our ideas in the project, we use a clinic OLTP application as a test bed. The clinic
is a private physiotherapy clinic located in Toronto. It has five branches across the city. It
provides services such as joint and spinal manipulation and mobilization, post-operative
rehabilitation, personal exercise programs and exercise classes, massage and acupunc-
ture. In each day, the client applications installed in the branches make connections to
the center database server, which is Microsoft SQL Server 7.0. In each connection, a
user may perform one or more tasks, such as checking in patients, making appointments,
displaying treatment schedules, explaining treatment procedures and selling products.
The database trace log (400M bytes) contains 81,417 events belonging to 9 different ap-
plications, such as front-end sales, daily report, monthly report, data backup, and system
administration. Our target application is the front-end sales application. After prepro-
cessing the trace log, we obtain 7,244 SQL queries, 18 database connection instances of
the front-end sales application. The queries are classified into 190 query templates, and
18 template sequences are obtained.

5.1 Results for Session Identification Algorithm

We randomly selected four test data sets from the collected data set, referred to as
D1, D2, D3, and D4. Each test data set corresponds to one database connection. For
supervised learning, the four test data sets are taken out from the training data. For
unsupervised or semi-supervised learning, we use the whole data set as the training data

860 Q. Yao, A. An, and X. Huang

to calculate the probabilities in the n-gram model, and use D1 as the development set
to tune parameters. The learned model are tested on D2, D3, and D4. For the semi-
supervised method, some boundary “words" are used to partially separate the training
data sequences. In our application, the boundary words are user sign-in/sign-out and
user authority checking. However, in our data set, not all the sessions begin or end with
a boundary word.

For the timeout method, we conducted experiments with a number of timeout thresh-
olds, ranging from 0.2 second to 30 minutes. The results of these timeout methods in
terms of F-Measure are shown in Fig. 5. The results show that the best performance in
term of F-measure is around 70%. The performance of the timeout method obviously
depends on the timeout threshold. Different applications may have different best timeout
thresholds. In our particular application, a threshold value between 3 to 10 seconds leads
to the best performance for the timeout method.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D1 D2 D3 D4 Data Set

F-Measure
0.2 0.5 1 2 3 5 8 10
15 20 60 120 300 600 1200 1800

Threshold (s)

Fig. 5. Comparison of timeout thresholds

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

D1 D2 D3 D4 Data Set

F-Measure
TimeOut

Unsupervised

Supervised

Semi-Supervised

Fig. 6. Comparison of All the Methods

In Fig. 6, we compare all the methods in terms of F-measure. The results for the
unsupervised, supervised and semi-supervised methods are the results from the automatic
parameter selection method. The result for the timeout method on a data set is the best
timeout result on that data set. We can observe from the figure that the supervised learning
method achieves the best results on all the test data sets; semi-supervised learning method
is comparable to the unsupervised method on the first three data sets but is significantly
better than the unsupervised method on data set D4; all the three n-gram methods are
significantly better than the best timeout method (except on D4 the performance of the
unsupervised method is slightly worse than that of the best timeout method). In general,
we can say that, using the automatic parameter selection method, the n-gram based
session identification method is significantly better than the timeout method, which has
been the only method for database session identification.

5.2 Results for Session Clustering Algorithm

We implement our session clustering algorithm in Java. The performance of the session
clustering algorithm depends on the selection of distance thresholds and distance param-

Finding and Analyzing Database User Sessions 861

eters. If the distance thresholds are too small, many session classes are generated. But
if they are too large, sessions that belong to different classes may be merged. Among
the three distance thresholds, β1 is the most important since the two other values are
related to it, and can be derived from it. The selection of threshold values depends on the
application. Small threshold values can be used for applications in which the difference
between session classes is significant, i.e., the distance between them is “far"; otherwise,
large threshold values are used since they can discriminate the trivial difference between
session classes. The selection of distance parameters is also important. The parameters
can be viewed as the weight of the three similarity scores. Different applications may
require different parameter values, and adjustment of these parameters accordingly is
necessary.

In the experiments, we choose 721 session instances that belong to 4 template se-
quences as the input of clustering algorithm. We first test the number of clusters generated
with different distance parameters in the sampling step. We set the neighborhood dis-
tance parameter as 0.3, and the coefficient parameter is dynamically changed from 0.0
to 0.7, and the alignment parameter is changed correspondingly. The result is shown in
Fig. 7. The figure shows that more clusters are generated when the coefficient parameter
is large, and fewer clusters are generated when the alignment parameter is large.

0

5

10

15

20

25

30

35

40

45

50

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Coefficient weight

Num. of Clusters threshold: 0.2
0.4 0.5
0.6 0.8

Fig. 7. Number of clusters vs. various
parameter values

0

10

20

30

40

50

60

70

80

90

0.0
5 0.1 0.1

5 0.2 0.2
5 0.3 0.3

5 0.4 0.4
5 0.5 0.5

5
0.6

5 0.7 0.7
5 0.8 0.9 0.9

5

threshold value

num. clusters before pruning
num. clusters after pruning

Fig. 8. Number of clusters vs. various threshold
values (pruning threshold =10)

Next, we use 0.4,0.3,0.3 as distance parameters in the first step, and 0.5,0.5, 0.0 in
the second step, and evaluate the performance under different threshold values. Since
the values of β2 and β3 are correlated with β1, we mainly change the value of β1, and the
other threshold values are changed correspondingly. The result is shown in Fig. 8. From
the figure, we observe that the number of clusters increases when the threshold value
increases. However, the increasing rate after pruning is lower than that before pruning.

6 Conclusion

In this paper, we have discussed our approach to identifying and grouping database user
sessions. The results from our approach can be used to tune the database system and

distance

862 Q. Yao, A. An, and X. Huang

predict incoming queries based on the queries already submitted, which can be used
to improve the database performance by effective query prefetching, query rewriting
and cache replacement. The work presented in the paper has a broader impact on the
database and data mining fields. Although the data set used in the paper is based on a
clinic application, the idea presented in the paper can be used in other database-based
applications, such as the ERP/CRM applications that may contain hundreds or even
thousands different types of sessions. It can also be used on Web log analysis and DNA
sequence analysis.

References

1. Sapia, C.: PROMISE: Predicting query behavior to enable predictive caching strategies for
OLAP systems. In: DAWAK. (2000) 224–233

2. Yao, Q., An, A.: Using user access patterns for semantic query caching. In: Database and
Expert Systems Applications (DEXA). (2003)

3. Bowman, I.T., Salem, K.: Optimization of query streams using semantic prefetching. In:
Proceedings of the 2004 ACM SIGMOD, ACM Press (2004) 179–190

4. Yao, Q., An, A.: Characterizing database user’s access patterns. In: DEXA. (2004) 528–538
5. Andreas Behm, Serge Rielau, R.S.: Returning modified rows - SELECT statements with side

effects. In: VLDB 2004, Toronto, Canada. (2004)
6. Elnaffar, S., Martin, P.: Characterizing computer systems’ workloads. Tr. 2002-461, School

of Computing, Queen University. Ontario, Canada. (2002)
7. Calzarossa, M., Serazzi, G.: Workload characterization: A survey. Proc. IEEE 81 (1993)

1136–1150
8. Duy, J., Vaughan, L.: Usage data for electronic resources: A comparison between locally-

collected and vendor-provided statistics. The Journal of Academic Librarianship 29 (2003)
16–22

9. Huang, X., Peng, F., An, A., Schuurmans, D.: Dynamic web log session identification with
statistical language models. Journal of the American Society for Information Science and
Technology 55 (2004) 1290 – 1303

10. Jurafsky, D., Martin, J.H.: Speech and Language Processing:An Introduction to Natural Lan-
guage Processing,Computational Linguistics,and Speech Recognition. Prentice Hall (2000)

11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31
(1999) 264–323

12. Berkhin, P.: Survey of clustering data mining techniques. Technical report, Accrue Software,
San Jose, CA (2002)

13. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist 11 (1912) 37–50
14. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities

in the amino acid sequence of two proteins. Journal of Molecular Biology 58 (1970) 443–453
15. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical at-

tributes. Information Systems 25 (2000) 345–366
16. Weinan Wang, O.R.Z.: Clustering web sessions by sequence alignment. In: 13th International

Workshop on Database and Expert Systems Applications (DEXA’02). (2002)
17. Birgit Hay, G.W., Vanhoof, K.: Clustering navigation patterns on a website using a sequence

alignment method. In: IJCAI Workshop on Intelligent Techniques for Web Personalization.
(2001)

Abstract. Recovery processing in embedded real-time databases (ERTDBs) is
more complex than traditional databases. In this paper, the classifications and
consistency constraints of data and transactions in embedded real-time data-
bases are given first. Then time-cognizant recovery principles for different
classes of data and transactions are discussed. In terms of these principles, a
time-cognizant recovery scheme based on real-time logging is presented, which
is suitable for a class of embedded real-time databases applications. Perform-
ance evaluations show that the suggested scheme has better performances than
traditional recovery techniques in two aspects: the missing deadlines percent of
transactions and the time of system denying services after crashes.

GLOSSARY OF NOTATION

Xi-a data object in databases T-an embedded real-time transaction
avib(Xi)-valid beginning instant of Xi RS(T)-read data set of T
avie(Xi)-valid end instant of Xi WS(T)-write data set of T
avi(Xi)-effective period of Xi DS(T)-access data set of T
d(Xi,Xj)-time distance between Xi and Xj TOS(T)- set of TDO accessed by T
R-deriving data set D(T)-deadline of T
Rmvi-threshold of time distance of R Df(T)-final deadline of T
TDO-temporal data object P(T)-execution period of T
INDO-invariant data object AS(T)-actions set of T
OTDO-original temporal data object OAS(T)-occurred actions set of T
DTDO-derived temporal data object EET(T)-estimate executing time of T
TDOS-set of temporal data objects CT(T)-commit instant of T
OTDOS-set of original temporal data objects Ts-sampling transaction
DTDOS-set of derived temporal data objects TSS-set of sampling transactions
INDOS-set of invariant data objects Tp-processing transaction
xi- current value of Xi TPS- set of processing transactions
tc-current time Tm-manipulating transaction
LT-the last committed transaction TMS- set of manipulating transactions
UP(T, Xi)- updated image of Xi by T St(Xi)-state of Xi at time t
COM(LT, Xi)-committed image of Xi by LT St(ERTDB)-state of ERTDB at time t

1 This work is supported by the National Postdoctor Foundation (No. 2003034482)

Time-Cognizant Recovery Processing for Embedded
Real-Time Databases1

 Guoqiong Liao, Yunsheng Liu, and Yingyuan Xiao

School of Computer Science and Technology, Huazhong University of Science,
and Technology, Wuhan, Hubei, P. R. China, 430074

liaoguoqiong@163.com

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 8 3–8 4, 2005.
© Springer-Verlag Berlin Heidelberg 2005

6 7

1 Introduction

With the advances of embedded hardware devices and the increasing amount of data
processed in embedded systems, more and more applications of embedded databases
are emerging[1]. One class of applications, such as data collections, air traffic controls,
real-time monitoring and fault alarming, demand that embedded databases are able to
process the timing constraints of data and transactions and provide timely and correct
results[2]. The common characteristics of this kind of applications are that they all
involve gathering data from external environment, processing the gathered data in
time and providing timely responses. The embedded databases with these characteris-
tics are called embedded real-time databases (ERTDBs).

In general, after being embedded into devices, ERTDBs should have the ability of
high fault-tolerance, and can resume services again as quickly as possible after
crashes. However, the probability of failures in embedded systems, especially in em-
bedded mobile environment, is higher than that in desktop systems. Moreover, some
unique recovery requirements of ERTDBs should be taken into consideration. The
main recovery characteristics of ERTDBs can be generalized as following [3-7]:

(1) Besides internal or logical consistency, the time consistency of data is also re-
quired to recover in ERTDBs.

(2) In order to prevent “priority inversion”, the fault transactions with higher pri-
orities should be recovered earlier than other transactions with lower priorities.

(3) The recovery procedures of ERTDBs should be started as quick as possible and
can be performed within a limited time.

(4) In order to reduce the time of system down, the recovery tasks of ERTDBs
should be carried through in a parallel way. That is, the recovery processes can be
executed alone with system services.

(5) The states of physical world changed by uncommitted transactions should also
be restored though relative “compensate” or “alternation” transactions.

Therefore, the recovery processing of ERTDBs is more complex than traditional
databases. Obviously, traditional recovery schemes based on REDO/UNDO opera-
tions, such as ARIES[8], which only aim to recover the internal consistency of data-
bases, are not suitable for ERTDBs. It is necessary to develop new time-cognizant
recovery principles and strategies to recover ERTDBs.

By now, embedded databases are attracting more and more attentions than ever
and many software products of embedded databases have been developed[9]. However,
fewer studies have been made on recovery processing of embedded databases.
Through analyzing these products, almost all of them still adopt traditional
UNDO/REDO recovery techniques, not taking embedded characteristics into account
and without any consideration about the time constraints of data and transactions.

The researches on real-time databases have been over 20 years since 1980s’, and
many academic achievements on them have been acquired[10]. The recovery schemes
of real-time databases can be classified into log-based and shadow-based. SPLIT is a
parallel recovery method based on partitioned logging, which partitions logs into two
parts: logs of hot and cold data according to data access frequency[11]. ARUN algo-
rithms are partitioned logging methods with ephemeral logging facilitated by the
presence of NVHSS, which can reduce the amount of logs processed at recovery

8 4 G. Liao, Y. Liu, and Y. Xiao 6

time[12]. The recovery method suggested in [6] partitions logs across critical and non-
critical data segments, which allows critical data to be recovered independently. In
[13], a simple real-time logging method is presented. Although this approach is sim-
ple and easy to implement, as the invariant data objects and temporal data objects
have different log record formats, extra overheads to check the formats will be in-
curred. To eliminate these overheads, multiple log buffers are designed to store the
logs of invariant data objects and temporal data objects separately[14]. Shadow-based
recovery methods are also studied to recover real-time databases[15-16]. But these
methods can’t be applied directly on embedded environment.

In this paper, a time-cognizant recovery scheme based on real-time logging is pre-
sented. The rest of the paper is organized as follows. Classifications and consistency
constraints of real-time data and transactions in ERTDBs are described in Section 2
and Section 3, respectively. Time-cognizant recovery principles are given in Section
4. In section 5, a time-cognizant recovery scheme based on real-time logging is sug-
gested. The performance evaluations of the suggested recovery approach are per-
formed in Section 6. Section 7 concludes the paper.

2 A Classification and Consistency Constraints of Real-Time Data

In this section, a classification of data objects in ERTDBs is given first. Then the
consistency constraints of data objects are discussed.

Definition 1. For a data object X, avi(X)=[avib(X), avie(X)], avib(X)< avie(X).
Definition 2. If avie(X) is an appointed instant, then X is called a temporal data ob-

ject (TDO); otherwise, X is called an invariant data object (INDO).
For a temporal data object, its value will become invalid once its avie(X) is expired,

even if it is still stored at databases. While for invariant data objects, their effective
periods are deemed to be an arbitrary length. However, it is meaningless to discuss
the future instants of invariant data objects. Hence, in following discussions, it is
always considered that the valid end instants of all invariant data objects are equal to
system current time (notated by tc) at any time.

Definition 3. If X is derived from a set of data objects R={X1, X2, … , Xk}(k 1),
then R is called a deriving data set on X, notated by R X.

Definition 4. If R X, then avi(X)=avi(X1) avi(X2) … avi(Xk), Xi R, i=1,
2, ……, k.

Definition 5. If X is a TDO and acquired from external environment through sen-
sors (or devices), then X is called an original temporal data object (OTDO).

Definition 6. If X is a TDO and derived from a deriving data set R, then X is
called a derived temporal data object (DTDO).

Definition 7. X is said to be externally consistent, iff tc avie(X).
For any invariant data object X INDOS, it is assumed that their avie(X) are al-

ways equal to tc. Therefore, X INDOS are externally consistent forever.

Definition 8. If X TDOS (tc avie(X)), then ERTDB is said to be externally con-
sistent.

Definition 9. For any two data objects Xi, Xj, i j, d(Xi, Xj)=|avib(Xi)-avib(Xj)|.

Time-Cognizant Recovery Processing for Embedded Real-Time Databases 8 5 6

Definition 10. If Xi, Xj R(d(xi, xj) Rmvi), i j, then R is said to be a set with mu-
tual consistency.

The mutual consistency is used to guarantee that all data objects in R can de pro-
duced at a common effective period. Rmvi is designed based on the minimal value of
effective periods of all data objects in R.

Therefore, if all deriving data sets in an ERTDB are mutually consistent, then the
ERTDB is said to be mutually consistent. And if an ERTDB is both externally consis-
tent and mutually consistent, then the ERTDB is said to be time consistent.

3 A Classification and Consistency Constraints of Embedded
Real-Time Transactions

In this section, a classification and consistency constraints of embedded real-time
transactions are discussed.

Definition 11. For a transaction T, if RS(T)= WS(T) OTDOS, then T is
called a sampling transaction, notated by Ts. TSS={Ts1, Ts2, ……,Tsn}(n 1) is the set
of sampling transactions.

The sampling transactions are write-only transactions. They are responsible for
sampling the states of physical objects in external environment periodically. In gen-
eral, this kind of transactions should execute without waiting or blocking, thereby
they are generally periodic real-time transactions with hard headlines.

Definition 12. For a transaction T, if WS(T) DTDOS INDOS RS(T) OTDOS
DTDOS INDOS, then T is called a processing transaction, notated by Tp.

TPS={Tp1,Tp2, ……, Tpv} (v 1) is the set of processing transactions.
The processing transactions read all classes of data objects to make decisions and

may write DTDOs and INDOs. Since they do not interact with physical world di-
rectly, they are commonly real-time transactions with soft deadlines.

Definition 13. For a transaction T, if WS(T)= RS(T) OTDOS DTDOS
INDOS AS(T) , then T is called a manipulating transaction, notated by Tm.
TMS={Tm1, Tm2, ……,Tmk} (k 1) is the set of manipulating transactions.

The manipulating transactions read only all kinds of data to manipulate controlled
subsystem through an actions set AS(T)={a1, a2, ……, ah}(h 1). This kind of transac-
tions do not destroy the state of databases. However, they may change the states of
physical world. They are generally hard real-time transactions.

The consistency constraints of embedded real-time transactions include the logical
consistency and time consistency. Since the logical consistency of embedded real-
time transactions is the same as the transactions in traditional databases, in this sec-
tion we only discuss the time consistency constraints.

Definition 14. For a transaction T, T is said to be externally consistent, iff tc D(T)
 Xi DS(T) (tc avie(Xi)).

In terms of Definition 14, T is said to be externally consistent only if both its dead-
line is not expired and all data objects accessed by it are externally consistent.

Deduction 1. For a transaction T, Df(T)=MIN(D(T), MIN(avie(Xi))), Xi RS(T)

8 6 G. Liao, Y. Liu, and Y. Xiao 6

Proofs: Let d(T)=MIN(avie(Xi)). In the case of D(T)>d(T): if d(T)<tc<D(T), then
X TOS(T) (tc>avie(Xi)), i.e., the external consistency of data objects Xi is violated.

At this case, Df(T)=MIN(avie(Xi)). In contrary, if D(T)<d(T), as tc is more than D(T),
the deadline of T is expired. At this case, Df(T)=D(T). Therefore, Df(T)= MIN(D(T),
MIN(avie(Xi))).

Definition 15. If R RS(T)(R is a set with mutual consistency), then T is said to
be mutually consistent.

The mutual consistency of T is that all deriving data sets accessed by it must be
mutually consistent. Therefore, differing from traditional transactions, whether an
embedded real-time transaction can commit is not only determined by its internal
consistency, but also by its external consistency and mutual consistency.

Definition 16. The commitment of T is said to be effective, iff
(1) Xi DS(T)(Xi is logical consistency)
(2) CT(T) Df(T)
(3) Xi RS(T) (CT(T) avie(Xi))
(4) Ri RS(T)(R is a data set with mutual consistency)

are held at the same time.
Definition 16 can be used to determine whether to restart T or not after crashes. In

other words, only if the logical consistency, external consistency and mutual consis-
tency of T are still met at recover time, T should be scheduled to restart.

4 Time-Cognizant Recovery Principles of Embedded Real-Time
Databases

In ERTDBs, to redo or undo the outdated values of temporal data objects is meaning-
less; and to undo a valid value of a temporal data object violates its external consis-
tency. In addition, the recovery procedures of ERTDBs are required to restore the
states of physical world influenced by uncommitted transactions. The recovery re-
quirements for different classes of transactions are shown as Table 1.

Table 1. The recovery requirements of embedded real-time transactions

Transactions type
Recovery requirements

Ts Tp Tm

Undo TDO No No No
Redo TDO Yes Yes No
Redo INDO No Yes No
Undo INDO No Yes No
Restore the states of physical world No No Yes
Restart transactions No Yes Yes
Refresh OTDO Yes No No

Definition 17. The current value xi of Xi at time t is said to be the state of Xi at t,
notated by St(Xi), i.e., St(Xi)=xi.

Time-Cognizant Recovery Processing for Embedded Real-Time Databases 8 7

6

Definition 18. The set of values of all data objects in an ERTDB at time t is said to
be the state of ERTDB at time t, i.e., St(ERTDB)={St(Xi)|Xi ERTDB}.

Definition 19. The value of Xi updated by T is called the updated image of Xi by T,
notated by UP(T, Xi).

Definition 20. The value of Xi updated by the last committed transaction (LT) is
called the committed image of Xi by LT, notated by COM(LT, Xi).

Definition 21. At time t, if Xi ERTDB((St(Xi) COM(LT, Xi)) (Xi TDOS
t>avie(Xi))), then ERTDB is said to be in an inconsistent state.

As an ERTDB is in an inconsistent state, it should be recovered in terms of follow-
ing time-cognizant rules:

Criterion 1. (Undo criterion for TDO) As long as the value of a temporal data ob-
ject Xi TDOS is written into an ERTDB, the UNDO operation is not necessary even
its updated transaction is aborted.

Criterion 2. (Redo criterion for TDO) For a transaction T, if Xi WS(T)(Xi
TDOS tc<avie(Xi) St(Xi) UP(T, Xi)), then redoing Xi with UP(T, Xi).

Criterion 3. (Refresh criterion for OTDO) For a transaction T, if Xi WS(T)
(Xi OTDOS tc avie(Xi)), then starting a new sampling transaction to refresh Xi.

Theorem 1. The external and internal consistency of temporal data objects can be
recovered by Criterion 1~3.

Proofs: As to a temporal data object Xi, whether it is needed to redo is determined
by whether its avie(Xi) is expired.

In the case of tc<avie(Xi): if St(Xi) UP(T, Xi), that is the state of Xi is not consis-
tency with external environment, then X should be redone with UP(T, Xi) regardless
of the commitment of T(Criterion 2); if St(Xi)=UP(T, Xi), that is the state of Xi is
consistency with external environment, then no any recovery operation is necessary
(Criterion 1).

In the case of tc avie(Xi): if Xi is an original temporal data object, then starting a
refreshing transaction to sample the up-to-date value of Xi (Criterion 3); if Xi is a
derived temporal data object, then no any recovery operation is necessary.

Criterion 4. (Undo criterion for INDO) For a transaction T, if Xi WS(T)(Xi
INDOS St(Xi)=UP(T, Xi) T has not committed), then undoing X with COM(LT,

Xi)
Criterion 5. (Redo criterion for INDO) For a transaction T, if Xi WS(T)(Xi

INDOS St(Xi) UP(T, Xi) T has committed), then redoing Xi with UP(T, Xi).
Theorem 2. The internal consistency of invariant data objects can be recovered by

Criterion 4 and 5.
Proofs: As traditional databases, whether the values of invariant data objects are

durative is determined by whether its updated transaction T has been committed. As T
is not committed, if St(Xi)=UP(T, Xi), that is the updated image of Xi by T has been
written into database, then Xi should be undone with COM(LT, Xi) (Criterion 4). As
T has been committed, if St(Xi) UP(T, Xi), that is the updated image of Xi by T has
not been written into database, then Xi should be redone with UP(T, Xi)) (Criterion 5).

8 8 G. Liao, Y. Liu, and Y. Xiao 6

Criterion 6. (Restore criterion of states of physical world) For a transaction T, if
ai AS(T)(ai has not occurred), then aj OAS(T)(executing the compensating or

alterative action of ai).

Theorem 3. The states of physical world can be restored by Criterion 6.

Proofs: The states of physical world are only changed by the manipulating
transactions, which are read only transactions and don’t destroy the consistency of
databases. The atomicity of the manipulating transactions is either all actions in AS(T)
have been executed, or none has been executed. Therefore, as long as one action in
AS(T) has not been executed as failures occur, the states of physical world must be
restored.

In terms of Criterion 6, in the case of OAS(T) and OAS(T) AS(T), the com-
pensating or alterative action of aj OAS(T) should be executed; otherwise, no any
recovery operation is necessary.

Criterion 7. (Restart criterion of Tp and Tm transactions) For a transaction T, if
(1) tc+EET(T) Df(T)
(2) Xi RS(T)(tc<avie(Xi))
(3) R RS(T)(R is a data set with mutual consistency)

are met at the same time, then restarting T.
Criterion 7 is accordant with Definition 16.

5 Timing-Cognizant Recovery Scheme

In terms of above criteria, since UNDO operation never used to recover temporal data
objects and whether to redo a temporal data object is determined by its effective pe-
riod, we can leverage on this information to design proper logging strategies for dif-
ferent data types. In this section, a time-cognizant recovery scheme based on real-
time logging is discussed.

For temporal data objects, before images (BFIM) are not necessary to write into
logs, but the valid beginning and end instants should be written. Therefore, The log of
a temporal data object consists of a transactions identifier (TID), an object identifier
(OID), an after image (AFIM), a valid beginning instant and a valid end instant;
while the log of an invariant data object consists of TID, DID, BFIM and AFIM.

Differing from traditional databases, the transactions with feasible deadlines
should be restarted after crashes in ERTDBs. Therefore, besides transactions opera-
tions type (BEGIN, COMMIT and ABORT), the timing information including dead-
lines, execution periods, estimate executing time and begin time of transactions
should written into logs. If current time plus the estimate executing time is less than
the deadline of the fault transaction, then it should be restarted.

Since ERTDBs will change the states of physical world through actions triggered
by the manipulating transactions, the information of occurred actions should also be
recorded into logs. Each action log consists of a transaction identifier and an actions
identifier(AID).

For supporting the sampling and manipulating transactions with hard deadlines to
be recovered first, the logs of different classes of transactions are planned to place

Time-Cognizant Recovery Processing for Embedded Real-Time Databases 8 9 6

into different partitions. Thus, the system can restore services again once the sam-
pling and manipulating transactions are recovered, and the recovery processing of the
processing transactions can be made along with system services. The recovery algo-
rithms of different transactions are described as Figure1, 2 and 3, respectively.

Fig 1. The recovery algorithm of Ts

Fig 2. The recovery algorithm of Tp

REV_SampleTrans()
BEGIN
FOR Ti TSS

get the BEGIN log of Ti;
IF tc tb+P(Ti) /* Next period is expired; tb is the last begin time of Ti

restart Ti;
ELSE

scan logs of Ti forward;
 IF update log of Xi by T exists /* has sampled

IF St(Xi) AFIM(Xi)
St(Xi):=AFIM(Xi) /* Criterion 2

ELSE /* has not sampled
restart Ti; // Criterion 3

END

REV_ProcTrans()
BEGIN
FOR Ti TPS

scan logs of Ti forward;
determine the write set of Ti -WS(Ti);
IF T has committed

FOR Xi WS(Ti)(Xi DTDOS)
IF tc<avie(Xi) St(Xi) AFIM(Xi)

St(Xi) := AFIM(Xi) /* Criterion 2
FOR Xi WS(Ti)(Xi INDOS)

IF St(Xi) AFIM(Xi)
St(Xi) := AFIM(Xi) /* Criterion 5

 ELSE /* has not committed
FOR Xi WS(Ti)(Xi INDOS)

IF St(Xi)=AFIM(Xi)
St(Xi) := BFIM(Xi); /* Criterion 4

IF tc+EET(Ti) Df(Ti) Xi RS(Ti)(tc<avie(Xi)) R RS(Ti) (R is a set with
 mutual consistency)

restart Ti ; /* Criterion 7
END

.

.

8 0 G. Liao, Y. Liu, and Y. Xiao 7

Fig 3. The recovery algorithm of Tm

6 Performance Evaluations

In this section, two performance measures have been selected to evaluate the per-
formances of the suggested scheme: the missing deadlines percent (MDP) of transac-
tions and time of denying services (TODS) after crashes. The selected comparison
method is traditional recovery techniques which don’t take any timing constraints into
consideration.

6.1 Experimental Model and Parameters

The performance analysis is performed on an embedded real-time database prototype
system ARTs-EDB, which is designed based on a main memory database(MMDB)[17].

In the system, there are three classes of transactions: the sampling transactions,
processing transactions and manipulating transactions. The sampling transactions are
periodic transactions invoked at the beginning time of each update periods, which
response for updating the values of temporal data objects. One sampling transaction
only updates the value of one temporal data object. Hence, the update period of a
sampling transaction is defined to be half of the effective period of its corresponding
temporal data object. The deadline of a sampling transaction is assumed to be the end
of its update period. If a sampling transaction can’t commit until its deadline, then it
will be aborted and a new sampling transaction should be started.

The processing transactions are generated with an exponential distribution stream
at a specified mean rate. Each processing transaction submitted to the system is asso-
ciated with its creation time, transaction identifier, transaction size, operations, data
objects on which operations are performed, deadline and execution priority. If a proc-
essing transaction is found to read any invalid value of temporal data objects, it will
be aborted and releases all its locks. If the transaction still has a feasible deadline, it
will be scheduled to restart later; otherwise, it is discarded.

REV_ManiTrans()
BEGIN
FOR Ti TMS

scan logs of Ti forward;
determine the set of occurred actions-OAS(Ti);
IF OAS(Ti) OAS(T) AS(Ti) /* Not all actions in AS(Ti) have been executed
 FOR ai OAS(Ti)

 execute the compensating or alterative action of aj; // Criterion 6
IF tc+EET(Ti) Df(Ti) Xi RS(Ti)(tc<avie(Xi)) R RS(Ti)(R is a set with

 mutual consistency)
restart Ti; // Criterion 7

END

.

Time-Cognizant Recovery Processing for Embedded Real-Time Databases 8 1 7

The manipulating transactions are triggered by the sampling transactions or proc-
essing transactions as the internal states of temporal data objects are changed. When
predefined conditions are held, one or more actions will triggered to change the states
of physical world. The manipulating transactions are transactions with hard deadlines.

We model the database itself as a collection of data objects in main memory. The
database consists of three classes of data objects: the original temporal data objects,
derived temporal data objects and invariant data objects. Data and transactions char-
acteristics are controlled by the parameters listed in Table 2.

Table 2. Simulation Parameters

Parameter Meaning Base value
NumOTDO Number of original temporal data objects 200
NumDTDO Number of derived temporal data objects 200
NumINDO Number of invariant data objects 500
PercentTs Percent of Ts 50%
PercentTp Percent of Tp 30%
PercentTm Percent of Tm 20%
PeriodTs Period of Ts 5~15ms
NumUpTs Number of update operations in each Ts 1
NumUpTp Number of update operations in each Tp 3~5
NumUpTm Number of update operations in each Tm 0
NumAtTm Number of actions of each Tm 1~3

6.2 Simulation Results

Two sets of experiments are conducted to evaluate the behaviors of the suggested
recovery scheme (SR) and traditional recovery techniques (TR).

Figure 4 shows a comparison of two recovery schemes on MDP with various
transaction arrival rates. As we can see, the performance improvement obtained by
the time-cognizant recovery scheme is significant. Since the sampling and manipulat-
ing transactions can be recovered individually in the suggested scheme, the transac-
tions with hard deadlines can be restarted first, which finally leads to reducing the
number of transactions missing deadlines.

Figure 5 shows the impact of transaction arrival rates on the time of denying ser-
vices. When the transaction arrival rate is high, the time of system down will in-
creases for more transactions are required to recover. The results also indicate that the
time-cognizant recovery scheme consistently performs better than the traditional
recovery scheme. This is because the time-cognizant recovery scheme can start sys-
tem services earlier than traditional schemes. In traditional schemes, the system is up
only after all data have been recovered. While in the time-cognizant recovery scheme,
the system can be up as long as the data accessed by the sampling and manipulating
transactions are recovered.

8 2 G. Liao, Y. Liu, and Y. Xiao 7

Fig 4 The influence of arrival rate on MDP Fig 5 The influence of arrival rate on TODS

7 Conclusions

In this paper, a time-cognizant recovery scheme for embedded real-time databases is
proposed. The simulation results show that the suggested scheme has better perform-
ances than traditional recovery techniques. The key features of the scheme can be
summarized as follows.

(1) The data objects in embedded real-time databases are classified into temporal
data objects and invariant data objects by external effective intervals. The temporal
data objects can be further divided into both original and derived temporal data ob-
jects by the sources of data objects. For the temporal data objects, UNDO operation is
not necessary and whether to redo a temporal data object is determined by whether its
external effective interval is expired. For an original temporal data object, if its effec-
tive period is passed at recovery time, then a refreshing transaction should be started
to sample its up-to-date value in physical world.

(2) The embedded real-time transactions can be classified into three classes: the
sampling transactions, processing transactions and manipulating transactions, in terms
of the access data sets of transactions. In order to support parallel recovery and re-
duce the time of system down, the logs produced by different classes of transactions
are planned to store into different partitions. Thus the system can resume services
again once the recovery processing to the sampling and manipulating transactions are
performed; while the recovery processing to the processing transactions should be
executed alone with system services.

(3) Apart from internal consistency, the suggested scheme can recover the external
consistency of databases and the states of physical world influenced by embedded
real-time transactions. The uncommitted transactions can be restarted automatically
by the recovery procedures of ETRDBs if their internal consistency, external consis-
tency and mutual consistency are still met after crashes.

0

20

40

60

80

10 15 20 25 30

Arrival rate (trans/sec.)

M
D

P

TR

SR

0

500

1000

1500

2000

2500

10 15 20 25 30

Arrival rate(trans/sec.)

T
O

D
S(

m
s)

TR

SR

. . . .

Time-Cognizant Recovery Processing for Embedded Real-Time Databases 8 3 7

2. A. Bestavros, Advance in Real-Time Database System Research. ACM SIGMOD Record,
1996, 25(1): 3~7.

3. Yunsheng Liu. Advanced Dtabase Technology. Beijing: National Defence Industry Press,
2001,3. (in Chinese)

4. J. Huang, L. Gruenwald. Impact of Timing Constraints on Real-time Database Recovery,
in Proceedings of the Workshop on Databases: Active and Real-time Table of Contents,
Maryland, United States, Nov. 1996: 54 ~58.

5. R. M. Sivasankaran, K. Ramamritham, J. A. Stankovic, System Failure and Recovery.
Real-Time Database Systems, 2001: 109~124.

6. S. LihChyun, J. A. Stankovic., S. H. Son, Achieving Bounded and Predictable Recovery
Using Real-time Logging, in IEEE Proceedings of Real-Time and Embedded Technology
and Applications Symposium, Sept.2002: 286~297.

7. R. M. Sivasankaran, K. Ramamritham, and J. Stankovic, Logging and Recovery Algo-
rithms for Real-time Databases, University of Massachusetts, Technical Report, 2000.

8. C. Mohan, D. Haderle, B. Lindsay et al. ARIES: A Transaction Recovery Method Sup-
porting Fine-granularity Locking and Partial Rollbacks Using Write-ahead Logging. ACM
Transactions on Database Systems, 1992, 17(1): 185~194.

9. MA Olson. Selecting and Implementing an Embedded Database System. IEEE Computers,
2000,33(9): 27~34.

10. J. R. Haritsa, K. Ramamritham. Real-time Database Systems in the New Millennium.
Real-Time Systems, 2000,19: 205~208.

11. R. Sivasankaran, K. Ramamritham, JA Stankovic, et al. Data Placement, Logging and
Recovery in Real-Time Active Databases, In International workshop on Active Real-Time
Databases, June 1995, 226~241.

12. Kan-Yiu Lam, Tei-Wei Kuo, Real-time Database Systems Architecture and Techniques.
Boston: Kluwer Academic Publishers, 2001.

13. L. Cabrere, J. A. Mcpherson, P. M. Schwarz, et al. Implementing Atomicity in Two Sys-
tems: Techniques, Tradeoffs and Experience, IEEE Transactions on Software Engineering,
1993, 19(10): 950~961.

14. J. Huang, L. Gruenwald, Logging Real-Time Main Memory Database, in Proceeding of
International Computer Symposium, December 1994: 1291~1296.

15. Eun-Mi Song, Young-Keol Kim, Chanho Ryu. No-log Recovery Mechanism Using Stable
Memory for Real-time Main Memory Database Systems. In Proceedings of the Sixth In-
ternational Conference on Real-Time Computing Systems and Applications, 1999:
428~431.

16. LihChyun Shu, Huey-Min Sun, Tei-Wei Kuo, Shadowing-based Crash Recovery Schemes
for Real-time Database Systems, in Proceedings of the 11th Euromicro Conference on
Real-Time Systems, June 1999: 260~267.

17. GuoQiong Liao, YunSheng Liu, YingYuan Xiao, CPU Scheduling in an Embedded Ac-
tive Real-Time Database System, In Proceedings of the 11th ISPE International Confer-
ence on Concurrent Engineering, June 2004: 903~908.

8 4 G. Liao, Y. Liu, and Y. Xiao

References

1. Sixto Ortiz, Embedded Databases Come out of Hiding, IEEE Computers, 2000,33(3):
16~19.

7

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 8 5–8 7, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Phantom Protection Method for
Multi-dimensional Index Structures

Seok Il Song1, Seok Jae Lee2, Tae Ho Kang2, and Jae Soo Yoo2

1 Deparment of Computer Engineering, Chungju National University, 123 Iruymeon,
 Gumdanli, Chungju, Chungbuk, 380-702, South Korea

sisong@chungju.ac.kr
2 Department of Computer and Communication Engineering, Chungbuk National University,

8 Gaesindong Cheongju, Chungbuk, 361-763, South Korea
{cyberdb, thkang, yjs}@chungbuk.ac.kr

Abstract. In order for a multi-dimensional index structure to be integrated into
a commercial database system, efficient concurrency control techniques are
necessary. The techniques must support all degrees of isolation offered by the
database system. Especially the degree 3 isolation, called no phantom read, pro-
tects search ranges from concurrent insertions and the rollbacks of deletions. In
this paper, we propose a new phantom protection method for multi-dimensional
index structures that uses multi-level grid technique. The proposed mechanism
is independent of the types of multi-dimensional index structures, i.e., it can be
applied to all types of index structures such as tree-based, file-based and hash-
based index structures. Also, it achieves low development cost and high concur-
rency with low lock overhead. It is shown through various experiments that the
proposed method outperforms existing phantom protection methods for multi-
dimensional index structures.

1 Introduction

In the past couple of decades, modern database applications, such as geographic in-
formation systems (GIS), mobile location service (MLS), computer-aided design
(CAD), medical image repositories and multimedia databases have emerged. The
applications commonly are required to manipulate multi-dimensional data. For exam-
ple, GISs store and retrieve two-dimensional geographic data about various types of
objects such as a building, a river, a city and so on. Also, MLS systems provide cli-
ents with the current locations of moving objects such as mobile phones. The loca-
tions of moving objects are represented as points in the two-dimensional space.

To satisfy the requirements of the emerging database applications, various multi-
dimensional index structures have been proposed. There are space partitioning meth-
ods like Grid-file[3] and K-D-B-tree[5] that divide the data space along predefined or
predetermined lines regardless of data distributions. On the other hand, such as R-
tree[1] and CIR-tree[4] are data partitioning index structures that divide the data space
according to the distribution of data objects inserted or loaded into the tree. Besides,

7 8

8 6 S.Il Song et al.

Hybrid-tree[8] is a hybrid approach of data partitioning and space partitioning meth-
ods, VA-file[14] uses flat file structure, and [13] uses hashing techniques.

The multidimensional index structures are should be integrated into existing data-
base systems to support the modern database applications. Even though the integra-
tion is an important and practical issue, not much previous work for it exists. To
integrate an access method into a DBMS, we must consider two problems such as
concurrency control and recovery. The concurrency control mechanism contains two
independent problems. First, techniques must be developed to ensure the consistency
of the data structure in presence of concurrent insertions, deletions and updates. Sec-
ond, phantom protection methods that protect searchers’ predicates from subsequent
insertions, and the rollbacks of deletions before the searchers commit must be devel-
oped [6, 7]. On the first issue, which is the maintenance of physical consistency of
index structures, several methods that use lock coupling techniques and link
techniques have been proposed for multi-dimensional index structures [11, 12, 15].
However, on the second issue, which is a phantom protection technique, only a few
methods have been proposed [6, 7, 12]. [6, 7] proposed a granular locking method for
multi-dimensional index structures while [12] use predicate locking approach.

Those phantom protection methods have some problems. First, the lockable gran-
ules are the nodes of index trees. Therefore it is difficult to integrate them with exist-
ing concurrency control algorithms that use locks on the nodes of index trees. Second,
they work efficiently in space partitioning methods that do not allow overlaps be-
tween lockable granules. However, in data partitioning methods which is more gen-
eral index structures, they are less efficient due to the overlaps between the index
nodes, and insert algorithms of the index structures must be modified. Finally, they
are only applicable to the tree-based index structures. Even though most of existing
multi-dimensional index structures are tree-based, there are several nontree-based
index structures[13, 14]. They do not need complex concurrency control algorithms
but proper phantom protection methods should be provided.

In this paper, we propose a new phantom protection method that uses a hybrid ap-
proach of predicate locking and granular locking. The basic idea of the proposed
method is to partition the multi-dimensional data space into a fixed number of cells
and to assign a unique number to each cell. Then, we use the cells as lockable units.
A searcher’s predicate is mapped to a set of a number of cells by selecting cells that
are overlapped with the searcher’s predicate. The searcher acquires locks on the cells
to protect phantoms. An inserter(deleter) maps an object to be inserted(deleted) to a
number of cells, and acquires locks on the cells.

The contributions of this paper can be summarized as follows. First, the proposed
phantom protection method is easy to implement. Also, the integration of the pro-
posed method into existing DBMSs is straightforward. Second, it can be used for all
kinds of index structures regardless of their basic data structures, e.g., tree-based, file-
based or hash-based. Finally, various experiments show that the performance of the
proposed method outperforms the existing methods. This paper is organized as fol-
lows. Section 2 gives the description of existing phantom protection methods in de-
tail, and presents the motives of our proposed algorithm. In section 3, we describe the
proposed phantom protection method. In section 4, we show the performance results
and finally, section 5 concludes this paper.

7

 An Efficient Phantom Protection Method for Multi-dimensional Index Structures 8 7

2 Related Works

To our knowledge, the initial phantom protection method for multi-dimensional index
structures is proposed by Kornacker, Mohan and Hellerstein[11]. It addressed the
problems of predicate locking mechanism and proposed hybrid approaches that syn-
thesize two-phase locking of data record with predicate locking. In the hybrid mecha-
nism, data records that are scanned, inserted or deleted are protected by the two-phase
locking protocol. In addition, searchers set predicate locks to prevent phantoms. Fur-
thermore, the predicate locks are not registered in a tree-global list before the searcher
starts traversing the tree. Instead, it is directly attached to nodes. However, since the
tree structure changes dynamically as nodes split and MBRs are expanded during key
insertions, the attached predicates have to adapt to the structural changes. Also, each
node of index trees has an additional space for a predicate table consisting of
predicates of searchers, inserters and deleters. The size of the table is variable, and the
contents of the table must be changed whenever the MBR updates or node splits are
performed. These properties make the maintenance of predicate tables expensive.

To overcome the shortcomings of hybrid mechanism of [11], Chakrabarti and Me-
hrotra have proposed a granular locking approach in [6, 7]. The predicate locking
offers potentially higher concurrency, typically the granular locking is preferred since
the lock overhead of a predicate locking approach is much higher than that of a granu-
lar locking approach. [6, 7] define the lowest level MBRs as the lockable granules.
Each lowest level MBR corresponds to a leaf node of the R-tree. The granules dy-
namically grow and shrink with insertions and deletions of entries to adapt data space
to the distribution of the objects. The lowest level MBRs alone may not fully cover
the embedded space, i.e., the set of granules may not be able to properly protect
search predicates resulting in phantoms. Accordingly, they define additional granules
called external granules for each non-leaf node in the tree, such that the lowest level
MBRs together with the external granules fully cover the embedded space.

The granular locking mechanism is much more efficient than the predicate locking
mechanism. The lockable granules are nodes of index trees so it uses the existing
object locking mechanism of database systems. Also, unlike predicate locking
mechanism, it does not need to maintain additional information at each node for stor-
ing predicates. However, when the granules are changed or overflow occurs, it must
acquire ix-locks on all nodes overlapped with the object. This requires inserters to
traverse the index tree from root to find overlapping nodes. Since it acquires locks on
index nodes, it is difficult to integrate with existing concurrency control algorithms
because of conflicts of purpose of locks.

3 The Proposed Phantom Protection Method

3.1 Basic Idea

The basic idea of the proposed phantom protection method is to partition the multi-
dimensional data space into 2b rectangular cells, where b denotes the user specified
number of bits. Then, we allocate a unique bit-string of length b to each partitioned

7

8 8 S.Il Song et al.

cell. Each unique bit string can be converted to a unique integer value, and the inte-
ger value is used as a lock identifier of database systems. A searcher’s predicate is
mapped to a number of cells, and use the bit-string of each cell as a lock identifier.
Then, the searcher acquires s-locks on all of the cells that correspond to search predi-
cates before starting search operations. On the other hand, inserters and deleters ob-
tain x-locks on the cells corresponding to the objects to be deleted and inserted.

A small number of bits bi is assigned for each dimension i, and ib2 slices along the
dimension i are determined in such a way that all slices are equally full. Let b be the

sum of all bi, i.e.,
=

=
d

i
ibb

1

, where d is the number of dimension. Then, the data space

is divided into 2b hyper-rectangular cells, each of which can be represented by a
unique bit-string of length b. Each cell covers the same size of region and the union of
the cells covers the whole data space.

We use the partitioned cells as lockable units. A searcher’s predicate can be con-
verted to a number of cells. This is easily done by selecting cells that are overlapped
with the predicate. Since we select all overlapped cells, the union of the selected cells
covers the area of a search predicate. The searcher, then, acquires s-locks on all of the
selected cells. Easy mapping of a given search predicate onto a set of lockable units is
an important property for an efficient phantom protection method [6].

We should be able to easily map the cells to lock identifiers used by the standard
lock managers of database systems to reduce the cost of lock management. Each cell
has a unique bit-string of length b. The bit-string can be mapped to a unique integer.
It will be done by casting the bit-string to integer type. It means that each cell is rep-
resented with a unique integer that is generally used as a lock identifier of the stan-
dard lock managers. With this mapping mechanism, the searcher can acquire s-locks
on all of the selected cells by using the record locking mechanism of database
systems. Similarly, an inserter(deleter) maps the MBR of an object to be in-
serted(deleted) to a number of cells, and acquires x-locks on the cells. This will
protect phantom problems. Fig. 1 shows an example of the proposed algorithm. In
this example, we assume that the data space is 2 dimension, the region is from (0, 0)
to (15, 15), and b is 8. We divide the data space into 28 cells.

Fig. 1. Mapping of search region

The shaded area represents a searcher’s predicate, which is from (0, 0) to (2, 2).
The number of cells overlapped with the search predicate is 9. We map the cell that
covers from (0, 0) to (1, 1) to 00000000(0). With the same method, the remained
cells are mapped to 1, 2, 16, 17, 18, 32, 33 and 34. The searcher acquires s-locks on

7

 An Efficient Phantom Protection Method for Multi-dimensional Index Structures 8 9

all of the cells by using a standard lock manager before starting its search operation.
Subsequently, an inserter is trying to insert an object (0, 0) into the data space. Like
the searcher, it maps the object to a cell 0, and requests commit duration x-lock on it
before starting its insert operation. However, since the searcher already has an s-lock
on the same cell, the inserter must wait until the searcher commits.

The number of locks of a searcher in the proposed method is totally dependant on
the b and its query size, i.e., as the b and the query size increase, the number of locks
increases. The number of locks of a searcher is calculated approximately by the fol-

lowing equation, querysizesn b ⋅= 2 , where sn is the number of cells of the

searcher’s predicate, and querysize is the query size of the searcher, which is the ratio
of the region size of the searcher’s predicate to the total size of the data space.

When b is 10 and a querysize is 0.05, the sn is 51. If b is 16 with the same query-
size, the sn is 3237. As will be shown in the performance evaluation in Section 4,
6~10 is enough as the value of b. Also, we can fix the b as a reasonable value. How-
ever, the querysize will be variable according to the users. Therefore, even though the
b is fixed to 10, as the querysize is increased, the sn is linearly increased.

Fig. 2. Hierarchical organization & mapping

The shortcoming of the proposed algorithm is that the required number of locks for
a searcher’s predicate can be too large according to its query size. This lock overhead
may degrade the overall performance. To overcome this problem, we hierarchically
organize the partitioned cells like Multi-Level Grid-file[10]. On each level, we group
cells to 2·l·d clusters of cells, where l is the level. For example, as shown in first two
figures of Fig. 2, on level 1, 4 clusters exist and each cluster contains 64 cells, and on
level 2, there are 16 clusters, and each cluster contains 16 cells. On the highest level,
level 0, only one cluster that covers all of the cells exists. The number of levels is

determined by the equation, 1+
d

b .

After clustering the cells on each level, we also assign a unique bit-string of length
(lb+b) to each cluster, where lb denotes the number of bits for representing the level.
A bit string for a cluster is composed of a bit string for a level of length lb and the bit
string of the lower left cell in the cluster. In this hierarchical approach, lock identifi-
ers are determined as the following. After obtaining overlapped cells with a searcher’s
predicate, for each level, clusters are selected from the selected cells. This is done in
ascending order of level.

7

8 0 S.Il Song et al.

For example, in the third figures of Fig. 2, we map a searcher’s predicate which is
from (0, 0) to (2, 2) to lockable units. Overlapped cells with the search predicate are
0, 1, 2, 16, 17, 18, 32, 33 and 34. Then, we find clusters from the selected cells. There
is one cluster on level 3, and 5 clusters on level 4. The cluster on level 3 is mapped to
011(level)+00000000(bit-string for the lower left cell in the cluster), which is 768 in
decimal integer. The remained clusters can be also mapped by the same method to
integers. The searcher acquires s-locks on all of the mapped clusters. The number of
locks required for the searcher is reduced to 6 compared to that of Fig. 1. With this
strategy, we can reduce the number of locks.

In this hierarchical approach, for an inserter(deleter), x-locks on the cells that are
overlapped with the MBR of an entry to be inserted(deleted) are not sufficient. For
example, in the third figure of Fig. 3, the searcher keeps an s-lock on a cluster on
level 3 and s-locks on 5 clusters on level 4. Then, an inserter is trying to insert an
object (0, 0). The inserter maps the entry to a cell 0, requests an x-lock on the cell,
and acquires an x-lock on it since the searcher keeps s-locks not on the cell 0 but the
cluster 768. The entry (0, 0) will be a phantom for the searcher. To avoid this situa-
tion, the inserter must acquire ix-locks on all clusters that overlapped with the MBR
of the entry except the lowest level cluster. The x-lock must be acquired on the low-
est level cluster. Again, in the third figure of Fig. 3, the inserter must acquire ix-locks
on cluster 000+00000000, 001+00000000, 010+00000000 and 011+00000000, be-
sides an x-lock on 100+00000000. In this case, the inserter cannot acquire the ix-lock
on 011+00000000 until the searcher commits.

3.2 Dynamic Phantom Protection Method

The proposed phantom protection method described in the previous subsection as-
sumes that the multi-dimensional data space is static. If the data space of an applica-
tion is static and we can know the data space area preliminary, the proposed algorithm
works well. However, when the entire data space is dynamically changed, we should
estimate the maximum data space area to apply our proposed method. However, this
will increase the dead space and the overall concurrency may be downgraded.

Consequently, we propose a dynamic phantom protection method. In order to effi-
ciently protect phantoms in dynamically changing data space, 2b rectangular cells
must be adapted as the data space grows or shrinks. Fig. 3 (a) shows the original data
space. Fig. 3 (b) shows the expanded data space by a number of insertions so the cells
are resized to be adapted to the changed data space. Once the data space is changed
and cells are resized, inserters, deleters and searchers must acquire locks on the re-
sized cells

For example, in the right figure of Fig. 3, a searcher with a predicate, (6, 6) to (8,
8), which is initiated before the data space is changed, has been acquired an s-lock on
cell 15 which is overlapped with the search predicate. Then, the data space grows,
and the cells are resized to be adapted to the changed data space as in the right figure
of Fig. 3. An inserter requests an x-lock on the cell 10' to insert a new point entry (7,
7) and it can acquire the x-lock on the cell since none keeps locks on the 10'. Subse-
quently, the searcher lost the s-lock on the area (6, 6) to (8, 8), and the new entry (7,
7) can be a phantom for the searcher if the searcher scans the area repeatedly.

8

 An Efficient Phantom Protection Method for Multi-dimensional Index Structures 8 1

Fig. 3. The expansion of data space

In order to avoid this situation, the inserter must acquire x-locks on cells 15' which
is 10 in the original data space as well as 10'. However, if transactions that are initi-
ated before the data space is changed are not remained, the inserter does not need to
acquire the x-lock on 15. From now on, a transaction that is initiated before the data
space is changed and a transaction that is initiated after the data space is changed are
called an old transaction and a new transaction, respectively. In the right figure of Fig.
5, we can easily know why cell 15 should be locked. The shaded cell, (6, 6) to (9, 9)
is 10'. The cell 10' is overlapped with a cell 15, (6, 6) to (8, 8) on the old data space.
From this fact, we can determine that the cell 15 of the original data space must be
locked. Therefore, final cells to be locked are 10' and 15' on the changed data space.
For another example, if a searcher tries to obtain an s-lock on the cell 5' in the right
figure of Fig. 5, it must also acquire locks on 5, 6, 9 and 10 of the original data space
that are overlapped with cell 5' of the changed data space.

Rule 1. If the data space has been changed and old transactions are still being per-
formed, new transactions must acquire locks on the cells of changed data space and,
moreover, the cells of the original space that are overlapped with the locked cells of
the changed data space.

With the rule 1, we can protect phantoms from arising even when the data space is
dynamically changed. However, we must solve the following two problems to apply
the rule 1. First, who does determine the time to change the MBR of the data space
and how does he or she inform other transactions of the changed MBR? Second, how
can new transactions know that old transactions are remained?

In tree-based index structures, the MBR of the root node represents the MBR of the
data space. When the index structure is nontree-based, we can easily maintain the
MBR of data space by updating the MBR on every insertion. An inserter that updates
the MBR of the root node can determine the time to change the MBR of the data
space. If the MBR of the data space is changed whenever the MBR of the root node
is updated, the overhead to handle the change may reduce the concurrency. Therefore,
we fix the amount of the change to decide the time to change the MBR of the data

space as
ib

isidelength

2
, where sidelengthi denotes the ith dimension's length of the

data space and bi denotes the number of bits for the ith dimension. That is, we change
the MBR of the data space and inform others of the change when one of the
sidelengthi is increased or decreased by the side length of a cell along the dimension i.

8

8 2 S.Il Song et al.

In order to inform the change to others, we use data structures shown in Fig. 5. In
the data structure, the array dataspace_mbr[] are used to store old and new MBRs of
the data space. The current_mbr is a flag that has 0 or 1 as values, and they are used
as the index number of array dataspace_mbr[]. The current_mbr indicates which one
is the new MBR between dataspace_mbr[current_mbr] and dataspace_mbr[1-
current_mbr]. Finally, the array cnt[] represents the number of old and new transac-
tions that currently are being performed. cnt[current_mbr] means the number of
transactions that are referring the new MBR, dataspace_mbr[current_mbr].

Whenever an inserter changes the MBR of the root node, it checks the amount of
the change by comparing the current MBR of the root or the whole data space with
dataspace_mbr[current_mbr]. If one of the sidelengthi is changed more than

ib
isidelength

2
, it updates current_mbr as 1-current_mbr so that current_mbr indicates

the other dataspace_mbr[] which was the old MBR. Then, it updates dataspace_mbr
[current_mbr].

Inserters, deleters and searchers increase cnt[current_mbr] by 1 before starting
their operations and decrease it by 1 when the initiating transactions commit or roll-
back. Also they generate locks according to the rule 1. At this time, they can decide
whether old transactions still exist by reading the cnt[current_mbr], i.e., new MBR
and cnt[1-current_mbr], i.e., old MBR. Inserters, deleters and searchers acquire s-
latches on the Header data structure to maintain the consistency. They increase or
decrease cnt[] without acquiring x-latches since we assume reading and writing of
words are atomic. Only, inserters and deleters acquire x-latches on the Header when
updating dataspace_mbr[]. The data structure can be added to an index table that is
created when an index is opened. We can ignore the overhead to maintain the Header
data structure because the data structure is small enough and most operations acquire
s-latches on the Header for instant duration. X-latches are acquired only when the
dataspace_mbr[] is updated. Usually, the update of dataspace_mbr[] is occurred very
infrequently. Also, the data structure is not needed to be stored permanently.

Finally, we must consider a situation in Fig. 4. An inserter can insert an object (the
point in the Fig. 4) to the outside of the data space. Also, a searcher’s predicate (the
circle in Fig. 4 (a)) can be placed on the outside of the data space in Fig. 4 (a). How-
ever, the inserter and the searcher only acquire locks on the cells that are overlapped
with the search predicate or the MBR of an entry to be inserted. Therefore, the search
predicate is not fully protected from arising phantoms. In this example, the inserter
does not acquire any lock, and the searcher acquires s-locks on cells 14 and 15. Con-
sequently, the inserter can insert the entry to the search predicate, and it will be a
phantom for the searcher.

To solve this problem, we define additional lockable units. As shown in Fig. 4 (b),
the shaded cells are the additional lockable units. The actual data space are covered
by cells 0~15, and to cover the outside of the data space, we partition the outside of
the data space into db di 222 +⋅ cells, i.e., additional ib2 cells are along the upper and
lower sides of each dimension i, and d2 cells are on corners of the data space. Then,
we apply our mapping method, i.e., select all cells that are overlapped with the MBR
of an entry to be inserted or a searcher’s predicate.

8

 An Efficient Phantom Protection Method for Multi-dimensional Index Structures 8 3

Fig. 4. Additional lock units

4 Performance Evaluation

4.1 Environments

To evaluate the performance of our phantom protection method, we compare it with
the granular locking (GL) approach proposed in [6]. We integrate the GL and our
proposed phantom protection method into the concurrency control algorithm of [15],
which is called as RPLC. The RPLC is mainly focused on the physical consistency of
index structure. We implemented both phantom protection methods based on a com-
mercial storage system. Both of them are implemented with locks, latches and logging
APIs of the storage system. In order to implement the GL, we modified the insertion
algorithm of RPLC so as to perform correctly its granular locking algorithm. The
modified insertion algorithm performs additional tree traversing whenever MBRs are
changed by insertions or deletions of entries. In addition, we modified the locking
strategy of RPLC to adapt the granular locking method.

Also, our phantom protection method was implemented on RPLC. The implemen-
tation was simple and easy. We did not need to modify original insert, search and
delete algorithms of RPLC. We just add functions to generate locks for search predi-
cates and objects to be inserted or deleted. Then, additional data structure is added
into the index table of the storage system. We allocate the root node for lock identifi-
ers of partitioned cells since the root node of RPLC is not changed unless the index
structure is destroyed. The first and second records of the root node are reserved as a
tree lock and a node lock so the available lock identifiers for phantom protection are 2
~ 2b+2.

We use uniformly distributed 200000, 2~3 dimensional synthetic data set. One of
the important parameters of an index tree is a node size. According to the node size,
the performance of index trees is varied. We performed experiments with varying the
node size ranging from 4Kbytes to 16Kbytes. In all experiments, our phantom protec-
tion method outperforms GL. Overall performance is improved as the node size be-
comes bigger. Also, the performance gap of the both algorithms increases about
10~15 % when the node size is 16Kbytes. The increase of performance gap may be
from the growth of contention. We will discuss the results of experiments when the
node size is 16Kbytes and the number of dimension is 2 for brevity.

8

8 4 S.Il Song et al.

Initially, a CIR-tree is constructed by bulk loading techniques. Subsequently, fea-
ture vectors are inserted concurrently by multiple processes under certain workload.
Table 1 shows workload parameters. According to the input parameters, the work-
load generators decide the number of search and insert processes, the number of con-
current processes, the initial number of feature vectors to construct index trees and the
selectivity of range queries. Subsequently, the workload generators pass the decided
values to a driver program that is written with C and the APIs of the storage system.
The driver executes search and insert processes. It randomly selects feature vectors
from already inserted data set for queries and from data set to be inserted for inser-
tions. Each process executes multiple transactions. We fix the number of buffer
pools as 100 when initiating the storage system. The platform used in our experi-
ments was dual Ultra Sparc processors, Solaris 2.7 with 128 Mbytes main memory.

Table 1. Paramenters and values

Parameters Values
Number of feature vectors 200000
Insert probability 0% ~ 100 %
Range of queries 0.2 ~ 0.8 %
Number of concurrent processes(MPL) 10 ~ 50
Number of bits 6, 8, 10 (64, 256, 1024 cells)

4.2 Experimental Results

Table 2 compares the performance of the proposed phantom protection method and
granular locking (GL) in terms of response time with varying the numbers of insert
and search processes. Also, we varied the number of bits from 6 to 10. For brevity,
we show the results when the number of bits is 1024 in Table 2.

Table 2 shows the response times of search operations when the insert process ratio
is varied from 10 to 90 percent. The proposed algorithm outperforms GL regardless
of the number of bits. However, when the insert process ratio is 0, all cases show
almost same results. Since their basic search algorithms except the locking strategy
are same, the results mean that the lock overheads of GL and the proposed method are
similar. As the insert process ratio increases, the performance gap between GL and
the proposed method becomes more and more large. The performance gap between
GL and the proposed method of insert transactions is larger than that of search trans-
actions. The insert algorithm of GL is more complex than that of the proposed
method. It must traverse index tree to find nodes that are overlapped with the
changed MBR by the insertion of a new entry.

Table 3 shows the response times of both methods when the selectivity is varying.
As the selectivity increases, the overall response times of both methods increases, and
the proposed method outperforms GL on all cases. The reason is that as the area of a
searcher’s predicate increases, the lock contention increases. A drawback of the pro-
posed method is that the number of locks increases as the size of query increases.
Consequently, this lock overhead may degrade the concurrency of the proposed

8

 An Efficient Phantom Protection Method for Multi-dimensional Index Structures 8 5

method. However, as shown in Table 5, the average number of locks per a search is
not so large, and this lock overhead is compensated by high concurrency as we
showed in the previous figures. Table 4 shows the scalability of the proposed
method. The performance of the proposed method is superior to that of GL. As the
number of concurrent processes increases, the performance gap between both meth-
ods becomes larger. This result means that our proposed method is scalable for the
number of concurrent processes.

Table 2. Response time of insert and search transactions with varying insertion ratios. IR :
Insert Ratio, S : Search, I : Insert, DB : database, SEL = selectivity, MPL = multi-programming
level, G :GL, P : proposed method

 IR 10 30 50 70 90
G 0.107 0.128 0.149 0.149 0.149

S
P 0.09 0.109 0.126 0.126 0.123

G 0.042 0.044 0.045 0.055 0.072

varying IR
(SEL=0.02, DB size
= 200K, MPL = 50)

I
P 0.032 0.03 0.032 0.039 0.062

Table 3. Response time of search and insert transactions with varying selectivity

 SEL 0.2 0.4 0.8
G 0.065 0.071 0.099

S
P 0.066 0.067 0.076
G 0.039 0.049 0.062

varying SEL
(MPL=40, IR=20%,

DB size=200K)
I

P 0.035 0.042 0.051

Table 4. Response time of search and insert transactions with varying MPL

 MPL 10 20 40
G 0.026 0.054 0.099

S
P 0.022 0.049 0.076
G 0.014 0.031 0.062

varying MPL
(SEL=0.8%,
IR=20%, DB
size=200K) I

P 0.012 0.026 0.051

Table 5. Number of locks

Selectivity(%) 0.2 0.4 0.8
Number of locks 11.63 13.893 17.445

5 Conclusion

In this paper, we have proposed an efficient phantom protection method for multi-
dimensional index structures. The proposed phantom protection method is a hybrid
approach of predicate locking and granular locking. It does not require any modifica-
tion of the original algorithm of index structures and acquire any locks on the nodes

8

8 6 S.Il Song et al.

of index structures. Therefore it is easy to integrate the proposed method with exist-
ing concurrency control algorithms. Also, it supports all kinds of index structures
regardless of tree-based or not. We performed experiments under the various condi-
tions. The performance results show that our proposed algorithm outperforms GL.
Our method is scalable for the number of concurrent processes and the size of query.
The performance improvements are not so large, but the development cost of our
method is much cheaper than that of GL.

In further research, we will perform more extensive experiments. We performed
experiments with synthetic data in this paper. Even though the results are sufficient to
show the superiority of our method, we need to perform experiments with real data set
for the completeness of the verification. Also, we need to show that our method
works well in high-dimensional data space.

Acknowledgement

This work was supported the Program for the Training of Graduate Students in Re-
gional Innovation which was conducted by the Ministry of Commerce, Industry and
Energy of the Korean Government. and grant No.R01-2003-000-10627-0 from the
Basic Research Program of the Korea Science & Engineering Foundation.

References

1. A. Guttman., “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proceedings of
ACM SIGMOD, 1984, pp. 47-57.

2. A. Silberschatz and P. B. Galvin, “Operating System Concepts,” Addison-Wesley, 1995.
3. J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The Grid File: An Adaptable, Symmet-

ric Multikey Structure,” ACM Transactions on Database Systems, Vol. 9, No. 1, 1984, pp.
38-71.

4. J. S. Yoo, M. G. Shin, S. H. Lee, K. S. Choi, K. H. Cho and D. Y. Hur, “An Efficient Index
Structure for High Dimensional Image Data,” Proceedings of AMCP, 1998, pp. 134-147.

5. J. T. Robinson, “The K-D-B-Tree: A Search Structure for Large Multidimensional Dy-
namic Indexes,” Proceedings of ACM SIGMOD, 1981, pp. 10-18.

6. K. Chakrabarti and S. Mehrotra, “Dynamic Granular Locking Approach to Phantom Pro-
tection in R-Trees,” Proceedings of ICDE, 1998, pp. 446-454.

7. K. Chakrabarti and S. Mehrotra, “Efficient Concurrency Control in Multidimensional Ac-
cess Methods,” Proceedings of ACM SIGMOD, 1999, pp. 25-36.

8. K. Chakrabarti and S. Mehrotra, “The Hybrid Tree : An Index Structure for High-
dimensional Feature Spaces,” Proceedings of ICDE, 1999, pp. 440-447.

9. K. Eswaren, J. Gray, R. Lorie and I. Traiger, “On the Notions of Consistency and Predicate
Locks in a Database System,” Communication of ACM, November 1976, Vol. 19, No. 11,
pp. 624-633.

10. K. Y. Whang, S. W. Kim, G. Wiederhold, “Dynamic Maintenance of Data Distribution for
Selectivity Estimation,” Journal of VLDB, Vol. 3, 1994, pp. 29-51.

11. M. Kornacker, C. Mohan and J. M. Hellerstein, “Concurrency and Recovery in General-
ized Search Trees,” Proceedings of ACM SIGMOD, 1997, pp. 62-72.

8

 An Efficient Phantom Protection Method for Multi-dimensional Index Structures 8 7

12. M. Kornacker and D. Banks, “High-Concurrency Locking in R-Trees,” Proceedings of
VLDB, 1995, pp. 134-145.

13. P. Indyk and R. Motwani “Approximate Nearest Neighbors: Towards Removing the Curse
of Dimensionality,” Proceedings of STOC, 1998, pp. 604-613.

14. R. Weber, H. Schek and S. Blott, “A Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces,” Proceedings of VLDB, 1998, pp
194-205.

15. S. I. Song, Y. H. Kim and J. S. Yoo, “An Enhanced Concurrency Control Algorithm for
Multi-dimensional Index Structures,” IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 16, No. 1, 2004, pp. 97-111.

8

CMC: Combining Multiple Schema-Matching
Strategies Based on Credibility Prediction

KeWei Tu and Yong Yu

Department of Computer Science and Engineering,
Shanghai JiaoTong University, Shanghai, 200030, P.R.China

{tkw yyu}@apex.sjtu.edu.cn

Abstract. Schema matching is a key operation in data engineering.
Combining multiple matching strategies is a very promising technique
for schema matching. To overcome the limitations of existing combina-
tion systems and to achieve better performances, in this paper the CMC
system is proposed, which combines multiple matchers based on credi-
bility prediction. We first predict the accuracy of each matcher on the
current matching task, and accordingly calculate each matcher’s cred-
ibility. These credibilities are then used as weights in aggregating the
matching results of different matchers into a combined one. Our experi-
ments on real world schemas validate the merits of our system.

1 Introduction

Given two schemas, schema matching finds semantic correspondences between
their elements. With the increasing request of knowledge sharing, numerous
schema matching techniques have been developed [1, 2, 3, 4]. Combining mul-
tiple matching strategies in a single system could achieve better performance,
because in this way every possible kind of information about the schemas to
be matched can be utilized. Two representative such systems are LSD [2] and
COMA [3].

LSD is used in schema integration, i.e. finding mappings between various
local schemas to the same mediated schema. To combine individual matchers
it performs meta-learning with the stacking technique. COMA employs quite
straightforward methods such as average and maximization for combination, so
that it could avoid the burden of learning. Apart from their merits, LSD and
COMA still suffer from some limitations.

For the LSD system, (1) There is one meta-learner for each element of the
target schema, thus each element must have a training set. To include enough
positive training samples, LSD collects equivalent elements from other schemas
which have already been mapped to the target schema. However, in applica-
tions other than schema integration, such existing mappings may be scarce.
(2) Meta-learners are associated with particular schemas. For applications other
than schema integration, matching is performed on arbitrary two schemas, so if
the schemas are new to the system, then a set of meta-learners must be trained

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 88 – 93, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 8

CMC: Combining Multiple Schema-Matching Strategies 8 9

from scratch, which is very time-consuming. (However, it is possible to release
such association at the cost of performance, i.e. to use one meta-learner for any
schemas, as implemented for comparison purpose in Sect.3.) (3) Meta-learners
must be re-trained if adding/removing base matcher(s). Unfortunately, adding
or removing base matchers may be necessary in many scenarios. For example,
if the matching task has a time limit, then matchers with iteration or training
phase are undesirable and should be removed. (4) Meta-learners in LSD perform
weighted sum of the results from base matchers. The weights are obtained by
training, and then kept unchanged regardless of what source element is being
matched. This, however, is improper because a matcher’s effectiveness is always
determined by both the target element and the source element.

For the COMA system, (1) The combination methods in COMA, e.g. average
and maximization, may be inadequate for complex situations, because in fact
each base matcher has very different performance in different conditions, and
these simple methods couldn’t capture such performance variation. (2) If better
performance is needed, users of COMA have to manually choose and configure
the combination methods, such as specifying weights for matchers.

In order to overcome these limitations as well as to further improve the per-
formance of matcher combining, in this paper we propose the CMC (Credibility-
based Matcher Combiner) system. The matcher combination procedure of CMC
is based on the observation that every base matcher has quite different perfor-
mance in different matching tasks. For example, a matcher exploiting schema
structure information would perform well for elements from XML schemas with
rich structures, but the same matcher would become unreliable when it comes
to “flat” schemas. Therefore, CMC dynamically predicts the accuracy of each
matcher based on the characteristics of the current matching task, and accord-
ingly calculates the matcher’s credibility. Then, the results from various base
matchers are aggregated based on their credibilities.

2 The CMC System

As a matcher combining system, CMC contains a set of base matchers. Most
schema-matching techniques developed so far can serve as base matchers. As in
LSD and COMA, a base matcher takes two target schemas S1 and S2 as input,
and outputs a similarity between 0 and 1 for each pairwise combination of S1
elements and S2 elements, constituting a m× n similarity matrix, where m and
n are element numbers of S1 and S2 respectively. Based on whether an initial
similarity matrix is needed or not, base matchers can be divided into two classes.

A key operation of CMC is base-matcher combination. Unlike LSD and
COMA, a credibility-based approach is employed in CMC. The underlying ra-
tionale is that every base matcher performs very differently in matching different
kinds of schema element pair, so the matcher combiner should take into account
the anticipated performance of each base matcher for the current matching task
and accordingly assign different credit on them. For instance, structure match-
ers are more credible if the schema elements being matched are embedded in

8

90 K. Tu and Y. Yu

(a) The Architecture

Base Matcher 1 :

5.02.0

7.01

8.01.0

8.05.0

Base Matcher 2 :

4.00

16.0

8.01

6.08.0

Similarity

Matrix

Credibility

Matrix

75.0
8.05.0

8.06.05.01

45.0
8.08.0

8.04.08.05.0

45.002.0

83.075.0

Combined

Similarity

Matrix

83.0
6.08.0

6.018.07.0

02.0
11.0

101.02.0

Weighted Average

of Similarities

(b) Sample Procedure

Fig. 1. Matcher Combiner

rich structures. To achieve this idea, in CMC each base matcher is attached
with a credibility predictor, which dynamically predicts the matcher’s credibil-
ity for each pair of elements being matched. In this way the combiner receives
two matrices from each base matcher, i.e. the similarity matrix and the credi-
bility matrix, then it aggregates all the similarity matrices into one matrix by
weighted average, where the weights are determined by the credibility matrices.
This procedure is illustrated in Fig.1. Notice that a matcher combiner itself could
serve as a base matcher for another combiner.

With base matchers and combiners as modules, one could connect them freely.
On the other hand, CMC also provides a default connection policy. There are
two layers in this default structure. The bottom layer consists of base matchers
that do not require initial similarity, and a combiner aggregates their outputs.
Matchers requiring initial similarity constitute the upper layer, with the com-
bined similarity of the first layer serving as their initial similarity. Finally a sec-
ond combiner aggregates the results from the upper layer, as well as the result
of the first combiner, and output the final similarity matrix.

To convert the final similarity matrix to the matching result, i.e. correspon-
dences between schema elements, CMC adopts the method introduced in [3].

2.1 Credibility Prediction

In CMC, a matcher’s credibility indicates how much the combiner should trust
the matcher. There are two steps in predicting a base matcher’s credibility:
accuracy predicting and converting accuracy to credibility. An important feature
of this mechanism is that the prediction procedure of one matcher is independent
with the others, thus will not be affected by the addition, removal or relocation
of the other matchers.

Accuracy Predicting. As the first step of credibility prediction, we predict a
matcher’s accuracy for each inputted pair of schema elements.

For a specific matcher, its matching accuracy in a matching task is correlated
with several features of the task (here a matching task means the estimating of a

8

CMC: Combining Multiple Schema-Matching Strategies 91

pair of schema elements’ similarity). For example, for some structure matchers,
the number of edges connected to the element to be matched can serve as a
feature, because more edges usually indicate more structural information, lead-
ing to higher matching accuracy. With this knowledge, we predict a matcher’s
accuracy in the current matching task as the mean accuracy of the set of tasks
bearing the same features as the current task. Given that a matcher’s output is
a numeric similarity, the mean accuracy is defined in terms of the mean square
error (MSE) of that set of tasks: MSE = EF [(sim − simactual)2]. Here F is
that set of matching tasks bearing the same features as the current task, and
EF represents the mathematical expectation on the set F . simactual is 1 for
matched element pairs and 0 otherwise. Obviously the less MSE is, the higher
the accuracy is.

Two different strategies are presented here to estimate MSE.

Manual Rule For some matchers, the MSE estimation is intuitive enough to be
formulated manually.

Take for example the DataType matcher, which compares the data type of
schema elements. Its outputted similarity is the only feature correlated to the
matching accuracy, indicating the probability that the data types of the two
elements are matched. If the data types are unmatched, then these two ele-
ments can’t be matched at all. If the data types match, then the elements’ being
matched or not could be equally possible. Therefore, MSE = (1−sim)×(sim−
0)2 + sim× (sim−1)2+(sim−0)2

2 = 1
2sim.

Notice that the matcher combiner of CMC could also be regarded as a base
matcher, so its accuracy must be calculated as well. With the formulas from
[5], we could formulate the MSE of a matcher combiner as follows, under
the assumption that base matchers are uncorrelated: MSE =

∑
i,j wiwjCij =∑

i w
2
i Cii =

∑
i w

2
i MSEi. Here wi is the weight of the i-th matcher, and Cij is

the correlation between the i-th and the j-th matcher, which is zero under our
assumption if i �= j, and equals MSEi otherwise.

Learning to Predict For most schema matchers, it is difficult, if not impossible,
to manually formulate the MSE calculation. Therefore, we use machine-learning
to predict MSE from the features of the current matching task.

It is important to select appropriate features of matching tasks for each
matcher, and the feature set should include all the possible factors relevant
to the matching accuracy. Take for example the Name matcher which compares
the schema element labels: longer labels often convey more information, so the
length of an element label is a feature; the outputted similarity is also a feature
as matchers often have different reliability on different outputs.

With features selected, we train a learner which takes the values of the fea-
tures as the input and outputs the estimated MSE. Any existing schema matches
can be used to construct the training set: for each pair of elements < e1, e2 >
construct a training sample, where e1 and e2 come respectively from the two
schemas of the existing match; let the input of the training sample be the fea-
ture values of < e1, e2 >, and the target output be the squared error of their

8

92 K. Tu and Y. Yu

estimated similarity by the base matcher. Since in actual schema matching the
matched element pairs are far less than the unmatched ones, we duplicate those
samples constructed by matched element pairs, so that their number is equiv-
alent to the number of samples constructed by unmatched element pairs. This
last step is to avoid producing a predictor with an overwhelming bias.

Notice that although machine learning is used here, for a particular matcher
once the predictor is trained, it could be applied for any matching task and no
retraining is mandatory. Moreover, while all kinds of supervised learning methods
can be used here, the online learning techniques [6] are preferred as the learner
could improve itself in operation, thus further eliminating the worry of having
insufficient existing schema matchings for training.

From Accuracy to Credibility. With accuracy (i.e. MSE) estimated, the
credibility of each outputted similarity can be calculated as e−C×MSE . Here C
is a non-negative constant, determining how fast the credibility falls with the
increase of MSE. If C is positive, higher credibility is assigned to matchers with
higher accuracy (i.e. lower MSE); if C is zero, the results from matchers are
simply averaged, as in COMA. The empirical value of C is 1.0.

3 Evaluation

The CMC system used in the experiments consists of four base matchers, i.e.
the Name, DataType, PathName and Leaves matchers, which are introduced in
detail in [3]. The default structure of CMC is used, and the machine learning
technique used in credibility prediction is the multilayer perceptron [6].

For comparison, another two combination methods are also tested. The average-
combination method, which is the default combination method of COMA, simply
averages the results from base matchers. The meta-learning method uses stack-
ing for combination, and it trains only one meta-learner for all elements so as
to avoid LSD’s limitations discussed in Sect.1. When testing these two methods,
only the combiners in the system are substituted while all the others remain
unchanged. In addition, all the three methods employ the same converter, which
is discussed in [3], to convert the similarity matrix to matches. For each method
the converter’s parameters are tuned to achieve the best performance, and it
happens that all the three sets of parameters are the same as in [3].

The test data are five real-world XML schemas on purchase order, which were
first used in [3]. In the experiment, we tested the three methods on all the ten
matches between the five testing schemas. Considering that machine learning
is used in CMC and the meta-learning method, we adopted a cross-validation
strategy [6]: the ten matches were divided into five groups, and each time two
successive groups were used for testing and the rest were used for training. Thus
the testing was conducted for five times altogether. Four measures are adopted to
evaluate the matching results, i.e. Precision, Recall, Overall [3], and F-measure
[4]. Comparisons between CMC and the other two methods are respectively
illustrated in Fig.2 and Fig.3, where the data is computed by subtracting the
results of the contrast method from the results of CMC.

8

CMC: Combining Multiple Schema-Matching Strategies 93

-0.04
-0.02

0
0.02
0.04
0.06
0.08
0.1

1-4 3-6 5-8 7-10 9-2 Average

Precision Recall Overall F-measure

Fig. 2. Average-Combination vs. CMC

-0.04

-0.02

0

0.02

0.04

0.06

1-4 3-6 5-8 7-10 9-2 Average

Precision Recall Overall F-measure

Fig. 3. Meta-Learning vs. CMC

On average the two integrated measures (Overall and F-measure) are in-
creased significantly by CMC in both comparisons. For the two coupled measures
(Precision and Recall), it is interesting to see that, CMC outperforms the av-
erage method by higher Precision while outperforms the meta-learning method
mainly by higher Recall. We suppose this somewhat exposes the characteristic
of the three methods, and CMC is more balanced between Precision and Recall.

4 Conclusion

CMC combines multiple schema-matchers based on their predicted credibility.
It not only achieves better matching performance, but also overcomes the limi-
tations of previous combination systems discussed in Sect.1: (1) When machine
learning is used in accuracy prediction, arbitrary existing matches can be used
for training, and online learning is also applicable, so collecting training set won’t
be a problem. Once trained, the predictor can work for arbitrary matching task
and no retraining is obligatory, so the time for training is neglectable. Actually,
as training can be accomplished by developers, the end users may even be un-
aware of it. (2) The credibility prediction for each base matcher is independent,
so adding or removing matchers won’t affect the combination. (3) Our combi-
nation method could take into account any available information of the current
matching, which is specified as input features of credibility prediction. (4) The
combination procedure is automatic, while permits users to do customization.

References

1. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal: Very Large Data Bases 10 (2001) 334–350

2. Doan, A., Domingos P., Halevy, A.Y.: Reconciling schemas of disparate data sources:
a machine-learning approach. SIGMOD Record 30 (2001) 509–520

3. Do H.H., Rahm, E.: COMA — A System for Flexible Combination of Schema Match-
ing Approaches. In: VLDB 2002, Morgan Kaufmann Publishers (2002) 610–621

4. Berlin, J., Motro, A.: Database Schema Matching Using Machine Learning with
Feature Selection. In: Proc. of 14th Intl. Conf. on Advanced Information Systems
Engineering (CAiSE). (2002)

5. Perrone, M.P., Cooper, L.N.: When Networks Disagree: Ensemble Method for
Neural Networks. In: Neural Networks for Speech and Image processing. (1993)

6. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)

8

Translating XQuery to SQL Based on Query
Forests�

Ya-Hui Chang, Greg Liu, and Sue-Shain Wu

Department of Computer Science, National Taiwan Ocean University
yahui@mail.ntou.edu.tw

Abstract. It is a difficult task to transform an XQuery posed gainst an
XML view into an SQL appropriate for the original relational schema to
get data. The main reason lies in the difference of the schema modeling
power and the query syntax. In this paper, we propose to represent an
XQuery as a set of for trees and return trees, or called the query forests
as a whole, based on the functionality of the path expressions specified
in each clause. These trees show the structural constraint of the input
query and serve as the vehicle to combine the mapping SQL fragments
into a complete SQL statement. A prototype has been implemented to
show the effectiveness of the transformation process.

1 Introduction

XML has emerged as the de facto standard for data representation and ex-
change on the World-Wide-Web, and XQuery is proposed as the standard query
language for XML data. On the other hand, relational databases with mature
techniques are still widely used in enterprises to support critical business opera-
tions. The interaction between XML and relational databases has therefore been
widely discussed. Particularly, the XQuery posed against an XML view needs
to be transformed into SQL appropriate for the relational schema, so that data
could be retrieved [1, 2, 3, 4, 5, 6].

The transformation is a challenge due to the differences between the schema
modeling power and the query expressive capability. As shown in Figure 1, we
can see that a relational schema is flat, while the XML schema forms a tree-like
structure. An XQuery posed against the sample XML schema is specified as
follows to show the difference of the query languages, which intends to retrieve
the information about the item whose description contains the word “bicycle”
and its maximum bid:

XQuery 1:
L1: FOR $i in doc("auction.xml")//item tuple
L2: LET $t := FOR $b in doc("auction.xml")//bid tuple

� This work is partially supported by the Republic of China National Science Council
under Contract No. NSC 93-2422-H-019-001.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 94– 99, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 8

Translating XQuery to SQL Based on Query Forests 95

Users (UserID , Name)

Items (ItemNO, Desc, OfferedBy)

Bids (UserID , ItemNO , Bid)

auction

item_tuple

items bids

user_tuple

users

bid_tuple

@userid name @itemno desc offered_by bid@userid @itemno

(0,29)

(1,8) (9,18) (19,28)

(2,7)

(3,4)

(10,17)

(5,6)

(20,27)

(11,12) (13,14) (15,16) (21,22) (23,24) (25,26)

Fig. 1. The sample relational schema and the XML schema

L3: WHERE $b/@itemno = $i/@itemno
L4: RETURN $b
L5: WHERE contains($i/desc, "Bicycle")
L6: ORDER BY $i/itemno
L7: RETURN <item tuple>
L8: {$i/itemno} {$i/desc}
L9: <high bid> max($t/bid) </high bid>
L10: </item tuple>

We can see that the compositional or nesting expressions of XQuery, is richer
than what SQL could specify. We need to identify the most appropriate cor-
responding constructs. Moreover, there is no GROUP BY clause proposed for
XQuery as in SQL, since XML data (elements) could define the set type, and
the aggregation function could be directly applied.

This paper will address these issues. The main idea is to represent an XQuery
as a set of for trees and return trees, which are called the query forests as a whole.
The tree is used to illustrate the structural constraint imposed by each binding
variable by collectively representing the path expressions associated with the
particular binding variable. To distinguish the functionality presented by each
path expression, those specified in the FOR, LET, and WHERE clauses will
be used to construct the for trees, while the path expressions specified in the
ORDER BY and RETURN clauses will be used to construct the return trees. By
utilizing the tree structures, we propose a query translation system from XQuery
to SQL. We have implemented a prototype, and experimental results show that
the transformation process could be performed effectively and efficiently.

The rest of this paper is organized as follows. The definitions of query forests
are given in Section 2. The procedure of producing the complete SQL statement
is presented in Section 3. Future research directions are given in Section 4.

2 The Query Forests

Figure 2 shows the query forests for the sample XQuery, where the tree structures
are shown on the left, the SQL fragments associated with each node are shown on
the right, and the level sequence is listed in the bottom. They will be explained
in this section.

8

96 Y.-H. Chang, G. Liu, and S.-S. Wu

($i, sql1 , 1) ($t, sql2 , 2)

(desc, sql7 , 1) (@itemno, sql5 , 1)

($b, sql3 , 2.1)

(@itemno, sql4 , 2.1)

($b, sql6 , 2.-2.1) ($i, sql8 , -3.1)

(@itemno, sql9 , -3.1) (desc, sql10 , -3.1)

($t, sql11 , -3.2)

(bid, sql12 , -3.1)

For Forest

Return Forest

sql1 : FROM Items i

sql2 : FROM (//SQL result of level 2.n) t

sql3 : FROM Bids b

sql4 : FROM Items i, Bids b WHERE i.ItemNO = b.ItemNO

sql5 : ()

sql6 : SELECT * FROM Bids b

sql7 : FROM Items i WHERE i.Desc LIKE '%Bicycle%'

sql8 : SELECT * FROM Items i

sql9 : SELECT i.ItemNO FROM Items i ORDER BY i.ItemNO

sql10 : SELECT i.Desc FROM Items i

sql11 : SELECT * FROM (//SQL result of level 2.n) t

sql12 : SELECT max(t.Bid) FROM (//SQL result of level 2.n) t

Level Sequence : [1, 2[2.1, 2.-2[2.-2.1]], -3[-3.1, -3.2]]

Fig. 2. The sample query forests

2.1 Level Number

Each tree is assigned a level number to reflect the nested structure corresponding
to the original XQuery. A level number l is composed of one or more level
component lc separated by the period, where each lc is an integer which might
be positive or negative. In Figure 2, the outermost level has three level numbers:
1, 2, −3, which correspond to the statements in L1, L2, and L7 of XQuery 1,
respectively. From L2 to L4, a nested FLOWR expression is represented by the
LET clause. The level number 2.1 is assigned to its corresponding for three, and
the level number 2.− 2 is assigned to its corresponding return three.

We briefly explain the rule of assigning the level number to the tree. The
level number has the initial number 0. Whenever a new tree is created, the level
number will be increased by one, and assigned to the tree. The level number
corresponding to the return tree will become negative to distinguish from the for
tree. When a nested structure is encountered, e.g., a LET Clause assigns a new
FLOWR expression to a binding variable, or a RETURN Clause consisting of a
new FLOWR expression, the period will be added to the current level number to
show the nesting structure. A special case is to treat the keyword “RETURN” as
the start of a new nested structure. The reason is that many variables might be
presented within the same RETURN clause, and we want to somehow represent
them collectively.

When we assign the level number to each tree, we will also collect the level
number into a level sequence, where the level number at the same level will
be separated by comma, and the child level will be encompassed by a pair of
square bracket to distinguish it from its parent level. By using the sequence, we
know how to combine the SQL fragment produced by each tree into a query
corresponding to the original nesting level.

2.2 Mapping Information

For each path possibly presented in the input XQuery, we represent the corre-
sponding relational schema definition in the mapping table. Part of the mapping

8

Translating XQuery to SQL Based on Query Forests 97

Table 1. Part of the mapping table for the sample schemas

Path Tag Left Right Relation Attribute
auction/items/item tuple item tuple 10 17 Items NULL
auction/items/item tuple@itemno @itemno 11 12 Items ItemNO
auction/items/item tuple/desc desc 13 14 Items Desc
auction/items/item tuple/offered by offered by 15 16 Items OfferedBy
auction/bids/bid tuple bid tuple 20 27 Bids NULL
auction/bids/bid tuple@userid @userid 21 22 Bids UserID
auction/bids/bid tuple@itemno @itemno 21 22 Bids ItemNO
auction/bids/bid tuple/bid bid 21 22 Bids Bid

Table 2. The join mapping table for the sample schemas

Path PRelation PK FRelation FK
auction/bids/bid tuple@userid Bids UserID Users UserID
auction/bids/bid tuple@itemno Bids ItemNO Items ItemNO

table for the two sample schemas is illustrated in Table 1. Consider the element
desc with the complete path auction/items/item tuple/desc. The corresponding
information is represented by the attribute Desc of the relation Items in the
sample relational schema. The interval encoding denoted by the Left and the
Right field, e.g., (13, 14), is used to determine the ancestor/descendent relation-
ship between elements. For those paths with the descendent step, the complete
paths with only the child step could be therefore produced. For example, the
path “auction/users/user tuple” will be identified for the path expression “auc-
tion//user tuple”.

The structural relationship is constructed by joining specific attributes from
two relations in the relational schema, e.g., the attribute ItemNO of the relation
Bids and the attribute ItemNO of the relation Items. Such structural relationship
might be implicitly represented by a path in XML, and the correspondence is
represented in the join mapping table, as shown in Table 2. It will be used to
create join statements in the WHERE clause if necessary.

2.3 FORET Nodes

A for tree or a return tree is a pair of (N, E), where each edge in E will be
represented by a single line or a double line to represent the parent/child or
ancestor/descendent relationship. Each node in N is a FORET node as defined
in the following:

Definition 1. A FORET Node N is a 3-tuple (label, SQLFrag, ln): (1) label
corresponds to a binding variable if N is a root; and will be an XML element or
attribute otherwise. (2) SQLFrag is an SQL fragment corresponding to the path
from the root to N and the semantic of the tree. (3) ln is a level number.

Basically, a for tree represents how a variable imposes selection condition in
the query. It is rooted by a binding variable specified in the FOR clause or the
LET clause. For this particular variable, all the related path expressions specified

8

98 Y.-H. Chang, G. Liu, and S.-S. Wu

in the WHERE clause will be used to construct the remaining nodes of the tree.
Consider the leftmost for tree in Figure 2. The root is labeled by $i, which is a
binding variable in the FOR clause. According to the path expression $i/desc
specified in the WHERE clause, the left child node is created, and labeled with
desc. All the FORET nodes in the same tree have the same level number. On the
other hand, the return tree represents how a variable is going to project data. It
is constructed based on the path expressions specified in the RETURN clause
and ORDER BY clause in a similar manner.

We now explain how to create the SQL fragment for each FORET node. Based
on the path from the root to this particular node, we consult the mapping table
to get the corresponding relation and attribute for this node. The relation will
be used to produce the FROM clause, while the processing of the attribute will
need to take the semantics into consideration. As to the for tree, since the node
is created based on the WHERE clause of the XQuery, which poses constraints,
the attribute will be represented in the WHERE clause of the SQL fragment,
and completed based on the original predicates. For example, the node with the
triple (desc, sql7, 1), is created based on the predicate constains($i/desc,
‘‘Bicycle’’), as shown in L5 of XQuery 1. The corresponding SQL fragment
sql7 will be FROM Items i WHERE i.Desc LIKE ’%Bicycle%’.

As to the return tree, the node is created based on the RETURN clause
or ORDER BY clause of the XQuery for specifying outputs, so the attribute
will be represented in the SELECT clause or the ORDER BY clause of the SQL
fragment. Consider the node with the triple (desc, sql10, -3.1). It is created based
on the expression {$i/desc} in the RETURN clause of XQuery 1. Therefore,
the corresponding SQL fragment will be SELECT i.Desc FROM Items i.

3 SQL Formulation

After the query forests are constructed, the SQL fragments will be collected and
used to construct the SQL statement based on the level sequence. If the level
numbers are separated by the comma, i.e., the trees correspond to the expres-
sions at the same nesting level of XQuery, the associated SQL fragments will
be directly coerced into the appropriate clause of the primitive SQL statement
constructed so far. If a square bracket is encountered, which stands for a nested
clause, two situations will need to be distinguished. First, the last component of
the level number in front of the square bracket is positive, which means that the
SQL fragment associated with the inner level corresponds to a nested FLOWR
expression specified in a LET clause of XQuery. The SQL fragment at the inner
level will be represented by a derived relation in the FROM clause of SQL, as
seen in L2-L4 of SQL1.

Second, if the last component of the level number in front of the square
bracket is negative, which means that the SQL fragment associated with the
inner level corresponds to the statement specified in the RETURN clause of the
input XQuery. The clauses of the nested query will be coerced into the proper
clauses of the query at the parent level, due to the constraint of the SQL syntax.

8

Translating XQuery to SQL Based on Query Forests 99

During the collecting process, if we encounter repeated SQL fragments from
the same tree, we will only keep one copy. Also, for each return tree, if the leaf
node represents more specific attributes in the SELECT clause, we will omit
the fragment SELECT * associated with the root node. For queries with nested
structures and aggregation functions, it will need to be processed further.

If a derived relation is represented in the FROM clause of the primitive SQL, we
will identify the relation which is specified both at the outer level and at the inner
level, and produce a joining statement by keys represented at the outer level. The
queries with aggregation functions are more difficult to deal with. By heuristics,
we adopt the attribute in the ORDER BY clause. The final output is as follows:

SQL 1:
L1: SELECT i.ItemNO, i.Desc, max(t.Bid)
L2: FROM Items i,(SELECT b., i.ItemNO
L3: FROM Bids b, Items i
L4: WHERE b.ItemNO = i.ItemNO) t
L5: WHERE i.Desc LIKE ’%Bicycle%’
L6: AND i.ItemNO = t.ItemNO
L7: GROUP BY i.ItemNO, i.Desc
L8: ORDER BY i.ItemNO

4 Conclusions and Future Research

Several issues require further study. Since the constructs in SQL and XQuery
might not always have direct correspondence, we plan to study what can be
translated and what can not. We also wish to conduct a comprehensive empirical
evaluation by using more complicated schemas and queries on our prototype.

References

1. Krishnamurthy, R., Kaushik, R., Naughton, J.F.: Xml-to-sql query translation lit-
erature: The state of the art and open problems. In: Proceedings of the XML
Symposium. (2003)

2. Benedikt, M., Chan, C.Y., Fan, W., Rastogi, R., Zheng, S., Zhou, A.: Dtd-directed
publishing with attribute translation grammars. In: Proceedings of the 28th VLDB
Conference. (2002) 814–825

3. Fernandez, M.F., Kadiyska, Y., Suciu, D., Morishima, A., Tan, W.C.: Silkroute: A
framework for publishing relational data in xml. TODS 27 (2002)

4. DeHaan, D., Toman, D., Consens, M.P., Ozsu, M.T.: A comprehensive xquery to
sql translation using dynamic interval encoding. In: Proceedings of the SIGMOD
Conference. (2003) 623–634

5. Krishnamurthy, R., Chakaravarthy, V.T., Kaushik, R., Naughton, J.F.: Recursive
xml schemas, recursive xml queries, and relational storage: Xml-to-sql query trans-
lation. In: Proceedings of the ICDE conference. (2004)

6. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton, J.F.:
Relational databases for querying xml documents: limitations and opportunities. In:
Proceedings of the VLDB conference. (1999)

8

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 9 0 – 9 6, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A New Indexing Structure to Speed Up
Processing XPath Queries*

Jeong Hee Hwang, Van Trang Nguyen, and Keun Ho Ryu

Database Laboratory, Chungbuk National University, Korea
{jhhwang, nvtrang, khryu}@dblab.chungbuk.ac.kr

Abstract. In this paper, the focus is on accelerating XPath location steps for
evaluating regular path expression with predicate parameter in particular since
it is a core component of many XML processing standards such as XSLT or
XQuery. We present a new indexing structure, namely Xp-tree, which is used to
speed-up the evaluation of XPath. Based on accelerating a node using planar
combined with the numbering scheme, we devise efficiently derivative
algorithms. Our experimental results demonstrate that the proposed method
outperforms previous approaches using R-tree indexing mechanism in
processing XML queries.

1 Introduction

∗Xpath[1] axes are used to describe path traversals about an XML document. Query
languages for XML data rely on location paths such as XPath for selecting nodes in
data items[2,3,4]. Therefore, it is essential to have the indexing structure for
improving the performance of evaluating common XPath expression[5,6].

A typical node distribution in the pre/post plane for an XML instance is tightly
packed with nodes of diagonal shape, while the upper left is only sparsely populated.
The lower right is completely empty[7]. All previous methods[4,8,9,10] did not
consider the phenomenon, but they only focused on processing the relationship
between parent/child or ancestor/descendant and ignored the other axes that are
considered important part on query processing, especially for stream processing of
XPath queries with predicates. [7] proposed a R-tree[11] based indexing structure for
XML, which supports all axes evaluated from arbitrary context nodes. However, it is
not supported for eliminating redundant work in the predicate evaluation part of the
XPath queries.

In this paper, we propose a new indexing structure based on the index technology
for spatial data, to support the evaluation of XPath queries. It can easily support all
XPath axes. Our main goal for this method is to enhance search performance using a
spatial search tree, especially for searching the sibling relations from the given node.

The remainder of this paper is organized as follows. The main theme of this paper,
Xp-tree, is presented in section 2. Experimental results are presented in section 3.
Finally, we summarize our work in section 4.

* This work was supported by University IT Research Center Project in Korea.

0 0

 A New Indexing Structure to Speed Up Processing XPath Queries 9 1

2 Xp-Tree Index Structure and Operation Algorithms

We propose a new access method called Xp-tree, as the XPath accelerator. Xp-tree
applies a different insertion/split strategy to achieve the sibling relationships of the
XML data easily, while not compromising the space discrimination capabilities of the
index too much. With the Xp-tree, we develop an access method that strictly
preserves sibling trajectory. Hereafter, trajectory means the sibling nodes at the same
level, having the same parent. As such, the structure of the Xp-tree is actually a set of
leaf nodes, each containing a partial children of one parent, organized in a height–
balanced tree hierarchy where internal nodes contain “directory” entries that point to
nodes at the next level of the index.

Each node in XML document after parsing is represented as a node(E)={pre(E),
post(E), par(E), att(E), level(E), and tag(E)}and considered as an entry in Xp-tree and
inserted to leaf node. Non-leaf node entries are of the form (pointer, and MBR) where
pointer points to a child node and MBR is the covering 2-dimensional interval. Leaf
node is a set of pointer tuple(previouspointer, nextpointer, and parpointer). This
means that we choose a doubly linked list that connects leaf nodes through previous
sibling node and following-sibling node. In addition, we use one more pointer to
connect from a node to its parent. This ensures that we can trace quickly its
relationship from every node.

For example, Figure 1 depicts the element hierarchy of religion text, a real-world
XML data set. After loading (for simplicity, here we only use preorder value), all of
the nodes will be simply represented in the Xp-tree structure as in Figure 2, Data
nodes (entries) that have the same parent will be stored in the same leaf node in the
Xp-tree. In case the leaf node overflows, it will be split and be connected by pointers
to each other to preserve siblings. The straight arrows imply the pointers from one
node to its previous and next sibling nodes, and the curly narrow ones show the
connection to its parent.

 Fig. 1. Element hierarchy of religious Fig. 2. Xp-tree in tree structure and
 text document instance it’s data representation on leaf nodes

Our goal is to keep the sibling trajectory of the XML data. Figure 3 shows the
insertion algorithm, in which a plain pseudo-code explains the insert process as well
as the split strategy when leaf node is full.

0

9 2 J.H. Hwang, V.T. Nguyen, and K.H. Ryu

Fig. 3. Insert algorithms

To insert a new entry, we start by traversing the tree from the root and step into
every child node that overlaps with the MBR of the context node (entry E) by
invoking a new algorithm, FindSiblingNode. It returns the node that contains the
previous sibling node of the new node. Then for the insertion, if there is space
available in this leaf node, the new entry will be inserted there. If the leaf node is full,
a split strategy is needed. Splitting a leaf node would violate our principle of total
trajectory preservation, thus CreateNewLeafNode algorithm is required.

We demonstrate the framework of a set of basic algorithms for query processing
that work on data encoded in Xp-tree. A typical search on sets of sibling nodes
includes a selection with respect to a given range. Queries of the form “find all the
children of the second node from the context node” remain very important. Figure 4
presents the algorithms for processing above queries. This class of algorithms is based

Algorithm CreateNewLeafNode(E)
Steps up to the tree until a non-full parent node, Q is found.

Traverse the right-most path from this node, Q to reach the non-leaf parent node P at level 1
1 if non-leaf node P is not full the newly created
2 leaf node created is inserted into node P
3 else
4. split the non-leaf node P by creating a new non-leaf node R at level 1 and this new non-

leaf node R has the new leaf node created previously as its first child,
5. split of non-leaf nodes may propagate upwards the tree as the upper non-leaf nodes may

become full
6. endif

Algorithm Insert(N, E)
1. Invoke FindSiblingNode(N,E) to find a leaf node N’ containing the sibling

precedecessor of the new context node entry E to be inserted.
2. if node N’ is found
3. if (N’ has space) not full then
4. insert new context node, E into N’
5. else
6. CreateNewLeafNode(E) to create new leaf node for new context node, E, insert

newly created leaf node into tree
7. endif
8. else
9. CreateNewLeafNode(E) to create new leaf node for new context node, E, insert
10. newly created leaf node into tree
11. endif

Algorithm FindSiblingNode(N, E)
1. if N is not a leaf
2. for each entry E’ of N whose MBR intersects with the MBR of E
3. invoke FindSiblingNode(N’,E) where N’ is the child node of N pointed to by E’
4. else
5. if N contains an entry that is previous sibling of E
6. return N
7. endif

0

 A New Indexing Structure to Speed Up Processing XPath Queries 9 3

on the major axes of XPath. The linked lists of the Xp-tree allow us to retrieve
connected nodes without searching.

4. endfor

3 Experiments and Evaluation

We show the results of some experiment to verify the search performance of Xp-tree,
by comparing with R-tree based methods.

3.1 Experimental Setup

The node capacity(fan-out) of both Xp-tree and R-tree was set to 1Kb. We have
chosen a real-world application for our evaluation. The structures were constructed
from 4 files with different size of religion 2.00 datasets. Specifically, bom (the Book
of Mormon): 7.025Mb, nt (the New Testament): 0.99Mb, ot: (the Old Testament):
3.32Mb, and quran (the Quran): 897 Kb. The test dataset can be downloaded at [12].

Let us elaborate the details on descendant query. Here using level parameter we
can cut down the window size of search space. For every node i in tree we have an
equation: post – pre + level = n (1) (in which: post, pre are postorder and preorder
of i, and n is the number of descendant nodes). From equation (1), we have

Algorithm SiblingQuery(N, E,RESULT)
1. Invoke FindNode(N,E) to find node N’ which contains entry E
2. if N’ is found
3. for each entry E’ of N’
4. Add E’ to RESULT
5. if following sibling pointer F is valid

Invoke FollowingSiblingQuery(NF,RESULT) where NF is the child node of N
pointed to by F

6. if preceding sibling pointer P is valid
Invoke PrecedingSiblingQuery(NP, RESULT) where NP is the child node of N
pointed to by P

7. else this node does not exist
8. endfor

Algorithm FollowingSiblingQuery(NF, RESULT)
1. for each entry E’ of NF
2. Add E’ to RESULT
3. if following sibling pointer F is valid

Invoke FollowingSiblingQuery(NF’, RESULT) where NF’ is the child node of NF
pointed to by F

4. endfor
Algorithm PrecedingSiblingQuery(NP, RESULT)

1. for each entry E’ of NP
2. Add E’ to RESULT
3. if preceding sibling pointer P is valid

Invoke PrecedingSiblingQuery(NP’, RESULT) where NP’ is the child node of NP
pointed to by P

Fig. 4. Algorithms for sibling queries

0

9 4 J.H. Hwang, V.T. Nguyen, and K.H. Ryu

pre + n= post + level, and post - n = pre – level. So, we can get a descendant
window query for given node i as follows: w = (pre, post+level, pre – level, post).
This new window query helps shorten the size of search space and makes the result
more preferable than compared method.

After loading the number of XML nodes for each dataset respectively are: quran:
6,710 nodes, nt: 8,577 nodes, ot: 25,317 nodes, and bom: 48,256 nodes. Nodes of
each file were considered as entries and inserted into both an Xp-tree and an
equivalent R-tree. The query windows were generated randomly.

3.2 Overall Evaluation

Figure 5 shows the average number of node accessed per 100 randomly queries
obtained at different stages by varying the size for each of the four files described
above. Here, we leave-off the parent axis because there exist a few nodes for parent
due to the hierarchy of XML tree that is not high and all the subordinate axes
(descendant-or-self, ancestor-or-self, etc.). The reason is that we only need to add
context node to the result node set.

Fig. 5. Experiment results

Now we move on other interested group, which gets our strong interest of queries
in Figure 5(d, e). It purely recognizes that preceding-sibling and following-sibling
queries have the number of average node accessed similar with preceding and

0

5

10

15

20

25

30

6710 8577 25317 48256

R-tree
Xp-tree

average of node access

num ber o f node

0

5

1 0

1 5

2 0

2 5

3 0

6 7 1 0 8 5 7 7 2 5 3 1 7 4 8 2 5 6

aver age of n ode access

n umber of n ode

(c) child

0

200

400

600

800

1000

1200

1400

1600

1800

2000

6710 8577 25317 48256

average of node access

number of node

(e) following-sibling

0

50

100

150

200

250

6710 8577 25317 48256

average of node access

num ber of node

(d) preceding-sibling

(b) descendant

0

2

4

6

8

10

12

6710 8577 25317 48256

aver age of n ode access

n u m b e r o f no d e

(a) ancestor

0

 A New Indexing Structure to Speed Up Processing XPath Queries 9 5

following queries in R-tree-based method. However, the answer for preceding-sibling
query and following-sibling query in Xp-tree method are good as expected. The
number of accessed nodes is remarkably small compared with that of the R-tree
method. It is highly optimized for disk I/O.

In our experiments, the performance of Xp-tree is generally better than that of the
original R-tree especially with preceding-sibling axis and following-sibling axis. The
ancestor, descendant and child query also gave better results although the ancestor
showed not good at three first datasets. But this is not significant because of using
pointer. For large-scale datasets if we use purely R-tree based method, much more
intersect will take place when searching the required nodes and it is one of the
disadvantages for optimizing spatial-based index mechanism. Whereas, with Xp-tree,
the set of required node would be tracked easily if one node has been found. Thus, the
accessed nodes are reduced considerably than the R-tree based method. The graphs in
Figure 5 (a)(b)(c) show superior results with high stability.

4 Conclusion

We proposed Xp-tree, which has been demonstrated to be superior to the previous
works. The performance enhancement comes from the fact that the new algorithms
are based on trajectory tracking by using pointers that are highly optimized for disk
I/O. Our experimental studies showed that the proposed tree structure outperforms the
naïve structure based on R-tree indexing method.

The XPath query could be processed by advanced index techniques to quickly
determine the ancestor-descendant relationships between XML elements as well as
fast accesses to XML values, such as spatial-based indexing method. This
observation, together with the cost estimation procedures, could lead to a rather
pragmatic cost model for XPath queries.

References

[1] Clark, J., Steven, D.: XML Path Language (XPath). Technical Report W3C
Recommendation, Version 1.0, 1999. http://www.w3.org/TR/xpath

[2] Quanzhong, L., Bongki, M.: Indexing and Querying XML Data for Regular Path
Expression. In Proc. of the 27th VLDB Conference, Roma, Italy (2001)

[3] Kha, D.D., Yoshikawa, M., Uemura. S.: An XML Indexing Structure with Relative
Region Coordinate. In ICDE (2001)

[4] Milo, T., Sucio D.: Index Structure for Path Expressions. In Proc. of the Int’l Conf. on
Database Theory (1999) 277-295

[5] Zhang, C., Naughton, J. DeWitt, D. et al.: on Supporting Containment Queries in
Relational Databases Management Systems. In Proceedings of the 2001 ACM-SIGMOD
Conference Santa Barbara, CA, May (2001)

[6] Cooper, B. et al.: A Fast Index for Semistructured Data. In Proc.of VLDB Conference
(2001)

[7] Grust, T.,: Accelerating Xpath Location Steps. In SIGMOD Conference (2002)

0

9 6 J.H. Hwang, V.T. Nguyen, and K.H. Ryu

[8] Kaushik, R., Naughton, J.F., Bohannon, P., Gudes, E.: Exploiting Local Similarity for
Efficient Indexing of Paths in Graph Structured Data. In ICDE (2002)

[9] Goldman, J., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. In Proc. of 23rd VLDB Conference (1997)

[10] Kaushik, R., Naughton, J.F., Bohannon, P., Korth, H.F.: Covering Indexes for Branching
Path Queries. In ACM SIGMOD (2002)

[11] Guttman, A.,: R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc. of
SIGMOD, Boston, Massachusetts (1984)

[12] Jon Bosak. Religious Texts in XML. http://www.ibiblio.org/xml/examples/religion
(1998)

0

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 9 17 – 9 3, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Translate Graphical XML Query Language to SQLX

Wei Ni and Tok Wang Ling

Department of Computer Science, National University of Singapore, Singapore
{niwei, lingtw}@comp.nus.edu.sg

Abstract: Semi-structured data has become more and more attention-getting with the
emergence of XML, and it has aroused much enthusiasm for integrating XML and
SQL in database community. Due to the complexity of XQuery, graphical XML query
languages have been developed to help users query XML data. In this paper, we
propose a new XML-to-SQL solution on the base of ORA-SS, a rich semantic model
for semi-structured data. We model the data by ORA-SS schema and store them in an
ORDB. Based on ORA-SS, we developed a graphical XML query language GLASS
that not only expresses the query constraints and reconstruction structure in XML view
but also the relational semantic in the XML view. This paper focuses on the translation
algorithm from GLASS to SQLX, an XML extension on traditional SQL.

1 Introduction

XML has been accepted as a potential standard for data publishing, exchanging and
integration on the web; and there is much enthusiasm for integrating XML and traditional
object-relational data model, which will benefit from the fruit of over 30 years research on
object-relational technology. Meanwhile, since XQuery[12] and other text-based functional
languages are complex and difficult to common users, researchers have proposed graphical
languages and graphical user interfaces (GUIs), such as Equix[3]/BBQ[7, 9], XML-GL[1, 2,
4], XMLApe [8], QURSED[11], etc, to make the XML query easier to use.

In this paper, we use ORA-SS (Object-Relational-Attribute model for Semi-
Structured data) [5], a rich semantic data model for semi-structured data, to describe
the XML schema; and the XML data are stored in an Object-Relational Database
(ORDB). To query the data, we have designed a graphical language GLASS
(Graphical query Language for Semi-Structured data) [10] with full consideration of
relational semantic information in ORA-SS, which has stronger expressive power
than other graphical XML query languages. And we translate the GLASS query into
SQLX[6], an expansion of SQL which is often used as a publishing tool from
relational table to XML file.

The rest of this paper is organized as follows. Section 2 is a brief presentation of
ORA-SS model and the mappings from ORA-SS schema to ORDB schema. In
Section 3, we introduce the GLASS query with an example. Section 4 discusses the
translation from GLASS to SQLX based on the query example in Section 3. And
before the end, we conclude this paper and highlight the future works in Section 5.

0

9 8 W. Ni and T.W. Ling

2 ORA-SS Model and the Storage of XML Data

Compared with DTD, XML Schema [14], OEM, Dataguide, XML Graph [1] and their
equivalents, ORA-SS is a rich semantic data model for catching the relational information.
The most significant feature of ORA-SS is that it not only represents the tree structure of the
original schema in terms of object class, relationship types and attributes but also
distinguishes relationship attributes from object attributes, etc. For example, the ORA-SS
schema in Fig. 1(a) contains three object classes (project, member and publication) and two
relationship types (binary relationship type jm between project and member; and ternary
relationship type jmp among project, member and publication). The label “jm” on the arrow
from member to job_title indicates that job_title is an attribute of the relationship type jm,
i.e., the job_title attribute is determined by both project and member rather than member
only. It should be emphasized that the object ID in ORA-SS (the attributes denoted as solid
circles in the diagram such as J#) is different from the object identifier in OEM. In ORA-SS,
the object ID identifies each unique object instance rather than each element instance (in
OEM). For example, if one member attends two projects, the same member instance may
appear as two element instances in the XML data. In ORA-SS, both use the same object ID
(M#); but in OEM, they will have different object identifiers.

project

member

publication

jm, 2, 1:n, 1:n

J# Jname

M#
Mname

age job_title

P# title review

degree

university

year

qualification
jmp, 3, 0:n, 1:n

jm

*

*

(a) An example ORA-SS schema (b) The ORDB storage schema of (a)

Fig. 1. An example of ORA-SS schema and its ORDB storage schema

When we store the XML data in an ORDB, each object class will be stored in an
object relation with its object attributes and each relationship type will be stored in a
relationship relation with its relationship attributes. Composite attributes (e.g. the
qualification in the example in Fig. 1.) will be stored as a nested relation inside an
object relation or relationship relation according to the ORA-SS schema. Fig. 1(b)
presents the ORDB schema when we store the XML data conforming to the ORA-SS
schema in Fig. 1(a).

3 GLASS Query

GLASS is a graphical XML query language designed on the base of ORA-SS schema. The
most significant features of GLASS from other graphical XML query languages (or GUIs)
are:

Object Relations
 project (J#, Jname)
 member (M#, Mname, age
 qualification(degree,
 university,
 year)*)
 publication (P#, title, (review)*)
Relationship Relations
 jm (J#, M#, job_title)
 jmp (J#, M#, P#)

0

 Translate Graphical XML Query Language to SQLX 9 9

(1) GLASS separates the complex query logic from the query graph (the query graph is the
graphical part of a GLASS query). This feature makes the GLASS query clear and
concise even if it contains complex query logic with quantifiers and negation.

(2) GLASS considers relationship types in querying XML data. The relationship types could
be those either defined in ORA-SS schema or derived from the schema. This feature
enables the GLASS to define the query semantic precisely.

A typical GLASS query consists of four parts:
(1) Left Hand Side Graph (LHS graph) – denotes the basic conditions of a query, which

presents the fundamental features that users interest in.
(2) Right Hand Side Graph (RHS graph) – defines the output structure of the query result,

which is a compulsory part in the GLASS query.
(3) Link Set – specifies the bindings between the RHS graph and LHS graph. When two

graph entities are linked, they are visually connected by a line, which means the data
type and value of the entity in the RHS graph are from the corresponding linked entity
in the LHS graph.

(4) Condition Logic Window (CLW) – It is an optional part where users write conditions
and constructions that are difficult to draw, which includes Logic expressions,
Mathematic expressions, Comparison expressions and IF-THEN statements.

Most notations in GLASS are borrowed from those in ORA-SS schema diagram, yet
some new notations are introduced to represent the query condition and result reconstruction
such as Box of group entities and Condition Identifier. The box of group entities is used to
specify multi-field aggregations such as the query in Example 1. The condition identifier is
defined by user, quoted by a pair of “:”s, which specifies a connected sub-graph in the LHS
graph (e.g. the condition identifier “A”, appears to be “:A:” on the arrow from member to
age).

Example 1. (For the schema in Fig. 1.)
Find the member whose age is less than 35, and he either has taken part in less than 5
projects or written more than 6 publications in some of the projects he attended; display
the member id and name.

member

project publication

[AND]

[OR]:A:

:B:
:C:

CNT>6CNT<5

project

_group _group

Box

age
<35 jm, 2 jmp, 3

Fig. 2. The GLASS query of
Example 1

Fig. 3. The condition tree of the GLASS query
in Fig. 2 from its LHS graph and CLW

Mname

member

project

publication

member

age
< 35

_group
:B:

CNT<
5

CNT>
6

_group
:C:

M
#

:A

CLW

 A AND (B OR C);

0

9 0 W. Ni and T.W. Ling

Fig. 2 shows the GLASS representation of Example 1. The result view structure is
defined in the RHS graph. The object node with name “member” is linked with the object
node with the same name in the LHS graph, which means the member in the RHS graph (the
result view) is from the member in the LHS graph. In the LHS graph, there are three
condition identifiers “A”, “B” and “C” where “A” means member should have age attribute
less than 35; “B” means to group project under member in the binary relationship type jm
having count of project less than 5; and “C” means to group publication under each pair of
member and project in the ternary relationship type jmp having count of publication more
than 6. By default, the logic among the query conditions are “AND”; but it can be rewritten
by the logic expressions specified in the CLW with the help of condition identifier. In the
above example, the logic among the three conditions is defined as “A AND (B OR C)”.

4 Translate GLASS into SQLX

In this section, we discuss the translation from GLASS to SQLX. SQLX (aka. SQL/XML) is
an XML-related specification expanded on SQL. The syntax of SQLX combines the features
in both XML document processing and the traditional SQL. Before introducing the
translation algorithm, we shall preprocess the GLASS query as follows.

4.1 Preprocess

Observing the SQLX syntax [6], we find that, in translating from GLASS to SQLX query,
the SELECT and FROM clauses can be easily generated by checking the GLASS query and
the ORA-SS schema; and the major task in translation is the generation of query conditions.
To generate the query conditions and the target SQLX expression, we need preprocess the
GLASS query in the following 3 steps.

(1) Expansion of the simple projection;
(2) Expansion of the abbreviated RHS graph;
(3) Construction of the condition tree from LHS graph and CLW.

The GLASS query appears with RHS graph only when expressing simple
projections that do not contain any constraints in the LHS graph. For such kind of
query, we regard the LHS graph as null in translation.

The GLASS query supports abbreviated representation in defining the result XML
view in the RHS graph especially when all attributes of an object class are extracted;
and it is necessary for us to expand the RHS graph to get a full-version ORA-SS view
schema of the result before we translate the query.

The condition tree is a labeled graph containing all query constraints in both the
LHS graph and the CLW. The role of the condition tree in GLASS is similar to the
condition tree in TQL (Tree Query Language) defined in [11]. Nevertheless, the
condition tree in GLASS contains more features than TQL by including quantifiers,
relationship type information and aggregation. The purpose of the condition tree is to
combine the query constraints into one graph so that we can generate WHERE clauses
by traversing the condition tree. The condition tree is initially a copy of the LHS
graph in a given GLASS query, which can be a forest if the LHS contains multi-

1

 Translate Graphical XML Query Language to SQLX 9 1

graphs. When we copy the LHS graph, we record the aggregation information, add
the relationship type information, mark the condition identifiers in the condition tree
and insert the logic operators (and quantifiers) according to the expressions in CLW.
Particularly, the box is represented as a composite node (a triangular node) in the
condition tree. The condition tree of the GLASS query in Fig. 2 is shown in Fig. 3.

4.2 Translation Algorithm

The basic idea of the translation algorithm is to traverse the expanded RHS graph in
depth-first order and generate the nested SQLX query blocks according to the tree
structure. The XML construction functions in SQLX can be different due to different
the data types (element or attribute) in the result XML view. Like the traditional
XML-to-SQL method, parent-child/ancestor-descendant relations among different
object classes are performed by a series of join operations, which can be obtained
from the relationship type information in the ORA-SS schema. The query constraints
in the LHS graph (and the CLW) are only for the nodes with links in the RHS graph.
Checking the condition tree, we generate WHERE clauses (denoted as W(N)) in
different forms by applying the following rule.

Rule (Generate WHERE clauses of Node N from the condition tree):

If N is an attribute node, then W(N) is the value comparison expressions on N.
If N is an object class, N has k child nodes (say C1 to Ck); and it is associated in

 a relationship type of D degree where the D-1 ancestor nodes of N are P1 …
 PD-1; then W(N) is

CASE 1. there is a (negated) existential quantifier in front of NL, then we
 generate

WHERE [NOT] EXIST (SELECT N FROM …

 W(C1)θ
1W(C2)θ

2…θk-1W(Ck)θ
kW(P1)θ

k+1W(P2)θ
k+2…θk+D-2W(PD-1))

CASE 2. there is a “_group” label follows N, then we generate
 WHERE N IN (SELECT DISTINCT N FROM…

 W(C1)θ
1W(C2)θ

2…θk-1W(Ck)θ
kW(P1)θ

k+1W(P2)θ
k+2…θk+D-2W(PD-1))

CASE 3. there is a “_group” label before N under object class M, then we
 generate

 WHERE N IN (SELECT N, AGG(N) FROM …

 W(C1)θ
1W(C2)θ

2…θk-1W(Ck)θ
kW(P1)θ

k+1W(P2)θ
k+2…θk+D-2W(PD-1)

 GROUP BY M

 HAVING value comparison on AGG(N))
CASE 4. for all other cases, we generate

 WHERE N IN (SELECT N FROM …
 W(C1)θ

1W(C2)θ
2…θk-1W(Ck)θ

kW(P1)θ
k+1W(P2)θ

k+2…θk+D-2W(PD-1))

where θm (m = 1, …, k, k+1, …, k+D-2) are the logic operators (“AND” or “OR”). To
avoid repeating generation the where clauses of the same node, we exclude node N when we
generate each W(Pi) (i = 1, …, D-1); and we ignore the parent nodes when generating each
W(Cj) (j = 1, …, k).

1

9 2 W. Ni and T.W. Ling

Fig. 4. The translated SQLX expression of the Example in Fig. 2

It should be emphasized that W(Pi) is indispensable when
(1) N is not the root in the condition tree, and
(2) In the RHS graph, N does not have any parent/ancestor nodes that are linked

with their counterparts in the LHS graph.
Otherwise, W(Pi) can be omitted.
Applying the above method and rules to the example in Fig. 2, we can get the

SQLX expressions of the query as shown in Fig. 4.

5 Conclusion and Future Work

In this paper, we have introduced a new XML-to-SQL query solution based on ORA-SS and
discussed the translation from GLASS, the graphical query language in our project, to SQLX.
Compared with other graphical XML query languages (and GUIs), GLASS define both the
structure and the relational semantic in the XML view; and the GLASS query is seamlessly
cohered with the ORDB and SQL/SQLX on ORA-SS schema. Compared with traditional
XML-to-SQL solutions that use XQuery or XPath [13], GLASS has stronger expressive power
and provides an easy-to-use interface. So far, the case tool of GLASS query has been partially
implemented. As to the future work, it may include the query optimization of GLASS queries
and the translated SQLX expressions as well as the improvement of the case tool.

References

1. S. Ceri, S.Comai, E. Damiani, P.Fraternali, S. Paraboschi, and L.Tanca. XML-GL: a
graphical language of querying and restructuring XML documents. In Proc. WWW8,
Toronto, Canada, May 1999.

2. S. Ceri, S. Comai, E. Damiani, P. Fraternali, and L. Tanca. Complex Queries in XML-GL.
SAC(2) 2000:888-893.

3. S. Cohen, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv and A. Serebrenik. Equix – Easy
Querying in XML Databases. In proceedings of Webdb’98 – The Web and Database
Workshop, 1998.

SELECT XMLELEMENT(NAME “member”,
 XMLATTRIBUTES (M1.M# AS “member_id”)
 XMLELEMENT (NAME “Mname”, M1.Mname)
)FROM member M1

WHERE M1.age <35
AND (M1.M# IN (SELECT DISTINCT M# FROM member

 WHERE (SELECT COUNT(J#) FROM jm
 WHERE M# = jm.M#)<5)

OR M1.M# IN (SELECT DISTINCT M# FROM member
 WHERE (SELECT DISTINCT J# FROM project
 WHERE(SELECT COUNT(P#) FROM

jmp
 WHERE jmp.J# = project.J#

AND jmp M#

1

 Translate Graphical XML Query Language to SQLX 9 3

4. S. Comai, E. Damiani, P. Fraternali. Computing Graphical Queries over XML Data. ACM
Transactions on Information Systems, Vol. 19, No. 4, October 2001, Pages 371-430.

5. G. Dobbie, X. Y. Wu, T. W. Ling, M. L. Lee. ORA-SS: An Object-Relationship-Attribute
Model for Semistructured Data. TR21/00, Technical Report, Department of Computer
Science, National University of Singapore, December 2000.

6. Information technology -- Database languages -- SQL -- Part 14: XML-Related
Specifications. ISO/IEC 9075-14:2003

7. B. Ludaescher, Y. Papakonstantinou, and P. Velikhov. Navigation-driven evaluation of
virtual mediated views. In Proceedings of the sixth International Conference on Extending
Database Technology (EDBT)(Konstanz, Germany, March), Lecture Notes in Computer
Science, vol. 1777, Springer-Verlage, New York, 2000.

8. L. Mark, etc. XMLApe. College of Computing, Georgia Institue of Technology.
http://www.cc.gatech.edu/projects/XMLApe/

9. K. D. Munroe, B. Ludaescher and Y. Papakonstantinou. Blended Browsing and Querying
of XML in Lazy Mediator System. Konstanz, Germany, March 2000.

10. W. Ni, T. W. Ling. GLASS: A Graphical Query Language for Semi-Structured Data.
DASFAA 2003.

11. Y. Papakonstantinou, M. Petropoulos and V.Vassalos. QURSED: Querying and Reporting
Semistructured Data. ACM SIGMOD 2002, Jun 4-6, Madison, Wisconsin, USA.

12. XQuery 1.0: An XML Query Language. W3C Working Draft 22 August 2003
http://www.w3.org/TR/xquery/

13. XML Path Language (XPath) 2.0. W3C Working Draft 22 August 2003
http://www.w3.org/TR/xpath20/

14. XML Schema. http://www.w3.org/XML/Schema

1

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 9 4–9 9, 2005.
© Springer-Verlag Berlin Heidelberg 2005

GTree: An Efficient Grid Based Index
for Moving Objects

Xiaoyuan Wang, Qing Zhang, and Weiwei Sun

Department of Computing and Information Technology
Fudan University, Shanghai, China

{xy_wang, wwsun}@fudan.edu.cn, qzhang79@yahoo.com

Abstract. In mobile environments, tracking the changing positions of moving
objects efficiently could substantially improve the quality of the Location Based
Services. There arises the high demand for the indexes to support frequent
updates. In this paper, we propose a novel grid-based index for moving objects,
namely the GTree. Based on the recursive partition of the space and lazy
maintenance, the GTree could maximize the stability of the index structure
while minimizing the dynamic adjustment, and therefore significantly reduce
the update overhead. Different from traditional top-down or bottom-up updates,
we present a median-down approach, which could effectively reduce the
number of disk access. As an alternative, a bulk-loading technique is
introduced. The experiments show that the GTree has good update performance
as well as query performance.

1 Introduction

With the rapid advances of wireless communications and electronic technologies,
Location Based Services (LBS) is becoming a new and important application area.
Tracking the changing positions of moving objects efficiently could substantially
improve the quality of the services and there arises the need for storing and
processing continuously moving data.

The continuous movement of moving objects poses new challenges to index
technologies. Since most existing database systems assume that the data is fairly static
and their values are not updated frequently, they are not suitable for processing
continuously moving objects, whose positions are dynamically changing and need to
be updated frequently.

Spatial indexing and its variants provide a basis for the extension for supporting
moving objects. Two typical ones are R-tree [2] and Quadtree [4].

R-tree exhibits good query performance but poor update performance, because the
MBR clusters the objects with close positions and it attempts to pick the subtree with
the optimal bounding rectangle at each level, which in turn lead to the property of
propagating upwards and the high cost for immediate maintenance of the index
structure.

Quadtree does better than R-tree in updating, while its query performance is worse.
It decomposes the k-dimensional space into k2 subspaces, just like the binary tree in

1 1

 GTree: An Efficient Grid Based Index for Moving Objects 9 5

one-dimensional spaces. However, the concept of “binary” partition in hyperplanes,
which performs well with a main memory structure, is not necessarily suitable for
disk-based access methods. Furthermore, its fanout is too small, and thus subtrees
corresponding to densely populated regions may be much deeper.

In this paper, based on the principle of recursive partition of the space and the
concept of lazy maintenance, we propose a novel index for moving objects, which
supports fast updates and efficient queries. It is grid-based, in which the space is
equally divided into grids of the same size and each of them can be further divided
into sub-grids recursively. The number of sub-grids is determined by the disk block
size. It is a disk-resident tree with large fanout, and we call it GTree (the Grid-based
Tree).

Different from the proposed top-down or bottom-up update approaches, the update
in GTree is median-down, which could effectively reduce the number of disk access.
As an alternative, the bulk-loading technique for updating is introduced. Meanwhile,
as an elemental index structure, it is extensible.

The rest of this paper proceeds as follows. We describe the index structure of
GTree in Section 2 and the update approaches in Section 3. Experimental evaluation
is presented in Section 4 and we conclude the paper in Section 5.

2 Index Structures

2.1 Motivation

An update for moving objects leads to two kinds of changes: the change of the entries
in the indexing nodes, and the change of the index structure itself. The former is
unavoidable, since each update operation has to include deleting the entry of the old
position, and adding the entry of the new position to another indexing node. So how
to fast locating the old entry and the new entry becomes most important in this
process.

As for the latter, the frequent modification of the index structure itself influences
the performance on greater degree. An "industrious" structure, which appears
sensitive to updates and tries to keep itself perfect each time the update is executed, is
not suitable for indexing moving objects. For example, the property of propagating
upwards in R-tree is not good for the updating of moving objects. To keep the balance
of the tree, the splitting or merging of lower nodes will impact on the upper nodes
immediately, which leads to the local or even the global modification of the index
structure.

With the uniform partition of the space, the index structure of GTree is constructed
based on the grids of the same size, which keep static during their lifetime. When an
indexing node corresponds to a grid, its splitting and merging depend on the partition
of the space, not directly on the distribution of moving data. Therefore we could
maximize the stability of the index structure and minimize the dynamic adjustment to
reduce the update overhead.

1

9 6 X. Wang, Q. Zhang, and W. Sun

2.2 Index Structure

The two-dimensional space is equally divided into k∗ k grids of the same size, where
k is a regular parameter in GTree. A grid can be further divided into k∗ k sub-grids if
necessary and the partition is a recursive procedure. Each grid corresponds to a node
in GTree and each node corresponds to a disk block. In the head of each node, the
corresponding grid rectangle is kept. Assume a disk block can accommodate M
entries, then k = max { t | t∗ t <= M, t∈{1, 2, …} }. Thus the fanout of GTree is
k∗ k, which is determined by the block size. Figure 1 shows the structure of GTree
with k = 3, in which the position of the origin in the map is top-left, and sub-grids is
row-major ordering.

We introduce the direct link and sibling node for GTree. The direct link is a kind of
the secondary index [3]. Since an update request consists of the form (oid, newPos),
the direct link is used as an additional path to find leaf nodes. The sibling node is a
special leaf node concatenated after the normal leaf node, which is somewhat like the
supernode in X-tree [1]. The basic goal of the sibling node is to avoid unnecessary
partitions in the leaf grids. In some actual scenarios, objects may burst into an area
and immediately leave after a short time. A partition has to be performed if the
current leaf node has overflowed. With sibling nodes, this kind of partitions can be
avoided.

The location relation between a grid and its sub-grids can be reckoned by simple
computations. Assume the rectangle of Grid A is (x, y, w, h). Let xunit be w / k and
yunit be h / k. Grid B is the sub-grid of Grid A, and it corresponds to the s-th entry in
the node of Grid A. Let i be s / k and j be s % k, then Grid B is a rectangle of (x +
j∗ xunit, y + i∗ yunit, xunit, yunit). Further, if Point P(xp, yp) lies in Grid A, let u be
(xp-x) / xunit, v be (yp-y) / yunit, and s be (v∗ xunit + u). Then in the node of Grid A,
it is the s-th entry whose corresponding sub-grid contains P.

It should be noted that, to prevent unnecessary modification of the index structure,
lazy maintenance is introduced. When deleting an entry, we simply remove it and an
underflow is allowed if the node contains few entries after deletion. By periodical
collecting, free space is regained.

Fig. 1. The Structure of GTree

o2
o3

on A

E

B

o1 D

1

 GTree: An Efficient Grid Based Index for Moving Objects 9 7

For the sake of the median-down update, each leaf node stores the block IDs of its
ancestor nodes. For example, in Figure 1, the block IDs of D, E are kept in the leaf
node A as well as the sibling node B.

3 Updates of GTree

3.1 Median-Down Update

Motivated by the limitation of the traditional approaches and the character of the grid-
based index, the median-down update is proposed. The Lowest Common Ancestor
Node (LCAN in short), which is on the joint of the two paths from the leaf nodes with
the old entry and with the new entry to the root node, can be found by the online
calculation based on the grid information. Then according to the block IDs of the
ancestor nodes stored in the leaf node, the LCAN can be located directly, skipping the
access to intermediate nodes. From the LCAN, a top-down search is issued for finding
another leaf node to insert the new entry. Algorithm 1 describes the median-down
update, and Algorithm 2 describes how to find the LCAN without disk access.

Algorithm 1 Median-Down Update (oid,
pos)

locate the leaf node N that contains the
object by the direct link.
e = GetEntry(pos, N) .
if pos lies within the leaf grid

set e.pos to pos.

else

remove e from N.
i = GetLCAN (N, pos) .
Obtain LCAN according to the ancestor

block IDs[i] in the head of N.
invoke Insert (oid, pos, LCAN).

Algorithm 2 GetLCAN (leaf node N,
newPos)

i = 0.
r = N.gridRect.
while r != map_rectangle

xunit = r.width ∗ k .
yunit = r.height∗ k .
nx = newPos.x / xunit .
ny = newPos.y / yunit .
p.x = root.gridRect.x + (nx∗ xunit) .
p.y = root.gridRect.y + (ny∗ yunit) .
r = Rectangle (p.x, p.y, xunit, yunit) .
if r contains newPos
 return i .
i = i + 1 .

newPos is beyond the map, return -1.

An example is illustrated in Figure 2. The dashed line shows the case in which the

old entry is deleted in leaf node A and the new entry is inserted in leaf node B. The
dotted line shows another case in which the new entry moves to the leaf node C. In
two cases, the number of disk access in the top-down update is both 10 (Figure 2(a)),
and that in the bottom-up update is 9 and 11 respectively (Figure 2(b)), including 2
accesses to the secondary index. As an alternative, the strategy combining the bottom
deletion and top-down insertion is employed, whose cost is both 9 (Figure 2(c)).

1

9 8 X. Wang, Q. Zhang, and W. Sun

Figure 2(d) illustrates the median-down update, whose cost is 8 and 9 respectively. It
outperforms the former approaches in both cases.

Fig. 2. The Examples of Updates

3.2 Bulk-Loading Update

In the bulk-loading update, first the objects are clustered in the buckets corresponding
to the grids of a certain level, then from which a top-down insertion is issued
respectively.

The starting level is an important parameter of the bulk-loading update. The lower
the starting level reaches, the more buckets needed and the less disk I/O cost will be
with a higher demand for memory. Inherently, it is a strategy utilizing memory for
less disk access, regarding grids as the basic unit. Meanwhile, it utilizes the principle
of locality, where the clustering of objects in one bucket can improve the cache hit
rate.

4 Experimental Evaluation

We compare the following 4 approaches: i) the GTree with median-down update
(GTree(MD)), ii) the GTree with bulk-loading update (GTree(BL)), iii) the R-tree
with bottom-up update (R-tree(BU)), and iv) the R-tree with top-down update (R-
tree(TD)). The performance metric is the number of disk access.

All experiments are performed on Pentium IV 2.2GHz with 512 MB RAM running
on Windows Server 2003. The disk block size is set to 4KB. We use synthetic
datasets generated by the “General_Spatio_Temporal_Data” (GSTD) [5]. The default
number of moving objects is 100K. The starting level for bulk-loading updates is set
to 2. By default, no memory buffer is used for all the approaches.

In Group 1, we vary the number of updates to examine the performance of GTree.
In Figure 3(a), both alternatives for R-tree take more cost to update than GTree.
Figure 3(b) shows that, with the default query size of 0.1, GTree performs not as well
as R-tree in range queries, although it does not lag too far behind.

In Group 2, we vary the number of moving objects and the size of range rectangles
to examine the update and query performance respectively. Figure3(c) shows that the
costs increase as the number of objects increases from 100K to 1 million. Still the
GTree with the median-down update performs best. Figure 3(d) shows an interesting

B A BC A B AC B A C

(a) (b) (c) (d)

1

 GTree: An Efficient Grid Based Index for Moving Objects 9 9

result about the variable size of range queries. The GTree performs not as well as the
R-tree at first. With the range size increases, the GTree outperforms the R-tree and
does pretty well. This is because there are no overlapping regions in GTree and
multiple paths selection for same objects will not occur.

From the experiments, we see that the GTree keeps the index structure stable in
updates as well as queries. It does not fluctuate during the whole process and
therefore has the stable performance.

5 Conclusion

In this paper, we propose a novel grid-based index for moving objects: GTree. Based
on the recursive partition of the space, it keeps the index structure stable and
minimizes the update overhead. The median-down update and bulk-loading update
are introduced. Our experiments demonstrate that the GTree achieves significant
improvement in update performance over the traditional approaches and keeps good
query performance when faced with range queries of variable sizes.

References

1. S. Berchtold, D.A. Keim, and H.P. Kriegel. The X-tree: An Index Structure for High-
Dimensional Data. In Proc. of VLDB, 1996.

2. A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In Proc. of ACM
SIGMOD, 1984.

3. M.L. Lee, W. Hsu, C.S. Jensen, B. Cui, K. L. Teo. Supporting Frequent Updates in R-trees:
A Bottom-Up Approach. In Proc. of VLDB, 2003.

4. H. Samet. The Quadtree and Related Hierarchical Data Structures. ACM Computing
Surveys, Vol.16, No.2, pages 188–260, 1984.

5. Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the Generation of Spatiotemporal
Datasets. In Proc. of SSD, 1999.

0 2 4 6 8 10
4

6

8

10

12

14

16

Number of Updates (in hundreds)

A
vg

 D
is

k
I/O

GTree(MD)
GTree(BL)
R-tree(BU)
R-tree(TD)

0 2 4 6 8 10
10

15

20

25

30

35

40

45

50

55

60

Number of Updates (in hundreds)

A
vg

 D
is

k
I/O

GTree(MD)
GTree(BL)
R-tree(BU)
R-tree(TD)

0 20 40 60 80 100
4

6

8

10

12

14

16

18

20

22

24

Number of objects (in 10 thousand)

A
vg

 D
is

k
I/O

GTree(MD)
GTree(BL)
R-tree(BU)
R-tree(TD)

0.1 0.3 0.5 0.7
0

50

100

150

200

250

300

350

400

450

500

Size of Query Rectangles

A
vg

 D
is

k
I/O

GTree(MD)
GTree(BL)
R-tree(BU)
R-tree(TD)

(a) Varying Number of Updates, Update (b) Varying Number of Updates, Query (c) Varying Number of Objects, Update (d) Varying Size of Queries, Query

Fig. 3. Performance Results

1

Adaptive Multi-level Hashing
for Moving Objects�

Dongseop Kwon1, Sangjun Lee2, Wonik Choi3, and Sukho Lee1

1 School of Electrical Engineering and Computer Science,
Seoul National University, Seoul 151-742, Korea

dongseop@gmail.com, shlee@snu.ac.kr
2 School of omputing, Soongsil University, Seoul 156-743, Korea

wisetank@gmail.com
3 Thinkware Systems Corporation, Seoul 138-724, Korea

styxii@db.snu.ac.kr

Abstract. Although several sophisticated index structures for moving
objects have been proposed, the hashing method based on a simple grid
has been widely employed due to its simplicity. Since the performance
of the hashing is largely affected by the size of a grid cell, it should be
carefully decided with regard to the workload. In many real applications,
however, the workload varies dynamically as time, for example the traffic
in the commuting time vs. that in the night. The basic hashing cannot
handle this dynamic workload because the cell size cannot be changed
during the execution. In this paper, we propose the adaptive multi-level
hashing to support the dynamic workload efficiently. The proposed tech-
nique maintains two levels of the hashes, one for fast moving objects and
the other one for quasi-static objects. A moving object changes its level
adaptively according to the degree of its movement.

1 Introduction

Traditional database systems have the problem in processing a large number
of moving objects because the locations of moving objects are changed very
rapidly and continuously. Moreover, traditional spatial index structures cannot
support frequent updates well because they only focus on retrieving spatial data
efficiently. To address this problem, several spatio-temporal index structures have
been proposed for moving objects [1, 2, 3, 4, 5].

Among these, the hash-based approach [1] is one of the simplest ways to
index the locations of moving objects. In this approach, the domain space is
uniformly divided into grid cells of the same size. The hash value of an object

� This work was supported in part by the Brain Korea 21 Project and in part by the
Ministry of Information & Communications, Korea, under the Information Technol-
ogy Research Center (ITRC) Support Program in 2004.

L. Zhou, B.C. Ooi, and X. Meng (Eds.): DASFAA 2005, LNCS 3453, pp. 9 0–9 5, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

is the cell number of a grid to which the object belongs. Because of using a grid
cell, this is also called as the grid method [2]. Despite of the existence of other

C

2 2

Adaptive Multi-level Hashing for Moving Objects 9 1

alternative index structures, the hashing method is widely adopted because it is
simple, easy for implementation, and able to support a large number of frequent
updates well [2, 6, 7]. Note that, from now on, the hashing in this paper represents
the hash-based index structure using the uniform grid for moving objects.

The size of a grid cell is one of the most important factors that affect the
performance of the hashing. If a large grid cell is used, which means that the
number of grid cells is small, each hash bucket has to keep a lot of data items.
Consequently, it suffers from the performance deterioration due to a long chain
of overflow pages, which incurs a large number of disk accesses. On the contrary,
in case of a small grid cell, the update performance becomes worse because a
lot of hash buckets are required for the grid cells. Therefore, it is significantly
critical to select the appropriate size of a grid cell with regard to the workload
of queries and the distribution of data.

In many real applications, however, it is not easy to decide the appropriate
size of a grid cell at the beginning because the workload or the distribution of
data may change dynamically during the execution. For example, in the commut-
ing time, the positions of most objects, e.g. people or cars, would move relatively
fast and continuously. Therefore, the location management system might have
to process large volumes of update operations in this period. On the other hand,
most objects would be quasi-static in the night or in the office hours. Since the
size of a cell cannot be changed during the execution, the hashing method cannot
support this dynamic workload efficiently with the static size of a cell.

In this paper, to solve this problem, we propose the adaptive multi-level
hashing for moving objects. The proposed method maintains two levels of hash
structures. The upper level of the hashes, which is for the fast moving objects,
uses a large grid cell to support update queries efficiently. The lower level of the
hashes, which is for quasi-static objects, uses a small grid cell to support search
queries efficiently. A moving object can change its level adaptively according
to the degree of its agility. By adaptive escalating and de-escalating between
two levels, the adaptive multi-level hashing can support the dynamic workload
efficiently.

The rest of the paper is organized as follows. Section 2 explains the basic
hashing method for moving objects. In Section 3, we propose the adaptive multi-
level hashing to handle the dynamic workload. Related work is briefly discussed
in Section 4. Finally, Section 5 concludes the paper.

2 Basic Hashing Algorithms for Moving Objects

The basic idea of hashing techniques for moving objects is introduced in [1].
Hash-based approaches for moving objects are principally identical with general
hash-based file structures. An object is stored into the corresponding hash bucket
to the hash value of its location. The algorithms for the basic hashing are as
follows.

2

9 2 D. Kwon et al.

Obj1 Obj1

(a) 4x4 grid (b) 8x8 grid

Fig. 1. Example of simple grids

Insert. Calculate the hash value of the given position of an object, then store
the object into the corresponding disk bucket to the hash value.

Search. Examine all hash buckets that intersects the given query range.

Delete. Search the object, then delete it from the hash bucket.

Update. Search the object, then delete it from the old bucket and insert it into
the new bucket again.

A simple grid is typically used as a hash function for moving objects. Figure
1 shows an example of a simple grid. The grid divides the domain space of the
locations of moving objects into i×i equally-sized square. Figure 1 (a) uses a 4×4
grid and Figure 1 (b) uses an 8 × 8 grid. It is critical to decide the appropriate
size of a grid cell for the performance of the hashing. In general, the small size
of a grid cell, which means a fine grid, is good for search operations. A large
size of a grid cell, which means a coarse grid, is good for update operations. For
example, suppose that the Obj1 moves to a new position along the arrowed line
in Figure 1. If a coarse grid like in Figure 1 (a) is used, the position of the Obj1
is updated only in the corresponding hash bucket. On the other hand, if a fine
grid like in Figure 1 (b) is used, the Obj1 should be moved from the bucket for
the original position to the bucket for the new position. Therefore, a coarse grid
is generally better than a fine one for the update operations. However, since the
coarse grid usually has to keep more data items in the bucket, it needs more disk
pages. As a result, for the search operations, it needs to access more disk pages
for retrieving one hash bucket. Therefore, the search performance of a coarse
grid is worse than that of a fine one.

3 Adaptive Multilevel Hashing

3.1 Motivation

In many real applications, we have observed the following characteristics for
moving objects.

2

Adaptive Multi-level Hashing for Moving Objects 9 3

1. The workload of update operations changes dynamically as time.
For example, the traffic is generally heavy in the commuting time. On the
contrary, it is relatively lighter in office hours, and only a few cars move in
the night.

2. The movement of an object maintains for a certain period.A moving
object generally has its destination. Until it reaches the destination, it moves
continuously. Once arriving at the destination, it generally stops moving and
stays in static state for a long time, e.g. a parked car.

3. Most moving objects are in quasi-static state most of time. The
term ”quasi-static” means that objects do not move or move slowly only
within a small region of space such as an office or home. According to [8],
most of objects, especially human beings, are in a quasi-static state most of
the time.

The basic hashing cannot support the dynamic workload because the size of a
grid cell is fixed at the initial time and cannot be changed during the execution.
In addition, most objects are in quasi-static state and only a few objects move
continuously for a certain period. However, the basic hashing stores these two
types of objects into a hash structure together. Therefore, it is not efficient for
update operations.

3.2 Adaptive Multi-level Hashing

To solve the problem of the basic hashing, we propose the adaptive multi-level
hashing. The adaptive multi-level hashing consists of two levels of hash structures
with different grid sizes. Figure 2 shows a basic concept of the adaptive multi-
level hashing. The upper level of the hashes, named the Coarse-Hash, is for fast
moving objects. It uses a large grid cell to support update queries efficiently.
The lower level of the hashes, named the Fine-Hash, is for quasi-static objects.
It uses a small grid cell for search operations.

In each hash structure in our approach, the basic algorithms of insert, search,
and update operations are the same as the basic hashing. The difference is that
the adaptive multi-level hashing has mechanisms for the escalation and the

Fine Grid

Coarse Grid

Escalate
DeEscalate

Fig. 2. Adaptive multi-level hashing

2

9 4 D. Kwon et al.

de-escalation. The escalation means the migration from the Fine-Hash to the
Coarse-Hash, and the de-escalation means the opposite, the migration from the
Coarse-Hash to the Fine-Hash.

3.3 Escalation

The escalation occurs during update operations. If a new position of an object is
still in the grid cell which it belongs to, the same update algorithm as the basic
hashing is used. However, if an object in the Fine-Hash moves out of the grid
cell, it is recognized as a fast moving object. In this case, instead of updating in
the Fine-Hash, the system escalates the object to the Coarse-Hash.

3.4 De-escalation

The de-escalation is the opposite operation of the escalation. It is not practical
to perform the de-escalation in the update process because it is too expansive
to examine all the objects in the Coarse-Hash in every update operation. For a
search query, the system should examine both of the hashes. The de-escalation
occurs with this search examination. Firstly, the system checks all the hash
buckets which intersect a given query range in the Coarse-Hash. During this
examination, it also finds expired objects for the de-escalation. Each object has
a time-stamp for the last modification time, and an object that does not move
for a given threshold time is expired. Among the expired objects, the system
de-escalates the objects which can be stored in the corresponding grid cell to the
query region in the Fine-Hash. For the de-escalate, the objects are deleted from
the Coarse-Hash, and preserved in a temporary list. During the examination of
the Fine-Hash, the expired objects in the temporary list are inserted again in
the Fine-Hash.

4 Related Work

Several spatio-temporal index structures have been proposed for indexing moving
objects. A detailed survey can be found in [9].

The Time-Parameterized R-tree (TPR-tree) [3] and its variants (e.g. TPR*-
tree [4]) are the examples of this type of index structures. The main drawback of
this approach is that it is hard to find an appropriate function for the movements
in many real applications. If the movements of objects are complicated or not
linear, this approach is not suitable.

The Lazy Update R-tree (LUR-tree) [5] aims to support frequent updates by
reducing overhead in the update operation in the R-tree. It changes the structure
of the index only when the new position of an object is out of the corresponding
MBR. With adding a secondary index on the R-tree, it can perform the update
operation in the bottom-up way. Lee et al. [10] extends the main idea of [5]
and generalizes the bottom-up approach for updating the positions of moving
objects.

The Q+Rtree [8] is a hybrid tree structure which consists of both the LUR-
tree and the Quad-tree. It uses the LUR-tree for quasi-static objects and the

2

Adaptive Multi-level Hashing for Moving Objects 9 5

Quad-tree for fast moving objects. Since an object moves in two types of in-
dex structures adaptively, the Q+Rtree looks similar to our work. However, the
Q+Rtree has pre-defined topological regions for the fast movements, and it rec-
ognizes all objects in the regions as fast moving objects. On the contrary, the
adaptability of our work is based on the agility of an object itself. Therefore, our
work does not need pre-defined regions.

5 Conclusion

Although several complicate index structures have been proposed, the hash-
ing for moving object is widely used due to its simplicity and convenience for
processing. However, the basic hashing cannot handle the dynamic workload of
moving objects. In this paper, we have proposed the adaptive multi-level hashing
method for the dynamic workload. Our proposed method maintains two levels
of hashes, one for fast moving objects and the other for quasi-static objects. By
escalating and de-escalating an object between two levels, the proposed method
can support the dynamic workload adaptively.

References

1. Song, Z., Roussopoulos, N.: Hashing moving objects. In: Proceedings of the 2nd
Int’l. Conf. on Mobile Data Management. (2001) 161–172

2. Chon, H.D., Agrawal, D., Abbadi, A.E.: Using space-time grid for efficient manage-
ment of moving objects. In: Proceedings of the 2nd ACM international workshop
on Data engineering for wireless and mobile access, ACM Press (2001) 59–65

3. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions
of continuously moving objects. In: Proceedings of the 2000 ACM SIGMOD Int’l.
Conf. on Management of Data. (2000) 331–342

4. Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An optimized spatio-temporal
access method for predictive queries. In: Proceedings of 29nd Int’l. Conf. on Very
Large Data Bases. (2003) 790–801

5. Kwon, D., Lee, S., Lee, S.: Indexing the current positions of moving objects using
the Lazy Update R-tree. In: Proceedings of the 3nd Int’l. Conf. on Mobile Data
Management. (2002) 113–120

6. Chon, H.D., Agrawal, D., Abbadi, A.E.: Storage and retrieval of moving objects.
In: Proceedings of the 2nd Int’l. Conf. on Mobile Data Management. (2001) 173–
184

7. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: scalable incremental processing of
continuous queries in spatio-temporal databases. In: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, ACM Press (2004)
623–634

8. Xia, Y., Prabhakar, S.: Q+Rtree: Efficient indexing for moving object databases.
In: Proceedings of the Eighth International Conference on Database Systems for
Advanced Applications, IEEE Computer Society (2003) 175

9. Mokbel, M.F., Ghanem, T.M., Aref, W.G.: Spatio-temporal access methods. IEEE
Data Engineering Bulletin 26 (2003) 40–49

10. Lee, M.L., Hsu, W., Jensen, C.S., Cui, B., Teo, K.L.: Supporting frequent updates
in R-Trees: A bottom-up approach. In: Proceedings of 29nd Int’l. Conf. on Very
Large Data Bases. (2003) 608–619

2

Author Index

Afrati, Foto 548
Aghili, S. Alireza 17
Agrawal, Divyakant 17, 662
An, Aijun 851
An, Jiyuan 385

Bae, Sung Min 840
Bakiras, Spiridon 201
Balke, Wolf-Tilo 410
Bertino, Elisa 2
Bhowmick, Sourav S. 711, 724, 736

Cai, Zhihua 688
Cao, Xia 4
Chan, Chee-Yong 113
Chang, Ya-Hui 94
Chen, Arbee L.P. 163, 240
Chen, Ling 736
Chen, Tzung-Shi 561
Chen, Ya Bing 773
Chen, Yi-Ping Phoebe 385
Chen, Zhuo 311
Chia, Liang-Tien 736
Chirkova, Rada 548
Cho, Chung-Wen 163
Choi, Jin-Oh 625
Choi, Wonik 9 0
Chong, Zhihong 422
Chowdhary, Vishal 447
Cui, Bin 600

Dashti, Ali E. 461
Dobbie, Gillian 311
Dong, Guozhu 175

El Abbadi, Amr 17, 662

Feng, Jianhua 594
Feng, Ying 662
Fu, Kun 474
Furtado, Pedro 555

Ghodsi, Mohammad 588
Goh, Shen Tat 201
Grossmann, Matthias 779
Güntzer, Ulrich 410
Guo, Hang 594
Guo, Hong 226
Guo, Qi 594
Guo, Zhimao 372
Gupta, Himanshu 447
Gupta, Shalu 548

Hacıgümüş, Hakan 43
Han, Wook-Shin 95
Han, Zhongming 138
Hara, Takahiro 300
Haritsa, Jayant R. 214
Hassanzadeh, Oktie 588
Hou, Wen-Chi 226
Hsu, Shih-Chun 561
Hsu, Wynne 523, 649
Hu, Dongdong 828
Hu, Jianjun 576
Huang, Sheng 359
Huang, Xiangji 851
Hwang, Jeong Hee 9 0

Iyer, Bala 43

Jakob, Mihály 779
Jampani, Ravindranath 761
Jiang, Chunyu 175
Jiang, Daxin 188
Jiang, Liangxiao 688
Jiang, Yongguang 576
Jiao, Enhua 113
Jin, Xiaoming 56
Jung, Min-Ok 151

Kalnis, Panos 201
Kamali, Shahab 588
Kang, Ji-Hoon 151
Kang, Tae Ho 8 5
Kim, Byung-Kyu 151
Kim, Jin-Deog 625

8

2

0

7

9 8 Author Index

Kim, Seon Ho 461
Kitsuregawa, Masaru 276, 487
Koh, Jia-Ling 568
Kriegel, Hans-Peter 511, 748
Kumaran, A. 214
Kunath, Peter 748
Kwon, Dongseop 9 0

Lai, Pohsan 30
Lau, Ho-Lam 68, 81
Le, Jiajin 138
Lee, Byung Suk 95
Lee, Ken C.K. 612
Lee, Min-Woo 151
Lee, Mong Li 523, 649, 773
Lee, Sangjun 9 0
Lee, Seok Jae 8 5
Lee, Sukho 9 0
Lee, Yong-Hee 151
Lei, Shan 637
Leonardi, Erwin 711
Leong, Hong Va 612
Leong, Tzeyun 30
Li, Changqing 125, 582
Li, Chuan 576
Li, Deyi 3, 56
Li, Hua-Gang 662
Li, Jinyan 175
Li, Qing 816
Li, Shuai Cheng 4
Li, Xiaoguang 536
Li, Zhao 347
Liao, Guoqiong 8 3
Lin, Dan 600
Lin, Li 30
Ling, Tok Wang 113, 125, 311, 582,

773, 9 7
Liu, Greg 94
Liu, Mengchi 323
Liu, Ning-Han 240
Liu, Yunsheng 8 3
Loftis, Charles 548
Lu, Hongjun 422
Lu, Qin 612
Luo, Yi 816

Madria, Sanjay 711
Meng, Xiaofeng 828
Mehrotra, Sharad 43

Monemizadeh, Morteza 588
Moon, Sang-Ho 625

Navathe, Shamkant B. 288
Ng, Wee Kong 347
Ng, Wilfred 68, 81
Ngu, Anne H.H 253
Nguyen, Van Trang 9 0
Ni, Wei 9 7
Nicklas, Daniela 779
Nishio, Shojiro 300
Nørv̊ag, Kjetil 791
Nybø, Albert Overskeid 791

Oguchi, Masato 487

Park, Jong-Hyun 151
Park, Sang Chan 840
Park, Young-Ho 95
Pei, Jian 175, 188
Peng, Dunlu 359
Peng, Jing 576
Peng, Zhiyong 816
Pfeifle, Martin 748
Pokorný, Jaroslav 803
Prabhakar, Sunil 637
Prasad, Sushil K. 288
Pryakhin, Alexey 511
Pudi, Vikram 761
Pyon, Chong Un 840

Qian, Weining 435, 498
Qin, Shouke 435

Renz, Matthias 748
Ryu, Keun Ho 9 0

Schubert, Matthias 511
Shan, Zhe 816
Shen, Jialie 253
Shepherd, John 253
Skopal, Tomáš 803
Snášel, Vášclav 803
Song, Seok Il 8 5
Su, Jiang 688
Sun, Jianzhong 637
Sun, Jing 594
Sun, Weiwei 9 4
Suyoto, Iman S.H. 265

AparnaNagargadde 675,

KrithiRamamritham 675,

Mitschang, Bernhard 779

2

2
7
2

6

0
8

6

0
0

0

7

1

2

Author Index 9 9

Tan, Kian-Lee 201, 600
Tang, Changjie 576
Tang, Shiwei 699
Tu, KeWei 8 8
Tung, Anthony K.H. 4

Uchida, Wataru 300
Uitdenbogerd, Alexandra L. 265

Wang, Botao 276
Wang, Daling 536
Wang, Guoren 323, 398
Wang, Haixun 239
Wang, Jianmin 56
Wang, Junhu 335
Wang, Junmei 649
Wang, Wei 239
Wang, Xiaoling 359, 372
Wang, Xiaoyuan 9 4
Whang, Kyu-Young 95
Wong, Limsoon 30, 175
Woo, Ji Young 840
Wu, Sue-Shain 94
Wu, Yi-Hung 163, 240

Xi, Congting 138
Xia, Yuni 637
Xiao, Yingyuan 8 3
Xie, Wanxia 288
Xie, Zhipeng 523

Xu, Linhao 498
Xu, Qinying 385

Yamaguchi, Saneyasu 487
Yan, Feng 226
Yang, Dongqing 699
Yao, Qingsong 851
Yo, Pei-Wy 568
Yong, Xiaojia 576
Yoo, Jae Soo 8 5
Yu, Ge 398, 536
Yu, Jeffrey Xu 422
Yu, Philip S. 1
Yu, Yong 8 8

Zhang, Aidong 188
Zhang, Harry 688
Zhang, Ming 699
Zhang, Qing 523, 9 4
Zhang, Wang 276
Zhang, Wei 311
Zhang, Zhengjie 422
Zhang, Zhihao 56
Zhang, Zhiqiang 594
Zhao, Peixiang 699
Zhao, Qiankun 724
Zheng, Jason Xin 410
Zhou, Aoying 359, 372, 422, 435, 498
Zhou, Jing 612
Zhou, Shuigeng 498
Zhou, Xiangmin 398
Zhou, Xiaofang 385, 398
Zhu, Qiang 226
Zimmermann, Roger 461, 474

a a a ,r j narad SridharV 675

8

1

8

6

7

8

1

2

	Frontmatter
	Keynotes
	Data Stream Mining and Resource Adaptive Computation
	Purpose Based Access Control for Privacy Protection in Database Systems
	Complex Networks and Network Data Mining

	Bioinformatics
	Indexing DNA Sequences Using q-Grams
	PADS: Protein Structure Alignment Using Directional Shape Signatures
	LinkageTracker: A Discriminative Pattern Tracking Approach to Linkage Disequilibrium Mapping

	Watermarking and Encryption
	Query Optimization in Encrypted Database Systems
	Watermarking Spatial Trajectory Database
	Effective Approaches for Watermarking XML Data

	XML Query Processing
	A Unifying Framework for Merging and Evaluating XML Information
	Efficient Evaluation of Partial Match Queries for XML Documents Using Information Retrieval Techniques
	PathStack<Superscript>{\textlnot}</Superscript>: A Holistic Path Join Algorithm for Path Query with Not-Predicates on XML Data

	XML Coding and Metadata Management
	An Improved Prefix Labeling Scheme: A Binary String Approach for Dynamic Ordered XML
	Efficiently Coding and Indexing XML Document
	XQuery-Based TV-Anytime Metadata Management

	Data Mining
	Effective Database Transformation and Efficient Support Computation for Mining Sequential Patterns
	Mining Succinct Systems of Minimal Generators of Formal Concepts
	A General Approach to Mining Quality Pattern-Based Clusters from Microarray Data

	Data Generation and Understanding
	Real Datasets for File-Sharing Peer-to-Peer Systems
	{\sf SemEQUAL}: Multilingual Semantic Matching in Relational Systems
	A Metropolis Sampling Method for Drawing Representative Samples from Large Databases

	Panel
	Stay Current and Relevant in Data Mining Research

	Music Retrieval
	An Efficient Approach to Extracting Approximate Repeating Patterns in Music Databases
	On Efficient Music Genre Classification
	Effectiveness of Note Duration Information for Music Retrieval

	Query Processing in Subscription Systems
	A Self-Adaptive Model to Improve Average Response Time of Multiple-Event Filtering for Pub/Sub System
	Filter Indexing: A Scalable Solution to Large Subscription Based Systems
	Caching Strategies for Push-Based Broadcast Considering Consecutive Data Accesses with Think-Time

	Extending XML
	XDO2: A Deductive Object-Oriented Query Language for XML
	Extending XML with Nonmonotonic Multiple Inheritance
	Database Design with Equality-Generating Dependencies

	Web Services
	WDEE: Web Data Extraction by Example
	Concept-Based Retrieval of Alternate Web Services
	WSQuery: XQuery for Web Services Integration

	High-Dimensional Indexing
	A New Indexing Method for High Dimensional Dataset
	BM<Superscript> + </Superscript>-Tree: A Hyperplane-Based Index Method for High-Dimensional Metric Spaces
	Approaching the Efficient Frontier: Cooperative Database Retrieval Using High-Dimensional Skylines

	Sensor and Stream Data Processing
	False-Negative Frequent Items Mining from Data Streams with Bursting
	Adaptively Detecting Aggregation Bursts in Data Streams
	Communication-Efficient Implementation of Join in Sensor Networks

	Database Performance Issues
	Zoned-RAID for Multimedia Database Servers
	Randomized Data Allocation in Scalable Streaming Architectures
	Trace System of iSCSI Storage Access and Performance Improvement
	{\sc CoCache}: Query Processing Based on Collaborative Caching in P2P Systems

	Clustering, Classification and Data Warehouses
	Multi-represented {\itshape k}NN-Classification for Large Class Sets
	Enhancing SNNB with Local Accuracy Estimation and Ensemble Techniques
	MMPClust: A Skew Prevention Algorithm for Model-Based Document Clustering
	Designing and Using Views to Improve Performance of Aggregate Queries (Extended Abstract)
	Large Relations in Node-Partitioned Data Warehouses

	Data Mining and Web Data Processing
	Mining Frequent Tree-Like Patterns in Large Datasets
	An Efficient Approach for Mining Fault-Tolerant Frequent Patterns Based on Bit Vector Representations
	NNF: An Effective Approach in Medicine Paring Analysis of Traditional Chinese Medicine Prescriptions
	From XML to Semantic Web
	A Hybrid Approach for Refreshing Web Page Repositories
	Schema Driven and Topic Specific Web Crawling

	Moving Object Databases
	Towards Optimal Utilization of Main Memory for Moving Object Indexing
	Aqua: An Adaptive QUery-Aware Location Updating Scheme for Mobile Objects
	A Spatial Index Using MBR Compression and Hashing Technique for Mobile Map Service

	Temporal Databases
	Indexing and Querying Constantly Evolving Data Using Time Series Analysis
	Mining Generalized Spatio-Temporal Patterns
	Exploiting Temporal Correlation in Temporal Data Warehouses

	Semantics
	Semantic Characterization of Real World Events
	Learning Tree Augmented Naive Bayes for Ranking
	Finding Hidden Semantics Behind Reference Linkages : An Ontological Approach for Scientific Digital Libraries

	XML Update and Query Patterns
	{\sc Xandy}: Detecting Changes on Large Unordered XML Documents Using Relational Databases
	FASST Mining: Discovering Frequently Changing Semantic Structure from Versions of Unordered XML Documents
	Mining Positive and Negative Association Rules from XML Query Patterns for Caching

	Join Processing and View Management
	Distributed Intersection Join of Complex Interval Sequences
	Using Prefix-Trees for Efficiently Computing Set Joins
	Maintaining Semantics in the Design of Valid and Reversible SemiStructured Views

	Spatial Databases
	DCbot: Finding Spatial Information on the Web
	Improving Space-Efficiency in Temporal Text-Indexing
	Nearest Neighbours Search Using the PM-Tree

	Enhancing Database Services
	Deputy Mechanism for Workflow Views
	Automatic Data Extraction from Data-Rich Web Pages
	Customer Information Visualization via Customer Map
	Finding and Analyzing Database User Sessions

	Recovery and Correctness
	Time-Cognizant Recovery Processing for Embedded Real-Time Databases
	An Efficient Phantom Protection Method for Multi-dimensional Index Structures
	CMC: Combining Multiple Schema-Matching Strategies Based on Credibility Prediction

	XML Databases and Indexing
	Translating XQuery to SQL Based on Query Forests
	A New Indexing Structure to Speed Up Processing XPath Queries
	Translate Graphical XML Query Language to SQLX
	GTree: An Efficient Grid-Based Index for Moving Objects
	Adaptive Multi-level Hashing for Moving Objects

	Backmatter

