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Preface

Welcome to the proceedings of the 5th International Conference on Scale-Space
and PDE Methods in Computer Vision.

The scale-space concept was introduced by lijima more than 40 years ago
and became popular later on through the works of Witkin and Koenderink. It
is at the junction of three major schools of thought in image processing and
computer vision: the design of filters, axiomatic approaches based on partial
differential equations (PDEs), and variational methods for image regularization.
Scale-space ideas belong to the mathematically best-understood approaches in
image analysis. They have entered numerous successful applications in medical
imaging and a number of other fields where they often give results of very high
quality.

This conference followed biennial meetings held in Utrecht, Corfu, Vancouver
and Skye. It took place in a little castle (Schlosschen Schénburg) near the small
town of Hofgeismar, Germany. Inspired by the very successful previous meeting
at Skye, we kept the style of gathering people in a slightly remote and scenic
place in order to encourage many fruitful discussions during the day and in the
evening.

We received 79 full paper submissions of a high standard that is characteristic
for the scale-space conferences. Each paper was reviewed by three experts from
the Program Committee, sometimes helped by additional reviewers. Based on
the results of these reviews, 53 papers were accepted. We selected 24 manuscripts
for oral presentation and 29 for poster presentation.

It is a tradition at scale-space conferences to invite keynote speakers who
can provide valuable additional inspirations beyond the mainstream topics in
scale-space analysis. Also this time it was our pleasure to thank three leading
experts for accepting our invitation for a keynote lecture: Prof. Achi Brandt of
The Weizmann Institute of Science (Rehovot, Israel), Prof. Michael Unser of
the Swiss Federal Institute of Technology (Lausanne, Switzerland), and Prof.
Carl-Fredrik Westin of the Harvard Medical School (Boston, USA).

We thank all authors for their excellent contributions, and the referees for
their time and valuable comments. Regarding local arrangements, we are in-
debted to the staff at Schlésschen Schoénburg, as well as to Bernhard Burgeth,
Martin Welk, and Uta Merkle of Saarland University. We also thank Micha Fei-
gin, Julia Getslev and Lori Sochen for their help with the website and Yana
Katz for her help with the proceedings. Finally we are grateful to the German
Pattern Recognition Society (DAGM) for sponsorship.

We wish you an exciting journey through the latest results on scale-space
ideas in image analysis.

April 2005 Ron Kimmel, Nir Sochen, and Joachim Weickert
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Relativistic Scale-Spaces

Bernhard Burgeth, Stephan Didas, and Joachim Weickert

Mathematical Image Analysis Group,

Faculty of Mathematics and Computer Science, Bldg. 27,
Saarland University, 66041 Saarbriicken, Germany
{burgeth, didas, weickert}@mia.uni-saarland.de
http://www.mia.uni-saarland.de

Abstract. In this paper we extend the notion of Poisson scale-space. We
propose a generalisation inspired by the linear parabolic pseudodifferen-
tial operator vV—A 4+ m?2 —m, 0 < m, connected with models of relativis-
tic kinetic energy from quantum mechanics. This leads to a new family
of operators {Q7" |0 < m, t} which we call relativistic scale-spaces. They
provide us with a continuous transition from the Poisson scale-space
{P, | t > 0} (for m = 0) to the identity operator I (for m — +o00).
For any fixed to > 0 the family {Q7; | m > 0} constitutes a scale-space
connecting I and P;,. In contrast to the a-scale-spaces the integral ker-
nels for Q7" can be given in explicit form for any m,t > 0 enabling us to
make precise statements about smoothness and boundary behaviour of
the solutions. Numerical experiments on 1D and 2D data demonstrate
the potential of the new scale-space setting.

Keywords: Kinetic energy, Poisson scale-space, semigroup, pseudodif-
ferential operator.

1 Introduction

The pioneering work of Taizo lijima [16] in the late fifties, though unrecognised
in the western scientific world for decades, marks the actual beginning of modern
scale-space theory. Since then the vivid research on scale-space methodologies
has brought forward many valuable techniques in image processing and com-
puter vision, as it is documented in numerous articles and books, see [24,11, 31,
21,28,33] and the literature cited there. The Gaussian scale-space is the pro-
totype of a linear scale-space. Its connection to linear diffusion processes was
first pointed out by Ilijima [17]. However, the field of non-linear diffusion, insti-
gated by the influential work of Perona and Malik [25] also exhibits scale-space
properties. These non-linear theories encompass anisotropic diffusion processes
[33, 26], morphological operations [32, 6, 18] as well as the evolution of level curves
[2,23,27,19]. Non-linear differential equations are the mathematical language to
describe these theories [31,33,14,3,12,7].

Nevertheless, the exploration of the axiomatic principles of the various scale-
space approaches [4,33,11, 22,24, 34] usually emanates from the assumption of

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 1-12, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 B. Burgeth, S. Didas, and J. Weickert

linearity, that is to say, the validity of the superposition principle. In this linear
setting the Gaussian scale-space basically had played the leading role in a one
man show until the Poisson scale-space from potential theory has been made
popular in image processing by Felsberg and Sommer [10].

Soon after the so-called a-scale-spaces with o € [%, 1] have been advocated
to bridge the gap between those two prominent representatives since they are
ruled by the pseudodifferential equations dyu = (—A)“w with initial condition
u(z,0) = f(z), (for more details and a histortic overview consult the very com-
prehensive article [8] by Duits et. al. and the literature cited therein). In this
setting a = 0 produces the family of identity operators I, a = % corresponds
to the Poissonian, while @ = 1 delivers the Gaussian version of a linear scale-
space. For the later two cases explicit integral representation formulas are known
utilising the Poisson and the Gaussian kernel.

The primary tool for the investigation of the a-scale-spaces are Fourier meth-
ods since, unfortunately, no explicit integral kernel can be determined. In our
paper, however, we propose a counterpart to a-scale-spaces that admits explicit
kernel representations. We generalise the Poisson scale-space to a novel scale-
space by exploiting the properties of a pseudodifferential operator known from
Schrodinger operators in relativistic quantum mechanics [20]. The pseudodiffer-
ential operators in question read

V—A+m?—m,

and represent the kinetic energy operators in relativistic systems with m > 0
denoting mass. Therefore we will refer to these novel scale-spaces as relativistic
scale-spaces in the sequel. Though heavily taking advantage of spectral methods
during the theoretical investigation of this family of operators (indexed by m)
we emphasise that the associated integral kernels can be computed explicitly.
The knowledge of these kernels enables us to employ techniques from analysis
to prove regularity and a maximum-minimum-principle for the solutions of the
associated evolution equation.

In the sequel F(f) will denote the Fourier transform of a function f € L?(IR")
given by

FOW = [ e j(o)do.

The structure of our paper is as follows: After a very brief motivating account
of some basic facts about Poisson and Gaussian scale-space we introduce and
study the relativistic scale-spaces. Section 3 reports on experiments displaying
the potential and limitations of the novel scale-spaces while a summary and an
outlook for future research in Section 4 conclude the paper.

2 Relativistic Scale-Spaces

We recall [9,20] that the action of the Laplace operator A = " , 8%2_2 on

functions in the Fourier domain is multiplication by —4m?|k|?, i.e.
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F(Af) = —4m®|k[*F(f)

while the convolution with the heat or Gaussian kernel G(z,t,y) means multi-
plication with e~* 47 IF* | F(G % f) = e~t 4=°IF* F(f) providing solutions of the
heat equation dyu = Au.

Furthermore, the action of the pseudodifferential operator v—A is multi-
plication by —2x|k|, while convolution with the Poisson kernel P(-,¢) means
multiplication with e~* 271%| in the Fourier domain. The Poisson kernel appears
as the inverse Fourier transform F~! of e~* 27kl

P(Z‘ _ y,t) _ jjfl(eft 27r|-\) _ / €7t27r|k\+27rik-(mfy) dk .

n

This integral can be evaluated in every dimension n yielding the well-known
explicit formula for the Poisson kernel [29]

n+1 1 t
Pz —y,t :F( > = — . 1
) 2 ) 7 (2t o -y "

The kernel itself and all convolutions P(-,t) % f with suitable functions f solve
in a certain sense the pseudodifferential equation d;u = v/—Aw. The heat and
the Poisson kernel generate the Gaussian, resp., the Poisson scale-space.

This can be generalised as follows: In quantum mechanics the pseudodif-
ferential operator L := v/—A + m?2 — m describes the relativistic kinetic en-
ergy of a particle with mass m > 0 [20] seemingly extending the Poisson op-
erator. In Fourier space this operator acts on function by multiplication with
v [27k|?2 + m? —m as a straightforward computation shows. According to stan-
dard spectral methods the corresponding integral operator in Fourier space reads

et (W 12mk|2+m2—m)
The inverse Fourier transform of this exponential

To(w =y, ) = F1 (7t WVATTTREmm)) (g )

can be calculated explicitly yielding the expression

wer Ko (/2 1 2 — ) (2)
4

n+1
= t

Tz —y,t):=2 (%) S oetm

(82 + |z —y[?)

for (z —y,t) € R™x]0,4o00[. Here K, stands for the modified Bessel function of
the third kind [1,13]. We briefly sketch the computational steps by pointing out
the formulas

[ ¢ = m) B2 ()
Sn—l
and

2 a
/ 2 (as) e VI =\ [ Zap i (8P 4 a?) TE TS K, 5 (Vs Fa?),
s

[0,400]
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s m=3
Relativistic

Poisson
m=1

m=0.05

Poisson

S

Fig.1. Left: Comparison between different kernels including Poisson, eqn. (1) and
relativistic kernel, eqn. (2) in 1D for y = 0 and ¢t = 1. Right: Examples of the relativistic
kernel (2) with m = 3, 1, ,0.05 in comparison with the Poisson kernel (1) for y = 0
and t = 1.5

where J, denotes the v-th order Bessel function. For later use we define the
operator Q" on L*(IR") via the convolution

P f() o= T 1) 5 f (2) = / Toule — 9,0 f(y) dy. (3)

]Rn

2.1 Comparison with the Poisson Kernel

For m | 0 we regain the Poisson kernel which follows from
F(QM) (k) = et WRrkPAm2=m) _ o=t 2nlk] if 1 | (4)

for any complex number k together with the continuity of the (inverse) Fourier
transform (according to a theorem of P. Levy) [5]. Furthermore, since

FQ) (k) = e7t WRrPEm2=m) 9 if s 400,

a similar reasoning proves that Q}* approximates therefor the identity operator
I if m is large. Remarkably, despite the approximation property (4), we learn
from the theory of Bessel functions [1,13] that K, (x) for any v > 0, and hence
T, as a function of = (or of y) decreases exponentially to 0 for x tending to
infinity, |z| — 400 . Figure 1 displays the relativistic kernel for various values of
m and also its comparison with a Poisson and a Gaussian kernel.

The relation between Poisson scale- +00 Iy _ Iy
space and the relativistic scale-spaces is ) T T
sketched in the diagram to the right. m QY =1Io Qr
{Q7 | 0 < t,m} is positioned between T 1 1
The Poisson scale-space {P; | 0 < t} 0 Ph=y —-—+— P

and {I | 0 < t} including them as lim-
iting cases. 0 - t
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2.2  Further Properties of the Relativistic Scale-Spaces

From the theory of contraction semigroups [15] we learn that the operator Q7"
determines a contraction semigroup on L?(IR") . Indeed, in view of Plancherel’s
theorem, it is enough to verify that the Fourier transforms F(Q}*) =

e tWIZrkPEm2=m) of the family {Qi"} satisfy the conditions

L FQU)F(f) = F(QTF(QMF(f) = F(QIMF(QY)F(f) for all 5,2 > 0.
2. |[F@QMFU) = FQRMF(f)ll2 — O for t — 5.

3. F(Q7') = 1, expressing the fact that QF* = I, the identity .

4. |FQTF(H)ll2 < IF()ll2, the contraction property.

Due to the properties of the exponentials e~ with ¢ > 0 it is not difficult to
check that the operator 7" indeed meets these conditions. The associated gen-
erator is the pseudodifferential operator L = v —A 4+ m2 — m with the Sobolev
space H!(IR") as its domain D(L). Here we followed [30] in the definition of the
Sobolev spaces

s
2

H*(R™) = {u € LX(R™) | (1+ |k[2)? F(u) € LQ(IR")} (5)

of all functions in L?(IR") and s € RR.
Next we are going to study in some detail the properties of the function
F,.(z,t) defined for f € L2(IR") by

Fulwt) = QP f(e) = [ Tule=v.00w)dy
with z € IR"™ and ¢ > 0. Since the Bessel functions K, (z) are analytic for 0 < z,
the following result is not surprising.
Proposition 2.1. F,, is analytic in IR™x]0, co[ for any function f € L?(IR").

Proof: Thanks to the analyticity of K, the function T' can be expanded locally
in a multivariate power series to the effect that the exchange of integration and
summation yields a corresponding expansion for F,.

Having the explicit integral kernel at our disposal will enable us to study the
boundary behaviour of F,,(z,t) as ¢ | 0. To this end we need the next lemma.

Lemma 2.2. For any z >0 and v > —% the following estimate holds:

K,(2) < Fé”) <2> . (6)
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Proof: Taking advantage of an integral representation in [13], page 958, and using
the well-known definition of the I'-function we obtain
z

K, (2) = V7 (5) r(y1+) /loo e (2 1) h at

Z\V 1 >
S - (7) 7/ eftzt21/71 dt
2) I'(v+3)Jo

) s () o ()22

This inequality is asymptotically (~) sharp since for z — 0,[1], page 375:
K, (z) ~ % (%)V . With this at our disposal we can proceed to the result

stating that F,,(-,t) = Q7" f has exactly the same boundary behaviour as the
corresponding functions stemming from the Gaussian or Poisson scale-space.

N

Theorem 2.3. Suppose that f is a continuous and bounded on R"™, f € C(IR")N
L>(IR"™), then the function Fp,(z,t) = Q7" f(x) satisfies the pseudodifferential
equation

OF, =(V-A+m?—m)F, (7)

for any t > 0 with the initial condition ltilrél Fon(,t)=f.

Proof: That F,,(x,t) satisfies (7) follows from the analysis above remembering

that the Fourier transform of v—A + m? — m is given by /4w2|k|?2 + m2 — m.
Also, as stated above, the corresponding solution operator is given by Q7*. In
order to prove the claimed boundary behaviour we observe that

/ Tz —y,t)dy = e t(VOEmI—m) _ 4 (8)

for all z € IR"™ and ¢ > 0, since the integral at the left side can be considered as
the Fourier transform F(T,,(-,t)) of T,,,(+,t) evaluated at k = 0.
Next we fix a g € IR™, e > 0, and choose § > 0 so small that if

ly — 20| < 6 for y € R™ then [ (y) — f(z0)| < e (9)

For (z,t) € R™x]0, +o0o[ with |(z,t) — (20,0)| < § we obtain the estimate

‘Ft(.’lﬁ,t)—f({l?o)l ’/]R" Tm(x_y’t)f(y) dy—f(l’o)/ Tm(m_y7t> dy

]Rn

< / Tz — 4.1 f (¥) — f(z0)| dy
B(xzo,6)

+/ o Ton(z =y, )| f(y) = f(zo)| dy
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The equality (8) and the restriction on y in (9) yield

I < / T(z —y,t)edy =¢.
If additionally |y — o] > 6 we find

ly — ol < [(y,0) = (2, 1) + |(z,) — (0,0

< 1(9,0) — )]+ 5 < 1,0) — (@, 0) + 3y — ol

which yields |(y,0) — (z,t)| > |y — xo| . This gives way to the estimates

I < 2||f||oo / Tm(aj - y,t) dy

IR”\B(xO,6)
=4l (o) *tm/ s s (|, 1) — (3,0)]) dy
o
R”\B(Jco,é)
m
<alfle () / Koy (o — ) dy
Bl 2|m0—y\) 2
m\ "3 1
<l (M) rw e [ om0
<2l (Z) 7 1) € ey — 0. as ]
IR"\ B(z0,6)

n41
The second inequality follows from the fact that ﬁ% and K, are decreasing
functions on |0, co[ while the last inequality is due to estimate (6) in lemma (2.2).
Hence, we deduce |Fy, (x,t) — f(zo)| < I + Iz < 2¢ as soon as |(x,t) — (zg, 0)| is
sufficiently small proving the continuity of F,, on the closed set R™ x [0, 4o0].

Summarising the analysis above we state

Proposition 2.4. 1. The families of operators {Q}* | t > 0} form for any fized
m > 0 additive semigroups.

2. For everyt > 0 the average grey-value is preserved under the action of Q7.

3. The operators Q" are translational invariant.

For large values of m the relativistic scale-spaces apparently approximate the
trivial scale-space {I; | t > 0} with I, = I, for all ¢ > 0, while for small m they
are very close to the Poisson scale-space.

However, with a fixed ¢y the family {Q}" | m > 0} is also a scale-space, but
it has no longer an additive semigroup property: Q7" Q)" # Q7" ™2,

We mention briefly that {Q{(t) | ¢ > 0} with an arbitrary decreasing function
f [0, +00][— [0,4o00][ also describes a scale-space relying on a non-additive
semigroup.
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3 Numerical Experiments with Relativistic Scale-Spaces

In this section we present some numerical experiments to visualise the proper-
ties of relativistic scale-spaces. We have implemented the methods in the Fourier
domain using the Discrete Fourier Transform (DFT) or Fast Fourier Transform
(FFT) for suitable data dimensions. The filtering operation then can be per-
formed as a multiplication of the Fourier coefficients with F(Q}"). Figures 2 and
3 show the simplifying effect of the relativistic scale-space in 1D and 2D for
fixed stopping time ¢t but varying parameter m. Vice versa, Fig. 4 shows a time
evolution for fixed value of m and increasing time ¢. For m = 0 this we would
obtain the Poisson scale-space.

original signal m=1000 —— m=100 —

Fig. 2. Relativistic scale-space in 1D. The stopping time ¢t = 100 is fixed. Top left:
Initial signal. The mass m decreases from the top middle to the bottom right

4 Conclusion

The goal of this paper is to propose the novel two-parameter family of rela-
tivistic scale-spaces as a generalisation of the well-known Poisson scale-space,
and as a counterpart to the a-scale-spaces. As such the relativistic scale-spaces
are generated by pseudodifferential operators and they provide a continuous in-
terpolation between the identity operator and the Poisson scale-space. Unlike
the a-scale-spaces these new scale-spaces admit integral representations with
explicit convolution kernels involving Bessel functions. This paves the way to
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m = 10

-

z

Initial image

-
w

m = 0.5 m = 0.2 m =20

Fig. 3. Relativistic scale-space in 2D. The stopping time ¢ = 100 is fixed. Top left:
Initial image. The mass m decreases from top middle to bottom right

prove analyticity and continuous extendability of the solutions of the relativistic
pseudodifferential equations.

This work evidences once more that spectral methods for pseudodifferential
operators are very useful for the study and extension of scale-space concepts.
Further generalisations of the relativistic scale-spaces in the framework of pseu-
dodifferential operators are close at hand. For instance, the “a-variant“ gener-
ated by (—A + mé)a — m is the subject of ongoing research. Future research
will also encompass the search for variational formulations hoping to discover
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z

Initial image t=20.1 t=1
t=10 t =50
t =100 t = 200 t = 1000

Fig. 4. Relativistic scale-space in 2D. The parameter m = 1.0 is fixed, and the time
increases from top left to bottom right

new valuable tools for image filtering, and to enhance insight into the structure
of scale-spaces.

Acknowledgements. We gratefully acknowledge partly funding by the Deut-
sche Forschungsgemeinschaft (DFG), project WE 2602/2-2. We also would like
to thank Andrés Bruhn for valuable advice concerning implementational issues.
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Abstract. We investigate the use of fractional powers of the Laplacian
for signal and image simplification. We focus both on their correspond-
ing variational techniques and parabolic pseudodifferential equations. We
perform a detailed study of the regularisation properties of energy func-
tionals, where the smoothness term consists of various linear combina-
tions of fractional derivatives. The associated parabolic pseudodifferen-
tial equations with constant coefficients are providing the link to linear
scale-space theory. These encompass the well-known a-scale-spaces, even
those with parameter values a > 1 known to violate common maximum-
minimum principles. Nevertheless, we show that it is possible to construct
positivity-preserving combinations of high and low-order filters. Numer-
ical experiments in this direction indicate that non-integral orders play
an essential role in this construction. The paper reveals the close rela-
tion between continuous and semi-discrete filters, and by that helps to
facilitate efficient implementations. In additional numerical experiments
we compare the variance decay rates for white noise and edge signals
through the action of different filter classes.

1 Introduction

Regularisation and diffusion filtering belong to the most frequently used and
best studied methods in image processing. In addition to the well-known Gaus-
sian scale-space [1, 2,3, 4, 5], other linear scale-spaces enjoy a growing popularity.
Already in the 1960’s Iijima [6, 7] gave an axiomatic foundation of a-scale-spaces
with integer order using four axioms: linearity, translational invariance, scale in-
variance, and semigroup property. Later on a whole class of linear scale-spaces
depending on a fractional order a > 0 was axiomatically deduced (Pauwels et al.
[8]). Duits et al. [9] further investigated the a-scale-spaces where a € (0, 1] can
be interpreted as fractional power the Laplacian in a pseudodifferential equa-
tion creating the scale-space. The restriction on o comes from the demand of a

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 13-25, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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maximum-minimum principle for the resulting filters. The most prominent rep-
resentative of linear scale-spaces with fractional order is the Poisson scale-space
by Felsberg and Sommer [10].

In our work we use fractional powers of the Laplacian not only in partial dif-
ferential equations, but also in regularisation methods. Besides the scale-space
properties we are especially interested in well-posedness and regularity proper-
ties. We see that variational methods allow it to prescribe a certain fractional
regularity order for a given image where diffusion methods always yield arbi-
trary smooth solutions. In our experiments we propose a way to construct filters
with maximum-minimum property which involve both high and low fractional
derivative orders.

The paper is organised as follows. In Section 2 we introduce the basic notions
related to fractional powers of the Laplacian. Section 3 presents fractional order
regularisation as a first application of these notions. The corresponding diffusion
equations are investigated in Section 4. Section 5 reformulates both approaches
in a space-discrete framework directly leading to efficient implementations. Our
numerical experiments in Section 6 especially are dedicated to the question of
maximum-minimum property and variance decay. Section 7 concludes the paper.

2 Fractional Powers of the Laplacian

In order to present an elegant concept for fractional powers of the Laplacian,
we have to introduce some basic notions first. First we consider the Fourier
transform of a function f € L'(IR) pointwise defined by

R 1 .
f& = E/]Rf(x)exp(—mf)dm

Let F : L?(R) — L%*(R) denote the Fourier-Plancherel transform, i. e. the
extension of the mapping L*(R) 5 f — f onto L(IR). It is well-known that
F is isometric with respect to the norm in L?(IR) (see [11] for details). Later on
we will especially make use of the property

reirr = (g 0
! dxk

which builds the link between differentiation in the spatial domain and multi-
plication in the Fourier domain. For f € L>*(IR) let M; : L*(R) — L*(R)
denote the multiplication operator defined by Mg := fg. With this notation

(1) reads as Mo Ff = F (d‘i—kk )
Lemma 2.1. For f,g € L*(IR) the multiplication operator My is L*(IR)-
continuous with ||My|| < ||f|lco- Further, fg € L*(IR) and MM, = My,.

Following the notation in [12] we define the Sobolev space

s
2

H*(R) = {ue L2R) | (1+¢%) o € L2(R) } (2)
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of all functions in L?(IR) and s € R. For s € IN functions in H*(IR) are weakly
differentiable up to the order s. From (1) we deduce the spectral decomposition

of the Laplacian —% =F 71M| ¢[2F which allows us to define fractional powers

a2\
DQQ = <d;1;2> =F 1M|€|2o(f (Oé > O) (3)

as multiplication operators in the Fourier domain (see [13, 14] for further details).

Lemma 2.2. Applying D% to functions in a certain Sobolev space reduces the
order of differentiability by «, i. e. D*: H*(IR) — H* *(IR) for all s € RR.

In the next sections we are going to replace derivative operators in classical
image processing approaches with operators of the type D* and investigate the
properties of the resulting filter methods.

3 Regularisation with Fractional Derivative Orders

To extend linear regularisation to fractional derivative orders we consider the
energy functional

Eu) = /m <<u 2+ B waku)Q) du (4)

k=1

with a linear combination of m € IN fractional derivatives of orders «;, > 0 in the
smoothness term and regularisation weights Gy > 0 for k = 1,...,m, for short,
a = (a1,...;am), B = (Bi,...,0m) € R} . For integer derivative orders ay,
similar functionals have been considered in [15]. We assume that the signals u
and f may only assume real values. With the Plancherel identity we can rewrite
functional (4) in the Fourier domain as

5(@):/IR<

depending on the complex Fourier transform 4. A decomposition into the real
and imaginary part shows that it is necessary for a minimiser u to satisfy the
Euler-Lagrange equation

i f + 3 |£“kﬂ|2> ¢ (5)
k=1

i—f+ > Blefra=0 forall¢eR . (6)
k=1
We deduce that the minimiser « of the functional £ has the Fourier transform
m -1
o = <1+Zﬁklfl2°‘k> f forallé €R . (7)
k=1

To obtain a regularised version of f we transform this minimiser @ in the spatial
domain which motivates the following definition:
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Definition 3.1. (Fractional Order Regularisation) For a = (aq,...,an),
B=(B1,-.-,08m) € R we denote the multipliers appearing in (7) with

m -1
rg:R— R,  r§():= (1 + Zmlﬁ”) (8)

k=1

and use these functions to define the reqularisation operators
R : L*(R) — L*(R), Rj=F "MgF . (9)

First we assure ourselves that the above definition leads to a continuous opera-
tor. Furthermore we give a measure for the increase of smoothness obtained by
applying a regularisation operator of this class.

Proposition 3.2. (Stability and Regularity of Regularisation)

1. The regularisation operator Rj is continuous with respect to the norm in
L?(IR) with RG] < 1.

2. Regularisation increases the smoothness order by twice the minimal deriva-
tive order:

For all s € R it is R§ : H*(R) — H5t20"(R) where o := min  ay.

.,m

Proof. 1. The Fourier multipliers satisfy 0 < r§(£) < 1 for all o, 8 € IR and

all £ € R, 1. e. [|[7§]|L~mr) < 1. Lemma 2.1 then shows that HMTS <1 and
IR5 1 < 7| [ Mo 10 <1 (10)
using the fact that the Fourier transform is L2-isometric.
2. Fix f € H*(R). First we note that
(141632 fe L’ (R) <« [¢°f € L*(R) . (11)
Thus it follows that
m ~1
(1 + stzak) €[+ f e LA(R) (12)
k=1
which implies RS f € H*"2*"(IR). O

For integer derivative orders a corresponding statement to the second part of the
previous lemma can be found in [15]. As they state for integer orders, also frac-
tional order regularisation is not a projection operator: Applying regularisation
iteratively increases the smoothness in each step by twice the minimal derivative
order o*. Starting with a function in L?(IR) we now are able to reach a given
degree of smoothness with linear regularisation. This smoothness property does
not depend on the size of the regularisation weights G; > 0. Two examples of
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" alpha=05beta=10 ——— " alpha=20beta=10 ——
discrete Fourier backtransform - discrete Fourier backtransform -------—

0.2 L L L L L 0.2

Fig. 1. Fourier multipliers and corresponding Fourier backtransforms for fractional
order regularisation. Left: a = 0.5, Right: oo = 2.0

the appearing Fourier multipliers are shown in Fig. 1. The multiplication in the
Fourier domain can be related to convolution for which the corresponding kernels
are also shown. The fact that the convolution kernel for a = 2.0 reaches nega-
tive values indicates that the corresponding filter violates a maximum-minimum
property. Besides its smoothing behaviour the linear filtering technique is also
expected to satisfy some scale-space properties. We summarise these in the case
of fractional order regularisation:

Proposition 3.3. (Scale-Space Properties of Regularisation) The regu-
larisation operators R are linear, translational invariant and preserve the av-

erage grey value, i. e. /]R( gf) (z)dx = /]Rf(as)dx.

Proof. For the translational invariance we note that translations correspond to
multiplications with phase factors exp(icf) of absolute value one in the Fourier
domain. Since the multipliers 73 only assume real values these do not affect the
argument of the Fourier coefficients and thus do not interfere with the complex
phase factors.

The average grey value can be expressed as f(0) = [ f(x) exp(—iz0)dz.
Since r§(0) = 1 for all a, 3 € IR, the average grey value remains unchanged by
multiplication with 7§ in the Fourier domain. a

4 Diffusion with Fractional Derivative Orders

The elliptic differential equations appearing in regularisation techniques are re-
lated to parabolic diffusion equations [16]. Now we investigate such parabolic
equations involving a linear combination of different fractional powers of the
Laplacian. To this purpose we choose fractional derivative orders aq, ..., ., >0
and weight parameters A1, ..., A, > 0 and consider the linear pseudodifferential
equation
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8 m 82 (6773

k=1
with initial condition u(x,0) = f(z) for all z € IR. In the Fourier domain (13)
reads as %ﬁ ==Y Ml€[**4a. This is an ordinary differential equation with

parameter ¢ and can be analytically solved by

(g t) = exp< tZA |E|2“k>f Hexp (—tAelelP) F . (14)

This formula expresses fractional order linear diffusion filtering as multiplica-
tion in the Fourier domain. The following definition uses its equivalence with
convolution in the spatial domain.

Definition 4.1. (Multipliers and Convolution Kernels for Diffusion)
For the order a« > 0, the weight A > 0 and the stopping time t > 0, we de-
fine the multiplier function

GS(&, 1) ==exp (—tA|E[*™)  forallE € .

We also define the convolution kernels appearing in linear filtering as the Fourier
backtransform

1 1
Yz, t) = —=F LGS ) (x :—/ exp (—tA\|E]2Y 4 ix€) dE .
Pilnt) = —=F (GR0) @) = 5o [ e (<eAlef + iag) de
We would like to mention that the convolution kernels p$(-,t) were already
discussed in [6] and [7] for o € IN. With this definition we are able to express
the Fourier backtransform of the solution of (13) as convolution:

u(z,t) = (p‘j\‘:(~,t) .k pSL(st) f) (z) . (15)

It is an interesting feature of (14) and (15) that one can successively add different
derivative orders to the right-hand side of (13) and obtain the particular solution
step by step by convolution with corresponding kernels. Figure 2 shows two
Fourier multipliers for different diffusion orders and their associated convolution
kernels obtained by numerical approximation.

As in the last section for regularisation, we also express fractional order dif-
fusion as linear operator.

Definition 4.2. (Fractional Order Diffusion) We choose fractional deriva-
tive orders aq, ...,y > 0 and the corresponding weights \i,..., Ay > 0. For
every t > 0 we define the linear filtering operator T; : L?>(R) — L?(IR) as

Tf = F " Megm(.p)

5

'MG;"ll(.,t)]:f : (16)

With respect to stability and smoothness of the solutions, we see that these
diffusion operators have very convenient properties.
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j multiplier'ér alpha = 0.5,‘beta =1.0 LN j multiplier fér alpha = 2.0,‘beta =1.0 LN

discrete Fourier backtransform -------—- discrete Fourier backtransform -------—-

-4 -2 0 2 4 -4 -2 0 2 4

Fig. 2. Fourier multipliers and corresponding Fourier backtransforms for fractional

order diffusion filtering. Left: a = 0.5 (Poisson scale-space), Right: oo = 2.0

Proposition 4.3. (Stability and Regularity of Diffusion)

1.

2.

3.

For allt > 0 the operator T, is continuous with respect to the norm in L?(IR)
with | Te|| < 1.

For natural filter orders aq,...,am € N it is Ty f € C*°(IR) for initial data
feL*(R).

For positive real filter orders ai,...,a, > 0 we have Tyf € HE(IR) for
arbitrary k € IN and initial data f € L*(R).

Proof. 1. 0 < G$(&,t) < 1forall t,o, A > 0 and all £ € IR. An upper bound

for the norm of 7; is given by

) 7 <1

with Lemma 2.1 (1.) and the fact that F is L2-isometric.

17 < |7 (H [Mege.o
k=1

. For a € IN the functions G§(-,t) are in the Schwartz space S(IR) of rapidly

decreasing functions. Thus their Fourier backtransforms p§(-,t) are also in
S(IR) and also the convolution kernel p(-,t) := pY™ (-, %) * ... * p{! (1) ap-
pearing in linear filtering in the spatial domain. We see that the derivatives
of Ty f exist with

d* oF
o LS = /]RW}?(I*Z/)JC(ZJ)C[I .
We note that lim ¥ exp(—2%) = 0 for all k € IN. Thus we have

€ exp (—tAE]**) € L™(R) .

Let £ € IN be an arbitraty derivative order. The Fourier transform of the
kth weak derivative of our filtered image

FDW (T, f) = i*¢" exp (—tA|E**) f (17)
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is in L2(IR) as the product of f with a bounded function. We have shown
that T, f € H*(IR). O

Since k was arbitrary in the last proposition we know with the Sobolev em-
bedding theorem (see [12-Chapter 4, Proposition 1.3]) that for each m € IN there
is an u € C™(IR) with u = T} f almost everywhere. In that sense one could say
that the results of such filtering processes are arbitrary smooth for all stopping
times ¢ > 0. Furthermore, linear diffusion filtering fulfills a choice of scale-space
properties.

Proposition 4.4. (Scale-Space Properties of Diffusion)

1. The set of linear diffusion operators {T; : t > 0} is a semigroup. We have
To =717 and Ty, Ty, = Ty, 41, for all t1,ta > 0.

2. For allt > 0 the average grey value is invariant under 7.

3. The continuous filtering operator is translational invariant.

Proof. 1. Since G{(-,0) = exp(0) =1 it is clear that 7y = Z. For t1,t2 > 0 and
¢ € IR one can directly verify G(&,t1)GS (€, t2) = G$(£,t1 +t2). In the case
of a single order o we have with the second statement of Lemma 2.1

T, T, = F " Meg( ) FF ' Maa(a)F
- .F_lMGG(.7t1+t2)f

The same proof also works for multiple filter orders.
2. Average grey value invariance is guaranteed by G$(0,t) = 1 for all ¢, a, A > 0.
3. Translational invariance follows directly from the representation of the op-
erator 7; as convolution with p as in (15). O

Scale invariance is not given in the framework considered above: To achieve
this property we have to restrict ourselves to a single derivative order.

Proposition 4.5. (Scale Invariance of Diffusion) With only a single deriva-
tive order, the diffusion filter Ty = F_l./\/lgg(.’t)]: 18 scale invariant in the
following sense: For every o > 0 and every t > 0 there is a t > 0 such that

(71 (2)) @ = @) ()

Proof. It can be shown by elementary calculations that £ = —3a 1S the unique
value satisfying the above condition. Since ¢ depends on the order « such a time
can not exist for a combination of different orders. ad

5 Semi-discrete Linear Filtering

For practical purposes a space-discrete formulation of generalised linear filtering
can be very useful. In this section we give a matrix representation for the fil-
ters which can be understood as a finite-dimensional analogue of the operators



Regularity and Scale-Space Properties 21

given above. In correspondence to the operator F we define the discrete Fourier
transform F € C"*" as the matrix

1 2mi (j — %) k))
F=—|exp| ——"—2— ) (18)
\/ﬁ ( ( " 7,k=0,...,n—1

Since the rows of F are orthonormal in C", F is unitary and its inverse is given by
its complex conjugated and transposed matrix F' . The matrix-vector product of
F with g € R™ yields the Fourier coefficients Fig =: (§_n/2, - .. ,gn/g_l)T e Q.
We define the analogue to the multiplication operator M as the diagonal matrix

My := diag (f (W)) (19)
j=0,....,n—1

which multiplies a vector with the values of a function f : [-7,7) — C at the
equidistant grid points in the Fourier domain.

Definition 5.1. (Semi-discrete Regularisation and Diffusion Matrices)
As space-discrete analogues to (9) and (16), for a, 3, € R and t > 0 we

o . =T . P .
define the regularisation matriz R := F MrgF and the linear diffusion matriz

. =T
vta Tt =F MGgrn;(_)t) et MGal(-,t)F'

A1

In the semi-discrete case the scale-space properties slightly differ from the con-
tinuous ones considered in the last sections. Since the discretisation in space
leads to a band-limiting we observe not only average grey value invariance but
also convergence towards a constant signal.

Proposition 5.2. (Scale-Space Properties of Regularisation)

1. Semi-discrete regularisation is linear.
2. The average grey value is invariant under the operators Rj for allt > 0. For
B — oo in all components the solution converges towards the average grey

value, i. e. limg oo RGf = (..., )T with p = %22:1 e -

Proof. The average grey value can be written as fo = ﬁ ZZ;& fr- This coef-
ficient is left unchanged by the diagonal matrices Mg since 75(0) = 1. Thus
claimed convergence follows from limg_. 75 (§) = 0 for all. O

In addition to these properties the diffusion operators form a semigroup.
Proposition 5.3. (Scale-Space Properties of Diffusion)

1. Semi-discrete diffusion is linear.

2. The set of operators {T; : t > 0} is a semigroup.

8. The average grey value is invariant under the operators Ty for allt > 0, and
we have convergence towards the average grey value for t — oo.
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Proof. The proof of the second statement is analogous to the proof of Prop. 4.4
exchanging the operators F and M by their finite-dimensional counterparts F
and M. The third statement is proven as in the regularisation case. a

6 Numerical Examples

In the first numerical experiment we investigate the possibility of building linear
combinations with different derivative orders such that the regularisation and
diffusion filters satisfy a maximum-minimum property. Knowing from Section 4
that combinations of two orders are no longer scale-invariant we try to preserve
one scale-space property at the expense of the other. To reduce the number of
possible combinations we consider diffusion equations of the form

Q- (@w(—i))u (20)

and the corresponding regularisation. For a between 1.5 and 8, we started with
£ = 0 and increased it as long as nonnegative convolution kernels were obtained.
The maximal values of 8 are shown in Fig. 3. This experiment shows the use-
fulness of the Poisson scale-space: Using a Gaussian scale-space instead makes
it impossible to find a weight 3 # 0 that leads to a nonnegative combination. In
that sense the fractional order scale-space has a clear advantage in comparison
with the integer order ones.

In our second experiment we study the variance diminishing properties of
different filters R and 7. Fig. 4 shows the variance of a white noise signal de-
pending on regularisation weight / stopping time. We visualise the parameters
needed for reducing the variance of a white noise and a step edge signal to half
of its value in Fig. 5. The experiments show a similar behaviour of regularisation
and corresponding diffusion techniques in terms of variance reduction. We note
that higher orders lead to the same variance decay with smaller stopping times.

maximal beta for posit\ve kernel maximal beta for pos;tive kernel

weight beta (natural logarithmic scale)
weight beta (natural logarithmic scale)

2 3 4 5 6 7 8 2 3 4 5 6 7 8
regularisation order alpha diffusion order alpha

Fig.3. Positive combinations of derivatives of order 0.5 with higher orders. Left:
Regularisation. Right: Diffusion filtering
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‘regu\arisalion order: 0.5 —— diffusion order: 0.5 ——

1.
20 -
0.

ocoo

1

on~

variance
variance

0 0.5 1 15 2 0 0.5 1 15 2
regularisation weight beta stopping time t

Fig. 4. Variance diminishing properties of fractional order regularisation and diffusion
filtering. Variance depending on regularisaton weight/diffusion stopping time. Left:
Regularisation. Right: Diffusion filtering

0.4 T T T

T 0.4 T T

stoppiﬁg time for half variance

j stoppiﬁg time for half variance -

0.25

02

0.15

stopping time t
stopping time t

0.5 1 15 2 25 3 35 4 0.5 1 15 2 25 3 3.5 4
regularisation order alpha filtering order alpha

0.0025 T

T T u u T 0.0025 T T
stopping time for half variance

‘stcppiné time for half variance —

0.002 0.002

0.0015 0.0015

0.001 0.001

stopping time t
stopping time t

0.0005 0.0005

0.5 1 1.5 2 25 3 35 4 0.5 1 15 2 25 3 35 4
regularisation order alpha filtering order alpha

Fig.5. Regularisation weight/diffusion stopping time for reducing the variance to
half its value. Left column: Regularisation. Right column: Diffusion filtering. Top row:
Experiment for white noise signal. Bottom row: Experiment for step edge signal

7 Conclusion

In this paper we have discussed regularisation techniques and diffusion methods
that involve sums of fractional derivative orders. With respect to scale-space
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properties, fractional diffusion satisfies lijima’s axioms of linearity, translation
invariance and semigroup property. If a single fractional order is used, scale in-
variance is satisfied as well. We have shown that both fractional diffusion and
fractional regularisation are L?-stable in the sense that the norms of the corre-
sponding operators are bounded by 1. With respect to regularity, the regulari-
sation approaches gain twice the minimal derivative order, while the fractional
diffusion admits arbitrarily smooth solutions. For the first time in the context of
a-scale-spaces, we have also presented a space-discrete theory that is in formal
analogy to the continuous framework. Moreover, it gives convergence towards the
average grey value, if the diffusion time / regularisation parameter tends to in-
finity. To our knowledge, all papers on a-scale-spaces focus their attention to the
case 0 < o < 1, since this guarantees nonnegativity and a maximum-minimum
principle. However, we have shown that it is possible to construct combinations
of Poisson scale-space and diffusion scale-spaces of order o > 1 that satisfy this
principle as well. With Gaussian scale-space instead of Poisson scale-space, this
is not possible. Similar statements also hold for the corresponding regularisation
processes. From a practical viewpoint, we have studied the decay rates of the
variance as a function of the fractional order. These studies have shown that
higher orders reveal higher variance diminishing properties. In our ongoing and
future work we intend to find out which of the scale-space and regularity proper-
ties of the linear methods of this paper can be generalised to nonlinear processes
with higher-order derivatives.

Acknowledgements. We gratefully acknowledge partly funding by the Deut-
sche Forschungsgemeinschaft (DFG), project WE 2602/2-2.
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We review a previously presented proposal — Geometric Texton Theory (GTT)
- that feature categories naturally arise through consideration of the maximum
likelihood explanations for image measurements by gaussian derivative filters.
We present results relevant to this proposal for the case of 1-D measurement by
filters of 0, 1* and 2™ order. The results are consistent with GTT.

1 Introduction

1.1 Feature-Based Vision

The grail of feature-based vision is a bottom-up process that computes representations
of image structure in terms of qualitative descriptors (e.g. ‘edge’ or ‘corner’). What
motivates the search is the hope that feature-based description could be so successful
at discarding the unimportant structure of an image and emphasizing the important
that the process of vision would simply be, as David Marr wrote, that “you looked at
the image, detected features on it, and used the features to classify and hence recog-
nize what you were looking at.” [1].

The Marr quote above is more than twenty years old, and he traces the feature ap-
proach back a further thirty years [2]. However, despite this relative venerability there
has certainly not been a constant and gradual improvement over time in methods to
compute features, rather the problem has been increasingly neglected. Of course, such
a history does not show the approach definitely to be misconceived, but it does lay a
burden on those pursuing the feature approach to explain:

(1) how progress has been possible without a theory of features, and
(ii) why development of the feature approach has been difficult.

To the first question we would answer that a fundamental problem in vision arises
from having to deal with the cross-product of two spaces of very high cardinality:
(I) the space of all possible images, and (C) the space of possible image contents.
Feature-based image description reduces the cardinality of /. In the absence of an
effective feature-based approach, research has focused on producing working solu-
tions in constrained domains where the cardinality of C instead can be restricted. To

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 26-37, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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the second question we would say that a lack of ambition about how large a vocabu-
lary of features can be stably computed has led to a misplaced pessimism about their
power. For example, to quote Marr again, “think of a 5 gradually changing into a 6 —
a corner disappears, a gap narrows. Almost no single feature is necessary for any
numeral.” [1].

1.2 Gaussian Derivative Filters

Marr’s pessimism seems to have been due to an incomplete picture of visual neuron
properties leading him to consider only feature vocabularies of limited expressive-
ness. At the time he wrote Vision, the linear simple cells of V1 seemed to consist of
1" and 2™ order (in a derivative sense) filters only. With such filters all that it seemed
possible to detect were ‘edges’ and ‘bars’ and it is clear that much work is indeed
required to discriminate a ‘5’ from a ‘6’ with such a limited feature vocabulary. How-
ever, it is now known that V1 simple cells frequently have more positive and negative
sub-fields and are more varied than Marr knew. So, (it is hypothesized [3-6]) a set of
co-localized visual neurons together have the power to characterize a substantial vo-
cabulary of features without having to resort to the difficult process of multi-local
feature combination that was Marr’s answer to the expressivity problem.

The most popular model of the range of V1 simple cells is as Gabor functions [7,
8] which do indeed model the electrophysiological data very well. However gaussian
derivatives (DtGs) up to 4™ or 5™ order provide an equally well-fitting set of models
with much to recommend them [9-17] (we will refer to the measurements given by
DtGs up to some order as a Jet). Although we appreciate the limited persuasiveness to
some of such non-empirical considerations, to the authors the most compelling points
in favour of DtGs over Gabors are the interpretations of what they measure. In par-
ticular we note two. First, that measurement of the jet up to some order is equivalent
to measurement of the initial terms of the Hermite Transform, which is a local ana-
logue of the Fourier Transform [6, 18-20]. Second that the jet is also interpretable as
the initial terms of the Taylor series of the image blurred to the same degree as the
scale of the DtG filters [21]. Both interpretations are very appropriate for what we
consider V1 to be i.e. a fully general-purpose system for local measurement.

1.3 From Filters to Features

Even though the jet up to 4™ or 5™ order seems to capture local image structure richly
enough to be the basis of spatially complex features it is far from obvious how to
define these features from the filter responses. The majority of the relevant literature
is to be found under the keyword ‘textons’ rather than features [22-25]. The most
common position taken in this literature (implicitly or explicitly) is that tex-
tons/features correspond to clusters in the jet space.

We agree with two parts of this position — that features correspond to regions of jet
space and that natural image statistics somehow determine these regions, but we dis-
agree that these regions are revealed as simple clusters. The plain fact is that if one
forms a distribution of responses in jet space for natural images there is no clustering
structure (see section 3.1). The following comment is admittedly polemical, but it
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seems to us that the results of k-mean clustering are too often taken as intrinsic fea-
tures of the data examined even though the algorithm always returns results.

An alternative approach to the ‘features from filters’ problem has been pioneered
by Koenderink [3-6] who has stressed the relevance of metamerism: that the jet does
not uniquely determine the measured image even locally. In particular he has sug-
gested that maybe (i) it is possible non-arbitrarily to associate with each point of jet
space an iconic image from the metamery class of possible images, and (ii) the
equivalence relation of ‘qualitative identity of icons’ gives rise to a partitioning of jet
space into features. Griffin et al. [26] have proposed Geometric Texton Theory (GTT)
a refinement of Koenderink’s proposal with the added detail that the icons should be
defined as the maximum likelihood (relative to natural images) elements of metamery
classes. So our GTT extension ties features to natural image statistics in the way that
the (incorrect) cluster idea of the texton approaches also does.

We have previously studied [26] GTT for the 1-D, 1* order jet. In this simplest of
cases, the two degrees of freedom (0™ and 1% order measurements) can be eliminated
by affine scaling of profiles so that they all measure to the same values. Once this was
done, we found that the maximum likelihood (ML) form for profiles was a step edge.
We claimed that this result, although very far from decisive, was supportive for GTT
in that the ML profile had a simple qualitative structure.

1.4 Paper Notation

In the remainder of the paper we continue our study of GTT but in this case for the
1-D, 2™ order jet. This jet is measured using the 0", 1* and 2™ order DtG filters
shown in figure 1. These filters are given by:

2
X

G, (x)=ze *. G/(x) = -%G,(x) Gl(x) = £($-1)G,(x)
We denote the 2™ order jet of the image I measured at the origin, at a scale s as
J2(I)=(my.m.m,)=(G,-1,-G.-1,G-I).

s

oth order DtG

I
I
1storder DtG ~_|
\\:
| '
2nd order DG \1‘/'

Pl
P
-
P

Fig. 1. Shows the three filters measurement with which is considered in this paper. The filters
shown are of scale s =24, and are plotted over the range xe[-32,32]. The ‘aperture’ func-
tion is a O™ order Gaussian of scale 2s , it will be relevant in section 3. The vertical dashed
lines mark the outermost inflexions of the 2" order filter
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2 Norm-Minimizing Metameres

Measurement of local structure with a finite number of DtG filters does not fully
determine the measured image even locally. The set of profiles that measure to a
given point in jet space constitute the metamery class for that point. Most of the ele-
ments of a metamery class have wild oscillations at frequencies which are sufficiently
high that the DtG filters are ‘blind’ to them, however there are also metameres which
are more conservative in their excursions. This line of thought leads to the proposal
that perhaps a suitable definition of ‘most conservative/simple profile in a metamery
class’ would supply the icons that Koenderink has suggested (section 1.3) should
‘stand for’ the metamery class or, equivalently, point in jet space. This is an approach
that we have previously pursued [27, 28]. Although we now consider it less a well-
motivated approach to icon selection than the ML approach (see again section 1.3),
we feel that it is still worth studying as it illuminates what DtGs do measure.

The class of definitions of ‘simplest’ that we consider are the norm-minimizers of
metamery classes. The definitions we use here of norms are slightly different from the
standard mathematical definitions. For an image I, we define its luminance norms as

mm( J |I X)-u, | J and its gradient norms as D" (I)=[ J |VI (Fc)|rJ .In
XeR XeR
either case, infinity norms are defined by taking the limit r — oo .

For both types of norm, addition of a constant value to the image leaves the norm
unchanged, whereas multiplication of the image by a constant similarly multiplies the
normie. L (a+fB.01)=B.L (I) and D" (a+ f.I1)= .D" (I). Therefore to study the
norm-minimizers with respect to the 2™ order jet we do not need to consider the full
range of possibilities (mo, m, m2> but only a suitable 1-D subspace. We choose

<O, cos 6, (2s)_% sin 9>, indexed by the phase variable 6.

The norms we have previously identified as of interest are LZ, L, D' and D?. The
minimizers of these norms show a degree of resemblance to structures found in natural
images. In contrast, the L' norm minimizers, for example, consist of very ‘unnatural’
collections of delta functions. The norm-minimizers we have determined are shown in
figure 2. In the following four sub-sections we provide additional explanation.

L’: The variance minimizers

As we have previously noted [26] the form of variance minimizing metameres can be
determined by the method of Lagrangian multipliers to be a weighted sum of a con-
stant function and the DtG filters (other than the 0™ order) that measure the jet. As can
be seen from figure 2 (top, right) the pure cosine-phase variance-minimizing
metamere is just the 2" order DtG, the pure sine phase the 1% order DtG, and inter-
mediate phases are a mixture of the two.

L”: The range minimizers
As we have proved elsewhere [27] the range minimizers are binary-valued functions
with one or two discontinuities. Only in the case of the pure sine-phase range-
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L2

D1

D2

Fig. 2. Shows the norm minimizing profiles for different norms and phases. The norm for the
row is indicated at left. The middle column shows the minimizers as density plots. Each row of
the density plot corresponds to a minimizing profile; phases varies vertically from —7/2 i
order filter response is —ve, 1st order response is zero) at the bottom, through 0 (2"d order zero,
1* order +ve) in the middle, to /2 (2™ order +ve, 1% order zero) at top. To assist visualiza-
tion, lines have been added to the density plots to show the location of extrema and discontinui-
ties. The right hand column shows the —7z/2 phase (black) and the 0 phase minimizers as
regular plots. For the middle and right columns the vertical dotted lines are the same as in fig 1

minimizer is there a single discontinuity (at the origin). For other phases, the two
discontinuities are positioned at x =, # such that ¢f =—2s . For the pure cosine-

phase range-minimizer the discontinuities are at £+/2s .
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The general strategy for proving the form of these minimizers comes originally
from an argument as to the form of optimal spectral reflectance functions in colour
science [29]. The strategy, which is to show by reductio ad absurdum that the form of
the solution is restricted, is as follows. Suppose the jet specifying the metamery class is
m and hypothesis that the minimizer s has a certain type of form. If one can show that

s can always be perturbed to make s which has (i) the same norm value as s, and (ii)
has jet (1+&)m , where £ >0, then (1+€)_I s" will have jet m but will have a lower

norm that s. This contradicts the hypothesis that s was a minimizer, therefore the
minimizer cannot have the hypothesized form. This strategy can be used to show that
(i) the range-minimizer must be binary-valued, and then that (ii) the number of discon-
tinuities is restricted. That the appropriate types of perturbation are always possible for
the proof to work follows from the full rank of the Gaussian derivatives [5].

D': The total variation (TV) minimizers

The proof strategy outlined in the previous sub-section applies also to TV minimiza-
tion. First the strategy is used to show that the TV-minimizers must be piece-wise
constant. Next the strategy is used to show that the TV-minimizers have at most two
discontinuities. Then, for each possible value of the jet, one identifies the piecewise
constant profiles with at most two discontinuities that measure to the correct values,
and one computes which of these possibilities has the lowest TV. The resulting pro-

files are shown in figure 2 (third row). For phases in the range f¢€ —%,%] (i.e.
close to sine-phase) the TV-minimizer has a single discontinuity somewhere in the
range Xxe€ [—\/2_8, J2s ] For phases nearer cosine-phase (|49| >%4), the TV-

minimizing form has two discontinuities at x ==+/2s . For pure sine- and cosine-
phase, and for no other phases, the TV-minimizing profiles are the same as that for
range-minimization.

D’: The roughness minimizers

In the 1-D case here studied, the problem of roughness-minimization with respect to
measurements by G' and G” can be shown to be related by integration to vari-
ance-minimization with respect to measurement by G and G’ . So one can show that
the roughness minimizers must be a weighted sum of a constant function, a 0™ order
DtG and an error function of the same scale as the filters defining the jet. These mini-
mizers are shown in the bottom row of figure 2. Similarly to the L? case, the pure
cosine-phase minimizers are gaussians, the pure sine-phase minimizer is an error
function and the minimizers for intermediate phases are a mixture of the two.

3 Maximum Likelihood (ML) Metameres

We have investigated the ML (relative to natural images) metameres for the 1-D, ond
order jet. That is to say we have determined the answer to questions of the form: if a
randomly selected profile from a natural image has a jet that measures to 71 what is
the most likely form of the profile? Much but not all of the relevant method is the
same as that used in our earlier study [26] of the 1-D, 1% order jet.
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3.1 Method

As in our previous study, we have chosen to factor out an affine component of image
structure that we believe obscures the structure that we are truly interested in. We do
this by transforming ( P — o+ .P) each profile that we examine so that its jet has

the canonical form <O, cos 6, (2s)_% sin 9>. The exact value of the factor (2s)_% is not

critical to our results but figure 3 shows that it is a natural choice, in that it causes the
histogram of natural image profiles as a function of phase to be nearly flat. Note that
the figure also shows that there is no hint of density clusters that could form the basis
of feature categories (as is frequently assumed to be the case in texton approaches).

-r/2 0 /2

Fig. 3. At left is the density function across jet space for natural image profiles. The horizontal
axis is the 1*" order filter response, the vertical axis is V2s times the 2™ order filter response.
The density has been square root transformed to improve visibility. On the right are plotted the
polar marginal histograms; at top for the radial variable and at bottom for the angular

3.1.1 Extracting and Preparing Profiles

As a source of natural image data we used 1220 images from the 4000 image van
Hateren natural image database of linear (.iml), 1536- 768, images of woods, open
landscapes and urban areas [30]. In a change from our previous method, for each
image we created a 5-layer quad tree by blurring and sub-sampling. The degree of
blurring was chosen so that the ratio between the width of the p.s.f. and the pixel
sampling was the same at all levels of the quad tree. At all levels of the quad tree we
took measures to reduce quantization effects that we have previously described [26].

We extracted 2700 1-D profiles from each image, for a total of 3.3- 10°. Each pro-

file was extracted from a random level of the quad tree (with probability proportional
to the number of pixels in the level), at a random location and orientation (all real-
valued) using nearest-neighbour interpolation. Each profile was 64 samples in length.

After extraction, the jet of each profile was measured ( <m0 ,m,, m2> ) and the profile

underwent a two-step normalization process. First, any profile that had m, >0 had its
64 samples reversed in order. Second, each profile was individually affinely scaled

according to (1 — (m,2 +2s5.m3 )_7 (I—-my)) so that it had a canonical jet.
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For comparison with natural image profiles we also constructed two sets of
3.3- 10° synthetic profiles. One set — the Gaussian set - has each of its 64 values
drawn independently from a normal distribution. The other set — Brownian profiles
[31] — were generated by, for each profile, setting the value at one end with a nor-
mally distributed random variable («=0, 6=100) then setting in turn each of the re-
maining 63 samples to be equal to the previous sample plus an independently gener-
ated normally distributed offset (x=0, 0=1). Both the Gaussian and Brownian sets are
scaled in the same manner as the natural profiles to bring them into a canonical
metamery class.

3.1.2 ML Computation

In our previous study we compute ML profiles using the method of mode estimation
‘pessimistic scale space tracking’ that we presented at Scale Space 2003 [32]. The
method used in this study was also a scale space tracking method but with some de-
tails that make for faster more and more accurate computation. Space limitations
prevent us from detailing these changes here, though in section 3.2.1 we present re-
sults that validate the algorithm on our noise profiles.

An important difference from our previous study is that the normalization step
mapped profiles into a 1-D family of canonical metamery classes rather than a single
metamery class. Ideally we would ascertain the ML profile for each metamery class in
this 1-D family, but in practice we need a large number of profiles to determine the
ML with sufficient accuracy so instead we quantize the phase parameter that indexes
the 1-D family into 33 equally-sized bins and perform a separate mode estimation for
each phase bin. Thus each mode estimation is based on roughly 10° profiles. All com-
putations were repeated three times with fresh sets of profiles.

3.2 Results

As with our previous study we have also performed control computations to assess the
stability of our results with respect to scale, image dataset, log transformation. Space
prevents presentation of these results which, in summary, confirmed stability.

3.2.1 ML Noise Profiles

As shown in figure 4, the ML profiles for the gaussian noise data are an excellent
match to the variance minimizing profiles, and for the Brownian data to the roughness
minimizing profiles. This agrees with prediction [26] and so validates the perform-
ance of our mode estimation algorithm for this quantity and dimensionality of data.

3.2.2 ML Natural Image Profiles
The computed ML profiles for natural images are shown in figure 5. The figure also
shows that we used a sufficient number of profiles to achieve low scatter across our
three repeat computations.

Figure 6 shows a simple model that we have found that well captures the structure
of the ML natural image profile data. The model is based on two components profiles
that are shifted and added in different proportions. One component is a symmetric
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- -‘ T

Fig. 4. Shows the ML profiles for the noise data. The left column is for gaussian noise, the right
for Brownian noise. The upper panels are laid out the same as in fig. 2. The bottom two rows
show the ML profiles for particular phases: the middle row is sine-phase corresponding to the
central row of the top panel, the bottom row is cosine-phase corresponding to the bottom row of
the top panel. The ML profiles are in black with error bars showing one sd of the scatter across
the three repeat mode estimations. The thick grey curves are the L? and D’ minimizers of the
appropriate phase

Fig. 5. The ML profiles for natural images are shown as a density plot in top-right, using the
same convention as figures 2 and 4. The other panels show the sine- and cosine-phase profiles
corresponding to the top, middle and bottom rows of the density plot. The error bars show 1 sd
of scatter across the three repeat computations

profile having the form of a bar (like the cosine-phase forms for the range- and total
variation minimizers in fig. 2) that is blurred. The other component is an anti-
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symmetric blurred step edge. Note the bar component is considerable more blurred
than the step edge component. For near cosine phases, a shifted version of the blurred
bar fits the data. For near sine phase, a shifted version of the blurred

Fig. 6. Illustrates a simple model that well describes the ML natural image profile data. The
background density plot is the same as the top-left panel of fig. 5. The solid red lines show the
twin edges of the symmetrical blurred bar/pass part of the model, the solid green lines show the
edge of the anti-symmetric blurred step edge part of the model. The dotted lines show the phase
extent of the different parts of the model. Both parts of the model overlap in two bands of
phases, in these bands the ML profiles are well described as a weighted mixture of the symmet-
ric and anti-symmetric components. Outside of the bands only one component is needed

4 Discussion

Our previous result of finding that a step edge was the ML profile for the 1-D, 1%
order jet was compatible with the ML profile for natural images being identical to the
range- or the TV- minimizing profiles. Neither of these possibilities are borne out for
the 2™ order results shown in fig.5. Initially these results seemed negative with re-
spect to our GTT proposal for features. However on closer examination we found a
simple model that describes the results. This model is compatible with our GTT pro-
posal, which, to reiterate, is that the equivalence relation of qualitative equality be-
tween ML metameres induces feature classes on the jet space. With this proposal in
mind, one can see that figure 6 shows that we have induced a categorization of the
canonical 2™ order jet space into three classes separated by two fuzzy intermediate
bands. Results for 2-D patches are needed to further test the GTT proposal.
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Abstract. This paper introduces a new approach to symmetry estima-
tion directly from image grey values. The method was inspired by the
local phase based method, proposed by Kovesi. This method is examined
in the light of a strict definition of local symmetry, and found to be want-
ing in two respects: that it is invariant to some apparently non-trivial
symmetries and that its scale is ill defined. To avoid these difficulties we
propose a non-linear analog of the local phase. This leads to a family of
local symmetry measures, able to provide a rich, local characterisation
of shape, invariant to rotations and affine intensity transformations, and
robust to affine coordinate transformations.

1 Introduction

Local symmetry analysis is a promising tool for shape analysis and image un-
derstanding. However, one of the most significant drawbacks to the approach
has been that local symmetry lacks a precise definition and that, once defined,
local symmetry can be difficult to estimate in practice. The original application
of symmetry was shape analysis of pre-segmented image regions [1, 2, 3]. These
methods are based on finding points at equal distances from shape boundaries [1],
the so-called medial definition of local symmetry. This paper is concerned with
the estimation of symmetry directly from grey values, rather than pre-segmented
shapes. This might enable, for example, symmetry based shape representations
to be used as priors in the detection and segmentation of shapes. It may also,
as is suggested later, enable the symmetry approach to be applied directly to
image understanding tasks, bypassing the need for segmentation altogether. Var-
ious strategies have been proposed for the estimation of local symmetry directly
from an image. The most commonly used of these are ‘cores’, in which linear
filter responses suggest feature amplitudes and are used to compose medial pairs
of responses which suggest symmetry at a certain point [4]. The energy of all
possible medial pairs are summed to produce a map of ‘medialness’, the local
maxima of which give the local symmetry axes.

A somewhat different method was proposed by Kovesi [5]. In this framework,
symmetry is estimated at a range of scales by convolving the image with a set of
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R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 38—49, 2005.
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symmetric and anti-symmetric filters. Symmetric points are those at which the
response of the symmetric filter dominates the response of the antisymmetric
filter. In this paper, the phase technique for symmetry analysis is investigated
in terms of a strict definition of the symmetry of grey-values. It is argued that
the phase method has some significant practical drawbacks. Instead, we propose
a non-linear method. This method maintains some of the properties of local
phase, in particular the property of quadrature, whilst also supporting a well
defined scale-space. Furthermore, the method leads to a family of symmetry
measures. We demonstrate that two of these are adequate to find the complete
set of smoothed local symmetries proposed by Brady and Asada [2].

2 Local Phase

Local phase can be estimated at each point in the image from the responses of
(at least) one odd and one even filter. In two or more dimensions, the definition
of local phase is rather ambiguous, but in one dimension the odd and even filter
pairs may be defined through the Hilbert transform. The Hilbert transform of an
even (entirely symmetric) filter can be found by taking its Fourier transform and
multiplying all negative frequencies by minus one. The result is an imaginary
and purely antisymmetric filter. Since multiplication in the Fourier domain is
equivalent to convolution in the space domain, it is also possible to write the
odd filter as the convolution of the even filter with an odd kernel.

fe(@) * h(x)
h(z) = — (1)

?’m
—
8
S—
I

The convolution of the image with the complex filter formed by summing the
even and odd filters, results in a complex signal, known as the analytic signal.
The magnitude of this complex signal is known as the local energy, while the
angle is the local phase. Thus, the local phase ¢ of a signal s is defined as:

¢ = arctan <S*fe> (2)

—ixs* f,

Completely symmetric parts of the signal will have purely real response to
the complex filter, and hence the local phase at these points is —pi/2 or 7/2
(say); completely anti-symmetric parts of the signal will have purely imaginary
responses and hence phase of 0.

When extending the concept of local phase to higher dimensions the Hilbert
transform is undefined, so it is necessary to make some design choices. One
way of interpreting the difficulty of defining phase in two dimensions is that it
reflects the richness of symmetry in higher dimensions when compared to one
dimension; simple reflection symmetry is replaced by many different forms of
reflection symmetry as well as rotation symmetry. Previous applications of phase
to symmetry estimation have used steerable filters [6]; this may be regarded as
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finding the axis about which maximal reflection symmetry (or anti-symmetry
exists). A more recent method is the monogenic signal [7] which replaces the
Hilbert transform with the Riesz transform. Space does not permit a detailed
discussion of the monogenic signal. However, it is interesting to note that the
monogenic phase may be regarded as a measure of point-reflection symmetry, as
opposed to line-reflection symmetry. Arguably, it is by adopting this definition
of symmetry that the monogenic signal overcomes the difficulties encountered by
previous attempts to generalise the Hilbert transform to multiple dimensions.

3 Phase as a Symmetry Measure

Rather than exploring the use of the monogenic signal to estimate symmetry
directly, we first consider the implications of using one dimensional (Hilbert)
phase as a symmetry measure.

Unlike in higher dimensions, symmetry is uniquely defined in one dimension.
Specifically, a signal s is symmetric about the point a if:

s(x—a) =s(—x —a) (3)

In fact, any signal may be decomposed into the sum of a symmetric and an
anti-symmetric component about any point a:

s(x —a) = se(x —a) + so(x —a) (4)

where,

s(zx —a)+s(—x —a)
2
s(x —a) —s(—x —a)

2

Se(x —a) =

(5)

So(x —a) =

In order to analyse Hilbert phase in terms of this definition of symmetry, we
propose the notion of a generalised phase, defined as:

({se(z —a)|lz € Na})>
({s0(z —a)|z € Nu})

¢(a) = arctan (% (6)

where M is some measurement of the ‘size’ of a signal and N/, is some region of
interest around the point a. In the case of the Hilbert transform the measurement
function M}, seems somewhat unsatisfactory. By observation:

oo

My ({s(x —a)|lx € N,}) = /

— 00
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There are two possible objections that might be made to this measurement
function. Firstly, the measurement function treats the odd and even components
rather differently: when measuring the even component, the right hand function
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Fig. 1. Estimating the symmetry of s(z) = sin(z) — sin(2z). The plot shows s(x) in
blue, its local phase in green and its local energy in red. Note that at = 0 the energy
is zero and hence the phase is undefined

in the bracketed term of equation 7 plays no part, while the opposite is true of the
odd component. However, because of the convolution operation, the right hand
function, f.(x) * h(z), will be wider, in some sense, than the left hand function
fe(z). In the case of the monogenic signal, the measurement functions are slightly
more involved, but the overall structure is the same: the even component is
measured with one function, the odd with another, larger function. The outcome
of this is that Hilbert phase cannot rightly be said to measure symmetry ‘at a
scale’ since the scale at which the odd and even components are measured is
subtly different. In practice, this manifests itself as a predilection for ‘oddness’
when the filter is not aligned with an obvious image structure (i.e. when the
filter responses are determined by the shape of their tails). The second problem
is one of more practical importance. Consider the problem of estimating the local
phase of the function s = sin(z) — sin(2z) at the point = 0. Figure 1 shows
s(z) (blue) and its Hilbert energy (red). At x = 0, there is no energy and hence
the phase is undefined (since it is the angle of a phasor with no length). In fact,
the local phase, shown in green in fig. 1, behaves in an unexpected way near
the origin where, its gradient suddenly increases; the phase rises from 0 to 7
extremely rapidly, suggesting a point of perfect anti-symmetry surrounded, very
closely, by two points of perfect symmetry. This description of the signal seems
to make little sense.

Of course, this particular problem could be solved by applying a range of
different even filters, such that at least one of the filters had significant energy
at each point in the signal. However, it is not obvious how to choose a family
of even filters that guarantee this for real signals. What seems likely is that
rather a lot of filters would be needed, and that the method would become quite
unwieldy, particularly in higher dimensions. Local phase, in the conventional
sense, therefore seems a poor choice of local symmetry measure.
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4 A Non-linear Symmetry Measure

In order to avoid the pitfalls of Hilbert phase when measuring symmetry, it is
necessary to redesign the the measurement functions M (s) in equation 6. The
problem of ‘symmetry blindess’ illustrated in fig. 1 arises because the Hilbert
measurement functions are linear sums so there is always a chance that a non-
zero function will measure zero. This can be avoided simply by adopting the
following measurement function:

M(s(z — a)) = / 9z — a)s(z — a))?dz (8)

— 00

where g(z) is a Gaussian window function. The resulting phase is given by in-
serting the definition of M given in equation 8 into the definition of generalised
phase. The new measurement function also corrects the problem of incompati-
ble spatial extent of the measurement function, since it operates identically on
symmetric and anti-symmetric components.

There is one disadvantage to the proposed method, which is that the lo-
cal mean and low frequency component contributes to only the even part of
the symmetry. To avoid this problem the signals are pre-filtered to remove low
frequencies before analysis; since ‘low’ must be taken relative to the window
size, we propose that the filter consist of subtraction of the local mean esti-
mated with the window function, i.e. the pre-filtered signal s¢(z) is given by
sp(x) = s(x) * (6(z) — g'(x)).

The new measurement functions can also be used to define a non-linear analog
of the analytic signal:

sal@) =5 [ g @)lste )+ st — ) + i — @) = (2 — a) PJa)

—00

where ¢'(x) = g(z)? and a is, as before, the point about which the symmetry
is measured. The phase and energy of sin(z) — sin(2x) are shown in figure 2. The
Gaussian window, ¢'(z), used in this example has width ¢ = 24. The energy
is non-zero throughout, the phase varies approximately periodically and the
undesirable behavior near the origin is absent. The range of values of phase is
now limited to the range 0 — 7/2, since ridges and troughs appear identically, as
do edges facing in opposite directions.

So far, the discussion has been limited to one dimension. However, the method
described above can be extended to any dimension, provided that point reflection
is adopted as the definition of local symmetry. A two dimensional example is
shown in fig. 3. Locally symmetric and anti-symmetric points appear white and
black respectively. Obvious features, such as the edges of walls or the drainpipes
are labelled as would be expected. More interestingly, the symmetries of some
large, approximately symmetric shapes are picked up. For example the roof, the
shadow of the eaves and the point on the chimney half way between the roof
and the chimney top are all local symmetry maxima.
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Fig. 2. Estimating the symmetry of s(z) = sin(z) — sin(2z) using the non-linear

method. s(z) in blue, its local phase in green and its local energy in red. The en-
ergy no longer reaches zero at any point, and the phase varies more or less periodically,
without the sudden activity near the origin

Fig. 3. Point reflection symmetry of the house image (left) estimated with window
width o = 6. White indicates symmetry, black indicates antisymmetry

4.1  Other Symmetries

The insight of the monogenic signal, applied to our new method above, is that
by replacing line reflection with point reflection, simple and efficient methods for
symmetry analysis may be devised for multi-dimensional signals. In the particu-
lar case of two dimensional images, however, the rotational symmetries are also
uniquely defined; in fact, point reflection symmetry is equivalent to 180° degree
rotation symmetry. The definition of symmetry may be extended to arbitrary
rotational symmetry:
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—y _ 8(Z) + s(Ra(7))

Sea(T) = 5
Soa(j) — S(j) — ‘;(Ra(j)) (10)

where T is the coordinate vector and R, is a matrix which rotates the coordinate
vector through an arbitrary angle a. The definition of the generalised phase, eqn.
6, is easily altered to detect these symmetries: The new definitions of symmetric
and anti-symmetric component may be inserted into the generalised phase, and
the non-linear measurement functions applied as before. This observation opens
up an infinite range of possible symmetries; for the remainder of this paper,
we consider only point reflection and 90° rotation symmetry, which has some
interesting properties. While the definition of 90° rotation symmetry is very
similar to the point reflection case, the observed symmetries are quite different.
Figure 4 shows a test image composed of simple shapes and the symmetries
estimated from it. The point reflection symmetry responds well to parallel lines,
but responds weakly to diverging lines and not at all to corners. According to the

Fig. 4. Detected symmetries of some simple shapes. Top left: test image. Top right:
point reflection symmetries at o = 8. Bottom left: 90° rotation symmetry, o = 8.
Bottom right: sum of two symmetries
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Quter scale

Inner scale

Fig. 5. Point reflection symmetry measured at a variety of a range of inner and outer
scales in part of the house image

medial definition of local symmetry, corners should be intersected by a symmetry
locus, so the point reflection symmetry as it stands is insufficient for detecting
the full symmetry locus. The 90° rotation symmetry, however, appears to have
the opposite behaviour: it responds to strongly to right angles, but not at all to
parallel edges. Intuitively, it seems sensible to add these two quantities, to give
the quantity shown in the bottom right of fig. 4. Between the two symmetry
types, many of the symmetries of most of the objects are detected.

For shapes such as a simple rectangle, it appears that the combined symmetry
detects more than just the medial locus: it actually responds to the full symmetry
set, described by Brady and Asada [2]. The full symmetry set guarantees that
when new image structures are introduced to an image the symmetry set is
merely added to, not changed to something unrecognisable. This is an important
property when superposition or occlusion of objects can occur, which is likely in
real images.

4.2 Scale

The Gaussian window applied by the proposed symmetry measure controls the
localization of the observed symmetry. However, the symmetry is still computed
from the (weighted) pixel values, i.e. it is a measure of symmetry at the in-
ner scale of the image, local to a region defined by the window (outer scale).
One could also think of reducing the inner scale of the image by convolving
with a Gaussian prior to measuring symmetry. This step, combined with the
low frequency suppression, amounts to the application of a difference of Gaus-
sians filter. Note, however, that the difference in the scales of the two Gaussians
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may be very large, in contrast to many of the reported linear applications. In
practice, both the inner and outer scale are important, particularly when ana-
lyzing cluttered images. Figure 5 shows symmetries measured from part of the
house image. Of particular interest is the symmetry of the roof. At the smallest
scale (top left) the symmetry of the roof is not visible. As the outer scale in-
creases (top right), the symmetry becomes visible. However, the symmetry axis
contains a break, caused by the small extrusion in the skyline. The potentially
drastic changes caused by very small changes in shape are one of the major
bugbears of symmetry approaches to shape analysis [8]. In the present method,
this problem can be avoided by increasing the inner scale, until the small ex-
trusion becomes insignificant. The symmetry axis of the roof is then complete
(bottom right).

5 Examples

So far the local symmetry properties have been discussed in terms of conventional
symmetry analysis of (typically) extracted shapes. However, it retains many sim-
ilarities with local quadrature analysis, a technique predominantly applied to
feature detection and classification. In this section, we consider both applica-
tions of the method described in the previous sections. Indeed, it is hoped that
since the new method combines aspects of both approaches, it may be possible
to design symmetry inspired methods for detecting, labelling, grouping and in-
terpreting features. To this end, we have applied the local symmetry estimation
method to simultaneous feature detection and symmetry axis detection.

5.1 Symmetry Axes

The combined (point reflection plus 90° rotation) was used to find symmetry
axes. The algorithm proceeds as follows. First, the two symmetry maps are
calculated at a chosen scale. The axes are then extracted from the symmetry
maps by thresholding and morphological thinning (using the Matlab function
bwmorph). Although ridge detection would be more accurate in some cases, the
symmetries of many objects lack obvious ridges, in which case the thresholding
and thinning procedure is far more robust.

The left image in fig. 6 shows local symmetry axes found in an image of some
white kidney beans, with outer scale ¢ = 6 and inner scale equal to the inner
scale of the image. Symmetry was thresholded at (w/4). This is a particularly
challenging image for several reasons: the beans are short with respect to their
width and are curved; few of the beans have complete boundaries; the beans are
not truly symmetric, because of shading effects; the image contains structured
noise(JPEG artifacts). The symmetry axis of every completely visible bean is
at least partially extracted and in most cases completely extracted. The sym-
metry axes appear plausible: they are near the center of the bean and, in many
cases, have curvature that is comparable to the curvature of the correspond-
ing bean.
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Fig. 6. Left: Approximate symmetry axes extracted from a noisy image. Right: Inter-
ested points detected by extracting minima (blue) and maxima (red) of 90° rotation
symmetry

5.2 Feature Extraction

One of the interesting properties of the 90° rotation symmetry is that, by its
nature, it does not respond strongly to linear structures. This, combined with
the fact that it responds to an interesting range of structures, such as blobs,
saddles and corners, makes it a good candidate for an interest point detec-
tor. Such a detector can be made by applying the symmetry extraction pro-
cess described above to the 90° rotation symmetry alone. This detects points
with strong symmetry, such as blobs or crosses. A second set of points can
be found by extracting local minima of 90° rotation symmetry. These corre-
spond to points of anti-symmetry, such as corners and saddles. The right image
in fig. 6 shows the result of applying this algorithm, with appropriate thresh-
olds (minima less than —m/4, maxima greater than 7/4). The red dots rep-
resent points of high symmetry, while the blue dots represent points of high
anti-symmetry. As expected, most of the blue dots appear where beans touch,
which are approximate saddle points, while the read points appear in the gaps
between beans, which are approximately blob like. Interestingly, many of the
detected points lie on or near symmetry axes; this is unsurprising, since blobs
and saddles both have high point-reflection symmetry. In fact, even the fea-
tures which don’t lie on detected symmetry axes do lie on local symmetry max-
ima that were suppressed by the threshold. Similarly, one would expect that
other feature types, such as corners would appear at points of point reflection
anti-symmetry.

Interest points extracted using 90° degree rotation symmetry also seem to
be fairly robust to affine transformations. The features are clearly not affine in-
variant: the definition of point reflection symmetry is affine invariant, though
the suggested scale space is clearly not, while 90° symmetry is affine dependent
by definition. However, the effect of the transform is limited (since affine trans-
formations cannot turn, say, corners into blobs), and the main effect of affine
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Fig. 7. Interest points extracted from the house image, before and after affine trans-
formation. Left: original image with extracted points. Right: transformed image with
extracted points (circles) and transformed points from original image(stars)

transformations will be to alter the strength of the observed symmetry rather
than its type. Figure 7 illustrates the robustness of the interest points to affine
transformation. The left image shows the house image with extracted interest
points, the right shows the affine transformed image, new interest points (cir-
cles) and the affine transformed points from the original image. The majority
of the features are detected in both images. Interestingly, the method picks out
a lot of features in the brickwork; this is to be expected since the method is
contrast invariant, and the corners of bricks therefore appear as significant as
the corners of houses. These features are more vulnerable to noise corruption,
however, this is not a serious problem, since the susceptibility to noise can be
judged from the local energy. Figure 8 shows the performance of the features
on a real world data set. The two images are of the same structure, taken from
significantly different viewpoints. The solid circles are interest points which were

Fig. 8. Interest points extracted from two images taken from different view points.
Solid circles: points judged to represent the same features, judged by a human observer.
Hollow circles: unmatched points
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judged by a human observer to represent the same features. The hollow circles
are unmatched points. The proportion of correctly matched features is 71%;

6 Discussion

We have explored the relationship between symmetry and local phase, by select-
ing a particular definition of symmetry. The resulting analysis reveals potential
pitfalls in the use of phase in particular and linear filter based methods in general.
Instead, we have proposed two simple non-linear local symmetry descriptors. Be-
tween them these two methods enable the complete local symmetry set (in the
Brady and Asada sense) to be extracted for many shapes. By considering both
inner and outer scale the method is able to avoid the sensitivity to small changes
suffered by some medial methods [8]. Furthermore, the method also provides a
new approach for interest point detection. The extracted feature points have
the property that they lie on either the symmetry locus (blobs and saddles) or
on the anti-symmetry locus (corners). The two approaches combined therefore
produce both a rich set of simple interest points and an implied connectivity.
Since this connectivity is determined by the local symmetry, which is a powerful
description of local shape, it is hoped that this approach may provide a powerful
and economical basis for image processing.

References

1. H. Blum. A transformation for extracting new descriptors of shape. in Models for
the Perception of Speech and Visual Form, W. Wathen-Dunn (ed), MIT press, pages
363-380, 1967.

2. M. Brady; H. Asada. Smoothed local symmetries and their implementation. Inter-
national Journal of Robotics Research, 3(3):36-61, 1984.

3. R. L; O. Kiibler Ogniewicz. Hierearchic voronoi skeletons. Pattern Recognition,
28(3):343-359, 1993.

4. J.D. Fritsch; S.M. Pizer; B. Morse; D.H. Eberley; A. Liu. The multiscale medial
axis and its applications in image registration. Patt. Rec. Letters, 15:445-452, 1994.

5. P. Kovesi. Symmetry and asymetry from local phase. Tenth Australian Joint Con-
ference on Artificial Intelligence, 1997.

6. W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEFEE
PAMI, 13(9):891-906, 1991.

7. M. Felsberg; G. Sommer. The monogenic signal. IEEE Trans. Sig. Proc., 49, 2001.

8. R.A. Katz; S.M. Pizer. Untangling the blum medial axis transform. IJCV, 55(2/3),
2003.



Geometry of Isophote Curves

André Diatta and Peter Giblin

University of Liverpool, Liverpool L69 3BX, England
{adiatta, pjgiblin}@liv.ac.uk

Abstract. We consider the intensity surface of a 2D image, we study
the evolution of the symmetry sets (and medial axes) of 1-parameter
families of iso-intensity curves. This extends the investigation done on
1-parameter families of smooth plane curves (Bruce and Giblin, Giblin
and Kimia, etc.) to the general case when the family of curves includes
a singular member, as will happen if the curves are obtained by taking
plane sections of a smooth surface, at the moment when the plane be-
comes tangent to the surface.

Keywords and Phrases: Isophote curve, symmetry set, medial axis,
skeleton, vertex, inflexion, shape analysis.

1 Introduction

Image data is often thought of as a collection of pixel values I : Z2 + Z,.
The physical information is better captured by embedding the pixel values in
the real plane, as the pixelation and quantization are artifacts of the camera,
hence I : R? — R, . The geometrical information of an image is even better
captured looking at the level sets I(z) = Iy, for all Iy € R4, that is, looking at
the isophote curves of the image.

Shape analysis using point-based representations or medial representations
(such as skeletons) has been widely applied on an object level demanding object
segmentation from the image data. We propose to combine the object repre-
sentation using a skeleton or symmetry set representation and the appearance
modelling by representing image information as a collection of medial represen-
tations for the level-sets of an image. As the level Iy changes, the curves change
like sections of a smooth surface by parallel planes.

The qualitive changes in the medial representation of families of isophotes
fall into two types: (1) those for which the isophotes remain nonsingular (see
for example [3,8]) and (2) those for which one isophote at least is singular. The
symmetry set (SS) of a plane curve is the closure of the set of centres of circles
which are tangent to the curve at two or more different places. The medial axis
(MA) is the subset of the SS consisting of the closure of the locus of centres of
circles which are maximal, (maximal means that the minimum distance from the
centre to the curve equals the radius). Our aim is to extend the investigation to
the case (2) when the family includes singular curves, as is the case when one
of the plane sections is tangent to the surface so that this section is a singular
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curve. The final goal is to represent image smooth surfaces by the collection of
all medial reprentations of isophotes, forming a singular surface in scale space.

In this article, which is theoretical in nature, we work with the full SS, and
consider the transitions which occur in the SS of a family of plane sections of a
generic smooth surface in 3-space, as the plane moves through a position where
it is tangent to the surface. We investigate the local geometry of these families
of curves and track the evolution of some crucial features of the SS and MA. In
particular, we will trace and classify the patterns of some special points, on the
sections of a surface as the section passes through a tangential point, such as
vertices (maxima and minima of curvature), inflezions, triples of points where a
circle is tritangent and the pattern of the centre of such a circle, paires of points
where a circle is bitangent with a higher order contact at one of them, etc. The
vertices are crucial to the understanding of the SS since it has branches which
end at the centres of curvature at vertices. From the way in which vertices behave
we can deduce a good deal about the evolution of the SS and its local number of
branches. The inflexions correspond to where the evolute of the curve, recedes
to infinity. We also classify all possible scenarii of how vertices and inflexions are
distributed along the level curves.

Last, we produce examples of SS and MA illustrating the cases.

We are concerned with the local behaviour of symmetry sets (SS) and medial
axis (MA) of plane sections of generic! smooth surfaces so we may assume that
our surface M is given by an equation z = f(z,y) for a smooth function f, which
will often be assumed to be a polynomial of sufficiently high degree. We shall
take M in Monge form, that is f, f; and f, all vanish at (0,0).

2 Intrinsic Geometry of Generic Isophote Curves

This section describes the geometry of isophote curves evolving on a fixed smooth
surface M, under a l-parameter family of parallel plane sections. Namely, we
shall examine closely the different configurations of vertices and inflexions on
the sections on our surface. We will in particular concentrate on the evolution
through a plane section which is tangent to M at a point p, so that this section
is singular. For a generic surface, three situations arise, according to the contact
between the tangent plane and M at p, as measured by the singularity type
of the height function in the normal direction at p. See for example [12] for
the geometry of these situations, and [4,11] for an extensive discussion of the
singularity theory.

e The contact at p is ordinary (‘A; contact’), in which case the point is (i)
elliptic or (ii) hyperbolic. The intersection of M with its tangent plane at p
is locally an isolated point or a pair of transverse arcs.

e The contact is of type Ao, which means that p is parabolic. The intersection
of M with its tangent plane at p is locally a cusped curve.

! The genericity conditions will vary from case to case. See [6].
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Fig. 1. Two plane sections of a torus close to a singular section, together with their
evolutes. The thick lines are the MA and the dashed lines are the additional parts of
the SS. As the two ovals merge, two cusps on the evolute recede to infinity, taking
the branches of the SS with them. (In the right-hand figure, in fact the SS goes twice
to infinity and in between these excursions it covers the whole vertical line; this part,
caused by the global structure of the curve, has been omitted for clarity. In this paper
we are concerned with the local behaviour of SS near the singular section.)

e The contact is of type Az, which means that p is a cusp of Gauss, in which
case it can be (i) an elliptic cusp, or (ii) a hyperbolic cusp. The intersection
with the tangent plane is locally an isolated point or a pair of tangential
arcs.

Elliptic and hyperbolic points occupy regions of M, separated by parabolic
curves which are generically nonsingular; on the parabolic curves are isolated
points which are cusps of Gauss.

The following gives a complete description of the behaviour of vertices and
inflexions on isophotes curves near a singular point.

Theorem 1. Let f = k be a section of a generic surface M by a plane close to
the tangent plane at p, k = 0 corresponding with the tangent plane itself. Then
for every sufficiently small open neighbourhood U of p in M, there exists € > 0
such that f = k has exactly v(p) vertices and i(p) inflexions lying in U, for
every 0 < |k| < e, where v(p) and i(p) satisfy the following equalities.

(E) Ifp is an elliptic point, then for one sign of k the section is locally empty;
in the non-umbilic case, for the sign of k yielding a locally nonempty
intersection we have v(p) = 4, I(p) = 0. Likewise if p is an umbilic
point, then v(p) =6, I(p) = 0.

(H) If p is a hyperbolic point, v(p) satisfies one of the following. We use
> to indicate the transition in either direction, m + n indicating the
numbers of vertices on the two branches of f = k for one sign of k
before the < and for the other sign of k after it. In the most generic
case (open regions of our surface) we have 2+2 < 242 or 1+1 < 3+3.
See Figure 2. In other cases, occurring along curves or at isolated points
of our surface, we can have in addition 342 < 2+1 or 3+1 < 242. Also
using the same notation, i(p) satisfies: 1+1—0+2 or14+2 < 0+1.
There are 8 cases in all, and the full list is given in [6].
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H,(iia) H(iib)

Vertices: 1+1<> 3+3

H,()
Inflexions: 1+1<—> 2+0

Vertices: 1+1 <> 3+3
Inflexions: 2+0 <—>1

Vertices: 2+2<>2+2 y
Inflexions: 1+1<>2+0 //

T

Fig. 2. Arrangements of vertices and inflexions on the level sets of f, in the most generic
hyperbolic case (called H; in [6]). See Theorem 1. In each case, we show, above, the
vertex and inflexion curves—that is, the loci of vertices and inflexions on the level sets
of f—and, below, a sketch of the level curves for f < 0, f > 0, showing the positions
of these vertices and inflexions. Thick lines: f = 0 or f = k; thin solid lines: vertex
curves; dashed lines: inflexion curves. Open circles: minima of curvature; solid circles:

maxima of curvature; squares: inflexions

(P) If p is a parabolic point but not a cusp of Gauss, v(p) =3, I(p) = 2.
(ECG) If p is an elliptic cusp of Gauss, v(p) =4, I(p) = 2 for one sign of k,
and v(p) = I(p) = 0 for the other.
(HCG) If p is a hyperbolic cusp of Gauss, v(p) satisfies 1 +3 < 4+ 4 or
242 < 4+ 4, whereas I(p) satisfies2+2—0+2 or1+1<0+40.

For the proof and more details see [5], [6].

3 Symmetry Sets (SS) and Medial Axes (MA) of
Isophote Curves

The SS of a smooth simple closed curve in R? is made of piecewise smooth
curves (locus of A?’s), triple crossings (A3), cusps (A1 As), endpoints (A3) and
the points at ‘infinity’ (they correspond to bitangent lines to the curve). See
Fig 3.

e AZ2: The centres of bitangent circles with ordinary tangency at both points.

e A$: The centres of tritangent circles with ordinary tangency at all points.
They are the triple crossings on the symmetry set.

e A;Asy: They are the centres of bitangent circles which are osculating circles
at one point of the curve and have an ordinary tangency at the other point.
They lie on the evolute and are cusps on the symmetry set.

e As: They are the centres of circles of curvature at extrema of curvature on
the curve, the endpoints of the symmetry set and the cusps on the evolute.
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TR M

Fig. 3. (a)-(e): Illustration of the circles whose centres contribute to the symmetry set.
(a) is an A%, (b) an A1 As, (c) an A3, (d) an Az and (e) a centre at oo (bitangent line).
In the last case the circle has become a straight line and the centre is at infinity. Right:

a schematic drawing of a tritangent circle and a level set f = k for an umbilic point at
the origin O. As £ — 0 the points of tangency trace out three curves which we call the
‘A3 curves’. Calculation of these curves is given in §3.1. Once these curves are known
we can calculate the locus of centres of the tritangent circles

e Bitangent lines: the circle now has its centre at infinity so the SS goes to
infinity.

At inflexions the evolute goes to infinity and the sign of curvature changes.
Thus a positive maximum of curvature will be followed by a negative minimum,
which in terms of the absolute value of curvature is again a maximum.

Our approach to the study of SS of families of curves which include a singular
curve is to trace the A points, the inflexions, the A; A, points and the A3 points
on the curves as they approach the point at which the singularity develops. In
this way we obtain significant information about the SS themselves. The patterns
of vertices and inflexions have been studied in detail and for all the relevant cases
in [5] and in [6], as recalled in Section 2. Subsection 3.1 and 3.2 are devoted to
the study of the locus of A3 and A; Ay points, respectively. In Subsection 3.3 we
derive information on the changes on the SS of families of isophotes curves.

3.1 A:f Points

The A3 points are the centres of circles which are tangent (ordinary tangency)
to f = k (for any choice of f, such as hyperbolic or umbilic) at three distinct
points. They occur at triple crossings on the SS. Instead of looking directly for
the centres of those tritangent circles, we rather first look for the points where
those circles are tangent to the curve f = k (see Fig. 3, right, for a schematic
picture of the umbilic case). Thus we expect to have three curves, the ‘A3 curves’,
having the origin as their limit point, along which the three contact points move.
First, we want to find the limiting directions of these curves, ie the lines they are
tangent to as k — 0. After finding the limiting directions, we can then determine
enough of a series expansion (possibly a Puiseux series) to decide how the A3
curves lie with respect to the vertex curves, etc. which we have determined
before. We will give an example of such a parametrization below.

The equations which determine the A3 curves are of course highly non-linear.
They are in fact 8 equations in 9 unknowns, thereby determining an algebraic
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variety in R? which, when projected onto suitable pairs of coordinates, gives
each A3 curve in turn. There are two important features of these equations:

e Naturally they are symmetric in that the contact points can be permuted;

e The equations inevitably admit solutions obtained by making two of the
tangency points coincide (‘diagonal’ solutions). This causes the algebraic
variety in R? to have components of dimension greater than 1 which we
want in some way to discard.

We now set up the equations. Any circle has the form C(z,y) = 0 where

C = 2%+ 9% + 2az + 2by + ¢,

so that the centre is (—a, —b) and the radius is 7 where 2 = a? +b? — c. However

we prefer the parametrization by (a,b, ¢) rather than (a,b,r) since it results in
equations which are linear in the parameters.

Let this circle be tangent to f = k at the three points p; = (x4, v:), 7 = 1,2, 3.
There are 8 equations F; = 0, j = 1,...,8 which connect the 9 unknowns
i, Yi, a, b, cC.

Fy = f(x1,91) — f(22,92),

Iy = f(xhyl) - f(x37y3)a

Fipo =22 + 42 + 2az; + 2by; +¢, i=1,2,3,

Fi+5 = a%(xmyz) - b%(l"uyz) + Cﬂi%(xhyi) - yz%(xwy2)7 1= 17253'
The meaning of the 8 equations is as follows.

eqi: F1 =0 p;and ps in the same level curve of f;

eq2: F> =0 p; and p3 in the same level curve of f;

egqit+2 : Fi1o = 0 p; lies on the circle C, i=1,2,3;

eqi+5: Fits5 =0 C and the level set of f through p; are tangent at p;.

First from the three equations eq;, i = 3,4,5, we can get a, b and ¢ as
functions of x;,y;. Of course this is merely finding the circle through three given
points, which need to be non-collinear, and in particular distinct, for a unique
solution. More details about this will appear elsewhere.

Remark. In the umbilic case, we can always rotate the coordinates to make
bp = by in the expression of f(z,y), as shown in [7]. Thus, from now on we
assume by = bs for an umbilic point. Once having assumed by = b2, we now make
the genericity assumption that b; # bs. We shall also look for solutions for these
equations for which the limiting directions (limiting angles to the positive z-axis)
are distinct. This relates to the point made earlier, that our equations inevitably
admit ‘diagonal’ solutions which we want to suppress. Thus we are assuming
here that the limiting directions of the three A; contact points of our tritangent
circle are distinct as the oval f(x,y) = k shrinks to a point with £k — 0.

Proposition 1. Generically, there are no triple crossings, nor cusps on the local
branches of the symmetry set of isophotes curves near a hyberbolic point.

The limiting directions of the A3 curves at an umbilic, making the assump-
tions in the above Remark, are at angles t1,t2,t3 equal, in some order, to 90°,
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—30°, —150° to the positive x-axis, or the ‘opposites’ of these, namely —90°,
150°, 30°. This suggests strongly that there are always two triples of A3 contact
points tending to the origin as k — 0.

Proposition 1 implies, as confirmed by experimental evidence (see Fig. 6), that
there are in fact two triple crossings (A?) in the symmetry set in the umbilic case.
The proof of the Proposition is an explicit computation? of the tangent cone of
the algebraic variety defined by the above equations F; = 0, i = 1...8. The
branches (z;,y;) corresponding to (t1,te,t3) = (90°, —30°, —150°) have the form

((72()1[)0 — 6bgbs + 3c3 + 01)t2/6(b3 — bl) + ... ,t),
(AVBt+...,=3t+..)and (—3V3t+...,—it+..)

The actual locus of A$ points (triple intersections) on the symmetry set close
to an umbilic point where by = by as above and by # bs, is (—a(t), —b(t)) where

a(t) = %]tQ + %(7&)0[)1 + 9bgb3 — 3¢1 — C3)t3+ h.o.t.
b(t) = %(bl + 3b3)t2 + Tlﬁ(b% + 3b1b3 + 4[)3 +5¢c4 — o — 360)t3+ h.o.t.

Generically this curve has an ordinary cusp at the origin.

3.2 A1 A5 Points

The A; A, points are the centres of bitangent circles which are osculating at one
point and have an ordinary tangency at the other one; they produce cusps on
the symmetry set. As in the case of A3 points (§3.1), we look in the first instance
for the points where those circles are tangent to the level sets of f.

We find these curves by taking the circle C' to have equation x? + y2 + ax +
by 4+ ¢ =0 as in §3.1. This time after elimination of a, b, ¢ we obtain 3 equations
in 4 unknowns instead of 5 equations in 6 unknowns. Let the circle C' be tangent
to the same level set f = k at the two points p; = (2, ¥;), ¢ = 1,2. We proceed
to write down the corresponding conditions, defining functions F; as follows.

Fy = f(z1,y1) — f(x2,42),

Fy :=2a(z; — x2) + 2b(y1 — vo) + 22 + y3 — 23 — 93,

F3:=afy(x1,91) = bfe(w1,y1) + 21 fy(w1, 1) — v1fe(21, 01),

Fy:=afy(x2,y2) — bfu(w2,y2) + 22 fy(w2,y2) — Yo fo(T2,¥2),

Fs5 = (a’+x2)(f$:cfy2 - Qfxyfxfy + fyyfo) - fx(fo + fg?) (derivatives at (x2792)'

We have the corresponding equations and their interpretations:

eq; : F1 = 0 pp and pg are in the same level set of f;

eqa : Fy = 0 a circle with centre (—a, —b) passes through p; and po;

eqs : F3 = 0 this circle is tangent to the level set of f through py;

eqq : F4 = 0 this circle is tangent to the level set of f through ps;

eqs : F5 = 0 this circle is the circle of curvature of the level set through ps.

We solve eqq, eq3 for a and b and substitute in eqy and eqs. We summarize
the results as follows. See Figure 4. We assume as before that the limiting angles
at which the A; and As points approach the origin are distinct.

2 This computation, like all those underlying this article, was performed in Maple.
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Fig. 4. The possible limiting directions of A; and Az contact points of A; A circles, in

the umbilic case with axes rotated so that by = b2, assuming the limiting directions are
unequal. Those labelled 1 are only A; directions and similarly for A2. The unlabelled
directions can be either, with A; and As at 180° to one another

Proposition 2. Generically, there are no cusps on the local branches of the
symmetry set of isophotes curves near a hyperbolic point. The limiting angles in
the umbilic case must be one of the following.

A1 : 7300, A2 : 900; or Al : 1500, A2 : *900;

Ay 0 —150°, As :90°; or Ay : 30°, As: —90°;

Ay :60°, Ay : —120° or vice versa;

Ay 0 —60°, Ag : 120° or vice versa.

This means that there are six cusps (A;As) on the SS in this umbilic case.
In that case, we expect each cusp (which requires an A; and an A, contact) to
use one of the above six solutions, for a definite choice of A; and A, in the last
two cases.

3.3 Symmetry Sets (SS) and Medial Axes (MA)

As suggested by Theorem 1, Propositions 2 and 2, the local structure of the SS
and MA of individual isophote curves and its transitions are as follows:

e parabolic points: the local structure of SS is just 3 separate branches cor-
reponding to the 3 vertices separated by inflexions (Theorem 1), see Fig.
5.

e nonumbilic elliptic points: the SS is made of just 2 transverse arcs, one
joining two centres of curvature at maxima of curvature and the other one
two minimum of curvature. The SS will look like itself and disapear as the
curve shrinks to a point.

e hyperbolic point: the SS and MA are made of smooth branches, which do not
connect together to form cusps or crossings. This implies in particular that
generically, the SS (and MA) is just given by the geometry of vertices and
inflexions as well as how they are distributed along the isophote curves, as
discribed in Section 1. The branches of the SS will start at endpoints which
are the centres of curvature of the isophote curves at vertices and they point
towards the corresponding vertex if the isophote curve has a local minimum
of curvature, and away from the vertex where the curve has a maximum of
curvature.
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Fig. 5. Top: A schematic picture of the patterns of the vertices (vertex set V,, = 0: thin
solid line) and inflexions (inflexion set I, = 0: dashed line) of the level curves f = k
evolving through a parabolic point, together with the zero level set f = 0 (thick line),
and a sketch of one level curve of f. The vertex set has two cuspidal branches and one
smooth branch. The inflexion set has one cuspidal branch which is always below all
cupidal branches and one smooth branch. The zero level set f, = 0 has one cuspidal
branch which is always between the two cuspidal vertex branches. The level set f, =k
then evolves so that the number of vertices remains as 3 and the number of inflexions as
2 for both signs of k, with k£ small. Bottom: Symmetry sets (thin lines) of curves (thick
lines) which are sections of a surface close to the tangent plane at a parabolic point.
One sees 3 vertices separated by two inflexions both before and after the transition. At
the transitional moment itself, the branches reach right to the curve, which then has
an ordinary cusp. Figure produced with LSMP[13]

e near umbilics: the SS have generically two triple crossings and six cusps.
Hence generically, the SS has one structure, as in Fig. 6.

For the drawing of the SS and M A, we will need the pre-symmetry set (preSS)
which is the subset of the cartesian product I x I of the parameter space I,
defined by the pairs (s,t) corresponding to points p = ~(s) and ¢ = ~(t) which
contribute to the SS. That is, there is a circle tangent to v at the points v(s)
and (). See Fig. 6
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Fig. 6. Symmetry set and pre-symmetry set of f = k, in the umbilic case f(z,y) =
22 + 9% + 2® — 2y? + 2¢® and k = 0.09. The figure to the right is the same as the
left hand side one, but the symmetry set has been enlarged so that the two A3 points
(triple crossings) and the six A1 Az (cusps) are more visible. One can also see the six
endpoints of the symmetry set, corresponding to the six vertices on the curve. Varying
k then the SS will still look like itself and disappear as k — 0. This figure illustrates
the results of Proposition 1 and Proposition 2

4 Evolution of Symmetry Sets of Isophote Curves in
1-Parameter Families of Surfaces

As explained in Section 1, given a generic surface M, elliptic and hyperbolic
points occupy regions of M, separated by parabolic curves with isolated points on
them which are cusps of Gauss. We can then consider moving from a hyperbolic
point to a parabolic point of M. We can also realise this by evolving the surface
in a 1-parameter family, of the form z = 22 —a2y+boz3 +b1x2y+boxy?+b3y®+...,
where @ — 0 and b3 # 0. It turns out that, generically, the only hyperbolic
points which exist sufficiently near a parabolic point are the ones corresponding
to vertex transition 1 + 1 «<» 3 + 3 in Theorem 1. The Figure 7 shows how the
vertices behave on a 2-parameter family of plane sections near the tangent plane
at a hyperbolic point, evolving to a family of sections near a parabolic point.

5 Conclusion

This paper represents a step towards understanding the evolution of SS and MA
of families of isophote curves, or more generally of families of plane sections of s
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(2)
(b)

()

Fig. 7. Transition of the patterns of vertices (thick curve) and inflexions (thin curve)
on a 2-parameter family of plane sections f, = k near the tangent plane at a hyperbolic
point, evolving to a family of sections fo = k near a parabolic point. f(z,y) = z? —
o?y? +2® + 222y — 2y® +4°. (a) a = 1 (hyperbolic); the vertex set has 4 branches and
the inflexion 2. (b) @ = 0.3, the top part (above x-axis) of two vertex branches join
together to form a loop which is shrinking to the origin as o — 0. The vertex branch
tangent to = 0 stays smooth. The other vertex branch bends to become a cusp. (c)
a = 0.05: the vanishing loop. (d) As o — 0, the inflexion set exchanges branches: the
top part (above x-axis) join together to make a smooth branch, whereas the bottom

part forms a cusp below the cuspidal vertex branches. Compare Figures 2 and 5

generic surface in 3-space. The evolution of the MA depends, in an essential way,
upon the underlying evolution of the SS [10], which is why we have concentrated
on the SS in this paper. An interesting follow up of this work, would be to
combine into a more global represention of an image by the collection of those
individual representations, as a singular surface in scale space, whose sections

are the individual SS and MA.
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Abstract. This paper presents an algorithm for computing stability of
top-points in scale-space. The potential usefulness of top-points in scale-
space has already been shown for a number of applications, such as image
reconstruction and image retrieval. In order to improve results only reli-
able top-points should be used. The algorithm is based on perturbation
theory and noise propagation.

1 Introduction

Top-points have been shown to provide a sparse representation of an image
that can potentially be used for image matching and image reconstruction [1].
To get rid of unstable top-points that may deteriorate performance, we derive a
stability measure, which reflects the variance of top-point displacements induced
by additive noise perturbation of given variance.

A top-point is an isolated point in scale-space where both gradient and Hes-
sian determinant vanish. We consider only generic top-points [2]. Adding noise to
the image leads to large displacements for some top-points and hardly noticeable
displacements for others. In Sect. 2 we describe how to compute the dislocation
of a top-point for each noise realization by using a perturbation approach. In
order to obtain a realization-independent quantity, the variances of top-point
displacement as a function of noise variances and image derivatives are derived
in Sect. 3.

The variances of top-point displacement along coordinate directions are de-
pendent on the coordinate system. In Sect. 4 invariants under Euclidean coordi-
nate transformation are introduced.

We conclude the paper by experimental verification (Sect. 5). Experiments
confirm our theoretical predictions. Thus we have obtained an operational cri-
terion for distinguishing between stable and unstable top points.

2 Top-Points

Top-points of scale-space image representation u(zx,y,t) are defined by the fol-
lowing system of equations:

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 62-72, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Stability of Top-Points in Scale Space 63

Uz =0,
uy = 0, , (1)
UggUyy = Ugy,-

Our scale parametrization convention is such that u satisfies the following heat
equation:
Up = Ugg + Uyy. (2)

One idea of the “deep structure” rationale is to use information about top-points
for different applications, for instance image matching and reconstruction. In or-
der to get reliable results, the top-points, used by the algorithm, should be stable.
Therefore the criterion of stability for top-points should be considered first.

Suppose (xg,Yo,t0) is a top-point for a fiducial scale-space image u. The
stability of the top-point can be defined by measuring the distance over which
the point moves after adding noise to the image.

Note that top-points are generic entities in scale space, thus cannot vanish
or appear when the image is only slightly perturbed. Throughout we will as-
sume that the noise variance is “sufficiently small” in the sense that the induced
dislocation of the top-point can be investigated by means of a perturbation ap-
proach. For a given image u we consider its perturbations v under additive noise,
i.e. v = u+ N, in which N denotes the noise function. If (zg,yo,%o) denotes a
top-point in u, then due to noise perturbation it will move to some neighboring
location (xo+&,y0+n,to+7) in v. By using Taylor expansion, the displacement
(&,m,7) of the top-point (xg,yo,to) can be computed as

& -1 g
n|=-M [detH} ’ (3)
-
where
Hw
ML (@
g=Vv, H=Vg, w=0;g, z=VdetH, ¢ = d;detH. (5)

with all derivatives taken in the point (zg, yo,to). For a derivation we refer to [3].
Explicit expressions of &, n and 7 in terms of image derivatives can be found
in Appendix A.

3 Noise Propagation

In this section, the rules are discussed for the determination of the precision or
reliability of a compound “measurement” f in terms of the precision of each
constituent x;. This subject is known as the propagation of errors [7].

Suppose that the derived property f is related to the measured properties
Z1, ..., Tp by the functional relation

f=flxe,...,zpn) (6)
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The function is assumed to be sufficiently regular.
Suppose that all z4, ...z, are random and possibly correlated between each
other. The propagation of the variance of f can be approximated as

(f(@1,. @) = 1y ey Tn Zzaf af (i), (7)

Ox; Ox;
=1 j=1 v J

where all derivatives are calculated for the mean vector (Z1,...,...Zy).

3.1 Noise Propagation for Top-Point Displacement

In our case the random variables (x1,...,x,) are the noise derivatives
(Ng, Ny, Ngg, ..., Nyyyy). The computed “measurement” f is a vector of dis-
placements [E(Nay ooy Nyyyy )s 1 Nay - oo, Nyyyy )y T(Nay - <« Nyyyy)]T in scale-space.
The mean vector (Ny,...,N,) is zero, therefore the mean displacement is
zero as well N B N
§ g(]\_]-137]\_]’ﬂ) 0
n|=|n{,....Na) | = [0]. (8)
T 7(Ny,...,Np) 0

Therefore the variance of the displacement vector equals the second order mo-
mentum of the displacement, [(£2), (n?), (t)]7.

For simplicity, consider the variance in  direction (£2) only. Similar equations
hold for (n?) and (72).

Since the actual image v is obtained by adding noise N to the fiducial image
u, i.e. v =u + N, for every i we have

ot ot

therefore (7) can be rewritten as

Zzgi 2 (NN (10)

=1 j=1

N; (v;) is short notation for a partial derivative of the noise (image) function.
More specifically the numerator of the expression for the displacement £ (recall
Appendix A) is a polynomial of v, ..., vyyy,, which can be represented as

Ve B (Vg oo Oyyyy) T 0y GV, Vyyyy) + (U?cy = Vg Uyy ) H (Vzy -+, Vyyyy)- (11)

From this representation it is easy to see that derivatives of (11) with respect to
to third and higher order image derivatives taken in the mean point vanish since

. L 2 .2 _
Vr = Uy =0, vy =uy =0, vy — VgaUyy = Uy — Ugglyy = 0, (12)

Y

in the respective top-point of u and v, recall (1).

Therefore, the sum (10) contains terms with derivatives with respect to
Vg, Uy, Uza, Vay, Uyy ONly. Hence in order to get the final expression for the variance
we only need to compute the mutual correlations of noise derivatives
Nz, Ny, Ny, Nyy, Nyy. Higher order noise derivatives play no role.
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Table 1. Some values of Q, (Q»=0 if n is odd)

n | 0|2 4] 6
Q.| 1/ 1]3[ 15

3.2 Noise Which Is Uncorrelated Between Neighboring Pixels

2 _ . . .
The momentum Mg, . o =< Ny my Nny,ny, > of Gaussian derivatives of
correlated noise in case the spatial noise correlation distance 7 is much smaller

than scale ¢ is given by [10]

T _1 %(mx+my+nx+ny)
Mgmx,my,nx,ny =< N2 > (2775) <4t> me+nmey+ny (13)
Let us take the correlation kernel with one pixel width, therefore 7 = 1/2. In

this case Gaussian derivatives of the first and the second order have the following

correlation matrix:

4t0 000
0 4t,000 (N2)
0 0 010 (4t0)
0 0 103

where (N1,...,N5) = (Ng, Ny, Noz, Nay, Nyy ).

4 Invariants

The variances (£2) and (n?) are not rotationally invariant, as they depend on the
choice of Cartesian coordinate axes. By rotation we get variances as functions

of angle ¢, (€?)(¢0) and (n*)(¢).
After some simplifications the rotated variances can be written as

(€%) = (Asin® p + Bsingcos ¢ + C)/D,

(n*) = (Acos? ¢ — Bsinpcosp + C)/D, (15)

where A, B, C and D are functions of g, ..., Uyyyy (for sake of complete-
ness the exact expressions are given in Appendix B). The variance of the total
displacement r = 1/£2 4+ n? can be easily computed from (15)

(r?) = (") + (n*) = (A+2C)/D. (16)
Therefore (r?) is invariant under rotation, as expected
(€)' + ) =0, (17)

where prime denotes derivative with respect to angle of rotation. From (17) one
can easy see, that if (£2)’ is zero, then (n?)’ is zero as well. This shows, that (£2)
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Fig. 1. Variances of top-point displacements for all top-points projected on the xy-
plane

and (n?) have an extremum under the same rotation of the axes. The extrema
%)

of (¢2) (and (n?)) can be reached by rotation, when
t A i+ (4 2 (18)

= n = — —

X an B B

The extremal variances are

X = (%) = 55,
(19)
Y = () = 5

X and Y are obviously invariant under rotation and translation.

By rotating the coordinate system we find directions in which the variance is
maximal, respectively minimal (these two directions are orthogonal) and we con-
struct an ellipse! with principal directions and axes that reflect these extremal
noise variances (Fig 1).

Note, that top-points, in the neighborhood of which there is a lot of structure,
have ellipses with very small radiuses (stable), and top-points in rather flat

! Note, that (15) does not parameterize an ellips. An elliptical “gauge figure” however
is merely used for simplicity.
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locations tend to have large ellipses (unstable) (Fig. 1). Another invariant is the
variance of T (scale instability), the expression of which is given in Appendix B.

5 Experiments

In order to validate the theoretical results numerical experiments have been con-
ducted. Adding noise to the image results in changing top-points coordinates.
Some of them hardly move and others move quite a lot. It is practically impos-
sible by comparing two top-point clouds to tell which top-point of the fiducial
image corresponds to which top-point of the actual image, therefore it is impos-
sible to investigate the stability in a pure experimental way. Instead, we choose
a somewhat different approach, which combines theory and experiments.

For each noise realization N?, where i = 1... K labels the experiments, we
use (3) as a refining algorithm in order to estimate the coordinates of the actual
top-point (z¢ + &, yo + m:,to + 7)), taking the coordinates of the original top-
point (2o, yo,%o) as an initial guess. The experiment consists of K = 500 noise
realizations. Therefore, for original top-point (xg,yo,to) we compute an array
{(&,m,7) h<i<k of 500 displacements.

The principal directions and maximum and minimum variances for the set
of points, obtained by noise perturbation, have been calculated. In order to find
principal directions, the extremum problem should be solved for the averages

K
<§2>(X) = 1+1X2 Zi:1(§i + Xm)Q/K,
K
1) (X) = 155 Lima (—x& +m)?/K,
where T is a tangent of the angle of rotation. The extreem for both variances
are reached under identical rotations, since the sum (£2)(T) + (n?)(T) does not

depend on .
The extremum corresponds to the angle given by

D S (ki) S, - n)\°
X=- 221&%‘ +\/( 2Zifim ) L 1)

The variance in this direction is X = (?)(x)

(20)

3 K
X = i + X"h (22)
and in the orthogonal direction
1 K
Y = —— —X& +m)? /K 23
D ke (23)

The comparison of theory and the experiments is depicted in Fig. 2. Since
both the theory and the experiments take into account derivatives up to fourth
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Fig. 2. Examples of top-point movements projected on the xy-plane under noise real-
izations (crosses) and theoretical predictions (ellipses). Right column shows zooming
in the neighborhood of the top-point
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Fig. 3. Comparison of experimental and theoretical results. The value of € denotes the
ratio between theoretical and experimental variances, a) - for spatial displacement €x
and b) - for scale-displacement er

order, the scale of the top-point should be large enough to obtain reliable results.
The value of € denotes the relative difference between theoretical and experimen-
tal variances in space and scale

<t

X —
X
T-T

ET = = 25
- (25)
Figure 3 reveals that the relative difference between theoretical and experi-
mental results is acceptably small for large scales and large for small scales due

to computational errors in derivatives, as expected.

ExX = (24)

6 Results

In this paper we have described an algorithm for computing stability measures
for top-points. The algorithm is based on a perturbation approach and uses
properties of noise propagation in Gaussian scale-space.

Variances of top-point displacements can be computed on the basis of noise
variance and fourth order differential structure at the top-point.

The advantage of this approach is that variances of displacements can be
predicted theoretically on the basis of the local differential structure.

The experiments have shown correspondence between the analytical predic-
tions and practice in cases where the scale of top-point is not too small for
reliably computing fourth order derivatives.

Analytically computed variances can be used for several applications, such
as stability measures and weight measures for top-point based image retrieval
algorithm [1].

Applying the algorithm to problems listed above will be the next step in our
research.
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Appendix A: Displacements Under Noise Perturbation

In this appendix we give expressions for displacements in spatial and scale di-
rections. The refining equations (3) in terms of image derivatives are given by

[5} _ ((v2 — Uy [Ury(vmy + Vyyy) — Vyy (Vooa + Uryy)] _
n xy Y Vay (Vawa + Vayy) — Vaz (Vazy + Vyyy)
—2UgyVayy + VyyVoay + ”mvyyy]
QUJ;vawy - 'Uyyvxacw - U;ca:va:yy (26)
(Vyy (Vazzz + Vozyy) + Voo (Vsayy + Vyyyy) — 200y (Vozzy + Vayyy))

VyUgy — VaVyyVaVsy — VyUza

detM

(Vy (Vazz + Vayy) — V2 (Vaay + Vyyy))
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The scale displacement equals
T= (_(’U:%y - ”m”yy)2 + vy (Qngcyvmy + Uz (VyyVazy + VaaVyyy)—
Vay (3Vz2Vayy + VyyVzzz)) + Vs (2Uazcyvxyy + Vyy (VazVayy + VyyVzazs)— (27)

Vay (3UyyVzzy + VazUyyy)))/det M
In both formulas we have a denominator

detM = (VyyVeay + VaaVyyy — 2VayVayy) (Vay (Veze + Vayy) — Vex (Vaay + Vyyy))
+(VyyVzza + VaaVeyy — 2VeyVzzy) (Vey (Vezy + Vyyy) — Vyy(Vezs + Vayy))+

(Vo Vyy — Ua%y)(UTT (Vowyy + Vyyyy) + Vyy(Vezzs + Vazyy)) — 202y (Vezay + Vayyy))

(28)

Appendix B: Parameters for the Invariant Expressions

A = 3(uzz — uyy)(Uos + uyy)Q(uzz (Uzay + uyyy)2 + (Uzaz

Ftiayy) ((Uees + Uayy)tyy — 2Uay (Uszy + Uyyy))) + 4o (((—2UzayUay
FUzzlizyy + Uzzalyy) (Uzzy + Uyyy) + (Uzzz + Uzyy) (—2UsyUsyy + UsoyUyy
FaaUyyy) + 2Uzy (2Uay (Uszzy T Usyyy) — (Uazze + Uzayy)Uyy

— Uz (Uzayy + “yyyy)))2 + 2(—2uzy (Uazay + Uayyy ) Uyy + (Uzzzz + “wzyy)uzy
—(Uszzy + Uyyy) (—2UayUayy + UsaylUyy + UsaUyyy) + uiy(umyy + Uyyyy))

X (= (Uzzz + Usyy) (Usalzyy + Uszatyy) + (Uszy + Uyyy) (UseyUyy + UzaUyyy)
+2Usy (Uzzalzzy — UsyyUyyy) T (—Usz + Uyy) (2Uay (Uszay + Uzyyy)

—(Uszzz + Usayy)Uyy — Uzs (Uazyy + Uyyyy))) + (—(Usze + Usyy ) (UsaUayy

Fuzzaliyy) + (Uazy + Uyyy) (UsayUyy + Usalyyy) + 2Usy (Uzzalizey — UsyyUyyy)

H(—Uzz + Uyy) 2Uay (Uzzzy + Usyyy) — (Uszze T Usayy)Uyy — Yoo (Uszyy
+uyyyy>))2 = 2((—2UaayUay + UzzUayy + Uzzalyy) (Usay + Uyyy)
+(Uzzz + Usyy ) (—2UsyUsyy + UzayUyy T UsaUyyy) + 2Uzy (2Usy (Uszay
Fayyy) — (Uszaz + Usoyy)Uyy — Yz (Usayy + Uyyyy))) ((Uszz + Uayy)

X (= 2Ugy Uzyy + UgayUyy + Uzalyyy) — Uay (—2Uzy (Vzzzy + Uzyyy)

F(Uzzzz + Uzayy ) Uyy + Uzz (Uzzyy + Uyyyy)))) (29)

B = —6uqy(uze + uyy>2(uww (Uzay + uyyy>2 + (Usos + Uayy) ((Uazes +
Upyy ) Uyy — 2Uay (Uszy + Uyyy))) + 40 (2(—2usy (Vazay T Usyyy)Uyy +
(Ugzas + Umryy)uzy = (Ugay + Uyyy) (= 2Uszy Usyy + UgayUyy + UzzUyyy) +
Uiy(umyu + Uyyyy)) ((—2Uzzy sy + UzzUayy + Uzzatyy) (Uzzy + Uyyy) +
(Uzze + Usyy) (—2UasyUayy + UsayUyy + UaaUyyy) + 2Uay (2uay (Uogay +

Uzyyy) — (Uswos + Usayy)Uyy — Usa (Uszyy T Uyyyy))) + 2(—(Uszat
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Ugyy)) (UzzUayy + Uszaliyy) + (Uszy + Uyyy) (UsayUyy + Uselyyy) +

2y (UpzaUsay — UzyyUyyy) + (—Uzz + Uyy ) (2Uzy (Uzzzy + Usyyy) —

(Uawzz + Uzzyy)Uyy — Usa (Uaayy + Uyyyy))) (Usze + Uayy) (—2UayUayy +
UgayUyy + Usalyyy) — Yoy (—2Usy (Uszzy + Usyyy) + (Uszze + Usayy)Uyy +
Uz (Uzayy + Uyyyy))) (30)

C = 3(ugs + Uyy)z(*(uzm + Ugyy ) Uyy + Uay (Uazy + uyyy))2 +

Ato ((—2uzy (Uzzzy + Uzyyy)Uyy + (Uzzzz + Umfyy)u;y + (Uzzy + Uyyy) X
(2Uaytiayy — UsayUyy — Usalyyy) + uiy (Uzayy + “yyyy))2 + ((Uzze + Usyy) ¥
(—2UayUayy + UsayUyy + Usalyyy) — Yoy (—2Uay (Uszay + Usyyy) +

(Uzzza + Uzzyy)Uyy + U (Uzzyy + Uyyyy)))Q) (31)

D= 8\/;8(%1;%11; + VazUyyy — 2VayVayy) (Voy (Vazz + Vayy) — Voo (Vaay+
Vyyy)) + (VyyVsza + VaaVsyy — 2V2yVaay) (Vay (Vazy + Vyyy) — Vyy (Vaze + vryy())))
32
(12) = 4to (U + Uyy) (Uyy (BUagztayy + Ussaliyy)? — 2Usy (BUprlayy + Uppalyy ) X
(BUgayUyy + UsaUyyy) + s (SUgauyUyy + umuyyy)Q))/D
(33)
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Abstract. In previous work, singular points (or top points) in the scale
space representation of generic images have proven valuable for image
matching. In this paper, we propose a construction that encodes the scale
space description of top points in the form of a directed acyclic graph.
This representation allows us to utilize graph matching algorithms for
comparing images represented in terms of top point configurations in-
stead of using solely the top points and their features in a point match-
ing algorithm, as was done previously. The nodes of the graph represent
the critical paths together with their top points. The edge set will cap-
ture the neighborhood distribution of vertices in scale space, and is con-
structed through a Delaunay triangulation scheme. We also will present
a many-to-many matching algorithm for comparing such graph-based
representations. This algorithm is based on a metric-tree representation
of labelled graphs and their low-distortion embeddings into normed vec-
tor spaces via spherical encoding. This is a two-step transformation that
reduces the matching problem to that of computing a distribution-based
distance measure between two such embeddings. To evaluate the quality
of our representation, two sets of experiments are considered. First, the
stability of this representation under Gaussian noise of increasing magni-
tude is examined. In the second set of experiments, a series of recognition
experiments is run on a small face database.

1 Introduction

Previous research has shown that top points (singular points in the scale space
representation of generic images) have proven to be valuable sparse image de-
scriptors that can be used for image reconstruction [6,12] and image matching
[7,14]. In our previous work, images were compared using a point matching

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 73-84, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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scheme which took into account the positions, scales, and differential proper-
ties of corresponding top points [7,6]. The underlying matching framework was
based on the Earth Mover’s Distance, a powerful, many-to-many point match-
ing framework. However, treating the points as an unstructured collection ig-
nores the salient group structure that may exist within a given scale or across
scales. Grouping certain top points together explicitly encodes the neighborhood
structure of a point, effectively enriching the information encoded at a point —
information that can be exploited during both indexing [16] and matching [17].

In this paper, we take an unstructured set of top points and impose a neigh-
borhood structure on them. Inspired by the work of Lifshitz and Pizer [10], we
will encode the scale space structure of a set of top points in a directed acyclic
graph (DAG). Specifically, we combine the position-based grouping of the top
points provided by a Delaunay triangulation with the scale space ordering of the
top points to yield a directed acyclic graph. This new representation allows us
to utilize powerful graph matching algorithms to compare images represented in
terms of top point configurations, rather than using point matching algorithms
to compare sets of isolated top points. Specifically, we draw on our recent work
in many-to-many graph matching [9, 2, 3], which reduces the matching problem
to that of computing a distribution-based distance measure between embeddings
of labelled graphs.

We describe our new construction by first elaborating on those basics of catas-
trophe theory required to introduce the concept of a top point. Next, we formally
define a top point, and introduce a measure for its stability that will be used
to prune unstable top points. Section 4 describes the construction of the DAG
through a Delaunay triangulation scheme. Section 5 reviews our many-to-many
DAG matching algorithm, which will be used to evaluate the construction. In
the first experiment, we examine the stability of the construction under Gaus-
sian noise of increasing magnitude applied to the original images. In the second
experiment, we examine the invariance of the graph structure to within-class im-
age deformation, which may include minor displacements of points both within
and across scales.

2 Catastrophe Theory

Critical points are points at any fixed scale in which the gradient vanishes, i.e.,
Vu = 0. The study of how these critical points change as certain control param-
eters change is called catastrophe theory. A Morse critical point will move along
a critical path when a control parameter is continuously varied. In principle,
the single control parameter in the models of this article can be identified as
the scale of the blurring filter. The only generic morsifications in Gaussian scale
space are creations and annihilations of pairs of Morse hypersaddles of opposite
Hessian signature! [1,4]. An example of this is given in Fig. 1.

! The Hessian signature is the sign of the determinant evaluated at the location of the
critical point.
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A

scale

C

space

Fig. 1. The generic catastrophes in isotropic scale space. Left: an annihilation event.
Right: a creation event. A positive charge @& denotes an extremum, a negative charge
© denotes a saddle, ® indicates the singular point

The movement of critical points through scale, together with their annihila-
tions and creations, forms critical paths in scale space. In this article, we will
restrict ourselves to generic (non-symmetrical) 2D images, but the theory is
easily adapted to higher dimensions. In the 2D case, the only generic morsifica-
tion is an annihilation or creation where a saddle point and an extremum point
meet. Critical paths in 2D therefore consist of an extremum branch, that de-
scribes the movement of an extremum through scale, and a saddle branch, that
describes the movement of the saddle with which the extremum annihilates.
Note that there is always one extremum branch continuing up to infinite scale
[11]. In Fig. 2, the critical paths and their top points are shown for a picture
of a face.

Fig. 2. Critical paths and top points of a face
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3 Top Points

The points at which creation and annihilation events take place are often referred
to as top points®. A top point is a critical point at which the determinant of the

Hessian degenerates:
Vu=0
{ det(H) = 0. (1)

An easy way to find these top points is by means of zero-crossings in scale space.
This involves derivatives up to second order and yields sub-pixel results. Other,
more elaborate methods, can be used to find or refine the top point positions.
For details, the reader is referred to [4].

It is obvious that the positions of extrema at very fine scales are sensitive to
noise. This, in most cases, is not a problem. Most of these extrema are blurred
away at fine scales and won’t affect our matching scheme at slightly coarser
scales. However, problems do arise in areas in the image that consist of almost
constant intensity. One can imagine that the positions of the extrema (and thus
the critical paths and top points) are very sensitive to small perturbations in
these areas. These unstable critical paths and top points can continue up to
very high scales since there is no structure in the vicinity to interact with. To
account for these instable top points, we need to have a measure of stability, so
that we can either give unstable points a low weight in our matching scheme, or
disregard them completely.

A top point is more stable in an area with a lot of structure. The amount
of structure contained in a spatial area around a top point can be quantified by
the total (quadratic) variation (TV) norm over that area:

def 02 [o|[Vu(@)|*dV
fQ dv

We calculate the TV norm in a circular area with radius Ao around a top point
at position (z.,t.). Note that the size of the circle depends on the scale o. The
integration area of the TV norm (2 is defined by:

Q:lz—z* < N2 (3)

TV ()

(2)

By using a spatial Taylor series around the considered top point, and taking
into account that the first order spatial derivatives in this point are zero, we can
simplify the TV-norm Eqn. (2) to what we refer to as the differential TV-norm
by the following limiting procedure[14]:

def . 41 4 2

tv = lim ——TV(\) =c"Tr(H 4

o ©im = STV () = o TH(H) (4)

The proportionality factor % is irrelevant for our purposes. The normalization

factor 5 is needed prior to evaluation of the limit since TV (X) = O(A*). Eqn. (4)

2 The terminology is reminiscent of the 1D case, in which only annihilations occur
generically.
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(a) Stable paths

Fig. 3. Spatial projection of critical paths of a MR brain scan image. The paths are
filtered by thresholding the stability norm of their top points. Most instabilities occur
in flat regions, as expected

has been referred to by Koenderink as deviation from flatness, which can indeed
be seen to be the differential counterpart of Eqn. (2). It enables us to calculate a
stability measure for a top point locally by using only its second order derivatives.
This stability norm can be used to weigh the importance of top points in our
matching scheme, or to remove any unstable top points by thresholding them
on their stability value. The latter is demonstrated in Fig. 3.

4  Construction of the Graph

The goal of our construction is two-fold. First, we want to encode the neighbor-
hood structure of a set of points, explicitly relating nearby points to each other
in a way that is invariant to minor perturbations in point location. Moreover,
when local neighborhood structure does indeed change, it is essential that such
changes will not affect the encoded structure elsewhere in the graph (image). The
Delaunay triangulation imposes a position-based neighborhood structure with
exactly these properties [15]. It represents a triangulation of the points which is
equivalent to the nerve of the cells in a Voronoi tessellation, i.e., that triangula-
tion of the convex hull of the points in the diagram in which every circumcircle
of a triangle is an empty circle [13]. The edge set of our resulting graph will be
based on the edges of the triangulation. Our second goal is to capture the scale
space ordering of the points to yield a directed acyclic graph, with coarser scale
top points directed to nearby finer scale top points.

The first step in constructing our graph G is the detection of top points
and critical paths using ScaleSpaceViz [5]. The root of G, denoted as vy, will
correspond to the single critical path that continues up to infinity; note that
there is no top point associated with this critical path, but simply its position at
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the coarsest scale. All other nodes in G, denoted as vs, ..., v,, correspond to the
detected top points and their corresponding critical paths. v, ..., v, are ordered
in decreasing order of the scale at which they are detected, e.g., v is detected at
a coarser scale than v,,. As we build the Delaunay triangulation of the points, we
will simultaneously construct the DAG. Beginning with the root, v, we have a
singleton point in our Delaunay triangulation, and a corresponding single node
in G. Next, at the scale corresponding to ve, we project vi’s position down
to wy’s level, and recompute the triangulation. In this case, the triangulation

Fig. 4. Visualization of the DAG construction algorithm. Left: the Delaunay trian-
gulations at the scales of the nodes. Right: the resulting DAG (edge directions not
shown)

Fig.5. The DAG obtained from applying Algorithm 1 to the critical paths and top
points of the face in Fig. 2



Discrete Representation of Top Points via Scale Space Tessellation 79

yields an edge between v; and wvs. Each new edge in the triangulation yields
a new edge in G, directed from coarser top points to finer top points; in this
case, we add a directed edge in G from v; to vo. We continue this process with
each new top point, first projecting all previous top points to the new point’s
level, recomputing the triangulation, and using the triangulation to define new
directed edges in G. A summary of this procedure is presented in Algorithm 1.

The construction is illustrated for a simple image in Fig. 4. In the top two
frames in the left figure, we show the transition in the triangulation from wo
(point 2) to vz (point 3); the root is shown as point 1. In the upper right frame,
the triangulation consists of three edges; correspondingly, G has three edges:
(1,2),(1,3),(2,3), where (x,y) denotes an edge directed from node z to node y.
In the lower left figure, point 4 is added to the triangulation, and the triangu-
lation recomputed; correspondingly, we add edges (1,4),(2,4), (3,4) to G (note
that (1,2) is no longer in the triangulation, but remains in ). Finally, in the
lower right frame, point 5 is added, and the triangulation recomputed. The new
edges in the triangulation yield new edges in G: (2,5),(4,5),(1,5). The right side
of Fig. 4 illustrates the resulting graph (note that the directions of the edges
are not shown). Fig. 5 is the result of applying this construction to the face of
Fig. 2.

Algorithm 1 Top point graph construction procedure
1: Detect the critical paths.

Extract the top points from the critical paths.

Label the extremum path continuing up to infinity as v;.

Label the rest of the nodes (critical paths, together with their top points) according

to the scale of their top points from high scale to low as va, ..., Un.

For 7 = 2 to n evaluate node v;:
Project the previous extrema into the scale of the considered node v;.
Calculate the 2D Delaunay triangulation of all the extrema at that scale.

All connections to v; in the Delaunay triangulation are stored as directed edges
in G.

5 Experiments

To evaluate our construction, we explore the invariance of the construction to two
types of perturbations. The first is the sensitivity of the construction to noise in
the image, while the second is within-class deformation resulting in displacements
of top points both within and across scales. We conduct our experiments using a
subset of the Olivetti Research Laboratory face database. The database consists
of faces of 20 people with 10 faces per person, for a total of 200 images; each
image in the database is 112 x 92 pixels. The face images are in frontal view and
differ by various factors such as gender, facial expression, hair style, and presence
or absence of glasses. A representative view of each face is shown in Fig. 6.
Invariance of a graph to noise or within-class deformation requires a measure of
graph distance, so that the distance between the original and perturbed graphs
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Fig. 6. Sample faces from 20 people

can be computed. For the experiments reported in this paper, we compute this
distance using our many-to-many graph matching algorithm, which we briefly
describe in the next subsection. Note that we have developed a general algorithm
that is in no way specifically designed for face recognition. Therefore we have
not compared our method to state-of-the-art face recognition algorithms. We
present this experiment only as a proof of concept.

5.1  Overview of Matching Algorithm

The matching algorithm is based on the metric-tree representation of labelled
graphs and their low-distortion embeddings into normed vector spaces via spher-
ical coding [3, 9]. The advantage of this embedding technique is that it prescribes
a single vector space into which both graphs are embedded. This two-step trans-
formation reduces the many-to-many matching problem to that of computing a
distribution-based distance measure between two such embeddings. To compute
the distance between two sets of weighted vectors, we use a variation of Earth
Mover’s Distance under transformation sets. For two given graphs, the algorithm
provides an overall similarity (distance) measure.

Fig. 7 presents an overview of the approach. For a given face, we first create its
DAG according to Section 4 (Transition 1), and embed each vertex of the DAG
into a vector space of prescribed dimensionality using a deterministic spherical
coding (Transition 2). Finally (Transition 3), we compute the distance between
the two distributions by the modified Earth Mover’s Distance under transfor-
mation. The dimension of the target space in Transition 1 has a direct effect on
the quality of the embedding. Specifically, as the dimensionality of the target
space increases, the quality of the embedding will improve. Still, there exists
an asymptotic bound beyond which increasing the dimensionality will no longer
improve the quality of the embedding. Details on the many-to-many matching
algorithm can be found in [3].

5.2  Graph Stability Under Additive Noise

To test the robustness of our graph construction, we first examine the stability
of our graphs under additive Gaussian noise at different signal levels applied
to the original face images. For this experiment, the database consists of the
original 200 unperturbed images, while the query set consists of noise-perturbed
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Fig. 7. Computing similarity between two given faces. (Matched point clusters are
shaded with the same color.) See text

versions of the database images. Specifically, for each of the 200 images in the
database, we create a set of query image by adding 1%, 2%, 4%, 8%, and 16% of
Gaussian noise. Next, we compute the similarity between each query (perturbed
database image) and each image in the database, and score the trial as correct
if its distance to the face from which it was perturbed is minimal across all
database images. This amounts to 40,000 similarity measurements for each noise
level, for a total of 200,000 similarity measurements. Our results show that the
recognition rate decreases down to 96.5%, 93%, 87%, 83.5%, and 74% for 1%,
2%, 4%, 8%, and 16% of Gaussian noise, respectively. These results indicate a
graceful degradation of graph structure with increasing noise.

5.3 Graph Stability Under Within-Class Variation

To test the stability of the graph construction to within-class variation (e.g.,
different views of the same face), we first group the faces in the database by
individual; these will represent our categories. Next, we remove the first image
(face) from each group and compare it (the query) to all remaining database
images. The image is then put back in the database, and the procedure is re-
peated with the second image from each group, etc., until all 10 face images of
each of the 20 individuals have been used as a query. If the graph representa-
tion is invariant to within-class deformation, resulting from different viewpoints,
illumination conditions, presence/absence of glasses, etc., then a query from
one individual should match closest to another image from the same individual,
rather than an image from another individual. The results are summarized in
Table 1, Fig. 8.

The magnitudes of the distances are denoted by shades of gray, with black
and white representing the smallest and largest distances, respectively. Due to
symmetry, only the lower half of distance matrix is presented. Intra-object dis-
tances, shown along the main diagonal, are very close to zero.



82 B. Platel et al.
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Fig. 8. Table 1: Matching results of 20 people. The rows represent the queries and the
columns represent the database faces (query and database sets are non-intersecting).
Each row represents the matching results for the set of 10 query faces corresponding to
a single individual matched against the entire database. The intensity of the table en-
tries indicates matching results, with black representing maximum similarity between
two faces and white representing minimum similarity. Table 2: Subset of the match-
ing results with the pairwise distances shown. Table 3: Effect of presence or absence of
glasses in the matching for the same person. The results clearly indicate that the graph
perturbation due to within-class deformation, including facial expression changes, illu-
mination change, and the presence/absence of glasses is small compared to the graph
distance between different classes

To better understand the differences in the recognition rates for different
people, we randomly selected a subset of the matching results among three people
in the database, as shown in Table 2, Fig. 8. Here, the (4, j)-th entry shows the
actual distance between face ¢ and face j. It is important to note that the distance
between two faces of the same person is smaller than that of different people,
as is the case for all query faces. In our experiments, one of our objectives was
to see how various factors, such as the presence or absence of glasses, affects
the matching results for a single person. Accordingly, we took a set of images
from the database of one person, half with the same factor, and computed the
distances between each image pair. Our results show that images with the same
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factors are more similar to each other than to others. Table 3 of Fig. 8 presents
a subset of our results. As can be seen from the table, images of the same person
with glasses are more similar than those of the same person with and without
glasses. Still, in terms of categorical matching, the closest face always belongs
to the same person. Although these results are encouraging, further evaluation
on a larger database needs to be investigated to be more conclusive.

6 Conclusions

Imposing neighborhood structure on a set of points yields a graph, for which
powerful indexing and matching algorithms exist. In this paper, we present a
method for imposing neighborhood structure on a set of scale space top points.
Drawing on the Delaunay triangulation of a set of points, we generate a graph
whose edges are directed from top points at coarser scales to nearby top points
at finer scales. The resulting construction is stable to noise, and within-class
variability, as reflected in a set of directed acyclic graph matching experiments.
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Abstract. Exploration of information content of features that are present
in images has led to the development of several reconstruction algorithms.
These algorithms aim for a reconstruction from the features that is vi-
sually close to the image from which the features are extracted. Degrees
of freedom that are not fixed by the constraints are disambiguated with
the help of a so-called prior (i.e. a user defined model). We propose a
linear reconstruction framework that generalises a previously proposed
scheme. As an example we propose a specific prior and apply it to the
reconstruction from singular points. The reconstruction is visually more
attractive and has a smaller Le-error than the previously proposed linear
methods.

1 Introduction

We describe a general method for reconstruction from scale space interest points
and their differential attributes. Using the reconstruction the information content
of these points can be investigated (Nielsen and Lillholm [11]).

Lillholm, Nielsen and Griffin [10,11] have put emphasis on a “sparse” con-
straint set and the role of different priors. In general their priors are not given
in terms of an inner product. The disadvantage of their approach is that the
reconstruction algorithm is not linear and therefore slow and somewhat cum-
bersome to implement. Kanters et al. [9] use the assumption of a “sufficiently
rich” set of constraints. The role of the prior is less significant so they chose for
a standard Lo-norm. We shall refer to this as the standard linear reconstruction
scheme. Advantages of his approach are that the reconstruction algorithm is
linear and analytical results for the generalised correlation matrix can be found.
The disadvantage is that if the set of constraints is not sufficiently rich then this
method is qualitatively outperformed by nonlinear reconstruction [10, 11].

We propose a general reconstruction framework which can be applied to a
large set of priors. Any prior that can be described by a norm formed by an
inner product can be mapped to this framework. Our method overcomes the
disadvantages of the standard linear reconstruction scheme [9] while retaining

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 85-96, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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linearity. This is done by replacing the Ls-inner product by a inner product of
Sobolev type. To verify the proposed method we apply it to the reconstruction
from singular points. A prior that smoothens the reconstructed image is selected.
This results in a reconstruction that has as few additional singular points as
possible under the constraints. Also the features are enriched by taking higher
order derivatives into account.

2 Theory

Definition 1. The Ly-inner product for f, g € La(R?) is given by

(Fo)e = | F@ gl 1)

This is the standard inner product used in previous work [9, 10, 11].
The reconstruction problem boils down to the selection of an instance of the
metameric class consisting of g € Ly (RQ) such that

(i,9)r, = ¢ » (i = 1..N) 2)

with v; denoting the distinct localised filters that generate the i** filter response
¢i = (Ui, f)L,- For an alternative description of this class see appendix A. The
selection of g is done by minimising a prior subject to the constraints of equa-
tion (2). A distinction can be made between priors (global constraints) that
are constructed by a norm formed by an inner product and those that are con-
structed by a norm that is not formed by an inner product. In the former case
it is possible to translate the reconstruction problem to a linear projection. This
maps the reconstruction problem onto straightforward linear algebra. To this
end we propose a generalisation of Definition 1 as follows.

Definition 2 (A-inner product). Let A € B (L2(R?)), i.e. a continuous lin-
ear operator on LLo(R?). Then

(f7 g)A = (fvg)]Lz + (Af7 Ag)]Lz . (3)

Note that we may write
(f,9)a=(f,(I+ATA)g), . (4)

For an image f € La(R?) we consider a collection of filters 1; € Lo(R?) and
filter responses ¢;,i =1, ..., N, given by

¢ = (¥, L, - (5)

Thus the a priori known features are given in terms of an Lo-inner product.
In order to express these features relative to the new inner product we seek an
effective filter, k; say, such that

(ki fla = (Ui, fL, (6)
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for all f. We will henceforth refer to v; as an “Lo-filter” and to k; as its corre-
sponding “A-filter”.

Lemma 1 (A-Filters). Given v¢; € Lo(R?) then its corresponding A-filter is
given by

ki = (I 4+ ATA) "Ly, . (7)
Proof. Applying Definition 2, using the fact that (I + ATA) is self adjoint,
(ki fla = (T +ATAI+ ATA) i, ) = (i, s - (8)

We aim to establish a reconstruction g that satisfies equation (2) and min-
imises ]
E(g) = 5(9,9)a - (9)
Summation convention applies to upper and lower feature indices i = 1...N.
Since g satisfies equation (2) we may as well write

B(g) = 5(9.9)4 — ¥ (s0,9)4 — <) (10)
in other words
E(9) = + (991 + (Ag, Ag)iy) — N (i g)rs — ) - (1)

2

The first term in equation (10) is referred to as the prior. The remainder consists
of a linear combination of constraints, equation (2), with Lagrange multipliers A*.

Theorem 1. The solution to the Euler-Lagrange equations for equation (10)
can be found by A-orthogonal projection of the original image f on the linear
space V spanned by the filters k;, i.e.

g=Pvf= (k" flari . (12)

Here we have defined &' def Gijnj with Gramm matriz Gi; = (Ki,K;j)a and
G* Gy = 6;
Proof. The functional derivative of equation (10) with respect to the image g is
given by

0E(g)

bg

The solution to the corresponding Euler-Lagrange equations is formally given
by

= (I+ATA)g — Ny (13)

g=XN(I+AVA) 1 = Nk, . (14)
So the filter responses can be expressed as
ci = (i g, = N (i, [+ ATA)TN) = N (i, k), = N (ki h5)a - (15)
Consequently A’ = G%¢;. Applying this to equation (14) leads to
g=Nk; =Gcjr; =G (kj, lar: = (K" flaki . (16)
This completes the proof of Theorem 1.



88 B. Janssen et al.

Theorem 1 is written in a Euler-Lagrange formalism to comply with previous
work on this subject [9, 10, 11]. The authors do notice the linear reconstruction
problem can be approached in a simpler and more elegant way. This approach
is sketched in appendix A.

3 Reconstruction from Singular Points

The theory of the previous section is applicable to any set of linear features. Here
we are particularly interested in feature attributes of so-called singular points in
Gaussian scale space. A Gaussian scale space representation u(x; s) in n spatial
dimensions is obtained by convolution of a raw image f(x) with a normalised
Gaussian:

u(z;s) = (f * bs) (2)

bula) = g "

4rs

For the remainder of this paper we use the following convention for the contin-
uous Fourier Transform

F(f) (@) = f(w) = \/; / ¢ f(2)da
" A (18)
FU) (@) = f(a) = \/2% / ¢ f(w)d

Notice that with this definition Fourier transformation becomes a unitary trans-
formation.

3.1 Singular Points

A singular point is a non-Morse critical point of a Gaussian scale space image.
Scale s is taken as a control parameter. This type of point is also referred to in
the literature as a degenerate spatial critical point or as a toppoint or catastrophe.

Definition 3 (singular point). A singular point (z;s) € R is defined by
the following equations.
Vu(x; 5:)F =0 (19)
det VV'u(x;s) =0

The behavior near singular points is the subject of catastrophe theory. Damon
rigorously studied the applicability of established catastrophe theory in a scale
space context [1]. Florack and Kuijper have given an overview of the established
theory in their paper about the topological structure of scale space images for
the generic case of interest [4]. More on catastrophe theory in general can be
found in a monograph by Gilmore [5].
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Fig. 1. The image on the right hand side shows the standard linear reconstruction,
taking up to second order differential structure into account, as is proposed by Kanters
et al. [9] from 63 singular points of Lena’s eye. The original image, from which the
singular points are taken is shown on the left hand side

3.2 Prior Selection

Johansen showed [6,7] that a one dimensional signal is defined up to a multi-
plicative constant by its singular points. This is probably not the case for two
dimensional signals (images). It was conjectured that these points endowed with
suitable attributes do contain enough information to be able to obtain a recon-
struction that is visually close to the initial image [9, 10, 11].

As can be seen in Figure 1 the standard linear reconstruction proposed by
Kanters et al. [9], which is on the standard Ls-inner product, is far from op-
timal. The problem can be identified by determining the number of additional
singular points that appear in the reconstructed image while strictly insisting
on the features to hold. In case of a perfect reconstruction the number of sin-
gular points would be equal for the reconstructed and original image. The num-
ber of singular points in the reconstructed image can be reduced by smooth-
ing the image. Therefore a prior derived from the following inner product is
proposed:!

(fv g)A = (fv g)]LZ + (_,}/mfa —’}/mg)]}ﬂ = (f)g)]Lz - (f’ 72A9)L2
= (f7 g)ILz + (’va, ’va)]LQ .

This prior introduces a smoothness constraint to the reconstruction problem.
The degree of smoothness is controlled by the parameter v. When + vanishes
the projection equals the one from standard linear reconstruction [9]. Note that
this is a standard prior in first order Tikhonov regularisation [3,13].

(20)

3.3 Implementation

Using the inner product of equation (20) the A-filter equals,

1
ki =0 =AM =F Hwr— ————F()(w) ] . 21
! The operational significance of the fractional operator —/—A, which is the generator
of the Poisson scale space, is explained in detail by Duits et al. [2]. In Fourier space
it corresponds to the multiplicative operator —||w||.



90 B. Janssen et al.

The filter shape in the spatial domain is somewhat harder to obtain. For two
dimensions (n = 2) the convolution filter that represents the linear operator

(I —~2A)~1 equals
L TP
Kol | (22)
™ gl
with K representing the zeroth order modified Bessel function of the second
kind. This was also noted by Florack, Duits and Bierkens [3] who worked on
Tikhonov regularization and its relation to Gaussian scale space.

The calculation of the Gramm matrix Gj; is the computationally hardest
part of the reconstruction algorithm. An analytic expression for this matrix is
not available (unless v = 0). Therefore the inner products (k;,x;)a have to
be found by numerical integration. By the Parseval theorem we have (recall
equations (21) and (22))

(;b'y(x)y) =

1 P 1 Tk 7 *
(Iﬁ)zal‘ﬂ?])A = (1 T 72||w|2wl7wj>]1‘2 - (1 + 72|‘w”27wz ¢J>L2 - (¢’Yawi * ’(/}])]LZ .
(23)
At this point we have not yet specified the 1); filters. Since we are interested in
the properties of singular points in Gaussian scale space we define the filters as
follows.

Definition 4 (v;). A filter v; is a localised derivative of the Gaussian kernel,

recall equation (17), at a certain scale. Given x,y,&,n € R and m,n € Ny

def m,n 1 6|m+n|805($ay)
wl(x) = 9007577](x7y) =

(24)

72 —
2n02  Oz™Oy" |I)_'7Xc 1

with i % (m,n,€,n,0) € N2 x R? x R,

Applying Definition 4 to equation (23) reveals that the inner products in
the Gramm matrix can be expressed as a Gaussian derivative of the spatial
representation of ¢.. Note that this can be exploited for any operator that one
chooses to use as a regulariser.

The singularity of ¢~(z) in the origin gives rise to numerical problems. The
Fourier representation qﬁv(x) does not have a singularity, therefore the Fourier
representation of the operator is sampled and after that a discrete inverse Fourier
transform is applied to it.

At this point the Gramm matrix can be constructed. Inversion of this matrix
is done by means of Singular Value Decomposition. The projection onto the
filters can be done in either the frequency or the spatial domain. The image in the
Fourier domain can be obtained by projecting onto the Fourier representations
of the filters,

g = Gijleﬂi = fﬁl[GijCj/%i} . (25)

This avoids problems with the singularity of the Bessel function. An Inverse
Discrete Fourier Transform of the sampled reconstruction function results in the
desired image.
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3.4 Richer Features

Obtaining a visually appealing reconstruction from singular points can be
achieved by selecting an “optimal” space for projection. This approach is dis-
cussed above. Another way to enhance the quality of the reconstruction is by
using more information about the points that are used for reconstruction. In
the standard case only up to second order differential structure was used. In
our experiments also higher order differential properties of the singular points
were taken into account. This has the side effect that the Gramm matrix will be
harder to invert when more possibly dependent properties are used.

4 Evaluation

To evaluate the suggested prior and the proposed reconstruction scheme recon-
structions from singular points of different images are performed. The singular
points are obtained using ScaleSpaceViz [8], which is based on a zero-crossings
method. After the singular points are found the unstable ones are filtered out by
applying a threshold on the amount of structure that is present around a singu-
lar point. The amount of structure can be found by calculating the “differential
total variation norm” or “deviation from flatness”

tv = o'Tr (H?) (26)

that was proposed by Platel et al. [12]. H represents the Hessian matrix and
o represents the scale at which the singular point appears. The reconstruction
algorithm is implemented in Mathematica.

The images that are chosen to evaluate the performance of the reconstruction
algorithm are those used by Kanters et al. and Lillholm et al. for the evalua-
tion of their reconstruction algorithms [9,10], Lena’s eye and MR brain. The
size of the former image is 64 x 64 pixels and the size of the latter image is
128 x 128 pixels. The pixel values of these images are integer valued ranging
from 0 to 255.

4.1 Qualitative Evaluation

First we study reconstruction from singular points taking into account up to
second order derivatives of the image at the locations of the singular points.
Figure 2 shows the reconstruction from 31 singular points of Lena’s eye . These
points are selected using a tv-norm of 32. Note that the tv-norm scales with
the square of the image range. The first image in the upper row displays the
image from which the singular points were obtained. Successive images are re-
constructions from these points with an increasing . The second image in the
first row shows a reconstruction with v = 0, which equals the reconstruction
by Kanters et al. [9], and the first picture in the second row depicts the recon-
struction with a minimal relative ILo-error. The same convention is used in the
reconstruction from 55 singular points of MR brain that is displayed in Figure 3.
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Fig. 2. Reconstruction from 31 singular points of Lena’s eye with up to second order
features. The upper row shows the original image and reconstructions with v = 0 and
v = 5. The second row shows reconstructions with v = 22, v = 50 and v = 250. The
first image in the second row shows the reconstruction with the lowest relative La-error

Fig. 3. Reconstruction from 55 singular points of MR brain with up to second order
features. The upper row shows the original image and reconstructions with v = 0 and
v = 3. The second row shows reconstructions with v = 7, v = 50 and v = 250. The
first image in the second row shows the reconstruction with the lowest relative Lo-error

The singular points of this image were acquired using a tv-norm of 128. Figure 2
shows the “fill-in effect” of the smoothing prior. The reconstruction with the
smallest relative Lg-error is visually more appealing than the images with a
smaller . A reconstruction with v = 250 lacks details that were visible in the
other reconstructions. This happens because the Gramm matrix is harder to in-
vert when dependent basis functions are used. With an increasing v the kernels
become wider and thus more dependent on one another. The reconstructions
of MR brain show “leaking” edges. Because the prior smoothes the image the
very sharp edges of this image are not preserved and consequently the leaking
effect appears.
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- - w
Fig. 4. Reconstruction from 31 singular points of Lena’s eye with up to fourth order

features. The upper row shows the original image and reconstructions with v = 0 and
v = 4. The second row shows reconstructions with v = 19, v = 50 and v = 250. The

first image in the second row shows the reconstruction with the lowest relative La-error

Fig. 5. Reconstruction from 55 singular points of MR brain with up to fourth order
features. The upper row shows the original image and reconstructions with v = 0 and
v = 4. The second row shows reconstructions with v = 8, v = 50 and v = 250. The
first image in the second row shows the reconstruction with the lowest relative La-error

To investigate the influence of enrichment of the features the same experi-
ments are repeated but up to fourth order derivatives are taken into account
in the features. The results for the reconstruction from the singular points
of Lena’s eye can be found in Figure 4 and the results for the reconstruc-
tion from the singular points of MR brain are depicted in Figure 5. In both
cases the images show more detail and are visually more appealing than their
second order counter parts. The reconstruction of the MR brain image still
shows leaking but this effect is reduced when compared to second order
reconstruction.
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4.2 Quantitative Evaluation

In order to verify the quality of the reconstructions of both images under a
varying ~ the relative Lg-error,

1S = gl
[PAlT

of the reconstructed images is calculated. Figure 6 shows four graphs depicting
this error for both second order and fourth order reconstruction of Lena’s eye
and MR brain. All graphs show that an optimal value exists for the v parameter.
This can be explained by the fact that the Gramm matrix is harder to invert
with increasing v due to increasing correlation among the filter cf. equation (23).
Because of that dependent equations will be removed during the SVD. This leads
to a reconstruction with less detail and thus a larger LLy-error. The reconstruc-
tions of the MR brain image show an increasing Lo- error with an increasing
~. This error becomes even larger than the Ly-error of the reconstruction with
~v = 0. This can be attributed to the sharp edges of the head that are smoothed
and thus show leaking into the black surroundings of the head. The background
clearly dominates the contribution to the Lo-error. The reconstruction of Lena’s
eye does not suffer from this problem because of its smoothness.

LLy-error =

(27)

Lo—error | ena’s eye 2nd Order Ly—error | ena's eye 4th Order
0.4 0.4
0.3 0.3
0.2 0.2
0.1 o 0.1 l\
50 100 150 200 25& 50 100 150 200 256/
Ly—error MR brain 2nd Order Lo—error MR brain 4th Order
0.8 0.8
0.6 0.6
0.4 0.4 L’_____J--——-F'
0.2 02
20 40 60 80 10& 20 40 60 80 106/

Fig. 6. The relative LLa-error of the reconstructions from 31 singular points of Lena’s
eye (upper row) and 55 singular points of MR brain (lower row). The first column
shows the Lo-error for varying v when second order reconstruction is used, i.e. up to
second order derivatives are taken into account in the features. The second column
displays fourth order reconstruction
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5 Conclusions and Recommendations

We proposed a linear reconstruction method that leaves room for selection of ar-
bitrary priors as long as the prior is a norm of Sobolev type. This greatly reduces
the complexity of the reconstruction algorithm compared to non-linear methods.

We select one possible prior characterised by a free parameter v that aims for
a smooth reconstruction. This provides a control parameter for selecting different
metameric reconstructions, i.e. reconstructions all consistent with the prescribed
constraints. Comparisons with standard linear reconstruction as done by Kanters
et al. [9] show it is possible to improve the reconstruction quality while retaining
linearity. Reconstruction from a selection of singular points of the MR brain
image proofs to be more difficult than reconstruction of smoother images like
Lena’s eye. The problem, that shows up as “leaking” edges, is reduced by taking
higher order differential structure into account in the reconstruction algorithm.
When the v parameter is increased basis functions get more dependent on each
other. This leads to a harder to invert Gramm matrix and consequently to a
reduction of detail in the reconstruction.

Both, taking a v > 0 and taking higher order features into account, lead
to visually more appealing images and a smaller Lo-error when comparing with
standard linear reconstruction. It remains an open question how to select an
optimal ~.

Future work will include the use of anisotropic basis functions that depend
on the local image orientation and investigation of an adaptive v parameter.
Additionally other priors that fit in the proposed framework will be investigated.

A Simple Alternative Approach to Theorem 1

Recall that V is the span of the filters ;. Then
VE={f €Lo(R?) | (kiyf)a =0Vi=1,...,N} (28)
On the space of images Lo (R?) we define the following equivalence relation:
frge f-gevt, (29)

Notice that the set of equivalence/metameric classes is given by

Lo(R%)/ EH{[f]| f € La@®)} = {f + V| f € La(R%)} (30)

and that an equivalence class [f] = {g € La(R?) | f ~ g} of representant f is
exactly given by those images that have the same features as image f. Notice to
this end that

(ki f)a = (ki,g)aforalli=1,... Na& f—ge V. (31)

Next we show that the unique element g within [f] that minimizes the energy
Elg] = ||g]|4 is given by the A-orthogonal projection of f on V, Py f:

min g% = min ||g — Py f + Py f|% = min g = PvfI% +[PvflZ (32)
G€lf) G€lf) gelf]
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and this equals ||Py f||% only in the case g = Py f. Notice with respect to the
last equality (equation (32)) is Pythogoras theorem, which can be applied since
(9—Pvf)=(9—Pvg) eV+and PyfeV.
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Abstract. We consider images as manifolds embedded in a hybrid of a
high dimensional space of coordinates and features. Using the proposed
energy functional and mathematical landmarks, images are partitioned
into segments. The nesting of image segments occurring at catastrophe
points in the scale-space is used to construct image hierarchies called
Multi-Scale Singularity Trees (MSSTs). We propose two kinds of mathe-
matical landmarks: extrema and saddles. Unlike all other similar methods
proposed hitherto, our method produces soft-linked image hierarchies in
the sense that all possible connections are suggested along with their en-
ergies. The information added makes possible for directly estimating the
stability of the connection and hence the costs of transitions. Aimed ap-
plications of MSSTs include multi-scale pre-segmentation, image match-
ing, sub-object extraction, and hierarchical image retrieval.

1 Introduction

We are interested in the development of a multi-scale image representation which
is expected to be invariant under certain image transformations and small im-
age perturbations. Objects of any complexity when are observed at a distance,
eventually reduce to an indistinguishable blob. Fine structures in the image are
merged at small scales, larger structure at higher scales. To represent an image
at all scales and all those discrete jumps of image complexity, tree structures
instantly pop up as a natural choice. Image matching problems then can be
thought of as tree matching problems. Using tree structures to represent im-
ages reduces computer vision problems to tree manipulation problems. In other
words, we transform the relatively new and unfamiliar computer vision problems
to the well-understood and profoundly-investigated mathematical problems. In
practice, using tree structures also allows preferable possibility to compromise
between speed and accuracy.

Possible applications of Multi-Scale Singularity Trees (MSSTs) include multi-
scale pre-segmentation, image matching with MSSTs, sub-object extraction, hi-
erarchical image retrieval in large image databases, etc. Together with our part-
ners, we are currently developing an image matching algorithm based on our

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 97-106, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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proposed MSSTs and the Tree Edit Distance (TED) algorithm, where the dis-
tance between two images is found as the minimum cost of a series of edit
operations that transforms the MSST of one image into another.

2 Gaussian Scale-Space

The N + 1 dimensional Gaussian scale-space, L : RY "' — R, of an N dimen-
sional image, I : R — TR, is an ordered stack of images, where each image is
a blurred version of the former [1,2,3]. The blurring is performed according to
the diffusion equation,

oL = V2L, (1)

where 9, L is the first partial-derivative of the image in the scale direction ¢, and
V? is the Laplacian operator, which in three dimensions reads 92 + (35 +02. The
Gaussian kernel is the Green’s function of the heat diffusion equation, i.e.

L(t) =1()®g(51), (2)
ofest) = e, g

where L(-,t) is the image at scale ¢, I(-) is the original image, ® is the convolution
operator, g(+;t) is the Gaussian kernel at scale ¢, N is the image dimensionality,
and t = 02/2, using o as the standard deviation of the Gaussian kernel. The
Gaussian scale-space is henceforth called the scale-space in this article.

The information in the scale-space is logarithmically degraded, the scale pa-
rameter is therefore often sampled exponentially using o(m) = opb™ for some
base b. Since differentiation commutes with convolution and the Gaussian kernel
is infinitely differentiable, differentiation of images in scale-spaces is conveniently
computed as,

Oz L(+;t) = 0un (I(1) @ g(51)) = I(-) @ Oung(5t) - (4)

Alternative implementations of the scale-space are multiplication in the Fourier
Domain, finite differencing schemes for solving the heat diffusion equation, ad-
ditive operator splitting [4], and recursive implementation [5, 6].

Each method has different advantages and disadvantages. We prefer the spa-
tial convolution, since it guarantees not to introduce spurious extrema in ho-
mogeneous regions at low scales. Typical border conditions are Dirichlet, Cyclic
repetition, and Neumann boundaries. We use Dirichlet boundaries, where the
image is extended with zero values in all directions according to the size of the
convolution kernel.

Although the dimensionality of the constructed scale-space is one higher than
the dimensionality of the original image, critical points, in the image at each
scale are always points. The critical points treated in this article are extrema,
0L = 0yL = 0, and the critical points are classified by the eigenvalues of the
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Hessian matriz, the matrix of all second derivatives, computed at the critical
point. Critical points with all positive eigenvalues are minima, critical points
with all negative eigenvalues are maxima, and critical points with a mixture of
both negative and positive eigenvalues are saddles.

As we increase the scale parameter, the critical points move smoothly forming
critical paths. Along scale, critical points meet and annihilate or are created. Such
events are called catastrophic events, and the points where they occur in the
scale-space are called catastrophe points. The collection of catastrophic events
at all scales is called the deep structure of the image.

The notion of genericity is used to disregard events that are not likely to
occur for typical images, i.e. generic events are stable under slight perturbations
of the image. There are only two types of generic catastrophic events in scale-
space namely pairwise creation events and pairwise annihilation events [7]. It
has further been shown that generic catastrophic events only involve pairs of
critical points where one and only one eigenvalue of the Hessian matrix changes
its sign, e.g. the annihilation of a minimum (+, +) and a saddle (+, —). A detailed
discussion of a method for detecting critical paths and catastrophe points in the
scale-space can be found in [8].

3 Building Scale-Space Hierarchies

There are already a few scale-space methods that construct image hierarchies of
two-dimensional images proposed in the literatures so far [9, 10, 11]. To the best
of our knowledge, an attempt to construct image hierarchies from the deep struc-
ture of three-dimensional images is first proposed in [12] followed by [8,13,14].
The latter scheme, which will be extended here, produces rooted ordered binary
trees called Multi-Scale Singularity Trees (MSSTs) with catastrophe points as
nodes.

In order to guarantee that the produced structures are always trees, our
method only considers the linking of mathematical landmarks that exist at the
original image. Only annihilation events are recorded and creation events are ig-
nored. These creation events are generic however not frequently occur. Creation
events could actually be included in the structure in the same manner but the
method would inevitably produce graphs rather than trees. Theoretically, the
method can be used to construct scale-space hierarchies of images of any dimen-
sionality, assuming that critical paths and catastrophe points can be correctly
detected. Our current implementation is capable of constructing MSSTs of two-
and three-dimensional images.

3.1 Energy Functional and Energy Partitions

Given an image and a set of landmarks, we would like to partition the image into
segments so that each segment contains exactly one landmark. Let 2 C RY be
a compact connected domain and define I : 2 — IR™ to be an image, e € £ as
a landmark, and € (2 as a point in the domain. Consider a set of continuous



100 K. Somchaipeng et al.

functions « : [0, P] — §2 for which v(0) = e and v(P) = @, ¥ € ey, where Iy
is the set of all possible paths in the domain from the landmark e to the point x,
and +y is parameterized using Euclidean arc-length. We define the energy E.(x)
with respect to an extremum e evaluated at x as,

)
Euo) = it | %a—nag@wm@“”@” Py, (9)

Y€l e D Op

for some 0 < a < 1Consider images as manifolds embedded in a high dimensional
space, an N dimensional intensity image becomes an N dimensional manifold
embedded in the hybrid N + 1 dimensional space of coordinates and features,
the “space-feature” [15]. In this case the only feature is the intensity or the
zeroth jet space. The energy functional can be defined for higher order jet space
images, color images, or locally orderless images with scale-space histograms to
handle texture [16], if a metric in the feature space is given. For two-dimensional
images, image may be considered a height plot, and the energy at any point in
the image with respect to a landmark can be found as the minimum weighted
distance travelling up and down from the landmark to that point. The parameter
«a can be set to alter the emphasism of the energy functional between space
and intensity. When « = 1, the energy functional becomes the path variation,
which is a generalization of the total variation [17]. The path variation depends
solely on the image intensity and is invariant to affine transformation of the
underlying space. Moreover, the energy is co-variant with scaling of the image
intensity. When o — 0, the energy functional will increasingly depend on the
spatial distance, and therefore become increasingly localized in space.

Let £ C {2 be the set of all landmarks in the image: An image segment or an
energy partition S; associated with a landmark e; € £ is defined as the set of all
points in the images, where the energy Fe, (x) is minimal,

S; ={x € 2|Ee;(x) < Ee;(x),Ve; € £,i# j}. (6)

An approximation of the energy map F,, : 2 — IRT, which gives the energy
at every point in the image with respect to the landmark e;, can be efficiently
calculated using the Fast Marching Methods [18].

The tessellation of the image segments obtained depends on the selection
of the landmarks and the energy functional. Mathematical landmarks like the
extrema seem to be the natural selection, since they are directly linked to the
image content, i.e. significant features in the image usually contain at least one
such points. Moreover, they can be easily and automatically detected in the
scale-space, and the behavior of these critical points in the scale-space is well
studied. The selection of the extrema as landmarks leads to Extrema-Based
MSSTs. Another candidate for landmarks are the saddles, which leads to Saddle-
Based MSSTs, which both will be discuss in the following.

3.2  Multi-scale Singularity Trees

MSSTs are constructed by connecting annihilating catastrophe points based on
the nesting of image segments in the scale-space. Because of the natural pairwise
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interaction between critical points in the generic scale-space and the developed
tree building scheme, resulting MSSTs are always rooted ordered binary tree.

MSSTs consist of nodes and their relations. Each MSST node consists of three
important components: The image segment that immediately covers the area of
the image segment disappearing at the catastrophe. For algorithmically conve-
nience we denote the image ‘surviving’ image segment the leftport, the catas-
trophe for the body, and disappearing image segment for the rightport. Because
there is exactly one image segment associated with a landmark and we choose
the landmarks such that exactly one landmark disappears at an annihilation
catastrophe point, then exactly one image segment also disappears.

A node SieftChodySright 15 generated if an image segment Sy;gp+ disappears
at the catastrophe Choqy inside an image segment Sir¢. The inclusion is easily
determined by calculating the energy map with respect to the catastrophe Cpoqy:
the image segment Syign¢ is nested in side the image segment Sic; if the energy
evaluated at the landmark of Sicy; is minimal among all landmarks existing at
that scale.

As briefly mentioned above, MSSTs are ordered trees. This implies that con-
necting a node to another node as the leftchild or as the rightchild are semanti-
cally different events. MSSTs are built top-down starting from the catastrophe at
the coarsest scale. A new node Nyew : Snew,ieftCnew,bodySnew,right 15 connected
as the leftchild of a node N; : S; c£:Cs bodySi,right in the constructing MSST,
if the node NN; does not have the leftchild and Spew, et = Sijeft, Or as the
rightchild, if the node IV; does not have the rightchild and Syew et = Siright-
It can easily be seen that this process is deterministic. We will now describe the
algorithms for creating the Extrema- and the Saddle-Based MSSTs.

Extrema-Based MSSTs. Assuming that critical paths and catastrophe points
in the scale-space are already and correctly detected, then the tree building
algorithm is as follows:

1. Set the root of the tree as BCy Ej4st, where B denotes the border of the
image, Fj,s¢ denotes the last extremum in scale, and C., denotes the vir-
tual catastrophe at scale infinity, where the border and the last extremum
virtually annihilate.

2. At the highest unprocessed catastrophe Cj.;; in scale, calculate the energy
map with respect to the catastrophe and create a node FE.overCrestFann,
where F,,, is the extremum that disappears at Cj,e;t, and the energy eval-
uated at the extremum FE,,,., is minimal among all extrema existing at that
scale.

3. Link the new created node as the leftchild of a node in the tree that does not
have the leftchild and where E ¢, equals its leftport, or as the rightchild of
a node in the tree that does not have the rightchild and where F ¢, equals
its rightport.

4. Repeat 2. until all catastrophe points are processed.

An example of Extrema-Based MSSTs, together with the deep structure it rep-
resents, are shown in Fig. 1.
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Fig. 1. The top-left panel shows the schematic drawing of the deep structure of an imag-
inative image containing four extrema {FE,, Ey, E., Eq4} and three saddles {Sa, Sp, Sc}.
There are four catastrophe points {Cq, Ch, Cc, Cq} in the scale-space. The horizontal
lines denote the linking connections between the catastrophe points and the extrema
with minimal energy. The Extrema-Based MSSTs corresponding to the deep structure
is shown on the top-right panel. The bottom-left panel shows the deep structure of
the same imaginative image but now with the horizontal lines showing the linking
connections between the catastrophe points and the saddles with minimal energy. The
corresponding Saddle-Based MSST is shown on the bottom-right panel

Saddle-Based MSSTs. A similar procedure is applied for constructing Saddle-
Based MSSTs however now we consider saddles instead of extrema. The algo-
rithm is as follows:

1. Set the root of the tree as CtpSiop, Where the leftport is set to null, Cyop
denotes the highest catastrophe in scale, and S;,, denotes the saddle that
annihilates at the catastrophe Cyop.

2. At the highest unprocessed catastrophe Cj,.;; in scale, calculate the energy
map with respect to the catastrophe and create a node ScoperChrextSann,
where Sy, is the saddle that disappears at Cc.¢ and the energy evaluated
at the saddle S.yper is minimal among all saddles existing at that scale.
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Fig. 2. The original image of a man face is shown on the top-left panel. The bottom-left
panel shows the 9, L = 0 curves in blue and the 9y L = 0 curves in yellow on top of the
original image. The intersection points between these curves where 0, L = 9yL = 0 are
critical points. The maxima and the minima are also denoted by red and green labels,
respectively. The rest intersection points left unlabelled are the saddles. The top-right
panel shows the extremum paths, minimum paths, saddle paths, and the Extrema-
Based MSST linking connections on top of the original image in red, green, blue, and
yellow, respectively. The bottom-right panel shows the critical paths and the linking
connections viewed horizontally from the bottom-right corner of the image

3. Link the new created node as the leftchild of a node in the tree that does not
have the leftchild and Scoyer equals its leftport or as the rightchild of a node
in the tree that does not have the rightchild and S¢oye- €quals its rightport.

4. Repeat 2. until all catastrophe points are processed.
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Fig. 3. Extrema-Based MSSTs of three different human faces

Notice Saddle-Based MSSTs always have one node less than that of Extrema-
Based MSSTs of the same image. An example of Saddle-Based MSSTs is shown
in Fig. 1, together with the deep structure it represents.

3.3 Energy Table

During the construction of MSSTs, the energies with respect to all catastrophe
points in the scale-space evaluated at all present and relevant landmarks i.e.
extrema for Extrema-Based MSSTs and saddles for Saddle-Based MSSTs, are
stored in the energy matriz. It’s this energy matrix that makes the tree soft-
linked and makes possible the estimation of each connection stability and costs
of MSST transitions.

3.4 MSST Examples of Real Images

We choose an image database of human faces [19] to test our implementation.
One of the results is shown in Fig. 2. More results are shown in Fig. 3.

4 Concluding Remarks

It is important to understand the differences between two related stabilities:
the stability of the positions of the catastrophe points and the stability of the
relations between them (connections in the produced trees), and the fact that
the stability of the constructed hierarchy depends on both. The positions of
some catastrophe points are more stable than the others under small image
perturbations. In general catastrophe points in an area with a lot of structures
are more stable [20]. Using an appropriate stability norm, unstable catastrophe
points can be eliminated before the hierarchy is constructed. In the other hand,
the instability of their relations cannot and should not be avoided but have to
be estimated if one wants to know the costs of the tree transitions.

We prefer our scale-space hierarchy building scheme because in contrast to
hard-linked hierarchies, where only the best connection is suggested, our method
produces soft-linked image hierarchies in the sense that all possible connections
are suggested along with their energies. The connection with the lowest energy
can be later selected in order to produce the tree that best represents the image.
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The additional information, stored in the energy matrix, is useful in many
ways. It makes possible for directly estimating the stability of each connection
in the tree, and hence the cost of the tree transitions. For example, one might
want to know how stable a particular connection is in the produced hierarchy
under slight perturbations of the original images. Consider an image that is close
to non-generic ones, e.g. having near-symmetric structures, only slight perturba-
tions of the original image could change the structure of the produced hierarchy
completely. For soft-linked hierarchies, the stability of each connection in the hi-
erarchies can be directly estimated by looking at the distribution of the energies
of all possible connections. If the energy of the best connection is much lower
than all other connections, then the connection is not likely to switch, and hence
is more stable. However, if the energies of all connections are about the same,
the connection is very likely to switch and certainly is not stable. Because hard-
linked hierarchy building methods naturally suggest only one best connection,
there is no direct way of estimating the stability of connections of the produced
hierarchies.
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Abstract. The problem of image deblurring in the presence of salt and
pepper noise is considered. Standard image deconvolution algorithms,
that are designed for Gaussian noise, do not perform well in this case.
Median type filtering is a common method for salt and pepper noise re-
moval. Deblurring an image that has been preprocessed by median-type
filtering is however difficult, due to the amplification (in the deconvolu-
tion stage) of median-induced distortion. A unified variational approach
to salt and pepper noise removal and image deblurring is presented.
An objective functional that represents the goals of deblurring, noise-
robustness and compliance with the piecewise-smooth image model is
formulated. A modified L' data fidelity term integrates deblurring with
robustness to outliers. Elements from the Mumford-Shah functional, that
favor piecewise smooth images with simple edge-sets, are used for reg-
ularization. Promising experimental results are shown for several blur
models.

1 Introduction

Consider an image that has been blurred and contaminated by salt and pepper
noise. Typical sources of blur are defocus and motion [3]. Salt and pepper noise
is a common model for the effects of bit errors in transmission, malfunctioning
pixels and faulty memory locations [5].

Significant attention has been given to image deblurring in the presence of
Gaussian noise [3]. We focus on variational methods, that have an important
role in modern image deblurring research, see e.g. [20, 21,23, 14]. Most methods
rely on the standard model g = h * f + n, that is applicable to a large variety of
image degradation processes that are encountered in practice. Here h represents
a known space-invariant blur kernel (point spread function), f is an ideal version
of the observed image g and n is (usually Gaussian) noise. In this research, we
focus on the case of salt and pepper noise.

The assumption of Gaussian noise is a fundamental element of common im-
age deblurring algorithms. It is therefore not surprising that those algorithms
produce inadequate results in the presence of salt and pepper noise. This fact
is illustrated in Fig. 1. The top-left image in Fig. 1 is the 256 x 256 Lena im-
age, blurred by a pill-box kernel of radius 3 (7 x 7 kernel) and contaminated

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 107-118, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Current image deblurring algorithms fail in the presence of salt and pepper
noise. Top-left: Blurred image with Gaussian noise. Top-right: Restoration using the
method of [23]. Bottom-left: Blurred image with salt and pepper noise. Bottom-right:
Restoration using the method of [23]

by Gaussian noise. Successful restoration is obtained using the state of the art
deblurring method of [23] (top-right). The bottom-left image in Fig. 1 is the
same blurred Lena image, now contaminated by salt and pepper noise of den-
sity 0.01. In this case restoration using the method of [23] is clearly inadequate
(bottom-right). Note that due to the inadequacy of the noise model, the algo-
rithm of [23] yields poor results even at lower salt and pepper noise density. The
regularization constants used to obtain Fig. 1 (top-right) and (bottom-right) are
the same: 1073, Note that increasing the constant in the presence of salt and
pepper noise effectively disables deblurring, while only reducing the amplitude
of the noise.
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Salt and pepper noise removal is considered in the literature by itself. It is
commonly approached using median-type filters, see e.g [9, 13, 18]. Recently, a
promising variational method for impulse denoising was proposed by [7,16,17].

In the absence of unified algorithms for deblurring and salt-and-pepper noise
removal, the straightforward approach is to first denoise the image, then to
deblur it. This two-stage method is however prone to failure, especially at high
noise density. Image denoising using median-type filtering creates distortion that
depends on the neighborhood size; this error can be strongly amplified by the
deblurring process, even in regularized methods. Consider the example shown
in Fig. 2. The top-left image is the 256 x 256 FEinstein image, blurred using a

Fig. 2. The failure of the two-stage approach to salt-and-pepper noise removal and
image deblurring. Top-left: Blurred image. Top-right: Blurred image contaminated by
salt and pepper noise. Bottom-left: The outcome of 3 x 3 median filtering, followed by
deblurring. Bottom-right: The outcome of 5 X 5 median filtering, followed by deblurring
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pill-box kernel of radius 4. The blurred image with added salt and pepper noise
(noise density 0.11) is shown top-right. The outcome of 3 x 3 median filtering
followed by deblurring using the algorithm of [23] is shown bottom-left. At this
noise level, the 3 x 3 neighborhood size of the median filter is insufficient, the
noise is not entirely removed, and the residual noise is greatly amplified by the
deblurring process. If the neighborhood size of the median filter is increased to
5x 5, the noise is fully removed, but the distortion leads to inadequate deblurring
(bottom-right).

In this paper we present a unified method for image deblurring and salt-
and-pepper noise removal. Using a variational technique, we introduce a cost
functional that represents the goals of deblurring, robustness to salt and pep-
per noise, and compliance with a piecewise-smooth image model. Experimental
results exhibit effective image recovery, with various blur models and noise levels.

2 Unified Variational Framework

Image deblurring is an inverse problem, that can be formulated as a functional-
minimization problem. Let {2 denote a rectangular domain in R?, on which the
image intensity function f : £2 — [0,1] is defined. Ideally, the recovered image
f satisfies

f= argm}n/ﬂ@(h x [ —g)dA, (1)

where @(-) is a metric representing data-fidelity. In the case of Gaussian noise,
a quadratic data-fidelity term is used:

(h* f—g)=(h*f—g)° (2)

The inverse problem represented by Eq. 1 is known to be ill-posed: small
perturbations in the data may produce unbounded variations in the solution. To
alleviate this difficulty, a regularization term, that reflects some a-priori prefer-
ences, is added. The functional to be minimized thus takes the form

}‘:/Q@(h*f—g)dA +aJ(f) (3)

where J(f) is the regularization operator and « is positive weighting scalar. Sev-
eral regularization terms were suggested in the literature, for example Tikhonov
[22] L? smoothness, Total variation (TV) L' norm [20, 21], modified L! norm [1]
and recently an integrated TV and wavelet coeflicients regularization [10, 11, 14].

In the presence of salt and pepper noise, the quadratic data-fidelity term (2) is
inadequate. In this paper, we use a robust (modified L! norm) data-fidelity term

B(hx f—g)=+/(h*f—g)?2+n?, (4)

where 7 is a small constant. The modified L' norm shares the robustness to
outliers of the L! norm, but avoids the resulting PDE from being singular at
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zero. Brox et al [6] have recently used the modified L' norm as a fidelity term
for precise optical flow estimation.

The regularization terms that we use represent preference for piecewise-
smooth images with simple edge sets. In the Mumford-Shah [15] functional,
piecewise smooth images are favored by the term [, K |Vf|2dA, where K is
the edge set. The simplicity of the edge set is maintained in the Mumford-Shah
functional by the line integral term [ do.

Ambrosio and Tortorelli [2] used the I'-convergence framework to approxi-
mate the irregular Mumford-Shah functional by a sequence of regular function-
als. The edge set K is approximated by a smooth auxiliary function v, where
v(z) = 0if x € K and v(z) ~ 1 otherwise. Mumford-Shah regularization, using
the I'-convergence approximation, has been recently used in electrical impedance
tomography [19] and in blind image restoration [4].

The unified functional is

fe(f,v):/ﬁdi(h*f—g) dA + 5/Qv2|Vf|2dA +

+ a/Q <e|w2 + (”;61)2> dA. (5)

The first term in the functional is the modified L' data-fidelity term (4). The
second term favors a piecewise smooth solution and corresponds to the term
fQ\K |Vf|2dA in the Mumford-Shah functional. The third term maintains the

simplicity of the edge set and corresponds to the line integral term [}, do. Here
€ is a small positive constant, and a and (3 are positive weights.

3 Minimization Techniques

The objective functional (5) depends on the functions f (recovered image) and
v (approximated edge map). Minimization with respect to both f and v is car-
ried out using the Euler-Lagrange (E-L) equations (6) and (8), subject to the
Neumann boundary conditions dv/ION = 0, 9f/ON = 0, where N denotes the
normal to the boundary.

-1
6]:6:2ﬁv|Vf2+a<v )—26aV2v:O (6)
ov €
OF. , . 9
57 =@ (h* f—g)*xh(—z,—y) —28Div(v*Vf) =0 (7)
Substituting the modified L! norm (4) yields
6Fc - (WS =9) ey — 28DV =0.  (8)

TN Y T

Studying the objective functional (5), it can be seen that it is convex and
lower bounded with respect to either of functions f and v if the other one is
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fixed. For example, given v, F, is convex and lower bounded with respect to
f. Therefore, following [8], the alternate minimization (AM) approach can be
applied: in each step of the iterative procedure we minimize with respect to one
function and keep the other one fixed.

Obviously, Eq. (6) is a linear partial differential equation with respect to v.
On the contrary, (8) is a nonlinear integro-differential equation. Linearization of
this equation is carried out using the fixed point iteration scheme, as in [23, 8].
We set f = f!in the denominator, and f = f!*! elsewhere, where [ is the current
iteration number. Eq. (8) can thus be rewritten as

H(v, [T =G(fY, 1=0,1,.. (9)
where H is the linear integro-differential operator

h>|<fl“‘1
V(s fr—g)? + 72

H(val)fl+1 = h(—!L‘7 _y) - 26D1V(U2 fo_l)

and g
() = « h(—a,~y).
V(s fT=g)2 +n?
Note that (9) is now a linear integro-differential equation in f!*+1.
The two E-L equations (6) and (8) have now become two linear PDE’s, that
can be represented by two systems of linear equations. These systems are solved
in alternation. This leads to the following iterative algorithm:

Initialization: f0C=g, o°=1.
1. Solve the Helmholtz equation for v"'!

« «@
28|Vf'? 4+ — —2aeV)" T = —
@8IV + 5 jorH = 2

2. Set fnt10 = f" and solve for f"*! (iterating on )
H(UTH»I’ fn+1,l)fn+1,l+1 _ G(fn+1,l) (10)

3. if ([|f" = "L, <ellf"l|z,) stop.

Here €7 is a small positive constant. Steps 1 and 2 both call for a solution of a
system of linear equations. Step 1 was implemented using the Minimal Residual
algorithm [24]. As for step 2, following Vogel and Oman [23], Eq. (10) can be
expressed in a quasi-Newton like form

fn+1,l+1 _ fn+1,l _ [H(UnJrl’fnJrl,l)]—l R(Un+1,fn+1,l) (11)

where

(h*f—g)
V(s f—g)? +n?

R(v, f) = * h(—x, —y) — 28 Div(v? Vf)
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and H(+, -) is the approximation of the Hessian operator. It can be shown that the
operator H(-,-) is self-adjoint and positive definite. Consequently H(-,-) ' R(-,-)
in (11) was computed via the Conjugate Gradients method.

Let f;; denote the discretized image function. The forward and backward
finite difference approximations of the derivatives df(z,y)/0x and df(xz,y)/dy
are respectively denoted by Aif” = :I:(fiil,j —f”) and Aifl] = :I:(fi,jil —f”)
Hence, the discrete form of Eq. (6) is

’Uz’j—l

Qﬁvij [(Aifz])z + (Az_flJ)Q] + « - — 20€ (A:iAﬁ_’UU + AziAz_’Uw) =0,

and Div(v? Vf) in Eq. (8) is approximated by
(A% (v, A7) + AY (v}, AY)) fiy.

In the discrete case, the Neumann boundary conditions were implemented
as follows. The observed image was extended by adding margins that are a few
pixels wide. These margins were obtained by replicating the one-pixel thick outer
frame of the image. The margins were then convolved with the blur kernel. To
avoid artifacts, in the presence of salt and pepper noise, care should be taken
to ensure that the outer frame of the image is noise free. This limited task can
easily be achieved using a median filter.

All convolution procedures were performed in the Fourier Transform domain.
The algorithm was implemented in the MATLAB environment,.

4 Experimental Results

The performance of the algorithm is presented in Figs. 3, 4 and 5. Fig. 3 (left) is a
blurred and noisy version of the Finstein image. The blur kernel was a pill-box of

Fig. 3. Deblurring in the presence of salt and pepper noise. Left: Source image, blurred
with a pill-box kernel of radius 4, and contaminated by noise of density 0.11. Right:
Recovered image, using the suggested algorithm
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Fig. 4. Left column: The Lena image, blurred with a pill-box kernel of radius 3, and
contaminated by salt and pepper noise. The noise densities are (top to bottom) 0.01,
0.1 and 0.3. Right column: The corresponding recovered images
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Fig. 5. The case of motion blur. Top-left: Blurred and noisy image. Top-right: Restora-
tion using the proposed method. Bottom-left: The outcome of 3 X 3 median filtering
followed by Lucy-Richardson restoration (Matlab: deconvlucy). Bottom-right: The out-
come of 5 x 5 median filtering followed by Lucy-Richardson restoration

radius 4; the noise density was 0.11. Fig. 3 (right) is the outcome of the suggested
method. The parameters were § = 0.5, = 0.5,¢ = 0.1. The superiority of the
proposed method, with respect to the sequential one (Fig. 2), is clear.

In all the examples in this section, the convergence tolerance of e = 1 -
10~ was reached with 3-5 external iterations (over n). The number of internal
iterations (over 1) was set to 5. The constant i (Eq. 4) was set to 1074

The examples presented in Fig. 4 demonstrate the performance of the algo-
rithm at a variety of noise levels. The images in the left column were all blurred by
a pill-box kernel of radius 3. The noise densities were, from top to bottom, 0.01,
0.1 and 0.3. The corresponding recovered images are shown in the right column.
Despite the large variability of the noise level, the stability of the algorithm al-
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lowed to use the same parameter set in the three cases: = 0.5, = 0.5, = 0.1,
as in the previous example.

Recovery of motion blur in the presence of salt and pepper noise is demon-
strated in Fig. 5. The 256 x 256 cameraman image was blurred by a motion
blur kernel of length=8, oriented at an angle § = 25° with respect to the hori-
zon. The blurred image was further contaminated by salt and pepper noise of
density 0.1 (top-left). The outcome of the method suggested in this paper (with
8 =0.6,a =0.01,e = 0.1) is shown top-right. The inadequacy of the sequential
strategy, of median filtering followed by conventional deconvolution is demon-
strated in the bottom row. The left image in that row is the outcome of 3 x 3
median filtering followed by the well known Lucy-Richardson restoration (Mat-
lab: deconvlucy). The right image in the bottom row was obtained in a similar
way, but with a 5 x 5 median filter.

5 Discussion

We presented a method for image deblurring in the presence of salt and pep-
per noise. Our unified approach to deblurring and outlier removal is novel and
unique. Experimental results demonstrate the superiority of the suggested method
with respect to a sequential approach, in which median-based noise removal and
image deconvolution are separate steps.

The algorithm is fast, robust and stable. Computation time for 256 x 256
images is about 3 minutes, using interpreted MATLAB on a 2GHz PC. The
robustness of the algorithm is demonstrated by the fact that similar parameters
can be used in the processing of different images. For example, the same param-

Fig. 6. Approximated edge maps obtained as a by-product of the restoration process.
Left: The v-function that corresponds to the deblurring of the Lena image with a
pill-box kernel and noise density 0.1. Right: The v-function that corresponds to the
deconvolution of the Cameraman image with motion-blur and noise density 0.1
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eter were used in Fig. 3 and in the three cases shown in Fig. 4. Furthermore,
note the fast numerical convergence in our experiments.

In the variational approach, image deblurring in the presence of noise is
expressed as a functional minimization problem. The functional consists of a
data fidelity term and a regularization term, that stabilizes the inherent ill-
posedness of the image deconvolution problem. The data fidelity term used in
this study is the modified L' norm. It is more robust than the common L? norm
for images contaminated by outliers, and yet it is still differentiable and convex.

Elements from the Mumford-Shah segmentation functional, in the I'-
convergence formulation, served as the regularization term. They reflect the
profound piecewise-smooth image model. Unlike total variation, the alterna-
tive edge-preserving stabilizer, the selected regularization term does not induce
nonlinearity beyond that of the fidelity term. An additional advantage of this
method is the production of the auxiliary function v, that is an approximated
edge map corresponding to the image. For example, Fig. 6 shows the v-maps
obtained during the processing of the blurred and noisy Lena (pill-box blur,
Fig. 4) and Cameraman (motion-blur, Fig. 5) images. Finally, Mumford-Shah
regularization has profound theoretical advantages with respect to other edge
preserving methods. These aspects will be discussed in the full-length version of
this paper.
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Abstract. This paper presents a method for three-dimensional (3D)
segmentation of blood vessels, i.e. determining the surface of the vessel
wall, using a combination of velocity data and magnitude images ob-
tained using phase contrast MRI. In addition to standard MRI images,
phase contrast MRI gives velocity information for blood and tissue in
the human body. The proposed method uses a variational formulation
of the segmentation problem which combines different cues; velocity and
magnitude. The segmentation is performed using the level set method.
Experiments on phantom data and clinical data support the proposed
method.

1 Introduction

Magnetic Resonance Imaging (MRI) provides three-dimensional images that are
useful for diagnostic purposes. Phase contrast MRI provides additional velocity
measurements that can be used for analysis of the blood flow and tissue mo-
tion. This paper presents a method for 3D segmentation of blood vessels. After
segmentation, when the shapes of the vessels have been determined, volumetric
flow data can be obtained from the velocity data. Computer aided segmentation
is a well studied problem within medical image analysis and have great impact
on diagnostic performance. In the case of 3D images and dynamic images it is
of special importance because of the rather time-consuming task of manually
segmenting huge amounts of data. Blood volume, pressure and velocity of the
blood flow and the motion and shape of the vessel walls are examples of useful
measurements that can aid the diagnosis and are also important for research
within the medical field.

This paper deals with the problem of segmentation of moving and deforming
vessels using velocity and intensity data. This covers many typical cases for med-
ical images taken for diagnostic purposes, such as dynamic cardiac images. Many
different methods have been proposed to analyze and extract shape information
from cardiac images and 3D model-based methods have shown to improve the
diagnostic value [1].

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 119-130, 2005.
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The most basic approach to segmentation is to threshold the images, cf.
[2]. However, this method only works on very simple images. Later approaches
makes use of moving interfaces, e.g. snakes and active contours, cf. [3] and the
geodesic active contours [4]. During the latest years level set implementations
have become popular since they can handle global properties, change of topology
and are based on a solid mathematical framework, cf. [5, 6].

The level set method [7] is a popular technique for representing and tracking
dynamic interfaces. The surface is represented implicitly as the zero level set of
a function. The sign of the level set function gives a natural partitioning and
is frequently used in segmentation. Our segmentation problem is solved using a
variational level set framework. The optimal solution, i.e. the optimal position
of the surface separating the blood from the vessel walls, corresponds to the
minimum of a functional.

1.1 Relation to Previous Work

Aligning curves and surfaces to image gradient data have been analyzed in great
detail in e.g. [8] in a geodesic active contour framework where curves are aligned
to edges taking into account both direction and magnitude of the gradient.

In [9] blood is segmented in cardiac phase contrast MR images using the
fact that the heart wall has a periodic motion and resumes its position after a
completed heart cycle. The method is based on a particle trace technique for
time-resolved 3D velocity vector fields, combined with magnitude image data.
In [10] the myocardium is segmented from MRI intensity and phase contrast
images. The segmentation is performed in 2D images using level set curve evo-
lution. Three different constraints determine the curve motion, the intensity
gradient, the velocity magnitude and the coherence of the velocity direction. For
a general variational method using image intensity variations as a cue in segmen-
tation as in the proposed method but in a statistical framework cf. [11]. In [12]
segmentation of curvilinear structures in MR angiography images is performed
using evolution techniques for implicit curves. In [13] blood vessels are segmented
from MR angiography images using the criterion that the blood vessel boundary
should be orthogonal to a vector flow field and thus minimizes the flux through
the surface. Tubular structures are segmented from standard MRI in [14]. The
method presented in [15] handles the additional difficulty of segmenting vessels
with non-stationary walls.

1.2  Contribution of the Paper

This paper presents a method for 3D segmentation of blood vessels and determin-
ing the surface of the vessel wall by combining the velocity vector field obtained
from phase contrast MRI measurements with MRI intensity gradients. The seg-
mentation is formulated as a variational problem combining a novel functional
incorporating velocity data such as velocity magnitude and discontinuities in
velocity direction, using the discontinuity measure from [15], with an alignment
functional introduced by [8]. The proposed method improves on the performance
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of the method presented in [15] especially by incorporating intensity information
as well as obtaining higher numerical stability.

2 Background

2.1 Phase Contrast MRI

Phase contrast MRI is based on the property that a uniform motion of tissue
in a magnetic field gradient produces a change in the MR signal phase, @. This
change is proportional to the velocity of the tissue, v. The MR signal from a
volume element accumulates the phase [16]

T
&(r,T) = yBoT + v - / G(r,t)tdt
0
= PYBOT + v 6 )

during time T, where By is a static magnetic field, v the gyro-magnetic ratio
and G(r,t) is the magnetic field gradient. Notice that G is exactly the first
moment of G(r,t) with respect to time. If the field gradient is altered between
two consecutive recordings, then by subtracting the resulting phases

@1—@2:’}/V'(61—62) y

the velocity in the (G — Gy)-direction is implicitly given. In this way a desired
velocity component can be calculated for every volume element simultaneously.
To construct the velocity vector in 3D, the natural way is to apply appropriate
gradients to produce the x-, y- and z-components respectively.

2.2  Measure for Velocity Discontinuities

The velocity can be expressed in vector form v = (vg, vy, v,), and the velocity
magnitude is

V| =vv-v=,/v+v]+0?.

Fig. 1. Examples of the velocity vector field for one horizontal slice of the total volume.

(left to right) vg, vy, and v,-velocity component and velocity magnitude |v|
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Examples of the individual components are shown in Figure 1.

There are two important reasons why the velocity field v should be used
for segmentation. First, v is discontinuous across the vessel boundary since the
fluid inside moves parallel to the boundary surface and the walls move roughly
normal to the boundary. Second, it has been noted, e.g. by [10], that the velocity
magnitude, |v|, of the fluid is large compared to the magnitude of the wall
motion. These observations laid the foundation for the variational formulation
introduced in [15] where the following discontinuity measure was introduced.

To encode the information in the vector field v a field of matrices M, =
M, (x), x € R? was introduced, where M, is the positive semi-definite, sym-
metric matrix defined by

. Vg vg VgUy VzpUy

_ _ _ 2

M, =vv' = |v, [vm Uy vz} = |vaVy Uy VYU
v, UgVs VyUy U

M, has rank one with eigenvalues A\; = |v|? and Ay = A3 = 0. Let W > 0 be
a weight function (typically a Gaussian filter G, ) and define the average matrix
field to be the convolution
Mv =W Mv )

taken componentwise. We denote this matrix field the density matriz field. De-
pending on the values of v in the region determined by W there can be either
i) one dominant velocity direction, ) two dominant directions or i) three
equally dominant directions at every point. This is reflected in the magnitude of
the eigenvalues of M,,.

To discriminate ¢) from ) and i), the following real valued function is
introduced, inspired by Harris [17],

41 Ao
(A1 4+ A2)% 7

where A1 > Ay > 0 are the two largest eigenvalues of M, and 0 < R < 1. For
case i) R ~ 0 and for ) and i) R will be large, i.e. R ~ 1. It was shown in [15]
that this measure is an excellent detector for discontinuities in v. Some examples
are shown in Figure 2.

R =

2.3 Level Set Formulation

The level set method was introduced in [7] as a tool for capturing moving in-
terfaces. The time dependent surface I'(t) is implicitly represented as the zero
level set of a function ¢(x,t) : R* x Ry — R as

I'@t) ={x; ¢(x,t) =0} ,
where ¢ is defined such that

< 0 inside I"
o(x,t) ¢ =0on I’
> 0 outside I" .
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o

Fig. 2. Some examples of the discontinuity measure R applied to velocity data of the
heart (left) and aorta (right) with white indicating high discontinuities

Using the definition above, the outward unit normal n and the mean curvature
Kk are!

ne Yo V¢
Vol Vol

The zero set of ¢(x,t) represents I'(t) at all times ¢t. This means that ¢(x(t),t) =
0 for a curve x(t) € I'(t). Differentiating with respect to ¢ gives

and k=V

where u = dx(t)/dt and w, is the normal component of the surface velocity.
To move the surface according to some derived velocity, a PDE of the form (1)
is solved. One of the advantages of this representation is that the topology of
the surface is allowed to change as the surface evolves, thus making it easy to
represent complex surfaces that can merge or split so that multiple objects are
easily handled. For a more thorough treatment of level set surfaces cf. [5, 6].

3 Variational Formulation

In this section the segmentation problem is formulated as a variational prob-
lem. Given velocity data, basic dynamic characteristics of the flow and intensity
images, the problem consists of finding the boundary between the blood and
the vessel walls. This boundary should be a closed surface within the domain of
interest i.e. within the measured volume. The segmentation is then determined
by the interior of the surface representing the vessels. The interior of I" will be
denoted (2 and the exterior {2°. Using both velocity and intensity information
an energy functional is introduced and minimized using the level set framework.

3.1 Velocity Based Terms

The first part of the energy functional is based on the velocity information given
by phase contrast MRI. A first observation is that tissue moves much slower

! Here V¢ denotes the gradient of ¢, V¢ = (g—f, 3—37 g—f), and V- denotes the diver-
gence.
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than blood on average. Therefore the final surface should enclose as much flow
as possible, i.e. the flow outside the surface should be minimized.

The discontinuity measure, described in Section 2.2, has shown to obtain
higher values outside blood vessels than inside, not just high values on the vessel
walls, as assumed in [15]. This is due to a smaller influence by image noise in
high velocity areas, such as within blood vessels, than in relatively stationary
areas where velocity noise to a larger extent introduce discontinuities. Based on
this insight together with the fact that flow inside blood vessels is continuous
the discontinuity measure should be minimized inside the surface.

To summarize the arguments above the desired surface should enclose as
much of the flow in v as possible and the flow should be continuous inside
the enclosing surface. This leads to the minimization of the following energy
functional

Ey(IN) = /!Cx(v)dx + /ﬂR(X)dX , (2)

flow outside the surface discontinuities inside the surface

where 2 is the interior and {2¢ the exterior of the surface as mentioned above,
R(x) is the measure for discontinuities from Section 2.2 and x(v) is a C? ap-
proximation to the translated Heaviside function defined by x(v) = x(|v|) =
H(|v| —9d) = Hs(|v|), where § € R. Here H is defined as in [18]

x> €
r < —€
142+ Lsin(Z2)] |z <€ .

H(z) =

= O =

This is commonly used in level set based segmentation, cf. [19]. The definition
above will make x(v) equal to zero for very low velocities and one otherwise.
This makes it an approximate characteristic function for v and the measure of
the first integral in (2) is then in volume units.

Representing the surface using the zero level set of a function ¢, the energy
(2) becomes

Bu@) = [ xH@x+ [ R0 - H@)x )

where H(¢) is again the approximation to the Heaviside function and therefore
a characteristic function for 2¢ and (1 — H(¢)) is analogously a characteristic
function for 2. From the Euler-Lagrange equation for (3), the motion PDE for
the surface based on velocity alone, as a gradient descent, is then

¢ = (—x+ R)|Vg| ,

where ¢; denotes derivative with respect to the evolution time.
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3.2 Intensity Based Terms

The second part of the energy functional is based on the given MRI intensity
images. Especially the gradients in every point of the intensity images are im-
portant and indicate tissue changes. Inside blood vessels the image intensity is
relatively uniform, making the image gradient small in magnitude. At the bor-
ders of the vessels there is a jump in the intensity resulting in larger gradients.
The resulting surface is supposed to be aligned to this vessel border, i.e. the sur-
face outward normal should be parallel (or anti-parallel) to the image gradient
at every point and positioned so that the magnitude of the image gradient |VI|
is large. This results in the following energy functional

EW(I) = - /F VI(x) - nldS 7

normal component of gradient at the surface

which has been analyzed in e.g. [8,20]. Using Gauss’ theorem this becomes

Ei(I') = —sign(VI(x) - n) /F(VI(X) -n)dS

= —sign(VI(x) - n)/ Al(x)dx (4)
Q

where (VI - n) is assumed not to change sign on the surface. If the surface

I' is initialized completely inside or completely outside the sought volume and

the intensity images are sufficiently smooth this sign assumption is justified.

Representing the surface using the zero level set of a function ¢ as in Section 3.1,

the energy (4) becomes

Vo

Ei(6) = —sign (w<x> o

) AR~ H@)ix . ()
R3

where (1 — H(¢)) is the characteristic function of 2. From the Euler-Lagrange
equation for (5) the motion PDE for the surface based on intensity alone is

oy = {— sign (VI- @) AI} Vo| .

3.3 Total Energy

The combined information from Section 3.1 and 3.2 results in an energy func-
tional containing both velocity and image intensity dependent terms

Erot (') = Ev + Er .

Using the above introduced notation this becomes

Ero(I) :/ de—!—/ Rdx—sign(VI-n)/ Aldx (6)
e 2 2
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where the terms are initially scaled to the same order of magnitude. Using the
level set framework on (6) results in the following functional

Vo
Vel

which is a volume integral. From the Euler-Lagrange equation for the total energy
the motion PDE for the surface becomes

Pra(@) = [ (@) + [R=sian (V1 55 ) A1) (- @) ax

Vo
Vol

This equation is numerically relatively stable as opposed to the evolution equa-
tion given in [15] which can be seen as solving a backward heat equation. Despite
this some problems can occur due to the use of the Laplacian of the intensity
images in (7) and hence an additional regularizing term can sometimes be useful.

¢ = {—x + R — sign (w ) AI] V| . (7)

4 Experiments

The segmenting performance of the proposed variational method was tested on
both clinical phase contrast MRI data of the aorta as well as on a flow phantom.
The constant § used in x(v) as described in Section 3.1 is set from estimates of
the noise in the velocity data.

4.1 Clinical Data

The clinical data consisted of two full 3D volumes (36 x 31 x 20) of MRI intensity
data and phase contrast velocity data of the aorta respectively with a resolution
of 1.92 x 1.92 x 2.00mm3. Three images based on the intensity and velocity data
is shown in Figure 3. The resulting segmented vessel wall after using only the
two velocity based terms of the energy functional, i.e. the two first terms in
(6), is shown in 2D in Figure 4 superimposed on the corresponding magnitude,

I_F_

F...'I.-

Fig. 3. (left) Intensity image of the aorta, (middle) absolute value of the velocities
for the corresponding data, (right) discontinuity measure for the velocity data, white
indicating higher values
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I_F_

Fig. 4. Segmented aorta by using velocity information only. (left) Intensity image of
the aorta with segmented vessel wall in white, (middle) absolute value of the velocities
for the corresponding data, (right) discontinuity measure for the velocity data, white
indicating higher values

E———— t-.-l E*
=

. |

Pl

=% i

Fig. 5. Segmented aorta by using both velocity and intensity information. (left) Inten-
sity image of the aorta with segmented vessel wall in white, (middle) absolute value of
the velocities for the corresponding data, (right) discontinuity measure for the velocity
data, white indicating higher values

absolute velocity and discontinuity measure images respectively. It is obvious
this velocity based variety of the proposed method is not able to produce an
optimal segmentation due to high velocity discontinuities to the lower right of
the aorta.

In the experiments resulting in Figure 5 the same data was treated but with
all three terms in (6) used. Clearly by using all three terms, i.e. utilizing inten-
sity information as well as velocity information, the resulting segmentation was
improved. The surface no longer being restrained by the high velocity disconti-
nuities to the lower right of the aorta.

The final result of the aorta segmentation using all terms in (6) is a surface
in 3D, a corresponding VRML model is shown in Figure 6.

4.2 Flow Phantom

The flow phantom consisted of a rubber hose containing flowing ion-enriched
water. The hose was submerged in stationary water of the same kind. The data
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J o |

Fig. 6. Different views of an aorta segmented by the use of both velocity and intensity

information. The shown segmented part of the aorta is approximately 4cm long

B> N

Fig. 7. Image sequence of an evolving surface, going from left to right and top to
bottom, segmenting a flow phantom by using both velocity and intensity information.
The surface is initialized as two spheres (top left)

sets were two full 3D volumes (110 x 153 x 59) of MRI intensity data and phase
contrast velocity data of the flow phantom respectively with a resolution of
1.00 x 1.00 x 2.00mm3. The time evolving 3D segmentation of the flow phantom
is shown in Figure 7 as an image sequence.

5 Conclusions

In this paper a method for 3D segmentation of blood vessels using a combination
of velocity and intensity data is introduced. The segmentation problem is for-
mulated in a variational level set setting with a functional derived from physical
properties of the data. The functional incorporates velocity magnitude, velocity
discontinuities as well as intensity variation. Initial tests on clinical data support
the proposed method by showing higher numerical stability and an increasing
tendency in segmentation performance in areas of high velocity noise as shown in
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the lower right of the segmented aorta in Figure 5. This experiment also proves
the ability of the method to segment regions with practically equal intensities
thanks to the velocity terms of the functional.

Future work will include e.g. integrating prior information using statistical

shape models [21, 22], analysis of methods for initialization and automatic meth-
ods for estimating parameters from the data.
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Abstract. Segmentation of the left ventricle in echocardiographic images is a task
with important diagnostic power. We propose a model-based approach that aims
at extracting the left ventricle for each frame of the cardiac cycle. Our approach
exhibits several novel elements. Modelling consists of two separate components,
one for the systolic and one for the diastolic moment. Segmentation is considered in
two steps. During the first step a linear combination of the systolic and the diastolic
model is to be recovered - that dictates the new model - along with a similarity
transformation that projects this model to the desired image features. During the
second step, a linear combination of the modes of variation for the systolic and
diastolic models is recovered for precise extraction of the endocardium boundaries.
The process is considered in the temporal domain where constraints are introduced
to couple information across frames and to lead to a smooth solution. Promising
results demonstrate the potentials of the presented framework.

1 Introduction

Cardiovascular diseases are a major health concern world-wide. The left ventricle and
in particular the endocardium is a structure of particular interest since it performs the
task of pumping oxygenated blood to the entire body. Echocardiographic apical views
when processed can determine the ejection fraction, a critical measure of the heart cycle.
While segmenting the ventricle in the systolic and diastolic frame could be sufficient to
provide such a measure, continuous tracking of the endocardium could further improve
diagnosis.

Portability and low acquisition cost are the most attractive elements of echocardio-
graphic imaging [14] while the presence of low signal-to-noise (SNR) ratio is an im-
portant limitation. Model-free segmentation techniques aim at separating the intensity
properties of the image entities and fail to cope with noise and speckle in echocardiog-
raphy. The use of prior knowledge that encodes the geometric form of the structure of
interest is a reasonable way to deal with corrupted data.

Prior art in echocardiography consists of data-driven [6] and model-based segmenta-
tion approaches [9, 1]. One can also separate the techniques that perform segmentation

* Research was carried out during the affiliation of the author with Siemens Corporate Research
from November 1999 to March 2003.

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 131-142, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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in the polar [6] or in the raw space. Statistical/Bayesian formulations [6], active shape
and appearance models [4, 1, 17], snakes and active contours [9], deformable models and
templates [8] and level set techniques [2, 11] are well established techniques considered
to address the segmentation of the left ventricle in echocardiographic images.

In this paper, we propose an active shape-inspired variational framework for fast,
reliable and automatic segmentation of the endocardium for ultrasonic images. Our
approach involves modelling, extraction of primitives, rough segmentation and border
detection. We consider two separate model spaces, one for the diastolic and one for the
systolic case. We recover the average shape and the modes of variations for each model
through a Principal Component Analysis using a set of registered training examples.

Extraction of important primitives (ventricular walls, valve plane) that are used to
initiate the segmentation process is the first step towards automatic 2D-+time segmenta-
tion. Then, a linear combination of the two average models (systolic & diastolic) and the
parameters of a similarity transformation between this new model and the image are in-
crementally recovered through a robust minimization. One should note that such a model
space is dynamic. The parameters of this transformation are constrained to be smooth in
the temporal domain. Precise endocardium segmentation is determined through a linear
combination of the moments of variation that describe training sets, the systolic and the
diastolic one. Such combination is constrained over time.

The remainder of this paper is organized as follows. In the next section, we address
shape registration and modelling of the left ventricle. Global segmentation that involves
a global transformation between the model-space and the image is presented in section
3 while local refinements are considered in section 4. Discussion and perspectives are
addressed in section 5.

2 Modelling the Geometric Structure of the Endocardium

Building compact representations from a set of examples is a well studied problem in
imaging and vision. The selection of appropriate models to represent all examples of the
training set within a common pose is a critical component of such a process. Once such
selection has been established, one would like to align all training examples to the same
pose. Then modelling can then be performed using well known statistical techniques.

2.1  Global Registration, Mutual Information and Implicit Representations

Registration of shapes [15] is an open, interesting and challenging problem in imaging,
vision and in particular in medical image analysis. Such application is not within the
scope of the report, and therefore the prior art will be omitted and the adopted technique to
address the problem will be briefly presented. Overviews of shape and image registration
techniques are available at [10, 15]. Details on the considered approach to align the
training examples can be found at [7]. Modelling requires global registration between
the samples in the training set and establishment of local correspondences between
them. Let us assume that a set of ground truth that consist of n» components is available
[s1, 82, ..., S»]. Global alignment is equivalent with finding parametric transformations
A; between the training set examples and a target shape s such that
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i€[l,..n]: Ai(s) =s;

where s is the common pose to be recovered. An emerging way to represent shapes is
through the use of implicit representations. Such approaches are quite popular when the
task involves tracking moving interfaces [11]. Inspired by the work proposed in [12] we
represent shapes using distance transforms and implicit representations;

0, w E s;
$i(w) = {d(w, 8;), otherwise

where w is the pixel location and d(w, s;) the minimum Euclidean distance between this
pixel and the shape s;.

The selected representation is translation/rotation invariant. Scale variations can be
considered to be global illumination changes in the space of distance transforms. There-
fore, registration under scale variations is equivalent with matching different modalities
that refer to the same structure of interest. Mutual information [3, 16] is an invariant
technique according to a monotonic transformation of the two input random variables.
The use of such criterion to perform shape registration within the space of distance
transforms was proposed in [7]. Such criterion is based on the global characteristics of
the structures of interest. In order to facilitate the notation let us denote: (i) the source
representation ¢; as f, and (ii) the target representation ¢ as g.

In the most general case, registration is equivalent with recovering the parameters
© = (61,04, ...,0y) of a parametric transformation .4 such that the mutual information
between f = f(£2) and g/ = g(A(©; £2)) is maximized for a given sample domain
12

MI(XfQ’Xgé) =N [Xfcz] 'y [Xgé} —H {X.fo,gé}

where H represents the differential entropy. Such quantity represents a measure of uncer-
tainty, variability or complexity and consists of three components: (i) the entropy of the
model, (ii) the entropy of the projection of the model given the transformation, and (iii)
the joint entropy between the model and the projection that encourages transformations
where f explains g. One can use the above criterion and an arbitrary transformation
(rigid, affine, homographic, quadratic) to perform global registration that is equivalent
with minimizing:

fQ, (ll,lg)
Ta (1y)p%a (1)

where (i) p/@ corresponds to the probability density in fo ( [Pp(£2)]), (ii) P98 cor-
responds to density in g5 ( [Ps(A(©;42))] ), and (iii) pf92 is the joint density.
Such framework can account for various global motion models. We consider similarity
registration between the training examples for the endocardium shapes.

Registration examples for the particular class of endocardium shapes are shown in
[F1G. (1)]. Once training examples have been aligned, one should address the problem of
recovering point(element)-wise correspondences. Such a deformation field L(®; x) can
be recovered either using standard optical flow constraints or through the use of warping
techniques like the free form deformations method [13], which is a popular approach in
graphics, animation and rendering [5].

E(A(®)) = —MI(XTe, X9%) = // f2.98 (1, Iy)log L 12) g1, a,
R? p
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Fig. 1. Global Registration on the Space of Implicit Representations Using Mutual Information

2.2 Local Registration, Free Form Deformations and Implicit Representations

The essence of FFD is to deform an object by manipulating a regular control lattice P
overlaid on its volumetric embedding space. Opposite to optical flow techniques, FFD
techniques support smoothness constraints, exhibit robustness to noise and are suitable
for modelling large and small non-rigid deformations. Furthermore, under certain con-
ditions, it can support a dense registration paradigm that is continuous and guarantees a
one-to-one mapping.

We consider an Incremental Cubic B-spline Free Form Deformation (FFD) to model
the local transformation L. To this end, dense registration is achieved by evolving a
control lattice P according to a deformation improvement [6 P]. The inference problem
is solved with respect to - the parameters of FFD - the control lattice coordinates.

Let us consider a regular lattice of control points

Prn = (P, ., Pl n)ym=1

m,n’

overlaid to a structure

[={x}={@yl<e<X1<y<Y}
in the embedding space that encloses the source structure. Let us denote the initial
configuration of the control lattice as P, and the deforming control lattice as P =

PO+ 6P. Under these assumptions, the incremental FFD parameters are the deformations
of the control points in both directions (z, y);

={(6F;, 1, 0P%, »)}; (m,n) € [1,M] x [1, N
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Fig. 2. Local Registration on the Space of Implicit Representations Using Free Form Deformations

The motion of a pixel x = (x,%) given the deformation of the control lattice from P°
to P, is defined in terms of a tensor product of Cubic B-spline:

3 3
L(©;x) =x+6L(0;x) = > Y By(u) PPy ji1+ 0Pipk i)
k=0 1=0

wherei = |&-M|+1,j= |4 (N]J+Lu=$M—|¢-M|andv = E¢N—[£-NJ.

The terms of the deformation component refer to (i) 6 P, 41, (k,1) € [0, 3] x [0, 3]
consists of the deformations of pixel x’s (sixteen) adjacent control points, (ii) 6 L(x) is
the incremental deformation at pixel x, and (iii) By (u) is the k" basis function of a
Cubic B-spline (B;(v) is similarly defined).

Local registration now is equivalent with finding the best lattice P configuration such
that the overlaid structures coincide. Since structures correspond to distance transforms
of globally aligned shapes, the Sum of Squared Differences (SSD) can be considered as
the data-driven term to recover the deformation field L(®; x));

Euta(©) = / /Q (@(x) — Ds(L(®; x)))dx

The use of such technique to model the local deformation registration component
introduces in an implicit form some smoothness constraint that can deal with a limited
level of deformation. In order to further preserve the regularity of the recovered regis-
tration flow, one can consider an additional smoothness term on the deformation field
6 L. We consider a computationally efficient smoothness term:

2
) dx

B J5L(O;x)
Esmoot}mess(@) - /A (H ox

2 H&SL(@;X)
+ - - 7
dy
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Such smoothness term is based on a classic error norm that has certain known limitations.
One can replace this smoothness component with more elaborated norms. Within the
proposed framework, an implicit smoothness constraint is also imposed by the Spline
FFD. Therefore there is not need for introducing complex and computationally expensive
regularization components.

The Data-driven term and the smoothness constraints term can now be integrated
to recover the local deformation component of the registration and solving the corre-
spondence problem: E(®) = Fyu14(®) + aFsmoothness(©), where « is the constant
balancing the contribution of the two terms. The calculus of variations and a gradient
descent method can be used to optimize such objective function [7]. The performance
of the proposed framework on the Systolic Left Ventricle dataset is demonstrated in

[Fig. (2)].

2.3  Composite Model Building

Let us assume that two sets of ground truth that consist of n components are available, one
for the diastolic [dy, da, ..., d,,] and one for the systolic case [s1, 82, ..., S, ]. Without loss
of generality, one can assume that the elements of each set consists of m points defined
on the Euclidean plane (d; = (x},x},...,x%,)) and are registered to a common pose.

Principle Component Analysis (PCA) can be applied to capture the statistics of the
corresponding elements across the training examples. PCA refers to a linear transforma-
tion of variables that retains - for a given number o7, 05 of operators - the largest amount
of variation within the training data, according to:

01 02
d:a+z)‘z(ugvvg)v S:§+ZA2(UZ»VZ)
k=1 k=1

where d (resp. §) is the mean diastolic shape, o1 (resp. 02) is the number of retained
modes of variation, (uf/, v{) (resp. (uj, v;)) are these modes (eigenvectors), and A7
(resp. A}) are linear factors within the allowable range defined by the eigenvalues.

Once average models for the systolic and diastolic cases are considered, one can
further assume that these models are registered, therefore there is an one-to-one corre-
spondence between the points that define these shapes. Let (d = (x{,x4,...,x%,)) be
the diastolic average model and (s = (x§, %3, ...,x2,)) the systolic one. Then one can
define a linear space of shapes as follows:

cla)=as+(1—-a)d, 0<a<l1

One then can define a linear space of deformations that can account for the systolic, the
diastolic frame as well as the frames in between:

01 02
d ydy _ = d(d d
c(a, A, A7) =¢(a) + Z)‘k (ug, vi) + Z)\Z (uz, vi)
k=1 k=1
The most critical issue to be addressed within this process is the registration of the

training examples as well as the registration of the systolic and diastolic average shapes.
The approach proposed in [7] that performs registration in the implicit space of distance
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functions using a combination between mutual information criterion and a free-form
deformation principle is used. Such an approach can provide one-to-one correspondences
between shapes for any given number of sampling elements. The resulting composite
model is of limited complexity, can account for the systolic and the diastolic form of the
endocardium as well as for the frames between the two extrema.

2.4  Composite Active Shape Models

Active shapes assume an average model, a certain number of modes of variation and the
existence of corresponding image features. Without loss of generality one can assume
that for each point j on the model space ¢(c, /\z, %) the corresponding image point has
been recovered y ;. Then, the objective is to recover a set of parameters that will move
each point in the model space c; to the corresponding location in the image space y;.
Such a task is performed in two stages where first a global transformation 7~ between
the model and the image is recovered that minimizes:

EdataaT :Zp ||TCJ ))_YJH)
7=0

according to some metric function p where 7 is a global transformation, similarity in

S e[ ][

that consists of a translation, a rotation and a scaling component and « defines the model
space. The selection of the transformation should be consistent with the one adopted
during the learning stage. It is important to point out that the model is not static since
refers to a linear combination of the systolic and the diastolic model. Therefore, the
process aims to recover simultaneously the combination of these two models that better
accounts for the shape of the true data points and the optimal transformation between
the model and the image space.

One can recover these parameters through an incremental update of the transforma-
tion. The corresponding location of the model points in the image plane could be used to
improve the segmentation be seeking an incremental update on the transformation 7 (; )
such that the projection of the €; moves closer to its true position y; in the image.

3  Rough Segmentation of the Endocardium

The left ventricle is bounded on each side by the walls which tend to appear brighter
in the ultrasound clip due to the various reflections from the tissue. In apical (both 2
chamber and 4 chamber views), the left ventricle is bounded on the bottom side by the
mitral valve which connects it to the left atrium. The mitral valve is constantly moving
(opening and closing) and its reflections are well recovered by the acquisition process.
We consider two parabolic equations to recover a rough approximation/detection of
these walls which are the areas with the highest brightness. The parabola model the walls
of the left ventricle but also outline the left atrium. The next step is to extract and track



138 N. Paragios et al.

the position of the mitral valve that separates the left ventricle and the left atrium. The
approach relies on the observation that if the valve is closed, the two heart chambers
are clearly separated while if the valve is open, the two chambers are connected. Two
ellipses are used to model the ventricle and the atrium and the plane that best separates
these ellipses and is consistent over time is considered to be the valve plane.

3.1 Recovering Correspondences

The most critical part within the presented framework is solving the correspondence
problem, between the actual projection of the model and the optimal position. Such
task within the active shape model is solved using a normalized intensity profile in the
normal direction. We consider a probabilistic formulation of the problem. One would
like to recover a density pporqer(; ) that can provide the probability of a given pixel w
being at the boundaries of the endocardium. Within the considered framework, one can
constrain the search in the direction normal to the model projection. The ventricular area
consists of blood pool and heart walls. Endocardium border detection is equivalent with
finding the boundaries between these two classes.

A description on the statistical properties of the blood pool as well as cardiac wall
can be recovered. Let py,q;(; ) being the probability of a given intensity being part of the
endocardium walls and ppo0q(; ) the density the describes the visual properties of the
blood pool. Then or correspondences between the model and the image are meaningful
in places where there is a transition (wall to blood pool) between the two classes. Given
a local partition one can define a transition probability between these two classes. Such
partition consists of two line segments [£(7 (x;)), R(7 (x;))] that live in the normal
direction [7 (N;)] of the model curve at element 7 (x;). The origins of these line seg-
ments is the point of interest 7 (x;), the have the same slope and opposite directions.
One can assume that this point is a projection of the model point x;:

Poorder(T (%;)) = p ([walllw € L(T(x;))] N [blood|w € R(T(x;))])

These conditions can be considered independent, leading to the following form for the
border density:

Poorder (T (%5)) = p (walllw € L(T(x;))) p (blood|w € R(T(x;)))
= Hweﬁ pwall(j(w)) HweR pblood(j(w))

One can evaluate this probability under the condition that the blood pool and wall density
functions are known. The use of -log function can be considered to overcome numerical
constraints, that is equivalent with finding the minimum of:

E@)= 3 M+ Y LW om

202
WEL(P) WER(P)

after dropping out the constant terms where blood pool is modelled using an exponential
distribution (\) and tissue/walls using a Gaussian distribution (u, o). Thus, the most
probable correspondence is recovered through the evaluation of F/(¢) where ¢ is a point
in the line defined by the projected normal. The search space for ¢ is considered to be
all image locations respecting two conditions; (i) live in the normal 7 (N;), and (ii)
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their distance from the current projection 7 (¢;(«v)) is within a given search window.
Once such correspondences were established the mechanism presented in [Sec. 2.4] is
considered to determine the optimal solution through the estimation of the parameters
of the transformation (o, 7).

3.2 Constraints on the Motion and the Position of the End-Valve Points

The motion of the valve plane is very critical to the operation of the endocardium. Such
motion is consistent over time, and quite often exhibits a symmetric form. Without loss
of generality, one can assume that the first ¢o(«) and the last point €,,, («) of the model
correspond to the valve end points. The displacement of these points from one frame to
the next can be recovered in an implicit form.

Let (ai—1,7;—1) be the model and its transformation to the image plane towards the
desired image features in the previous frame. Then, given some estimates on the current
solution (cy, 7¢) one can constrain the implicit motion of the valve points as follows:

Evalve motion(ah 7:5) =

¥ (T (@o(cu)) = To(@o(@n)]) + ¥ (171 @m(ar-1)) — Te(Em(an))])

where 1) is an error metric - the Euclidean in our case - 7;_1 (€, (c;—1)) is the position
of the valve point at frame ¢ — 1, 7;(C,,(cy)) the corresponding projection at frame ¢
and 7;_1 (€ (1)) — 71 (€ (ay)) the displacement of this point from one frame to
the next. Such term will constrain the motion of the valve plane to be smooth over time.

Such a term accounts for the relative motion of the valve points but not for their actual
position. To this end, one can introduce constraints forcing the model projections of the
valve points to be close to the valve-plane earlier recovered (yaive T + Bralve Y +
Yvaive = 0). The distance between the current positions of the model valve points
(€o(@),Cm(a)) and their projections to the valve-plane (po(t), pm(t)) is a term to
be minimized;

Evalve projection(atv 7;) = ¢ (|p0 (t) - 7;(60(0%))‘) + w (‘prn(t) - Z(E'rn (O‘t))D

One can consider a step further by recovering the exact position of the valve points
in the image and then use these positions during the segmentation process. To this end,
a model is built on the image profile for the left and the right end-valve points using
an image patch cantered at the ground truth position of the valve. Then, these patches
are normalized and an average model is recovered. Standard matching techniques are
considered within a search area in the vicinity of the projected valve position to recover
the most prominent valve points.

33 Smoothness Constraints on the Transformation Parameters

The motion of the ventricle also should fulfil certain constraints. It has to be periodic,
exhibit a shrinking between the diastolic and the systolic frame and an expansion for the
last part of the cardiac cycle. Such conditions can be imposed in various forms. Direct
motion constraints (like the one earlier considered) focus on the distance of a model point
in two consecutive frames. Such constraints though do not encode the continuity of the
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model. We consider an implicit form, where continuity is imposed on the parameters of
the model («(t)) and the transformation (7 (¢));

T

Egmoothness(ae, Te) = Y [ w(la(t) = alt+k)) +w Y w(|p(t) = p(t +k)|)

k=—1 peT

where p € T is the set of the similarity transformation parameters (a,b,c,d), w a
monotonically decreasing function and [—7, 7] is the interval where continuity on the
rough segmentation parameters is imposed. Such a term will keep distance small between
the registration parameters from the model space to the image within a couple of frames
that is equivalent with constraining the motion of the endocardium from one frame to
the next.

The objective function is minimized using a two-stage robust incremental estimate
technique. The calculus of Euler-Lagrange equations with respect to the transformation
parameters leads to a 4 x 4 linear system that has a closed form solution. Once such
an estimate is available, the optimal model space « is recovered through an exhaustive
search within the [0, 1] integral according to some quantization step.

4 Refine Segmentation

Once, appropriate models and similarity transformations were recovered for all frames of
the cardiac clip, the next step is precise extraction of the endocardium walls. Such a task
is equivalent with finding a linear combination of the modes of variation that deforms
globally the model projection towards the desired image features. The space of variations
consists of the diastolic and the systolic models. Opposite to the rough segmentation case
where the scale of the model is fixed, the need of a blending parameter does not exist
between systolic and diastolic models of variation is not present. Under the assumption
of existing correspondences y; and the global transformation («, 7°) for a given frame
t - that is omitted from the notation -, these linear coefficients are recovered through:

m 01 02
Edata()‘g’ i )‘87 ) = Z p (”T(éj(a))""_z )‘% (u%7vg)+z )‘Z (uz’VZ)_YjH)
j=0 k=1 k=1

Similar to the case of global transformation, one can assume now that the form of the
ventricle changes gradually during the cardiac cycle. The geometry of the recovered
solution is determined according to the set of coefficients (A, ..., A§, ...). Therefore,
imposing constraints of smoothing deformation from one frame-to-the next is equivalent
with seeking the lowest potential of

Esmoothness(Aga sy >\87 ) =
> (Z W6 = A E+R) + D WA (1) = N+ k)))

Last, but not least additional constraints using the position of the valve points could be
considered, that aims at moving the projections of the model valve points to the their
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Fig. 3. Endocardium Segmentation for Apical Views for the diastolic frame and the systolic frame

true positions. The objective function is minimized using a robust incremental estimate
technique. The calculus of Euler-Lagrange equations with respect to the unknown vari-
ables (A, ..., A3, ...) leads to a [01 + 02] X [01 + 0] linear system that has a closed form
solution. Such step is repeated until convergence.

5 Conclusions

In this paper we have proposed a composite time-consistent 2D+time active shape model
for the segmentation of the left ventricle in echocardiography. The approach exhibits
certain novel elements, notably in the modelling and the segmentation phase.

Validation of the method was performed using a representative set of fifty patients
for 2 and 4 champers views [Fig. 3] where the output of the proposed technique is
superimposed to the ground truth. The objective was precise delineation of the ventricle,
amuch harder task than estimation of the ejection fraction. 50% of the time sonographers
have accepted the result as it was while for the 25% of the remaining validation set, minor
adjustments, notably in the valve position were sufficient to make the solution, same as
the one pointed out from the clinical experts.
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Future directions of our method involve epicardium segmentation and tracking. Such
an objective is a natural extension that will improve results and the diagnostic power of
the method since one could derive volume curves, EF radial strain, etc.
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Abstract. This paper presents a novel scale space approach to obtain a
deformation which matches two images acquired from the same or from
different medical imaging modalities. The image registration problem is
known to be mathematically ill-posed due to the fact that determining
the unknown components of the displacements merely from the images
is an underdetermined problem. The approach presented here utilizes an
auxiliary regularization term, which favors displacements with minimal
curvature surface. One of the important aspects of this approach is that
the kernel of the Euler-Lagrange equation is spanned by all rigid motions.
Hence, the presented approach includes a rigid alignment. A minimizer is
determined as the steady-state solution of the Euler-Lagrange equation
namely by the biharmonic diffusion equation with higher order bound-
ary conditions. In this framework we give a new interpretation of the
underlying regularization parameter «. Finally, we present experimen-
tal results for registration problems of a Magnetic Resonance Imaging
(MRI) (monomodal) registration and for a real computer tomography
(CT)-magnetic resonance imaging (multimodal) registration.

1 Introduction

The aim of image registration is to find a transformation that aligns images
recorded with the same or with different imaging machinery in a suitable way.
Image registration problems are often multi scale problems in nature; namely, the
reason for a displacement is governed by effects of different characters occurring
at different scales. This phenomenon is given, e.g., in human brain mapping.
Here the displacements often come from global transformations (translation and
rotation) as well as from the different morphology of complex neuroanatomical
shapes of the underlying brains.

There is a rich theory and also a large number of algorithms to solve image
registration problems. They all ask for an “optimal” deformation which deforms
one image such that there is an “optimal” correlation to another image with
respect to a suitable coherence or difference measure.

The pure minimization of such difference measures typically leads to an ill-
posed problem (also referred to as the “aperture problem” in computer vision,

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 143-154, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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see [1,2,3]), i.e. by the insufficient information provided solely by the avail-
able data, or by a desire to reduce noise. One effective method to overcome
this problem are regularization approaches. Regularization methods for image
registration (typically by adding a convex energy functional based on gradi-
ents), without additional knowledge, are an artificial way to make the problem
well posed. For example, the classical Tikhonov regularization leads us to pe-
nalize large displacements, which makes no sense when displacements are the
result of an elastic deformation. Therefore the underlying regularization energy
should represent substantive prior information, coming, for example, from physi-
cal constraints, or laws or from information extracted from previous registration
problems.

Many regularization approaches for image registration are discussed in the
literature, a good survey is given in [3] and the references therein.

The novel contribution of this paper is to present a flexible image registra-
tion scheme, which treats the deformations on different spatial spaces. This is
an attractive option in the situation where no a priori knowledge of the displace-
ments is given. In order to do this, we use curvature as a fundamental description
attribute for the deformation. Here, the set of decompositions defined by the cur-
vature based regularization energy can be described as a scale space.

2 A Curvature Based Scale Space Approach

In this section, we first give a variational formulation of the image registration
problem and introduce common similarity measures. In order to regularize the
problem, we introduce a novel curvature based regularization term. This leads
us to solve a biharmonic diffusion equation with higher order boundary condi-
tions. In the following we describe the discretization in time and the scale space
properties of the equation and discuss some computational considerations.

2.1 A Variational Image Registration Formulation

Given are two images, a reference R and a template T, of the same object
obtained from the same or different imaging modalities. Usually, these images
are two- or three-dimensional. Without loss of generality the problem is described
in the two-dimensional case, but it is readily extendable to the three-dimensional
case. We assume that in continuous variables the images can be represented by
compactly supported functions 7, R : R? — R. This means, the map associates
with each pixel (picture element) z = (z1,22)" € R? its intensities T'(z1, z2) and
R(x1,72). We assume that T is distorted by an invertible deformation ¢—1. We
search for a transformation ¢(u)(-) : R? — R?, with

p(u) (w1, x2) = (w1,22)" = (21, 22)" — (ur (21, 22), up (21, 22))"

that depends on the unknown displacements u(z1,z2) := (u (21, 72), uz (w1, x2))*
: R? — R2. The goal of image registration is to determine u(zy,z) in such
a way that the transformed template T o ¢(u(x1,z2)) matches the reference
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R. For a functional D[R, T, u(x1,x2)], which measures the disparity between
T o ¢(u(wy,2)) and R in a domain 2 C R?, the image registration problem can
be identified, in that way, with a minimization problem:

Find u(x1,x2), such that D[u] = D[R, T, u(x1,x2)] is minimal. (1)

To rule out discontinuous and irregular solutions to the minimization problem
(1), it is necessary to introduce a regularizing term aG[u] with a parameter
a > 0 and a term GJu] which penalizes non-smoothness of the deformation wu.
This means that the solution of (1) is approximated by a solution u, of the
minimization problem:

min { D[u] + aG[u] }. (2)

=Ja[u]

The considered functional is nonlinear and may have many local and global
minima. The parameter « allows us to balance the influence of both terms in
the functional.

2.2 Distance Measures

In this section we want to collect examples of similarity measures. A lot of choices
are possible depending on the application one has in mind. We describe some of
the most important approaches below.

The squared differences between the images

D3Py (z)] = / (T(z — u(z)) — R(z)) dz.
Q
is a common approach; cf., e.g. [1,4, 5]. This criterion is used in situations where
the intensities of the given images are comparable. This is the case, for exam-
ple, if images are recorded with the same imaging machinery. This is generally
referred to as the monomodal image registration. In general, if the images are
recorded with different imaging machinery, the so-called multimodal registration,
the DSQP functional is not an appropriate measure. The main reason is that
identical structures may have quite different gray values in the multimodal case.

The probability density measure (see [6]) is given by
DPESfu(e)] = [ (@27 - u(e) - dE(R(a)) dz,
Q
where dL and df estimate the marginal densities of 7' and R by
dr(z) = (Ga * hT) (r) and df(z) = (Go * hR)(x),

—lz?

with histogram A7+F : § — [0, 1] and 2d-Gaussian kernel G, (z) = 515 exp( 523 ).
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The mutual information based distance measure was introduced in the
context of multimodal image-registration by Wells et al in [7]. One searches
for a transformation so that the mutual information (or transinformation) is
maximized; see, e.g in [8, 6,9]. Mutual information is borrowed from information
theory [10]. The mutual information based distance measure is maximal if the
images are matched. Therefore the mutual information based matching energy
is a measure of alignment between the images.

A morphological distance measure introduced by Marc Droske and Martin
Rumpf (see [11]) is based on normal information of the level-sets. More precisely,
they consider variations respectively generalizations of the energy

DMMI |4y /(Z (Nro¢—N&) de,

where Nt is the normal on the level-sets on T" and Nf{, is the transformed normal
of the reference image.

2.3 A Curvature Based Regularization Energy

Fischer—Modersitzki’s Curvature Approach: Bernd Fischer and Jan Mod-
ersitzki have first proposed an approach (see [12]), which explicitely penalizes
the curvature of the displacement u. In their so-called curvature approach the
authors propose the regularization term

2
Slu,u] = Z/Q Auy Auy dxidxs,
=1

which involves higher order derivatives of u; and can be seen as an approximation
of the squared mean curvature

2
(H(U,l))2 _ (]. + uli)ulzl:u - 2Ulzlulxzul1:1x2 + (]. + ulil)ul:@z?
(1 + ulxl + ulI2)3/2

under the assumption that Vu remains small.

Although the regularization term is neutral with respect to affine-linear dis-
placements, the functional is not H?(§2) x H?(§2)—coercive (see e.g. [13]), i.e. the
bilinear form & does not satisfies the inequality

el (@)xn(e) < Slu,ul - Yu € H*(2) x H?(£2)

and consequently there is no guaranty for existence and uniqueness of solutions of
the underlying Euler-Lagrange equations. Moreover the kernel of S is spanned by
infinitely many elements. To overcome this problem the authors have restricted
their approach to the space

{u, e mp), 2 _28u o 1,2} C H2(2) x H2(0)

on on

of displacements. As a consequence the affine-linear displacements are penalized
by the underlying function space.
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Proposed Model: Consider the sum of the squared principal curvatures rq
and kg of the displacement-field v = (u1,u2)!:

2
u) = ;/Q (m%(ul) + mg(ul)) dx1do

= Z /Q ((Iﬂ(Ul) + Kg(ul))Z — 2%1(1”)/{2(’(”)) dridzs

_ Z / — 2K (w)) da1dzs,

with mean curvature H(u;) and Gaussian curvature

2

Ul gy, UL — U
K(w) = r1(w)rz(w) = ("811": ulxzx:_ " 95)12952 :
Xy )

Under the assumption that Vu; ~ 0, it follows that
H(ul) N Ulgy g + Ul gy, = Aul and K(ul) N Ul g Wggzy —

ulxlxg

and consequently the bilinear form

2
g up, ) g2(0)
1=1

with standard H?({2) Sobolev inner product

(0, w) / 0*v 0%w Lo v Pw N 0*w 8%v died
VW) f2(0) = — — z1dz
P T\ 022 022 T 021070 011015 | 022 032 1

and corresponding semi-norm |v|§12( o) = (v,v) g2 (), approximates the nonlinear
functional C.

This particular choice has various important aspects: Firstly, the energy [ is
positive semi-definite over H?(§2) x H?({2) and positive definite over V x V, with

V= {v € HQ(Q),/ vdx1dxs :/ zi1vdridTe :/ Tovdr1dre = 0} - H2(Q).
Q Q Q

Secondly, the kernel of the proposed energy consist only of the affine-linear dis-
placements and consequently planar rotation and translation are not penalized
by this approach.

2.4  The Biharmonic Diffusion Equation

Referring to the Riesz representation theorem, one can write the bilinear form [ as

o {(55) () (2))-Fomn
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for every ¢ = (p1,p2)t € H?(2) x H?(2). Here L is the biharmonic operator
A? supplemented by the following higher order boundary conditions

Bilu)] = 20D gy a)] = 2 Au(a) - Kl
with
Kln(o)] = 37| Goged 2, —n2,) + (5 - Ty, |

where n = (ng,,n,,) stands for the normal in outward direction, and s stands
for the tangential vertical to n. Note, that this are natural boundary conditions,
which are satisfied by each solution of the minimization problem (2) using the
bilinear form /.

With the regularization energy (3) a minimizer u(x) = (u1(x), uz2(x))" of (2)
is characterized by the necessary condition

Ja(u+ sp)

D5 o al(u(z), o(x)) + Dylp(x)] = 0 Ve(z) € H2(2) x H2(1),

with the Gataux-derivative

Dulo(@)] = (fa (u(@), 02 (2). (falu(z)), vala)))! = lim 21U+ t0(@)] = Dlu(w)

t—0 t

of D and v(z) = (vi(x),v2(x))t € La(£2) x Lo(£2). Classical solutions fulfill
aLu(z) — filu(z)) =0, for 1=1,2. (4)

A common approach to minimize J,[u] = D[u] + al(u,u) is to introduce an
artificial time to equation (4) and to determine the steady state solution of
equation (4), i.e. to solve the biharmonic diffusion equations

2ule) 1 o (t) A (x, ) = ~hiu(a,0) on 2 (0.7)
Bilu(x,t)] = Ba[wi(z,t)] = on 902 x (0,T) (5)
(l’,O) 0 on {2

forl =1,2.

2.5 Semi-implicit Time Discretization

To discretize (5), we consider the following semi-implicit time discretization
scheme:

ul® =0 for x € 9,
w{KHD g, () (k+1)
M T 4 0, A2 () = (P (@) for x € £, (6)
Bilu ““)( )] = Balu l(k+1)(as)] =0 for x € 82,
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for!=1,2and k =0,1,..., where 7 > 0 is the length of the time step. Using L,
equation (6) can be written as the following linear elliptic system

(I +raxL)ul* ™ (@) = u® (@) + 7fi(r,u® (2)), (z) € 2. (7)

=1ge (u(®) ()

In order to give a variational formulation of problem (7), we introduce the sym-
metric bilinear form

2 2 2
E(u,v):akTZl(uhvl)—i—Z@l,vl Z akTL+Iul,vl> (8)
1=1 =1 1=1

with the inner product (u,v) = [, uvdz and associated norm |[u|| = (u, u)'/?
for the Lebesgue space of square integrable functions on 2.

Since ay, and T are positive, the bilinear form ¢(-,-) is coercive and bounded
on H?(2) x H?*($2). Consequently the Lax-Milgram theorem can be used to

prove the existence and uniqueness of the solution of the variational equation
Uu, @) = (gr,), forall oe H*(2)x H*(R2) (9)

for any bounded functional g, in the dual space of H?(§2) x H?(£2).

2.6  Spatial Discretization and Fast Numerical Solution

In order to solve equation (7) numerically we use a finite difference discretization
and second order approximation of the biharmonic operator and the boundary
conditions. Let L; the discretization matrix corresponding to the operator L,
then the resulting linear system

(axTLp + In)up = gr.p

can be solved efficiently by using a multigrid method with optimal multigrid
complexity O(N), where N is the number of picture elements, see [14].

2.7  Curvature Scale Space

Consider the diagonalization of the operator B, = ax7Lyp + In:

Bpu=>_ X(u,¢:)6, (10)

i=1

where (¢;)i=1,...» denotes the set of eigenvectors of the operator By, and \; are
the eigenvalues belonging to ¢;. The orthogonal system @ = [¢1, - - , ¢,,] is given
by the set of eigenvectors of Bj,. For the countable set of eigenvalues {A;}7_; of
By, it holds

I=M=XA=3<A <A <0 A, with A =1+ ag70y, (11)
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with eigenvalues 0 =01 =09 =03 < 04 < 05 < --+ < g, of L. Using (10) and
(11) the solution of equation (7) can be given formally by

n

P S S A P (12)

~ 1+ ayTo;
=1

The set of eigenvectors of the operator B can be regarded as a sequence of
spatial scales, with energy (Bpa;, ¢:) = Ni{di, ;) = A > 1.

This observation is important because it indicates that the representation
can be used to access different aspects of a solution u. Here, the curvature based
scale space decomposition (12) makes explicite the role of « as a scale constant.
For large values of a we have the following result: The coarsest scale is given by
the affine-linear functions corresponding to the eigenvalues Ay = Ao = A3 = 1,
where no amplification of highly oscillatory functions occurs. For decreasing «,
more and more terms in the sum (12) become important for the solution. They
correspond to eigenvectors belonging to higher eigenvalues and consequently
smaller and smaller structures of the displacements are recovered.

2.8 A Scale-Space Based Image Registration Algorithm

As a consequence of the last section, we embed the minimization of (2) into a
scale space framework, which efficiently treats different scales. The minimization
starts with a large initial scale parameter, i.e. g > 0 and an initial displacement
19 = 0. During the iteration the parameter is reduced by ay, := v*¥aq with some
decay rate v € (0,1), and the solution incorporates more and more finer scaled
functions.

3 Examples

In order to demonstrate the principle and reliability of the proposed approach we
present experimental results for a monomodal as well as for a multimodal image
registration problem. We start with a monomodal image registration example.

3.1 Monomodal Image Registration

Figure 1 shows a magnetic resonance imaging (MRI) example. The reference
image R(x) is depicted in figure 1(a). The template image T'(x) (figure 1(b)) is
given by a rotated and translated version of the reference image with preserved
rows and columns flipped in the left/right direction.

For this example, we have used ag = 10°, 7 = 2, v = 1072 and u(® =
(corresponds to the identity map). During the iteration the parameters o and
are decreased down to a = 10° and 7 = 272, To give an idea of the effect from
the decreasing scale parameter o on the deformed template, we show in figure
1(c)-1(f) the calculated results T'(z — u*)(z)) after k =40, 143, 196 and 250
iterations. In the first iteration (with o = 10%) the template is transformed only
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(a) Reference R(x) (b) Template T'(z)

() Tz — u*()) () T(x — u®(2))

Fig. 1. (CT)-magnetic resonance imaging (MRI) registration example
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(a) Matching energy (b) Regularization energy

Fig. 2. Energy history for MRI example in figure 1

by coarse scale basis functions (rigid motion). Consequently, only coarser image
structures are aligned (see figures 1(c)-1(d)). As the parameter a decreases, the
solution consists of more and more fine scaled functions and hence also fine image
structures are matched. These findings are stressed by figure 2. Here, we observe
a strong decay of D (see figure 2(a)) and a abrupt rise of the energy (Lu,u),
when the scale parameter o decreases.

3.2 Multimodal Image Registration

The CT-image (figure 3(a)) is the reference and the MRI image (figure 3(b))
is the template. Both images are displayed with superimposed contour of the
reference image. For this example, we use the probability density based density
measure DTF5[u] and the same parameter setting as in the previous example. We
apply 150 iteration steps of the biharmonic diffusion iteration. As a consequence
of the large regularization parameter (which focuses on coarse scales) the first
iteration steps determine an affine linear transformation, see figure 3(c). Then
the value of the scale parameter « is recognized as being too large, and hence de-
creased in the following iterations. At this point the solution incorporates more
and more finer scaled functions. The result after 155 iteration steps is presented
in figure 3(d). The approach matches the different structures onto the corre-
sponding reference structures. The corresponding 4 x 4 checkerboard views (fig-
ure 3(e) and 3(f)) of the results show smooth transitions between the structures.

4 Summary and Conclusion

In this paper we have introduced a novel approach for digital image registra-
tion based on the biharmonic diffusion equation. Employing semi-implicit time
discretization, we are facing in each time step a stationary problem given by
a partial differential equation with higher order boundary conditions. From an
abstract point of view we now encounter a solution which renders more precisely
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(a) Reference R(x) (b) Template T'(x)

(e) T(z) and R(z) mixed like a 4 x 4 (f) T(z — v (z)) and R(z) mixed
checkerboard like a 4 x 4 checkerboard

Fig. 3. (CT)-magnetic resonance imaging (MRI) registration example
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the link between scale space and image registration. The approach provides a
multiscale description of the displacement fields, but one in which the notion of
scale is based on curvature scale space, rather than on conventional multigrid or
Gaussian blurring minimization approaches as presented in [11,15].

The proposed multiscale framework unifies existing image registration
approaches, which are normally classified due to the underlying transformations
into either affine-linear or non-linear approaches. This multiscale nature of the ap-
proach provides a description that can be made robust, because it is based on solv-
ing the registration problem successively at multiple scales. The technique has two
parameters that decrease during the iteration. One of these is the underlying reg-
ularization parameter o which relates to a scale parameter, since it specifies the
curvature of the resulting displacements. The other is the time-step parameter 7,
which is chosen as large as possible, as long the iteration will remain stable.
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Abstract. A method for a scale-space analysis of a contour figure based
on a crystalline flow is proposed. A crystalline flow is a special family of
an evolving polygons, and is a discrete version of a curvature flow. Based
on a crystalline flow of a given contour, the proposed method makes a
scale-space representation and extracts several sets of dominant facets
from the given contour. By changing the shape of the Wulff shape that
plays a role of a unit circle for computing the nonlocal curvature of each
facet, the method analyses the contour shape anisotropically.

1 Introduction

Evolution based scale-space methods play an important role to characterise a
contour figure[1][2][3]. Specifically in the negotiations leading to MPEG-7, such
methods were intensively discussed and tested. Due to this fact, there exists an
enormous amount of literature devoted to this field[4]. In this article, we propose
a method for describing the shape of a simple contour figure in an image.

A contour figure in an image is often represented as a polygon. A crystalline
flow[5][6] is a special family of evolving polygons, and is a discrete version of a
classical curvature flow|[7][8]. In the evolving process of a crystalline flow, each
facet moves toward its normal direction. The velocity of a facet is determined by
the nonlocal curvature, which depends on the length of the facet. The number
of facets does not increase through the evolving process, and any simple polygon
becomes convex at finite time. Different from a classical curvature flow, it is
easy to track each facet in a given contour through the evolving process. These
features of a crystalline flow help to make a scale-space representation of a given
contour. In [9], the authors showed a method for computing a crystalline flow
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from any given simple polygon, and used the method for extracting dominant
facets from a given polygon[10].

In a crystalline flow, a convex polygon called Wulff shape is used to determine
the nonlocal curvature of a facet. By changing the shape of the Wulff shape, we
can easily obtain an anisotropic flow from a given contour. In this article, we
prepare a set of Wulff shapes and extract dominant facets from a given simple
contour using each Wulff shape.

2 Crystalline Flow

2.1  Admissible Crystalline Flow

We consider a motion of an evolving curve I; governed by the anisotropic cur-
vature flow equation of the form

V =A,(n) on I, (1)

for t > 0. Here, n denotes the unit outward normal, and V' does the velocity
along n. The quantity A,(n) is called a weighted curvature, which is the first
variation of the interfacial energy [47(n)ds with respect to the change of the
area enclosed by S. It has the form

Ay (n) = —div {(n),

where £ = V~ and ~ is a given positively homogeneous function of degree one
in R? ; div denotes the divergence on the curve S. The quantity ~ is called the
interfacial energy density. If v(p) = |p|, then the quantity A,(n) is equal to the
usual curvature k and (1) becomes a curve shortening equation V' = , which is
widely used for a scale-space analysis of a contour figure.

There are several methods to track evolution of I}; one of a typical method
is the level-set method|[7][8][11][12]. If v is C? except the origin, global unique
solvability for (1) is established by [8] (see also [13]). However, when 7 has
corners, conventional notion of a solution including viscosity solutions does not
apply to (1).

If Frank diagram of ~ :

Franky = {p € R?; y(p) < 1}

is a convex polygon, 7 is called a crystalline energy density (see also Fig.1), and a
notion of solution for (1) is proposed by [5] and [6] independently by restricting
{I}} as a special family of evolving polygonal curves called admissible. Here
and hereafter we assume that v is a crystalline energy density, i.e., Franky is a
convex M-polygon. Let g; (¢ = 1,2,--- M) be the vertices of the Franky, and
N = {q,/|q;|} denote the set of all unit vectors g;/|q;| (see Fig.1(B)). We say
that a simple polygonal curve S in R? is an admissible crystal if all outward
normal orientation belongs to A and orientations of adjacent facets point to
vertices adjacent in Franky (see Fig.2).
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Fig. 1. The crystalline energy v (A), the Franky (B), and the Wulff shape (C)

q;
Q5
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et s
Frank Diagram Admissible Non-Admissible

Crystal Crystal

Fig. 2. The Wulff shape, an admissible crystal, and a non-admissible crystal. At the
vertex indicated by the arrow, the condition is not satisfied

In [5] and [6], it was proposed to restrict the problem to an admissible crys-
tal, and a corresponding system of ODEs (ordinary differential equations) was
derived. The solution of the system is called an admissible crystalline flow. In
the admissible crystalline flow, the weighted curvature is represented as follows.

A("‘J) 7 (2)
L;(t)
where L;(t) is the length of jth facet, and n; is its outward unit normal. The facet
number j is counted clockwise. The quantity x; is called a transition number,
and takes +1 (resp. -1) if the jth facet is concave (resp. convex) in the direction
of n;. Otherwise x; = 0. The quantity A(n;) is the length of a facet of Wulff
shape

Ay(mj) = X5

W, ={q€ R*q-p<~(p) for all p € R?},

of which outward normal is n; (see Fig.1(C)). The Wulff shape is the unique
minimizer of the interfacial energy among all S whose enclosed area is the same
as Wy (see e.g. [14]). The Wulff shape plays a role of a unit circle for a classical
curvature flow (see Fig.3).
If the jth facet moves with the outward normal velocity Vj, then its length
satisfies a geometry transport equation
drL; 1 1
223 () = (cot ¢ tpi  VWim — Vi — ——
dt () (CO (bj +co ¢]+1) J sm(bj Jj—1 Sin¢j+1
as in [5] and [6]. Here, ¢; = 6; — 0;_1 for n; = (cosfj,sinf;). Combining
the equations (1),(2) and (3), we obtain a system of ODEs of L;. If a given

Vit1, (3)
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Fig. 3. A local curvature x = 1/r and a nonlocal curvature Ay  1/L;

initial figure is an admissible crystal, then a unique solution I; of the ODEs
exists, and the I} remains admissible crystal through the evolution in spite that
some facets may disappear at some time[5][6][15]. Any given admissible crystal
becomes convex and finally disappears at finite time.

Even for more general v with corners not necessarily crystalline energy, the
level-set approach for (1) and more general equations is successfully extended by
[15] (see also [16]), although the problem has nonlocal nature. They introduced
a new notion of solution consistent with that in [5] and [6], and proved the
global unique solvability at least for a general initial simple curve (not necessarily
admissible).

2.2  General Polygonal Initial Curve

If a given contour is non-admissible, its outward normal m; may not be included
in M. Let A(m;) = 0, if m; ¢ N. Then, the curvature flow equation has the
form as follows.
{Vj = x;A(m;)/L;(t) if m; e N, (4)
V;=0 ifm; ¢ N.
This indicates that a non-admissible facet does not move. A simple polygonal

curve S is called an essentially admissible crystal, if the outward unit normal
vector m and 1 of any adjacent facets of S satisfy

(I—=XA)m+ i
(1 —XN)m + A

ZN (5)

for any A € (0, 1). If an essentially admissible crystal is given as an initial contour,
then, the contour remains essentially admissible through the evolution: the num-
ber of facets does not increase through the evolution and after a non-admissible
facet disappears, the contour remains essentially admissible. Applying the Euler
method for solving the system of (3) and (4), we can obtain the flow of essentially
admissible crystal.

If a simple polygon that is not essentially admissible is given, then, what flow
is obtained? In [15], it is shown that there exists a unique level-set flow (solution)
for (1) with a crystalline energy ~ starting with a general polygonal initial curve.
However, it is not clear a priori whether or not the solution is described by an
ODE system, since new facets whose orientation belongs to A/ are expected to
be created instantaneously at the place where the property (5) is violated on
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the initial contour. Moreover, it is not clear how to solve the expected ODE
system since it is singular at newly created facets. In [9], a heuristic argument is
given to solve such a singular ODE system, and is shown a numerical method for
obtaining a crystalline flow starting from a given polygon that is not necessarily
an admissible crystal (see also [6] and [16]).

The comparison principle tells us that a set of admissible facets is created
instantaneously at the place where the property (5) is violated on the initial
contour. Let n and n be the orientation of any adjacent facets of given initial

polygon. If
(1=XNn+n
= — ; 1
M {|(1—>\)n+)\ﬁ€N’ 0< A<

is not the empty set, all facets with orientation in M are expected to be created
between the two facets just after £ = 0. Once a set of new admissible facets is
created between non-admissible facets, then, the new facets evolves for a while
without changing the shape: the solutions are selfsimilar. After a set of new facets
are created at every place where M is not empty, the contour is an essentially
admissible crystal and we can obtain the flow. The problem is to determine the
length of newly created facets.

Assume that new n facets are created between two adjacent non-admissible
facets. Let enumerate the newly created facets from 1 to n clockwise, and the
non-admissible facets 0 and n+1. Let denote jth facet length with Puiseux series

Li(t) =) ajt'/? for j=1,2,---n. (6)
k=0

The a;j, represents the growth speed of the jth facet. Calculating a;j for each
facet, we can obtain the flow from a given polygon, numerically.
Let represent (3) simply as follows.

dL;(t) Dj Gj—1 Tjt1

dt Li(t)  Lj-1(t)  Ljs(t)

forj=1,2,---n, (7)

where the p;, ¢; and 7; depend on the angle between two corresponding adjacent
facets and their quantities are known. Substituting (6) into (7), and ignoring
higher order terms of ¢(t — 0), we obtain next equations of a;:

27 _f)n Gn—1 l/an
Ap—1 7Zn ﬁn—l 677,—2 0 1/an—1
Ap—2 'anl ﬁn72 (’jnfii 1/0%,2
=2 : , (8)
az 0 T3 P2 G1| | 1/az
la1 | L T2 P1| [1/aa

where a; = ajo. In [17], M.-H Giga and Y. Giga proved that there exists unique
and positive solution of (8). In [9], the authors show a numerical method that
calculates a numerical solution of (8).
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Fig. 4. Examples of the crystalline flow. The initial contour is common to all, and is

shown in the second column. The Wulff shapes are shown at the left

Figure 4 shows some experimental results of crystalline flow. The initial con-
tour is common to all, but the Wulff shape is different. As described before, the
Wulff shape plays the role of a unit circle for a classical curve shortening flow.
Because a crystalline flow can be obtained from a non essentially admissible
crystal, any simple and convex polygon can be used for the Wulff shape.

3 Dominant Corner Facet Extraction

As mentioned, in a crystalline flow, any simple closed curve becomes convex at
finite time, and it is easy to track each facet in the evolving contour. Those
features of a crystalline flow are useful for a multi-scale analysis of a contour
figure. In [10], we applied a crystalline flow to a multi-scale method that extracts
several sets of dominant facets from a given polygon. The method is analogous
to classical multi-scale methods for corner extraction[18] (see also [19]). In this
article, we prepare a set of Wulff shapes, and extract sets of dominant facets
from a given contour using each Wulff shape.

3.1 Scale-Space for Dominant Corner Facet Extraction

Each facet in an evolving polygon has a transition number x, which represents
the shape around the facet. It specifies whether the shape is convex, concave, or
otherwise around the facet, which is a fundamental shape feature of a contour
figure. If the shape is convex around some facet in an evolving polygon at some
large scale, then we may interpret that the shape of the given contour is ‘almost
convex with small size disturbance’ in a large area around the corresponding
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facet of the given contour. We call the facets in a given polygon whose transition
numbers do not change through a long range of the scale in the crystalline flow
as dominant facets.

In order to extract dominant facets, we make a scale-space representation[1]
of a given polygon using a crystalline flow. The z-axis of a scale-space shows the
indices j of early stage contour defined below, and the y-axis shows the time ¢.

As time increases, each facet of the early stage contour moves, and is con-
tained in some (non trivial) facet in the evolved polygon S(t). In the proposed
method, the value of a point (j,¢) in the scale-space shows the transition num-
ber of the facet in S(¢) which includes the facet j in the early stage contour.
Referring to this scale-space representation, the proposed method extracts dom-
inant facets whose transition numbers are inherited for a long time interval in
the evolving process.

When a given polygon is not essentially admissible, then some new facets may
be created instantaneously just after ¢ = 0. Once new facets are created, then the
polygon becomes essentially admissible and no new facet is created. Let denote
an evolving contour of a crystalline flow S(t). We say that S() is an early stage
contour if no facet disappears and no degenerate pinching and no selfintersection
occurs for all t € (0,f]. We index all facets of an early stage contour by j =
1,2,---,r, clockwisely. The totality of indices denotes Z ; we consider this set
modulo r. We shall assign a subset Zj (t) of consecutive indices in Z to each facet
Fy(t) of S(t) = UF_, F},(t) and divide Z into disjoint subsets {Z(¢)}¥_, in the
following inductive way. We call Zj(t) the set of early stage indices of FJ,(t).
Suppose that all sets of early stage indices of S(t) are already known.

Suppose that Fj(7) disappears at t; > ¢ and that no facet disappears at
s € (t,t1). Then, we set Zj,(s) = Iy (t) for s € (¢,t1). We shall construct the set
of early stage indices at t; as follows. If both F;_;1 and Fj;; do not disappear at
t1, then we add Z;_1(¢), Z;(t), and Z;11(¢) to the set of early stage indices of a

g 1
I, (ty)=(1,2
L(t)=(3,4,5) 7 P
(8 =(3,
6
= fl
1
Wulff 1Q 3
Shape I.(t)={1}
9 5 L(£)={2}
Is(t)={3}
I, (t)={4}
8 6
(B)

Fig. 5. Construction of indices Z;(t). (A): A facet Fu(t) disappears at ¢1. (B): Two
consecutive facets F»(t) and F3(t) disappear simultaneously at ¢ = ¢;
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Fig. 6. A scale-space representation of the transition number. The z-axis represents
the index of facet in the early stage contour, and the y axis represents the time ¢

(merged) facet Fi(t1) containing the limit of Fj_;1(s) and Fj41(s) as s | ¢1. Fig-
ure 5(A) shows an example: At time t = ¢;, the facet F; disappears. Assume that
T;(t) = {l} for t < t1. Then, in this case as shown in Fig.5(A), Z5(t1) = {3,4,5}.
If two consecutive facets Fj_; (resp. Fi+1) and F; disappear at t1, then we
add Z;(t) to the set of early stage indices of a facet Fi(t1) containing the limit
Fi11(s) (resp. Fi_1(s)) as s T t1. Figure 11(B) shows an example: At ¢t = ¢1, the
facet Fy and F5 disappear simultaneously. Assume that Z;(¢t) = {I} for ¢ < t;.
Then, in this case as shown in Fig.11(B), Z(t1) = {1, 2} and Z5(t1) = {3,4}.
By this procedure, the set of early stage indices is uniquely determined for
each facet of S(t) as far as S(t) is essentially admissible. (Note that Z is divided
into sets of early stage indices at ¢ > 0.) One facet F},(¢) may have several indices
of Zp(t). Let x(j,t) denote the transition number of the facet Fj(t) such that
71, (t) contains j. It is proved that, if V' = A, all facets that disappear before the
evolving contour converges to a point always have zero transition number and at

Time
B A, D x=1
ase| _
Scale| i D 1=0

x=+1

0 =

el

..‘ m ‘ — ”‘.Indexinl

Fig. 7. Dominant facet extraction using the scale-space representation. The facets in
an initial contour x # 0 are extracted, if they can be tracked to the base scale tg
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most two consecutive facets disappear[20]. This proof helps to track each facet
through the evolution. As is shown in Fig.6, the transition number is plot at the
corresponding position in the scale-space. This representation is analogous to a
usual curvature scale-space.

3.2 Dominant Corner Facet Extraction

Referring to the scale-space representation of the transition number, we extract
dominant facets whose transition numbers are not 0 and the values of the tran-
sition numbers are inherited for a long time interval in the evolving process. Our
algorithm is as followings.

1. Make the scale-space representation of the transition number x(j,t), where
jisin Z and ¢ is the time.

2. Divide the scale-space into areas, so that each area has the uniform value
of x(4,t) inside, and has different value from the neighbouring areas. Let
denote such the area as Ay, where k = 1,2,--- n is the serial number.

e ensoso3C ) (O

Facet Number
in Initial Contour

TS
A\

Extracted Dominant
Corner Facet

Fig. 8. An example of a crystalline flow (top) and corresponding results of dominant
facet extraction (bottom). The Wulff shape is a regular octagon. The crystalline flow
is shown in order of time from left to right. The left one is the initial given contour. In
the scale-space, white area shows y = —1 (convex), black one does x = +1 (concave),
and gray one x = 0. In the scale space, corresponding base scales are indicated by

horizontal lines
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Set the base scale tp, and draw a line ¢t = ¢y in the scale space. Then, find
a set of numbers U, so that the area A contains the line ¢ = ¢( and that
X(7,t) # 0 on Ay, if k € Uy, .

Extract all indices from Z (the set of all indices of early stage contour) that
are included in the area A (f) for some k € U,,. Here, A (t) is the cross-
section of Ay at the time # at which S(f) is an early stage contour. We
call facets of an early stage contour corresponding to such extracted indices
dominant facets at tg. Each of these indices corresponds to a facet of the early
stage contour whose transition number is inherited to the evolving contour
at tg. In Fig.7, the indices of the dominant facets are indicated by up-arrows.
Increase the base scale ty by small amount At, and repeat 3, 4, and 5, if ¢y
is smaller than the scale at which the evolving contour becomes convex.

We note that the set of all dominant facets may differ for different base scale
If to < t1, then, Uy, O U, . As the result, the number of the dominant facets

does not increase as ty increases. Figure 8 shows an example of a crystalline flow,

the

w0 Bg Ena B9 DX

(B)
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(D)

(E)

corresponding scale-space representation, and the extracted dominant facets.

O ENE AR S -

O EagEldbigr o
S SR AR

Fig. 9. Examples of extracted dominant facets. The initial contour is common to all,

and is shown in the second column. The Wulff shapes are shown at the left. The

extracted facets at each base scale are connected with lines
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The Wulff shape is a regular octagon. The results of dominant facet extraction
are indicated with polygons that are obtained by connecting extracted facets by
straight lines. As shown in Fig.8, as the base scale becomes larger, fewer facets
are extracted.

As mentioned, the Wulff shape plays the role of a unit circle for a classical
curve shortening flow. As shown in equation (2), the nonlocal curvature A, is
proportional to the length A(n) of the corresponding facet of the Wulff shape. If
a facet of the Wulff shape is longer than other facets, then an evolving polygon
tends to be squashed along the normal orientation of the longer facet.

We prepare a set of Wulff shapes, and extract sets of dominant corner facets for
each Wulff shape. We believe that it enriches the ability to analyse contour shape.
Figure 9 shows experimental results. In each row, the obtained sets of dominant
facets are shown in order of base scale ty. Each row corresponds to different Wulff
shape. We applied five Wulff shapes. In Fig. 9, (A), (B) and (C) show the results of
dominant facet extraction obtained when a rectangle is used for the Wulff shape.
Figure 9 (A) corresponds to the Wulff shape of a regular rectangle, (B) corresponds
to a vertically long rectangle, and (C) corresponds to a horizontally long rectangle.
As shown in Fig.9, if a vertically (resp. horizontally) long shape is used as the
Wulff shape, vertical (resp. horizontal) )large structures tend to be extracted as
dominant facets. Figure 9 (D) and (E) show other results obtained when a hexagon
is used for the Wulff shape. Again, using a vertically long Wulff shape, the method
extracted vertical structures as dominant facets. Only by changing the shape of
the Wulff shape, we can analyse a contour shape anisotropically.

4 Summary

A crystalline flow is used for a scale-space analysis of a contour figure. A nu-
merical method for obtaining a crystalline flow from a given polygon that is
not essentially admissible is presented, and the method is applied for extracting
dominant facets. In this article, we use a set of the Wulff shapes for extracting
dominant facets from a given contour figure. Changing the shape of the Wulff
shape, we can analyse the shape of a contour figure anisotropically.

In many cases, a contour in an image is given as a polygon. For example, a
contour represented with a chain-code is a polygon that consists of short facets.
Because the nonlocal curvature A, is determined by the facet length, no ap-
proximation is needed for the calculation of the curvature. In addition, because
each facet moves with keeping its direction, it is not difficult to trace every facet
through the evolving process. Those features of a crystalline flow are useful for
multi-scale contour figure analysis.
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Abstract. In this paper, we propose an evolution equation for the active contours
in scale spaces. This evolution equation is based on the Polyakov functional that
has been first introduced in physics and has been then used in image processing
in [17] for image denoising. Our active contours are hypersurfaces implicitly and
intrinsically represented by a level set function embedded in a scale space. The
scale spaces used in our approach are defined by a family of metric tensors given
by the general heat diffusion equation. The well-known scale spaces such as the
linear scale space, i.e. the Gaussian scale space, the Perona-Malik scale space,
the mean curvature scale space and the total variation scale space can be used in
this framework. A possible application of this technique is in shape analysis. For
example, our multiscale segmentation technique can be coupled with the shape
recognition and the shape registration algorithms to improve their robustness and
their performance.

1 Introduction and Motivation

This paper aims at introducing the scale parameter in the active contour formalism
[8,3,9] to define an object multiscale segmentation model. One of the main motiva-
tions to develop such a technique is to deal with the shape of objects at different scales
of observation/resolution. Indeed, the works of Witkin [18] and Koenderink [10] have
shown that the shape of objects changes according to the scale of observation used. At
large scales, the global shape of the object can be observed since smaller shape fea-
tures are suppressed. And at lower scales, finer characteristics appear in the shape of
the object.

As a result, it appears natural to analyze a given image not only at one scale but at
several scales of observation simultaneously. This will improve the robustness of clas-
sical image analysis techniques such as the shape recognition and the shape registration
methods. For instance, it could be interesting to merge our multiscale segmentation al-
gorithm with a multiscale shape model such as the one developed by Pizer et al. in [14]
to create a multiscale recognition method.

In [16], Schnabel and Arridge have proposed a method to extract the shape of objects
atdifferent levels of scale. They have then used the extracted multiscale shapes to localize
and characterize shape changes at different levels of scale. They have applied their model
to segment 3-D brain magnetic resonance images in order to quantify the structural

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 167-178, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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deformations for patients having epilepsy. However, they have not taken into account
the interdependance between space and scale in their segmentation model.

Any image can be observed at different scales thanks to a multi-resolution image
representation called scale space by Witkin in [18] (see also the pioneering work of
Iijima [7]). A scale space is a hierarchical decomposition of an image according to the
scale of observation. It can also be seen as a family of gradually smoother versions of
the original image.

The segmentation method we use in our work is the active contour model introduced
by Kass et al. in [8]. We want to use this segmentation model to extract objects in scale
spaces. For this purpose, we need to define an evolution equation for active contours
propagating in scale spaces. Two main questions arise when we try to devise such an
equation. How can the active contours be introduced into scale spaces and which scale
spaces can be used? An answer to the first question is given by the Polyakov action
that we will present in the next section. For the second question, we will use the family
of scale spaces proposed by Eberly in [5] which includes the linear scale space, the
Perona-Malik scale space, the curvature scale spaces and the total variation scale space.

2 Polyakov Action

The Polyakov action has been introduced in image processing by Sochen et al. in [17].
The Polyakov action is a functional that measures the weight of a map X between the
image manifold X' and the embedding manifold M (see Figure 1). Itis defined as follows:

P(X, X, M) = /dma g'2g" 9, X0, X7 hyj, (1)

where m is the dimension of X, p the dimension of M, g,, and h;; are the metric
tensors of manifolds X' and M, g"¥ is the inverse metric of g,,,,, g is the determinant
of gy, v =1,...,m, 4,5 = 1,...,p, 9,X* = 0X*/Jo". Moreover, when identical
indices appear one up and one down, they are summed over according to the Einstein
summation convention.

Fig. 1. The manifold X~ embedded in M, reproduced from [17]
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If the Polyakov functional is minimized w.r.t. an embedding coordinate X, g and
h;; being fixed, we get the following flow acting on X L

X' =g 120,(g"?g" 0, X") + I'1,0,X70, X g for1<1<p, (2

where F; ;. 1s the Levi-Civita connection.

Sochen et al. have proved in [17] that different choices of the metric tensor g,,,, in
Equation (2) give the most well-known scale spaces: the linear scale space, the scale
space of Perona-Malik, the mean curvature scale space and the total variation scale space.
They have also proposed a new scale space to enhance image quality. They have called
it the Beltrami flow since they have used the Beltrami operator which generalizes the
Laplace operator in non-flat manifolds.

3 Active Contours in Scale Spaces

3.1 Active Contours in Euclidean Spaces

Following the first model of active contours proposed by Kass er al. in [8], Caselles et
al. in [3] and Kichenassamy et al. in [9] have proposed an energy functional invariant
w.r.t. the curve parametrization:

L(C)
poae(Cy = 7{ fds, 3)
0

where ds is the Euclidean element of length, L(C) is the length of the curve C' and f is
an edge detecting function that vanishes at object boundaries. The calculus of variations
provides the Euler-Lagrange equation of the functional F'9%¢ and the gradient descent
method gives the flow that minimizes F'9¢:

0,0 = (kf — (Vf,N)N, )

where & is the curvature and N\ the normal to the curve. Osher and Sethian have intro-
duced in [12] the implicit and intrinsic level set representation of contours to efficiently
solve the contour propogation problem and to deal with topological changes. The equa-
tion (4) can be written in the level set form:

Vo
Vo]

where ¢ is the level set function embedding the active contour C.

Ou (nf (v, >) Vo, )

3.2 Scale Spaces

In the previous section, the active contours have been defined in the Euclidean space.
We want to put them in scale spaces by changing the embedding Euclidean manifold
into the scale spaces. The question is which scale spaces will we use. In paper [5], Eberly
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has studied the geometry of a large class of scale spaces and he has defined for them the
general metric tensor:

. 1 1
[hij] = diag (CQITM CQpQ) , (6)
where n is the spatial dimension, ¢ and p are two functions that physically correspond
to the conductance and the density functions in the general model of heat diffusion
transfert.

Eberly has also defined in [5] the natural diffusion equation in any scale space as
follows: the left-hand side of the diffusion equation is given by one application of the
scale derivative and the right-hand side by two applications of the spatial derivative. The
natural diffusion equation in a scale space is therefore

SS SS 2
Vou= (V3 ) U @)
where V? is the scale derivative operator and V37 . the spatial derivative operator.
These operators are determined using the tensor metric (6) and the following differential
geometry formulae:

Vh#Eid,,

Vot reenstn = : =cV, ®)
A /hmnzna’cn

Vs = Vhoody = cpd,. 9)

Hence, the diffusion equation (7) is equal to
1
Optt = ;V. (cVu), (10)

which corresponds to the general heat diffusion equation with the conductance function
c and the density function p. The choice of the functions ¢ and p determines the scale
space and the diffusion equation we use. For examples,

forc=0,p=1 u, = cAu Linear Scale Space,
for c = exp(—a|Vul?),p=1 u, = V.(cVu) Perona-Malik Flow,
forc=p= ﬁ Uy = V. ‘gz‘ |Vu|  Mean Curvature Flow,
forc = ﬁ, p=1 Uy = V. \g:j\ Total Variation Flow,

Eberly has proved in [5] that the linear scale space is hyperbolic and translation, rota-
tion and scale invariant. The second scale space is given by the non-linear anisotropic
diffusion equation of Perona and Malik proposed in [13]. The third one is the mean
curvature flow introduced in the level set framework by Osher and Sethian in [12] and
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the fourth scale space is produced by the total variation flow defined by Rudin, Osher
and Fatemi in [15].

3.3  General Evolution Equation for Active Contours in Scale Spaces

In the context of the Polyakov action, we look for the map X, the tensor g, of the
active contour manifold and the tensor h;; of the embedding space that lead to an
evolution equation for active contours in the scale spaces. We choose the map X as
X (21, eyTpy0) = (X1, ..., Ty, 0, @), where ¢ is the level set function representing
the active contour. The metric tensor h;; of the embedding space is given by the Equation
(6). The last choice concerns the tensor g,,,, of the active contour manifold. We choose
the induced metric tensor on X' [17]:

G = 0, X0, X7 hyj. (11)

This choice is motivated by the classical works concerning the active contours [3, 9, 4].
The Polyakov functional corresponding to the induced metric is the Euler functional:

S(X) = /dmag1/2, (12)

which defines the (hyper-)aera of the (hyper-)surface Y. The maps X that minimize S
for any manifold X’ embedded in any manifold M are called harmonic maps. Harmonic
maps are the generalization of geodesics and minimal surfaces (see [3,9,4]) to higher
dimensional manifolds and for higher embedding manifolds.

The minimization of S w.r.t. the component X' gives the generalized mean curvature
flow, see [17], in any embedding manifold M defined by the metric h;;:

8tXl _ g_l/Qau(gl/Qg“”&,Xl) —&-F}kaquaungW —H = g—l/QKl (13)

(13.1)

whose term (13.1) is the Laplace-Beltrami operator and H is the mean curvature vector
generalized to any manifold (M ,h;;).

Proposition 1: Asin [3, 9, 4], we introduce a weighting function f in the Euler fonctional:
Sp(X) = / "o f(X)g'/2. (14)

The evolution equation minimizing this functional w.r.t. the I-th component of X is [2]:
0,X' = fH' + 0),fg" 0, X9, X' — %ak FhHL (15)

Application 1: The geodesic/geometric active contour evolving in the 2-D Euclidean
space proposed in [3, 9] can be recovered. Indeed, if we take X = C and h;; = 0;;, the
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evolution equation defined in Equation (15) becomes (up to a constant) the well-known
flow

0,0 = frN — %<v LN (16)

Application 2: The evolution equation of the level set function embedding the active
contour can also be revisited. If we choose X = 5 : (z,y) — (z,y, ¢(z,9)), hij = 6ij,
the energy is Ecs = [ f1/1 + |V¢|?dzdy and the flow acting on the level set component
¢ is:

0ip = [Hes + 9232 (V,VS) = 9212 (fKes + (V[ V) = g2t 2Foy (17)

where g.s = 1+ |V<;S|2 and K, is the Euclidean mean curvature of the surface X such

2 _ 2
that K., = (1+6x)dyy 2¢xf>/jxy+(l+¢y)¢xx (see [17]). The equation of the level set

Jes
function ¢; = ge_sl/ 2Fes implies that the surface S evolves according to S; = F.,Ng
where Ng = g;sl/ 2(—(;535, —¢y, 1). This means that the level sets of ¢ move according

to the equation:

Cr = P.Sy = 90 *|V ¢l Fus No = 1(¢) Fes Ne (18)

= (fKesr(9) = (VI No)r*()) No (19)

where P, is a projector onto the plane normal to the ¢-axis, No = —V¢/|V| is the
-1/2

unit normal to the level sets and 7(¢) = ges '~ |V ¢|. The equation (19) is close to the
evolution equation (4) up to the surface mean curvature K., and the function r. Function
r can be interpretated as an indicator of the height variation on the surface .S (see [1]).
Indeed, ge_sl/ 2 is the ratio between the area of an infinitesimal surface in the domain
(z,y) and the corresponding area on the surface S. For flat surfaces, r is equal to 0
and it is close 1 near edges. Finally the function r is constant a.e. when ¢ is a signed
distance function.

We propose the following evolution equation for active contours in the scale spaces.

Proposition 2: Given the induced metric tensor, Equation (11), the harmonic map
X defined by (x1,...,2n,0) — (x1,...,%n,0,¢) and the weighting function f =
f(z1, ..., xn, 0), the evolution equation of the (n + 2)-th component of X, i.e. the level
set component ¢, is equal, according to (15), to:

at(vb = fHqs + <V*fa v*¢>(g”")7 (20)
whose Hy, = g*1/2Kss = H"*2 s the (n + 2)-th component of the mean curvature
vector (13) generalized to scale spaces, V* = (V,0,) and (., .) (guv) is the inner product

w.r.t. the metric g"¥ such that

(V1, Vo) (guvy = VI (g ) Vo = V1,9 V2, (1)
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where g = 1+ |V¢|? + p?¢2. The energy of the multiscale active contour is computed
according to Equation (14):

Essz/f¢1+lwl2+p2¢§ 11 d%d—" (22)

C
1<i<n P

(22.1)

whose term (22.1) is the infinitesimal volume in the scale spaces defined by the metric
tensor (6).

The evolution equation of the level set function ¢ is:
0ip =g V[ Kes + (V' [,V ) () = gou* Fs, (23)

where g.s = 1 + |V*¢|2. Hence the surface S evolves according to S; = F,sNs and
the level sets of ¢ move according to:

Cy = P.S; = (fKssr2(9,¢,p) — (VO f,Ne)r3 (6, ¢, p)) Ne, 24)
zlpz (vfa 0230), NC = _v*¢/|V*¢| and T2(¢, c, P) =

with the operator V¢ = -
V*6l/g"/2.

3.4  Application to the Linear Scale Space

The linear scale space is obtained when ¢ = o and p = 1. In this case, the energy of the
multiscale active contour is for n = 2:

dxdyd
Ejes = /Nl+|V¢|2+p2¢2 i (25)
and the flow of ¢ (embedding the active contour) is:
1
8t¢) = less + §<V*f, V*¢>lss; (26)

where g = 5 (14 ¢2 + ¢2 + ¢2), (., )1ss is the inner product in the linear scale space
defined by (V1, Va)iss = #(Vl, Va) and Hj,, is the mean curvature in the linear scale
space computed using Equation (13):

1 "
Hypo = 7¢uuglw - 2ﬂ9#07 27)
Jes %
(27.1) (27.2)
where ges = 14 ¢2 + ¢2 + ¢2 and the components of g~ are:
g7 = (1 + ¢§, + 62), g7 = — L.y,
g = #(1 +o+02), g7 = —gadado, (28)

977 = 7(1 + ¢2 + ¢2) g¥7 = _%d)yﬁsa'
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Roughly speaking, the term (27.1) corresponds to the Euclidean part of the mean
curvature and the second term (27.2) to the Riemannian part.

4  Multiscale Image Features

4.1  Multiscale Edges

In the previous section, we have defined a multiscale segmentation model which can
capture image features representing by the function f. There exists different local mul-
tiscale image features but we will use the most common one, the norm of the image
gradient, which is equal to |V, f| = (2f2, + ... + A2 f2 + c2p?f2)1/% in the scale
spaces. After that, we will extract the ridges of |V s f|, the multiscale gradient norm.

Ridges can be defined by different ways (see [6]). In our approach, we have used the
definition developed in Section 2.3 of [6]. In this case, Morse describes in [11] ridges of a
2-D feature image f as points which have local maximum in f along the direction of the
greatest concavity of f. Thus, at aridge point the direction of greatest curvature of f is the
cross-ridge direction and the value of f is greater than the neighboring points on either
side of it. This definition can be extended to higher dimensions. Indeed, let us consider
a function f in an n-D space and let us denote A1, ..., A\, with [A1] < ... <|\,| and
e1, ..., e, the eigenvalues and the corresponding eigenvectors of the n x n matrix of
the second derivatives. A point in an n-D space is an m-D ridge (m < n) in f if for all
1<n—m,

A <O
{ei~Vf—0 . (29)

In the case of the linear scale space with n = 2 spatial dimensions, the Hessian matrix
is different to the Euclidean one. Using the tensor metric h;; defined in Equation (6),
with ¢ = ¢ and p = 1, the Hessian matrix that includes the interdependence of space
and scale is given in [11] by:

20°f _ _Of 2 9°f o?f aof

0" 522 ) 0 %0 0; Ox0y 0-61:28(7 + 0 ax

2 2 0°f 20°f _ _Of o%f of
vlss B g 0xzdy g dy? do Uayaa + U(’)y . (30)

2 f of *f of 20°f of

Oaz00 Y935  T3y90 T3y O 352 T 054

As an example, let us consider the fractal image proposed by Von Koch (see the first
row on Figure 2). The magnitude of the scale space gradient is |V;s5!(z,y,0)| =
o - (I2+ IZ + I2)"/? (see the second row on Figure 2). And the ridges of the multiscale
gradient norm are given in the third row on Figure 2.

4.2  Gradient Vector Flow in Scale Spaces

The gradient vector flow (GVF) has been introduced by Xu and Prince in [19]. The GVF
field is a non-irrotational force field, namely V, which can capture the object boundaries
far from them and can deal with concave boundary regions. It is defined in a variational
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Fig. 2. First row: the Von Koch picture at four different scales of observation. The first image is
the original image. Second row: the multiscale gradient of the Von Koch picture. Third row: the
ridges of the multiscale gradient. Fourth row: GVFs of the ridge images

approach since the GVF field must minimize the following energy functional in the n-D
Euclidean space:

FS (V) = / S (VViR) + VIRV — Vf2de, 31
P —_————
o 31.2)
(31.1)

where V; is the i-th component of the GVF field and p is a constant which balances the
contributions between the regularization term (31.1) and the data fidelity term (31.2). The
minimization of the energy functional (31) is done using the calculus of variations and
the gradient descent method which provide n flows, one per component of the GVF field.
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In this section we propose to extend the GVF to the scale spaces defined by the
metric tensor (6). We realize this extension by simply changing the Euclidean terms by
their Riemann equivalents. Thus, we replace the Euclidean gradient V by the scale space
gradient V., and the Euclidean infinitesimal volume element d{2 by the scale space one
df2s, the energy (31) then becomes:

F9T (V) = / 1S (VaVil2) + Vs f 2V = Voo f P02, 32)

i=1

The Frechet derivative of F9*f w.r.t. V; in the ¢ direction is

Fyvf
/g (Zaw, (04, Vi) + 05 (c?p?0, V)>+ (33)
Vs fPIVi = (Vs £)il? 1dQ2ss. (34)
Then, the flow minimizing F9°/ w.r.t. V; is

Vi = (Z By (P02, Vi) + aa<c2p2agm)> — Vs fPIVi = (Vs )il® (35)

i=1
For the linear scale space and n = 2, the GVFs for ¢ = x, y, o are:
OVi(x,y,0) = p(0®AV; +200,V;) — 0|V f*(V; — 00; ) (36)

Figure 2 (fourth row) presents the GVFs of the ridges images (third row).

S Result
We have applied the evolution equation (26) in the linear scale space to segment the
Von Koch picture at different scales of observation. The Figure 3 presents our multiscale

snake evolving in the linear scale space at different times and the Figure 4 shows the
segmentation process at four different scales.

38

Fig. 3. Active contour evolving in the linear scale space
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Fig. 4. Active contour evolving in the linear scale space at four different scales

6 Conclusion

In this paper, we have introduced the scale parameter in the active contour formalism
by defining an evolution equation for the active contours in the scale spaces based on
the general heat diffusion equation. We have supposed that the metric tensor g,,,, of the
level set manifold is the induced metric tensor, i.e. the case where the active contours are
harmonic maps. We could consider another choice for g,,,, such as a diagonal tensor (see
[2]). Future works will be focused on integrating this multiscale segmentation technique
into shape analysis methods such as the shape recognition and the shape registration
methods to improve their performance.
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Riesz-Transforms Versus Derivatives:
On the Relationship Between the Boundary
Tensor and the Energy Tensor
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Abstract. Traditionally, quadrature filters and derivatives have been
considered as alternative approaches to low-level image analysis. In this
paper we show that there actually exist close connections: We define
the quadrature-based boundary tensor and the derivative-based gradient
energy tensor which exhibit very similar behavior. We analyse the reason
for this and determine how to minimize the difference. These insights
lead to a simple and very efficient integrated feature detection algorithm.

1 Introduction

Image features such as edges and corners can be detected by analysing the image
in the neighborhood of every (candidate) point. A compact representation of
the low-order characteristics of these neighborhoods is given by the first few
derivatives at every point (the n-jet [9]). Numerous feature descriptors for edges,
lines, blobs, corners and so on have been defined by various combinations of low-
order derivatives (see e.g. [5,12]). However, these descriptors are usually only
valid for a single feature type, and give no or wrong responses at points where the
underlying feature model is violated. Improvements can be achieved by moving
from scalar feature descriptors to tensor based ones. Second order tensors cannot
only represent feature strength, but also allow to distinguish between intrinsically
1- and 2-dimensional features (edges vs. corners) and measure orientation.

The most common derivative-based tensor is the structure tensor [1,6] which
is obtained by spatial averaging of the outer product of the gradient. It can rep-
resent step edges and their corners/junctions but is less suitable for the detection
of lines and other second order features. All these feature types are covered by
the energy tensor [3], which includes higher order derivatives (details below).

A different approach to feature detection is taken by the quadrature filter
method [7, 8] where derivatives are replaced with filters that are related to each
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(© Springer-Verlag Berlin Heidelberg 2005



180 U. Kéthe and M. Felsberg

other by the Hilbert transform. These operators react, by design, uniformely to
both edges and lines. This property is called phase invariance because edges and
lines can be interpreted as arising from the same magnitude spectrum, but at
different (namely odd and even) phase. In 2D it is common to apply a number of
1D quadrature filters at different orientations. The filter responses can then be
combined into an orientation tensor [8]. However, the orientation tensor reacts
in a well-defined way only to 1-dimensional features. This probem is solved by
means of the boundary tensor [10], which uses truly 2-dimensional quadrature
filters to also model certain 2D feature types (details also given below).

When we experimented with both the energy and the boundary tensors, we
observed a striking similarity of their behavior — qualitatively, their results are
almost indistinguishable. This paper is devoted to a more detailed analysis of
the relationship of the two approaches. We pursue this analysis on three levels:
First, we establish a formal similarity between the derivative and quadrature
filter methods by basing the latter on (first and second order) Riesz transform
operators [2] which closely resemble derivatives. Second, we show that the spec-
tral properties of the two tensors are very similar when optimal scales ratios are
chosen. Third, we report on experiments illustrating the similarity in practice.

2 Tensor Definitions

The structure tensor is the most common derivative based tensor. It is defined
as the spatial average of the outer product of the gradient V f with itself [1,6]:

S=gx(VAHVH" (1)

where g is a smoothing filter (usually Gaussian), f the original image, and deriva-
tives are always understood to operate at a particular scale. For the purpose of
our analysis, it is advantegous to approximate the gradient with a taylor series:

Vi)~ V| + VTS| (x—xo) 2)

X=X

where VVT f = Hf is the Hessian matrix. Inserting this into (1), we can
execute the convolution analytically. If g is radially symmetric, the odd powers
of x cancel out, whereas the even ones give a constant. We get:

S~ (VAHVHT +MHHHT (3)

where the parameter A\ depends on g’s shape and scale. This operator is very
good at detecting step edges and their corners, but often shows multi-modal
or no responses at second-order features such as line edges and junctions. By
adjusting A, the behavior can be somewhat improved, but it is usually impossible
to find a A that works equally well on the entire image.

A richer signal model can be employed with the energy tensor [3]:

E = (Vb)(Vb)T — b(Hb) (4)
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where b is the signal to be analyzed. This is structurally similar to (3), but the
square of the Hessian has been replaced with the negative product of the function
b and its Hessian. We’ll show later that the energy tensor achieves better feature
detection results when different scales are used for different derivative orders. In
a strict sense, the name “energy tensor” may not be justified because E is not in
general positive semi-definite. But it has this property under certain conditions
and degrades gracefully if these conditions are slightly violated (cf. figure 4, see
[4] for an in-depth discussion of this issue). In image analysis, the energy tensor
cannot be used in its pure form, because images are not DC free, so the energy
would be dominated by the DC magnitude (average gray level) if b were the
image f itself. Instead one computes E from a bandpass filtered version of the
image, for example one defines b = V7' Vg f when the bandpass is the Laplacian
of Gaussian. Since the Laplacian is a second order derivative, E is effectively
calculated from second, third and fourth order derivatives.

Unfortunately, this means that the important first order image structure is
not considered at all. Therefore, we developed a variant called gradient energy
tensor, or GET operator [4]. Here, b = Vg * f, so b is the Gaussian gradient
vector. The gradient of b is then the Hessian of f, whereas the Hessian of b gives
a third order tensor. Since the energy tensor is only a second order tensor, two
indices of this third order tensor are immediately contracted, giving:

N

33f _ T . . . _ fzrz + fz
Z D027 =V(V*V) ie. in2D: Tf = <fmy N fyji) (5)

(N is the space dimension). 7 f is equivalent to the gradient of the Laplacian
of f, as can be seen by switching the order of differentiation and contraction.
Since the outer product of two different tensors is not commutative, the gradient
energy tensor must be symmetrized. This results in the following definition:

G = Geven Godd (Hf) (Hf) ((Vf)(Tf)T =+ (Tf)(Vf)T) (6)

l\J\F—‘

The boundary tensor was introduced in [10] using circular harmonics. Here we
base its definition on the Riesz transform [2] to emphasize the formal similarity
of quadrature filters to derivatives. The Riesz transform is the N-dimensional
generalization of the Hilbert transform. It is defined in the Fourier domain as:

. ua

where u is the frequency vector. Since the derivative is defined as V o—e —iu,
the two operators differ only by a factor of |u| in the Fourier domain. The differ-
ence becomes clearer in polar coordinates where R o—e —i(cos(¢),sin(¢))? and
V o—e —ip(cos(¢),sin(¢))T. Both operators have the same angular behavior.
But the derivative operator also acts as a high-pass filter, whereas the Riesz
transform leaves the radial shape of the spectrum unaltered. This property is
responsible for the desirable phase invariance of the boundary tensor.
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The spatial domain Riesz transform operator decays only as O(|x|~"), where
N is the space dimension. Therefore one applies Riesz transforms to a bandpass
filtered version b of the image f. The boundary tensor is then defined as

B = B + B° = (Qb)(Qb)T + (Rb)(RH)T (8)

where Q@ = RRT denotes the second order Riesz transform resulting in a matrix
analogous to the Hessian (In contrast to the 1D Hilbert transform, which repro-
duces the negated original signal if applied twice, higher order Riesz transforms
are useful because they create tensors when N > 2). Eq. (8) is formally equiva-
lent to (3) when we set A = 1 and replace derivatives with Riesz transforms. It
should also be noted that the boundary tensor is always positive semi-definite
by construction. Various bandpass filters can be used to obtain b. In [10], we
used |u] exp(—|u|?0?/2), but in this paper we choose the Laplacian of Gaussian
lu|? exp(—|u|?0?/2) because this allows us to establish a very strong functional
relationship between the gradient energy tensor (6) and the boundary tensor.

3 Analysis of the Tensors

In order to analyse the behavior of the tensors, it is beneficial to express the
convolution operation explicitly with integrals. For simplicity, we assume that
the coordinate origin is at the center of the current window. Due to Parseval’s
theorem we can then express the integral in either the spatial or Fourier domains.
We must only take into account that the kernels are reflected in the spatial
domain expressions, which has no effect for even kernels but requires a sign-
change for odd kernels. Since we are always taking products of two odd filter
responses, this sign also cancels out. Using the Laplacian of Gaussian bandpass,
the boundary tensor components can be expressed in the Fourier domain as

B;; :/fuiukeflu‘Q"Q/zF(u) du/fujukeflulz"Q/QF(u) du
Jr/fﬁui\u\e*‘“lg‘#/zF(u) du/fﬁuj|u|e*|“‘2”2/2F(u) du (9)

where F'(u) is the image spectrum, and we use Einstein’s summation convention
(for index k). The components of the gradient energy tensor are

Gi; :/fuiukeflu‘Q"g/zF(u) du/fujukeflulz"g/zF(u) du

1
3 (/ —1 uie_|“|2”%/2F(u) du/ﬁujukuke_‘u‘zag/QF(u) du

+/—1'1uje_‘“|2”%/2F(u) du/ﬁuiukuke_‘ul%i/zF(u) du) (10)

where we allow the derivatives of different order to be applied at different scales
01,09,03. If we equate o and o4, the even parts of B and G become equal, so
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we will require this from now on. We analyse at first how the two tensors react
to intrinsically 1-dimensional images, that is when F'(u) = F(tn) holds along a
particular direction n, and F'(u) = 0 otherwise. Then the u; reduce to n;t, and
the 2D integrals become 1D ones. The even part of both tensors is:

2
B = G = nyn; ( / 12U 2R(F (1) dt> (11)

and the odd parts are:

2
By = n;n, ( / —it|t|le /2 IS (F (L)) dt) (12)
G = —n;n; / —ite TON/2IS(F () dt / i3 OB /2iQ(F(t)dt  (13)

where we took advantage of the fact that the spectra of real signals have even real
and odd imaginary components. It can be seen that B is indeed a quadrature
filter: The kernels of the even and odd tensor parts are related by the Hilbert
transform —1isign(¢). Thus, if we shift the signal phase by 7 /2 (i.e. if we swap real
and imaginary signal components, with the appropriate adjustment of spectrum
symmetries), even and odd tensor parts are simply exchanged, but their sum
remains unaltered. This is precisely the requirement of phase invariance. That
requirement is not fulfilled by the GET operator: It has the same even part as
the boundary tensor, but the odd parts differ. Detailed analysis of the odd parts
reveals that the difference can actually be made very small. Consider at first a
simple sine signal, i.e. F(t) =15 (0(t —wa) — 6(t +wa)). We get

B;?jfld =n;n; a*w? e~wass

G%dd =n;n; azw;l 67W§(U?+U§)/2
These expressions are equal when o3 = (07 + ¢3)/2 which we will require from
now on. A more complicated case is the superposition of two sine waves F(t) =
12(6(t — wa) — 6(t+w,)) +12(8(t — wp) — 6(t +wp)). Then we get

The eigenvalue of B4 (which we obtain by simply dropping n;n;) is always
positive, as required for a signal energy. However, the eigenvalue of G°4 can
become negative if a and b have opposite signs, i.e. if the two sines have opposite
phase. This counters the intuition that the energy tensor G indeed represents
signal energy. However, due to the statistical properties of natural images the
situation is not so bad in practice: High energy in the derivatives typically occurs
at object boundaries (edges and corners/junctions). At these points the signal
components have the same phase over many frequencies (phase congruency, [11]).
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Then the error term in G is positive, and the measured energy becomes too large
rather than too small. Negative energy typically occurs only in flat, but noisy
areas, where it is safe to simply truncate negative eigenvalues to zero.

In addition, we can try to adjust the ratio o3/ so that the magnitude of the
error term becomes as small as possible. It is necessary to use a scale-normalized
error measure, because one could otherwise make the error arbitrarily small by
taking o3 — oco. The natural scale normalization for the Laplacian of Gaussian
is 03 [= (02 + 03)/2] [12], so that B has to be multiplied with o3. To make
the response of G comparable, we normalize it with the same factor. Then we
integrate over w, and wy, to calculate the average error over all frequency pairs:

2 2\2 2
o _|_ (o2 _ 2 2 2 2 _ 2 2 2 2
€= % // Walh (wae (Waoi+wiod)/4 _ e (wavl+wafa>/4) dwq duwy,

2

= i2 + 32 +5 - % (14)

oy 03 03 01+t0;3

(we dropped the factor n;n; a b not depending on the ratio). The error is mini-
mized for o3/01 = 1/V7!/3 — 1 ~ 1.47. Tt is interesting to compare the optimal
error with the error obtained for other ratios: If 0y = 05 = 03, the error becomes
more than 5 times as big! If o3/01 = v/3 and 02/01 = v/2 (which means that the
same first derivative filter is applied repeatedly for the higher order derivatives,
resulting in a very efficient algorithm), the error is only 36% bigger.

Another possibility to find an optimal scale ratio is to start directly from
(12) and (13). We transform the products of integrals in these equations into
2-dimensional integrals over the product of the integrands. Then we interpret
terms not depending on the signal spectrum as quadratic filter kernels [13]:

2
(/ —it|t|e 32 (t) dt) = —//B(tl,tg)F(tl)F(tg)dtl dts
/—ﬁte—t2”f/2F(t) dt/ﬁt3e—t2”§/2F(t) dt

- / / Gltr, 1) F (1) (t2) diy dts
with (note that G is symmetric due to the symmetrization of G)
Blt1,ts) = tta |t1te] e~ (i) 73/ (15)
Gty ts) = % (11 e et imda 4 g2y, o~(itodviioda) (16)

We choose the ratio o3/0 so that the scale-normalized mean squared difference
between the two kernels is minimized:

62 = O'S //(B(tl,tg) — G(tl,tg))2 dtl dtz (17)

The minimum is achieved for o3/01 = 1.55. The choice o1 = g2 = 03 gives again
a b times higher residual (see fig. 1), whereas it increases by only 23% for o3/01 =
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Fig.1. Left: B(t1,t2) (for t1,t2 > 0, 02 = 1); center: G(t1,t2) with o3/01 = 1.55 and
(0% 4+ 03)/2 = 1; right: G(t1,t2) for o3/01 = 1: the deviation from B is much higher

V3. We also repeated the two optimizations while weighting the importance
of the frequencies according to 1/w, which better reflects the situation in real
images. After modifying (14) and (17) accordingly, we got optimal o3/c; ratios
of v/3 and 1.8 respectively, and the dependency of the residual on the ratio was
reduced. Consequently, scale ratios between 1.5 and 1.8 give reasonable results,
whereas it appears to be a bad idea to apply all derivatives at the same scale.

Now we analyse the response of the tensors to intrinsically 2-dimensional
structures. To simplify we consider points x where the spectrum F'(u) computed
with x as coordinate origin is (appproximately) polar separable within the pass
band of the tensor filters. In case of the boundary tensor, the pass band is deter-
mined by the Laplacian of Gaussian, and we require |u|? exp(—|u|?c?/2)F(u) ~
p? exp(—p®0?/2)F,.(p)F,(¢). Then the integrals over u can be separated into
products of two integrals over the radial and angular coordinates:

B, = [e@Fu0ds [ e()F.(0)is ( / p2eP2”2/2FT<p>pdp)2 (18)

+ [ elden@)Fa(0)do [ e@)en() 0o ( / p2ef’2”2/2Fr<p>pdp>2

with e(¢) = (cos(¢), sin(¢))?. When we define the Fourier coefficients of F,(¢)

by ¢ = [cos(mo)F,(¢)dé and s, = [sin(med)F,(¢)de, the trace of the

boundary tensor becomes:

2 +2c3 + 282 + 3+ 53
2

ir(B) = [ Bor o200 1. padpe (19)
where the kernel B simplifies to B(p1, p2) = p?p3 exp(—(p?+p3)o3/2) because p;
and po are non-negative. The trace is determined by two local image properties:
by the local contrast (as given by the radial integrals), and by how well the
angular shape variation is captured with low-order circular harmonics (as given
by the magnitude of the first five Fourier coefficients). It is interesting to compare
this with the gradient at a polar separable location:

(V12 = (& + ) / / S(p1. p2)Fr(p) Fo(p2) prdpy prdps (20)

where S(p1, p2) = p1p2exp(—(p? + p3)o?/2). Again we obtain an expression of
the form “contrast times Fourier coefficients”. Since all Fourier coefficients in
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Fig.2. Top: original images; bottom: reconstruction obtained by a weighted sum
of the boundary tensor filter kernels, where the weights correspond to the normalized

filter responses at the center pixel

(19) and (20) are weighted by only one radial integral, the form of this integral
is not crucial (gradients can be defined with many filters, the boundary tensor
originally used the kernel S above, see [10]). Thus, the key difference between
the boundary tensor and the gradient squared is that the former includes three
additional Fourier coefficients: The boundary tensor can be interpreted as a
natural generalization of the gradient towards a more sophisticated local signal
model. Fig. 2 illustrates this generalization by means of a local image recon-
struction from the filter responses that constitute the boundary tensor. This
reconstruction essentially shows how the boundary tensor “sees” certain shapes.
Obviously large part of the shape information is already contained in five filter
responses (only the first two patterns could be reconstructed from the gradient
filters). A similar generalization to five Fourier coefficients is achieved by the
structure tensor (3). At a polar separable point, its trace can be written as:

2+ c2+s3
tr(S) = /\% //B(P17P2)Fr(Pl)Fr(P2) p1 dp1 p2 dpo

+(ci + s7) // S(p1,p2) Fr-(p1)Fr(p2) p1 dp1 p2 dpo (21)

But here the even and odd Fourier coefficients are weighted by different radial
integrals. One can try to optimize A and o3/07 in order to minimize the difference
between B and S, but it turns out that good agreement can only be achieved
for a few frequencies at a time. This means in practice that at many image
locations the contributions of even and odd tensor parts are not well balanced,
which results in multiple responses for a single boundary or boundary gaps.
Fortunately, the trace of the GET operator shows much better behavior:

2+ 2 + s2
tr(G) = % //B(p17,02)Fr(p1)Fr(p2>p1 dp1 p2 dp2

+(c} +53) // G(p1, p2) Fr(p1)Fr(p2) p1 dp1 p2 dpa (22)

Although even and odd Fourier coefficients are still weighted differently, we have
shown above (see fig. 1) that the kernels B and G can be made extremely similar,
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so that the GET operator G can be considered a very good approximation of
the boundary tensor B. Strictly speaking this applies only at polar separable
image locations, but we have found experimentally that this desirable behavior
carries over to many interesting images features.

4 Experimental Comparison of Tensor Based Feature
Detectors

The local shape information represented by the gradient energy and boundary
tensors can be extracted in the usual way. The most important tensor char-
acteristic in this context is the tensor trace which indicates the local contrast
independently of feature type (edge, line, corner, or junction) and thus acts as
a general boundary indicator. Intrinsically 1- and 2-dimensional parts of the
boundary can be distinguished by the tensors’ eigenvalues: The smaller eigen-
value indicates corner and junction strength, whereas the difference of the two
eigenvalues represents edge and line strength. If the eigenvalues indicate a 1D
structure, the eigenvector corresponding to the large eigenvalue points in the
direction perpendicular to the edge or line. In all experiments we compare the
following tensors: (i) the boundary tensor computed with the Laplacian of Gaus-
sian at 0 = 0.9, (ii) the gradient energy tensor computed from Gaussian deriva-
tives with oo = 0.9 and various ratios o3 /0 (images are shown for o3/01 = 1.5),
and (iii) the gradient energy tensor computed by applying Scharr’s optimal 3 x 3
derivative filter (3,10,3)7(1,0,—1)/32 one, two and three times [14].

In the first experiment, we computed the tensors for simple test images.
Fig. 3 shows typical results. We found that all tensor variants have very similar
trace (boundary strength) and small eigenvalue (corner strength). The trace
is phase invariant (to very good approximation in case of the GET operator),
i.e. responds uniformly to step edges and lines. The step edge response of the

Fig. 3. Top left: original image; col. 2: tensor trace (row 1: boundary tensor, row 2:
GET operator, Gaussian derivatives, row 3: GET operator, 3 x 3 filter); col. 3: junction
strength; col. 4: locations with negative junction strength; col. 5: edge orientation
(hatched: not a 1D feature, black/white: horizontal edge, gray: vertical edge)
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Fig.4. Rows 1 and 3: original image, negative small eigenvalues of GET operator
with o3/01 = 1.5, negative small eigenvalues of GET operator with Scharr filter; rows
2 and 4: square root of tensor trace for boundary tensor and the two GET operators

GET operator is slightly narrower than that of the boundary tensor, which may
be desirable in practice as it reduces the likelihood that nearby edges blend
into each other. On the other hand, there are several locations where the small
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Fig. 5. Integrated boundary detection from boundary tensor, GET operator (o3/01 =
1.5) and GET operator (Scharr filter)

eigenvalues of the GET operators are negative, but this only occurs away from
junctions. The large eigenvalues are always positive.

The second experiment illustrates the same properties on real images (fig. 4).
Again the traces are almost indistinguishable. The small eigenvalue is negative
at about 10...35% of the pixels, but never at corners or junctions (we checked
this against the corner locations detected with the boundary tensor). Nega-
tive values in the trace occur much less frequently (about 1...10% of the pixels,
and never on edges) because the large eigenvalue was never negative in the
experiments (formal proof of this fact is subject to further research). Gaus-
sian derivatives and the Scharr filter perform similarly, with the exception of
derivatives at 03/01 = 1, where the number of negative pixels increases 1.5...3-
fold.

In the last experiment we show that the three tensors can be used for in-
tegrated edge and junction detection as described in [10]. The tensor at each
image location is decomposed into its corner/junction (small eigenvalue) and
edge/line (difference of eigenvalues times main eigenvector) parts. Then local
maxima above a certain threshold are detected in the corner/junction map, and
oriented non-maxima supression and thresholding is performed in the edge/line
map. The resulting boundaries are overlayed over the original image, see fig. 5.
Again, the results are extremely similar.

5 Conclusions

Traditionally, quadrature filters and derivatives have been used by what might
be considered different schools of low-level image analysis. In this paper we
demonstrated a very close relationship between two typical methods from both
camps: the boundary tensor and the GET operator. It turned out that these
operators behave almost identically in experiments. Theoretical analysis sup-
ports this finding: We established a close formal relationship by giving a new
boundary tensor definition using Riesz transforms. And we showed for typical
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1- and 2-dimensional image structures that the resulting integral expressions are
very similar for the two methods, if suitable operator scales are chosen.

Boundary tensor and GET operator can be interpreted as natural general-
izations of the gradient, which uses filters whose angular behaviour corresponds
to the first two odd circular harmonics: they add filters representing the first
three even circular harmonics. It should be stressed that the feature detection
capability depends mainly on this angular behavior — the radial filter shape can
be altered considerably, as long as it remains approximately equal for all filters
(in the Fourier domain): The boundary tensor can be defined with other band-
pass filters, and slightly different radial shapes for even and odd filters can be
tolerated in the GET operator. But the angular behavior has to be equal.

Some differences remain: The boundary tensor is always positive semi-definite
by construction, whereas the GET operator sometimes measures negative corner
strength. Since this does not occur at true corners, it is safe to truncate negative
values at zero. On the other hand, the filters constituting the GET operator are
simpler then the ones for the boundary tensor (in the spatial domain). The GET
operator can already be computed accurately with a 3 x 3 filter mask, and only
seven convolutions with this mask are needed. This is roughly the same effort as
needed for the structure tensor, but the underlying feature model is much richer,
containing not only edges but also lines, corners, and junctions. Extension to
3D and to multiple scales will likely be easier for the GET operator due to the
huge existing body of established analysis for derivative filters.
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Abstract. In this paper we propose a new operator which combines
advantages of monogenic scale-space and Gaussian scale-space, of the
monogenic signal and the structure tensor. The gradient energy tensor
(GET) defined in this paper is based on Gaussian derivatives up to third
order using different scales. These filters are commonly available, separa-
ble, and have an optimal uncertainty. The response of this new operator
can be used like the monogenic signal to estimate the local amplitude,
the local phase, and the local orientation of an image, but it also allows
to measure the coherence of image regions as in the case of the struc-
ture tensor. Both theoretically and in experiments the new approach
compares favourably with existing methods.

1 Introduction

In this paper we derive a connection between features of the monogenic scale-
space [1] of an image and its Gaussian scale-space [2], respectively the derivatives
of the latter. Thus, it becomes possible to compute monogenic features from
Gaussian derivatives. The advantages of the proposed method are:

— Many people have implementations of Gaussian derivatives available so that
they can use monogenic features without implementing new basis filters.

— The Gaussian derivatives are separable and decay faster than the Poisson fil-
ter and its Riesz transform resulting in more efficient computational schemes.

— The additional feature (coherence) of the derivative-based method directly
indicates the validity of the monogenic phase model which is based on the
assumption of locally 1D signals.
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A key assumption of this paper is of course that the local phase is useful for
the processing and analysis of images. Therefore, we give a short motivation of
phase-based image processing in the subsequent section. Although most of the
discussions focus on images, the reflections about phase based signal processing
generalize to signals of arbitrary dimension.

1.1 Phase-Based Image Processing

First of all, there is some evidence that the human visual system makes use
of local phase to analyze the image contents [3]. Since the human visual system
performs remarkably well in analyzing images, it is reasonable to design technical
systems accordingly. However, there are also purely technical observations which
motivate the use phase. In [4] the authors present several experiments which show
that the Fourier phase contains the major part of the signal information. The
same applies to the local phase. For the definition of local phase, we assume an
image (patch) model according to

I(x) = A(x) cos(p(x)) + T (1)
where x = (x,y)7 indicates the spatial coordinate vector, I(x) the image (patch),
I the average intensity (DC level), A(x) the local amplitude (non-negative), and
©(x) the local phase. The average intensity is irrelevant for the analysis of the
image contents and is largely compensated already during the image acquisition
in the human visual system. What remains is to analyze the relation of local
amplitude and local phase. Although the decomposition in (1) seems to be am-
biguous, this is not the case due to the non-negativity of the amplitude. Due to
the latter, zero crossings in I(x) — I must be covered by zeros of cos(¢(x)) and
zero crossings are in direct correspondence to the full phase [5]. Therefore, the
local phase becomes a uniquely defined feature.

If the image is decomposed into its amplitude and phase information, it be-
comes evident that the local amplitude is basically a measure for the confidence
of the extracted phase, i.e., in technical terms it represents the signal-to-noise
ratio (SNR), cf. Fig. 1, center. The local phase represents most of the image
structure, cf. Fig. 1, left. In the areas where the amplitude is close to zero, thus
meaning 'no confidence’, the local phase contains mainly noise. In the regions of
non-zero confidence, the cosine of the local phase results in a visual impression
which comes very close to the original, bandpass-filtered image, cf. Fig. 1, right.

1.2 The Monogenic Scale-Space: A Brief Survey

The monognic scale-space is a framework to estimate the local phase, the local
orientation, and the local amplitude from an image at different scales [1]. The
starting point is to compute the Poisson scale-space p(x,s) of the image. The
corresponding figure flow is obtained as the Riesz transform q = (q1, ¢2)7

X/

x/ ,
B _— — d ! = _ —x 0)d ¢ 2
a(x, s) /R2 27r|X’|3p(X x',s)dx /R2 2 (|x'|2 + 82)3/2p(x x',0)dx" (2)
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Fig. 1. Decomposing a bandpass image into its local phase and its local amplitude.
From left to right: cos(p(x)), A(x), and I(x), where the intensities where adjusted
to obtain similar intensity ranges. Grey means zero, white means positive values, and
black means negative values. I(x) is obtained from a bandpass-filters with center fre-
quency /6

of the image at each scale s. Together, the blurred image and its Riesz transform
form a monogenic signal [6] at the respective scale.

The monogenic signal contains of three components at each position, i.e., for
a fixed scale sq it is a function R — R3 : x +— (q1(x, 80), ¢2(X, 80), p(x,50))T
For convenience, we sometimes omit the arguments x and s in the following.
The 3D co-domain is then transformed into polar coordinates, cf. Fig. 2, left,

resulting in a triplet (A, ¢,0) € Rt x [0, 27) x [0, 7) where A = \/¢? 4+ ¢35 + p? is

A 4
p P
\
\
() \
T
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Fig. 2. Phase models used in context of the monogenic signal. Left: the 3D vector is
derotated by the local orientation 6, such that it lies in the (g1, p)-plane. The amplitude
and phase are then extracted like in the 1D case as vector length and argument. Right:
the 3D vector together with the p-axis define a plane in which the rotation takes place.
The normal of this plane multiplied by the (directed) rotation angle ¢ results in the
rotation vector r
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an estimate for the local amplitude, ¢ = arg(p-+isign (¢1)|g|) for the local phase,
and @ = tan~'(ga/q1) for the local orientation of the image if the image varies
locally only in the orientation 6 (intrinsic dimensionality of one [7]). Since the
direction of an image does not follow from its local orientation [8], an ambiguity
concerning the sign of the phase is obtained. In order to obtain a continuous
representation of orientation and phase, they can be combined to form a 2D
phase vector r = ¢(—sin, cos0)T = q*/|q|tan"1(|q|/p), cf. Fig. 2, right.

Further features can be derived from the local features of the monogenic signal
respectively the monogenic scale-space, e.g., local frequency and phase congru-
ency as the spatial and scale derivatives of the local phase. The consideration of
these features is however out of the scope of this paper.

In order to estimate the local features, implementations of the monogenic
signal and the monogenic scale-space are required. This can either be done by
local operators, which combine a radial bandpass filter with its Riesz transform
[9,10], or by a global eigentransform solution [11]. The problem is, however,
that the involved Poisson kernel decays quite slowly, resulting in either large
truncation errors of the filter masks or non-locality of the output.

Even and odd filters based on, e.g., Gaussian derivatives, are preferable con-
cerning locality, but these filters do not allow to estimate the local phase or
phase invariant features in a linear framework, since their respective amplitude
responses differ. To combine the locality of Gaussian derivatives with phase in-
variant feature extraction and phase estimation is the main topic of the present
paper. The key idea is to use a quadratic operator in order to avoid using the
Riesz transform. This idea is based on the concept of the 1D energy operator,
which is briefly introduced in the subsequent section.

1.3 The 1D Energy Operator

This brief review of the 1D energy operator is based on [12]. The purpose of the
energy operator is to compute directly the squared local amplitude of a signal
without using the Hilbert transform, since the Hilbert transform based methods
suffer from the same phenomena as the implementations of the monogenic scale-
space. The energy operator is defined for continuous 1D signals s(t) as

e[s(t)] = [3(t)]* = s(1)3(2) - (3)

It is obviously not positive semi-definite, but it tracks the energy of simple
harmonic oscillators. Moreover, for constants A, r, and wy and for any s1, so

@ [Art cos(wot + @o)] = A?r?tw? (4)
We[s1(t)s2(t)] = s1(8)*We[sa(t)] + s2(t)*We[s1(t)] - (5)

If we instead just consider [$(¢)]?, likewise the orientation tensor in higher di-
mensions, we obtain

d 1
[%A cos(wot + ¢o))* = §A2wg(1 — cos(2wot + 2¢9))
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which is obviously not phase invariant and might even suffer from aliasing if wg
is larger than half the Nyquist frequency. Apparently, the second part s(¢)§(t) of
the energy operator exactly compensates the spurious modulation components
at 2wg. A possible 2D generalization of the energy operator is the energy tensor
[13], which we introduce in the subsequent section.

1.4  The 2D Energy Tensor
For continuous, 2D bandpass signals b(x), the 2D energy tensor is defined as [13]

. [b(x)] = [Vb(x)][Vb(x)]" — b(x)[Hb(x)] , (6)
where V = (9,, 8,)T indicates the gradient and H = VV7 indicates the Hessian.
Likewise in the 1D case, this operator is not positive semi-definite in general,
but for a simple harmonic oscillator it results in a energy-frequency-weighted
orientation tensor. Moreover, we obtain

W [Ar™TY cos(ud x + ¢g)] = A2r2* T2V ugul (7)
We[s1(x)s2(x)] = 51(%)*Pe[s2(x)] + s2(x) " Pe[s1(x)] . (8)

If we just consider the first part of (6), i.e., the structure / orientation tensor
according to [14, 15] (but without spatial averaging), we obtain

[V Acos(udx + ¢0)][VAcos(ul x + ¢o)]" = %Azuoug(l — cos(2ul x + 2¢0))

which is likewise in the 1D case not phase invariant and might show aliasing
artifacts.

The energy tensor is a second order symmetric tensor like the structure tensor.
The latter is included in the energy tensor, but it is combined with a product of
even filters, which provides phase invariance for simple harmonic oscillators and
products thereof. The energy tensor can hence be classified as a phase invariant,
orientation equivariant second order tensor [16]. Same as the 2D structure tensor,
the energy operator can be converted into a complex double angle orientation
descriptor [17]:

(%) = e [b(x)]11 — Pe[b(x)22 + i20c[b(x)]12 (9)

which is equivalent to the 2D energy operator defined in [18]. As one can easily
show, |o(x)| = |A1(x) — A2(x)|, where A;(x), A\2(x) are the eigenvalues of the
energy tensor. Since the trace of the tensor is given by the sum of eigenvalues,
we obtain 2\ o = tr(¥.[b(x)]) £ |o(x)|, which can be subject to the same analysis
in terms of coherence as suggested in [19, 8] or for the Harris detector [20].

If the signal is not a (product of) simple harmonic oscillations, the opera-
tor (6) does not result in a positive response in general. However, if the local
signal region adheres to the model (1) with slowly varying amplitude and fre-
quency, the response is positive. This is the case if we prefilter the signal with
a bandpass, which avoids low frequencies (DC component and changes of local
amplitude) and high frequencies. Removing high frequencies can be considered
as a regularization that allows the computation of derivatives for discrete data.
The prefiltering is necessary in most practical situations, since natural images
I(x) are typically no bandpass signals b(x).
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2 The GET Operator

As pointed out above, the signal needs to be bandpass filtered in order to obtain
small frequency ranges, and hence, positive responses. For the high frequency
regularization, we prefer Gaussian functions due to their high localization in
both domains. However, Gaussian filters are not DC-free, which is a central re-
quirement in context of the energy tensor. If we consider a difference of Gaussian
filters as in [13], we implicitly lift the level of spatial differentiation by two. Ac-
cording to the equation of linear diffusion [2], the scale derivative of a Gaussian
filter is equivalent to the Laplacian of the Gaussian, i.e., a combination of second
order derivatives. Hence, applying the Hessian to the Laplacian of the Gaussian
means to consider fourth order derivatives instead of second order derivatives.
Due to angular aliasing however, one cannot compute fourth order derivatives on
a local support [10]. Therefore, we propose an operator below which makes use
of Gaussian derivatives up to order three, but avoids the zeroth order Gaussian,
i.e., the DC-component is removed.

2.1 The Gradient Energy Tensor

The idea to define the gradient energy tensor (GET) follows from the previous
considerations. We introduce the tensor in three steps. First, we plug the gradient
of the image into (6) and use tensor notation instead of matrix notation:

GET{I(x)} = %[VI(x)]
= [Ve VIx)]®[Ve VI(x) (10)

—%([VI(X)] RIVeVeVIx)|+[VeVeVIx)]® [VI(x)])

where we symmetrized the tensor by replacing the second term with the corre-
sponding anticommutator term. The obtained operator has 16 coefficients, where
6 can be omitted due to symmetry and one further coefficient is a linear com-
bination of two others. Hence, 9 independent coefficients are left. However, all
components are formed from sums of even derivative products and odd derivative
products. Considering these separately, it turns out that the even part results in
just 3 degrees of freedom (the Hessian) and the odd part results in 6 d.o.f. .

In a second step, we contract the tensor. This becomes possible, since there
is no practical gain from the coefficients that are omitted in the contraction:

GET{I(x)} = [V® VI(x)]- [V® VI(x)]

—%([VI(X)] ®[V-VeVIX)]+[Ve V- -VIx)]®[VIX)])

[VI)[VAI(x)]" + [VAI(x)][VI(x)]"
2

In this formula A = V7'V denotes the Laplacian. Due to the non-linearity of the
operator, it is difficult to show which degrees of freedom are lost in the contrac-
tion, but we can consider certain different cases. Assuming a simple harmonic
oscillation I(x) = cos(ux + vy + ¢), we obtain for the full tensor

= [HI(x)][HI(x)] -

(11)
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4 3 3 2,2 2 2

ut uwwv uv utv I Kl I K
u
GET (I v ee?| (uPe? wed || uv v? uwv v?
{1(x)} = 3 2,2 2,237 | = 2 2
u’v uv u‘ v uv O ] IR R
’LL2’U2 U’U3 ’LL’U3 ’U4 uv U2 uv ’U2

and for the contracted tensor

2 (u2—|—v2) uv (u2+v2)

v (u2—|—v2) 1)2 (u2—|—v2) (12)

GET{I(x)} = |
Hence, no information is lost by the contraction under the assumed signal model.
If we extend the model to two different frequencies in the same direction, the
tensor coefficients are multiplied by a spurious modulation factor.! However, this
modulation is the same for all coefficients, and therefore, the full tensor does not
provide additional information. By repeating this procedure for more frequencies
in the same direction, the result will always be the same, and hence, of locally
1D signals there is no gain from the full tensor.

Due to the non-linear behavior of the tensor it is impossible to calculate the
response for a general 2D signal. However, one can analyze it in terms of null-
spaces and it turns out that the contraction does not change the null-space of
the operator. The GET becomes zero for

I(x) = Aexp(ax +by)+ D (13)

where A, a, b, D are complex constants. Hence, the three degrees of freedom
which are lost in the contraction of the odd part of the tensor do not reduce
the null-space and are therefore of minor importance. Deeper investigations of
the null-spaces and the number of independent components will be subject to a
future publication.

Finally, we would like to point out here that the contraction can be done in
an alternative way by taking the inner product at a different grade of the odd
tensor:

(VI()] - [V & HI()) = 0u[0,1(x)] + [0, 1(x)] - (14)

The behavior for locally 1D signals is the same, but for 2D signals we get different
results.

2.2 Regularization and Gaussian Derivatives

The results from the previous section are obtained for idealized, continuous sig-
nals. In practice, however, we have to deal with non-ideal, noisy, and discrete
signals. The most common thing to do is therefore to regularize the derivative
operators from (11) with Gaussian kernels. A Gaussian regularization is the op-
timal choice if nothing is known about the signal and its noise characteristic.
Therefore, we replace the derivatives in (11) with Gaussian derivatives of order
one to three.

! The spatial modulation is undesired. The response should have constant amplitude.
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The scales for the regularization are chosen such that the variance increases
linearly with the order of the derivative, cf. (13) in [21]. In [22] we discuss the
choice of scales and different regularizations more in detail.

2.3 Extraction of Monogenic Features

The monogenic signal provides three features: local amplitude, local phase, and
local orientation [6]. In case of signals with intrinsic dimensionality one, i.e.,
I(x) = s(nTx) (s : R — R, |n| = 1), the GET is of rank one:

GET{I(x)} = [nn”5(n”x)][nn” 5(n"x))

_m3(nTx)][n’5 (n"x)]" + [ (n"x)|ns(nTx)]"
2
(n”

=nn’[5(nTx)? - §(nTx)s

x)] -

The first eigenvector of this expression is +n, i.e., the local orientation of the
signal. The first eigenvalue (or its trace, aka the second eigenvalue is zero) of the
GET is more difficult to analyze, except for the single-frequency case, where we
obtain according to (12) |u|*A? for an oscillation with amplitude A.

Much more interesting is the extraction of the local phase, which is obtained
in two steps. First, we consider the two addends of the GET separately. The first
one represents the symmetric (even) parts of the signal, whereas the second one
represents the antisymmetric (odd) parts of the signal. However, both parts are
quadratic expressions, such that we have to consider their square-roots:

Goven = E£r/trace(Teven) and Goda = T/ trace(Toaq)

where

Teven = [HI(x)][HI(x)] and (15)
T T

Ty = - [TLITAICT + [TALG)91) "

In a second step, the correct signs for the even and the odd parts are selected,
such that arg(geven + 1goad) gives the local phase of the signal. Comparing the
signs in different quadrants of a harmonic oscillation results in the following
procedure.

Let T = Teven + Toaa denote the GET response, o = T11 — Tay + 2T its
complex double angle representation [17], and o = (real(,/0), imag(1/0))T the
orientation vector. We then define the two signs as

Seven = —sign (o’ [HI(x)]o) and Sodd = —sign (o’ VI(x)) (17)
such that

w = arg(QCvcn + Z‘qodd) = adrg(scvcn V trace(chcn) + Z‘sodd V tradce(']:‘odd)) (18)

is consistent with the definition of the monogenic phase. This can easily be
verified by inserting cos(ux + vy) into the previous four expressions, resulting
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in ¢ = ur + vy if (u, v)T lies in the upper half-plane and ¢ = —uz — vy
otherwise. This behavior is correct since we obtain the same sign ambiguity for
the monogenic phase [6].

If the underlying signal is non-simple, i.e., it has intrinsic dimensionality
two, the analysis becomes more difficult. Following the strategy of the structure
multivector in [10], the first eigenvector is extracted from T. Then, the even
tensor and the odd tensor are projected onto the first eigenvector and onto the
orthogonal vector (aka the second eigenvector). This gives two even components
and two odd components, which are then combined with appropriate signs to
extract two phases for the two perpendicular orientations.

Note also that in the latter case not a single amplitude is obtained, but two
eigenvalues, which correspond to the local amplitudes of the two perpendicular
components. These eigenvalues can then be used for coherence analysis or corner
detection likewise the eigenvalues of the structure tensor.

3 Comparisons

In this section we compare the results of the GET operator with those of the
DCT-based implementation [11], the spherical quadrature filters [10], and the
structure tensor (ST) by outer products of gradients (see e.g. [19]). The latter
approach is not suited for phase-estimation per se, but one can easily extend
it for this purpose in the following way. Assuming that the outer product of
gradients of a cosine oscillation results in a trace which is Asin®(p) and assume
further that local averaging can be replaced with integration over entire periods,
the trace of the (averaged) tensor becomes %. Hence, the sine and the cosine are
obtained up to a sign-ambiguity by

Qoad = VEX)  and  oven = 1/ —1(x) +2)_#(x) |

where t(x) = trace([VI(x)][VI(x)]?). For the subsequent comparison only the
second sign needs to be recovered. If we have locally vanishing DC components
and single frequency, it is obtained by the sign of I(x), otherwise we use the sign
of —AI. In order to remove some outliers, the signs are median-filtered.

3.1 Experiment: Extraction of Phase and Orientation

In this experiment, we applied all three methods to a synthetic pattern, cf. Fig. 3,
top left, and a real image, cf. Fig. 3, bottom row. We added Gaussian noise to
the pattern (SNR 3.0dB) and selected a mask for the feature comparison. The
scales of all methods were chosen such that the local amplitude estimates were
comparably similar, although the higher spatial-frequency localization of the
GET and the ST leads to a narrower ridge then for the other two methods, cf.
Fig. 3, second row. Instead of showing the phase estimates, we reconstructed the
signal from the phase estimates (cf. Fig. 3, third row) and computed their SNRs.
Furthermore, we computed the orientation error according to [23]. The results
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Fig. 3. Top row from left to right: test-pattern, test-pattern with noise (SNR 3.0dB),
mask for error evaluation, and sign extraction for ST. Second row: amplitudes of DCT,
SQF, GET, and ST (from left to right). Third row: respective reconstructions. Bottom
row: respective amplitude-weighted reconstructions of a real image

Table 1. SNR of reconstruction and orientation error from estimates, cf. Fig. 3

method| DCT | SQF | GET | ST
SNR 12.8dB|13.7dB|13.5dB|11.1dB
A0 19.6° | 18.5° | 7.0° | 3.6°

are summarized in Tab. 1, which shows that if we are interested in simultaneously
estimating orientation and phase, the GET gives the best results.
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3.2 Complexity Analysis

The computational complexity might also be an important aspect when it comes
to the selection of suitable methods. Since the extraction of phase and orientation
has to be done in all cases, we only compare the complexities up to that point.

The complexity of the DCT-based method is given by ten 2D FFTs [11], since
we have to compute three scales. Hence, we obtain 30N?log, N floating point
operations (FLOPs) for an image of size N x N if N is a power of two. For our
test image we have N = 128, such that we applied about 3.4 - 106 FLOPs.

For the SQF filter set, the complexity depends on the filter size. In our ex-
periment, we used three 23 x 23 filters. The filters are not separable, but we can
exploit a four-fold symmetry for the even filter and an eight-fold symmetry for
the odd filter pair. Hence, we end up with 1850N2 FLOPs, which is about 3-10”
FLOPs in our test.

For the GET operator, the complexity also depends on the filter size. In
our experiment, we used 2o-truncation (for the largest scale) resulting in seven
17 x 17 filters. These filters are separable and each of the 1D filters can exploit a
two-fold symmetry. Hence, we get 357N2 FLOPs, i.e., 6-:10° FLOPs in our special
case. For the structure tensor, the computational effort is about the same if we
take into account the calculation of the sign (bandpass filter and median filter).

One problem with these complexity estimates are the missing complexities
for memory accesses, which become more and more important nowadays. As
an side-effect of this, the SQF filters are 1.5 times faster than the DCT based
method and the GET operator is 2 times faster than the SQF filters.

4 Conclusion

In this paper we have described an alternative way of extracting the image
features of the monogenic signal, i.e., local amplitude, local phase, and local
orientation, by using a quadratic form. The proposed method of the gradient
energy tensor is the contraction of a fourth order tensor built from image deriva-
tives of order one to three. The new tensor is compatible to the structure tensor
concerning eigensystem analysis, but it is phase-invariant without spatial aver-
aging. Using Gaussian regularization of the derivatives leads to a connection of
monogenic scale-space and Gaussian scale-space via the quadratic form.

We provided formulas to extract the local phase from the two different parts of
the GET, and compared the extracted features phase and orientation to those of
previous approaches. Considering both estimates at once, the GET provides the
best estimates and it is also among the fastest operators. For non-simple signals,
it even provides the two additional features of second eigenvalue and second
phase, which makes it comparable to the much slower structure multivector.
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Abstract. Matrix-valued images gain increasing importance both as the
output of new imaging techniques and as the result of image process-
ing operations, bearing the need for robust and efficient filters for such
images. Recently, a median filter for matrix-valued images has been in-
troduced. We propose a new approach for the numerical computation of
matrix-valued median filters, and closely related mid-range filters, based
on sound convex programming techniques. Matrix-valued medians are
uniquely computed as global optima with interior point solvers. The
robust performance is validated with experimental results for matrix-
valued data including texture analysis and denoising.

1 Introduction

In this paper, we are concerned with the processing of images where the value
attached to each pixel or voxel is a symmetric matrix. Image data of this kind
appear in a variety of different contexts in modern image acquisition and pro-
cessing. For example, diffusion tensor magnetic resonance imaging (DT-MRI) is
an upcoming medical image acquisition technique which measures the diffusion
characteristics of water molecules in tissue, yielding valuable insights into the
structure and function of tissues, particularly fibre connectivity in the brain [13].
Moreover, structure tensors arise as derived quantities in motion detection, tex-
ture analysis and segmentation and other fields of image processing [8]. Tensor
data also occur in solid and fluid mechanics. The latter can have eigenvalues of
either sign while diffusion tensors and structure tensors are positive semidefinite.

All of these data, be they directly measured or computed, are often degraded
by noise. One of the basic tasks in matrix-valued image processing as in other
fields of image processing is therefore denoising. A simple but effective denoising
filter is the matrix-valued median filter introduced in [18]. Based on generalising

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 204-216, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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the minimisation property of the scalar-valued median, it inherits from its scalar
counterpart the robustness and capability to preserve discontinuities. To com-
pute matrix-valued medians, in [18] a gradient descent algorithm was proposed.

In this paper, we introduce a new and efficient algorithm for the computa-
tion of matrix-valued medians according to the (slightly generalised) definition
from [18]. The new approach is based on convex conic programming methods
and can easily be adapted to closely related problems like the computation of
matrix-valued mid-range filters. We apply the new algorithm to DT-MRI data
to demonstrate its use. Furthermore, we use matrix-valued medians to smooth
structure tensor data from textured grey-value images as a preprocessing step
for texture segmentation.

We proceed as follows. In Section 2 we describe the local matrix-valued image
filters that we are concerned with. Sections 3 shows how these filters can be
rewritten as convex optimisation problems which are then solved in Section 4.
Experiments on DT-MRI data and local orientation estimation of grey-value
images are presented and discussed in Section 5. Conclusive remarks are given
in Section 6.

Related Work. Median filtering of matrix-valued data is closely related to that
of vector valued data. Indeed, the definition from Welk et al. [18] has an obvious
vector-valued analog. For earlier approaches to vector-valued median filtering in
the image processing literature we refer to Astola et al. [1] and Caselles et al.
[7]. While Caselles et al. [7] require that the median has always to be one of
the given data vectors, Astola et al. [1] relax this condition somewhat while the
definition given in [18] does not make such a restriction at all. Barni et al. [3]
define a vector median using the Euclidean distance sum minimisation similarly
as [18], but again restricted to the given data vectors. Interestingly, the exact
analog to the definition from [18] for 2-D vectors has already been proposed in
1959 by Austin [2] along with a graphical algorithm which is closely related to
the gradient descent procedure from [18]. The problems of this procedure and
improvements have been discussed in Seymour’s 1970 reply [15]. Vector-valued
medians as well as vector-valued mid-range values (often called 1-centres) have
also been studied in the context of facility location problems, see e.g. Megiddo
[12], Fekete et al. [9] and the references therein.

The concept of the structure tensor goes back to Forstner and Giilch [8]. It is
common in image analysis to smooth the rank one matrices which arise directly
from the gradient vectors in single points by Gaussian convolution which leads
in general to rank two matrices which integrate directional information from a
neighbourhood and suffer less from noise sensitivity. The observation that the
Gaussian convolution used in this process is essentially a linear diffusion of the
directional information, thus introducing a blurring that is unwished at times,
led to the definition of a nonlinear structure tensor by Weickert and Brox [17], [6]
in which Gaussian convolution is replaced by nonlinear diffusion. For its better
preservation of discontinuities, the nonlinear structure tensor is well-suited for
texture segmentation [4], [14] and optical flow analysis [6]. Smoothing structure
tensors with medians is also related to the robust structure tensor introduced by
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van den Boomgaard and van der Weijer in [16] and which for a particular choice
of the penaliser function o also amounts to a minimisation similar to that in the
matrix-valued median.

Regarding convex programming, all concepts we use can be found in cor-
responding textbooks (e.g., Boyd and Vandenberghe [5]). Recently, these op-
timisation methods have been also successfully applied to various other image
processing problems by Keuchel et al. [11].

Notation and Preliminaries. Throughout the paper, e denotes the vector
(1,...,1)T € R™. By I; we denote the d x d unit matrix. Further, £ is the

convex cone of vectors {z € R | xq > \Jat+ -+ 2%} while S is the linear

space of symmetric d x d real matrices. The i*? eigenvalue of X € S in the order
A(X) > -++ > Ag(X) will be denoted by X;(X). Finally, by S¢ we mean the
convex cone of positive semidefinite symmetric matrices {X € S | Aq(X) > 0}.

2 Problem Statement: Local Matrix Filters

Given n real numbers ay, ao, ..., a,, their median is defined as the middle value
in the sequence that contains all the numbers ordered by size. The median con-
cept gives rise to a class of image filters, called median filters, which are known
for their outstanding capability for edge-preserving denoising of images. Median
filtering of a discrete grey-value image requires the specification of a pixel mask,
the so-called structure element, which is used to select a neighbourhood for each
pixel. The new grey-value of each pixel is taken to be the median of the old grey-
values of all pixels within its neighbourhood. Median filtering can be iterated,
thereby performing a progressive edge-preserving smoothing. This can be com-
pared to the approximation of the (non-edge-preserving) Gaussian smoothing by
iterated box averaging.

The matrix-valued generalisation of median filtering introduced in [18] is
based on an interesting energy minimisation property of the scalar-valued me-

dian: The median of aj,as,...,a, is exactly the real number x for which
S, |z — a;| is minimal. The median of n matrices Ai,..., 4, € 8% is then
defined as

med(A;,...,A,) = argmin y c g Z d(X, A;)

i=1

where d is a suitable, rotationally invariant metric on S¢. In [18], the Frobenius
norm was used,

AKX A = [1X = Aills = (X = A)(X - )]
another possible choice is the spectral norm,

d(X, A;) = [X — 4| = ,jrllaXdP\i(X - A
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Interestingly, the so-called mid-range value of real numbers ay,as,...,a,
which is defined as the arithmetic mean of their maximum and minimum, can
be described by an extremality property very similar to that of the median —
instead of the sum of the distances |z — a;|, their maximum is minimised. The
transfer to matrices is therefore straightforward. We define

midr(Ay,..., A,) := argminy ¢ g max {d(X, 41),...,d(X, 4,)}

with the same requirements for d as in the case of the median. Midrange filtering
is less attractive by itself but stands in close relation to other matrix filters.

3 Convex Optimisation

In this section, we show that each filter introduced in the previous section is
defined as global optimum of a convexr optimisation problem.

3.1 Median Filter: Frobenius Norm

We consider the optimisation problem:

medp(4y,...,4,) = argminxgstHX—Ang (1)
i=1

and identify the unknown matrix X € S? with a vector X € R, Introducing n

additional variables t = (t1,...,t,) ", we rewrite (1):
Xegggew@,t% [X—Aillo<t;, i=1...,n (2)

. . . . 2
Each constraint is convex, because (X ',#;)T varies in the convex cone ﬁf +

translated by (A;'— ,0)T. Denoting the corresponding convex constraint sets with
C;, i =1,...,n, problem (2) reads:

X n
inf t C; 3
et (V)N Q

This optimisation problem is convex, since the objective function is linear, and
since the intersection of convex sets is convex, too.

3.2 Median Filter: Spectral Norm

We consider the optimisation problem:

medg(Ay,...,4,) = argminXGSdZ\X — A4 (4)

=1
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Similarly to section 3.1, we introduce auxiliary variables ¢ € R™ and correspond-
ing constraints:
|X—Ai|§ti, 7::1,...,71

These constraints are satisfied if
tilg— (X —A4;) €St and I+ (X —A;) e ST, i=1,...,n

Again, the variables (X, ;) are constrained to convex sets, defined by the inter-
section of affine sets (left hand sides) with the convex cone S¢. Denoting the
constraint sets with C; +, C; _, i =1,...,n, we can rewrite problem (4):

min  (e,f) (f) € (i (Cip NCil) (5)

Xe8d teRn

This optimisation problem is convex, since the objective function is linear, and
since the intersection of convex sets is convex, too.

We remark that for positive semidefinite data A; € Si, i =1,...,n, the
constraints represented by the sets C; _ are redundant and can be dropped.

3.3 Midrange Filters
For midrange filters defined by

midr(Ay, ..., A,) = argminy ¢ ga max {d(X, 41),...,d(X, A,)} , (6)

we introduce the scalar auxiliary variable ¢t := max {d(X,Al), oo d(X, An)}
Similar to the derivation of (3) and (5), problem (6) results in two convex opti-
misation problems, depending on which norm we choose. We focus on the median
filters in the remainder of this paper.

4 Convex Programming and Duality

We represent the optimisation problems defined in the previous section as convex
programs. This allows to implement matrix-valued median filters using corre-
sponding numerical interior-point algorithms. The corresponding dual programs
reveal that solutions automatically satisfy plausible conditions whose direct com-
putation (without convex programming) would be more involved.

4.1 Convex Conic Programs

Conic programs generalise linear programs by replacing the standard cone R’}
with more general convex cones K:

igf(c,x), Fr—gek (7)
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The corresponding dual conic program reads:!

sup(g,y), Fly=c, yek (8)
Yy

If at least one of these problems is bounded and strictly feasible, then {x,y} is
a pair of optimal solutions if and only if the duality gap is zero:

(¢;x) = (9,9) 9)

4.2  Medians as Conic Programs
We consider problem (1) and identify again matrices X, 4; € S¢ with vectors
X, A; € RT. (2) and (3) corresponds to (7):

inf (e,) F<f>—gezc, (10)

XeR4? teRn

where F' and g are obtained by stacking the matrices resp. vectors

(éﬁ%%") and (%’), i=1,...,n

together, e; is the i-th unit vector, and K = £&° 1 x .. x L4+,
Below, X € 8%is again regarded as a matrix. Problem (4) or (5), respectively,
directly lead to (7), formulated as semidefinite program:

X 2
inf 1), bject to F —Gesmd 11
XeslgteRn@ ) subject 2o (t> + (11)

with the linear mapping:
F(X,t)=Diag{....t;:Jg— X,... . t;}Is+ X,...} (12)

and:
G =Diag{...,—4;,...,+4;,...} (13)

4.3 Dual Programs and Optimality Conditions
Evaluating (8), the conic dual program to (10) reads:

sup > (Vi Ai), Y Yi=0, [Vil2<1, Vi (14)
YieR 57 i=1

! In general, conic duals are defined w.r.t. dual cones K.. In this paper, however, we
consider only self-dual cones K. = K.
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Since (}"i, Y;, X) = 0, we can rewrite the objective function as Y., (Y;, A; —
X). Using (9), we obtain:

Z 1X — Ail2 = Z(Yi,Ai - X)

i=1
The constraints ||Y;||2 < 1 suggest as solution to (14):
A—X

i =—, t=1,....n

[Ai — X[|2

Inserting this into the constraint ., ¥; = 0 yields the stationarity conditions
of the original problem (1):

Z ||X i =" (15)

Using this condition for the computation of X, however, leads to a non-trivial nu-
merical optimisation problem, the need of choosing suitable damping parameters
to achieve convergence, and differentiability problems in cases where the median
X coincides with some data point A; (in this case, the corresponding term in
(15) is ill-defined, whereas Y; in (14) is not). In contrast, all these problems can
be avoided by the convex programming formulation presented above.

In order to compute the dual program to (11), we first have to clarify
the meaning of F'T in (8) for the mapping F in (12). According to (12), the
mapping Fz = ) .z F; defines elementary matrices F; for each single vari-
able z; = X or z; = t;. F' in (8) is then given by the adjoint mapping?
F*Y = (...,(F;,Y),...)". Computing the dual program to (11) then results —
analogously to (12) and (13) — in a block-diagonal matrix of the dual variables:

Y = Diag{Y,,..., Y, ,Y;",..., Y. }
and, using the definition

Y, =Yt -V~

7 K3 ?

Vi,

to the optimisation problem:

bupZn,A ZY—O te[V;P+Y, =1, Y,eSt, Vi (16)
Yiesd [ 4

Note the similarity of (16) and (14). Using the same reasoning as after (14), we
obtain:
Z\X A= YA - X)
i=1

2 (F;,Y) denotes the matrix inner product tr[F;" Y].
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Again, the dual matrices Y; seem to play the role of normalised gradients of the
original objective function (4). Because the spectral norm |- | is non-smooth,
it is not obvious how to make this more explicit. More important, however, are
the computational advantages of the convex programming formulation presented
above, as compared to directly optimising (4).

5 Experiments and Discussion

In our first experiment (Fig. 1) we demonstrate the capability of matrix-valued
median filtering to remove outliers from structure tensor data. The photograph
(a) shows a texture with randomly interspersed inhomogeneities. The outer prod-
ucts VuVu ' have been computed by 3 x 3 derivative-of-Gaussian (DoG) filters
and smoothed with a 15 x 15 Gaussian mask. In (b) a subsampling of the re-
sulting matrix field is shown. Outliers are removed from this matrix field by
applying a 7 x 7 median filter (with Frobenius norm) as can be seen in (c).

Fig.1. Left to right: (a) Image containing oriented texture with inhomogeneities.
(b) Structure tensors computed by smoothing the outer products VuVu' with 15 x
15 Gaussian. The gradients themselves have been calculated by 3 x 3 derivative-of-
Gaussian filtering. The final matrix field has been subsampled for visualisation. (c)
Result of median filtering of (b) with 7 x 7 structure element and Frobenius norm
(subsampled)

il

Fig. 2. Left to right: (a) Synthetic image with oriented textures, inspired by [16]. (b)
Local orientations computed via DoGs and visualised as grey-values. (c¢) Orientations
after median filtering of the orientation matrices with Frobenius norm and a disk-
shaped structure element of diameter 7. (d) Same with structure element of diameter
9. (e) Spectral norm median filtering, diameter 9
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Fig. 3. Top, left to right: (a) Test image with 20 % impulse noise. (b) Orientation
field of (a). (c) Structure tensor orientation obtained by Gaussian smoothing of the
outer product matrices with standard deviation 19. (d) Same after median filtering
with Frobenius norm and disk-shaped structure element of diameter 9. (e) Median
filtering of (a) with Frobenius norm and disk-shaped structure element of diameter
19. Bottom, left to right: (f) Test image perturbed by Gaussian noise of standard
deviation 0.2 (where grey-values vary between 0 and 1). (g) Orientation field of (f).
(h) Structure tensor orientation as in (c). (i) Median filtering as in (d). (k) Median
filtering as in (e)

In the following experiments we show the application of matrix-valued median
filtering in the context of texture analysis. The synthetic test image in Fig. 2 (a)
contains two oriented texture regions separated by a sharp edge. We compute the
gradient Vu at each pixel using a 3 x 3 DoG filter and the outer product matrix
VuVuT (of rank one) which estimates the local orientation. We visualise the
orientations of the principal eigenvectors by mapping angles directly into grey-
values (b). The direct transitions between black and white at image boundaries
and along the texture edge are caused by the fact that black and white in fact
represent orientations which are very close to each other because of the cyclic
nature of angles. Median filtering of the outer product matrices yields new matrix
fields. We visualise their orientation in the same way as before (c—e). Juxtaposing
orientation fields obtained with Frobenius norm (d) and spectral norm (e) shows
that the two distance measures yield no significantly different results. In the
following we therefore restrict ourselves to the Frobenius norm.

Let us turn now to investigate orientation estimation in noisy images. Fig. 3
shows two noisy versions of the test image (Fig. 2 (a)) together with their local
orientation estimates. Each orientation matrix field is then smoothed by matrix-
valued median filtering. For comparison, we show also the orientation of the
standard structure tensor obtained by Gaussian smoothing of the orientation
matrices. While in (a—e) impulse noise is shown where the grey values at 20 % of
all pixels have been replaced with random values from [0, 1], images (f-k) show
perturbation by Gaussian noise. While for impulse noise the median filter de-
noises orientation better and also better preserves the discontinuity, the removal
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Fig.4. Top, left to right: (a) Median filtering of local orientation derived from

ekl s

normalised gradients of Fig. 3 (a) with Frobenius norm and disk-shaped structure
element of diameter 9. (b) As (a) but with structure element of diameter 19. (c) Median
filtering without normalisation of gradients as in Fig. 3 (d), iterated four times. (d)
Median filtering with normalisation, structure element of diameter 5, iterated five times.
(e) Orientation estimate from Boomgaard—Weijer’s robust structure tensor, parameters
(see [16]) m = 0.05, s = 5. Bottom, left to right: Filtering of Fig. 3 (f). (f) Median
filtering (Frobenius norm) with normalisation, structure element of diameter 9. (g)
Same with diameter 19. (h) Filtering as in Fig. 3 (i), iterated five times. (i) Median
filtering with normalisation, structure element of diameter 15, iterated four times. (k)
Boomgaard—Weijer’s robust structure tensor, m = 0.05, s =9

for Gaussian noise is still less satisfactory. Increasing the size of the structure
element reduces noise at the cost of blurring also the discontinuity and round-
ing corners, see Fig. 3 (e, k). We are therefore led to propose two modifications
which improve the quality of the orientation estimation by median filtering in
the case of noisy images.

The first modification is to normalise the gradients before computing the
outer products and applying the median filter. This leads to a sharper represen-
tation of the discontinuity in the case of impulse noise as shown in Fig. 4 (a, b).
With Gaussian noise, however, only a marginal improvement is achieved (f, g).

Our second modification is to iterate median filtering. While the improvement
achieved for the impulse-noise image is comparable to that of the normalisation
procedure, see Fig. 4 (c), it outperforms it in the case of Gaussian noise as shown
in (h). Compared to a single median filtering step with the same structure el-
ement, corners are rounded slightly more but less than with a single step with
larger structure element. The sharpness of the discontinuity is not reduced con-
siderably compared to a single iteration while noise is removed more effectively.

Both presented modifications can be combined: In case of impulse noise, see
Fig. 4 (d), the edges are sharpened and the corner is reconstructed more precisely.
However in connection with Gaussian noise, as in Fig. 4 (d), this combination
cannot improve the results.
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Table 1. Average angular errors (AAE) for orientation estimation. Values in brackets
are method-specific parameters: for median filtering, diameter of structure element and
number of iterations; for Boomgaard—Weijer method, m and s (see [16])

Method AAE AAE AAE
undisturbed impulse noise Gaussian noise
gradient direction 3.387° 20.612° 31.429°
Frobenius median 1.591° (7, 1) 1.914° (9, 4) 3.207° (9, 5)
Frobenius median, norm.| 1.312° (7, 1) 1.655° (5, 5) 3.434° (15, 4)
Boomgaard—Weijer 1.634° (0.1, 3)| 1.489° (0.05, 5)| 3.657° (0.05, 9)

The smoothing of outer product matrices by iterated median filtering can be
interpreted as computation of a robust structure tensor. When computing classi-
cal structure tensors as in Fig. 3 (¢, h), the outer product matrices are smoothed
by Gaussian filtering, thus by linear diffusion. Nonlinear structure tensors as es-
tablished by Weickert and Brox [17] use instead nonlinear diffusion to achieve a
better representation of orientation discontinuities. The robust structure tensor
introduced by van den Boomgaard and van der Weijer [16] smoothes the outer
product matrices by minimising an energy in which a function g is applied to
matrix distances. In the case o(s) = s, their robust structure tensor is similar
to a single step of median filtering, with the difference that not a sharp struc-
ture element but Gaussian weights are used. In our filtering procedure, iterated
matrix-valued median filtering takes the role of the smoothing process. This is
primarily a change in theoretic perspective since it means that linear filtering is
replaced by robust filtering more consequently. Orientation estimates obtained
by Boomgaard and Weijer’s method are shown in Fig. 4 (e, k). In Table 1, we
compare the different orientation estimation methods by their average angular
errors. As the experiments show, both types of robust structure tensors yield
comparable results.

6 Conclusion and Further Work

In this paper, we have introduced a novel numerical algorithm for the com-
putation of matrix-valued median filters which in their basic form have been
introduced in [18], and for closely related mid-range filters. This algorithm is
based on convex programming ideas. It uses interior-point techniques to com-
pute the filtered matrices as global optima. Further, we have demonstrated the
application of matrix-valued median filtering as a discontinuity-preserving de-
noising technique for orientation data obtained from grey-value images with
oriented textures. It has become evident that median filtering of local orienta-
tion matrices is an attractive alternative to Gaussian—smoothed structure ten-
sors. It also leads in a natural way to a concept of robust structure tensor
in which matrix-valued median filtering takes the role of the smoothing pro-
cess.
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Future work will include the embedding of matrix-valued median filtering

into texture segmentation procedures. Moreover, it will address a better under-
standing of the properties of the so defined type of robust structure tensor and
its comparison to the already existing concepts of nonlinear and robust structure
tensors.
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Abstract. Retinex theory deals with the removal of unfavorable illu-
mination effects from images. This ill-posed inverse problem is typically
regularized by forcing spatial smoothness on the recoverable illumina-
tion. Recent work in this field suggested exploiting the knowledge that
the illumination image bounds the image from above, and the fact that
the reflectance is also expected to be smooth. In this paper we show how
the above model can be improved to provide a non-iterative retinex algo-
rithm that handles better edges in the illumination, and suppresses noise
in dark areas. This algorithm uses two specially tailored bilateral filters
— the first evaluates the illumination and the other is used for the com-
putation of the reflectance. This result stands as a theoretic justification
and refinement for the recently proposed heuristic use of the bilateral
filter for retinex by Durand and Dorsey. In line with their appealing way
of speeding up the bilateral filter, we show that similar speedup methods
apply to our algorithm.

1 Introduction

Retinex theory deals with the removal of unfavorable illumination effects from a
given image. A commonly assumed model suggests that any given image .S is the
pixel-wise multiplication of two images, the reflectance R and the illumination
L,ie., S = R-L. Alook-up-table log operation transfers this multiplication into
an addition, resulting with s = log(S) = log(L) + log(R) = £ + r. Clearly, the
recovery of £ from s is an ill-posed inverse problem. Solving it is typically done by
introducing a regularization that forces a spatial smoothness on the recoverable
illumination. Thus, early heuristic and successful retinex methods, such as the
homomorphic filtering algorithm [1] and many others (e.g., [2, 3,4, 5]), proposed
a low-pass filter on s, or an algorithm that amounts to this effect, to obtain a
rough estimate of £. In this paper we refrain from reviewing this literature, and
limit our approach to this topic by building upon a recent study presented in [6].

The work in [6] describes several improvements to the classical retinex models.
One improvement refers to the passivity of the reflectance, assumed to satisfy
0 < R < 1. As a direct consequence we have that L > S, implying that the
illumination image should be an envelope image bounding .S from above. Due to
the monotonicity of the log operation we have £ > s. Merging the above with the
desire to get spatially smooth £ may lead to the trivial and meaningless result of

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 217-229, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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a constant image, £ = max(s). The remedy, as proposed in [6], is to assume that
[I[€ — s||2 should be small, implying that ¢ should upper envelope s while being
close to it. Based on these modifications, the reconstruction of the illumination
can be posed as the following quadratic programming (QP) problem

. 2 2 2
min A€ = sl3 + {IDofll5 + Dy el (1)

The operators D, and D, represent horizontal and vertical discrete derivatives,
forcing this way spatial smoothness.

A second ingredient introduced in [6,7] is a smoothness penalty forced also
on the reflectance image r = s — £. This added to (1) gives

min A€ = sll3 + {IDal3 + D, 403 } + o {IDa(s = 013 + Dy (s — 013} (2)

Note that, since s = £+ r is enforced, the new term contradicts the illumination
smoothness, as r and £ cannot be jointly smooth. Thus, the effect is to gain some
smoothness in r at the expense of losing some of it in £. The justification for this
is the desire to lead r to be “nice-looking”, as natural images should be.

Based on the above model, an efficient multi-scale algorithm has been pro-
posed in [6] to estimate ¢ and thus r. The work in [7] used the same model
to propose a simplified estimate solvers based on known implementation con-
straints. More recently, [8] further simplified the computation of ¢ by introducing
a spatial recursive smoothing filter.

While the above model is general enough and covers the correct forces to be
used in the solution of the retinex problem, it has several flaws:

— Hallows: A commonly encountered artifact with retinex algorithms is the
existence of hallows. This is a direct consequence of the smoothness assump-
tion discussed above. When passing from a strongly illuminated region to a
dark zone (e.g., on a border of a shadowed area), the smoothness forces the
illumination to remain high in the dark region near this edge and smoothly
descend to grasp the illumination within the dark region. Thus, when re-
moved, the dark regions near such edges remain dark, resulting with these
hallow effects. Such effects can be also obtained in the bright areas near such
illumination edges, if the constraint ¢ > s is not practiced. Then those bright
areas become further brighter.

— Noise: In dark regions of the image these retinex algorithms are expected
to yield a contrast stretching, very much similar to the effect caused by
standard Gamma correction. The stretching causes a magnification of the
noise, and this becomes evident especially in low-quality images, or ones
with noticeable compression. The constraint s = £+ r implies that the noise
migrates as a whole to the two ingredients, rather than being suppressed.

— Iterative Solution: The above model formulation leads naturally to the
need for an iterative solver. The work in [7] and [8] bypassed this limitation,
but with a price on the final outcome’s quality.
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In this paper we propose an alternative model for retinex, and a numerical
algorithm that builds on it. The new model is similar to the one in (2), in the
sense that all the presented forces are included. However, this new model is
enhanced to solve the above mentioned shortcomings.

More specifically, smoothness of the illumination and the reflectance are
forced using a robust statistics method, and hallows are avoided. The smooth-
ness terms used are very much in the spirit of the bilateral filter [9, 10], having a
wide stencil effect that enables avoiding the need for an iterative or multi-scale
solver. We use different smoothing formulation for the reflectance and the illu-
mination to handle them differently, and absorb the constraint ¢ > s in a natural
way. This leads to a two-stage algorithm that applies two variations of the bilat-
eral filter, first estimating the illumination, and then the reflectance. The new
model suppresses noise by allowing ¢ 4 r to deviate from s, implying that the
residual should be the additive noise we want to discard of. The new model and
accompanying algorithm stand as a theoretic justification and refinement for the
recently proposed heuristic use of the bilateral filter for retinex as appeared in
[11]. In line with their appealing way of speeding up the bilateral filter, we show
similar speedup methods for our two bilateral filter variations.

This paper is organized as follows: Section 2 presents the bilateral filter
that this work is building on. Section 3 then turn to describe the new model
for retinex, and the algorithm that emerges from it. Speedup methods are dis-
cussed in Section 4. Section 5 presents some results, and Section 6 concludes this
paper.

2 Denoising by the Bilateral Filter

In this Section we present the bilateral filter, designed for the removal of additive
noise from images [9]. We also discuss its origins as described in [10, 11,12, 13].
These will serve us as we turn later to consider the retinex problem.

Consider an image s contaminated by additive noise. Our goal is to develop
an edge-preserving smoothing algorithm that effectively removes most of the
noise while preserving the image details. A maximum a-posteriori probability
(MAP) formulation of this problem as presented in [10] yields

msjn A ||§ - SHS + Z Z m, 715 )TW[m,n](S) (Cm,n§ - 5) . (3)

m=—P n=—P

The operators C,, ,, are shift operators, moving the image § by m pixels hori-
zontally and n pixels vertically. The matrices W, ,,) are diagonal matrices that
down-weight large edge entries in s so as not to smooth over edges of the image.
The choice Wi, ,)(s) =1V m,n leads to the non-robust option that makes the
overall problem QP as in (2). Choosing these weights to be inversely propor-
tional to |C,, ns — s| leads to the ability to handle edges in the image better.
Note that using weighting here parallels the use of robust statistics - more on
this relationship and can be found in [10,12].
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The fact that smoothness is forced in a wide neighborhood implies that even
a simple iteration to minimize this functional will be very effective. Indeed,
the work in [10] established that the bilateral filter as presented by [9] is an
approximate solver of this programming task. More specifically, it was shown
that the bilateral filter amounts to a single Jacobi iteration over this penalty
term. Here we briefly show this property and its meaning. The Jacobi step is
constructed using the gradient and the diagonal of the Hessian of the penalty
function in (3). The gradient is given by

81@;2@} =2\(E-5)+2 Y > (Con =D Wi y(5) (Crun =D 5. (4)

m=—P n=—

The Hessian of F' is given by

2F{3
9 FA{ } =2MI+2 Z Z W[m n]( )(Cm,n -1). (5)

032
m=—Pn=—P

Denoting the main diagonal of the Hessian as the matrix 0.5M(s)!, and assuming
an initialization § = s, the first Jacobi iteration to minimize F' gives

. diag{ 02F {5} | } ' az:;{;}

082
[I B Z Z B W[m=n]<5) (Crn —I)| 5.

(6)

>
—

S§=s

m=—Pn=—P

The above represents an operator that multiplies the image s. This operator
applies a weighted sum of the input pixels in a stencil of (2P + 1)-by-(2P + 1)
pixels to compute the output, and these weights are dependent on W[myn](s)
and the local differences between the center pixel s[k, j] and its neighbors s[k —
m, j —n]. Thus, this is a spatially adaptive FIR filter of some sort. In [10] it was
shown that if the [m, n| weight at the pixel [k, j] is chosen as

‘):p’{s[hj]—s[k—m,j—n

I}
slk, 7] — sk —m,j —n] ~Vim,n}, (7)

W[m,n](kv

then we obtain the very filter that Tomasi and Manduchi proposed in [9]. For this
equivalence we have to choose A = 1, p(z) = 1—exp(—22/20?), and V [m, n] being
a Gaussian kernel. Still, we can consider many other robust functions and weights
V[m,n] that give a filter very much in line with the spirit of the bilateral filter.
Interestingly, this filter is a discrete version of the short-time effective kernel of
the Beltrami flow as discussed in [14, 15]. This implies that this algorithm has
deep roots in the geometric understanding of images as manifolds.

! The additional 0.5 comes to null the factor 2 in the gradient term.
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While the above analysis is helpful in understanding the origins of the bilat-
eral filter, it is hard to understand how it is applied in practice. As shown in [9],
the effective filter computes every output pixel $; [k, j] by

P

Z Zamnkzg slk—m,j—mn], (8)

m=—Pn=—P

. . 2
exp (_ m;;éyﬂ _ (s[k,j]fs[;i;?m,gfn]) )

7l J] -0

where alm,n, k,j| =

The term Z[k, j] normalizes these weights to sum to one. This filter assigns per
every neighbor a weight inversely proportional to its Euclidean distance (m?+n?)
and inversely proportional to its distance in gray-value from the center pixel. The
parameters o, and o5 governs the behavior of the filters - more on those can be
found in [9, 10].

3 Retinex by Two Bilateral Filters

In this section we present the new model for the retinex problem that uses the
bilateral smoothness term. We use this model to develop the two bilateral filters
that compose our novel retinex algorithm.

Hallows in the retinex result could be avoided by allowing ¢ to be piece-wise
smooth. This could be easily accomplished by replacing the terms ||D$€||§ +
||Dy€\|§ with [|[Dgf||; + [[Dy£|,, TV [16], or any other robust statistics based
penalty, and there are numerous options of the like. However, adopting such
local terms implies a need for many iterations in the numerical solution. Thus,
we consider instead the bilateral smoothness. For brevity of notations, we denote
hereafter

BW P {l‘} = Z Z m,nL — )T W[mm](s) (Cm,nm - .L“) . (10)

m=—P n=—P

Starting from the quadratic programming problem posed in (2), we propose
the following alternative model for retinex

pmin {0 6= s34+ Bw b {01} +a (A lIr = s+ 05+ Bw,r, (1)} (11)
The first part handles the smoothness of the illumination ¢ and its proximity to
s, while bounding it from above. The second part introduces the smoothness of
the reflectance r, and requires it to be close to the residual image s — ¢£. Thus,
noise can be discarded by becoming the residual s — ¢ — r. Note also that our
notations hints to the fact that we will consider different weights and parameters
in the smoothness terms for £ and r. The formulation given in (11) leads to a
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decomposition that seeks both ¢ and r as unknown, and one does not imply the
other as before.

Instead of optimizing with respect to both ¢ and r in parallel (which is an
option we have not explored in our work, but one that can certainly be addressed
based on the model we have posed), we adopt a two stage process, first estimating
£, based on the first part in (11), and then given ¢, we evaluate 7.

Starting with the quest for ¢, let us attempt to evaluate it such that it ad-
dresses only the first term in (11). Thus, we seek a solution to the problem

. 2
guin A€ = slly + Bw p {2} (12)

Clearly, without the constraint £ > s, the above is equivalent to the problem
posed in (3), and as such, the bilateral filter is an excellent solver candidate.
Thus, the natural question we should pose here is how the constraint should be
accommodated, in a way that preserves the convenience of the bilateral filter. We
propose to introduce a special choice of weights W, that handle the constraint
implicitly. These new weights are based on Equation (7), but using a one-sided
robust function p,

_ [1—exp(—2%/20%) 2 <0
oy ={ 1T 0 (13)
This alternative choice of weights introduces a simple modification to the bi-
lateral filter, where, among the (2P + 1)-by-(2P + 1) neighbors per each pixel,
we consider only those that satisfy s[k, j] < s[k —m,j — n]. This way, the local
averaging is done with non-negative normalized weights, while combining only
pixels that have higher gray values than the center pixel, resulting with a final
outcome that must satisfy ¢ [k, j] > s[k, j]. Thus, this new filter will necessarily
achieve both a satisfaction of the constraint (by virtue of the weights), while
reducing the newly defined penalty term that still considers smoothness as we
desire. We refer hereafter to this filter as the envelope-bilateral filter.

In practice, the above implies that the bilateral filter as presented in section
2 is slightly changed. Parallel to (8) and (9), in the envelope-bilateral filter every
output pixel ¢4 [k, j] is evaluated by

P P

Z Zamnk’j slk—m,j—n], (14)

m=—Pn=—P

where

exp (g — CHI=loma =) sl — m, j — ] = sfk, 1}
Zk, ] '
The notation p{z} stands for the step-function, being 1 for non-negative x and

zero elsewhere. The term Z[k, j] normalizes these weights to sum to one, as
before. Note that from the above description it is clear that if s[k, j] is the peak

alm,n, k, j] =
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of its (2P + 1)? neighborhood, then its filtering amounts to ¢ [k, j] = s[k, ],
since in this case all weights are zero and only a0, 0, k, j] = 1.

Assuming that the above stage has been completed, we have an estimate of
£ and we now turn to evaluate r. We consider the second term in (11), solving

min A, - [|r — (s = O3+ Bw,.p {r}- (15)

Since the image s — ¢ is given, this is the very bilateral filter formulation in (2).
Thus, an application of the bilateral filter on the image s — £ should lead to the
desired r. However, due to the transform to the log-domain, the noise that should
be discarded from the reflectance image resides mostly in the regions where s
is low. Thus, we can better direct the above bilateral filter by using o, to be
inversely proportional to s to reflect this matter. A choice of the form o[k, j] =
(C1 - s[k, j]P + C2)~! could be used to this effect?. Nothing in the definition or
the implementation of the bilateral filter prevents having such spatially adaptive
parameter. This will ensure that r is hardly smoothed in regions where s is bright,
while it is being smoothed in darker regions.

4 Speeding Up the Retinex Algorithm

In their paper, Durand and Dorsey proposed a wonderful speedup algorithm for
the bilateral filter, and this algorithm can be applied directly to both our two
bilateral filter versions. Here we outline the basic ideas of this speedup, starting
from Equation (14), although everything said applies just as well to the second
bilateral filter.

Referring to s[k, j] in these equations as a constant ¢, we can re-write these
equations as

bk, j] =

Z Zexp< m*”). (16)

k
m=—Pn=—P
[ ( (c — s[k —m,j —n])?
1

207 )-N{S[k—m,j—n] —C}S[k—mhj—n]}

= EPJ Z@m( 2+n)-g[k—m,j—n]-

m=—P n=—P

This expression is a convolution between the image g[k, j], being

olhei] = |exp {—(‘2};’”])} sl d] - sl (17)

and the Gaussian blur. Thus, we could apply a sequence of such convolutions,
scanning the values of s[k, j] in the range [0,log, 255], and then merging the

2 Recall that S[k, j] € [1,255] as we shift by 1 to avoid singularities, and we have also
0 < sk, 5] < 5.54.
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results, choosing the proper values from each output, based on the s[k, j] values.
Note that the value of Z[k, j] is given by a similar expression

P P m2 4+ n2
Zlkl= Y, Y exp (;) ulk —m, j —n], (18)

m=—P n=—P
where

(C — S[kaj])z

u[k}7]] = €xXp { 20_2

b ntslh ] - . (19)
Thus, its computation can also be done using a sequence of similar convolutions.

Durand and Dorsey proposed two ways to further speed-up the evaluation
of ¢1: (i) piece-wise linear approximation; and (ii) multi-scale implementation.
The first idea is to scan the values of sk, j] in the range [0, log, 255] with jumps,
and interpolate in between. Practically speaking, using 30 — 50 equispaced jumps
in the range [0, log, 255] are found to induce almost no change to the outcome.
Since our weights include a step-function discontinuity, the interpolation should
be done as a one-sided operation, always preferring to adopt the larger ¢ to avoid
a violation of the ¢ > s constraint. This causes the interpolation to loose some of
of its accuracy, but our experiments show that this lose is mild and unnoticeable.

As to the multi-scale option, since images are convolved in the above expres-
sions with wide-range Gaussian smoothers, a pre down-scale and post up-scale
yield a substantial gain in run-time with almost no change in the outcome. The
gain is especially noticed for wide supports (P > 1, and o5 > 1). On top of
these two ideas, note that the required convolutions required are all separable.
Furthermore, when oy is large enough, the effective convolving kernel is the
square step function. In such a case further speedup can be obtained using the
computation of the integral image [17].

5 Results

An interesting idea reported in [6] is to return some of the illumination to the
reflectance when presenting the final output image. Thus, the output image
is computed as Out = R[k,j] - L[k,5]"/" = S[k,j] - L[k,j]"/7~". Reflectance
images are typically unrealistic looking, and with a modest and reduced effect
of illumination returned to it, the final image enjoys both the desired brightness
and the natural appearance. We have made use of this idea in the following
presented results. The illumination is returned to the original image by applying
Gamma-correction on it using v = 3, and multiplying it back by the estimated
reflectance.

Figures 1-2 present two pairs of original images® and their retinex results. In
these two cases, the use of spatially varying o, has very little effect because the

3 These images and the one in Figure 3 are from the NASA retinex web-page.
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Fig. 2. Example 2 - An original image (left) and its retinex result (right)

Fig. 3. Example 3 - An original image (left) and its retinex results using a regular
bilateral filter for computing r (middle) and using the spatially adaptive o, (right)

images are of high quality, and thus we do not show it. Figure 3 presents results
for a third image, where the dark region is noisy, and thus the two versions
are shown side-by-side for comparison (with parameters p = 8, C; = be —
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Fig. 5. Example 1 - Right: The Input-Output mapping, and overlayed on it is the
Gamma-correction that corresponds to v = 3; Left: The effective Gamma correction
value per pixel

3, Cy = 0.3). We should note that in processing color images we apply the retinex
algorithm to the luminance (V) layer in the HSV color representation, and leave
the chromatic layers unchanged. In all three cases we used the following setup
parameters: the envelope bilateral filter parameters used are Py = 15, o, = 0.3,
and o5 = 100. The second bilateral filter used P, = 4, o, = 0.3 or an adaptive
method as described earlier, and o5 = 100. The speedup algorithm was used
with scale down factor of 2 : 1, and grey-value steps of 0.1.

Figures 4 and 5 return to the first example, presenting several accompanying
results. Figure 4 shows the obtained reflectance and illumination results (gray-
value images referring to the V-layer). As can be seen, what we call ‘reflectance’
is far from being satisfactory to describe the image, and indeed there is room
to return of illumination. This Figure indicates that our separation is not per-
fect and there is a leakage between r and ¢. In fact, our ¢ are r stand for large
scale intensity components and small scale corrections, respectively, both esti-
mated with preservation of discontinuities. Still, the final outcome is satisfactory
because of the illumination return.
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Fig. 6. An original image (top), the new retinex algorithm (bottom left), and the one
reported in[6] (bottom right)

Figure 5 describes the Out-to-In correspondence of the overall retinex algo-
rithm, showing that while the retinex process generally resembles a Gamma-
correction effect, is has a different effect of varying Gamma. This idea is further
expanded, showing in Figure 5 the image Yqffoctive = 108 1 n/log Out as a func-
tion of the location. This gives the effective Gamma correction that should be
applied in every pixel to reproduce the obtained result.

The overall improvement in speed introduced by the speedup algorithm de-
pends on many of the parameters that are mentioned above, and on implemen-
tation issues. We compared two efficient implementations of the bilateral filter
- both implemented with Matlab. The first sweeps through the support of the
filter, applying operations on complete images, and the other being the speedup
algorithm mentioned above. For the parameters used here we obtained a factor
of 5 — 10 shorter run time with the speedup algorithm.

Figure 6 presents a comparison between the new algorithm and the one re-
ported in [6] on a severely degraded image?. For this comparison we changed the
color space to YCbCr, and choose v = 2.3 in the illumination return, both done
to match with the alternative algorithm. The results show strong hallows in the
previous method, while those are fully suppressed by our algorithm.

4 Curtesy of Eyal Gordon, The CS department - The Technion.
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6 Conclusion

In this paper we have presented a new model for the retinex problem — removal
of undesired illumination effects from an image. The new model enables a better
handling of edges in the illumination that causes hallow effects, and it enables the
suppression of noise in dark areas. An algorithm based on this model has been
developed, leading to two specially tailored bilateral filters, the first evaluates the
illumination and the second is used for the computation of the reflectance. Our
work stands as a theoretic justification and refinement for the recently proposed
heuristic use of the bilateral filter for retinex by Durand and Dorsey. We have
used their way of speeding up the bilateral to propose a similar speedup methods
for our filters.
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Abstract. We examine the problem of finding the optimal weight of the
fidelity term in variational denoising. Our aim is to maximize the signal
to noise ratio (SNR) of the restored image. A theoretical analysis is
carried out and several bounds are established on the performance of the
optimal strategy and a widely used method, wherein the variance of the
residual part equals the variance of the noise. A necessary condition is set
to achieve maximal SNR. We provide a practical method for estimating
this condition and show that the results are sufficiently accurate for a
large class of images, including piecewise smooth and textured images.

1 Introduction

Variational methods have been increasingly applied for purposes of image de-
noising and restoration (for some examples see [3,6,8,11,12]). The basic concept
is to view the restoration process as a task of energy minimization. Classically,
the restored image is a minimization of a weighted sum of two fundamental
energy terms:

E(U') = Egnooth (u) + )‘Efidelity (U, f)7 (1)

where u is the restored image, and f is the input (noisy) image. Esmootn 1S a
smoothing term which rewards smooth signals and penalizes oscillatory ones.
Efidelity accounts for fidelity, or closeness, to the input image f. The under-
lying assumption is that the original clean image is smoother than the noisy
image. By minimizing both terms we seek a compromise between a smooth so-
lution (often in the TV sense, so edges are preserved) and one which is “close
enough” to the original image. Any minimization of one of the terms by itself
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leads to degenerate solutions which are not interesting (a constant or the in-
put noisy image). The appropriate compromise then highly depends on A, the
weight parameter between these two energies. When it is too low, the restored
image is over-smoothed. When it is too high, w still contains too much noise.
Finding the right value of A for the problem at hand is therefore imperative. A
similar problem has been investigated in regularization theory, in the context of
operator inversion by Tikhonov-type methods (e.g. [4,9]). As we are concerned
with denoising of images (therefore our operator is the identity and the regu-
larization preserves edges), different approaches should be used. In our field of
PDE-base image processing, the problem was seriously addressed by only a few
researchers: by [11] for total-variation denoising and by [7] and [13] for a closely
related problem of finding the right stopping time in nonlinear scale-space. We
refer in this paper only to the variational setting, but our method has shown to
be very effective also for selecting the proper stopping time [5].

An analysis of the optimal parameter choice from SNR perspective is pre-
sented. We examine the widely used denoising strategy of [11] where the weight
of the fidelity term is set such that the variance of the residual part equals that
of the noise. Lower bound on the SNR performance of this strategy is established
as well as a proof of non existence of an upper bound. Examples which illustrate
worst- and best-case scenarios are presented and discussed.

Next, we derive a necessary condition for optimality in the SNR sense. From a
theoretical viewpoint, this facilitates the computation of upper and lower bounds
of the optimal strategy. From a practical viewpoint, the condition suggests the
numerical method that should be followed for the purpose of maximizing the
SNR of the filtered image. An algorithm for parameter calculation is suggested
based on the above condition, resulting in fairly accurate estimates.

2 SNR Bounds for the Scalar ¢ Process

2.1 Denoising Model, Definitions and Assumptions

We assume that the input signal f is composed of the original signal s and
additive uncorrelated noise n of variance o2. Our aim is to find a decomposition
u,v such that u approximates the original signal s and v is the residual part
of f:

f=s+n=u+v. (2)

We accomplish that by finding the minimum to the following energy

Bofu) = [ (@196 +3(7 = w?) de 3)

@ is assumed to be convex in this paper. Some of the following results, though,
can also apply to the more general case of monotonically increasing ®. The
standard condition |, o fd02 = fQ ud{? is set, (corresponding to the Neumann
boundary condition of the evolutionary equations). Then [ o vdzdy = 0, rescaling

A by the area of the domain |2]: A = A|2], we get
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Fa(u,v) :/ B(Vu))d2 + AV(0), =+, (@)

Q
where V(q) is the variance of a signal ¢: V(q) = \9\ fQ )2d$2, and q is
the mean Value q = IKei] f?\ /, o qdS2. The covariance of two 51gnals is defined as:

cov(gq,r) = \Q\ Jola— @) (r — 7)df2. We remind the identity V(g +r) = V(q) +
V(r) + 2cov(q, 7).

Let us denote u* as the solution of (4) for f = z. For example, u® is the
solution where f = s. The decorrelation assumption is taken also between s and
n with respect to the @ process:

cov(u®,n) =0, cov(u™,s)=0, VYA>O0. (5)

We further assume the @ process applied to f = s + n does not amplify or
sharpen either s or n. This can be formulated in terms of covariance as follows:

cov(u®*", s) < cov(f,s), cov(u®t" n) < cov(f,n), VA>0. (6)

Both of the above assumptions were verified numerically on a collection of nat-
ural images. We are investigating the possibility to characterize in an analytical
manner the appropriate spaces of s and n such that (5) and (6) are followed. In
this paper this question is left open and we resort to the following definition:

Definition 1 ((s,n) pair). An (s,n) pair consists of two uncorrelated signals
s and n which obey conditions (5) and (6).

Theorem 1. For any (s,n) pair and an increasing & (@'(q) > 0,Yq > 0) the
covariance matriz of U = (f,s,n,u,v)T has only non-negative elements.

For proof see the appendix. Theorem 1 implies that the denoising process has
smoothing properties and consequently, there is no negative correlation between
any two elements of U. This basic theorem will be later used to establish several
bounds in our performance analysis.

We define the Signal-to-Noise Ratio (SNR) of the recovered signal u as

Vi(s)

SNR(u) = 101og — )~ 1010g Tt (7)

V(u—s)

where log = log;,. The initial SNR of the input signal, denoted by SN Ry, where
no processing is carried out (v = f, v = 0), is according to (7) and (2):

SNRy = SNR(f) = 10log “;((Z)) = 10log Va(j). (8)

Let us define the optimal SNR of a certain @ process applied to an input
image f as:
SNRopt = max SNR(uy) (9)
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where 4 = u attains the minimal energy of (4) with weight parameter A (for
a given f, v is implied). We denote by (wopt, Vopt) the decomposition pair (u, v)
that reaches SN R, and define Vip, = V(vopt).

Equivalently, the desired variance could be set as V' (v) = P, where P is some
constant, and then (4) is reformulated to a constrained convex optimization
problem

min/ &(|Vul)ds2 subject to V(v) = P. (10)
v Jo

In this formulation A is viewed as a Lagrange multiplier. The value A can be
computed using the Euler-Lagrange equations and the pair (u,v):

1 Yu
A= — di P — ds?. 11
P/Q( w)” 1

The problem then transforms to which value P should be imposed.
The strategy of [11] is to assume v ~ n and therefore impose

V(v) = o°. (12)

We define
SNRgz = SNR(U)|V(U):U2. (13)
We denote by (uy,2,v,2) the (u,v) pair that obeys (12) and minimizes (4). We

will now analyze this method for selecting u in terms of SNR.

Proposition 1 (SNR lower bound). Imposing (12), for any (s,n) pair
SNR,2 is bounded from below by

SNR,: > SNRy — 3dB, (14)
where we use the customary notation 3dB for 10log;(2).

Proof. From Theorem 1 we have cov(n,v) > 0, therefore,

SNR,> = 10log V(%j;

V(s
= 101log x;;z)

= SNRy — 3dB. |

The lower bound of proposition 1 is reached only in the very rare and extreme
case where cov(n,v) = 0. This implies that only parts of the signal were filtered
out and no denoising was performed.

Proposition 2 (SNR upper bound). Imposing (12), then there does not exist
an upper bound 0 < M < oo, where SNRy,2 < SNRy+ M, that is valid for any
given (s,n) pair.
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Proof. To prove this we need to show only a single case where the SNR, cannot
be bounded. Let us assume V(s) = ho?, 0 < h < 1. Then SNRy = 10log h. As
signal and noise are not correlated we have V(f) = V(s)+V(n) = (1+h)o?. We
can write V'(f) also as V (u+v) = V(u)+V (v)+2cov(u,v). From (12), V(v) = o2,
and from Theorem 1, cov(u,v) > 0, therefore V(u) < ho?. Since cov(u,s) > 0
(Theorem 1) we get V(u — s) < 2ho?. This yields SNR,2 > 10log § and

1
SNR,2 — SNRy > 10log o
For any M we can choose a sufficiently small h where the bound does not
hold. O

Simulations that illustrate worst- and best-case scenarios are presented in
Figs. 1 and 2. A signal that consists of a single very contrasted step function
is shown in Fig. 1. This example illustrates a best-case scenario for an edge
preserving @. SNR resulting from the PDE-based denoising is greatly increased
(by ~ 20dB). Note that this case approximates an ideal decomposition u & s,
v ~ n which differs from the simple case used in the proof of Proposition 2.
A worst-case scenario is illustrated in Fig. 2 by means of the Checkered-board
example. A very oscillatory signal s is being denoised and, in the process, is
heavily degraded. The reduction in SNR, compared to SN Ry, is ~ 2.9dB, close
to the theoretical 3dB bound.

2
24
22
20

Fig. 1. Approaching best-case scenario in piece-wise constant images. In this example
SNR increases by almost 20dB from 19.9dB to 39.6dB (variance of noise is ~ 145 of
the input noise). From left: f, u, v, SNR as a function of V(v)/o?

195
1of
185
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175

Fig. 2. Approaching worst-case scenario in a checkered-board image. SNR decreases
by almost 3dB from 19.9dB to 17.0dB. From left: f, u, v, SNR as a function of V (v)/o?
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2.2  Condition for Optimal SNR

We will now develop a necessary condition for the optimal SNR. As discussed,
we have a single degree of freedom of choosing V' (v). We therefore regard SNR
as a function SNR(V(v)) and assume that it is smooth. A necessary condition
for the maximum in the range V(v) € (0, V(f)) is:

OSNR
ovV(v)

0. (15)

Rewriting V(n —v) as V(n) + V(v) — 2cov(n, v), and using (15) and (7), yields

dcov(n,v) 1
av(v) 2 (16)

The meaning of this condition may not appear at first glance to be very clear.
We therefore resort to our intuition: let us think of an evolutionary process with
scale parameter V (v). We begin with V°(v) = 0 and increment the variance of v
by a small amount dV (v), so that in the next step V1(v) = dV (v). The residual
part of f, v, contains now both part of the noise and part of the signal. As long
as in each step the noise is mostly filtered, that is % > %, then one should
keep on with the process and SNR will increase. When we reach the condition
of (16), noise and signal are equally filtered and one should therefore stop. If
filtering is continued, more signal than noise is filtered (in terms of variance)
and SNR decreases.

There is also a possibility that the maximum is at the boundaries: If SNR
is dropping from the beginning of the process we have %WW@):O < % and
SNRopt = SNRy. The other extreme case is when SNR increases monotonically
and is maximized when V (v) = V(f) (the trivial constant solution u = f). We
will see later (Proposition 3) that this can only happen when SN Ry is negative
or, equivalently, when V (s) < o2.

In light of these considerations, provided that one can estimate cov(n,v), our
basic numerical algorithm should be as follows:

1. Set cov’(n,v) =0, VO(v) =0, i=1.
2. Vi(v) « Vi=1(v) + dV(v). Compute cov(n,v).

3. If Covi("’vzl;c(%lil(n’v) < % then stop.

4. 1 +— 1+ 1. Goto step 2.

In the next section we suggest a method to approximate the covariance term.

Definition 2 (Regular SNR). We define the function SNR(V (v)) as regu-
lar if (16) is a sufficient condition for optimality or if the optimum is at the
boundaries.

Proposition 3 (Range of optimal SNR). If SNR is regular, then for any
(5,n) pair 0 < Vo < 202,
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Proof. Let us first show the relation cov(n,v) < o2: cov(n, f) = cov(n,n + s) =
V(n)+cov(n,s) = o2. On the other hand cov(n, f) = cov(n,u+v) = cov(n,u)+
cov(n,v). The relation is validated by using cov(n,u) > 0 (Theorem 1).

We reach the upper bound by the following inequalities:

Vert dcov(n, v) Vopt 1 1
0% > cov(n, v)|vpe /0 v (0) dv(v) > /0 2dV (v) 5 Vopt

The inequality on the right is based on that atg)“;((”)”) > 1forV(v) e (0 Vopt)-

The lower bound V,,; = 0 is reached whenever gv( [V (v)=0 < 5 O

Theorem 2 (Bound on optimal SNR). If SNR is regular, then for any (s,n)
pair and Ve € {[0,0%), (02,207},

—101log(1 + Vopi /02 — 24/ Vipt /2), 0 < Vopy < 02
< _ < P /g ’ P
0 < SNRopr = SNRo < { —101log(Vopt /0 — 1), 0% < Vopt < 207

(17)

Proof. By the SNR definition, (7), and expanding the variance expression, we

have

o2

pt 0 Og(a'2 + Vopt — 2cov(n, U‘)pt))

(18)

For the lower bound we use the relation shown in Proposition 3: cov(n, vep:) >

%Vopt. For the upper bound we use two upper bounds on cov(n,vep;) and take

their minimum. The first one, cov(n, Vop:) < 01/ Vopt, is a general upper bound on
covariance. The second relation, cov(n,v.,t) < o2, is outlined in

Proposition 3. d

A plot of the upper bound of the optimal SNR with respect to Vopt/0'2 is
depicted in Fig. 3, left.

In practice, the flow is not performed by directly increasing V(v), but by
decreasing the value of . Therefore, it is instructive to check how V' (v) varies,
as well as the other energies, as A varies. In the next proposition we show that
as )\ decreases the total energy strictly decreases, E,(v) = V(v) increases and

= [ @(|Vu|)d2 decreases.

Proposition 4 (Energy change as a function of )\). The energy parts of
Eq. (4) vary as a function of X as follows:

oA ToN T O

> 0. (19)

For proof see [5].
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3 Estimating cov(n,v)

The term cov(n, v) is unknown, as we do not know the noise, and therefore should
be estimated. We are showing here for the first time a representation of denoising
by a family of curves which connects the variance of the noise, A and cov(n,v)
of pure noise. This can be regarded as some sort of nonlinear statistics of noise
with respect to a specific @ process. It appears that cov(n,v) as a function of
A is almost independent from the underlying image and can be estimated with
quite a good accuracy.

First we need to compute the “statistics” by processing a patch of pure noise
and measuring cov(n,v) with respect to A. This is done a single time for each
noise variance and can be regarded as a look-up-table (see Fig. 3, right). For each
processed image the behavior of A with respect to V(v) is measured. Combining
the information, it is possible to approximate how cov(n, v) behaves with respect
to V(v). In other words, this is simply the chain-rule for differentiation:

dcov(n,v) __ Ocov(n,v) 9

ov(v) 22 oV
@) Bcov(n,v)| @) O\ | (20)
ox  |f=patchjy ()l f=s+n-

N
=]
[
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o

o
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o =
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Fig.3. Left: Visualization of Theorem 2: Upper bound of SNR,,;: — SNRy as a
function of V,,i/0?. For V,, — o the bound approaches co. Right: Precomputed
function dcov(n,v)/O\ plotted as a function of A (log scale). Graphs depict plots for
values of o: 5,10, 15, 20, from upper curve to lower curve, respectively

3.1 Experimental Results

We compare our method for finding A with the standard method of imposing
(12) and with the optimal A, which maximizes the SNR. Six classical benchmark
images are processed: Cameraman, Lena, Boats, Barbara, Toys and Sailboat.
The summary of the results is shown in Table 1. Our method is quite close
to the optimal denoising (less than 0.1dB difference on average) and performs
better than the method of [11].

We used @(s) = v/1+ s2, which can be viewed as the Vogel-Oman [12] reg-
ularization of TV [11] with ¢ = 1 or the Charbonnier [2] process. The image
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Table 1. Denoising results of several images widely used in image processing. The
original images were degraded by additive white Gaussian noise (o = 10) prior to their
processing

Image SNRo|SNRopt|SNR,2|SN Rours
Cameraman || 15.86 | 19.56 | 19.32 19.50
Lena 13.47| 18.19 | 17.65 18.18
Boats 15.61 | 20.23 | 19.83 20.22
Barbara 14.73 | 16.86 | 16.21 16.64
Toys 10.00 | 17.69 | 17.29 17.65
Sailboat 10.36 | 15.51 | 15.16 15.48
Average

difference

from SN Ropt|| 4.67 | 0.00 0.43 0.06

Fig.4. Part of Boats image. Top (left to right): s, f. Bottom (left to right): u by
standard method (V' (v) = ¢?), u by our estimation method. More textural information
is preserved by our method

grey-level range is 1 : 256 so edges are well preserved. Other details about this
experiment can be found in [5].

In Fig. 4 we show example results of processing the Boats image. The main
visual difference from the standard method is that textural information is bet-
ter preserved, as we approach the optimal . In Fig. 5 the terms SNR(u) and
geovin.) are plotted as functions of the normalized variance V (v)/o?. It is ap-
parent that the SNR is smooth and behaves regularly, in accordance with our

assumptions. An interesting phenomenon is that the covariance derivative esti-
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Fig. 5. SNR as a function of V' (v)/a? (left). dcov(n,v)/dV (v) as a function of V (v)/o?
(right), as computed by our estimation method (solid) and the ground truth (dashed).
Graphs depict processing of Toys (top) and Boats (bottom)

mation tends to be more accurate near the critical value of % Naturally, this
is advantageous to our algorithm. We currently have no explanation for this
behavior.

4 Conclusion

Most image denoising processes are quite sensitive to the choice and fine tuning
of various parameters. This is a major obstacle for fully automatic algorithms.
This problem motivated us to develop a criterion for the optimal choice of the
fidelity weight parameter in variational denoising. Our criterion is to maximize
the SNR of the resultant image. Bounds on the SNR as well as on the optimal
variance are obtained. We demonstrate our method on a series of benchmark
images and show that the performance is only slightly worse than optimal (less
than 0.1dB difference).

We should comment that the SNR criterion is not always in accordance with
human-based quality evaluations. Other, more sophisticated criteria, may also
be applied for parameter selection using the spirit of the method presented here.

The basic ingredients of the proposed method, namely the covariance con-
dition (16) and its estimation (20), are quite universal and do not depend on
the specific denoising algorithm. The method was generalized for selecting the
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stopping time in nonlinear diffusion [5] and for regularizations based on BV and
Hilbert-space norms [1].

A Proof of Theorem 1

We present the main steps of the proof. A full version is given in [5]. Since
cov(q,r) = cov(r,q), the matrix is symmetric. The diagonal is the variance of
each element, which is non negative. Therefore we have to consider all 10 possible
signal pairs and show that their covariance is non-negative.

cov(s,n), cov(f,s), cov(f,n). Since s and n are not correlated, we have
cov(s,n) =0, cov(f,s) = cov(s+n,s) =V(s) >0, cov(f,n) = cov(s +n,n) =
V(n) > 0.

cov(u,v), cov(f,u), cov(f,v). Once we prove cov(u,v) > 0, then we readily
have cov(f,u) = cov(u + v,u) = V(u) + cov(u,v) > 0 and cov(f,v) = cov(u +
v,v) = V(v) + cov(u,v) > 0.

We follow the spirit of the proof of Meyer [8]. As the (u,v) decomposition
minimizes the energy of Eq. (4), we can write for any function h € BV and
scalar € > 0 the following inequality:

/¢(|V(u—eh)|)dQ+AV(v+eh)2 O(|Vul)dR + \V(v).  (21)
2 2

Replacing V(v + €h) by V(v) + €2V (h) + 2ecov(v, h) and then changing h to u
and dividing both sides by € we get

2 cov(v,u) > %/Q (@(|Vu|) = (|V(u — eu)|)) df2 — XeV (u).

In the limit as € — 0, the right term on the right-hand-side vanishes. Since @ is
increasing, the term in the integral is non-negative.

cov(s,u), cov(n,u). By writing V(v) as V(s+n —u), expanding the variance
expression and omitting expressions that do not involve u, we can reach the fol-
lowing minimization problem equivalent to minimizing (4): « = argmin,{Eg(u)}
where

Eg(u) = /Q D(|Vu|)d2 + MV (u) — 2cov(s,u) — 2cov(n, u)). (22)

Since cov(s,u) 4+ cov(n,u) = cov(f,u) > 0 at least one of the terms cov(s, u)
or cov(n,u) must be non-negative. We will now show, by contradiction, that it
is not possible that the other term be negative. Let us assume, without loss of
generality, that cov(s,u*T") > 0 and cov(n,u®t™) < 0. We denote the optimal
(minimal) energy of (22) with f = s + n as Ej|f=sin. The energy can be
written as

E:z;‘f:b‘-&-n = E45|f s+n(utT)
= [, @(IVust"))d2 + AX(V (u*T") — 2cov(s, u®t") — 2cov(n, u®t")).
(23)
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On the other hand, according to condition (5), cov(u®,n) = 0 and we have

Eg|f=sin(u fQ (IVus)d2 + MV (u®) — 2cov(s,u®))
= Ejly=s < E¢|f (W) = [, D(|Vus™|)d2 + AV (u*t") — 2cov(s, u®t")).

In the above final expression, adding the term —A2cov(n,ust™) we obtain the
right hand side of expression (23). Since we assume cov(n, u*T") < 0, we get the
following contradiction: Egp|f—s n(u®) < Ej|f=sin. Similarly, the opposite case
cov(n,ust™) > 0 and cov(s,u*t™) < 0 is not possible.

cov(s,v), cov(n,v). This follows directly from condition (6) as cov(f,s) =
cov(u, $) 4 cov(v, s) and cov(f,n) = cov(u,n) + cov(v,n). O
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Abstract. Motion estimation is one of the key tools in many video pro-
cessing applications. Most of the existing motion estimation approaches
use the brightness constancy assumption in order to model the move-
ments of the objects present in the scene. In this paper the motion of
objects is modeled from a geometrical-based point of view, leading thus
to a contrast invariant formulation. The present approach is region-based
and assumes affine motion model for each region.

1 Introduction

Computing the apparent motion of objects in a sequence of images is one of
the key problems in computer vision known as the optical flow computation.
Its numerous applications make it the object of current research (see [23] for an
account of it).

Most known motion estimation methods, in one form or another, employ the
optical flow constraint which states that the image intensity remains unchanged
from frame to frame along the true motion path. The optical flow equation is
derived from the optical flow constraint:

Ozl u+0,lv+01 =0 (1)

where I(t,z,y) denotes the image sequence and (u,v) the motion vector field.
The movement of the objects present in the scene may be recovered by mini-
mizing an error measure based on the optical flow equation [23]. Furthermore,
it is known that motion estimation is an ”ill-posed” problem, indeed, the so-
lution may not be unique, and/or solutions may not depend continuously on
the data [4]. Current motion estimation approaches try to solve the latter issue
by imposing additional assumptions about the structure of the 2D motion field.
The latter constraints are introduced into the error measure either by adding
a smoothness term to it, or by restricting it to a particular motion model. The
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former strategies are called dense motion field estimation approaches, whereas
the latter ones are usually called parametric motion estimation approaches.

The Horn-Shunck’s method is a classical method for dense motion field es-
timation. It seeks for a motion field that satisfies the optical flow equation (1)
with a minimum pixel-to-pixel variation between the flow vectors:

min/ (D] u+0,1 v+ 0I)? + 0 ((050)? + (0y0)* + (950)? + (By0)?)
(9]

where (2 is the image domain and o may be used to control the influence of the
constraint. Larger values of a? increase the influence of the constraint.

The Lucas-Kanade method can be considered a parametric motion estima-
tion, since it estimates the motion by assuming that the motion vector associated
to the optical flow equation remains unchanged over a particular block of pixels.
The method thus allows to estimate a translational motion vector for that block.
A very interesting combination of both previous methods with an efficient im-
plementation has been proposed in [7]. For the interested reader, a good review
of current motion estimation techniques can be found in [3,22].

The optical flow constraint assumption is generally violated in image se-
quences taken from the real world. Global or local changes in illumination due
to, for instance, a moving camera or a change in the shade of an object may pre-
vent the correct motion to be estimated. Alternatives to the classical brightness
constancy assumption have been already proposed in the literature. A common
approach to handle non constant intensity is through explicit modelling of the
illumination change in the optical flow equation [18]. The approach requires com-
plex minimization since, in addition to the motion field, illumination fields must
also be estimated.

In [4] a constraint based on spatial gradient’s constancy is proposed. It relaxes
the classical assumption, but requires that the amount of dilation and rotation in
the image be negligible, a limitation often satisfied in practice according to [22].
The technique has been demonstrated to be very robust in the presence of time-
varying illumination. More recently, is has been shown that the direction of
the intensity gradient is invariant to global illumination changes [10]. The work
presented in [8] is based on this property.

In this paper we propose to substitute the optical flow equation, derived
from the brightness constancy assumption, by the assumption that the shapes
of the image move along the sequence. We identify the shapes of the image with
the family of its level lines [9] and we assume that they move along the image
sequence (with possible deformation). This assumption permits us to design
contrast invariant estimate of the optical flow. The approach is in fact based
on the invariance of the gradient direction to contrast changes. However, no
restriction to the amount of dilation and rotation is imposed.

The paper is organized as follows. Section 2 describes the contrast-invariant
model that has been developed, whereas Sect. 3 introduces the region-based
strategy that has been implemented. Sect. 4 gives some details about the im-
plementation. Finally, Sect. 5 presents the results obtained with the proposed
method and Sect. 6 ends up with the conclusions and future research work.
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2 A Contrast-Invariant Functional

Let £2 be the image domain, which we may assume to be normalized to [0, 1]2.
Let I : 2 — R be a given image. Mathematical morphology offers an image
description in terms of its level sets, be upper X*I = {p € 2 : I(p) > A},
or lower X)I = {p € 2 : I(p) < A}. Level sets provide a complete image
description, in particular, the image I can be reconstructed from its (upper)
level sets by the formula I(p) = sup{) : p € X*I} (a similar formula exists for
the lower level sets) where sup denotes the supremum operator, and p = (z,y)”
denotes a point in 2. Level sets give a contrast invariant representation of the
image [21].

We call level lines the boundaries of the level sets. In the discrete framework,
any level set can be described in terms of its boundary. Indeed, the connected
component of each level set can be described in terms of its external and the
family of its internal boundaries [9, 21]. Thus, we may use the family of level lines
as basic contrast invariant geometric description of the image I. As an analytical
tool, we shall use the unit normals to the level lines to describe them.

Let I(t,p) be a given image sequence, t being in the time interval [Ty, T1] and
p € 2. We assume that the image sequence has been sampled at points multiple
of At, the sampling points being t; =Ty + jAt, j =0,...,N (ty =T1). Let us
denote by ¢/ (p) the coordinates at time t; + At of the point whose coordinates
at time t; are p, 7 =0,..., N — 1. The map ¢’ : £2 — (2 is nothing else than the
motion path starting from time ¢; and we may think about it as a deformation.
We do not assume in this section any particular motion model for ¢7. That is,
the image objects may suffer any deformation over time. For simplicity, when no
confusion arises, the arguments of the previous function will be dropped out.

Assume for a while that j is fixed and let ¢ = (¢1,P2) be any of the maps
#’, where ¢; and ¢y are the components of ¢/. Let X = (x(s),y(s))” be the
arclength parameterization of a given level line C of the image I(¢;,p), s being
the arc length parameter. The curve C may be described by its normal vectors
Z = (—y'(s),2'(s))T, where (.)" denotes the first derivative with respect to s.
Note that Z has unit norm.

Let us describe the normal vectors to the curve ¢(C) in terms of ¢ and the
normal vectors to C. Since the curve ¢(C) is described by

X = (z(s).9(s)" = d(x(s). y(s)),
the tangent vector to the deformed curve ¢(C) is given by
¥ _ f/(5) _ 01 6y¢1> ($/(5)> _ ’
+ (y'<s>) (am o,62 ) \w(s)) =P

where 0, and 9, denote the partial derivative with respect to « and y respectively.
Thus, the normal vector Z of the deformed curve is

o= (F0)- (o aa) (W) e
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Observe that the matrix in the right hand side of (2) is the cofactor matriz
associated to D¢ which we shall denote by (D¢)f. Thus, the normal vectors of
the deformed curve are related to the original normal vectors by means of the
cofactor matrix. Observe that s is not necessarily the arclength parameter of
#(C), hence Z is not, in general, a unit vector. We normalize it to be of unit
norm by redefining

_ w9z |
Zy=——""0 if (DP)TZ #0; 0 otherwise, (3)
Do) 7]
where ||| denotes the modulus of a vector in R? .

In the context of this work, Z*(p) will be the vector field of unit normals to
the level lines of I(t, p). Usually, the energy functional whose minimum gives the
optical flow tries to impose the brightness constancy equation (1). Instead, our
main assumption will be that shapes move with possible deformation along the
sequence. We interpret it in the following way: (*) we may find the boundary of
a connected component of the level set [I(t;,-) > A], A € R, eventually deformed
by ¢7(-), as a level curve of I(t;11,-) at some other level \'. Observe that if two
consecutive frames are related by the motion model and a global illumination
change, i.e., if (**) I(t;+1,¢’(p)) = g;(I(¢;, p)) for some contrast change g;, then
(*) holds (in this case A" = g;(A)). Our assumption (*) is more general than (**)
since the former is local: the level at which we may find the boundary of the
connected component of [I(¢;,-) > A] may depend on the connected component
itself, besides of depending on A. Thus, our purpose will be to align the level lines
of two consecutive frames at times t; and ¢; 41 by a map ¢’. Using the description
of level lines in terms of unit normals, we propose to compute the optical flow
@’ by aligning the unit normal vector field Z%+!(p) with the transformed vector
field of Z% (p) by the map ¢’ (i.e., the vector field obtained by (3)). Thus, we
propose to compute the motion estimation by minimizing the energy functional

N-—1 . )
Bo) =3 / |25+ (¢ (9)) — Ziss (0) || 15 (p) d dly. (4)
j=0 79

where p;(p) represent weight functions that will be later discussed. The vector
field Z% (p) is computed by

vj(tj7p)
IVI(t;, p)ll

where V := (9,,0,)" denotes the 2D gradient. Note that (5) computes the
normal vector of the level line that passes through point p.

Since for any smooth strictly increasing function we have Vg(I) = ¢'(I)V1, it
is easy to check that if 41;(p) = 1, then the energy (4) is contrast invariant. In case
that we decide to give more weight to edges, we may take u;(p) = ||VI(¢;,p)],
j=0,...,N—1,in this case, if I(t; +1,¢/(p)) = g;((t;,p))) for some contrast
change g;, then the estimate of ¢’ obtained by minimizing the corresponding
term in (4) does not depend on the contrast change g;.

Z4(p) = if VI(t;,p) # 0; 0 otherwise, (5)
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If our assumption (*) does not hold, then the minimum of (4) (plus some
regularization terms for ¢7) can be considered only as an approximation to the
optical flow in terms of that criterion, and further validation is required.

The same functional was used by Droske and Rumpf, together with suitable
regularizations, for morphological image registration [13]. Other authors ([12])
have also used alignment of unit normals and other geometric features like cur-
vature for registration. Another contrast invariant functional, based on Bayesian
inference, was proposed in [11]. The main part of their functional is the integral
of (I + ul, +vI,)?* divided by the norm of (1,u,v) times the norm of (I, I, I,,).
As we shall also do, the authors assume a parametric piecewise affine motion
model. Let us finally mention the work [6] where authors minimize a robust
functional which incorporates deviations from the brightness constancy assump-
tion and the gradient constancy assumption, and compute a dense optical flow.
Thus, this functional incorporates gradients, hence normal directions and ge-
ometry. Finally, let us mention that other contrast invariant functionals can be
constructed based on mutual information [19].

3 Region-Based Motion Estimation

The energy functional together with a regularization term for ¢/, j = 0,..., N —
1, could be used to compute a dense motion field. In this work, we shall assume
that the motion fields can be expressed locally by an affine model and we shall
follow a region-based strategy to minimize (4).

Our approach will be similar to the one presented in [14]. In this paper,
two images at two different time instants, generally consecutive, of an image
sequence, are taken. The first of them is partitioned into connected regions with
disjoint interior. These regions are assumed to be extracted from the image using
a particular partitioning strategy, such as a luminance homogeneity criterion.
Matching of regions is carried out by minimizing a cost functional based on
the brightness constancy assumption. Moreover, the technique is embedded in a
multiresolution scheme in order to improve the robustness of the method.

For the rest of the paper, the motion is estimated between two consecutive
frames of a sequence, denoted by I(¢) and I(t+1). The vector fields of the normals
to the level lines of I(t) and I(t+1) are denoted by Z* and Z!*! respectively. Sup-
pose that we are given a partition R into disjoint connected regions of the image
1(t). The partition may be computed for instance with a segmentation algorithm
like the Mumford-Shah functional [17] which may be subordinated to the topo-
graphic map [2]. We denote by ¢ the displacement field between I(t) and I(¢+1).

In the present context, we can write functional (4) for discrete images as

Er(6) = > Y |21 (6(p)) = Zus(P) || n(p)Ar ©)
ReER peR

for a weighting function u(p) and where Ap = AzAy, Az, Ay being the dis-
cretization steps which coincide with the interpixel distance in the z and y axis.
For later convenience, let us denote by Er the term
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Er(¢)= > [ 27 (6(p)) — Zs(®) || n(P)Ar (7)

PER

Recall that rigid motions of planar objects in 3-D space induce quadratic motion
models in 2-D images [23]. This quadratic motion model is a good approximation
when the depth of the objects is small compared to their distance to the camera.
The affine motion model is a good approximation under orthographic projection,
i.e., when f — oo, being f the distance from the center of the lens to the surface
of the film. As a first approximation, we shall assume the affine motion model on
each region. Such motion can be described by a six parameter affine model [23]:

w2 ()+ ()

where e, f are the translation parameters and a, b, ¢, d are the parameters that
model the linear transformation (thus, including scaling, rotation and shear-
ing) [23]. From now on, e and f are called zero-order parameters whereas the
remaining ones are called first-order parameters.

In this case the cofactor matrix is

ooy = (5 )

Observe that we have no information in a region R when we have no level
lines in it. In this case, we would have Z = 0 at time ¢ inside R, and Z # 0 is the
unit normal on its boundary; the proposed functional is looking for a region at
time ¢ + 1 which is free of level lines in its interior and matches the unit normals
of boundary of R by ¢*. In this case, it could be useful to consider the brightness
constancy assumption for this region.

As it is presented, this model does not take into account the fact that new
objects may appear or disappear due to motion of objects or to geometric varia-
tions produced by local contrast changes. In a further extension of this work we
consider statistical validation of the estimated motion and we believe that the
appearance/disapperance of an object will lead to incorrect estimations.

4 Implementation

From a practical point of view, it is necessary to define a strategy in order to
find a minimum of (6) in an efficient and robust manner. We describe in this
section some details of our implementation.

Functional Minimization. We assume that each region that composes the
partition moves independently, thus (6) may be minimized by minimizing (7) for
each region. The parameters that minimize (7) are those that satisfy Vi, Fr(¢) =
0, where m is the vector made up of the motion parameters, m = (a, b, c,d, e, )T
and V, is the gradient operator with respect to the unknown motion parameters,
Vi = (0a; O, Oc, Og, O, Oy). The strategy adopted in this work to find the motion
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parameters that minimize (6) is the conjugate-gradient method. In this paper
the conjugate update directions are computed using Polak-Ribiere method. At
each iteration, Brent’s line minimization is used to find the minimum along the
selected update direction [20].

Coordinate System Selection. Let us discuss how the selection of the coordi-
nate system may affect the convergence of the descent method to minimize Eg.
For simplicity, assume that Z*! and 7} are unit vectors. The differentiation
of each term in (7) with respect to any motion parameter m € m gives the
contribution

<8m725t, ZHls o <7;t, O 2> .

Let us compute 9,,Z'*!. For that, assume that the origin of the coordinate
system is located at the upper left corner of the image, whereas samples are
placed on a squared grid at a distance of one. Let us denote by (£,9)7 the
coordinates of p in this coordinate system. Let Zf“, i = 1,2, be the x and y
components, respectively, of Z!T1. Observe that the partial derivative of Zf“
with respect to the motion parameter a is

0a 21 (9(P)) = 0py Z1T Datpr + 0, 21T Duhs = 0, 21" & 9)

since 0,¢1 = & and J,¢2 = 0. The derivative of Z'{‘H with respect to the motion
parameter e is

02y (0(P)) = 05, 21 Depr + 09, 217" Deton = 05, 21 (10)

since J.¢p1 = 1 and J.¢p2 = 0. With similar computations we see that the partial
derivatives of Z'lerl and Z§+1 with respect to a, b, ¢ or d depend proportionally
on the pixel coordinates (either & or §), while its partial derivatives with respect
to e or f do not exhibit such dependence. Thus the derivatives with respect to
a,b, c,d have a stronger contribution in the descent than the ones with respect
to e, f and affect its convergence.

In [14], the authors propose to normalize the pixel coordinates simply by the
image dimensions. We shall use a different normalization for each region. The
origin of the coordinate system, (¢, §¢), will be the centroid of the region, and
the axis will be re-scaled by o where 02 = > peR ((& —2)? + (g — y©)?) is the
variance of the distance of the pixel coordinates to the centroid.

If (z,y)T denote the coordinates of p in this new coordinate system, then its
relation with (Z,9)7 is given by

(11)

The partial derivatives of Z!™* with respect to a and e have the same form
as in (9), (10), with a different interpretation of the coordinates:
P )

X
aazf“((p(p)):amzﬁl( — and 0.Z1"(6(p)) = 0p, 41", (12)



A Contrast Invariant Approach to Motion Estimation 249

Comparing these expressions with (9) and (10), we notice that the normalized
coordinate system has the effect that no particular derivative value is predom-
inant with regard to the others. Our experiments have shown that in this case
a large range of motions may be recovered since no particular type of motion
is priorized.

On the other hand, if the (#,7)7 coordinate system is used the conjugate
gradient algorithm selects update directions in which the first order motion pa-
rameters are predominant. As a result, the algorithm will “try to explain” the
motion present in the image using only first order parameters (zoom, rotations
and skew) even if only translational motion is present in the image. Motions
such as translations may not be recovered in this case. Thus, the selection of
the proper coordinate system affects directly the gradient values and thus the
convergence of our estimator.

Multiresolution Analysis. Both to avoid local mimima and for computational
efficiency, motion estimation is usually embedded in a multiresolution scheme
[1,14,22,23]. The basic idea is to obtain a set of coarse to fine images which are
obtained by means of a low-pass filter. Starting the parameter estimation at the
coarsest resolution level, the motion is estimated on each level successively using
the resulting motion parameters of the current resolution level as input to initial-
ize the gradient descent on the next level. Lower resolution levels allow to obtain
an approximation of the motion parameters, whereas finer resolution levels are
used to improve and fine-tune the motion parameter estimation. Multiresolution
representations allow to deal with large zero and first order parameters.

In our experiments a set of three (including the original image) levels are
used. At each level the image is lowpass filtered with respect to the previous
level [24]. As proposed in [23], the downsampling step is skipped. Thus the pyra-
mid contains images that are all the same size by successively more blurred as
we go to the coarser resolution levels. This permits us to maintain the geometry
of the region.

However, Az and Ay are divided by two between successive levels, hence the
area of the region is scaled by 4. Thus, Az and Ay act as a scale parameter. If
such area is small at a fixed level, only the zero-order parameters are estimated.
This is due to that the texture information of small regions present at the coarser
levels is poor, and thus the minimum may not be well defined for the first-order
parameters.

Differentiation. Differentiation is an ill-posed problem [4], and regularization
may be used to obtain good numerical derivatives. Such regularization may be
accomplished with a low-pass filter such as the Gaussian, and is essential for
motion estimation [3,22]. More recently, [15] proposes to use a matched pair of
low pass and differentiation filters as a gradient operator.

Notice that, for motion estimation applications, it may be necessary to com-
pute the gradient at non integer points, since non integer displacements are
allowed. In such cases, a simple way to proceed is a two step process: in a first
step, the image is interpolated at the required points using an interpolation ker-
nel such as [16], and in the second step the derivative is computed. Since both
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are linear operators they may be performed in one step: the derivative filter is
interpolated at the required non-integer positions, then the derivative can be
computed at integer pixel positions using the interpolated filter taps.

5 Results

In all experiments below, we assume that p;(p) =1 (see (6)).

The original images in our first example correspond to the table tennis se-
quence (frames #4 and #1), and are displayed in Fig. la and Fig. 1b respec-
tively. In these images, the ball moves downwards, the arm moves upwards and
the background is static. The associated partition has been computed using
the Mumford-Shah segmentation functional subordinated to the topographic
map [2], and is shown in Fig. 1c. The motion field recovered by our estimator is
shown in Fig. 1d and corresponds to our above description.

An interesting point is to compare our results with those obtained with the
classical motion estimation approach based on minimization of the squared pre-
diction error, defined as: Ei%(¢) = > per U(t+1,9(p)) — I(t,p))*. The previ-
ous error measure is in fact based on the brightness constancy assumption. The
latter approach has been implemented using the techniques described in Sect. 4.
In order to simplify nomenclature, the latter approach is called intensity-based

a) Original frame ¢

¢) Partition d) Motion field

Fig. 1. Region-based motion example. a) Original frame ¢, b) Original frame ¢ + 1, ¢)
Partition of original frame ¢, d) Recovered motion field
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RN

c¢) Intensity-based d) Shape-based

Fig. 2. Global motion estimation example. The purpose is to extract camera’s move-
ment between images a) and b). Results for intensity and shape-based approach are
shown in images c¢) and d) respectively

motion estimation, whereas the technique presented in this paper is called shape-
based motion estimation.

The next experiments deal with global motion estimation, that is, the extrac-
tion of the camera motion. This is very useful in many scene analysis approaches,
where first the camera motion is detected and then the moving objects in the
scene are detected and tracked. Fig. 2 shows two frames from the coastguard
sequence (frames #170 and #176). The frames show a moving boat and a static
background. In these frames the camera follows the displacement of the boat,
thus the apparent motion of the boat is zero (i.e. no motion) whereas the back-
ground has an apparent motion which corresponds to the camera’s movement.
We choose a partition made up of one region which includes the whole image
support. Thus, the global motion between the two frames is estimated. The re-
sulting motion vector fields are shown in Fig. 2c and Fig. 2d. Note that our
approach has been able to properly extract the camera’s motion. We believe
that the intensity-based motion estimation has failed due to the strong influ-
ence of the high gradient of the boat. Since the apparent motion of the boat is
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a) Original frame ¢ b) Original frame ¢ +
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Fig. 3. Global motion estimation example. The purpose is to extract camera’s move-
ment between images a) and b). They correspond to frames #45 and #47 of the table
tennis sequence. Recovered motion fields for intensity and shape-based approach are
shown in images c) and d) respectively

zero, the motion estimation algorithm tries to set to zero the motion at the boat
pixel locations. This is not the case of the shape-based approach, where gradient
modulus has no effect. Motion in the latter case is recovered by interpreting the
image as a set of moving level lines. Thus, the boat is treated as an outlier. Note
that the correct motion parameters may be recovered using an intensity based
energy if robust estimation techniques are used [5, 22].

Fig. 3 shows another example of global motion estimation. The camera per-
forms a zoom out of the scene. Even though the tennis player and the ping-pong
ball is moving, our approach has been able to properly recover the zoom.

6 Conclusions and Future Work

We have presented a contrast invariant model for the computation of the optical
flow. We interpret the image sequence as a set of moving level lines and we
propose to compute the deformation between the level lines of two consecutive
frames. Several topics have to be further developed in the future: a) the selection
of regions bounded by level lines where motion is estimated by an affine model,
b) joint motion segmentation techniques, c) the computation of a dense motion
field from the image sequence without imposing a particular motion model.
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Abstract. In this paper we propose a new motion estimator for image sequences
depicting fluid flows. The proposed estimator is based on the Helmholtz decom-
position of vector fields. This decomposition consists in representing the velocity
field as a sum of a divergence free component and a curl free component. The ob-
jective is to provide a low-dimensional parametric representation of optical flows
by depicting them as a flow generated by a small number of vortex and source
particles. Both components are approximated using a discretization of the vorticity
and divergence maps through regularized Dirac measures. The resulting so called
irrotational and solenoidal fields consist then in linear combinations of basis func-
tions obtained through a convolution product of the Green kernel gradient and the
vorticity map or the divergence map respectively. The coefficient values and the
basis function parameters are obtained by minimization of a functional relying on
an integrated version of mass conservation principle of fluid mechanics. Results
are provided on real world sequences.

1 Introduction

The observation, understanding and control of complex fluid flows is a major scientific
issue. For instance, in environmental sciences such as oceanography, meteorology and
climatology, the monitoring or the forecasting of the atmosphere or the ocean is becoming
more and more crucial for our everyday life. Due to their very complex nature and
also to unknown or inaccurate border conditions, we have a lack of complete physical
understanding of these flows. Accurate and dense measurements can hardly be recovered
by probes or by numerical evaluation of current physical models. Imaging sensors are
very attractive in this context as they provide multi-modal data at high spatio-temporal
resolution.

The analysis of dynamic structures and the estimation of velocities for fluid image
sequences gave rise to a great attention from the computer vision community since
several years [6,7, 10,12, 15, 16]. These works concern application domains such as
experimental visualization in fluid mechanics, environmental sciences (oceanography,
meteorology, ...), or medical imagery.

Recently, several dedicated approaches have been proposed for fluid flow velocity
estimation [4, 9]. Unlike most of the motion estimator based on the brightness con-
sistency assumption and a first order smoothness function, these techniques rely on a
data-model derived from the continuity equation of fluid mechanics and second order
div-curl regularizers. In the same way as a first order regularizer (eventually associated

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 254-266, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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to a robust cost function) favors piecewise translational motion fields by penalizing high
gradients of the solution, second order div-curl penalizers encourage solutions with blobs
of piecewise constant divergence and curl. These methods are conceptually much more
satisfying as they comply with the brightness variations and the motions observed in
fluid image sequences. Nevertheless, these method have to face much greater numerical
complexity. Besides, these estimators are dense estimator and the solutions associated
belong therefore to spaces of great dimension. It is desirable for some applications to
provide low dimensional solutions. This is the purpose of this paper.

We propose here a technique to estimate low dimensional motion field from image
sequences depicting a fluid flow. This method relies on the Helmholtz decomposition of
a motion field which consists to decouple the vector into a divergence free component
and a curl free component. The method we devise is based on a discrete representation of
the curl (also called vorticity) and divergence map. This discretization enables to define
implicitly adapted regularizers for fluid motion estimation problems.

2 Definitions and Properties of Vector Fields

In this section, we present first known analytic results on planar vector fields. We shall
rely on them to develop an original method for fluid motion estimation.

A two-dimensional vector field w is a R?-valued map defined on a bounded set {2 of
R2. We denote it w(x) = (u(x),v(x))”, where x = (z,y) and z and y are the spatial
coordinates. Each component of the vector field will be supposed twice continuously
differentiable: u,v € C%(£2,R).

Noting V = (a%, 8%) the operator whose components are the partial derivatives

0 0
with respect to the coordinates x and y, we define the divergence: divw = 8—u 8—U =
€T Y
- ou Ov n
V.w and the scalar vorticity of the vector field: curlw = 9 9w V.w~—, where
Y x

w = (—v,u) is the orthogonal counterpart of w.

The vorticity accounts for the presence of a rotating motion, while the divergence is
related to the presence of sinks or sources in the flow. A vector field whose divergence is
null at every point is called solenoidal. Similarly, a field with zero vorticity will be called
irrotational. Tt is well known that for irrotational fields there exists a scalar function ¢,
called the velocity potential, such that w = V ¢. Similarly, for solenoidal fields there
exists a scalar function v called the stream function such that w = V.

Any continuous vector field that vanishes at infinity can be decomposed into a sum
of an irrotational component with null vorticity and a solenoidal component with null
divergence. This is called the Helmholtz Decomposition. When the null border condition
can not be imposed, an additional component, named the laminar component, which
is both irrotational and solenoidal, has to be included. The decomposition reads then:
W = Wi + W0 + Wiam. This last component can be approximated using the Horn
and Schunck estimator with a strong regularization coefficient [5]. In the sequel we
will assumed that the laminar component has been previously computed and that its
associated motion has been removed from the image sequence. We will consequently
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assume a null boarder condition at infinity knowing that the image sequence, I(x,t), is
related to the original image sequence, I, (x,t), by I(x,t) = I,(X + Wiam (X, 1), t).

Substituting the two components w;,.,. and wy,; by their expressions in terms of
potential functions and considering the divergence and the curl of the motion field enables
to write the potential function as solution of two Poisson equations:

Ap = divw;,,, and Ay = —curlwg,y, (1)

where A denotes the Laplacian operator. These solutions may be expressed as convolu-
tion products:

P = /G(x —u)div wi(u)du = G ® div Wiy, ()
(T / G(x —u)curl wgy(u)du = —G ® curl wy, 3)
where G is the Green’s function associated to the two-dimensional Laplacian:

1
G(x) = o In(|x|). “)
As the vector fields w;,-. and w,,; are respectively the gradient and the orthogonal
gradient of the potential functions ¢ and 1, equation (2-3) may be rewritten as:

Wirr = K @ div Wi and Wy, = — K+ @ curl Wy, ®)

where K denotes the gradient of the Green kernel. The second equation of (5) is known as
the Bio-Savart integral. These two equations state that the solenoidal and the irrotational
components (and consequently the whole vector field) may be recovered through a
convolution product knowing the divergence and the vorticity of the velocity field.

3  Vortex Particles

The idea of vortex particles methods [2, 11] consists in approximating the vorticity of a
field w by a discrete sum of delta functions located at point vortices z;:

curl w(x) =~ Z vi6(x — z;), (6)

=0

with § denoting the Dirac measure.

This discretization of the vorticity into a limited number of elements enables to evalu-
ate the velocity field directly from the Bio-Savart integral (equ. 5). Due to the singularity
of the Green kernel gradient, /<, the induced field develops %-type singularities, where
r is the distance to the point vortices. These singularities can be removed by smoothing
the Dirac measure with a cutt-off or blob function, leading to a smoothed version of K.
Let f. be such a blob function scaled by a parameter e: f(x) = % f(%). The smoothed
kernel is defined as K. = K ® f.. The amount of smoothing is determined by the value
of e. If ¢ — 0, f, tends to the Dirac function and K. — K.
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In the same way, for the divergence map a source particles representation reads then:

div w(x) ~ Z YVife (x —2;), @)

where z; denotes the center of each basis function f,, the coefficient ~; is the strength
associated to the particle ¢, and ¢; represents its influence domain. These parameters are
free to vary from a function to another.

4  Fluid Motion Estimation from Image Sequences

In this section we present how a vortex and source particles representation may be used
in conjunction with an appropriate cost function to devise a motion estimator for image
sequences depicting fluid flows.

4.1 Motion Representation

As we saw previously, discretizing the vorticity map with vortex particles together with
a Gaussian smoothing of the Dirac measure leads through Bio-Savart integral to the
following representation of the solenoidal component of the motion field:

SOl nsol
WSOl Z ’Y;OZKL &® f sol( — X) = Z g(JZI( 50|( s()l X), (8)
=0 =0

where K jl is a new kernel function obtained by convolving the orthogonal gradient
of the Green kernel with the blob function. Obviously, a similar representation of the
irrotational component can be obtained using source particles.

As a result, we exhibit an approximation of the complete motion field as weighted
sums of basis functions defined by their center location and respective spatial influence.
With a Gaussian smoothing function which allows to derive analytically the associated
smoothed kernel K, the final expressions of the motion field components are:

SO|‘2

sol fOl X)J_ -k szo|2
W ool (X Zv mx gol|2(1 —e ), )
and irr |x— z|rr‘2
rr X = Z - lrr2
Wi (X Zv P (1—e ). (10)

This representation will be 1ncorp0rated within a spatio-temporal variation model of
the luminance function in order to devise fluid motion recovery as an estimation problem
from the image sequence data.

4.2  Integrated Continuity Equation as a Brightness Variation Model

For image sequences showing evolving fluid phenomena, the usual brightness consis-
tency assumption (% = 0) doesn’t allow to model temporal distortions of luminance
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patterns caused by 3D matter transportation. For such kind of sequences, several works
have shown that a data model build from an analogy with the mass conservation con-
straint of fluid mechanics (also known as continuity equation) constitutes a better model
[1,4,13,15]. This data model reads:

%—&—Idivw:o. an
Such a constraint relates the effect of a divergent motion to a brightness change. By
this way it is possible to modelize the effect of the apparent disappearance/appearance
of matter caused by 3D motions which are not in the visualization plane. For a null
divergence this data model reduces exactly to the usual brightness consistency equation.

For long range displacements (i.e. fast flows or long time latency between two images
as in meteorology) an integrated form of this constraint can be obtained[4]:

I(x+w(x),t+ 1) exp(divw(x)) — I(x,t) = 0. (12)

According to this constraint the displaced image at time ¢ + 1 is related to the image
at time ¢ by a scale factor which depends on the motion divergence. This constraint
comes to the standard displaced frame formulation of brightness consistency for a null
divergence.

Considering this constraint holds almost everywhere on the whole image plane leads
to seek a motion field minimizing the following cost function:

F(I,w) = / [I(x + w(x),t+ 1) exp(div w(x)) — I(x,t)]* dx. (13)
I7;

4.3 General Minimization Problem

Considering such a cost function for an unknown motion field approximated through
vortex and source particles representations comes down to solve the following mini-
mization problem:

6 = argmﬁin F(I,W(ﬁ)), (14)

with 3 = ({0, v, €591} _q.psor , {27 0 €} i pier ).

One seeks therefore the minimizer of the cost function F in terms of particles location,
strength coefficients and influence domains. Due to the peculiar form of the data model
this minimization problem is highly non linear. To face this difficult optimization problem
we have chosen to rely on anon linear least square process embedded in a multi-resolution
framework and associated to a generalized conjugated gradient optimization known as
Fletcher-Reeves method.

We present more precisely in the next section how this difficult global optimization
issue is handled.

5 Estimation

The non linear cost function we consider can be seen as a weighted displaced frame
differences cost function. As most of the standard motion estimators based on such a non
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linear formulation we will consider an incremental minimization framework to remove
the non linearity of the displaced image brightness function. This scheme consists in
applying successive linearizations around previous estimates. This kind of techniques, in
the same spirit as Gauss-Newton non linear least squares, is in most of the case embedded
within a multi-resolution framework. We will also rely on such a data representation.

51 Incremental Estimation Scheme

We assume first that a previous estimate of the set of unknowns is available. All these
unknowns combine together with respect to our modelization to give a motion field w.
Considering a linearization around (x + w,t + 1) and dropping the time indices of
the intensity function for sake of clarity we end up with the following functional to be
minimized according to h, an unknown correction motion field:

F(h) = / [exp(div w(x)){(I(x) Vdivw(x) + VI(x))"h(x) + [(x)} — I(X)]  ix.
2

In this equation we have introduced a compact notation I (x) for the backward reg-
istered image I(x + w,t + 1). The correction field h is a combination of a solenoidal
component h,; and an irrotational component h;,.. according to the Helmholtz decom-
position. Like the field w, this correction field is parameterized on the basis of a set of
vortex and source particles. In practice, this kind of scheme is embedded into a pyramidal
multiresolution data representation scheme. Such a representation is obtained through
low-pass filtering and sub-sampling. At a given level, the known motion estimate W is
fixed to be the projected estimate obtained at the previous level. For the first level this
field is a null field.

5.2 Resulting Minimization Problem

The incremental estimation scheme transforms the original non linear optimization prob-
lem (14) into a succession of simpler minimization problems with respect to some of the
unknowns. As a matter of fact, considering the derivatives with respect to the different
types of unknowns gives:

P [ 0l ) + 20k, (15)

i mlri(x)[?
OF (h) [ 2y (%) ,\ri<ix2)\2 Ol Thix e, s
aB; = _([Wq |7’1:(X)|26 y(x)[y(x)" h(x, ) + 2(x)]dx, (16)
OF (h)
VaFm) = | o260 (17

yi



260 A. Cuzol and E. Mémin

where: t
_Irieol?
0F (h) LI @+ (n GO +riE)—e T )
dr: / - i GO (18)
Q
y(x)[y(x)"h(x, 2;) + 2(x)]dx,
and:
B —_ 1
ri(x) = (;”l(:r), ri(y))T = x — z;(irr. part) or (z; — x)*(sol. part), (19)
y(x) = AV (T, () Vdiv W (x) + Vi1 (),
2(x) =V ¥, (x) — [ (x).

Equations (15,16 and 17) lead to three different kinds of systems. The first one, in
terms of coefficient strength is linear, the second one in terms of particles influence
domain is non linear. No constrained minimization is required for both of them. A
gradient descent process can be devised for this set of unknowns. For the third one an
additional constraint to keep the particles into the image plane must be added. Such a
constrained minimization problem combined with the kind of non linearity we have here
leads to a very tough minimization. Besides, if we assume that in some cases we have
absolutely no idea of the initial particles location we must devise a method allowing
eventual long range moves of the particles coordinates.

We have thus decoupled these three kinds of unknowns. The two first (the strength
coefficients and the influence domains of the particles) will be solved with a generalized
conjugated gradient process while the third kind of unknowns (the particles locations) is
kept fixed. The particles locations will be in turn updated through a mean shift process
that will be described later.

5.3  Fletcher-Reeves Optimization

Fletcher-Reeves optimization consists in a non linear extension of conjugate gradient
algorithms. Given aniterate ©), = {~;°, €;°',7{™", €i’"} and a direction d, aline search
(w.r.t. ag) is performed along dj, to produce @1 = Oy + aydg. The Fletcher-Reeves

variant of the nonlinear conjugate algorithm generates d; from the recursion:

|VF(Ors)ll ) |

i1 = ~VF(Ory1) + fidy, with §, = ( IVF(©r)ll2

Let us note that for the linear part of our system the method comes to a standard conju-
gated gradients. To start the optimization process we consider, as said before that particle
locations are fixed. We initialize the domain of influence in an adaptive way. Their values
are fixed to the value of the distance to the nearest particles. At convergence, we obtain
a representation of the unknown correction field for fixed particle locations. Let us now
describe how we propose to adjust these locations.
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5.4  Adjustment of Particles Location

The estimation method we have proposed requires to fix for the solenoidal and irrotational
components particles locations on the image domain. We propose now a way to move
each particle according to a characteristic surface defined from the image data. The
method we propose is based on the mean shift procedure [8].

Definition of the Error Function. Considering that estimates of the strength coeffi-
cients and influence domains are available for both irrotational and solenoidal com-
ponents we consider two different error surfaces. For each component, the surface is
the registration discrepancy, considering the other orthogonal component fixed. For the
solenoidal component the error surface is defined at each point of the image domain as:

D! (x) = Liy1(x + W(x) + b7 (x)) — I(x), (20)

where hi"" is a first estimate of the irrotational increment, with a set of fixed initial posi-
tions for the source particles. This error surface gathers all the reconstruction errors due
to the solenoidal component. Similarly the error surface corresponding to the irrotational
component is defined as:

D (x) = Ly (x + W(x) + b (x)) — Li(x). @D

Extension to a Characteristic Surface. The quality of the modelization we consider
depends on the accuracy of the discrete approximation of the divergence and curl map.
To achieve the best approximation as possible with a limited number of particles we
should try to have a great number of particles to describe areas with strong divergence
or vorticity and only few of them for the rest of the image. The surface error as defined
by (20) or (21) can help to guide a particle towards a new location in accordance with its
nature (vortex or source). However, it can guide a particle to an unappropriate location if
the initial estimation of the components is not informative, because D*°' could highlight
an error associated to the irrotational component, and vice versa.

To overcome this problem we choose to add a term to each error surface, based on
the amount of vorticity or divergence estimated by the particles method. Particles could
therefore be encouraged to go toward locations of high error magnitude associated to
high concentration of vorticity or divergence. We end up with two surfaces, for the
solenoidal and the irrotational part:

sol
5591 (x) = (D (x (curlh(x)) ’ 22)
/(DS x)) / (curlh(x)
Q Q
and ) o )
Sirr (X) _ (D (X)) (le h(X)) (23)

[ ax : [ v B

2
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Finally, in order to restrict the displacements of the different particles to localized
areas we combine these functions with an a priori prior on the particles location.

A Priori Probability Distribution for Particles Location. Considering z* the random
vector denoting the location of particle ¢ at step k, we propose to fix a distribution of

2" knowing z¥ ., where 2%, represents the set of the n vectors (z, ..., ) at step k.
We assume this probability distribution is Gaussian, defined as z¥ *1|z%, ~ N (2%, oF),
The standard deviation ¥ is set to the half of the distance between z¥ and the closest
center among {zéC }i=1,...n,ji- The distribution takes into account the previous location
of the particles through a Gaussian prior of mean z¥ but also the dependency between

k“ and all the other particles through the expression of o¥

Conditional Version of the Probability Distribution. Combining the a priori distri-
bution p, 25 2k defined above with the surface described before, denoted S, K and
characterized b)? (22) or (23), we can define a conditional probability dlStrlbuthIl func-
tion of a particle z]€+1 given the others:

Patcttiats s () 0 Sai (0)Pyteo e (). 4)

This pdf balances an a priori for the location of one given particle (whose role is to confine
the particle to stay in a certain area between two iterates) and the information brought by
the characteristic surface (associated to all the particles locations) in the neighborhood
of this position. Once known this distribution for each particle we propose to shift z*
towards the pdf local mode in order to adjust optimally the location of the particles set.

Shifting the Particles Towards the Pdf Modes. From the sample {Szlf_n (s)}ses eval-

uated at pixel coordinates s, and the probability distribution p,x+1 |k a statistical non

parametric estimate of the conditional probability distribution p,_x+ 1I|z'< s, »mMmaybe
i 1:n? zn

obtained [14] as:

DSk, (Pt (VK ()
Pt sy (0 X €S ZK<X =, : (25)
h

seS

where K is a kernel and h is its corresponding window size.

The continuous pdf ﬁzui<+1 125 S (x) is thus expressed as a linear combination of
basis functions with weighted coefficients given by w(s) = Spk (S)pz=<+1 2 (s).

To shift a center z¥ towards the nearest mode of ﬁz|i<+1 ks, We rely on the mean

z7.

shift estimate of the gradient of a density function [3, 8]. This estimate called the mean

shift vector reads:
X —8
> ws)sG (=)
My, (x) = =2 ~x, (26)
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where G is the kernel obtained by derivation of the kernel K. This vector gives at
each point the direction of the maximum increase of the density function estimated
through the weights w(s) and the kernel K. Different choices can be done for this
kernel. Usual choices are the Epanechnikov kernel or a Gaussian kernel. The gradient
of the Epanechnikov kernel is a box function kernel whereas G remains Gaussian for a
Gaussian kernel K.

Given this estimate of the pdf gradient, an iterative convergent [3] process called
mean shift naturally arises. This process consists in moving iteratively the kernel center
x following M}, ¢(x) until a stationary point (i.e., zero gradient) of the underlying
density is found.

In our case, the mean shift procedure is applied to the n*°" + n"" centers of the
basis functions (or particles) involved in our motion field modelization. Through this
process, each particle is shifted towards the nearest mode of the conditional density
ﬁzlierl S We have chosen to use the Epanechnikov kernel. Besides, the choice of

the window size is crucial. Different choices can be made. In our case we have settled
adaptive window sizes. They are fixed to the distance of the nearest particles. Such a
choice make sense in our case. As a matter of fact, for distant particles only a rough and
smooth estimate of the pdf function is needed whereas for close particles an accurate
estimate of the density is at the opposite required to approximate at best the vorticity
and divergence maps.

5.5 Overall Estimation Scheme

The overall estimation scheme consists in an alternate updating of the different un-
knowns. It is composed by the following two steps, repeated in turn until convergence:

1. For a given set of particles at fixed locations, the strength coefficients and the in-
fluence domains attached to the particles blob function are estimated through the
generalized conjugated gradient optimization described in section 5.3.

2. The vortex and source particles locations are shifted toward the nearest local mode
of the corresponding pdf. This shift is realized applying the mean shift procedure
described in section 5.4.

The whole process is stopped when the divergence and vorticity reach a certain stability.
This criterion is expressed as:

~ ~ 2 ~ ~ 2
(div R+ — div hk'||2> . <||cur1 he+ — curl hk|2>

|div ¥ ||, [curl ¥,

6 Results

In this section we present some results given by our method on real sequences.

The first example corresponds to the motion of smoke behind a landing passenger
air plane. A strong vortex is located in the center of the image, and a second weaker one
begins to appear just below. The particles are initialized on a grid, without a priori. The
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(a) (b) (c)

Fig. 1. Plane sequence. (a) Initial uniform disposition of the particles; (b) Final position of the
particles at the first level of multiresolution; (c) Final position of the particles at the second level

(a) (b)

Fig. 2. Plane sequence. (a) Resulting motion field; (b)Associated vorticity

estimation method allows to guide the vortex particles towards the regions of interest of
the image and to estimate an accurate motion field (see the vector field and the associated
vorticity map fig. 2). For this sequence we used a multi-resolution pyramid of two levels.
At the first level, the particles move all towards the strong vortex (fig. 1 (b) ). At the finest
level, the particles cloud splits up into two parts (fig. 1 (c) ). A set of particles has moved
towards the weaker vortex, authorizing them to capture its motion.

The second example shows results on two consecutive images of the infra-red channel
of Meteosat. The sequence represents a depression with a vortex in the left part of the
image domain and presence of convective clouds in the center. In this example, we want
to observe the motion in specific areas, we dispose thus the vortex and source particles

(a) (b)

Fig. 3. Depression sequence. (a) Initial manual disposition of the particles. Black points represent
the vortex particles, white points the source ones; (b) Final position of the same particles
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(b) (c)

Fig. 4. Depression sequence. (a) Resulting motion field; (b) Associated vorticity; (c) Associated
divergence

manually in the regions of interest (fig. 3 (a)). During the estimation, the particles
location fits locally automatically. At convergence, the vortex particles remains mostly
concentrated in the center of the vortex, while the source particles are located on the
convective cloud (fig. 3 (b) ).

7  Conclusion

In this paper we have presented an optical flow estimator dedicated to image sequences
depicting fluid flows. The proposed estimator provides a low dimensional parametric rep-
resentation of fluid motion. This parameterization has been obtained through a peculiar
discretization of the divergence and the vorticity map by means of adapted basis function
centered at elements named particles. To handle the associated estimation problem we
have proposed an efficient strategy based on the coupling of a generalized conjugated
gradient and a mean shift process.
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Abstract. The decomposition of motion vector fields into components
of orthogonal subspaces is an important representation for both the anal-
ysis and the variational estimation of complex motions. Common finite
differencing or finite element methods, however, do not preserve the ba-
sic identities of vector analysis. Therefore, we introduce in this paper
the mimetic finite difference method for the estimation of fluid flows
from image sequences. Using this discrete setting, we represent the mo-
tion components directly in terms of potential functions which are use-
ful for motion pattern analysis. Additionally, we analyze well-posedness
which has been lacking in previous work. Experimental results, including
hard physical constraints like vanishing divergence of the flow, validate
the theory.

1 Introduction

The estimation of highly non-rigid image flows is an important problem in var-
ious application areas of image analysis like remote sensing, medical imaging,
and experimental fluid mechanics. Such flows, which cannot be represented by
a single parametric model, are typically estimated by variational approaches. In
contrast to standard approaches, however, higher-order regularization is neces-
sary in order to accurately recover important flow structures like vortices, for
example, and to incorporate physically plausible constraints, like vanishing di-
vergence of the flow.

The basis for our paper is early work on second-order regularizers constraining
the gradients of the flow components divergence and curl [1,2, 3]. This regular-
ization approach has been elaborated in a series of papers by Mémin and co-
workers [4,5, 6]. Moreover, the decomposition and representation of continuous
vector fields by velocity potentials and stream functions [7] has been adopted to

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 267-278, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



268 J. Yuan et al.

derive piecewise parametric representations of relevant flow structures. Recently,
the direct estimation of this representation has been studied in [8].

Contribution. From numerical fluid dynamics, it is well known that standard
discretizations, like piecewise linear finite elements, are not approriate. Impos-
ing the constraint of vanishing divergence, for example, may result in a constant
flow. Therefore, we introduce the mimetic finite difference method [9, 10, 11] to
the field of image sequence analysis, which uses basic integral identities of vector
analysis to derive discrete differential operators preserving these relationships af-
ter discretization. Based on this exact discrete representation, we study div-curl
regularization, detect and remove a corresponding sensitivity of this regularizer
to “boundary noise”, state precise conditions for well-posedness, and present a
provably convergent iterative implementation for directly estimating velocity po-
tentials and stream functions by iterative subspace correction. Most importantly,
our approach makes the estimation of accurate solenoidal (non-divergent) flows
feasible. The theory is validated by numerical experiments.

2 Vector-Field Representation

2.1 Discretization and Vector Spaces

We use the mimetic finite difference method for discretization [9, 10] in order to
preserve basic relationships of continuous vector analysis. This discretization will
be applied in section 2.2 to accurately represent and decompose vector fields.

Figure 1 illustrates the definitions of the following finite-dimensional vec-
tor spaces:

. . .

)
(-1.]) Hs
H H
O ¢= 0 =
H H
e o= €7 o &
Qi HE |GD) 1 (i j+1)
(i+1/2,+1/2)
0 0
TH E HE Hv

ﬁ? OH E T(i+1, )] ﬁiﬂ, j+1)

Fig. 1. Definition of finite-dimensional spaces of scalar fields and vector fields on a
rectangular grid. Filled circles depict nodes or vertices, the other circles indicate cells.
The positions of diamonds are referred to as sides



Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation 269

Hy : the space of scalar fields defined on cells,

Hp: the space of scalar fields defined on vertices,

HEp: the space of vector fields defined tangential to sides,
Hg: the space of vector fields defined normal to sides.

Furthermore, we define the following primal discrete first-order differential op-
erators:

G:Hp — Hg the discrete gradient operator representing V,

G':Hp — Hg the discrete directional derivative along level curves
representing V= in the discrete case. This operator is
specific to the 2D case considered here.

Div : Hg — Hy the discrete divergence operator,

Curl : Hg — Hy the discrete curl operator.

In order to construct the discrete second-order differential operators by combin-
ing first-order operators, dual discrete first-order differential operators

G*:Hy — Hg, G*" : Hy — Hp, Div*: Hp — Hp, Curl * : Hg — Hp

are defined so as to solve the incompatibilities of domains and ranges of the
primal operators defined above [10]. For example, G and Div cannot be regarded
as mutually adjoint operators like in the continuous case, whereas G, Div * and
G*, Div do.

2.2  Orthogonal Decomposition

We represent vector fields directly in terms of their irrotational and solenoidal
components. These components are defined by the first-order variations of ve-
locity potentials ¢ and stream functions ¢, respectively [11]:

Theorem 1 (Vector Field Decomposition). For any 2D vector field u €
Hg, the representation of u in terms of 1, ¢:

U = G*w + Gl(;ba UpnR = 871% (1)
where ¢y = 0, is unique up to a constant of .

Here, {2 denotes the image section (grid), n the corresponding outer normal
vector, and fsg, the boundary values of f. Let

v=v4+w, v=G*Y, w=G¢
according to (1). Since the operators defined in the previous section satisfy [11]:
Div G+ =0, Curl *G* =0,

we have
Divw=0, Curl v =0, (2)
and:
(0,0) g = (G*$,GT¢) ;= (Curl *G*, )y, =0 (3)
This shows:
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Theorem 2 (Orthogonality). The decomposition (1) is orthorgonal, that is:
(G*¢,G*¢), =0, Vue Hs (4)

Let S;. express the subspace of all vectors which can be written as G*¢ and
Ssor the subspace of vectors which can be reprented as G+¢. Then the previous
theorem asserts that the direct sum holds:

HS’ - Sir ©® Ssol (5)

Representation (1) is motivated by analogous decompositions of continuous
vector fields [7]. However, discretizing such vector fields with standard finite
differences or finite elements yields approximate decompositions only, which may
lead to numerical instabilities in applications. In contrast, theorem 1 provides an
eract orthogonal decomposition of the finite-dimensional space of vector fields
Hg. Furthermore, as detailed below, the decomposition allows to estimate i, ¢
directly, and in parallel, using variational optical flow approaches and subspace
correction methods (cf. section 5.1).

Alternatively, we may first estimate v and then compute ¢ and ¢ in a sub-
sequent step by solving the Neumann and Dirichlet problems:

Apyp =Divu, 0Ot =uge, (6)
Ac(b = Curl *u y qbag =0 5 (7)

where the discrete Laplacians are defined by:
Ap:=DiwG*,  Acg:=Curl *G* (8)

and the additional constraint ), % = 0. In the remainder of this paper, how-
ever, we show that directly estimating v, ¢ from image sequence data is feasible.

3 Regularization and Optimization Problems

3.1 Representation of the Data Term and Linearization

We consider pixels as cells and define accordingly I € Hy for a given image.
We use the conventional data term for optical flow estimation, along with
regularizers L(u) to be specified below (section 3.2):

min F(u), F(u):=|I(z+u)—I(z)|3, + L) 9)
u€Hs
Note that this data term could be made robust against outliers by using some
robust estimators or the L!-norm [12]. In this paper, however, we focus on higher-
order regularization in connection with the representation (1).
In order to alleviate the local minima problem, we apply the standard pro-
cedure of minimizing F'(u) using a sequence of linearizations of the data term:



Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation 271

Fll) o= |G L ot + 0|5, + L) (10)

where {I {, Ié}lzo,lw)m denote linear scale-space representations of a given image
pair, and 9;I' = I} (x) — IL(x + u!*t1(z)).

3.2 Regularization

We wish to apply the following second-order regularizer (cf. the discussion of
related work in section 1):

/ M| Vdivu? + \o|Veurl u*dz (11)
0

where \; and Ay are two positive constants. This term measures the variation
of the basic flow components divergence and curl, but does not penalize the
components itself. However, both standard finite differences or finite elements
discretization lead to finite-dimensional representations which do not satisfy (1),
(4). As a result, penalizing one component may affect the other component too.
Therefore, we adopt the framework sketched in section 2.1 which leads to the
following discretization of (11):

L(u) := Laip(4) + Leuri(w) := A1 |G*Div ul 3 + Az [|GCurl *ully_ ,  (12)

3.3 Estimation of Non-rigid Flows

Based on (12), we consider the functional:

moin Fu) = [[(z+u) - I(@) |7, + Laiw(w) + Leurt(w) (13)

Inserting the decomposition (1), we obtain the minimization problem:
. * 2
min F(,6) = [[I(@ + G+ G 9) — I(@)|[, (14)

+ MG ApYli + A2 [GACH] 7,

subject to the linear constraints:
d =0, ¢aa=0 (15)
cells

Note that the first constraint fixes the free constant mentioned in theorem 1.
Furthermore, the arguments of (14) are elements of orthogonal subspaces (5),
and thus may be determined in parallel by subspace correction methods.

3.4 Estimation of Solenoidal Flows

An important special case, particularly in applications of experimental fluid
dynamics, concerns the estimation of solenoidal (divergence-free) flows. In this
case the decomposition (1) reduces to:

u=G"Y +Gto:=u +Gto (16)
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where the laminar flow u; can be computed through the full flow u by solving:
Aphr =0, Opthy =usq (17)

and u; = G*1);. Since Curl *G* = 0, the laminar flow u; is both divergence and
curl free. In order for (17) to be solvable, we require the compatible condition

Jog wondl =0 (cf., e.g., [13]).
Let Sgivo = {u € Hg | Div u = 0} be the linear space of vector fields with
vanishing divergence. Then the following direct sum holds:

SdivO = Slam S2) Ssol (18)

with laminar and solenoidal flows as basic components.
In order to estimate solenoidal flows, we consider instead of (13) the func-
tional:
min Fooi(u) i= [1(@ +w) — 1(@)[1%, + Lews () (19)

u€Sdivo

which is well-defined by (18). Inserting the decomposition (16), we obtain the
minimization problem:

. * 2
min Fu (Y1, 0) = |1z + G"du + G19) = 1) ||y, +A1GA00lT,  (20)
subject to the constraints:
Apr=0, Y =0, ¢oo=0 (21)
cells

Note that the arguments of (20) are elements of orthogonal subspaces (18), and
thus may be determined in parallel by subspace correction methods.

4 Well-Posedness and Stability

4.1 Well-Posedness

We state the conditions under which the functionals (13) and (19) with linearized
data terms (cf. (10)) are strictly convex. To this end, we consider the spaces:

Se={u€ Hg |Divu=C, Curl "u=0, C €R arbitrary}
Se={u€ Hg | Divu=0, Curl "u=C, C € R arbitrary}
Sic={u € Hg | u=uy +uz, u; € Sq, ug € S}
Sg={ue Hg |G*I; -u=0}

As we work with finite-dimensional vector fields, the following two assertions are
obvious: problem

min F(u) := ||G* Iy - u+ 01|75, + M |G*Div |, + A2 [GCurl *ull7,_ (22)
u€Hs
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is strictly convex iff the subspaces S, and Sy trivially intersect, that is there is
no vector 0 # u € Sy, which is perpendicular to G*I;. Similarly, problem
min  Fyo(u) = |G Iy - u+ 0,13, + N | GCurl ull3,_ (23)

u€ Sdivo

is strictly convex iff Sy and S, trivially intersect.

4.2  Stability

It is well-known that existence of a unique solution, as established in the previous
section, does not say much about numerical stability. Indeed, inspection of the
second-order regularizer (11) reveals a particular sensivity of « with respect to
the image data, and suggests using a corresponding regularizer.

To motivate this additional term, we consider the following representation of
vector fields u in terms of functions p,w and boundary data f:

divu=p, culu=w, wusgn=7Ff

Provided the compatibility condition:
/ pdr = fdi (24)
Q a0

holds, v is uniquely defined, both in the continuous case [13] and in the discrete
case, using the discretization of section 2.1.

It is clear that the regularizer (11) only constrains p and w, but not f which
is weakly constrained only through the data terms of the functionals considered
above. Therefore, in practice, it turned out to be useful to reduce this sensivity
of u by including a regularizer which weakly constraints the boundary values:

/ (Onu)? dl. (25)
an

By virtue of the orthogonal decomposition, this constraint can be expressed in
terms of .

Fig. 2. Left: Synthetic image and solenoidal velocity field. Middle: Divergence error
using Horn-Schunck regularization. Right: Divergence error using our approach
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5 Experiments and Discussion

5.1 Implementation Details

Minimization of the functionals (14) and (20), respectively, with linearized data
terms (see (10)) can be done by alternating partial minimizations with respect

—

L . L d Y Wi
3 r = C 5

Fig. 3. Top Left The first image [;with the restored solenoidal flow. Top Right The
divergence field of the flow which is less than 3 * 1072, Middle Left The potential
field ¢ (2) related to the laminar flow. Middle Right The potential field ¢(£2). Bot-
tom Left The first component of flow: the laminar flow w;qm. Bottom Right The
second component of flow related to potential ¢(£2). The comparison with standard
regularization is depicted in Figure 4
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to ¥, ¢ and subsequent subspace corrections. The proof of convergence and

further details are given in [14,15]. In the case of solenoidal flows, the first

linear constraint in (21) is incorporated by using the Augmented Lagrangian

Method [16]. The remaining two constraints can be taken into account by directly

modifying the two linear systems involved.

Experiment Results

5.2

Error Measures. In pactice, evaluating non-rigid flows by computing the av-

erage angular and norm error, respectively, induced by the inner product of the

space (L?(£2))?

L2(92) x L?($2) [17] appeared to us too insensitive to the im-
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Fig. 4. Top The restored solenoidal flow u(£2). Bottom The restored flow ups(£2) using
the Horn-Schunck regularization. This results clearly show that vortex structures are

better recovered by our approach. Furthermore, the magnitude of the divergence is

below 107! throughout the image plane
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portant flow structures. Therefore, we suggest error measures that also take into
account divergence and curl of flow structures:

b ) 1
€norm = M; €ang. = arccos <u U>DC + .
N \/(u, u) pe + 1\/<v, v)pe +1

where we adopt the average angular and norm error measures but use the inner
products of the space H(div; £2) N H(curl; £2) (see, e.g., [7]):

(26)

(u,v) pe = (U, v) g + (Div u, Div v) g+ (Curl “u, Curl “v) g, (27)

Ground Truth Experiments. Figure 2 shows a real image which was warped
by the indicated flow. The corresponding errors for the approach (20) eporm =
6.1% 1073, eqpy. = 6.51° are smaller than the approach with Horn-Schunck reg-
ularization, for which ey opm = 2.95%1072, €ang. = 13.52°. Note, that these error

Fig.5. Top Image I with the restored flow field u. Middle Left The divergence
field of u. Middle Right The curl field of u. Bottom Left The potential field ¢ ({2).
Bottom Right The potential field ¢(f2). The divergence field, for example, which
clearly detects a “source” (blue blob), illustrates the quality and usefulness of the
results
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measures include flow derivatives as opposed to common measures used in the
literature.

Estimating Solenoidal Flows. Figure 3 shows the result of estimating the
solenoidal flow for a real image sequence. The comparison with first-order reg-
ularization (Horn-Schunck approach) in Figure 4 cleary reveals the superiority
of our approach regarding the reconstruction of vortex structures. Furthermore,
the (in this case) physically plausible constraint of vanishing divergence is satis-
fied quite accurately.

Estimating General Non-rigid Flows. Figures 5 and 6 show general non-
rigid flow estimated for two different real image sequences. As in the solenoidal
case, the potential functions provide a useful representation of qualitative prop-
erties of the flow.

Fig. 6. Top Image I with the restored flow field u. Middle Left The divergence field
of u. Middle Right The curl field of u. Bottom Left The potential field ¥({2).
Bottom Right The potential field ¢(£2). As in the previous figure, the potential
functions provide a useful representation of qualitative properties of the flow
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6 Conclusion and Future Works

We presented a high-quality discrete representation of flow estimation schemes for
non-rigid flows. Our further work will focus on the extension to 3D image sequences.
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Abstract. Variational methods are very popular for optic flow computation: They
yield dense flow fields and perform well if they are adapted such that they respect
discontinuities in the image sequence or the flow field. Unfortunately, this adap-
tation results in high computational complexity. In our paper we show that it is
possible to achieve real-time performance for these methods if bidirectional multi-
grid strategies are used. To this end, we study two prototypes: i) For the anisotropic
image-driven technique of Nagel and Enkelmann that results in a linear system
of equations we derive a regular full multigrid scheme. ii) For an isotropic flow-
driven approach with total variation (TV) regularisation that requires to solve a
nonlinear system of equations we develop a full multigrid strategy based on a
full approximation scheme (FAS). Experiments for sequences of size 160 x 120
demonstrate the excellent performance of the proposed numerical schemes. With
frame rates of 6 and 12 dense flow fields per second, respectively, both imple-
mentations outperform corresponding modified explicit schemes by two to three
orders of magnitude. Thus, for the first time ever, real-time performance can be
achieved for these high quality methods.

Keywords: computer vision, optical flow, differential techniques, variational meth-
ods, multigrid methods, partial differential equations.

1 Introduction

In computer vision, the estimation of motion information from image sequences is one of
the key problems. Typically, one is thereby interested in finding the displacement field
between two consecutive frames, the so-called optic flow. In this context, variational
methods play a very important role, since they allow for both a precise and dense esti-
mation of the results. Such techniques are based on the minimisation of a suitable energy
functional that consists of two terms: A data term that imposes temporal constancy on
certain image features, e.g. on the grey value, and a smoothness term that regularises the
often non-unique solution of the data term by an additional smoothness assumption.

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 279-290, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Let us consider some image sequence f(x,y,t), where (x,y) denotes the location
within a rectangular image domain (2, and ¢ € [0, T'] denotes time. Then, the assumption
of a constant grey value over time can be formulated as

flx+uy+v,t+1)— f(z,yt)=0. (1)

Performing a Taylor expansion and dropping all higher order terms one obtains its
linearised form, the so-called optic flow constraint (OFC)

fzu+ fyU + fr =0. 2)

Here, the function (u(x,y,t),v(x,y,t))" is the wanted displacement field and sub-
scripts denote partial derivatives. As classified in [33], there are basically three different
types of strategies to regularise the evidently non-unique solution of this data term:
Homogeneous regularisation that assumes overall smoothness and does not adapt to
semantically important image or flow structures [20], image-driven regularisation that
assumes piecewise smoothness and respects discontinuities in the image [1, 26] and flow-
driven regularisation that assumes piecewise smoothness and respects discontinuities in
the flow field; see e.g. [11,29, 33]. Moreover, when considering image and flow-driven
regularisation, one can distinguish between isotropic and anisotropic smoothness terms.
While isotropic regularisers do not impose any smoothness at discontinuities, anisotropic
ones permit smoothing along the discontinuity but not across it.

Although recent developments [7,9,25] have shown that variational methods are
among the best techniques for computing the optic flow in terms of error measures [3],
they are often considered to be too slow for real-time applications. In particular the
computational costs for solving the resulting linear and nonlinear system of equations
by using standard iterative solvers are regarded as too high. In [8] we have already
demonstrated for variational methods with homogeneous regularisation that bidirec-
tional multigrid strategies [5,6,19,31,35] do allow for real-time performance. These
techniques that create a sophisticated hierarchy of equation systems with excellent er-
ror reduction properties belong to the fastest numerical schemes for solving linear or
nonlinear systems of equations. In this paper we show that by using such methods also
real-time performance for variational techniques with image- or flow-driven regulari-
sation becomes possible. One should note that in this case the development of suitable
multigrid strategies is much more difficult due to the anisotropy or nonlinearity of the
underlying regularisation strategies. To the best of our knowledge our paper is the first
one to report real-time performance for such variational optic flow methods on standard
hardware.

Paper Organisation. Our paper is organised as follows. In Section 2 we give a short
review on two variational techniques that serve as prototypes for image- and flow-driven
regularisation. Section 3 shows how these problems can be discretised, while efficient
bidirectional multigrid schemes for solving the resulting linear and nonlinear systems of
equations are proposed in Section 4. In Section 5 we present an experimental evaluation
that includes experiments with different real-world sequences as well as performance
benchmarks for both prototypes. A summary in Section 6 concludes this paper.

Related Work. In the literature on variational optic flow methods, coarse-to-fine strate-
gies are quite common to speed up the computation (see e.g. Anandan [2], Luettgen et
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al. [24]). They are based on a successive refinement of the problem whereby coarse grid
solutions serve as initial guesses on finer grids. However, from a numerical viewpoint
such unidirectional schemes are not the end of the road. They are clearly outperformed
by bidirectional multigrid methods that revisit coarser levels in order to obtain useful
correction steps. While there is at least some literature on these highly efficient schemes
for variational optic flow techniques with homogeneous and image-driven regularisation
(Glazer [18], Terzopoulos [30], Zini et a. [37], El Kalmoun and Riide [13], Enkelmann
[15], Ghosal and Vanék [17]), only the work of Borzi et al. [4] is known to the authors
where an optic flow problem was solved by means of a nonlinear bidirectional multigrid
scheme (FAS). Also for other tasks in image processing and computer vision multigrid
methods have been used successfully. In the context of photometric stereo and image
biniarisation Kimmel and Yavneh [22] developed an algebraic multigrid method, while
Chan et al. [10] researched geometric multigrid schemes for variational deconvolution
with TV regularisation. For TV denoising Vogel [32] proposed the use of a linear multi-
grid method within a nonlinear fixed-point iteration, while, very recently, Frohn-Schnauf
et al. [16] investigated a nonlinear multigrid scheme (FAS) for the same task.

2 Prototypes for Variational Methods

2.1  The Method of Nagel and Enkelmann

As prototype for the class of optic flow methods with image-driven regularisation we
consider the anisotropic technique of Nagel and Enkelmann [26]. Their method accounts
for the problem of discontinuities by smoothing only along a projection of the flow
gradient, namely its component orthogonal to the local image gradient. As a consequence,
flow fields are obtained that avoid smoothing across discontinuities in the image data.
The energy functional associated to this anisotropic form of regularisation is given by

EWJQ:/(Uﬂr+@v+ﬁf+aWMUXVﬂVu+VﬂUXVﬂVM)&w%($
(9]

where V := (0z,dy) T denotes the spatial gradient and D(V f) is a projection matrix
perpendicular to V f that is defined as

1 24+ —f.f a b
DVf)y= ——— (7Y Y ) = . 4
o =rrras (P 2) = (0 @
In this context e serves as regularisation parameter that prevents the matrix D(V f)

from getting singular. Following the calculus of variations [14], the minimisation of this
convex functional comes down to solving its Euler—Lagrange equations that are given by

0=flu+tfofyv+fofe — aLlnpu, ©)
0= fofyu+ fov+ fyft — aLxgv (6)
with the linear differential operator

and reflecting Neumann boundary conditions.
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2.2 The TV-Based Regularisation Method

In contrast to image-driven regularisation methods, flow-driven techniques reduce smooth-
ing where edges in the flow field occur during computation. Our prototype for this class
of variational optic flow techniques is an isotropic method that penalises deviations from
the smoothness assumption with the L; norm of the flow gradient magnitude. This cor-
responds to total variation regularisation [28] and can be related to statistically robust
error norms [21]. Thereby large deviations are penalised less severely than in the fre-
quently used quadratic setting (L5 norm). As a consequence, large gradient features such
as edges are better preserved. The energy functional for this approach is given by

E(u,v) = / ((fmu + fyv+ ft)2 + a/|Vul? + Vo2 + 62) dxdy, (8)
Q

where € serves as small regularisation parameter. A related functional that approximates
TV regularisation is proposed in [34], while variational approaches for rotationally not
invariant versions of TV regularisation have been researched in [11, 12,23]. At first
glance, the corresponding Euler-Lagrange equations that are given by

0= f2u+fofyv+ fofs = 5 Lrv(u,v), ©)
0= fuofyut Fv+fufi = 5 Lov(v.w) (10)

have a very similar structure than those in (5)-(6). However,

is evidently a nonlinear differential operator in 2z and Z, since

- 1 a b
D(Vz,V3) = I=: , 12
VeV = e (b ) (12)

where [ is the identity matrix, b = 0 and ¢ = a. As we will see later, this nonlinearity
of the differential operator Lv has serious impact on the resulting discrete system of
equations and on the derived multigrid strategy.

3 Discretisation

3.1  General Discretisation Aspects

Let us now discuss a suitable discretisation for the Euler-Lagrange equations (5)-(6)
and (9)-(10). To this end we consider the unknown functions u(x,y,t) and v(z,y, t)
on a rectangular pixel grid with cell size h = (h,,hy)", and we denote by uf; the
approximation to u at some pixel 4, j with¢ = 1,...,N, and j = 1,...,N,,. Spatial deriva-
tives of the image data are approximated using a fourth-order approximation with the
stencil (1, —8,0,8,—1)/(12h), while temporal derivatives are computed with a simple
two-point stencil. In order to discretise the divergence expressions in the differential
operators Lng and Lty we propose the following finite difference approximations:
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Table 1. Discretisations of averaging and differential operators

One-sided averaging | MF" (z ;) = % (13)
MED () = a2 (14)
One-sided differences | D" (z; ;) = :I:'il}fi;z” (15)
Dy® (zi5) =T (16)
Central differences DR (z;) = % (17)
DE () =t o9
Squared differences | D3 (z;;) =1 (D" (2, ]))2 +1 (D;’h(zi,j))g (19)
2 _ 2
Dy (zi3) =5 (D5 ™(zi9)" + 5 (Dy " (zi5)) (20)
Gradient magnitude | |[D*" (2 ;)] = \/D?E’h(zi,j) + D2"(zi4) (21)
0 (a(z,y) uz(,y)) = Dy ™ (MM (ai ;) DI (21)) (22)
0s (b(x,y) Oy=(z,y)) =~ Dy ( bij Dy (2), (23)
0y (b(z,y) Oxz(7,y)) =~ Dg}; ( bi,; Dgcl (z%?)) ) 24
9y (c(z,y) 9yz(w,y)) = Dy ™ (M " (ciy) Dy P (215)) (25)

where the coefficients a, b and ¢ are entries of the matrices D(V f) and D(Vu, Vv)
as shown in (4) and (12). Details on the required averaging and differential operators
within the approximations are given in Table 1.

3.2  The Method of Nagel and Enkelmann

We are now in the position to write down the discrete Euler-Lagrange equations for the
method of Nagel and Enkelmann. They are given by

2,h h h h h h
OZfJL’Zj +fw1 yz] ’,j+f$ijfti,j _aLNEl_] 7,7 (26)
h h h
0= MJ ym 7J+fyw gyl — O‘LNELJ i,5 27

fori=1,..,Nyandj = 1,.., N, where LRy,  denotes the discrete version of the linear
operator Lng at some pixel i, 7. These 2N, N, equations constitute a linear system for
the unknowns u ; and vh ;- One should note that there are two different types of coupling
between the equat10ns The pointwise coupling between ul! ; and v - in the data term
and the anisotropic neighbourhood coupling via the operator Lhe, ;j in the smoothness
term (for wf!; and v}'; separately).
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3.3  The TV-Based Regularisation Method

Analogously, we discretise the Euler Lagrange equations for the TV-based regularisation
method. The obtained nonlinear system of equations then reads

2,h h h h ¢h @ oh h hy h
Ozfmi] i,j +fr1] Y 0,5 i,j+f.ri,jfti,j - §LTVi,j(ui,javi,j)ui,ja (28)
h 2,h @ o h h _h, h
0= ng yij W +fyz_7 y?_]ftl] 7§LTVi,j(ui,javi,j)rUi,j7 (29)

fori =1,..,Nyandj = 1, .., N,. Here, the finite difference approximation of L1v (u, v)

- : h h ,h
and Lty (v, u) results in the product of a common nonlinear operator Ly, ; ; (u;';, v;';)

and the pixel u ;and vl respectively. Evidently, this constitutes a third way of coupling.

©,5°

4  Multigrid

4.1 Basic Concept

In general, the obtained linear and nonlinear systems of equations are solved by us-
ing non-hierarchical iterative schemes; e.g. variants of the Jacobi or the Gauf3-Seidel
method [27,36]. However, such techniques are not suitable for equation systems that
are only coupled via a small local neighbourhood: It may take thousands of iterations to
transport local information between unknowns that are not coupled directly. A Fourier
analysis of the error confirms this observation: While high frequency components (small
wavelength, local impact) are attenuated efficiently, lower frequency components (large
wavelength, global impact) remain almost un-dampened. In order to overcome this prob-
lem multigrid methods are based on a sophisticated strategy. They make use of correction
steps that compute the error (not a coarser version of the fine grid solution) on a coarser
grid. Thus, lower frequency components of the error reappear as higher ones and allow
for an efficient attenuation with standard iterative methods. In the following we explain
this strategy in detail for both the linear and the nonlinear case by the example of a basic
bidirectional two-grid cycle.

4.2  The Linear Two-Grid Cycle

For the sake of clarity, let us reformulate the linear equation system of the method of
Nagel and Enkelmann (26)-(27) as

b= b (30)

Here 2P denotes the concatenated vector ((u®) ", (v?)T)T, AP is a symmetric positive
definite matrix and f® stands for the right hand side.

I) Multigrid methods starts by performing several iterations with a basic iterative
solver. This is the so-called presmoothing relaxation step, where high frequency
components of the error are removed. If we denote the result after these iterations
by #P, the error is given by

h_ h_ :h
et =z —I". (€2))



Discontinuity-Preserving Computation of Variational Optic Flow in Real-Time 285

II) Evidently, one is interested in finding e® in order to correct the approximated so-
lution #P. Although €™ cannot be computed directly, the linearity of A® allows its
computation via

Abeh — gh(gph _ghy = pgbgh _ pgbgh — fh_ ghgh _ b (32)

where 7P is called residual. Since high frequencies of the error have already been

removed, we can speed up the computation by solving this equation system at a
coarser resolution with grid cell size H = (H,,, H,) " :

Abeb = b AHH _  H (33)

One should note that at this point, a transfer of the original equation system to a
coarser grid makes no sense: Unlike the error, the solution very probably contains
(desired) high frequency components. A restriction of these components would
severely deteriorate the approximative solution (aliasing).

IIT) After we have solved the residual equation system on the coarse grid with a method
of our choice, we transfer the solution back to the fine grid and correct our approx-
imation by the computed error

h =ah b (34)

IV) In general, the transfer of the computed correction from a coarse grid by means of
interpolation introduces some new high frequency components. To this end, a so-
called postsmoothing relaxation step is performed, where once again some iteration
of the basic iterative solver are applied.

4.3  The Nonlinear (FAS) Two-Grid Cycle

Also in this case, let us start with a reformulation of the nonlinear equation system
resulting from the TV-based regularisation method (28)-(29) as

AP(2P) = /B (35)
where AP (z") is a nonlinear operator. The FAS strategy [5] works as follows:
I) We perform a presmoothing relaxation step with a nonlinear basic solver.
II) However, since A" (") is a nonlinear operator, the way of deriving a suitable coarse

grid correction is significantly different from the linear case. The (implicit) relation
between the error and the residual is given by

AP(ED 4 ) — AP () = - AR ED) = (36)

In order to compute the desired correction we transfer the following nonlinear equa-
tion system to the coarse grid

AR(Fh 4 el) = P AR(Eh) - AR([FH] 4 ) = T[4BT | 37)
Here, frames visualise the additional terms compared to the linear case.

IIT) After we have solved the nonlinear residual equation system on the coarse grid, we
subtract #H from the solution in order to obtain e, Its transfer to the fine grid then
allows to perform the correction step.

IV) We perform a postsmoothing relaxation step with a nonlinear basic solver.
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4.4  Advanced Multigrid Strategies

In order to increase the computational efficiency, the presented two-grid cycles are
generally applied in a hierarchical way. While V—cycles make one recursive call of a
two-grid cycle per level, faster converging W—cycles perform two. Nevertheless, multiple
of such advanced cycles are required to reach the desired accuracy. Refining the original
problem step by step (unidirectional coarse-to-fine approach) and solving the resulting
linear or nonlinear equation system at each level by using some bidirectional V— or W—
cycles, the multigrid strategy with the best performance is obtained: full multigrid [6].
For both the linear and nonlinear case we have developed such full multigrid schemes.
Let us now sketch some implementation details.

4.5 Implementation Details

For the method of Nagel and Enkelmann we implemented a full multigrid scheme with
four W—cycles per level each one based on one pre- and one postsmoothing iteration. In
order to overcome the problematic anisotropic coupling we made use of a Gaul3-Seidel
method with alternating line relaxation (ALR) [35] as basic solver. For our second proto-
type, the TV-based regularisation method, we designed a FAS full multigrid scheme with
two W—cycles per level each one based on two pre- and two postsmoothing iterations.
In this case we embedded a GauB3-Seidel method with coupled point relaxation (CPR)
[8] and frozen coefficients [16]. In order to allow for a complete multigrid hierarchy
we thereby considered the use of non-dyadic intergrid transfer operators. As proposed
in [8] they were realised by constant interpolation and simple averaging. Coarser ver-
sions of the linear and nonlinear operators were created by a discretisation coarse grid
approximation (DCA) [35].

S  Experiments

In our first experiment we compare the efficiency of different numerical schemes for
the discussed prototypes (Nagel and Enkelmann with a = 1000 and e = 10~2, TV-based

Table 2. Performance benchmark on a standard desktop computer with 3.06 GHz Pentium 4 CPU.
Run times refer to the computation of a single flow field from the 160 x 120 dancing sequence

(a) Linear : Image-driven anisotropic regularisation (Nagel-Enkelmann)

Solver Iterations | Time [s] | FPS [s™'] | Speedup
Mod. Explicit Scheme (7 = 0.1666) 36558 47.053 0.021 1
GauB-Seidel (ALR) 607 3.608 0.277 13
Full Multigrid 1 0.171 5.882 275
(b) Nonlinear : Flow-driven isotropic regularisation (TV)
Solver Iterations | Time [s] | FPS [s~'] | Speedup
Mod. Explicit Scheme (7 = 0.0025) 10631 30.492 0.033 1
GauB-Seidel (CPR) 2679 6.911 0.145 4
FAS - Full Multigrid 1 0.082 12.172 372
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Fig.1. Left to right: dancing sequence, waving sequence, rotating thumb sequence. Top fo
bottom: first frame, second frame, our CLG multigrid implementation from [8], our Nagel-

Enkelmann multigrid implementation, our TV-based regularisation FAS multigrid implemen-
tation. Brightness code: The magnitude of a flow vector is encoded by its brightness. Brigther
pixels stand for larger displacements. Color versions of the flow fields are available at
http://www.mia.uni-saarland.de/bruhn/scsp05/flowfields/
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regularisation method with « = 10 and € = 10~2). Apart from our full multigrid schemes
we also implemented stand-alone versions of their basic solvers, namely the Gauf3-
Seidel methods with alternating line relaxation (ALR) and the Gauf3-Seidel method with
coupled point relaxation (CPR). Moreover, we considered a modified explicit scheme
[34] that allows for larger time step sizes 7 than ordinary explicit schemes (e.g. than
gradient descent methods). For our evaluation we used a 160 x 120 real-world sequence
in which a person dances in front of the camera. The iterations were stopped when the
relative error e, := ||x — &y, ||2/||7||2 dropped below 10~2, where x denotes the correct
solution and z,, stands for the computed result after n iterations/cycles.

Table 2 shows the excellent performance of the proposed numerical schemes. In
the linear case the presented full multigrid method outperforms the modified explicit
scheme by two to three orders of magnitude. By allowing for the computation of six
dense flow fields per second it is also more than one order of magnitude more efficient
than its underlying basic solver. In the nonlinear case, the obtained speedups are even
better. This time, the proposed FAS full multigrid method outperforms both the modified
explicit scheme and the underlying basic solver by two to three orders of magnitude.
Thereby, frame rates of twelve dense flow fields per second clearly show that also in this
case real-time performance is well within our computational reach.

In our second experiment we compare the quality of both methods to that of a
variational approach with homogeneous regularisation. To this end, we have computed
flow fields for three different real-world sequences: for the previously used Dancing
Sequence (complex motion), the Waving Sequence (translations and discontinuities)
and the Rotating Thumb Sequence (rotation). The depicted colour plots in Figure 1
make the qualitative progress in the field of real-time variational optic flow computation
explicit: One can easily see, that image- and flow-driven results are of much higher
quality, since the underlying methods allow for a preservation of motion boundaries
and discontinuities. Moreover, one can observe that the nonlinear flow-driven method
is able to overcome the problem of oversegmentation that lies in the nature of image-
driven techniques.

6 Summary and Conclusions

In this paper we have demonstrated that real-time optic flow computation on standard
hardware is possible for variational optic flow techniques with both image- and flow-
driven regularisation. This was accomplished by using highly efficient bidirectional full
multigrid methods that solved the resulting linear and nonlinear systems of equations at
different scales. In our experiments the proposed numerical schemes not only outper-
formed frequently used non-hierarchical solvers by two to three orders of magnitude,
they also allowed for a very accurate estimation of the results. This shows that high qual-
ity optic flow computation and real-time performance are not opposing worlds. They can
be combined if state-of-the-art numerical schemes are used. In our future work we plan
to investigate different parallelisation strategies for the presented methods. This would
allow us to process even larger sequences in real-time.
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The Structure of Shapes Scale
Space Aspects of the (pre-) Symmetry Set*
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Abstract. Shapes simplify under to the intrinsic heat equation - the
Mean Curvature Motion (MCM) - forming a shape scale space. The
same holds for a representation of the shape, viz. the Symmetry Set
(SS), a superset of the Medial Axis. Its singularities under the MCM are
known, opening possibilities to investigate its deep structure. As data
structure we use so-called Gauss diagrams, structures that depend on
the pre-Symmetry Set, the SS in parameter space. Its properties, as well
as its evolution and singularities under MCM, are presented. The set
of all possible Gauss diagrams under MCM form a directed graph with
one end point, in which the shape’s scale space describes a specific path.
These paths can be used for shape description and comparison.

1 Introduction

Among the numerous shape representations [28], the skeleton [1], or Medial axis,
takes an important role as simplifying structure [12]. It is defined as the closure
of the centres of maximal circles tangent to the shape at at least two points.
Modifications of the skeleton made it more stable [22]. The Shock Graph ap-
proach [25] incorporates distance information at some points. Promising results
were presented on matching of these descriptions [21] using the possible changes
of the Shock Graphs.

The Medial Axis is a subset of the Symmetry Set [3]. Changes of this set
(transitions, singularities) [2] are directly responsible for changes of the Medial
Axis [8]. The Symmetry Set can easily be computed and appears to be able to be
represented as a string-like data structure that allows operations with very low
computational complexity [18]. In contrast to Medial Axis related approaches,
all extremal curvature points are taken into account.

All these methods start from the given shape and do not take into account
the scale of the shape as a free parameter. In general, the radius of the circle
is considered as scale, but the radius is introduced by definition of the Medial

* This work is part of the DSSCV project supported by the IST Programme of the Eu-
ropean Union (IST-2001-35443). WWW home page: http://www.itu.dk/Internet/
sw1953.asp.
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Axis. Scale, or inverse resolution [5], is, however, an intrinsic problem that has
to be taken into account when analyzing images and shapes.

For images, a solution to this problem lies in the use of so-called test-functions
[24], that regularize the data by performing a local integration at observation
points. One suitable testfunction is the Gaussian filter [5]. By keeping the vari-
ance of the filter a free parameter, one obtains a multiscale extension of the
original image, as originally proposed by Koenderink [13], and followed by many
others, see e.g. [5,10, 19]. Investigation of the deep structure, i.e. the image at all
scales simultaneously, led, among other things, to the discovery of a topological
hierarchy within the image extended with a scale variable [15].

This idea can be directly transferred to shapes. For shapes, the intrinsic heat
equation is the Mean Curvature Motion, see e.g. [4,11]. The changes in the (pre-
)Symmetry Set (the local situations) are theoretically known [2,17], as well as
transitions of the Symmetry Set under the influence of Mean Curvature Motion
(MCM) [26]. More detailed descriptions are given in Section 2.

To derive a multi-scale shape hierarchy based on Symmetry Sets, two new in-
gredients are needed. Firstly necessary properties of the multi-scale pre-Symmetry
Set are derived in section 3. Secondly, a novel representation, called Gauss dia-
gram, is presented in section 4.

Using these results, we propose to embed the Gauss diagram representation
of the pre-Symmetry Set in the MCM multiscale context. This novel approach
creates a multiscale shape representation that reveals a hierarchical simplifica-
tion of the pre-Symmetry Set as the scale increases. Properties of this shape
scale space are given and discussed in section 5.

2 Background

We firstly provide some background theory regarding shape evolution, and Sym-
metry Set-based representations.

2.1 Evolution

Let S(z(p),y(p)) be a closed curve - a shape - given in its parameterized coordi-
nates, and p taken on the unit circle S'. Then the simplest way of regularizing
the curve is by convolving it with the simplest smoothing kernel, a Gaussian
(see Cao [4] for more details). Then the heat equation is solved for each of the
coordinates:

or %z Oy B 0%y

ot op?’ ot  Op*

Now the coordinates z(p,t) and y(p,t) are smooth, but the curve may become
non-smooth.

The reason for this is the fact that the parameterization parameter p de-
scribes a curve that shrinks as the scale increases. The overcome aforementioned
problem, the curve needs a renormalization s, at every scale o, [11, 20]. Solving
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the heat equation between two infinitesimal close instances (and renormaliza-
tions) yields

00 _ 0% oy _ 0
ot 09s2’ Ot  0s?’

called the intrinsic heat equation. The parameter s is also called the arc-length.
This gives the Mean Curvature Motion (MCM):

oc 0%C

ot 0s?
where k is the curvature and N the unit length normal. Note that in this equation
the arc-length s depends on ¢, so the equation is non-linear. Each point on the
curve moves in the direction of the normal, proportional to the curvature. During
evolution, the curve becomes convex and shrinks to a point and remains smooth
(no self intersections or cusp points). This compares to the properties of Gaussian
blurring for images. More mathematical details are given by Gage and Hamilton
[6] and Grayson [9], while Kimia and Siddiqi [11] present theory and applications
of MCM on shapes and images. Discussions on the abovementioned relation with
Gaussian filtering, and the volumetric blurring proposed by Koenderink and Van
Doorn [14], can be found in [4, 11].

When the curve is considered as a level line (an isophote) of an image L, kN
equals |VL||V-(VL/||VL]|), or in short gauge coordinates, L,,: the second order
derivative in the direction tangentional to the isophote. The image evolution is
often called Euclidean Shortening Flow [10, 11]. By tracing the zero-crossings of
the curvature over scale one obtains a Curvature Scale Space [20].

= kN,

2.2  Symmetry Set

The Medial Axis (M.A) of a shape is defined as the closure of the set of centres
of circles that are tangent to the shape at least two points and that contain no
other tangent circles: the are so-called maximal circles. The Symmetry Set SS
is defined as the closure of the set of centres of circles that are tangent to the
shape at least two points [2,3,8,7]. The MA is a subset of the SS [7].

To calculate these sets from above definition, the following procedure can
be used [3]: Let a circle with unknown location be tangent to the shape at two
points. Then its centre can be found by using the normal vectors at these points:
it is located at the position of each point minus the radius of the circle times
the normal vector at each point. To find these two points, the location of the
centre and the radius, do the following: Given two vectors p; and p; (right, with
i =1 and j = 2) pointing at two locations at the shape, construct the difference
vector p; — p;. Given the two unit normal vectors N; and N; at these locations,
construct the vector IV; + Nj;. If the two constructed vectors are non-zero and
perpendicular,

(pi — py)-(Ni + N;) = 0, (1)
the two locations give rise to a tangent circle. The radius r and the centre of the

circle are given by
pi—TNi:pj—rNj. (2)
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\\\N 1

Fig.1. a) Circles tangent to a shape b) Computing the Symmetry Set (see text)

In Figure 1a, the shape is given by the oval. Inside a circle is tangent to it
at two locations, so the unit normals A7 and A5 are equal for the shape and
the circle. The centre of the circle is found by multiplying minus the radius r
with the normals. Note that this is also a MA point. Next, also outside a circle
is tangent to the shape at two locations, where the unit normals A7 and ANy
are equal for the shape and the circle. From this image it follows immediately
that a point on the shape relates to at least two points on the SS, in contrast
with the MA. Changes in the shape yield changes in the Symmetry Set and
are well-known [2]. The Symmetry Set can be represented as a string structure
(while the MA requires a graph), whose changes are directly inherited from the
Symmetry Set [18]. The transitions of the S§ under MCM have been described
by Teixeira [26].

2.3 pre-Symmetry Set

The pre-Symmetry Set is defined as the Symmetry Set in parameter space: in-
stead of the centres of the circles defining the Symmetry Set, the points on the
shape where these circles are tangent, are taken. This yields the same (data),
but in this case the representation is clearer [16, 18]. The pre-Symmetry Set rep-
resentation of Figure 2 is shown in Figure 3. In a pre-Symmetry Set diagram,
the two axes represent points on the shape. If two points p; and p; give rise to
a Symmetry Set point, the corresponding points (p;,p;) and, due to symmetry,
(pj,pi) are marked in the diagram. The diagram shows curves that continue
along the boundaries. Each curve represents a distinct part of the Symmetry
Set. Curves in the pre-SS represent branches of the SS. The endpoints of the
SS§ are located at the diagonal of the pre-SS. They relate to points of extremal
curvature on the shape.

On the pre-Symmetry Set, the changes of the structure can be detected as
well, they can even be labelled with relevance with respect to changes in number
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Fig. 2. The fish shape top left transforms into a circle under influence of Mean Cur-
vature Motion

Fig. 3. The pre-Symmetry Set of the fish shape transforms to four parallel lines (two
essential loops) under influence of Mean Curvature Motion

of elements (curves), smoothness of elements, swapping of branches of two curves,
and changes in the number of special points related to the junctions of the
skeleton [17].
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3 Properties of the pre-Symmetry Set

In this section we derive properties of the pre-SS that are used in the remainder.
For detailed information on types of points on the (pre-)Symmetry Set and
transitions - the “A”-notation - the reader is referred to [2,3,17].

An intersection of curves in the pre-SS is due to a swap-transition called
AZ-nib [2,17]. So generically, curves in the pre-SS don’t intersect.

The points along the diagonal can be sequentially numbered. As the relate
to extrema in the curvature, the type of extremum alternates, just as along the
shape. So without loss of generality we may think of minima as odd numbered
intersections and maxima as even ones.

For a closed simple curve as the ellipse, the pre-SS contains two essential
loops, loops that range over the complete parameter domain. One can think
of then as the probing of the shape with two circles, one inside the shape and
one outside, or alternatively, one loop (axis of symmetry) for each of the two
dimensions of the space in which the shape is embedded.

Essential loops appear in pairs and connect points of equal type of curvature
extremum: one is connecting two even intersections, the other two odd ones.

An essential loop traverses the boundary an odd number of times, a non-
essential loop an even number of times.

Created or annihilated curves are due a creation or annihilation of a pair
of extrema of curvature, so they always involve a sequential even-odd couple of
intersections. Essential loops cannot be created or annihilated in this way.

Swappings that do not alter the number of essential loops - which is ’almost
always’ the case- always involve an even-odd couple and an arbitrary couple,
and must result in similar pairs. For example two even-odd couples (say 1-2 and
3-4) result in two even-odd couples (1-4 and 2-3), and an even-odd and an even-
even couple (say 3-4 and 2-6) result in an even-odd and an even-even couple
(2-3 and 4-6). Note that the non-intersecting property puts restrictions on the
possibilities. In the first example, the couples 1-3 and 2-4 are forbidden, since
these curves have to intersect in the pre-SS. The same holds for the couple 3-6
and 2-4 in the second example.

If a swap involves two essential loops they may be changed into two non-
essential loops. Due to the non-crossing property of curves, the swap changes a
min-min and a max-max pair to two min-max loops, vice versa.

Also non-diagonal intersecting closed curves exist, so-called moths. Since they
are only relevant when they interact in a swapping event - which basically makes
another curve longer, we will ignore them in the latter.

As a direct consequence of the results by Teixeira [26], under MCM only an-
nihilations of non-essential loops can occur. Furthermore, swappings can occur.

4 Gauss Diagrams

The pre-Symmetry Set has a dual type of representation, viz. that of a circle
with chords. The circle represents the closed curve and is obtained by taking the
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diagonal in the pre-Symmetry Set, connecting both ends. The chords represent
the distinct parts of the Symmetry Set, the curves in the pre-Symmetry Set. Just
as the pre-Symmetry Set diagram, this chord diagram has special properties. It
is very alike the Gauss diagram known from Knot theory [23,27], and we will
refer to it as such further on.

The most evident property is the fact that when two chords are intersecting,
they divide the circle in distinct parts. Intersecting chords represent the essential
loops. Each part contains nested or sequential chords, the non-essential loops.
The same numbering and even-odd labelling as for the pre-SS holds. The moth
circles in the pre-SS appear as small closed loops within the Gauss diagram.

Transitions of the Gauss diagram relate directly to those of the pre-SS: we
firstly can have annihilations (creations) of chords as their length tends to (start
from) a point on the circle. Secondly, we can have swappings of chords when
two chords meet at one point. If no essential loops are involved, the chords
cannot remain intersecting after the transition. Furthermore, we can add extra
information to each chord, for example its (relative) length in the pre-SS, the
locations of special points of the SS, and the possible swapping positions -
determined by the distances between two curves in the pre-SS and the points
at which they occur.

5 Multi-scale Shape Hierarchy

Given a set of data points of a shape, regularization of these points is needed
in order to obtain more detailed information with respect to their location and
their derivatives. A small Gaussian kernel applied to the coordinates can do this.
However, why choose one specific scale? A more trustworthy way is choosing no a
priori scale. As discussed in Section 2, for shapes it is not appropriate to convolve
them with a Gaussian or any other kernel; instead, application of the intrinsic
heat equation is appropriate. Figure 2 shows the fish image under the influence
of Mean Curvature Motion (MCM).

For each scale the pre-SS can be calculated. The pre-SS representing the
simplifying fish sequence is shown in Figure 3. The corresponding pre-SS scale
space is given in Figure 4. Note that the pre-SS curves form manifolds in this
space.

The only allowed transitions under MCM are annihilations, swappings, and
smoothing and curving of curves. Annihilations imply that closed loops of the
pre-SS shrink to circular structures and disappear. The manifolds are therefore
domes. Swappings imply that two manifolds are connected at one point, the
”swapping-transition”. Smoothing and curving of curves only affect the local
curvatures on the manifolds. For large scales two curves remain, representing
the essential loops.

5.1 Comparison with Curvature Scale Space

Although the concept of Curvature Scale Space (CSS) also uses the idea of
evolution due to Mean Curvature Motion, there are significant differences.
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Fig. 4. The pre-Symmetry Set of the fish shape in full MCM scale space forms disap-
pearing domes and two remaining sheets

" /

il | | nl“

Fig. 5. Left: CSS of the fish. Middle: evolution of the extrema of the curvature of the
fish. Right: Position of the curvature extrema of the fish in scale space

CSS investigates the zero crossings of the curvature over scale and is not
related to Medial Axis methods. For instance, all convex shapes have the same
(zero) CSS representation. Here zero crossings of derivative of curvature are
considered (i.e. the extrema of k) instead of zero crossings of the curvature
itself. In Figure 5 the CSS of the fish is shown on the left. Note that all
branches end at a certain scale, when the shape becomes convex. In the
middle, the extrema of the curvature are shown. Now exactly 4 branches
remain, resembling the 4 extremal curvatures of an oval. On the right these
curves are shown as function of their spatial and scale positions. The essential
difference is that these curves show the connections with respect to their
annihilations, while the Symmetry Set connections are related to all their
intermediate connections, which change.
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5.2  Gauss Diagrams Under Mean Curvature Motion

Next, also the Gauss diagrams change under MCM. They inherit the transi-
tions from the pre-SS scale space. They are: annihilations of chords, swapping
of chords and changing of labels on a chord. The diagrams representing the
simplifying fish sequence is shown in Figure 6.

For all possible shapes we can construct a space of Gauss diagrams. Given
the simplification of structure as scale increases, we can construct a direction-
ality into this space, as shown in Figure 7. At the top the simplest shape, an
ellipse, is represented by two intersecting chords. At each subsequent level, a
chord is added. At a specific level, the positions of chords can change due to
swappings.

One thus obtains hierarchical metameric classes. Obviously, adding infor-
mation to the chords enlarges the possible diagrams and decreases the size of
the class. The swapping is not the only reason that the graph is not a tree.
Also the disappearing of chords can relate to causes a child node to be possibly
related to multiple parents, in contrast to trees, as shown in Figure 8a. At a
certain level, two subsequent swappings can as well take place in one swap, see
Figure 8b.

Given an arbitrary closed non-intersecting curve, applying MCM yields a
convex shape shrinking to a point at a sufficiently large scale. So the accompa-
nying Gauss diagrams are related to a path through the space of all possible
diagrams. Each shape will have its own path, and “more of less” similar shapes
will have paths that coincide at some stage. So the difference of the shapes can
be expressed as the difference in paths. This opens new ways to describe and
compare shapes in a well-defined topological manner.

Fig. 6. The Gauss diagrams of the fish shape transforms into a circle with two inter-
secting chords under influence of Mean Curvature Motion
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Fig. 7. The Gauss diagrams under influence of Mean Curvature Motion form a hier-
archy. The horizontal level represents the number of chords (or Az points, or extrema
of curvature). They change under A4 transitions [2] in a simplifying manner: chords
disappear. At the horizontal levels chords swap due to A3nib transitions [2]. A further
refinement can be achieved by adding additional special points along the chords

Fig. 8. a) The state space of Gauss diagrams is a directed graph. Simplification can be
achieved in different ways. b) At a specific level multiple swap transitions are possible
for changing the chords of the Gauss diagrams

6 Conclusions

In this paper we presented the lay-out of a truly multiscale hierarchy for shapes,
based on the Symmetry Set. The multi-scale hierarchy is obtained by evolving
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the shape and its Symmetry Set under Mean Curvature Motion. As data struc-
ture the pre-Symmetry Set, visualized in a Gauss diagram is taken. This new
approach allows one to map the data on a circle, and effectively represent the
multiscale representation as a series of stacked circles with connected points at
each scale. Changes as scale increases are well-defined and known for the Sym-
metry Set. We derived them for the pre-Symmetry Set representation. It makes
this structure suitable and well-defined as a descriptive space for shapes. Since all
shapes converge to the same structure, this completely novel method allows one
to express differences in shapes as differences of convergence paths. Experiments
need to be carried out to validate the practical use with the presented theory.
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Abstract. For image filtering applications, it has been observed recently
that both diffusion filtering and associated regularization models provide
similar filtering properties. The comparison has been performed for regu-
larization functionals with convex penalization functional. In this paper
we discuss the relation between non-convex regularization functionals
and associated time dependent diffusion filtering techniques (in partic-
ular the Mean Curvature Flow equation). Here, the general idea is to
approximate an evolution process by a sequence of minimizers of itera-
tively convexified energy (regularization) functionals.

Keywords: Morphological regularization, diffusion filtering, equivalence
relations.

1 Introduction

Let A : X — 2% be a mazimal monotone operator on a real Hilbert space X.
Here, we call A maximal monotone, if for every x, 2’ € X the implication

¥eAr & (2 —Ay,x—vy) >0 forevery y e X

holds. Then there exists a solution of
du

E(t) +Au®) 30 (t>0), u(0)=u". (1)

For the precise mathematical formulation of this statement we refer to Zeidler
[1-Theorem 32.P]. The solution of (1) is given by

" N
u(t) = J\}Enoo <I + NA> u® .

See e.g. Crandall & Liggett [2]. We define

—k
t
) = <I+J\/A> W (k=0,1,...,N) and " == u} .

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 303-315, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



304 M. Grasmair et al.

From this formula it is evident that u{c\/ solves

t
u—&-NA(u)BuQCl (k=1,....N). (2)
An important example of a maximal monotone operator is the subdifferential
A = 0J of a convex functional J : X — R U {400} defined on a real Hilbert
space X. In this case (1) is a gradient flow equation and u{c\[ minimizes the
functional

wo Sl By + ) (=12 0). )
That is, the solution of the gradient flow equation can be approximated by
iterative regularization.

In [3,4,5] we performed a systematic comparison of regularization, iterative
regularization, and the solution of the according gradient flow equation for image
filtering. The experiments show similar solutions for all three methods. Recently
Mrézek, Steidl, and Weickert [6,7] proved analytically for the one-dimensional
discrete bounded variation functional J(u) that both regularization and the solu-
tion of the discretized gradient flow equation are exactly the same. The similarity
relation between the three methods has been validated for gradient flow equa-
tions with A = §J maximal monotone (which follows from the convexity of J).
In this paper we show that the solution of the Mean Curvature Motion (MCM)

dv
dt

) = [Vo()|V - (%) (t>0), v(0)=1, (@)

is approximated by the A/-th minimizer of a non-convez iterative regularization
technique, where in each iteration step a regularization parameter o = T/N is
used. Here, in contrast to (2) we determine u} by solving an equation of the
form

t
N
Note that the operator A now depends on ¢/N. Provided that the limit wN = u%
exists for /A — 0, we expect to have a solution of

u+ A%(u)aujk\,/_l.

Ju

SHt) €~ lm Ay (ul)
This provides a formal relation between the Mean Curvature Flow equation by
mimicking nonlinear semi-group theory.

The MCM equation has been extensively studied. For instance, it is well-
known that it attains a unique viscosity solution for given continuous and bounded
initial data v° : R® — R (see e.g. Evans [8]). Only in very special cases the so-
lution can be calculated analytically. Invariance properties and the use of MCM
for image processing applications have been studied by Alvarez & Guichard &
Lions & Morel [9]. MCM is an example of a morphological filtering technique.
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Therefore, we call the associated non-convex variational principle investigated
in this paper morphological reqularization method.

In [10] a variational form related to the mean curvature flow equation has
been derived and a relaxation technique has been used to prove existence of a
generalized minimizer. This approach is impractical for a numerical solution since
the functional has to be redefined via I'-limits first, and the relaxed functional
eventually has to be minimized. The variational formulation reveals interesting
properties (see [11]): it can be motivated as a regularization functional to clean
noisy images with random perturbations of the level lines.

The outline of this paper is as follows: In Section 2 we recall the formal rela-
tion between the Mean Curvature Flow equation and the according variational
principle. In Section 3 we prove well-posedness of iterative regularization based
on the concept of convexification. Moreover, a nontrivial part is the characteri-
zation of the relaxed functional on the nonreflexive Banach space of functions of
bounded variation. Previously, we computed the convex envelope for approxima-
tions on Sobolev spaces (see [13,12,11]). In Section 4 we discuss the numerical
minimization of the nonconvex variational principle and review solving the Mean
Curvature Flow equation. The results extend previous numerical experiments in
[10] for the minimization of the variational principles, which have been imple-
mented for relatively large regularization parameters. In Section 5 we compare
iterative regularization and the solution of the Mean Curvature Flow equation.

2 The Link Between MCM and Iterative Regularization

In order to establish the link relation between Mean Curvature Flow and varia-
tional forms we study the following energy functional:

I() = Lo () = / f (e, u(@), V(@) dz (a>0), (5)

where f: 2 xR xR" — RU {+o0} is defined by

2
(€ —u’(2))
A = - A . 6
o€ 4) = S5 +al4l (6)
We can interpret I as a regularization functional with fit-to-data term [ (ZTVI‘Z‘)Q

and the total variation semi-norm as fidelity term.

Aside from the theoretical interest in this functional we use it for solving
imaging problems with discontinuous solutions. This motivates the usage of the
total variation semi-norm for penalization, which has turned out to be quite
successful for this purpose (cf. Rudin & Osher & Fatemi [14,15]).

The following computations are purely formal and not mathematically rigor-
ous. The steepest descent direction of the functional I is
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Therefore, a minimizer of I satisfies the optimality condition

— (w—u)® ) Vu) o
u+ adq(u) :=u+ a|VulV <<2a|Vu2 1 V] Su . (8)

We set @ = ¢t/N and perform iterative regularization by minimization of the
functionals Itk/_/\f’ (k=1,...,N), defined by If//\/ =Ly | With wd = b
The minimizer of I f/ 18 denoted by u{c\/ .

With the change of notation AT := T/N, v(T) := uir, (T — AT) := u;_,,
we find from the according optimality condition for the functional I{}; w (cf. (8))
which we multiply by |[Vu(T')|/AT that

A0 =221 ¢ urv. <A(T, AT,@%) , (9)
where AT (v(T T — AT))? 1

A(T, AT, v) =1 — 7(”( ) (Z(T)Q ) ST
Taking AT — 0% and considering %(T) = llma7_o+ w, we re-
cover (4).

For the regularization functional (3), if J is convex, there exists a unique min-
imizer of the associated regularization functional. Here this is no longer trivial
and is a first step of an analysis.

3 Minimizers of Non-convex Energy Functionals

In this section we prove existence of a minimizer of the functional

I(w) ._/Q e ol Dul(@) (o> 0). (10)

Here (2 is a bounded domain with Lipschitz boundary and |Du|(£2) denotes the
total variation semi-norm. By Du we denote the distributional derivative of w,
which is a Radon measure on 2. Thus we can use the Lebesgue decomposition
Du = Vudz + D*u, where Vu € L'(§2) denotes the absolutely continuous part
of Du and D*u is the singular part (cf. Rudin [19])!. In (10) we define

2
(u(@) —u(2))
A =0 if u(z) = uO(z).
Vulo)] (z) (z)
! We follow the terminology of Ambrosio & Fusco & Pallara [17] and call D*u the
singular part. Other publications denote by D®u the jump part of the distributional
gradient, which belongs to discontinuities in the function w. In particular, in this
paper D°u also contains the Cantor part of u
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Minimization of the functional I is considered over the space BV ({2), the space
of functions of bounded variation (cf. Evans & Gariepy [16] or Ambrosio & Fusco
& Pallara [17]). There are two major difficulties associated with the functional:

1. For a convex function g and a measure m the functional J(m) = [, g( )
is well-defined (see e.g. Temam [18]). Here, this theory is not applicable,
since the functional I is non-convex with respect to the measure Du, the
derivative of the function u € BV ({2).

2. The functional I is not lower semi-continuous with respect to the weak*
topology on BV({2), and compensated compactness arguments are not ap-
plicable to prove existence of a minimizer.

A standard approach to obtain a meaningful interpretation of I is via relazation
(cf. [20]). For a functional J : X — R U {oo} and # # X C BV({2), and
u € BV(£2) its relaxation is defined by

-|-oo if u §é XﬂBV(Q)

REAH)w) = {inf{liminfk—»oo T®) : {u®} € X, [ul® = w10 — 0}

Here X is the closure of X with respect to the L!(§2)-norm. In order to simplify
the notation we define R(I) := R(I,BV(£2)). In the following we show that
R(I) attains a minimizer that can be considered a generalized minimizer of I.

Theorem 1. Let u® € L°°(£2), then the functional R(I) attains a minimizer in
BV(12) that can be considered a generalized minimizer of I, i.e., if the minimum
of I is attained in v € BV($2), then u is a minimizer of R(I).

Proof. The functional R(I) is lower semi-continuous with respect to the L!-
topology on BV(£2), coercive, and proper (i.e., R(I) # oo0). Thus it attains a min-
imizer in BV(£2). To see that R(I) is proper take u(z) = z1 if x = (21,...,2,).
Then |Vu(x)| = 1. Thus, I(u) < oo and consequently R(I) < oo showing that
R(I) is proper. The coercivity assertion follows from the characterization of
R(u) given in Theorem 2. To show that each minimizer of I is a minimizer of
R(I) we take ¢ := inf{I(u)}. The definition of the relaxed functional implies
that inf{R(I)(u)} > ¢ . Since T attains the minimum value ¢, we also have that
R(I)(u) < ¢ by using the constant sequence {u} in the right hand side of (11).

We now turn to characterizing the relaxed functional.

Theorem 2. If u® € L*°(02), then
RI)(u) = I.(u) := /Q fe(z,u(x), Vu(z)) de+a|D*u|(2) (ue BV(R2)). (12)

Here Du = Vudzx 4+ D?u is the Lebesgue decomposition of the distributional
gradient of u and

_'U,O x 2
fc(m>£7A> = (§2|14(|)) +01|A| ’ Zf \/%|A| > |£ - u(](x)‘ . (13)

V2alg— 0@, if V2alA| < [¢ —u(a)
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Before we prove this theorem, we require some properties of the function f.,
which are summarized in the following lemma:

Lemma 1. Let u’ € L>(£2). For almost every x € {2

(a) fe(z,-,-) is conver,
(b) fe(x,-,-) is continuously differentiable in every point (&, A) # (uo(m), 0)'

Proof. For x € 2 let Uy := {(&,A) : V2a|A| < [€ —u®(z)|} and Uy := {(&, A) :
V2alA| > |€ — u®(2)|}. For (¢, A) € Uy we have

Vfe(x, 6 A) ==V afe(z, & A) = (\/ﬁsgn(f — uo(x)),O) ,

and for (¢, A) € Us we have

[E—ul(x) (5 — uo(a:))2 A

For v/2a|A| — € —u®(z)| — 0 both gradients coincide, and thus f, is continuously
differentiable. Obviously f.(z,-,-) is convex on U;. Since the Hessian of f(z,-,-)
is positive definite, f.(z,-,-) is convex on Us. From [21-Sec. 42, Thm. B] it
follows that the differentiable function f. is convex, iff V f. is monotone, i.e.,

(Vfula, & A) = VLo, B)) - (€ A) — (C.B)) > 0 for all (¢, A), (¢, B). Since
fe is continuously differentiable and monotone on int(U;) and int(Uz) it follows
that V f. is monotone on int(U; UUz) = R x R™, which shows the convexity of f,.

From Lemma 1 it follows that the operator [, f.(z,u(z),v(x)) dz is well-defined
for u,v € L*(2) x (L*(2))". In particular [, fo(z,u(z), Vu(z)) dz is well-
defined, if u € L'(£2) and Vu is the absolutely continuous part of Du.

Proof ( of Theorem 2). Let

400 else.

I*(u) = {fQ f(z,u(z), Vu(z)) dz for u e WH(02),

It is immediate that I'(u) < I*(u), and since f. < f we also have I.(u) < I(u).
Consequently, it follows that

R(L)(u) < R(I)(u) < R(I)(w) (14)

Therefore, to prove the assertion of this theorem, it suffices to show that R(I*)(u) =
I.(u) . Since I'*(u) = +oo for u ¢ WH1(£2), we have

R(I*)(u) = R(I*, WH(£2)) (u) .

Every u € BV(£2) can be approximated by a sequence {u®},cny € Wh1($2)
satisfying [[u®) — ul|;1 (o) — 0. Moreover, from the definition of R(I*) it follows
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that for every k € N there exists a4*) € W11(§2) satisfying ||a*) — u(k)HLl(Q) <
1/k and
RI)(u®) > 1(a™) - 1/k . (15)

For u € W11(£2) it follows from the general results in [22] that
R(I*)(u) = R(I*, WHH(2)) (u) = Le(u) . (16)

From (15), (16), and the fact that ||} — u 110y — 0, it follows that

R(I)(u) < liminf I* (™) = liminf I(a®) <

k—oo k—oo

< liminf R(I*)(u®) = lim inf I (u®) .

k—oo k—oo

Thus, R(I*)(u) = R(I; W (£2))(u) for u € BV(£2). We note that for u €
BV(2)NL>®(£2) and € > 0, we may choose a sequence u¥) € W1(§2) satisfying
I.(u®) — R(I*)(u), which satisfies [|u®) |~ < |Julp~ + ¢ for all k& € N. In
other words, setting X" := {u € BV(£2) : ||Ju||z~ < r} we have

R(I*)(u) = R(I; X" N WHH(2))(u) for ue X" (17)

For r > 0 and u € WH°(£2) let

— 00N A 2
fr(x, & A) = € u;z) N L alAl, i VElA| > JE— a0 (@) A,

\/@(|§—u0(m)|/\r) , if V2alA| <€ —ul(z)| AT,

and
I7(u) == /QfT(x,u(x),Vu(x)) dx .

Here a A b,a V b denote the minimum, maximum of a and b, respectively. Since
[ul|| L =: 70 < ¢ it follows that for every u € BV(£2) satisfying ||u| p~ < 7—70
we have I.(u) = I”(u). Thus, from (17) we find that for u € X"~ "0

R(I*)(u) = R(I5; X" NWH(2)) (u) .

Using [23-Thm. 4.1.4] it follows that for u € X"~ we have
RU)w) = [ f (o (o), Va(@) da + |D*ul(@) = L (w).
Q

Using [24-Prop. 2.4] it follows that for every u € BV({2)

R(I*)(u) = lim R(I*)((u/\r) Vv 77") = lim IC((u/\r) \Y, fr) .

r——400 r—00

From this and the monotone convergence theorem (see e.g. [16]) the assertion
follows. 0
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We recall that the assumption u® € L>(£2) is needed in order to satisfy the
growth conditions required in [23]. The functional R([) is coercive with respect
to the total variation semi-norm. It can be shown by a truncation argument that
there exists a minimizer of R(I) with L>-norm less than [[u’||p (o). Thus the
functional attains a minimizer v in BV.

We note that convexification of non-convex functionals on BV is a recent
research topic. We mention the papers [23, 25, 26, 27].

4 Numerics

We describe a finite element method for minimization of the functional R(I)(u).
We use M := (n—1) x (m— 1) quadratic finite elements (Q;);=1,... a to cover 2
and bilinear basis functions (¢;);=1,...N:=nxm which are centered at the corner
points of the finite elements. We denote by Q := span{Q; : i = 1,..., M}. The
initial data u® is given as discrete values on a rectangular grid of size n x m and
is identified with the function u® = 3>~ | u0¢;.

The minimizer uxcpy (non-convex bounded variation) of the functional R(I)
solves the optimality condition OR(I)(uncpy) = 0, where OR(I) is the subgra-
dient of R(I). In the weak form the optimality condition reads as

u—u (u —u®)?\ VuVe;
b _ — if V2 .0
vl ¢; + <a NDIE ) vl 0 ifV2a|Vu|>|u—u|, -
0
\/204%@ =0 if vV2a|Vu| < |Ju—u°|,

where j = 1,..., N. The second equation implies that if v/2a|Vu| < |[u—u°|, then
u(x) = u®(z), from which it follows that |Vu(z)| = 0. With the abbreviation

1 V2 |u — u|? 1
= — _— b = _—_— —_—
o) = 10 a0 ((“ 2|W>vo> al

equation (18) reads as follows
N
Z/Qa(u)@@ w; + b(u) Vo Vpiu; = /Qa(u)msju? (Gj=1,...,N). (19)
i=1
Let U = (u1,...,un)T, U = (uf,...,uQ)7T,
Mij Z:/ ¢Z¢j and Lij Z:/ VQSlVQS] .
2 Q

We approximate a(u) and b(u) by elementwise constant functions a(U) and b(U).
Using this notation and these approximations, (18) reads as

(&(UNCBV)M + B(UNCBV)L) Unciv = a(Uncey)M U°. (20)
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This system is solved applying the fixed point iteration:
~ s s+1 7 s (s+1)
(Uesy) M UGS + B(UNLsy) LU
= a(UIEIégBV) MUgcpy (s=0,1,2,...). (21)

The iteration is terminated if a given tolerance tol is reached, i.e., if |UISTSC+BI\),

UIEISC)BV| < tol or s exceeds a given limit. In each iteration step, for solving the

linear system for U, SgBl\), we use the C(onjugate)G(radient)-method. In order

to avoid occurring oscillations, the following modified scheme can be used: For
s=0,1,2,..., solve

(UNCBV) U( NCBV T b(UNCBV) L UIEI*(%BV =M UNCBV (22)

due to the unknown function UIEI*()JBV and using the solution set

UlslstrBlv = UISICBV + 6% (UXcpv — UIEIS()jBV) (s=0,1,2,...), (23)

where 0 < 6° < 1 tends to zero for increasing s.

5 Results

In this section we show that the iterated solution of R(I) gives similar results
as solving the MCM equation. We show that v(T), the solution of the MCM
equation and u}: v are almost identical. We recall that uk is the minimizer of the
functional R(I) where u® is replaced by up |, k=1,...,N and a = T/N.

The MCM equation at time T' = ATN is calculated by solving the system
of equations (note that AT needs not be identical to «)

&(Uniem)(M + AT L)Uyem = E(Uniem) MUE S, (K=1,...,N) (24)

and denoting the solution by Uy A vector Uyem is associated with the
function uymcom = Zi]il(UMCM)i@ from which an approximation ¢(Upncnm) for
c(u) = ﬁ is determined that is piecewise constant on the finite elements.
Le., é(Unmcm)|qiy; = c(umom)(pij), where py; is the midpoint of cell Q;;. The
implemented FE-Method for solving the Mean Curvature Motion essentially fol-
lows [28].

For fixed k, we again use a fixed point iteration to solve (24):

s s+1 s
EUNiea) (M + AT LUGE] = UG MUion (s =0.1,..). (25)
If || Uy §+1) UIS/[CMH < tol the iteration is terminated and Uyt MOM = UﬁZ&\lA)

In the following we present two numerical comparisons of regularization, i.e.,
minimizing the functional (10), iterative regularization, and solving the MCM
equation (4).



312 M. Grasmair et al.

Fig. 1. Top Left: Original data, Top Right: Solution of the Mean Curvature equation
at time T = 20. Iterative Regularization. Images show u}r. N' = 2(a = 10) (Middle
Left Column), N' = 10(a = 2) (Middle Right Column), N' = 20(a = 1) (Bottom Left
Column), N = 40(ac = 0.5) (Bottom Right Column)

Fig.2. Top: solution of MCM equation at T = 10,50, 100, 300 and Bottom: u!, the
minimizer of (5), with oo = 10, 50, 100, 300
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In the first numerical experiment we have calculated the solution of the MCM
equation at time T = 20. We use a step length AT = 0.25. The iterative
regularization has been implemented with @ = T/N and varying parameters
N = 2,10,20,40. The comparison shows the original image, MCM filtered im-
age and the iterated regularized solution uV for various parameters A. As N
increases, iterative regularization approximates the solution of the MCM equa-
tion. The second example is a comparison between MCM and regularization,
i.e., we compare the solution of the MCM equation at time 7" = 10, 50, 100, 300
with u!, i.e., the minimizer of (5) with a = 10,50, 100, 300.

6 Conclusion

In this paper we have generalized the concept of gradient flow equations with
subdifferentials of convex functionals to non-convex functionals. The general idea
is to approximate an evolution process by a sequence of minimizers of iteratively
convexified energy (regularization) functionals. Although there is no mathemat-
ical theory for “non-convex” gradient flow equations, the results in this paper
show the similar filtering behavior. The results of this paper have been formu-
lated exemplarily for the Mean Curvature equation but can be generalized to
other well known equations in morphological image analysis, such as the affine
invariant Mean Curvature equation (cf. [10]). For gradient flow equations with
subdifferential of a convex functional it has been observed recently that both
diffusion filtering and associated regularization models provide similar filtering
properties. Here this analogy has been shown for the Mean Curvature Flow
equation and the associated non-conver energy formulation.
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Abstract. An representation based on the singularity structure of the
gradient magnitude over scale is used as the atoms in a space of im-
ages. This representation is summarized as a rooted tree. The generic
transitions of the functional of the scale space images are analysed and
listed for the scale parameter and one free parameter. A distance measure
between images is deduced soly from these generic transistions. The sin-
gular transitions are translated into the language of the tree transitions
such that one generic transition corresponds to one unit edit operation
of the tree structure. The distance between two images is the size of the
smallest set of edit operations necessary to transform the corresponding
tree representations into each other.

1 Introduction

The content of an image manifests itself at multiple, a prior unknown levels
of scale or resolution. This has been addressed by the computer vision com-
munity in a principled fashion by the so-called scale space theories or multi
scale schemes[11,13]. Scale space theory ensures an image representation in-
variant to rotation, translation and scaling (or invariant to other groups of
transformations[24]) and provides a regularization of the original image to a dif-
ferentiable output which makes the vast toolbox of differential geometry avail-
able. In its simplest form, a scale space image is a continuum of increasingly
blurred images also refered to as the Gaussian scale space due to the generating
kernel. In this paper we will not consider the vast amount of alternative scale
space schemes only the Gaussian scale space.

This machinery has opened for the creation of a range of feature detectors (in-
terest points) defined and detected by (semi-)algebraic expressions of derivatives
possibly automatically tuned to the appropriate scale[4,5,18]. The framework
is mathematically well founded in a principled way allowing for derivation and
analysis of properties of the system [25, 3,22]. Recent research has investigated
the geometry of scale space images [2] for instance the trajectories of extremal6].
The geometry of scale space images relates the details present at low scale (high
resolution) to the coarse overall objects on the high scale (low resolution) [19]
and offers the opportunity to analyse information over scale also denoted deep
structure analysis.

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 316-326, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Information of objects over a range of scales can be represented as graphs
or trees in the algorithmic data structure sense. Such a scale space tree of fea-
tures provides an invariant representation as above but also an representation
which is invariant to minor changes in the configurations of the singularities in
the scale space image more precisely invariant to a small local diffeomorphism.
Hence it represents the topology of the singularity paths over scale. Preliminary
investigations [26, 20, 14] show that it is feasible to construct scale space trees
based on different kinds of singularities also for 3D data sets.

Distance measures between the scale space trees can be established to assess
the distance between the content in two different images. Standard graph or tree
matching algorithms do not per default provide good distance measure between
scale space trees, simply because an atomic tree transform in the algorithmic
sense can correspond to a large series of scale space image transformations and
vice versa. Schemes have to be developed for finding the appropriate atomic
transformations from the image analysis point of view and find their algorithmic
counterpart for implementation purposes.

For this, we propose the generic tree transformations to be deduced from the
generic transitions of the singular paths. The necessity for only generic tran-
sitions is obvious. All imaginable transitions will give rise to a combinatoric
explosion of possible transitions but according to singularity theory only the
generic cases will occur in almost all cases (loosely spoken the non-generic cases
occur with probability zero) and are very limited in number. The presence of
non-generic structures[15,12] can for instance indicated symmetric structures
which are unlikely to occur in all most all images. Genericity is always stated in
relation to a base set of functions. In this paper it is the set of solutions to the
heat equation.

The idea is inspired by the successful line of work within shape analysis,
specifically within medial representations/skeletonisations of shapes [7,8] and
symmetry set representation [7,8,16]. In this area, classical singularity theory
has been applied and extended to determine the relation between geometric
fiducial points on the outline of the shape and the central points in the me-
dial representation. Next step has been to derive the generic transitions for the
fiducial points for general warping of the shape and relate these results to the
corresponding changes in the medial representation [9]. The counterpart in the
scale space tree approach is to establish the generic transitions of a scale space
image when the original image is changed. These transitions will be translated
into the language of algorithmic tree transitions|[21].

We present an extended annotated scale space tree detected from the multi
scale structure of the squared gradient magnitude. We will derive the list of
possible transitions for the singularities of the gradient squared under the pa-
rameters of scale and an extra control parameter. These transitions will be use
to deduce corresponding tree transitions which will form the basis for an image
matching scheme.
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2 A Multiscale Gradient Magnitude Tree

The gradient magnitude from a Gaussian scale space image has previously been
suggested as the underlying representation for a semi-automatic segmentation
[23,17,1]. For this, a tree structure was constructed based on the generic tran-
sitions of an image evolving under the heat equation, the complete list of these
transitions was derived and analysed in previous work[22]. It was shown that the
fold and the cusp catastrophes occur generically in Gaussian scale space for the
squared gradient magnitude.

The possible transitions through the sampled scale space is shown schematic
in figure 1. Also included in the figure are the dual regions to the minima namely
the catchment basins or Voronoi areas. The events (annihilation, merging, cre-
ation, splitting) are named after the interaction between the saddle and the
minimum (or minima). In the cases of annihilation (b) and merging (c) two min-
ima and a saddle are reduced to one minimum, corresponding to a disappearing
border between the two segments. The cases of creation (d) and splitting (e)
are the reverse events where an emerging saddle corresponds to the appearing
of a border between the segments (dual to the two minima). A line in the figure
from a segment to a segment indicates a edge in the corresponding tree. Hence,
the parent-child edges in the tree are in all cases indirectly given by the saddle
connecting the involved minima.

The squared gradient magnitude will contain several global minima with a
value of zero. They coincide and correspond to the singularities of the image
itself. The squared gradient magnitude will also have local minima which are
just all non-global minima. In terms of image geometry a local minima of the
gradient magnitude corresponds to a point where the second order structure of
the image has a degeneracy in the direction of the image gradient. In other words
in the point in the gradient direction the image looks like z3 + z

(a) No change (b) Annihilation (c) Merging  (d) Creation  (e) Splitting
fold cusp fold cusp
local global-to-local local local-to-global

Fig. 1. Generic events of the gradient magnitude. Scale increases upwards in the figure.
Minima and saddles are symbolised with triangles and circles, respectively
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The annihilation or creation of one minimum with one saddle will always
involve a local minimum. The merging will involve the joining of two global
minima and saddle into one local minimum. The splitting event will destroy one
local minimum and introduce one saddle and two global minima at a higher scale.
These facts originate from the simple fact that global minima for the gradient
magnitude squared correspond to singularities in the original image and the
cusp event in the gradient magnitude image will correspond to fold event in
the original image. Hence global minima in the gradient magnitude will always
interact in pairs never alone or uneven numbers.

This extra information will be used to annotated the tree structure with the
type of the different minima. Nodes in the tree correspond to the minima of the
squared gradient magnitude of the scale space image. Each level of the tree cor-
responds to a sampled scale in the scale space image. The direct correspondence
between levels and scale discretisation is not a necessity for the representation.
Nodes with only one child and one parent can just be collapsed with cost zero.
This will avoid the undesired growth of the tree in limit of finer and finer scale
discretisation. The nodes in the tree are connected according to the derived
possible transitions of the minima. The nodes are annotated as local or global
minima. This more rich tree structure limits later on the amount of possible
matches inbetween trees. That is, for a given part of the first tree less possible
matches exist in the second tree. Of course this also results in a more detailed
list of possible transitions.

The full tree syntax is presented in figure 2. In figure 1 the difference be-
tween transitions involving local and global minima was not illustrated. This
is included in figure 2. Circles denoted internal nodes in a tree, small and big
circles indicate respective local and global minima. In case (a) there is no change
of either a local or global minimum. In case (b) a local minimum is annihilated
and its corresponding node will be connected to its neighbour which is either a
local or global minimum. In case (c) two global minima are merging into one
local minimm. In case (d) a local minimum is created somewhere in the tree.

ISAN
NSt

(a) No change (b) Annihilation (c) Merging (d) Creation (e) Splitting
fold cusp fold cusp

Fig. 2. The tree syntax corresponding to the generic scale transitions in figure 1. Circles
are internal nodes. Squares are leaves. Big symbols correspond to global minima and
small symbols correspond to local
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/\gg .

(a) No change (b) Annihilation (c) Merging (d) Creation (e) Splitting
fold cusp fold cusp

Fig. 3. The tree syntax as in figure 2 instantiated an the lowest level in the tree

1@
fy In

Fig. 4. Top left: An image, top middle: singularity paths for the image (maximum=2

point line, saddle=3 point line,global minimum=fat line, local minimum=smallest
line), top right: a subset of the paths. Bottom: the two groups in the subset of
singularity paths correspond to two disjoint parts of the tree. Note that only the
largest and smallest paths correspond directly to nodes and edges in the tree. Bottom
left: the first group is a merging of two global minima into one local minima plus a
path with no change. Bottom right: two global minima (leaves) merge into one local
minima which annhilates and is connected to the neighbouring global minimum. Please
note that the latter global minimum is for simplicity of the figure only depicted in the
tree syntax and among all the paths in the middel not in the subset of paths shown to
the top right

In case (e) a local minimum splittes into two global minima. Hence the local
minimum is linked to a global minimum which will have a global minimum as
neighbour. In this paper we only consider the framework of trees not graphs.
Therefore in case (e) the local minimum is only connected to one of the global
minima. The representation of a splitting as a child node with two parents would
ruin the tree structure and introduce the more general graph structure. Such a
representation has been discussed as a interesting and relevant alternative in
previous publication by the author and others [10, 19].
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Each of the cases and the sub cases in figure 2 can occur on the lowest level
(the root is in the top) of the tree. In such a case the lowest circles in each case
will be transform to leaves and denoted with a square instead. This is illustrated
in figure 3

In figure 4 is an example of an image and the corresponding singularity paths.
For simplicity a subset of these has been selected and the corresponding tree
structure for this subset is depicted. Note how the subtree are constructed by
combine the subtrees from figure 2 and for the lowest level in tree the subtrees
from figure 2 are used.

3 Tree Transformations
When one image is warped into another this will of course also change the cor-

responding multi scale trees from one to another. Because the trees are deduced
and builded from the catastrophes (an abrut change of structure) in the singu-

555

Fig. 5. A constructed image sequence made by taken a random image and adding a

one-pixel size peak in three different locations and then blurr the sum. In left frame the
peak is close the to left border of the image then moving along a straight line ending
close to top part of the image in the last right frame

@ @ @

Fig. 6. Frames plus all singular paths. Lines of width 2 denote maxima of gradient
magnitude (G). Lines of width 3 denote saddles of G. Thin lines with width 1 are local
minima. Fat lines are global minima
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Fig. 7. A subset of the singular paths in figure 6. Two series of transitions are depicted.
Intermediate size indicates saddles. Thin line corresponds to local minimum. Fat line
denotes global minimum

lar paths the transitions of the trees will correspond to the sudden change of
the paths known as higher order events in singularity theory or catastrophes. In
terms of singularity theory a family of multi scale images is a family of functions
controlled by two parameters (scale and another one) from this the possible tran-
sitions can be analysed and the corresponding transitions on the tree structure
can be deduced.

In the following we provide an example of the connection between transitions
of paths and tree transitions before giving the full list of tree transitions. In figure
5 is depicted a constructed image sequence. In figure 6 are the constructed frames
plus their corresponding singular paths.

In figure 6 several series of transitions occur. In figure 7 only a subset is
presented for clarity. The subset consists of two independent series of transitions;
one in the background and one in the foreground.

In the foreground series the connection between three global minima is
changed. A “no change” path and a merge between two global minima inter-
act and changes connections such that the “no change” path afterwards merges
with the middle global path and the far right path becomes a “no change” paths.
Another phrasing would be that the middle global minima swaps its relation to
its nearest neighbour; it swaps from being the detail of one structure to being a
detail of the neighbouring structure.

The background series involves two changes first the annihilation in the
top is resolved from the left frame to the middle frame, secondly the merge
disappear from the middle frame to the right frame. In the presented scale
range it corresponds to an extended lifetime over scale of the involved struc-
ture. The first event the disappearing of the annihilation corresponds to the
structure persists further over scale instead of becoming a detail of a larger
structure. The second event has a similar interpretation since the global min-
imum persists over a long scale range extend beyond the visualised levels of
scale.

In figure 8 is shown the tree structure corresponding to the singular paths
in figure 7. As is illustrated the minimal singular paths corresponds directly to
the derived tree structure. Nodes correspond to the sampled scale levels and the
edges in the tree are derived from catastrophe points on the singular paths.
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o

Fig. 8. The tree structures corresponding to the minimum paths in figure 7. The top
row corresponds the series of transitions in background of figure 7. The bottom row
corresponds to the foreground series of transitions

oo A
!

3 o s 1A A

Fig. 9. The four types of tree transitions. The transitions can occur from left to right
and from right to left. Open circles indicate either a local or global minimum anno-
tation. These can be expanded according to the tree syntax provided in the previous
sections

3.1 Generic Tree Transformations

Only a very limited number of local tree transformations is possible if one only
consider transformations correspond to the generic transitions of the singular
paths. In figure 9 is listed the generic edit operations on the tree structures.

In the following section we will derive and explain how exactly these transi-
tions are derived from the catastrophes.
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4 Co-dimension One Transitions in Scaled Families of
the Gradient Magnitude

The co dimension one transitions are introduced by an extra control parame-
ter such that the family of Gaussian scale space images depends on two spatial
variables, the scale parameter and the control parameter. One can think of the
control parameter as describing a path through the underlying set of images.
When traveling through the family of scale space images using this extra degree
of freedom then for all most all image instances there will only be the usual
catastrophes on the singular paths but for specific fixed values of the control
parameter the singular paths will exhibit extraordinary catastrophes (which are
non-generic for a single scale space image) but are generic for a family. These are
the transitions between two set of generic paths. These higher order catastrophes
correspond to the collision of an extra singular path through a “ordinary” catas-
trophe point. Simple events can also occur namely the resolving of a catastrophe
or the shifting of it to a high or low location in scale.

In the following it can be useful to compare the transitions with the tree
syntax in figure 2. An annihilation event for the gradient magnitude can be
shifted towards higher or lower scale. This will correspond to the tree transition
illustrated in figure 9 top row left. A creation event can also be shifted in the
scale direction which will result in the tree transition depicted in figure 9 middle
row left.

A shift for the merge event will result in tree transition shown in figure 9 top
row right. As in the other subfigures the top and bottom nodes stay fixed in the
tree; hence the transition is fully depicted in the figures.

The splitting event can make a shift in accordance with the illustration in
figure 9 middle row right. Please note the difference to the middle row left where
there is no restriction on the neighboring nodes.

The cusp catastrophe with two global minima and a saddle (corresponding to
ordinary fold catastrophe for the image involving an extremum and a saddle) can
collide with another global minimum path and swap the connectivity between
the three involved global minima. This corresponds to the transition in figure 9
bottom left.

The fold catastrophe can collide with another local minimum path (this will
in the transition moment correspond to the cusp catastrophe involving local min-
ima). This will also result in the swap of the connectivity between the involved
minima. This corresponds to the transition given in figure 9 bottom right.

This concludes the list of possible transitions and their counterpart in terms
of tree transitions.

5 Conclusion
An image representation based on multi scale singularity tree has been pro-

posed. The syntax of the resulting multi scale tree has been presented. The
possible transitions of the multi scale trees have been listed as the basis of im-
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age matching scheme based on edit operation distance of trees. In order to do
this, the codimension one transitions of the scale space images have been derived
and translated to tree transitions. It remains to apply this matching scheme to
ensembles of real world images and evaluate its practical performance. It might
also be possible to weight the different edit operations with a cost proportional
to their probability of occurence. This is the objective for future work.
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Abstract. As resolving power increases, image features evolve in an it-
erative fashion; large scale features will persist, and finer and finer scale
features are resolved at each increase in resolution. As such, the observa-
tion process is shown to overwhelm natural image statistics. Observation
by a linear imaging process imposes natural image statistics to be of ran-
dom multiplicative nature, rather than additive. The scaling behavior of
the random process is driven by the gradient structure in the scene ir-
radiance. From the general structure of multiplicative processes, image
statistics are proven to follow a sequential fragmentation process. From
these theoretical results, analytical forms for the distributions of image
derivative filter responses and gradient magnitude are derived.

1 Introduction

The observation of scenes is dominated by coincidence. Coincidence stems from
the fact that we perceive a two-dimensional projection of the physical world,
the projection affected by occlusion, reflection, and clutter. Coincidence due to
the viewpoint causing an accidental background. Coincidence due to the lighting
conditions and accidental reflection characteristics. If the viewpoint, view, light,
and the background are arbitrarily chosen, this does not imply the resulting
image has completely arbitrary statistics. Objects having uniform visual char-
acteristics impose structure to the scene. Shadow and shading effects, although
accidental, are spatially correlated. Composition of the scene, by human or na-
ture alike, brings structure to the scene. All these effects cause images to be
covered by the laws of correlated spatial disorder.

Axiom 1. The spatial structure of the irradiance from natural scenes is domi-
nated by correlated disorder.

From our experiments, we have reasons to believe that a large fraction of
recorded images is covered by the axiom [1]. Hence, natural scenes are largely
non regular. Repetitions of structures are considered a different phenomenon.

* This work is sponsored by the Netherlands Organization for Scientific Research
(NWO).
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The observation of the accidental scene by camera sensors boils down to the
integration of energy over a certain area, spectral bandwidth, and for a certain
time. Responses may be grouped by linear filtering, allowing the extraction of
structural features from the observed light field. In human perception, an equiv-
alent linear system is present, effectuated by the simple receptive fields in the
pre-frontal cortex.

Axiom 2. The world is observed by an instrument with some (stochastic, reg-
ular) structure; for the observation of light the instrument performs linear inte-
gration over space, wavelength, and time.

Previous research provides insight into the statistical properties of observed
images, either from empirical studies [1, 2, 3,4,5,6,7, 8], or from theoretical mod-
elling 9,10, 11,12, 13]. However, the effects imposed by the observation instru-
ment on the statistics of the irradiance from natural scenes is not evident. Obser-
vation implies diffusion over microscopic fluctuations in the projected irradiance
to obtain the final integrated response of a pixel on a camera. For human vision,
diffusion spatially extents over the multi-scale receptive fields on the retina. In
both cases, the enormous diffusion span is likely to have significant effect on the
observed statistics.

Diffusion of the numerous small structures will result in fewer large struc-
tures [14]. Inversely, increasing magnification at large structures will reveal many
smaller structures. As resolving power increases, image features evolve in an it-
erative fashion. Large scale features will persist, while finer and finer scale fea-
tures are resolved. Recently, such hierarchical scaling processes in the presence
of correlated spatial disorder are shown to be of random multiplicative origin
[15, 16, 17]. Consequently, as I will demonstrate, the probability density of split-
ting into a given number of fragments of given contrast and size follows the laws
of sequential fragmentation [18].

2 Stochastic Properties of Linear Diffusion

Consider the observation of light to be governed by linear response theory. Hence,
observation boils down to linear diffusion of the incoming energy distribution,
characterized by the diffusion equation [14]

OE(z,t)
ot

where D is the diffusion coefficient, V the spatial gradient operator, and ¢ the

scale of observation. The diffusion equation proportionally relates a decrease

in resolution ¢ to the spatial Laplacian of the energy density F(z,t). Diffusion

may be considered as averaging the initial intensity distribution E(z,0) to its

equilibrium state. That is, the diffusion process in Eq. (1) is smoothing the energy
distribution until it reaches its average value (E).

Natural scenes may be characterized by the probability density describing the

random nature of the energy fluctuations, and the spatial correlation function

= DV?E(z,t) , (1)
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describing how a localized fluctuation influences the local, regional, or total
energy density. Consider the autocorrelation between the given arbitrary origin
in scale and place, and any other point at (z,t) (¢ being scale),

Oz, t) = <E(a:, 1) E(0, 0)> . 2)

Here, (.) represents the average operator, and E(z,t) = E(z,t) — (E) is the
deviation of E(z,t) from its average (F).

Lemma 1. For a linear system, the autocorrelation function follows the same
diffusion process as the energy density,
oC (z,t)

—22 = DV? t) .

Proof. The Lemma follows from linearity.

Theorem 1. Linear diffusion of E(x,0) causes the autocorrelation function
C(z,t) of E(ac,t) to diffuse proportional to the autocorrelation of the spatial
gradient VE,
oC (z,t)
ot
Proof. Consider the definition of the autocorrelation function C(z1,x2,t) of a
stochastic process f(z,t),

C(.Z‘l,xg;tl,tg) = <f(.’)317t1)f($2,t2)> . (3)

Due to linearity of the derivative operator, differentiation to x; and s, respec-
tively, yields

= D (VE(z,t)VE(0,0))

0C(x1, 251, t2) _ <3f($1,t1)3f($2at2)> (4)

8$1 81‘2 8$1 81‘2

When f(z,t) is a wide sense stationary stochastic process, that is, its average
is constant and its autocorrelation depends only on © = z1 — x2,t = t1 — to
[19-pp. 402-403], and is independent of the choice of origin. Fixing the origin for
(x,t) at (0,0), we get

V2C(z,t) = (VE(z,t)VE(0,0)) . (5)

Hence, the second-order spatial derivative of the correlation function equals the
autocorrelation of the spatial gradient of E(x,t). The theorem then follows di-
rectly from substitution of Eq. (5) into Lemma 1.

3 The Multiplicative Nature of Linear Observation
The observation of an image is obtained by solving Eq. (1), which boils down

to convolution with a Gaussian kernel G(x,t), where ¢ denotes the resolution of
observation. Such a scale-space kernel satisfies a decomposition law.
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Lemma 2. A Gaussian scale-space kernel can be decomposed in an arbitrary
number of steps n,

Gz, t) =G, ) @Gz, ) @ ... @G(w,tn) , Y t;=1".

The proof is trivial and omitted for brevity.

The Gaussian kernel is a special case satisfying the decomposition law of
Lemma 2. As any linear kernel may be decomposed in —possibly varying— small
kernels, the decomposition law is much wider applicable than for Gaussian ker-
nels. Hence, the theory provided in this section extents to arbitrary linear ob-
servation kernels.

The decomposition law defines a kind of cascade with an arbitrary number
of steps n [16], where each kernel G(z,t;) transports energy within a resolution
interval t;.

Corollary 1. One can not distinguish between the observation E(z,t) obtained
at a single coarse resolution t, and the same observation derived from n arbi-
trary finer resolution steps in a multi-scale approach, yielding the same effective
resolution t. As an important consequence, any property derived from the single
coarse resolution image can also be derived from the multi-scale cascade.

This non trivial notion will be used extensively in the remainder of this paper.

The stochastic properties of the coarse resolution observation may be initiated
at finer resolutions in the cascade. At this point we need a result from statistical
mechanics, specifically the theory of correlated random fluctuations in diffusion
processes [15]. Consider a random fluctuation at a fine scale ¢ = tg. According to
[20], the fluctuation will propagate through a multiplicative cascade as illustrated
in Fig. 1. Hence, an increment in intensity VE at a coarse scale t. results from
a random cascade, initiated by a correlated fluctuation at fine scale to [17].

Theorem 2. For a linear diffusion process, correlated fluctuations at coarse
resolution t. initiated at a fine resolution tg are propagated by a random multi-
plicative cascade

n
VE;, =VE, [[ai
=1

where the ay; are taken from the coefficients in the multi-scale Gaussian smooth-
ing kernels G(x,t;).

Proof. Consider an intensity fluctuation 6; at a fine resolution tg, see Fig. 1.
Coarsening resolution by convolving with a Gaussian kernel can be considered
as a step wise process as indicated by the decomposition law of Lemma 2. Each
decrease in resolution will cause the fluctuation 6; to be transported to a coarser
resolution t;11, proportional to a convolution weight a;. By the energy conser-
vation and the positivity of the Gaussian kernel, the weights 0 < «; < 1. Hence,
at the observation resolution t¢. the initial fluctuation yields an increment in
intensity proportional to 61 [] a;.
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Fig. 1. The cascade imposed by scale-space convolution. A fluctuation é; at fine scale
to will result in a increment in intensity at the coarser observation scale t.. The fluctu-
ation will propagate through the multiplicative process indicated by the dashed edges
in the tree, resulting in a final fluctuation VE:, = apaiaqé. If the fluctuation is ran-
dom in intensity, position, or resolution-level, the resulting process will be a random
multiplicative process. Due to distributivity, any correlated fluctuation 62 will yield a

multiplicative process

Consider a second fluctuation - at, for simplicity the same fine resolution %,
positioned relative to 6; such that they are captured within the effective extent
of the Gaussian kernel at coarse resolution t.. Consider the fluctuation caused
by 62 to propagate through a different branch of the resolution cascade yielding
a final fluctuation 62 [ [ b;, which is to be combined with the fluctuation caused
by 61 at the top-level resolution t.. The combined response is given by

VE:(Slﬁal—f—(SQﬁbl (6)
=1 1=1

The fluctuations are correlated when 62 = ¢61 = ¢V Ey,, and the coarse level
contrast is given by

n n
VE, =VE, <H ai+c]] b,-) (7)
i=1 i=1
The convolution coefficients a; and b; are given by the Gaussian kernel, hence
are correlated b; = ¢;a;. Furthermore, if the correlated fluctuations combine at
a resolution t/, ty < t’ < t., additional multiplicative coefficients propagate the
combined fluctuations to the observation resolution t.. Consequently, we may
write

VE, =VE, ] (8)
i=1

where «; combines a; and b;, and n includes any extra resolution steps necessary.
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To complete the proof, consider that the initial positions of fluctuations é;
and 09 are random, i.e. they are not aligned with the Gaussian smoothing kernel.
Furthermore, the number of steps n in which the Gaussian kernel is decomposed
is arbitrary, as is the level at which fluctuations occur, propagate, and combine.
The exact cascade coefficients «; are of random origin, constrained by the decom-
position law for the Gaussian kernel. Hence, diffusion of correlated fluctuations
is described by a random multiplicative process, where the random coefficients
a; are of law G(z,t;).

Consequently, diffusion of spatially disordered correlated structures is go_-
erned by the laws of random multiplicative processes [15,21]. The exact details
of the initial distribution of the scene statistics, given by Axiom 1, are not . -
portant to obtain a power-law for the observed statistics. Hence, the properties
derived from a multi-scale cascade hold for the direct observation of the statistics
at a single resolution scale t.

Corollary 2. One can not distinguish between the statistics of the observation
E(z,t) of a natural image obtained at a single coarse resolution t, and the same
statistics derived from n arbitrary finer resolution steps in a multi-scale ap-
proach, yielding the same effective resolution t. As an important consequence,
the statistical structure of natural images derived from the multi-scale cascade is
equivalent with the statistical structure of a direct observation at a single, fixed
resolution t.

4 The Sequential Fragmentation Laws of Image Statistics

An image may be considered to be composed of several correlated components,
the individual components being uncorrelated from each other. The stochastic
properties of the correlated components follow from the theory of random mul-
tiplicative processes [22]. As proven by Levy and Solomon [23], the boundaries
0 < a; < 1 impose the constrained converging multiplicative process to lead to
a power-law distribution in the resulting variable |V E(z, t)|. The spatial compo-
sition of many of these correlated components is governed by additive statistical
laws. As such, natural images follow the laws of fragmentation processes, as will
be derived in this section. As a starting point, consider the observation of a
single correlated component.

Theorem 3. Diffusion of a correlated structure ¢ yield the gradient magnitude
IVE| to follow a decaying, yet inverse, power-law probability density function

pe(x),
1 i
IV EG ) = |5V E G0
Proof. Following [24], we write I; = loga; and yo = log|VE|. Then we may
rewrite Eq. (8) in a recurrent relation

Yie1 =Y + 1 . (9)
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This is a log transform on the multiplicative cascade of Theorem 2. In the trans-
formed domain, the process describes a random walk with a drift (I) < 0. The
strict lower boundary of «; > 0 ensures convergence of the process rather than
escape to —oo. The process of a random walk is described by the master equa-
tion [23]

P+ = [ wPy-Lid . (10)
where 7(l) denotes the transformed distribution of the original probability den-
sity IT of a;. Solution of the master equation is obtained in [25] using renewal
theory, and is given by [24]

Pmam(ymax) ~ eiﬂymax ) (11)

with p implicitly given by

/OO H(a)atda=1 . (12)
0

The probability is controlled by the extreme values of the random field, as argued
in [24] and elaborated upon in [22]. Substituting the original variables for the
transformations y, [ yields a power-law,

pe(IVE|) = c|VE[™" (13)

c representing a scaling constant. Details on the derivation and alternative proofs
are given by Sornette and Cont [24]. The theorem follows from taking u=1—+
and ¢ = 1/3771, 3 indicating the width of the distribution.

Note that the exact probability distribution 7 from which the a; are drawn
is not of importance to end up with a power-law distribution. Further note
that no assumptions about scale-invariance, nor self-similarity, are being made.
Hence, the derived power-law is not the result of fractal behavior of the intensity
distribution of natural images. As shown by Levy and Solomon [23], power-law
behavior for multiplicative processes is as natural as Boltzmann laws for additive
random processes.

An image may be considered to be composed of several correlated structures.
Components further apart than the correlation length are assumed to be un-
correlated. Consequently, statistical properties involve integration over several
power-laws, as many as there are correlated patches in the image. Some of these
patches may be associated with one specific object, others may be associated
with another texture or object. This viewpoint is effectively similar to the the-
ory of sequential fragmentation [18]. The probability of encountering a gradient
response p(|VE|) between r and r + dr, given the probability distribution p.(r)
of Theorem 3 for a single contrasting structure, is given by

s =e [ " o per) dr (14)

that is the accumulation of the contributions by all contrasts |VE| > r.
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Fig. 2. Tllustration of the Weibull distribution p(r) for various values of

Solving the sequential fragmentation equation Eq. (14) for a power-law dis-

tribution yields
r Y=1 roo
s =a(5) [ s (15
5 r

which is solved by

p(r) =1 <7")“e—$(é)y , (16)

(17)

The value of the shape parameter v ranges from 0 to 2 for the distribution to
be positive semi-definite [26] (see Fig. 2).

Corollary 3. The gradient magnitude |V E| in natural images follows a Weibull
probability density,

, 0<~y<2.

|
—
=3
—
|
| =
7N
| =
~_
0
—
m‘
<|=
=
<

So far, we considered an isotropic distribution of responses, resulting in the
Weibull distribution Corollary 3 of the one-dimensional gradient magnitude. To
proceed with the joint density of a two-dimensional response distribution, p(z, y),
consider the sum of the orthogonal derivative magnitudes r = |z| 4 |y| for an
isotropic random field. Note that at a later stage results will be generalized to
hold for the gradient magnitude " = /22 + y2. Due to isotropy, the gradient
magnitude response distribution r will be identical to the one-dimensional case
Corollary 3. The marginal statistics for the response of the derivative operator
in the z-direction, p,(x), is obtained by integration over the y-variable,
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Fig. 3. Illustration of the marginal distribution p,(x) for various values of ~

_1
= —2@ Y

; (19)

0

which, after normalization, leads to an integrated form of the Weibull distribu-
tion (see Fig. 3).

Corollary 4. The response to the directional derivative VE in natural images
follows an integrated Weibull probability density,

,l|5|v
pr(x) = coe” VIBL |
The normalization factor is given by
_ g
Co=—1 ——— ,
29V I (1/7)

where I'(a) represents the complete Gamma function,

I'la) :/ t*~te~tdt .
0

Note that any power transformation of the form 2’ = z® does not affect the
marginal distribution p,(x), other than a reparameterization v' = v/«, 8’ = 8%.
Hence, the gradient magnitude VE? = V,E?+V,E? is of the form r = |z|+|y|,
which will be Weibull distributed according to Corollary 3. Furthermore, the re-
sponse to the directional derivative V,, E in any direction w will be distributed
according to Corollary 4. Finally, non-linear gamma transforms applied to the
intensity at any fixed resolution in the scaling cascade will not affect the re-
sults, other than a reparameterization of the Weibull parameters v and ( as
discussed above.

5 Conclusions
This paper shows the linear imaging process to impose the stochastic structure

of images. The observation by a linear convolution over the incident light dif-
fuses the once emitted random field, the diffusion being driven by the gradient
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Fig. 4. Examples of the fit of the various probability densities to the statistics of
natural images. The middle column shows the distribution of the derivative operator
(o0 = 3pixels) in the z-direction of the original image (left column), the right column
shows the gradient magnitude distribution. a. corduroy and b. crumpled paper from
the Curet dataset [27]; c. image 271 and d. 167 from the van Hateren collection [28];
e. image 848012 and f. 673021 from the Corel Gallery collection
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structure in the projected intensity. The multiplicative process for correlated in-
tensity fluctuations combined with the additive stochastic laws for uncorrelated
fluctuations cause image statistics to follow the laws of sequential fragmenta-
tion. From these theoretical results, analytical expressions for the statistics of
gradient magnitude and derivative filter responses are derived.

A major point is the percentage of images covered by the posed statistical
laws. The question essentially addresses the validity of Axiom 1. For our experi-
ments we have reasons to believe that this is a large fraction of recorded images
[1]. See Fig. 4 for some examples.

The statistical characteristics of multiplicative processes are dominated by
the extreme events that are on the tail of the distribution [22]. For a multiplica-
tive process, the distribution of the product and the behavior of the moments
are crucially sensitive to extreme events. When increasing imaging resolution,
progressively more extreme events become accessible. This increased access to
the tails of the distribution will manifest itself in the sporadic appearance of
exceptional realizations that will cause the observed statistics to fluctuate as
a function of resolution. Consequently, a multi-scale approach is essential for a
general vision system to probe the statistical structure of images.

The stochastic structure of any image is affected by the linear observation
kernel. More precisely, the power-law and Weibull distribution of image statistics
are imposed by the observation instrument. The occurrence of these general
distributions are not a property of the objective world, that is, the structure of
natural scenes other than randomness. The structure of the scene underlying the
observation only influences the Weibull parameters v and 3. In this contribution,
I have derived the exact influence of the linear observation instrument on the
observed image statistics.
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Skeletons of 3D Shapes*
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Abstract. A new method for determining skeletons of 3D shapes is
described. It is a combination of the approach based on the ” grass-fire”
technique and Zhu’s approach based on first finding portions of the shape
where its width is approximately constant. The method specifically does
not require presmoothing of the shape and is robust in the presence of
noise. In an appendix, a method based on variational calculus is formu-
lated for determining pruned, smoothed shape skeletons by minimizing
a functional.

1 Introduction

Although a large number of papers have appeared on ways to determine shape
skeletons, until recently [3, 7, 8, 11, 18], these papers have dealt with 2D shapes
[4, 6, 10, 12, 15, 16, 17, 19]. Extension of these techniques to 3D shapes is non-
trivial since skeletons for 3D shapes consist of intersecting 2-dimensional surfaces
[7]. This paper presents a generalization of the method developed in [17] to 3D
shapes. The emphasis is on developing a computationally robust method for de-
termining shape skeletons in the presence of noise and the inevitable numerical
inaccuracies inherent in computation on a discrete grid.

The usual definition of the skeleton of a 3D shape is that it is the locus
of the centers of maximal spheres contained in the shape. If the radii of these
spheres are recorded at the corresponding points on the skeleton, the shape can
be fully recovered as an envelope of the spheres centered on the skeleton with
radii recorded on the skeleton. Construction of the skeleton by drawing maximal
spheres at all points within the shape is clearly impractical and determining
the tangency between a sphere and a noisy shape boundary is problematic. An
alternative is the ”grassfire” technique in which the shape is imagined to be filled
with dry grass and a fire is started at the shape boundary. The time of arrival of
the grassfire front at a point equals the distance p of that point from the shape
boundary. The shape skeleton is the locus of points where fronts from two or more
directions meet. Alternatively, it is the discontinuity locus of the gradient of the
distance function p. When the colliding fronts come from opposite directions, the
point of their collision can be determined fairly accurately. As the angle between
the front normals decreases, it becomes numerically more and more difficult to

* This work was supported by NIH Grant I-R01-NS34189-08.
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detect their collision. It is even more difficult to locate the singular points of
the skeleton where more than two fronts come together. Another difficulty is
that the skeleton preserves the noise present in the shape boundary in the form
of numerous extraneous branches which must be pruned. It is also necessary to
identify and prune branches corresponding to shape features which are deemed
irrelevant for the task at hand.

An alternative to the approach described above is the one proposed by Zhu
[19] for 2D shapes. A 2D shape is viewed as a collection of ribbons which are
glued together. A ribbon is a part of the shape where the shape width is approx-
imately constant, so that, after some smoothing, the opposite boundaries of the
ribbon are nearly parallel. Chords may then be found which are approximately
orthogonal to the smoothed boundary. Zhu minimizes a functional designed to
determine optimal chords which are as closely normal to the smoothed boundary
as possible. The functional also incorporates terms such as a penalty for parts
of the shape in which proper chords cannot be found and a penalty for having
many short ribbon segments instead of a few long ones. The relative impor-
tance of these desirable properties depends on the values of the parameters in
the functional. The centers of the chords define the medial axes of the ribbons
which are then extended to form junctions in an optimal way. Note that these
junctions are not necessarily the points where the maximal discs touch the shape
boundary at two or more points. Instead, their location is governed by criteria
such as a minimal number of junctions and angles subtended by the branches
at the junctions. Parts of the shape which are neither ribbon-like nor associated
with junctions are ignored (pruned). It is not clear how to determine a good
initial approximation to start the minimization process, how to tune the numer-
ous parameters involved in the functional and how to generalize the method to
3D shapes.

The approach proposed in this paper is a combination of the two approaches
described above and consists of three steps. The "gray skeleton” of a shape
is defined in §2 by associating each point inside and outside the shape with a
numerical value which is a monotonic function of the angle at which the fronts
intersect. One half of this angle is what is called the object angle in the literature
[3,5]. We define this angle to be zero at points away from the skeleton. The first
important step is an accurate calculation of the object angle at every point based
on the observation that normals to the fronts may be determined by using fairly
large neighborhoods. An alternative method for calculating the object angle
based on the divergence theorem is given in [5]. Corresponding to Zhu’s chords,
we now have a set of boundary points associated with each point P on the gray
skeleton where the front normals at P intersect the shape boundary.

Gray skeletons contain numerous points associated with noise and its pruning
constitutes the second step which is described in §3. Parts of the shape with
slowly varying width are determined by thresholding the gray skeleton. Then,
branches of the thresholded skeleton are extended along the gray-skeleton in such
a way that they join up without picking up extraneous branches caused by noise.
The method is illustrated by means of an example in §4. An alternative approach
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to pruning the gray skeleton by contracting the shape boundary towards the gray
skeleton homotopically is described in [16].

Due to noise, the boundary of the skeleton obtained by the method described
above may have a tattered appearance. The skeleton may also have gaps and
short isolated branches. Regularization of the skeleton is the third step. In §5,
we propose an approach based on minimization of a functional. The 2D version
of this functional has been implemented in [17]; however, its 3D version involves
regularization of the skeleton boundary which is a space curve and has yet not
been implemented.

Zhu’s functional includes a term which penalizes wiggles in the skeleton. In
the appendix, we present an approach based on variational calculus for smooth-
ing (and pruning) shape skeletons by minimizing a functional which is analogous
to functionals used for segmenting gray-scale images.

2  Gray Skeleton

In this section, we define the gray skeleton I' of a shape from which the topo-
logical skeleton K is extracted. A shape is simply an open bounded set D; its
boundary will be denoted by dD. The topological shape skeleton K is assumed
to have the regularity properties usually assumed in practice. For example, its
dimension is at most 2. We start with the distance function

p(P) = max dist(X, P) (1)

which may be computed quickly, for example, by Sethian’s fast marching al-
gorithm [1] which solves the eikonal equation ||[Vp|| = 1 by the "upwind” finite
difference scheme. We estimate the angle between the normals to the intersecting
fronts exploiting the property that the gradient lines of p are straight lines except
where they cross the shape skeleton [14]. The gradient line of p passing through
a point P off the shape skeleton connects P to the point () on the shape bound-
ary nearest to P. The vector Cﬁs is the radius of the maximal sphere at P. It is
normal to the fronts advancing to P. If P is a point of K where there are exactly
two boundary points, QT and Q~, nearest to P, the maximal sphere centered at
P touches the shape boundary only at QT and Q. Exactly two fronts intersect
at P and the angle between their velocity vectors is equal to the angle between

the vectors Cﬁ)’ and ﬁ’ (Fig. 1). Let ¢ denote one half of the angle between
the vectors Cﬁ; and ﬁ; it takes values between 0 and 7. If the shape bound-
ary is smooth at @7, then the vector QT]g is orthogonal to the shape boundary
and ¢ is the angle between the chord Q+—Q*> and the tangent plane at Q.

- L
It is shown in [7] that the bisector of the angle between QTP and Q™ P is
tangent to the shape skeleton at P. Since |[V¥p|| = 1 where V*p denotes the

gradients in the directions Q= P, we have

dp
cosp = - (2)
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Fig. 1. Geometry of the distance function

where ds denotes the infinitesimal arc-length along the skeleton in the direction
of the bisector. It is the projection of the gradients V¥ p onto the plane tangent
to the skeleton at P. Thus, the larger the value of ¢, the slower the rate of
change in the width of the shape. We also have

1
sin p = §HV+p—V_pH (3)

which is one half the jump in Vp across the shape skeleton. The larger the
object angle ¢, the larger the jump in Vp, and the easier it is to detect the
corresponding portion of the shape skeleton.

Let ¢ = 0 in the complement of 0D U K where Vp is continuously differen-
tiable. We define the gray skeleton, I, of the shape by letting its value equal
to sin . The gray skeleton is defined everywhere except on the set J of points
of K where the maximal sphere touches the shape boundary at more than two
points. ( J is assumed to have dimension < 1. Our strategy is to determine K/.J
from the gray skeleton in the complement of 0D U J and then extend it over
parts of J which lie in the closure of K/J . This strategy still leaves out special
cases such as circular cylinders and balls where the closure of K/J does not
contain all of J. Therefore, it would be useful to extend the definition of the
gray skeleton to all of K. An elegant method to define such an extension due to
Dimitrov, Damon and Siddiqi [5] is based on the notion of average flux. These
authors use the divergence theorem and calculate the average flux as a limit of
the surface integral of Vp over spherical neighborhoods as the neighborhood size
shrinks to zero. A possible alternative method for calculating the average flux
is to integrate the laplacian of p in the sense of distributions. Only the singular
part of the laplacian (including its poles) contributes to the average flux and
since the singular part depends only on the object angles, it may be computed
accurately using large neighborhoods. In this paper, the purpose of calculating
I is to extract K from it and it is sufficient to use a simple approximation of I’
at a points in J. At a point P in J. we pick two points, QT and Q~, among the
set of boundary points nearest to P such that the object angle ¢ determined by

P— Pr—— . . .
the vectors QTP and Q™ P is the largest possible and set I'(P) = sinp. Note
that the set J may be quite large because there may be numerous intersecting
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branches produced by noise. The suggested method amounts to either ignoring
or lumping together contribution of less important branches.
—_— P
To estimate ¢, we need to determine the gradient directions QTP and Q™ P
which are the directions in which the directional derivative of p is maximum
and equals 1. We compute the directional derivatives of p in all inward radial
directions at every point P in a given shape and determine the directions in
which it is nearly equal to 1. On a discrete grid there are only finitely many
radial directions available depending upon the size of the neighborhood N which
determines the numerical accuracy of ¢.Since the gradient lines are straight lines
and ||Vp|| = 1, we may use fairly large neighborhoods. The algorithm in detail
is as follows:

Step 1: Scan the boundary N of a neighborhood N of P. If R is a point
belonging to N, the derivative of p in the direction RP is

Dalp) = '“%f(m (@

Step 2: Determine the local maxima of Dg(p) along ON. Among these max-
ima, choose the ones which are approximately equal to 1 within the tolerance
determined by the size of V.

Step 3: If there is a single gradient direction at a point, we set ¢ = 0. If there
are two or more maxima chosen in Step 2, calculate the object angle between
rays corresponding to all possible pairs maxima and choose the largest value.

3 Pruning

A straightforward approach to pruning is by thresholding. A high threshold
results in a set of disconnected skeleton branches correspond to the shape parts
with slowly varying width. If the threshold is set too low, the skeleton will include
branches due to noise. The following algorithm gets around this difficulty by
extending the branches of the thresholded skeleton along the gray skeleton into
the thicker parts of the shape, possibly forming junctions, without picking up
extraneous branches belonging to noise.

Step 1: Choose two thresholds § and @ for angle ¢ with 6 > 6.

Step 2: Threshold the gray skeleton by 6. This eliminates irrelevant branches
so that what remains corresponds to significant parts of the shape.

Step 3: Extend the branches of the thresholded skeleton in the direction of
increasing p provided that ¢ remains greater than @ throughout. The effect is
to extend the skeleton branches towards the more blobby or thicker parts of
the shape. As the branch is extended, it may encounter junctions with noise
(or protrusion) related branches, but these branches are not followed since they
ascend from the junctions towards the shape boundary. If the value of 6 is set
too high, some numerical difficulties may be encountered during this step due to
inaccuracies in the values of p and the discreteness of the grid. If the value of 6 is
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too high, p decreases very slowly along the skeleton branch; for example, if § =
75°, %f = cos 75° = 0.258. Consequently, along the actual directions of descent
permitted by the grid, the rate of decrease in p may be smaller still. Therefore,
in searching for the lower values of p, the size of the neighborhood should to be
adjusted in order to ensure that it includes a direction of decreasing p.

As long as 6 is sufficiently low, the resulting skeleton is a connected set since
in theory, the skeleton is connected if § = 0°. Since what is noise or an extraneous
feature must depend on the context, the values of thresholds 6 and § must also
depend on the context. The procedure is not too sensitive to the choice of  and
6 except around certain critical values. Topological and geometric changes in
the skeleton of a shape at critical values of 6 and 6 reveal critical features of the
shape. For instance, in the case of the rectangle in Fig. 1, if § > 45°, the skeleton
does not include the diagonal branches; the remaining skeleton, namely the main
axis, represents the shape as a pure ribbon. If @ and 6 are set sufficiently low,
the skeleton will include the diagonal branches as well as the branch emanating
from the protrusion.

4  An Illustrative Example

The test shape is a multiheaded figure created from MRI slices of the human
head shown in Fig. 2.! Figs. 3 and 4 depict several cross-sections of the gray
skeleton (left column), the pruned skeleton with § = 70°and @ = 45°, (middle
column), and the pruned skeleton with § = 70° and § = 30° (right column). The

Fig. 2. A 3D image

! T thank Professor Jackie Shen of University of Minnesota for providing the MRI
slices and Professor Kaleem Siddiqi of McGill University for the 3D visualization
depicted in Fig, 2.
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RE=

&

==

Fig. 3. Gray skeleton and pruned Skeletons: Vertical sections

points on the gray skeleton within 2 voxels of the shape boundary were removed
before thresholding as this portion was judged to be too noisy to be relevant.
Fig. 3 depicts 5 successive vertical sections going from front to back. Fig. 4 de-
picts 7 successive horizontal sections proceeding from the top of the triple head
to the "neck”. Notice the effectiveness of pruning. With § = 70°and § = 45°, the
pruned skeleton consists of 3 connected components, one inside the shape and
two outside.(Extremely short components were removed, see §5.) With 6 = 70°
and f = 30°, the pruned skeleton has a single connected component inside the
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Fig. 4. Gray skeleton and pruned skeletons: Horizontal sections

shape and a single component outside. Notice that as the shape get less cylinder-
like (small ), the gray skeleton gets fuzzier reflecting the difficulty in locating
the skeleton accurately.

5 Regularization of the Skeleton Boundary

As mentioned in the Introduction, the boundary of the skeleton obtained by the
method described above may have a tattered appearance due to noise in the
data. It may also have gaps and and short isolated branches. To address these
defects, we define a regularizing functional



Skeletons of 3D Shapes 347

E(K):/K(c—a)eraK\ (5)

where K is a subset of the gray skeleton I' representing the pruned skeleton,
¢ = cosy is the cost function defined on the gray skeleton, « is a cost thresh-
old, 9K is the boundary of K and |0K]| is its length. If 8 = 0, E is mini-
mized by setting K equal to the set of points of the gray skeleton G where
c < a. If B> 0, we may locally shorten 0K even if it means extending K along
G to include voxels where ¢ > a. Thus, minimization of F requires the tech-
niques of curve evolution on a surface. Details of this approach are being worked
out.

6 Appendix

We present an approach based on variational calculus to determine a pruned,
smoothed skeleton directly by minimizing a functional. We exploit a basic iden-
tity that the distance function satisfies [9]. Let

u=v(e) ©)
where p is the distance function. Since ||[Vp|| = 1 and u = pVp, |ul| = p. It
follows that u satisfies the identity

u=V(zu-u) (7)

We have the following converse due to Gomes and Faugeras [9]:

Proposition: Suppose u : R" — R™ satisfies Identity (6) almost everywhere
and u is continuous at all points of the set M = u~!(0). Then, u = V(3%
where p is the distance from M.

Taking into account that the identity fails where u is discontinuous, namely,
on the shape skeleton, we define the functional

[ a
R-K

subject to the condition that u = 0 on the shape boundary. Here R is an
open subset of R™ containing the shape, K is the discontinuity locus of v and
|K| is its volume (length, area, etc). The problem with this functional is that

SV ) —ul K] (3)

H%V(u cu) — u||2 = O(p?) and hence, the penalty for violationg Identity (6)
depends on its distance from p. To remedy this, we consider the normalized

functional )
E(u,K)= / o
R-K

ol 1K (9)

V ull =

[l
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Since minimization of F balances the cost of the modifying or removing a seg-
ment of K against the cost of violating Identity (6), the result is a pruned and
smoothed skeleton K. The functional does not attempt to regularize the bound-
ary of K; inclusion of such a term would make the functional considerably more
difficult to implement. To apply the method of gradient descent, we use the
Ambrosio-Tortorelli appoximation of E':

B = [ {

The corresponding gradient descent equations are:

2

V ull =

U A v?
| A= +3 IV]* + ZA} (10)

ou
= But (1 - )V ul ()
ov v 2a0 u ||?

Fig. 5. Top row: Gray skeleton and pruned skeleton Bottom row: Function v with two
different values of «
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where

U U
s=-o{v-vlul - -2 (V- ) v @
We illustrate this approach for determining shape skeletons by means of an
example of a 2D shape shown in Fig. 4. The top row shows the gray skeleton
and the skeleton obtained by pruning the gray skeleton. The bottom row depicts
the function v obtained using Egs. 10 and 11 with two different values of «. Just
as in the case of segmentation functionals, two objections may be raised against
this approach: First, we have much less control over pruning and smoothing of
the skeleton than when we use the method of gray skeletons; second, function
v is spread out and we need a ridge finding method to locate the skeleton pre-
cisely by following the ridges of v. Nonetheless, it is of interest to formulate the
problems of determining shape skeletons and of segmenting images within the
same variational framework.
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Abstract. This study is concerned with the uncertainty principles which
are related to the Weyl-Heisenberg, the STM(2) and the Affine groups.
A general theorem which associates an uncertainty principle to a pair of
self-adjoint operators was previously used in finding the minimizers of the
uncertainty principles related to various groups, e.g., the one and two-
dimensional Weyl-Heisenberg groups, the one-dimensional Affine group,
and the two-dimensional similitude group of R?, STM (2) = R? x (R* x
SO(2)). In this study the relationship between the affine group in two
dimensions and the STM(2) group is investigated in terms of the un-
certainty minimizers. Moreover, we present scale space properties of a
minimizer of the STM(2) group.

1 Introduction

The 2D Gabor function and Gabor-Morlet wavelets are commonly used in com-
puter vision. Mostly in relation to texture analysis, synthesis and segmentation.
The use of these functions is usually motivated by the fact that the Gaussian
window minimizes the uncertainty and attains the maximal possible accuracy in
both the spatial and frequency domains. In fact, the Gabor transform is a rep-
resentation of the Weyl-Heisenberg group while the 2D Gabor-Morlet transform
is a representation of the 2D affine group or of subgroups thereof. Since both
the 2D Gabor-Morlet wavelet transform and the multi-window Gabor transform
involve rotation and scaling (and potentially few more transformations) in addi-
tion to the usual translation and frequency modulations, it makes sense to look
for a window shape that maximizes the accuracy in all attributes. This study
explores this question and shows that this aim can only be partially attained.
The Gaussian function appears as a pivot in scale-space theory as well, where
its successive applications to images produce coarser resolution images. It is
shown, in fact, that the family of Gaussian functions posses semi-group proper-
ties with respect to the width of the Gaussian. This raises the question whether
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families of functions that minimize the uncertainty for other groups of trans-
formations posses the same characteristic. It is shown in this study that this is
in fact true for the cases that we consider. This is an intriguing fact whose full
significance is not yet fully understood.

In this study we consider the results obtained for the similitude group [1, 3]
and apply them to the affine group in two dimensions. Moreover, we explore the
scale-space nature of the minimizer derived by Ali, Antoine and Gazeau [1] and
find that their solution has smoothing and edge detection attributes which can
produce scale-space representation of images.

The rest of this paper is organized as follows: First, we review the uncertainty
principle theorem for self-adjoint operators and point out related works. We
then apply it to the Weyl-Heisenberg group and the affine group in one and
two dimensions. We conclude by pointing out the scale-space properties of the
minimizers obtained.

2 Background and Related Work

The uncertainty principle is a fundamental concept in quantum mechanics as
well as in signal and information theory. In quantum mechanics, the Heisenberg
uncertainty principle states that the position and momentum of a particle cannot
be simultaneously known. In signal and information theory, Gabor [5] showed
that there exists a trade off between time resolution and frequency resolution
for one-dimensional signals, and that there is a lower bound on their product.
These results were extended to consideration of images [9].

A special attention has been given to the functions which attain the lower
bound of the inequality defined by the uncertainty principle. It is used to define
the canonical coherent states for quantum systems in physics. In signal process-
ing it was discussed, inter alia, by Gabor. He showed that Gaussian-modulated
complex exponentials provide the best trade-off for time resolution and frequency
resolution. These are equivalent to a family of canonical coherent states gener-
ated by the Weyl-Heisenberg group.

A general theorem which is well known in quantum mechanics and harmonic
analysis [4] relates an uncertainty principle to any two self-adjoint operators and
provides a mechanism for deriving a minimizing function for the uncertainty
equation: two self-adjoint operators, A and B obey the uncertainty relation:

AApABy = JABI)| VS, (1)

where AA;, AB; denote the variances of A and B respectively with respect
to the signal f. The triangular parnthesis mean an average over the signal i.e.
(X) = [ f*Xf. The mean of the action of an operator P on a function f is
denoted as: pp = (P) and the commutator [A, B] is given by: [A, B] := AB—BA.
A function f is said to have minimal uncertainty if the inequality turns into an
equality. This happens if and only if there exists a A € iIR such that

(A—pa)f =B —pp)f. (2)
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Thus, any two self-adjoint operators, whose commutator does not vanish, lead to
an uncertainty principle. Moreover, the constraint for equality, together with a
realization of the operators in differential form, lead to a set of partial differential
equations. The solution is the function which minimizes the uncertainty for the
relevant operators.

Both windowed Fourier and wavelet transforms are related to group theory,
as both can be derived from square integrable group representations [6]. The
windowed Fourier transform is related to the Weyl-Heisenberg group, and the
wavelet transform is related to the affine group. The general uncertainty theo-
rem [4] stated above provides a tool for obtaining uncertainty principles using
the infinitesimal generators of the groups’ representations. In the case of the
Weyl-Heisenberg group, the canonical functions which minimize the correspond-
ing uncertainty relation are Gaussian functions. The canonical functions which
minimize the uncertainty relations for the affine group in one dimension and
for the similitude group in two dimensions were the subject of previous studies,
among them is the study of Dhalke and Maass [3] and that of Ali, Antoine and
Gazeau [1].

Dahlke and Maass [3], as well as Ali, Antoine and Gazeau [1] studied the
uncertainty principle for a sub-group of the affine group, the similitude group of
R?, STM(2) = R? x (R" x SO(2)), which is related to the wavelet transform.
Dahlke and Maass [3] have included commutators with elements of the enveloping
algebra, i.e. polynomials in the generators of the algebra, and managed to find
the 2D isotropic Mexican hat. Ali, Antoine and Gazeau [1] derived a possible
minimizer in the frequency domain for some fixed direction. Their solution is a
real wavelet which is confined to some convex cone in the positive half plane of
the frequency space and is exponentially decreasing inside.

3 The Weyl-Heisenberg Group

The uncertainty principle related to the Weyl-Heisenberg group has a tremen-

dous importance in two main fields; in quantum mechanics, the uncertainty

principle prohibits the observer from exactly knowing the location and momen-

tum of a particle. In signal processing, the uncertainty principle provides a limit

on the localization of the signal in both time (spatial) and frequency domains.
Let G be the Weyl-Heisenberg group,

G :={(w,b,7)|byw e R, T €C,|7]| = 1} (3)

with group law

. (wb’ —w’b)
(@,b,7) 0 (W, 1) = (w+/ b+ b 7r/e T,

(4)

Let 7 be a representation of the group’s action on L?(IR); then, the coefficients
generated by (f,m(z)y) are known as the windowed Fourier transform of the
function f, with 1 being the window function. The windowed Fourier transform
is defined by:
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(@) = (G f)(w,b) = / f@)b(a - bjem® da (5)

The Fourier transform is a profound tool in signal processing. The Gaussian

window function ¥ (z) = e_% has an important role in the windowed Fourier
analysis as it minimizes the Weyl-Heisenberg uncertainty principle. Next, we
review the derivation of the uncertainty principles for the Weyl-Heisenberg group
in one and two dimensions using the uncertainty principle theorem. The reader
may find the classical proofs of the uncertainty principle for the Weyl-Heisenberg
group in the work of Gabor [5] for one-dimensional signals and in the work of
Daugman [2] for two-dimensional signals.

3.1 The One Dimensional Case

The unitary irreducible representation of the Weyl-Heisenberg group in L?(R)
can be defined by: [U(w,b)f](z) := e™“*f(x — b). The following infinitesimal
generators of the group are then given by:

(Tf)(@) = o (U, D@ omosmo = —of )
(T1)(@) = o 0, D (@) ampimo =~ ] 1)

The one-dimensional uncertainty principle for the Weyl-Heisenberg group can
be derived using the general uncertainty principle.

Corollary: [4] Let A =T, and B = T, b, be the infinitesimal operators of the
Weyl-Heisenberg group: A = —x, B = —za— If fe L?(R)and a = pua,b= up €
R we have: [[(A —a)f|2//(B — b)f||2 > L[ f|l2, with equality being obtained iff

f(I) _ Ce27ribzef7rr(zfa)2 (8)

for some c €T, r € Ry.

3.2 The Two-Dimensional Case

The unitary irreducible representation of the Weyl-Heisenberg group in L?(R?)
in two dimensions is given by: [ﬁ(wl, wo, b1, 02, 7) f](z,y) = Tetlwretivay) f( —
?), where W = (m,y),_b) = (b1,2). The following infinitesimal generators of
the group can be defined as:

(T D)) = in U@y =] (9
-\ 9 — —
(g ) = A5, =iV (10)

The only non-vanishing commutators of these four operators are:

T To ] =—1 , k=1,2. (11)



Scale-Space Generation via Uncertainty Principles 355

Thus, an uncertainty principle can be obtained for translations in the space
and frequency domains. This can be solved for each dimension separately. It is
interesting to note that using the Weyl-Heisenberg group, there is no coupling
between the x and y components. Thus attaining a certain accuracy in the x
component does not affect the degree of accuracy of the y component. If we
derive the minimization equation, we simply get the same result for the one-
dimensional analysis for both z and y. The separability of the Weyl-Heisenberg
group results in separable gaussian functions as the minimizers of the combined
uncertainty. This is, in fact, an inherent property of the Gaussian functions.

4 The Affine Group

Let G be the affine group, and let U be its canonical left action on L?(R); the
coefficients generated by (f,U(z)v) are known, in the one-dimensional case, as
the wavelet transform of a function f, with v as a mother wavelet, or template.
The wavelet transform is defined by:

Wof)ab) = [ @l bo(*2)da (12)
4.1 The One-Dimensional Case
Let A be the affine group,
A= {(a,b)|(a,b) € R*,a # 0} (13)
with group law
(a,b) o (a’,b') = (ad’,ab’ + b). (14)

A unitary group representation obtained by the action of U(A) on f(z) is
given by:

_1,.(x—b
e i) =4 (257 (15)

In preparation for our extension to two dimensions and other groups, we
quote the main results presented in the work of Dahlke and Maass [3] for the
one dimensional affine group. First, the self-adjoint infinitesimal operators are
calculated by computing the derivatives of the representation at the identity

element:

1 0
To=—ig —og,)
.0
Tb = 7'1,%. (16)

Using these operators, the affine uncertainty principle is given, and the fol-
lowing differential equation can be solved to obtain the uncertainty minimizer:

(Ta - ,ua)f = )‘(Tb - ,U'b)fa (17)
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which reads: .
- iif —ixf — pof = —iAf" = M f. (18)

The solution to this equation is: f(z) = c(x — A\)®, where v = —1 — iApg + ipsp.

Dahlke and Maass [3] provide constraints on «, so that the obtained solution is
in L?(R).

4.2 The Two-Dimensional Case

In the studies of Dahlke and Maass [3], and of Ali, Antoine and Gazeau [1], the
uncertainty principle is derived for a subgroup of the affine group which includes
translations, rotations and a uniform scaling in the x and y directions. Let us
begin by briefly quoting their main findings before extending them to the affine
group itself.

The 2D similitude group of IR?, STM(2) = IR? x (IR* x SO(2)). Con-
sider the group B = R x R? x SO(2) with group law (a,b,79) o (a’, ¥, 79) =
(aa’,b+ atpl/, Tg4e). The unitary representation of B in L?(IR?) is given by:

0.0 = 5 (0 (51 152)). (19)

a
where the rotation 79 € SO(2) acts on a vector (z,y) in the following way:
To(x,y) = (xcos(8) — ysin(0), xsin(f) + ycos(d)), (20)
and 6 € [0,27). The self-adjoint infinitesimal operators are given by:
Ty=i(wH)t-v, T,=-i(l+7@"-V),
T— = —iV.
b
where (7*)" = (—y,z) The only non-vanishing commutation relations are:
[TCHTbk] = _ink7 [TeaTbk] = i63]€lTb| )

where €;;, is the full anti-symmetric tensor and summation is implied on repeated
indices. These four non-zero uncertainty relations lead to a set of four partial
differential equations:

af af . of
laxy layaj l’l‘e.f— Z)\lam )\ll’bblf
af of . 9
5V T ig," pof = M278y Ao fib, f
Lof af . af
_Zf_la:rx layy :u’llf_ Z>\38x )\3/’[’b1f

.0 .0 . of
—Zf — ’L%l' - l@y - /Jaf = _Z)\487y - A4Mb2f (21)
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It turns out that there does not exist a non-zero solution to this system of
PDEs. It is not clear wether the theoretical bounds given by the uncertainty the-
orem are tight in the sense that they are the infimum value over the L? functional
space or that better bounds are possible. Research on these questions is ongoing.
Here we try to modify our quest in two different manners. One approach is to
find a subset of generators which have mutually minimized relations. The gen-
erators span a linear space, the Lie algebra. We look for the possibly maximal
subspace for which a non-trivial function minimizes the related uncertainties.
This is the approach taken by Ali, Antoine and Gazeau [1]. They observe that
the relationships between T, and T},, and Tp and T}, can be transformed into
the relationships between T, and Tj,, and Ty and T,, by a 7 rotation. Thus,
they define a new translation operator T, = Tj, cos(y) + Tp,sin(y), so that a
minimizing function can be obtained for this new operator as well as for Ty
and Ty with respect to a fixed direction 4. The minimizer they obtain in the
frequency space k,, k, is a function which vanishes outside some convex cone in
the half-plane k, > 0 and is exponentially decreasing inside:

W(k) = clkf*e M, (22)

where s > 0 and A > 0.

Another approach is to replace few of the generators by elements of the uni-
versal enveloping algebra. Dahlke and Maass [3] followed this path. The solution
they find is a minimizer to the operators: T,,Tp and Ty, := T2 + T3%. A pos-
sible solution is the Mexican hat function: ¥(z,y) = [2 — 2ﬁr2}6_ﬁrg7 where
ri= /22 + 92

Note that in the first approach the subspace chosen is not a sub-algebra. It
is closed under summation but not under the multiplication (defined as com-
mutation relation). The latter operation can take an element in the subspace
of the Lie algebra out of it. In the second approach we build a minimizer for a
full algebra. Here we simply changed the underline symmetry, namely we do not
allow uncorrelated translations in the x and y directions.

The Affine Group in 2D. Let us explore the most straight forwards repre-
S11 512
S21 522
D = (b1,b2) and @ = (x,y). We restrict our discussion to the case D > 0.
A similar derivation can be obtained for the case D < 0. The representation
corresponding to the action of the Affine group is accordingly given by:

[U(s, D) f](7) = VDf (s (7 - ?’)) . (23)

sentation of the Affine group. Let define s = { }, D = s11899 — $21519,

Let us calculate the infinitesimal operators associated with: s11, $12, S21, S22, b1, ba:

1 0 1 0

TSu(x’y) = 2(5 + x%% T522($,y) = 2(5 + y@)7

.0
T, (z,y) = ix—

T812 (m?y) ay7
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0 0
Ty, (z,y) = —i—, Tp,(z, —i—. 24
() = —igs, Th(ay) = —ig. (24
As these operators were derived from a unitary representation, they are self-
adjoint. The non-vanishing commutation relations are:

[T5117T512] = T912v [T9113TS21] iTS217 [T9113Tb1] = inl

[T8127T822] = TS12a [TS12aTb2] ZTbU [T5217T822] = —iT,

§21

[T5217Tb1] = iTp,, [T8227Tb2] = iTp,, [TSm? TSzl] = i(T

S11

- T,

522 )

Thus, of the fifteen possible commutation relations we obtain nine uncer-
tainty principles. It is interesting to note that the scaling in the x direction (s11)
is not constrained by the scaling in the y direction (ss2). The same goes for the x
and y translations. Using the uncertainty theorem for self-adjoint operators, we
obtain a set of differential equations whose solution is the function which attains
the minimal uncertainty relations. A simultaneous solution for all equations nec-
essarily imposes: f = 0. No function attains the minimality of uncertainty in L?
for all the relations. Facing this situation we have several options: We may look
for a function that minimizes the uncertainty relations of subgroups of the affine
group. We may be satisfied with an algebraic subspace (which is not necessarily
an algebra of a subgroup), we may find a subspace of the universal enveloping
algebra (the polynomials in the generators), or finally we can limit ourself to
a subset of the non-commuting pairs of generators. For example we take the
following linear combinations of the generators: Ty = T, — Ts,, = i(yfe — T fy)
and Tscate = Ty, + Tspy = i(f + xfo + yfy). We may consider these new opera-
tors as representing the total orientation and scale changes due to the operation
of the affine group. Moreover, these operators, along with the translation oper-
ators are identical to those obtained for the STM(2) group, and thus, we can
easily implement the derivations of the minimizer of Ali; Antoine and Gazeau
[1] to these operators. Another immediate possibility is to follow the derivation
of Dahlke and Maass [3] by using rotation invariant functions which can be pre-
sented by: f(z,y) = g(v/22 + y?). These are the minimizers of the following
three operators, which are defined as polynomials in the existing six operators:

Ty = Ts12 — Ts12, 5
Tsca e — 1s Ts =1(1 )
l 11+ Ts22 =i(1+ Tar)

o e L O
T. =T, +T, = 52
The equations to be solved are:
(To — po)g(r) = M (T — pr)g(r) (25)
(T0 _/149) ( ) )\ (Tscale ,Ufscale)g(r) (26)
(Tr 7#7’) ( ) A ( scale — ,Ufscale)g(r)~ (27)

Naturally, the motivation for defining these new operators is the rotation in-
variance property of Ty, i.e. Tpg(r) = 0. Thus, instead of seven equations to be
solved we are left with only three. We can simply select Ay = Ao = 0 to obtain:
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()~ (1) — pr0 = Asi(g(r) 4 70 (1) ~ Asprscarco (28)

As can be seen, we have obtained the exact equation obtained by Dhalke and
Maass for which a Mexican hat solution can be found.

Ali, Antoine and Gazeau have divided the four commutators they obtained
for the similitude group generators into two groups which are transformed into
each other by 7 rotation. We apply this approach to the fifteen commutators
obtained. Thus, the set of commutators:

[T811 I TS]Q]’ [T311 ’ TSQI]’ [T811 ’ Tbl}’ [T512 ? TS?I]’ [T

S129

sz}
transforms under rotation of 7 into the complementary set of commutators:

[T822 ’ T$21]7 [Tszz’ T312]’ [T$22 ’ sz]? [TSZ’I ’ T312]’ [T

$21)

Ty, ]

If the commutator between T,, and T, , is omitted, we may obtain the following

S21
set of differential equations:

i £ 2f) = jnf = Miyfo — pof)

2
z(g +afe) — i f = Xa(izfy, — pa1 f)
z(g +afe) = i f = Ns(—ife — pp, f)
—ify = po, f = Ma(iyfo — p12f) (29)

where j1;; = p1y(Ts;). Selecting all A’s to be zeros, a possible solution for this
system is: f(x,y) = x~#11~3¢0oY This solution, however, does not belong
to L2. If we allow A3 to be non-zero, we may obtain a solution of the form
f(x,y) = (Ag4a)~2~#+idsuen The L2 constraint can be obtained by selecting:

1
sl > 5k

5 Scale-Space Nature of the Uncertainty Principle
Minimizers

It is well known that the Gaussian function has an important role in the scale-
space framework. When a Gaussian is convolved with an image, the result is a
smoother version of the original image. The degree of smoothness is determined
by the standard deviation of the Gaussian in either the x, y or both directions.
In the latter case, the spread does not have to be identical in both dimensions.

The Gaussian function is also the minimizer of the uncertainty related to
the Weyl-Heisenberg group. In fact, we obtain as the minimizer a one-parameter
family of functions: The Gaussian with parameter ¢t = ¢2/2. This one-parameter
family is a semi-group with respect to the convolution, i.e. the convolution of
two Gaussians with different values of ¢; and t5 is equivalent to a Gaussian with
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parameter t1 +to. This is all very well known of course. The interesting question
is whether the minimizer of the uncertainty relations of other groups depends
on parameters such that it forms a semi-group with respect to convolution. We
consider here the minimizers of the uncertainties related to the SIM(2) group
and to the affine group.

The solution offered by Dahlke and Maass is scale-space by nature. The min-
imizer that they found is the Mexican hat function: ¥ (z,y) = 3(1 — Br2)e=#’,

2.2

where r := (/22 + y2. Its Fourier transform is ke "B Clearly, if we de-
fine 8 = 1/t then the semi-group property is trivially satisfied, with ¢ as the
semi-group parameter. Note that this is a scale-space of edge detector and not
of the image as usual. It is in fact an element of the jet-space of the traditional
Gaussian scale-space.

The rest of this section is devoted to exploring the scale-space nature of the
minimizer given by Ali, Antoine and Gazeau for the uncertainty related to the
SIM(2) group [1]. Their solution is given in the frequency space (kz, ky). It is a

o

Fig. 1. A one-dimensional rectangular pulse function
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Fig. 2. When the 1D Cauchy wavelets are applied to a rectangular pulse, the larger s
is the more noticeable the edges are (left to right). The larger A is the smoother the
edges become (up to bottom)
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Fig. 3. 1st row: For a constant value of A = 0.00001, increasing the value of s,
0.01,0.2,0.5,1 (left to right), results in edge enhancement. 2nd row: For a constant
value of s = 0.2, increasing the value of A is increased: 0.001,0.01,0.05,0.1 (left to
right) results in a effect of motion-blurring in the x-direction

function which vanishes outside some convex cone in the half-plane k, > 0 and
is exponentially decreasing inside:

1&5)\(’6) = c|k|se_’\kx, (30)

where s > 0 and A > 0. It is quite obvious, from the mere definition of the
function, that successive applications of the filters with two values of either s
or A correspond to a single application of an effective parameter: 1/331 Aﬂ/}sQ Ay =
1&(51+52)( A1+)2)- Moreover, this function has the following properties: The portion
|k|® = (k2 + kf/)% in frequency space is the transformation (up to a sign) of the
Laplacian operator in the spatial space :A%, and thus can be considered as an
edge enhancement operator. The portion e~ *x can be considered as a directional
smoothing operator.

We look first at the one-dimensional equivalent of the solution of Ali, Antoine
and Gazeau [1], which is known as the Cauchy wavelets [7,8]: (&) = c£5e=
for £ >0 and ¥(¢) = 0 for £ < 0, and s > 0. Their application to a rectangular
pulse function (Fig. 1) provides the following results: as s increases, the edges
become more evident, thus the edge is enhanced, while as A increases, the signal
becomes smoother (Fig. 2).

We next apply the two-dimensional minimizer filter to a test image of a clown,
symmetrizing the filters as follows: (k) = c|k|*e=*x|. When the value of X is
kept constant, increasing s results in a progressive edge enhancement (Fig. 3 1st
row). When the value of s is kept constant and the value of X is increased, there
is a motion blurring effect in the z-direction (Fig. 3 2nd row).

6 Discussion and Conclusions

In this work we study the possibility of designing a window shape that is op-
timal with respect to all the possible parameters of the two-dimensional affine
transform. The study is based on minimizing the uncertainty relations that are
inherent in the non-commutative affine symmetry. We generalized ideas and tech-
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niques that were used by Dahlke and Maass [3] and Ali, Antoine and Gazeau [1]
for lower dimensional groups.

Our study shows that there is no function that minimizes the uncertainty
with respect to all parameters of the affine transformations. We were able to
show, though, the existence of an L? window that minimizes a subset of the
commutation relations.

Moreover, the scale-space properties of the minimizer offered by Ali, Antoine
and Gazeau, are considered. We find that the two-parameter minimizer family is
a semi-group with respect to each parameter and that modifying the function’s
parameters results in either edge enhancement or motion-like blurring.

Our preliminary results point to the need to further explore the scale-space
attributes of uncertainty minimizers.
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Scale Invariant Texture Analysis
Using Multi-scale Local Autocorrelation
Features
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Abstract. We have developed a new framework for scale invariant tex-
ture analysis using multi-scale local autocorrelation features. The multi-
scale features are made of concatenated feature vectors of different scales,
which are calculated from higher-order local autocorrelation functions.
To classify different types of textures among the given test images, a
linear discriminant classifier (LDA) is employed in the multi-scale fea-
ture space. The scale rate of test patterns in their reduced subspace can
also be estimated by principal component analysis (PCA). This subspace
represents the scale variation of each scale step by principal components
of a training texture image. Experimental results show that the proposed
method is effective in not only scale invariant texture classification in-
cluding estimation of scale rate, but also scale invariant segmentation of
2D image for scene analysis.

1 Introduction

Texture analysis plays an important role in the interpretation and understand-
ing of real-world images so that it is a useful research area in computer vision
and pattern recognition. Texture analysis has been applied to many practicable
vision systems such as industrial inspection, remote sensing, biomedical imag-
ing, ground classification, and segmentation of satellite or aerial imagery. Recent
applications show the potential of natural-scene analysis by utilizing texture seg-
mentation and texture labeling [1], [2].

One of the major problems in texture analysis is that the textures in the real
world are often not uniform because of changes in orientation, scale or other
visual appearance. Especially, several researches on scale and rotation invariant
properties of texture images have been reported in recent years [3], [4]. Our re-
search is focused on the scale invariant property of a texture image in a statistical
feature space. The statistical features extracted from co-occurrence or autocorre-
lation functions represent a spatial distribution of gray values. Texture patterns
can be represented by a large number of feature vectors in high-dimensional fea-
ture space. Classifiers are also designed to reduce the computational complexity
of an enormous amount of feature vectors. We should therefore make an effort

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 363-373, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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to develop robust invariant features that can be extracted and classified with a
low-computational complexity in statistical approaches [5].

In this paper, we propose a theoretically and computationally simple frame-
work in which it is possible to discriminate a large range of scaled texture images
efficiently in spite of gray-scale variations. The proposed multi-scale features are
utilized in scale invariant texture classification and scale invariant segmentation
for scene analysis including estimation of scale rate. To classify the different tex-
ture types, K-class Fisher criterion [6] for a multi-class classification problem
is employed in their discriminant space. We separate feature vectors of texture
patterns of the same type from a linear discriminant space. The separated dis-
criminant space consists of feature vectors of different scale rate although they
are extracted from texture patterns of the same type. According to the scale
variation, thus, texture patterns can also be classified by using principal compo-
nents analysis.

Scale variation of texture patterns is related to texture gradient, which is an
important cue for depth perception comparable to binocular disparity [7]. Tex-
ture gradient can be represented by gradual scale variation of texture patterns in
a 2D scene. The proposed method is applied to scale invariant texture segmen-
tation of a 2D scene. In addition, we can evaluate relative distance of a 2D scene
image by estimating the scale rate of a training texture pattern. The experi-
mental results show the effectiveness of the proposed method for scale invariant
texture classification and segmentation including the estimation of scale rate. In
the extensive application of our proposed method, we will make it possible to
perceive a surface orientation and a relative distance in a natural 2D scene.

2  Multi-scale Local Autocorrelation Features

2.1 Multi-scale Features

We assume that texture is a kind of repetitive pattern over a certain ranges of
scale. An image texture can appear in different ways according to the scale of
observation so that the scale concept and the notion of multi-scale representation
are of crucial importance in texture analysis [8]. A number of approaches to
multi-scale representations, which are more or less related to scale space theory
such as pyramids, wavelets and multigrid methods have been developed [9]. As
for our method, the pyramid representation of gray-level is used to build the
scale space, which combines a sub-sampling operation with different levels of
spatial resolution.

Figure 1 illustrates a method of multi-scale feature extraction from a training
texture image. Local windows of (n X n) size are sampled from all over the edge of
texture pattern in randomly. According to the scale step i, we extract m number of
sample windows, thus, we can get (m X i) feature vectors from a training texture im-
age with d-dimensionality. The rate at which the scale step increases i is kept con-
stant to make a linear scale space. We concatenate feature vectors (S;—-1, Si, Si+1)
of different scale to a single vector Ms; of (d x 3) dimension. A multi-scale feature
consists of three feature vectors that give three consecutive scales.
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Multi-scale feature vectors

= — _— dx3 dimension
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d : dimensionality
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Fig. 1. Extraction of multi-scale feature vectors from scale space

2.2  Higher Order Local Autocorrelation

Various methods for extracting scale invariant features have been applied in
texture analysis and image recognition (e.g., a Gabor filter and Wavelets and so
on). The autocorrelation functions possess uniqueness property for even orders,
and they have advantages of being shift-invariant and computational low cost.
The autocorrelation function has been used in a wide range of applications: face
detection [10], pattern recognition [11], and scale invariant image recognition [12].

A local autocorrelation function can be used to assess the amount of regularity
as well as the fineness/coarseness of a texture image. An important property of
many textures is the repetitive nature of the placement of texture elements in
the image. Due to advantages of low cost and repetitive nature of texture image,
a higher order local autocorrelation function is employed in feature extraction
module.

Order 0 Order 2

Fig. 2. Local mask patterns for higher-order local autocorrelation features
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Higher order autocorrelation functions are defined by

P anaz, - an) = /D @) (e +ar)- - fa +an)de, 1)

where n denotes the order of the autocorrelation function, = is the image
coordinate vector, and a; are the displacement vectors. A function f(x) stands
for the image intensity on the retinal plane D [13]. Considering computational
cost, we limit the order n to 2. Using the mask patterns shown in Fig. 2, the
feature extraction module computes 25 local autocorrelation coefficients from a
texture image. For each mask pattern, a product is calculated by multiplying
pixels in the masks.

3 Discriminant Space for Classification

To get more effective feature set, we perform an orthogonal transformation on all
training feature vectors by using the Karhunen — Locve (KL) transformation
[14]. The orthogonal transformation produces a new sequence of uncorrelated
texture images on the higher auto-correlation feature space so that feature vec-
tors have a set of the most independent output components. A feature extraction
module usually includes a process which determines an appropriate subspace of
dimensionality d’' in the original feature space of dimensionality d(d’ < d). The
Karhunen — Loeve method also chooses a dimensionality reducing linear pro-
jection, but we do not reduce the dimensionality of feature space to preserve the
original features.

To classify each texture image represented by its feature vector, we use the
Fisher criterion for K-class classification associated with linear discriminant
analysis (LDA). The task of our classification is to assign test texture patterns
that have the same type of texture but different scales to one of the classes
with the same type of texture patterns. This is called scale-invariant texture
classification. The Fisher method is the simplest and most popular approach
in linear discriminant analysis (LDA). The method is further generalized by
Rao [15] into the multiple class problem. The Fisher method projects high-
dimensional data onto a subspace to maximize the separation of inter-classes.
For a K-class problem with K > 2, a transformation matrix from d-dimensional
feature space to m-dimensional space (m < d) is determined such that the Fisher
criterion of total scatter versus average within-class scatter is maximized [16].
The within-class scatter matrix, Sw, and the between-class scatter matrix, Sg,
are written as follows :

K

Sw=>" (Pl 3 (@ —ma)@ - m)?), @

i=1 b xcwi
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T : Variance of multi-scale features Msi
O : Mean of multi-scale features Msi
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Fig. 3. Feature vectors of test texture patterns and prototypes represented by means
of multi-scale features in the linear discriminant space

where x is a feature vector, m; is the mean vector of class w;, m is the overall
mean of all classes, K is the number of classes, n; is the number of patterns in
each class w;, and P(w;) is its prior probability. We assume that n; reflects the
prior probability, where n is the number of all patterns, so that a prior probability
can be represented as P(w;) = n;/n. We can, thus, obtain the transformation
matrix A, which maximizes Jg, so-called Fisher criterion:

ATSpA
T(A)=tr(Zrg =) (4)

Solving this optimization problem results in finding the eigenvectors of S;Vl Sp
corresponding to the d largest eigenvalues. As long as d > (K — 1), no infor-
mation is lost when the classes are normally distributed. We can project the
d-dimensional features into (K — 1)-dimensional space or more reduced dimen-
sional space related to the cumulative proportion of eigenvalues. The objective
of dimensionality reduction below (K — 1) is to find a subspace in which a pro-
jection of the class means preserves distance such that the class separability is
maintained as good as possible [17].

In the linear discriminant space built by the K-class Fisher criterion, re-
projected feature vectors of training data constitute spatial distributions in ac-
cordance with scale variation. Figure 3 shows means and variances of the distri-
butions of feature vectors in limited 3-dimensional discriminant space for visu-
alization. We use a LDA classifier based on the minimum Euclidean distance to
classify test texture patterns. Note that LDA using a few prototypes per class
is the simplest and the most practical classifier.

We make prototypes by using the means of multi-scale features extracted from
the same type of training texture patterns at each scale step. A class consists of
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1 prototypes of multi-scale features Ms; and ¢ represents the scale step of multi-
scale features. We then compared these @ prototypes with test texture patterns.

4  Subspaces for Estimation

For the estimation of scale rate of texture patterns, we make separate subspaces
by using Principal Component Analysis. The subspaces are composed of the
same type of training texture patterns, but with different scale, and can repre-
sent scale variation of a training texture type. The PCA is a standard technique
for extracting the structure from a high-dimensional data set. It reduces the re-
dundancy contained within the feature vectors by creating a new series of feature
vectors in which the axes of the new coordinate system point in the direction
of decreasing variance. Suppose that a feature vector and its dimensionality d
can be written as {x = (v1,22,...74)7 € R?}. We extracted feature vectors
from higher local autocorrelation function with 25-dimensionality as described
in section 2.2. The number of feature vectors from a training texture image is
(m x i), where m is the number of sampling windows and ¢ is a number of scale
steps of feature vectors, which are represented by {x®}(i =1,...m x i).

To begin the PCA transformation of feature vectors within a class, the co-
variance matrix Cj of the all data set of feature vectors can be defined as

mxi

Co= S (@ B~ 7)) %)
k=1

where Z is the mean of (*). Using the covariance matrix, we obtain the eigen-
values A are obtained from |C, — M| = 0, where I is an identity matrix.
The eigenvectors e define the axes of the components and are obtained from
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Fig. 4. An example of prototypes from a training texture image in their subspace
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(Cx — M )e = 0. The eigenvector of the largest eigenvalue is computed for the
new first component of reduced subspace. New first components have the largest
percentage of the total variance in original feature space, so the first components
reflect a big change of feature vectors according to the scale variation.

We compute means of first principal components at each scale step, and then
concatenate mean vectors of a different scale to a single prototype like multi-scale
features. Therefore, a prototype consists of three means of first principal compo-
nents at each scale step including a pre-scale step and a post-scale step. Figure 4
shows an example of prototypes from a training texture image in their subspace.
To estimate the scale rate of classified test texture patterns, the prototypes are
compared with test texture patterns based on euclidean distance.

5 Experimental Result

The effectiveness of the proposed method for scale invariant texture analysis has
been well tested. We performed two major experiments: scale invariant texture
classification including the estimation of scale rate, and scale invariant texture
segmentation of an artificial 2D image for scene analysis.

5.1 Scale Invariant Texture Classification

We used sixteen natural texture images from the Brodatz album [18] (as shown in
Fig. 5) for the experiments on scale invariant texture classification. All textures
are originally gray-scale images with 256 levels, and the size of a texture image is
640 x 640 pixels. To get the training texture patterns, we randomly extracted 500

Fig. 5. The sixteen classes of textures from the Brodatz album. Row 1:D1, D101, D34,
D56. Row 2:D22, D103, D49, D51. Row 3: D52, D20, D6, D64. Row 4: D65, D66,
D74, D75
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Fig. 7. Experimental results of scale invariant texture classification from the Brodatz
album (a) A test image made of five texture patterns. Left top : D101 of 0.8 scale rate,
Right top : D103 of 1.0 scale rate, Left bottom : D52 of 0.8 scale rate, Right bottom
: D20 of 1.0 scale rate, Circle : D49 of 1.2 scale rate (b) Ground image of Fig. 7a (c)
The test result of Fig. 6a by conventional method (d) The test result of Fig. 7a by
proposed method (e) A test image made of three texture patterns. Top : 0.8, 1.0, and
1.2 scaled image of D1, Middle : 0.8, 1.0, and 1.2 scaled image of D22, Bottom : 0.8,
1.0, and 1.2 scaled image of D52 (f) Test result of Fig. 7e by conventional method (g)
The test result of Fig. 7e by proposed method (h) The test result of scale estimation
of Fig. 7e by proposed method

sub-samples of 90 x 90 pixels from each texture image, with seven different scale
steps (0.7, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3). We then made the multi-scale features
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Table 1. The error rate of test texture images from Brodatz album

Conventional method Proposed method
Five texture patterns (Fig. 7a) 9.70% 7.35%
Nine texture patterns (Fig. 7e) 7.96% 6.97%

with five scale steps (0.8, 0.9, 1.0, 1.1, and 1.2) represented by 75 dimensionality
feature vectors from 56,000 sample patterns (500 x 7 x 16). When we make a
multi-scale feature of a test texture pattern, that pattern is scaled into 9