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Preface

Welcome to the proceedings of the 5th International Conference on Scale-Space
and PDE Methods in Computer Vision.

The scale-space concept was introduced by Iijima more than 40 years ago
and became popular later on through the works of Witkin and Koenderink. It
is at the junction of three major schools of thought in image processing and
computer vision: the design of filters, axiomatic approaches based on partial
differential equations (PDEs), and variational methods for image regularization.
Scale-space ideas belong to the mathematically best-understood approaches in
image analysis. They have entered numerous successful applications in medical
imaging and a number of other fields where they often give results of very high
quality.

This conference followed biennial meetings held in Utrecht, Corfu, Vancouver
and Skye. It took place in a little castle (Schlösschen Schönburg) near the small
town of Hofgeismar, Germany. Inspired by the very successful previous meeting
at Skye, we kept the style of gathering people in a slightly remote and scenic
place in order to encourage many fruitful discussions during the day and in the
evening.

We received 79 full paper submissions of a high standard that is characteristic
for the scale-space conferences. Each paper was reviewed by three experts from
the Program Committee, sometimes helped by additional reviewers. Based on
the results of these reviews, 53 papers were accepted. We selected 24 manuscripts
for oral presentation and 29 for poster presentation.

It is a tradition at scale-space conferences to invite keynote speakers who
can provide valuable additional inspirations beyond the mainstream topics in
scale-space analysis. Also this time it was our pleasure to thank three leading
experts for accepting our invitation for a keynote lecture: Prof. Achi Brandt of
The Weizmann Institute of Science (Rehovot, Israel), Prof. Michael Unser of
the Swiss Federal Institute of Technology (Lausanne, Switzerland), and Prof.
Carl-Fredrik Westin of the Harvard Medical School (Boston, USA).

We thank all authors for their excellent contributions, and the referees for
their time and valuable comments. Regarding local arrangements, we are in-
debted to the staff at Schlösschen Schönburg, as well as to Bernhard Burgeth,
Martin Welk, and Uta Merkle of Saarland University. We also thank Micha Fei-
gin, Julia Getslev and Lori Sochen for their help with the website and Yana
Katz for her help with the proceedings. Finally we are grateful to the German
Pattern Recognition Society (DAGM) for sponsorship.

We wish you an exciting journey through the latest results on scale-space
ideas in image analysis.

April 2005 Ron Kimmel, Nir Sochen, and Joachim Weickert
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Relativistic Scale-Spaces

Bernhard Burgeth, Stephan Didas, and Joachim Weickert

Mathematical Image Analysis Group,
Faculty of Mathematics and Computer Science, Bldg. 27,

Saarland University, 66041 Saarbrücken, Germany
{burgeth, didas, weickert}@mia.uni-saarland.de

http://www.mia.uni-saarland.de

Abstract. In this paper we extend the notion of Poisson scale-space. We
propose a generalisation inspired by the linear parabolic pseudodifferen-
tial operator

√
−Δ + m2 −m, 0 ≤ m, connected with models of relativis-

tic kinetic energy from quantum mechanics. This leads to a new family
of operators {Qm

t | 0 ≤ m, t} which we call relativistic scale-spaces. They
provide us with a continuous transition from the Poisson scale-space
{Pt | t ≥ 0} (for m = 0) to the identity operator I (for m −→ +∞).
For any fixed t0 > 0 the family {Qm

t0 | m ≥ 0} constitutes a scale-space
connecting I and Pt0 . In contrast to the α-scale-spaces the integral ker-
nels for Qm

t can be given in explicit form for any m, t ≥ 0 enabling us to
make precise statements about smoothness and boundary behaviour of
the solutions. Numerical experiments on 1D and 2D data demonstrate
the potential of the new scale-space setting.

Keywords: Kinetic energy, Poisson scale-space, semigroup, pseudodif-
ferential operator.

1 Introduction

The pioneering work of Taizo Iijima [16] in the late fifties, though unrecognised
in the western scientific world for decades, marks the actual beginning of modern
scale-space theory. Since then the vivid research on scale-space methodologies
has brought forward many valuable techniques in image processing and com-
puter vision, as it is documented in numerous articles and books, see [24, 11, 31,
21, 28, 33] and the literature cited there. The Gaussian scale-space is the pro-
totype of a linear scale-space. Its connection to linear diffusion processes was
first pointed out by Iijima [17]. However, the field of non-linear diffusion, insti-
gated by the influential work of Perona and Malik [25] also exhibits scale-space
properties. These non-linear theories encompass anisotropic diffusion processes
[33, 26], morphological operations [32, 6, 18] as well as the evolution of level curves
[2, 23, 27, 19]. Non-linear differential equations are the mathematical language to
describe these theories [31, 33, 14, 3, 12, 7].

Nevertheless, the exploration of the axiomatic principles of the various scale-
space approaches [4, 33, 11, 22, 24, 34] usually emanates from the assumption of

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 B. Burgeth, S. Didas, and J. Weickert

linearity, that is to say, the validity of the superposition principle. In this linear
setting the Gaussian scale-space basically had played the leading role in a one
man show until the Poisson scale-space from potential theory has been made
popular in image processing by Felsberg and Sommer [10].

Soon after the so-called α-scale-spaces with α ∈ [ 12 , 1] have been advocated
to bridge the gap between those two prominent representatives since they are
ruled by the pseudodifferential equations ∂tu = (−Δ)αu with initial condition
u(x, 0) = f(x) , (for more details and a histortic overview consult the very com-
prehensive article [8] by Duits et. al. and the literature cited therein). In this
setting α = 0 produces the family of identity operators I, α = 1

2 corresponds
to the Poissonian, while α = 1 delivers the Gaussian version of a linear scale-
space. For the later two cases explicit integral representation formulas are known
utilising the Poisson and the Gaussian kernel.

The primary tool for the investigation of the α-scale-spaces are Fourier meth-
ods since, unfortunately, no explicit integral kernel can be determined. In our
paper, however, we propose a counterpart to α-scale-spaces that admits explicit
kernel representations. We generalise the Poisson scale-space to a novel scale-
space by exploiting the properties of a pseudodifferential operator known from
Schrödinger operators in relativistic quantum mechanics [20]. The pseudodiffer-
ential operators in question read√

−Δ+m2 −m,

and represent the kinetic energy operators in relativistic systems with m > 0
denoting mass. Therefore we will refer to these novel scale-spaces as relativistic
scale-spaces in the sequel. Though heavily taking advantage of spectral methods
during the theoretical investigation of this family of operators (indexed by m)
we emphasise that the associated integral kernels can be computed explicitly.
The knowledge of these kernels enables us to employ techniques from analysis
to prove regularity and a maximum-minimum-principle for the solutions of the
associated evolution equation.

In the sequel F(f) will denote the Fourier transform of a function f ∈ L2(IRn)
given by

F(f)(k) =
∫

IRn

e−2πik·x f(x) dx .

The structure of our paper is as follows: After a very brief motivating account
of some basic facts about Poisson and Gaussian scale-space we introduce and
study the relativistic scale-spaces. Section 3 reports on experiments displaying
the potential and limitations of the novel scale-spaces while a summary and an
outlook for future research in Section 4 conclude the paper.

2 Relativistic Scale-Spaces

We recall [9, 20] that the action of the Laplace operator Δ =
∑n

i=1
∂2

∂x2
i

on
functions in the Fourier domain is multiplication by −4π2|k|2, i.e.
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F(Δf) = −4π2|k|2F(f)

while the convolution with the heat or Gaussian kernel G(x, t, y) means multi-
plication with e−t 4π2|k|2 , F(G ∗ f) = e−t 4π2|k|2F(f) providing solutions of the
heat equation ∂tu = Δu .

Furthermore, the action of the pseudodifferential operator
√
−Δ is multi-

plication by −2π|k|, while convolution with the Poisson kernel P (·, t) means
multiplication with e−t 2π|k| in the Fourier domain. The Poisson kernel appears
as the inverse Fourier transform F−1 of e−t 2π|k|:

P (x− y, t) = F−1(e−t 2π|·|) =
∫

IRn

e−t 2π|k|+2πik·(x−y) dk .

This integral can be evaluated in every dimension n yielding the well-known
explicit formula for the Poisson kernel [29]

P (x− y, t) = Γ

(
n+ 1

2

)
1

π
n+1

2

t

(t2 + |x− y|2) n+1
2

. (1)

The kernel itself and all convolutions P (·, t) ∗ f with suitable functions f solve
in a certain sense the pseudodifferential equation ∂tu =

√
−Δu . The heat and

the Poisson kernel generate the Gaussian, resp., the Poisson scale-space.
This can be generalised as follows: In quantum mechanics the pseudodif-

ferential operator L :=
√
−Δ+m2 − m describes the relativistic kinetic en-

ergy of a particle with mass m ≥ 0 [20] seemingly extending the Poisson op-
erator. In Fourier space this operator acts on function by multiplication with√

|2πk|2 +m2 −m as a straightforward computation shows. According to stan-
dard spectral methods the corresponding integral operator in Fourier space reads

e−t (
√

|2πk|2+m2−m) .

The inverse Fourier transform of this exponential

Tm(x− y, t) := F−1
(
e−t (

√
4π2|·|2+m2−m)

)
(x, y)

can be calculated explicitly yielding the expression

Tm(x− y, t) := 2
(m

2π

)n+1
2
etm t(

t2 + |x− y|2
)n+1

4

Kn+1
2

(m
√
t2 + |x− y|2) (2)

for (x− y, t) ∈ Rn×]0,+∞[ . Here Kν stands for the modified Bessel function of
the third kind [1, 13]. We briefly sketch the computational steps by pointing out
the formulas ∫

Sn−1

ei〈ω,x〉 dω = (2π)
n
2 |x|1− n

2 Jn
2 −1(|x|)

and∫
[0,+∞[

xν+1Jν(xs) e−α
√

x2+β2
dx =

√
2
π
αβν+ 3

2 (s2 +α2)− α
2 − 3

4 sνKν+ 3
2
(β
√
s2+α2) ,
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Fig. 1. Left: Comparison between different kernels including Poisson, eqn. (1) and
relativistic kernel, eqn. (2) in 1D for y = 0 and t = 1. Right: Examples of the relativistic
kernel (2) with m = 3, 1, , 0.05 in comparison with the Poisson kernel (1) for y = 0
and t = 1.5

where Jν denotes the ν-th order Bessel function. For later use we define the
operator Qm

t on L2(IRn) via the convolution

Qm
t f(x) := Tm(·, t) ∗ f (x) =

∫
IRn

Tm(x− y, t)f(y) dy . (3)

2.1 Comparison with the Poisson Kernel

For m ↓ 0 we regain the Poisson kernel which follows from

F(Qm
t )(k) = e−t (

√
|2πk|2+m2−m) −→ e−t 2π|k| if m ↓ 0 (4)

for any complex number k together with the continuity of the (inverse) Fourier
transform (according to a theorem of P. Levy) [5]. Furthermore, since

F(Qm
t )(k) = e−t (

√
|2πk|2+m2−m) −→ 1 if m → +∞ ,

a similar reasoning proves that Qm
t approximates therefor the identity operator

I if m is large. Remarkably, despite the approximation property (4), we learn
from the theory of Bessel functions [1, 13] that Kν(x) for any ν ≥ 0, and hence
Tm as a function of x (or of y) decreases exponentially to 0 for x tending to
infinity, |x| → +∞ . Figure 1 displays the relativistic kernel for various values of
m and also its comparison with a Poisson and a Gaussian kernel.

The relation between Poisson scale-
space and the relativistic scale-spaces is
sketched in the diagram to the right.
{Qm

t | 0 ≤ t,m} is positioned between
The Poisson scale-space {Pt | 0 ≤ t}
and {I | 0 ≤ t} including them as lim-
iting cases.

+∞ I0 −−−−−−−→ I0
↑ ↑ ↑
m Qm

0 = I0 −−−−−−−→ Qm
t

↑ ↑ ↑
0 P0 = I0 −−−−−−−→ Pt

0 −→ t



Relativistic Scale-Spaces 5

2.2 Further Properties of the Relativistic Scale-Spaces

From the theory of contraction semigroups [15] we learn that the operator Qm
t

determines a contraction semigroup on L2(IRn) . Indeed, in view of Plancherel’s
theorem, it is enough to verify that the Fourier transforms F(Qm

t ) =
e−t(

√
|2πk|2+m2−m) of the family {Qm

t } satisfy the conditions

1. F(Qm
s+t)F(f) = F(Q)m

s F(Qm
t )F(f) = F(Qm

t )F(Qm
s )F(f) for all s, t ≥ 0 .

2. ‖F(Qm
t )F(f) − F(Qm

s )F(f)‖2 −→ 0 for t −→ s .

3. F(Qm
0 ) = 1, expressing the fact that Qm

0 = I, the identity .

4. ‖F(Qm
t )F(f)‖2 ≤ ‖F(f)‖2, the contraction property.

Due to the properties of the exponentials e−ct with c > 0 it is not difficult to
check that the operator Qm

t indeed meets these conditions. The associated gen-
erator is the pseudodifferential operator L =

√
−Δ+m2 −m with the Sobolev

space H1(IRn) as its domain D(L). Here we followed [30] in the definition of the
Sobolev spaces

Hs(IRn) :=
{
u ∈ L2(IRn) |

(
1 + |k|2

) s
2 F(u) ∈ L2(IRn)

}
(5)

of all functions in L2(IRn) and s ∈ IR.
Next we are going to study in some detail the properties of the function

Fm(x, t) defined for f ∈ L2(IRn) by

Fm(x, t) := Qm
t f(x) =

∫
IRn

Tm(x− y, t)f(y) dy

with x ∈ IRn and t > 0. Since the Bessel functions Kν(x) are analytic for 0 < x,
the following result is not surprising.

Proposition 2.1. Fm is analytic in IRn×]0,∞[ for any function f ∈ L2(IRn).

Proof: Thanks to the analyticity of Kν the function T can be expanded locally
in a multivariate power series to the effect that the exchange of integration and
summation yields a corresponding expansion for Fm.

Having the explicit integral kernel at our disposal will enable us to study the
boundary behaviour of Fm(x, t) as t ↓ 0. To this end we need the next lemma.

Lemma 2.2. For any z ≥ 0 and ν ≥ −1
2 the following estimate holds:

Kν(z) ≤ Γ (ν)
2

(
2
z

)ν

. (6)
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Proof: Taking advantage of an integral representation in [13], page 958, and using
the well-known definition of the Γ -function we obtain

Kν(z) =
√
π
(z

2

)ν 1
Γ (ν + 1

2 )

∫ ∞

1
e−tz(t2 − 1)ν− 1

2 dt

≤
√
π
(z

2

)ν 1
Γ (ν + 1

2 )

∫ ∞

0
e−tzt2ν−1 dt

=
√
π
(z

2

)ν 1
Γ (ν + 1

2 )
· 2√

π

(
2
z

)2ν

Γ (ν)Γ
(
ν +

1
2

)
=
Γ (ν)

2

(
2
z

)ν

.

This inequality is asymptotically (∼) sharp since for z −→ 0 ,[1], page 375:
Kν(z) ∼ Γ (ν)

2

( 2
z

)ν
. With this at our disposal we can proceed to the result

stating that Fm(·, t) = Qm
t f has exactly the same boundary behaviour as the

corresponding functions stemming from the Gaussian or Poisson scale-space.

Theorem 2.3. Suppose that f is a continuous and bounded on IRn, f ∈ C(IRn)∩
L∞(IRn), then the function Fm(x, t) = Qm

t f(x) satisfies the pseudodifferential
equation

∂tFm = (
√

−Δ+m2 −m)Fm (7)

for any t > 0 with the initial condition lim
t↓0

Fm(·, t) = f.

Proof: That Fm(x, t) satisfies (7) follows from the analysis above remembering
that the Fourier transform of

√
−Δ+m2 −m is given by

√
4π2|k|2 +m2 −m.

Also, as stated above, the corresponding solution operator is given by Qm
t . In

order to prove the claimed boundary behaviour we observe that∫
IRn

Tm(x− y, t) dy = e−t(
√

0+m2−m) = 1 (8)

for all x ∈ IRn and t > 0, since the integral at the left side can be considered as
the Fourier transform F(Tm(·, t)) of Tm(·, t) evaluated at k = 0.

Next we fix a x0 ∈ IRn, ε > 0, and choose δ > 0 so small that if

|y − x0| < δ for y ∈ IRn then |f(y) − f(x0)| < ε . (9)

For (x, t) ∈ IRn×]0,+∞[ with |(x, t) − (x0, 0)| < δ
2 we obtain the estimate

|Ft(x, t) − f(x0)| =
∣∣∣∣∫

IRn

Tm(x− y, t)f(y) dy − f(x0) ·
∫

IRn

Tm(x− y, t) dy
∣∣∣∣

≤
∫

B(x0,δ)
Tm(x− y, t)|f(y) − f(x0)| dy

+
∫

IRn\B(x0,δ)
Tm(x− y, t)|f(y) − f(x0)| dy

=: I1 + I2 .
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The equality (8) and the restriction on y in (9) yield

I1 ≤
∫

IRn

Tm(x− y, t)ε dy = ε .

If additionally |y − x0| ≥ δ we find

|y − x0| ≤ |(y, 0) − (x, t)| + |(x, t) − (x0, 0)|

≤ |(y, 0) − (x, t)| + δ

2
≤ |(y, 0) − (x, t)| + 1

2
|y − x0|

which yields |(y, 0) − (x, t)| ≥ 1
2 |y − x0| . This gives way to the estimates

I2 ≤ 2‖f‖∞

∫
IRn\B(x0,δ)

Tm(x− y, t) dy

= 4‖f‖∞
(m

2π

)n+1
2
e−tm

∫
IRn\B(x0,δ)

t

|(x, t) − (y, 0)|n+1
2

Kn+1
2

(m|(x, t) − (y, 0)|) dy

≤ 4‖f‖∞

(m
2π

)n+1
2
e−tm

∫
IRn\B(x0,δ)

t( 1
2 |x0 − y|

)n+1
2

Kn+1
2

(m
2
|x0 − y|

)
dy

≤ 2‖f‖∞

(m
π

)n+1
2
Γ (ν) e−tm · t

∫
IRn\B(x0,δ)

1
|x0 − y|n+1 dy −→ 0, as t ↓ 0 .

The second inequality follows from the fact that 1
|·|

n+1
2 and Kν are decreasing

functions on ]0,∞[ while the last inequality is due to estimate (6) in lemma (2.2).
Hence, we deduce |Fm(x, t)− f(x0)| ≤ I1 + I2 ≤ 2ε as soon as |(x, t)− (x0, 0)| is
sufficiently small proving the continuity of Fm on the closed set IRn × [0,+∞[.
Summarising the analysis above we state

Proposition 2.4. 1. The families of operators {Qm
t | t ≥ 0} form for any fixed

m ≥ 0 additive semigroups.
2. For every t ≥ 0 the average grey-value is preserved under the action of Qm

t .
3. The operators Qm

t are translational invariant.

For large values of m the relativistic scale-spaces apparently approximate the
trivial scale-space {It | t ≥ 0} with It = I0 for all t > 0 , while for small m they
are very close to the Poisson scale-space.

However, with a fixed t0 the family {Qm
t0 | m ≥ 0} is also a scale-space, but

it has no longer an additive semigroup property: Qm1
t Qm2

t �= Qm1+m2
t .

We mention briefly that {Qf(t)
t | t ≥ 0} with an arbitrary decreasing function

f : [0,+∞[−→ [0,+∞[ also describes a scale-space relying on a non-additive
semigroup.
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3 Numerical Experiments with Relativistic Scale-Spaces

In this section we present some numerical experiments to visualise the proper-
ties of relativistic scale-spaces. We have implemented the methods in the Fourier
domain using the Discrete Fourier Transform (DFT) or Fast Fourier Transform
(FFT) for suitable data dimensions. The filtering operation then can be per-
formed as a multiplication of the Fourier coefficients with F(Qm

t ). Figures 2 and
3 show the simplifying effect of the relativistic scale-space in 1D and 2D for
fixed stopping time t but varying parameter m. Vice versa, Fig. 4 shows a time
evolution for fixed value of m and increasing time t. For m = 0 this we would
obtain the Poisson scale-space.

4 Conclusion

The goal of this paper is to propose the novel two-parameter family of rela-
tivistic scale-spaces as a generalisation of the well-known Poisson scale-space,
and as a counterpart to the α-scale-spaces. As such the relativistic scale-spaces
are generated by pseudodifferential operators and they provide a continuous in-
terpolation between the identity operator and the Poisson scale-space. Unlike
the α-scale-spaces these new scale-spaces admit integral representations with
explicit convolution kernels involving Bessel functions. This paves the way to
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Fig. 2. Relativistic scale-space in 1D. The stopping time t = 100 is fixed. Top left:
Initial signal. The mass m decreases from the top middle to the bottom right
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Initial image m = 100 m = 10

m = 5 m = 2 m = 1

m = 0.5 m = 0.2 m = 0

Fig. 3. Relativistic scale-space in 2D. The stopping time t = 100 is fixed. Top left:
Initial image. The mass m decreases from top middle to bottom right

prove analyticity and continuous extendability of the solutions of the relativistic
pseudodifferential equations.

This work evidences once more that spectral methods for pseudodifferential
operators are very useful for the study and extension of scale-space concepts.
Further generalisations of the relativistic scale-spaces in the framework of pseu-
dodifferential operators are close at hand. For instance, the “α-variant“ gener-
ated by (−Δ + m

1
α )α − m is the subject of ongoing research. Future research

will also encompass the search for variational formulations hoping to discover
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Initial image t = 0.1 t = 1

t = 5 t = 10 t = 50

t = 100 t = 200 t = 1000

Fig. 4. Relativistic scale-space in 2D. The parameter m = 1.0 is fixed, and the time
increases from top left to bottom right

new valuable tools for image filtering, and to enhance insight into the structure
of scale-spaces.
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sche Forschungsgemeinschaft (DFG), project WE 2602/2-2. We also would like
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Abstract. We investigate the use of fractional powers of the Laplacian
for signal and image simplification. We focus both on their correspond-
ing variational techniques and parabolic pseudodifferential equations. We
perform a detailed study of the regularisation properties of energy func-
tionals, where the smoothness term consists of various linear combina-
tions of fractional derivatives. The associated parabolic pseudodifferen-
tial equations with constant coefficients are providing the link to linear
scale-space theory. These encompass the well-known α-scale-spaces, even
those with parameter values α > 1 known to violate common maximum-
minimum principles. Nevertheless, we show that it is possible to construct
positivity-preserving combinations of high and low-order filters. Numer-
ical experiments in this direction indicate that non-integral orders play
an essential role in this construction. The paper reveals the close rela-
tion between continuous and semi-discrete filters, and by that helps to
facilitate efficient implementations. In additional numerical experiments
we compare the variance decay rates for white noise and edge signals
through the action of different filter classes.

1 Introduction

Regularisation and diffusion filtering belong to the most frequently used and
best studied methods in image processing. In addition to the well-known Gaus-
sian scale-space [1, 2, 3, 4, 5], other linear scale-spaces enjoy a growing popularity.
Already in the 1960’s Iijima [6, 7] gave an axiomatic foundation of α-scale-spaces
with integer order using four axioms: linearity, translational invariance, scale in-
variance, and semigroup property. Later on a whole class of linear scale-spaces
depending on a fractional order α > 0 was axiomatically deduced (Pauwels et al.
[8]). Duits et al. [9] further investigated the α-scale-spaces where α ∈ (0, 1] can
be interpreted as fractional power the Laplacian in a pseudodifferential equa-
tion creating the scale-space. The restriction on α comes from the demand of a

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 13–25, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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maximum-minimum principle for the resulting filters. The most prominent rep-
resentative of linear scale-spaces with fractional order is the Poisson scale-space
by Felsberg and Sommer [10].

In our work we use fractional powers of the Laplacian not only in partial dif-
ferential equations, but also in regularisation methods. Besides the scale-space
properties we are especially interested in well-posedness and regularity proper-
ties. We see that variational methods allow it to prescribe a certain fractional
regularity order for a given image where diffusion methods always yield arbi-
trary smooth solutions. In our experiments we propose a way to construct filters
with maximum-minimum property which involve both high and low fractional
derivative orders.

The paper is organised as follows. In Section 2 we introduce the basic notions
related to fractional powers of the Laplacian. Section 3 presents fractional order
regularisation as a first application of these notions. The corresponding diffusion
equations are investigated in Section 4. Section 5 reformulates both approaches
in a space-discrete framework directly leading to efficient implementations. Our
numerical experiments in Section 6 especially are dedicated to the question of
maximum-minimum property and variance decay. Section 7 concludes the paper.

2 Fractional Powers of the Laplacian

In order to present an elegant concept for fractional powers of the Laplacian,
we have to introduce some basic notions first. First we consider the Fourier
transform of a function f ∈ L1(IR) pointwise defined by

f̂(ξ) :=
1√
2π

∫
IR
f(x) exp(−ixξ)dx

Let F : L2(IR) −→ L2(IR) denote the Fourier-Plancherel transform, i. e. the
extension of the mapping L1(IR) � f −→ f̂ onto L2(IR). It is well-known that
F is isometric with respect to the norm in L2(IR) (see [11] for details). Later on
we will especially make use of the property

ikξkFf = F
(
dk

dxk
f

)
(1)

which builds the link between differentiation in the spatial domain and multi-
plication in the Fourier domain. For f ∈ L∞(IR) let Mf : L2(IR) −→ L2(IR)
denote the multiplication operator defined by Mfg := fg. With this notation

(1) reads as M(iξ)kFf = F
(

dk

dxk f
)
.

Lemma 2.1. For f, g ∈ L∞(IR) the multiplication operator Mf is L2(IR)-
continuous with ‖Mf‖ ≤ ‖f‖∞. Further, fg ∈ L∞(IR) and MfMg = Mfg.

Following the notation in [12] we define the Sobolev space

Hs(IR) :=
{
u ∈ L2(IR) |

(
1 + |ξ|2

) s
2 û ∈ L2(IR)

}
(2)
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of all functions in L2(IR) and s ∈ IR. For s ∈ IN functions in Hs(IR) are weakly
differentiable up to the order s. From (1) we deduce the spectral decomposition
of the Laplacian − d2

dx2 = F−1M|ξ|2F which allows us to define fractional powers

D2α :=
(
− d2

dx2

)α

= F−1M|ξ|2αF (α > 0) (3)

as multiplication operators in the Fourier domain (see [13, 14] for further details).

Lemma 2.2. Applying Dα to functions in a certain Sobolev space reduces the
order of differentiability by α, i. e. Dα : Hs(IR) −→ Hs−α(IR) for all s ∈ IR.

In the next sections we are going to replace derivative operators in classical
image processing approaches with operators of the type Dα and investigate the
properties of the resulting filter methods.

3 Regularisation with Fractional Derivative Orders

To extend linear regularisation to fractional derivative orders we consider the
energy functional

E(u) =
∫

IR

(
(u− f)2 +

m∑
k=1

βk (Dαku)2
)
dx (4)

with a linear combination of m ∈ IN fractional derivatives of orders αk > 0 in the
smoothness term and regularisation weights βk > 0 for k = 1, . . . ,m, for short,
α = (α1, . . . , αm), β = (β1, . . . , βm) ∈ IR+

m. For integer derivative orders αk,
similar functionals have been considered in [15]. We assume that the signals u
and f may only assume real values. With the Plancherel identity we can rewrite
functional (4) in the Fourier domain as

E(û) =
∫

IR

(∣∣∣û− f̂
∣∣∣2 +

m∑
k=1

βk |ξαk û|2
)
dξ (5)

depending on the complex Fourier transform û. A decomposition into the real
and imaginary part shows that it is necessary for a minimiser u to satisfy the
Euler-Lagrange equation

û− f̂ +
m∑

k=1

βk|ξ|2αk û = 0 for all ξ ∈ IR . (6)

We deduce that the minimiser u of the functional E has the Fourier transform

û =

(
1 +

m∑
k=1

βk|ξ|2αk

)−1

f̂ for all ξ ∈ IR . (7)

To obtain a regularised version of f we transform this minimiser û in the spatial
domain which motivates the following definition:
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Definition 3.1. (Fractional Order Regularisation) For α = (α1, . . . , αm),
β = (β1, . . . , βm) ∈ IRm

+ we denote the multipliers appearing in (7) with

rα
β : IR −→ IR, rα

β (ξ) :=

(
1 +

m∑
k=1

βk|ξ|2αk

)−1

(8)

and use these functions to define the regularisation operators

Rα
β : L2(IR) −→ L2(IR), Rα

β = F−1Mrα
β
F . (9)

First we assure ourselves that the above definition leads to a continuous opera-
tor. Furthermore we give a measure for the increase of smoothness obtained by
applying a regularisation operator of this class.

Proposition 3.2. (Stability and Regularity of Regularisation)

1. The regularisation operator Rα
β is continuous with respect to the norm in

L2(IR) with ‖Rα
β‖ ≤ 1.

2. Regularisation increases the smoothness order by twice the minimal deriva-
tive order:
For all s ∈ IR it is Rα

β : Hs(IR) −→ Hs+2α∗
(IR) where α∗ := min

k=1,...,m
αk.

Proof. 1. The Fourier multipliers satisfy 0 ≤ rα
β (ξ) ≤ 1 for all α, β ∈ IRm

+ and

all ξ ∈ IR, i. e. ‖rα
β‖L∞(IR) ≤ 1. Lemma 2.1 then shows that

∥∥∥Mrα
β

∥∥∥ ≤ 1 and

‖Rα
β‖ ≤

∥∥F−1
∥∥∥∥∥Mrα

β

∥∥∥ ‖F‖ ≤ 1 (10)

using the fact that the Fourier transform is L2-isometric.
2. Fix f ∈ Hs(IR). First we note that(

1 + |ξ|2
) s

2 f̂ ∈ L2(IR) ⇐⇒ |ξ|sf̂ ∈ L2(IR) . (11)

Thus it follows that(
1 +

m∑
k=1

βk|ξ|2αk

)−1

|ξ|s+2α∗
f̂ ∈ L2(IR) (12)

which implies Rα
βf ∈ Hs+2α∗

(IR). ��

For integer derivative orders a corresponding statement to the second part of the
previous lemma can be found in [15]. As they state for integer orders, also frac-
tional order regularisation is not a projection operator: Applying regularisation
iteratively increases the smoothness in each step by twice the minimal derivative
order α∗. Starting with a function in L2(IR) we now are able to reach a given
degree of smoothness with linear regularisation. This smoothness property does
not depend on the size of the regularisation weights βk > 0. Two examples of
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Fig. 1. Fourier multipliers and corresponding Fourier backtransforms for fractional
order regularisation. Left: α = 0.5, Right: α = 2.0

the appearing Fourier multipliers are shown in Fig. 1. The multiplication in the
Fourier domain can be related to convolution for which the corresponding kernels
are also shown. The fact that the convolution kernel for α = 2.0 reaches nega-
tive values indicates that the corresponding filter violates a maximum-minimum
property. Besides its smoothing behaviour the linear filtering technique is also
expected to satisfy some scale-space properties. We summarise these in the case
of fractional order regularisation:

Proposition 3.3. (Scale-Space Properties of Regularisation) The regu-
larisation operators Rα

β are linear, translational invariant and preserve the av-

erage grey value, i. e.
∫

IR

(
Rα

βf
)
(x)dx =

∫
IR
f(x)dx.

Proof. For the translational invariance we note that translations correspond to
multiplications with phase factors exp(icξ) of absolute value one in the Fourier
domain. Since the multipliers rα

β only assume real values these do not affect the
argument of the Fourier coefficients and thus do not interfere with the complex
phase factors.

The average grey value can be expressed as f̂(0) =
∫
IR f(x) exp(−ix0)dx.

Since rα
β (0) = 1 for all α, β ∈ IRm

+ , the average grey value remains unchanged by
multiplication with rα

β in the Fourier domain. ��

4 Diffusion with Fractional Derivative Orders

The elliptic differential equations appearing in regularisation techniques are re-
lated to parabolic diffusion equations [16]. Now we investigate such parabolic
equations involving a linear combination of different fractional powers of the
Laplacian. To this purpose we choose fractional derivative orders α1, . . . , αm > 0
and weight parameters λ1, . . . , λm > 0 and consider the linear pseudodifferential
equation
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∂

∂t
u = −

m∑
k=1

λk

(
− ∂2

∂x2

)αk

u . (13)

with initial condition u(x, 0) = f(x) for all x ∈ IR. In the Fourier domain (13)
reads as ∂

∂t û = −
∑m

k=1 λk|ξ|2αk û. This is an ordinary differential equation with
parameter ξ and can be analytically solved by

û(ξ, t) = exp

(
−t

m∑
k=1

λk|ξ|2αk

)
f̂ =

m∏
k=1

exp
(
−tλk|ξ|2αk

)
f̂ . (14)

This formula expresses fractional order linear diffusion filtering as multiplica-
tion in the Fourier domain. The following definition uses its equivalence with
convolution in the spatial domain.

Definition 4.1. (Multipliers and Convolution Kernels for Diffusion)
For the order α > 0, the weight λ > 0 and the stopping time t ≥ 0, we de-
fine the multiplier function

Gα
λ(ξ, t) := exp

(
−tλ|ξ|2α

)
for all ξ ∈ IR .

We also define the convolution kernels appearing in linear filtering as the Fourier
backtransform

pα
λ(x, t) :=

1√
2π

F−1 (Gα
λ(·, t)) (x) =

1
2π

∫
IR

exp
(
−tλ|ξ|2α + ixξ

)
dξ .

We would like to mention that the convolution kernels pα
λ(·, t) were already

discussed in [6] and [7] for α ∈ IN. With this definition we are able to express
the Fourier backtransform of the solution of (13) as convolution:

u(x, t) =
(
pαm

λm
(·, t) ∗ . . . ∗ pα1

λ1
(·, t) ∗ f

)
(x) . (15)

It is an interesting feature of (14) and (15) that one can successively add different
derivative orders to the right-hand side of (13) and obtain the particular solution
step by step by convolution with corresponding kernels. Figure 2 shows two
Fourier multipliers for different diffusion orders and their associated convolution
kernels obtained by numerical approximation.

As in the last section for regularisation, we also express fractional order dif-
fusion as linear operator.

Definition 4.2. (Fractional Order Diffusion) We choose fractional deriva-
tive orders α1, . . . , αm > 0 and the corresponding weights λ1, . . . , λm > 0. For
every t ≥ 0 we define the linear filtering operator Tt : L2(IR) −→ L2(IR) as

Ttf := F−1MGαm
λm

(·,t) · . . . · MG
α1
λ1

(·,t)Ff . (16)

With respect to stability and smoothness of the solutions, we see that these
diffusion operators have very convenient properties.



Regularity and Scale-Space Properties 19

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-4 -2 0 2 4

multiplier for alpha = 0.5,beta = 1.0
discrete Fourier backtransform

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-4 -2 0 2 4

multiplier for alpha = 2.0,beta = 1.0
discrete Fourier backtransform

Fig. 2. Fourier multipliers and corresponding Fourier backtransforms for fractional
order diffusion filtering. Left: α = 0.5 (Poisson scale-space), Right: α = 2.0

Proposition 4.3. (Stability and Regularity of Diffusion)
1. For all t ≥ 0 the operator Tt is continuous with respect to the norm in L2(IR)

with ‖Tt‖ ≤ 1.
2. For natural filter orders α1, . . . , αm ∈ IN it is Ttf ∈ C∞(IR) for initial data

f ∈ L2(IR).
3. For positive real filter orders α1, . . . , αm > 0 we have Ttf ∈ Hk(IR) for

arbitrary k ∈ IN and initial data f ∈ L2(IR).

Proof. 1. 0 ≤ Gα
λ(ξ, t) ≤ 1 for all t, α, λ > 0 and all ξ ∈ IR. An upper bound

for the norm of Tt is given by

‖Tt‖ ≤
∥∥F−1

∥∥( m∏
k=1

∥∥∥MG
αk
λk

(·,t)

∥∥∥) ‖F‖ ≤ 1

with Lemma 2.1 (1.) and the fact that F is L2-isometric.
2. For α ∈ IN the functions Gα

λ(·, t) are in the Schwartz space S(IR) of rapidly
decreasing functions. Thus their Fourier backtransforms pα

λ(·, t) are also in
S(IR) and also the convolution kernel p(·, t) := pαm

λm
(·, t) ∗ . . . ∗ pα1

λ1
(·, t) ap-

pearing in linear filtering in the spatial domain. We see that the derivatives
of Ttf exist with

dk

dxk
Ttf =

∫
IR

∂k

∂xk
p(x− y)f(y)dx .

3. We note that lim
x−→∞

xk exp(−xα) = 0 for all k ∈ IN. Thus we have

ξk exp
(
−tλ|ξ|2α

)
∈ L∞(IR) .

Let k ∈ IN be an arbitraty derivative order. The Fourier transform of the
kth weak derivative of our filtered image

FD(k) (Ttf) = ikξk exp
(
−tλ|ξ|2α

)
f̂ (17)
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is in L2(IR) as the product of f̂ with a bounded function. We have shown
that Ttf ∈ Hk(IR). ��

Since k was arbitrary in the last proposition we know with the Sobolev em-
bedding theorem (see [12–Chapter 4, Proposition 1.3]) that for eachm ∈ IN there
is an u ∈ Cm(IR) with u = Ttf almost everywhere. In that sense one could say
that the results of such filtering processes are arbitrary smooth for all stopping
times t > 0. Furthermore, linear diffusion filtering fulfills a choice of scale-space
properties.

Proposition 4.4. (Scale-Space Properties of Diffusion)
1. The set of linear diffusion operators {Tt : t ≥ 0} is a semigroup. We have

T0 = I and Tt1Tt2 = Tt1+t2 for all t1, t2 ≥ 0.
2. For all t ≥ 0 the average grey value is invariant under Tt.
3. The continuous filtering operator is translational invariant.

Proof. 1. Since Gα
λ(·, 0) = exp(0) = 1 it is clear that T0 = I. For t1, t2 > 0 and

ξ ∈ IR one can directly verify Gα
λ(ξ, t1)Gα

λ(ξ, t2) = Gα
λ(ξ, t1 + t2). In the case

of a single order α we have with the second statement of Lemma 2.1

Tt1Tt2 = F−1MGα
λ
(·,t1)FF−1MGα

λ
(·,t2)F

= F−1MGα
λ
(·,t1+t2)F

= Tt1+t2 .

The same proof also works for multiple filter orders.
2. Average grey value invariance is guaranteed byGα

λ(0, t) = 1 for all t, α, λ > 0.
3. Translational invariance follows directly from the representation of the op-

erator Tt as convolution with p as in (15). ��

Scale invariance is not given in the framework considered above: To achieve
this property we have to restrict ourselves to a single derivative order.

Proposition 4.5. (Scale Invariance of Diffusion) With only a single deriva-
tive order, the diffusion filter Tf := F−1MGα

λ
(·,t)F is scale invariant in the

following sense: For every σ > 0 and every t > 0 there is a t̃ > 0 such that(
Ttf
( ·
σ

))
(x) = (Tt̃f(·))

(x
σ

)
.

Proof. It can be shown by elementary calculations that t̃ = t
σ2α is the unique

value satisfying the above condition. Since t̃ depends on the order α such a time
can not exist for a combination of different orders. ��

5 Semi- iscrete Linear Filtering

For practical purposes a space-discrete formulation of generalised linear filtering
can be very useful. In this section we give a matrix representation for the fil-
ters which can be understood as a finite-dimensional analogue of the operators

d
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given above. In correspondence to the operator F we define the discrete Fourier
transform F ∈ Cn×n as the matrix

F :=
1√
n

(
exp

(
−

2πi
(
j − n

2

)
k

n

))
j,k=0,...,n−1

. (18)

Since the rows of F are orthonormal in Cn, F is unitary and its inverse is given by
its complex conjugated and transposed matrix F

T
. The matrix-vector product of

F with g ∈ IRn yields the Fourier coefficients Fg =:
(
ĝ−n/2, . . . , ĝn/2−1

)T ∈ Cn.
We define the analogue to the multiplication operator M as the diagonal matrix

Mf := diag

(
f

(
2π
(
j − n

2

)
n

))
j=0,...,n−1

(19)

which multiplies a vector with the values of a function f : [−π, π) −→ C at the
equidistant grid points in the Fourier domain.

Definition 5.1. (Semi- iscrete Regularisation and Diffusion Matrices)
As space-discrete analogues to (9) and (16), for α, β, λ ∈ IRm

+ and t > 0 we

define the regularisation matrix Rα
β := F

T
Mrα

β
F and the linear diffusion matrix

via Tt := F
T
MGαm

λm
(·,t) · . . . ·MG

α1
λ1

(·,t)F .

In the semi-discrete case the scale-space properties slightly differ from the con-
tinuous ones considered in the last sections. Since the discretisation in space
leads to a band-limiting we observe not only average grey value invariance but
also convergence towards a constant signal.

Proposition 5.2. (Scale-Space Properties of Regularisation)

1. Semi-discrete regularisation is linear.
2. The average grey value is invariant under the operators Rα

β for all t ≥ 0. For
β → ∞ in all components the solution converges towards the average grey
value, i. e. limβ→∞ Rα

βf = (μ, . . . , μ)T with μ := 1
n

∑n
k=1 fk .

Proof. The average grey value can be written as f̂0 = 1√
n

∑n−1
k=0 fk. This coef-

ficient is left unchanged by the diagonal matrices Mrα
β

since rα
β (0) = 1. Thus

claimed convergence follows from limβ→∞ rα
β (ξ) = 0 for all. ��

In addition to these properties the diffusion operators form a semigroup.

Proposition 5.3. (Scale-Space Properties of Diffusion)

1. Semi-discrete diffusion is linear.
2. The set of operators {Tt : t ≥ 0} is a semigroup.
3. The average grey value is invariant under the operators Tt for all t ≥ 0, and

we have convergence towards the average grey value for t −→ ∞.

d
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Proof. The proof of the second statement is analogous to the proof of Prop. 4.4
exchanging the operators F and M by their finite-dimensional counterparts F
and M . The third statement is proven as in the regularisation case. ��

6 Numerical Examples

In the first numerical experiment we investigate the possibility of building linear
combinations with different derivative orders such that the regularisation and
diffusion filters satisfy a maximum-minimum property. Knowing from Section 4
that combinations of two orders are no longer scale-invariant we try to preserve
one scale-space property at the expense of the other. To reduce the number of
possible combinations we consider diffusion equations of the form

∂

∂t
u = −

(√
− ∂2

∂x2 + β

(
− ∂2

∂x2

)α
)
u (20)

and the corresponding regularisation. For α between 1.5 and 8, we started with
β = 0 and increased it as long as nonnegative convolution kernels were obtained.
The maximal values of β are shown in Fig. 3. This experiment shows the use-
fulness of the Poisson scale-space: Using a Gaussian scale-space instead makes
it impossible to find a weight β �= 0 that leads to a nonnegative combination. In
that sense the fractional order scale-space has a clear advantage in comparison
with the integer order ones.

In our second experiment we study the variance diminishing properties of
different filters R and T . Fig. 4 shows the variance of a white noise signal de-
pending on regularisation weight / stopping time. We visualise the parameters
needed for reducing the variance of a white noise and a step edge signal to half
of its value in Fig. 5. The experiments show a similar behaviour of regularisation
and corresponding diffusion techniques in terms of variance reduction. We note
that higher orders lead to the same variance decay with smaller stopping times.
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Fig. 3. Positive combinations of derivatives of order 0.5 with higher orders. Left:
Regularisation. Right: Diffusion filtering
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Fig. 5. Regularisation weight/diffusion stopping time for reducing the variance to
half its value. Left column: Regularisation. Right column: Diffusion filtering. Top row:
Experiment for white noise signal. Bottom row: Experiment for step edge signal

7 Conclusion

In this paper we have discussed regularisation techniques and diffusion methods
that involve sums of fractional derivative orders. With respect to scale-space
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properties, fractional diffusion satisfies Iijima’s axioms of linearity, translation
invariance and semigroup property. If a single fractional order is used, scale in-
variance is satisfied as well. We have shown that both fractional diffusion and
fractional regularisation are L2-stable in the sense that the norms of the corre-
sponding operators are bounded by 1. With respect to regularity, the regulari-
sation approaches gain twice the minimal derivative order, while the fractional
diffusion admits arbitrarily smooth solutions. For the first time in the context of
α-scale-spaces, we have also presented a space-discrete theory that is in formal
analogy to the continuous framework. Moreover, it gives convergence towards the
average grey value, if the diffusion time / regularisation parameter tends to in-
finity. To our knowledge, all papers on α-scale-spaces focus their attention to the
case 0 < α ≤ 1, since this guarantees nonnegativity and a maximum-minimum
principle. However, we have shown that it is possible to construct combinations
of Poisson scale-space and diffusion scale-spaces of order α > 1 that satisfy this
principle as well. With Gaussian scale-space instead of Poisson scale-space, this
is not possible. Similar statements also hold for the corresponding regularisation
processes. From a practical viewpoint, we have studied the decay rates of the
variance as a function of the fractional order. These studies have shown that
higher orders reveal higher variance diminishing properties. In our ongoing and
future work we intend to find out which of the scale-space and regularity proper-
ties of the linear methods of this paper can be generalised to nonlinear processes
with higher-order derivatives.
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We review a previously presented proposal – Geometric Texton Theory (GTT) 
- that feature categories naturally arise through consideration of the maximum 
likelihood explanations for image measurements by gaussian derivative filters. 
We present results relevant to this proposal for the case of 1-D measurement by 
filters of 0th, 1st and 2nd order. The results are consistent with GTT. 

1   Introduction 

1.1   Feature-Based Vision 

The grail of feature-based vision is a bottom-up process that computes representations 
of image structure in terms of qualitative descriptors (e.g. ‘edge’ or ‘corner’). What 
motivates the search is the hope that feature-based description could be so successful 
at discarding the unimportant structure of an image and emphasizing the important 
that the process of vision would simply be, as David Marr wrote, that “you looked at 
the image, detected features on it, and used the features to classify and hence recog-
nize what you were looking at.” [1]. 

The Marr quote above is more than twenty years old, and he traces the feature ap-
proach back a further thirty years [2]. However, despite this relative venerability there 
has certainly not been a constant and gradual improvement over time in methods to 
compute features, rather the problem has been increasingly neglected. Of course, such 
a history does not show the approach definitely to be misconceived, but it does lay a 
burden on those pursuing the feature approach to explain: 

(i)  how progress has been possible without a theory of features, and 
(ii) why development of the feature approach has been difficult. 

To the first question we would answer that a fundamental problem in vision arises 
from having to deal with the cross-product of two spaces of very high cardinality:  
(I) the space of all possible images, and (C) the space of possible image contents. 
Feature-based image description reduces the cardinality of I. In the absence of an 
effective feature-based approach, research has focused on producing working solu-
tions in constrained domains where the cardinality of C instead can be restricted. To 
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the second question we would say that a lack of ambition about how large a vocabu-
lary of features can be stably computed has led to a misplaced pessimism about their 
power. For example, to quote Marr again, “think of a 5 gradually changing into a 6 – 
a corner disappears, a gap narrows. Almost no single feature is necessary for any 
numeral.” [1]. 

1.2   Gaussian Derivative Filters 

Marr’s pessimism seems to have been due to an incomplete picture of visual neuron 
properties leading him to consider only feature vocabularies of limited expressive-
ness. At the time he wrote Vision, the linear simple cells of V1 seemed to consist of 
1st and 2nd order (in a derivative sense) filters only. With such filters all that it seemed 
possible to detect were ‘edges’ and ‘bars’ and it is clear that much work is indeed 
required to discriminate a ‘5’ from a ‘6’ with such a limited feature vocabulary. How-
ever, it is now known that V1 simple cells frequently have more positive and negative 
sub-fields and are more varied than Marr knew. So, (it is hypothesized [3-6]) a set of 
co-localized visual neurons together have the power to characterize a substantial vo-
cabulary of features without having to resort to the difficult process of multi-local 
feature combination that was Marr’s answer to the expressivity problem. 

The most popular model of the range of V1 simple cells is as Gabor functions [7, 
8] which do indeed model the electrophysiological data very well. However gaussian 
derivatives (DtGs) up to 4th or 5th order provide an equally well-fitting set of models 
with much to recommend them [9-17] (we will refer to the measurements given by 
DtGs up to some order as a Jet). Although we appreciate the limited persuasiveness to 
some of such non-empirical considerations, to the authors the most compelling points 
in favour of DtGs over Gabors are the interpretations of what they measure. In par-
ticular we note two. First, that measurement of the jet up to some order is equivalent 
to measurement of the initial terms of the Hermite Transform, which is a local ana-
logue of the Fourier Transform [6, 18-20]. Second that the jet is also interpretable as 
the initial terms of the Taylor series of the image blurred to the same degree as the 
scale of the DtG filters [21]. Both interpretations are very appropriate for what we 
consider V1 to be i.e. a fully general-purpose system for local measurement. 

1.3   From Filters to Features 

Even though the jet up to 4th or 5th order seems to capture local image structure richly 
enough to be the basis of spatially complex features it is far from obvious how to 
define these features from the filter responses. The majority of the relevant literature 
is to be found under the keyword ‘textons’ rather than features [22-25]. The most 
common position taken in this literature (implicitly or explicitly) is that tex-
tons/features correspond to clusters in the jet space. 

We agree with two parts of this position – that features correspond to regions of jet 
space and that natural image statistics somehow determine these regions, but we dis-
agree that these regions are revealed as simple clusters. The plain fact is that if one 
forms a distribution of responses in jet space for natural images there is no clustering 
structure (see section 3.1). The following comment is admittedly polemical, but it 
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seems to us that the results of k-mean clustering are too often taken as intrinsic fea-
tures of the data examined even though the algorithm always returns results. 

An alternative approach to the ‘features from filters’ problem has been pioneered 
by Koenderink [3-6] who has stressed the relevance of metamerism: that the jet does 
not uniquely determine the measured image even locally. In particular he has sug-
gested that maybe (i) it is possible non-arbitrarily to associate with each point of jet 
space an iconic image from the metamery class of possible images, and (ii) the 
equivalence relation of ‘qualitative identity of icons’ gives rise to a partitioning of jet 
space into features. Griffin et al. [26] have proposed Geometric Texton Theory (GTT) 
a refinement of Koenderink’s proposal with the added detail that the icons should be 
defined as the maximum likelihood (relative to natural images) elements of metamery 
classes. So our GTT extension ties features to natural image statistics in the way that 
the (incorrect) cluster idea of the texton approaches also does. 

We have previously studied [26] GTT for the 1-D, 1st order jet. In this simplest of 
cases, the two degrees of freedom (0th and 1st order measurements) can be eliminated 
by affine scaling of profiles so that they all measure to the same values. Once this was 
done, we found that the maximum likelihood (ML) form for profiles was a step edge. 
We claimed that this result, although very far from decisive, was supportive for GTT 
in that the ML profile had a simple qualitative structure. 

1.4  Paper Notation 

In the remainder of the paper we continue our study of GTT but in this case for the 
1-D, 2nd order jet. This jet is measured using the 0th, 1st and 2nd order DtG filters 
shown in figure 1. These filters are given by: 
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We denote the 2nd order jet of the image I measured at the origin, at a scale s as 

( )2
0 1 2, , , ,s s s sJ I m m m G I G I G I′ ′′= = ⋅ − ⋅ ⋅ . 

 
 

Fig. 1. Shows the three filters measurement with which is considered in this paper. The filters 
shown are of scale 24s = , and are plotted over the range [ ]32, 32x ∈ − . The ‘aperture’ func-
tion is a 0th order Gaussian of scale 2s , it will be relevant in section 3. The vertical dashed 
lines mark the outermost inflexions of the 2nd order filter 
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2 n d o r d e r  D tG
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2   Norm-Minimizing Metameres 

Measurement of local structure with a finite number of DtG filters does not fully 
determine the measured image even locally. The set of profiles that measure to a 
given point in jet space constitute the metamery class for that point. Most of the ele-
ments of a metamery class have wild oscillations at frequencies which are sufficiently 
high that the DtG filters are ‘blind’ to them, however there are also metameres which 
are more conservative in their excursions. This line of thought leads to the proposal 
that perhaps a suitable definition of ‘most conservative/simple profile in a metamery 
class’ would supply the icons that Koenderink has suggested (section 1.3) should 
‘stand for’ the metamery class or, equivalently, point in jet space. This is an approach 
that we have previously pursued [27, 28]. Although we now consider it less a well-
motivated approach to icon selection than the ML approach (see again section 1.3), 
we feel that it is still worth studying as it illuminates what DtGs do measure. 

The class of definitions of ‘simplest’ that we consider are the norm-minimizers of 
metamery classes. The definitions we use here of norms are slightly different from the 
standard mathematical definitions. For an image I, we define its luminance norms as 
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either case, infinity norms are defined by taking the limit r → ∞ .  
For both types of norm, addition of a constant value to the image leaves the norm 

unchanged, whereas multiplication of the image by a constant similarly multiplies the 
norm i.e. ( ) ( ). .r rL I L Iα β β+ =  and ( ) ( ). .r rD I D Iα β β+ = . Therefore to study the 

norm-minimizers with respect to the 2nd order jet we do not need to consider the full 
range of possibilities 0 1 2, ,m m m  but only a suitable 1-D subspace. We choose 

( )
1
20, cos , 2 sinsθ θ−

, indexed by the phase variable θ . 

The norms we have previously identified as of interest are L2, L∞, D1 and D2. The 
minimizers of these norms show a degree of resemblance to structures found in natural 
images. In contrast, the L1 norm minimizers, for example, consist of very ‘unnatural’ 
collections of delta functions. The norm-minimizers we have determined are shown in 
figure 2. In the following four sub-sections we provide additional explanation. 

L2: The variance minimizers 
As we have previously noted [26] the form of variance minimizing metameres can be 
determined by the method of Lagrangian multipliers to be a weighted sum of a con-
stant function and the DtG filters (other than the 0th order) that measure the jet. As can 
be seen from figure 2 (top, right) the pure cosine-phase variance-minimizing 
metamere is just the 2nd order DtG, the pure sine phase the 1st order DtG, and inter-
mediate phases are a mixture of the two. 

L∞: The range minimizers 
As we have proved elsewhere [27] the range minimizers are binary-valued functions 
with  one  or  two  discontinuities.  Only  in  the  case  of  the  pure  sine-phase  range- 
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Fig. 2. Shows the norm minimizing profiles for different norms and phases. The norm for the 
row is indicated at left. The middle column shows the minimizers as density plots. Each row of 
the density plot corresponds to a minimizing profile; phases varies vertically from 2π−  (2nd 
order filter response is –ve, 1st order response is zero) at the bottom, through 0 (2nd order zero, 
1st order +ve) in the middle, to 2π  (2nd order +ve, 1st order zero) at top. To assist visualiza-
tion, lines have been added to the density plots to show the location of extrema and discontinui-
ties. The right hand column shows the 2π−  phase (black) and the 0 phase minimizers as 
regular plots. For the middle and right columns the vertical dotted lines are the same as in fig 1 

minimizer is there a single discontinuity (at the origin). For other phases, the two 
discontinuities are positioned at ,x α β=  such that 2sαβ = − . For the pure cosine-

phase range-minimizer the discontinuities are at 2s± . 

L2 

L∞  

D1 

D2 
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The general strategy for proving the form of these minimizers comes originally 
from an argument as to the form of optimal spectral reflectance functions in colour 
science [29]. The strategy, which is to show by reductio ad absurdum that the form of 
the solution is restricted, is as follows. Suppose the jet specifying the metamery class is 
m  and hypothesis that the minimizer s has a certain type of form. If one can show that 
s can always be perturbed to make s∗  which has (i) the same norm value as s, and (ii) 

has jet ( )1 mε+ , where 0ε > , then ( ) 1
1 sε − ∗+  will have jet m  but will have a lower 

norm that s. This contradicts the hypothesis that s was a minimizer, therefore the 
minimizer cannot have the hypothesized form. This strategy can be used to show that 
(i) the range-minimizer must be binary-valued, and then that (ii) the number of discon-
tinuities is restricted. That the appropriate types of perturbation are always possible for 
the proof to work follows from the full rank of the Gaussian derivatives [5]. 

D1: The total variation (TV) minimizers 
The proof strategy outlined in the previous sub-section applies also to TV minimiza-
tion. First the strategy is used to show that the TV-minimizers must be piece-wise 
constant. Next the strategy is used to show that the TV-minimizers have at most two 
discontinuities. Then, for each possible value of the jet, one identifies the piecewise 
constant profiles with at most two discontinuities that measure to the correct values, 
and one computes which of these possibilities has the lowest TV. The resulting pro-
files are shown in figure 2 (third row). For phases in the range 4 4,π πθ ∈ −⎡ ⎤⎣ ⎦   (i.e. 

close to sine-phase) the TV-minimizer has a single discontinuity somewhere in the 

range 2 , 2x s s⎡ ⎤∈ −⎣ ⎦ . For phases nearer cosine-phase ( 4
πθ > ), the TV-

minimizing form has two discontinuities at 2x s= ± . For pure sine- and cosine-
phase, and for no other phases, the TV-minimizing profiles are the same as that for 
range-minimization. 

D2: The roughness minimizers 
In the 1-D case here studied, the problem of roughness-minimization with respect to 
measurements by G′  and G′′  can be shown to be related by integration to vari-
ance-minimization with respect to measurement by G  and G′ . So one can show that 
the roughness minimizers must be a weighted sum of a constant function, a 0th order 
DtG and an error function of the same scale as the filters defining the jet. These mini-
mizers are shown in the bottom row of figure 2. Similarly to the L2 case, the pure 
cosine-phase minimizers are gaussians, the pure sine-phase minimizer is an error 
function and the minimizers for intermediate phases are a mixture of the two. 

3   Maximum Likelihood (ML) Metameres 

We have investigated the ML (relative to natural images) metameres for the 1-D, 2nd 
order jet. That is to say we have determined the answer to questions of the form: if a 
randomly selected profile from a natural image has a jet that measures to m  what is 
the most likely form of the profile? Much but not all of the relevant method is the 
same as that used in our earlier study [26] of the 1-D, 1st order jet. 
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3.1   Method 

As in our previous study, we have chosen to factor out an affine component of image 
structure that we believe obscures the structure that we are truly interested in. We do 
this by transforming ( .P Pα β→ + ) each profile that we examine so that its jet has 

the canonical form ( )
1
20, cos , 2 sinsθ θ−

. The exact value of the factor ( )
1
22s

−
 is not 

critical to our results but figure 3 shows that it is a natural choice, in that it causes the 
histogram of natural image profiles as a function of phase to be nearly flat. Note that 
the figure also shows that there is no hint of density clusters that could form the basis 
of feature categories (as is frequently assumed to be the case in texton approaches). 

Fig. 3. At left is the density function across jet space for natural image profiles. The horizontal 
axis is the 1st order filter response, the vertical axis is 2s  times the 2nd order filter response. 
The density has been square root transformed to improve visibility. On the right are plotted the 
polar marginal histograms; at top for the radial variable and at bottom for the angular 

3.1.1   Extracting and Preparing Profiles 
As a source of natural image data we used 1220 images from the 4000 image van 
Hateren natural image database of linear (.iml), 1536× 768, images of woods, open 
landscapes and urban areas [30]. In a change from our previous method, for each 
image we created a 5-layer quad tree by blurring and sub-sampling. The degree of 
blurring was chosen so that the ratio between the width of the p.s.f. and the pixel 
sampling was the same at all levels of the quad tree. At all levels of the quad tree we 
took measures to reduce quantization effects that we have previously described [26]. 

We extracted 2700 1-D profiles from each image, for a total of 3.3× 106. Each pro-

file was extracted from a random level of the quad tree (with probability proportional 
to the number of pixels in the level), at a random location and orientation (all real-
valued) using nearest-neighbour interpolation. Each profile was 64 samples in length.  

After extraction, the jet of each profile was measured ( 0 1 2, ,m m m ) and the profile 

underwent a two-step normalization process. First, any profile that had 1 0m >  had its 

64 samples reversed in order. Second, each profile was individually affinely scaled 

according to ( ( ) ( )
1
22 2

1 2 02 .I m s m I m
−

→ + − ) so that it had a canonical jet. 

2 0 2
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For comparison with natural image profiles we also constructed two sets of 
3.3× 106 synthetic profiles. One set – the Gaussian set - has each of its 64 values 
drawn independently from a normal distribution. The other set – Brownian profiles 
[31] – were generated by, for each profile, setting the value at one end with a nor-
mally distributed random variable (μ=0, =100) then setting in turn each of the re-
maining 63 samples to be equal to the previous sample plus an independently gener-
ated normally distributed offset (μ=0, =1). Both the Gaussian and Brownian sets are 
scaled in the same manner as the natural profiles to bring them into a canonical 
metamery class.  

3.1.2   ML Computation 
In our previous study we compute ML profiles using the method of mode estimation 
‘pessimistic scale space tracking’ that we presented at Scale Space 2003 [32]. The 
method used in this study was also a scale space tracking method but with some de-
tails that make for faster more and more accurate computation. Space limitations 
prevent us from detailing these changes here, though in section 3.2.1 we present re-
sults that validate the algorithm on our noise profiles. 

An important difference from our previous study is that the normalization step 
mapped profiles into a 1-D family of canonical metamery classes rather than a single 
metamery class. Ideally we would ascertain the ML profile for each metamery class in 
this 1-D family, but in practice we need a large number of profiles to determine the 
ML with sufficient accuracy so instead we quantize the phase parameter that indexes 
the 1-D family into 33 equally-sized bins and perform a separate mode estimation for 
each phase bin. Thus each mode estimation is based on roughly 105 profiles. All com-
putations were repeated three times with fresh sets of profiles. 

3.2   Results 

As with our previous study we have also performed control computations to assess the 
stability of our results with respect to scale, image dataset, log transformation. Space 
prevents presentation of these results which, in summary, confirmed stability. 

3.2.1   ML Noise Profiles 
As shown in figure 4, the ML profiles for the gaussian noise data are an excellent 
match to the variance minimizing profiles, and for the Brownian data to the roughness 
minimizing profiles. This agrees with prediction [26] and so validates the perform-
ance of our mode estimation algorithm for this quantity and dimensionality of data. 

3.2.2   ML Natural Image Profiles 
The computed ML profiles for natural images are shown in figure 5. The figure also 
shows that we used a sufficient number of profiles to achieve low scatter across our 
three repeat computations. 

Figure 6 shows a simple model that we have found that well captures the structure 
of the ML natural image profile data. The model is based on two components profiles 
that are shifted and added in different proportions. One component is a symmetric  
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Fig. 4. Shows the ML profiles for the noise data. The left column is for gaussian noise, the right 
for Brownian noise. The upper panels are laid out the same as in fig. 2. The bottom two rows 
show the ML profiles for particular phases: the middle row is sine-phase corresponding to the 
central row of the top panel, the bottom row is cosine-phase corresponding to the bottom row of 
the top panel. The ML profiles are in black with error bars showing one sd of the scatter across 
the three repeat mode estimations. The thick grey curves are the L2 and D2 minimizers of the 
appropriate phase 

 

Fig. 5.  The ML profiles for natural images are shown as a density plot in top-right, using the 
same convention as figures 2 and 4. The other panels show the sine- and cosine-phase profiles 
corresponding to the top, middle and bottom rows of the density plot. The error bars show 1 sd 
of scatter across the three repeat computations 

profile having the form of a bar (like the cosine-phase forms for the range- and total 
variation minimizers in fig. 2) that is blurred. The other component is an anti-
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symmetric blurred step edge. Note the bar component is considerable more blurred 
than the step edge component. For near cosine phases, a shifted version of the blurred 
bar fits the data. For near sine phase, a shifted version of the blurred 

 

Fig. 6.  Illustrates a simple model that well describes the ML natural image profile data. The 
background density plot is the same as the top-left panel of fig. 5. The solid red lines show the 
twin edges of the symmetrical blurred bar/pass part of the model, the solid green lines show the 
edge of the anti-symmetric blurred step edge part of the model. The dotted lines show the phase 
extent of the different parts of the model. Both parts of the model overlap in two bands of 
phases, in these bands the ML profiles are well described as a weighted mixture of the symmet-
ric and anti-symmetric components. Outside of the bands only one component is needed 

4   Discussion 

Our previous result of finding that a step edge was the ML profile for the 1-D, 1st 
order jet was compatible with the ML profile for natural images being identical to the 
range- or the TV- minimizing profiles. Neither of these possibilities are borne out for 
the 2nd order results shown in fig.5. Initially these results seemed negative with re-
spect to our GTT proposal for features. However on closer examination we found a 
simple model that describes the results. This model is compatible with our GTT pro-
posal, which, to reiterate, is that the equivalence relation of qualitative equality be-
tween ML metameres induces feature classes on the jet space. With this proposal in 
mind, one can see that figure 6 shows that we have induced a categorization of the 
canonical 2nd order jet space into three classes separated by two fuzzy intermediate 
bands. Results for 2-D patches are needed to further test the GTT proposal.  
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Abstract. This paper introduces a new approach to symmetry estima-
tion directly from image grey values. The method was inspired by the
local phase based method, proposed by Kovesi. This method is examined
in the light of a strict definition of local symmetry, and found to be want-
ing in two respects: that it is invariant to some apparently non-trivial
symmetries and that its scale is ill defined. To avoid these difficulties we
propose a non-linear analog of the local phase. This leads to a family of
local symmetry measures, able to provide a rich, local characterisation
of shape, invariant to rotations and affine intensity transformations, and
robust to affine coordinate transformations.

1 Introduction

Local symmetry analysis is a promising tool for shape analysis and image un-
derstanding. However, one of the most significant drawbacks to the approach
has been that local symmetry lacks a precise definition and that, once defined,
local symmetry can be difficult to estimate in practice. The original application
of symmetry was shape analysis of pre-segmented image regions [1, 2, 3]. These
methods are based on finding points at equal distances from shape boundaries [1],
the so-called medial definition of local symmetry. This paper is concerned with
the estimation of symmetry directly from grey values, rather than pre-segmented
shapes. This might enable, for example, symmetry based shape representations
to be used as priors in the detection and segmentation of shapes. It may also,
as is suggested later, enable the symmetry approach to be applied directly to
image understanding tasks, bypassing the need for segmentation altogether. Var-
ious strategies have been proposed for the estimation of local symmetry directly
from an image. The most commonly used of these are ‘cores’, in which linear
filter responses suggest feature amplitudes and are used to compose medial pairs
of responses which suggest symmetry at a certain point [4]. The energy of all
possible medial pairs are summed to produce a map of ‘medialness’, the local
maxima of which give the local symmetry axes.

A somewhat different method was proposed by Kovesi [5]. In this framework,
symmetry is estimated at a range of scales by convolving the image with a set of
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symmetric and anti-symmetric filters. Symmetric points are those at which the
response of the symmetric filter dominates the response of the antisymmetric
filter. In this paper, the phase technique for symmetry analysis is investigated
in terms of a strict definition of the symmetry of grey-values. It is argued that
the phase method has some significant practical drawbacks. Instead, we propose
a non-linear method. This method maintains some of the properties of local
phase, in particular the property of quadrature, whilst also supporting a well
defined scale-space. Furthermore, the method leads to a family of symmetry
measures. We demonstrate that two of these are adequate to find the complete
set of smoothed local symmetries proposed by Brady and Asada [2].

2 Local Phase

Local phase can be estimated at each point in the image from the responses of
(at least) one odd and one even filter. In two or more dimensions, the definition
of local phase is rather ambiguous, but in one dimension the odd and even filter
pairs may be defined through the Hilbert transform. The Hilbert transform of an
even (entirely symmetric) filter can be found by taking its Fourier transform and
multiplying all negative frequencies by minus one. The result is an imaginary
and purely antisymmetric filter. Since multiplication in the Fourier domain is
equivalent to convolution in the space domain, it is also possible to write the
odd filter as the convolution of the even filter with an odd kernel.

fo(x) = fe(x) ∗ h(x)

h(x) =
i

πx
(1)

The convolution of the image with the complex filter formed by summing the
even and odd filters, results in a complex signal, known as the analytic signal.
The magnitude of this complex signal is known as the local energy, while the
angle is the local phase. Thus, the local phase φ of a signal s is defined as:

φ = arctan
(

s ∗ fe

−i ∗ s ∗ fo

)
(2)

Completely symmetric parts of the signal will have purely real response to
the complex filter, and hence the local phase at these points is −pi/2 or π/2
(say); completely anti-symmetric parts of the signal will have purely imaginary
responses and hence phase of 0.

When extending the concept of local phase to higher dimensions the Hilbert
transform is undefined, so it is necessary to make some design choices. One
way of interpreting the difficulty of defining phase in two dimensions is that it
reflects the richness of symmetry in higher dimensions when compared to one
dimension; simple reflection symmetry is replaced by many different forms of
reflection symmetry as well as rotation symmetry. Previous applications of phase
to symmetry estimation have used steerable filters [6]; this may be regarded as
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finding the axis about which maximal reflection symmetry (or anti-symmetry
exists). A more recent method is the monogenic signal [7] which replaces the
Hilbert transform with the Riesz transform. Space does not permit a detailed
discussion of the monogenic signal. However, it is interesting to note that the
monogenic phase may be regarded as a measure of point-reflection symmetry, as
opposed to line-reflection symmetry. Arguably, it is by adopting this definition
of symmetry that the monogenic signal overcomes the difficulties encountered by
previous attempts to generalise the Hilbert transform to multiple dimensions.

3 Phase as a Symmetry Measure

Rather than exploring the use of the monogenic signal to estimate symmetry
directly, we first consider the implications of using one dimensional (Hilbert)
phase as a symmetry measure.

Unlike in higher dimensions, symmetry is uniquely defined in one dimension.
Specifically, a signal s is symmetric about the point a if:

s(x− a) = s(−x− a) (3)

In fact, any signal may be decomposed into the sum of a symmetric and an
anti-symmetric component about any point a:

s(x− a) = se(x− a) + so(x− a) (4)

where,

se(x− a) =
s(x− a) + s(−x− a)

2

so(x− a) =
s(x− a) − s(−x− a)

2
(5)

In order to analyse Hilbert phase in terms of this definition of symmetry, we
propose the notion of a generalised phase, defined as:

φ(a) = arctan
(
M({se(x− a)|x ∈ Na})
M({so(x− a)|x ∈ Na})

)
(6)

where M is some measurement of the ‘size’ of a signal and Na is some region of
interest around the point a. In the case of the Hilbert transform the measurement
function Mh seems somewhat unsatisfactory. By observation:

Mh({s(x− a)|x ∈ Na}) =
∫ ∞

−∞
s(x− a)

(
fe(x) + fe(x) ∗ h(x)

i

)
dx. (7)

There are two possible objections that might be made to this measurement
function. Firstly, the measurement function treats the odd and even components
rather differently: when measuring the even component, the right hand function
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Fig. 1. Estimating the symmetry of s(x) = sin(x) − sin(2x). The plot shows s(x) in
blue, its local phase in green and its local energy in red. Note that at x = 0 the energy
is zero and hence the phase is undefined

in the bracketed term of equation 7 plays no part, while the opposite is true of the
odd component. However, because of the convolution operation, the right hand
function, fe(x) ∗ h(x), will be wider, in some sense, than the left hand function
fe(x). In the case of the monogenic signal, the measurement functions are slightly
more involved, but the overall structure is the same: the even component is
measured with one function, the odd with another, larger function. The outcome
of this is that Hilbert phase cannot rightly be said to measure symmetry ‘at a
scale’ since the scale at which the odd and even components are measured is
subtly different. In practice, this manifests itself as a predilection for ‘oddness’
when the filter is not aligned with an obvious image structure (i.e. when the
filter responses are determined by the shape of their tails). The second problem
is one of more practical importance. Consider the problem of estimating the local
phase of the function s = sin(x) − sin(2x) at the point x = 0. Figure 1 shows
s(x) (blue) and its Hilbert energy (red). At x = 0, there is no energy and hence
the phase is undefined (since it is the angle of a phasor with no length). In fact,
the local phase, shown in green in fig. 1, behaves in an unexpected way near
the origin where, its gradient suddenly increases; the phase rises from 0 to π
extremely rapidly, suggesting a point of perfect anti-symmetry surrounded, very
closely, by two points of perfect symmetry. This description of the signal seems
to make little sense.

Of course, this particular problem could be solved by applying a range of
different even filters, such that at least one of the filters had significant energy
at each point in the signal. However, it is not obvious how to choose a family
of even filters that guarantee this for real signals. What seems likely is that
rather a lot of filters would be needed, and that the method would become quite
unwieldy, particularly in higher dimensions. Local phase, in the conventional
sense, therefore seems a poor choice of local symmetry measure.
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4 A Non-linear Symmetry Measure

In order to avoid the pitfalls of Hilbert phase when measuring symmetry, it is
necessary to redesign the the measurement functions M(s) in equation 6. The
problem of ‘symmetry blindess’ illustrated in fig. 1 arises because the Hilbert
measurement functions are linear sums so there is always a chance that a non-
zero function will measure zero. This can be avoided simply by adopting the
following measurement function:

M(s(x− a)) =
∫ ∞

−∞
(g(x− a)s(x− a))2dx (8)

where g(x) is a Gaussian window function. The resulting phase is given by in-
serting the definition of M given in equation 8 into the definition of generalised
phase. The new measurement function also corrects the problem of incompati-
ble spatial extent of the measurement function, since it operates identically on
symmetric and anti-symmetric components.

There is one disadvantage to the proposed method, which is that the lo-
cal mean and low frequency component contributes to only the even part of
the symmetry. To avoid this problem the signals are pre-filtered to remove low
frequencies before analysis; since ‘low’ must be taken relative to the window
size, we propose that the filter consist of subtraction of the local mean esti-
mated with the window function, i.e. the pre-filtered signal sf (x) is given by
sf (x) = s(x) ∗ (δ(x) − g′(x)).

The new measurement functions can also be used to define a non-linear analog
of the analytic signal:

sA(a) =
1
4

∫ ∞

−∞
g′(x)[(s(x− a) + s(−x− a))2 + i(s(x− a) − s(−x− a))2]dx(9)

where g′(x) = g(x)2 and a is, as before, the point about which the symmetry
is measured. The phase and energy of sin(x)− sin(2x) are shown in figure 2. The
Gaussian window, g′(x), used in this example has width σ = 24. The energy
is non-zero throughout, the phase varies approximately periodically and the
undesirable behavior near the origin is absent. The range of values of phase is
now limited to the range 0−π/2, since ridges and troughs appear identically, as
do edges facing in opposite directions.

So far, the discussion has been limited to one dimension. However, the method
described above can be extended to any dimension, provided that point reflection
is adopted as the definition of local symmetry. A two dimensional example is
shown in fig. 3. Locally symmetric and anti-symmetric points appear white and
black respectively. Obvious features, such as the edges of walls or the drainpipes
are labelled as would be expected. More interestingly, the symmetries of some
large, approximately symmetric shapes are picked up. For example the roof, the
shadow of the eaves and the point on the chimney half way between the roof
and the chimney top are all local symmetry maxima.
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Fig. 2. Estimating the symmetry of s(x) = sin(x) − sin(2x) using the non-linear
method. s(x) in blue, its local phase in green and its local energy in red. The en-
ergy no longer reaches zero at any point, and the phase varies more or less periodically,
without the sudden activity near the origin

Fig. 3. Point reflection symmetry of the house image (left) estimated with window
width σ = 6. White indicates symmetry, black indicates antisymmetry

4.1 Other Symmetries

The insight of the monogenic signal, applied to our new method above, is that
by replacing line reflection with point reflection, simple and efficient methods for
symmetry analysis may be devised for multi-dimensional signals. In the particu-
lar case of two dimensional images, however, the rotational symmetries are also
uniquely defined; in fact, point reflection symmetry is equivalent to 180o degree
rotation symmetry. The definition of symmetry may be extended to arbitrary
rotational symmetry:
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seα(x̄) =
s(x̄) + s(Rα(x̄))

2

soα(x̄) =
s(x̄) − s(Rα(x̄))

2
(10)

where x̄ is the coordinate vector and Rα is a matrix which rotates the coordinate
vector through an arbitrary angle α. The definition of the generalised phase, eqn.
6, is easily altered to detect these symmetries: The new definitions of symmetric
and anti-symmetric component may be inserted into the generalised phase, and
the non-linear measurement functions applied as before. This observation opens
up an infinite range of possible symmetries; for the remainder of this paper,
we consider only point reflection and 90o rotation symmetry, which has some
interesting properties. While the definition of 90o rotation symmetry is very
similar to the point reflection case, the observed symmetries are quite different.
Figure 4 shows a test image composed of simple shapes and the symmetries
estimated from it. The point reflection symmetry responds well to parallel lines,
but responds weakly to diverging lines and not at all to corners. According to the

Fig. 4. Detected symmetries of some simple shapes. Top left: test image. Top right:
point reflection symmetries at σ = 8. Bottom left: 90o rotation symmetry, σ = 8.
Bottom right: sum of two symmetries
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Fig. 5. Point reflection symmetry measured at a variety of a range of inner and outer
scales in part of the house image

medial definition of local symmetry, corners should be intersected by a symmetry
locus, so the point reflection symmetry as it stands is insufficient for detecting
the full symmetry locus. The 90o rotation symmetry, however, appears to have
the opposite behaviour: it responds to strongly to right angles, but not at all to
parallel edges. Intuitively, it seems sensible to add these two quantities, to give
the quantity shown in the bottom right of fig. 4. Between the two symmetry
types, many of the symmetries of most of the objects are detected.

For shapes such as a simple rectangle, it appears that the combined symmetry
detects more than just the medial locus: it actually responds to the full symmetry
set, described by Brady and Asada [2]. The full symmetry set guarantees that
when new image structures are introduced to an image the symmetry set is
merely added to, not changed to something unrecognisable. This is an important
property when superposition or occlusion of objects can occur, which is likely in
real images.

4.2 Scale

The Gaussian window applied by the proposed symmetry measure controls the
localization of the observed symmetry. However, the symmetry is still computed
from the (weighted) pixel values, i.e. it is a measure of symmetry at the in-
ner scale of the image, local to a region defined by the window (outer scale).
One could also think of reducing the inner scale of the image by convolving
with a Gaussian prior to measuring symmetry. This step, combined with the
low frequency suppression, amounts to the application of a difference of Gaus-
sians filter. Note, however, that the difference in the scales of the two Gaussians
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may be very large, in contrast to many of the reported linear applications. In
practice, both the inner and outer scale are important, particularly when ana-
lyzing cluttered images. Figure 5 shows symmetries measured from part of the
house image. Of particular interest is the symmetry of the roof. At the smallest
scale (top left) the symmetry of the roof is not visible. As the outer scale in-
creases (top right), the symmetry becomes visible. However, the symmetry axis
contains a break, caused by the small extrusion in the skyline. The potentially
drastic changes caused by very small changes in shape are one of the major
bugbears of symmetry approaches to shape analysis [8]. In the present method,
this problem can be avoided by increasing the inner scale, until the small ex-
trusion becomes insignificant. The symmetry axis of the roof is then complete
(bottom right).

5 Examples

So far the local symmetry properties have been discussed in terms of conventional
symmetry analysis of (typically) extracted shapes. However, it retains many sim-
ilarities with local quadrature analysis, a technique predominantly applied to
feature detection and classification. In this section, we consider both applica-
tions of the method described in the previous sections. Indeed, it is hoped that
since the new method combines aspects of both approaches, it may be possible
to design symmetry inspired methods for detecting, labelling, grouping and in-
terpreting features. To this end, we have applied the local symmetry estimation
method to simultaneous feature detection and symmetry axis detection.

5.1 Symmetry Axes

The combined (point reflection plus 90o rotation) was used to find symmetry
axes. The algorithm proceeds as follows. First, the two symmetry maps are
calculated at a chosen scale. The axes are then extracted from the symmetry
maps by thresholding and morphological thinning (using the Matlab function
bwmorph). Although ridge detection would be more accurate in some cases, the
symmetries of many objects lack obvious ridges, in which case the thresholding
and thinning procedure is far more robust.

The left image in fig. 6 shows local symmetry axes found in an image of some
white kidney beans, with outer scale σ = 6 and inner scale equal to the inner
scale of the image. Symmetry was thresholded at (π/4). This is a particularly
challenging image for several reasons: the beans are short with respect to their
width and are curved; few of the beans have complete boundaries; the beans are
not truly symmetric, because of shading effects; the image contains structured
noise(JPEG artifacts). The symmetry axis of every completely visible bean is
at least partially extracted and in most cases completely extracted. The sym-
metry axes appear plausible: they are near the center of the bean and, in many
cases, have curvature that is comparable to the curvature of the correspond-
ing bean.
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Fig. 6. Left:Approximate symmetry axes extracted from a noisy image. Right: Inter-
ested points detected by extracting minima (blue) and maxima (red) of 90o rotation
symmetry

5.2 Feature Extraction

One of the interesting properties of the 90o rotation symmetry is that, by its
nature, it does not respond strongly to linear structures. This, combined with
the fact that it responds to an interesting range of structures, such as blobs,
saddles and corners, makes it a good candidate for an interest point detec-
tor. Such a detector can be made by applying the symmetry extraction pro-
cess described above to the 90o rotation symmetry alone. This detects points
with strong symmetry, such as blobs or crosses. A second set of points can
be found by extracting local minima of 90o rotation symmetry. These corre-
spond to points of anti-symmetry, such as corners and saddles. The right image
in fig. 6 shows the result of applying this algorithm, with appropriate thresh-
olds (minima less than −π/4, maxima greater than π/4). The red dots rep-
resent points of high symmetry, while the blue dots represent points of high
anti-symmetry. As expected, most of the blue dots appear where beans touch,
which are approximate saddle points, while the read points appear in the gaps
between beans, which are approximately blob like. Interestingly, many of the
detected points lie on or near symmetry axes; this is unsurprising, since blobs
and saddles both have high point-reflection symmetry. In fact, even the fea-
tures which don’t lie on detected symmetry axes do lie on local symmetry max-
ima that were suppressed by the threshold. Similarly, one would expect that
other feature types, such as corners would appear at points of point reflection
anti-symmetry.

Interest points extracted using 90o degree rotation symmetry also seem to
be fairly robust to affine transformations. The features are clearly not affine in-
variant: the definition of point reflection symmetry is affine invariant, though
the suggested scale space is clearly not, while 90o symmetry is affine dependent
by definition. However, the effect of the transform is limited (since affine trans-
formations cannot turn, say, corners into blobs), and the main effect of affine
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Fig. 7. Interest points extracted from the house image, before and after affine trans-
formation. Left: original image with extracted points. Right: transformed image with
extracted points (circles) and transformed points from original image(stars)

transformations will be to alter the strength of the observed symmetry rather
than its type. Figure 7 illustrates the robustness of the interest points to affine
transformation. The left image shows the house image with extracted interest
points, the right shows the affine transformed image, new interest points (cir-
cles) and the affine transformed points from the original image. The majority
of the features are detected in both images. Interestingly, the method picks out
a lot of features in the brickwork; this is to be expected since the method is
contrast invariant, and the corners of bricks therefore appear as significant as
the corners of houses. These features are more vulnerable to noise corruption,
however, this is not a serious problem, since the susceptibility to noise can be
judged from the local energy. Figure 8 shows the performance of the features
on a real world data set. The two images are of the same structure, taken from
significantly different viewpoints. The solid circles are interest points which were

Fig. 8. Interest points extracted from two images taken from different view points.
Solid circles: points judged to represent the same features, judged by a human observer.
Hollow circles: unmatched points
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judged by a human observer to represent the same features. The hollow circles
are unmatched points. The proportion of correctly matched features is 71%;

6 Discussion

We have explored the relationship between symmetry and local phase, by select-
ing a particular definition of symmetry. The resulting analysis reveals potential
pitfalls in the use of phase in particular and linear filter based methods in general.
Instead, we have proposed two simple non-linear local symmetry descriptors. Be-
tween them these two methods enable the complete local symmetry set (in the
Brady and Asada sense) to be extracted for many shapes. By considering both
inner and outer scale the method is able to avoid the sensitivity to small changes
suffered by some medial methods [8]. Furthermore, the method also provides a
new approach for interest point detection. The extracted feature points have
the property that they lie on either the symmetry locus (blobs and saddles) or
on the anti-symmetry locus (corners). The two approaches combined therefore
produce both a rich set of simple interest points and an implied connectivity.
Since this connectivity is determined by the local symmetry, which is a powerful
description of local shape, it is hoped that this approach may provide a powerful
and economical basis for image processing.
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Abstract. We consider the intensity surface of a 2D image, we study
the evolution of the symmetry sets (and medial axes) of 1-parameter
families of iso-intensity curves. This extends the investigation done on
1-parameter families of smooth plane curves (Bruce and Giblin, Giblin
and Kimia, etc.) to the general case when the family of curves includes
a singular member, as will happen if the curves are obtained by taking
plane sections of a smooth surface, at the moment when the plane be-
comes tangent to the surface.

Keywords and Phrases: Isophote curve, symmetry set, medial axis,
skeleton, vertex, inflexion, shape analysis.

1 Introduction

Image data is often thought of as a collection of pixel values I : Z2 �→ Z+.
The physical information is better captured by embedding the pixel values in
the real plane, as the pixelation and quantization are artifacts of the camera,
hence I : R2 �→ R+. The geometrical information of an image is even better
captured looking at the level sets I(x) = I0, for all I0 ∈ R+, that is, looking at
the isophote curves of the image.

Shape analysis using point-based representations or medial representations
(such as skeletons) has been widely applied on an object level demanding object
segmentation from the image data. We propose to combine the object repre-
sentation using a skeleton or symmetry set representation and the appearance
modelling by representing image information as a collection of medial represen-
tations for the level-sets of an image. As the level I0 changes, the curves change
like sections of a smooth surface by parallel planes.

The qualitive changes in the medial representation of families of isophotes
fall into two types: (1) those for which the isophotes remain nonsingular (see
for example [3, 8]) and (2) those for which one isophote at least is singular. The
symmetry set (SS) of a plane curve is the closure of the set of centres of circles
which are tangent to the curve at two or more different places. The medial axis
(MA) is the subset of the SS consisting of the closure of the locus of centres of
circles which are maximal, (maximal means that the minimum distance from the
centre to the curve equals the radius). Our aim is to extend the investigation to
the case (2) when the family includes singular curves, as is the case when one
of the plane sections is tangent to the surface so that this section is a singular
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curve. The final goal is to represent image smooth surfaces by the collection of
all medial reprentations of isophotes, forming a singular surface in scale space.

In this article, which is theoretical in nature, we work with the full SS, and
consider the transitions which occur in the SS of a family of plane sections of a
generic smooth surface in 3-space, as the plane moves through a position where
it is tangent to the surface. We investigate the local geometry of these families
of curves and track the evolution of some crucial features of the SS and MA. In
particular, we will trace and classify the patterns of some special points, on the
sections of a surface as the section passes through a tangential point, such as
vertices (maxima and minima of curvature), inflexions, triples of points where a
circle is tritangent and the pattern of the centre of such a circle, paires of points
where a circle is bitangent with a higher order contact at one of them, etc. The
vertices are crucial to the understanding of the SS since it has branches which
end at the centres of curvature at vertices. From the way in which vertices behave
we can deduce a good deal about the evolution of the SS and its local number of
branches. The inflexions correspond to where the evolute of the curve, recedes
to infinity. We also classify all possible scenarii of how vertices and inflexions are
distributed along the level curves.

Last, we produce examples of SS and MA illustrating the cases.
We are concerned with the local behaviour of symmetry sets (SS) and medial

axis (MA) of plane sections of generic1 smooth surfaces so we may assume that
our surface M is given by an equation z = f(x, y) for a smooth function f , which
will often be assumed to be a polynomial of sufficiently high degree. We shall
take M in Monge form, that is f, fx and fy all vanish at (0,0).

2 Intrinsic Geometry of Generic Isophote Curves

This section describes the geometry of isophote curves evolving on a fixed smooth
surface M , under a 1-parameter family of parallel plane sections. Namely, we
shall examine closely the different configurations of vertices and inflexions on
the sections on our surface. We will in particular concentrate on the evolution
through a plane section which is tangent to M at a point p, so that this section
is singular. For a generic surface, three situations arise, according to the contact
between the tangent plane and M at p, as measured by the singularity type
of the height function in the normal direction at p. See for example [12] for
the geometry of these situations, and [4, 11] for an extensive discussion of the
singularity theory.

• The contact at p is ordinary (‘A1 contact’), in which case the point is (i)
elliptic or (ii) hyperbolic. The intersection of M with its tangent plane at p
is locally an isolated point or a pair of transverse arcs.

• The contact is of type A2, which means that p is parabolic. The intersection
of M with its tangent plane at p is locally a cusped curve.

1 The genericity conditions will vary from case to case. See [6].
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Fig. 1. Two plane sections of a torus close to a singular section, together with their
evolutes. The thick lines are the MA and the dashed lines are the additional parts of
the SS. As the two ovals merge, two cusps on the evolute recede to infinity, taking
the branches of the SS with them. (In the right-hand figure, in fact the SS goes twice
to infinity and in between these excursions it covers the whole vertical line; this part,
caused by the global structure of the curve, has been omitted for clarity. In this paper
we are concerned with the local behaviour of SS near the singular section.)

• The contact is of type A3, which means that p is a cusp of Gauss, in which
case it can be (i) an elliptic cusp, or (ii) a hyperbolic cusp. The intersection
with the tangent plane is locally an isolated point or a pair of tangential
arcs.

Elliptic and hyperbolic points occupy regions of M , separated by parabolic
curves which are generically nonsingular; on the parabolic curves are isolated
points which are cusps of Gauss.

The following gives a complete description of the behaviour of vertices and
inflexions on isophotes curves near a singular point.

Theorem 1. Let f = k be a section of a generic surface M by a plane close to
the tangent plane at p, k = 0 corresponding with the tangent plane itself. Then
for every sufficiently small open neighbourhood U of p in M, there exists ε > 0
such that f = k has exactly v(p) vertices and i(p) inflexions lying in U , for
every 0 < |k| ≤ ε, where v(p) and i(p) satisfy the following equalities.

(E) If p is an elliptic point, then for one sign of k the section is locally empty;
in the non-umbilic case, for the sign of k yielding a locally nonempty
intersection we have v(p) = 4, I(p) = 0. Likewise if p is an umbilic
point, then v(p) = 6, I(p) = 0.

(H) If p is a hyperbolic point, v(p) satisfies one of the following. We use
↔ to indicate the transition in either direction, m + n indicating the
numbers of vertices on the two branches of f = k for one sign of k
before the ↔ and for the other sign of k after it. In the most generic
case (open regions of our surface) we have 2+2 ↔ 2+2 or 1+1 ↔ 3+3.
See Figure 2. In other cases, occurring along curves or at isolated points
of our surface, we can have in addition 3+2 ↔ 2+1 or 3+1 ↔ 2+2. Also
using the same notation, i(p) satisfies: 1 + 1 ↔ 0 + 2 or 1 + 2 ↔ 0 + 1.
There are 8 cases in all, and the full list is given in [6].
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Fig. 2. Arrangements of vertices and inflexions on the level sets of f , in the most generic
hyperbolic case (called H1 in [6]). See Theorem 1. In each case, we show, above, the
vertex and inflexion curves—that is, the loci of vertices and inflexions on the level sets
of f—and, below, a sketch of the level curves for f < 0, f > 0, showing the positions
of these vertices and inflexions. Thick lines: f = 0 or f = k; thin solid lines: vertex
curves; dashed lines: inflexion curves. Open circles: minima of curvature; solid circles:
maxima of curvature; squares: inflexions

(P) If p is a parabolic point but not a cusp of Gauss, v(p) = 3, I(p) = 2.
(ECG) If p is an elliptic cusp of Gauss, v(p) = 4 , I(p) = 2 for one sign of k,

and v(p) = I(p) = 0 for the other.
(HCG) If p is a hyperbolic cusp of Gauss, v(p) satisfies 1 + 3 ↔ 4 + 4 or

2 + 2 ↔ 4 + 4, whereas I(p) satisfies 2 + 2 ↔ 0 + 2 or 1 + 1 ↔ 0 + 0.

For the proof and more details see [5], [6].

3 Symmetry Sets (SS) and Medial Axes (MA) of
Isophote Curves

The SS of a smooth simple closed curve in R2 is made of piecewise smooth
curves (locus of A2

1’s), triple crossings (A3
1), cusps (A1A2), endpoints (A3) and

the points at ‘infinity’ (they correspond to bitangent lines to the curve). See
Fig 3.

• A2
1: The centres of bitangent circles with ordinary tangency at both points.

• A3
1: The centres of tritangent circles with ordinary tangency at all points.

They are the triple crossings on the symmetry set.
• A1A2: They are the centres of bitangent circles which are osculating circles

at one point of the curve and have an ordinary tangency at the other point.
They lie on the evolute and are cusps on the symmetry set.

• A3: They are the centres of circles of curvature at extrema of curvature on
the curve, the endpoints of the symmetry set and the cusps on the evolute.
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Fig. 3. (a)-(e): Illustration of the circles whose centres contribute to the symmetry set.
(a) is an A2

1, (b) an A1A2, (c) an A3
1, (d) an A3 and (e) a centre at ∞ (bitangent line).

In the last case the circle has become a straight line and the centre is at infinity. Right:
a schematic drawing of a tritangent circle and a level set f = k for an umbilic point at
the origin O. As k → 0 the points of tangency trace out three curves which we call the
‘A3

1 curves’. Calculation of these curves is given in §3.1. Once these curves are known
we can calculate the locus of centres of the tritangent circles

• Bitangent lines: the circle now has its centre at infinity so the SS goes to
infinity.

At inflexions the evolute goes to infinity and the sign of curvature changes.
Thus a positive maximum of curvature will be followed by a negative minimum,
which in terms of the absolute value of curvature is again a maximum.

Our approach to the study of SS of families of curves which include a singular
curve is to trace the A3 points, the inflexions, the A1A2 points and the A3

1 points
on the curves as they approach the point at which the singularity develops. In
this way we obtain significant information about the SS themselves. The patterns
of vertices and inflexions have been studied in detail and for all the relevant cases
in [5] and in [6], as recalled in Section 2. Subsection 3.1 and 3.2 are devoted to
the study of the locus of A3

1 and A1A2 points, respectively. In Subsection 3.3 we
derive information on the changes on the SS of families of isophotes curves.

3.1 A3
1 Points

The A3
1 points are the centres of circles which are tangent (ordinary tangency)

to f = k (for any choice of f , such as hyperbolic or umbilic) at three distinct
points. They occur at triple crossings on the SS. Instead of looking directly for
the centres of those tritangent circles, we rather first look for the points where
those circles are tangent to the curve f = k (see Fig. 3, right, for a schematic
picture of the umbilic case). Thus we expect to have three curves, the ‘A3

1 curves’,
having the origin as their limit point, along which the three contact points move.
First, we want to find the limiting directions of these curves, ie the lines they are
tangent to as k → 0. After finding the limiting directions, we can then determine
enough of a series expansion (possibly a Puiseux series) to decide how the A3

1
curves lie with respect to the vertex curves, etc. which we have determined
before. We will give an example of such a parametrization below.

The equations which determine the A3
1 curves are of course highly non-linear.

They are in fact 8 equations in 9 unknowns, thereby determining an algebraic
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variety in R9 which, when projected onto suitable pairs of coordinates, gives
each A3

1 curve in turn. There are two important features of these equations:

• Naturally they are symmetric in that the contact points can be permuted;
• The equations inevitably admit solutions obtained by making two of the

tangency points coincide (‘diagonal’ solutions). This causes the algebraic
variety in R9 to have components of dimension greater than 1 which we
want in some way to discard.

We now set up the equations. Any circle has the form C(x, y) = 0 where

C = x2 + y2 + 2ax+ 2by + c,

so that the centre is (−a,−b) and the radius is r where r2 = a2 +b2−c. However
we prefer the parametrization by (a, b, c) rather than (a, b, r) since it results in
equations which are linear in the parameters.

Let this circle be tangent to f = k at the three points pi = (xi, yi), i = 1, 2, 3.
There are 8 equations Fj = 0, j = 1, . . . , 8 which connect the 9 unknowns
xi, yi, a, b, c.

F1 := f(x1, y1) − f(x2, y2),
F2 := f(x1, y1) − f(x3, y3),
Fi+2 := x2

i + y2
i + 2axi + 2byi + c, i = 1, 2, 3,

Fi+5 := a∂f
∂y (xi, yi) − b∂f

∂x (xi, yi) + xi
∂f
∂y (xi, yi) − yi

∂f
∂x (xi, yi), i = 1, 2, 3.

The meaning of the 8 equations is as follows.

eq1: F1 = 0 p1 and p2 in the same level curve of f ;
eq2 : F2 = 0 p1 and p3 in the same level curve of f ;
eqi+2 : Fi+2 = 0 pi lies on the circle C, i = 1, 2, 3;
eqi+5: Fi+5 = 0 C and the level set of f through pi are tangent at pi.

First from the three equations eqi, i = 3, 4, 5, we can get a, b and c as
functions of xi, yi. Of course this is merely finding the circle through three given
points, which need to be non-collinear, and in particular distinct, for a unique
solution. More details about this will appear elsewhere.

Remark. In the umbilic case, we can always rotate the coordinates to make
b0 = b2 in the expression of f(x, y), as shown in [7]. Thus, from now on we
assume b0 = b2 for an umbilic point. Once having assumed b0 = b2, we now make
the genericity assumption that b1 �= b3. We shall also look for solutions for these
equations for which the limiting directions (limiting angles to the positive x-axis)
are distinct. This relates to the point made earlier, that our equations inevitably
admit ‘diagonal’ solutions which we want to suppress. Thus we are assuming
here that the limiting directions of the three A1 contact points of our tritangent
circle are distinct as the oval f(x, y) = k shrinks to a point with k → 0.

Proposition 1. Generically, there are no triple crossings, nor cusps on the local
branches of the symmetry set of isophotes curves near a hyberbolic point.

The limiting directions of the A3
1 curves at an umbilic, making the assump-

tions in the above Remark, are at angles t1, t2, t3 equal, in some order, to 90◦,



56 A. Diatta and P. Giblin

−30◦, −150◦ to the positive x-axis, or the ‘opposites’ of these, namely −90◦,
150◦, 30◦. This suggests strongly that there are always two triples of A3

1 contact
points tending to the origin as k → 0.

Proposition 1 implies, as confirmed by experimental evidence (see Fig. 6), that
there are in fact two triple crossings (A3

1) in the symmetry set in the umbilic case.
The proof of the Proposition is an explicit computation2 of the tangent cone of
the algebraic variety defined by the above equations Fi = 0, i = 1 . . . 8. The
branches (xi, yi) corresponding to (t1, t2, t3) = (90◦,−30◦,−150◦) have the form
((−2b1b0 − 6b0b3 + 3c3 + c1)t2/6(b3 − b1) + . . . , t),
( 1
2

√
3t+ . . . ,− 1

2 t+ . . .) and (− 1
2

√
3t+ . . . ,− 1

2 t+ . . .)
The actual locus of A3

1 points (triple intersections) on the symmetry set close
to an umbilic point where b0 = b2 as above and b1 �= b3, is (−a(t),−b(t)) where

a(t) = b0
2 t

2 + 1
16 (7b0b1 + 9b0b3 − 3c1 − c3)t3+ h.o.t.

b(t) = 1
8 (b1 + 3b3)t2 + 1

16 (b21 + 3b1b3 + 4b20 + 5c4 − c2 − 3c0)t3+ h.o.t.
Generically this curve has an ordinary cusp at the origin.

3.2 A1A2 Points

The A1A2 points are the centres of bitangent circles which are osculating at one
point and have an ordinary tangency at the other one; they produce cusps on
the symmetry set. As in the case of A3

1 points (§3.1), we look in the first instance
for the points where those circles are tangent to the level sets of f .

We find these curves by taking the circle C to have equation x2 + y2 + ax+
by+ c = 0 as in §3.1. This time after elimination of a, b, c we obtain 3 equations
in 4 unknowns instead of 5 equations in 6 unknowns. Let the circle C be tangent
to the same level set f = k at the two points pi = (xi, yi), i = 1, 2. We proceed
to write down the corresponding conditions, defining functions Fi as follows.

F1 := f(x1, y1) − f(x2, y2),
F2 := 2a(x1 − x2) + 2b(y1 − y2) + x2

1 + y2
1 − x2

2 − y2
2 ,

F3 := afy(x1, y1) − bfx(x1, y1) + x1fy(x1, y1) − y1fx(x1, y1),
F4 := afy(x2, y2) − bfx(x2, y2) + x2fy(x2, y2) − y2fx(x2, y2),
F5 := (a+ x2)(fxxf

2
y − 2fxyfxfy + fyyf

2
x) − fx(f2

x + f2
y ) (derivatives at (x2, y2).

We have the corresponding equations and their interpretations:
eq1 : F1 = 0 p1 and p2 are in the same level set of f ;
eq2 : F2 = 0 a circle with centre (−a,−b) passes through p1 and p2;
eq3 : F3 = 0 this circle is tangent to the level set of f through p1;
eq4 : F4 = 0 this circle is tangent to the level set of f through p2;
eq5 : F5 = 0 this circle is the circle of curvature of the level set through p2.

We solve eq2, eq3 for a and b and substitute in eq4 and eq5. We summarize
the results as follows. See Figure 4. We assume as before that the limiting angles
at which the A1 and A2 points approach the origin are distinct.

2 This computation, like all those underlying this article, was performed in Maple.
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Fig. 4. The possible limiting directions of A1 and A2 contact points of A1A2 circles, in
the umbilic case with axes rotated so that b0 = b2, assuming the limiting directions are
unequal. Those labelled 1 are only A1 directions and similarly for A2. The unlabelled
directions can be either, with A1 and A2 at 180◦ to one another

Proposition 2. Generically, there are no cusps on the local branches of the
symmetry set of isophotes curves near a hyperbolic point. The limiting angles in
the umbilic case must be one of the following.
A1 : −30◦, A2 : 90◦; or A1 : 150◦, A2 : −90◦;
A1 : −150◦, A2 : 90◦; or A1 : 30◦, A2 : −90◦;
A1 : 60◦, A2 : −120◦ or vice versa;
A1 : −60◦, A2 : 120◦ or vice versa.

This means that there are six cusps (A1A2) on the SS in this umbilic case.
In that case, we expect each cusp (which requires an A1 and an A2 contact) to
use one of the above six solutions, for a definite choice of A1 and A2 in the last
two cases.

3.3 Symmetry Sets (SS) and Medial Axes (MA)

As suggested by Theorem 1, Propositions 2 and 2, the local structure of the SS
and MA of individual isophote curves and its transitions are as follows:

• parabolic points: the local structure of SS is just 3 separate branches cor-
reponding to the 3 vertices separated by inflexions (Theorem 1), see Fig.
5.

• nonumbilic elliptic points: the SS is made of just 2 transverse arcs, one
joining two centres of curvature at maxima of curvature and the other one
two minimum of curvature. The SS will look like itself and disapear as the
curve shrinks to a point.

• hyperbolic point: the SS and MA are made of smooth branches, which do not
connect together to form cusps or crossings. This implies in particular that
generically, the SS (and MA) is just given by the geometry of vertices and
inflexions as well as how they are distributed along the isophote curves, as
discribed in Section 1. The branches of the SS will start at endpoints which
are the centres of curvature of the isophote curves at vertices and they point
towards the corresponding vertex if the isophote curve has a local minimum
of curvature, and away from the vertex where the curve has a maximum of
curvature.
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Fig. 5. Top: A schematic picture of the patterns of the vertices (vertex set Vp = 0: thin
solid line) and inflexions (inflexion set Ip = 0: dashed line) of the level curves f = k

evolving through a parabolic point, together with the zero level set f = 0 (thick line),
and a sketch of one level curve of f . The vertex set has two cuspidal branches and one
smooth branch. The inflexion set has one cuspidal branch which is always below all
cupidal branches and one smooth branch. The zero level set fp = 0 has one cuspidal
branch which is always between the two cuspidal vertex branches. The level set fp = k

then evolves so that the number of vertices remains as 3 and the number of inflexions as
2 for both signs of k, with k small. Bottom: Symmetry sets (thin lines) of curves (thick
lines) which are sections of a surface close to the tangent plane at a parabolic point.
One sees 3 vertices separated by two inflexions both before and after the transition. At
the transitional moment itself, the branches reach right to the curve, which then has
an ordinary cusp. Figure produced with LSMP[13]

• near umbilics: the SS have generically two triple crossings and six cusps.
Hence generically, the SS has one structure, as in Fig. 6.

For the drawing of the SS and MA, we will need the pre-symmetry set (preSS)
which is the subset of the cartesian product I × I of the parameter space I,
defined by the pairs (s, t) corresponding to points p = γ(s) and q = γ(t) which
contribute to the SS. That is, there is a circle tangent to γ at the points γ(s)
and γ(t). See Fig. 6
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Fig. 6. Symmetry set and pre-symmetry set of f = k, in the umbilic case f(x, y) =
x2 + y2 + x3 − xy2 + 2y3 and k = 0.09. The figure to the right is the same as the
left hand side one, but the symmetry set has been enlarged so that the two A3

1 points
(triple crossings) and the six A1A2 (cusps) are more visible. One can also see the six
endpoints of the symmetry set, corresponding to the six vertices on the curve. Varying
k then the SS will still look like itself and disappear as k → 0. This figure illustrates
the results of Proposition 1 and Proposition 2

4 Evolution of Symmetry Sets of Isophote Curves in
1-Parameter Families of Surfaces

As explained in Section 1, given a generic surface M , elliptic and hyperbolic
points occupy regions of M , separated by parabolic curves with isolated points on
them which are cusps of Gauss. We can then consider moving from a hyperbolic
point to a parabolic point of M . We can also realise this by evolving the surface
in a 1-parameter family, of the form z = x2−α2y+b0x3+b1x2y+b2xy2+b3y3+...,
where α → 0 and b3 �= 0. It turns out that, generically, the only hyperbolic
points which exist sufficiently near a parabolic point are the ones corresponding
to vertex transition 1 + 1 ↔ 3 + 3 in Theorem 1. The Figure 7 shows how the
vertices behave on a 2-parameter family of plane sections near the tangent plane
at a hyperbolic point, evolving to a family of sections near a parabolic point.

5 Conclusion

This paper represents a step towards understanding the evolution of SS and MA
of families of isophote curves, or more generally of families of plane sections of s
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Fig. 7. Transition of the patterns of vertices (thick curve) and inflexions (thin curve)
on a 2-parameter family of plane sections fα = k near the tangent plane at a hyperbolic
point, evolving to a family of sections f0 = k near a parabolic point. f(x, y) = x2 −
α2y2 + x3 + 2x2y − xy2 + y3. (a) α = 1 (hyperbolic); the vertex set has 4 branches and
the inflexion 2. (b) α = 0.3, the top part (above x-axis) of two vertex branches join
together to form a loop which is shrinking to the origin as α → 0. The vertex branch
tangent to x = 0 stays smooth. The other vertex branch bends to become a cusp. (c)
α = 0.05: the vanishing loop. (d) As α → 0, the inflexion set exchanges branches: the
top part (above x-axis) join together to make a smooth branch, whereas the bottom
part forms a cusp below the cuspidal vertex branches. Compare Figures 2 and 5

generic surface in 3-space. The evolution of the MA depends, in an essential way,
upon the underlying evolution of the SS [10], which is why we have concentrated
on the SS in this paper. An interesting follow up of this work, would be to
combine into a more global represention of an image by the collection of those
individual representations, as a singular surface in scale space, whose sections
are the individual SS and MA.
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Abstract. This paper presents an algorithm for computing stability of
top-points in scale-space. The potential usefulness of top-points in scale-
space has already been shown for a number of applications, such as image
reconstruction and image retrieval. In order to improve results only reli-
able top-points should be used. The algorithm is based on perturbation
theory and noise propagation.

1 Introduction

Top-points have been shown to provide a sparse representation of an image
that can potentially be used for image matching and image reconstruction [1].
To get rid of unstable top-points that may deteriorate performance, we derive a
stability measure, which reflects the variance of top-point displacements induced
by additive noise perturbation of given variance.

A top-point is an isolated point in scale-space where both gradient and Hes-
sian determinant vanish. We consider only generic top-points [2]. Adding noise to
the image leads to large displacements for some top-points and hardly noticeable
displacements for others. In Sect. 2 we describe how to compute the dislocation
of a top-point for each noise realization by using a perturbation approach. In
order to obtain a realization-independent quantity, the variances of top-point
displacement as a function of noise variances and image derivatives are derived
in Sect. 3.

The variances of top-point displacement along coordinate directions are de-
pendent on the coordinate system. In Sect. 4 invariants under Euclidean coordi-
nate transformation are introduced.

We conclude the paper by experimental verification (Sect. 5). Experiments
confirm our theoretical predictions. Thus we have obtained an operational cri-
terion for distinguishing between stable and unstable top points.

2 Top-Points

Top-points of scale-space image representation u(x, y, t) are defined by the fol-
lowing system of equations:

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 62–72, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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ux = 0,
uy = 0,
uxxuyy = u2

xy.
(1)

Our scale parametrization convention is such that u satisfies the following heat
equation:

ut = uxx + uyy. (2)

One idea of the “deep structure” rationale is to use information about top-points
for different applications, for instance image matching and reconstruction. In or-
der to get reliable results, the top-points, used by the algorithm, should be stable.
Therefore the criterion of stability for top-points should be considered first.

Suppose (x0, y0, t0) is a top-point for a fiducial scale-space image u. The
stability of the top-point can be defined by measuring the distance over which
the point moves after adding noise to the image.

Note that top-points are generic entities in scale space, thus cannot vanish
or appear when the image is only slightly perturbed. Throughout we will as-
sume that the noise variance is “sufficiently small” in the sense that the induced
dislocation of the top-point can be investigated by means of a perturbation ap-
proach. For a given image u we consider its perturbations v under additive noise,
i.e. v = u + N , in which N denotes the noise function. If (x0, y0, t0) denotes a
top-point in u, then due to noise perturbation it will move to some neighboring
location (x0 +ξ, y0 +η, t0 +τ) in v. By using Taylor expansion, the displacement
(ξ, η, τ) of the top-point (x0, y0, t0) can be computed as⎡⎣ ξ,η

τ

⎤⎦ = −M−1
[

g
detH

]
, (3)

where

M =
[
H w
zT c

]
, (4)

g = ∇v, H = ∇g, w = ∂tg, z = ∇detH, c = ∂tdetH. (5)

with all derivatives taken in the point (x0, y0, t0). For a derivation we refer to [3].
Explicit expressions of ξ, η and τ in terms of image derivatives can be found

in Appendix A.

3 Noise Propagation

In this section, the rules are discussed for the determination of the precision or
reliability of a compound “measurement” f in terms of the precision of each
constituent xi. This subject is known as the propagation of errors [7].

Suppose that the derived property f is related to the measured properties
x1, . . ., xn by the functional relation

f = f(x1, . . . , xn) (6)
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The function is assumed to be sufficiently regular.
Suppose that all x1, . . . , xn are random and possibly correlated between each

other. The propagation of the variance of f can be approximated as

〈(f(x1, . . . , xn) − f(x̄1, . . . , . . . x̄n))2〉 ≈
n∑

i=1

n∑
j=1

∂f

∂xi

∂f

∂xj
〈xixj〉, (7)

where all derivatives are calculated for the mean vector (x̄1, . . . , . . . x̄n).

3.1 Noise Propagation for Top-Point Displacement

In our case the random variables (x1, . . . , xn) are the noise derivatives
(Nx, Ny, Nxx, . . . , Nyyyy). The computed “measurement” f is a vector of dis-
placements [ξ(Nx, . . . , Nyyyy), η(Nx, . . . , Nyyyy), τ(Nx, . . . , Nyyyy)]T in scale-space.

The mean vector (N̄1, . . . , N̄n) is zero, therefore the mean displacement is
zero as well ⎡⎣ ξ̄η̄

τ̄

⎤⎦ =

⎡⎣ ξ(N̄1, . . . , N̄n)
η(N̄1, . . . , N̄n)
τ(N̄1, . . . , N̄n)

⎤⎦ =

⎡⎣0
0
0

⎤⎦ . (8)

Therefore the variance of the displacement vector equals the second order mo-
mentum of the displacement, [〈ξ2〉, 〈η2〉, 〈τ2〉]T .

For simplicity, consider the variance in x direction 〈ξ2〉 only. Similar equations
hold for 〈η2〉 and 〈τ2〉.

Since the actual image v is obtained by adding noise N to the fiducial image
u, i.e. v = u+N , for every i we have

∂ξ

∂Ni
=

∂ξ

∂vi
, (9)

therefore (7) can be rewritten as

〈ξ2〉 =
n∑

i=1

n∑
j=1

∂ξ

∂vi

∂ξ

∂vj
〈NiNj〉. (10)

Ni (vi) is short notation for a partial derivative of the noise (image) function.
More specifically the numerator of the expression for the displacement ξ (recall
Appendix A) is a polynomial of vx, . . . , vyyyy, which can be represented as

vxF (vx, . . . , vyyyy) + vyG(vx, . . . , vyyyy) + (v2
xy − vxxvyy)H(vx, . . . , vyyyy). (11)

From this representation it is easy to see that derivatives of (11) with respect to
to third and higher order image derivatives taken in the mean point vanish since

vx = ux = 0, vy = uy = 0, v2
xy − vxxvyy = u2

xy − uxxuyy = 0, (12)

in the respective top-point of u and v, recall (1).
Therefore, the sum (10) contains terms with derivatives with respect to

vx, vy, vxx, vxy, vyy only. Hence in order to get the final expression for the variance
we only need to compute the mutual correlations of noise derivatives
Nx, Ny, Nxx, Nxy, Nyy. Higher order noise derivatives play no role.
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Table 1. Some values of Qn (Qn=0 if n is odd)

n 0 2 4 6
Qn 1 1 3 15

3.2 Noise Which Is Uncorrelated Between Neighboring Pixels

The momentum M2
mx,my,nx,ny

=< Nmx,my
Nnx,ny

> of Gaussian derivatives of
correlated noise in case the spatial noise correlation distance τ is much smaller
than scale t is given by [10]

M2
mx,my,nx,ny

�< N2 >
( τ

2t

)(−1
4t

) 1
2 (mx+my+nx+ny)

Qmx+nx
Qmy+ny

(13)

Let us take the correlation kernel with one pixel width, therefore τ = 1/2. In
this case Gaussian derivatives of the first and the second order have the following
correlation matrix:

C = (〈NiNj〉)ij =

⎛⎜⎜⎜⎜⎝
4t0 0 0 0 0
0 4t0 0 0 0
0 0 3 0 1
0 0 0 1 0
0 0 1 0 3

⎞⎟⎟⎟⎟⎠ 〈N2〉
(4t0)3

, (14)

where (N1, . . . , N5) = (Nx, Ny, Nxx, Nxy, Nyy).

4 Invariants

The variances 〈ξ2〉 and 〈η2〉 are not rotationally invariant, as they depend on the
choice of Cartesian coordinate axes. By rotation we get variances as functions
of angle ϕ, 〈ξ2〉(ϕ) and 〈η2〉(ϕ).

After some simplifications the rotated variances can be written as

〈ξ2〉 = (A sin2 ϕ+B sinϕ cosϕ+ C)/D,
〈η2〉 = (A cos2 ϕ−B sinϕ cosϕ+ C)/D, (15)

where A, B, C and D are functions of uxx, . . . , uyyyy (for sake of complete-
ness the exact expressions are given in Appendix B). The variance of the total
displacement r =

√
ξ2 + η2 can be easily computed from (15)

〈r2〉 = 〈ξ2〉 + 〈η2〉 = (A+ 2C)/D. (16)

Therefore 〈r2〉 is invariant under rotation, as expected

〈ξ2〉′ + 〈η2〉′ = 0, (17)

where prime denotes derivative with respect to angle of rotation. From (17) one
can easy see, that if 〈ξ2〉′ is zero, then 〈η2〉′ is zero as well. This shows, that 〈ξ2〉



66 E. Balmachnova et al.

Fig. 1. Variances of top-point displacements for all top-points projected on the xy-
plane

and 〈η2〉 have an extremum under the same rotation of the axes. The extrema
of 〈ξ2〉 (and 〈η2〉) can be reached by rotation, when

χ = tanϕ =
A

B
+

√
1 +
(
A

B

)2

(18)

The extremal variances are

X = 〈ξ2〉 = χB+2C
2D ,

Y = 〈η2〉 = −B+2χC
2χD .

(19)

X and Y are obviously invariant under rotation and translation.
By rotating the coordinate system we find directions in which the variance is

maximal, respectively minimal (these two directions are orthogonal) and we con-
struct an ellipse1 with principal directions and axes that reflect these extremal
noise variances (Fig 1).

Note, that top-points, in the neighborhood of which there is a lot of structure,
have ellipses with very small radiuses (stable), and top-points in rather flat

1 Note, that (15) does not parameterize an ellips. An elliptical “gauge figure” however
is merely used for simplicity.
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locations tend to have large ellipses (unstable) (Fig. 1). Another invariant is the
variance of τ (scale instability), the expression of which is given in Appendix B.

5 Experiments

In order to validate the theoretical results numerical experiments have been con-
ducted. Adding noise to the image results in changing top-points coordinates.
Some of them hardly move and others move quite a lot. It is practically impos-
sible by comparing two top-point clouds to tell which top-point of the fiducial
image corresponds to which top-point of the actual image, therefore it is impos-
sible to investigate the stability in a pure experimental way. Instead, we choose
a somewhat different approach, which combines theory and experiments.

For each noise realization N i, where i = 1 . . .K labels the experiments, we
use (3) as a refining algorithm in order to estimate the coordinates of the actual
top-point (x0 + ξi, y0 + ηi, t0 + τi), taking the coordinates of the original top-
point (x0, y0, t0) as an initial guess. The experiment consists of K = 500 noise
realizations. Therefore, for original top-point (x0, y0, t0) we compute an array
{(ξi, ηi, τi)}1≤i≤K of 500 displacements.

The principal directions and maximum and minimum variances for the set
of points, obtained by noise perturbation, have been calculated. In order to find
principal directions, the extremum problem should be solved for the averages

〈ξ2〉(χ) = 1
1+χ2

∑K
i=1(ξi + χηi)2/K,

〈η2〉(χ) = 1
1+χ2

∑K
i=1(−χξi + ηi)2/K,

(20)

where T is a tangent of the angle of rotation. The extreem for both variances
are reached under identical rotations, since the sum 〈ξ2〉(T ) + 〈η2〉(T ) does not
depend on χ.

The extremum corresponds to the angle given by

χ̃ = −
∑

i(ξ
2
i − η2

i )
2
∑

i ξiηi
+

√(∑
i(ξ

2
i − η2

i )
2
∑

i ξiηi

)2

+ 1. (21)

The variance in this direction is X̃ = 〈η2〉(χ̃)

X̃ =
1

1 + χ̃2

K∑
i=1

(ξi + χ̃ηi)2/K (22)

and in the orthogonal direction

Ỹ =
1

1 + χ̃2

K∑
i=1

(−χ̃ξi + ηi)2/K (23)

The comparison of theory and the experiments is depicted in Fig. 2. Since
both the theory and the experiments take into account derivatives up to fourth
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Fig. 2. Examples of top-point movements projected on the xy-plane under noise real-
izations (crosses) and theoretical predictions (ellipses). Right column shows zooming
in the neighborhood of the top-point
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Fig. 3. Comparison of experimental and theoretical results. The value of ε denotes the
ratio between theoretical and experimental variances, a) - for spatial displacement εX

and b) - for scale-displacement εT

order, the scale of the top-point should be large enough to obtain reliable results.
The value of ε denotes the relative difference between theoretical and experimen-
tal variances in space and scale

εX =
X − X̃

X̃
(24)

εT =
T − T̃

T̃
(25)

Figure 3 reveals that the relative difference between theoretical and experi-
mental results is acceptably small for large scales and large for small scales due
to computational errors in derivatives, as expected.

6 Results

In this paper we have described an algorithm for computing stability measures
for top-points. The algorithm is based on a perturbation approach and uses
properties of noise propagation in Gaussian scale-space.

Variances of top-point displacements can be computed on the basis of noise
variance and fourth order differential structure at the top-point.

The advantage of this approach is that variances of displacements can be
predicted theoretically on the basis of the local differential structure.

The experiments have shown correspondence between the analytical predic-
tions and practice in cases where the scale of top-point is not too small for
reliably computing fourth order derivatives.

Analytically computed variances can be used for several applications, such
as stability measures and weight measures for top-point based image retrieval
algorithm [1].

Applying the algorithm to problems listed above will be the next step in our
research.
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Appendix A: Displacements Under Noise Perturbation

In this appendix we give expressions for displacements in spatial and scale di-
rections. The refining equations (3) in terms of image derivatives are given by[

ξ
η

]
=
(

(v2
xy − vxxvyy)

[
vxy(vxxy + vyyy) − vyy(vxxx + vxyy)
vxy(vxxx + vxyy) − vxx(vxxy + vyyy)

]
−

(vy(vxxx + vxyy) − vx(vxxy + vyyy))
[
−2vxyvxyy + vyyvxxy + vxxvyyy

2vxyvxxy − vyyvxxx − vxxvxyy

]
+

(vyy(vxxxx + vxxyy) + vxx(vxxyy + vyyyy) − 2vxy(vxxxy + vxyyy))[
vyvxy − vxvyyvxvxy − vyvxx

])
/

detM

(26)



Stability of Top-Points in Scale Space 71

The scale displacement equals

τ = (−(v2
xy − vxxvyy)2 + vy(2v2

xyvxxy + uxx(vyyvxxy + vxxvyyy)−
vxy(3vxxvxyy + vyyvxxx)) + vx(2v2

xyvxyy + vyy(vxxvxyy + vyyvxxx)−
vxy(3vyyvxxy + vxxvyyy)))/detM

(27)

In both formulas we have a denominator

detM = (vyyvxxy + vxxvyyy − 2vxyvxyy)(vxy(vxxx + vxyy) − vxx(vxxy + vyyy))
+(vyyvxxx + vxxvxyy − 2vxyvxxy)(vxy(vxxy + vyyy) − vyy(vxxx + vxyy))+
(vxxvyy − v2

xy)(vxx(vxxyy + vyyyy) + vyy(vxxxx + vxxyy)) − 2vxy(vxxxy + vxyyy))
(28)

Appendix B: Parameters for the Invariant Expressions

A = 3(uxx − uyy)(uxx + uyy)2(uxx(uxxy + uyyy)2 + (uxxx

+uxyy)((uxxx + uxyy)uyy − 2uxy(uxxy + uyyy))) + 4t0(((−2uxxyuxy

+uxxuxyy + uxxxuyy)(uxxy + uyyy) + (uxxx + uxyy)(−2uxyuxyy + uxxyuyy

+uxxuyyy) + 2uxy(2uxy(uxxxy + uxyyy) − (uxxxx + uxxyy)uyy

−uxx(uxxyy + uyyyy)))2 + 2(−2uxy(uxxxy + uxyyy)uyy + (uxxxx + uxxyy)u2
yy

−(uxxy + uyyy)(−2uxyuxyy + uxxyuyy + uxxuyyy) + u2
xy(uxxyy + uyyyy))

×(−(uxxx + uxyy)(uxxuxyy + uxxxuyy) + (uxxy + uyyy)(uxxyuyy + uxxuyyy)
+2uxy(uxxxuxxy − uxyyuyyy) + (−uxx + uyy)(2uxy(uxxxy + uxyyy)
−(uxxxx + uxxyy)uyy − uxx(uxxyy + uyyyy))) + (−(uxxx + uxyy)(uxxuxyy

+uxxxuyy) + (uxxy + uyyy)(uxxyuyy + uxxuyyy) + 2uxy(uxxxuxxy − uxyyuyyy)
+(−uxx + uyy)(2uxy(uxxxy + uxyyy) − (uxxxx + uxxyy)uyy − uxx(uxxyy

+uyyyy)))2 − 2((−2uxxyuxy + uxxuxyy + uxxxuyy)(uxxy + uyyy)
+(uxxx + uxyy)(−2uxyuxyy + uxxyuyy + uxxuyyy) + 2uxy(2uxy(uxxxy

+uxyyy) − (uxxxx + uxxyy)uyy − uxx(uxxyy + uyyyy)))((uxxx + uxyy)
×(−2uxyuxyy + uxxyuyy + uxxuyyy) − uxy(−2uxy(uxxxy + uxyyy)
+(uxxxx + uxxyy)uyy + uxx(uxxyy + uyyyy)))) (29)

B = −6uxy(uxx + uyy)2(uxx(uxxy + uyyy)2 + (uxxx + uxyy)((uxxx +
uxyy)uyy − 2uxy(uxxy + uyyy))) + 4t0(2(−2uxy(uxxxy + uxyyy)uyy +
(uxxxx + uxxyy)u2

yy − (uxxy + uyyy)(−2uxyuxyy + uxxyuyy + uxxuyyy) +

u2
xy(uxxyy + uyyyy))((−2uxxyuxy + uxxuxyy + uxxxuyy)(uxxy + uyyy) +

(uxxx + uxyy)(−2uxyuxyy + uxxyuyy + uxxuyyy) + 2uxy(2uxy(uxxxy +
uxyyy) − (uxxxx + uxxyy)uyy − uxx(uxxyy + uyyyy))) + 2(−(uxxx+
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uxyy))(uxxuxyy + uxxxuyy) + (uxxy + uyyy)(uxxyuyy + uxxuyyy) +
2uxy(uxxxuxxy − uxyyuyyy) + (−uxx + uyy)(2uxy(uxxxy + uxyyy) −
(uxxxx + uxxyy)uyy − uxx(uxxyy + uyyyy)))((uxxx + uxyy)(−2uxyuxyy +
uxxyuyy + uxxuyyy) − uxy(−2uxy(uxxxy + uxyyy) + (uxxxx + uxxyy)uyy +
uxx(uxxyy + uyyyy))) (30)

C = 3(uxx + uyy)2(−(uxxx + uxyy)uyy + uxy(uxxy + uyyy))2 +
4t0((−2uxy(uxxxy + uxyyy)uyy + (uxxxx + uxxyy)u2

yy + (uxxy + uyyy) ×
(2uxyuxyy − uxxyuyy − uxxuyyy) + u2

xy(uxxyy + uyyyy))2 + ((uxxx + uxyy) ×
(−2uxyuxyy + uxxyuyy + uxxuyyy) − uxy(−2uxy(uxxxy + uxyyy) +
(uxxxx + uxxyy)uyy + uxx(uxxyy + uyyyy)))2) (31)

D = 8
√
t30(vyyvxxy + vxxvyyy − 2vxyvxyy)(vxy(vxxx + vxyy) − vxx(vxxy+

vyyy)) + (vyyvxxx + vxxvxyy − 2vxyvxxy)(vxy(vxxy + vyyy) − vyy(vxxx + vxyy)))
(32)

〈τ2〉 = 4t0((uxx + uyy)(uyy(3uxxuxyy + uxxxuyy)2 − 2uxy(3uxxuxyy + uxxxuyy)×
(3uxxyuyy + uxxuyyy) + uxx(3uxxyuyy + uxxuyyy)2))/D

(33)
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Abstract. In previous work, singular points (or top points) in the scale
space representation of generic images have proven valuable for image
matching. In this paper, we propose a construction that encodes the scale
space description of top points in the form of a directed acyclic graph.
This representation allows us to utilize graph matching algorithms for
comparing images represented in terms of top point configurations in-
stead of using solely the top points and their features in a point match-
ing algorithm, as was done previously. The nodes of the graph represent
the critical paths together with their top points. The edge set will cap-
ture the neighborhood distribution of vertices in scale space, and is con-
structed through a Delaunay triangulation scheme. We also will present
a many-to-many matching algorithm for comparing such graph-based
representations. This algorithm is based on a metric-tree representation
of labelled graphs and their low-distortion embeddings into normed vec-
tor spaces via spherical encoding. This is a two-step transformation that
reduces the matching problem to that of computing a distribution-based
distance measure between two such embeddings. To evaluate the quality
of our representation, two sets of experiments are considered. First, the
stability of this representation under Gaussian noise of increasing magni-
tude is examined. In the second set of experiments, a series of recognition
experiments is run on a small face database.

1 Introduction

Previous research has shown that top points (singular points in the scale space
representation of generic images) have proven to be valuable sparse image de-
scriptors that can be used for image reconstruction [6, 12] and image matching
[7, 14]. In our previous work, images were compared using a point matching
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scheme which took into account the positions, scales, and differential proper-
ties of corresponding top points [7, 6]. The underlying matching framework was
based on the Earth Mover’s Distance, a powerful, many-to-many point match-
ing framework. However, treating the points as an unstructured collection ig-
nores the salient group structure that may exist within a given scale or across
scales. Grouping certain top points together explicitly encodes the neighborhood
structure of a point, effectively enriching the information encoded at a point –
information that can be exploited during both indexing [16] and matching [17].

In this paper, we take an unstructured set of top points and impose a neigh-
borhood structure on them. Inspired by the work of Lifshitz and Pizer [10], we
will encode the scale space structure of a set of top points in a directed acyclic
graph (DAG). Specifically, we combine the position-based grouping of the top
points provided by a Delaunay triangulation with the scale space ordering of the
top points to yield a directed acyclic graph. This new representation allows us
to utilize powerful graph matching algorithms to compare images represented in
terms of top point configurations, rather than using point matching algorithms
to compare sets of isolated top points. Specifically, we draw on our recent work
in many-to-many graph matching [9, 2, 3], which reduces the matching problem
to that of computing a distribution-based distance measure between embeddings
of labelled graphs.

We describe our new construction by first elaborating on those basics of catas-
trophe theory required to introduce the concept of a top point. Next, we formally
define a top point, and introduce a measure for its stability that will be used
to prune unstable top points. Section 4 describes the construction of the DAG
through a Delaunay triangulation scheme. Section 5 reviews our many-to-many
DAG matching algorithm, which will be used to evaluate the construction. In
the first experiment, we examine the stability of the construction under Gaus-
sian noise of increasing magnitude applied to the original images. In the second
experiment, we examine the invariance of the graph structure to within-class im-
age deformation, which may include minor displacements of points both within
and across scales.

2 Catastrophe Theory

Critical points are points at any fixed scale in which the gradient vanishes, i.e.,
∇u = 0. The study of how these critical points change as certain control param-
eters change is called catastrophe theory. A Morse critical point will move along
a critical path when a control parameter is continuously varied. In principle,
the single control parameter in the models of this article can be identified as
the scale of the blurring filter. The only generic morsifications in Gaussian scale
space are creations and annihilations of pairs of Morse hypersaddles of opposite
Hessian signature1 [1, 4]. An example of this is given in Fig. 1.

1 The Hessian signature is the sign of the determinant evaluated at the location of the
critical point.
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Fig. 1. The generic catastrophes in isotropic scale space. Left: an annihilation event.
Right: a creation event. A positive charge ⊕ denotes an extremum, a negative charge
	 denotes a saddle, � indicates the singular point

The movement of critical points through scale, together with their annihila-
tions and creations, forms critical paths in scale space. In this article, we will
restrict ourselves to generic (non-symmetrical) 2D images, but the theory is
easily adapted to higher dimensions. In the 2D case, the only generic morsifica-
tion is an annihilation or creation where a saddle point and an extremum point
meet. Critical paths in 2D therefore consist of an extremum branch, that de-
scribes the movement of an extremum through scale, and a saddle branch, that
describes the movement of the saddle with which the extremum annihilates.
Note that there is always one extremum branch continuing up to infinite scale
[11]. In Fig. 2, the critical paths and their top points are shown for a picture
of a face.

Fig. 2. Critical paths and top points of a face
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3 Top Points

The points at which creation and annihilation events take place are often referred
to as top points2. A top point is a critical point at which the determinant of the
Hessian degenerates: {

∇u = 0
det(H) = 0. (1)

An easy way to find these top points is by means of zero-crossings in scale space.
This involves derivatives up to second order and yields sub-pixel results. Other,
more elaborate methods, can be used to find or refine the top point positions.
For details, the reader is referred to [4].

It is obvious that the positions of extrema at very fine scales are sensitive to
noise. This, in most cases, is not a problem. Most of these extrema are blurred
away at fine scales and won’t affect our matching scheme at slightly coarser
scales. However, problems do arise in areas in the image that consist of almost
constant intensity. One can imagine that the positions of the extrema (and thus
the critical paths and top points) are very sensitive to small perturbations in
these areas. These unstable critical paths and top points can continue up to
very high scales since there is no structure in the vicinity to interact with. To
account for these instable top points, we need to have a measure of stability, so
that we can either give unstable points a low weight in our matching scheme, or
disregard them completely.

A top point is more stable in an area with a lot of structure. The amount
of structure contained in a spatial area around a top point can be quantified by
the total (quadratic) variation (TV) norm over that area:

TV (Ω) def=
σ2
∫

Ω
‖∇u(x)‖2dV∫

Ω
dV

(2)

We calculate the TV norm in a circular area with radius λσ around a top point
at position (xc, tc). Note that the size of the circle depends on the scale σ. The
integration area of the TV norm Ω is defined by:

Ω : ‖x− xc‖2 ≤ λ2σ2. (3)

By using a spatial Taylor series around the considered top point, and taking
into account that the first order spatial derivatives in this point are zero, we can
simplify the TV-norm Eqn. (2) to what we refer to as the differential TV-norm
by the following limiting procedure[14]:

tv
def= lim

λ→0

4
π

1
λ4TV (λ) = σ4Tr(H2) (4)

The proportionality factor 4
π is irrelevant for our purposes. The normalization

factor 1
λ4 is needed prior to evaluation of the limit since TV (λ) = O(λ4). Eqn. (4)

2 The terminology is reminiscent of the 1D case, in which only annihilations occur
generically.
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(a) Stable paths (b) Unstable paths

Fig. 3. Spatial projection of critical paths of a MR brain scan image. The paths are
filtered by thresholding the stability norm of their top points. Most instabilities occur
in flat regions, as expected

has been referred to by Koenderink as deviation from flatness, which can indeed
be seen to be the differential counterpart of Eqn. (2). It enables us to calculate a
stability measure for a top point locally by using only its second order derivatives.
This stability norm can be used to weigh the importance of top points in our
matching scheme, or to remove any unstable top points by thresholding them
on their stability value. The latter is demonstrated in Fig. 3.

4 Construction of the Graph

The goal of our construction is two-fold. First, we want to encode the neighbor-
hood structure of a set of points, explicitly relating nearby points to each other
in a way that is invariant to minor perturbations in point location. Moreover,
when local neighborhood structure does indeed change, it is essential that such
changes will not affect the encoded structure elsewhere in the graph (image). The
Delaunay triangulation imposes a position-based neighborhood structure with
exactly these properties [15]. It represents a triangulation of the points which is
equivalent to the nerve of the cells in a Voronoi tessellation, i.e., that triangula-
tion of the convex hull of the points in the diagram in which every circumcircle
of a triangle is an empty circle [13]. The edge set of our resulting graph will be
based on the edges of the triangulation. Our second goal is to capture the scale
space ordering of the points to yield a directed acyclic graph, with coarser scale
top points directed to nearby finer scale top points.

The first step in constructing our graph G is the detection of top points
and critical paths using ScaleSpaceViz [5]. The root of G, denoted as v1, will
correspond to the single critical path that continues up to infinity; note that
there is no top point associated with this critical path, but simply its position at
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the coarsest scale. All other nodes in G, denoted as v2, ..., vn, correspond to the
detected top points and their corresponding critical paths. v2, ..., vn are ordered
in decreasing order of the scale at which they are detected, e.g., v2 is detected at
a coarser scale than vn. As we build the Delaunay triangulation of the points, we
will simultaneously construct the DAG. Beginning with the root, v1, we have a
singleton point in our Delaunay triangulation, and a corresponding single node
in G. Next, at the scale corresponding to v2, we project v1’s position down
to v2’s level, and recompute the triangulation. In this case, the triangulation

Fig. 4. Visualization of the DAG construction algorithm. Left: the Delaunay trian-
gulations at the scales of the nodes. Right: the resulting DAG (edge directions not
shown)

Fig. 5. The DAG obtained from applying Algorithm 1 to the critical paths and top
points of the face in Fig. 2
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yields an edge between v1 and v2. Each new edge in the triangulation yields
a new edge in G, directed from coarser top points to finer top points; in this
case, we add a directed edge in G from v1 to v2. We continue this process with
each new top point, first projecting all previous top points to the new point’s
level, recomputing the triangulation, and using the triangulation to define new
directed edges in G. A summary of this procedure is presented in Algorithm 1.

The construction is illustrated for a simple image in Fig. 4. In the top two
frames in the left figure, we show the transition in the triangulation from v2
(point 2) to v3 (point 3); the root is shown as point 1. In the upper right frame,
the triangulation consists of three edges; correspondingly, G has three edges:
(1, 2), (1, 3), (2, 3), where (x, y) denotes an edge directed from node x to node y.
In the lower left figure, point 4 is added to the triangulation, and the triangu-
lation recomputed; correspondingly, we add edges (1, 4), (2, 4), (3, 4) to G (note
that (1, 2) is no longer in the triangulation, but remains in G). Finally, in the
lower right frame, point 5 is added, and the triangulation recomputed. The new
edges in the triangulation yield new edges in G: (2,5),(4,5),(1,5). The right side
of Fig. 4 illustrates the resulting graph (note that the directions of the edges
are not shown). Fig. 5 is the result of applying this construction to the face of
Fig. 2.

Algorithm 1 Top point graph construction procedure
1: Detect the critical paths.
2: Extract the top points from the critical paths.
3: Label the extremum path continuing up to infinity as v1.
4: Label the rest of the nodes (critical paths, together with their top points) according

to the scale of their top points from high scale to low as v2, ..., vn.
5: For i = 2 to n evaluate node vi:
6: Project the previous extrema into the scale of the considered node vi.
7: Calculate the 2D Delaunay triangulation of all the extrema at that scale.
8: All connections to vi in the Delaunay triangulation are stored as directed edges

in G.

5 Experiments

To evaluate our construction, we explore the invariance of the construction to two
types of perturbations. The first is the sensitivity of the construction to noise in
the image, while the second is within-class deformation resulting in displacements
of top points both within and across scales. We conduct our experiments using a
subset of the Olivetti Research Laboratory face database. The database consists
of faces of 20 people with 10 faces per person, for a total of 200 images; each
image in the database is 112×92 pixels. The face images are in frontal view and
differ by various factors such as gender, facial expression, hair style, and presence
or absence of glasses. A representative view of each face is shown in Fig. 6.
Invariance of a graph to noise or within-class deformation requires a measure of
graph distance, so that the distance between the original and perturbed graphs
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Fig. 6. Sample faces from 20 people

can be computed. For the experiments reported in this paper, we compute this
distance using our many-to-many graph matching algorithm, which we briefly
describe in the next subsection. Note that we have developed a general algorithm
that is in no way specifically designed for face recognition. Therefore we have
not compared our method to state-of-the-art face recognition algorithms. We
present this experiment only as a proof of concept.

5.1 Overview of Matching Algorithm

The matching algorithm is based on the metric-tree representation of labelled
graphs and their low-distortion embeddings into normed vector spaces via spher-
ical coding [3, 9]. The advantage of this embedding technique is that it prescribes
a single vector space into which both graphs are embedded. This two-step trans-
formation reduces the many-to-many matching problem to that of computing a
distribution-based distance measure between two such embeddings. To compute
the distance between two sets of weighted vectors, we use a variation of Earth
Mover’s Distance under transformation sets. For two given graphs, the algorithm
provides an overall similarity (distance) measure.

Fig. 7 presents an overview of the approach. For a given face, we first create its
DAG according to Section 4 (Transition 1), and embed each vertex of the DAG
into a vector space of prescribed dimensionality using a deterministic spherical
coding (Transition 2). Finally (Transition 3), we compute the distance between
the two distributions by the modified Earth Mover’s Distance under transfor-
mation. The dimension of the target space in Transition 1 has a direct effect on
the quality of the embedding. Specifically, as the dimensionality of the target
space increases, the quality of the embedding will improve. Still, there exists
an asymptotic bound beyond which increasing the dimensionality will no longer
improve the quality of the embedding. Details on the many-to-many matching
algorithm can be found in [3].

5.2 Graph Stability Under Additive Noise

To test the robustness of our graph construction, we first examine the stability
of our graphs under additive Gaussian noise at different signal levels applied
to the original face images. For this experiment, the database consists of the
original 200 unperturbed images, while the query set consists of noise-perturbed
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Fig. 7. Computing similarity between two given faces. (Matched point clusters are
shaded with the same color.) See text

versions of the database images. Specifically, for each of the 200 images in the
database, we create a set of query image by adding 1%, 2%, 4%, 8%, and 16% of
Gaussian noise. Next, we compute the similarity between each query (perturbed
database image) and each image in the database, and score the trial as correct
if its distance to the face from which it was perturbed is minimal across all
database images. This amounts to 40,000 similarity measurements for each noise
level, for a total of 200,000 similarity measurements. Our results show that the
recognition rate decreases down to 96.5%, 93%, 87%, 83.5%, and 74% for 1%,
2%, 4%, 8%, and 16% of Gaussian noise, respectively. These results indicate a
graceful degradation of graph structure with increasing noise.

5.3 Graph Stability Under Within-Class Variation

To test the stability of the graph construction to within-class variation (e.g.,
different views of the same face), we first group the faces in the database by
individual; these will represent our categories. Next, we remove the first image
(face) from each group and compare it (the query) to all remaining database
images. The image is then put back in the database, and the procedure is re-
peated with the second image from each group, etc., until all 10 face images of
each of the 20 individuals have been used as a query. If the graph representa-
tion is invariant to within-class deformation, resulting from different viewpoints,
illumination conditions, presence/absence of glasses, etc., then a query from
one individual should match closest to another image from the same individual,
rather than an image from another individual. The results are summarized in
Table 1, Fig. 8.

The magnitudes of the distances are denoted by shades of gray, with black
and white representing the smallest and largest distances, respectively. Due to
symmetry, only the lower half of distance matrix is presented. Intra-object dis-
tances, shown along the main diagonal, are very close to zero.
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Fig. 8. Table 1: Matching results of 20 people. The rows represent the queries and the
columns represent the database faces (query and database sets are non-intersecting).
Each row represents the matching results for the set of 10 query faces corresponding to
a single individual matched against the entire database. The intensity of the table en-
tries indicates matching results, with black representing maximum similarity between
two faces and white representing minimum similarity. Table 2: Subset of the match-
ing results with the pairwise distances shown. Table 3: Effect of presence or absence of
glasses in the matching for the same person. The results clearly indicate that the graph
perturbation due to within-class deformation, including facial expression changes, illu-
mination change, and the presence/absence of glasses is small compared to the graph
distance between different classes

To better understand the differences in the recognition rates for different
people, we randomly selected a subset of the matching results among three people
in the database, as shown in Table 2, Fig. 8. Here, the (i, j)-th entry shows the
actual distance between face i and face j. It is important to note that the distance
between two faces of the same person is smaller than that of different people,
as is the case for all query faces. In our experiments, one of our objectives was
to see how various factors, such as the presence or absence of glasses, affects
the matching results for a single person. Accordingly, we took a set of images
from the database of one person, half with the same factor, and computed the
distances between each image pair. Our results show that images with the same
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factors are more similar to each other than to others. Table 3 of Fig. 8 presents
a subset of our results. As can be seen from the table, images of the same person
with glasses are more similar than those of the same person with and without
glasses. Still, in terms of categorical matching, the closest face always belongs
to the same person. Although these results are encouraging, further evaluation
on a larger database needs to be investigated to be more conclusive.

6 Conclusions

Imposing neighborhood structure on a set of points yields a graph, for which
powerful indexing and matching algorithms exist. In this paper, we present a
method for imposing neighborhood structure on a set of scale space top points.
Drawing on the Delaunay triangulation of a set of points, we generate a graph
whose edges are directed from top points at coarser scales to nearby top points
at finer scales. The resulting construction is stable to noise, and within-class
variability, as reflected in a set of directed acyclic graph matching experiments.
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Abstract. Exploration of information content of features that are present
in images has led to the development of several reconstruction algorithms.
These algorithms aim for a reconstruction from the features that is vi-
sually close to the image from which the features are extracted. Degrees
of freedom that are not fixed by the constraints are disambiguated with
the help of a so-called prior (i.e. a user defined model). We propose a
linear reconstruction framework that generalises a previously proposed
scheme. As an example we propose a specific prior and apply it to the
reconstruction from singular points. The reconstruction is visually more
attractive and has a smaller L2-error than the previously proposed linear
methods.

1 Introduction

We describe a general method for reconstruction from scale space interest points
and their differential attributes. Using the reconstruction the information content
of these points can be investigated (Nielsen and Lillholm [11]).

Lillholm, Nielsen and Griffin [10, 11] have put emphasis on a “sparse” con-
straint set and the role of different priors. In general their priors are not given
in terms of an inner product. The disadvantage of their approach is that the
reconstruction algorithm is not linear and therefore slow and somewhat cum-
bersome to implement. Kanters et al. [9] use the assumption of a “sufficiently
rich” set of constraints. The role of the prior is less significant so they chose for
a standard L2-norm. We shall refer to this as the standard linear reconstruction
scheme. Advantages of his approach are that the reconstruction algorithm is
linear and analytical results for the generalised correlation matrix can be found.
The disadvantage is that if the set of constraints is not sufficiently rich then this
method is qualitatively outperformed by nonlinear reconstruction [10, 11].

We propose a general reconstruction framework which can be applied to a
large set of priors. Any prior that can be described by a norm formed by an
inner product can be mapped to this framework. Our method overcomes the
disadvantages of the standard linear reconstruction scheme [9] while retaining
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linearity. This is done by replacing the L2-inner product by a inner product of
Sobolev type. To verify the proposed method we apply it to the reconstruction
from singular points. A prior that smoothens the reconstructed image is selected.
This results in a reconstruction that has as few additional singular points as
possible under the constraints. Also the features are enriched by taking higher
order derivatives into account.

2 Theory

Definition 1. The L2-inner product for f, g ∈ L2(R2) is given by

(f, g)L2 =
∫

R2
f(x) g(x)dx . (1)

This is the standard inner product used in previous work [9, 10, 11].
The reconstruction problem boils down to the selection of an instance of the

metameric class consisting of g ∈ L2
(
R2
)

such that

(ψi, g)L2
= ci , (i = 1...N) (2)

with ψi denoting the distinct localised filters that generate the ith filter response
ci = (ψi, f)L2 . For an alternative description of this class see appendix A. The
selection of g is done by minimising a prior subject to the constraints of equa-
tion (2). A distinction can be made between priors (global constraints) that
are constructed by a norm formed by an inner product and those that are con-
structed by a norm that is not formed by an inner product. In the former case
it is possible to translate the reconstruction problem to a linear projection. This
maps the reconstruction problem onto straightforward linear algebra. To this
end we propose a generalisation of Definition 1 as follows.

Definition 2 (A-inner product). Let A ∈ B
(
L2(R2)

)
, i.e. a continuous lin-

ear operator on L2(R2). Then

(f, g)A = (f, g)L2 + (Af,Ag)L2 . (3)

Note that we may write

(f, g)A =
(
f, (I +A†A)g

)
L2

. (4)

For an image f ∈ L2(R2) we consider a collection of filters ψi ∈ L2(R2) and
filter responses ci, i = 1, ..., N , given by

ci = (ψi, f)L2 . (5)

Thus the a priori known features are given in terms of an L2-inner product.
In order to express these features relative to the new inner product we seek an
effective filter, κi say, such that

(κi, f)A = (ψi, f)L2 (6)
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for all f . We will henceforth refer to ψi as an “L2-filter” and to κi as its corre-
sponding “A-filter”.

Lemma 1 (A-Filters). Given ψi ∈ L2(R2) then its corresponding A-filter is
given by

κi = (I +A†A)−1ψi . (7)

Proof. Applying Definition 2, using the fact that
(
I +A†A

)
is self adjoint,

(κi, f)A =
(
(I +A†A)(I +A†A)−1ψi, f

)
L2

= (ψi, f)L2 . (8)

We aim to establish a reconstruction g that satisfies equation (2) and min-
imises

E(g) =
1
2
(g, g)A . (9)

Summation convention applies to upper and lower feature indices i = 1...N .
Since g satisfies equation (2) we may as well write

E(g) =
1
2
(g, g)A − λi ((κi, g)A − ci) , (10)

in other words

E(g) =
1
2

((g, g)L2 + (Ag,Ag)L2) − λi ((ψi, g)L2 − ci) . (11)

The first term in equation (10) is referred to as the prior. The remainder consists
of a linear combination of constraints, equation (2), with Lagrange multipliers λi.

Theorem 1. The solution to the Euler-Lagrange equations for equation (10)
can be found by A-orthogonal projection of the original image f on the linear
space V spanned by the filters κi, i.e.

g = PVf = (κi, f)A κi . (12)

Here we have defined κi def
= Gijκj with Gramm matrix Gij = (κi, κj)A and

GikGkj = δi
j.

Proof. The functional derivative of equation (10) with respect to the image g is
given by

δE(g)
δg

= (I +A†A)g − λiψi (13)

The solution to the corresponding Euler-Lagrange equations is formally given
by

g = λi(I +A†A)−1ψi = λiκi . (14)

So the filter responses can be expressed as

ci = (ψi, g)L2 = λj
(
ψi, (I +A†A)−1ψj

)
L2

= λj(ψi, κj)L2 = λj(κi, κj)A . (15)

Consequently λi = Gijcj . Applying this to equation (14) leads to

g = λiκi = Gijcjκi = Gij(κj , f)A κi = (κi, f)A κi . (16)

This completes the proof of Theorem 1.
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Theorem 1 is written in a Euler-Lagrange formalism to comply with previous
work on this subject [9, 10, 11]. The authors do notice the linear reconstruction
problem can be approached in a simpler and more elegant way. This approach
is sketched in appendix A.

3 Reconstruction from Singular Points

The theory of the previous section is applicable to any set of linear features. Here
we are particularly interested in feature attributes of so-called singular points in
Gaussian scale space. A Gaussian scale space representation u(x; s) in n spatial
dimensions is obtained by convolution of a raw image f(x) with a normalised
Gaussian:

u(x; s) = (f ∗ φs) (x)

φs(x) =
1√

4πs
n e− ||x||2

4s .
(17)

For the remainder of this paper we use the following convention for the contin-
uous Fourier Transform

F (f) (ω) = f̂(ω) =
1√
2π

n

∫
e−iωxf(x)dx

F−1 (f) (x) = f(x) =
1√
2π

n

∫
eiωxf̂(ω)dω .

(18)

Notice that with this definition Fourier transformation becomes a unitary trans-
formation.

3.1 Singular Points

A singular point is a non-Morse critical point of a Gaussian scale space image.
Scale s is taken as a control parameter. This type of point is also referred to in
the literature as a degenerate spatial critical point or as a toppoint or catastrophe.

Definition 3 (singular point). A singular point (x; s) ∈ Rn+1 is defined by
the following equations. {

∇u(x; s) = 0
det∇∇Tu(x; s) = 0

(19)

The behavior near singular points is the subject of catastrophe theory. Damon
rigorously studied the applicability of established catastrophe theory in a scale
space context [1]. Florack and Kuijper have given an overview of the established
theory in their paper about the topological structure of scale space images for
the generic case of interest [4]. More on catastrophe theory in general can be
found in a monograph by Gilmore [5].
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Fig. 1. The image on the right hand side shows the standard linear reconstruction,
taking up to second order differential structure into account, as is proposed by Kanters
et al. [9] from 63 singular points of Lena’s eye. The original image, from which the
singular points are taken is shown on the left hand side

3.2 Prior Selection

Johansen showed [6, 7] that a one dimensional signal is defined up to a multi-
plicative constant by its singular points. This is probably not the case for two
dimensional signals (images). It was conjectured that these points endowed with
suitable attributes do contain enough information to be able to obtain a recon-
struction that is visually close to the initial image [9, 10, 11].

As can be seen in Figure 1 the standard linear reconstruction proposed by
Kanters et al. [9], which is on the standard L2-inner product, is far from op-
timal. The problem can be identified by determining the number of additional
singular points that appear in the reconstructed image while strictly insisting
on the features to hold. In case of a perfect reconstruction the number of sin-
gular points would be equal for the reconstructed and original image. The num-
ber of singular points in the reconstructed image can be reduced by smooth-
ing the image. Therefore a prior derived from the following inner product is
proposed:1

(f, g)A = (f, g)L2 + (−γ
√
−Δf,−γ

√
−Δg)L2 = (f, g)L2 − (f, γ2Δg)L2

= (f, g)L2 + (γ∇f, γ∇g)L2 .
(20)

This prior introduces a smoothness constraint to the reconstruction problem.
The degree of smoothness is controlled by the parameter γ. When γ vanishes
the projection equals the one from standard linear reconstruction [9]. Note that
this is a standard prior in first order Tikhonov regularisation [3, 13].

3.3 Implementation

Using the inner product of equation (20) the A-filter equals,

κi = (I − γ2Δ)−1ψi = F−1
(
ω �−→ 1

1 + γ2||ω||2F(ψi)(ω)
)

. (21)

1 The operational significance of the fractional operator −
√

−Δ, which is the generator
of the Poisson scale space, is explained in detail by Duits et al. [2]. In Fourier space
it corresponds to the multiplicative operator −||ω||.
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The filter shape in the spatial domain is somewhat harder to obtain. For two
dimensions (n = 2) the convolution filter that represents the linear operator
(I − γ2Δ)−1 equals

φγ(x, y) =
1

2πγ2K0[

√
x2 + y2

γ
] (22)

with K0 representing the zeroth order modified Bessel function of the second
kind. This was also noted by Florack, Duits and Bierkens [3] who worked on
Tikhonov regularization and its relation to Gaussian scale space.

The calculation of the Gramm matrix Gij is the computationally hardest
part of the reconstruction algorithm. An analytic expression for this matrix is
not available (unless γ = 0). Therefore the inner products (κi, κj)A have to
be found by numerical integration. By the Parseval theorem we have (recall
equations (21) and (22))

(κi, κj)A =
(

1
1 + γ2||ω||2 ψ̂i, ψ̂j

)
L2

=
(

1
1 + γ2||ω||2 , ψ̂

∗
i ψ̂j

)
L2

= (φγ , ψ
∗
i ∗ ψj)L2

.

(23)
At this point we have not yet specified the ψi filters. Since we are interested in
the properties of singular points in Gaussian scale space we define the filters as
follows.

Definition 4 (ψi). A filter ψi is a localised derivative of the Gaussian kernel,
recall equation (17), at a certain scale. Given x, y, ξ, η ∈ R and m,n ∈ N0

ψi(x)
def
= ϕm,n

σ,ξ,η(x, y) =
1

2πσ2

∂|m+n|ϕs(x, y)
∂xm∂yn

|x−→ x−ξ
σ ,y −→ y−η

σ
(24)

with i
def
= (m,n, ξ, η, σ) ∈ N2

0 × R2 × R+.

Applying Definition 4 to equation (23) reveals that the inner products in
the Gramm matrix can be expressed as a Gaussian derivative of the spatial
representation of φγ . Note that this can be exploited for any operator that one
chooses to use as a regulariser.

The singularity of φγ(x) in the origin gives rise to numerical problems. The
Fourier representation φ̂γ(x) does not have a singularity, therefore the Fourier
representation of the operator is sampled and after that a discrete inverse Fourier
transform is applied to it.

At this point the Gramm matrix can be constructed. Inversion of this matrix
is done by means of Singular Value Decomposition. The projection onto the
filters can be done in either the frequency or the spatial domain. The image in the
Fourier domain can be obtained by projecting onto the Fourier representations
of the filters,

g = Gijcjκi = F−1[Gijcj κ̂i] . (25)

This avoids problems with the singularity of the Bessel function. An Inverse
Discrete Fourier Transform of the sampled reconstruction function results in the
desired image.



A Linear Image Reconstruction Framework 91

3.4 Richer Features

Obtaining a visually appealing reconstruction from singular points can be
achieved by selecting an “optimal” space for projection. This approach is dis-
cussed above. Another way to enhance the quality of the reconstruction is by
using more information about the points that are used for reconstruction. In
the standard case only up to second order differential structure was used. In
our experiments also higher order differential properties of the singular points
were taken into account. This has the side effect that the Gramm matrix will be
harder to invert when more possibly dependent properties are used.

4 Evaluation

To evaluate the suggested prior and the proposed reconstruction scheme recon-
structions from singular points of different images are performed. The singular
points are obtained using ScaleSpaceViz [8], which is based on a zero-crossings
method. After the singular points are found the unstable ones are filtered out by
applying a threshold on the amount of structure that is present around a singu-
lar point. The amount of structure can be found by calculating the “differential
total variation norm” or “deviation from flatness”

tv = σ4Tr (H2) (26)

that was proposed by Platel et al. [12]. H represents the Hessian matrix and
σ represents the scale at which the singular point appears. The reconstruction
algorithm is implemented in Mathematica.

The images that are chosen to evaluate the performance of the reconstruction
algorithm are those used by Kanters et al. and Lillholm et al. for the evalua-
tion of their reconstruction algorithms [9, 10], Lena’s eye and MR brain. The
size of the former image is 64 × 64 pixels and the size of the latter image is
128 × 128 pixels. The pixel values of these images are integer valued ranging
from 0 to 255.

4.1 Qualitative Evaluation

First we study reconstruction from singular points taking into account up to
second order derivatives of the image at the locations of the singular points.
Figure 2 shows the reconstruction from 31 singular points of Lena’s eye . These
points are selected using a tv-norm of 32. Note that the tv-norm scales with
the square of the image range. The first image in the upper row displays the
image from which the singular points were obtained. Successive images are re-
constructions from these points with an increasing γ. The second image in the
first row shows a reconstruction with γ = 0, which equals the reconstruction
by Kanters et al. [9], and the first picture in the second row depicts the recon-
struction with a minimal relative L2-error. The same convention is used in the
reconstruction from 55 singular points of MR brain that is displayed in Figure 3.
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Fig. 2. Reconstruction from 31 singular points of Lena’s eye with up to second order
features. The upper row shows the original image and reconstructions with γ = 0 and
γ = 5. The second row shows reconstructions with γ = 22, γ = 50 and γ = 250. The
first image in the second row shows the reconstruction with the lowest relative L2-error

Fig. 3. Reconstruction from 55 singular points of MR brain with up to second order
features. The upper row shows the original image and reconstructions with γ = 0 and
γ = 3. The second row shows reconstructions with γ = 7, γ = 50 and γ = 250. The
first image in the second row shows the reconstruction with the lowest relative L2-error

The singular points of this image were acquired using a tv-norm of 128. Figure 2
shows the “fill-in effect” of the smoothing prior. The reconstruction with the
smallest relative L2-error is visually more appealing than the images with a
smaller γ. A reconstruction with γ = 250 lacks details that were visible in the
other reconstructions. This happens because the Gramm matrix is harder to in-
vert when dependent basis functions are used. With an increasing γ the kernels
become wider and thus more dependent on one another. The reconstructions
of MR brain show “leaking” edges. Because the prior smoothes the image the
very sharp edges of this image are not preserved and consequently the leaking
effect appears.
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Fig. 4. Reconstruction from 31 singular points of Lena’s eye with up to fourth order
features. The upper row shows the original image and reconstructions with γ = 0 and
γ = 4. The second row shows reconstructions with γ = 19, γ = 50 and γ = 250. The
first image in the second row shows the reconstruction with the lowest relative L2-error

Fig. 5. Reconstruction from 55 singular points of MR brain with up to fourth order
features. The upper row shows the original image and reconstructions with γ = 0 and
γ = 4. The second row shows reconstructions with γ = 8, γ = 50 and γ = 250. The
first image in the second row shows the reconstruction with the lowest relative L2-error

To investigate the influence of enrichment of the features the same experi-
ments are repeated but up to fourth order derivatives are taken into account
in the features. The results for the reconstruction from the singular points
of Lena’s eye can be found in Figure 4 and the results for the reconstruc-
tion from the singular points of MR brain are depicted in Figure 5. In both
cases the images show more detail and are visually more appealing than their
second order counter parts. The reconstruction of the MR brain image still
shows leaking but this effect is reduced when compared to second order
reconstruction.
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4.2 Quantitative Evaluation

In order to verify the quality of the reconstructions of both images under a
varying γ the relative L2-error,

L2-error =
||f − g||L2

||f ||L2

, (27)

of the reconstructed images is calculated. Figure 6 shows four graphs depicting
this error for both second order and fourth order reconstruction of Lena’s eye
and MR brain. All graphs show that an optimal value exists for the γ parameter.
This can be explained by the fact that the Gramm matrix is harder to invert
with increasing γ due to increasing correlation among the filter cf. equation (23).
Because of that dependent equations will be removed during the SVD. This leads
to a reconstruction with less detail and thus a larger L2-error. The reconstruc-
tions of the MR brain image show an increasing L2- error with an increasing
γ. This error becomes even larger than the L2-error of the reconstruction with
γ = 0. This can be attributed to the sharp edges of the head that are smoothed
and thus show leaking into the black surroundings of the head. The background
clearly dominates the contribution to the L2-error. The reconstruction of Lena’s
eye does not suffer from this problem because of its smoothness.

Fig. 6. The relative L2-error of the reconstructions from 31 singular points of Lena’s
eye (upper row) and 55 singular points of MR brain (lower row). The first column
shows the L2-error for varying γ when second order reconstruction is used, i.e. up to
second order derivatives are taken into account in the features. The second column
displays fourth order reconstruction
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5 Conclusions and Recommendations

We proposed a linear reconstruction method that leaves room for selection of ar-
bitrary priors as long as the prior is a norm of Sobolev type. This greatly reduces
the complexity of the reconstruction algorithm compared to non-linear methods.

We select one possible prior characterised by a free parameter γ that aims for
a smooth reconstruction. This provides a control parameter for selecting different
metameric reconstructions, i.e. reconstructions all consistent with the prescribed
constraints. Comparisons with standard linear reconstruction as done by Kanters
et al. [9] show it is possible to improve the reconstruction quality while retaining
linearity. Reconstruction from a selection of singular points of the MR brain
image proofs to be more difficult than reconstruction of smoother images like
Lena’s eye. The problem, that shows up as “leaking” edges, is reduced by taking
higher order differential structure into account in the reconstruction algorithm.
When the γ parameter is increased basis functions get more dependent on each
other. This leads to a harder to invert Gramm matrix and consequently to a
reduction of detail in the reconstruction.

Both, taking a γ > 0 and taking higher order features into account, lead
to visually more appealing images and a smaller L2-error when comparing with
standard linear reconstruction. It remains an open question how to select an
optimal γ.

Future work will include the use of anisotropic basis functions that depend
on the local image orientation and investigation of an adaptive γ parameter.
Additionally other priors that fit in the proposed framework will be investigated.

A Simple Alternative Approach to Theorem 1

Recall that V is the span of the filters κi. Then

V ⊥ = {f ∈ L2(R2) | (κi, f)A = 0 ∀ i = 1, . . . , N } (28)

On the space of images L2(R2) we define the following equivalence relation:

f ∼ g ⇔ f − g ∈ V ⊥ , (29)

Notice that the set of equivalence/metameric classes is given by

L2(R2)/∼
def= {[f ] | f ∈ L2(R2)} = {f + V ⊥ | f ∈ L2(R2)} (30)

and that an equivalence class [f ] = {g ∈ L2(R2) | f ∼ g} of representant f is
exactly given by those images that have the same features as image f . Notice to
this end that

(κi, f)A = (κi, g)A for all i = 1, . . . , N ⇔ f − g ∈ V ⊥ . (31)

Next we show that the unique element g within [f ] that minimizes the energy
E[g] = ‖g‖2

A is given by the A-orthogonal projection of f on V , PV f :

min
g∈[f ]

‖g‖2
A = min

g∈[f ]
‖g − PV f + PV f‖2

A = min
g∈[f ]

‖g − PV f‖2
A + ‖PV f‖2

A (32)



96 B. Janssen et al.

and this equals ‖PV f‖2
A only in the case g = PV f . Notice with respect to the

last equality (equation (32)) is Pythogoras theorem, which can be applied since
(g − PV f) = (g − PV g) ∈ V ⊥ and PV f ∈ V .
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Abstract. We consider images as manifolds embedded in a hybrid of a
high dimensional space of coordinates and features. Using the proposed
energy functional and mathematical landmarks, images are partitioned
into segments. The nesting of image segments occurring at catastrophe
points in the scale-space is used to construct image hierarchies called
Multi-Scale Singularity Trees (MSSTs). We propose two kinds of mathe-
matical landmarks: extrema and saddles. Unlike all other similar methods
proposed hitherto, our method produces soft-linked image hierarchies in
the sense that all possible connections are suggested along with their en-
ergies. The information added makes possible for directly estimating the
stability of the connection and hence the costs of transitions. Aimed ap-
plications of MSSTs include multi-scale pre-segmentation, image match-
ing, sub-object extraction, and hierarchical image retrieval.

1 Introduction

We are interested in the development of a multi-scale image representation which
is expected to be invariant under certain image transformations and small im-
age perturbations. Objects of any complexity when are observed at a distance,
eventually reduce to an indistinguishable blob. Fine structures in the image are
merged at small scales, larger structure at higher scales. To represent an image
at all scales and all those discrete jumps of image complexity, tree structures
instantly pop up as a natural choice. Image matching problems then can be
thought of as tree matching problems. Using tree structures to represent im-
ages reduces computer vision problems to tree manipulation problems. In other
words, we transform the relatively new and unfamiliar computer vision problems
to the well-understood and profoundly-investigated mathematical problems. In
practice, using tree structures also allows preferable possibility to compromise
between speed and accuracy.

Possible applications of Multi-Scale Singularity Trees (MSSTs) include multi-
scale pre-segmentation, image matching with MSSTs, sub-object extraction, hi-
erarchical image retrieval in large image databases, etc. Together with our part-
ners, we are currently developing an image matching algorithm based on our

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 97–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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proposed MSSTs and the Tree Edit Distance (TED) algorithm, where the dis-
tance between two images is found as the minimum cost of a series of edit
operations that transforms the MSST of one image into another.

2 Gaussian Scale-Space

The N + 1 dimensional Gaussian scale-space, L : IRN+1 → IR, of an N dimen-
sional image, I : IRN → IR, is an ordered stack of images, where each image is
a blurred version of the former [1, 2, 3]. The blurring is performed according to
the diffusion equation,

∂tL = ∇2L , (1)

where ∂tL is the first partial-derivative of the image in the scale direction t, and
∇2 is the Laplacian operator, which in three dimensions reads ∂2

x +∂2
y +∂2

z . The
Gaussian kernel is the Green’s function of the heat diffusion equation, i.e.

L(·; t) = I(·) ⊗ g(·; t) , (2)

g(x; t) =
1

(4πt)N/2 e
−xT x/(4t) , (3)

where L(·, t) is the image at scale t, I(·) is the original image, ⊗ is the convolution
operator, g(·; t) is the Gaussian kernel at scale t, N is the image dimensionality,
and t = σ2/2, using σ as the standard deviation of the Gaussian kernel. The
Gaussian scale-space is henceforth called the scale-space in this article.

The information in the scale-space is logarithmically degraded, the scale pa-
rameter is therefore often sampled exponentially using σ(m) = σ0b

m for some
base b. Since differentiation commutes with convolution and the Gaussian kernel
is infinitely differentiable, differentiation of images in scale-spaces is conveniently
computed as,

∂xnL(·; t) = ∂xn (I(·) ⊗ g(·; t)) = I(·) ⊗ ∂xng(·; t) . (4)

Alternative implementations of the scale-space are multiplication in the Fourier
Domain, finite differencing schemes for solving the heat diffusion equation, ad-
ditive operator splitting [4], and recursive implementation [5, 6].

Each method has different advantages and disadvantages. We prefer the spa-
tial convolution, since it guarantees not to introduce spurious extrema in ho-
mogeneous regions at low scales. Typical border conditions are Dirichlet, Cyclic
repetition, and Neumann boundaries. We use Dirichlet boundaries, where the
image is extended with zero values in all directions according to the size of the
convolution kernel.

Although the dimensionality of the constructed scale-space is one higher than
the dimensionality of the original image, critical points, in the image at each
scale are always points. The critical points treated in this article are extrema,
∂xL = ∂yL = 0, and the critical points are classified by the eigenvalues of the
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Hessian matrix, the matrix of all second derivatives, computed at the critical
point. Critical points with all positive eigenvalues are minima, critical points
with all negative eigenvalues are maxima, and critical points with a mixture of
both negative and positive eigenvalues are saddles.

As we increase the scale parameter, the critical points move smoothly forming
critical paths. Along scale, critical points meet and annihilate or are created. Such
events are called catastrophic events, and the points where they occur in the
scale-space are called catastrophe points. The collection of catastrophic events
at all scales is called the deep structure of the image.

The notion of genericity is used to disregard events that are not likely to
occur for typical images, i.e. generic events are stable under slight perturbations
of the image. There are only two types of generic catastrophic events in scale-
space namely pairwise creation events and pairwise annihilation events [7]. It
has further been shown that generic catastrophic events only involve pairs of
critical points where one and only one eigenvalue of the Hessian matrix changes
its sign, e.g. the annihilation of a minimum (+,+) and a saddle (+,−). A detailed
discussion of a method for detecting critical paths and catastrophe points in the
scale-space can be found in [8].

3 Building Scale-Space Hierarchies

There are already a few scale-space methods that construct image hierarchies of
two-dimensional images proposed in the literatures so far [9, 10, 11]. To the best
of our knowledge, an attempt to construct image hierarchies from the deep struc-
ture of three-dimensional images is first proposed in [12] followed by [8, 13, 14].
The latter scheme, which will be extended here, produces rooted ordered binary
trees called Multi-Scale Singularity Trees (MSSTs) with catastrophe points as
nodes.

In order to guarantee that the produced structures are always trees, our
method only considers the linking of mathematical landmarks that exist at the
original image. Only annihilation events are recorded and creation events are ig-
nored. These creation events are generic however not frequently occur. Creation
events could actually be included in the structure in the same manner but the
method would inevitably produce graphs rather than trees. Theoretically, the
method can be used to construct scale-space hierarchies of images of any dimen-
sionality, assuming that critical paths and catastrophe points can be correctly
detected. Our current implementation is capable of constructing MSSTs of two-
and three-dimensional images.

3.1 Energy Functional and Energy Partitions

Given an image and a set of landmarks, we would like to partition the image into
segments so that each segment contains exactly one landmark. Let Ω ⊂ IRN be
a compact connected domain and define I : Ω → IR+ to be an image, e ∈ Ω as
a landmark, and x ∈ Ω as a point in the domain. Consider a set of continuous
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functions γ : [0, P ] → Ω for which γ(0) = e and γ(P ) = x, γ ∈ Γex, where Γex

is the set of all possible paths in the domain from the landmark e to the point x,
and γ is parameterized using Euclidean arc-length. We define the energy Ee(x)
with respect to an extremum e evaluated at x as,

Ee(x) = inf
γ∈Γex

∫ P

0

√
(α− 1) | ∂γ(p)

∂p
|2 +α | ∂I(γ(p))

∂p
|2dp , (5)

for some 0 ≤ α ≤ 1Consider images as manifolds embedded in a high dimensional
space, an N dimensional intensity image becomes an N dimensional manifold
embedded in the hybrid N + 1 dimensional space of coordinates and features,
the “space-feature” [15]. In this case the only feature is the intensity or the
zeroth jet space. The energy functional can be defined for higher order jet space
images, color images, or locally orderless images with scale-space histograms to
handle texture [16], if a metric in the feature space is given. For two-dimensional
images, image may be considered a height plot, and the energy at any point in
the image with respect to a landmark can be found as the minimum weighted
distance travelling up and down from the landmark to that point. The parameter
α can be set to alter the emphasism of the energy functional between space
and intensity. When α = 1, the energy functional becomes the path variation,
which is a generalization of the total variation [17]. The path variation depends
solely on the image intensity and is invariant to affine transformation of the
underlying space. Moreover, the energy is co-variant with scaling of the image
intensity. When α → 0, the energy functional will increasingly depend on the
spatial distance, and therefore become increasingly localized in space.

Let E ⊂ Ω be the set of all landmarks in the image: An image segment or an
energy partition Si associated with a landmark ei ∈ E is defined as the set of all
points in the images, where the energy Eei(x) is minimal,

Si = {x ∈ Ω|Eei(x) < Eei(x),∀ej ∈ E , i �= j}. (6)

An approximation of the energy map Eei
: Ω → IR+, which gives the energy

at every point in the image with respect to the landmark ei, can be efficiently
calculated using the Fast Marching Methods [18].

The tessellation of the image segments obtained depends on the selection
of the landmarks and the energy functional. Mathematical landmarks like the
extrema seem to be the natural selection, since they are directly linked to the
image content, i.e. significant features in the image usually contain at least one
such points. Moreover, they can be easily and automatically detected in the
scale-space, and the behavior of these critical points in the scale-space is well
studied. The selection of the extrema as landmarks leads to Extrema-Based
MSSTs. Another candidate for landmarks are the saddles, which leads to Saddle-
Based MSSTs, which both will be discuss in the following.

3.2 Multi-scale Singularity Trees

MSSTs are constructed by connecting annihilating catastrophe points based on
the nesting of image segments in the scale-space. Because of the natural pairwise
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interaction between critical points in the generic scale-space and the developed
tree building scheme, resulting MSSTs are always rooted ordered binary tree.

MSSTs consist of nodes and their relations. Each MSST node consists of three
important components: The image segment that immediately covers the area of
the image segment disappearing at the catastrophe. For algorithmically conve-
nience we denote the image ‘surviving’ image segment the leftport, the catas-
trophe for the body, and disappearing image segment for the rightport. Because
there is exactly one image segment associated with a landmark and we choose
the landmarks such that exactly one landmark disappears at an annihilation
catastrophe point, then exactly one image segment also disappears.

A node SleftCbodySright is generated if an image segment Sright disappears
at the catastrophe Cbody inside an image segment Sleft. The inclusion is easily
determined by calculating the energy map with respect to the catastrophe Cbody:
the image segment Sright is nested in side the image segment Sleft if the energy
evaluated at the landmark of Sleft is minimal among all landmarks existing at
that scale.

As briefly mentioned above, MSSTs are ordered trees. This implies that con-
necting a node to another node as the leftchild or as the rightchild are semanti-
cally different events. MSSTs are built top-down starting from the catastrophe at
the coarsest scale. A new node Nnew : Snew,leftCnew,bodySnew,right is connected
as the leftchild of a node Ni : Si,leftCi,bodySi,right in the constructing MSST,
if the node Ni does not have the leftchild and Snew,left = Si,left, or as the
rightchild, if the node Ni does not have the rightchild and Snew,left = Si,right.
It can easily be seen that this process is deterministic. We will now describe the
algorithms for creating the Extrema- and the Saddle-Based MSSTs.

Extrema-Based MSSTs. Assuming that critical paths and catastrophe points
in the scale-space are already and correctly detected, then the tree building
algorithm is as follows:

1. Set the root of the tree as BC∞Elast, where B denotes the border of the
image, Elast denotes the last extremum in scale, and C∞ denotes the vir-
tual catastrophe at scale infinity, where the border and the last extremum
virtually annihilate.

2. At the highest unprocessed catastrophe Cnext in scale, calculate the energy
map with respect to the catastrophe and create a node EcoverCnextEann,
where Eann is the extremum that disappears at Cnext, and the energy eval-
uated at the extremum Ecover is minimal among all extrema existing at that
scale.

3. Link the new created node as the leftchild of a node in the tree that does not
have the leftchild and where Ecover equals its leftport, or as the rightchild of
a node in the tree that does not have the rightchild and where Ecover equals
its rightport.

4. Repeat 2. until all catastrophe points are processed.

An example of Extrema-Based MSSTs, together with the deep structure it rep-
resents, are shown in Fig. 1.
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Fig. 1. The top-left panel shows the schematic drawing of the deep structure of an imag-
inative image containing four extrema {Ea, Eb, Ec, Ed} and three saddles {Sa, Sb, Sc}.
There are four catastrophe points {Ca, Cb, Cc, Cd} in the scale-space. The horizontal
lines denote the linking connections between the catastrophe points and the extrema
with minimal energy. The Extrema-Based MSSTs corresponding to the deep structure
is shown on the top-right panel. The bottom-left panel shows the deep structure of
the same imaginative image but now with the horizontal lines showing the linking
connections between the catastrophe points and the saddles with minimal energy. The
corresponding Saddle-Based MSST is shown on the bottom-right panel

Saddle-Based MSSTs. A similar procedure is applied for constructing Saddle-
Based MSSTs however now we consider saddles instead of extrema. The algo-
rithm is as follows:

1. Set the root of the tree as CtopStop, where the leftport is set to null, Ctop

denotes the highest catastrophe in scale, and Stop denotes the saddle that
annihilates at the catastrophe Ctop.

2. At the highest unprocessed catastrophe Cnext in scale, calculate the energy
map with respect to the catastrophe and create a node ScoverCnextSann,
where Sann is the saddle that disappears at Cnext and the energy evaluated
at the saddle Scover is minimal among all saddles existing at that scale.
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Fig. 2. The original image of a man face is shown on the top-left panel. The bottom-left
panel shows the ∂xL = 0 curves in blue and the ∂yL = 0 curves in yellow on top of the
original image. The intersection points between these curves where ∂xL = ∂yL = 0 are
critical points. The maxima and the minima are also denoted by red and green labels,
respectively. The rest intersection points left unlabelled are the saddles. The top-right
panel shows the extremum paths, minimum paths, saddle paths, and the Extrema-
Based MSST linking connections on top of the original image in red, green, blue, and
yellow, respectively. The bottom-right panel shows the critical paths and the linking
connections viewed horizontally from the bottom-right corner of the image

3. Link the new created node as the leftchild of a node in the tree that does not
have the leftchild and Scover equals its leftport or as the rightchild of a node
in the tree that does not have the rightchild and Scover equals its rightport.

4. Repeat 2. until all catastrophe points are processed.
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Fig. 3. Extrema-Based MSSTs of three different human faces

Notice Saddle-Based MSSTs always have one node less than that of Extrema-
Based MSSTs of the same image. An example of Saddle-Based MSSTs is shown
in Fig. 1, together with the deep structure it represents.

3.3 Energy Table

During the construction of MSSTs, the energies with respect to all catastrophe
points in the scale-space evaluated at all present and relevant landmarks i.e.
extrema for Extrema-Based MSSTs and saddles for Saddle-Based MSSTs, are
stored in the energy matrix. It’s this energy matrix that makes the tree soft-
linked and makes possible the estimation of each connection stability and costs
of MSST transitions.

3.4 MSST Examples of Real Images

We choose an image database of human faces [19] to test our implementation.
One of the results is shown in Fig. 2. More results are shown in Fig. 3.

4 Concluding Remarks

It is important to understand the differences between two related stabilities:
the stability of the positions of the catastrophe points and the stability of the
relations between them (connections in the produced trees), and the fact that
the stability of the constructed hierarchy depends on both. The positions of
some catastrophe points are more stable than the others under small image
perturbations. In general catastrophe points in an area with a lot of structures
are more stable [20]. Using an appropriate stability norm, unstable catastrophe
points can be eliminated before the hierarchy is constructed. In the other hand,
the instability of their relations cannot and should not be avoided but have to
be estimated if one wants to know the costs of the tree transitions.

We prefer our scale-space hierarchy building scheme because in contrast to
hard-linked hierarchies, where only the best connection is suggested, our method
produces soft-linked image hierarchies in the sense that all possible connections
are suggested along with their energies. The connection with the lowest energy
can be later selected in order to produce the tree that best represents the image.
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The additional information, stored in the energy matrix, is useful in many
ways. It makes possible for directly estimating the stability of each connection
in the tree, and hence the cost of the tree transitions. For example, one might
want to know how stable a particular connection is in the produced hierarchy
under slight perturbations of the original images. Consider an image that is close
to non-generic ones, e.g. having near-symmetric structures, only slight perturba-
tions of the original image could change the structure of the produced hierarchy
completely. For soft-linked hierarchies, the stability of each connection in the hi-
erarchies can be directly estimated by looking at the distribution of the energies
of all possible connections. If the energy of the best connection is much lower
than all other connections, then the connection is not likely to switch, and hence
is more stable. However, if the energies of all connections are about the same,
the connection is very likely to switch and certainly is not stable. Because hard-
linked hierarchy building methods naturally suggest only one best connection,
there is no direct way of estimating the stability of connections of the produced
hierarchies.
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Abstract. The problem of image deblurring in the presence of salt and
pepper noise is considered. Standard image deconvolution algorithms,
that are designed for Gaussian noise, do not perform well in this case.
Median type filtering is a common method for salt and pepper noise re-
moval. Deblurring an image that has been preprocessed by median-type
filtering is however difficult, due to the amplification (in the deconvolu-
tion stage) of median-induced distortion. A unified variational approach
to salt and pepper noise removal and image deblurring is presented.
An objective functional that represents the goals of deblurring, noise-
robustness and compliance with the piecewise-smooth image model is
formulated. A modified L1 data fidelity term integrates deblurring with
robustness to outliers. Elements from the Mumford-Shah functional, that
favor piecewise smooth images with simple edge-sets, are used for reg-
ularization. Promising experimental results are shown for several blur
models.

1 Introduction

Consider an image that has been blurred and contaminated by salt and pepper
noise. Typical sources of blur are defocus and motion [3]. Salt and pepper noise
is a common model for the effects of bit errors in transmission, malfunctioning
pixels and faulty memory locations [5].

Significant attention has been given to image deblurring in the presence of
Gaussian noise [3]. We focus on variational methods, that have an important
role in modern image deblurring research, see e.g. [20, 21, 23, 14]. Most methods
rely on the standard model g = h ∗ f + n, that is applicable to a large variety of
image degradation processes that are encountered in practice. Here h represents
a known space-invariant blur kernel (point spread function), f is an ideal version
of the observed image g and n is (usually Gaussian) noise. In this research, we
focus on the case of salt and pepper noise.

The assumption of Gaussian noise is a fundamental element of common im-
age deblurring algorithms. It is therefore not surprising that those algorithms
produce inadequate results in the presence of salt and pepper noise. This fact
is illustrated in Fig. 1. The top-left image in Fig. 1 is the 256 × 256 Lena im-
age, blurred by a pill-box kernel of radius 3 (7 × 7 kernel) and contaminated
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Fig. 1. Current image deblurring algorithms fail in the presence of salt and pepper
noise. Top-left: Blurred image with Gaussian noise. Top-right: Restoration using the
method of [23]. Bottom-left: Blurred image with salt and pepper noise. Bottom-right:
Restoration using the method of [23]

by Gaussian noise. Successful restoration is obtained using the state of the art
deblurring method of [23] (top-right). The bottom-left image in Fig. 1 is the
same blurred Lena image, now contaminated by salt and pepper noise of den-
sity 0.01. In this case restoration using the method of [23] is clearly inadequate
(bottom-right). Note that due to the inadequacy of the noise model, the algo-
rithm of [23] yields poor results even at lower salt and pepper noise density. The
regularization constants used to obtain Fig. 1 (top-right) and (bottom-right) are
the same: 10−3. Note that increasing the constant in the presence of salt and
pepper noise effectively disables deblurring, while only reducing the amplitude
of the noise.
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Salt and pepper noise removal is considered in the literature by itself. It is
commonly approached using median-type filters, see e.g [9, 13, 18]. Recently, a
promising variational method for impulse denoising was proposed by [7, 16, 17].

In the absence of unified algorithms for deblurring and salt-and-pepper noise
removal, the straightforward approach is to first denoise the image, then to
deblur it. This two-stage method is however prone to failure, especially at high
noise density. Image denoising using median-type filtering creates distortion that
depends on the neighborhood size; this error can be strongly amplified by the
deblurring process, even in regularized methods. Consider the example shown
in Fig. 2. The top-left image is the 256 × 256 Einstein image, blurred using a

Fig. 2. The failure of the two-stage approach to salt-and-pepper noise removal and
image deblurring. Top-left: Blurred image. Top-right: Blurred image contaminated by
salt and pepper noise. Bottom-left: The outcome of 3 × 3 median filtering, followed by
deblurring. Bottom-right: The outcome of 5×5 median filtering, followed by deblurring



110 L. Bar, N. Sochen, and N. Kiryati

pill-box kernel of radius 4. The blurred image with added salt and pepper noise
(noise density 0.11) is shown top-right. The outcome of 3 × 3 median filtering
followed by deblurring using the algorithm of [23] is shown bottom-left. At this
noise level, the 3 × 3 neighborhood size of the median filter is insufficient, the
noise is not entirely removed, and the residual noise is greatly amplified by the
deblurring process. If the neighborhood size of the median filter is increased to
5×5, the noise is fully removed, but the distortion leads to inadequate deblurring
(bottom-right).

In this paper we present a unified method for image deblurring and salt-
and-pepper noise removal. Using a variational technique, we introduce a cost
functional that represents the goals of deblurring, robustness to salt and pep-
per noise, and compliance with a piecewise-smooth image model. Experimental
results exhibit effective image recovery, with various blur models and noise levels.

2 Unified Variational Framework

Image deblurring is an inverse problem, that can be formulated as a functional-
minimization problem. Let Ω denote a rectangular domain in R2, on which the
image intensity function f : Ω → [0, 1] is defined. Ideally, the recovered image
f̂ satisfies

f̂ = arg min
f

∫
Ω

Φ(h ∗ f − g)dA, (1)

where Φ(·) is a metric representing data-fidelity. In the case of Gaussian noise,
a quadratic data-fidelity term is used:

Φ(h ∗ f − g) = (h ∗ f − g)2. (2)

The inverse problem represented by Eq. 1 is known to be ill-posed: small
perturbations in the data may produce unbounded variations in the solution. To
alleviate this difficulty, a regularization term, that reflects some a-priori prefer-
ences, is added. The functional to be minimized thus takes the form

F =
∫

Ω

Φ(h ∗ f − g)dA + αJ (f) (3)

where J (f) is the regularization operator and α is positive weighting scalar. Sev-
eral regularization terms were suggested in the literature, for example Tikhonov
[22] L2 smoothness, Total variation (TV) L1 norm [20, 21], modified L1 norm [1]
and recently an integrated TV and wavelet coefficients regularization [10, 11, 14].

In the presence of salt and pepper noise, the quadratic data-fidelity term (2) is
inadequate. In this paper, we use a robust (modified L1 norm) data-fidelity term

Φ(h ∗ f − g) =
√

(h ∗ f − g)2 + η2 , (4)

where η is a small constant. The modified L1 norm shares the robustness to
outliers of the L1 norm, but avoids the resulting PDE from being singular at
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zero. Brox et al [6] have recently used the modified L1 norm as a fidelity term
for precise optical flow estimation.

The regularization terms that we use represent preference for piecewise-
smooth images with simple edge sets. In the Mumford-Shah [15] functional,
piecewise smooth images are favored by the term

∫
Ω\K

|∇f |2dA, where K is
the edge set. The simplicity of the edge set is maintained in the Mumford-Shah
functional by the line integral term

∫
K
dσ.

Ambrosio and Tortorelli [2] used the Γ -convergence framework to approxi-
mate the irregular Mumford-Shah functional by a sequence of regular function-
als. The edge set K is approximated by a smooth auxiliary function v, where
v(x) ≈ 0 if x ∈ K and v(x) ≈ 1 otherwise. Mumford-Shah regularization, using
the Γ -convergence approximation, has been recently used in electrical impedance
tomography [19] and in blind image restoration [4].

The unified functional is

Fε(f, v) =
∫

Ω

Φ(h ∗ f − g) dA + β

∫
Ω

v2|∇f |2dA +

+ α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dA. (5)

The first term in the functional is the modified L1 data-fidelity term (4). The
second term favors a piecewise smooth solution and corresponds to the term∫

Ω\K
|∇f |2dA in the Mumford-Shah functional. The third term maintains the

simplicity of the edge set and corresponds to the line integral term
∫

K
dσ. Here

ε is a small positive constant, and α and β are positive weights.

3 Minimization Techniques

The objective functional (5) depends on the functions f (recovered image) and
v (approximated edge map). Minimization with respect to both f and v is car-
ried out using the Euler-Lagrange (E-L) equations (6) and (8), subject to the
Neumann boundary conditions ∂v/∂N = 0, ∂f/∂N = 0, where N denotes the
normal to the boundary.

δFε

δv
= 2β v |∇f |2 + α

(
v − 1

2ε

)
− 2 ε α∇2v = 0 (6)

δFε

δf
= Φ′(h ∗ f − g) ∗ h(−x,−y) − 2βDiv(v2 ∇f) = 0 (7)

Substituting the modified L1 norm (4) yields

δFε

δf
=

(h ∗ f − g)√
(h ∗ f − g)2 + η2

∗ h(−x,−y) − 2βDiv(v2 ∇f) = 0 . (8)

Studying the objective functional (5), it can be seen that it is convex and
lower bounded with respect to either of functions f and v if the other one is
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fixed. For example, given v, Fε is convex and lower bounded with respect to
f . Therefore, following [8], the alternate minimization (AM) approach can be
applied: in each step of the iterative procedure we minimize with respect to one
function and keep the other one fixed.

Obviously, Eq. (6) is a linear partial differential equation with respect to v.
On the contrary, (8) is a nonlinear integro-differential equation. Linearization of
this equation is carried out using the fixed point iteration scheme, as in [23, 8].
We set f = f l in the denominator, and f = f l+1 elsewhere, where l is the current
iteration number. Eq. (8) can thus be rewritten as

H(v, f l)f l+1 = G(f l), l = 0, 1, .... (9)

where H is the linear integro-differential operator

H(v, f l)f l+1 =
h ∗ f l+1√

(h ∗ f l − g)2 + η2
∗ h(−x,−y) − 2βDiv(v2 ∇f l+1)

and
G(f l) =

g√
(h ∗ f l − g)2 + η2

∗ h(−x,−y).

Note that (9) is now a linear integro-differential equation in f l+1.
The two E-L equations (6) and (8) have now become two linear PDE’s, that

can be represented by two systems of linear equations. These systems are solved
in alternation. This leads to the following iterative algorithm:

Initialization: f0 = g, v0 = 1.

1. Solve the Helmholtz equation for vn+1

(2β |∇fn|2 +
α

2ε
− 2α ε∇2) vn+1 =

α

2ε

2. Set fn+1,0 = fn and solve for fn+1 (iterating on l)

H(vn+1, fn+1,l)fn+1,l+1 = G(fn+1,l) (10)

3. if (||fn+1 − fn||L2 < ε1||fn||L2) stop.

Here ε1 is a small positive constant. Steps 1 and 2 both call for a solution of a
system of linear equations. Step 1 was implemented using the Minimal Residual
algorithm [24]. As for step 2, following Vogel and Oman [23], Eq. (10) can be
expressed in a quasi-Newton like form

fn+1,l+1 = fn+1,l −
[
H(vn+1, fn+1,l)

]−1
R(vn+1, fn+1,l) (11)

where

R(v, f) =
(h ∗ f − g)√

(h ∗ f − g)2 + η2
∗ h(−x,−y) − 2βDiv(v2 ∇f)
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and H(·, ·) is the approximation of the Hessian operator. It can be shown that the
operator H(·, ·) is self-adjoint and positive definite. Consequently H(·, ·)−1R(·, ·)
in (11) was computed via the Conjugate Gradients method.

Let fij denote the discretized image function. The forward and backward
finite difference approximations of the derivatives ∂f(x, y)/∂x and ∂f(x, y)/∂y
are respectively denoted by Δx

±fij = ±(fi±1,j−fij) and Δy
±fij = ±(fi,j±1−fij).

Hence, the discrete form of Eq. (6) is

2βvij

[
(Δx

+fij)2 + (Δy
+fij)2

]
+ α · vij − 1

2ε
− 2αε

(
Δx

−Δ
x
+vij +Δy

−Δ
y
+vij

)
= 0,

and Div(v2 ∇f) in Eq. (8) is approximated by(
Δx

+(v2
ijΔ

x
−) +Δy

+(v2
ijΔ

y
−)
)
fij .

In the discrete case, the Neumann boundary conditions were implemented
as follows. The observed image was extended by adding margins that are a few
pixels wide. These margins were obtained by replicating the one-pixel thick outer
frame of the image. The margins were then convolved with the blur kernel. To
avoid artifacts, in the presence of salt and pepper noise, care should be taken
to ensure that the outer frame of the image is noise free. This limited task can
easily be achieved using a median filter.

All convolution procedures were performed in the Fourier Transform domain.
The algorithm was implemented in the MATLAB environment.

4 Experimental Results

The performance of the algorithm is presented in Figs. 3, 4 and 5. Fig. 3 (left) is a
blurred and noisy version of the Einstein image. The blur kernel was a pill-box of

Fig. 3. Deblurring in the presence of salt and pepper noise. Left: Source image, blurred
with a pill-box kernel of radius 4, and contaminated by noise of density 0.11. Right:
Recovered image, using the suggested algorithm
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Fig. 4. Left column: The Lena image, blurred with a pill-box kernel of radius 3, and
contaminated by salt and pepper noise. The noise densities are (top to bottom) 0.01,
0.1 and 0.3. Right column: The corresponding recovered images
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Fig. 5. The case of motion blur. Top-left: Blurred and noisy image. Top-right: Restora-
tion using the proposed method. Bottom-left: The outcome of 3 × 3 median filtering
followed by Lucy-Richardson restoration (Matlab: deconvlucy). Bottom-right: The out-
come of 5 × 5 median filtering followed by Lucy-Richardson restoration

radius 4; the noise density was 0.11. Fig. 3 (right) is the outcome of the suggested
method. The parameters were β = 0.5, α = 0.5, ε = 0.1. The superiority of the
proposed method, with respect to the sequential one (Fig. 2), is clear.

In all the examples in this section, the convergence tolerance of ε1 = 1 ·
10−4 was reached with 3-5 external iterations (over n). The number of internal
iterations (over l) was set to 5. The constant η (Eq. 4) was set to 10−4.

The examples presented in Fig. 4 demonstrate the performance of the algo-
rithm at a variety of noise levels. The images in the left column were all blurred by
a pill-box kernel of radius 3. The noise densities were, from top to bottom, 0.01,
0.1 and 0.3. The corresponding recovered images are shown in the right column.
Despite the large variability of the noise level, the stability of the algorithm al-
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lowed to use the same parameter set in the three cases: β = 0.5, α = 0.5, ε = 0.1,
as in the previous example.

Recovery of motion blur in the presence of salt and pepper noise is demon-
strated in Fig. 5. The 256 × 256 cameraman image was blurred by a motion
blur kernel of length=8, oriented at an angle θ = 25o with respect to the hori-
zon. The blurred image was further contaminated by salt and pepper noise of
density 0.1 (top-left). The outcome of the method suggested in this paper (with
β = 0.6, α = 0.01, ε = 0.1) is shown top-right. The inadequacy of the sequential
strategy, of median filtering followed by conventional deconvolution is demon-
strated in the bottom row. The left image in that row is the outcome of 3 × 3
median filtering followed by the well known Lucy-Richardson restoration (Mat-
lab: deconvlucy). The right image in the bottom row was obtained in a similar
way, but with a 5 × 5 median filter.

5 Discussion

We presented a method for image deblurring in the presence of salt and pep-
per noise. Our unified approach to deblurring and outlier removal is novel and
unique.Experimental results demonstrate the superiority of the suggestedmethod
with respect to a sequential approach, in which median-based noise removal and
image deconvolution are separate steps.

The algorithm is fast, robust and stable. Computation time for 256 × 256
images is about 3 minutes, using interpreted MATLAB on a 2GHz PC. The
robustness of the algorithm is demonstrated by the fact that similar parameters
can be used in the processing of different images. For example, the same param-

Fig. 6. Approximated edge maps obtained as a by-product of the restoration process.
Left: The v-function that corresponds to the deblurring of the Lena image with a
pill-box kernel and noise density 0.1. Right: The v-function that corresponds to the
deconvolution of the Cameraman image with motion-blur and noise density 0.1
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eter were used in Fig. 3 and in the three cases shown in Fig. 4. Furthermore,
note the fast numerical convergence in our experiments.

In the variational approach, image deblurring in the presence of noise is
expressed as a functional minimization problem. The functional consists of a
data fidelity term and a regularization term, that stabilizes the inherent ill-
posedness of the image deconvolution problem. The data fidelity term used in
this study is the modified L1 norm. It is more robust than the common L2 norm
for images contaminated by outliers, and yet it is still differentiable and convex.

Elements from the Mumford-Shah segmentation functional, in the Γ -
convergence formulation, served as the regularization term. They reflect the
profound piecewise-smooth image model. Unlike total variation, the alterna-
tive edge-preserving stabilizer, the selected regularization term does not induce
nonlinearity beyond that of the fidelity term. An additional advantage of this
method is the production of the auxiliary function v, that is an approximated
edge map corresponding to the image. For example, Fig. 6 shows the v-maps
obtained during the processing of the blurred and noisy Lena (pill-box blur,
Fig. 4) and Cameraman (motion-blur, Fig. 5) images. Finally, Mumford-Shah
regularization has profound theoretical advantages with respect to other edge
preserving methods. These aspects will be discussed in the full-length version of
this paper.
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Abstract. This paper presents a method for three-dimensional (3D)
segmentation of blood vessels, i.e. determining the surface of the vessel
wall, using a combination of velocity data and magnitude images ob-
tained using phase contrast MRI. In addition to standard MRI images,
phase contrast MRI gives velocity information for blood and tissue in
the human body. The proposed method uses a variational formulation
of the segmentation problem which combines different cues; velocity and
magnitude. The segmentation is performed using the level set method.
Experiments on phantom data and clinical data support the proposed
method.

1 Introduction

Magnetic Resonance Imaging (MRI) provides three-dimensional images that are
useful for diagnostic purposes. Phase contrast MRI provides additional velocity
measurements that can be used for analysis of the blood flow and tissue mo-
tion. This paper presents a method for 3D segmentation of blood vessels. After
segmentation, when the shapes of the vessels have been determined, volumetric
flow data can be obtained from the velocity data. Computer aided segmentation
is a well studied problem within medical image analysis and have great impact
on diagnostic performance. In the case of 3D images and dynamic images it is
of special importance because of the rather time-consuming task of manually
segmenting huge amounts of data. Blood volume, pressure and velocity of the
blood flow and the motion and shape of the vessel walls are examples of useful
measurements that can aid the diagnosis and are also important for research
within the medical field.

This paper deals with the problem of segmentation of moving and deforming
vessels using velocity and intensity data. This covers many typical cases for med-
ical images taken for diagnostic purposes, such as dynamic cardiac images. Many
different methods have been proposed to analyze and extract shape information
from cardiac images and 3D model-based methods have shown to improve the
diagnostic value [1].
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The most basic approach to segmentation is to threshold the images, cf.
[2]. However, this method only works on very simple images. Later approaches
makes use of moving interfaces, e.g. snakes and active contours, cf. [3] and the
geodesic active contours [4]. During the latest years level set implementations
have become popular since they can handle global properties, change of topology
and are based on a solid mathematical framework, cf. [5, 6].

The level set method [7] is a popular technique for representing and tracking
dynamic interfaces. The surface is represented implicitly as the zero level set of
a function. The sign of the level set function gives a natural partitioning and
is frequently used in segmentation. Our segmentation problem is solved using a
variational level set framework. The optimal solution, i.e. the optimal position
of the surface separating the blood from the vessel walls, corresponds to the
minimum of a functional.

1.1 Relation to Previous Work

Aligning curves and surfaces to image gradient data have been analyzed in great
detail in e.g. [8] in a geodesic active contour framework where curves are aligned
to edges taking into account both direction and magnitude of the gradient.

In [9] blood is segmented in cardiac phase contrast MR images using the
fact that the heart wall has a periodic motion and resumes its position after a
completed heart cycle. The method is based on a particle trace technique for
time-resolved 3D velocity vector fields, combined with magnitude image data.
In [10] the myocardium is segmented from MRI intensity and phase contrast
images. The segmentation is performed in 2D images using level set curve evo-
lution. Three different constraints determine the curve motion, the intensity
gradient, the velocity magnitude and the coherence of the velocity direction. For
a general variational method using image intensity variations as a cue in segmen-
tation as in the proposed method but in a statistical framework cf. [11]. In [12]
segmentation of curvilinear structures in MR angiography images is performed
using evolution techniques for implicit curves. In [13] blood vessels are segmented
from MR angiography images using the criterion that the blood vessel boundary
should be orthogonal to a vector flow field and thus minimizes the flux through
the surface. Tubular structures are segmented from standard MRI in [14]. The
method presented in [15] handles the additional difficulty of segmenting vessels
with non-stationary walls.

1.2 Contribution of the Paper

This paper presents a method for 3D segmentation of blood vessels and determin-
ing the surface of the vessel wall by combining the velocity vector field obtained
from phase contrast MRI measurements with MRI intensity gradients. The seg-
mentation is formulated as a variational problem combining a novel functional
incorporating velocity data such as velocity magnitude and discontinuities in
velocity direction, using the discontinuity measure from [15], with an alignment
functional introduced by [8]. The proposed method improves on the performance
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of the method presented in [15] especially by incorporating intensity information
as well as obtaining higher numerical stability.

2 Background

2.1 Phase Contrast MRI

Phase contrast MRI is based on the property that a uniform motion of tissue
in a magnetic field gradient produces a change in the MR signal phase, Φ. This
change is proportional to the velocity of the tissue, v. The MR signal from a
volume element accumulates the phase [16]

Φ(r, T ) = γB0T + γv ·
∫ T

0
G(r, t)t dt

= γB0T + γv · G ,

during time T , where B0 is a static magnetic field, γ the gyro-magnetic ratio
and G(r, t) is the magnetic field gradient. Notice that G is exactly the first
moment of G(r, t) with respect to time. If the field gradient is altered between
two consecutive recordings, then by subtracting the resulting phases

Φ1 − Φ2 = γv · (G1 − G2) ,

the velocity in the (G1 −G2)-direction is implicitly given. In this way a desired
velocity component can be calculated for every volume element simultaneously.
To construct the velocity vector in 3D, the natural way is to apply appropriate
gradients to produce the x-, y- and z-components respectively.

2.2 Measure for Velocity Discontinuities

The velocity can be expressed in vector form v = (vx, vy, vz), and the velocity
magnitude is

|v| =
√

v · v =
√

v2
x + v2

y + v2
z .

Fig. 1. Examples of the velocity vector field for one horizontal slice of the total volume.
(left to right) vx, vy, and vz-velocity component and velocity magnitude |v|
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Examples of the individual components are shown in Figure 1.
There are two important reasons why the velocity field v should be used

for segmentation. First, v is discontinuous across the vessel boundary since the
fluid inside moves parallel to the boundary surface and the walls move roughly
normal to the boundary. Second, it has been noted, e.g. by [10], that the velocity
magnitude, |v|, of the fluid is large compared to the magnitude of the wall
motion. These observations laid the foundation for the variational formulation
introduced in [15] where the following discontinuity measure was introduced.

To encode the information in the vector field v a field of matrices Mv =
Mv(x), x ∈ R3 was introduced, where Mv is the positive semi-definite, sym-
metric matrix defined by

Mv = vvT =

⎡⎣vx

vy

vz

⎤⎦ [vx vy vz

]
=

⎡⎣ v2
x vxvy vxvz

vxvy v2
y vyvz

vxvz vyvz v2
z

⎤⎦ .

Mv has rank one with eigenvalues λ1 = |v|2 and λ2 = λ3 = 0. Let W ≥ 0 be
a weight function (typically a Gaussian filter Gσ) and define the average matrix
field to be the convolution

Mv = W ∗ Mv ,

taken componentwise. We denote this matrix field the density matrix field. De-
pending on the values of v in the region determined by W there can be either
i) one dominant velocity direction, ii) two dominant directions or iii) three
equally dominant directions at every point. This is reflected in the magnitude of
the eigenvalues of Mv.

To discriminate i) from ii) and iii), the following real valued function is
introduced, inspired by Harris [17],

R =
4λ1λ2

(λ1 + λ2)2
,

where λ1 ≥ λ2 ≥ 0 are the two largest eigenvalues of Mv and 0 ≤ R ≤ 1. For
case i) R ≈ 0 and for ii) and iii) R will be large, i.e. R ≈ 1. It was shown in [15]
that this measure is an excellent detector for discontinuities in v. Some examples
are shown in Figure 2.

2.3 Level Set Formulation

The level set method was introduced in [7] as a tool for capturing moving in-
terfaces. The time dependent surface Γ (t) is implicitly represented as the zero
level set of a function φ(x, t) : R3 × R+ → R as

Γ (t) = {x ; φ(x, t) = 0} ,

where φ is defined such that

φ(x, t)

⎧⎨⎩< 0 inside Γ
= 0 on Γ
> 0 outside Γ .
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Fig. 2. Some examples of the discontinuity measure R applied to velocity data of the
heart (left) and aorta (right) with white indicating high discontinuities

Using the definition above, the outward unit normal n and the mean curvature
κ are1

n =
∇φ

|∇φ| and κ = ∇ · ∇φ

|∇φ| .

The zero set of φ(x, t) represents Γ (t) at all times t. This means that φ(x(t), t) ≡
0 for a curve x(t) ∈ Γ (t). Differentiating with respect to t gives

φt + u · ∇φ = 0 ⇔ φt + un|∇φ| = 0 , (1)

where u = dx(t)/dt and un is the normal component of the surface velocity.
To move the surface according to some derived velocity, a PDE of the form (1)
is solved. One of the advantages of this representation is that the topology of
the surface is allowed to change as the surface evolves, thus making it easy to
represent complex surfaces that can merge or split so that multiple objects are
easily handled. For a more thorough treatment of level set surfaces cf. [5, 6].

3 Variational Formulation

In this section the segmentation problem is formulated as a variational prob-
lem. Given velocity data, basic dynamic characteristics of the flow and intensity
images, the problem consists of finding the boundary between the blood and
the vessel walls. This boundary should be a closed surface within the domain of
interest i.e. within the measured volume. The segmentation is then determined
by the interior of the surface representing the vessels. The interior of Γ will be
denoted Ω and the exterior Ωc. Using both velocity and intensity information
an energy functional is introduced and minimized using the level set framework.

3.1 Velocity Based Terms

The first part of the energy functional is based on the velocity information given
by phase contrast MRI. A first observation is that tissue moves much slower

1 Here ∇φ denotes the gradient of φ, ∇φ = ( ∂φ
∂x

, ∂φ
∂y

, ∂φ
∂z

), and ∇· denotes the diver-
gence.
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than blood on average. Therefore the final surface should enclose as much flow
as possible, i.e. the flow outside the surface should be minimized.

The discontinuity measure, described in Section 2.2, has shown to obtain
higher values outside blood vessels than inside, not just high values on the vessel
walls, as assumed in [15]. This is due to a smaller influence by image noise in
high velocity areas, such as within blood vessels, than in relatively stationary
areas where velocity noise to a larger extent introduce discontinuities. Based on
this insight together with the fact that flow inside blood vessels is continuous
the discontinuity measure should be minimized inside the surface.

To summarize the arguments above the desired surface should enclose as
much of the flow in v as possible and the flow should be continuous inside
the enclosing surface. This leads to the minimization of the following energy
functional

EV(Γ ) =
∫

Ωc

χ(v)dx︸ ︷︷ ︸
flow outside the surface

+
∫

Ω

R(x)dx︸ ︷︷ ︸
discontinuities inside the surface

, (2)

where Ω is the interior and Ωc the exterior of the surface as mentioned above,
R(x) is the measure for discontinuities from Section 2.2 and χ(v) is a C2 ap-
proximation to the translated Heaviside function defined by χ(v) = χ(|v|) =
H(|v| − δ) = Hδ(|v|), where δ ∈ R+. Here H is defined as in [18]

H(x) =

⎧⎨⎩1 x > ε
0 x < −ε
1
2 [1 + x

ε + 1
π sin(πx

ε )] |x| ≤ ε .

This is commonly used in level set based segmentation, cf. [19]. The definition
above will make χ(v) equal to zero for very low velocities and one otherwise.
This makes it an approximate characteristic function for v and the measure of
the first integral in (2) is then in volume units.

Representing the surface using the zero level set of a function φ, the energy
(2) becomes

EV(φ) =
∫
R3

χ(v)H(φ)dx +
∫
R3

R(x)(1 − H(φ))dx , (3)

where H(φ) is again the approximation to the Heaviside function and therefore
a characteristic function for Ωc and (1 − H(φ)) is analogously a characteristic
function for Ω. From the Euler-Lagrange equation for (3), the motion PDE for
the surface based on velocity alone, as a gradient descent, is then

φt = (−χ + R)|∇φ| ,

where φt denotes derivative with respect to the evolution time.
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3.2 Intensity Based Terms

The second part of the energy functional is based on the given MRI intensity
images. Especially the gradients in every point of the intensity images are im-
portant and indicate tissue changes. Inside blood vessels the image intensity is
relatively uniform, making the image gradient small in magnitude. At the bor-
ders of the vessels there is a jump in the intensity resulting in larger gradients.
The resulting surface is supposed to be aligned to this vessel border, i.e. the sur-
face outward normal should be parallel (or anti-parallel) to the image gradient
at every point and positioned so that the magnitude of the image gradient |∇I|
is large. This results in the following energy functional

EI(Γ ) = −
∫

Γ

|∇I(x) · n|dS︸ ︷︷ ︸
normal component of gradient at the surface

,

which has been analyzed in e.g. [8, 20]. Using Gauss’ theorem this becomes

EI(Γ ) = − sign(∇I(x) · n)
∫

Γ

(∇I(x) · n)dS

= − sign(∇I(x) · n)
∫

Ω

ΔI(x)dx , (4)

where (∇I · n) is assumed not to change sign on the surface. If the surface
Γ is initialized completely inside or completely outside the sought volume and
the intensity images are sufficiently smooth this sign assumption is justified.
Representing the surface using the zero level set of a function φ as in Section 3.1,
the energy (4) becomes

EI(φ) = − sign
(
∇I(x) · ∇φ

|∇φ|

)∫
R3

ΔI(x)(1 − H(φ))dx , (5)

where (1 − H(φ)) is the characteristic function of Ω. From the Euler-Lagrange
equation for (5) the motion PDE for the surface based on intensity alone is

φt =
[
− sign

(
∇I · ∇φ

|∇φ|

)
ΔI

]
|∇φ| .

3.3 Total Energy

The combined information from Section 3.1 and 3.2 results in an energy func-
tional containing both velocity and image intensity dependent terms

ETot(Γ ) = EV + EI .

Using the above introduced notation this becomes

ETot(Γ ) =
∫

Ωc

χdx +
∫

Ω

Rdx − sign(∇I · n)
∫

Ω

ΔIdx , (6)
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where the terms are initially scaled to the same order of magnitude. Using the
level set framework on (6) results in the following functional

ETot(φ) =
∫
R3

χH(φ) +
[
R − sign

(
∇I · ∇φ

|∇φ|

)
ΔI

]
(1 − H(φ)) dx ,

which is a volume integral. From the Euler-Lagrange equation for the total energy
the motion PDE for the surface becomes

φt =
[
−χ + R − sign

(
∇I · ∇φ

|∇φ|

)
ΔI

]
|∇φ| . (7)

This equation is numerically relatively stable as opposed to the evolution equa-
tion given in [15] which can be seen as solving a backward heat equation. Despite
this some problems can occur due to the use of the Laplacian of the intensity
images in (7) and hence an additional regularizing term can sometimes be useful.

4 Experiments

The segmenting performance of the proposed variational method was tested on
both clinical phase contrast MRI data of the aorta as well as on a flow phantom.
The constant δ used in χ(v) as described in Section 3.1 is set from estimates of
the noise in the velocity data.

4.1 Clinical Data

The clinical data consisted of two full 3D volumes (36×31×20) of MRI intensity
data and phase contrast velocity data of the aorta respectively with a resolution
of 1.92×1.92×2.00mm3. Three images based on the intensity and velocity data
is shown in Figure 3. The resulting segmented vessel wall after using only the
two velocity based terms of the energy functional, i.e. the two first terms in
(6), is shown in 2D in Figure 4 superimposed on the corresponding magnitude,

Fig. 3. (left) Intensity image of the aorta, (middle) absolute value of the velocities
for the corresponding data, (right) discontinuity measure for the velocity data, white
indicating higher values
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Fig. 4. Segmented aorta by using velocity information only. (left) Intensity image of
the aorta with segmented vessel wall in white, (middle) absolute value of the velocities
for the corresponding data, (right) discontinuity measure for the velocity data, white
indicating higher values

Fig. 5. Segmented aorta by using both velocity and intensity information. (left) Inten-
sity image of the aorta with segmented vessel wall in white, (middle) absolute value of
the velocities for the corresponding data, (right) discontinuity measure for the velocity
data, white indicating higher values

absolute velocity and discontinuity measure images respectively. It is obvious
this velocity based variety of the proposed method is not able to produce an
optimal segmentation due to high velocity discontinuities to the lower right of
the aorta.

In the experiments resulting in Figure 5 the same data was treated but with
all three terms in (6) used. Clearly by using all three terms, i.e. utilizing inten-
sity information as well as velocity information, the resulting segmentation was
improved. The surface no longer being restrained by the high velocity disconti-
nuities to the lower right of the aorta.

The final result of the aorta segmentation using all terms in (6) is a surface
in 3D, a corresponding VRML model is shown in Figure 6.

4.2 Flow Phantom

The flow phantom consisted of a rubber hose containing flowing ion-enriched
water. The hose was submerged in stationary water of the same kind. The data
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Fig. 6. Different views of an aorta segmented by the use of both velocity and intensity
information. The shown segmented part of the aorta is approximately 4cm long

Fig. 7. Image sequence of an evolving surface, going from left to right and top to
bottom, segmenting a flow phantom by using both velocity and intensity information.
The surface is initialized as two spheres (top left)

sets were two full 3D volumes (110× 153× 59) of MRI intensity data and phase
contrast velocity data of the flow phantom respectively with a resolution of
1.00×1.00×2.00mm3. The time evolving 3D segmentation of the flow phantom
is shown in Figure 7 as an image sequence.

5 Conclusions

In this paper a method for 3D segmentation of blood vessels using a combination
of velocity and intensity data is introduced. The segmentation problem is for-
mulated in a variational level set setting with a functional derived from physical
properties of the data. The functional incorporates velocity magnitude, velocity
discontinuities as well as intensity variation. Initial tests on clinical data support
the proposed method by showing higher numerical stability and an increasing
tendency in segmentation performance in areas of high velocity noise as shown in
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the lower right of the segmented aorta in Figure 5. This experiment also proves
the ability of the method to segment regions with practically equal intensities
thanks to the velocity terms of the functional.

Future work will include e.g. integrating prior information using statistical
shape models [21, 22], analysis of methods for initialization and automatic meth-
ods for estimating parameters from the data.
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Abstract. Segmentation of the left ventricle in echocardiographic images is a task
with important diagnostic power. We propose a model-based approach that aims
at extracting the left ventricle for each frame of the cardiac cycle. Our approach
exhibits several novel elements. Modelling consists of two separate components,
one for the systolic and one for the diastolic moment. Segmentation is considered in
two steps. During the first step a linear combination of the systolic and the diastolic
model is to be recovered - that dictates the new model - along with a similarity
transformation that projects this model to the desired image features. During the
second step, a linear combination of the modes of variation for the systolic and
diastolic models is recovered for precise extraction of the endocardium boundaries.
The process is considered in the temporal domain where constraints are introduced
to couple information across frames and to lead to a smooth solution. Promising
results demonstrate the potentials of the presented framework.

1 Introduction

Cardiovascular diseases are a major health concern world-wide. The left ventricle and
in particular the endocardium is a structure of particular interest since it performs the
task of pumping oxygenated blood to the entire body. Echocardiographic apical views
when processed can determine the ejection fraction, a critical measure of the heart cycle.
While segmenting the ventricle in the systolic and diastolic frame could be sufficient to
provide such a measure, continuous tracking of the endocardium could further improve
diagnosis.

Portability and low acquisition cost are the most attractive elements of echocardio-
graphic imaging [14] while the presence of low signal-to-noise (SNR) ratio is an im-
portant limitation. Model-free segmentation techniques aim at separating the intensity
properties of the image entities and fail to cope with noise and speckle in echocardiog-
raphy. The use of prior knowledge that encodes the geometric form of the structure of
interest is a reasonable way to deal with corrupted data.

Prior art in echocardiography consists of data-driven [6] and model-based segmenta-
tion approaches [9, 1]. One can also separate the techniques that perform segmentation

� Research was carried out during the affiliation of the author with Siemens Corporate Research
from November 1999 to March 2003.
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in the polar [6] or in the raw space. Statistical/Bayesian formulations [6], active shape
and appearance models [4, 1, 17], snakes and active contours [9], deformable models and
templates [8] and level set techniques [2, 11] are well established techniques considered
to address the segmentation of the left ventricle in echocardiographic images.

In this paper, we propose an active shape-inspired variational framework for fast,
reliable and automatic segmentation of the endocardium for ultrasonic images. Our
approach involves modelling, extraction of primitives, rough segmentation and border
detection. We consider two separate model spaces, one for the diastolic and one for the
systolic case. We recover the average shape and the modes of variations for each model
through a Principal Component Analysis using a set of registered training examples.

Extraction of important primitives (ventricular walls, valve plane) that are used to
initiate the segmentation process is the first step towards automatic 2D+time segmenta-
tion. Then, a linear combination of the two average models (systolic & diastolic) and the
parameters of a similarity transformation between this new model and the image are in-
crementally recovered through a robust minimization. One should note that such a model
space is dynamic. The parameters of this transformation are constrained to be smooth in
the temporal domain. Precise endocardium segmentation is determined through a linear
combination of the moments of variation that describe training sets, the systolic and the
diastolic one. Such combination is constrained over time.

The remainder of this paper is organized as follows. In the next section, we address
shape registration and modelling of the left ventricle. Global segmentation that involves
a global transformation between the model-space and the image is presented in section
3 while local refinements are considered in section 4. Discussion and perspectives are
addressed in section 5.

2 Modelling the Geometric Structure of the Endocardium

Building compact representations from a set of examples is a well studied problem in
imaging and vision. The selection of appropriate models to represent all examples of the
training set within a common pose is a critical component of such a process. Once such
selection has been established, one would like to align all training examples to the same
pose. Then modelling can then be performed using well known statistical techniques.

2.1 Global Registration, Mutual Information and Implicit Representations

Registration of shapes [15] is an open, interesting and challenging problem in imaging,
vision and in particular in medical image analysis. Such application is not within the
scope of the report, and therefore the prior art will be omitted and the adopted technique to
address the problem will be briefly presented. Overviews of shape and image registration
techniques are available at [10, 15]. Details on the considered approach to align the
training examples can be found at [7]. Modelling requires global registration between
the samples in the training set and establishment of local correspondences between
them. Let us assume that a set of ground truth that consist of n components is available
[s1, s2, ..., sn]. Global alignment is equivalent with finding parametric transformations
Ai between the training set examples and a target shape s such that
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i ∈ [1, ...n] : Ai(s) = si

where s is the common pose to be recovered. An emerging way to represent shapes is
through the use of implicit representations. Such approaches are quite popular when the
task involves tracking moving interfaces [11]. Inspired by the work proposed in [12] we
represent shapes using distance transforms and implicit representations;

φi(ω) =
{

0, ω ∈ si

d(ω, si), otherwise

where ω is the pixel location and d(ω, si) the minimum Euclidean distance between this
pixel and the shape si.

The selected representation is translation/rotation invariant. Scale variations can be
considered to be global illumination changes in the space of distance transforms. There-
fore, registration under scale variations is equivalent with matching different modalities
that refer to the same structure of interest. Mutual information [3, 16] is an invariant
technique according to a monotonic transformation of the two input random variables.
The use of such criterion to perform shape registration within the space of distance
transforms was proposed in [7]. Such criterion is based on the global characteristics of
the structures of interest. In order to facilitate the notation let us denote: (i) the source
representation φi as f , and (ii) the target representation φ as g.

In the most general case, registration is equivalent with recovering the parameters
Θ = (θ1, θ2, ..., θN ) of a parametric transformation A such that the mutual information
between fΩ = f(Ω) and gA

Ω = g
(
A(Θ;Ω)

)
is maximized for a given sample domain

Ω;
MI(XfΩ , XgA

Ω ) = H
[
XfΩ

]
+ H

[
XgA

Ω

]
− H

[
XfΩ ,gA

Ω

]
whereH represents the differential entropy. Such quantity represents a measure of uncer-
tainty, variability or complexity and consists of three components: (i) the entropy of the
model, (ii) the entropy of the projection of the model given the transformation, and (iii)
the joint entropy between the model and the projection that encourages transformations
where f explains g. One can use the above criterion and an arbitrary transformation
(rigid, affine, homographic, quadratic) to perform global registration that is equivalent
with minimizing:

E(A(Θ)) = −MI(XfΩ , XgA
Ω ) = −

∫ ∫
R2

pfΩ ,gA
Ω (l1, l2)log

pfΩ ,gA
Ω (l1, l2)

pfΩ (l1)pgA
Ω (l2)

dl1dl2

where (i) pfΩ corresponds to the probability density in fΩ

(
[ΦD(Ω)]

)
, (ii) pgA

Ω cor-

responds to density in gA
Ω

(
[ΦS(A(Θ;Ω))]

)
, and (iii) pfΩ ,gA

Ω is the joint density.
Such framework can account for various global motion models. We consider similarity
registration between the training examples for the endocardium shapes.

Registration examples for the particular class of endocardium shapes are shown in
[Fig. (1)]. Once training examples have been aligned, one should address the problem of
recovering point(element)-wise correspondences. Such a deformation fieldL(Θ;x) can
be recovered either using standard optical flow constraints or through the use of warping
techniques like the free form deformations method [13], which is a popular approach in
graphics, animation and rendering [5].
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Fig. 1. Global Registration on the Space of Implicit Representations Using Mutual Information

2.2 Local Registration, Free Form Deformations and Implicit Representations

The essence of FFD is to deform an object by manipulating a regular control lattice P
overlaid on its volumetric embedding space. Opposite to optical flow techniques, FFD
techniques support smoothness constraints, exhibit robustness to noise and are suitable
for modelling large and small non-rigid deformations. Furthermore, under certain con-
ditions, it can support a dense registration paradigm that is continuous and guarantees a
one-to-one mapping.

We consider an Incremental Cubic B-spline Free Form Deformation (FFD) to model
the local transformation L. To this end, dense registration is achieved by evolving a
control lattice P according to a deformation improvement [δP ]. The inference problem
is solved with respect to - the parameters of FFD - the control lattice coordinates.

Let us consider a regular lattice of control points

Pm,n = (P x
m,n, P

y
m,n); m = 1, ...,M, n = 1, ..., N

overlaid to a structure

Γc = {x} = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y }

in the embedding space that encloses the source structure. Let us denote the initial
configuration of the control lattice as P 0, and the deforming control lattice as P =
P 0+δP . Under these assumptions, the incremental FFD parameters are the deformations
of the control points in both directions (x, y);

Θ = {(δP x
m,n, δP

y
m,n)}; (m,n) ∈ [1,M ] × [1, N ]
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Fig. 2. Local Registration on the Space of Implicit Representations Using Free Form Deformations

The motion of a pixel x = (x, y) given the deformation of the control lattice from P 0

to P , is defined in terms of a tensor product of Cubic B-spline:

L(Θ;x) = x + δL(Θ;x) =
3∑

k=0

3∑
l=0

Bk(u)Bl(v)(P 0
i+k,j+l + δPi+k,j+l)

where i =  x
X ·M!+1, j =  y

Y ·(N!+1, u = x
XM− x

X ·M! and v = y
Y N− y

Y ·N!.
The terms of the deformation component refer to (i) δPi+l,j+l, (k, l) ∈ [0, 3]× [0, 3]

consists of the deformations of pixel x’s (sixteen) adjacent control points, (ii) δL(x) is
the incremental deformation at pixel x, and (iii) Bk(u) is the kth basis function of a
Cubic B-spline (Bl(v) is similarly defined).

Local registration now is equivalent with finding the best latticeP configuration such
that the overlaid structures coincide. Since structures correspond to distance transforms
of globally aligned shapes, the Sum of Squared Differences (SSD) can be considered as
the data-driven term to recover the deformation field L(Θ;x));

Edata(Θ) =
∫∫

Ω

(
ΦD̂(x) − ΦS(L(Θ;x))

)2
dx

The use of such technique to model the local deformation registration component
introduces in an implicit form some smoothness constraint that can deal with a limited
level of deformation. In order to further preserve the regularity of the recovered regis-
tration flow, one can consider an additional smoothness term on the deformation field
δL. We consider a computationally efficient smoothness term:

Esmoothness(Θ) =
∫∫

Ω

(∣∣∣∣∣∣∣∣∂δL(Θ;x)
∂x

∣∣∣∣∣∣∣∣2 +
∣∣∣∣∣∣∣∣∂δL(Θ;x)

∂y

∣∣∣∣∣∣∣∣2
)
dx
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Such smoothness term is based on a classic error norm that has certain known limitations.
One can replace this smoothness component with more elaborated norms. Within the
proposed framework, an implicit smoothness constraint is also imposed by the Spline
FFD. Therefore there is not need for introducing complex and computationally expensive
regularization components.

The Data-driven term and the smoothness constraints term can now be integrated
to recover the local deformation component of the registration and solving the corre-
spondence problem: E(Θ) = Edata(Θ) + αEsmoothness(Θ), where α is the constant
balancing the contribution of the two terms. The calculus of variations and a gradient
descent method can be used to optimize such objective function [7]. The performance
of the proposed framework on the Systolic Left Ventricle dataset is demonstrated in
[Fig. (2)].

2.3 Composite Model Building

Let us assume that two sets of ground truth that consist ofn components are available, one
for the diastolic [d1,d2, ...,dn] and one for the systolic case [s1, s2, ..., sn]. Without loss
of generality, one can assume that the elements of each set consists of m points defined
on the Euclidean plane

(
di = (xi

1,x
i
2, ...,x

i
m)
)

and are registered to a common pose.
Principle Component Analysis (PCA) can be applied to capture the statistics of the

corresponding elements across the training examples. PCA refers to a linear transforma-
tion of variables that retains - for a given number o1, o2 of operators - the largest amount
of variation within the training data, according to:

d = d +
o1∑

k=1

λd
k (ud

k,v
d
k), s = s +

o2∑
k=1

λs
k (us

k,v
s
k)

where d (resp. s) is the mean diastolic shape, o1 (resp. o2) is the number of retained
modes of variation, (ud

k,v
d
k) (resp. (us

k,v
s
k)) are these modes (eigenvectors), and λd

j

(resp. λs
j) are linear factors within the allowable range defined by the eigenvalues.

Once average models for the systolic and diastolic cases are considered, one can
further assume that these models are registered, therefore there is an one-to-one corre-
spondence between the points that define these shapes. Let

(
d = (xd

1,x
d
2, ...,x

d
m)
)

be
the diastolic average model and (s = (xs

1,x
s
2, ...,x

s
m)) the systolic one. Then one can

define a linear space of shapes as follows:

c(α) = α s + (1 − α) d, 0 ≤ α ≤ 1

One then can define a linear space of deformations that can account for the systolic, the
diastolic frame as well as the frames in between:

c(α, λd
k, λ

d
s) = c(α) +

o1∑
k=1

λd
k (ud

k,v
d
k) +

o2∑
k=1

λs
k (us

k,v
s
k)

The most critical issue to be addressed within this process is the registration of the
training examples as well as the registration of the systolic and diastolic average shapes.
The approach proposed in [7] that performs registration in the implicit space of distance
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functions using a combination between mutual information criterion and a free-form
deformation principle is used. Such an approach can provide one-to-one correspondences
between shapes for any given number of sampling elements. The resulting composite
model is of limited complexity, can account for the systolic and the diastolic form of the
endocardium as well as for the frames between the two extrema.

2.4 Composite Active Shape Models

Active shapes assume an average model, a certain number of modes of variation and the
existence of corresponding image features. Without loss of generality one can assume
that for each point j on the model space c(α, λd

k, λ
d
s) the corresponding image point has

been recovered yj . Then, the objective is to recover a set of parameters that will move
each point in the model space cj to the corresponding location in the image space yj .
Such a task is performed in two stages where first a global transformation T between
the model and the image is recovered that minimizes:

Edata(α, T ) =
m∑

j=0

ρ (||T (cj(α)) − yj ||)

according to some metric function ρ where T is a global transformation, similarity in
our case

T (x, y) =
[

a b
−b a

] [
x
y

]
+
[

c
d

]
that consists of a translation, a rotation and a scaling component andα defines the model
space. The selection of the transformation should be consistent with the one adopted
during the learning stage. It is important to point out that the model is not static since
refers to a linear combination of the systolic and the diastolic model. Therefore, the
process aims to recover simultaneously the combination of these two models that better
accounts for the shape of the true data points and the optimal transformation between
the model and the image space.

One can recover these parameters through an incremental update of the transforma-
tion. The corresponding location of the model points in the image plane could be used to
improve the segmentation be seeking an incremental update on the transformation T (; )
such that the projection of the cj moves closer to its true position yj in the image.

3 Rough Segmentation of the Endocardium

The left ventricle is bounded on each side by the walls which tend to appear brighter
in the ultrasound clip due to the various reflections from the tissue. In apical (both 2
chamber and 4 chamber views), the left ventricle is bounded on the bottom side by the
mitral valve which connects it to the left atrium. The mitral valve is constantly moving
(opening and closing) and its reflections are well recovered by the acquisition process.

We consider two parabolic equations to recover a rough approximation/detection of
these walls which are the areas with the highest brightness. The parabola model the walls
of the left ventricle but also outline the left atrium. The next step is to extract and track
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the position of the mitral valve that separates the left ventricle and the left atrium. The
approach relies on the observation that if the valve is closed, the two heart chambers
are clearly separated while if the valve is open, the two chambers are connected. Two
ellipses are used to model the ventricle and the atrium and the plane that best separates
these ellipses and is consistent over time is considered to be the valve plane.

3.1 Recovering Correspondences

The most critical part within the presented framework is solving the correspondence
problem, between the actual projection of the model and the optimal position. Such
task within the active shape model is solved using a normalized intensity profile in the
normal direction. We consider a probabilistic formulation of the problem. One would
like to recover a density pborder(; ) that can provide the probability of a given pixel ω
being at the boundaries of the endocardium. Within the considered framework, one can
constrain the search in the direction normal to the model projection. The ventricular area
consists of blood pool and heart walls. Endocardium border detection is equivalent with
finding the boundaries between these two classes.

A description on the statistical properties of the blood pool as well as cardiac wall
can be recovered. Let pwall(; ) being the probability of a given intensity being part of the
endocardium walls and pblood(; ) the density the describes the visual properties of the
blood pool. Then or correspondences between the model and the image are meaningful
in places where there is a transition (wall to blood pool) between the two classes. Given
a local partition one can define a transition probability between these two classes. Such
partition consists of two line segments [L(T (xj)),R(T (xj))] that live in the normal
direction [T (Nj)] of the model curve at element T (xj). The origins of these line seg-
ments is the point of interest T (xj), the have the same slope and opposite directions.
One can assume that this point is a projection of the model point xj :

pborder(T (xj)) = p ([wall|ω ∈ L(T (xj))] ∩ [blood|ω ∈ R(T (xj))])

These conditions can be considered independent, leading to the following form for the
border density:

pborder(T (xj)) = p (wall|ω ∈ L(T (xj))) p (blood|ω ∈ R(T (xj)))
=

∏
ω∈L pwall(I(ω))

∏
ω∈R pblood(I(ω))

One can evaluate this probability under the condition that the blood pool and wall density
functions are known. The use of -log function can be considered to overcome numerical
constraints, that is equivalent with finding the minimum of:

E(φ) =
∑

ω∈L(φ)

λ|I(ω)| +
∑

ω∈R(φ)

(I(ω) − μ)2

2σ2

after dropping out the constant terms where blood pool is modelled using an exponential
distribution (λ) and tissue/walls using a Gaussian distribution (μ, σ). Thus, the most
probable correspondence is recovered through the evaluation ofE(φ) where φ is a point
in the line defined by the projected normal. The search space for φ is considered to be
all image locations respecting two conditions; (i) live in the normal T (Nj), and (ii)
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their distance from the current projection T (cj(α)) is within a given search window.
Once such correspondences were established the mechanism presented in [Sec. 2.4] is
considered to determine the optimal solution through the estimation of the parameters
of the transformation (αt, Tt).

3.2 Constraints on the Motion and the Position of the End-Valve Points

The motion of the valve plane is very critical to the operation of the endocardium. Such
motion is consistent over time, and quite often exhibits a symmetric form. Without loss
of generality, one can assume that the first c0(α) and the last point cm(α) of the model
correspond to the valve end points. The displacement of these points from one frame to
the next can be recovered in an implicit form.

Let (αt−1, Tt−1) be the model and its transformation to the image plane towards the
desired image features in the previous frame. Then, given some estimates on the current
solution (αt, Tt) one can constrain the implicit motion of the valve points as follows:

Evalve motion(αt, Tt) =

ψ (|Tt−1(c0(αt−1)) − Tt(c0(αt))|) + ψ (|Tt−1(cm(αt−1)) − Tt(cm(αt))|)

where ψ is an error metric - the Euclidean in our case - Tt−1(cm(αt−1)) is the position
of the valve point at frame t − 1, Tt(cm(αt)) the corresponding projection at frame t
and Tt−1(cm(αt−1)) − Tt(cm(αt)) the displacement of this point from one frame to
the next. Such term will constrain the motion of the valve plane to be smooth over time.

Such a term accounts for the relative motion of the valve points but not for their actual
position. To this end, one can introduce constraints forcing the model projections of the
valve points to be close to the valve-plane earlier recovered (αvalve x + βvalve y +
γvalve = 0). The distance between the current positions of the model valve points
(c0(α), cm(α)) and their projections to the valve-plane (p0(t),pm(t)) is a term to
be minimized;

Evalve projection(αt, Tt) = ψ (|p0(t) − Tt(c0(αt))|) + ψ (|pm(t) − Tt(cm(αt))|)

One can consider a step further by recovering the exact position of the valve points
in the image and then use these positions during the segmentation process. To this end,
a model is built on the image profile for the left and the right end-valve points using
an image patch cantered at the ground truth position of the valve. Then, these patches
are normalized and an average model is recovered. Standard matching techniques are
considered within a search area in the vicinity of the projected valve position to recover
the most prominent valve points.

3.3 Smoothness Constraints on the Transformation Parameters

The motion of the ventricle also should fulfil certain constraints. It has to be periodic,
exhibit a shrinking between the diastolic and the systolic frame and an expansion for the
last part of the cardiac cycle. Such conditions can be imposed in various forms. Direct
motion constraints (like the one earlier considered) focus on the distance of a model point
in two consecutive frames. Such constraints though do not encode the continuity of the
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model. We consider an implicit form, where continuity is imposed on the parameters of
the model (α(t)) and the transformation (T (t));

Esmoothness(αt, Tt) =
τ∑

k=−τ

⎛⎝ω (|α(t) − α(t+ k)|) + w
∑
p∈T

ω (|p(t) − p(t+ k)|)

⎞⎠
where p ∈ T is the set of the similarity transformation parameters (a, b, c, d), ω a
monotonically decreasing function and [−τ, τ ] is the interval where continuity on the
rough segmentation parameters is imposed. Such a term will keep distance small between
the registration parameters from the model space to the image within a couple of frames
that is equivalent with constraining the motion of the endocardium from one frame to
the next.

The objective function is minimized using a two-stage robust incremental estimate
technique. The calculus of Euler-Lagrange equations with respect to the transformation
parameters leads to a 4 × 4 linear system that has a closed form solution. Once such
an estimate is available, the optimal model space α is recovered through an exhaustive
search within the [0, 1] integral according to some quantization step.

4 Refine Segmentation

Once, appropriate models and similarity transformations were recovered for all frames of
the cardiac clip, the next step is precise extraction of the endocardium walls. Such a task
is equivalent with finding a linear combination of the modes of variation that deforms
globally the model projection towards the desired image features. The space of variations
consists of the diastolic and the systolic models. Opposite to the rough segmentation case
where the scale of the model is fixed, the need of a blending parameter does not exist
between systolic and diastolic models of variation is not present. Under the assumption
of existing correspondences yj and the global transformation (α, T ) for a given frame
t - that is omitted from the notation -, these linear coefficients are recovered through:

Edata(λd
0, ..., λ

s
0, ...) =

m∑
j=0

ρ (||T (cj(α))+
o1∑

k=1

λd
k (ud

k,v
d
k)+

o2∑
k=1

λs
k (us

k,v
s
k)−yj ||)

Similar to the case of global transformation, one can assume now that the form of the
ventricle changes gradually during the cardiac cycle. The geometry of the recovered
solution is determined according to the set of coefficients (λd

0, ..., λ
s
0, ...). Therefore,

imposing constraints of smoothing deformation from one frame-to-the next is equivalent
with seeking the lowest potential of

Esmoothness(λd
0, ..., λ

s
0, ...) =

τ∑
k=−τ

(
o1∑

l=1

ω(λd
l (t) − λd

l (t + k)) +
o2∑

l=1

ω(λs
l (t) − λs

l (t + k))

)

Last, but not least additional constraints using the position of the valve points could be
considered, that aims at moving the projections of the model valve points to the their
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Fig. 3. Endocardium Segmentation for Apical Views for the diastolic frame and the systolic frame

true positions. The objective function is minimized using a robust incremental estimate
technique. The calculus of Euler-Lagrange equations with respect to the unknown vari-
ables (λd

0, ..., λ
s
0, ...) leads to a [o1 + o2]× [o1 + o2] linear system that has a closed form

solution. Such step is repeated until convergence.

5 Conclusions

In this paper we have proposed a composite time-consistent 2D+time active shape model
for the segmentation of the left ventricle in echocardiography. The approach exhibits
certain novel elements, notably in the modelling and the segmentation phase.

Validation of the method was performed using a representative set of fifty patients
for 2 and 4 champers views [Fig. 3] where the output of the proposed technique is
superimposed to the ground truth. The objective was precise delineation of the ventricle,
a much harder task than estimation of the ejection fraction. 50% of the time sonographers
have accepted the result as it was while for the 25% of the remaining validation set, minor
adjustments, notably in the valve position were sufficient to make the solution, same as
the one pointed out from the clinical experts.
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Future directions of our method involve epicardium segmentation and tracking. Such
an objective is a natural extension that will improve results and the diagnostic power of
the method since one could derive volume curves, EF radial strain, etc.
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Abstract. This paper presents a novel scale space approach to obtain a
deformation which matches two images acquired from the same or from
different medical imaging modalities. The image registration problem is
known to be mathematically ill-posed due to the fact that determining
the unknown components of the displacements merely from the images
is an underdetermined problem. The approach presented here utilizes an
auxiliary regularization term, which favors displacements with minimal
curvature surface. One of the important aspects of this approach is that
the kernel of the Euler-Lagrange equation is spanned by all rigid motions.
Hence, the presented approach includes a rigid alignment. A minimizer is
determined as the steady-state solution of the Euler-Lagrange equation
namely by the biharmonic diffusion equation with higher order bound-
ary conditions. In this framework we give a new interpretation of the
underlying regularization parameter α. Finally, we present experimen-
tal results for registration problems of a Magnetic Resonance Imaging
(MRI) (monomodal) registration and for a real computer tomography
(CT)–magnetic resonance imaging (multimodal) registration.

1 Introduction

The aim of image registration is to find a transformation that aligns images
recorded with the same or with different imaging machinery in a suitable way.
Image registration problems are often multi scale problems in nature; namely, the
reason for a displacement is governed by effects of different characters occurring
at different scales. This phenomenon is given, e.g., in human brain mapping.
Here the displacements often come from global transformations (translation and
rotation) as well as from the different morphology of complex neuroanatomical
shapes of the underlying brains.

There is a rich theory and also a large number of algorithms to solve image
registration problems. They all ask for an “optimal” deformation which deforms
one image such that there is an “optimal” correlation to another image with
respect to a suitable coherence or difference measure.

The pure minimization of such difference measures typically leads to an ill-
posed problem (also referred to as the “aperture problem” in computer vision,
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see [1, 2, 3]), i.e. by the insufficient information provided solely by the avail-
able data, or by a desire to reduce noise. One effective method to overcome
this problem are regularization approaches. Regularization methods for image
registration (typically by adding a convex energy functional based on gradi-
ents), without additional knowledge, are an artificial way to make the problem
well posed. For example, the classical Tikhonov regularization leads us to pe-
nalize large displacements, which makes no sense when displacements are the
result of an elastic deformation. Therefore the underlying regularization energy
should represent substantive prior information, coming, for example, from physi-
cal constraints, or laws or from information extracted from previous registration
problems.

Many regularization approaches for image registration are discussed in the
literature, a good survey is given in [3] and the references therein.

The novel contribution of this paper is to present a flexible image registra-
tion scheme, which treats the deformations on different spatial spaces. This is
an attractive option in the situation where no a priori knowledge of the displace-
ments is given. In order to do this, we use curvature as a fundamental description
attribute for the deformation. Here, the set of decompositions defined by the cur-
vature based regularization energy can be described as a scale space.

2 A Curvature Based Scale Space Approach

In this section, we first give a variational formulation of the image registration
problem and introduce common similarity measures. In order to regularize the
problem, we introduce a novel curvature based regularization term. This leads
us to solve a biharmonic diffusion equation with higher order boundary condi-
tions. In the following we describe the discretization in time and the scale space
properties of the equation and discuss some computational considerations.

2.1 A Variational Image Registration Formulation

Given are two images, a reference R and a template T , of the same object
obtained from the same or different imaging modalities. Usually, these images
are two- or three-dimensional. Without loss of generality the problem is described
in the two-dimensional case, but it is readily extendable to the three-dimensional
case. We assume that in continuous variables the images can be represented by
compactly supported functions T,R : R2 → R. This means, the map associates
with each pixel (picture element) x = (x1, x2)t ∈ R2 its intensities T (x1, x2) and
R(x1, x2). We assume that T is distorted by an invertible deformation φ−1. We
search for a transformation φ(u)(·) : R2 → R2, with

φ(u)(x1, x2) : (x1, x2)t �→ (x1, x2)t − (u1(x1, x2), u2(x1, x2))t

that depends on the unknown displacements u(x1, x2) := (u1(x1, x2), u2(x1, x2))t

: R2 → R2. The goal of image registration is to determine u(x1, x2) in such
a way that the transformed template T ◦ φ(u(x1, x2)) matches the reference
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R. For a functional D[R, T, u(x1, x2)], which measures the disparity between
T ◦φ(u(x1, x2)) and R in a domain Ω ⊂ R2, the image registration problem can
be identified, in that way, with a minimization problem:

Find u(x1, x2), such that D[u] = D[R, T, u(x1, x2)] is minimal. (1)

To rule out discontinuous and irregular solutions to the minimization problem
(1), it is necessary to introduce a regularizing term αG[u] with a parameter
α > 0 and a term G[u] which penalizes non-smoothness of the deformation u.
This means that the solution of (1) is approximated by a solution uα of the
minimization problem:

min
{
D[u] + αG[u]︸ ︷︷ ︸

=Jα[u]

}
. (2)

The considered functional is nonlinear and may have many local and global
minima. The parameter α allows us to balance the influence of both terms in
the functional.

2.2 Distance Measures

In this section we want to collect examples of similarity measures. A lot of choices
are possible depending on the application one has in mind. We describe some of
the most important approaches below.

The squared differences between the images

DSQD[u(x)] =
∫

Ω

(
T (x− u(x)) −R(x)

)2
dx.

is a common approach; cf., e.g. [1, 4, 5]. This criterion is used in situations where
the intensities of the given images are comparable. This is the case, for exam-
ple, if images are recorded with the same imaging machinery. This is generally
referred to as the monomodal image registration. In general, if the images are
recorded with different imaging machinery, the so-called multimodal registration,
the DSQD functional is not an appropriate measure. The main reason is that
identical structures may have quite different gray values in the multimodal case.

The probability density measure (see [6]) is given by

DPLS [u(x)] =
∫

Ω

(
dT

σ (T (x− u(x))) − dR
σ (R(x))

)2
dx,

where dT
σ and dR

σ estimate the marginal densities of T and R by

dT
σ (x) =

(
Gσ � h

T
)
(x) and dR

σ (x) =
(
Gσ � h

R
)
(x),

with histogram hT,R : S → [0, 1] and 2d-Gaussian kernelGσ(x) = 1
2πσ2 exp(−|x|2

2σ2 ).



146 S. Henn and K. Witsch

The mutual information based distance measure was introduced in the
context of multimodal image-registration by Wells et al in [7]. One searches
for a transformation so that the mutual information (or transinformation) is
maximized; see, e.g in [8, 6, 9]. Mutual information is borrowed from information
theory [10]. The mutual information based distance measure is maximal if the
images are matched. Therefore the mutual information based matching energy
is a measure of alignment between the images.

A morphological distance measure introduced by Marc Droske and Martin
Rumpf (see [11]) is based on normal information of the level-sets. More precisely,
they consider variations respectively generalizations of the energy

DMMI [φ] =
∫

Ω

(
NT ◦ φ−Nφ

R

)2
dx ,

where NT is the normal on the level-sets on T and Nφ
R is the transformed normal

of the reference image.

2.3 A Curvature Based Regularization Energy

Fischer–Modersitzki’s Curvature Approach: Bernd Fischer and Jan Mod-
ersitzki have first proposed an approach (see [12]), which explicitely penalizes
the curvature of the displacement u. In their so-called curvature approach the
authors propose the regularization term

S[u, u] =
2∑

l=1

∫
Ω

ΔulΔul dx1dx2,

which involves higher order derivatives of ul and can be seen as an approximation
of the squared mean curvature

(
H(ul)

)2 =

(
(1 + ul

2
x2

)ulx1x1 − 2ulx1ulx2ulx1x2 + (1 + ul
2
x1

)ulx2x2

(1 + ulx1 + ulx2)3/2

)2

under the assumption that ∇u remains small.
Although the regularization term is neutral with respect to affine-linear dis-

placements, the functional is not H2(Ω)×H2(Ω)–coercive (see e.g. [13]), i.e. the
bilinear form S does not satisfies the inequality

γ||u||2H2(Ω)×H2(Ω) ≤ S[u, u] ∀u ∈ H2(Ω) ×H2(Ω)

and consequently there is no guaranty for existence and uniqueness of solutions of
the underlying Euler-Lagrange equations. Moreover the kernel of S is spanned by
infinitely many elements. To overcome this problem the authors have restricted
their approach to the space{

ul ∈ H2(Ω),
∂ul

∂n
=
∂Δul

∂n
= 0, l = 1, 2

}
⊂ H2(Ω) ×H2(Ω)

of displacements. As a consequence the affine-linear displacements are penalized
by the underlying function space.
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Proposed Model: Consider the sum of the squared principal curvatures κ1
and κ2 of the displacement-field u = (u1, u2)t:

C(u) =
2∑

l=1

∫
Ω

(
κ2

1(ul) + κ2
2(ul)

)
dx1dx2

=
2∑

l=1

∫
Ω

(
(κ1(ul) + κ2(ul))2 − 2κ1(ul)κ2(ul)

)
dx1dx2

=
2∑

l=1

∫
Ω

((
H(ul)

)2 − 2K(ul)
)
dx1dx2,

with mean curvature H(ul) and Gaussian curvature

K(ul) = κ1(ul)κ2(ul) =
ulx1x1ulx2x2 − ul

2
x1x2

(1 + ulx1 + ulx2)2
.

Under the assumption that ∇ul ≈ 0, it follows that

H(ul) ≈ ulx1x1 + ulx2x2 = Δul and K(ul) ≈ ulx1x1ulx2x2 − ul
2
x1x2

and consequently the bilinear form

l(u, u) =
2∑

l=1

〈ul, ul〉H2(Ω),

with standard H2(Ω) Sobolev inner product

〈v, w〉H2(Ω) =
∫

Ω

(
∂2v

∂x2
1

∂2w

∂x2
2

+ 2
∂2v

∂x1∂x2

∂2w

∂x1∂x2
+
∂2 v

∂x2
1

∂2w

∂x2
2

)
dx1dx2

and corresponding semi-norm |v|2H2(Ω) = 〈v, v〉H2(Ω), approximates the nonlinear
functional C.

This particular choice has various important aspects: Firstly, the energy l is
positive semi-definite over H2(Ω)×H2(Ω) and positive definite over V ×V , with

V =
{
v ∈ H2(Ω),

∫
Ω

vdx1dx2 =
∫

Ω

x1vdx1dx2 =
∫

Ω

x2vdx1dx2 = 0
}

⊂ H2(Ω).

Secondly, the kernel of the proposed energy consist only of the affine-linear dis-
placements and consequently planar rotation and translation are not penalized
by this approach.

2.4 The Biharmonic Diffusion Equation

Referring to the Riesz representation theorem, one can write the bilinear form l as

l(v, ϕ) =
〈(

L 0
0 L

)(
v1
v2

)
,

(
ϕ1
ϕ2

)〉
=

2∑
l=1

〈
Lvl, ϕl

〉
(3)
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for every ϕ = (ϕ1, ϕ2)t ∈ H2(Ω) × H2(Ω). Here L is the biharmonic operator
Δ2 supplemented by the following higher order boundary conditions

B1[vl(x)] =
∂2vl(x)
∂n2 , B2[vl(x)] = − ∂

∂n
Δvl(x) −K[vl(x)],

with

K[vl(x)] =
∂

∂s

[
∂2vl(x)
∂x1∂x2

(n2
x1

− n2
x2

) + (
∂2vl(x)
∂x2

2
− ∂2vl(x)

∂x2
1

)nx1nx2

]
,

where n = (nx1 , nx2) stands for the normal in outward direction, and s stands
for the tangential vertical to n. Note, that this are natural boundary conditions,
which are satisfied by each solution of the minimization problem (2) using the
bilinear form l.

With the regularization energy (3) a minimizer u(x) = (u1(x), u2(x))t of (2)
is characterized by the necessary condition

Jα(u+ sϕ)
∂s

∣∣∣
s=0

= αl(u(x), ϕ(x)) +Du[ϕ(x)] != 0 ∀ϕ(x) ∈ H2(Ω) ×H2(Ω),

with the Gâtaux-derivative

Du[v(x)]=(〈f1(u(x)), v1(x)〉, 〈f2(u(x)), v2(x)〉)t = lim
t→0

D[u(x) + tv(x)] − D[u(x)]
t

of D and v(x) = (v1(x), v2(x))t ∈ L2(Ω) × L2(Ω). Classical solutions fulfill

αLul(x) − fl(u(x)) = 0, for l = 1, 2. (4)

A common approach to minimize Jα[u] = D[u] + αl(u, u) is to introduce an
artificial time to equation (4) and to determine the steady state solution of
equation (4), i.e. to solve the biharmonic diffusion equations

∂ul(x,t)
∂t + α(t)Δ2ul(x, t) = −fl(u(x, t)) on Ω × (0, T )

B1[ul(x, t)] = B2[ul(x, t)] = 0 on ∂Ω × (0, T )
ul(x, 0) = 0 on Ω

⎫⎬⎭ (5)

for l = 1, 2.

2.5 Semi-implicit Time Discretization

To discretize (5), we consider the following semi-implicit time discretization
scheme:

u
(0)
l = 0 for x ∈ Ω,

u
(k+1)
l −u

(k)
l

τ + αkΔ
2u

(k+1)
l (x) = fl(u(k)(x)) for x ∈ Ω,

B1[u
(k+1)
l (x)] = B2[u

(k+1)
l (x)] = 0 for x ∈ ∂Ω,

⎫⎪⎬⎪⎭ (6)
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for l = 1, 2 and k = 0, 1, ..., where τ > 0 is the length of the time step. Using L,
equation (6) can be written as the following linear elliptic system(

I + ταkL
)
u

(k+1)
l (x) = u

(k)
l (x) + τfl(τ, u(k)(x))︸ ︷︷ ︸

=:gτ (u(k)(x))

, (x) ∈ Ω. (7)

In order to give a variational formulation of problem (7), we introduce the sym-
metric bilinear form

�(u, v) = αkτ
2∑

l=1

l(ul, vl) +
2∑

l=1

〈
ul, vl

〉
=

2∑
l=1

〈
(αkτL+ I)ul, vl

〉
(8)

with the inner product 〈u, v〉 =
∫

Ω
uvdx and associated norm ||u|| = 〈u, u〉1/2

for the Lebesgue space of square integrable functions on Ω.
Since αk and τ are positive, the bilinear form �(·, ·) is coercive and bounded

on H2(Ω) × H2(Ω). Consequently the Lax-Milgram theorem can be used to
prove the existence and uniqueness of the solution of the variational equation

�(u, ϕ) = 〈gτ , ϕ〉, for all ϕ ∈ H2(Ω) ×H2(Ω) (9)

for any bounded functional gτ in the dual space of H2(Ω) ×H2(Ω).

2.6 Spatial Discretization and Fast Numerical Solution

In order to solve equation (7) numerically we use a finite difference discretization
and second order approximation of the biharmonic operator and the boundary
conditions. Let Lh the discretization matrix corresponding to the operator L,
then the resulting linear system

(αkτLh + Ih)uh = gτ,h

can be solved efficiently by using a multigrid method with optimal multigrid
complexity O(N), where N is the number of picture elements, see [14].

2.7 Curvature Scale Space

Consider the diagonalization of the operator Bh = αkτLh + Ih:

Bhu =
n∑

i=1

λi〈u, φi〉φi, (10)

where (φi)i=1,...,n denotes the set of eigenvectors of the operator Bh and λi are
the eigenvalues belonging to φi. The orthogonal system Φ = [φ1, · · · , φn] is given
by the set of eigenvectors of Bh. For the countable set of eigenvalues {λi}n

i=1 of
Bh, it holds

1 = λ1 = λ2 = λ3 < λ4 ≤ λ5 ≤ · · ·λn, with λj = 1 + αkτσj , (11)
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with eigenvalues 0 = σ1 = σ2 = σ3 < σ4 ≤ σ5 ≤ · · · ≤ σn of Lh. Using (10) and
(11) the solution of equation (7) can be given formally by

uh =
n∑

i=1

1
1 + αkτσi

〈φi, gτ 〉φi. (12)

The set of eigenvectors of the operator Bh can be regarded as a sequence of
spatial scales, with energy 〈Bhφi, φi〉 = λi〈φi, φi〉 = λi ≥ 1.

This observation is important because it indicates that the representation
can be used to access different aspects of a solution u. Here, the curvature based
scale space decomposition (12) makes explicite the role of α as a scale constant.
For large values of α we have the following result: The coarsest scale is given by
the affine-linear functions corresponding to the eigenvalues λ1 = λ2 = λ3 = 1,
where no amplification of highly oscillatory functions occurs. For decreasing α,
more and more terms in the sum (12) become important for the solution. They
correspond to eigenvectors belonging to higher eigenvalues and consequently
smaller and smaller structures of the displacements are recovered.

2.8 A Scale-Space Based Image Registration Algorithm

As a consequence of the last section, we embed the minimization of (2) into a
scale space framework, which efficiently treats different scales. The minimization
starts with a large initial scale parameter, i.e. α0 # 0 and an initial displacement
u(0) = 0. During the iteration the parameter is reduced by αk := γkα0 with some
decay rate γ ∈ (0, 1), and the solution incorporates more and more finer scaled
functions.

3 Examples

In order to demonstrate the principle and reliability of the proposed approach we
present experimental results for a monomodal as well as for a multimodal image
registration problem. We start with a monomodal image registration example.

3.1 Monomodal Image Registration

Figure 1 shows a magnetic resonance imaging (MRI) example. The reference
image R(x) is depicted in figure 1(a). The template image T (x) (figure 1(b)) is
given by a rotated and translated version of the reference image with preserved
rows and columns flipped in the left/right direction.

For this example, we have used α0 = 109, τ = 2, γ = 10−3 and u(0) = 0
(corresponds to the identity map). During the iteration the parameters α and τ
are decreased down to α = 100 and τ = 2−2. To give an idea of the effect from
the decreasing scale parameter α on the deformed template, we show in figure
1(c)–1(f) the calculated results T (x − u(k)(x)) after k =40, 143, 196 and 250
iterations. In the first iteration (with α = 109) the template is transformed only
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(a) Reference R(x) (b) Template T (x)

(c) T (x − u(40)(x)) (d) T (x − u(143)(x))

(e) T (x − u(196)(x)) (f) T (x − u(250)(x))

Fig. 1. (CT)–magnetic resonance imaging (MRI) registration example
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Fig. 2. Energy history for MRI example in figure 1

by coarse scale basis functions (rigid motion). Consequently, only coarser image
structures are aligned (see figures 1(c)–1(d)). As the parameter α decreases, the
solution consists of more and more fine scaled functions and hence also fine image
structures are matched. These findings are stressed by figure 2. Here, we observe
a strong decay of D (see figure 2(a)) and a abrupt rise of the energy 〈Lu, u〉,
when the scale parameter α decreases.

3.2 Multimodal Image Registration

The CT-image (figure 3(a)) is the reference and the MRI image (figure 3(b))
is the template. Both images are displayed with superimposed contour of the
reference image. For this example, we use the probability density based density
measure DPLS [u] and the same parameter setting as in the previous example. We
apply 150 iteration steps of the biharmonic diffusion iteration. As a consequence
of the large regularization parameter (which focuses on coarse scales) the first
iteration steps determine an affine linear transformation, see figure 3(c). Then
the value of the scale parameter α is recognized as being too large, and hence de-
creased in the following iterations. At this point the solution incorporates more
and more finer scaled functions. The result after 155 iteration steps is presented
in figure 3(d). The approach matches the different structures onto the corre-
sponding reference structures. The corresponding 4× 4 checkerboard views (fig-
ure 3(e) and 3(f)) of the results show smooth transitions between the structures.

4 Summary and Conclusion

In this paper we have introduced a novel approach for digital image registra-
tion based on the biharmonic diffusion equation. Employing semi-implicit time
discretization, we are facing in each time step a stationary problem given by
a partial differential equation with higher order boundary conditions. From an
abstract point of view we now encounter a solution which renders more precisely
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(a) Reference R(x) (b) Template T (x)

(c) T (x − u(55)(x)) (d) T (x − u(150)(x))

(e) T (x) and R(x) mixed like a 4 × 4
checkerboard

(f) T (x − u(150)(x)) and R(x) mixed
like a 4 × 4 checkerboard

Fig. 3. (CT)–magnetic resonance imaging (MRI) registration example
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the link between scale space and image registration. The approach provides a
multiscale description of the displacement fields, but one in which the notion of
scale is based on curvature scale space, rather than on conventional multigrid or
Gaussian blurring minimization approaches as presented in [11, 15].

The proposed multiscale framework unifies existing image registration
approaches, which are normally classified due to the underlying transformations
into either affine-linear or non-linear approaches. This multiscale nature of the ap-
proach provides a description that can be made robust, because it is based on solv-
ing the registration problem successively at multiple scales. The technique has two
parameters that decrease during the iteration. One of these is the underlying reg-
ularization parameter α which relates to a scale parameter, since it specifies the
curvature of the resulting displacements. The other is the time-step parameter τ ,
which is chosen as large as possible, as long the iteration will remain stable.
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Abstract. A method for a scale-space analysis of a contour figure based
on a crystalline flow is proposed. A crystalline flow is a special family of
an evolving polygons, and is a discrete version of a curvature flow. Based
on a crystalline flow of a given contour, the proposed method makes a
scale-space representation and extracts several sets of dominant facets
from the given contour. By changing the shape of the Wulff shape that
plays a role of a unit circle for computing the nonlocal curvature of each
facet, the method analyses the contour shape anisotropically.

1 Introduction

Evolution based scale-space methods play an important role to characterise a
contour figure[1][2][3]. Specifically in the negotiations leading to MPEG-7, such
methods were intensively discussed and tested. Due to this fact, there exists an
enormous amount of literature devoted to this field[4]. In this article, we propose
a method for describing the shape of a simple contour figure in an image.

A contour figure in an image is often represented as a polygon. A crystalline
flow[5][6] is a special family of evolving polygons, and is a discrete version of a
classical curvature flow[7][8]. In the evolving process of a crystalline flow, each
facet moves toward its normal direction. The velocity of a facet is determined by
the nonlocal curvature, which depends on the length of the facet. The number
of facets does not increase through the evolving process, and any simple polygon
becomes convex at finite time. Different from a classical curvature flow, it is
easy to track each facet in a given contour through the evolving process. These
features of a crystalline flow help to make a scale-space representation of a given
contour. In [9], the authors showed a method for computing a crystalline flow

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 155–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



156 H. Hontani et al.

from any given simple polygon, and used the method for extracting dominant
facets from a given polygon[10].

In a crystalline flow, a convex polygon called Wulff shape is used to determine
the nonlocal curvature of a facet. By changing the shape of the Wulff shape, we
can easily obtain an anisotropic flow from a given contour. In this article, we
prepare a set of Wulff shapes and extract dominant facets from a given simple
contour using each Wulff shape.

2 Crystalline Flow

2.1 Admissible Crystalline Flow

We consider a motion of an evolving curve Γt governed by the anisotropic cur-
vature flow equation of the form

V = Λγ(n) on Γt, (1)

for t > 0. Here, n denotes the unit outward normal, and V does the velocity
along n. The quantity Λγ(n) is called a weighted curvature, which is the first
variation of the interfacial energy

∫
S
γ(n)ds with respect to the change of the

area enclosed by S. It has the form

Λγ(n) = −div ξ(n),

where ξ = ∇γ and γ is a given positively homogeneous function of degree one
in R2 ; div denotes the divergence on the curve S. The quantity γ is called the
interfacial energy density. If γ(p) = |p|, then the quantity Λγ(n) is equal to the
usual curvature κ and (1) becomes a curve shortening equation V = κ, which is
widely used for a scale-space analysis of a contour figure.

There are several methods to track evolution of Γt; one of a typical method
is the level-set method[7][8][11][12]. If γ is C2 except the origin, global unique
solvability for (1) is established by [8] (see also [13]). However, when γ has
corners, conventional notion of a solution including viscosity solutions does not
apply to (1).

If Frank diagram of γ :

Frankγ = {p ∈ R2 ; γ(p) ≤ 1}

is a convex polygon, γ is called a crystalline energy density (see also Fig.1), and a
notion of solution for (1) is proposed by [5] and [6] independently by restricting
{Γt} as a special family of evolving polygonal curves called admissible. Here
and hereafter we assume that γ is a crystalline energy density, i.e., Frankγ is a
convex M -polygon. Let qi (i = 1, 2, · · ·M) be the vertices of the Frankγ, and
N = {qi/|qi|} denote the set of all unit vectors qi/|qi| (see Fig.1(B)). We say
that a simple polygonal curve S in R2 is an admissible crystal if all outward
normal orientation belongs to N and orientations of adjacent facets point to
vertices adjacent in Frankγ (see Fig.2).
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Fig. 1. The crystalline energy γ (A), the Frankγ (B), and the Wulff shape (C)
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Fig. 2. The Wulff shape, an admissible crystal, and a non-admissible crystal. At the
vertex indicated by the arrow, the condition is not satisfied

In [5] and [6], it was proposed to restrict the problem to an admissible crys-
tal, and a corresponding system of ODEs (ordinary differential equations) was
derived. The solution of the system is called an admissible crystalline flow. In
the admissible crystalline flow, the weighted curvature is represented as follows.

Λγ(nj) = χj
Δ(nj)
Lj(t)

, (2)

where Lj(t) is the length of jth facet, and nj is its outward unit normal. The facet
number j is counted clockwise. The quantity χj is called a transition number,
and takes +1 (resp. -1) if the jth facet is concave (resp. convex) in the direction
of nj . Otherwise χj = 0. The quantity Δ(nj) is the length of a facet of Wulff
shape

Wγ = {q ∈ R2; q · p ≤ γ(p) for all p ∈ R2},
of which outward normal is nj (see Fig.1(C)). The Wulff shape is the unique
minimizer of the interfacial energy among all S whose enclosed area is the same
as Wγ (see e.g. [14]). The Wulff shape plays a role of a unit circle for a classical
curvature flow (see Fig.3).

If the jth facet moves with the outward normal velocity Vj , then its length
satisfies a geometry transport equation

dLj

dt
(t) = (cotφj + cotφj+1)Vj − 1

sinφj
Vj−1 − 1

sinφj+1
Vj+1, (3)

as in [5] and [6]. Here, φj = θj − θj−1 for nj = (cos θj , sin θj). Combining
the equations (1),(2) and (3), we obtain a system of ODEs of Lj . If a given
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Fig. 3. A local curvature κ = 1/r and a nonlocal curvature Λγ ∝ 1/Lj

initial figure is an admissible crystal, then a unique solution Γt of the ODEs
exists, and the Γt remains admissible crystal through the evolution in spite that
some facets may disappear at some time[5][6][15]. Any given admissible crystal
becomes convex and finally disappears at finite time.

Even for more general γ with corners not necessarily crystalline energy, the
level-set approach for (1) and more general equations is successfully extended by
[15] (see also [16]), although the problem has nonlocal nature. They introduced
a new notion of solution consistent with that in [5] and [6], and proved the
global unique solvability at least for a general initial simple curve (not necessarily
admissible).

2.2 General Polygonal Initial Curve

If a given contour is non-admissible, its outward normal mj may not be included
in N . Let Δ(mj) = 0, if mj /∈ N . Then, the curvature flow equation has the
form as follows. {

Vj = χjΔ(mj)/Lj(t) if mj ∈ N ,
Vj = 0 if mj /∈ N .

(4)

This indicates that a non-admissible facet does not move. A simple polygonal
curve S is called an essentially admissible crystal, if the outward unit normal
vector m and m̂ of any adjacent facets of S satisfy

(1 − λ)m + λm̂

|(1 − λ)m + λm̂| �∈ N (5)

for any λ ∈ (0, 1). If an essentially admissible crystal is given as an initial contour,
then, the contour remains essentially admissible through the evolution: the num-
ber of facets does not increase through the evolution and after a non-admissible
facet disappears, the contour remains essentially admissible. Applying the Euler
method for solving the system of (3) and (4), we can obtain the flow of essentially
admissible crystal.

If a simple polygon that is not essentially admissible is given, then, what flow
is obtained? In [15], it is shown that there exists a unique level-set flow (solution)
for (1) with a crystalline energy γ starting with a general polygonal initial curve.
However, it is not clear a priori whether or not the solution is described by an
ODE system, since new facets whose orientation belongs to N are expected to
be created instantaneously at the place where the property (5) is violated on
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the initial contour. Moreover, it is not clear how to solve the expected ODE
system since it is singular at newly created facets. In [9], a heuristic argument is
given to solve such a singular ODE system, and is shown a numerical method for
obtaining a crystalline flow starting from a given polygon that is not necessarily
an admissible crystal (see also [6] and [16]).

The comparison principle tells us that a set of admissible facets is created
instantaneously at the place where the property (5) is violated on the initial
contour. Let n and n̂ be the orientation of any adjacent facets of given initial
polygon. If

M ≡
{

(1 − λ)n + λn̂

|(1 − λ)n + λn̂| ∈ N ; 0 < λ < 1
}

is not the empty set, all facets with orientation in M are expected to be created
between the two facets just after t = 0. Once a set of new admissible facets is
created between non-admissible facets, then, the new facets evolves for a while
without changing the shape: the solutions are selfsimilar. After a set of new facets
are created at every place where M is not empty, the contour is an essentially
admissible crystal and we can obtain the flow. The problem is to determine the
length of newly created facets.

Assume that new n facets are created between two adjacent non-admissible
facets. Let enumerate the newly created facets from 1 to n clockwise, and the
non-admissible facets 0 and n+1. Let denote jth facet length with Puiseux series

Lj(t) =
∞∑

k=0

ajkt
1/2 for j = 1, 2, · · ·n. (6)

The ajk represents the growth speed of the jth facet. Calculating ajk for each
facet, we can obtain the flow from a given polygon, numerically.

Let represent (3) simply as follows.

dLj(t)
dt

=
p̃j

Lj(t)
+

q̃j−1

Lj−1(t)
+

r̃j+1

Lj+1(t)
for j = 1, 2, · · ·n, (7)

where the p̃j , q̃j and r̃j depend on the angle between two corresponding adjacent
facets and their quantities are known. Substituting (6) into (7), and ignoring
higher order terms of t(t → 0), we obtain next equations of aj :⎡⎢⎢⎢⎢⎢⎢⎢⎣

an

an−1
an−2
...
a2
a1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p̃n q̃n−1
r̃n p̃n−1 q̃n−2 0

r̃n−1 p̃n−2 q̃n−3
. . . . . . . . .

0 r̃3 p̃2 q̃1
r̃2 p̃1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/an

1/an−1
1/an−2
...
1/a2
1/a1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

where aj = aj0. In [17], M.-H Giga and Y. Giga proved that there exists unique
and positive solution of (8). In [9], the authors show a numerical method that
calculates a numerical solution of (8).
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Fig. 4. Examples of the crystalline flow. The initial contour is common to all, and is
shown in the second column. The Wulff shapes are shown at the left

Figure 4 shows some experimental results of crystalline flow. The initial con-
tour is common to all, but the Wulff shape is different. As described before, the
Wulff shape plays the role of a unit circle for a classical curve shortening flow.
Because a crystalline flow can be obtained from a non essentially admissible
crystal, any simple and convex polygon can be used for the Wulff shape.

3 Dominant Corner Facet Extraction

As mentioned, in a crystalline flow, any simple closed curve becomes convex at
finite time, and it is easy to track each facet in the evolving contour. Those
features of a crystalline flow are useful for a multi-scale analysis of a contour
figure. In [10], we applied a crystalline flow to a multi-scale method that extracts
several sets of dominant facets from a given polygon. The method is analogous
to classical multi-scale methods for corner extraction[18] (see also [19]). In this
article, we prepare a set of Wulff shapes, and extract sets of dominant facets
from a given contour using each Wulff shape.

3.1 Scale-Space for Dominant Corner Facet Extraction

Each facet in an evolving polygon has a transition number χ, which represents
the shape around the facet. It specifies whether the shape is convex, concave, or
otherwise around the facet, which is a fundamental shape feature of a contour
figure. If the shape is convex around some facet in an evolving polygon at some
large scale, then we may interpret that the shape of the given contour is ‘almost
convex with small size disturbance’ in a large area around the corresponding
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facet of the given contour. We call the facets in a given polygon whose transition
numbers do not change through a long range of the scale in the crystalline flow
as dominant facets.

In order to extract dominant facets, we make a scale-space representation[1]
of a given polygon using a crystalline flow. The x-axis of a scale-space shows the
indices j of early stage contour defined below, and the y-axis shows the time t.

As time increases, each facet of the early stage contour moves, and is con-
tained in some (non trivial) facet in the evolved polygon S(t). In the proposed
method, the value of a point (j, t) in the scale-space shows the transition num-
ber of the facet in S(t) which includes the facet j in the early stage contour.
Referring to this scale-space representation, the proposed method extracts dom-
inant facets whose transition numbers are inherited for a long time interval in
the evolving process.

When a given polygon is not essentially admissible, then some new facets may
be created instantaneously just after t = 0. Once new facets are created, then the
polygon becomes essentially admissible and no new facet is created. Let denote
an evolving contour of a crystalline flow S(t). We say that S(t̃) is an early stage
contour if no facet disappears and no degenerate pinching and no selfintersection
occurs for all t ∈ (0, t̃]. We index all facets of an early stage contour by j =
1, 2, · · · , r, clockwisely. The totality of indices denotes I ; we consider this set
modulo r. We shall assign a subset Ih(t) of consecutive indices in I to each facet
Fh(t) of S(t) = ∪k

h=1Fh(t) and divide I into disjoint subsets {Ih(t)}k
h=1 in the

following inductive way. We call Ih(t) the set of early stage indices of Fh(t).
Suppose that all sets of early stage indices of S(t) are already known.

Suppose that Fl(τ) disappears at t1 > t and that no facet disappears at
s ∈ (t, t1). Then, we set Ih(s) = Ih(t) for s ∈ (t, t1). We shall construct the set
of early stage indices at t1 as follows. If both Fl−1 and Fl+1 do not disappear at
t1, then we add Il−1(t), Il(t), and Il+1(t) to the set of early stage indices of a
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Fig. 5. Construction of indices Il(t). (A): A facet F4(t) disappears at t1. (B): Two
consecutive facets F2(t) and F3(t) disappear simultaneously at t = t1
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Fig. 6. A scale-space representation of the transition number. The x-axis represents
the index of facet in the early stage contour, and the y axis represents the time t

(merged) facet F∗(t1) containing the limit of Fl−1(s) and Fl+1(s) as s ↑ t1. Fig-
ure 5(A) shows an example: At time t = t1, the facet F4 disappears. Assume that
Il(t) = {l} for t < t1. Then, in this case as shown in Fig.5(A), I3(t1) = {3, 4, 5}.

If two consecutive facets Fl−1 (resp. Fl+1) and Fl disappear at t1, then we
add Il(t) to the set of early stage indices of a facet F∗(t1) containing the limit
Fl+1(s) (resp. Fl−1(s)) as s ↑ t1. Figure 11(B) shows an example: At t = t1, the
facet F2 and F3 disappear simultaneously. Assume that Il(t) = {l} for t < t1.
Then, in this case as shown in Fig.11(B), I2(t1) = {1, 2} and I3(t1) = {3, 4}.

By this procedure, the set of early stage indices is uniquely determined for
each facet of S(t) as far as S(t) is essentially admissible. (Note that I is divided
into sets of early stage indices at t > 0.) One facet Fh(t) may have several indices
of Ih(t). Let χ(j, t) denote the transition number of the facet Fh(t) such that
Ih(t) contains j. It is proved that, if V = Λγ , all facets that disappear before the
evolving contour converges to a point always have zero transition number and at
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A4 A5 A3 A2

χ=−1

χ=0

χ=+1

Fig. 7. Dominant facet extraction using the scale-space representation. The facets in
an initial contour χ = 0 are extracted, if they can be tracked to the base scale t0
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most two consecutive facets disappear[20]. This proof helps to track each facet
through the evolution. As is shown in Fig.6, the transition number is plot at the
corresponding position in the scale-space. This representation is analogous to a
usual curvature scale-space.

3.2 Dominant Corner Facet Extraction

Referring to the scale-space representation of the transition number, we extract
dominant facets whose transition numbers are not 0 and the values of the tran-
sition numbers are inherited for a long time interval in the evolving process. Our
algorithm is as followings.

1. Make the scale-space representation of the transition number χ(j, t), where
j is in I and t is the time.

2. Divide the scale-space into areas, so that each area has the uniform value
of χ(j, t) inside, and has different value from the neighbouring areas. Let
denote such the area as Ak, where k = 1, 2, · · · , n is the serial number.

Time

Facet Number
in Initial Contour

Extracted Dominant
Corner Facet

Fig. 8. An example of a crystalline flow (top) and corresponding results of dominant
facet extraction (bottom). The Wulff shape is a regular octagon. The crystalline flow
is shown in order of time from left to right. The left one is the initial given contour. In
the scale-space, white area shows χ = −1 (convex), black one does χ = +1 (concave),
and gray one χ = 0. In the scale space, corresponding base scales are indicated by
horizontal lines
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3. Set the base scale t0, and draw a line t = t0 in the scale space. Then, find
a set of numbers Ut0 , so that the area Ak contains the line t = t0 and that
χ(j, t) �= 0 on Ak, if k ∈ Ut0 .

4. Extract all indices from I (the set of all indices of early stage contour) that
are included in the area Ak(t̃) for some k ∈ Ut0 . Here, Ak(t̃) is the cross-
section of Ak at the time t̃ at which S(t̃) is an early stage contour. We
call facets of an early stage contour corresponding to such extracted indices
dominant facets at t0. Each of these indices corresponds to a facet of the early
stage contour whose transition number is inherited to the evolving contour
at t0. In Fig.7, the indices of the dominant facets are indicated by up-arrows.

5. Increase the base scale t0 by small amount Δt, and repeat 3, 4, and 5, if t0
is smaller than the scale at which the evolving contour becomes convex.

We note that the set of all dominant facets may differ for different base scale
t0. If t0 < t1, then, Ut0 ⊇ Ut1 . As the result, the number of the dominant facets
does not increase as t0 increases. Figure 8 shows an example of a crystalline flow,
the corresponding scale-space representation, and the extracted dominant facets.

(A)

(B)

(C)

(D)

(E)

Fig. 9. Examples of extracted dominant facets. The initial contour is common to all,
and is shown in the second column. The Wulff shapes are shown at the left. The
extracted facets at each base scale are connected with lines
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The Wulff shape is a regular octagon. The results of dominant facet extraction
are indicated with polygons that are obtained by connecting extracted facets by
straight lines. As shown in Fig.8, as the base scale becomes larger, fewer facets
are extracted.

As mentioned, the Wulff shape plays the role of a unit circle for a classical
curve shortening flow. As shown in equation (2), the nonlocal curvature Λγ is
proportional to the length Δ(n) of the corresponding facet of the Wulff shape. If
a facet of the Wulff shape is longer than other facets, then an evolving polygon
tends to be squashed along the normal orientation of the longer facet.

We prepare a set of Wulff shapes, and extract sets of dominant corner facets for
each Wulff shape. We believe that it enriches the ability to analyse contour shape.
Figure 9 shows experimental results. In each row, the obtained sets of dominant
facets are shown in order of base scale t0. Each row corresponds to different Wulff
shape. We applied five Wulff shapes. In Fig. 9, (A), (B) and (C) show the results of
dominant facet extraction obtained when a rectangle is used for the Wulff shape.
Figure 9 (A) corresponds to the Wulff shape of a regular rectangle, (B) corresponds
to a vertically long rectangle, and (C) corresponds to a horizontally long rectangle.
As shown in Fig.9, if a vertically (resp. horizontally) long shape is used as the
Wulff shape, vertical (resp. horizontal) )large structures tend to be extracted as
dominant facets. Figure 9 (D) and (E) show other results obtained when a hexagon
is used for the Wulff shape. Again, using a vertically long Wulff shape, the method
extracted vertical structures as dominant facets. Only by changing the shape of
the Wulff shape, we can analyse a contour shape anisotropically.

4 Summary

A crystalline flow is used for a scale-space analysis of a contour figure. A nu-
merical method for obtaining a crystalline flow from a given polygon that is
not essentially admissible is presented, and the method is applied for extracting
dominant facets. In this article, we use a set of the Wulff shapes for extracting
dominant facets from a given contour figure. Changing the shape of the Wulff
shape, we can analyse the shape of a contour figure anisotropically.

In many cases, a contour in an image is given as a polygon. For example, a
contour represented with a chain-code is a polygon that consists of short facets.
Because the nonlocal curvature Λγ is determined by the facet length, no ap-
proximation is needed for the calculation of the curvature. In addition, because
each facet moves with keeping its direction, it is not difficult to trace every facet
through the evolving process. Those features of a crystalline flow are useful for
multi-scale contour figure analysis.
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Abstract. In this paper, we propose an evolution equation for the active contours
in scale spaces. This evolution equation is based on the Polyakov functional that
has been first introduced in physics and has been then used in image processing
in [17] for image denoising. Our active contours are hypersurfaces implicitly and
intrinsically represented by a level set function embedded in a scale space. The
scale spaces used in our approach are defined by a family of metric tensors given
by the general heat diffusion equation. The well-known scale spaces such as the
linear scale space, i.e. the Gaussian scale space, the Perona-Malik scale space,
the mean curvature scale space and the total variation scale space can be used in
this framework. A possible application of this technique is in shape analysis. For
example, our multiscale segmentation technique can be coupled with the shape
recognition and the shape registration algorithms to improve their robustness and
their performance.

1 Introduction and Motivation

This paper aims at introducing the scale parameter in the active contour formalism
[8, 3, 9] to define an object multiscale segmentation model. One of the main motiva-
tions to develop such a technique is to deal with the shape of objects at different scales
of observation/resolution. Indeed, the works of Witkin [18] and Koenderink [10] have
shown that the shape of objects changes according to the scale of observation used. At
large scales, the global shape of the object can be observed since smaller shape fea-
tures are suppressed. And at lower scales, finer characteristics appear in the shape of
the object.

As a result, it appears natural to analyze a given image not only at one scale but at
several scales of observation simultaneously. This will improve the robustness of clas-
sical image analysis techniques such as the shape recognition and the shape registration
methods. For instance, it could be interesting to merge our multiscale segmentation al-
gorithm with a multiscale shape model such as the one developed by Pizer et al. in [14]
to create a multiscale recognition method.

In [16], Schnabel and Arridge have proposed a method to extract the shape of objects
at different levels of scale. They have then used the extracted multiscale shapes to localize
and characterize shape changes at different levels of scale. They have applied their model
to segment 3-D brain magnetic resonance images in order to quantify the structural

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 167–178, 2005.
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deformations for patients having epilepsy. However, they have not taken into account
the interdependance between space and scale in their segmentation model.

Any image can be observed at different scales thanks to a multi-resolution image
representation called scale space by Witkin in [18] (see also the pioneering work of
Iijima [7]). A scale space is a hierarchical decomposition of an image according to the
scale of observation. It can also be seen as a family of gradually smoother versions of
the original image.

The segmentation method we use in our work is the active contour model introduced
by Kass et al. in [8]. We want to use this segmentation model to extract objects in scale
spaces. For this purpose, we need to define an evolution equation for active contours
propagating in scale spaces. Two main questions arise when we try to devise such an
equation. How can the active contours be introduced into scale spaces and which scale
spaces can be used? An answer to the first question is given by the Polyakov action
that we will present in the next section. For the second question, we will use the family
of scale spaces proposed by Eberly in [5] which includes the linear scale space, the
Perona-Malik scale space, the curvature scale spaces and the total variation scale space.

2 Polyakov Action

The Polyakov action has been introduced in image processing by Sochen et al. in [17].
The Polyakov action is a functional that measures the weight of a map X between the
image manifoldΣ and the embedding manifoldM (see Figure 1). It is defined as follows:

P (X,Σ,M) =
∫
dmσ g1/2gμν∂μX

i∂νX
jhij , (1)

where m is the dimension of Σ, p the dimension of M , gμν and hij are the metric
tensors of manifolds Σ and M , gμν is the inverse metric of gμν , g is the determinant
of gμν , μ, ν = 1, ...,m, i, j = 1, ..., p, ∂μX

i = ∂Xi/∂σμ. Moreover, when identical
indices appear one up and one down, they are summed over according to the Einstein
summation convention.

Fig. 1. The manifold Σ embedded in M , reproduced from [17]
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If the Polyakov functional is minimized w.r.t. an embedding coordinate X l, gμν and
hij being fixed, we get the following flow acting on X l:

∂tX
l = g−1/2∂μ(g1/2gμν∂νX

l) + Γ l
jk∂μX

j∂νX
kgμν for 1 ≤ l ≤ p, (2)

where Γ l
jk is the Levi-Civita connection.

Sochen et al. have proved in [17] that different choices of the metric tensor gμν in
Equation (2) give the most well-known scale spaces: the linear scale space, the scale
space of Perona-Malik, the mean curvature scale space and the total variation scale space.
They have also proposed a new scale space to enhance image quality. They have called
it the Beltrami flow since they have used the Beltrami operator which generalizes the
Laplace operator in non-flat manifolds.

3 Active Contours in Scale Spaces

3.1 Active Contours in Euclidean Spaces

Following the first model of active contours proposed by Kass et al. in [8], Caselles et
al. in [3] and Kichenassamy et al. in [9] have proposed an energy functional invariant
w.r.t. the curve parametrization:

F gac(C) =
∮ L(C)

0
fds, (3)

where ds is the Euclidean element of length, L(C) is the length of the curve C and f is
an edge detecting function that vanishes at object boundaries. The calculus of variations
provides the Euler-Lagrange equation of the functional F gac and the gradient descent
method gives the flow that minimizes F gac:

∂tC = (κf − 〈∇f,N〉)N , (4)

where κ is the curvature and N the normal to the curve. Osher and Sethian have intro-
duced in [12] the implicit and intrinsic level set representation of contours to efficiently
solve the contour propogation problem and to deal with topological changes. The equa-
tion (4) can be written in the level set form:

∂tφ =
(
κf + 〈∇f, ∇φ

|∇φ| 〉
)

|∇φ|, (5)

where φ is the level set function embedding the active contour C.

3.2 Scale Spaces

In the previous section, the active contours have been defined in the Euclidean space.
We want to put them in scale spaces by changing the embedding Euclidean manifold
into the scale spaces. The question is which scale spaces will we use. In paper [5], Eberly



170 X. Bresson, P. Vandergheynst, and J.-P. Thiran

has studied the geometry of a large class of scale spaces and he has defined for them the
general metric tensor:

[hij ] = diag

(
1
c2
In,

1
c2ρ2

)
, (6)

where n is the spatial dimension, c and ρ are two functions that physically correspond
to the conductance and the density functions in the general model of heat diffusion
transfert.

Eberly has also defined in [5] the natural diffusion equation in any scale space as
follows: the left-hand side of the diffusion equation is given by one application of the
scale derivative and the right-hand side by two applications of the spatial derivative. The
natural diffusion equation in a scale space is therefore

∇ss
σ u =

(
∇ss

x1,...,xn

)2
u, (7)

where ∇ss
σ is the scale derivative operator and ∇ss

x1,...,xn
the spatial derivative operator.

These operators are determined using the tensor metric (6) and the following differential
geometry formulae:

∇ss
x1,...,xn

=

⎛⎜⎝
√
hx1x1∂x1

...√
hxnxn∂xn

⎞⎟⎠ = c∇, (8)

∇ss
σ =

√
hσσ∂σ = cρ∂σ. (9)

Hence, the diffusion equation (7) is equal to

∂σu =
1
ρ
∇. (c∇u) , (10)

which corresponds to the general heat diffusion equation with the conductance function
c and the density function ρ. The choice of the functions c and ρ determines the scale
space and the diffusion equation we use. For examples,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

for c = σ, ρ = 1 uσ = σΔu Linear Scale Space,
for c = exp(−α|∇u|2), ρ = 1 uσ = ∇.(c∇u) Perona-Malik Flow,

for c = ρ = 1
|∇u| uσ = ∇.

(
∇u

|∇u|

)
|∇u| Mean Curvature Flow,

for c = 1
|∇u| , ρ = 1 uσ = ∇.

(
∇u

|∇u|

)
Total Variation Flow,

Eberly has proved in [5] that the linear scale space is hyperbolic and translation, rota-
tion and scale invariant. The second scale space is given by the non-linear anisotropic
diffusion equation of Perona and Malik proposed in [13]. The third one is the mean
curvature flow introduced in the level set framework by Osher and Sethian in [12] and
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the fourth scale space is produced by the total variation flow defined by Rudin, Osher
and Fatemi in [15].

3.3 General Evolution Equation for Active Contours in Scale Spaces

In the context of the Polyakov action, we look for the map X , the tensor gμν of the
active contour manifold and the tensor hij of the embedding space that lead to an
evolution equation for active contours in the scale spaces. We choose the map X as
X : (x1, ..., xn, σ) → (x1, ..., xn, σ, φ), where φ is the level set function representing
the active contour. The metric tensor hij of the embedding space is given by the Equation
(6). The last choice concerns the tensor gμν of the active contour manifold. We choose
the induced metric tensor on Σ [17]:

gμν = ∂μX
i∂νX

jhij . (11)

This choice is motivated by the classical works concerning the active contours [3, 9, 4].
The Polyakov functional corresponding to the induced metric is the Euler functional:

S(X) =
∫
dmσg1/2, (12)

which defines the (hyper-)aera of the (hyper-)surface Σ. The maps X that minimize S
for any manifold Σ embedded in any manifold M are called harmonic maps. Harmonic
maps are the generalization of geodesics and minimal surfaces (see [3, 9, 4]) to higher
dimensional manifolds and for higher embedding manifolds.

The minimization of S w.r.t. the componentX l gives the generalized mean curvature
flow, see [17], in any embedding manifold M defined by the metric hij :

∂tX
l = g−1/2∂μ(g1/2gμν∂νX

l)︸ ︷︷ ︸
(13.1)

+Γ l
jk∂μX

j∂νX
kgμν ≡ Hl = g−1/2Kl (13)

whose term (13.1) is the Laplace-Beltrami operator and H is the mean curvature vector
generalized to any manifold (M ,hij).

Proposition 1: As in [3, 9, 4], we introduce a weighting function f in the Euler fonctional:

Sf (X) =
∫
dmσf(X)g1/2. (14)

The evolution equation minimizing this functional w.r.t. the l-th component of X is [2]:

∂tX
l = fHl + ∂kfg

μν∂μX
k∂νX

l − m

2
∂kfh

kl. (15)

Application 1: The geodesic/geometric active contour evolving in the 2-D Euclidean
space proposed in [3, 9] can be recovered. Indeed, if we take X ≡ C and hij = δij , the
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evolution equation defined in Equation (15) becomes (up to a constant) the well-known
flow

∂tC = fκN − 1
2
〈∇f,N〉N . (16)

Application 2: The evolution equation of the level set function embedding the active
contour can also be revisited. If we chooseX ≡ S : (x, y) → (x, y, φ(x, y)), hij = δij ,
the energy isEes =

∫
f
√

1 + |∇φ|2dxdy and the flow acting on the level set component
φ is:

∂tφ = fHes + g−1/2
es 〈∇f,∇φ〉 = g−1/2

es (fKes + 〈∇f,∇φ〉) = g−1/2
es Fes (17)

where ges = 1 + |∇φ|2 and Kes is the Euclidean mean curvature of the surface X such

that Kes = (1+φ2
x)φyy−2φxφyφxy+(1+φ2

y)φxx

g
3/2
es

(see [17]). The equation of the level set

function φt = g
−1/2
es Fes implies that the surface S evolves according to St = FesNS

where NS = g
−1/2
es (−φx,−φy, 1). This means that the level sets of φ move according

to the equation:

Ct = PzSt = g−1/2
es |∇φ| Fes NC = r(φ) Fes NC (18)

=
(
fKesr(φ) − 〈∇f,NC〉r2(φ)

)
NC (19)

where Pz is a projector onto the plane normal to the φ-axis, NC = −∇φ/|∇φ| is the
unit normal to the level sets and r(φ) = g

−1/2
es |∇φ|. The equation (19) is close to the

evolution equation (4) up to the surface mean curvatureKes and the function r. Function
r can be interpretated as an indicator of the height variation on the surface S (see [1]).
Indeed, g−1/2

es is the ratio between the area of an infinitesimal surface in the domain
(x, y) and the corresponding area on the surface S. For flat surfaces, r is equal to 0
and it is close 1 near edges. Finally the function r is constant a.e. when φ is a signed
distance function.

We propose the following evolution equation for active contours in the scale spaces.

Proposition 2: Given the induced metric tensor, Equation (11), the harmonic map
X defined by (x1, ..., xn, σ) → (x1, ..., xn, σ, φ) and the weighting function f =
f(x1, ..., xn, σ), the evolution equation of the (n+ 2)-th component of X , i.e. the level
set component φ, is equal, according to (15), to:

∂tφ = fHss + 〈∇f,∇φ〉(gμν), (20)

whose Hss = g−1/2Kss = Hn+2 is the (n + 2)-th component of the mean curvature
vector (13) generalized to scale spaces, ∇ = (∇, ∂σ) and 〈., .〉(gμν) is the inner product
w.r.t. the metric gμν such that

〈V1, V2〉(gμν) = V t
1 (gμν)V2 = V1μg

μνV2ν , (21)
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where g = 1 + |∇φ|2 + ρ2φ2
σ . The energy of the multiscale active contour is computed

according to Equation (14):

Ess =
∫
f
√

1 + |∇φ|2 + ρ2φ2
σ

∏
1≤i≤n

dxi

c

dσ

cρ︸ ︷︷ ︸
(22.1)

, (22)

whose term (22.1) is the infinitesimal volume in the scale spaces defined by the metric
tensor (6).

The evolution equation of the level set function φ is:

∂tφ = g−1/2fKss + 〈∇f,∇φ〉(gμν) = g−1/2
es Fss, (23)

where ges = 1 + |∇φ|2. Hence the surface S evolves according to St = FssNS and
the level sets of φ move according to:

Ct = PzSt =
(
fKssr2(φ, c, ρ) − 〈∇�f,NC〉r22(φ, c, ρ)

)
NC , (24)

with the operator ∇� = 1
c2ρ2 (∇f, ρ2∂σ), NC = −∇φ/|∇φ| and r2(φ, c, ρ) =

|∇φ|/g1/2.

3.4 Application to the Linear Scale Space

The linear scale space is obtained when c = σ and ρ = 1. In this case, the energy of the
multiscale active contour is for n = 2:

Elss =
∫
f
√

1 + |∇φ|2 + ρ2φ2
σ

dxdydσ

σ3 , (25)

and the flow of φ (embedding the active contour) is:

∂tφ = fHlss +
1
g
〈∇f,∇φ〉lss, (26)

where g = 1
σ6 (1 + φ2

x + φ2
y + φ2

σ), 〈., .〉lss is the inner product in the linear scale space
defined by 〈V1, V2〉lss = 1

σ2 〈V1, V2〉 and Hlss is the mean curvature in the linear scale
space computed using Equation (13):

Hlss =
1
ges

φμνg
μν︸ ︷︷ ︸

(27.1)

− 2
φμ

σ
gμσ︸ ︷︷ ︸

(27.2)

, (27)

where ges = 1 + φ2
x + φ2

y + φ2
σ and the components of gμν are:

gxx = 1
σ4 (1 + φ2

y + φ2
σ), gxy = − 1

σ4φxφy,
gyy = 1

σ4 (1 + φ2
x + φ2

σ), gxσ = − 1
σ4φxφσ,

gσσ = 1
σ4 (1 + φ2

x + φ2
y), gyσ = − 1

σ4φyφσ.
(28)
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Roughly speaking, the term (27.1) corresponds to the Euclidean part of the mean
curvature and the second term (27.2) to the Riemannian part.

4 Multiscale Image Features

4.1 Multiscale Edges

In the previous section, we have defined a multiscale segmentation model which can
capture image features representing by the function f . There exists different local mul-
tiscale image features but we will use the most common one, the norm of the image
gradient, which is equal to |∇ssf | = (c2f2

x1
+ . . . + c2f2

xn
+ c2ρ2f2

σ)1/2 in the scale
spaces. After that, we will extract the ridges of |∇ssf |, the multiscale gradient norm.

Ridges can be defined by different ways (see [6]). In our approach, we have used the
definition developed in Section 2.3 of [6]. In this case, Morse describes in [11] ridges of a
2-D feature image f as points which have local maximum in f along the direction of the
greatest concavity of f . Thus, at a ridge point the direction of greatest curvature of f is the
cross-ridge direction and the value of f is greater than the neighboring points on either
side of it. This definition can be extended to higher dimensions. Indeed, let us consider
a function f in an n-D space and let us denote λ1, . . . , λn with |λ1| ≤ . . . ≤ |λn| and
e1, . . . , en the eigenvalues and the corresponding eigenvectors of the n × n matrix of
the second derivatives. A point in an n-D space is an m-D ridge (m < n) in f if for all
i < n−m, {

λi < 0
ei · ∇f = 0 . (29)

In the case of the linear scale space with n = 2 spatial dimensions, the Hessian matrix
is different to the Euclidean one. Using the tensor metric hij defined in Equation (6),
with c = σ and ρ = 1, the Hessian matrix that includes the interdependence of space
and scale is given in [11] by:

∇2
lss =

⎡⎢⎣ σ
2 ∂2f

∂x2 − σ ∂f
∂σ σ2 ∂2f

∂x∂y σ ∂2f
∂x∂σ + σ ∂f

∂x

σ2 ∂2f
∂x∂y σ2 ∂2f

∂y2 − σ ∂f
∂σ σ ∂2f

∂y∂σ + σ ∂f
∂y

σ ∂2f
∂x∂σ + σ ∂f

∂x σ ∂2f
∂y∂σ + σ ∂f

∂y σ2 ∂2f
∂σ2 + σ ∂f

∂σ

⎤⎥⎦ . (30)

As an example, let us consider the fractal image proposed by Von Koch (see the first
row on Figure 2). The magnitude of the scale space gradient is |∇lssI(x, y, σ)| =
σ · (I2

x + I2
y + I2

σ)1/2 (see the second row on Figure 2). And the ridges of the multiscale
gradient norm are given in the third row on Figure 2.

4.2 Gradient Vector Flow in Scale Spaces

The gradient vector flow (GVF) has been introduced by Xu and Prince in [19]. The GVF
field is a non-irrotational force field, namely V, which can capture the object boundaries
far from them and can deal with concave boundary regions. It is defined in a variational
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Fig. 2. First row: the Von Koch picture at four different scales of observation. The first image is
the original image. Second row: the multiscale gradient of the Von Koch picture. Third row: the
ridges of the multiscale gradient. Fourth row: GVFs of the ridge images

approach since the GVF field must minimize the following energy functional in the n-D
Euclidean space:

F gvf (V) =
∫

μ

n∑
i=1

(|∇Vi|2)︸ ︷︷ ︸
(31.1)

+ |∇f |2|V − ∇f |2︸ ︷︷ ︸
(31.2)

dΩ, (31)

where Vi is the i-th component of the GVF field and μ is a constant which balances the
contributions between the regularization term (31.1) and the data fidelity term (31.2). The
minimization of the energy functional (31) is done using the calculus of variations and
the gradient descent method which providen flows, one per component of the GVF field.
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In this section we propose to extend the GVF to the scale spaces defined by the
metric tensor (6). We realize this extension by simply changing the Euclidean terms by
their Riemann equivalents. Thus, we replace the Euclidean gradient ∇ by the scale space
gradient ∇ss and the Euclidean infinitesimal volume element dΩ by the scale space one
dΩss, the energy (31) then becomes:

F gvf
ss (V) =

∫
μ

n∑
i=1

(|∇ssVi|2) + |∇ssf |2|V − ∇ssf |2dΩss, (32)

The Frechet derivative of F gvf
ss w.r.t. Vi in the ξ direction is

〈∂F
gvf
ss

∂Vi
, ξ〉 =

∫
ξ · [ −μ

(
n∑

i=1

∂xi
(c2∂xi

Vi) + ∂σ(c2ρ2∂σVi)

)
+ (33)

|∇ssf |2|Vi − (∇ssf)i|2 ]dΩss. (34)

Then, the flow minimizing F gvf
ss w.r.t. Vi is

∂tVi = μ

(
n∑

i=1

∂xi(c
2∂xiVi) + ∂σ(c2ρ2∂σVi)

)
− |∇ssf |2|Vi − (∇ssf)i|2. (35)

For the linear scale space and n = 2, the GVFs for i = x, y, σ are:

∂tVi(x, y, σ) = μ(σ2ΔVi + 2σ∂σVi) − σ2|∇f |2(Vi − σ∂if) (36)

Figure 2 (fourth row) presents the GVFs of the ridges images (third row).

5 Result

We have applied the evolution equation (26) in the linear scale space to segment the
Von Koch picture at different scales of observation. The Figure 3 presents our multiscale
snake evolving in the linear scale space at different times and the Figure 4 shows the
segmentation process at four different scales.

Fig. 3. Active contour evolving in the linear scale space
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Fig. 4. Active contour evolving in the linear scale space at four different scales

6 Conclusion

In this paper, we have introduced the scale parameter in the active contour formalism
by defining an evolution equation for the active contours in the scale spaces based on
the general heat diffusion equation. We have supposed that the metric tensor gμν of the
level set manifold is the induced metric tensor, i.e. the case where the active contours are
harmonic maps. We could consider another choice for gμν such as a diagonal tensor (see
[2]). Future works will be focused on integrating this multiscale segmentation technique
into shape analysis methods such as the shape recognition and the shape registration
methods to improve their performance.



178 X. Bresson, P. Vandergheynst, and J.-P. Thiran

References

1. G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing, Partial Differen-
tial Equations and the Calculus of Variations. Springer, 2002.

2. X. Bresson, P. Vandergheynst, and J.-P-Thiran. Multiscale Active Contours - ITS Technical
Report 12.04, 2004.

3. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours. International Journal of
Computer Vision, 22(1):61–79, 1997.

4. V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert. Minimal Surfaces: A Three Dimensional
Segmentation Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(4):394–398, 1997.

5. D. Eberly. A Differential Geometric Approach to Anisotropic Diffusion in Geometry-Driven
Diffusion in Computer Vision. Computational Imaging and Vision, 1:371–392, 1994.

6. D.H. Eberly. Geometric Methods For Analysis Of Ridges In n-Dimensional Images - PhD
Thesis - University of North Carolina, 1994.

7. S. Ishikawa J. Weickert and A. Imiya. Linear Scale-Space Has First Been Proposed In Japan.
Mathematical Imaging and Vision, 10:237–252, 1999.

8. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. International
Journal of Computer Vision, pages 321–331, 1987.

9. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A.J. Yezzi. Conformal Curvature
Flows: From Phase Transitions to Active Vision. In Archive for Rational Mechanics and
Analysis, volume 134, pages 275–301, 1996.

10. J. J. Koenderink. The Structure of Images. Biological Cybernetics, 50:363–370, 1984.
11. B.S. Morse. Computation Of Object Cores From Grey-Level Images - PhD Thesis - University

of North Carolina, 1994.
12. S. Osher and J.A. Sethian. Fronts Propagating with Curvature-Dependent Speed: Algorithms

Based on Hamilton-Jacobi Formulations. Journal of Computational Physics, 79(1)(12-49),
1988.

13. P. Perona and J. Malik. Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1252(629-639), 1990.

14. S.M. Pizer, D. Eberly, B.S. Morse, , and D. Fritsch. Zoom-Invariant Vision of Figural Shape:
The Mathematics of Cores. Computer Vision and Image Understanding, 69:55–71, 1998.

15. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear Total Variation Based Noise Removal Algo-
rithms. Physica D, 60(1-4):259 – 268, 1992.

16. J. A. Schnabel and S.R. Arridge. Active Shape Focusing. Image and Vision Computing,
17(5-6):419–428, 1999.

17. N. Sochen, R. Kimmel, and R. Malladi. A General Framework For Low Level Vision. IEEE
Transactions on Image Processing, 7(3):310 – 318, 1998.

18. A.P. Witkin. Scale-space filtering. In Proc. 8th International Joint Conference Artificial
Intelligence, pages 1019–1022, 1983.

19. C. Xu and J. Prince. Snakes, shapes and gradient vector flow. IEEE Transaction on Image
Processing, 7:359–369, 1998.
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Abstract. Traditionally, quadrature filters and derivatives have been
considered as alternative approaches to low-level image analysis. In this
paper we show that there actually exist close connections: We define
the quadrature-based boundary tensor and the derivative-based gradient
energy tensor which exhibit very similar behavior. We analyse the reason
for this and determine how to minimize the difference. These insights
lead to a simple and very efficient integrated feature detection algorithm.

1 Introduction

Image features such as edges and corners can be detected by analysing the image
in the neighborhood of every (candidate) point. A compact representation of
the low-order characteristics of these neighborhoods is given by the first few
derivatives at every point (the n-jet [9]). Numerous feature descriptors for edges,
lines, blobs, corners and so on have been defined by various combinations of low-
order derivatives (see e.g. [5, 12]). However, these descriptors are usually only
valid for a single feature type, and give no or wrong responses at points where the
underlying feature model is violated. Improvements can be achieved by moving
from scalar feature descriptors to tensor based ones. Second order tensors cannot
only represent feature strength, but also allow to distinguish between intrinsically
1- and 2-dimensional features (edges vs. corners) and measure orientation.

The most common derivative-based tensor is the structure tensor [1, 6] which
is obtained by spatial averaging of the outer product of the gradient. It can rep-
resent step edges and their corners/junctions but is less suitable for the detection
of lines and other second order features. All these feature types are covered by
the energy tensor [3], which includes higher order derivatives (details below).

A different approach to feature detection is taken by the quadrature filter
method [7, 8] where derivatives are replaced with filters that are related to each
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other by the Hilbert transform. These operators react, by design, uniformely to
both edges and lines. This property is called phase invariance because edges and
lines can be interpreted as arising from the same magnitude spectrum, but at
different (namely odd and even) phase. In 2D it is common to apply a number of
1D quadrature filters at different orientations. The filter responses can then be
combined into an orientation tensor [8]. However, the orientation tensor reacts
in a well-defined way only to 1-dimensional features. This probem is solved by
means of the boundary tensor [10], which uses truly 2-dimensional quadrature
filters to also model certain 2D feature types (details also given below).

When we experimented with both the energy and the boundary tensors, we
observed a striking similarity of their behavior – qualitatively, their results are
almost indistinguishable. This paper is devoted to a more detailed analysis of
the relationship of the two approaches. We pursue this analysis on three levels:
First, we establish a formal similarity between the derivative and quadrature
filter methods by basing the latter on (first and second order) Riesz transform
operators [2] which closely resemble derivatives. Second, we show that the spec-
tral properties of the two tensors are very similar when optimal scales ratios are
chosen. Third, we report on experiments illustrating the similarity in practice.

2 Tensor Definitions

The structure tensor is the most common derivative based tensor. It is defined
as the spatial average of the outer product of the gradient ∇f with itself [1, 6]:

S = g � (∇f)(∇f)T (1)

where g is a smoothing filter (usually Gaussian), f the original image, and deriva-
tives are always understood to operate at a particular scale. For the purpose of
our analysis, it is advantegous to approximate the gradient with a taylor series:

∇f(x) ≈ ∇f
∣∣
x=x0

+ ∇∇T f
∣∣
x=x0

(x − x0) (2)

where ∇∇T f = Hf is the Hessian matrix. Inserting this into (1), we can
execute the convolution analytically. If g is radially symmetric, the odd powers
of x cancel out, whereas the even ones give a constant. We get:

S ≈ (∇f)(∇f)T + λ(Hf)(Hf)T (3)

where the parameter λ depends on g’s shape and scale. This operator is very
good at detecting step edges and their corners, but often shows multi-modal
or no responses at second-order features such as line edges and junctions. By
adjusting λ, the behavior can be somewhat improved, but it is usually impossible
to find a λ that works equally well on the entire image.

A richer signal model can be employed with the energy tensor [3]:

E = (∇b)(∇b)T − b(Hb) (4)
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where b is the signal to be analyzed. This is structurally similar to (3), but the
square of the Hessian has been replaced with the negative product of the function
b and its Hessian. We’ll show later that the energy tensor achieves better feature
detection results when different scales are used for different derivative orders. In
a strict sense, the name “energy tensor” may not be justified because E is not in
general positive semi-definite. But it has this property under certain conditions
and degrades gracefully if these conditions are slightly violated (cf. figure 4, see
[4] for an in-depth discussion of this issue). In image analysis, the energy tensor
cannot be used in its pure form, because images are not DC free, so the energy
would be dominated by the DC magnitude (average gray level) if b were the
image f itself. Instead one computes E from a bandpass filtered version of the
image, for example one defines b = ∇T∇g�f when the bandpass is the Laplacian
of Gaussian. Since the Laplacian is a second order derivative, E is effectively
calculated from second, third and fourth order derivatives.

Unfortunately, this means that the important first order image structure is
not considered at all. Therefore, we developed a variant called gradient energy
tensor, or GET operator [4]. Here, b = ∇g � f , so b is the Gaussian gradient
vector. The gradient of b is then the Hessian of f , whereas the Hessian of b gives
a third order tensor. Since the energy tensor is only a second order tensor, two
indices of this third order tensor are immediately contracted, giving:

(T f)i =
N∑

j=1

∂3f

∂xi∂x2
j

= ∇(∇T∇f) i.e. in 2D: T f =
(
fxxx + fxyy

fxxy + fyyy

)
(5)

(N is the space dimension). T f is equivalent to the gradient of the Laplacian
of f , as can be seen by switching the order of differentiation and contraction.
Since the outer product of two different tensors is not commutative, the gradient
energy tensor must be symmetrized. This results in the following definition:

G = Geven + Godd = (Hf)(Hf)T − 1
2
(
(∇f)(T f)T + (T f)(∇f)T

)
(6)

The boundary tensor was introduced in [10] using circular harmonics. Here we
base its definition on the Riesz transform [2] to emphasize the formal similarity
of quadrature filters to derivatives. The Riesz transform is the N -dimensional
generalization of the Hilbert transform. It is defined in the Fourier domain as:

R � � − u
|u| (7)

where u is the frequency vector. Since the derivative is defined as ∇ � � − u,
the two operators differ only by a factor of |u| in the Fourier domain. The differ-
ence becomes clearer in polar coordinates where R � �− (cos(φ), sin(φ))T and
∇ � � − ρ (cos(φ), sin(φ))T . Both operators have the same angular behavior.
But the derivative operator also acts as a high-pass filter, whereas the Riesz
transform leaves the radial shape of the spectrum unaltered. This property is
responsible for the desirable phase invariance of the boundary tensor.
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The spatial domain Riesz transform operator decays only as O(|x|−N ), where
N is the space dimension. Therefore one applies Riesz transforms to a bandpass
filtered version b of the image f . The boundary tensor is then defined as

B = Beven + Bodd = (Qb)(Qb)T + (Rb)(Rb)T (8)

where Q = RRT denotes the second order Riesz transform resulting in a matrix
analogous to the Hessian (In contrast to the 1D Hilbert transform, which repro-
duces the negated original signal if applied twice, higher order Riesz transforms
are useful because they create tensors when N ≥ 2). Eq. (8) is formally equiva-
lent to (3) when we set λ = 1 and replace derivatives with Riesz transforms. It
should also be noted that the boundary tensor is always positive semi-definite
by construction. Various bandpass filters can be used to obtain b. In [10], we
used |u| exp(−|u|2σ2/2), but in this paper we choose the Laplacian of Gaussian
|u|2 exp(−|u|2σ2/2) because this allows us to establish a very strong functional
relationship between the gradient energy tensor (6) and the boundary tensor.

3 Analysis of the Tensors

In order to analyse the behavior of the tensors, it is beneficial to express the
convolution operation explicitly with integrals. For simplicity, we assume that
the coordinate origin is at the center of the current window. Due to Parseval’s
theorem we can then express the integral in either the spatial or Fourier domains.
We must only take into account that the kernels are reflected in the spatial
domain expressions, which has no effect for even kernels but requires a sign-
change for odd kernels. Since we are always taking products of two odd filter
responses, this sign also cancels out. Using the Laplacian of Gaussian bandpass,
the boundary tensor components can be expressed in the Fourier domain as

Bij =
∫

−uiuke
−|u|2σ2/2F (u) du

∫
−ujuke

−|u|2σ2/2F (u) du

+
∫

− ui|u|e−|u|2σ2/2F (u) du
∫

− uj |u|e−|u|2σ2/2F (u) du (9)

where F (u) is the image spectrum, and we use Einstein’s summation convention
(for index k). The components of the gradient energy tensor are

Gij =
∫

−uiuke
−|u|2σ2

2/2F (u) du
∫

−ujuke
−|u|2σ2

2/2F (u) du

−1
2

(∫
− uie

−|u|2σ2
1/2F (u) du

∫
ujukuke

−|u|2σ2
3/2F (u) du

+
∫

− uje
−|u|2σ2

1/2F (u) du
∫

uiukuke
−|u|2σ2

3/2F (u) du
)

(10)

where we allow the derivatives of different order to be applied at different scales
σ1, σ2, σ3. If we equate σ and σ2, the even parts of B and G become equal, so
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we will require this from now on. We analyse at first how the two tensors react
to intrinsically 1-dimensional images, that is when F (u) = F (tn) holds along a
particular direction n, and F (u) = 0 otherwise. Then the ui reduce to nit, and
the 2D integrals become 1D ones. The even part of both tensors is:

Beven
ij = Geven

ij = ninj

(∫
t2e−t2σ2

2/2&(F (t)) dt
)2

(11)

and the odd parts are:

Bodd
ij = ninj

(∫
− t|t|e−t2σ2

2/2 '(F (t)) dt
)2

(12)

Godd
ij = −ninj

∫
− t e−t2σ2

1/2 '(F (t)) dt
∫

t3e−t2σ2
3/2 '(F (t)) dt (13)

where we took advantage of the fact that the spectra of real signals have even real
and odd imaginary components. It can be seen that B is indeed a quadrature
filter: The kernels of the even and odd tensor parts are related by the Hilbert
transform − sign(t). Thus, if we shift the signal phase by π/2 (i.e. if we swap real
and imaginary signal components, with the appropriate adjustment of spectrum
symmetries), even and odd tensor parts are simply exchanged, but their sum
remains unaltered. This is precisely the requirement of phase invariance. That
requirement is not fulfilled by the GET operator: It has the same even part as
the boundary tensor, but the odd parts differ. Detailed analysis of the odd parts
reveals that the difference can actually be made very small. Consider at first a
simple sine signal, i.e. F (t) = a

2 (δ(t− ωa) − δ(t+ ωa)). We get

Bodd
ij = ninj a

2ω4
a e

−ω2
aσ2

2

Godd
ij = ninj a

2ω4
a e

−ω2
a(σ2

1+σ2
3)/2

These expressions are equal when σ2
2 = (σ2

1 + σ2
3)/2 which we will require from

now on. A more complicated case is the superposition of two sine waves F (t) =
a
2 (δ(t− ωa) − δ(t+ ωa)) + b

2 (δ(t− ωb) − δ(t+ ωb)). Then we get

Bodd
ij = ninj

(
aω2

ae
−ω2

aσ2
2/2 + b ω2

be
−ω2

b σ2
2/2
)2

Godd
ij = Bodd

ij + ninj a b ωaωb

(
ωae

−(ω2
aσ2

3+ω2
b σ2

1)/4 − ωbe
−(ω2

aσ2
1+ω2

b σ2
3)/4
)2

The eigenvalue of Bodd (which we obtain by simply dropping ninj) is always
positive, as required for a signal energy. However, the eigenvalue of Godd can
become negative if a and b have opposite signs, i.e. if the two sines have opposite
phase. This counters the intuition that the energy tensor G indeed represents
signal energy. However, due to the statistical properties of natural images the
situation is not so bad in practice: High energy in the derivatives typically occurs
at object boundaries (edges and corners/junctions). At these points the signal
components have the same phase over many frequencies (phase congruency, [11]).
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Then the error term in G is positive, and the measured energy becomes too large
rather than too small. Negative energy typically occurs only in flat, but noisy
areas, where it is safe to simply truncate negative eigenvalues to zero.

In addition, we can try to adjust the ratio σ3/σ1 so that the magnitude of the
error term becomes as small as possible. It is necessary to use a scale-normalized
error measure, because one could otherwise make the error arbitrarily small by
taking σ3 → ∞. The natural scale normalization for the Laplacian of Gaussian
is σ2

2 [= (σ2
1 + σ2

3)/2] [12], so that B has to be multiplied with σ4
2 . To make

the response of G comparable, we normalize it with the same factor. Then we
integrate over ωa and ωb to calculate the average error over all frequency pairs:

ε =
(σ2

1 + σ2
3)2

4

∫∫
ωaωb

(
ωae

−(ω2
aσ2

3+ω2
b σ2

1)/4 − ωbe
−(ω2

aσ2
1+ω2

b σ2
3)/4
)2

dωa dωb

=
1
σ2

1
+

2
σ2

3
+
σ2

1

σ4
3
− 2π
σ2

1 + σ2
3

(14)

(we dropped the factor ninj a b not depending on the ratio). The error is mini-
mized for σ3/σ1 = 1/

√
π1/3 − 1 ≈ 1.47. It is interesting to compare the optimal

error with the error obtained for other ratios: If σ1 = σ2 = σ3, the error becomes
more than 5 times as big! If σ3/σ1 =

√
3 and σ2/σ1 =

√
2 (which means that the

same first derivative filter is applied repeatedly for the higher order derivatives,
resulting in a very efficient algorithm), the error is only 36% bigger.

Another possibility to find an optimal scale ratio is to start directly from
(12) and (13). We transform the products of integrals in these equations into
2-dimensional integrals over the product of the integrands. Then we interpret
terms not depending on the signal spectrum as quadratic filter kernels [13]:(∫

− t|t| e−t2σ2
2/2F (t) dt

)2

= −
∫∫

B(t1, t2)F (t1)F (t2) dt1 dt2∫
− t e−t2σ2

1/2F (t) dt
∫

t3e−t2σ2
3/2F (t) dt

=
∫∫

G(t1, t2)F (t1)F (t2) dt1 dt2

with (note that G is symmetric due to the symmetrization of G)

B(t1, t2) = t1t2 |t1t2| e−(t21+t22) σ2
2/2 (15)

G(t1, t2) =
1
2

(
t1 t

3
2 e

−(t21σ2
1+t22σ2

3)/2 + t31 t2 e
−(t21σ2

3+t22σ2
1)/2
)

(16)

We choose the ratio σ3/σ1 so that the scale-normalized mean squared difference
between the two kernels is minimized:

ε2 = σ8
2

∫∫
(B(t1, t2) −G(t1, t2))2 dt1 dt2 (17)

The minimum is achieved for σ3/σ1 ≈ 1.55. The choice σ1 = σ2 = σ3 gives again
a 5 times higher residual (see fig. 1), whereas it increases by only 23% for σ3/σ1 =
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Fig. 1. Left: B(t1, t2) (for t1, t2 > 0, σ2 = 1); center: G(t1, t2) with σ3/σ1 = 1.55 and
(σ2

1 + σ2
3)/2 = 1; right: G(t1, t2) for σ3/σ1 = 1: the deviation from B is much higher

√
3. We also repeated the two optimizations while weighting the importance

of the frequencies according to 1/ω, which better reflects the situation in real
images. After modifying (14) and (17) accordingly, we got optimal σ3/σ1 ratios
of

√
3 and 1.8 respectively, and the dependency of the residual on the ratio was

reduced. Consequently, scale ratios between 1.5 and 1.8 give reasonable results,
whereas it appears to be a bad idea to apply all derivatives at the same scale.

Now we analyse the response of the tensors to intrinsically 2-dimensional
structures. To simplify we consider points x where the spectrum F (u) computed
with x as coordinate origin is (appproximately) polar separable within the pass
band of the tensor filters. In case of the boundary tensor, the pass band is deter-
mined by the Laplacian of Gaussian, and we require |u|2 exp(−|u|2σ2/2)F (u) ≈
ρ2 exp(−ρ2σ2/2)Fr(ρ)Fa(φ). Then the integrals over u can be separated into
products of two integrals over the radial and angular coordinates:

Bij =
∫

ei(φ)Fa(φ)dφ
∫

ej(φ)Fa(φ)dφ
(∫

ρ2e−ρ2σ2/2Fr(ρ) ρ dρ
)2

(18)

+
∫

ei(φ)ek(φ)Fa(φ)dφ
∫

ej(φ)ek(φ)Fa(φ)dφ
(∫

ρ2e−ρ2σ2/2Fr(ρ) ρ dρ
)2

with e(φ) = (cos(φ), sin(φ))T . When we define the Fourier coefficients of Fa(φ)
by cm =

∫
cos(mφ)Fa(φ) dφ and sm =

∫
sin(mφ)Fa(φ) dφ, the trace of the

boundary tensor becomes:

tr(B) =
c20 + 2c21 + 2s21 + c22 + s22

2

∫∫
B(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2 (19)

where the kernel B simplifies to B(ρ1, ρ2) = ρ2
1ρ

2
2 exp(−(ρ2

1+ρ2
2)σ

2
2/2) because ρ1

and ρ2 are non-negative. The trace is determined by two local image properties:
by the local contrast (as given by the radial integrals), and by how well the
angular shape variation is captured with low-order circular harmonics (as given
by the magnitude of the first five Fourier coefficients). It is interesting to compare
this with the gradient at a polar separable location:

(∇f)2 = (c21 + s21)
∫∫

S(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2 (20)

where S(ρ1, ρ2) = ρ1ρ2 exp(−(ρ2
1 + ρ2

2)σ
2
1/2). Again we obtain an expression of

the form “contrast times Fourier coefficients”. Since all Fourier coefficients in
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Fig. 2. Top: original images; bottom: reconstruction obtained by a weighted sum
of the boundary tensor filter kernels, where the weights correspond to the normalized
filter responses at the center pixel

(19) and (20) are weighted by only one radial integral, the form of this integral
is not crucial (gradients can be defined with many filters, the boundary tensor
originally used the kernel S above, see [10]). Thus, the key difference between
the boundary tensor and the gradient squared is that the former includes three
additional Fourier coefficients: The boundary tensor can be interpreted as a
natural generalization of the gradient towards a more sophisticated local signal
model. Fig. 2 illustrates this generalization by means of a local image recon-
struction from the filter responses that constitute the boundary tensor. This
reconstruction essentially shows how the boundary tensor “sees” certain shapes.
Obviously large part of the shape information is already contained in five filter
responses (only the first two patterns could be reconstructed from the gradient
filters). A similar generalization to five Fourier coefficients is achieved by the
structure tensor (3). At a polar separable point, its trace can be written as:

tr(S) = λ
c20 + c22 + s22

2

∫∫
B(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2

+(c21 + s21)
∫∫

S(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2 (21)

But here the even and odd Fourier coefficients are weighted by different radial
integrals. One can try to optimize λ and σ2/σ1 in order to minimize the difference
between B and S, but it turns out that good agreement can only be achieved
for a few frequencies at a time. This means in practice that at many image
locations the contributions of even and odd tensor parts are not well balanced,
which results in multiple responses for a single boundary or boundary gaps.
Fortunately, the trace of the GET operator shows much better behavior:

tr(G) =
c20 + c22 + s22

2

∫∫
B(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2

+(c21 + s21)
∫∫

G(ρ1, ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2 (22)

Although even and odd Fourier coefficients are still weighted differently, we have
shown above (see fig. 1) that the kernels B and G can be made extremely similar,
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so that the GET operator G can be considered a very good approximation of
the boundary tensor B. Strictly speaking this applies only at polar separable
image locations, but we have found experimentally that this desirable behavior
carries over to many interesting images features.

4 Experimental Comparison of Tensor Based Feature
Detectors

The local shape information represented by the gradient energy and boundary
tensors can be extracted in the usual way. The most important tensor char-
acteristic in this context is the tensor trace which indicates the local contrast
independently of feature type (edge, line, corner, or junction) and thus acts as
a general boundary indicator. Intrinsically 1- and 2-dimensional parts of the
boundary can be distinguished by the tensors’ eigenvalues: The smaller eigen-
value indicates corner and junction strength, whereas the difference of the two
eigenvalues represents edge and line strength. If the eigenvalues indicate a 1D
structure, the eigenvector corresponding to the large eigenvalue points in the
direction perpendicular to the edge or line. In all experiments we compare the
following tensors: (i) the boundary tensor computed with the Laplacian of Gaus-
sian at σ = 0.9, (ii) the gradient energy tensor computed from Gaussian deriva-
tives with σ2 = 0.9 and various ratios σ3/σ1 (images are shown for σ3/σ1 = 1.5),
and (iii) the gradient energy tensor computed by applying Scharr’s optimal 3×3
derivative filter (3, 10, 3)T (1, 0,−1)/32 one, two and three times [14].

In the first experiment, we computed the tensors for simple test images.
Fig. 3 shows typical results. We found that all tensor variants have very similar
trace (boundary strength) and small eigenvalue (corner strength). The trace
is phase invariant (to very good approximation in case of the GET operator),
i.e. responds uniformly to step edges and lines. The step edge response of the

Fig. 3. Top left: original image; col. 2: tensor trace (row 1: boundary tensor, row 2:
GET operator, Gaussian derivatives, row 3: GET operator, 3×3 filter); col. 3: junction
strength; col. 4: locations with negative junction strength; col. 5: edge orientation
(hatched: not a 1D feature, black/white: horizontal edge, gray: vertical edge)
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Fig. 4. Rows 1 and 3: original image, negative small eigenvalues of GET operator
with σ3/σ1 = 1.5, negative small eigenvalues of GET operator with Scharr filter; rows
2 and 4: square root of tensor trace for boundary tensor and the two GET operators

GET operator is slightly narrower than that of the boundary tensor, which may
be desirable in practice as it reduces the likelihood that nearby edges blend
into each other. On the other hand, there are several locations where the small
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Fig. 5. Integrated boundary detection from boundary tensor, GET operator (σ3/σ1 =
1.5) and GET operator (Scharr filter)

eigenvalues of the GET operators are negative, but this only occurs away from
junctions. The large eigenvalues are always positive.

The second experiment illustrates the same properties on real images (fig. 4).
Again the traces are almost indistinguishable. The small eigenvalue is negative
at about 10...35% of the pixels, but never at corners or junctions (we checked
this against the corner locations detected with the boundary tensor). Nega-
tive values in the trace occur much less frequently (about 1...10% of the pixels,
and never on edges) because the large eigenvalue was never negative in the
experiments (formal proof of this fact is subject to further research). Gaus-
sian derivatives and the Scharr filter perform similarly, with the exception of
derivatives at σ3/σ1 = 1, where the number of negative pixels increases 1.5...3-
fold.

In the last experiment we show that the three tensors can be used for in-
tegrated edge and junction detection as described in [10]. The tensor at each
image location is decomposed into its corner/junction (small eigenvalue) and
edge/line (difference of eigenvalues times main eigenvector) parts. Then local
maxima above a certain threshold are detected in the corner/junction map, and
oriented non-maxima supression and thresholding is performed in the edge/line
map. The resulting boundaries are overlayed over the original image, see fig. 5.
Again, the results are extremely similar.

5 Conclusions

Traditionally, quadrature filters and derivatives have been used by what might
be considered different schools of low-level image analysis. In this paper we
demonstrated a very close relationship between two typical methods from both
camps: the boundary tensor and the GET operator. It turned out that these
operators behave almost identically in experiments. Theoretical analysis sup-
ports this finding: We established a close formal relationship by giving a new
boundary tensor definition using Riesz transforms. And we showed for typical
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1- and 2-dimensional image structures that the resulting integral expressions are
very similar for the two methods, if suitable operator scales are chosen.

Boundary tensor and GET operator can be interpreted as natural general-
izations of the gradient, which uses filters whose angular behaviour corresponds
to the first two odd circular harmonics: they add filters representing the first
three even circular harmonics. It should be stressed that the feature detection
capability depends mainly on this angular behavior – the radial filter shape can
be altered considerably, as long as it remains approximately equal for all filters
(in the Fourier domain): The boundary tensor can be defined with other band-
pass filters, and slightly different radial shapes for even and odd filters can be
tolerated in the GET operator. But the angular behavior has to be equal.

Some differences remain: The boundary tensor is always positive semi-definite
by construction, whereas the GET operator sometimes measures negative corner
strength. Since this does not occur at true corners, it is safe to truncate negative
values at zero. On the other hand, the filters constituting the GET operator are
simpler then the ones for the boundary tensor (in the spatial domain). The GET
operator can already be computed accurately with a 3× 3 filter mask, and only
seven convolutions with this mask are needed. This is roughly the same effort as
needed for the structure tensor, but the underlying feature model is much richer,
containing not only edges but also lines, corners, and junctions. Extension to
3D and to multiple scales will likely be easier for the GET operator due to the
huge existing body of established analysis for derivative filters.
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Abstract. In this paper we propose a new operator which combines
advantages of monogenic scale-space and Gaussian scale-space, of the
monogenic signal and the structure tensor. The gradient energy tensor
(GET) defined in this paper is based on Gaussian derivatives up to third
order using different scales. These filters are commonly available, separa-
ble, and have an optimal uncertainty. The response of this new operator
can be used like the monogenic signal to estimate the local amplitude,
the local phase, and the local orientation of an image, but it also allows
to measure the coherence of image regions as in the case of the struc-
ture tensor. Both theoretically and in experiments the new approach
compares favourably with existing methods.

1 Introduction

In this paper we derive a connection between features of the monogenic scale-
space [1] of an image and its Gaussian scale-space [2], respectively the derivatives
of the latter. Thus, it becomes possible to compute monogenic features from
Gaussian derivatives. The advantages of the proposed method are:

– Many people have implementations of Gaussian derivatives available so that
they can use monogenic features without implementing new basis filters.

– The Gaussian derivatives are separable and decay faster than the Poisson fil-
ter and its Riesz transform resulting in more efficient computational schemes.

– The additional feature (coherence) of the derivative-based method directly
indicates the validity of the monogenic phase model which is based on the
assumption of locally 1D signals.

� This work has been supported by EC Grant IST-2002-002013 MATRIS and by EC
Grant IST-2003-004176 COSPAL.

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 192–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



GET: The Connection Between Monogenic Scale-Space and GD 193

A key assumption of this paper is of course that the local phase is useful for
the processing and analysis of images. Therefore, we give a short motivation of
phase-based image processing in the subsequent section. Although most of the
discussions focus on images, the reflections about phase based signal processing
generalize to signals of arbitrary dimension.

1.1 Phase-Based Image Processing

First of all, there is some evidence that the human visual system makes use
of local phase to analyze the image contents [3]. Since the human visual system
performs remarkably well in analyzing images, it is reasonable to design technical
systems accordingly. However, there are also purely technical observations which
motivate the use phase. In [4] the authors present several experiments which show
that the Fourier phase contains the major part of the signal information. The
same applies to the local phase. For the definition of local phase, we assume an
image (patch) model according to

I(x) = A(x) cos(ϕ(x)) + Ī (1)

where x = (x, y)T indicates the spatial coordinate vector, I(x) the image (patch),
Ī the average intensity (DC level), A(x) the local amplitude (non-negative), and
ϕ(x) the local phase. The average intensity is irrelevant for the analysis of the
image contents and is largely compensated already during the image acquisition
in the human visual system. What remains is to analyze the relation of local
amplitude and local phase. Although the decomposition in (1) seems to be am-
biguous, this is not the case due to the non-negativity of the amplitude. Due to
the latter, zero crossings in I(x) − Ī must be covered by zeros of cos(ϕ(x)) and
zero crossings are in direct correspondence to the full phase [5]. Therefore, the
local phase becomes a uniquely defined feature.

If the image is decomposed into its amplitude and phase information, it be-
comes evident that the local amplitude is basically a measure for the confidence
of the extracted phase, i.e., in technical terms it represents the signal-to-noise
ratio (SNR), cf. Fig. 1, center. The local phase represents most of the image
structure, cf. Fig. 1, left. In the areas where the amplitude is close to zero, thus
meaning ’no confidence’, the local phase contains mainly noise. In the regions of
non-zero confidence, the cosine of the local phase results in a visual impression
which comes very close to the original, bandpass-filtered image, cf. Fig. 1, right.

1.2 The Monogenic Scale-Space: A Brief Survey

The monognic scale-space is a framework to estimate the local phase, the local
orientation, and the local amplitude from an image at different scales [1]. The
starting point is to compute the Poisson scale-space p(x, s) of the image. The
corresponding figure flow is obtained as the Riesz transform q = (q1, q2)T

q(x, s) =
∫

R2

x′

2π|x′|3 p(x−x′, s) dx′ =
∫

R2

x′

2π(|x′|2 + s2)3/2 p(x−x′, 0) dx′ (2)



194 M. Felsberg and U. Köthe

Fig. 1. Decomposing a bandpass image into its local phase and its local amplitude.
From left to right: cos(ϕ(x)), A(x), and I(x), where the intensities where adjusted
to obtain similar intensity ranges. Grey means zero, white means positive values, and
black means negative values. I(x) is obtained from a bandpass-filters with center fre-
quency π/6

of the image at each scale s. Together, the blurred image and its Riesz transform
form a monogenic signal [6] at the respective scale.

The monogenic signal contains of three components at each position, i.e., for
a fixed scale s0 it is a function R2 → R3 : x �→ (q1(x, s0), q2(x, s0), p(x, s0))T .
For convenience, we sometimes omit the arguments x and s in the following.
The 3D co-domain is then transformed into polar coordinates, cf. Fig. 2, left,
resulting in a triplet (A,ϕ, θ) ∈ R+ × [0, 2π)× [0, π) where A =

√
q21 + q22 + p2 is

Fig. 2. Phase models used in context of the monogenic signal. Left: the 3D vector is
derotated by the local orientation θ, such that it lies in the (q1, p)-plane. The amplitude
and phase are then extracted like in the 1D case as vector length and argument. Right:
the 3D vector together with the p-axis define a plane in which the rotation takes place.
The normal of this plane multiplied by the (directed) rotation angle ϕ results in the
rotation vector r
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an estimate for the local amplitude, ϕ = arg(p+ isign (q1)|q|) for the local phase,
and θ = tan−1(q2/q1) for the local orientation of the image if the image varies
locally only in the orientation θ (intrinsic dimensionality of one [7]). Since the
direction of an image does not follow from its local orientation [8], an ambiguity
concerning the sign of the phase is obtained. In order to obtain a continuous
representation of orientation and phase, they can be combined to form a 2D
phase vector r = ϕ(− sin θ, cos θ)T = q⊥/|q| tan−1(|q|/p), cf. Fig. 2, right.

Further features can be derived from the local features of the monogenic signal
respectively the monogenic scale-space, e.g., local frequency and phase congru-
ency as the spatial and scale derivatives of the local phase. The consideration of
these features is however out of the scope of this paper.

In order to estimate the local features, implementations of the monogenic
signal and the monogenic scale-space are required. This can either be done by
local operators, which combine a radial bandpass filter with its Riesz transform
[9, 10], or by a global eigentransform solution [11]. The problem is, however,
that the involved Poisson kernel decays quite slowly, resulting in either large
truncation errors of the filter masks or non-locality of the output.

Even and odd filters based on, e.g., Gaussian derivatives, are preferable con-
cerning locality, but these filters do not allow to estimate the local phase or
phase invariant features in a linear framework, since their respective amplitude
responses differ. To combine the locality of Gaussian derivatives with phase in-
variant feature extraction and phase estimation is the main topic of the present
paper. The key idea is to use a quadratic operator in order to avoid using the
Riesz transform. This idea is based on the concept of the 1D energy operator,
which is briefly introduced in the subsequent section.

1.3 The 1D Energy Operator

This brief review of the 1D energy operator is based on [12]. The purpose of the
energy operator is to compute directly the squared local amplitude of a signal
without using the Hilbert transform, since the Hilbert transform based methods
suffer from the same phenomena as the implementations of the monogenic scale-
space. The energy operator is defined for continuous 1D signals s(t) as

Ψc[s(t)] = [ṡ(t)]2 − s(t)s̈(t) . (3)

It is obviously not positive semi-definite, but it tracks the energy of simple
harmonic oscillators. Moreover, for constants A, r, and ω0 and for any s1, s2

Ψc[Art cos(ω0t+ ϕ0)] = A2r2tω2
0 (4)

Ψc[s1(t)s2(t)] = s1(t)2Ψc[s2(t)] + s2(t)2Ψc[s1(t)] . (5)

If we instead just consider [ṡ(t)]2, likewise the orientation tensor in higher di-
mensions, we obtain

[
d

dt
A cos(ω0t+ ϕ0)]2 =

1
2
A2ω2

0(1 − cos(2ω0t+ 2ϕ0)) ,
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which is obviously not phase invariant and might even suffer from aliasing if ω0
is larger than half the Nyquist frequency. Apparently, the second part s(t)s̈(t) of
the energy operator exactly compensates the spurious modulation components
at 2ω0. A possible 2D generalization of the energy operator is the energy tensor
[13], which we introduce in the subsequent section.

1.4 The 2D Energy Tensor

For continuous, 2D bandpass signals b(x), the 2D energy tensor is defined as [13]

Ψc[b(x)] = [∇b(x)][∇b(x)]T − b(x)[Hb(x)] , (6)

where ∇ = (∂x, ∂y)T indicates the gradient and H = ∇∇T indicates the Hessian.
Likewise in the 1D case, this operator is not positive semi-definite in general,
but for a simple harmonic oscillator it results in a energy-frequency-weighted
orientation tensor. Moreover, we obtain

Ψc[Arx+y cos(uT
0 x + ϕ0)] = A2r2x+2yu0uT

0 (7)
Ψc[s1(x)s2(x)] = s1(x)2Ψc[s2(x)] + s2(x)2Ψc[s1(x)] . (8)

If we just consider the first part of (6), i.e., the structure / orientation tensor
according to [14, 15] (but without spatial averaging), we obtain

[∇A cos(uT
0 x + ϕ0)][∇A cos(uT

0 x + ϕ0)]T =
1
2
A2u0uT

0 (1 − cos(2uT
0 x + 2ϕ0)) ,

which is likewise in the 1D case not phase invariant and might show aliasing
artifacts.

The energy tensor is a second order symmetric tensor like the structure tensor.
The latter is included in the energy tensor, but it is combined with a product of
even filters, which provides phase invariance for simple harmonic oscillators and
products thereof. The energy tensor can hence be classified as a phase invariant,
orientation equivariant second order tensor [16]. Same as the 2D structure tensor,
the energy operator can be converted into a complex double angle orientation
descriptor [17]:

o(x) = Ψc[b(x)]11 − Ψc[b(x)]22 + i2Ψc[b(x)]12 (9)

which is equivalent to the 2D energy operator defined in [18]. As one can easily
show, |o(x)| = |λ1(x) − λ2(x)|, where λ1(x), λ2(x) are the eigenvalues of the
energy tensor. Since the trace of the tensor is given by the sum of eigenvalues,
we obtain 2λ1,2 = tr(Ψc[b(x)])±|o(x)|, which can be subject to the same analysis
in terms of coherence as suggested in [19, 8] or for the Harris detector [20].

If the signal is not a (product of) simple harmonic oscillations, the opera-
tor (6) does not result in a positive response in general. However, if the local
signal region adheres to the model (1) with slowly varying amplitude and fre-
quency, the response is positive. This is the case if we prefilter the signal with
a bandpass, which avoids low frequencies (DC component and changes of local
amplitude) and high frequencies. Removing high frequencies can be considered
as a regularization that allows the computation of derivatives for discrete data.
The prefiltering is necessary in most practical situations, since natural images
I(x) are typically no bandpass signals b(x).
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2 The GET Operator

As pointed out above, the signal needs to be bandpass filtered in order to obtain
small frequency ranges, and hence, positive responses. For the high frequency
regularization, we prefer Gaussian functions due to their high localization in
both domains. However, Gaussian filters are not DC-free, which is a central re-
quirement in context of the energy tensor. If we consider a difference of Gaussian
filters as in [13], we implicitly lift the level of spatial differentiation by two. Ac-
cording to the equation of linear diffusion [2], the scale derivative of a Gaussian
filter is equivalent to the Laplacian of the Gaussian, i.e., a combination of second
order derivatives. Hence, applying the Hessian to the Laplacian of the Gaussian
means to consider fourth order derivatives instead of second order derivatives.
Due to angular aliasing however, one cannot compute fourth order derivatives on
a local support [10]. Therefore, we propose an operator below which makes use
of Gaussian derivatives up to order three, but avoids the zeroth order Gaussian,
i.e., the DC-component is removed.

2.1 The Gradient Energy Tensor

The idea to define the gradient energy tensor (GET) follows from the previous
considerations. We introduce the tensor in three steps. First, we plug the gradient
of the image into (6) and use tensor notation instead of matrix notation:

GET {I(x)} = Ψc[∇I(x)]
= [∇ ⊗ ∇I(x)] ⊗ [∇ ⊗ ∇I(x)] (10)

−1
2
([∇I(x)] ⊗ [∇ ⊗ ∇ ⊗ ∇I(x)] + [∇ ⊗ ∇ ⊗ ∇I(x)] ⊗ [∇I(x)])

where we symmetrized the tensor by replacing the second term with the corre-
sponding anticommutator term. The obtained operator has 16 coefficients, where
6 can be omitted due to symmetry and one further coefficient is a linear com-
bination of two others. Hence, 9 independent coefficients are left. However, all
components are formed from sums of even derivative products and odd derivative
products. Considering these separately, it turns out that the even part results in
just 3 degrees of freedom (the Hessian) and the odd part results in 6 d.o.f. .

In a second step, we contract the tensor. This becomes possible, since there
is no practical gain from the coefficients that are omitted in the contraction:

GET {I(x)} = [∇ ⊗ ∇I(x)] · [∇ ⊗ ∇I(x)]

−1
2
([∇I(x)] ⊗ [∇ · ∇ ⊗ ∇I(x)] + [∇ ⊗ ∇ · ∇I(x)] ⊗ [∇I(x)])

= [HI(x)][HI(x)] − [∇I(x)][∇ΔI(x)]T + [∇ΔI(x)][∇I(x)]T

2
(11)

In this formula Δ = ∇T∇ denotes the Laplacian. Due to the non-linearity of the
operator, it is difficult to show which degrees of freedom are lost in the contrac-
tion, but we can consider certain different cases. Assuming a simple harmonic
oscillation I(x) = cos(ux+ v y + φ), we obtain for the full tensor
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GET {I(x)} =

⎡⎢⎢⎣
[
u4 u3 v
u3 v u2 v2

] [
u3 v u2 v2

u2 v2 u v3

]
[
u3 v u2 v2

u2 v2 u v3

] [
u2 v2 u v3

u v3 v4

]
⎤⎥⎥⎦ =

⎡⎢⎢⎣u
2
[
u2 u v
u v v2

]
u v

[
u2 u v
u v v2

]
u v

[
u2 u v
u v v2

]
v2
[
u2 u v
u v v2

]
⎤⎥⎥⎦

and for the contracted tensor

GET {I(x)} =
[
u2
(
u2 + v2

)
u v
(
u2 + v2

)
u v
(
u2 + v2

)
v2
(
u2 + v2

)] . (12)

Hence, no information is lost by the contraction under the assumed signal model.
If we extend the model to two different frequencies in the same direction, the
tensor coefficients are multiplied by a spurious modulation factor.1 However, this
modulation is the same for all coefficients, and therefore, the full tensor does not
provide additional information. By repeating this procedure for more frequencies
in the same direction, the result will always be the same, and hence, of locally
1D signals there is no gain from the full tensor.

Due to the non-linear behavior of the tensor it is impossible to calculate the
response for a general 2D signal. However, one can analyze it in terms of null-
spaces and it turns out that the contraction does not change the null-space of
the operator. The GET becomes zero for

I(x) = A exp(ax+ by) +D , (13)

where A, a, b, D are complex constants. Hence, the three degrees of freedom
which are lost in the contraction of the odd part of the tensor do not reduce
the null-space and are therefore of minor importance. Deeper investigations of
the null-spaces and the number of independent components will be subject to a
future publication.

Finally, we would like to point out here that the contraction can be done in
an alternative way by taking the inner product at a different grade of the odd
tensor:

[∇I(x)] · [∇⊗ HI(x)] = Ψc[∂xI(x)] + Ψc[∂yI(x)] . (14)

The behavior for locally 1D signals is the same, but for 2D signals we get different
results.

2.2 Regularization and Gaussian Derivatives

The results from the previous section are obtained for idealized, continuous sig-
nals. In practice, however, we have to deal with non-ideal, noisy, and discrete
signals. The most common thing to do is therefore to regularize the derivative
operators from (11) with Gaussian kernels. A Gaussian regularization is the op-
timal choice if nothing is known about the signal and its noise characteristic.
Therefore, we replace the derivatives in (11) with Gaussian derivatives of order
one to three.

1 The spatial modulation is undesired. The response should have constant amplitude.
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The scales for the regularization are chosen such that the variance increases
linearly with the order of the derivative, cf. (13) in [21]. In [22] we discuss the
choice of scales and different regularizations more in detail.

2.3 Extraction of Monogenic Features

The monogenic signal provides three features: local amplitude, local phase, and
local orientation [6]. In case of signals with intrinsic dimensionality one, i.e.,
I(x) = s(nT x) (s : R → R, |n| = 1), the GET is of rank one:

GET {I(x)} = [nnT s̈(nT x)][nnT s̈(nT x)]

− [nṡ(nT x)][n
...
s (nT x)]T + [n

...
s (nT x)][nṡ(nT x)]T

2
= nnT [s̈(nT x)2 − ...

s (nT x)ṡ(nT x)] .

The first eigenvector of this expression is ±n, i.e., the local orientation of the
signal. The first eigenvalue (or its trace, aka the second eigenvalue is zero) of the
GET is more difficult to analyze, except for the single-frequency case, where we
obtain according to (12) |u|4A2 for an oscillation with amplitude A.

Much more interesting is the extraction of the local phase, which is obtained
in two steps. First, we consider the two addends of the GET separately. The first
one represents the symmetric (even) parts of the signal, whereas the second one
represents the antisymmetric (odd) parts of the signal. However, both parts are
quadratic expressions, such that we have to consider their square-roots:

qeven = ±
√

trace(Teven) and qodd = ±
√

trace(Todd)
where
Teven = [HI(x)][HI(x)] and (15)

Todd = − [∇I(x)][∇ΔI(x)]T + [∇ΔI(x)][∇I(x)]T

2
. (16)

In a second step, the correct signs for the even and the odd parts are selected,
such that arg(qeven + iqodd) gives the local phase of the signal. Comparing the
signs in different quadrants of a harmonic oscillation results in the following
procedure.

Let T = Teven + Todd denote the GET response, o = T11 − T22 + i2T12 its
complex double angle representation [17], and o = (real(

√
o), imag(

√
o))T the

orientation vector. We then define the two signs as

seven = −sign (oT [HI(x)]o) and sodd = −sign (oT∇I(x)) (17)

such that

ϕ = arg(qeven + iqodd) = arg(seven
√

trace(Teven) + isodd
√

trace(Todd)) (18)

is consistent with the definition of the monogenic phase. This can easily be
verified by inserting cos(ux + vy) into the previous four expressions, resulting
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in ϕ = ux + vy if (u, v)T lies in the upper half-plane and ϕ = −ux − vy
otherwise. This behavior is correct since we obtain the same sign ambiguity for
the monogenic phase [6].

If the underlying signal is non-simple, i.e., it has intrinsic dimensionality
two, the analysis becomes more difficult. Following the strategy of the structure
multivector in [10], the first eigenvector is extracted from T. Then, the even
tensor and the odd tensor are projected onto the first eigenvector and onto the
orthogonal vector (aka the second eigenvector). This gives two even components
and two odd components, which are then combined with appropriate signs to
extract two phases for the two perpendicular orientations.

Note also that in the latter case not a single amplitude is obtained, but two
eigenvalues, which correspond to the local amplitudes of the two perpendicular
components. These eigenvalues can then be used for coherence analysis or corner
detection likewise the eigenvalues of the structure tensor.

3 Comparisons

In this section we compare the results of the GET operator with those of the
DCT-based implementation [11], the spherical quadrature filters [10], and the
structure tensor (ST) by outer products of gradients (see e.g. [19]). The latter
approach is not suited for phase-estimation per se, but one can easily extend
it for this purpose in the following way. Assuming that the outer product of
gradients of a cosine oscillation results in a trace which is A sin2(ϕ) and assume
further that local averaging can be replaced with integration over entire periods,
the trace of the (averaged) tensor becomes A

2 . Hence, the sine and the cosine are
obtained up to a sign-ambiguity by

qodd = ±
√
t(x) and qeven = ±

√
−t(x) + 2

∑
t(x) ,

where t(x) = trace([∇I(x)][∇I(x)]T ). For the subsequent comparison only the
second sign needs to be recovered. If we have locally vanishing DC components
and single frequency, it is obtained by the sign of I(x), otherwise we use the sign
of −ΔI. In order to remove some outliers, the signs are median-filtered.

3.1 Experiment: Extraction of Phase and Orientation

In this experiment, we applied all three methods to a synthetic pattern, cf. Fig. 3,
top left, and a real image, cf. Fig. 3, bottom row. We added Gaussian noise to
the pattern (SNR 3.0dB) and selected a mask for the feature comparison. The
scales of all methods were chosen such that the local amplitude estimates were
comparably similar, although the higher spatial-frequency localization of the
GET and the ST leads to a narrower ridge then for the other two methods, cf.
Fig. 3, second row. Instead of showing the phase estimates, we reconstructed the
signal from the phase estimates (cf. Fig. 3, third row) and computed their SNRs.
Furthermore, we computed the orientation error according to [23]. The results
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Fig. 3. Top row from left to right: test-pattern, test-pattern with noise (SNR 3.0dB),
mask for error evaluation, and sign extraction for ST. Second row: amplitudes of DCT,
SQF, GET, and ST (from left to right). Third row: respective reconstructions. Bottom
row: respective amplitude-weighted reconstructions of a real image

Table 1. SNR of reconstruction and orientation error from estimates, cf. Fig. 3

method DCT SQF GET ST
SNR 12.8dB 13.7dB 13.5dB 11.1dB
Δθ 19.6◦ 18.5◦ 7.0◦ 3.6◦

are summarized in Tab. 1, which shows that if we are interested in simultaneously
estimating orientation and phase, the GET gives the best results.
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3.2 Complexity Analysis

The computational complexity might also be an important aspect when it comes
to the selection of suitable methods. Since the extraction of phase and orientation
has to be done in all cases, we only compare the complexities up to that point.

The complexity of the DCT-based method is given by ten 2D FFTs [11], since
we have to compute three scales. Hence, we obtain 30N2 log2N floating point
operations (FLOPs) for an image of size N ×N if N is a power of two. For our
test image we have N = 128, such that we applied about 3.4 · 106 FLOPs.

For the SQF filter set, the complexity depends on the filter size. In our ex-
periment, we used three 23× 23 filters. The filters are not separable, but we can
exploit a four-fold symmetry for the even filter and an eight-fold symmetry for
the odd filter pair. Hence, we end up with 1850N2 FLOPs, which is about 3 ·107

FLOPs in our test.
For the GET operator, the complexity also depends on the filter size. In

our experiment, we used 2σ-truncation (for the largest scale) resulting in seven
17×17 filters. These filters are separable and each of the 1D filters can exploit a
two-fold symmetry. Hence, we get 357N2 FLOPs, i.e., 6·106 FLOPs in our special
case. For the structure tensor, the computational effort is about the same if we
take into account the calculation of the sign (bandpass filter and median filter).

One problem with these complexity estimates are the missing complexities
for memory accesses, which become more and more important nowadays. As
an side-effect of this, the SQF filters are 1.5 times faster than the DCT based
method and the GET operator is 2 times faster than the SQF filters.

4 Conclusion

In this paper we have described an alternative way of extracting the image
features of the monogenic signal, i.e., local amplitude, local phase, and local
orientation, by using a quadratic form. The proposed method of the gradient
energy tensor is the contraction of a fourth order tensor built from image deriva-
tives of order one to three. The new tensor is compatible to the structure tensor
concerning eigensystem analysis, but it is phase-invariant without spatial aver-
aging. Using Gaussian regularization of the derivatives leads to a connection of
monogenic scale-space and Gaussian scale-space via the quadratic form.

We provided formulas to extract the local phase from the two different parts of
the GET, and compared the extracted features phase and orientation to those of
previous approaches. Considering both estimates at once, the GET provides the
best estimates and it is also among the fastest operators. For non-simple signals,
it even provides the two additional features of second eigenvalue and second
phase, which makes it comparable to the much slower structure multivector.
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Abstract. Matrix-valued images gain increasing importance both as the
output of new imaging techniques and as the result of image process-
ing operations, bearing the need for robust and efficient filters for such
images. Recently, a median filter for matrix-valued images has been in-
troduced. We propose a new approach for the numerical computation of
matrix-valued median filters, and closely related mid-range filters, based
on sound convex programming techniques. Matrix-valued medians are
uniquely computed as global optima with interior point solvers. The
robust performance is validated with experimental results for matrix-
valued data including texture analysis and denoising.

1 Introduction

In this paper, we are concerned with the processing of images where the value
attached to each pixel or voxel is a symmetric matrix. Image data of this kind
appear in a variety of different contexts in modern image acquisition and pro-
cessing. For example, diffusion tensor magnetic resonance imaging (DT-MRI) is
an upcoming medical image acquisition technique which measures the diffusion
characteristics of water molecules in tissue, yielding valuable insights into the
structure and function of tissues, particularly fibre connectivity in the brain [13].
Moreover, structure tensors arise as derived quantities in motion detection, tex-
ture analysis and segmentation and other fields of image processing [8]. Tensor
data also occur in solid and fluid mechanics. The latter can have eigenvalues of
either sign while diffusion tensors and structure tensors are positive semidefinite.

All of these data, be they directly measured or computed, are often degraded
by noise. One of the basic tasks in matrix-valued image processing as in other
fields of image processing is therefore denoising. A simple but effective denoising
filter is the matrix-valued median filter introduced in [18]. Based on generalising
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the minimisation property of the scalar-valued median, it inherits from its scalar
counterpart the robustness and capability to preserve discontinuities. To com-
pute matrix-valued medians, in [18] a gradient descent algorithm was proposed.

In this paper, we introduce a new and efficient algorithm for the computa-
tion of matrix-valued medians according to the (slightly generalised) definition
from [18]. The new approach is based on convex conic programming methods
and can easily be adapted to closely related problems like the computation of
matrix-valued mid-range filters. We apply the new algorithm to DT-MRI data
to demonstrate its use. Furthermore, we use matrix-valued medians to smooth
structure tensor data from textured grey-value images as a preprocessing step
for texture segmentation.

We proceed as follows. In Section 2 we describe the local matrix-valued image
filters that we are concerned with. Sections 3 shows how these filters can be
rewritten as convex optimisation problems which are then solved in Section 4.
Experiments on DT-MRI data and local orientation estimation of grey-value
images are presented and discussed in Section 5. Conclusive remarks are given
in Section 6.

Related Work. Median filtering of matrix-valued data is closely related to that
of vector valued data. Indeed, the definition from Welk et al. [18] has an obvious
vector-valued analog. For earlier approaches to vector-valued median filtering in
the image processing literature we refer to Astola et al. [1] and Caselles et al.
[7]. While Caselles et al. [7] require that the median has always to be one of
the given data vectors, Astola et al. [1] relax this condition somewhat while the
definition given in [18] does not make such a restriction at all. Barni et al. [3]
define a vector median using the Euclidean distance sum minimisation similarly
as [18], but again restricted to the given data vectors. Interestingly, the exact
analog to the definition from [18] for 2-D vectors has already been proposed in
1959 by Austin [2] along with a graphical algorithm which is closely related to
the gradient descent procedure from [18]. The problems of this procedure and
improvements have been discussed in Seymour’s 1970 reply [15]. Vector-valued
medians as well as vector-valued mid-range values (often called 1-centres) have
also been studied in the context of facility location problems, see e.g. Megiddo
[12], Fekete et al. [9] and the references therein.

The concept of the structure tensor goes back to Förstner and Gülch [8]. It is
common in image analysis to smooth the rank one matrices which arise directly
from the gradient vectors in single points by Gaussian convolution which leads
in general to rank two matrices which integrate directional information from a
neighbourhood and suffer less from noise sensitivity. The observation that the
Gaussian convolution used in this process is essentially a linear diffusion of the
directional information, thus introducing a blurring that is unwished at times,
led to the definition of a nonlinear structure tensor by Weickert and Brox [17], [6]
in which Gaussian convolution is replaced by nonlinear diffusion. For its better
preservation of discontinuities, the nonlinear structure tensor is well-suited for
texture segmentation [4], [14] and optical flow analysis [6]. Smoothing structure
tensors with medians is also related to the robust structure tensor introduced by
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van den Boomgaard and van der Weijer in [16] and which for a particular choice
of the penaliser function ! also amounts to a minimisation similar to that in the
matrix-valued median.

Regarding convex programming, all concepts we use can be found in cor-
responding textbooks (e.g., Boyd and Vandenberghe [5]). Recently, these op-
timisation methods have been also successfully applied to various other image
processing problems by Keuchel et al. [11].

Notation and Preliminaries. Throughout the paper, e denotes the vector
(1, . . . , 1)� ∈ Rn. By Id we denote the d × d unit matrix. Further, Ld is the

convex cone of vectors
{
x ∈ Rd

∣∣ xd ≥
√
x2

1 + · · · + x2
d−1

}
while Sd is the linear

space of symmetric d×d real matrices. The ith eigenvalue of X ∈ S in the order
λ1(X) ≥ · · · ≥ λd(X) will be denoted by λi(X). Finally, by Sd

+ we mean the
convex cone of positive semidefinite symmetric matrices {X ∈ Sd

∣∣ λd(X) ≥ 0}.

2 Problem Statement: Local Matrix Filters

Given n real numbers a1, a2, . . . , an, their median is defined as the middle value
in the sequence that contains all the numbers ordered by size. The median con-
cept gives rise to a class of image filters, called median filters, which are known
for their outstanding capability for edge-preserving denoising of images. Median
filtering of a discrete grey-value image requires the specification of a pixel mask,
the so-called structure element, which is used to select a neighbourhood for each
pixel. The new grey-value of each pixel is taken to be the median of the old grey-
values of all pixels within its neighbourhood. Median filtering can be iterated,
thereby performing a progressive edge-preserving smoothing. This can be com-
pared to the approximation of the (non-edge-preserving) Gaussian smoothing by
iterated box averaging.

The matrix-valued generalisation of median filtering introduced in [18] is
based on an interesting energy minimisation property of the scalar-valued me-
dian: The median of a1, a2, . . . , an is exactly the real number x for which∑n

i=1 |x− ai| is minimal. The median of n matrices A1, . . . , An ∈ Sd is then
defined as

med(A1, . . . , An) := argminX∈Sd

n∑
i=1

d(X,Ai)

where d is a suitable, rotationally invariant metric on Sd. In [18], the Frobenius
norm was used,

d(X,Ai) = ‖X −Ai‖2 =
√

tr
[
(X −Ai)(X −Ai)] ;

another possible choice is the spectral norm,

d(X,Ai) = |X −Ai| = max
i=1,...,d

∣∣λi(X −Ai)
∣∣ .
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Interestingly, the so-called mid-range value of real numbers a1, a2, . . . , an

which is defined as the arithmetic mean of their maximum and minimum, can
be described by an extremality property very similar to that of the median –
instead of the sum of the distances |x− ai|, their maximum is minimised. The
transfer to matrices is therefore straightforward. We define

midr(A1, . . . , An) := argminX∈Sd max
{
d(X,A1), . . . , d(X,An)

}
with the same requirements for d as in the case of the median. Midrange filtering
is less attractive by itself but stands in close relation to other matrix filters.

3 Convex Optimisation

In this section, we show that each filter introduced in the previous section is
defined as global optimum of a convex optimisation problem.

3.1 Median Filter: Frobenius Norm

We consider the optimisation problem:

medF (A1, . . . , An) := argminX∈Sd

n∑
i=1

‖X −Ai‖2 (1)

and identify the unknown matrix X ∈ Sd with a vector X ∈ Rd2
. Introducing n

additional variables t = (t1, . . . , tn)�, we rewrite (1):

inf
X∈Sd,t∈Rn

〈e, t〉 , ‖X −Ai‖2 ≤ ti , i = 1, . . . , n (2)

Each constraint is convex, because (X�, ti)� varies in the convex cone Ld2+1
i

translated by (A�
i , 0)�. Denoting the corresponding convex constraint sets with

Ci, i = 1, . . . , n, problem (2) reads:

inf
X∈Sd,t∈Rn

〈e, t〉 ,
(
X
t

)
∈

n⋂
i=1

Ci (3)

This optimisation problem is convex, since the objective function is linear, and
since the intersection of convex sets is convex, too.

3.2 Median Filter: Spectral Norm

We consider the optimisation problem:

medS(A1, . . . , An) := argminX∈Sd

n∑
i=1

|X −Ai| (4)
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Similarly to section 3.1, we introduce auxiliary variables t ∈ Rn and correspond-
ing constraints:

|X −Ai| ≤ ti , i = 1, . . . , n

These constraints are satisfied if

tiId − (X −Ai) ∈ Sd
+ and tiId + (X −Ai) ∈ Sd

+ , i = 1, . . . , n

Again, the variables (X, ti) are constrained to convex sets, defined by the inter-
section of affine sets (left hand sides) with the convex cone Sd

+. Denoting the
constraint sets with Ci,+, Ci,−, i = 1, . . . , n, we can rewrite problem (4):

min
X∈Sd,t∈Rn

〈e, t〉 ,
(
X
t

)
∈

n⋂
i=1

(
Ci,+ ∩ Ci,−

)
(5)

This optimisation problem is convex, since the objective function is linear, and
since the intersection of convex sets is convex, too.

We remark that for positive semidefinite data Ai ∈ Sd
+ , i = 1, . . . , n, the

constraints represented by the sets Ci,− are redundant and can be dropped.

3.3 Midrange Filters

For midrange filters defined by

midr(A1, . . . , An) := argminX∈Sd max
{
d(X,A1), . . . , d(X,An)

}
, (6)

we introduce the scalar auxiliary variable t := max
{
d(X,A1), . . . , d(X,An)

}
.

Similar to the derivation of (3) and (5), problem (6) results in two convex opti-
misation problems, depending on which norm we choose. We focus on the median
filters in the remainder of this paper.

4 Convex Programming and Duality

We represent the optimisation problems defined in the previous section as convex
programs. This allows to implement matrix-valued median filters using corre-
sponding numerical interior-point algorithms. The corresponding dual programs
reveal that solutions automatically satisfy plausible conditions whose direct com-
putation (without convex programming) would be more involved.

4.1 Convex Conic Programs

Conic programs generalise linear programs by replacing the standard cone Rn
+

with more general convex cones K:

inf
x
〈c, x〉 , Fx− g ∈ K (7)
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The corresponding dual conic program reads:1

sup
y

〈g, y〉 , F�y = c , y ∈ K (8)

If at least one of these problems is bounded and strictly feasible, then {x, y} is
a pair of optimal solutions if and only if the duality gap is zero:

〈c, x〉 = 〈g, y〉 (9)

4.2 Medians as Conic Programs

We consider problem (1) and identify again matrices X,Ai ∈ Sd with vectors
X,Ai ∈ Rd2

. (2) and (3) corresponds to (7):

inf
X∈Rd2 ,t∈Rn

〈e, t〉 , F

(
X
t

)
− g ∈ K , (10)

where F and g are obtained by stacking the matrices resp. vectors(
Id2 0d2×n

0� e�
i

)
and

(
Ai

0

)
, i = 1, . . . , n

together, ei is the i-th unit vector, and K = Ld2+1 × · · · × Ld2+1.
Below, X ∈ Sd is again regarded as a matrix. Problem (4) or (5), respectively,

directly lead to (7), formulated as semidefinite program:

inf
X∈Sd,t∈Rn

〈e, t〉 , subject to F
(
X
t

)
−G ∈ Sn×d2

+ , (11)

with the linear mapping:

F(X, t) = Diag
{
. . . , tiId −X, . . . , tiId +X, . . .

}
(12)

and:
G = Diag

{
. . . ,−Ai, . . . ,+Ai, . . .

}
(13)

4.3 Dual Programs and Optimality Conditions

Evaluating (8), the conic dual program to (10) reads:

sup
Yi∈Rd2

n∑
i=1

〈Yi, Ai〉 ,
n∑

i=1

Yi = 0 , ‖Yi‖2 ≤ 1 , ∀i (14)

1 In general, conic duals are defined w.r.t. dual cones K∗. In this paper, however, we
consider only self-dual cones K∗ = K.
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Since 〈
∑n

i=1 Yi, X〉 = 0, we can rewrite the objective function as
∑n

i=1〈Yi, Ai −
X〉. Using (9), we obtain:

n∑
i=1

‖X −Ai‖2 =
n∑

i=1

〈Yi, Ai −X〉

The constraints ‖Yi‖2 ≤ 1 suggest as solution to (14):

Yi =
Ai −X

‖Ai −X‖2
, i = 1, . . . , n

Inserting this into the constraint
∑n

i=1 Yi = 0 yields the stationarity conditions
of the original problem (1):

n∑
i=1

X −Ai

‖X −Ai‖2
= 0 (15)

Using this condition for the computation ofX, however, leads to a non-trivial nu-
merical optimisation problem, the need of choosing suitable damping parameters
to achieve convergence, and differentiability problems in cases where the median
X coincides with some data point Ai (in this case, the corresponding term in
(15) is ill-defined, whereas Yi in (14) is not). In contrast, all these problems can
be avoided by the convex programming formulation presented above.

In order to compute the dual program to (11), we first have to clarify
the meaning of F� in (8) for the mapping F in (12). According to (12), the
mapping Fz =

∑
i ziFi defines elementary matrices Fi for each single vari-

able zi = Xj,k or zi = tj . F� in (8) is then given by the adjoint mapping2

F∗Y = (. . . , 〈Fi, Y 〉, . . . )�. Computing the dual program to (11) then results –
analogously to (12) and (13) – in a block-diagonal matrix of the dual variables:

Y = Diag{Y −
1 , . . . , Y −

n , Y +
1 , . . . , Y +

n } ,

and, using the definition

Yi := Y +
i − Y −

i , ∀i ,

to the optimisation problem:

sup
Yi∈Sd

n∑
i=1

〈Yi, Ai〉 ,
n∑

i=1

Yi = 0 , tr[Y +
i + Y −

i ] = 1 , Yi ∈ Sd
+ , ∀i (16)

Note the similarity of (16) and (14). Using the same reasoning as after (14), we
obtain:

n∑
i=1

|X −Ai| =
n∑

i=1

〈Yi, Ai −X〉

2 〈Fi, Y 〉 denotes the matrix inner product tr[F �
i Y ].
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Again, the dual matrices Yi seem to play the role of normalised gradients of the
original objective function (4). Because the spectral norm | · | is non-smooth,
it is not obvious how to make this more explicit. More important, however, are
the computational advantages of the convex programming formulation presented
above, as compared to directly optimising (4).

5 Experiments and Discussion

In our first experiment (Fig. 1) we demonstrate the capability of matrix-valued
median filtering to remove outliers from structure tensor data. The photograph
(a) shows a texture with randomly interspersed inhomogeneities. The outer prod-
ucts ∇u∇u� have been computed by 3 × 3 derivative-of-Gaussian (DoG) filters
and smoothed with a 15 × 15 Gaussian mask. In (b) a subsampling of the re-
sulting matrix field is shown. Outliers are removed from this matrix field by
applying a 7 × 7 median filter (with Frobenius norm) as can be seen in (c).

Fig. 1. Left to right: (a) Image containing oriented texture with inhomogeneities.
(b) Structure tensors computed by smoothing the outer products ∇u∇u� with 15 ×
15 Gaussian. The gradients themselves have been calculated by 3 × 3 derivative-of-
Gaussian filtering. The final matrix field has been subsampled for visualisation. (c)
Result of median filtering of (b) with 7 × 7 structure element and Frobenius norm
(subsampled)

Fig. 2. Left to right: (a) Synthetic image with oriented textures, inspired by [16]. (b)
Local orientations computed via DoGs and visualised as grey-values. (c) Orientations
after median filtering of the orientation matrices with Frobenius norm and a disk-
shaped structure element of diameter 7. (d) Same with structure element of diameter
9. (e) Spectral norm median filtering, diameter 9
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Fig. 3. Top, left to right: (a) Test image with 20 % impulse noise. (b) Orientation
field of (a). (c) Structure tensor orientation obtained by Gaussian smoothing of the
outer product matrices with standard deviation 19. (d) Same after median filtering
with Frobenius norm and disk-shaped structure element of diameter 9. (e) Median
filtering of (a) with Frobenius norm and disk-shaped structure element of diameter
19. Bottom, left to right: (f) Test image perturbed by Gaussian noise of standard
deviation 0.2 (where grey-values vary between 0 and 1). (g) Orientation field of (f).
(h) Structure tensor orientation as in (c). (i) Median filtering as in (d). (k) Median
filtering as in (e)

In the following experiments we show the application of matrix-valued median
filtering in the context of texture analysis. The synthetic test image in Fig. 2 (a)
contains two oriented texture regions separated by a sharp edge. We compute the
gradient ∇u at each pixel using a 3× 3 DoG filter and the outer product matrix
∇u∇u� (of rank one) which estimates the local orientation. We visualise the
orientations of the principal eigenvectors by mapping angles directly into grey-
values (b). The direct transitions between black and white at image boundaries
and along the texture edge are caused by the fact that black and white in fact
represent orientations which are very close to each other because of the cyclic
nature of angles. Median filtering of the outer product matrices yields new matrix
fields. We visualise their orientation in the same way as before (c–e). Juxtaposing
orientation fields obtained with Frobenius norm (d) and spectral norm (e) shows
that the two distance measures yield no significantly different results. In the
following we therefore restrict ourselves to the Frobenius norm.

Let us turn now to investigate orientation estimation in noisy images. Fig. 3
shows two noisy versions of the test image (Fig. 2 (a)) together with their local
orientation estimates. Each orientation matrix field is then smoothed by matrix-
valued median filtering. For comparison, we show also the orientation of the
standard structure tensor obtained by Gaussian smoothing of the orientation
matrices. While in (a–e) impulse noise is shown where the grey values at 20 % of
all pixels have been replaced with random values from [0, 1], images (f–k) show
perturbation by Gaussian noise. While for impulse noise the median filter de-
noises orientation better and also better preserves the discontinuity, the removal
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Fig. 4. Top, left to right: (a) Median filtering of local orientation derived from
normalised gradients of Fig. 3 (a) with Frobenius norm and disk-shaped structure
element of diameter 9. (b) As (a) but with structure element of diameter 19. (c) Median
filtering without normalisation of gradients as in Fig. 3 (d), iterated four times. (d)
Median filtering with normalisation, structure element of diameter 5, iterated five times.
(e) Orientation estimate from Boomgaard–Weijer’s robust structure tensor, parameters
(see [16]) m = 0.05, s = 5. Bottom, left to right: Filtering of Fig. 3 (f). (f) Median
filtering (Frobenius norm) with normalisation, structure element of diameter 9. (g)
Same with diameter 19. (h) Filtering as in Fig. 3 (i), iterated five times. (i) Median
filtering with normalisation, structure element of diameter 15, iterated four times. (k)
Boomgaard–Weijer’s robust structure tensor, m = 0.05, s = 9

for Gaussian noise is still less satisfactory. Increasing the size of the structure
element reduces noise at the cost of blurring also the discontinuity and round-
ing corners, see Fig. 3 (e, k). We are therefore led to propose two modifications
which improve the quality of the orientation estimation by median filtering in
the case of noisy images.

The first modification is to normalise the gradients before computing the
outer products and applying the median filter. This leads to a sharper represen-
tation of the discontinuity in the case of impulse noise as shown in Fig. 4 (a, b).
With Gaussian noise, however, only a marginal improvement is achieved (f, g).

Our second modification is to iterate median filtering. While the improvement
achieved for the impulse-noise image is comparable to that of the normalisation
procedure, see Fig. 4 (c), it outperforms it in the case of Gaussian noise as shown
in (h). Compared to a single median filtering step with the same structure el-
ement, corners are rounded slightly more but less than with a single step with
larger structure element. The sharpness of the discontinuity is not reduced con-
siderably compared to a single iteration while noise is removed more effectively.

Both presented modifications can be combined: In case of impulse noise, see
Fig. 4 (d), the edges are sharpened and the corner is reconstructed more precisely.
However in connection with Gaussian noise, as in Fig. 4 (d), this combination
cannot improve the results.
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Table 1. Average angular errors (AAE) for orientation estimation. Values in brackets
are method-specific parameters: for median filtering, diameter of structure element and
number of iterations; for Boomgaard–Weijer method, m and s (see [16])

Method AAE AAE AAE
undisturbed impulse noise Gaussian noise

gradient direction 3.387◦ 20.612◦ 31.429◦

Frobenius median 1.591◦ (7, 1) 1.914◦ (9, 4) 3.207◦ (9, 5)
Frobenius median, norm. 1.312◦ (7, 1) 1.655◦ (5, 5) 3.434◦ (15, 4)
Boomgaard–Weijer 1.634◦ (0.1, 3) 1.489◦ (0.05, 5) 3.657◦ (0.05, 9)

The smoothing of outer product matrices by iterated median filtering can be
interpreted as computation of a robust structure tensor. When computing classi-
cal structure tensors as in Fig. 3 (c, h), the outer product matrices are smoothed
by Gaussian filtering, thus by linear diffusion. Nonlinear structure tensors as es-
tablished by Weickert and Brox [17] use instead nonlinear diffusion to achieve a
better representation of orientation discontinuities. The robust structure tensor
introduced by van den Boomgaard and van der Weijer [16] smoothes the outer
product matrices by minimising an energy in which a function ! is applied to
matrix distances. In the case !(s) = s, their robust structure tensor is similar
to a single step of median filtering, with the difference that not a sharp struc-
ture element but Gaussian weights are used. In our filtering procedure, iterated
matrix-valued median filtering takes the role of the smoothing process. This is
primarily a change in theoretic perspective since it means that linear filtering is
replaced by robust filtering more consequently. Orientation estimates obtained
by Boomgaard and Weijer’s method are shown in Fig. 4 (e, k). In Table 1, we
compare the different orientation estimation methods by their average angular
errors. As the experiments show, both types of robust structure tensors yield
comparable results.

6 Conclusion and Further Work

In this paper, we have introduced a novel numerical algorithm for the com-
putation of matrix-valued median filters which in their basic form have been
introduced in [18], and for closely related mid-range filters. This algorithm is
based on convex programming ideas. It uses interior-point techniques to com-
pute the filtered matrices as global optima. Further, we have demonstrated the
application of matrix-valued median filtering as a discontinuity-preserving de-
noising technique for orientation data obtained from grey-value images with
oriented textures. It has become evident that median filtering of local orienta-
tion matrices is an attractive alternative to Gaussian–smoothed structure ten-
sors. It also leads in a natural way to a concept of robust structure tensor
in which matrix-valued median filtering takes the role of the smoothing pro-
cess.
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Future work will include the embedding of matrix-valued median filtering
into texture segmentation procedures. Moreover, it will address a better under-
standing of the properties of the so defined type of robust structure tensor and
its comparison to the already existing concepts of nonlinear and robust structure
tensors.
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Abstract. Retinex theory deals with the removal of unfavorable illu-
mination effects from images. This ill-posed inverse problem is typically
regularized by forcing spatial smoothness on the recoverable illumina-
tion. Recent work in this field suggested exploiting the knowledge that
the illumination image bounds the image from above, and the fact that
the reflectance is also expected to be smooth. In this paper we show how
the above model can be improved to provide a non-iterative retinex algo-
rithm that handles better edges in the illumination, and suppresses noise
in dark areas. This algorithm uses two specially tailored bilateral filters
– the first evaluates the illumination and the other is used for the com-
putation of the reflectance. This result stands as a theoretic justification
and refinement for the recently proposed heuristic use of the bilateral
filter for retinex by Durand and Dorsey. In line with their appealing way
of speeding up the bilateral filter, we show that similar speedup methods
apply to our algorithm.

1 Introduction

Retinex theory deals with the removal of unfavorable illumination effects from a
given image. A commonly assumed model suggests that any given image S is the
pixel-wise multiplication of two images, the reflectance R and the illumination
L, i.e., S = R ·L. A look-up-table log operation transfers this multiplication into
an addition, resulting with s = log(S) = log(L) + log(R) = � + r. Clearly, the
recovery of � from s is an ill-posed inverse problem. Solving it is typically done by
introducing a regularization that forces a spatial smoothness on the recoverable
illumination. Thus, early heuristic and successful retinex methods, such as the
homomorphic filtering algorithm [1] and many others (e.g., [2, 3, 4, 5]), proposed
a low-pass filter on s, or an algorithm that amounts to this effect, to obtain a
rough estimate of �. In this paper we refrain from reviewing this literature, and
limit our approach to this topic by building upon a recent study presented in [6].

The work in [6] describes several improvements to the classical retinex models.
One improvement refers to the passivity of the reflectance, assumed to satisfy
0 ≤ R ≤ 1. As a direct consequence we have that L ≥ S, implying that the
illumination image should be an envelope image bounding S from above. Due to
the monotonicity of the log operation we have � ≥ s. Merging the above with the
desire to get spatially smooth � may lead to the trivial and meaningless result of

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 217–229, 2005.
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a constant image, � = max(s). The remedy, as proposed in [6], is to assume that
‖� − s‖2 should be small, implying that � should upper envelope s while being
close to it. Based on these modifications, the reconstruction of the illumination
can be posed as the following quadratic programming (QP) problem

min
�≥s

λ ‖�− s‖2
2 +
{
‖Dx�‖2

2 + ‖Dy�‖2
2

}
. (1)

The operators Dx and Dy represent horizontal and vertical discrete derivatives,
forcing this way spatial smoothness.

A second ingredient introduced in [6, 7] is a smoothness penalty forced also
on the reflectance image r = s− �. This added to (1) gives

min
�≥s

λ ‖�− s‖2
2 +
{
‖Dx�‖2

2 + ‖Dy�‖2
2

}
+ α

{
‖Dx(s− �)‖2

2 + ‖Dy(s− �)‖2
2

}
.(2)

Note that, since s = �+ r is enforced, the new term contradicts the illumination
smoothness, as r and � cannot be jointly smooth. Thus, the effect is to gain some
smoothness in r at the expense of losing some of it in �. The justification for this
is the desire to lead r to be “nice-looking”, as natural images should be.

Based on the above model, an efficient multi-scale algorithm has been pro-
posed in [6] to estimate � and thus r. The work in [7] used the same model
to propose a simplified estimate solvers based on known implementation con-
straints. More recently, [8] further simplified the computation of � by introducing
a spatial recursive smoothing filter.

While the above model is general enough and covers the correct forces to be
used in the solution of the retinex problem, it has several flaws:

– Hallows: A commonly encountered artifact with retinex algorithms is the
existence of hallows. This is a direct consequence of the smoothness assump-
tion discussed above. When passing from a strongly illuminated region to a
dark zone (e.g., on a border of a shadowed area), the smoothness forces the
illumination to remain high in the dark region near this edge and smoothly
descend to grasp the illumination within the dark region. Thus, when re-
moved, the dark regions near such edges remain dark, resulting with these
hallow effects. Such effects can be also obtained in the bright areas near such
illumination edges, if the constraint � ≥ s is not practiced. Then those bright
areas become further brighter.

– Noise: In dark regions of the image these retinex algorithms are expected
to yield a contrast stretching, very much similar to the effect caused by
standard Gamma correction. The stretching causes a magnification of the
noise, and this becomes evident especially in low-quality images, or ones
with noticeable compression. The constraint s = �+ r implies that the noise
migrates as a whole to the two ingredients, rather than being suppressed.

– Iterative Solution: The above model formulation leads naturally to the
need for an iterative solver. The work in [7] and [8] bypassed this limitation,
but with a price on the final outcome’s quality.
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In this paper we propose an alternative model for retinex, and a numerical
algorithm that builds on it. The new model is similar to the one in (2), in the
sense that all the presented forces are included. However, this new model is
enhanced to solve the above mentioned shortcomings.

More specifically, smoothness of the illumination and the reflectance are
forced using a robust statistics method, and hallows are avoided. The smooth-
ness terms used are very much in the spirit of the bilateral filter [9, 10], having a
wide stencil effect that enables avoiding the need for an iterative or multi-scale
solver. We use different smoothing formulation for the reflectance and the illu-
mination to handle them differently, and absorb the constraint � ≥ s in a natural
way. This leads to a two-stage algorithm that applies two variations of the bilat-
eral filter, first estimating the illumination, and then the reflectance. The new
model suppresses noise by allowing � + r to deviate from s, implying that the
residual should be the additive noise we want to discard of. The new model and
accompanying algorithm stand as a theoretic justification and refinement for the
recently proposed heuristic use of the bilateral filter for retinex as appeared in
[11]. In line with their appealing way of speeding up the bilateral filter, we show
similar speedup methods for our two bilateral filter variations.

This paper is organized as follows: Section 2 presents the bilateral filter
that this work is building on. Section 3 then turn to describe the new model
for retinex, and the algorithm that emerges from it. Speedup methods are dis-
cussed in Section 4. Section 5 presents some results, and Section 6 concludes this
paper.

2 Denoising by the Bilateral Filter

In this Section we present the bilateral filter, designed for the removal of additive
noise from images [9]. We also discuss its origins as described in [10, 11, 12, 13].
These will serve us as we turn later to consider the retinex problem.

Consider an image s contaminated by additive noise. Our goal is to develop
an edge-preserving smoothing algorithm that effectively removes most of the
noise while preserving the image details. A maximum a-posteriori probability
(MAP) formulation of this problem as presented in [10] yields

min
ŝ

λ ‖ŝ− s‖2
2 +

P∑
m=−P

P∑
n=−P

(Cm,nŝ− ŝ)T W[m,n](s) (Cm,nŝ− ŝ) . (3)

The operators Cm,n are shift operators, moving the image ŝ by m pixels hori-
zontally and n pixels vertically. The matrices W[m,n] are diagonal matrices that
down-weight large edge entries in s so as not to smooth over edges of the image.
The choice W[m,n](s) = I ∀ m,n leads to the non-robust option that makes the
overall problem QP as in (2). Choosing these weights to be inversely propor-
tional to |Cm,ns− s| leads to the ability to handle edges in the image better.
Note that using weighting here parallels the use of robust statistics - more on
this relationship and can be found in [10, 12].
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The fact that smoothness is forced in a wide neighborhood implies that even
a simple iteration to minimize this functional will be very effective. Indeed,
the work in [10] established that the bilateral filter as presented by [9] is an
approximate solver of this programming task. More specifically, it was shown
that the bilateral filter amounts to a single Jacobi iteration over this penalty
term. Here we briefly show this property and its meaning. The Jacobi step is
constructed using the gradient and the diagonal of the Hessian of the penalty
function in (3). The gradient is given by

∂F{ŝ}
∂ŝ

= 2λ(ŝ− s) + 2
P∑

m=−P

P∑
n=−P

(Cm,n − I)T W[m,n](s) (Cm,n − I) ŝ. (4)

The Hessian of F is given by

∂2F{ŝ}
∂ŝ2

= 2λI + 2
P∑

m=−P

P∑
n=−P

(Cm,n − I)T W[m,n](s) (Cm,n − I) . (5)

Denoting the main diagonal of the Hessian as the matrix 0.5M(s)1, and assuming
an initialization ŝ = s, the first Jacobi iteration to minimize F gives

ŝ1 = ŝ0 − diag

{
∂2F{ŝ}
∂ŝ2

∣∣∣∣
ŝ0=s

}−1

· ∂F{ŝ}
∂ŝ

∣∣∣∣
ŝ=s

(6)

=

[
I − M(s)−1 ·

P∑
m=−P

P∑
n=−P

(Cm,n − I)T W[m,n](s) (Cm,n − I)

]
s.

The above represents an operator that multiplies the image s. This operator
applies a weighted sum of the input pixels in a stencil of (2P + 1)-by-(2P + 1)
pixels to compute the output, and these weights are dependent on W[m,n](s)
and the local differences between the center pixel s[k, j] and its neighbors s[k −
m, j−n]. Thus, this is a spatially adaptive FIR filter of some sort. In [10] it was
shown that if the [m,n] weight at the pixel [k, j] is chosen as

W[m,n](k, j) =
ρ′ {s[k, j] − s[k −m, j − n]}
s[k, j] − s[k −m, j − n]

· V [m,n], (7)

then we obtain the very filter that Tomasi and Manduchi proposed in [9]. For this
equivalence we have to choose λ = 1, ρ(x) = 1−exp(−x2/2σ2), and V [m,n] being
a Gaussian kernel. Still, we can consider many other robust functions and weights
V [m,n] that give a filter very much in line with the spirit of the bilateral filter.
Interestingly, this filter is a discrete version of the short-time effective kernel of
the Beltrami flow as discussed in [14, 15]. This implies that this algorithm has
deep roots in the geometric understanding of images as manifolds.

1 The additional 0.5 comes to null the factor 2 in the gradient term.
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While the above analysis is helpful in understanding the origins of the bilat-
eral filter, it is hard to understand how it is applied in practice. As shown in [9],
the effective filter computes every output pixel ŝ1[k, j] by

ŝ1[k, j] =
P∑

m=−P

P∑
n=−P

a[m,n, k, j]s[k −m, j − n], (8)

where a[m,n, k, j] =
exp
(
−m2+n2

2σ2
s

− (s[k,j]−s[k−m,j−n])2

2σ2
r

)
Z[k, j]

. (9)

The term Z[k, j] normalizes these weights to sum to one. This filter assigns per
every neighbor a weight inversely proportional to its Euclidean distance (m2+n2)
and inversely proportional to its distance in gray-value from the center pixel. The
parameters σr and σs governs the behavior of the filters - more on those can be
found in [9, 10].

3 Retinex by Two Bilateral Filters

In this section we present the new model for the retinex problem that uses the
bilateral smoothness term. We use this model to develop the two bilateral filters
that compose our novel retinex algorithm.

Hallows in the retinex result could be avoided by allowing � to be piece-wise
smooth. This could be easily accomplished by replacing the terms ‖Dx�‖2

2 +
‖Dy�‖2

2 with ‖Dx�‖1 + ‖Dy�‖1, TV [16], or any other robust statistics based
penalty, and there are numerous options of the like. However, adopting such
local terms implies a need for many iterations in the numerical solution. Thus,
we consider instead the bilateral smoothness. For brevity of notations, we denote
hereafter

BW,P {x} =
P∑

m=−P

P∑
n=−P

(Cm,nx− x)T W[m,n](s) (Cm,nx− x) . (10)

Starting from the quadratic programming problem posed in (2), we propose
the following alternative model for retinex

min
�, r: �≥s

{
λ� ‖�− s‖2

2 + BW
,P

{�}
}

+ α
{
λr ‖r − s+ �‖2

2 + BWr,Pr
{r}
}
.(11)

The first part handles the smoothness of the illumination � and its proximity to
s, while bounding it from above. The second part introduces the smoothness of
the reflectance r, and requires it to be close to the residual image s − �. Thus,
noise can be discarded by becoming the residual s − � − r. Note also that our
notations hints to the fact that we will consider different weights and parameters
in the smoothness terms for � and r. The formulation given in (11) leads to a
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decomposition that seeks both � and r as unknown, and one does not imply the
other as before.

Instead of optimizing with respect to both � and r in parallel (which is an
option we have not explored in our work, but one that can certainly be addressed
based on the model we have posed), we adopt a two stage process, first estimating
�, based on the first part in (11), and then given �, we evaluate r.

Starting with the quest for �, let us attempt to evaluate it such that it ad-
dresses only the first term in (11). Thus, we seek a solution to the problem

min
�: �≥s

λ� · ‖�− s‖2
2 + BW
,P


{�} . (12)

Clearly, without the constraint � ≥ s, the above is equivalent to the problem
posed in (3), and as such, the bilateral filter is an excellent solver candidate.
Thus, the natural question we should pose here is how the constraint should be
accommodated, in a way that preserves the convenience of the bilateral filter. We
propose to introduce a special choice of weights W� that handle the constraint
implicitly. These new weights are based on Equation (7), but using a one-sided
robust function ρ,

ρ(x) =
{

1 − exp(−x2/2σ2
r) x ≤ 0

∞ x > 0 . (13)

This alternative choice of weights introduces a simple modification to the bi-
lateral filter, where, among the (2P + 1)-by-(2P + 1) neighbors per each pixel,
we consider only those that satisfy s[k, j] ≤ s[k −m, j − n]. This way, the local
averaging is done with non-negative normalized weights, while combining only
pixels that have higher gray values than the center pixel, resulting with a final
outcome that must satisfy �1[k, j] ≥ s[k, j]. Thus, this new filter will necessarily
achieve both a satisfaction of the constraint (by virtue of the weights), while
reducing the newly defined penalty term that still considers smoothness as we
desire. We refer hereafter to this filter as the envelope-bilateral filter.

In practice, the above implies that the bilateral filter as presented in section
2 is slightly changed. Parallel to (8) and (9), in the envelope-bilateral filter every
output pixel �1[k, j] is evaluated by

�1[k, j] =
P∑

m=−P

P∑
n=−P

a[m,n, k, j]s[k −m, j − n], (14)

where

a[m,n, k, j] =
exp
(
−m2+n2

2σ2
s

− (s[k,j]−s[k−m,j−n])2

2σ2
r

)
· μ{s[k −m, j − n] − s[k, j]}

Z[k, j]
.

The notation μ{x} stands for the step-function, being 1 for non-negative x and
zero elsewhere. The term Z[k, j] normalizes these weights to sum to one, as
before. Note that from the above description it is clear that if s[k, j] is the peak
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of its (2P + 1)2 neighborhood, then its filtering amounts to �1[k, j] = s[k, j],
since in this case all weights are zero and only a[0, 0, k, j] = 1.

Assuming that the above stage has been completed, we have an estimate of
� and we now turn to evaluate r. We consider the second term in (11), solving

min
r
λr · ‖r − (s− �)‖2

2 + BWr,Pr
{r} . (15)

Since the image s− � is given, this is the very bilateral filter formulation in (2).
Thus, an application of the bilateral filter on the image s− � should lead to the
desired r. However, due to the transform to the log-domain, the noise that should
be discarded from the reflectance image resides mostly in the regions where s
is low. Thus, we can better direct the above bilateral filter by using σr to be
inversely proportional to s to reflect this matter. A choice of the form σr[k, j] =
(C1 · s[k, j]p + C2)−1 could be used to this effect2. Nothing in the definition or
the implementation of the bilateral filter prevents having such spatially adaptive
parameter. This will ensure that r is hardly smoothed in regions where s is bright,
while it is being smoothed in darker regions.

4 Speeding Up the Retinex Algorithm

In their paper, Durand and Dorsey proposed a wonderful speedup algorithm for
the bilateral filter, and this algorithm can be applied directly to both our two
bilateral filter versions. Here we outline the basic ideas of this speedup, starting
from Equation (14), although everything said applies just as well to the second
bilateral filter.

Referring to s[k, j] in these equations as a constant c, we can re-write these
equations as

�1[k, j] =
1

Z[k, j]
·

P∑
m=−P

P∑
n=−P

exp
(
−m2 + n2

2σ2
s

)
· (16)

·
[
exp
(
− (c− s[k −m, j − n])2

2σ2
r

)
· μ{s[k −m, j − n] − c}s[k −m, j − n]

]
=

1
Z[k, j]

·
P∑

m=−P

P∑
n=−P

exp
(
−m2 + n2

2σ2
s

)
· g[k −m, j − n].

This expression is a convolution between the image g[k, j], being

g[k, j] =
[
exp
{
− (c− s[k, j])2

2σ2
r

}
· μ{s[k, j] − c}s[k, j]

]
, (17)

and the Gaussian blur. Thus, we could apply a sequence of such convolutions,
scanning the values of s[k, j] in the range [0, loge 255], and then merging the

2 Recall that S[k, j] ∈ [1, 255] as we shift by 1 to avoid singularities, and we have also
0 ≤ s[k, j] ≤ 5.54.
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results, choosing the proper values from each output, based on the s[k, j] values.
Note that the value of Z[k, j] is given by a similar expression

Z[k, j] =
P∑

m=−P

P∑
n=−P

exp
(
−m2 + n2

2σ2
s

)
u[k −m, j − n], (18)

where

u[k, j] = exp
{
− (c− s[k, j])2

2σ2
r

}
· μ{s[k, j] − c}. (19)

Thus, its computation can also be done using a sequence of similar convolutions.
Durand and Dorsey proposed two ways to further speed-up the evaluation

of �1: (i) piece-wise linear approximation; and (ii) multi-scale implementation.
The first idea is to scan the values of s[k, j] in the range [0, loge 255] with jumps,
and interpolate in between. Practically speaking, using 30−50 equispaced jumps
in the range [0, loge 255] are found to induce almost no change to the outcome.
Since our weights include a step-function discontinuity, the interpolation should
be done as a one-sided operation, always preferring to adopt the larger c to avoid
a violation of the � ≥ s constraint. This causes the interpolation to loose some of
of its accuracy, but our experiments show that this lose is mild and unnoticeable.

As to the multi-scale option, since images are convolved in the above expres-
sions with wide-range Gaussian smoothers, a pre down-scale and post up-scale
yield a substantial gain in run-time with almost no change in the outcome. The
gain is especially noticed for wide supports (P # 1, and σs # 1). On top of
these two ideas, note that the required convolutions required are all separable.
Furthermore, when σs is large enough, the effective convolving kernel is the
square step function. In such a case further speedup can be obtained using the
computation of the integral image [17].

5 Results

An interesting idea reported in [6] is to return some of the illumination to the
reflectance when presenting the final output image. Thus, the output image
is computed as Out = R[k, j] · L[k, j]1/γ = S[k, j] · L[k, j]1/γ−1. Reflectance
images are typically unrealistic looking, and with a modest and reduced effect
of illumination returned to it, the final image enjoys both the desired brightness
and the natural appearance. We have made use of this idea in the following
presented results. The illumination is returned to the original image by applying
Gamma-correction on it using γ = 3, and multiplying it back by the estimated
reflectance.

Figures 1-2 present two pairs of original images3 and their retinex results. In
these two cases, the use of spatially varying σr has very little effect because the

3 These images and the one in Figure 3 are from the NASA retinex web-page.
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Fig. 1. Example 1 - An original image (left) and its retinex result (right)

Fig. 2. Example 2 - An original image (left) and its retinex result (right)

Fig. 3. Example 3 - An original image (left) and its retinex results using a regular
bilateral filter for computing r (middle) and using the spatially adaptive σr (right)

images are of high quality, and thus we do not show it. Figure 3 presents results
for a third image, where the dark region is noisy, and thus the two versions
are shown side-by-side for comparison (with parameters p = 8, C1 = 5e −
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Fig. 4. The reflectance and the illumination images in Example 1
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Fig. 5. Example 1 - Right: The Input-Output mapping, and overlayed on it is the
Gamma-correction that corresponds to γ = 3; Left: The effective Gamma correction
value per pixel

3, C2 = 0.3). We should note that in processing color images we apply the retinex
algorithm to the luminance (V) layer in the HSV color representation, and leave
the chromatic layers unchanged. In all three cases we used the following setup
parameters: the envelope bilateral filter parameters used are P� = 15, σr = 0.3,
and σs = 100. The second bilateral filter used Pr = 4, σr = 0.3 or an adaptive
method as described earlier, and σs = 100. The speedup algorithm was used
with scale down factor of 2 : 1, and grey-value steps of 0.1.

Figures 4 and 5 return to the first example, presenting several accompanying
results. Figure 4 shows the obtained reflectance and illumination results (gray-
value images referring to the V-layer). As can be seen, what we call ‘reflectance’
is far from being satisfactory to describe the image, and indeed there is room
to return of illumination. This Figure indicates that our separation is not per-
fect and there is a leakage between r and �. In fact, our � are r stand for large
scale intensity components and small scale corrections, respectively, both esti-
mated with preservation of discontinuities. Still, the final outcome is satisfactory
because of the illumination return.
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Fig. 6. An original image (top), the new retinex algorithm (bottom left), and the one
reported in[6] (bottom right)

Figure 5 describes the Out-to-In correspondence of the overall retinex algo-
rithm, showing that while the retinex process generally resembles a Gamma-
correction effect, is has a different effect of varying Gamma. This idea is further
expanded, showing in Figure 5 the image γeffective = log In/ logOut as a func-
tion of the location. This gives the effective Gamma correction that should be
applied in every pixel to reproduce the obtained result.

The overall improvement in speed introduced by the speedup algorithm de-
pends on many of the parameters that are mentioned above, and on implemen-
tation issues. We compared two efficient implementations of the bilateral filter
- both implemented with Matlab. The first sweeps through the support of the
filter, applying operations on complete images, and the other being the speedup
algorithm mentioned above. For the parameters used here we obtained a factor
of 5 − 10 shorter run time with the speedup algorithm.

Figure 6 presents a comparison between the new algorithm and the one re-
ported in [6] on a severely degraded image4. For this comparison we changed the
color space to YCbCr, and choose γ = 2.3 in the illumination return, both done
to match with the alternative algorithm. The results show strong hallows in the
previous method, while those are fully suppressed by our algorithm.

4 Curtesy of Eyal Gordon, The CS department - The Technion.
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6 Conclusion

In this paper we have presented a new model for the retinex problem – removal
of undesired illumination effects from an image. The new model enables a better
handling of edges in the illumination that causes hallow effects, and it enables the
suppression of noise in dark areas. An algorithm based on this model has been
developed, leading to two specially tailored bilateral filters, the first evaluates the
illumination and the second is used for the computation of the reflectance. Our
work stands as a theoretic justification and refinement for the recently proposed
heuristic use of the bilateral filter for retinex by Durand and Dorsey. We have
used their way of speeding up the bilateral to propose a similar speedup methods
for our filters.
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Abstract. We examine the problem of finding the optimal weight of the
fidelity term in variational denoising. Our aim is to maximize the signal
to noise ratio (SNR) of the restored image. A theoretical analysis is
carried out and several bounds are established on the performance of the
optimal strategy and a widely used method, wherein the variance of the
residual part equals the variance of the noise. A necessary condition is set
to achieve maximal SNR. We provide a practical method for estimating
this condition and show that the results are sufficiently accurate for a
large class of images, including piecewise smooth and textured images.

1 Introduction

Variational methods have been increasingly applied for purposes of image de-
noising and restoration (for some examples see [3, 6, 8, 11, 12]). The basic concept
is to view the restoration process as a task of energy minimization. Classically,
the restored image is a minimization of a weighted sum of two fundamental
energy terms:

E(u) = Esmooth(u) + λEfidelity(u, f), (1)

where u is the restored image, and f is the input (noisy) image. Esmooth is a
smoothing term which rewards smooth signals and penalizes oscillatory ones.
Efidelity accounts for fidelity, or closeness, to the input image f . The under-
lying assumption is that the original clean image is smoother than the noisy
image. By minimizing both terms we seek a compromise between a smooth so-
lution (often in the TV sense, so edges are preserved) and one which is “close
enough” to the original image. Any minimization of one of the terms by itself

� Supported by grants from the NSF under contracts ITR ACI-0321917, DMS-
0312222, and the NIH under contract P20 MH65166.

�� Supported by MUSCLE, a European Network of Excellence funded by the EC
6th Framework IST Programme, the Israeli Ministry of Science, the Israel Science
Foundation, the Tel-Aviv University fund and the Adams Center.

� � � Supported by the Ollendorf Minerva Center, the Fund for the Promotion of Re-
search at the Technion and the Israel Academy of Science.

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 230–241, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Estimation of the Optimal Variational Parameter via SNR Analysis 231

leads to degenerate solutions which are not interesting (a constant or the in-
put noisy image). The appropriate compromise then highly depends on λ, the
weight parameter between these two energies. When it is too low, the restored
image is over-smoothed. When it is too high, u still contains too much noise.
Finding the right value of λ for the problem at hand is therefore imperative. A
similar problem has been investigated in regularization theory, in the context of
operator inversion by Tikhonov-type methods (e.g. [4, 9]). As we are concerned
with denoising of images (therefore our operator is the identity and the regu-
larization preserves edges), different approaches should be used. In our field of
PDE-base image processing, the problem was seriously addressed by only a few
researchers: by [11] for total-variation denoising and by [7] and [13] for a closely
related problem of finding the right stopping time in nonlinear scale-space. We
refer in this paper only to the variational setting, but our method has shown to
be very effective also for selecting the proper stopping time [5].

An analysis of the optimal parameter choice from SNR perspective is pre-
sented. We examine the widely used denoising strategy of [11] where the weight
of the fidelity term is set such that the variance of the residual part equals that
of the noise. Lower bound on the SNR performance of this strategy is established
as well as a proof of non existence of an upper bound. Examples which illustrate
worst- and best-case scenarios are presented and discussed.

Next, we derive a necessary condition for optimality in the SNR sense. From a
theoretical viewpoint, this facilitates the computation of upper and lower bounds
of the optimal strategy. From a practical viewpoint, the condition suggests the
numerical method that should be followed for the purpose of maximizing the
SNR of the filtered image. An algorithm for parameter calculation is suggested
based on the above condition, resulting in fairly accurate estimates.

2 SNR Bounds for the Scalar Φ Process

2.1 Denoising Model, Definitions and Assumptions

We assume that the input signal f is composed of the original signal s and
additive uncorrelated noise n of variance σ2. Our aim is to find a decomposition
u, v such that u approximates the original signal s and v is the residual part
of f :

f = s+ n = u+ v. (2)

We accomplish that by finding the minimum to the following energy

ẼΦ(u) =
∫

Ω

(
Φ(|∇u|) + λ̃(f − u)2

)
dΩ. (3)

Φ is assumed to be convex in this paper. Some of the following results, though,
can also apply to the more general case of monotonically increasing Φ. The
standard condition

∫
Ω
fdΩ =

∫
Ω
udΩ is set, (corresponding to the Neumann

boundary condition of the evolutionary equations). Then
∫

Ω
vdxdy = 0, rescaling

λ̃ by the area of the domain |Ω|: λ = λ̃|Ω|, we get
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EΦ(u, v) =
∫

Ω

Φ(|∇u|)dΩ + λV (v), f = u+ v. (4)

where V (q) is the variance of a signal q: V (q) .= 1
|Ω|
∫

Ω
(q − q̄)2dΩ, and q̄ is

the mean value: q̄ .= 1
|Ω|
∫

Ω
qdΩ. The covariance of two signals is defined as:

cov(q, r) .= 1
|Ω|
∫

Ω
(q − q̄)(r − r̄)dΩ. We remind the identity V (q + r) = V (q) +

V (r) + 2cov(q, r).
Let us denote uz as the solution of (4) for f = z. For example, us is the

solution where f = s. The decorrelation assumption is taken also between s and
n with respect to the Φ process:

cov(us, n) = 0, cov(un, s) = 0, ∀λ ≥ 0. (5)

We further assume the Φ process applied to f = s + n does not amplify or
sharpen either s or n. This can be formulated in terms of covariance as follows:

cov(us+n, s) ≤ cov(f, s), cov(us+n, n) ≤ cov(f, n), ∀λ ≥ 0. (6)

Both of the above assumptions were verified numerically on a collection of nat-
ural images. We are investigating the possibility to characterize in an analytical
manner the appropriate spaces of s and n such that (5) and (6) are followed. In
this paper this question is left open and we resort to the following definition:

Definition 1 ((s, n) pair). An (s, n) pair consists of two uncorrelated signals
s and n which obey conditions (5) and (6).

Theorem 1. For any (s, n) pair and an increasing Φ (Φ′(q) > 0,∀q ≥ 0) the
covariance matrix of U = (f, s, n, u, v)T has only non-negative elements.

For proof see the appendix. Theorem 1 implies that the denoising process has
smoothing properties and consequently, there is no negative correlation between
any two elements of U . This basic theorem will be later used to establish several
bounds in our performance analysis.

We define the Signal-to-Noise Ratio (SNR) of the recovered signal u as

SNR(u) .= 10 log
V (s)

V (u− s)
= 10 log

V (s)
V (n− v)

, (7)

where log .= log10. The initial SNR of the input signal, denoted by SNR0, where
no processing is carried out (u = f , v = 0), is according to (7) and (2):

SNR0
.= SNR(f) = 10 log

V (s)
V (n)

= 10 log
V (s)
σ2 . (8)

Let us define the optimal SNR of a certain Φ process applied to an input
image f as:

SNRopt
.= max

λ
SNR(uλ) (9)
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where u = uλ attains the minimal energy of (4) with weight parameter λ (for
a given f , v is implied). We denote by (uopt, vopt) the decomposition pair (u, v)
that reaches SNRopt, and define Vopt

.= V (vopt).
Equivalently, the desired variance could be set as V (v) = P , where P is some

constant, and then (4) is reformulated to a constrained convex optimization
problem

min
u

∫
Ω

Φ(|∇u|)dΩ subject to V (v) = P. (10)

In this formulation λ is viewed as a Lagrange multiplier. The value λ can be
computed using the Euler-Lagrange equations and the pair (u, v):

λ =
1
P

∫
Ω

div
(
Φ′ ∇u

|∇u|

)
vdΩ. (11)

The problem then transforms to which value P should be imposed.
The strategy of [11] is to assume v ≈ n and therefore impose

V (v) = σ2. (12)

We define
SNRσ2

.= SNR(u)|V (v)=σ2 . (13)

We denote by (uσ2 , vσ2) the (u, v) pair that obeys (12) and minimizes (4). We
will now analyze this method for selecting u in terms of SNR.

Proposition 1 (SNR lower bound). Imposing (12), for any (s, n) pair
SNRσ2 is bounded from below by

SNRσ2 ≥ SNR0 − 3dB, (14)

where we use the customary notation 3dB for 10 log10(2).

Proof. From Theorem 1 we have cov(n, v) ≥ 0, therefore,

SNRσ2 = 10 log V (s)
V (n−v)

≥ 10 log V (s)
V (n)+V (v)

= 10 log V (s)
2σ2

= SNR0 − 3dB. �

The lower bound of proposition 1 is reached only in the very rare and extreme
case where cov(n, v) = 0. This implies that only parts of the signal were filtered
out and no denoising was performed.

Proposition 2 (SNR upper bound). Imposing (12), then there does not exist
an upper bound 0 < M < ∞, where SNRσ2 ≤ SNR0 +M , that is valid for any
given (s, n) pair.
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Proof. To prove this we need to show only a single case where the SNR cannot
be bounded. Let us assume V (s) = hσ2, 0 < h < 1. Then SNR0 = 10 log h. As
signal and noise are not correlated we have V (f) = V (s)+V (n) = (1+h)σ2. We
can write V (f) also as V (u+v) = V (u)+V (v)+2cov(u, v). From (12), V (v) = σ2,
and from Theorem 1, cov(u, v) ≥ 0, therefore V (u) ≤ hσ2. Since cov(u, s) ≥ 0
(Theorem 1) we get V (u− s) ≤ 2hσ2. This yields SNRσ2 ≥ 10 log 1

2 and

SNRσ2 − SNR0 ≥ 10 log
1
2h
.

For any M we can choose a sufficiently small h where the bound does not
hold. �

Simulations that illustrate worst- and best-case scenarios are presented in
Figs. 1 and 2. A signal that consists of a single very contrasted step function
is shown in Fig. 1. This example illustrates a best-case scenario for an edge
preserving Φ. SNR resulting from the PDE-based denoising is greatly increased
(by ∼ 20dB). Note that this case approximates an ideal decomposition u ≈ s,
v ≈ n which differs from the simple case used in the proof of Proposition 2.
A worst-case scenario is illustrated in Fig. 2 by means of the Checkered-board
example. A very oscillatory signal s is being denoised and, in the process, is
heavily degraded. The reduction in SNR, compared to SNR0, is ∼ 2.9dB, close
to the theoretical 3dB bound.
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Fig. 1. Approaching best-case scenario in piece-wise constant images. In this example
SNR increases by almost 20dB from 19.9dB to 39.6dB (variance of noise is ≈ 1

100 of
the input noise). From left: f , u, v, SNR as a function of V (v)/σ2
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Fig. 2. Approaching worst-case scenario in a checkered-board image. SNR decreases
by almost 3dB from 19.9dB to 17.0dB. From left: f , u, v, SNR as a function of V (v)/σ2
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2.2 Condition for Optimal SNR

We will now develop a necessary condition for the optimal SNR. As discussed,
we have a single degree of freedom of choosing V (v). We therefore regard SNR
as a function SNR(V (v)) and assume that it is smooth. A necessary condition
for the maximum in the range V (v) ∈ (0, V (f)) is:

∂ SNR
∂V (v)

= 0. (15)

Rewriting V (n− v) as V (n) + V (v)− 2cov(n, v), and using (15) and (7), yields

∂cov(n, v)
∂V (v)

=
1
2
. (16)

The meaning of this condition may not appear at first glance to be very clear.
We therefore resort to our intuition: let us think of an evolutionary process with
scale parameter V (v). We begin with V 0(v) = 0 and increment the variance of v
by a small amount dV (v), so that in the next step V 1(v) = dV (v). The residual
part of f , v, contains now both part of the noise and part of the signal. As long
as in each step the noise is mostly filtered, that is ∂cov(n,v)

∂V (v) > 1
2 , then one should

keep on with the process and SNR will increase. When we reach the condition
of (16), noise and signal are equally filtered and one should therefore stop. If
filtering is continued, more signal than noise is filtered (in terms of variance)
and SNR decreases.

There is also a possibility that the maximum is at the boundaries: If SNR
is dropping from the beginning of the process we have ∂cov(n,v)

∂V (v) |V (v)=0 <
1
2 and

SNRopt = SNR0. The other extreme case is when SNR increases monotonically
and is maximized when V (v) = V (f) (the trivial constant solution u = f̄). We
will see later (Proposition 3) that this can only happen when SNR0 is negative
or, equivalently, when V (s) < σ2.

In light of these considerations, provided that one can estimate cov(n, v), our
basic numerical algorithm should be as follows:

1. Set cov0(n, v) = 0, V 0(v) = 0, i = 1.
2. V i(v) ← V i−1(v) + dV (v). Compute covi(n, v).
3. If covi(n,v)−covi−1(n,v)

dV (v) ≤ 1
2 then stop.

4. i ← i+ 1. Goto step 2.

In the next section we suggest a method to approximate the covariance term.

Definition 2 (Regular SNR). We define the function SNR(V (v)) as regu-
lar if (16) is a sufficient condition for optimality or if the optimum is at the
boundaries.

Proposition 3 (Range of optimal SNR). If SNR is regular, then for any
(s, n) pair 0 ≤ Vopt ≤ 2σ2.
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Proof. Let us first show the relation cov(n, v) ≤ σ2: cov(n, f) = cov(n, n+ s) =
V (n)+cov(n, s) = σ2. On the other hand cov(n, f) = cov(n, u+v) = cov(n, u)+
cov(n, v). The relation is validated by using cov(n, u) ≥ 0 (Theorem 1).

We reach the upper bound by the following inequalities:

σ2 ≥ cov(n, v)|Vopt
=
∫ Vopt

0

∂cov(n, v)
∂V (v)

dV (v) ≥
∫ Vopt

0

1
2
dV (v) =

1
2
Vopt.

The inequality on the right is based on that ∂cov(n,v)
∂V (v) ≥ 1

2 for V (v) ∈ (0, Vopt).

The lower bound Vopt = 0 is reached whenever ∂cov(n,v)
∂V (v) |V (v)=0 <

1
2 . �

Theorem 2 (Bound on optimal SNR). If SNR is regular, then for any (s, n)
pair and Vopt ∈ {[0, σ2), (σ2, 2σ2]},

0 ≤ SNRopt − SNR0 ≤
{

−10 log(1 + Vopt/σ
2 − 2

√
Vopt/σ2), 0 ≤ Vopt < σ2

−10 log(Vopt/σ
2 − 1), σ2 < Vopt ≤ 2σ2

(17)

Proof. By the SNR definition, (7), and expanding the variance expression, we
have

SNRopt − SNR0 = 10 log(
σ2

σ2 + Vopt − 2cov(n, vopt)
). (18)

For the lower bound we use the relation shown in Proposition 3: cov(n, vopt) ≥
1
2Vopt. For the upper bound we use two upper bounds on cov(n, vopt) and take
their minimum. The first one, cov(n, vopt) ≤ σ

√
Vopt, is a general upper bound on

covariance. The second relation, cov(n, vopt) ≤ σ2, is outlined in
Proposition 3. �

A plot of the upper bound of the optimal SNR with respect to Vopt/σ
2 is

depicted in Fig. 3, left.
In practice, the flow is not performed by directly increasing V (v), but by

decreasing the value of λ. Therefore, it is instructive to check how V (v) varies,
as well as the other energies, as λ varies. In the next proposition we show that
as λ decreases the total energy strictly decreases, Ev(v) .= V (v) increases and
Eu(u) .=

∫
Ω
Φ(|∇u|)dΩ decreases.

Proposition 4 (Energy change as a function of λ). The energy parts of
Eq. (4) vary as a function of λ as follows:

∂EΦ

∂λ
> 0,

∂Ev

∂λ
≤ 0,

∂Eu

∂λ
≥ 0. (19)

For proof see [5].
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3 Estimating cov(n, v)

The term cov(n, v) is unknown, as we do not know the noise, and therefore should
be estimated. We are showing here for the first time a representation of denoising
by a family of curves which connects the variance of the noise, λ and cov(n, v)
of pure noise. This can be regarded as some sort of nonlinear statistics of noise
with respect to a specific Φ process. It appears that cov(n, v) as a function of
λ is almost independent from the underlying image and can be estimated with
quite a good accuracy.

First we need to compute the “statistics” by processing a patch of pure noise
and measuring cov(n, v) with respect to λ. This is done a single time for each
noise variance and can be regarded as a look-up-table (see Fig. 3, right). For each
processed image the behavior of λ with respect to V (v) is measured. Combining
the information, it is possible to approximate how cov(n, v) behaves with respect
to V (v). In other words, this is simply the chain-rule for differentiation:

∂cov(n,v)
∂V (v) = ∂cov(n,v)

∂λ
∂λ

∂V (v)

≈ ∂cov(n,v)
∂λ |f=patch

∂λ
∂V (v) |f=s+n.

(20)
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Fig. 3. Left: Visualization of Theorem 2: Upper bound of SNRopt − SNR0 as a
function of Vopt/σ2. For Vopt → σ2 the bound approaches ∞. Right: Precomputed
function ∂cov(n, v)/∂λ plotted as a function of λ (log scale). Graphs depict plots for
values of σ: 5, 10, 15, 20, from upper curve to lower curve, respectively

3.1 Experimental Results

We compare our method for finding λ with the standard method of imposing
(12) and with the optimal λ, which maximizes the SNR. Six classical benchmark
images are processed: Cameraman, Lena, Boats, Barbara, Toys and Sailboat.
The summary of the results is shown in Table 1. Our method is quite close
to the optimal denoising (less than 0.1dB difference on average) and performs
better than the method of [11].

We used Φ(s) =
√

1 + s2, which can be viewed as the Vogel-Oman [12] reg-
ularization of TV [11] with ε = 1 or the Charbonnier [2] process. The image
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Table 1. Denoising results of several images widely used in image processing. The
original images were degraded by additive white Gaussian noise (σ = 10) prior to their
processing

Image SNR0 SNRopt SNRσ2 SNRours

Cameraman 15.86 19.56 19.32 19.50
Lena 13.47 18.19 17.65 18.18
Boats 15.61 20.23 19.83 20.22
Barbara 14.73 16.86 16.21 16.64
Toys 10.00 17.69 17.29 17.65
Sailboat 10.36 15.51 15.16 15.48
Average
difference
from SNRopt 4.67 0.00 0.43 0.06

Fig. 4. Part of Boats image. Top (left to right): s, f . Bottom (left to right): u by
standard method (V (v) = σ2), u by our estimation method. More textural information
is preserved by our method

grey-level range is 1 : 256 so edges are well preserved. Other details about this
experiment can be found in [5].

In Fig. 4 we show example results of processing the Boats image. The main
visual difference from the standard method is that textural information is bet-
ter preserved, as we approach the optimal λ. In Fig. 5 the terms SNR(u) and
∂cov(n,v)

∂λ are plotted as functions of the normalized variance V (v)/σ2. It is ap-
parent that the SNR is smooth and behaves regularly, in accordance with our
assumptions. An interesting phenomenon is that the covariance derivative esti-
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Fig. 5. SNR as a function of V (v)/σ2 (left). dcov(n, v)/dV (v) as a function of V (v)/σ2

(right), as computed by our estimation method (solid) and the ground truth (dashed).
Graphs depict processing of Toys (top) and Boats (bottom)

mation tends to be more accurate near the critical value of 1
2 . Naturally, this

is advantageous to our algorithm. We currently have no explanation for this
behavior.

4 Conclusion

Most image denoising processes are quite sensitive to the choice and fine tuning
of various parameters. This is a major obstacle for fully automatic algorithms.
This problem motivated us to develop a criterion for the optimal choice of the
fidelity weight parameter in variational denoising. Our criterion is to maximize
the SNR of the resultant image. Bounds on the SNR as well as on the optimal
variance are obtained. We demonstrate our method on a series of benchmark
images and show that the performance is only slightly worse than optimal (less
than 0.1dB difference).

We should comment that the SNR criterion is not always in accordance with
human-based quality evaluations. Other, more sophisticated criteria, may also
be applied for parameter selection using the spirit of the method presented here.

The basic ingredients of the proposed method, namely the covariance con-
dition (16) and its estimation (20), are quite universal and do not depend on
the specific denoising algorithm. The method was generalized for selecting the
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stopping time in nonlinear diffusion [5] and for regularizations based on BV and
Hilbert-space norms [1].

A Proof of Theorem 1

We present the main steps of the proof. A full version is given in [5]. Since
cov(q, r) = cov(r, q), the matrix is symmetric. The diagonal is the variance of
each element, which is non negative. Therefore we have to consider all 10 possible
signal pairs and show that their covariance is non-negative.

cov(s, n), cov(f, s), cov(f, n). Since s and n are not correlated, we have
cov(s, n) = 0, cov(f, s) = cov(s + n, s) = V (s) ≥ 0, cov(f, n) = cov(s + n, n) =
V (n) ≥ 0.

cov(u, v), cov(f, u), cov(f, v). Once we prove cov(u, v) ≥ 0, then we readily
have cov(f, u) = cov(u + v, u) = V (u) + cov(u, v) ≥ 0 and cov(f, v) = cov(u +
v, v) = V (v) + cov(u, v) ≥ 0.

We follow the spirit of the proof of Meyer [8]. As the (u, v) decomposition
minimizes the energy of Eq. (4), we can write for any function h ∈ BV and
scalar ε > 0 the following inequality:∫

Ω

Φ(|∇(u− εh)|)dΩ + λV (v + εh) ≥
∫

Ω

Φ(|∇u|)dΩ + λV (v). (21)

Replacing V (v + εh) by V (v) + ε2V (h) + 2εcov(v, h) and then changing h to u
and dividing both sides by ε we get

2λcov(v, u) ≥ 1
ε

∫
Ω

(Φ(|∇u|) − Φ(|∇(u− εu)|)) dΩ − λεV (u).

In the limit as ε → 0, the right term on the right-hand-side vanishes. Since Φ is
increasing, the term in the integral is non-negative.

cov(s, u), cov(n, u). By writing V (v) as V (s+n−u), expanding the variance
expression and omitting expressions that do not involve u, we can reach the fol-
lowing minimization problem equivalent to minimizing (4): u = argminu{ÊΦ(u)}
where

ÊΦ(u) =
∫

Ω

Φ(|∇u|)dΩ + λ(V (u) − 2cov(s, u) − 2cov(n, u)). (22)

Since cov(s, u) + cov(n, u) = cov(f, u) ≥ 0 at least one of the terms cov(s, u)
or cov(n, u) must be non-negative. We will now show, by contradiction, that it
is not possible that the other term be negative. Let us assume, without loss of
generality, that cov(s, us+n) ≥ 0 and cov(n, us+n) < 0. We denote the optimal
(minimal) energy of (22) with f = s + n as Ê∗

Φ|f=s+n. The energy can be
written as

Ê∗
Φ|f=s+n = ÊΦ|f=s+n(us+n)

=
∫

Ω
Φ(|∇us+n|)dΩ + λ(V (us+n) − 2cov(s, us+n) − 2cov(n, us+n)).

(23)
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On the other hand, according to condition (5), cov(us, n) = 0 and we have

ÊΦ|f=s+n(us) =
∫

Ω
Φ(|∇us|)dΩ + λ(V (us) − 2cov(s, us))

= Ê∗
Φ|f=s ≤ ÊΦ|f=s(us+n) =

∫
Ω
Φ(|∇us+n|)dΩ + λ(V (us+n) − 2cov(s, us+n)).

In the above final expression, adding the term −λ2cov(n, us+n) we obtain the
right hand side of expression (23). Since we assume cov(n, us+n) < 0, we get the
following contradiction: ÊΦ|f=s+n(us) < Ê∗

Φ|f=s+n. Similarly, the opposite case
cov(n, us+n) ≥ 0 and cov(s, us+n) < 0 is not possible.

cov(s, v), cov(n, v). This follows directly from condition (6) as cov(f, s) =
cov(u, s) + cov(v, s) and cov(f, n) = cov(u, n) + cov(v, n). �

References

1. J.F. Aujol, G. Gilboa, “Implementation and parameter selection for BV-Hilbert
space regularizations”, UCLA CAM Report 04-66, November 2004.

2. P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, “Two deterministic half-
quadratic regularization algorithms for computed imaging”, Proc. IEEE ICIP ’94,
Vol.2, 168-172, 1994.

3. R. Deriche, O. Faugeras, “Les EDP en traitement des images et vision par ordina-
teur”, Traitement du Signal, 13(6), 1996.

4. H.W. Engl, H. Gfrerer, “A posteriori parameter choice for general regularization
methods for solving linear ill-posed problems”, Appl. Numer. Math, 4(5), 395 -
417, 1988.

5. G. Gilboa, N. Sochen, Y.Y. Zeevi, “Estimation of optimal PDE-based denoising in
the SNR sense”, CCIT report No. 499, Technion, August 2004.

6. G. Gilboa, N. Sochen, Y.Y. Zeevi, “Texture preserving variational denoising using
an adaptive fidelity term”, Proc. VLSM 2003, Nice, France, pp. 137-144, 2003.
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Abstract. Motion estimation is one of the key tools in many video pro-
cessing applications. Most of the existing motion estimation approaches
use the brightness constancy assumption in order to model the move-
ments of the objects present in the scene. In this paper the motion of
objects is modeled from a geometrical-based point of view, leading thus
to a contrast invariant formulation. The present approach is region-based
and assumes affine motion model for each region.

1 Introduction

Computing the apparent motion of objects in a sequence of images is one of
the key problems in computer vision known as the optical flow computation.
Its numerous applications make it the object of current research (see [23] for an
account of it).

Most known motion estimation methods, in one form or another, employ the
optical flow constraint which states that the image intensity remains unchanged
from frame to frame along the true motion path. The optical flow equation is
derived from the optical flow constraint:

∂xI u+ ∂yI v + ∂tI = 0 (1)

where I(t, x, y) denotes the image sequence and (u, v) the motion vector field.
The movement of the objects present in the scene may be recovered by mini-
mizing an error measure based on the optical flow equation [23]. Furthermore,
it is known that motion estimation is an ”ill-posed” problem, indeed, the so-
lution may not be unique, and/or solutions may not depend continuously on
the data [4]. Current motion estimation approaches try to solve the latter issue
by imposing additional assumptions about the structure of the 2D motion field.
The latter constraints are introduced into the error measure either by adding
a smoothness term to it, or by restricting it to a particular motion model. The
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former strategies are called dense motion field estimation approaches, whereas
the latter ones are usually called parametric motion estimation approaches.

The Horn-Shunck’s method is a classical method for dense motion field es-
timation. It seeks for a motion field that satisfies the optical flow equation (1)
with a minimum pixel-to-pixel variation between the flow vectors:

min
∫

Ω

(∂xI u+ ∂yI v + ∂tI)
2 + α2 ((∂xu)2 + (∂yu)2 + (∂xv)2 + (∂yv)2

)
where Ω is the image domain and α may be used to control the influence of the
constraint. Larger values of α2 increase the influence of the constraint.

The Lucas-Kanade method can be considered a parametric motion estima-
tion, since it estimates the motion by assuming that the motion vector associated
to the optical flow equation remains unchanged over a particular block of pixels.
The method thus allows to estimate a translational motion vector for that block.
A very interesting combination of both previous methods with an efficient im-
plementation has been proposed in [7]. For the interested reader, a good review
of current motion estimation techniques can be found in [3, 22].

The optical flow constraint assumption is generally violated in image se-
quences taken from the real world. Global or local changes in illumination due
to, for instance, a moving camera or a change in the shade of an object may pre-
vent the correct motion to be estimated. Alternatives to the classical brightness
constancy assumption have been already proposed in the literature. A common
approach to handle non constant intensity is through explicit modelling of the
illumination change in the optical flow equation [18]. The approach requires com-
plex minimization since, in addition to the motion field, illumination fields must
also be estimated.

In [4] a constraint based on spatial gradient’s constancy is proposed. It relaxes
the classical assumption, but requires that the amount of dilation and rotation in
the image be negligible, a limitation often satisfied in practice according to [22].
The technique has been demonstrated to be very robust in the presence of time-
varying illumination. More recently, is has been shown that the direction of
the intensity gradient is invariant to global illumination changes [10]. The work
presented in [8] is based on this property.

In this paper we propose to substitute the optical flow equation, derived
from the brightness constancy assumption, by the assumption that the shapes
of the image move along the sequence. We identify the shapes of the image with
the family of its level lines [9] and we assume that they move along the image
sequence (with possible deformation). This assumption permits us to design
contrast invariant estimate of the optical flow. The approach is in fact based
on the invariance of the gradient direction to contrast changes. However, no
restriction to the amount of dilation and rotation is imposed.

The paper is organized as follows. Section 2 describes the contrast-invariant
model that has been developed, whereas Sect. 3 introduces the region-based
strategy that has been implemented. Sect. 4 gives some details about the im-
plementation. Finally, Sect. 5 presents the results obtained with the proposed
method and Sect. 6 ends up with the conclusions and future research work.
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2 A Contrast-Invariant Functional

Let Ω be the image domain, which we may assume to be normalized to [0, 1]2.
Let I : Ω → R be a given image. Mathematical morphology offers an image
description in terms of its level sets, be upper XλI = {p ∈ Ω : I(p) ≥ λ},
or lower XλI = {p ∈ Ω : I(p) ≤ λ}. Level sets provide a complete image
description, in particular, the image I can be reconstructed from its (upper)
level sets by the formula I(p) = sup{λ : p ∈ XλI} (a similar formula exists for
the lower level sets) where sup denotes the supremum operator, and p = (x, y)T

denotes a point in Ω. Level sets give a contrast invariant representation of the
image [21].

We call level lines the boundaries of the level sets. In the discrete framework,
any level set can be described in terms of its boundary. Indeed, the connected
component of each level set can be described in terms of its external and the
family of its internal boundaries [9, 21]. Thus, we may use the family of level lines
as basic contrast invariant geometric description of the image I. As an analytical
tool, we shall use the unit normals to the level lines to describe them.

Let I(t,p) be a given image sequence, t being in the time interval [T0, T1] and
p ∈ Ω. We assume that the image sequence has been sampled at points multiple
of Δt, the sampling points being tj = T0 + jΔt, j = 0, . . . , N (tN = T1). Let us
denote by φj(p) the coordinates at time tj +Δt of the point whose coordinates
at time tj are p, j = 0, . . . , N − 1. The map φj : Ω → Ω is nothing else than the
motion path starting from time tj and we may think about it as a deformation.
We do not assume in this section any particular motion model for φj . That is,
the image objects may suffer any deformation over time. For simplicity, when no
confusion arises, the arguments of the previous function will be dropped out.

Assume for a while that j is fixed and let φ = (φ1, φ2) be any of the maps
φj , where φ1 and φ2 are the components of φj . Let X = (x(s), y(s))T be the
arclength parameterization of a given level line C of the image I(tj ,p), s being
the arc length parameter. The curve C may be described by its normal vectors
Z = (−y′(s), x′(s))T , where (.)′ denotes the first derivative with respect to s.
Note that Z has unit norm.

Let us describe the normal vectors to the curve φ(C) in terms of φ and the
normal vectors to C. Since the curve φ(C) is described by

X = (x(s), y(s))T = φ(x(s), y(s)),

the tangent vector to the deformed curve φ(C) is given by

X
′
=
(
x′(s)
y′(s)

)
=
(
∂xφ1 ∂yφ1
∂xφ2 ∂yφ2

)(
x′(s)
y′(s)

)
= Dφ X ′

where ∂x and ∂y denote the partial derivative with respect to x and y respectively.
Thus, the normal vector Z of the deformed curve is

Z =
(
−y′(s)
x′(s)

)
=
(

∂yφ2 −∂xφ2
−∂yφ1 ∂xφ1

)(
−y′(s)
x′(s)

)
. (2)
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Observe that the matrix in the right hand side of (2) is the cofactor matrix
associated to Dφ which we shall denote by (Dφ)†. Thus, the normal vectors of
the deformed curve are related to the original normal vectors by means of the
cofactor matrix. Observe that s is not necessarily the arclength parameter of
φ(C), hence Z is not, in general, a unit vector. We normalize it to be of unit
norm by redefining

Zφ =
(Dφ)† Z

‖(Dφ)† Z‖ if (Dφ)†Z �= 0; 0 otherwise, (3)

where ‖.‖ denotes the modulus of a vector in R2 .
In the context of this work, Zt(p) will be the vector field of unit normals to

the level lines of I(t,p). Usually, the energy functional whose minimum gives the
optical flow tries to impose the brightness constancy equation (1). Instead, our
main assumption will be that shapes move with possible deformation along the
sequence. We interpret it in the following way: (*) we may find the boundary of
a connected component of the level set [I(tj , ·) ≥ λ], λ ∈ R, eventually deformed
by φj(·), as a level curve of I(tj+1, ·) at some other level λ′. Observe that if two
consecutive frames are related by the motion model and a global illumination
change, i.e., if (**) I(tj+1, φ

j(p)) = gj(I(tj ,p)) for some contrast change gj , then
(*) holds (in this case λ′ = gj(λ)). Our assumption (*) is more general than (**)
since the former is local: the level at which we may find the boundary of the
connected component of [I(tj , ·) ≥ λ] may depend on the connected component
itself, besides of depending on λ. Thus, our purpose will be to align the level lines
of two consecutive frames at times tj and tj+1 by a map φj . Using the description
of level lines in terms of unit normals, we propose to compute the optical flow
φj by aligning the unit normal vector field Ztj+1(p) with the transformed vector
field of Ztj (p) by the map φj (i.e., the vector field obtained by (3)). Thus, we
propose to compute the motion estimation by minimizing the energy functional

E(φ) =
N−1∑
j=0

∫
Ω

BBZtj+1(φj(p)) − Zφj (p)
BB2

μj(p) dx dy. (4)

where μj(p) represent weight functions that will be later discussed. The vector
field Ztj (p) is computed by

Ztj (p) =
∇I(tj ,p)

‖∇I(tj ,p)‖ if ∇I(tj ,p) �= 0; 0 otherwise, (5)

where ∇ := (∂x, ∂y)T denotes the 2D gradient. Note that (5) computes the
normal vector of the level line that passes through point p.

Since for any smooth strictly increasing function we have ∇g(I) = g′(I)∇I, it
is easy to check that if μj(p) = 1, then the energy (4) is contrast invariant. In case
that we decide to give more weight to edges, we may take μj(p) = ‖∇I(tj ,p)‖,
j = 0, . . . , N −1, in this case, if I(tj +1, φj(p)) = gj(I(tj ,p))) for some contrast
change gj , then the estimate of φj obtained by minimizing the corresponding
term in (4) does not depend on the contrast change gj .
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If our assumption (*) does not hold, then the minimum of (4) (plus some
regularization terms for φj) can be considered only as an approximation to the
optical flow in terms of that criterion, and further validation is required.

The same functional was used by Droske and Rumpf, together with suitable
regularizations, for morphological image registration [13]. Other authors ([12])
have also used alignment of unit normals and other geometric features like cur-
vature for registration. Another contrast invariant functional, based on Bayesian
inference, was proposed in [11]. The main part of their functional is the integral
of (It +uIx +vIy)2 divided by the norm of (1, u, v) times the norm of (It, Ix, Iy).
As we shall also do, the authors assume a parametric piecewise affine motion
model. Let us finally mention the work [6] where authors minimize a robust
functional which incorporates deviations from the brightness constancy assump-
tion and the gradient constancy assumption, and compute a dense optical flow.
Thus, this functional incorporates gradients, hence normal directions and ge-
ometry. Finally, let us mention that other contrast invariant functionals can be
constructed based on mutual information [19].

3 Region-Based Motion Estimation

The energy functional together with a regularization term for φj , j = 0, . . . , N−
1, could be used to compute a dense motion field. In this work, we shall assume
that the motion fields can be expressed locally by an affine model and we shall
follow a region-based strategy to minimize (4).

Our approach will be similar to the one presented in [14]. In this paper,
two images at two different time instants, generally consecutive, of an image
sequence, are taken. The first of them is partitioned into connected regions with
disjoint interior. These regions are assumed to be extracted from the image using
a particular partitioning strategy, such as a luminance homogeneity criterion.
Matching of regions is carried out by minimizing a cost functional based on
the brightness constancy assumption. Moreover, the technique is embedded in a
multiresolution scheme in order to improve the robustness of the method.

For the rest of the paper, the motion is estimated between two consecutive
frames of a sequence, denoted by I(t) and I(t+1). The vector fields of the normals
to the level lines of I(t) and I(t+1) are denoted by Zt and Zt+1 respectively. Sup-
pose that we are given a partition R into disjoint connected regions of the image
I(t). The partition may be computed for instance with a segmentation algorithm
like the Mumford-Shah functional [17] which may be subordinated to the topo-
graphic map [2]. We denote by φ the displacement field between I(t) and I(t+1).

In the present context, we can write functional (4) for discrete images as

ER(φ) =
∑
R∈R

∑
p∈R

BBZt+1(φ(p)) − Zφt(p)
BB2

μ(p)ΔR (6)

for a weighting function μ(p) and where ΔR = ΔxΔy, Δx, Δy being the dis-
cretization steps which coincide with the interpixel distance in the x and y axis.
For later convenience, let us denote by ER the term
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ER(φ) =
∑
p∈R

BBZt+1(φ(p)) − Zφt(p)
BB2

μ(p)ΔR (7)

Recall that rigid motions of planar objects in 3-D space induce quadratic motion
models in 2-D images [23]. This quadratic motion model is a good approximation
when the depth of the objects is small compared to their distance to the camera.
The affine motion model is a good approximation under orthographic projection,
i.e., when f → ∞, being f the distance from the center of the lens to the surface
of the film. As a first approximation, we shall assume the affine motion model on
each region. Such motion can be described by a six parameter affine model [23]:

φ(p) =
(
a b
c d

)(
x
y

)
+
(
e
f

)
(8)

where e, f are the translation parameters and a, b, c, d are the parameters that
model the linear transformation (thus, including scaling, rotation and shear-
ing) [23]. From now on, e and f are called zero-order parameters whereas the
remaining ones are called first-order parameters.

In this case the cofactor matrix is

(Dφ)† =
(

d −c
−b a

)
Observe that we have no information in a region R when we have no level

lines in it. In this case, we would have Z = 0 at time t inside R, and Z �= 0 is the
unit normal on its boundary; the proposed functional is looking for a region at
time t+1 which is free of level lines in its interior and matches the unit normals
of boundary of R by φt. In this case, it could be useful to consider the brightness
constancy assumption for this region.

As it is presented, this model does not take into account the fact that new
objects may appear or disappear due to motion of objects or to geometric varia-
tions produced by local contrast changes. In a further extension of this work we
consider statistical validation of the estimated motion and we believe that the
appearance/disapperance of an object will lead to incorrect estimations.

4 Implementation

From a practical point of view, it is necessary to define a strategy in order to
find a minimum of (6) in an efficient and robust manner. We describe in this
section some details of our implementation.

Functional Minimization. We assume that each region that composes the
partition moves independently, thus (6) may be minimized by minimizing (7) for
each region. The parameters that minimize (7) are those that satisfy ∇mER(φ) =
0, where m is the vector made up of the motion parameters, m = (a, b, c, d, e, f)T

and ∇m is the gradient operator with respect to the unknown motion parameters,
∇m = (∂a, ∂b, ∂c, ∂d, ∂e, ∂f ). The strategy adopted in this work to find the motion
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parameters that minimize (6) is the conjugate-gradient method. In this paper
the conjugate update directions are computed using Polak-Ribiere method. At
each iteration, Brent’s line minimization is used to find the minimum along the
selected update direction [20].

Coordinate System Selection. Let us discuss how the selection of the coordi-
nate system may affect the convergence of the descent method to minimize ER.
For simplicity, assume that Zt+1 and Z

t

φt are unit vectors. The differentiation
of each term in (7) with respect to any motion parameter m ∈ m gives the
contribution

<∂mZ
t

φt , Zt+1> + <Z
t

φt , ∂mZ
t+1> .

Let us compute ∂mZ
t+1. For that, assume that the origin of the coordinate

system is located at the upper left corner of the image, whereas samples are
placed on a squared grid at a distance of one. Let us denote by (x̂, ŷ)T the
coordinates of p in this coordinate system. Let Zt+1

i , i = 1, 2, be the x and y
components, respectively, of Zt+1. Observe that the partial derivative of Zt+1

1
with respect to the motion parameter a is

∂aZ
t+1
1 (φ(p)) = ∂φ1Z

t+1
1 ∂aφ1 + ∂φ2Z

t+1
1 ∂aφ2 = ∂φ1Z

t+1
1 x̂ (9)

since ∂aφ1 = x̂ and ∂aφ2 = 0. The derivative of Zt+1
1 with respect to the motion

parameter e is

∂eZ
t+1
1 (φ(p)) = ∂φ1Z

t+1
1 ∂eφ1 + ∂φ2Z

t+1
1 ∂eφ2 = ∂φ1Z

t+1
1 (10)

since ∂eφ1 = 1 and ∂eφ2 = 0. With similar computations we see that the partial
derivatives of Zt+1

1 and Zt+1
2 with respect to a, b, c or d depend proportionally

on the pixel coordinates (either x̂ or ŷ), while its partial derivatives with respect
to e or f do not exhibit such dependence. Thus the derivatives with respect to
a, b, c, d have a stronger contribution in the descent than the ones with respect
to e, f and affect its convergence.

In [14], the authors propose to normalize the pixel coordinates simply by the
image dimensions. We shall use a different normalization for each region. The
origin of the coordinate system, (x̃c, ỹc), will be the centroid of the region, and
the axis will be re-scaled by σ where σ2 =

∑
p∈R

(
(x̂− xc)2 + (ŷ − yc)2

)
is the

variance of the distance of the pixel coordinates to the centroid.
If (x, y)T denote the coordinates of p in this new coordinate system, then its

relation with (x̂, ŷ)T is given by

x =
x̂− xc

σ
y =

ŷ − yc

σ
. (11)

The partial derivatives of Zt+1
1 with respect to a and e have the same form

as in (9), (10), with a different interpretation of the coordinates:

∂aZ
t+1
1 (φ(p)) = ∂φ1Z

t+1
1

(x̂− xc)
σ

and ∂eZ
t+1
1 (φ(p)) = ∂φ1Z

t+1
1 . (12)
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Comparing these expressions with (9) and (10), we notice that the normalized
coordinate system has the effect that no particular derivative value is predom-
inant with regard to the others. Our experiments have shown that in this case
a large range of motions may be recovered since no particular type of motion
is priorized.

On the other hand, if the (x̂, ŷ)T coordinate system is used the conjugate
gradient algorithm selects update directions in which the first order motion pa-
rameters are predominant. As a result, the algorithm will “try to explain” the
motion present in the image using only first order parameters (zoom, rotations
and skew) even if only translational motion is present in the image. Motions
such as translations may not be recovered in this case. Thus, the selection of
the proper coordinate system affects directly the gradient values and thus the
convergence of our estimator.

Multiresolution Analysis. Both to avoid local mimima and for computational
efficiency, motion estimation is usually embedded in a multiresolution scheme
[1, 14, 22, 23]. The basic idea is to obtain a set of coarse to fine images which are
obtained by means of a low-pass filter. Starting the parameter estimation at the
coarsest resolution level, the motion is estimated on each level successively using
the resulting motion parameters of the current resolution level as input to initial-
ize the gradient descent on the next level. Lower resolution levels allow to obtain
an approximation of the motion parameters, whereas finer resolution levels are
used to improve and fine-tune the motion parameter estimation. Multiresolution
representations allow to deal with large zero and first order parameters.

In our experiments a set of three (including the original image) levels are
used. At each level the image is lowpass filtered with respect to the previous
level [24]. As proposed in [23], the downsampling step is skipped. Thus the pyra-
mid contains images that are all the same size by successively more blurred as
we go to the coarser resolution levels. This permits us to maintain the geometry
of the region.

However, Δx and Δy are divided by two between successive levels, hence the
area of the region is scaled by 4. Thus, Δx and Δy act as a scale parameter. If
such area is small at a fixed level, only the zero-order parameters are estimated.
This is due to that the texture information of small regions present at the coarser
levels is poor, and thus the minimum may not be well defined for the first-order
parameters.

Differentiation. Differentiation is an ill-posed problem [4], and regularization
may be used to obtain good numerical derivatives. Such regularization may be
accomplished with a low-pass filter such as the Gaussian, and is essential for
motion estimation [3, 22]. More recently, [15] proposes to use a matched pair of
low pass and differentiation filters as a gradient operator.

Notice that, for motion estimation applications, it may be necessary to com-
pute the gradient at non integer points, since non integer displacements are
allowed. In such cases, a simple way to proceed is a two step process: in a first
step, the image is interpolated at the required points using an interpolation ker-
nel such as [16], and in the second step the derivative is computed. Since both
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are linear operators they may be performed in one step: the derivative filter is
interpolated at the required non-integer positions, then the derivative can be
computed at integer pixel positions using the interpolated filter taps.

5 Results

In all experiments below, we assume that μj(p) = 1 (see (6)).
The original images in our first example correspond to the table tennis se-

quence (frames #4 and #1), and are displayed in Fig. 1a and Fig. 1b respec-
tively. In these images, the ball moves downwards, the arm moves upwards and
the background is static. The associated partition has been computed using
the Mumford-Shah segmentation functional subordinated to the topographic
map [2], and is shown in Fig. 1c. The motion field recovered by our estimator is
shown in Fig. 1d and corresponds to our above description.

An interesting point is to compare our results with those obtained with the
classical motion estimation approach based on minimization of the squared pre-
diction error, defined as: Eint

R (φ) =
∑

p∈R (I(t+ 1, φ(p)) − I(t,p))2. The previ-
ous error measure is in fact based on the brightness constancy assumption. The
latter approach has been implemented using the techniques described in Sect. 4.
In order to simplify nomenclature, the latter approach is called intensity-based

a) Original frame t b) Original frame t + 1

c) Partition d) Motion field

Fig. 1. Region-based motion example. a) Original frame t, b) Original frame t + 1, c)
Partition of original frame t, d) Recovered motion field
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Fig. 2. Global motion estimation example. The purpose is to extract camera’s move-
ment between images a) and b). Results for intensity and shape-based approach are
shown in images c) and d) respectively

motion estimation, whereas the technique presented in this paper is called shape-
based motion estimation.

The next experiments deal with global motion estimation, that is, the extrac-
tion of the camera motion. This is very useful in many scene analysis approaches,
where first the camera motion is detected and then the moving objects in the
scene are detected and tracked. Fig. 2 shows two frames from the coastguard
sequence (frames #170 and #176). The frames show a moving boat and a static
background. In these frames the camera follows the displacement of the boat,
thus the apparent motion of the boat is zero (i.e. no motion) whereas the back-
ground has an apparent motion which corresponds to the camera’s movement.
We choose a partition made up of one region which includes the whole image
support. Thus, the global motion between the two frames is estimated. The re-
sulting motion vector fields are shown in Fig. 2c and Fig. 2d. Note that our
approach has been able to properly extract the camera’s motion. We believe
that the intensity-based motion estimation has failed due to the strong influ-
ence of the high gradient of the boat. Since the apparent motion of the boat is

a) Original frame t b) Original frame t + 1

c) Intensity-based d) Shape-based
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Fig. 3. Global motion estimation example. The purpose is to extract camera’s move-
ment between images a) and b). They correspond to frames #45 and #47 of the table
tennis sequence. Recovered motion fields for intensity and shape-based approach are
shown in images c) and d) respectively

zero, the motion estimation algorithm tries to set to zero the motion at the boat
pixel locations. This is not the case of the shape-based approach, where gradient
modulus has no effect. Motion in the latter case is recovered by interpreting the
image as a set of moving level lines. Thus, the boat is treated as an outlier. Note
that the correct motion parameters may be recovered using an intensity based
energy if robust estimation techniques are used [5, 22].

Fig. 3 shows another example of global motion estimation. The camera per-
forms a zoom out of the scene. Even though the tennis player and the ping-pong
ball is moving, our approach has been able to properly recover the zoom.

6 Conclusions and Future Work

We have presented a contrast invariant model for the computation of the optical
flow. We interpret the image sequence as a set of moving level lines and we
propose to compute the deformation between the level lines of two consecutive
frames. Several topics have to be further developed in the future: a) the selection
of regions bounded by level lines where motion is estimated by an affine model,
b) joint motion segmentation techniques, c) the computation of a dense motion
field from the image sequence without imposing a particular motion model.

a) Original frame t b) Original frame t + 1

c) Intensity-based d) Shape-based
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Abstract. In this paper we propose a new motion estimator for image sequences
depicting fluid flows. The proposed estimator is based on the Helmholtz decom-
position of vector fields. This decomposition consists in representing the velocity
field as a sum of a divergence free component and a curl free component. The ob-
jective is to provide a low-dimensional parametric representation of optical flows
by depicting them as a flow generated by a small number of vortex and source
particles. Both components are approximated using a discretization of the vorticity
and divergence maps through regularized Dirac measures. The resulting so called
irrotational and solenoidal fields consist then in linear combinations of basis func-
tions obtained through a convolution product of the Green kernel gradient and the
vorticity map or the divergence map respectively. The coefficient values and the
basis function parameters are obtained by minimization of a functional relying on
an integrated version of mass conservation principle of fluid mechanics. Results
are provided on real world sequences.

1 Introduction

The observation, understanding and control of complex fluid flows is a major scientific
issue. For instance, in environmental sciences such as oceanography, meteorology and
climatology, the monitoring or the forecasting of the atmosphere or the ocean is becoming
more and more crucial for our everyday life. Due to their very complex nature and
also to unknown or inaccurate border conditions, we have a lack of complete physical
understanding of these flows.Accurate and dense measurements can hardly be recovered
by probes or by numerical evaluation of current physical models. Imaging sensors are
very attractive in this context as they provide multi-modal data at high spatio-temporal
resolution.

The analysis of dynamic structures and the estimation of velocities for fluid image
sequences gave rise to a great attention from the computer vision community since
several years [6, 7, 10, 12, 15, 16]. These works concern application domains such as
experimental visualization in fluid mechanics, environmental sciences (oceanography,
meteorology, ...), or medical imagery.

Recently, several dedicated approaches have been proposed for fluid flow velocity
estimation [4, 9]. Unlike most of the motion estimator based on the brightness con-
sistency assumption and a first order smoothness function, these techniques rely on a
data-model derived from the continuity equation of fluid mechanics and second order
div-curl regularizers. In the same way as a first order regularizer (eventually associated

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 254–266, 2005.
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to a robust cost function) favors piecewise translational motion fields by penalizing high
gradients of the solution, second order div-curl penalizers encourage solutions with blobs
of piecewise constant divergence and curl. These methods are conceptually much more
satisfying as they comply with the brightness variations and the motions observed in
fluid image sequences. Nevertheless, these method have to face much greater numerical
complexity. Besides, these estimators are dense estimator and the solutions associated
belong therefore to spaces of great dimension. It is desirable for some applications to
provide low dimensional solutions. This is the purpose of this paper.

We propose here a technique to estimate low dimensional motion field from image
sequences depicting a fluid flow. This method relies on the Helmholtz decomposition of
a motion field which consists to decouple the vector into a divergence free component
and a curl free component. The method we devise is based on a discrete representation of
the curl (also called vorticity) and divergence map. This discretization enables to define
implicitly adapted regularizers for fluid motion estimation problems.

2 Definitions and Properties of Vector Fields

In this section, we present first known analytic results on planar vector fields. We shall
rely on them to develop an original method for fluid motion estimation.

A two-dimensional vector field w is a R2-valued map defined on a bounded setΩ of
R2. We denote it w(x) = (u(x), v(x))T , where x = (x, y) and x and y are the spatial
coordinates. Each component of the vector field will be supposed twice continuously
differentiable: u, v ∈ C2(Ω,R).

Noting ∇ = ( ∂
∂x ,

∂
∂y ) the operator whose components are the partial derivatives

with respect to the coordinates x and y, we define the divergence: div w =
∂u

∂x
+
∂v

∂y
=

∇.w and the scalar vorticity of the vector field: curl w =
∂u

∂y
− ∂v

∂x
= ∇.w⊥, where

w⊥ = (−v, u) is the orthogonal counterpart of w.
The vorticity accounts for the presence of a rotating motion, while the divergence is

related to the presence of sinks or sources in the flow. A vector field whose divergence is
null at every point is called solenoidal. Similarly, a field with zero vorticity will be called
irrotational. It is well known that for irrotational fields there exists a scalar function φ,
called the velocity potential, such that w = ∇φ. Similarly, for solenoidal fields there
exists a scalar function ψ called the stream function such that w⊥ = ∇ψ.

Any continuous vector field that vanishes at infinity can be decomposed into a sum
of an irrotational component with null vorticity and a solenoidal component with null
divergence. This is called the Helmholtz Decomposition. When the null border condition
can not be imposed, an additional component, named the laminar component, which
is both irrotational and solenoidal, has to be included. The decomposition reads then:
w = wirr + wsol + wlam. This last component can be approximated using the Horn
and Schunck estimator with a strong regularization coefficient [5]. In the sequel we
will assumed that the laminar component has been previously computed and that its
associated motion has been removed from the image sequence. We will consequently
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assume a null boarder condition at infinity knowing that the image sequence, I(x, t), is
related to the original image sequence, Io(x, t), by I(x, t) = Io(x + wlam(x, t), t).

Substituting the two components wirr and wsol by their expressions in terms of
potential functions and considering the divergence and the curl of the motion field enables
to write the potential function as solution of two Poisson equations:

Δφ = divwirr and Δψ = −curlwsol, (1)

where Δ denotes the Laplacian operator. These solutions may be expressed as convolu-
tion products:

φ =
∫
G(x − u)div wirr(u)du = G⊗ div wirr, (2)

ψ = −
∫
G(x − u)curl wsol(u)du = −G⊗ curl wsol, (3)

where G is the Green’s function associated to the two-dimensional Laplacian:

G(x) =
1
2π

ln(|x|). (4)

As the vector fields wirr and wsol are respectively the gradient and the orthogonal
gradient of the potential functions φ and ψ, equation (2-3) may be rewritten as:

wirr = K ⊗ div wirr and wsol = −K⊥ ⊗ curl wsol, (5)

whereK denotes the gradient of the Green kernel. The second equation of (5) is known as
the Bio-Savart integral. These two equations state that the solenoidal and the irrotational
components (and consequently the whole vector field) may be recovered through a
convolution product knowing the divergence and the vorticity of the velocity field.

3 Vortex Particles

The idea of vortex particles methods [2, 11] consists in approximating the vorticity of a
field w by a discrete sum of delta functions located at point vortices zi:

curl w(x) ≈
n∑

i=0

γiδ(x − zi), (6)

with δ denoting the Dirac measure.
This discretization of the vorticity into a limited number of elements enables to evalu-

ate the velocity field directly from the Bio-Savart integral (equ. 5). Due to the singularity
of the Green kernel gradient, K, the induced field develops 1

r -type singularities, where
r is the distance to the point vortices. These singularities can be removed by smoothing
the Dirac measure with a cutt-off or blob function, leading to a smoothed version of K.
Let fε be such a blob function scaled by a parameter ε: fε(x) = 1

ε2 f(x
ε ). The smoothed

kernel is defined as Kε = K ⊗ fε. The amount of smoothing is determined by the value
of ε. If ε → 0, fε tends to the Dirac function and Kε → K.
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In the same way, for the divergence map a source particles representation reads then:

div w(x) ≈
n∑

i=0

γifεi(x − zi), (7)

where zi denotes the center of each basis function fεi , the coefficient γi is the strength
associated to the particle i, and εi represents its influence domain. These parameters are
free to vary from a function to another.

4 Fluid Motion Estimation from Image Sequences

In this section we present how a vortex and source particles representation may be used
in conjunction with an appropriate cost function to devise a motion estimator for image
sequences depicting fluid flows.

4.1 Motion Representation

As we saw previously, discretizing the vorticity map with vortex particles together with
a Gaussian smoothing of the Dirac measure leads through Bio-Savart integral to the
following representation of the solenoidal component of the motion field:

wsol(x) ≈
nsol∑
i=0

γsol
i K⊥ ⊗ fεsol

i
(zsol

i − x) =
nsol∑
i=0

γsol
i K⊥

εsol
i

(zsol
i − x), (8)

where K⊥
εi

is a new kernel function obtained by convolving the orthogonal gradient
of the Green kernel with the blob function. Obviously, a similar representation of the
irrotational component can be obtained using source particles.

As a result, we exhibit an approximation of the complete motion field as weighted
sums of basis functions defined by their center location and respective spatial influence.
With a Gaussian smoothing function which allows to derive analytically the associated
smoothed kernel Kε, the final expressions of the motion field components are:

wsol(x) =
nsol∑
i=0

γsol
i

(zsol
i − x)⊥

2π|x − zsol
i |2

(1 − e
− |x−zsol

i |2

εsol
i

2
), (9)

and
wirr(x) =

nirr∑
i=0

γirr
i

x − zirr
i

2π|x − zirr
i |2 (1 − e

− |x−zirr
i |2

εirr
i

2
). (10)

This representation will be incorporated within a spatio-temporal variation model of
the luminance function in order to devise fluid motion recovery as an estimation problem
from the image sequence data.

4.2 Integrated Continuity Equation as a Brightness Variation Model

For image sequences showing evolving fluid phenomena, the usual brightness consis-
tency assumption (dI

dt = 0) doesn’t allow to model temporal distortions of luminance
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patterns caused by 3D matter transportation. For such kind of sequences, several works
have shown that a data model build from an analogy with the mass conservation con-
straint of fluid mechanics (also known as continuity equation) constitutes a better model
[1, 4, 13, 15]. This data model reads:

dI

dt
+ Idivw = 0. (11)

Such a constraint relates the effect of a divergent motion to a brightness change. By
this way it is possible to modelize the effect of the apparent disappearance/appearance
of matter caused by 3D motions which are not in the visualization plane. For a null
divergence this data model reduces exactly to the usual brightness consistency equation.

For long range displacements (i.e. fast flows or long time latency between two images
as in meteorology) an integrated form of this constraint can be obtained[4]:

I(x + w(x), t+ 1) exp(divw(x)) − I(x, t) = 0. (12)

According to this constraint the displaced image at time t + 1 is related to the image
at time t by a scale factor which depends on the motion divergence. This constraint
comes to the standard displaced frame formulation of brightness consistency for a null
divergence.

Considering this constraint holds almost everywhere on the whole image plane leads
to seek a motion field minimizing the following cost function:

F(I,w) =
∫
Ω

[I(x + w(x), t+ 1) exp(div w(x)) − I(x, t)]2 dx. (13)

4.3 General Minimization Problem

Considering such a cost function for an unknown motion field approximated through
vortex and source particles representations comes down to solve the following mini-
mization problem:

β̂ = arg min
β

F(I,w(β)), (14)

with β = ({zsol
i , γsol

i , εsol
i }i=1:nsol , {zirr

i , γirr
i , εirr

i }i=1:nirr ).
One seeks therefore the minimizer of the cost functionF in terms of particles location,

strength coefficients and influence domains. Due to the peculiar form of the data model
this minimization problem is highly non linear. To face this difficult optimization problem
we have chosen to rely on a non linear least square process embedded in a multi-resolution
framework and associated to a generalized conjugated gradient optimization known as
Fletcher-Reeves method.

We present more precisely in the next section how this difficult global optimization
issue is handled.

5 Estimation

The non linear cost function we consider can be seen as a weighted displaced frame
differences cost function. As most of the standard motion estimators based on such a non
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linear formulation we will consider an incremental minimization framework to remove
the non linearity of the displaced image brightness function. This scheme consists in
applying successive linearizations around previous estimates. This kind of techniques, in
the same spirit as Gauss-Newton non linear least squares, is in most of the case embedded
within a multi-resolution framework. We will also rely on such a data representation.

5.1 Incremental Estimation Scheme

We assume first that a previous estimate of the set of unknowns is available. All these
unknowns combine together with respect to our modelization to give a motion field w̃.
Considering a linearization around (x + w̃, t + 1) and dropping the time indices of
the intensity function for sake of clarity we end up with the following functional to be
minimized according to h, an unknown correction motion field:

F(h) =
∫
Ω

[
exp(div w̃(x)){(Ĩ(x)∇divw̃(x) + ∇Ĩ(x))T h(x) + Ĩ(x)} − I(x)

]2
dx.

In this equation we have introduced a compact notation Ĩ(x) for the backward reg-
istered image I(x + w̃, t + 1). The correction field h is a combination of a solenoidal
component hsol and an irrotational component hirr according to the Helmholtz decom-
position. Like the field w̃, this correction field is parameterized on the basis of a set of
vortex and source particles. In practice, this kind of scheme is embedded into a pyramidal
multiresolution data representation scheme. Such a representation is obtained through
low-pass filtering and sub-sampling. At a given level, the known motion estimate w̃ is
fixed to be the projected estimate obtained at the previous level. For the first level this
field is a null field.

5.2 Resulting Minimization Problem

The incremental estimation scheme transforms the original non linear optimization prob-
lem (14) into a succession of simpler minimization problems with respect to some of the
unknowns. As a matter of fact, considering the derivatives with respect to the different
types of unknowns gives:

∂F(h)
∂γi

=
∫
Ω

ri(x)
π|ri(x)|2 (1 − e

− |ri(x)|2
εi

2 )y(x)[y(x)T h(x, γi) + z(x)]dx, (15)

∂F(h)
∂βi

∣∣∣∣
βi= 1

εi

=
∫
Ω

2γi

πεi

ri(x)
|ri(x)|2 e

− |ri(x)|2
εi

2 y(x)[y(x)T h(x, εi) + z(x)]dx, (16)

∇ziF(h) =

⎛⎜⎝
∂F(h)
∂xi

∂F(h)
∂yi

⎞⎟⎠ , (17)
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where:

∂F(h)
∂xi

=
∫
Ω

−
2

ε2
i

|ri(x)|2r2
i (x)+(|ri(x)|2+r2

i (x))(1−e
− |ri(x)|2

ε2
i )

π|ri(x)|4

y(x)[y(x)T h(x, xi) + z(x)]dx,

(18)

and: ⎧⎪⎪⎨⎪⎪⎩
βi = 1

εi
,

ri(x) = (ri(x), ri(y))T = x − zi(irr. part) or (zi − x)⊥(sol. part),
y(x) = ediv w̃(x)(Ĩt+1(x)∇div w̃(x) + ∇Ĩt+1(x)),
z(x) = ediv w̃(x)Ĩt+1(x) − It(x).

(19)

Equations (15,16 and 17) lead to three different kinds of systems. The first one, in
terms of coefficient strength is linear, the second one in terms of particles influence
domain is non linear. No constrained minimization is required for both of them. A
gradient descent process can be devised for this set of unknowns. For the third one an
additional constraint to keep the particles into the image plane must be added. Such a
constrained minimization problem combined with the kind of non linearity we have here
leads to a very tough minimization. Besides, if we assume that in some cases we have
absolutely no idea of the initial particles location we must devise a method allowing
eventual long range moves of the particles coordinates.

We have thus decoupled these three kinds of unknowns. The two first (the strength
coefficients and the influence domains of the particles) will be solved with a generalized
conjugated gradient process while the third kind of unknowns (the particles locations) is
kept fixed. The particles locations will be in turn updated through a mean shift process
that will be described later.

5.3 Fletcher-Reeves Optimization

Fletcher-Reeves optimization consists in a non linear extension of conjugate gradient
algorithms. Given an iterateΘk = {γsol

k , εsol
k , γirr

k , εirr
k } and a directiondk, a line search

(w.r.t. αk) is performed along dk to produce Θk+1 = Θk +αkdk. The Fletcher-Reeves
variant of the nonlinear conjugate algorithm generates dk+1 from the recursion:

dk+1 = −∇F(Θk+1) + βkdk with βk =
(
‖∇F(Θk+1)‖2

‖∇F(Θk)‖2

)2

.

Let us note that for the linear part of our system the method comes to a standard conju-
gated gradients. To start the optimization process we consider, as said before that particle
locations are fixed. We initialize the domain of influence in an adaptive way. Their values
are fixed to the value of the distance to the nearest particles. At convergence, we obtain
a representation of the unknown correction field for fixed particle locations. Let us now
describe how we propose to adjust these locations.
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5.4 Adjustment of Particles Location

The estimation method we have proposed requires to fix for the solenoidal and irrotational
components particles locations on the image domain. We propose now a way to move
each particle according to a characteristic surface defined from the image data. The
method we propose is based on the mean shift procedure [8].

Definition of the Error Function. Considering that estimates of the strength coeffi-
cients and influence domains are available for both irrotational and solenoidal com-
ponents we consider two different error surfaces. For each component, the surface is
the registration discrepancy, considering the other orthogonal component fixed. For the
solenoidal component the error surface is defined at each point of the image domain as:

Dsol(x) = It+1(x + w̃(x) + h̃irr(x)) − It(x), (20)

where h̃irr is a first estimate of the irrotational increment, with a set of fixed initial posi-
tions for the source particles. This error surface gathers all the reconstruction errors due
to the solenoidal component. Similarly the error surface corresponding to the irrotational
component is defined as:

Dirr(x) = It+1(x + w̃(x) + h̃sol(x)) − It(x). (21)

Extension to a Characteristic Surface. The quality of the modelization we consider
depends on the accuracy of the discrete approximation of the divergence and curl map.
To achieve the best approximation as possible with a limited number of particles we
should try to have a great number of particles to describe areas with strong divergence
or vorticity and only few of them for the rest of the image. The surface error as defined
by (20) or (21) can help to guide a particle towards a new location in accordance with its
nature (vortex or source). However, it can guide a particle to an unappropriate location if
the initial estimation of the components is not informative, because Dsol could highlight
an error associated to the irrotational component, and vice versa.

To overcome this problem we choose to add a term to each error surface, based on
the amount of vorticity or divergence estimated by the particles method. Particles could
therefore be encouraged to go toward locations of high error magnitude associated to
high concentration of vorticity or divergence. We end up with two surfaces, for the
solenoidal and the irrotational part:

Ssol(x) =
(Dsol(x))2∫

Ω

(Dsol(x))2dx
+

(curlh̃(x))2∫
Ω

(curlh̃(x))2dx
, (22)

and

Sirr(x) =
(Dirr(x))2∫

Ω

(Dirr(x))2dx
+

(div h̃(x))2∫
Ω

(div h̃(x))2dx
. (23)
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Finally, in order to restrict the displacements of the different particles to localized
areas we combine these functions with an a priori prior on the particles location.

A Priori Probability Distribution for Particles Location. Considering zk
i the random

vector denoting the location of particle i at step k, we propose to fix a distribution of
zk+1

i , knowing zk
1:n, where zk

1:n represents the set of the n vectors (zk
1 , ..., z

k
n) at step k.

We assume this probability distribution is Gaussian, defined as zk+1
i |zk

1:n ∼ N (zk
i , σ

k
i ),

The standard deviation σk
i is set to the half of the distance between zk

i and the closest
center among {zk

j }j=1,..,n,j �=i. The distribution takes into account the previous location
of the particles through a Gaussian prior of mean zk

i but also the dependency between
zk+1

i and all the other particles through the expression of σk
i .

Conditional Version of the Probability Distribution. Combining the a priori distri-
bution pzk+1

i |zk
1:n

defined above with the surface described before, denoted Szk
1:n

and
characterized by (22) or (23), we can define a conditional probability distribution func-
tion of a particle zk+1

i given the others:

pzk+1
i |zk

1:n,Szk
1:n

(x) ∝ Szk
1:n

(x).pzk+1
i |zk

1:n
(x). (24)

This pdf balances an a priori for the location of one given particle (whose role is to confine
the particle to stay in a certain area between two iterates) and the information brought by
the characteristic surface (associated to all the particles locations) in the neighborhood
of this position. Once known this distribution for each particle we propose to shift zk

i

towards the pdf local mode in order to adjust optimally the location of the particles set.

Shifting the Particles Towards the Pdf Modes. From the sample {Szk
1:n

(s)}s∈S eval-
uated at pixel coordinates s, and the probability distribution pzk+1

i |zk
1:n

, a statistical non
parametric estimate of the conditional probability distribution pzk+1

i |zk
1:n,Szk

1:n

, may be

obtained [14] as:

p̂zk+1
i |zk

1:n,Szk
1:n

(x) ∝

∑
s∈S

Szk
1:n

(s)pzk+1
i |zk

1:n
(s)K(

x − s
h

)

∑
s∈S

K(
x − s
h

)
, (25)

where K is a kernel and h is its corresponding window size.
The continuous pdf p̂zk+1

i |zk
1:n,Szk

1:n

(x) is thus expressed as a linear combination of

basis functions with weighted coefficients given by w(s) = Szk
1:n

(s)pzk+1
i |zk

1:n
(s).

To shift a center zk
i towards the nearest mode of p̂zk+1

i |zk
1:n,Szk

1:n

we rely on the mean

shift estimate of the gradient of a density function [3, 8]. This estimate called the mean
shift vector reads:

Mh,G(x) =

∑
s∈S

w(s)sG(
x − s
h

)

∑
s∈S

w(s)G(
x − s
h

)
− x, (26)
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where G is the kernel obtained by derivation of the kernel K. This vector gives at
each point the direction of the maximum increase of the density function estimated
through the weights w(s) and the kernel K. Different choices can be done for this
kernel. Usual choices are the Epanechnikov kernel or a Gaussian kernel. The gradient
of the Epanechnikov kernel is a box function kernel whereas G remains Gaussian for a
Gaussian kernel K.

Given this estimate of the pdf gradient, an iterative convergent [3] process called
mean shift naturally arises. This process consists in moving iteratively the kernel center
x following Mh,G(x) until a stationary point (i.e., zero gradient) of the underlying
density is found.

In our case, the mean shift procedure is applied to the nsol + nirr centers of the
basis functions (or particles) involved in our motion field modelization. Through this
process, each particle is shifted towards the nearest mode of the conditional density
p̂zk+1

i |zk
1:n,Szk

1:n

. We have chosen to use the Epanechnikov kernel. Besides, the choice of

the window size is crucial. Different choices can be made. In our case we have settled
adaptive window sizes. They are fixed to the distance of the nearest particles. Such a
choice make sense in our case. As a matter of fact, for distant particles only a rough and
smooth estimate of the pdf function is needed whereas for close particles an accurate
estimate of the density is at the opposite required to approximate at best the vorticity
and divergence maps.

5.5 Overall Estimation Scheme

The overall estimation scheme consists in an alternate updating of the different un-
knowns. It is composed by the following two steps, repeated in turn until convergence:

1. For a given set of particles at fixed locations, the strength coefficients and the in-
fluence domains attached to the particles blob function are estimated through the
generalized conjugated gradient optimization described in section 5.3.

2. The vortex and source particles locations are shifted toward the nearest local mode
of the corresponding pdf. This shift is realized applying the mean shift procedure
described in section 5.4.

The whole process is stopped when the divergence and vorticity reach a certain stability.
This criterion is expressed as:(

‖div h̃k+1 − div h̃k‖2

‖div h̃k‖2

)2

+

(
‖curl h̃k+1 − curl h̃k‖2

‖curl h̃k‖2

)2

6 Results

In this section we present some results given by our method on real sequences.
The first example corresponds to the motion of smoke behind a landing passenger

air plane. A strong vortex is located in the center of the image, and a second weaker one
begins to appear just below. The particles are initialized on a grid, without a priori. The
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Fig. 1. Plane sequence. (a) Initial uniform disposition of the particles; (b) Final position of the
particles at the first level of multiresolution; (c) Final position of the particles at the second level

Fig. 2. Plane sequence. (a) Resulting motion field; (b)Associated vorticity

estimation method allows to guide the vortex particles towards the regions of interest of
the image and to estimate an accurate motion field (see the vector field and the associated
vorticity map fig. 2). For this sequence we used a multi-resolution pyramid of two levels.
At the first level, the particles move all towards the strong vortex (fig. 1(b)).At the finest
level, the particles cloud splits up into two parts (fig. 1(c)). A set of particles has moved
towards the weaker vortex, authorizing them to capture its motion.

The second example shows results on two consecutive images of the infra-red channel
of Meteosat. The sequence represents a depression with a vortex in the left part of the
image domain and presence of convective clouds in the center. In this example, we want
to observe the motion in specific areas, we dispose thus the vortex and source particles

Fig. 3. Depression sequence. (a) Initial manual disposition of the particles. Black points represent
the vortex particles, white points the source ones; (b) Final position of the same particles
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Fig. 4. Depression sequence. (a) Resulting motion field; (b) Associated vorticity; (c) Associated
divergence

manually in the regions of interest (fig. 3(a)). During the estimation, the particles
location fits locally automatically. At convergence, the vortex particles remains mostly
concentrated in the center of the vortex, while the source particles are located on the
convective cloud (fig. 3(b)).

7 Conclusion

In this paper we have presented an optical flow estimator dedicated to image sequences
depicting fluid flows. The proposed estimator provides a low dimensional parametric rep-
resentation of fluid motion. This parameterization has been obtained through a peculiar
discretization of the divergence and the vorticity map by means of adapted basis function
centered at elements named particles. To handle the associated estimation problem we
have proposed an efficient strategy based on the coupling of a generalized conjugated
gradient and a mean shift process.
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1. D. Béréziat, I. Herlin, and L. Younes. A generalized optical flow constraint and its physical
interpretation. In Proc. Conf. Comp. Vision Pattern Rec., volume 2, pages 487–492, Hilton
Head Island, South Carolina, USA, 2000.

2. A. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech., 57:785–796, 1973.
3. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.

IEEE Trans. Pattern Analysis Machine Intelligence, 24(5):603–619, 2002.
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5. T. Corpetti, E. Mémin, and P. Pérez. Extraction of singular points from dense motion fields:
an analytic approach. J. Mathematical Imaging and Vision, 19(3):175–198, 2003.

6. J.M. Fitzpatrick. A method for calculating velocity in time dependent images based on the
continuity equation. In Proc. Conf. Comp. Vision Pattern Rec., pages 78–81, San Francisco,
USA, 1985.

7. R.M. Ford, R. Strickland, and B. Thomas. Image models for 2-d flow visualization and
compression. Graph. Mod. Image Proc., 56(1):75–93, 1994.

8. K. Fukanaga and L.D. Hostetler. The estimation of the gradient of a density function, with
applications in pattern recognition. IEEE Trans. on Info. Theory, 21(1):32–40, 1975.
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1 Department of Mathematics and Computer Science,
Computer Vision, Graphics, and Pattern Recognition Group,

University of Mannheim, 68131 Mannheim, Germany
{yuanjing, ruhnau, schnoerr}@uni-mannheim.de

www.cvgpr.uni-mannheim.de
2 IRISA Rennes, Campus Universitaire de Beaulieu,

35042 Rennes Cedex, France
memin@irisa.fr

www.irisa.fr/vista

Abstract. The decomposition of motion vector fields into components
of orthogonal subspaces is an important representation for both the anal-
ysis and the variational estimation of complex motions. Common finite
differencing or finite element methods, however, do not preserve the ba-
sic identities of vector analysis. Therefore, we introduce in this paper
the mimetic finite difference method for the estimation of fluid flows
from image sequences. Using this discrete setting, we represent the mo-
tion components directly in terms of potential functions which are use-
ful for motion pattern analysis. Additionally, we analyze well-posedness
which has been lacking in previous work. Experimental results, including
hard physical constraints like vanishing divergence of the flow, validate
the theory.

1 Introduction

The estimation of highly non-rigid image flows is an important problem in var-
ious application areas of image analysis like remote sensing, medical imaging,
and experimental fluid mechanics. Such flows, which cannot be represented by
a single parametric model, are typically estimated by variational approaches. In
contrast to standard approaches, however, higher-order regularization is neces-
sary in order to accurately recover important flow structures like vortices, for
example, and to incorporate physically plausible constraints, like vanishing di-
vergence of the flow.

The basis for our paper is early work on second-order regularizers constraining
the gradients of the flow components divergence and curl [1, 2, 3]. This regular-
ization approach has been elaborated in a series of papers by Mémin and co-
workers [4, 5, 6]. Moreover, the decomposition and representation of continuous
vector fields by velocity potentials and stream functions [7] has been adopted to
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derive piecewise parametric representations of relevant flow structures. Recently,
the direct estimation of this representation has been studied in [8].

Contribution. From numerical fluid dynamics, it is well known that standard
discretizations, like piecewise linear finite elements, are not approriate. Impos-
ing the constraint of vanishing divergence, for example, may result in a constant
flow. Therefore, we introduce the mimetic finite difference method [9, 10, 11] to
the field of image sequence analysis, which uses basic integral identities of vector
analysis to derive discrete differential operators preserving these relationships af-
ter discretization. Based on this exact discrete representation, we study div-curl
regularization, detect and remove a corresponding sensitivity of this regularizer
to “boundary noise”, state precise conditions for well-posedness, and present a
provably convergent iterative implementation for directly estimating velocity po-
tentials and stream functions by iterative subspace correction. Most importantly,
our approach makes the estimation of accurate solenoidal (non-divergent) flows
feasible. The theory is validated by numerical experiments.

2 Vector-Field Representation

2.1 Discretization and Vector Spaces

We use the mimetic finite difference method for discretization [9, 10] in order to
preserve basic relationships of continuous vector analysis. This discretization will
be applied in section 2.2 to accurately represent and decompose vector fields.

Figure 1 illustrates the definitions of the following finite-dimensional vec-
tor spaces:

(i−1, j)

(i, j) (i, j+1)(i, j−1)

(i+1, j+1)(i+1, j)

H E

Hs

Hs

Hs

Hp

Hv

H E

(i+1/2,j+1/2)

Hs

H E

H E

Fig. 1. Definition of finite-dimensional spaces of scalar fields and vector fields on a
rectangular grid. Filled circles depict nodes or vertices, the other circles indicate cells.
The positions of diamonds are referred to as sides
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HV : the space of scalar fields defined on cells,
HP : the space of scalar fields defined on vertices,
HE : the space of vector fields defined tangential to sides,
HS : the space of vector fields defined normal to sides.

Furthermore, we define the following primal discrete first-order differential op-
erators:

G : HP → HE the discrete gradient operator representing ∇,
G⊥ : HP → HS the discrete directional derivative along level curves

representing ∇⊥ in the discrete case. This operator is
specific to the 2D case considered here.

Div : HS → HV the discrete divergence operator,
Curl : HE → HV the discrete curl operator.

In order to construct the discrete second-order differential operators by combin-
ing first-order operators, dual discrete first-order differential operators

G∗ : HV → HS , G⊥∗
: HV → HE , Div ∗ : HE → HP , Curl ∗ : HS → HP

are defined so as to solve the incompatibilities of domains and ranges of the
primal operators defined above [10]. For example, G and Div cannot be regarded
as mutually adjoint operators like in the continuous case, whereas G, Div ∗ and
G∗, Div do.

2.2 Orthogonal Decomposition

We represent vector fields directly in terms of their irrotational and solenoidal
components. These components are defined by the first-order variations of ve-
locity potentials ψ and stream functions φ, respectively [11]:

Theorem 1 (Vector Field Decomposition). For any 2D vector field u ∈
HS, the representation of u in terms of ψ, φ:

u = G∗ψ + G⊥φ, u∂Ω = ∂nψ, (1)

where φ∂Ω = 0, is unique up to a constant of ψ.

Here, Ω denotes the image section (grid), n the corresponding outer normal
vector, and f∂Ω the boundary values of f . Let

u = v + w , v = G∗ψ , w = G⊥φ

according to (1). Since the operators defined in the previous section satisfy [11]:

Div G⊥ ≡ 0 , Curl ∗
G∗ ≡ 0 ,

we have
Div w = 0 , Curl ∗v = 0 , (2)

and:
〈w, v〉HS

=
〈
G∗ψ,G⊥φ

〉
HS

= 〈Curl ∗
G∗ψ, φ〉HP

≡ 0 (3)

This shows:
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Theorem 2 (Orthogonality). The decomposition (1) is orthorgonal, that is:〈
G∗ψ,G⊥φ

〉
HS

= 0 , ∀u ∈ HS (4)

Let Sir express the subspace of all vectors which can be written as G∗ψ and
Ssol the subspace of vectors which can be reprented as G⊥φ. Then the previous
theorem asserts that the direct sum holds:

HS = Sir ⊕ Ssol (5)

Representation (1) is motivated by analogous decompositions of continuous
vector fields [7]. However, discretizing such vector fields with standard finite
differences or finite elements yields approximate decompositions only, which may
lead to numerical instabilities in applications. In contrast, theorem 1 provides an
exact orthogonal decomposition of the finite-dimensional space of vector fields
HS . Furthermore, as detailed below, the decomposition allows to estimate ψ, φ
directly, and in parallel, using variational optical flow approaches and subspace
correction methods (cf. section 5.1).

Alternatively, we may first estimate u and then compute ψ and φ in a sub-
sequent step by solving the Neumann and Dirichlet problems:

+Dψ = Div u , ∂nψ = u∂Ω , (6)
+Cφ = Curl ∗u , φ∂Ω = 0 , (7)

where the discrete Laplacians are defined by:

+D := Div G∗ , +C := Curl ∗
G⊥ (8)

and the additional constraint
∑

cells ψ = 0. In the remainder of this paper, how-
ever, we show that directly estimating ψ, φ from image sequence data is feasible.

3 Regularization and Optimization Problems

3.1 Representation of the Data Term and Linearization

We consider pixels as cells and define accordingly I ∈ HV for a given image.
We use the conventional data term for optical flow estimation, along with

regularizers L(u) to be specified below (section 3.2):

min
u∈HS

F (u) , F (u) := ‖I(x+ u) − I(x)‖2
HV

+ L(u) (9)

Note that this data term could be made robust against outliers by using some
robust estimators or the L1-norm [12]. In this paper, however, we focus on higher-
order regularization in connection with the representation (1).

In order to alleviate the local minima problem, we apply the standard pro-
cedure of minimizing F (u) using a sequence of linearizations of the data term:
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F l(ul) :=
∥∥G∗I l

1 · ul + ∂tI
l
∥∥2

HV
+ L(ul) , (10)

where {I l
1, I

l
2}l=0,1,...,m denote linear scale-space representations of a given image

pair, and ∂tI
l = I l

1(x) − I l
2(x+ ul+1(x)).

3.2 Regularization

We wish to apply the following second-order regularizer (cf. the discussion of
related work in section 1):∫

Ω

λ1|∇div u|2 + λ2|∇curlu|2dx (11)

where λ1 and λ2 are two positive constants. This term measures the variation
of the basic flow components divergence and curl, but does not penalize the
components itself. However, both standard finite differences or finite elements
discretization lead to finite-dimensional representations which do not satisfy (1),
(4). As a result, penalizing one component may affect the other component too.
Therefore, we adopt the framework sketched in section 2.1 which leads to the
following discretization of (11):

L(u) := Ldiv(u) + Lcurl(u) := λ1 ‖G∗Div u‖2
HS

+ λ2 ‖GCurl ∗u‖2
HE

, (12)

3.3 Estimation of Non-rigid Flows

Based on (12), we consider the functional:

min
u∈HS

F (u) := ‖I(x+ u) − I(x)‖2
HV

+ Ldiv(u) + Lcurl(u) (13)

Inserting the decomposition (1), we obtain the minimization problem:

min
ψ,φ

F (ψ, φ) =
∥∥I(x+ G∗ψ + G⊥φ) − I(x)

∥∥2
HV

(14)

+ λ1 ‖G∗+Dψ‖2
HS

+ λ2 ‖G+Cφ‖2
HE

subject to the linear constraints:∑
cells

ψ = 0 , φ∂Ω = 0 (15)

Note that the first constraint fixes the free constant mentioned in theorem 1.
Furthermore, the arguments of (14) are elements of orthogonal subspaces (5),
and thus may be determined in parallel by subspace correction methods.

3.4 Estimation of Solenoidal Flows

An important special case, particularly in applications of experimental fluid
dynamics, concerns the estimation of solenoidal (divergence-free) flows. In this
case the decomposition (1) reduces to:

u = G∗ψl + G⊥φ := ul + G⊥φ (16)
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where the laminar flow ul can be computed through the full flow u by solving:

+Dψl = 0 , ∂nψl = u∂Ω (17)

and ul = G∗ψl. Since Curl ∗
G∗ ≡ 0, the laminar flow ul is both divergence and

curl free. In order for (17) to be solvable, we require the compatible condition∫
∂Ω

u∂Ωdl = 0 (cf., e.g., [13]).
Let Sdiv0 = {u ∈ HS | Div u = 0} be the linear space of vector fields with

vanishing divergence. Then the following direct sum holds:

Sdiv0 = Slam ⊕ Ssol (18)

with laminar and solenoidal flows as basic components.
In order to estimate solenoidal flows, we consider instead of (13) the func-

tional:
min

u∈Sdiv0
Fsol(u) := ‖I(x+ u) − I(x)‖2

HV
+ Lcurl(u) (19)

which is well-defined by (18). Inserting the decomposition (16), we obtain the
minimization problem:

min
ψl,φ

Fsol(ψl, φ) =
∥∥I(x+ G∗ψl + G⊥φ) − I(x)

∥∥2
HV

+ λ ‖G+Cφ‖2
HE

(20)

subject to the constraints:

+Dψl = 0 ,
∑
cells

ψl = 0 , φ∂Ω = 0 (21)

Note that the arguments of (20) are elements of orthogonal subspaces (18), and
thus may be determined in parallel by subspace correction methods.

4 Well-Posedness and Stability

4.1 Well-Posedness

We state the conditions under which the functionals (13) and (19) with linearized
data terms (cf. (10)) are strictly convex. To this end, we consider the spaces:

Sd = {u ∈ HS | Div u = C , Curl ∗u = 0 , C ∈ R arbitrary}
Sc = {u ∈ HS | Div u = 0 , Curl ∗u = C , C ∈ R arbitrary}
Sdc = {u ∈ HS | u = u1 + u2 , u1 ∈ Sd , u2 ∈ Sc}
Sg = {u ∈ HS | G∗I1 · u = 0}

As we work with finite-dimensional vector fields, the following two assertions are
obvious: problem

min
u∈HS

F (u) := ‖G∗I1 · u+ ∂tI‖2
HV

+ λ1 ‖G∗Div u‖2
HS

+ λ2 ‖GCurl ∗u‖2
HE

(22)
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is strictly convex iff the subspaces Sg and Sdc trivially intersect, that is there is
no vector 0 �= u ∈ Sdc which is perpendicular to G∗I1. Similarly, problem

min
u∈Sdiv0

Fsol(u) := ‖G∗I1 · u+ ∂tI‖2
HV

+ λ ‖GCurl ∗u‖2
HE

(23)

is strictly convex iff Sg and Sc trivially intersect.

4.2 Stability

It is well-known that existence of a unique solution, as established in the previous
section, does not say much about numerical stability. Indeed, inspection of the
second-order regularizer (11) reveals a particular sensivity of u with respect to
the image data, and suggests using a corresponding regularizer.

To motivate this additional term, we consider the following representation of
vector fields u in terms of functions ρ, ω and boundary data f :

div u = ρ , curlu = ω , u∂Ω = f

Provided the compatibility condition:∫
Ω

ρ dx =
∫

∂Ω

f dl (24)

holds, u is uniquely defined, both in the continuous case [13] and in the discrete
case, using the discretization of section 2.1.

It is clear that the regularizer (11) only constrains ρ and ω, but not f which
is weakly constrained only through the data terms of the functionals considered
above. Therefore, in practice, it turned out to be useful to reduce this sensivity
of u by including a regularizer which weakly constraints the boundary values:∫

∂Ω

(∂nu)2 dl. (25)

By virtue of the orthogonal decomposition, this constraint can be expressed in
terms of ψ.

Fig. 2. Left: Synthetic image and solenoidal velocity field. Middle: Divergence error
using Horn-Schunck regularization. Right: Divergence error using our approach
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5 Experiments and Discussion

5.1 Implementation Details

Minimization of the functionals (14) and (20), respectively, with linearized data
terms (see (10)) can be done by alternating partial minimizations with respect

Fig. 3. Top Left The first image I1with the restored solenoidal flow. Top Right The
divergence field of the flow which is less than 3 ∗ 10−12. Middle Left The potential
field ψl(Ω) related to the laminar flow. Middle Right The potential field φ(Ω). Bot-
tom Left The first component of flow: the laminar flow ulam. Bottom Right The
second component of flow related to potential φ(Ω). The comparison with standard
regularization is depicted in Figure 4
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to ψ, φ and subsequent subspace corrections. The proof of convergence and
further details are given in [14, 15]. In the case of solenoidal flows, the first
linear constraint in (21) is incorporated by using the Augmented Lagrangian
Method [16]. The remaining two constraints can be taken into account by directly
modifying the two linear systems involved.

5.2 Experiment Results

Error Measures. In pactice, evaluating non-rigid flows by computing the av-
erage angular and norm error, respectively, induced by the inner product of the
space (L2(Ω))2 = L2(Ω) × L2(Ω) [17] appeared to us too insensitive to the im-

Fig. 4. Top The restored solenoidal flow u(Ω). Bottom The restored flow uhs(Ω) using
the Horn-Schunck regularization. This results clearly show that vortex structures are
better recovered by our approach. Furthermore, the magnitude of the divergence is
below 10−11 throughout the image plane
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portant flow structures. Therefore, we suggest error measures that also take into
account divergence and curl of flow structures:

enorm =
〈w,w〉DC

N
; eang. = arccos

〈u, v〉DC + 1√
〈u, u〉DC + 1

√
〈v, v〉DC + 1

. (26)

where we adopt the average angular and norm error measures but use the inner
products of the space H(div;Ω) ∩H(curl;Ω) (see, e.g., [7]):

〈u, v〉DC = 〈u, v〉HS
+ 〈Div u,Div v〉HV

+ 〈Curl ∗u,Curl ∗v〉HP
. (27)

Ground Truth Experiments. Figure 2 shows a real image which was warped
by the indicated flow. The corresponding errors for the approach (20) enorm =
6.1 ∗ 10−3, eang. = 6.51◦ are smaller than the approach with Horn-Schunck reg-
ularization, for which enorm = 2.95∗10−2, eang. = 13.52◦. Note, that these error
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Fig. 5. Top Image I with the restored flow field u. Middle Left The divergence
field of u. Middle Right The curl field of u. Bottom Left The potential field ψ(Ω).
Bottom Right The potential field φ(Ω). The divergence field, for example, which
clearly detects a “source” (blue blob), illustrates the quality and usefulness of the
results
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measures include flow derivatives as opposed to common measures used in the
literature.

Estimating Solenoidal Flows. Figure 3 shows the result of estimating the
solenoidal flow for a real image sequence. The comparison with first-order reg-
ularization (Horn-Schunck approach) in Figure 4 cleary reveals the superiority
of our approach regarding the reconstruction of vortex structures. Furthermore,
the (in this case) physically plausible constraint of vanishing divergence is satis-
fied quite accurately.

Estimating General Non-rigid Flows. Figures 5 and 6 show general non-
rigid flow estimated for two different real image sequences. As in the solenoidal
case, the potential functions provide a useful representation of qualitative prop-
erties of the flow.
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Fig. 6. Top Image I with the restored flow field u. Middle Left The divergence field
of u. Middle Right The curl field of u. Bottom Left The potential field ψ(Ω).
Bottom Right The potential field φ(Ω). As in the previous figure, the potential
functions provide a useful representation of qualitative properties of the flow
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6 Conclusion and Future Works

We presented a high-quality discrete representation of flow estimation schemes for
non-rigid flows.Our furtherworkwill focus on the extension to 3D image sequences.
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8. T. Kohlberger, E. Mémin, and C. Schnörr. Variational dense motion estimation
using the helmholtz decomposition. In L.D. Griffin and M. Lillholm, editors,
Scale Space Methods in Computer Vision, volume 2695 of LNCS, pages 432–448.
Springer, 2003.

9. James M. Hyman and Mikhail J. Shashkov. Natural discretizations for the di-
vergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl.,
33(4):81–104, 1997.

10. James M. Hyman and Mikhail J. Shashkov. Adjoint operators for the natural
discretizations of the divergence, gradient and curl on logically rectangular grids.
Appl. Numer. Math., 25(4):413–442, 1997.

11. James M. Hyman and Mikhail J. Shashkov. The orthogonal decomposition theo-
rems for mimetic finite difference methods. SIAM J. Numer. Anal., 36(3):788–818
(electronic), 1999.

12. M. J. Black and P. Anandan. The robust estimation of multiple motions: Paramet-
ric and piecewise-smooth flow fields. Computer Vision and Image Understanding,
63(1):75–104, 1996.

13. Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 1998.

14. J. Xu. Iterative methods by space decomposition and subspace correction: A uni-
fying approach. SIAM Review, 34:581–613, 1992.

15. Xue-Cheng Tai and Jinchao Xu. Global and uniform convergence of sub-
space correction methods for some convex optimization problems. Math. Comp.,
71(237):105–124 (electronic), 2002.

16. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.
2nd edition 1999.

17. J. L. Barron, David J. Fleet, and S. S. Beauchemin. Performance of optical flow
techniques. International Journal of Computer Vision, 12(1):43–77, 1994.



Discontinuity-Preserving Computation of Variational
Optic Flow in Real-Time

Andrés Bruhn1, Joachim Weickert1, Timo Kohlberger2, and Christoph Schnörr2
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Abstract. Variational methods are very popular for optic flow computation: They
yield dense flow fields and perform well if they are adapted such that they respect
discontinuities in the image sequence or the flow field. Unfortunately, this adap-
tation results in high computational complexity. In our paper we show that it is
possible to achieve real-time performance for these methods if bidirectional multi-
grid strategies are used. To this end, we study two prototypes: i) For the anisotropic
image-driven technique of Nagel and Enkelmann that results in a linear system
of equations we derive a regular full multigrid scheme. ii) For an isotropic flow-
driven approach with total variation (TV) regularisation that requires to solve a
nonlinear system of equations we develop a full multigrid strategy based on a
full approximation scheme (FAS). Experiments for sequences of size 160 × 120
demonstrate the excellent performance of the proposed numerical schemes. With
frame rates of 6 and 12 dense flow fields per second, respectively, both imple-
mentations outperform corresponding modified explicit schemes by two to three
orders of magnitude. Thus, for the first time ever, real-time performance can be
achieved for these high quality methods.

Keywords: computer vision, optical flow, differential techniques, variational meth-
ods, multigrid methods, partial differential equations.

1 Introduction

In computer vision, the estimation of motion information from image sequences is one of
the key problems. Typically, one is thereby interested in finding the displacement field
between two consecutive frames, the so-called optic flow. In this context, variational
methods play a very important role, since they allow for both a precise and dense esti-
mation of the results. Such techniques are based on the minimisation of a suitable energy
functional that consists of two terms: A data term that imposes temporal constancy on
certain image features, e.g. on the grey value, and a smoothness term that regularises the
often non-unique solution of the data term by an additional smoothness assumption.
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Let us consider some image sequence f(x, y, t), where (x, y) denotes the location
within a rectangular image domainΩ, and t ∈ [0, T ] denotes time. Then, the assumption
of a constant grey value over time can be formulated as

f(x+ u, y + v, t+ 1) − f(x, y, t) = 0. (1)

Performing a Taylor expansion and dropping all higher order terms one obtains its
linearised form, the so-called optic flow constraint (OFC)

fxu+ fyv + ft = 0. (2)

Here, the function (u(x, y, t), v(x, y, t))� is the wanted displacement field and sub-
scripts denote partial derivatives. As classified in [33], there are basically three different
types of strategies to regularise the evidently non-unique solution of this data term:
Homogeneous regularisation that assumes overall smoothness and does not adapt to
semantically important image or flow structures [20], image-driven regularisation that
assumes piecewise smoothness and respects discontinuities in the image [1, 26] and flow-
driven regularisation that assumes piecewise smoothness and respects discontinuities in
the flow field; see e.g. [11, 29, 33]. Moreover, when considering image and flow-driven
regularisation, one can distinguish between isotropic and anisotropic smoothness terms.
While isotropic regularisers do not impose any smoothness at discontinuities, anisotropic
ones permit smoothing along the discontinuity but not across it.

Although recent developments [7, 9, 25] have shown that variational methods are
among the best techniques for computing the optic flow in terms of error measures [3],
they are often considered to be too slow for real-time applications. In particular the
computational costs for solving the resulting linear and nonlinear system of equations
by using standard iterative solvers are regarded as too high. In [8] we have already
demonstrated for variational methods with homogeneous regularisation that bidirec-
tional multigrid strategies [5, 6, 19, 31, 35] do allow for real-time performance. These
techniques that create a sophisticated hierarchy of equation systems with excellent er-
ror reduction properties belong to the fastest numerical schemes for solving linear or
nonlinear systems of equations. In this paper we show that by using such methods also
real-time performance for variational techniques with image- or flow-driven regulari-
sation becomes possible. One should note that in this case the development of suitable
multigrid strategies is much more difficult due to the anisotropy or nonlinearity of the
underlying regularisation strategies. To the best of our knowledge our paper is the first
one to report real-time performance for such variational optic flow methods on standard
hardware.

Paper Organisation. Our paper is organised as follows. In Section 2 we give a short
review on two variational techniques that serve as prototypes for image- and flow-driven
regularisation. Section 3 shows how these problems can be discretised, while efficient
bidirectional multigrid schemes for solving the resulting linear and nonlinear systems of
equations are proposed in Section 4. In Section 5 we present an experimental evaluation
that includes experiments with different real-world sequences as well as performance
benchmarks for both prototypes. A summary in Section 6 concludes this paper.

Related Work. In the literature on variational optic flow methods, coarse-to-fine strate-
gies are quite common to speed up the computation (see e.g. Anandan [2], Luettgen et
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al. [24]). They are based on a successive refinement of the problem whereby coarse grid
solutions serve as initial guesses on finer grids. However, from a numerical viewpoint
such unidirectional schemes are not the end of the road. They are clearly outperformed
by bidirectional multigrid methods that revisit coarser levels in order to obtain useful
correction steps. While there is at least some literature on these highly efficient schemes
for variational optic flow techniques with homogeneous and image-driven regularisation
(Glazer [18], Terzopoulos [30], Zini et a. [37], El Kalmoun and Rüde [13], Enkelmann
[15], Ghosal and Vaněk [17]), only the work of Borzi et al. [4] is known to the authors
where an optic flow problem was solved by means of a nonlinear bidirectional multigrid
scheme (FAS). Also for other tasks in image processing and computer vision multigrid
methods have been used successfully. In the context of photometric stereo and image
biniarisation Kimmel and Yavneh [22] developed an algebraic multigrid method, while
Chan et al. [10] researched geometric multigrid schemes for variational deconvolution
with TV regularisation. For TV denoising Vogel [32] proposed the use of a linear multi-
grid method within a nonlinear fixed-point iteration, while, very recently, Frohn-Schnauf
et al. [16] investigated a nonlinear multigrid scheme (FAS) for the same task.

2 Prototypes for Variational Methods

2.1 The Method of Nagel and Enkelmann

As prototype for the class of optic flow methods with image-driven regularisation we
consider the anisotropic technique of Nagel and Enkelmann [26]. Their method accounts
for the problem of discontinuities by smoothing only along a projection of the flow
gradient, namely its component orthogonal to the local image gradient.As a consequence,
flow fields are obtained that avoid smoothing across discontinuities in the image data.
The energy functional associated to this anisotropic form of regularisation is given by

E(u, v)=
∫

Ω

(
(fxu+ fyv + ft)

2+ α(∇u�D(∇f)∇u+ ∇v�D(∇f)∇v)
)
dxdy, (3)

where ∇ := (∂x, ∂y)� denotes the spatial gradient and D(∇f) is a projection matrix
perpendicular to ∇f that is defined as

D(∇f) =
1

|∇f | + 2ε2

(
f2

y + ε2 −fxfy

−fxfy f2
x + ε2

)
=:
(
a b
b c

)
. (4)

In this context ε serves as regularisation parameter that prevents the matrix D(∇f)
from getting singular. Following the calculus of variations [14], the minimisation of this
convex functional comes down to solving its Euler–Lagrange equations that are given by

0 = f2
x u+ fxfy v + fxft − αLNEu, (5)

0 = fxfy u+ f2
y v + fyft − αLNEv (6)

with the linear differential operator

LNEz(x, y) = div (D(∇f(x, y))∇z(x, y)) (7)

and reflecting Neumann boundary conditions.
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2.2 The TV-Based Regularisation Method

In contrast to image-driven regularisation methods, flow-driven techniques reduce smooth-
ing where edges in the flow field occur during computation. Our prototype for this class
of variational optic flow techniques is an isotropic method that penalises deviations from
the smoothness assumption with the L1 norm of the flow gradient magnitude. This cor-
responds to total variation regularisation [28] and can be related to statistically robust
error norms [21]. Thereby large deviations are penalised less severely than in the fre-
quently used quadratic setting (L2 norm). As a consequence, large gradient features such
as edges are better preserved. The energy functional for this approach is given by

E(u, v) =
∫

Ω

(
(fxu+ fyv + ft)

2 + α
√

|∇u|2 + |∇v|2 + ε2
)
dxdy, (8)

where ε serves as small regularisation parameter. A related functional that approximates
TV regularisation is proposed in [34], while variational approaches for rotationally not
invariant versions of TV regularisation have been researched in [11, 12, 23]. At first
glance, the corresponding Euler-Lagrange equations that are given by

0 = f2
x u+ fxfy v + fxft − α

2
LTV(u, v), (9)

0 = fxfy u+ f2
y v + fyft − α

2
LTV(v, u) (10)

have a very similar structure than those in (5)-(6). However,

LTV(z(x, y), z̃(x, y)) = div (D(∇z(x, y),∇z̃(x, y)) ∇z(x, y)) (11)

is evidently a nonlinear differential operator in z and z̃, since

D(∇z,∇z̃) =
1√

|∇z|2 + |∇z̃|2 + ε2
I =:

(
a b
b c

)
, (12)

where I is the identity matrix, b = 0 and c = a. As we will see later, this nonlinearity
of the differential operator LTV has serious impact on the resulting discrete system of
equations and on the derived multigrid strategy.

3 Discretisation

3.1 General Discretisation Aspects

Let us now discuss a suitable discretisation for the Euler-Lagrange equations (5)-(6)
and (9)-(10). To this end we consider the unknown functions u(x, y, t) and v(x, y, t)
on a rectangular pixel grid with cell size h = (hx, hy)�, and we denote by uh

i,j the
approximation to u at some pixel i, j with i = 1,...,Nx and j = 1,...,Ny . Spatial deriva-
tives of the image data are approximated using a fourth-order approximation with the
stencil (1,−8, 0, 8,−1)/(12h), while temporal derivatives are computed with a simple
two-point stencil. In order to discretise the divergence expressions in the differential
operators LNE and LTV we propose the following finite difference approximations:
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Table 1. Discretisations of averaging and differential operators

One-sided averaging M±,h
x (zi,j) :=

zi±1,j+zi,j

2 (13)

M±,h
y (zi,j) :=

zi,j±1+zi,j

2 (14)

One-sided differences D±,h
x (zi,j) := ± zi±1,j−zi,j

hx
(15)

D±,h
y (zi,j) := ± zi,j±1−zi,j

hy
(16)

Central differences Dh
x (zi,j) :=

zi+1,j−zi−1,j

2hx
(17)

Dh
y (zi,j) :=

zi,j+1−zi,j−1
2hy

(18)

Squared differences D2,h
x (zi,j) := 1

2

(
D+,h

x (zi,j)
)2

+ 1
2

(
D−,h

x (zi,j)
)2

(19)

D2,h
y (zi,j) := 1

2

(
D+,h

y (zi,j)
)2

+ 1
2

(
D−,h

y (zi,j)
)2

(20)

Gradient magnitude
∣∣D2,h (zi,j)

∣∣ :=
√

D2,h
x (zi,j) + D2,h

y (zi,j) (21)

∂x ( a(x, y) ∂xz(x, y)) ≈ D−,h
x

(
M+,h

x (ai,j) D+,h
x (zi,j)

)
, (22)

∂x ( b(x, y) ∂yz(x, y)) ≈ Dh
x

(
bi,j Dh

y (zi,j)
)
, (23)

∂y ( b(x, y) ∂xz(x, y)) ≈ Dh
y

(
bi,j Dh

x (zi,j)
)
, (24)

∂y ( c(x, y) ∂yz(x, y)) ≈ D−,h
y

(
M+,h

y (ci,j) D+,h
y (zi,j)

)
, (25)

where the coefficients a, b and c are entries of the matrices D(∇f) and D(∇u,∇v)
as shown in (4) and (12). Details on the required averaging and differential operators
within the approximations are given in Table 1.

3.2 The Method of Nagel and Enkelmann

We are now in the position to write down the discrete Euler-Lagrange equations for the
method of Nagel and Enkelmann. They are given by

0 = f2,h
x i,j u

h
i,j + fh

x i,jf
h
y i,j v

h
i,j + fh

x i,jf
h
t i,j − α Lh

NE i,j u
h
i,j , (26)

0 = fh
x i,jf

h
y i,j u

h
i,j + f2,h

y i,j v
h
i,j + fh

y i,jf
h
t i,j − α Lh

NE i,j v
h
i,j , (27)

for i = 1, .., Nx and j = 1, .., Ny , whereLh
NE i,j denotes the discrete version of the linear

operator LNE at some pixel i, j. These 2NxNy equations constitute a linear system for
the unknowns uh

i,j and vhi,j . One should note that there are two different types of coupling
between the equations. The pointwise coupling between uh

i,j and vhi,j in the data term
and the anisotropic neighbourhood coupling via the operator Lh

NE i,j in the smoothness
term (for uh

i,j and vhi,j separately).
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3.3 The TV-Based Regularisation Method

Analogously, we discretise the Euler Lagrange equations for the TV-based regularisation
method. The obtained nonlinear system of equations then reads

0 = f2,h
x i,j u

h
i,j + fh

x i,jf
h
y i,j v

h
i,j + fh

x i,jf
h
t i,j − α

2
Lh

TV i,j(u
h
i,j , v

h
i,j) u

h
i,j , (28)

0 = fh
x i,jf

h
y i,j u

h
i,j + f2,h

y i,j v
h
i,j + fh

y i,jf
h
t i,j − α

2
Lh

TV i,j(u
h
i,j , v

h
i,j) v

h
i,j , (29)

for i = 1, .., Nx and j = 1, .., Ny . Here, the finite difference approximation ofLTV(u, v)
and LTV(v, u) results in the product of a common nonlinear operator Lh

TV i,j(u
h
i,j , v

h
i,j)

and the pixeluh
i,j and vhi,j , respectively. Evidently, this constitutes a third way of coupling.

4 Multigrid

4.1 Basic Concept

In general, the obtained linear and nonlinear systems of equations are solved by us-
ing non-hierarchical iterative schemes; e.g. variants of the Jacobi or the Gauß-Seidel
method [27, 36]. However, such techniques are not suitable for equation systems that
are only coupled via a small local neighbourhood: It may take thousands of iterations to
transport local information between unknowns that are not coupled directly. A Fourier
analysis of the error confirms this observation: While high frequency components (small
wavelength, local impact) are attenuated efficiently, lower frequency components (large
wavelength, global impact) remain almost un-dampened. In order to overcome this prob-
lem multigrid methods are based on a sophisticated strategy. They make use of correction
steps that compute the error (not a coarser version of the fine grid solution) on a coarser
grid. Thus, lower frequency components of the error reappear as higher ones and allow
for an efficient attenuation with standard iterative methods. In the following we explain
this strategy in detail for both the linear and the nonlinear case by the example of a basic
bidirectional two-grid cycle.

4.2 The Linear Two-Grid Cycle

For the sake of clarity, let us reformulate the linear equation system of the method of
Nagel and Enkelmann (26)-(27) as

Ahxh = fh. (30)

Here xh denotes the concatenated vector ((uh)�, (vh)�)�, Ah is a symmetric positive
definite matrix and fh stands for the right hand side.

I) Multigrid methods starts by performing several iterations with a basic iterative
solver. This is the so-called presmoothing relaxation step, where high frequency
components of the error are removed. If we denote the result after these iterations
by x̃h, the error is given by

eh = xh − x̃h. (31)
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II) Evidently, one is interested in finding eh in order to correct the approximated so-
lution x̃h. Although eh cannot be computed directly, the linearity of Ah allows its
computation via

Aheh = Ah(xh − x̃h) = Ahxh −Ahx̃h = fh −Ahx̃h = rh, (32)

where rh is called residual. Since high frequencies of the error have already been
removed, we can speed up the computation by solving this equation system at a
coarser resolution with grid cell size H = (Hx, Hy)� :

Aheh = rh → AHeH = rH. (33)

One should note that at this point, a transfer of the original equation system to a
coarser grid makes no sense: Unlike the error, the solution very probably contains
(desired) high frequency components. A restriction of these components would
severely deteriorate the approximative solution (aliasing).

III) After we have solved the residual equation system on the coarse grid with a method
of our choice, we transfer the solution back to the fine grid and correct our approx-
imation by the computed error

x̃h
new = x̃h + eh. (34)

IV) In general, the transfer of the computed correction from a coarse grid by means of
interpolation introduces some new high frequency components. To this end, a so-
called postsmoothing relaxation step is performed, where once again some iteration
of the basic iterative solver are applied.

4.3 The Nonlinear (FAS) Two-Grid Cycle

Also in this case, let us start with a reformulation of the nonlinear equation system
resulting from the TV-based regularisation method (28)-(29) as

Ah(xh) = fh (35)

where Ah(xh) is a nonlinear operator. The FAS strategy [5] works as follows:

I) We perform a presmoothing relaxation step with a nonlinear basic solver.
II) However, sinceAh(xh) is a nonlinear operator, the way of deriving a suitable coarse

grid correction is significantly different from the linear case. The (implicit) relation
between the error and the residual is given by

Ah(x̃h + eh) −Ah(x̃h) = fh −Ah(x̃h) = rh. (36)

In order to compute the desired correction we transfer the following nonlinear equa-
tion system to the coarse grid

Ah(x̃h + eh) = rh +Ah(x̃h) → AH( x̃H + eH) = rH + AH(x̃H) . (37)

Here, frames visualise the additional terms compared to the linear case.
III) After we have solved the nonlinear residual equation system on the coarse grid, we

subtract x̃H from the solution in order to obtain eH. Its transfer to the fine grid then
allows to perform the correction step.

IV) We perform a postsmoothing relaxation step with a nonlinear basic solver.
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4.4 Advanced Multigrid Strategies

In order to increase the computational efficiency, the presented two-grid cycles are
generally applied in a hierarchical way. While V–cycles make one recursive call of a
two-grid cycle per level, faster converging W–cycles perform two. Nevertheless, multiple
of such advanced cycles are required to reach the desired accuracy. Refining the original
problem step by step (unidirectional coarse-to-fine approach) and solving the resulting
linear or nonlinear equation system at each level by using some bidirectional V– or W–
cycles, the multigrid strategy with the best performance is obtained: full multigrid [6].
For both the linear and nonlinear case we have developed such full multigrid schemes.
Let us now sketch some implementation details.

4.5 Implementation Details

For the method of Nagel and Enkelmann we implemented a full multigrid scheme with
four W–cycles per level each one based on one pre- and one postsmoothing iteration. In
order to overcome the problematic anisotropic coupling we made use of a Gauß-Seidel
method with alternating line relaxation (ALR) [35] as basic solver. For our second proto-
type, the TV-based regularisation method, we designed a FAS full multigrid scheme with
two W–cycles per level each one based on two pre- and two postsmoothing iterations.
In this case we embedded a Gauß-Seidel method with coupled point relaxation (CPR)
[8] and frozen coefficients [16]. In order to allow for a complete multigrid hierarchy
we thereby considered the use of non-dyadic intergrid transfer operators. As proposed
in [8] they were realised by constant interpolation and simple averaging. Coarser ver-
sions of the linear and nonlinear operators were created by a discretisation coarse grid
approximation (DCA) [35].

5 Experiments

In our first experiment we compare the efficiency of different numerical schemes for
the discussed prototypes (Nagel and Enkelmann with α = 1000 and ε = 10−2, TV-based

Table 2. Performance benchmark on a standard desktop computer with 3.06 GHz Pentium 4 CPU.
Run times refer to the computation of a single flow field from the 160 × 120 dancing sequence

(a) Linear : Image-driven anisotropic regularisation (Nagel-Enkelmann)

Solver Iterations Time [s] FPS [s−1] Speedup
Mod. Explicit Scheme (τ = 0.1666) 36558 47.053 0.021 1
Gauß-Seidel (ALR) 607 3.608 0.277 13
Full Multigrid 1 0.171 5.882 275

(b) Nonlinear : Flow-driven isotropic regularisation (TV)

Solver Iterations Time [s] FPS [s−1] Speedup
Mod. Explicit Scheme (τ = 0.0025) 10631 30.492 0.033 1
Gauß-Seidel (CPR) 2679 6.911 0.145 4
FAS - Full Multigrid 1 0.082 12.172 372
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Fig. 1. Left to right: dancing sequence, waving sequence, rotating thumb sequence. Top to
bottom: first frame, second frame, our CLG multigrid implementation from [8], our Nagel-
Enkelmann multigrid implementation, our TV-based regularisation FAS multigrid implemen-
tation. Brightness code: The magnitude of a flow vector is encoded by its brightness. Brigther
pixels stand for larger displacements. Color versions of the flow fields are available at
http://www.mia.uni-saarland.de/bruhn/scsp05/flowfields/
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regularisation method with α = 10 and ε = 10−2). Apart from our full multigrid schemes
we also implemented stand-alone versions of their basic solvers, namely the Gauß-
Seidel methods with alternating line relaxation (ALR) and the Gauß-Seidel method with
coupled point relaxation (CPR). Moreover, we considered a modified explicit scheme
[34] that allows for larger time step sizes τ than ordinary explicit schemes (e.g. than
gradient descent methods). For our evaluation we used a 160×120 real-world sequence
in which a person dances in front of the camera. The iterations were stopped when the
relative error erel := ‖x− x̃n‖2/‖x‖2 dropped below 10−2, wherex denotes the correct
solution and x̃n stands for the computed result after n iterations/cycles.

Table 2 shows the excellent performance of the proposed numerical schemes. In
the linear case the presented full multigrid method outperforms the modified explicit
scheme by two to three orders of magnitude. By allowing for the computation of six
dense flow fields per second it is also more than one order of magnitude more efficient
than its underlying basic solver. In the nonlinear case, the obtained speedups are even
better. This time, the proposed FAS full multigrid method outperforms both the modified
explicit scheme and the underlying basic solver by two to three orders of magnitude.
Thereby, frame rates of twelve dense flow fields per second clearly show that also in this
case real-time performance is well within our computational reach.

In our second experiment we compare the quality of both methods to that of a
variational approach with homogeneous regularisation. To this end, we have computed
flow fields for three different real-world sequences: for the previously used Dancing
Sequence (complex motion), the Waving Sequence (translations and discontinuities)
and the Rotating Thumb Sequence (rotation). The depicted colour plots in Figure 1
make the qualitative progress in the field of real-time variational optic flow computation
explicit: One can easily see, that image- and flow-driven results are of much higher
quality, since the underlying methods allow for a preservation of motion boundaries
and discontinuities. Moreover, one can observe that the nonlinear flow-driven method
is able to overcome the problem of oversegmentation that lies in the nature of image-
driven techniques.

6 Summary and Conclusions

In this paper we have demonstrated that real-time optic flow computation on standard
hardware is possible for variational optic flow techniques with both image- and flow-
driven regularisation. This was accomplished by using highly efficient bidirectional full
multigrid methods that solved the resulting linear and nonlinear systems of equations at
different scales. In our experiments the proposed numerical schemes not only outper-
formed frequently used non-hierarchical solvers by two to three orders of magnitude,
they also allowed for a very accurate estimation of the results. This shows that high qual-
ity optic flow computation and real-time performance are not opposing worlds. They can
be combined if state-of-the-art numerical schemes are used. In our future work we plan
to investigate different parallelisation strategies for the presented methods. This would
allow us to process even larger sequences in real-time.
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Abstract. Shapes simplify under to the intrinsic heat equation - the
Mean Curvature Motion (MCM) - forming a shape scale space. The
same holds for a representation of the shape, viz. the Symmetry Set
(SS), a superset of the Medial Axis. Its singularities under the MCM are
known, opening possibilities to investigate its deep structure. As data
structure we use so-called Gauss diagrams, structures that depend on
the pre-Symmetry Set, the SS in parameter space. Its properties, as well
as its evolution and singularities under MCM, are presented. The set
of all possible Gauss diagrams under MCM form a directed graph with
one end point, in which the shape’s scale space describes a specific path.
These paths can be used for shape description and comparison.

1 Introduction

Among the numerous shape representations [28], the skeleton [1], or Medial axis,
takes an important role as simplifying structure [12]. It is defined as the closure
of the centres of maximal circles tangent to the shape at at least two points.
Modifications of the skeleton made it more stable [22]. The Shock Graph ap-
proach [25] incorporates distance information at some points. Promising results
were presented on matching of these descriptions [21] using the possible changes
of the Shock Graphs.

The Medial Axis is a subset of the Symmetry Set [3]. Changes of this set
(transitions, singularities) [2] are directly responsible for changes of the Medial
Axis [8]. The Symmetry Set can easily be computed and appears to be able to be
represented as a string-like data structure that allows operations with very low
computational complexity [18]. In contrast to Medial Axis related approaches,
all extremal curvature points are taken into account.

All these methods start from the given shape and do not take into account
the scale of the shape as a free parameter. In general, the radius of the circle
is considered as scale, but the radius is introduced by definition of the Medial
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Axis. Scale, or inverse resolution [5], is, however, an intrinsic problem that has
to be taken into account when analyzing images and shapes.

For images, a solution to this problem lies in the use of so-called test-functions
[24], that regularize the data by performing a local integration at observation
points. One suitable testfunction is the Gaussian filter [5]. By keeping the vari-
ance of the filter a free parameter, one obtains a multiscale extension of the
original image, as originally proposed by Koenderink [13], and followed by many
others, see e.g. [5, 10, 19]. Investigation of the deep structure, i.e. the image at all
scales simultaneously, led, among other things, to the discovery of a topological
hierarchy within the image extended with a scale variable [15].

This idea can be directly transferred to shapes. For shapes, the intrinsic heat
equation is the Mean Curvature Motion, see e.g. [4, 11]. The changes in the (pre-
)Symmetry Set (the local situations) are theoretically known [2, 17], as well as
transitions of the Symmetry Set under the influence of Mean Curvature Motion
(MCM) [26]. More detailed descriptions are given in Section 2.

To derive a multi-scale shape hierarchy based on Symmetry Sets, two new in-
gredients are needed. Firstly necessary properties of the multi-scale pre-Symmetry
Set are derived in section 3. Secondly, a novel representation, called Gauss dia-
gram, is presented in section 4.

Using these results, we propose to embed the Gauss diagram representation
of the pre-Symmetry Set in the MCM multiscale context. This novel approach
creates a multiscale shape representation that reveals a hierarchical simplifica-
tion of the pre-Symmetry Set as the scale increases. Properties of this shape
scale space are given and discussed in section 5.

2 Background

We firstly provide some background theory regarding shape evolution, and Sym-
metry Set-based representations.

2.1 Evolution

Let S(x(p), y(p)) be a closed curve - a shape - given in its parameterized coordi-
nates, and p taken on the unit circle S1. Then the simplest way of regularizing
the curve is by convolving it with the simplest smoothing kernel, a Gaussian
(see Cao [4] for more details). Then the heat equation is solved for each of the
coordinates:

∂x

∂t
=
∂2x

∂p2 ,
∂y

∂t
=
∂2y

∂p2 .

Now the coordinates x(p, t) and y(p, t) are smooth, but the curve may become
non-smooth.

The reason for this is the fact that the parameterization parameter p de-
scribes a curve that shrinks as the scale increases. The overcome aforementioned
problem, the curve needs a renormalization sσ at every scale σ, [11, 20]. Solving
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the heat equation between two infinitesimal close instances (and renormaliza-
tions) yields

∂x

∂t
=
∂2x

∂s2
,

∂y

∂t
=
∂2y

∂s2
,

called the intrinsic heat equation. The parameter s is also called the arc-length.
This gives the Mean Curvature Motion (MCM):

∂C

∂t
=
∂2C

∂s2
= κN,

where κ is the curvature andN the unit length normal. Note that in this equation
the arc-length s depends on t, so the equation is non-linear. Each point on the
curve moves in the direction of the normal, proportional to the curvature. During
evolution, the curve becomes convex and shrinks to a point and remains smooth
(no self intersections or cusp points). This compares to the properties of Gaussian
blurring for images. More mathematical details are given by Gage and Hamilton
[6] and Grayson [9], while Kimia and Siddiqi [11] present theory and applications
of MCM on shapes and images. Discussions on the abovementioned relation with
Gaussian filtering, and the volumetric blurring proposed by Koenderink and Van
Doorn [14], can be found in [4, 11].

When the curve is considered as a level line (an isophote) of an image L, κN
equals ‖∇L‖∇·(∇L/‖∇L‖), or in short gauge coordinates, Lvv: the second order
derivative in the direction tangentional to the isophote. The image evolution is
often called Euclidean Shortening Flow [10, 11]. By tracing the zero-crossings of
the curvature over scale one obtains a Curvature Scale Space [20].

2.2 Symmetry Set

The Medial Axis (MA) of a shape is defined as the closure of the set of centres
of circles that are tangent to the shape at least two points and that contain no
other tangent circles: the are so-called maximal circles. The Symmetry Set SS
is defined as the closure of the set of centres of circles that are tangent to the
shape at least two points [2, 3, 8, 7]. The MA is a subset of the SS [7].

To calculate these sets from above definition, the following procedure can
be used [3]: Let a circle with unknown location be tangent to the shape at two
points. Then its centre can be found by using the normal vectors at these points:
it is located at the position of each point minus the radius of the circle times
the normal vector at each point. To find these two points, the location of the
centre and the radius, do the following: Given two vectors pi and pj (right, with
i = 1 and j = 2) pointing at two locations at the shape, construct the difference
vector pi − pj . Given the two unit normal vectors Ni and Nj at these locations,
construct the vector Ni + Nj . If the two constructed vectors are non-zero and
perpendicular,

(pi − pj).(Ni +Nj) = 0, (1)

the two locations give rise to a tangent circle. The radius r and the centre of the
circle are given by

pi − rNi = pj − rNj . (2)
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Fig. 1. a) Circles tangent to a shape b) Computing the Symmetry Set (see text)

In Figure 1a, the shape is given by the oval. Inside a circle is tangent to it
at two locations, so the unit normals N1 and N2 are equal for the shape and
the circle. The centre of the circle is found by multiplying minus the radius r
with the normals. Note that this is also a MA point. Next, also outside a circle
is tangent to the shape at two locations, where the unit normals N1 and N4
are equal for the shape and the circle. From this image it follows immediately
that a point on the shape relates to at least two points on the SS, in contrast
with the MA. Changes in the shape yield changes in the Symmetry Set and
are well-known [2]. The Symmetry Set can be represented as a string structure
(while the MA requires a graph), whose changes are directly inherited from the
Symmetry Set [18]. The transitions of the SS under MCM have been described
by Teixeira [26].

2.3 pre-Symmetry Set

The pre-Symmetry Set is defined as the Symmetry Set in parameter space: in-
stead of the centres of the circles defining the Symmetry Set, the points on the
shape where these circles are tangent, are taken. This yields the same (data),
but in this case the representation is clearer [16, 18]. The pre-Symmetry Set rep-
resentation of Figure 2 is shown in Figure 3. In a pre-Symmetry Set diagram,
the two axes represent points on the shape. If two points pi and pj give rise to
a Symmetry Set point, the corresponding points (pi, pj) and, due to symmetry,
(pj , pi) are marked in the diagram. The diagram shows curves that continue
along the boundaries. Each curve represents a distinct part of the Symmetry
Set. Curves in the pre-SS represent branches of the SS. The endpoints of the
SS are located at the diagonal of the pre-SS. They relate to points of extremal
curvature on the shape.

On the pre-Symmetry Set, the changes of the structure can be detected as
well, they can even be labelled with relevance with respect to changes in number
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Fig. 2. The fish shape top left transforms into a circle under influence of Mean Cur-
vature Motion

Fig. 3. The pre-Symmetry Set of the fish shape transforms to four parallel lines (two
essential loops) under influence of Mean Curvature Motion

of elements (curves), smoothness of elements, swapping of branches of two curves,
and changes in the number of special points related to the junctions of the
skeleton [17].
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3 Properties of the pre-Symmetry Set

In this section we derive properties of the pre-SS that are used in the remainder.
For detailed information on types of points on the (pre-)Symmetry Set and
transitions - the “A”-notation - the reader is referred to [2, 3, 17].

An intersection of curves in the pre-SS is due to a swap-transition called
A2

2-nib [2, 17]. So generically, curves in the pre-SS don’t intersect.
The points along the diagonal can be sequentially numbered. As the relate

to extrema in the curvature, the type of extremum alternates, just as along the
shape. So without loss of generality we may think of minima as odd numbered
intersections and maxima as even ones.

For a closed simple curve as the ellipse, the pre-SS contains two essential
loops, loops that range over the complete parameter domain. One can think
of then as the probing of the shape with two circles, one inside the shape and
one outside, or alternatively, one loop (axis of symmetry) for each of the two
dimensions of the space in which the shape is embedded.

Essential loops appear in pairs and connect points of equal type of curvature
extremum: one is connecting two even intersections, the other two odd ones.

An essential loop traverses the boundary an odd number of times, a non-
essential loop an even number of times.

Created or annihilated curves are due a creation or annihilation of a pair
of extrema of curvature, so they always involve a sequential even-odd couple of
intersections. Essential loops cannot be created or annihilated in this way.

Swappings that do not alter the number of essential loops - which is ’almost
always’ the case- always involve an even-odd couple and an arbitrary couple,
and must result in similar pairs. For example two even-odd couples (say 1-2 and
3-4) result in two even-odd couples (1-4 and 2-3), and an even-odd and an even-
even couple (say 3-4 and 2-6) result in an even-odd and an even-even couple
(2-3 and 4-6). Note that the non-intersecting property puts restrictions on the
possibilities. In the first example, the couples 1-3 and 2-4 are forbidden, since
these curves have to intersect in the pre-SS. The same holds for the couple 3-6
and 2-4 in the second example.

If a swap involves two essential loops they may be changed into two non-
essential loops. Due to the non-crossing property of curves, the swap changes a
min-min and a max-max pair to two min-max loops, vice versa.

Also non-diagonal intersecting closed curves exist, so-called moths. Since they
are only relevant when they interact in a swapping event - which basically makes
another curve longer, we will ignore them in the latter.

As a direct consequence of the results by Teixeira [26], under MCM only an-
nihilations of non-essential loops can occur. Furthermore, swappings can occur.

4 Gauss Diagrams

The pre-Symmetry Set has a dual type of representation, viz. that of a circle
with chords. The circle represents the closed curve and is obtained by taking the
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diagonal in the pre-Symmetry Set, connecting both ends. The chords represent
the distinct parts of the Symmetry Set, the curves in the pre-Symmetry Set. Just
as the pre-Symmetry Set diagram, this chord diagram has special properties. It
is very alike the Gauss diagram known from Knot theory [23, 27], and we will
refer to it as such further on.

The most evident property is the fact that when two chords are intersecting,
they divide the circle in distinct parts. Intersecting chords represent the essential
loops. Each part contains nested or sequential chords, the non-essential loops.
The same numbering and even-odd labelling as for the pre-SS holds. The moth
circles in the pre-SS appear as small closed loops within the Gauss diagram.

Transitions of the Gauss diagram relate directly to those of the pre-SS: we
firstly can have annihilations (creations) of chords as their length tends to (start
from) a point on the circle. Secondly, we can have swappings of chords when
two chords meet at one point. If no essential loops are involved, the chords
cannot remain intersecting after the transition. Furthermore, we can add extra
information to each chord, for example its (relative) length in the pre-SS, the
locations of special points of the SS, and the possible swapping positions -
determined by the distances between two curves in the pre-SS and the points
at which they occur.

5 Multi-scale Shape Hierarchy

Given a set of data points of a shape, regularization of these points is needed
in order to obtain more detailed information with respect to their location and
their derivatives. A small Gaussian kernel applied to the coordinates can do this.
However, why choose one specific scale? A more trustworthy way is choosing no a
priori scale. As discussed in Section 2, for shapes it is not appropriate to convolve
them with a Gaussian or any other kernel; instead, application of the intrinsic
heat equation is appropriate. Figure 2 shows the fish image under the influence
of Mean Curvature Motion (MCM).

For each scale the pre-SS can be calculated. The pre-SS representing the
simplifying fish sequence is shown in Figure 3. The corresponding pre-SS scale
space is given in Figure 4. Note that the pre-SS curves form manifolds in this
space.

The only allowed transitions under MCM are annihilations, swappings, and
smoothing and curving of curves. Annihilations imply that closed loops of the
pre-SS shrink to circular structures and disappear. The manifolds are therefore
domes. Swappings imply that two manifolds are connected at one point, the
”swapping-transition”. Smoothing and curving of curves only affect the local
curvatures on the manifolds. For large scales two curves remain, representing
the essential loops.

5.1 Comparison with Curvature Scale Space

Although the concept of Curvature Scale Space (CSS) also uses the idea of
evolution due to Mean Curvature Motion, there are significant differences.
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Fig. 4. The pre-Symmetry Set of the fish shape in full MCM scale space forms disap-
pearing domes and two remaining sheets
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Fig. 5. Left: CSS of the fish. Middle: evolution of the extrema of the curvature of the
fish. Right: Position of the curvature extrema of the fish in scale space

CSS investigates the zero crossings of the curvature over scale and is not
related to Medial Axis methods. For instance, all convex shapes have the same
(zero) CSS representation. Here zero crossings of derivative of curvature are
considered (i.e. the extrema of κ) instead of zero crossings of the curvature
itself. In Figure 5 the CSS of the fish is shown on the left. Note that all
branches end at a certain scale, when the shape becomes convex. In the
middle, the extrema of the curvature are shown. Now exactly 4 branches
remain, resembling the 4 extremal curvatures of an oval. On the right these
curves are shown as function of their spatial and scale positions. The essential
difference is that these curves show the connections with respect to their
annihilations, while the Symmetry Set connections are related to all their
intermediate connections, which change.
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5.2 Gauss Diagrams Under Mean Curvature Motion

Next, also the Gauss diagrams change under MCM. They inherit the transi-
tions from the pre-SS scale space. They are: annihilations of chords, swapping
of chords and changing of labels on a chord. The diagrams representing the
simplifying fish sequence is shown in Figure 6.

For all possible shapes we can construct a space of Gauss diagrams. Given
the simplification of structure as scale increases, we can construct a direction-
ality into this space, as shown in Figure 7. At the top the simplest shape, an
ellipse, is represented by two intersecting chords. At each subsequent level, a
chord is added. At a specific level, the positions of chords can change due to
swappings.

One thus obtains hierarchical metameric classes. Obviously, adding infor-
mation to the chords enlarges the possible diagrams and decreases the size of
the class. The swapping is not the only reason that the graph is not a tree.
Also the disappearing of chords can relate to causes a child node to be possibly
related to multiple parents, in contrast to trees, as shown in Figure 8a. At a
certain level, two subsequent swappings can as well take place in one swap, see
Figure 8b.

Given an arbitrary closed non-intersecting curve, applying MCM yields a
convex shape shrinking to a point at a sufficiently large scale. So the accompa-
nying Gauss diagrams are related to a path through the space of all possible
diagrams. Each shape will have its own path, and “more of less” similar shapes
will have paths that coincide at some stage. So the difference of the shapes can
be expressed as the difference in paths. This opens new ways to describe and
compare shapes in a well-defined topological manner.

Fig. 6. The Gauss diagrams of the fish shape transforms into a circle with two inter-
secting chords under influence of Mean Curvature Motion
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Fig. 7. The Gauss diagrams under influence of Mean Curvature Motion form a hier-
archy. The horizontal level represents the number of chords (or A3 points, or extrema
of curvature). They change under A4 transitions [2] in a simplifying manner: chords
disappear. At the horizontal levels chords swap due to A2

2nib transitions [2]. A further
refinement can be achieved by adding additional special points along the chords

Fig. 8. a) The state space of Gauss diagrams is a directed graph. Simplification can be
achieved in different ways. b) At a specific level multiple swap transitions are possible
for changing the chords of the Gauss diagrams

6 Conclusions

In this paper we presented the lay-out of a truly multiscale hierarchy for shapes,
based on the Symmetry Set. The multi-scale hierarchy is obtained by evolving
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the shape and its Symmetry Set under Mean Curvature Motion. As data struc-
ture the pre-Symmetry Set, visualized in a Gauss diagram is taken. This new
approach allows one to map the data on a circle, and effectively represent the
multiscale representation as a series of stacked circles with connected points at
each scale. Changes as scale increases are well-defined and known for the Sym-
metry Set. We derived them for the pre-Symmetry Set representation. It makes
this structure suitable and well-defined as a descriptive space for shapes. Since all
shapes converge to the same structure, this completely novel method allows one
to express differences in shapes as differences of convergence paths. Experiments
need to be carried out to validate the practical use with the presented theory.

Acknowledgements. The authors thank Prof. Giblin from Liverpool Univer-
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Abstract. For image filtering applications, it has been observed recently
that both diffusion filtering and associated regularization models provide
similar filtering properties. The comparison has been performed for regu-
larization functionals with convex penalization functional. In this paper
we discuss the relation between non-convex regularization functionals
and associated time dependent diffusion filtering techniques (in partic-
ular the Mean Curvature Flow equation). Here, the general idea is to
approximate an evolution process by a sequence of minimizers of itera-
tively convexified energy (regularization) functionals.

Keywords: Morphological regularization, diffusion filtering, equivalence
relations.

1 Introduction

Let A : X → 2X be a maximal monotone operator on a real Hilbert space X.
Here, we call A maximal monotone, if for every x, x′ ∈ X the implication

x′ ∈ Ax ⇔ 〈x′ −Ay, x− y〉 ≥ 0 for every y ∈ X

holds. Then there exists a solution of

du

dt
(t) +A(u(t)) � 0 (t ≥ 0) , u(0) = u0 . (1)

For the precise mathematical formulation of this statement we refer to Zeidler
[1–Theorem 32.P]. The solution of (1) is given by

u(t) = lim
N→∞

(
I +

t

N A

)−N
u0 .

See e.g. Crandall & Liggett [2]. We define

uN
k :=

(
I +

t

N A

)−k

u0 (k = 0, 1, . . . ,N ) and uN := uN
N .
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From this formula it is evident that uN
k solves

u+
t

N A(u) � uN
k−1 (k = 1, . . . ,N ) . (2)

An important example of a maximal monotone operator is the subdifferential
A = ∂J of a convex functional J : X → R ∪ {+∞} defined on a real Hilbert
space X. In this case (1) is a gradient flow equation and uN

k minimizes the
functional

u → 1
2
‖u− uN

k−1‖2
L2(Ω) +

t

N J(u) (k = 1, 2, . . . ,N ) . (3)

That is, the solution of the gradient flow equation can be approximated by
iterative regularization.

In [3, 4, 5] we performed a systematic comparison of regularization, iterative
regularization, and the solution of the according gradient flow equation for image
filtering. The experiments show similar solutions for all three methods. Recently
Mrázek, Steidl, and Weickert [6, 7] proved analytically for the one-dimensional
discrete bounded variation functional J(u) that both regularization and the solu-
tion of the discretized gradient flow equation are exactly the same. The similarity
relation between the three methods has been validated for gradient flow equa-
tions with A = ∂J maximal monotone (which follows from the convexity of J).
In this paper we show that the solution of the Mean Curvature Motion (MCM)

dv

dt
(t) = |∇v(t)|∇ ·

(
∇v(t)
|∇v(t)|

)
(t > 0) , v(0) = v0 , (4)

is approximated by the N -th minimizer of a non-convex iterative regularization
technique, where in each iteration step a regularization parameter α = T/N is
used. Here, in contrast to (2) we determine uN

k by solving an equation of the
form

u+
t

N A t
N

(u) � uN
k−1 .

Note that the operator A now depends on t/N . Provided that the limit uN = uN
N

exists for t/N → 0, we expect to have a solution of

∂u

∂t
(t) ∈ − lim

s→0+
As(u(t)) .

This provides a formal relation between the Mean Curvature Flow equation by
mimicking nonlinear semi-group theory.

The MCM equation has been extensively studied. For instance, it is well-
known that it attains a unique viscosity solution for given continuous and bounded
initial data v0 : Rn → R (see e.g. Evans [8]). Only in very special cases the so-
lution can be calculated analytically. Invariance properties and the use of MCM
for image processing applications have been studied by Alvarez & Guichard &
Lions & Morel [9]. MCM is an example of a morphological filtering technique.
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Therefore, we call the associated non-convex variational principle investigated
in this paper morphological regularization method.

In [10] a variational form related to the mean curvature flow equation has
been derived and a relaxation technique has been used to prove existence of a
generalized minimizer. This approach is impractical for a numerical solution since
the functional has to be redefined via Γ -limits first, and the relaxed functional
eventually has to be minimized. The variational formulation reveals interesting
properties (see [11]): it can be motivated as a regularization functional to clean
noisy images with random perturbations of the level lines.

The outline of this paper is as follows: In Section 2 we recall the formal rela-
tion between the Mean Curvature Flow equation and the according variational
principle. In Section 3 we prove well-posedness of iterative regularization based
on the concept of convexification. Moreover, a nontrivial part is the characteri-
zation of the relaxed functional on the nonreflexive Banach space of functions of
bounded variation. Previously, we computed the convex envelope for approxima-
tions on Sobolev spaces (see [13, 12, 11]). In Section 4 we discuss the numerical
minimization of the nonconvex variational principle and review solving the Mean
Curvature Flow equation. The results extend previous numerical experiments in
[10] for the minimization of the variational principles, which have been imple-
mented for relatively large regularization parameters. In Section 5 we compare
iterative regularization and the solution of the Mean Curvature Flow equation.

2 The Link Between MCM and Iterative Regularization

In order to establish the link relation between Mean Curvature Flow and varia-
tional forms we study the following energy functional:

I(u) := Iα,u0(u) :=
∫
f
(
x, u(x),∇u(x)

)
dx (α > 0) , (5)

where f : Ω × R × Rn → R ∪ {+∞} is defined by

f(x, ξ, A) =

(
ξ − u0(x)

)2
2|A| + α|A| . (6)

We can interpret I as a regularization functional with fit-to-data term
∫ (u−u0)2

2|∇u|
and the total variation semi-norm as fidelity term.

Aside from the theoretical interest in this functional we use it for solving
imaging problems with discontinuous solutions. This motivates the usage of the
total variation semi-norm for penalization, which has turned out to be quite
successful for this purpose (cf. Rudin & Osher & Fatemi [14, 15]).

The following computations are purely formal and not mathematically rigor-
ous. The steepest descent direction of the functional I is

∂I(u) :=
u− u0

|∇u| + ∇ ·
((

(u− u0)2

2|∇u|2 − α

)
∇u
|∇u|

)
. (7)
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Therefore, a minimizer of I satisfies the optimality condition

u+ αAα(u) := u+ α|∇u|∇ ·
((

(u− u0)2

2α|∇u|2 − 1
)

∇u
|∇u|

)
� u0 . (8)

We set α = t/N and perform iterative regularization by minimization of the
functionals Ik

t/N , (k = 1, . . . ,N ), defined by Ik
t/N := It/N ,uN

k−1
with uN

0 := u0.
The minimizer of Ik

t/N is denoted by uN
k .

With the change of notation ΔT := T/N , v(T ) := uN
N , v(T −ΔT ) := uN

N−1,
we find from the according optimality condition for the functional IN

T/N (cf. (8))
which we multiply by |∇v(T )|/ΔT that

v(T ) − v(T −ΔT )
ΔT

∈ |∇v(T )|∇ ·
(
A(T,ΔT, v)

∇v(T )
|∇v(T )|

)
, (9)

where

A(T,ΔT, v) := 1 − ΔT

2
(v(T ) − v(T −ΔT ))2

(ΔT )2
1

|∇v(T )|2 .

Taking ΔT → 0+ and considering dv
dt (T ) = limΔT→0+

v(T )−v(T−ΔT )
ΔT , we re-

cover (4).
For the regularization functional (3), if J is convex, there exists a unique min-

imizer of the associated regularization functional. Here this is no longer trivial
and is a first step of an analysis.

3 Minimizers of Non-convex Energy Functionals

In this section we prove existence of a minimizer of the functional

I(u) :=
∫

Ω

(
u(x) − u0(x)

)2
2|∇u(x)| dx+ α|Du|(Ω) (α > 0) . (10)

Here Ω is a bounded domain with Lipschitz boundary and |Du|(Ω) denotes the
total variation semi-norm. By Du we denote the distributional derivative of u,
which is a Radon measure on Ω. Thus we can use the Lebesgue decomposition
Du = ∇u dx+Dsu, where ∇u ∈ L1(Ω) denotes the absolutely continuous part
of Du and Dsu is the singular part (cf. Rudin [19])1. In (10) we define(

u(x) − u0(x)
)2

2|∇u(x)| := 0 if u(x) = u0(x) .

1 We follow the terminology of Ambrosio & Fusco & Pallara [17] and call Dsu the
singular part. Other publications denote by Dsu the jump part of the distributional
gradient, which belongs to discontinuities in the function u. In particular, in this
paper Dsu also contains the Cantor part of u
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Minimization of the functional I is considered over the space BV(Ω), the space
of functions of bounded variation (cf. Evans & Gariepy [16] or Ambrosio & Fusco
& Pallara [17]). There are two major difficulties associated with the functional:

1. For a convex function g and a measure m the functional J(m) =
∫

Ω
g
(
m(x)

)
is well-defined (see e.g. Temam [18]). Here, this theory is not applicable,
since the functional I is non-convex with respect to the measure Du, the
derivative of the function u ∈ BV (Ω).

2. The functional I is not lower semi-continuous with respect to the weak∗

topology on BV(Ω), and compensated compactness arguments are not ap-
plicable to prove existence of a minimizer.

A standard approach to obtain a meaningful interpretation of I is via relaxation
(cf. [20]). For a functional J : X → R ∪ {∞} and ∅ �= X ⊆ BV(Ω), and
u ∈ BV(Ω) its relaxation is defined by

R(J,X)(u) :=
{

+∞ if u /∈ X ∩ BV(Ω)
inf
{
lim infk→∞ J(u(k)) : {u(k)} ⊂ X, ‖u(k) − u‖L1(Ω) → 0

}(11)

Here X is the closure of X with respect to the L1(Ω)-norm. In order to simplify
the notation we define R(I) := R

(
I,BV(Ω)

)
. In the following we show that

R(I) attains a minimizer that can be considered a generalized minimizer of I.

Theorem 1. Let u0 ∈ L∞(Ω), then the functional R(I) attains a minimizer in
BV(Ω) that can be considered a generalized minimizer of I, i.e., if the minimum
of I is attained in u ∈ BV(Ω), then u is a minimizer of R(I).

Proof. The functional R(I) is lower semi-continuous with respect to the L1-
topology on BV(Ω), coercive, and proper (i.e., R(I) �≡ ∞). Thus it attains a min-
imizer in BV(Ω). To see that R(I) is proper take u(x) = x1 if x = (x1, . . . , xn).
Then |∇u(x)| = 1. Thus, I(u) < ∞ and consequently R(I) < ∞ showing that
R(I) is proper. The coercivity assertion follows from the characterization of
R(u) given in Theorem 2. To show that each minimizer of I is a minimizer of
R(I) we take c := inf{I(u)}. The definition of the relaxed functional implies
that inf{R(I)(u)} ≥ c . Since I attains the minimum value c, we also have that
R(I)(u) ≤ c by using the constant sequence {u} in the right hand side of (11).

We now turn to characterizing the relaxed functional.

Theorem 2. If u0 ∈ L∞(Ω), then

R(I)(u) = Ic(u) :=
∫

Ω

fc

(
x, u(x),∇u(x)

)
dx+α|Dsu|(Ω) (u ∈ BV(Ω)) . (12)

Here Du = ∇u dx + Dsu is the Lebesgue decomposition of the distributional
gradient of u and

fc(x, ξ, A) :=

⎧⎪⎨⎪⎩
(
ξ − u0(x)

)2
2|A| + α|A| , if

√
2α|A| > |ξ − u0(x)| .

√
2α|ξ − u0(x)| , if

√
2α|A| ≤ |ξ − u0(x)|

(13)
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Before we prove this theorem, we require some properties of the function fc,
which are summarized in the following lemma:

Lemma 1. Let u0 ∈ L∞(Ω). For almost every x ∈ Ω

(a) fc(x, ·, ·) is convex,
(b) fc(x, ·, ·) is continuously differentiable in every point (ξ, A) �=

(
u0(x), 0

)
.

Proof. For x ∈ Ω let U1 := {(ξ, A) :
√

2α|A| < |ξ − u0(x)|} and U2 := {(ξ, A) :√
2α|A| > |ξ − u0(x)|}. For (ξ, A) ∈ U1 we have

∇fc(x, ξ, A) := ∇ξ,Afc(x, ξ, A) =
(√

2α sgn
(
ξ − u0(x)

)
, 0
)
,

and for (ξ, A) ∈ U2 we have

∇fc(x, ξ, A) =

(
ξ − u0(x)

|A| ,

(
α−

(
ξ − u0(x)

)2
2|A|2

)
A

|A|

)
.

For
√

2α|A|−|ξ−u0(x)| → 0 both gradients coincide, and thus fc is continuously
differentiable. Obviously fc(x, ·, ·) is convex on U1. Since the Hessian of f(x, ·, ·)
is positive definite, fc(x, ·, ·) is convex on U2. From [21–Sec. 42, Thm. B] it
follows that the differentiable function fc is convex, iff ∇fc is monotone, i.e.,(
∇fc(x, ξ, A) − ∇fc(x, ζ, B)

)
·
(
(ξ, A) − (ζ,B)

)
≥ 0 for all (ξ, A), (ζ,B). Since

fc is continuously differentiable and monotone on int(U1) and int(U2) it follows
that ∇fc is monotone on int(Ū1∪Ū2) = R×Rn, which shows the convexity of fc.

From Lemma 1 it follows that the operator
∫

Ω
fc(x, u(x), v(x)) dx is well-defined

for u, v ∈ L1(Ω) ×
(
L1(Ω)

)n. In particular
∫

Ω
fc(x, u(x),∇u(x)) dx is well-

defined, if u ∈ L1(Ω) and ∇u is the absolutely continuous part of Du.

Proof ( of Theorem 2). Let

I∗(u) :=

{∫
Ω
f
(
x, u(x),∇u(x)

)
dx for u ∈ W 1,1(Ω) ,

+∞ else.

It is immediate that I(u) ≤ I∗(u), and since fc ≤ f we also have Ic(u) ≤ I(u).
Consequently, it follows that

R(Ic)(u) ≤ R(I)(u) ≤ R(I∗)(u) . (14)

Therefore, to prove the assertion of this theorem, it suffices to show that R(I∗)(u) =
Ic(u) . Since I∗(u) = +∞ for u /∈ W 1,1(Ω), we have

R(I∗)(u) = R
(
I∗,W 1,1(Ω)

)
(u) .

Every u ∈ BV(Ω) can be approximated by a sequence {u(k)}k∈N ⊂ W 1,1(Ω)
satisfying ‖u(k) −u‖L1(Ω) → 0. Moreover, from the definition of R(I∗) it follows



A Non-convex PDE Scale Space 309

that for every k ∈ N there exists ũ(k) ∈ W 1,1(Ω) satisfying ‖ũ(k) − u(k)‖L1(Ω) ≤
1/k and

R(I∗)(u(k)) ≥ I(ũ(k)) − 1/k . (15)

For u ∈ W 1,1(Ω) it follows from the general results in [22] that

R(I∗)(u) = R
(
I∗,W 1,1(Ω)

)
(u) = Ic(u) . (16)

From (15), (16), and the fact that ‖ũ(k) − u‖L1(Ω) → 0, it follows that

R(I∗)(u) ≤ lim inf
k→∞

I∗(ũ(k)) = lim inf
k→∞

I(ũ(k)) ≤

≤ lim inf
k→∞

R(I∗)(u(k)) = lim inf
k→∞

Ic(u(k)) .

Thus, R(I∗)(u) = R
(
Ic; W 1,1(Ω)

)
(u) for u ∈ BV(Ω). We note that for u ∈

BV(Ω)∩L∞(Ω) and ε > 0, we may choose a sequence u(k) ∈ W 1,1(Ω) satisfying
Ic(u(k)) → R(I∗)(u), which satisfies ‖u(k)‖L∞ < ‖u‖L∞ + ε for all k ∈ N. In
other words, setting Xr := {u ∈ BV(Ω) : ‖u‖L∞ < r} we have

R(I∗)(u) = R
(
Ic;Xr ∩ W 1,1(Ω)

)
(u) for u ∈ Xr . (17)

For r > 0 and u ∈ W 1,∞(Ω) let

fr(x, ξ, A) :=

⎧⎪⎨⎪⎩
(
ξ − u0(x)

)2 ∧ r2

2|A| + α|A| , if
√

2α|A| > |ξ − u0(x)| ∧ r ,
√

2α
(
|ξ − u0(x)| ∧ r

)
, if

√
2α|A| ≤ |ξ − u0(x)| ∧ r ,

and
Ir
c (u) :=

∫
Ω

fr
(
x, u(x),∇u(x)

)
dx .

Here a ∧ b, a ∨ b denote the minimum, maximum of a and b, respectively. Since
‖u0‖L∞ =: r0 < ∞ it follows that for every u ∈ BV(Ω) satisfying ‖u‖L∞ < r−r0
we have Ic(u) = Ir

c (u). Thus, from (17) we find that for u ∈ Xr−r0

R(I∗)(u) = R
(
Ir
c ;Xr ∩ W 1,1(Ω)

)
(u) .

Using [23–Thm. 4.1.4] it follows that for u ∈ Xr−r0 we have

R(I∗)(u) =
∫

Ω

fr
(
x, u(x),∇u(x)

)
dx+ |Dsu|(Ω) = Ic(u).

Using [24–Prop. 2.4] it follows that for every u ∈ BV(Ω)

R(I∗)(u) = lim
r→+∞

R(I∗)
(
(u ∧ r) ∨ −r

)
= lim

r→∞
Ic
(
(u ∧ r) ∨ −r

)
.

From this and the monotone convergence theorem (see e.g. [16]) the assertion
follows. ��
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We recall that the assumption u0 ∈ L∞(Ω) is needed in order to satisfy the
growth conditions required in [23]. The functional R(I) is coercive with respect
to the total variation semi-norm. It can be shown by a truncation argument that
there exists a minimizer of R(I) with L∞-norm less than ‖u0‖L∞(Ω). Thus the
functional attains a minimizer u in BV.

We note that convexification of non-convex functionals on BV is a recent
research topic. We mention the papers [23, 25, 26, 27].

4 Numerics

We describe a finite element method for minimization of the functional R(I)(u).
We use M := (n−1)× (m−1) quadratic finite elements (Qi)i=1,...,M to cover Ω
and bilinear basis functions (φj)j=1,...N :=n×m which are centered at the corner
points of the finite elements. We denote by Q := span{Qi : i = 1, . . . ,M}. The
initial data u0 is given as discrete values on a rectangular grid of size n×m and
is identified with the function u0 =

∑N
i=1 u

0
iφi.

The minimizer uNCBV (non-convex bounded variation) of the functional R(I)
solves the optimality condition ∂R(I)(uNCBV) = 0, where ∂R(I) is the subgra-
dient of R(I). In the weak form the optimality condition reads as

u− u0

|∇u| φj +
(
α− (u− u0)2

2|∇u|2

)
∇u∇φj

|∇u| = 0 if
√

2α|∇u| > |u− u0| ,

√
2α

u− u0

|u− u0|φj = 0 if
√

2α|∇u| ≤ |u− u0| ,
(18)

where j = 1, . . . , N . The second equation implies that if
√

2α|∇u| ≤ |u−u0|, then
u(x) = u0(x), from which it follows that |∇u(x)| = 0. With the abbreviation

a(u) =
1

|∇u| ∧
√

2α
|u− u0| , b(u) =

((
α− |u− u0|2

2|∇u|2

)
∨ 0
)

1
|∇u|

equation (18) reads as follows

N∑
i=1

∫
Ω

a(u)φiφj ui + b(u)∇φi∇φjui =
∫

Ω

a(u)φiφju
0
i (j = 1, . . . , N) . (19)

Let U := (u1, . . . , uN )T , U0 := (u0
1, . . . , u

0
N )T ,

Mij :=
∫

Ω

φiφj and Lij :=
∫

Ω

∇φi∇φj .

We approximate a(u) and b(u) by elementwise constant functions ã(U) and b̃(U).
Using this notation and these approximations, (18) reads as(

ã(UNCBV)M + b̃(UNCBV)L
)
UNCBV = ã(UNCBV)M U0 . (20)
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This system is solved applying the fixed point iteration:

ã(U (s)
NCBV)M U

(s+1)
NCBV + b̃(U (s)

NCBV)LU (s+1)
NCBV

= ã(U (s)
NCBV)M U0

NCBV (s = 0, 1, 2, . . .) . (21)

The iteration is terminated if a given tolerance tol is reached, i.e., if |U (s+1)
NCBV−

U
(s)
NCBV| ≤ tol or s exceeds a given limit. In each iteration step, for solving the

linear system for U (s+1)
NCBV we use the C(onjugate)G(radient)-method. In order

to avoid occurring oscillations, the following modified scheme can be used: For
s = 0, 1, 2, . . ., solve

ã(U (s)
NCBV)M U

(∗)
NCBV + b̃(U (s)

NCBV)LU (∗)
NCBV = M U

(s)
NCBV (22)

due to the unknown function U
(∗)
NCBV and using the solution set

U
(s+1)
NCBV = U

(s)
NCBV + δs (U∗

NCBV − U
(s)
NCBV) (s = 0, 1, 2, . . .) , (23)

where 0 < δs ≤ 1 tends to zero for increasing s.

5 Results

In this section we show that the iterated solution of R(I) gives similar results
as solving the MCM equation. We show that v(T ), the solution of the MCM
equation and uN

N are almost identical. We recall that uN
k is the minimizer of the

functional R(I) where u0 is replaced by uN
k−1, k = 1, . . . ,N and α = T/N .

The MCM equation at time T = ΔT Ñ is calculated by solving the system
of equations (note that ΔT needs not be identical to α)

c̃(UMCM)(M +ΔT L)UMCM = c̃(UMCM)MUk−1
MCM (k = 1, . . . , Ñ ) (24)

and denoting the solution by Uk
MCM. A vector UMCM is associated with the

function uMCM =
∑N

i=1(UMCM)iφi from which an approximation c̃(UMCM) for
c(u) = 1

|∇u| is determined that is piecewise constant on the finite elements.
I.e., c̃(UMCM)|Qij = c(uMCM)(pij), where pij is the midpoint of cell Qij . The
implemented FE-Method for solving the Mean Curvature Motion essentially fol-
lows [28].

For fixed k, we again use a fixed point iteration to solve (24):

c̃(U (s)
MCM)(M +ΔT L)U (s+1)

MCM = c̃(U (s)
MCM)MUk

MCM (s = 0, 1, . . .) . (25)

If ‖U (s+1)
MCM − U

(s)
MCM‖ < tol the iteration is terminated and Uk+1

MCM := U
(s+1)
MCM .

In the following we present two numerical comparisons of regularization, i.e.,
minimizing the functional (10), iterative regularization, and solving the MCM
equation (4).
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Fig. 1. Top Left: Original data, Top Right: Solution of the Mean Curvature equation
at time T = 20. Iterative Regularization. Images show uN

N . N = 2(α = 10) (Middle
Left Column), N = 10(α = 2) (Middle Right Column), N = 20(α = 1) (Bottom Left
Column), N = 40(α = 0.5) (Bottom Right Column)

Fig. 2. Top: solution of MCM equation at T = 10, 50, 100, 300 and Bottom: u1, the
minimizer of (5), with α = 10, 50, 100, 300
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In the first numerical experiment we have calculated the solution of the MCM
equation at time T = 20. We use a step length ΔT = 0.25. The iterative
regularization has been implemented with α = T/N and varying parameters
N = 2, 10, 20, 40. The comparison shows the original image, MCM filtered im-
age and the iterated regularized solution uN for various parameters N . As N
increases, iterative regularization approximates the solution of the MCM equa-
tion. The second example is a comparison between MCM and regularization,
i.e., we compare the solution of the MCM equation at time T = 10, 50, 100, 300
with u1, i.e., the minimizer of (5) with α = 10, 50, 100, 300.

6 Conclusion

In this paper we have generalized the concept of gradient flow equations with
subdifferentials of convex functionals to non-convex functionals. The general idea
is to approximate an evolution process by a sequence of minimizers of iteratively
convexified energy (regularization) functionals. Although there is no mathemat-
ical theory for “non-convex” gradient flow equations, the results in this paper
show the similar filtering behavior. The results of this paper have been formu-
lated exemplarily for the Mean Curvature equation but can be generalized to
other well known equations in morphological image analysis, such as the affine
invariant Mean Curvature equation (cf. [10]). For gradient flow equations with
subdifferential of a convex functional it has been observed recently that both
diffusion filtering and associated regularization models provide similar filtering
properties. Here this analogy has been shown for the Mean Curvature Flow
equation and the associated non-convex energy formulation.
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Mathématiques de l’Informatique [Mathematical Methods of Information Science].
Gauthier-Villars, Montrouge (1983)

19. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987) 3rd
edition.

20. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer–Verlag,
Berlin (1989)

21. Roberts, A.W., Varberg, D.E.: Convex functions. Academic Press [A subsidiary
of Harcourt Brace Jovanovich, Publishers], New York-London (1973) Pure and
Applied Mathematics, Vol. 57.

22. Grasmair, M., Scherzer, O.: Relaxation of nonlocal variational functionals. (2004)
submitted.
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Abstract. An representation based on the singularity structure of the
gradient magnitude over scale is used as the atoms in a space of im-
ages. This representation is summarized as a rooted tree. The generic
transitions of the functional of the scale space images are analysed and
listed for the scale parameter and one free parameter. A distance measure
between images is deduced soly from these generic transistions. The sin-
gular transitions are translated into the language of the tree transitions
such that one generic transition corresponds to one unit edit operation
of the tree structure. The distance between two images is the size of the
smallest set of edit operations necessary to transform the corresponding
tree representations into each other.

1 Introduction

The content of an image manifests itself at multiple, a prior unknown levels
of scale or resolution. This has been addressed by the computer vision com-
munity in a principled fashion by the so-called scale space theories or multi
scale schemes[11, 13]. Scale space theory ensures an image representation in-
variant to rotation, translation and scaling (or invariant to other groups of
transformations[24]) and provides a regularization of the original image to a dif-
ferentiable output which makes the vast toolbox of differential geometry avail-
able. In its simplest form, a scale space image is a continuum of increasingly
blurred images also refered to as the Gaussian scale space due to the generating
kernel. In this paper we will not consider the vast amount of alternative scale
space schemes only the Gaussian scale space.

This machinery has opened for the creation of a range of feature detectors (in-
terest points) defined and detected by (semi-)algebraic expressions of derivatives
possibly automatically tuned to the appropriate scale[4, 5, 18]. The framework
is mathematically well founded in a principled way allowing for derivation and
analysis of properties of the system [25, 3, 22]. Recent research has investigated
the geometry of scale space images [2] for instance the trajectories of extrema[6].
The geometry of scale space images relates the details present at low scale (high
resolution) to the coarse overall objects on the high scale (low resolution) [19]
and offers the opportunity to analyse information over scale also denoted deep
structure analysis.

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 316–326, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Tree Edit Distances from Singularity Theory 317

Information of objects over a range of scales can be represented as graphs
or trees in the algorithmic data structure sense. Such a scale space tree of fea-
tures provides an invariant representation as above but also an representation
which is invariant to minor changes in the configurations of the singularities in
the scale space image more precisely invariant to a small local diffeomorphism.
Hence it represents the topology of the singularity paths over scale. Preliminary
investigations [26, 20, 14] show that it is feasible to construct scale space trees
based on different kinds of singularities also for 3D data sets.

Distance measures between the scale space trees can be established to assess
the distance between the content in two different images. Standard graph or tree
matching algorithms do not per default provide good distance measure between
scale space trees, simply because an atomic tree transform in the algorithmic
sense can correspond to a large series of scale space image transformations and
vice versa. Schemes have to be developed for finding the appropriate atomic
transformations from the image analysis point of view and find their algorithmic
counterpart for implementation purposes.

For this, we propose the generic tree transformations to be deduced from the
generic transitions of the singular paths. The necessity for only generic tran-
sitions is obvious. All imaginable transitions will give rise to a combinatoric
explosion of possible transitions but according to singularity theory only the
generic cases will occur in almost all cases (loosely spoken the non-generic cases
occur with probability zero) and are very limited in number. The presence of
non-generic structures[15, 12] can for instance indicated symmetric structures
which are unlikely to occur in all most all images. Genericity is always stated in
relation to a base set of functions. In this paper it is the set of solutions to the
heat equation.

The idea is inspired by the successful line of work within shape analysis,
specifically within medial representations/skeletonisations of shapes [7, 8] and
symmetry set representation [7, 8, 16]. In this area, classical singularity theory
has been applied and extended to determine the relation between geometric
fiducial points on the outline of the shape and the central points in the me-
dial representation. Next step has been to derive the generic transitions for the
fiducial points for general warping of the shape and relate these results to the
corresponding changes in the medial representation [9]. The counterpart in the
scale space tree approach is to establish the generic transitions of a scale space
image when the original image is changed. These transitions will be translated
into the language of algorithmic tree transitions[21].

We present an extended annotated scale space tree detected from the multi
scale structure of the squared gradient magnitude. We will derive the list of
possible transitions for the singularities of the gradient squared under the pa-
rameters of scale and an extra control parameter. These transitions will be use
to deduce corresponding tree transitions which will form the basis for an image
matching scheme.



318 O.F. Olsen

2 A Multiscale Gradient Magnitude Tree

The gradient magnitude from a Gaussian scale space image has previously been
suggested as the underlying representation for a semi-automatic segmentation
[23, 17, 1]. For this, a tree structure was constructed based on the generic tran-
sitions of an image evolving under the heat equation, the complete list of these
transitions was derived and analysed in previous work[22]. It was shown that the
fold and the cusp catastrophes occur generically in Gaussian scale space for the
squared gradient magnitude.

The possible transitions through the sampled scale space is shown schematic
in figure 1. Also included in the figure are the dual regions to the minima namely
the catchment basins or Voronoi areas. The events (annihilation, merging, cre-
ation, splitting) are named after the interaction between the saddle and the
minimum (or minima). In the cases of annihilation (b) and merging (c) two min-
ima and a saddle are reduced to one minimum, corresponding to a disappearing
border between the two segments. The cases of creation (d) and splitting (e)
are the reverse events where an emerging saddle corresponds to the appearing
of a border between the segments (dual to the two minima). A line in the figure
from a segment to a segment indicates a edge in the corresponding tree. Hence,
the parent-child edges in the tree are in all cases indirectly given by the saddle
connecting the involved minima.

The squared gradient magnitude will contain several global minima with a
value of zero. They coincide and correspond to the singularities of the image
itself. The squared gradient magnitude will also have local minima which are
just all non-global minima. In terms of image geometry a local minima of the
gradient magnitude corresponds to a point where the second order structure of
the image has a degeneracy in the direction of the image gradient. In other words
in the point in the gradient direction the image looks like x3 + x

(a) No change (b) Annihilation (c) Merging (d) Creation (e) Splitting
fold cusp fold cusp
local global-to-local local local-to-global

Fig. 1. Generic events of the gradient magnitude. Scale increases upwards in the figure.
Minima and saddles are symbolised with triangles and circles, respectively
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The annihilation or creation of one minimum with one saddle will always
involve a local minimum. The merging will involve the joining of two global
minima and saddle into one local minimum. The splitting event will destroy one
local minimum and introduce one saddle and two global minima at a higher scale.
These facts originate from the simple fact that global minima for the gradient
magnitude squared correspond to singularities in the original image and the
cusp event in the gradient magnitude image will correspond to fold event in
the original image. Hence global minima in the gradient magnitude will always
interact in pairs never alone or uneven numbers.

This extra information will be used to annotated the tree structure with the
type of the different minima. Nodes in the tree correspond to the minima of the
squared gradient magnitude of the scale space image. Each level of the tree cor-
responds to a sampled scale in the scale space image. The direct correspondence
between levels and scale discretisation is not a necessity for the representation.
Nodes with only one child and one parent can just be collapsed with cost zero.
This will avoid the undesired growth of the tree in limit of finer and finer scale
discretisation. The nodes in the tree are connected according to the derived
possible transitions of the minima. The nodes are annotated as local or global
minima. This more rich tree structure limits later on the amount of possible
matches inbetween trees. That is, for a given part of the first tree less possible
matches exist in the second tree. Of course this also results in a more detailed
list of possible transitions.

The full tree syntax is presented in figure 2. In figure 1 the difference be-
tween transitions involving local and global minima was not illustrated. This
is included in figure 2. Circles denoted internal nodes in a tree, small and big
circles indicate respective local and global minima. In case (a) there is no change
of either a local or global minimum. In case (b) a local minimum is annihilated
and its corresponding node will be connected to its neighbour which is either a
local or global minimum. In case (c) two global minima are merging into one
local minimm. In case (d) a local minimum is created somewhere in the tree.
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(a) No change (b) Annihilation (c) Merging (d) Creation (e) Splitting
fold cusp fold cusp

Fig. 2. The tree syntax corresponding to the generic scale transitions in figure 1. Circles
are internal nodes. Squares are leaves. Big symbols correspond to global minima and
small symbols correspond to local
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(a) No change (b) Annihilation (c) Merging (d) Creation (e) Splitting
fold cusp fold cusp

Fig. 3. The tree syntax as in figure 2 instantiated on the lowest level in the tree

�

�

� ��
�

�
�
�

�
�

�
�
�

�

�� ��
�

Fig. 4. Top left: An image, top middle: singularity paths for the image (maximum=2
point line, saddle=3 point line,global minimum=fat line, local minimum=smallest
line), top right: a subset of the paths. Bottom: the two groups in the subset of
singularity paths correspond to two disjoint parts of the tree. Note that only the
largest and smallest paths correspond directly to nodes and edges in the tree. Bottom
left: the first group is a merging of two global minima into one local minima plus a
path with no change. Bottom right: two global minima (leaves) merge into one local
minima which annhilates and is connected to the neighbouring global minimum. Please
note that the latter global minimum is for simplicity of the figure only depicted in the
tree syntax and among all the paths in the middel not in the subset of paths shown to
the top right

In case (e) a local minimum splittes into two global minima. Hence the local
minimum is linked to a global minimum which will have a global minimum as
neighbour. In this paper we only consider the framework of trees not graphs.
Therefore in case (e) the local minimum is only connected to one of the global
minima. The representation of a splitting as a child node with two parents would
ruin the tree structure and introduce the more general graph structure. Such a
representation has been discussed as a interesting and relevant alternative in
previous publication by the author and others [10, 19].
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Each of the cases and the sub cases in figure 2 can occur on the lowest level
(the root is in the top) of the tree. In such a case the lowest circles in each case
will be transform to leaves and denoted with a square instead. This is illustrated
in figure 3

In figure 4 is an example of an image and the corresponding singularity paths.
For simplicity a subset of these has been selected and the corresponding tree
structure for this subset is depicted. Note how the subtree are constructed by
combine the subtrees from figure 2 and for the lowest level in tree the subtrees
from figure 2 are used.

3 Tree Transformations

When one image is warped into another this will of course also change the cor-
responding multi scale trees from one to another. Because the trees are deduced
and builded from the catastrophes (an abrut change of structure) in the singu-

Fig. 5. A constructed image sequence made by taken a random image and adding a
one-pixel size peak in three different locations and then blurr the sum. In left frame the
peak is close the to left border of the image then moving along a straight line ending
close to top part of the image in the last right frame

Fig. 6. Frames plus all singular paths. Lines of width 2 denote maxima of gradient
magnitude (G). Lines of width 3 denote saddles of G. Thin lines with width 1 are local
minima. Fat lines are global minima
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Fig. 7. A subset of the singular paths in figure 6. Two series of transitions are depicted.
Intermediate size indicates saddles. Thin line corresponds to local minimum. Fat line
denotes global minimum

lar paths the transitions of the trees will correspond to the sudden change of
the paths known as higher order events in singularity theory or catastrophes. In
terms of singularity theory a family of multi scale images is a family of functions
controlled by two parameters (scale and another one) from this the possible tran-
sitions can be analysed and the corresponding transitions on the tree structure
can be deduced.

In the following we provide an example of the connection between transitions
of paths and tree transitions before giving the full list of tree transitions. In figure
5 is depicted a constructed image sequence. In figure 6 are the constructed frames
plus their corresponding singular paths.

In figure 6 several series of transitions occur. In figure 7 only a subset is
presented for clarity. The subset consists of two independent series of transitions;
one in the background and one in the foreground.

In the foreground series the connection between three global minima is
changed. A “no change” path and a merge between two global minima inter-
act and changes connections such that the “no change” path afterwards merges
with the middle global path and the far right path becomes a “no change” paths.
Another phrasing would be that the middle global minima swaps its relation to
its nearest neighbour; it swaps from being the detail of one structure to being a
detail of the neighbouring structure.

The background series involves two changes first the annihilation in the
top is resolved from the left frame to the middle frame, secondly the merge
disappear from the middle frame to the right frame. In the presented scale
range it corresponds to an extended lifetime over scale of the involved struc-
ture. The first event the disappearing of the annihilation corresponds to the
structure persists further over scale instead of becoming a detail of a larger
structure. The second event has a similar interpretation since the global min-
imum persists over a long scale range extend beyond the visualised levels of
scale.

In figure 8 is shown the tree structure corresponding to the singular paths
in figure 7. As is illustrated the minimal singular paths corresponds directly to
the derived tree structure. Nodes correspond to the sampled scale levels and the
edges in the tree are derived from catastrophe points on the singular paths.
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Fig. 8. The tree structures corresponding to the minimum paths in figure 7. The top
row corresponds the series of transitions in background of figure 7. The bottom row
corresponds to the foreground series of transitions
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Fig. 9. The four types of tree transitions. The transitions can occur from left to right
and from right to left. Open circles indicate either a local or global minimum anno-
tation. These can be expanded according to the tree syntax provided in the previous
sections

3.1 Generic Tree Transformations

Only a very limited number of local tree transformations is possible if one only
consider transformations correspond to the generic transitions of the singular
paths. In figure 9 is listed the generic edit operations on the tree structures.

In the following section we will derive and explain how exactly these transi-
tions are derived from the catastrophes.
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4 Co-dimension One Transitions in Scaled Families of
the Gradient Magnitude

The co dimension one transitions are introduced by an extra control parame-
ter such that the family of Gaussian scale space images depends on two spatial
variables, the scale parameter and the control parameter. One can think of the
control parameter as describing a path through the underlying set of images.
When traveling through the family of scale space images using this extra degree
of freedom then for all most all image instances there will only be the usual
catastrophes on the singular paths but for specific fixed values of the control
parameter the singular paths will exhibit extraordinary catastrophes (which are
non-generic for a single scale space image) but are generic for a family. These are
the transitions between two set of generic paths. These higher order catastrophes
correspond to the collision of an extra singular path through a “ordinary” catas-
trophe point. Simple events can also occur namely the resolving of a catastrophe
or the shifting of it to a high or low location in scale.

In the following it can be useful to compare the transitions with the tree
syntax in figure 2. An annihilation event for the gradient magnitude can be
shifted towards higher or lower scale. This will correspond to the tree transition
illustrated in figure 9 top row left. A creation event can also be shifted in the
scale direction which will result in the tree transition depicted in figure 9 middle
row left.

A shift for the merge event will result in tree transition shown in figure 9 top
row right. As in the other subfigures the top and bottom nodes stay fixed in the
tree; hence the transition is fully depicted in the figures.

The splitting event can make a shift in accordance with the illustration in
figure 9 middle row right. Please note the difference to the middle row left where
there is no restriction on the neighboring nodes.

The cusp catastrophe with two global minima and a saddle (corresponding to
ordinary fold catastrophe for the image involving an extremum and a saddle) can
collide with another global minimum path and swap the connectivity between
the three involved global minima. This corresponds to the transition in figure 9
bottom left.

The fold catastrophe can collide with another local minimum path (this will
in the transition moment correspond to the cusp catastrophe involving local min-
ima). This will also result in the swap of the connectivity between the involved
minima. This corresponds to the transition given in figure 9 bottom right.

This concludes the list of possible transitions and their counterpart in terms
of tree transitions.

5 Conclusion

An image representation based on multi scale singularity tree has been pro-
posed. The syntax of the resulting multi scale tree has been presented. The
possible transitions of the multi scale trees have been listed as the basis of im-
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age matching scheme based on edit operation distance of trees. In order to do
this, the codimension one transitions of the scale space images have been derived
and translated to tree transitions. It remains to apply this matching scheme to
ensembles of real world images and evaluate its practical performance. It might
also be possible to weight the different edit operations with a cost proportional
to their probability of occurence. This is the objective for future work.
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Abstract. As resolving power increases, image features evolve in an it-
erative fashion; large scale features will persist, and finer and finer scale
features are resolved at each increase in resolution. As such, the observa-
tion process is shown to overwhelm natural image statistics. Observation
by a linear imaging process imposes natural image statistics to be of ran-
dom multiplicative nature, rather than additive. The scaling behavior of
the random process is driven by the gradient structure in the scene ir-
radiance. From the general structure of multiplicative processes, image
statistics are proven to follow a sequential fragmentation process. From
these theoretical results, analytical forms for the distributions of image
derivative filter responses and gradient magnitude are derived.

1 Introduction

The observation of scenes is dominated by coincidence. Coincidence stems from
the fact that we perceive a two-dimensional projection of the physical world,
the projection affected by occlusion, reflection, and clutter. Coincidence due to
the viewpoint causing an accidental background. Coincidence due to the lighting
conditions and accidental reflection characteristics. If the viewpoint, view, light,
and the background are arbitrarily chosen, this does not imply the resulting
image has completely arbitrary statistics. Objects having uniform visual char-
acteristics impose structure to the scene. Shadow and shading effects, although
accidental, are spatially correlated. Composition of the scene, by human or na-
ture alike, brings structure to the scene. All these effects cause images to be
covered by the laws of correlated spatial disorder.

Axiom 1. The spatial structure of the irradiance from natural scenes is domi-
nated by correlated disorder.

From our experiments, we have reasons to believe that a large fraction of
recorded images is covered by the axiom [1]. Hence, natural scenes are largely
non regular. Repetitions of structures are considered a different phenomenon.
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The observation of the accidental scene by camera sensors boils down to the
integration of energy over a certain area, spectral bandwidth, and for a certain
time. Responses may be grouped by linear filtering, allowing the extraction of
structural features from the observed light field. In human perception, an equiv-
alent linear system is present, effectuated by the simple receptive fields in the
pre-frontal cortex.

Axiom 2. The world is observed by an instrument with some (stochastic, reg-
ular) structure; for the observation of light the instrument performs linear inte-
gration over space, wavelength, and time.

Previous research provides insight into the statistical properties of observed
images, either from empirical studies [1, 2, 3, 4, 5, 6, 7, 8], or from theoretical mod-
elling [9, 10, 11, 12, 13]. However, the effects imposed by the observation instru-
ment on the statistics of the irradiance from natural scenes is not evident. Obser-
vation implies diffusion over microscopic fluctuations in the projected irradiance
to obtain the final integrated response of a pixel on a camera. For human vision,
diffusion spatially extents over the multi-scale receptive fields on the retina. In
both cases, the enormous diffusion span is likely to have significant effect on the
observed statistics.

Diffusion of the numerous small structures will result in fewer large struc-
tures [14]. Inversely, increasing magnification at large structures will reveal many
smaller structures. As resolving power increases, image features evolve in an it-
erative fashion. Large scale features will persist, while finer and finer scale fea-
tures are resolved. Recently, such hierarchical scaling processes in the presence
of correlated spatial disorder are shown to be of random multiplicative origin
[15, 16, 17]. Consequently, as I will demonstrate, the probability density of split-
ting into a given number of fragments of given contrast and size follows the laws
of sequential fragmentation [18].

2 Stochastic Properties of Linear Diffusion

Consider the observation of light to be governed by linear response theory. Hence,
observation boils down to linear diffusion of the incoming energy distribution,
characterized by the diffusion equation [14]

∂E(x, t)
∂t

= D∇2E(x, t) , (1)

where D is the diffusion coefficient, ∇ the spatial gradient operator, and t the
scale of observation. The diffusion equation proportionally relates a decrease
in resolution t to the spatial Laplacian of the energy density E(x, t). Diffusion
may be considered as averaging the initial intensity distribution E(x, 0) to its
equilibrium state. That is, the diffusion process in Eq. (1) is smoothing the energy
distribution until it reaches its average value 〈E〉.

Natural scenes may be characterized by the probability density describing the
random nature of the energy fluctuations, and the spatial correlation function
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describing how a localized fluctuation influences the local, regional, or total
energy density. Consider the autocorrelation between the given arbitrary origin
in scale and place, and any other point at (x, t) (t being scale),

C(x, t) =
〈
Ẽ(x, t)Ẽ(0, 0)

〉
. (2)

Here, 〈.〉 represents the average operator, and Ẽ(x, t) = E(x, t) − 〈E〉 is the
deviation of E(x, t) from its average 〈E〉.

Lemma 1. For a linear system, the autocorrelation function follows the same
diffusion process as the energy density,

∂C(x, t)
∂t

= D∇2C(x, t) .

Proof. The Lemma follows from linearity.

Theorem 1. Linear diffusion of E(x, 0) causes the autocorrelation function
C(x, t) of Ẽ(x, t) to diffuse proportional to the autocorrelation of the spatial
gradient ∇E,

∂C(x, t)
∂t

= D 〈∇E(x, t)∇E(0, 0)〉 .

Proof. Consider the definition of the autocorrelation function C(x1, x2, t) of a
stochastic process f(x, t),

C(x1, x2; t1, t2) = 〈f(x1, t1)f(x2, t2)〉 . (3)

Due to linearity of the derivative operator, differentiation to x1 and x2, respec-
tively, yields

∂C(x1, x2; t1, t2)
∂x1∂x2

=
〈
∂f(x1, t1)

∂x1

∂f(x2, t2)
∂x2

〉
. (4)

When f(x, t) is a wide sense stationary stochastic process, that is, its average
is constant and its autocorrelation depends only on x = x1 − x2, t = t1 − t2
[19–pp. 402–403], and is independent of the choice of origin. Fixing the origin for
(x, t) at (0, 0), we get

∇2C(x, t) = 〈∇E(x, t)∇E(0, 0)〉 . (5)

Hence, the second-order spatial derivative of the correlation function equals the
autocorrelation of the spatial gradient of E(x, t). The theorem then follows di-
rectly from substitution of Eq. (5) into Lemma 1.

3 The Multiplicative Nature of Linear Observation

The observation of an image is obtained by solving Eq. (1), which boils down
to convolution with a Gaussian kernel G(x, t), where t denotes the resolution of
observation. Such a scale-space kernel satisfies a decomposition law.
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Lemma 2. A Gaussian scale-space kernel can be decomposed in an arbitrary
number of steps n,

G(x, t) = G(x, t1) ⊗G(x, t2) ⊗ . . . ⊗G(x, tn) ,
∑

t2i = t2 .

The proof is trivial and omitted for brevity.
The Gaussian kernel is a special case satisfying the decomposition law of

Lemma 2. As any linear kernel may be decomposed in –possibly varying– small
kernels, the decomposition law is much wider applicable than for Gaussian ker-
nels. Hence, the theory provided in this section extents to arbitrary linear ob-
servation kernels.

The decomposition law defines a kind of cascade with an arbitrary number
of steps n [16], where each kernel G(x, ti) transports energy within a resolution
interval ti.

Corollary 1. One can not distinguish between the observation E(x, t) obtained
at a single coarse resolution t, and the same observation derived from n arbi-
trary finer resolution steps in a multi-scale approach, yielding the same effective
resolution t. As an important consequence, any property derived from the single
coarse resolution image can also be derived from the multi-scale cascade.

This non trivial notion will be used extensively in the remainder of this paper.
The stochastic properties of the coarse resolution observation may be initiated

at finer resolutions in the cascade. At this point we need a result from statistical
mechanics, specifically the theory of correlated random fluctuations in diffusion
processes [15]. Consider a random fluctuation at a fine scale t = t0. According to
[20], the fluctuation will propagate through a multiplicative cascade as illustrated
in Fig. 1. Hence, an increment in intensity ∇E at a coarse scale tc results from
a random cascade, initiated by a correlated fluctuation at fine scale t0 [17].

Theorem 2. For a linear diffusion process, correlated fluctuations at coarse
resolution tc initiated at a fine resolution t0 are propagated by a random multi-
plicative cascade

∇Etc = ∇Et0

n∏
i=1

αi ,

where the αi are taken from the coefficients in the multi-scale Gaussian smooth-
ing kernels G(x, ti).

Proof. Consider an intensity fluctuation δ1 at a fine resolution t0, see Fig. 1.
Coarsening resolution by convolving with a Gaussian kernel can be considered
as a step wise process as indicated by the decomposition law of Lemma 2. Each
decrease in resolution will cause the fluctuation δ1 to be transported to a coarser
resolution ti+1, proportional to a convolution weight ai. By the energy conser-
vation and the positivity of the Gaussian kernel, the weights 0 < αi < 1. Hence,
at the observation resolution tc the initial fluctuation yields an increment in
intensity proportional to δ1

∏
ai.
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Fig. 1. The cascade imposed by scale-space convolution. A fluctuation δ1 at fine scale
t0 will result in a increment in intensity at the coarser observation scale tc. The fluctu-
ation will propagate through the multiplicative process indicated by the dashed edges
in the tree, resulting in a final fluctuation ∇Etc = α0α1α4δ. If the fluctuation is ran-
dom in intensity, position, or resolution-level, the resulting process will be a random
multiplicative process. Due to distributivity, any correlated fluctuation δ2 will yield a
multiplicative process

Consider a second fluctuation δ2 at, for simplicity the same fine resolution t0,
positioned relative to δ1 such that they are captured within the effective extent
of the Gaussian kernel at coarse resolution tc. Consider the fluctuation caused
by δ2 to propagate through a different branch of the resolution cascade yielding
a final fluctuation δ2

∏
bi, which is to be combined with the fluctuation caused

by δ1 at the top-level resolution tc. The combined response is given by

∇E = δ1

n∏
i=1

ai + δ2

n∏
i=1

bi (6)

The fluctuations are correlated when δ2 = cδ1 = c∇Et0 , and the coarse level
contrast is given by

∇Etc
= ∇Et0

(
n∏

i=1

ai + c

n∏
i=1

bi

)
(7)

The convolution coefficients ai and bi are given by the Gaussian kernel, hence
are correlated bi = ciai. Furthermore, if the correlated fluctuations combine at
a resolution t′, t0 < t′ < tc, additional multiplicative coefficients propagate the
combined fluctuations to the observation resolution tc. Consequently, we may
write

∇Etc
= ∇Et0

n∏
i=1

αi (8)

where αi combines ai and bi, and n includes any extra resolution steps necessary.
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To complete the proof, consider that the initial positions of fluctuations δ1
and δ2 are random, i.e. they are not aligned with the Gaussian smoothing kernel.
Furthermore, the number of steps n in which the Gaussian kernel is decomposed
is arbitrary, as is the level at which fluctuations occur, propagate, and combine.
The exact cascade coefficients αi are of random origin, constrained by the decom-
position law for the Gaussian kernel. Hence, diffusion of correlated fluctuations
is described by a random multiplicative process, where the random coefficients
αi are of law G(x, ti).

Consequently, diffusion of spatially disordered correlated structures is gov-
erned by the laws of random multiplicative processes [15, 21]. The exact details
of the initial distribution of the scene statistics, given by Axiom 1, are not im-
portant to obtain a power-law for the observed statistics. Hence, the properties
derived from a multi-scale cascade hold for the direct observation of the statistics
at a single resolution scale t.

Corollary 2. One can not distinguish between the statistics of the observation
E(x, t) of a natural image obtained at a single coarse resolution t, and the same
statistics derived from n arbitrary finer resolution steps in a multi-scale ap-
proach, yielding the same effective resolution t. As an important consequence,
the statistical structure of natural images derived from the multi-scale cascade is
equivalent with the statistical structure of a direct observation at a single, fixed
resolution t.

4 The Sequential Fragmentation Laws of Image Statistics

An image may be considered to be composed of several correlated components,
the individual components being uncorrelated from each other. The stochastic
properties of the correlated components follow from the theory of random mul-
tiplicative processes [22]. As proven by Levy and Solomon [23], the boundaries
0 < αi < 1 impose the constrained converging multiplicative process to lead to
a power-law distribution in the resulting variable |∇E(x, t)|. The spatial compo-
sition of many of these correlated components is governed by additive statistical
laws. As such, natural images follow the laws of fragmentation processes, as will
be derived in this section. As a starting point, consider the observation of a
single correlated component.

Theorem 3. Diffusion of a correlated structure c yield the gradient magnitude
|∇E| to follow a decaying, yet inverse, power-law probability density function
pc(x),

pc(|∇E(x, t)|) =
∣∣∣∣ 1β∇E(x, t)

∣∣∣∣γ−1

.

Proof. Following [24], we write li = logαi and y0 = log |∇E|. Then we may
rewrite Eq. (8) in a recurrent relation

yi+1 = yi + li . (9)
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This is a log transform on the multiplicative cascade of Theorem 2. In the trans-
formed domain, the process describes a random walk with a drift 〈l〉 < 0. The
strict lower boundary of αi > 0 ensures convergence of the process rather than
escape to −∞. The process of a random walk is described by the master equa-
tion [23]

P (y, i+ 1) =
∫ ∞

−∞
π(l)P (y − l, i)dl , (10)

where π(l) denotes the transformed distribution of the original probability den-
sity Π of αi. Solution of the master equation is obtained in [25] using renewal
theory, and is given by [24]

Pmax(ymax) ≈ e−μymax , (11)

with μ implicitly given by ∫ ∞

0
Π(α)αμdα = 1 . (12)

The probability is controlled by the extreme values of the random field, as argued
in [24] and elaborated upon in [22]. Substituting the original variables for the
transformations y, l yields a power-law,

pc(|∇E|) = c |∇E|−μ
, (13)

c representing a scaling constant. Details on the derivation and alternative proofs
are given by Sornette and Cont [24]. The theorem follows from taking μ = 1− γ
and c = 1/βγ−1, β indicating the width of the distribution.

Note that the exact probability distribution π from which the αi are drawn
is not of importance to end up with a power-law distribution. Further note
that no assumptions about scale-invariance, nor self-similarity, are being made.
Hence, the derived power-law is not the result of fractal behavior of the intensity
distribution of natural images. As shown by Levy and Solomon [23], power-law
behavior for multiplicative processes is as natural as Boltzmann laws for additive
random processes.

An image may be considered to be composed of several correlated structures.
Components further apart than the correlation length are assumed to be un-
correlated. Consequently, statistical properties involve integration over several
power-laws, as many as there are correlated patches in the image. Some of these
patches may be associated with one specific object, others may be associated
with another texture or object. This viewpoint is effectively similar to the the-
ory of sequential fragmentation [18]. The probability of encountering a gradient
response p(|∇E|) between r and r+ dr, given the probability distribution pc(r)
of Theorem 3 for a single contrasting structure, is given by

p(r) = c1

∫ ∞

r

p(r′)pc(r) dr′ (14)

that is the accumulation of the contributions by all contrasts |∇E| > r.
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Fig. 2. Illustration of the Weibull distribution p(r) for various values of γ

Solving the sequential fragmentation equation Eq. (14) for a power-law dis-
tribution yields

p(r) = c1

(
r

β

)γ−1 ∫ ∞

r

p(r′) dr′ (15)

which is solved by

p(r) = c1

(
r

β

)γ−1

e− 1
γ ( r

β )γ

, (16)

and where c1 normalizes p(r) to yield a Weibull probability density function,

c1 =
1∫∞

0

(
r
β

)γ−1
e− 1

γ ( r
β )γ

=
1
β

. (17)

The value of the shape parameter γ ranges from 0 to 2 for the distribution to
be positive semi-definite [26] (see Fig. 2).

Corollary 3. The gradient magnitude |∇E| in natural images follows a Weibull
probability density,

p(r) =
1
β

(
r

β

)γ−1

e− 1
γ ( r

β )γ

, 0 < γ ≤ 2 .

So far, we considered an isotropic distribution of responses, resulting in the
Weibull distribution Corollary 3 of the one-dimensional gradient magnitude. To
proceed with the joint density of a two-dimensional response distribution, p(x, y),
consider the sum of the orthogonal derivative magnitudes r = |x| + |y| for an
isotropic random field. Note that at a later stage results will be generalized to
hold for the gradient magnitude r′ =

√
x2 + y2. Due to isotropy, the gradient

magnitude response distribution r will be identical to the one-dimensional case
Corollary 3. The marginal statistics for the response of the derivative operator
in the x-direction, px(x), is obtained by integration over the y-variable,
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Fig. 3. Illustration of the marginal distribution px(x) for various values of γ

px(x) =
∫ +∞

−∞

1
β

(
|x| + |y|

β

)γ−1

e− 1
γ ( |x|+|y|

β )γ

dy (18)

= −2e− 1
γ ( |x|+|y|

β )γ ∣∣∣∞
0

, (19)

which, after normalization, leads to an integrated form of the Weibull distribu-
tion (see Fig. 3).

Corollary 4. The response to the directional derivative ∇xE in natural images
follows an integrated Weibull probability density,

px(x) = c2e
− 1

γ | x
β |γ .

The normalization factor is given by

c2 =
γ

2γ
1
γ βΓ (1/γ)

,

where Γ (α) represents the complete Gamma function,

Γ (α) =
∫ ∞

0
tα−1e−tdt .

Note that any power transformation of the form x′ = xα does not affect the
marginal distribution px(x), other than a reparameterization γ′ = γ/α, β′ = βα.
Hence, the gradient magnitude ∇E2 = ∇xE

2 +∇yE
2 is of the form r = |x|+ |y|,

which will be Weibull distributed according to Corollary 3. Furthermore, the re-
sponse to the directional derivative ∇wE in any direction w will be distributed
according to Corollary 4. Finally, non-linear gamma transforms applied to the
intensity at any fixed resolution in the scaling cascade will not affect the re-
sults, other than a reparameterization of the Weibull parameters γ and β as
discussed above.

5 Conclusions

This paper shows the linear imaging process to impose the stochastic structure
of images. The observation by a linear convolution over the incident light dif-
fuses the once emitted random field, the diffusion being driven by the gradient
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Fig. 4. Examples of the fit of the various probability densities to the statistics of
natural images. The middle column shows the distribution of the derivative operator
(σ = 3 pixels) in the x-direction of the original image (left column), the right column
shows the gradient magnitude distribution. a. corduroy and b. crumpled paper from
the Curet dataset [27]; c. image 271 and d. 167 from the van Hateren collection [28];
e. image 848012 and f. 673021 from the Corel Gallery collection
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structure in the projected intensity. The multiplicative process for correlated in-
tensity fluctuations combined with the additive stochastic laws for uncorrelated
fluctuations cause image statistics to follow the laws of sequential fragmenta-
tion. From these theoretical results, analytical expressions for the statistics of
gradient magnitude and derivative filter responses are derived.

A major point is the percentage of images covered by the posed statistical
laws. The question essentially addresses the validity of Axiom 1. For our experi-
ments we have reasons to believe that this is a large fraction of recorded images
[1]. See Fig. 4 for some examples.

The statistical characteristics of multiplicative processes are dominated by
the extreme events that are on the tail of the distribution [22]. For a multiplica-
tive process, the distribution of the product and the behavior of the moments
are crucially sensitive to extreme events. When increasing imaging resolution,
progressively more extreme events become accessible. This increased access to
the tails of the distribution will manifest itself in the sporadic appearance of
exceptional realizations that will cause the observed statistics to fluctuate as
a function of resolution. Consequently, a multi-scale approach is essential for a
general vision system to probe the statistical structure of images.

The stochastic structure of any image is affected by the linear observation
kernel. More precisely, the power-law and Weibull distribution of image statistics
are imposed by the observation instrument. The occurrence of these general
distributions are not a property of the objective world, that is, the structure of
natural scenes other than randomness. The structure of the scene underlying the
observation only influences the Weibull parameters γ and β. In this contribution,
I have derived the exact influence of the linear observation instrument on the
observed image statistics.
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Skeletons of 3D Shapes�
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Abstract. A new method for determining skeletons of 3D shapes is
described. It is a combination of the approach based on the ”grass-fire”
technique and Zhu’s approach based on first finding portions of the shape
where its width is approximately constant. The method specifically does
not require presmoothing of the shape and is robust in the presence of
noise. In an appendix, a method based on variational calculus is formu-
lated for determining pruned, smoothed shape skeletons by minimizing
a functional.

1 Introduction

Although a large number of papers have appeared on ways to determine shape
skeletons, until recently [3, 7, 8, 11, 18], these papers have dealt with 2D shapes
[4, 6, 10, 12, 15, 16, 17, 19]. Extension of these techniques to 3D shapes is non-
trivial since skeletons for 3D shapes consist of intersecting 2-dimensional surfaces
[7]. This paper presents a generalization of the method developed in [17] to 3D
shapes. The emphasis is on developing a computationally robust method for de-
termining shape skeletons in the presence of noise and the inevitable numerical
inaccuracies inherent in computation on a discrete grid.

The usual definition of the skeleton of a 3D shape is that it is the locus
of the centers of maximal spheres contained in the shape. If the radii of these
spheres are recorded at the corresponding points on the skeleton, the shape can
be fully recovered as an envelope of the spheres centered on the skeleton with
radii recorded on the skeleton. Construction of the skeleton by drawing maximal
spheres at all points within the shape is clearly impractical and determining
the tangency between a sphere and a noisy shape boundary is problematic. An
alternative is the ”grassfire” technique in which the shape is imagined to be filled
with dry grass and a fire is started at the shape boundary. The time of arrival of
the grassfire front at a point equals the distance ρ of that point from the shape
boundary. The shape skeleton is the locus of points where fronts from two or more
directions meet. Alternatively, it is the discontinuity locus of the gradient of the
distance function ρ. When the colliding fronts come from opposite directions, the
point of their collision can be determined fairly accurately. As the angle between
the front normals decreases, it becomes numerically more and more difficult to
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detect their collision. It is even more difficult to locate the singular points of
the skeleton where more than two fronts come together. Another difficulty is
that the skeleton preserves the noise present in the shape boundary in the form
of numerous extraneous branches which must be pruned. It is also necessary to
identify and prune branches corresponding to shape features which are deemed
irrelevant for the task at hand.

An alternative to the approach described above is the one proposed by Zhu
[19] for 2D shapes. A 2D shape is viewed as a collection of ribbons which are
glued together. A ribbon is a part of the shape where the shape width is approx-
imately constant, so that, after some smoothing, the opposite boundaries of the
ribbon are nearly parallel. Chords may then be found which are approximately
orthogonal to the smoothed boundary. Zhu minimizes a functional designed to
determine optimal chords which are as closely normal to the smoothed boundary
as possible. The functional also incorporates terms such as a penalty for parts
of the shape in which proper chords cannot be found and a penalty for having
many short ribbon segments instead of a few long ones. The relative impor-
tance of these desirable properties depends on the values of the parameters in
the functional. The centers of the chords define the medial axes of the ribbons
which are then extended to form junctions in an optimal way. Note that these
junctions are not necessarily the points where the maximal discs touch the shape
boundary at two or more points. Instead, their location is governed by criteria
such as a minimal number of junctions and angles subtended by the branches
at the junctions. Parts of the shape which are neither ribbon-like nor associated
with junctions are ignored (pruned). It is not clear how to determine a good
initial approximation to start the minimization process, how to tune the numer-
ous parameters involved in the functional and how to generalize the method to
3D shapes.

The approach proposed in this paper is a combination of the two approaches
described above and consists of three steps. The ”gray skeleton” of a shape
is defined in §2 by associating each point inside and outside the shape with a
numerical value which is a monotonic function of the angle at which the fronts
intersect. One half of this angle is what is called the object angle in the literature
[3,5]. We define this angle to be zero at points away from the skeleton. The first
important step is an accurate calculation of the object angle at every point based
on the observation that normals to the fronts may be determined by using fairly
large neighborhoods. An alternative method for calculating the object angle
based on the divergence theorem is given in [5]. Corresponding to Zhu’s chords,
we now have a set of boundary points associated with each point P on the gray
skeleton where the front normals at P intersect the shape boundary.

Gray skeletons contain numerous points associated with noise and its pruning
constitutes the second step which is described in §3. Parts of the shape with
slowly varying width are determined by thresholding the gray skeleton. Then,
branches of the thresholded skeleton are extended along the gray-skeleton in such
a way that they join up without picking up extraneous branches caused by noise.
The method is illustrated by means of an example in §4. An alternative approach
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to pruning the gray skeleton by contracting the shape boundary towards the gray
skeleton homotopically is described in [16].

Due to noise, the boundary of the skeleton obtained by the method described
above may have a tattered appearance. The skeleton may also have gaps and
short isolated branches. Regularization of the skeleton is the third step. In §5,
we propose an approach based on minimization of a functional. The 2D version
of this functional has been implemented in [17]; however, its 3D version involves
regularization of the skeleton boundary which is a space curve and has yet not
been implemented.

Zhu’s functional includes a term which penalizes wiggles in the skeleton. In
the appendix, we present an approach based on variational calculus for smooth-
ing (and pruning) shape skeletons by minimizing a functional which is analogous
to functionals used for segmenting gray-scale images.

2 Gray Skeleton

In this section, we define the gray skeleton Γ of a shape from which the topo-
logical skeleton K is extracted. A shape is simply an open bounded set D; its
boundary will be denoted by ∂D. The topological shape skeleton K is assumed
to have the regularity properties usually assumed in practice. For example, its
dimension is at most 2. We start with the distance function

ρ(P ) = max
X∈∂D

dist(X,P ) (1)

which may be computed quickly, for example, by Sethian’s fast marching al-
gorithm [1] which solves the eikonal equation ‖∇ρ‖ = 1 by the ”upwind” finite
difference scheme. We estimate the angle between the normals to the intersecting
fronts exploiting the property that the gradient lines of ρ are straight lines except
where they cross the shape skeleton [14]. The gradient line of ρ passing through
a point P off the shape skeleton connects P to the point Q on the shape bound-
ary nearest to P . The vector −−→

QP is the radius of the maximal sphere at P . It is
normal to the fronts advancing to P . If P is a point of K where there are exactly
two boundary points, Q+ and Q−, nearest to P , the maximal sphere centered at
P touches the shape boundary only at Q+ and Q−. Exactly two fronts intersect
at P and the angle between their velocity vectors is equal to the angle between
the vectors

−−−→
Q+P and

−−−→
Q−P (Fig. 1). Let ϕ denote one half of the angle between

the vectors
−−−→
Q+P and

−−−→
Q−P ; it takes values between 0 and π

2 . If the shape bound-

ary is smooth at Q+, then the vector
−−−→
Q+P is orthogonal to the shape boundary

and ϕ is the angle between the chord
−−−−→
Q+Q− and the tangent plane at Q+.

It is shown in [7] that the bisector of the angle between
−−−→
Q+P and

−−−→
Q−P is

tangent to the shape skeleton at P . Since ‖∇±ρ‖ = 1 where ∇±ρ denotes the
gradients in the directions

−−−→
Q±P , we have

cosϕ =
dρ

ds
(2)
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Fig. 1. Geometry of the distance function

where ds denotes the infinitesimal arc-length along the skeleton in the direction
of the bisector. It is the projection of the gradients ∇±ρ onto the plane tangent
to the skeleton at P . Thus, the larger the value of ϕ, the slower the rate of
change in the width of the shape. We also have

sinϕ =
1
2

∥∥∇+ρ− ∇−ρ
∥∥ (3)

which is one half the jump in ∇ρ across the shape skeleton. The larger the
object angle ϕ, the larger the jump in ∇ρ, and the easier it is to detect the
corresponding portion of the shape skeleton.

Let ϕ = 0 in the complement of ∂D ∪K where ∇ρ is continuously differen-
tiable. We define the gray skeleton, Γ , of the shape by letting its value equal
to sinϕ. The gray skeleton is defined everywhere except on the set J of points
of K where the maximal sphere touches the shape boundary at more than two
points. ( J is assumed to have dimension ≤ 1. Our strategy is to determine K/J
from the gray skeleton in the complement of ∂D ∪ J and then extend it over
parts of J which lie in the closure of K/J . This strategy still leaves out special
cases such as circular cylinders and balls where the closure of K/J does not
contain all of J . Therefore, it would be useful to extend the definition of the
gray skeleton to all of K. An elegant method to define such an extension due to
Dimitrov, Damon and Siddiqi [5] is based on the notion of average flux. These
authors use the divergence theorem and calculate the average flux as a limit of
the surface integral of ∇ρ over spherical neighborhoods as the neighborhood size
shrinks to zero. A possible alternative method for calculating the average flux
is to integrate the laplacian of ρ in the sense of distributions. Only the singular
part of the laplacian (including its poles) contributes to the average flux and
since the singular part depends only on the object angles, it may be computed
accurately using large neighborhoods. In this paper, the purpose of calculating
Γ is to extract K from it and it is sufficient to use a simple approximation of Γ
at a points in J . At a point P in J . we pick two points, Q+ and Q−, among the
set of boundary points nearest to P such that the object angle ϕ determined by
the vectors

−−−→
Q+P and

−−−→
Q−P is the largest possible and set Γ (P ) = sinϕ. Note

that the set J may be quite large because there may be numerous intersecting
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branches produced by noise. The suggested method amounts to either ignoring
or lumping together contribution of less important branches.

To estimate ϕ, we need to determine the gradient directions
−−−→
Q+P and

−−−→
Q−P

which are the directions in which the directional derivative of ρ is maximum
and equals 1. We compute the directional derivatives of ρ in all inward radial
directions at every point P in a given shape and determine the directions in
which it is nearly equal to 1. On a discrete grid there are only finitely many
radial directions available depending upon the size of the neighborhood N which
determines the numerical accuracy of ϕ.Since the gradient lines are straight lines
and ||∇ρ|| = 1, we may use fairly large neighborhoods. The algorithm in detail
is as follows:

Step 1: Scan the boundary ∂N of a neighborhood N of P . If R is a point
belonging to ∂N , the derivative of ρ in the direction −→

RP is

DR(ρ) =
ρ(P ) − ρ(R)∣∣∣−→RP ∣∣∣ (4)

Step 2: Determine the local maxima of DR(ρ) along ∂N . Among these max-
ima, choose the ones which are approximately equal to 1 within the tolerance
determined by the size of N .

Step 3: If there is a single gradient direction at a point, we set ϕ = 0. If there
are two or more maxima chosen in Step 2, calculate the object angle between
rays corresponding to all possible pairs maxima and choose the largest value.

3 Pruning

A straightforward approach to pruning is by thresholding. A high threshold
results in a set of disconnected skeleton branches correspond to the shape parts
with slowly varying width. If the threshold is set too low, the skeleton will include
branches due to noise. The following algorithm gets around this difficulty by
extending the branches of the thresholded skeleton along the gray skeleton into
the thicker parts of the shape, possibly forming junctions, without picking up
extraneous branches belonging to noise.

Step 1: Choose two thresholds θ and θ for angle ϕ with θ > θ.
Step 2: Threshold the gray skeleton by θ. This eliminates irrelevant branches

so that what remains corresponds to significant parts of the shape.
Step 3: Extend the branches of the thresholded skeleton in the direction of

increasing ρ provided that ϕ remains greater than θ throughout. The effect is
to extend the skeleton branches towards the more blobby or thicker parts of
the shape. As the branch is extended, it may encounter junctions with noise
(or protrusion) related branches, but these branches are not followed since they
ascend from the junctions towards the shape boundary. If the value of θ is set
too high, some numerical difficulties may be encountered during this step due to
inaccuracies in the values of ρ and the discreteness of the grid. If the value of θ is
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too high, ρ decreases very slowly along the skeleton branch; for example, if θ =
75o, dρ

ds = cos 75o = 0.258. Consequently, along the actual directions of descent
permitted by the grid, the rate of decrease in ρ may be smaller still. Therefore,
in searching for the lower values of ρ, the size of the neighborhood should to be
adjusted in order to ensure that it includes a direction of decreasing ρ.

As long as θ is sufficiently low, the resulting skeleton is a connected set since
in theory, the skeleton is connected if θ = 0o. Since what is noise or an extraneous
feature must depend on the context, the values of thresholds θ and θ must also
depend on the context. The procedure is not too sensitive to the choice of θ and
θ except around certain critical values. Topological and geometric changes in
the skeleton of a shape at critical values of θ and θ reveal critical features of the
shape. For instance, in the case of the rectangle in Fig. 1, if θ > 45◦, the skeleton
does not include the diagonal branches; the remaining skeleton, namely the main
axis, represents the shape as a pure ribbon. If θ and θ are set sufficiently low,
the skeleton will include the diagonal branches as well as the branch emanating
from the protrusion.

4 An Illustrative Example

The test shape is a multiheaded figure created from MRI slices of the human
head shown in Fig. 2.1 Figs. 3 and 4 depict several cross-sections of the gray
skeleton (left column), the pruned skeleton with θ = 70◦and θ = 45◦, (middle
column), and the pruned skeleton with θ = 70◦ and θ = 30◦ (right column). The

Fig. 2. A 3D image

1 I thank Professor Jackie Shen of University of Minnesota for providing the MRI
slices and Professor Kaleem Siddiqi of McGill University for the 3D visualization
depicted in Fig, 2.
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Fig. 3. Gray skeleton and pruned Skeletons: Vertical sections

points on the gray skeleton within 2 voxels of the shape boundary were removed
before thresholding as this portion was judged to be too noisy to be relevant.
Fig. 3 depicts 5 successive vertical sections going from front to back. Fig. 4 de-
picts 7 successive horizontal sections proceeding from the top of the triple head
to the ”neck”. Notice the effectiveness of pruning. With θ = 70◦and θ = 45◦, the
pruned skeleton consists of 3 connected components, one inside the shape and
two outside.(Extremely short components were removed, see §5.) With θ = 70◦

and θ = 30◦, the pruned skeleton has a single connected component inside the
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Fig. 4. Gray skeleton and pruned skeletons: Horizontal sections

shape and a single component outside. Notice that as the shape get less cylinder-
like (small ϕ), the gray skeleton gets fuzzier reflecting the difficulty in locating
the skeleton accurately.

5 Regularization of the Skeleton Boundary

As mentioned in the Introduction, the boundary of the skeleton obtained by the
method described above may have a tattered appearance due to noise in the
data. It may also have gaps and and short isolated branches. To address these
defects, we define a regularizing functional
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E (K) =
∫

K

(c− α) + β |∂K| (5)

where K is a subset of the gray skeleton Γ representing the pruned skeleton,
c = cosϕ is the cost function defined on the gray skeleton, α is a cost thresh-
old, ∂K is the boundary of K and |∂K| is its length. If β = 0, E is mini-
mized by setting K equal to the set of points of the gray skeleton G where
c ≤ α. If β > 0, we may locally shorten ∂K even if it means extending K along
G to include voxels where c > α. Thus, minimization of E requires the tech-
niques of curve evolution on a surface. Details of this approach are being worked
out.

6 Appendix

We present an approach based on variational calculus to determine a pruned,
smoothed skeleton directly by minimizing a functional. We exploit a basic iden-
tity that the distance function satisfies [9]. Let

u = ∇(
1
2
ρ2) (6)

where ρ is the distance function. Since ‖∇ρ‖ = 1 and u = ρ∇ρ, ‖u‖ = ρ. It
follows that u satisfies the identity

u = ∇(
1
2
u · u) (7)

We have the following converse due to Gomes and Faugeras [9]:

Proposition: Suppose u : Rn → Rn satisfies Identity (6) almost everywhere
and u is continuous at all points of the set M = u−1(0). Then, u = ∇( 1

2ρ
2)

where ρ is the distance from M .
Taking into account that the identity fails where u is discontinuous, namely,

on the shape skeleton, we define the functional∫
R−K

α

∥∥∥∥1
2
∇(u · u) − u

∥∥∥∥2

+ |K| (8)

subject to the condition that u = 0 on the shape boundary. Here R is an
open subset of Rn containing the shape, K is the discontinuity locus of u and
|K| is its volume (length, area, etc). The problem with this functional is that∥∥ 1

2∇(u · u) − u
∥∥2 = O(ρ2) and hence, the penalty for violationg Identity (6)

depends on its distance from ρ. To remedy this, we consider the normalized
functional

E (u,K) =
∫

R−K

α

∥∥∥∥∇‖u‖ − u

‖u‖

∥∥∥∥2

+ |K| (9)
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Since minimization of E balances the cost of the modifying or removing a seg-
ment of K against the cost of violating Identity (6), the result is a pruned and
smoothed skeleton K. The functional does not attempt to regularize the bound-
ary of K; inclusion of such a term would make the functional considerably more
difficult to implement. To apply the method of gradient descent, we use the
Ambrosio-Tortorelli appoximation of E:

Eλ (u, v) =
∫

R

{
α

∥∥∥∥∇‖u‖ − u

‖u‖

∥∥∥∥2

(1 − v)2 +
λ

2
‖∇v‖2 +

v2

2λ

}
(10)

The corresponding gradient descent equations are:

∂u

∂t
= βu+ (1 − v)∇‖u‖ (11)

∂v

∂t
= ∇ · ∇v − v

λ2 +
2α
λ

(1 − v)
∥∥∥∥∇‖u‖ − u

‖u‖

∥∥∥∥2

(12)

Fig. 5. Top row: Gray skeleton and pruned skeleton Bottom row: Function v with two
different values of α
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where

β = (1 − v)
{
∇ · ∇‖u‖ − u

‖u‖

}
− 2
(
∇‖u‖ − u

‖u‖

)
· ∇v (13)

We illustrate this approach for determining shape skeletons by means of an
example of a 2D shape shown in Fig. 4. The top row shows the gray skeleton
and the skeleton obtained by pruning the gray skeleton. The bottom row depicts
the function v obtained using Eqs. 10 and 11 with two different values of α. Just
as in the case of segmentation functionals, two objections may be raised against
this approach: First, we have much less control over pruning and smoothing of
the skeleton than when we use the method of gray skeletons; second, function
v is spread out and we need a ridge finding method to locate the skeleton pre-
cisely by following the ridges of v. Nonetheless, it is of interest to formulate the
problems of determining shape skeletons and of segmenting images within the
same variational framework.
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Abstract. This study is concerned with the uncertainty principles which
are related to the Weyl-Heisenberg, the SIM(2) and the Affine groups.
A general theorem which associates an uncertainty principle to a pair of
self-adjoint operators was previously used in finding the minimizers of the
uncertainty principles related to various groups, e.g., the one and two-
dimensional Weyl-Heisenberg groups, the one-dimensional Affine group,
and the two-dimensional similitude group of IR2, SIM(2) = IR2 × (IR+ ×
SO(2)). In this study the relationship between the affine group in two
dimensions and the SIM(2) group is investigated in terms of the un-
certainty minimizers. Moreover, we present scale space properties of a
minimizer of the SIM(2) group.

1 Introduction

The 2D Gabor function and Gabor-Morlet wavelets are commonly used in com-
puter vision. Mostly in relation to texture analysis, synthesis and segmentation.
The use of these functions is usually motivated by the fact that the Gaussian
window minimizes the uncertainty and attains the maximal possible accuracy in
both the spatial and frequency domains. In fact, the Gabor transform is a rep-
resentation of the Weyl-Heisenberg group while the 2D Gabor-Morlet transform
is a representation of the 2D affine group or of subgroups thereof. Since both
the 2D Gabor-Morlet wavelet transform and the multi-window Gabor transform
involve rotation and scaling (and potentially few more transformations) in addi-
tion to the usual translation and frequency modulations, it makes sense to look
for a window shape that maximizes the accuracy in all attributes. This study
explores this question and shows that this aim can only be partially attained.

The Gaussian function appears as a pivot in scale-space theory as well, where
its successive applications to images produce coarser resolution images. It is
shown, in fact, that the family of Gaussian functions posses semi-group proper-
ties with respect to the width of the Gaussian. This raises the question whether
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families of functions that minimize the uncertainty for other groups of trans-
formations posses the same characteristic. It is shown in this study that this is
in fact true for the cases that we consider. This is an intriguing fact whose full
significance is not yet fully understood.

In this study we consider the results obtained for the similitude group [1, 3]
and apply them to the affine group in two dimensions. Moreover, we explore the
scale-space nature of the minimizer derived by Ali, Antoine and Gazeau [1] and
find that their solution has smoothing and edge detection attributes which can
produce scale-space representation of images.

The rest of this paper is organized as follows: First, we review the uncertainty
principle theorem for self-adjoint operators and point out related works. We
then apply it to the Weyl-Heisenberg group and the affine group in one and
two dimensions. We conclude by pointing out the scale-space properties of the
minimizers obtained.

2 Background and Related Work

The uncertainty principle is a fundamental concept in quantum mechanics as
well as in signal and information theory. In quantum mechanics, the Heisenberg
uncertainty principle states that the position and momentum of a particle cannot
be simultaneously known. In signal and information theory, Gabor [5] showed
that there exists a trade off between time resolution and frequency resolution
for one-dimensional signals, and that there is a lower bound on their product.
These results were extended to consideration of images [9].

A special attention has been given to the functions which attain the lower
bound of the inequality defined by the uncertainty principle. It is used to define
the canonical coherent states for quantum systems in physics. In signal process-
ing it was discussed, inter alia, by Gabor. He showed that Gaussian-modulated
complex exponentials provide the best trade-off for time resolution and frequency
resolution. These are equivalent to a family of canonical coherent states gener-
ated by the Weyl-Heisenberg group.

A general theorem which is well known in quantum mechanics and harmonic
analysis [4] relates an uncertainty principle to any two self-adjoint operators and
provides a mechanism for deriving a minimizing function for the uncertainty
equation: two self-adjoint operators, A and B obey the uncertainty relation:

ΔAfΔBf ≥ 1
2
|〈[A,B]〉| ∀f, (1)

where ΔAf , ΔBf denote the variances of A and B respectively with respect
to the signal f. The triangular parnthesis mean an average over the signal i.e.
〈X〉 =

∫
f∗Xf . The mean of the action of an operator P on a function f is

denoted as: μP = 〈P 〉 and the commutator [A,B] is given by: [A,B] := AB−BA.
A function f is said to have minimal uncertainty if the inequality turns into an
equality. This happens if and only if there exists a λ ∈ iIR such that

(A− μA)f = λ(B − μB)f. (2)



Scale-Space Generation via Uncertainty Principles 353

Thus, any two self-adjoint operators, whose commutator does not vanish, lead to
an uncertainty principle. Moreover, the constraint for equality, together with a
realization of the operators in differential form, lead to a set of partial differential
equations. The solution is the function which minimizes the uncertainty for the
relevant operators.

Both windowed Fourier and wavelet transforms are related to group theory,
as both can be derived from square integrable group representations [6]. The
windowed Fourier transform is related to the Weyl-Heisenberg group, and the
wavelet transform is related to the affine group. The general uncertainty theo-
rem [4] stated above provides a tool for obtaining uncertainty principles using
the infinitesimal generators of the groups’ representations. In the case of the
Weyl-Heisenberg group, the canonical functions which minimize the correspond-
ing uncertainty relation are Gaussian functions. The canonical functions which
minimize the uncertainty relations for the affine group in one dimension and
for the similitude group in two dimensions were the subject of previous studies,
among them is the study of Dhalke and Maass [3] and that of Ali, Antoine and
Gazeau [1].

Dahlke and Maass [3], as well as Ali, Antoine and Gazeau [1] studied the
uncertainty principle for a sub-group of the affine group, the similitude group of
IR2, SIM(2) = IR2 × (IR+ × SO(2)), which is related to the wavelet transform.
Dahlke and Maass [3] have included commutators with elements of the enveloping
algebra, i.e. polynomials in the generators of the algebra, and managed to find
the 2D isotropic Mexican hat. Ali, Antoine and Gazeau [1] derived a possible
minimizer in the frequency domain for some fixed direction. Their solution is a
real wavelet which is confined to some convex cone in the positive half plane of
the frequency space and is exponentially decreasing inside.

3 The Weyl-Heisenberg Group

The uncertainty principle related to the Weyl-Heisenberg group has a tremen-
dous importance in two main fields; in quantum mechanics, the uncertainty
principle prohibits the observer from exactly knowing the location and momen-
tum of a particle. In signal processing, the uncertainty principle provides a limit
on the localization of the signal in both time (spatial) and frequency domains.

Let G be the Weyl-Heisenberg group,

G := {(ω, b, τ)|b, ω ∈ IR, τ ∈ IC, |τ | = 1} (3)

with group law

(ω, b, τ) ◦ (ω′, b′, τ ′) = (ω + ω′, b+ b′, ττ ′ei
(ωb′−ω′b)

2 ). (4)

Let π be a representation of the group’s action on L2(IR); then, the coefficients
generated by 〈f, π(x)ψ〉 are known as the windowed Fourier transform of the
function f , with ψ being the window function. The windowed Fourier transform
is defined by:
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〈f, π(x)ψ〉 = (Gψf)(ω, b) =
∫
f(x)ψ(x− b)e−iωxdx (5)

The Fourier transform is a profound tool in signal processing. The Gaussian
window function ψ(x) = e− x2

2 has an important role in the windowed Fourier
analysis as it minimizes the Weyl-Heisenberg uncertainty principle. Next, we
review the derivation of the uncertainty principles for the Weyl-Heisenberg group
in one and two dimensions using the uncertainty principle theorem. The reader
may find the classical proofs of the uncertainty principle for the Weyl-Heisenberg
group in the work of Gabor [5] for one-dimensional signals and in the work of
Daugman [2] for two-dimensional signals.

3.1 The One Dimensional Case

The unitary irreducible representation of the Weyl-Heisenberg group in L2(R)
can be defined by: [U(ω, b)f ](x) := eiωxf(x − b). The following infinitesimal
generators of the group are then given by:

(Tωf)(x) := i
∂

∂ω
[U(ω, b)f ](x)|ω=0,b=0 = −xf (6)

(Tbf)(x) := i
∂

∂b
[U(ω, b)f ](x)|ω=0,b=0 = −i d

dx
f (7)

The one-dimensional uncertainty principle for the Weyl-Heisenberg group can
be derived using the general uncertainty principle.

Corollary: [4] Let A = Tω and B = Tb be the infinitesimal operators of the
Weyl-Heisenberg group: A = −x, B = −i ∂

∂x . If f ∈ L2(R) and a = μA, b = μB ∈
R we have: ‖(A− a)f‖2‖(B − b)f‖2 ≥ 1

4‖f‖2, with equality being obtained iff

f(x) = ce2πibxe−πr(x−a)2 (8)

for some c ∈ IC, r ∈ IR+.

3.2 The Two-Dimensional Case

The unitary irreducible representation of the Weyl-Heisenberg group in L2(R2)
in two dimensions is given by: [Ũ(ω1, ω2, b1, b2, τ)f ](x, y) = τei(ω1x+iω2y)f(−→u −−→
b ), where −→u = (x, y),−→b = (b1, b2). The following infinitesimal generators of
the group can be defined as:

(T−→ω f)(−→u ) := i
∂

∂−→ω [Uf ](−→u )|−→ω =0,
−→
b =0

= −−→u f (9)

(T−→
b
f)(−→u ) := i

∂

∂
−→
b

[Uf ](−→u )|−→ω =0,
−→
b =0

= −i∇f (10)

The only non-vanishing commutators of these four operators are:

[Twk
, Tbk

] = −i , k = 1, 2 . (11)
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Thus, an uncertainty principle can be obtained for translations in the space
and frequency domains. This can be solved for each dimension separately. It is
interesting to note that using the Weyl-Heisenberg group, there is no coupling
between the x and y components. Thus attaining a certain accuracy in the x
component does not affect the degree of accuracy of the y component. If we
derive the minimization equation, we simply get the same result for the one-
dimensional analysis for both x and y. The separability of the Weyl-Heisenberg
group results in separable gaussian functions as the minimizers of the combined
uncertainty. This is, in fact, an inherent property of the Gaussian functions.

4 The Affine Group

Let G be the affine group, and let U be its canonical left action on L2(R); the
coefficients generated by 〈f, U(x)ψ〉 are known, in the one-dimensional case, as
the wavelet transform of a function f , with ψ as a mother wavelet, or template.
The wavelet transform is defined by:

(Wψf)(a, b) =
∫

R

f(x)|a|− 1
2ψ(

x− b

a
)dx (12)

4.1 The One-Dimensional Case

Let A be the affine group,

A :=
{
(a, b)|(a, b) ∈ R2, a �= 0

}
(13)

with group law
(a, b) ◦ (a′, b′) = (aa′, ab′ + b). (14)

A unitary group representation obtained by the action of U(A) on f(x) is
given by:

[U(a, b)f ](x) = |a|− 1
2 f

(
x− b

a

)
(15)

In preparation for our extension to two dimensions and other groups, we
quote the main results presented in the work of Dahlke and Maass [3] for the
one dimensional affine group. First, the self-adjoint infinitesimal operators are
calculated by computing the derivatives of the representation at the identity
element:

Ta = −i(1
2
− x

∂

∂x
)

Tb = −i ∂
∂x

. (16)

Using these operators, the affine uncertainty principle is given, and the fol-
lowing differential equation can be solved to obtain the uncertainty minimizer:

(Ta − μa)f = λ(Tb − μb)f, (17)
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which reads:
− 1

2
if − ixf ′ − μaf = −iλf ′ − λμbf. (18)

The solution to this equation is: f(x) = c(x− λ)α, where α = − 1
2 − iλμa + iμb.

Dahlke and Maass [3] provide constraints on α, so that the obtained solution is
in L2(R).

4.2 The Two-Dimensional Case

In the studies of Dahlke and Maass [3], and of Ali, Antoine and Gazeau [1], the
uncertainty principle is derived for a subgroup of the affine group which includes
translations, rotations and a uniform scaling in the x and y directions. Let us
begin by briefly quoting their main findings before extending them to the affine
group itself.

The 2D similitude group of IR2, SIM(2) = IR2 × (IR+ × SO(2)). Con-
sider the group B = IR+ × IR2 × SO(2) with group law (a, b, τθ) ◦ (a′, b′, τθ′) =
(aa′, b+ aτθb

′, τθ+θ′). The unitary representation of B in L2(IR2) is given by:

[U(a, b, θ)f ](x, y) =
1
a
f

(
τ−θ

(
x− b1
a

,
y − b2
a

))
, (19)

where the rotation τθ ∈ SO(2) acts on a vector (x, y) in the following way:

τθ(x, y) = (xcos(θ) − ysin(θ), xsin(θ) + ycos(θ)), (20)

and θ ∈ [0, 2π). The self-adjoint infinitesimal operators are given by:

Tθ = i(−→u ⊥)t · ∇, Ta = −i(1 + −→u t · ∇),
T−→
b

= −i∇.

where (−→u ⊥)t = (−y, x) The only non-vanishing commutation relations are:

[Ta, Tbk
] = −iTbk

, [Tθ, Tbk
] = iε3klTbl

,

where εijk is the full anti-symmetric tensor and summation is implied on repeated
indices. These four non-zero uncertainty relations lead to a set of four partial
differential equations:

i
∂f

∂x
y − i

∂f

∂y
x− μθf = −iλ1

∂f

∂x
− λ1μb1f

i
∂f

∂x
y − i

∂f

∂y
x− μθf = −iλ2

∂f

∂y
− λ2μb2f

−if − i
∂f

∂x
x− i

∂f

∂y
y − μaf = −iλ3

∂f

∂x
− λ3μb1f

−if − i
∂f

∂x
x− i

∂f

∂y
y − μaf = −iλ4

∂f

∂y
− λ4μb2f (21)
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It turns out that there does not exist a non-zero solution to this system of
PDEs. It is not clear wether the theoretical bounds given by the uncertainty the-
orem are tight in the sense that they are the infimum value over the L2 functional
space or that better bounds are possible. Research on these questions is ongoing.
Here we try to modify our quest in two different manners. One approach is to
find a subset of generators which have mutually minimized relations. The gen-
erators span a linear space, the Lie algebra. We look for the possibly maximal
subspace for which a non-trivial function minimizes the related uncertainties.
This is the approach taken by Ali, Antoine and Gazeau [1]. They observe that
the relationships between Ta and Tb1 , and Tθ and Tb2 can be transformed into
the relationships between Ta and Tb2 , and Tθ and Tb1 by a π

2 rotation. Thus,
they define a new translation operator Tb = Tb1cos(γ) + Tb2sin(γ), so that a
minimizing function can be obtained for this new operator as well as for Ta

and Tθ with respect to a fixed direction γ. The minimizer they obtain in the
frequency space kx, ky is a function which vanishes outside some convex cone in
the half-plane kx > 0 and is exponentially decreasing inside:

ˆ
ψ(k̂) = c|k|se−λkx , (22)

where s > 0 and λ > 0.
Another approach is to replace few of the generators by elements of the uni-

versal enveloping algebra. Dahlke and Maass [3] followed this path. The solution
they find is a minimizer to the operators: Ta, Tθ and Tb := T 2

b1 + T 2
b2. A pos-

sible solution is the Mexican hat function: ψ(x, y) = [2 − 2βr2]e−βr2
, where

r :=
√
x2 + y2.

Note that in the first approach the subspace chosen is not a sub-algebra. It
is closed under summation but not under the multiplication (defined as com-
mutation relation). The latter operation can take an element in the subspace
of the Lie algebra out of it. In the second approach we build a minimizer for a
full algebra. Here we simply changed the underline symmetry, namely we do not
allow uncorrelated translations in the x and y directions.

The Affine Group in 2D. Let us explore the most straight forwards repre-

sentation of the Affine group. Let define s =
[
s11 s12
s21 s22

]
, D = s11s22 − s21s12,

−→
b = (b1, b2) and −→x = (x, y). We restrict our discussion to the case D ≥ 0.
A similar derivation can be obtained for the case D ≤ 0. The representation
corresponding to the action of the Affine group is accordingly given by:

[U(s,−→b )f ](−→x ) =
√
Df
(
s
(
−→x −−→

b
))

. (23)

Let us calculate the infinitesimal operators associated with: s11, s12, s21, s22, b1, b2:

Ts11(x, y) = i(
1
2

+ x
∂

∂x
), Ts22(x, y) = i(

1
2

+ y
∂

∂y
),

Ts12(x, y) = iy
∂

∂x
, Ts21(x, y) = ix

∂

∂y
,
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Tb1(x, y) = −i ∂
∂x

, Tb2(x, y) = −i ∂
∂y

. (24)

As these operators were derived from a unitary representation, they are self-
adjoint. The non-vanishing commutation relations are:

[Ts11 , Ts12 ] = iTs12 , [Ts11 , Ts21 ] = −iTs21 , [Ts11 , Tb1 ] = iTb1

[Ts12 , Ts22 ] = iTs12 , [Ts12 , Tb2 ] = iTb1 , [Ts21 , Ts22 ] = −iTs21

[Ts21 , Tb1 ] = iTb2 , [Ts22 , Tb2 ] = iTb2 , [Ts12 , Ts21 ] = −i(Ts11 − Ts22)

Thus, of the fifteen possible commutation relations we obtain nine uncer-
tainty principles. It is interesting to note that the scaling in the x direction (s11)
is not constrained by the scaling in the y direction (s22). The same goes for the x
and y translations. Using the uncertainty theorem for self-adjoint operators, we
obtain a set of differential equations whose solution is the function which attains
the minimal uncertainty relations. A simultaneous solution for all equations nec-
essarily imposes: f ≡ 0. No function attains the minimality of uncertainty in L2

for all the relations. Facing this situation we have several options: We may look
for a function that minimizes the uncertainty relations of subgroups of the affine
group. We may be satisfied with an algebraic subspace (which is not necessarily
an algebra of a subgroup), we may find a subspace of the universal enveloping
algebra (the polynomials in the generators), or finally we can limit ourself to
a subset of the non-commuting pairs of generators. For example, we take the
following linear combinations of the generators: Tθ = Ts12 − Ts21 = i(yfx − xfy)
and Tscale = Ts11 + Ts22 = i(f + xfx + yfy). We may consider these new opera-
tors as representing the total orientation and scale changes due to the operation
of the affine group. Moreover, these operators, along with the translation oper-
ators are identical to those obtained for the SIM(2) group, and thus, we can
easily implement the derivations of the minimizer of Ali, Antoine and Gazeau
[1] to these operators. Another immediate possibility is to follow the derivation
of Dahlke and Maass [3] by using rotation invariant functions which can be pre-
sented by: f(x, y) = g(

√
x2 + y2). These are the minimizers of the following

three operators, which are defined as polynomials in the existing six operators:

Tθ = Ts12 − Ts12,

Tscale = Ts11 + Ts22 = i(1 + r
∂

∂r
),

Tr = T 2
b1 + T 2

b2 =
1
r
− ∂2

∂r2

The equations to be solved are:

(Tθ − μθ)g(r) = λ1(Tr − μr)g(r) (25)
(Tθ − μθ)g(r) = λ2(Tscale − μscale)g(r) (26)
(Tr − μr)g(r) = λ3(Tscale − μscale)g(r). (27)

Naturally, the motivation for defining these new operators is the rotation in-
variance property of Tθ, i.e. Tθg(r) = 0. Thus, instead of seven equations to be
solved we are left with only three. We can simply select λ1 = λ2 = 0 to obtain:
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− g′′(r) − 1
r
g′(r) − μrg = λ3i(g(r) + rg′(r)) − λ3μscaleg. (28)

As can be seen, we have obtained the exact equation obtained by Dhalke and
Maass for which a Mexican hat solution can be found.

Ali, Antoine and Gazeau have divided the four commutators they obtained
for the similitude group generators into two groups which are transformed into
each other by π

2 rotation. We apply this approach to the fifteen commutators
obtained. Thus, the set of commutators:

[Ts11 , Ts12 ], [Ts11 , Ts21 ], [Ts11 , Tb1 ], [Ts12 , Ts21 ], [Ts12 , Tb2 ]

transforms under rotation of π
2 into the complementary set of commutators:

[Ts22 , Ts21 ], [Ts22 , Ts12 ], [Ts22 , Tb2 ], [Ts21 , Ts12 ], [Ts21 , Tb1 ].

If the commutator between Ts21 and Ts12 is omitted, we may obtain the following
set of differential equations:

i(
f

2
+ xfx) − μ11f = λ1(iyfx − μ12f)

i(
f

2
+ xfx) − μ11f = λ2(ixfy − μ21f)

i(
f

2
+ xfx) − μ11f = λ3(−ifx − μb1f)

−ify − μb2f = λ4(iyfx − μ12f) (29)

where μij = μf (Tsij ). Selecting all λ’s to be zeros, a possible solution for this
system is: f(x, y) = x−iμ11− 1

2 eiμb2y. This solution, however, does not belong
to L2. If we allow λ3 to be non-zero, we may obtain a solution of the form
f(x, y) = (λ3+x)− 1

2 −iμ11+iλ3μb1 . The L2 constraint can be obtained by selecting:
|λ3| ≥ 1

2μb1
.

5 Scale-Space Nature of the Uncertainty Principle
Minimizers

It is well known that the Gaussian function has an important role in the scale-
space framework. When a Gaussian is convolved with an image, the result is a
smoother version of the original image. The degree of smoothness is determined
by the standard deviation of the Gaussian in either the x, y or both directions.
In the latter case, the spread does not have to be identical in both dimensions.

The Gaussian function is also the minimizer of the uncertainty related to
the Weyl-Heisenberg group. In fact, we obtain as the minimizer a one-parameter
family of functions: The Gaussian with parameter t = σ2/2. This one-parameter
family is a semi-group with respect to the convolution, i.e. the convolution of
two Gaussians with different values of t1 and t2 is equivalent to a Gaussian with
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parameter t1 + t2. This is all very well known of course. The interesting question
is whether the minimizer of the uncertainty relations of other groups depends
on parameters such that it forms a semi-group with respect to convolution. We
consider here the minimizers of the uncertainties related to the SIM(2) group
and to the affine group.

The solution offered by Dahlke and Maass is scale-space by nature. The min-
imizer that they found is the Mexican hat function: ψ(x, y) = β(1 − βr2)e−βr2

,

where r :=
√
x2 + y2. Its Fourier transform is π2k2e− π2k2

β . Clearly, if we de-
fine β = 1/t then the semi-group property is trivially satisfied, with t as the
semi-group parameter. Note that this is a scale-space of edge detector and not
of the image as usual. It is in fact an element of the jet-space of the traditional
Gaussian scale-space.

The rest of this section is devoted to exploring the scale-space nature of the
minimizer given by Ali, Antoine and Gazeau for the uncertainty related to the
SIM(2) group [1]. Their solution is given in the frequency space (kx, ky). It is a

Fig. 1. A one-dimensional rectangular pulse function
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Fig. 2. When the 1D Cauchy wavelets are applied to a rectangular pulse, the larger s

is the more noticeable the edges are (left to right). The larger λ is the smoother the
edges become (up to bottom)
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Fig. 3. 1st row: For a constant value of λ = 0.00001, increasing the value of s,
0.01, 0.2, 0.5, 1 (left to right), results in edge enhancement. 2nd row: For a constant
value of s = 0.2, increasing the value of λ is increased: 0.001, 0.01, 0.05, 0.1 (left to
right) results in a effect of motion-blurring in the x-direction

function which vanishes outside some convex cone in the half-plane kx > 0 and
is exponentially decreasing inside:

ψ̂sλ(k) = c|k|se−λkx , (30)

where s > 0 and λ > 0. It is quite obvious, from the mere definition of the
function, that successive applications of the filters with two values of either s
or λ correspond to a single application of an effective parameter: ψ̂s1λ1 ψ̂s2λ2 =
ψ̂(s1+s2)(λ1+λ2). Moreover, this function has the following properties: The portion
|k|s = (k2

x + k2
y)

s
2 in frequency space is the transformation (up to a sign) of the

Laplacian operator in the spatial space :Δ
s
2 , and thus can be considered as an

edge enhancement operator. The portion e−λkx can be considered as a directional
smoothing operator.

We look first at the one-dimensional equivalent of the solution of Ali, Antoine
and Gazeau [1], which is known as the Cauchy wavelets [7, 8]: ψ̂(ξ) = cξse−λξ

for ξ ≥ 0 and ψ̂(ξ) = 0 for ξ < 0, and s > 0. Their application to a rectangular
pulse function (Fig. 1) provides the following results: as s increases, the edges
become more evident, thus the edge is enhanced, while as λ increases, the signal
becomes smoother (Fig. 2).

We next apply the two-dimensional minimizer filter to a test image of a clown,
symmetrizing the filters as follows: ψ̂(k̂) = c|k|se−λ|kx|. When the value of λ is
kept constant, increasing s results in a progressive edge enhancement (Fig. 3 1st
row). When the value of s is kept constant and the value of λ is increased, there
is a motion blurring effect in the x-direction (Fig. 3 2nd row).

6 Discussion and Conclusions

In this work we study the possibility of designing a window shape that is op-
timal with respect to all the possible parameters of the two-dimensional affine
transform. The study is based on minimizing the uncertainty relations that are
inherent in the non-commutative affine symmetry. We generalized ideas and tech-
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niques that were used by Dahlke and Maass [3] and Ali, Antoine and Gazeau [1]
for lower dimensional groups.

Our study shows that there is no function that minimizes the uncertainty
with respect to all parameters of the affine transformations. We were able to
show, though, the existence of an L2 window that minimizes a subset of the
commutation relations.

Moreover, the scale-space properties of the minimizer offered by Ali, Antoine
and Gazeau, are considered. We find that the two-parameter minimizer family is
a semi-group with respect to each parameter and that modifying the function’s
parameters results in either edge enhancement or motion-like blurring.

Our preliminary results point to the need to further explore the scale-space
attributes of uncertainty minimizers.
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Abstract. We have developed a new framework for scale invariant tex-
ture analysis using multi-scale local autocorrelation features. The multi-
scale features are made of concatenated feature vectors of different scales,
which are calculated from higher-order local autocorrelation functions.
To classify different types of textures among the given test images, a
linear discriminant classifier (LDA) is employed in the multi-scale fea-
ture space. The scale rate of test patterns in their reduced subspace can
also be estimated by principal component analysis (PCA). This subspace
represents the scale variation of each scale step by principal components
of a training texture image. Experimental results show that the proposed
method is effective in not only scale invariant texture classification in-
cluding estimation of scale rate, but also scale invariant segmentation of
2D image for scene analysis.

1 Introduction

Texture analysis plays an important role in the interpretation and understand-
ing of real-world images so that it is a useful research area in computer vision
and pattern recognition. Texture analysis has been applied to many practicable
vision systems such as industrial inspection, remote sensing, biomedical imag-
ing, ground classification, and segmentation of satellite or aerial imagery. Recent
applications show the potential of natural-scene analysis by utilizing texture seg-
mentation and texture labeling [1], [2].

One of the major problems in texture analysis is that the textures in the real
world are often not uniform because of changes in orientation, scale or other
visual appearance. Especially, several researches on scale and rotation invariant
properties of texture images have been reported in recent years [3], [4]. Our re-
search is focused on the scale invariant property of a texture image in a statistical
feature space. The statistical features extracted from co-occurrence or autocorre-
lation functions represent a spatial distribution of gray values. Texture patterns
can be represented by a large number of feature vectors in high-dimensional fea-
ture space. Classifiers are also designed to reduce the computational complexity
of an enormous amount of feature vectors. We should therefore make an effort

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 363–373, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to develop robust invariant features that can be extracted and classified with a
low-computational complexity in statistical approaches [5].

In this paper, we propose a theoretically and computationally simple frame-
work in which it is possible to discriminate a large range of scaled texture images
efficiently in spite of gray-scale variations. The proposed multi-scale features are
utilized in scale invariant texture classification and scale invariant segmentation
for scene analysis including estimation of scale rate. To classify the different tex-
ture types, K-class Fisher criterion [6] for a multi-class classification problem
is employed in their discriminant space. We separate feature vectors of texture
patterns of the same type from a linear discriminant space. The separated dis-
criminant space consists of feature vectors of different scale rate although they
are extracted from texture patterns of the same type. According to the scale
variation, thus, texture patterns can also be classified by using principal compo-
nents analysis.

Scale variation of texture patterns is related to texture gradient, which is an
important cue for depth perception comparable to binocular disparity [7]. Tex-
ture gradient can be represented by gradual scale variation of texture patterns in
a 2D scene. The proposed method is applied to scale invariant texture segmen-
tation of a 2D scene. In addition, we can evaluate relative distance of a 2D scene
image by estimating the scale rate of a training texture pattern. The experi-
mental results show the effectiveness of the proposed method for scale invariant
texture classification and segmentation including the estimation of scale rate. In
the extensive application of our proposed method, we will make it possible to
perceive a surface orientation and a relative distance in a natural 2D scene.

2 Multi-scale Local Autocorrelation Features

2.1 Multi-scale Features

We assume that texture is a kind of repetitive pattern over a certain ranges of
scale. An image texture can appear in different ways according to the scale of
observation so that the scale concept and the notion of multi-scale representation
are of crucial importance in texture analysis [8]. A number of approaches to
multi-scale representations, which are more or less related to scale space theory
such as pyramids, wavelets and multigrid methods have been developed [9]. As
for our method, the pyramid representation of gray-level is used to build the
scale space, which combines a sub-sampling operation with different levels of
spatial resolution.

Figure 1 illustrates a method of multi-scale feature extraction from a training
texture image. Local windows of (n×n) size are sampled from all over the edge of
texture pattern in randomly. According to the scale step i, we extractm number of
samplewindows, thus, we can get (m×i) feature vectors froma training texture im-
age with d-dimensionality. The rate at which the scale step increases i is kept con-
stant to make a linear scale space. We concatenate feature vectors (Si−1,Si,Si+1)
of different scale to a single vector Msi of (d×3) dimension. A multi-scale feature
consists of three feature vectors that give three consecutive scales.
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Fig. 1. Extraction of multi-scale feature vectors from scale space

2.2 Higher Order Local Autocorrelation

Various methods for extracting scale invariant features have been applied in
texture analysis and image recognition (e.g., a Gabor filter and Wavelets and so
on). The autocorrelation functions possess uniqueness property for even orders,
and they have advantages of being shift-invariant and computational low cost.
The autocorrelation function has been used in a wide range of applications: face
detection [10], pattern recognition [11], and scale invariant image recognition [12].

A local autocorrelation function can be used to assess the amount of regularity
as well as the fineness/coarseness of a texture image. An important property of
many textures is the repetitive nature of the placement of texture elements in
the image. Due to advantages of low cost and repetitive nature of texture image,
a higher order local autocorrelation function is employed in feature extraction
module.

Order 0

Order 1

Order 2

Fig. 2. Local mask patterns for higher-order local autocorrelation features
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Higher order autocorrelation functions are defined by

rn
x (a1, a2, · · · , an) =

∫
D

f(x)f(x+ a1) · · · f(x+ an)dx, (1)

where n denotes the order of the autocorrelation function, x is the image
coordinate vector, and ai are the displacement vectors. A function f(x) stands
for the image intensity on the retinal plane D [13]. Considering computational
cost, we limit the order n to 2. Using the mask patterns shown in Fig. 2, the
feature extraction module computes 25 local autocorrelation coefficients from a
texture image. For each mask pattern, a product is calculated by multiplying
pixels in the masks.

3 Discriminant Space for Classification

To get more effective feature set, we perform an orthogonal transformation on all
training feature vectors by using the Karhunen − Loève (KL) transformation
[14]. The orthogonal transformation produces a new sequence of uncorrelated
texture images on the higher auto-correlation feature space so that feature vec-
tors have a set of the most independent output components. A feature extraction
module usually includes a process which determines an appropriate subspace of
dimensionality d′ in the original feature space of dimensionality d(d′ ≤ d). The
Karhunen − Loève method also chooses a dimensionality reducing linear pro-
jection, but we do not reduce the dimensionality of feature space to preserve the
original features.

To classify each texture image represented by its feature vector, we use the
Fisher criterion for K-class classification associated with linear discriminant
analysis (LDA). The task of our classification is to assign test texture patterns
that have the same type of texture but different scales to one of the classes
with the same type of texture patterns. This is called scale-invariant texture
classification. The Fisher method is the simplest and most popular approach
in linear discriminant analysis (LDA). The method is further generalized by
Rao [15] into the multiple class problem. The Fisher method projects high-
dimensional data onto a subspace to maximize the separation of inter-classes.
For a K-class problem with K > 2, a transformation matrix from d-dimensional
feature space to m-dimensional space (m ≤ d) is determined such that the Fisher
criterion of total scatter versus average within-class scatter is maximized [16].
The within-class scatter matrix, SW , and the between-class scatter matrix, SB,
are written as follows :

SW =
K∑

i=1

(
P (ωi)

1
ni

∑
x∈ωi

(x − mi)(x − mi)T
)
, (2)

SB=
K∑

i=1

P (ωi)(mi − m)(mi − m)T , (3)
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Fig. 3. Feature vectors of test texture patterns and prototypes represented by means
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where x is a feature vector, mi is the mean vector of class ωi, m is the overall
mean of all classes, K is the number of classes, ni is the number of patterns in
each class ωi, and P (ωi) is its prior probability. We assume that ni reflects the
prior probability, where n is the number of all patterns, so that a prior probability
can be represented as P (ωi) = ni/n. We can, thus, obtain the transformation
matrix A, which maximizes JF , so-called Fisher criterion:

JF (A)=tr(
AT SBA

AT SW A
). (4)

Solving this optimization problem results in finding the eigenvectors of S−1
W SB

corresponding to the d largest eigenvalues. As long as d ≥ (K − 1), no infor-
mation is lost when the classes are normally distributed. We can project the
d-dimensional features into (K − 1)-dimensional space or more reduced dimen-
sional space related to the cumulative proportion of eigenvalues. The objective
of dimensionality reduction below (K − 1) is to find a subspace in which a pro-
jection of the class means preserves distance such that the class separability is
maintained as good as possible [17].

In the linear discriminant space built by the K-class Fisher criterion, re-
projected feature vectors of training data constitute spatial distributions in ac-
cordance with scale variation. Figure 3 shows means and variances of the distri-
butions of feature vectors in limited 3-dimensional discriminant space for visu-
alization. We use a LDA classifier based on the minimum Euclidean distance to
classify test texture patterns. Note that LDA using a few prototypes per class
is the simplest and the most practical classifier.

We make prototypes by using the means of multi-scale features extracted from
the same type of training texture patterns at each scale step. A class consists of
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i prototypes of multi-scale features Msi and i represents the scale step of multi-
scale features. We then compared these i prototypes with test texture patterns.

4 Subspaces for Estimation

For the estimation of scale rate of texture patterns, we make separate subspaces
by using Principal Component Analysis. The subspaces are composed of the
same type of training texture patterns, but with different scale, and can repre-
sent scale variation of a training texture type. The PCA is a standard technique
for extracting the structure from a high-dimensional data set. It reduces the re-
dundancy contained within the feature vectors by creating a new series of feature
vectors in which the axes of the new coordinate system point in the direction
of decreasing variance. Suppose that a feature vector and its dimensionality d
can be written as {x = (x1, x2, . . . xd)T ∈ Rd}. We extracted feature vectors
from higher local autocorrelation function with 25-dimensionality as described
in section 2.2. The number of feature vectors from a training texture image is
(m× i), where m is the number of sampling windows and i is a number of scale
steps of feature vectors, which are represented by {x(k)}(i = 1, . . .m× i).

To begin the PCA transformation of feature vectors within a class, the co-
variance matrix Cx of the all data set of feature vectors can be defined as

Cx =
1

m× i− 1

m×i∑
k=1

{(x(k) − x)(x(k) − x)T } (5)

where x is the mean of x(k). Using the covariance matrix, we obtain the eigen-
values λ are obtained from |Cx − λI| = 0, where I is an identity matrix.
The eigenvectors e define the axes of the components and are obtained from
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(Cx − λI)e = 0. The eigenvector of the largest eigenvalue is computed for the
new first component of reduced subspace. New first components have the largest
percentage of the total variance in original feature space, so the first components
reflect a big change of feature vectors according to the scale variation.

We compute means of first principal components at each scale step, and then
concatenate mean vectors of a different scale to a single prototype like multi-scale
features. Therefore, a prototype consists of three means of first principal compo-
nents at each scale step including a pre-scale step and a post-scale step. Figure 4
shows an example of prototypes from a training texture image in their subspace.
To estimate the scale rate of classified test texture patterns, the prototypes are
compared with test texture patterns based on euclidean distance.

5 Experimental Result

The effectiveness of the proposed method for scale invariant texture analysis has
been well tested. We performed two major experiments: scale invariant texture
classification including the estimation of scale rate, and scale invariant texture
segmentation of an artificial 2D image for scene analysis.

5.1 Scale Invariant Texture Classification

We used sixteen natural texture images from the Brodatz album [18] (as shown in
Fig. 5) for the experiments on scale invariant texture classification. All textures
are originally gray-scale images with 256 levels, and the size of a texture image is
640 × 640 pixels. To get the training texture patterns, we randomly extracted 500

Fig. 5. The sixteen classes of textures from the Brodatz album. Row 1:D1, D101, D34,
D56. Row 2:D22, D103, D49, D51. Row 3: D52, D20, D6, D64. Row 4: D65, D66,
D74, D75
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Fig. 7. Experimental results of scale invariant texture classification from the Brodatz
album (a) A test image made of five texture patterns. Left top : D101 of 0.8 scale rate,
Right top : D103 of 1.0 scale rate, Left bottom : D52 of 0.8 scale rate, Right bottom
: D20 of 1.0 scale rate, Circle : D49 of 1.2 scale rate (b) Ground image of Fig. 7a (c)
The test result of Fig. 6a by conventional method (d) The test result of Fig. 7a by
proposed method (e) A test image made of three texture patterns. Top : 0.8, 1.0, and
1.2 scaled image of D1, Middle : 0.8, 1.0, and 1.2 scaled image of D22, Bottom : 0.8,
1.0, and 1.2 scaled image of D52 (f) Test result of Fig. 7e by conventional method (g)
The test result of Fig. 7e by proposed method (h) The test result of scale estimation
of Fig. 7e by proposed method

sub-samples of 90 × 90 pixels from each texture image, with seven different scale
steps (0.7, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3). We then made the multi-scale features
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Table 1. The error rate of test texture images from Brodatz album

Conventional method Proposed method
Five texture patterns (Fig. 7a) 9.70% 7.35%
Nine texture patterns (Fig. 7e) 7.96% 6.97%

with five scale steps (0.8, 0.9, 1.0, 1.1, and 1.2) represented by 75 dimensionality
feature vectors from 56,000 sample patterns (500 × 7 × 16). When we make a
multi-scale feature of a test texture pattern, that pattern is scaled into 90% and
110% patterns. Three feature vectors of the two scaled and original patterns are
then concatenated into one vector as shown in Fig. 6.

The size of the test images in Fig. 7 are 900 × 900 and the sources are shown
in Figs. 7(a) and (e). To make the multi-scale features for test texture patterns,
we sequentially extract a sub-region of 90 × 90 pixels with three different scale
steps from a test image. Only 25-dimensional feature vectors extracted from
higher-order local autocorrelation functions are used in a conventional method
as a feature extraction module.

A conventional method includes a classifier, which regards a class as all train-
ing texture patterns of all scale steps. This conventional method can not estimate
the scale rate of texture patterns. We obtained the scale invariant texture clas-
sification results without post-processing as shown in Figs. 7(d) and (g). For
comparison, the results obtained from conventional method also presented in
Figs. 7(c) and (f). The error rates of proposed method were lower than that of
conventional method (as shown in Table 1). In addition, Fig. 7(h) shows the
result of scale estimation of classified texture images in their subspace.

Fig. 8. Experimental results of scale invariant texture segmentation (a) a road test
image (b) the result of estimation of relative distance using scale invariant texture
segmentation in Fig. 8a (c) a avenue test image (d) the result of estimation of relative
distance using scale invariant texture segmentation in Fig. 8c
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5.2 Scale Invariant Texture Segmentation

Tsutsui [19] reported on the neural correlates for perception of 3D surface orien-
tation from texture gradient. The scale invariant property of a texture image is
also related to texture gradient for perception of 3D surface orientation. Texture
gradient can be represented by gradual scale variation of a texture pattern in the
2D scene image. The proposed method is applied to scale invariant segmentation
of 2D image. Several experiments were performed via two kinds of artificial 2D
images as shown in Fig. 8. The road image in Fig. 8(a) has only two classes of
block and ground texture patterns with 12 scale steps (50% - 170%). Figure 8(b)
shows the segmentation result including estimation of relative distance using a
block-training texture image.

The avenue image in Fig. 8(c) has four classes which consist of leave, trunk,
grass, and ground with five scale steps of multi-scale features (70%-120%). The
test texture patterns are extracted at a 10% differential scale rate to make multi-
scale features. The result of scale invariant segmentation including estimation
of relative distance is shown in Fig. 8(d). In our future research, we will ap-
ply multi-scale feature classification to perceive 3D surface orientation of natu-
ral scene analysis.

6 Conclusion

We have developed a new framework for scale invariant texture analysis using
multi-scale local autocorrelation features. The proposed multi-scale features are
extracted from higher order local autocorrelation functions and feature vectors
of different scale are concatenated to a single feature vector. To classify dif-
ferent texture types from the given test image, a linear discriminant classifier
(LDA) was employed. The scale rate of test texture patterns in their reduced
subspace can also be estimated by using principal component analysis (PCA).
Experimental results show that the proposed method is effective in not only
scale invariant texture classification including estimation of scale rate, but also
scale invariant segmentation of 2D image for scene analysis. We plan to apply
this method to the perception of 3D surface orientation and relative distance
estimation for robot eye.
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Abstract. This paper deals with the figure field, which is defined as
the negative of the gradient vector field of the linear scale-space image.
The scale-space hierarchy is obtained from the connectivity of stationary
points determined by figure-field fluxes and trajectories of the stationary
points in the scale space. A point at infinity plays an important role in
this theory. The figure-field fluxes and the configuration of stationary
points at each scale define a graph in the scale-space image. This graph
describes the topological relations of segments in the original image. We
employ the Voronoi tessellation to extract boundaries of the segments
from the blurred linear scale-space image.

1 Introduction

This paper focuses on the gradient field of a linear scale-space image in order to
investigate topological properties of the image. The basic concept of the gradient
field was introduced by Zhao and Iijima [1, 2]. They called the gradient field
“figure field”. We develop the theory of figure field as an extension of their idea.

The figure field reveals connectivity among points of interest in the scale
space — extrema, saddle, singular points and a point at infinity. Trajectories
and connectivity of these points define a hierarchical structure of an image. This
hierarchy is described as a tree. The figure field also defines a graph, which ex-
presses the configuration of stationary points at a fixed scale. The graph denotes
combinatorial properties in the scale space. In this paper, we also introduce a
Voronoi-tessellation-based segmentation of linear diffusion-filtered images. This
metric allows us to extract dominant parts of images as the Voronoi regions.

Combination of a tree, which expresses the hierarchical relations, and a series
of graphs, which expresses configurations at fixed scales describes topological
structure of the image in the scale space.

2 Theory

2.1 Stationary Curve

Linear scale-space is a one parameter family of real-valued functions f(x, τ)
generated by the solution of the linear diffusion equation

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 374–385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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∂

∂τ
f(x, τ) = Δf(x, τ), f(x, 0) = f(x), (1)

where τ is the scale parameter and f(x) is the initial function, that is, the
intensity of gray-level image.

We define stationary points and stationary curves as follows.

Definition 1. Stationary points are defined as the points where the gradient
vanishes, that is,

{x | ∇f(x, τ) = 0}. (2)

Definition 2. The stationary curves are the trajectories of stationary points in
the scale space.

We denote the trajectories of the stationary points as x(τ). Setting H to be the
Hessian matrix of f(x, τ), Zhao and Iijima [1] showed that the stationary curves
are the solutions of the system of linear equations:

H
dx(τ)
dτ

= −∇Δf(x(τ), τ). (3)

They [1, 2] clarified the topological properties of the stationary curves in one-
and two-dimensional patterns. Equation (3) is solvable for nonsingular points
where the Hessian matrix is always regular. Equation (3) also indicates that
the stationary points instantaneously have infinite velocity in the scale space at
singular points.

The stationary points of the two-dimensional scale-space images are classified
into three types; local maximum points, local minimum points and saddle points.
The type of stationary point can be discriminated by the second derivative of
f(x, τ) except at the singular points where detH = 0, namely, the second deriva-
tive test. The Taylor’s series expansion of f(x, τ) in the neighbourhood of ξ is

f(x, τ) = f(ξ, τ) + ∇f(ξ, τ)�x +
1
2
x�Hx +O(|x|2). (4)

Since the directional derivative of f(x, τ) in the direction of a unit vector n is
calculated as

d f

dn
= n�∇f, (5)

the second directional derivative of f(x, τ) written as (4) is approximated by
the quadratic form:

D2(n) :=
d2f

dn2 = n�∇(n�∇f) ≈ n�Hn. (6)

Therefore, if the second directional derivative D2(n) is positive for any direc-
tion of n, then f(x, τ) is convex. Analogously, f(x, τ) is concave for negative
D2(n). The stationary point at the concave (convex) point is said to be the local
maximum (minimum) point.
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Equation (6) implies that eigenvalues of the Hessian matrix of f(x, τ) at x(τ)
are extrema of D2(n), so that

λ2 ≤ D2(n) ≤ λ1, (7)

where λ1 and λ2 are the two eigenvalues of H. We denote the signs of the
eigenvalues of the minus of the Hessian matrix as (+,+), (+,−) and (−,−),
which correspond to the local maximum point, the saddle point and the local
minimum point, respectively. Note that the type of stationary curves is classified
as maximum curve, minimum curve, and saddle curve according to the second
directional derivation in the same fashion.

The following proposition denotes the signs of the Laplacian of stationary
points.

Proposition 1. The sign of the Laplacian Δf is positive (negative) at the local
minimum (maximum) points. The Laplacian may have both signs at the saddle
points.

Proof. The Laplacian Δf is obtained as the trace of Hessian matrix H, that is,

Δf = trH = tr(XΛX−1) = trΛ =
∑

i

λi, (8)

where X is the square matrix whose column vectors are eigenvectors of H, and
Λ are the diagonal matrix of eigenvalues λi. The summation of the eigenvalues
is positive (negative) at the local minimum (maximum) points. ��

It is notable that the stationary points with zero Laplacian can be found only
on the saddle curves. This indicates that the scale-space stationary points

{(x, τ)|∇f = 0 and ∂f/∂τ = Δf = 0} (9)

are always spatial saddle points. The saddle point with zero Laplacian is known
as the balanced-saddle [4] or scale-space saddle [5].

2.2 Figure Field

We focus on gradient field of the scale-space image and a corresponding graph.
The basic idea and the following definitions were provided by Zhao and Iijima [2].

Definition 3. Figure field F is defined as the negative of the gradient vector
field of the scale-space image, that is,

F = −∇f(x, τ). (10)

Definition 4. Figure flow curve is the directional flux curve of figure field.

We have the following properties on figure field in scale space.
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Proposition 2. Let C denote a simple closed curve which encircles an arbitrary
region S in the two-dimensional scale-space image f(x, τ). The net outward flux
of the figure field is the rate of total loss of image intensity in S with respect to
the scale.

Proof. The net outward flux is ∮
C

F�ndC, (11)

where n is the unit normal vector to the curve C. From (1), (10) and the Gauss
theorem derives the relation∮

C

F�ndC = −
∮

C

∇f�ndC = −
∫

S

∇�∇fdS = − ∂

∂τ

∫
S

fdS. (12)

The last notation in (12) denotes the derivative of total loss of image intensity
in the region S with respect to the scale τ . ��

The following differential notation is equivalent to the above proposition.

∂f

∂τ
+ ∇�F = 0. (13)

This is exactly the conservation law of image intensity. Therefore, the figure field
F is considered as the current density flow of image intensity.

Proposition 3. The local maxima and local minima are start-points and end-
points of the figure flow curves.

Geometrically, the local maxima and local minima are sources and drains of
the figure flow curves. The saddle points are confluent points of two inward
and two outward figure flow curves, which are called separatrices. The following
proposition indicates that the net field flux from the scale-space saddle is zero.

Proposition 4. The scale space stationary point is a divergenceless point of the
figure field.

Proof. The scale-space stationary point is the point where the spatial and scale
derivatives of f(x, τ) are zero. Therefore, the scale-space stationary point is the
spatial stationary point at which the Laplacian vanishes since ∂f/∂τ = Δf = 0.
This mathematical property indicates ∇�F = −∇�∇f = 0. ��

Proposition 4 implies that the scale-space stationary point, or the scale-space
saddle, is a confluent point where inward and outward figure flow are balanced
and totally cancelled out. Griffin [4] classified the saddle point into the ridge-like,
trough-like and balanced saddle point according to the sign of the Laplacian. The
ridge-like and trough-like saddle points are the confluent points where the net
field flux is negative and positive, respectively.
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2.3 Graph

A topology of the two-dimensional scale-space image f(x, τ) can be represented
by a graph. Since two inward figure flow curves at a saddle point connect the
sources of the curves, the saddle point is representative of a link of the sources.
Supposing that the local maximum point is the sources of the figure flow curves,
we regard the local maximum point and the saddle point as the vertex and edge
of the graph, respectively. The local minimum is the face of the graph. Thus, the
graph is obtained from the figure field by the following rules:

1. Fix vertices at the local maxima.
2. Link the vertices with pairs of figure flow curves from saddle points to local

maxima.
3. Remove the local minima and corresponding figure flow curves to generate

faces.

Figure 1 illustrates the figure field and corresponding graph. Since the graph
preserves its topology unless the stationary points are annihilated or created, we
describe the structure of scale-space images as an identical graph between the
scales of the annihilation or creation events. Generally, the graph is simplified
according to the diffusion of image f(x, τ).

The graph is simplified preserving its Euler’s characteristic,

χ = V − E + F, (14)

Fig. 1. Figure field and corresponding graph

Fig. 2. Self-loop
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where V , E and F denote the number of vertices, edges and faces of the graph,
respectively. The Euler number χ = 2 when a point at infinity is considered.
The point at infinity can be regarded as a local minimum for positive scale-
space images. Note that the graph does not have edge-intersections. The graph
may have double edges and self-loops. A face inside a self-loop also represents a
local minimum, which is connected to the point at infinity as shown in Fig. 2.
An example of this self-loop can be found in Section 5.

3 Hierarchy

In this section, we show that the stationary curves and figure field completely
define the scale-space hierarchy. We briefly deal with two-dimensional images to
simplify the discussion. The principle we suggest in this section can be applied
to higher dimensional cases.

3.1 Connectivity

Let us consider the stationary curves in the scale space. The saddle points should
be taken into consideration to clarify the connectivity of stationary points. While
the maximum and minimum points are geometric cues for the extraction of the
dominant parts of the image function, the saddle points play important role in
the following aspects:

– The saddle points represent connections among the extrema. The saddle
points appear on ridges and troughs which connect local maximum points
and local minimum points, respectively.

– The saddle points are involved in annihilations and creations of the station-
ary points [4, 5]. In two-dimensional case, an extremum point annihilates
when it comes across a saddle point at a singular point with increasing τ in
the scale space.

The stationary points are connected by the stationary curves in the scale
space. The endpoints of the stationary curves are the singular points. Some
singular points are connected by the stationary curves to the other singular
points in higher scale. Suppose that the connectivity of singular points described
above is expressed as a tree. The leaves of the tree are the stationary points at the
finest scale. The nodes of the tree are the singular points. The branches represent
the connections by the stationary curves. However, there exist the annihilation
points without connections to any other singular point in higher scale. In order
to describe the scale-space hierarchy by a single tree, it is essential to find the
stationary points to which the annihilation points are connected. Such stationary
points can be found considering the figure flow curves.

Let us observe the annihilation events. Figure 3 shows images of blobs and
corresponding stationary curves in the scale space. The blobs are in an isotropic
Gaussian shape, and the centers of the blobs are distributed at vertices of isosce-
les triangle with two long equal sides. A singular point at τ = 1195 is the annihi-
lation point without connection. The scale-space images at τ = 1195 is pictured
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 100

 1000

scale

(a) (b) (c)

Fig. 3. Blobs at vertices of isosceles triangle with two long equal sides: (a) initial image,
(b) stationary curves in (x, y, τ) scale space, and (c) the scale-space image at τ = 1195.
Black and gray points in (b) correspond to extrema and saddles. Shoe point and local
maximum point are indicated with square and circle in (c), respectively

Fig. 4. Scale-space tree of Fig. 3(a). Solid lines and dotted line indicate the connections
via stationary curves and figure flow curve, respectively

in Fig. 3(c). We consider the figure flow curves starting and ending at the an-
nihilation point. The annihilation point of maximum point and saddle point,
which appears in this case of triangle with long equal sides, is called a shoe point
[4, 6]. The shoe point has outward figure flow curves, but only one figure flow
curve penetrates into the shoe point along the “instep” of the shoe. This figure
flow curve connects the shoe point to another maximum point, which can be
regarded as a parent of the shoe point. Therefore, in the case of the triangle
with long equal sides, the hierarchical structure can be described by a tree as
shown in Fig. 4.

However, we cannot always identify the stationary point as the parent of
annihilation point in the finite domain of image. Figure 5 shows a case of isosceles
triangle with two short equal sides. We find an annihilation of minimum point
and saddle point at τ = 166 (Fig. 5(c)). This annihilation point has inward figure
flow curves, but only one outward figure flow curve is found. The outward figure
flow curve reaches to the end of the region of image. This example suggests that
the annihilation point is linked to a drain of whole image intensity.

3.2 Stationary Point at Infinity

We conclude that the annihilation point of the local minimum in Fig. 5 is con-
nected to a point at infinity. If the image function f(x, τ) is defined in the
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 100

 1000

scale

(a) (b) (c)

Fig. 5. Same as Fig. 3 but for an image of blobs at vertices of isosceles triangle with
two short equal sides. The annihilation point of local minimum and saddle at τ = 166
is indicated with square in (c)

infinite domain, all of the outward figure flow curves from the whole region of
the image are considered to converge at the point at infinity. Since the image
function f(x, τ) is positive, the point at infinity is a drain, that is, the local
minimum point. This local minimum point at infinity is representative of the
dark background of the positive image. The local minimum point at infinity re-
sides throughout the scale. We define the collection of local minimum points at
infinity as the local minimum curve at infinity.

Furthermore, we presume that the local minimum point at infinity is annihi-
lated with one remaining maximum point at infinite scale. This concept allows us
to connect the remaining maximum curve to the local minimum curve at infin-
ity. Consequently, the annihilation point is connected to the remaining maximum
curve through the figure flow curve and the local minimum curve at infinity.

3.3 Scale-Space Tree

The hierarchical structure of image is described by a tree. The root of the tree
is a virtual annihilation point of the local minimum point at infinity and re-
maining maximum point at infinite scale. The nodes of the tree are singular
points. Stationary points which are connected to the annihilation points by the

−→

Local minimum curve
at infinity

Fig. 6. Scale space tree of Fig. 5(a). The annihilation point of local minimum and
saddle is linked to a local minimum point at infinity, which is annihilated with the
remaining maximum point at infinite scale
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figure flow curves are also selected as the nodes of the tree. Some nodes may
be the points at infinity. The leaves of the tree are the stationary points at the
finest scale including the local minimum at infinity. The branches indicate the
connections between the nodes by the stationary curves in the scale space and
the figure flow curves. Thus, the figure field and stationary curves define the
scale-space hierarchy. Figure 6 illustrates the construction of tree for the image
in Fig. 5(a).

4 Segmentation

We achieve the segmentation using the Voronoi tessellation. We regard the ex-
trema in the scale-space image as the Voronoi generators. Each local maximum
point, which is the vertex of the graph, is representative of a segment which
corresponds to a dominant part of bright object in the scale-space image. The
local minimum point, which is assigned to the face of the graph, represents a
cavity in the image.

We also consider the metric in the linear scale-space. The linear scale-space
is also called the Gaussian scale-space. Gaussian kernel with a deviation

√
2τ is

the Green’s function of the linear diffusion equation of (1) at an infinite domain.
Therefore, influence of an arbitrary point p on the point x is quantified by the
Gaussian function; that is,

f̂(x,p) = f exp(−|x − p|2
4τ

) = exp(−|x − p|2
4τ

+ ln f). (15)

We define the Voronoi distance in the linear scale-space, using the exponent in
(15) as,

d(x,pn) =
|x − pn|2

4τn
− ln fn, (16)

where pn is the position of Voronoi generator. In this paper, we assign τn in
(16) as the scale of vanishing point corresponding to pn. Such scale is iden-
tified as the coarsest scale of the stationary curve to which the generator pn

belongs. The coefficient fn is selected as the intensity at the vanishing point.
It is also possible to assign the scale where a scale-space saddle appears on
the saddle curve associated with the extremum point pn, which is the same
idea as [5].

The Voronoi distance (16) is similar to the power distance [8] or the com-
poundly weighted Voronoi distance [7] with the first and second weights being
4τn and ln fn, respectively.

The segmentation is performed by partitioning the space into the regions
where all the interior points are closer to the corresponding Voronoi generator
than to any other. The segments roughly estimate the shapes of objects and
cavities corresponding to the extrema.
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5 Numerical Example

We demonstrate the extraction of scale-space hierarchy and the segmentation by
the Voronoi diagram. As a two-dimensional example, we take a slice of simulated

τ = 0 τ = 10 τ = 30 τ = 87

 10

 100

scale

τ = 93 τ = 96 τ = 125

Fig. 7. Scale-space images of 256 × 256 MRI of brain, together with the figure flow
curves. The top left panel shows the initial image. Scale increases from left to right, top
to bottom. Maxima, minima and saddle points are indicated with open circles, filled
circles and crosses, respectively. The bottom right panel plots the stationary curves

τ =10 τ =19 τ =30 τ =85 τ =87

τ =90 τ =93 τ =95 τ =96 τ =97 τ =125

τ <19 19< τ <85 85< τ <90 90< τ <95 95< τ <97 97< τ

Fig. 8. Figure flow curves and graphs of the MR brain images. The first and second
rows show the evolution of figure flow curves in increasing order of scale. Annihilation
points are indicated with square. The third row is a series of graphs
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Local minimum curve
at infinity

(a) (b)

Fig. 9. Hierarchy and segmentation of the MRI of brain: (a) scale-space tree, and (b)
scale-space image at τ = 10, together with Voronoi boundaries. Dots in (b) indicate
the Voronoi generators

MR brain image from the Brain Web [10]. Figure 7 shows 7 different levels of
scale-space images and the stationary curves in (x, y, τ) scale space. The scale-
space image at τ = 10 has 4 maxima, 2 minima (except a point at infinity) and
5 saddle points. Their trajectories in the scale space are the stationary curves
shown in the bottom right panel in Fig. 7. The stationary points are annihilated
with increasing scale.

The figure flow curves and corresponding graphs are schematically illustrated
in Fig. 8. The figure flow curves clarify the connections among the annihilation
points and stationary points at each scale. Here, we note again that a single
inward (outward) figure flow curve is found at every annihilation point of lo-
cal maximum (minimum) point and saddle point. This single figure flow curve
connects the annihilation point and extremum.

We see a self-loop in the scale-space image between τ = 95 and τ = 97. The
local minimum point in the self-loop represents a dark internal region of brain
image. This minimum point is related to a point at infinity, which represents the
dark background of the image.

The resulting scale-space tree and the Voronoi tessellation at τ = 10 are
shown in Fig. 9. The hierarchical structure is successfully determined by the
figure field at each scale and stationary curves in the scale space. The segmenta-
tion is achieved without edge detection. The Voronoi segments approximate the
shapes of dominant regions corresponding to the extrema.

6 Concluding Remarks

Firstly, we showed that the figure field and stationary curves define the scale-
space hierarchy. The stationary points have connectivity among them through
the figure flow curves and the stationary curves in the scale space. Accounting a
point at infinity as a drain of the figure flow, we obtain a complete connectivity
to determine the scale-space hierarchy. The hierarchical structure is described
as a tree. Nodes of the tree are the singular points and the stationary points as
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parent nodes of annihilation points. Branches of the tree indicate the connections
by the figure flow curves and the stationary curves in the scale space. The point
at infinity is connected to a remaining maximum point at infinite scale.

Secondly, we achieved the segmentation of the scale-space image by the
Voronoi tessellation, using the extrema as the Voronoi generators. The Voronoi
distance is derived from the Gaussian kernel, which quantifies influence of an
arbitrary point in the image. The Voronoi tessellation enables us to extract the
boundaries of segments instead of edge detection, using only the geometric distri-
bution of stationary points and their image intensities. The topological relations
of the segments are described as a graph. Vertices, edges and faces of the graph
correspond to the maximum points, saddle points and minimum points in the
scale-space image, respectively. This graph is obtained from the figure field.

Since it is difficult to detect the object boundaries from blurred linear scale-
space images, the boundary detection has been achieved by nonlinear scale-
space analyses based on the gradient map [11, 12]. However, the nonlinear scale-
space analyses have difficulties to probe the deep structure and to extract scale-
space hierarchy. On the other hand, the linear scale-space has advantage of
the extraction of the deep structures from the images observing the stationary
points and figure field, as discussed in this paper. The essential points of our
argument are to describe the deep structures and to extract object boundaries
simultaneously, with theoretical support.
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Abstract. In this paper, a novel method for detecting man-made objects in 
aerial images is described. The method is based on a simplified Mumford-Shah 
model. It applies fractal error metric, developed by Cooper, et al [1] and 
additional constraint, a texture edge descriptor which is defined by DCT 
(Discrete Cosine Transform) coefficients on the image, to get a preferable 
segmentation. Man-made objects and natural areas are optimally differentiated 
by evolving the partial differential equation using this Mumford-Shah model. 
The method artfully avoids selecting a threshold to separate the fractal error 
image, since an improper threshold may result large segmentation errors. 
Experiments of the segmentation show that the proposed method is efficient. 

1   Introduction 

Automatic detection of man-made objects such as buildings or roads from digital 
aerial images is useful for scene understanding, image retrieval and surveillance etc. 
However it is a scientifically challenging task, since the images of natural scenes 
contain large amount of clutter. Many researchers have devoted to detect and 
recognize the man-made objects in aerial images.  

The works of Segmentation of man-made objects can be mainly classified into 
model based and feature based methods. Based on models and strategies, Helmut 
Mayer[2] surveyed the state-of-the art automatic building extraction approaches. Jia 
Li[3] proposed an algorithm which modeled image by two dimensional hidden Markov 
models (HMM’s), used EM algorithm to estimate the HMM parameters and classified 
the image blocks which represented by DCT coefficients with maximum a posteriori 
probability. The parameter estimation in HMM is very difficult and expensive to 
compute. A.L.Reno[4] used a two-dimensional viewer-centered model, which was 
represented by a deformable template. A continuous probability density is defined for 
this template. Coupling the model and image information can give a measure to label 
the objects. J.L.Solka [5] made use of feature sets including coefficient of variation in 
a window, fractal dimension etc, and used standard Fisher Linear Discriminant (FLD) 
for dimensionality reduction problem to get a series of feature vectors. Classification 
is accomplished by using a Gaussian model and computing the likelihood ratio which 
is to decide class membership. Chuck Smyrniotis[6] described a knowledge-based 
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vision system for recognizing and classifying man-made objects, integrated many of 
common features, provided models for various objects of interest, and used various 
sensors, image types as well as resolutions to model each object. It is based on image 
and goal profile parameters to tag the objects. Although mostly the methods that are 
based on models can identify the objects of interest and reasonably segment the man-
made area, it’s very difficult to give an exact model for the aerial images since the 
images are cluttered up with so many natural objects. In addition, the computation of 
estimation model parameters is expensive and complex. 

Mark.J Carlotto [7] proposed a method based on matching the local histogram 
against a family of Weibull densities, for regions containing man-made objects have 
Weibull parameter values smaller than those containing natural features. Stephen 
Levitt [8] designed a homogeneous operator to highlight uniform regions to segment 
the aerial image. B.E.Cooper[1] designed fractal error metric as a measure for the 
natural image features fit a fractional Brownian motion (fBm) model while man-made 
objects not. Thresholding the feature image can get the man-made features. But it’s a 
crucial problem to set a proper threshold.  Some related works [9][10] using this metric 
focus on how to segment or classify man-made objects had been discussed. Though 
these methods based on features lack high level analysis or understandings, they are 
fast, simple and effective in fact. Some works integrate color, texture, height 
information [11] to solve the problem and others [12][13] focus on road extraction.  

Detection of man-made objects from aerial images is in fact a partition of man-
made and natural areas. Chan and Vese proposed the active contour evolving method 
based on Mumford-Shah model, which is an optimal segmentation one. This paper 
focuses on low resolution ( m1> ) and medium resolution ( m2.0≥ and m1≤ )[2] 

aerial images, presents a novel method based on Mumford-Shah model and integrates 
the fractal error and texture edge features. The proposed method uses a level set 
formulation and algorithm for minimizing the Mumford-Shah model energy by 
evolving a zero level set function. The segmentation border may change topology, 
break, merge and form sharp corners easily as the level set function evolves. The 
paper is organized as follows. section 2 discusses details of the features. Section 3 
describes the full segmentation algorithm. Then, section 4 presents several tests and 
results. Finally, conclusions are given in section 5. 

2   Feature Extraction 

The choice of appropriate features is important for a man-made objects detection 
system. In this section, we describe our feature extraction technique, including the 
fractal error metric and the texture edge features. 

2.1   Fractal Error Metric 

Fractal error defined by Cooper, et al. [1] is based upon the observed propensity of 
natural image features to fit an fBm model. Natural scene features fit this model well 
and produce a small fractal error while man-made features usually not and produce a 
relatively large error. Due to its excellent ability to differentiate man-made features 
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from natural scenes we use the metric in our method. Let ]255,...,0[)( ∈xI  be a 
two-dimensional 8-bit gray image, ),( cr xxx =  specifies the row and column co-
ordinates of the image. In an image block, if )(xI  fits the fBm model, then the 
following equations hold for some H and some k : 

HxxkxIxIE |||])()([| 1212 −=−                         (1) 

i.e. H
x xkIE |||][| || Δ=Δ Δ           0,10 ><< kH  

The fractal dimension D is related to the parameter H  by the 
formula HTD −+= 1 , where T is the topological dimension, and 2=T . The 

distance between a pair of pixels is |||| 12 xxx −=Δ , and the difference in gray 

shade between these pixels is )()( 12|| xIxII x −=Δ Δ . A linear equation may be 

obtained by taking the logarithm of each side: 

|)ln(|)ln(|])[|ln( || xHkIE x Δ+=Δ Δ                        (2) 

Estimates of H and k can be found by using a linear regression. These estimates of 

H and k can then be used to calculate the fractal error using the equation (3). 

H
xx xkIEerror |||][| |||| Δ−Δ= ΔΔ                             (3) 

Using a center-oriented window and let n be the number of pixel distances 
considered in it, the root mean square (RMS) error can be computed. 

Δ
Δ=

||

2
|| )(

1

x
xerror error

n
RMS                              (4) 

The RMS error is the degree to which a pixel can be considered to be part of a fractal-
like texture element. A pixel’s RMS error is calculated and saved, after which the 
window is moved and the process is repeated over the entire image. Then we get a 

fractal error image FI . 

2.2   Texture Edge Feature 

Aerial image reflects the ground features or topography which has some texture 
structure such as desert, forest, field, etc. Textures are characterized by properties of 
the surfaces, boundaries, and relative properties between connected surfaces. 
Obviously there are lots of texture features in the aerial images. Clutter and 
discontinuous edges can be produced by using traditional edge detection operators 
such as Robert, Laplace and other operators. These operators do not fit for the edge 
location task. Paper [14] reviews most texture feature extraction approaches and 
performs a comparative study. Relatively the DCT approach is excellent due to its 
good overall performance and low complexity. We use DCT coefficients which 
represent some gray level variations and dominant directions to extract the texture 
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edge features. The edges extracted are robust and could avoid the disturbance of 
noises within the texture.  

Two-dimensional NN ×  DCT coefficients ),( lkv  of an image block NNW ×  are 

given as 
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The mean value of the block is related to the DCT coefficients as: )0,0(
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In addition, the DCT coefficients have several different spatial features since DCT 
coefficients provide the frequency domain information in the block.  
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In eq. (6)(7)(8), ),0( lv describes the horizontal high frequency, and can also reflect 

the horizontal texture edge, )0,(kv describes the vertical high frequency, 

),( lkv represents the mixed horizontal and vertical high frequencies. Therefore the 

texture edge feature edgeDCT is defined as eq. (9). It helps to locate the exact border 

between the man-made areas and natural scenes. 
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The size of the block can be 8×8, 16×16 or 32×32….according to the variety of 

textures. A pixel’s edgeDCT feature is calculated, after which the block is moved and 

the process is repeated over the entire image. Then we get a texture edge image DCTI . 
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3   Segmentation of Man-Made Objects 

Features discussed above can be represented as feature images FI , DCTI . We need to 

integrate the information to get an effective segmentation. In fact man-made objects 
detection is a separation of man-made areas from natural scenes. Chan and Vese [15] 
proposed an algorithm based on Mumford-Shah model which could give an optimal 
partition of man-made objects. This model has been widely used for image 
smoothing, segmentation, and surface reconstruction. We modify the algorithm for 
evolving interfaces to extract the goal areas. 

3.1   Proposed Segmentation Algorithm 

Let Ω be the image domain for intensity gray image ( )yxI , . Let C be a simple, 

smooth, closed initial curve in 2R which separates the image into two 

areas ( )yxIo , , ( )yxIb , . oω  is the object area and bω is the background. oc is the 

mean value inside of the curve C , bc is the mean value outside of the curve C . The 

goal of the model is to find true edges oC  between man-made features and natural 

scenes. The energy function is as follows: 

( ) ( ) ( )
( ) ( )

−+−=+=
Coutside bCinside obo dxdycIdxdycICFCFCF

22
   (10) 

The minimum of the above energy will be an optimal piecewise-smooth 
approximation of the edge, so selecting the Mumford-Shah model is very fit for our 
problem. We use a level set formulation and algorithm for minimizing the Mumford-
Shah energy introduced by S.Osher and J.Sethian.[16] In level set equation  

0|| =∇+ φφ Ft                                                  (11) 

F is the speed function, the position of the closed curve is given by the zero level set 
of φ , φ is the level set function and always expressed by the signed distance function 

according to the initial closed curve. The evolving function ),( txφ  always remains a 

function as long as F is smooth, so the propagating hyper-surface may change 
topology, break, merge, as the function φ evolves. 

A partial differentiate equation on the implicit function φ  is as follows: 
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Where H is the Heaviside function, ( )
0

0

0
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When we use the numerical algorithm for solving the above Euler-Lagrange 

equations, we use ( )yx,φ∇  to replace Dirac function ( )( )yx,φδ  in order to 

expand the evolving space to the whole image. 

From equation (12), we obtain the evolving equation to segment aerial images. 
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   (13)  

i
FI and

o
FI  are the mean values inside and outside of the closed curve for the fractal 

error image while
i

DCTI and
o

DCTI  for texture edge image. 2121 ,,, ooii  denote 

relative weighting parameters for the smoothness and domain boundary length terms.  

3.2   Procedure of Segmentation: 

(1) First of all, given an initial closed curve in the aerial image. Set the 

parameters 22 , oi  to zero when evolving the (13) equation at first. The speed 

of the curve depends on the curvature of the curve and fractal error. The curve 

propagates and approaches to the man-made areas little by little.  

(2)  Add the additional constraint- texture edge force to the speed when the change of 

areas between two evolving steps is smaller than a predefined threshold T . It 

can not only avoid the disturbance of natural texture edge (That’s why we do not 

use DCT measure during the first stage of curve evolution), but also make the 

curve smooth and get an exact location.  

(3) Update and evolve the level set function φ  according to (13) until the stop 

criterion is met. The areas inside the closed curves are the areas we aim to 

achieve. 

4   Experiment Results and Discussion 

In these experiments, we set the size of the image block 99× when computing the 

fractal error metric, and set it 88× for edgeDCT (we set the move step 4 to reduce the 

computation). )100100/( ×= imageNT , imageN is the total size of the image. 

Set 3/2,3/1 1122 ==== oioi  when adding the texture edge constraint. 
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Fig. 1. Comparison of segmentation results. (a) Original 8-bit gray aerial image. (b) Texture 
edge image. (c) Fractal error image. (d) Histogram of the fractal error image. (e) Threshold=59. 
White: man-made. (f) OSTU threshold image. White: man-made. (g) Segmentation results only 
depend on the fractal error feature. (h) Our method results. (i)White: man-made areas 

We tested the man-made feature segmentation algorithm using many aerial images. 
Fig.1 (c) is the fractal error image (normalized from 0 to 255). The lighter areas in the 
fractal error image correspond to pixels with higher fractal errors; the darker areas 
correspond to lower fractal errors. Thus, lighter areas in the resultant image (e),(f) 
tend to indicate man-made objects. In Fig.1 (e) we set the threshold 59 in order to get 
the  minimum  error compare with the man-made areas by hand-labeled segmentation.  

(a)                       (b)            (c) 

(d)          (e)            (f) 

(g)          (h)            (i) 
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Fig. 2. Segmentation results 

From Fig. 1 (e) and (f) we can see that it’s very difficult to set a proper threshold. The 
segmentation error varies greatly according to the threshold. The border of the man-
made area zigzagged through the image. Using the fractal error constraint to evolving 

1.(a)                       2.(a)                        3.(a)

1.(b)                      2.(b)                        3.(b)

4.(a)                         5.(a)                          6.(a)

4.(b)                         5.(b)                          6.(b)



394 G. Cao, X. Yang, and D. Zhou 

 

the curve, we get many small areas and a lot of sinuous curves. The areas inside of the 
closed green curves in Fig.1 (g) are the man-made objects extracted using the only 
fractal error constraint. Some of the curves do not locate the true edges of the man-
made objects. But when we introduce another constraint- texture edge feature, the 
areas extracted are more precise than ever and its borders are also smooth. Some other 
tests are shown in Fig.2. Although some areas of roads or buildings are not extracted 
and some natural scene areas are partitioned to man-made objects, most man-made 
objects extracted are reasonable and exact. 

5   Conclusions 

Man-made objects detection is very significant for scene understanding, image 
retrieval, surveillance etc. so we attempt to deal with the issue. In this investigation 
we have introduced fractal error metric and have defined a new texture edge 
descriptor by using DCT coefficients. Our method is based on Mumford-Shah model 
which can give an optimal segmentation. We use a level set formulation and 
algorithm for minimizing the Mumford-Shah energy function with fractal error and 
texture edge constraints. Experiments have shown our proposed method is an 
effective method for extraction of man-made objects. 
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Abstract. A second order partial differential operator is applied to an
image function. By using a multigrid operator known from the so-called
approximation property, we derive a new type of multiresolution de-
composition of the image. As an example, the Poisson case is treated
in-depth. Using the new transform we devise an algorithm for image
fusion. The actual recombination is performed on the image functions
on which the partial differential operator has been applied first. A fusion
example is elaborated upon. Other applications can be envisaged as well.

Keywords: This work was carried out under project CWI - PNA4.2
“Image Representation and Analysis”.

1 Introduction

We seek to integrate multigrid methods [4] for the numerical solution of partial
differential equations (PDEs) with image processing methods. Modeling by PDEs
emerges as a powerful approach to the formulation of image processing problems.
An example is the level set method [12] originating from computational physics
which was transferred to image analysis [15] in the mid 90s. It found important
applications like restoration of degraded images and image segmentation.

There exists a repository of modern methods in numerical mathematics from
which image processing can benefit [2, 22]. In particular we allude to multigrid
methods for the solution of PDEs, hereby involving a multiresolution approach.
This method, which exists for a few decades, accelerates a basic iterative tech-
nique by means of coarse grid corrections, resolving the low-frequent components
on coarser grids with increasing mesh-size (see Figure 2). If well-designed, this
method holds out the prospect of optimal computational complexity. It has found
applications in the computationally highly demanding computational fluid dy-
namics. One observes that in a parallel development, multiresolution has become
an important ingredient for image processing as well.

We devise and investigate a new image processing method which involves
the concepts of image transforms, PDEs and multiresolution all in one. Instead
of the more traditional multiresolution transforms, we propose to transform by
means of discretized partial differential operators on a sequence of increasingly
coarsened grids.

Terzopoulos [19] was the first to apply multigrid for image analysis. More
recently, the use of multigrid for image processing purposes has been proposed

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 396–407, 2005.
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by Acton [1], Kimmel et al. [9], Shapira [16] and others. However, its use was
restricted to the efficient solution of partial differential equations (typically diffu-
sion and Euler-Lagrange equations) which could also be achieved by other means.

In this paper multigrid operators are used as an intrinsic and indissoluble part
of the transform. Here and now the transform is applied to image fusion but it
may have future implications for image segmentation and edge detection. The
paper is organized as follows. After preliminaries in Section 2 we are ready for
the introduction of the multigrid image transform in Section 3 and the multigrid
fusion algorithm in Section 4. We end up with concluding remarks.

2 Recapitulation and Preliminaries

Image fusion seeks to combine images in such a way that all the salient infor-
mation is put together into (usually) one image suitable for human perception
or further processing. It is hard to overrate the practical importance of image
fusion. For example, for the purpose of surveillance one and the same scene is
recorded by cameras operating for different bands of light and needs to be dis-
played onto one screen, preferably in real-time. Similar applications exist in the
fields of defense, geoscience, robotics and medical imaging.

The multigrid method solves discretized elliptic, parabolic and hyperbolic
PDEs as well as integral equations by accelerating a basic iterative solution
process through adequate coarse grid corrections. If well designed and imple-
mented, multigrid algorithms offer the possibility of computational complexity
and storage which are linearly proportional to the number of grid-points. For a
historical overview of the development see Wesseling [23]. Today, it continues to
evolve from an advanced numerical technique towards an established method.
Nowadays extensive literature is available on multigrid. Here we merely point to
Brandt [4], Hackbusch [8], Wesseling [23] and (more recent) to Trottenberg et
al. [21] and Shapira [16].

Firstly, we discuss the multiresolution approach to image fusion. Secondly, we
briefly discuss multiresolution transforms. Thirdly, we recapitulate on multigrid.

2.1 Multiresolution Image Fusion

There exist various categories of techniques for image fusion, but we merely con-
sider methods by means of the multiresolution (MR) approach. The basic idea is
demonstrated by Figure 1 (cf. [14–Figure 6.6]). At the decomposition stage the
input images (iA, iB , iC , . . . ) are transformed into multiresolution representa-
tions (mA, mB , mC , . . . ). The transform is symbolized by Ψ . At the combination
stage (C) the transformed data are fused. In the context of wavelets, Li et al. [10]
proposed to apply the maximum selection rule for the detail coefficients as fusion
rule. For instance, in the case of three input images, we select from each triplet of
geometrically corresponding detail coefficients the one that is largest in absolute
value. From the composite multiresolution representation mF thus obtained, the
fused image iF is derived by application of the backtransform Ψ−1. Many far
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iA � Ψ � mA
�

�
��

iB � Ψ � mB
�

iC � Ψ � mC
�

�
��

C � mF
� Ψ−1 � iF

Fig. 1. MR image fusion scheme. Left: MR transform Ψ of the sources; middle: com-
bination in the transform domain; right: inverse MR transform Ψ−1 of the composite
representation

more sophisticated fusion rules have been invented by now, e.g. one that is based
on maximizing luminance contrast [20]. For an overview see Piella [13, 14].

2.2 Transform and Backtransform

What schemes like Laplacian pyramids [5], gradient pyramids [6], steerable pyra-
mids [17], wavelets [11]), and the lifting scheme [18] have in common is that they
involve filters for the decomposition and the reconstruction, down- and upsam-
pling towards and from scales and storage of approximation coefficients and
detail coefficients collected in so-called bands.

Part of the new transform that we propose here involves the discretized ver-
sion of −∇ · (D∇u) (where D(x, y) is a positive definite 2 × 2 matrix function,
for the time being assumed to be a constant times the identity matrix) that is
applied to the image. One observes that hereby the outcome vanishes at smooth
regions of an image but becomes substantial where edges occur. The transforms
are applied with respect to a sequence of increasingly coarsened grids, see Fig-
ure 2. At a certain stage the (back)transform involves the solution of large linear
systems of equations as it needs to invert the said discrete operators again.
However, the costs of solution of such systems need not to be prohibitive any-
more, e.g. see [3]. The procedure is explained in much detail in Section 3 after a
recapitulation of a particular multigrid algorithm.

2.3 Multigrid Algorithm

De Zeeuw (this author) published a paper on a robust multigrid algorithm for
the numerical solution of diffusion and convection-diffusion problems [24]. The
algorithm has been implemented and exists by the name of MGD9V. This paper
is here of particular importance and we recapitulate particular items that we
need. For the multigrid method to be discussed we consider a set of increasingly
coarser grids (vertex-centered):
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Ω2 Ω1 Ω0

Fig. 2. Example sequence of increasingly coarsened grids used in multigrid (vertex-
centered)

Ωn ⊃ Ωn−1 ⊃ . . . Ωk ⊃ . . . ⊃ Ω0.

The grids are described as follows:

Ωk ≡ {(xi, yi) | xi = o1 + (i− 1)hk, yi = o2 + (j − 1)hk} (1)

where (o1, o2) is the origin and hk−1 = 2hk. See Figure 2 for an example. S(Ωk)
denotes the linear space of real-valued functions on Ωk

S(Ωk) = {gk | gk : Ωk → R} ,

where gk ∈ S(Ωk) is called a grid-function. The algorithm is intended for the
solution of linear systems. Its scope is the solution of linear systems resulting
from the 9-point discretization of the following general linear second-order elliptic
partial differential equation in two dimensions:

Lu ≡ −∇ · (D(x)∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = f(x) (2)

on a bounded domain Ω ⊂ R2 with suitable boundary conditions. D(x) is a
positive definite 2 × 2 matrix function and c(x) ≥ 0. We suppose that Ω is a
rectangular domain. It is assumed that the discretization of (2) is performed by
a finite element or finite volume technique, leading to

Lnun = fn (3)

where un and fn are grid-functions defined on the grid Ωn. The discretization
on the finest grid Ωn evokes the linear system (3). The grids need to be neither
uniform nor rectangular, problem (3) may be discretized on a curvilinear grid.

The code performs only for the scalar case and within the constraints of a
regular domain and a structured grid. Incomplete line LU-factorization is used
as basic iterative method. Like for other basic iterative methods, the convergence
is slow for low-frequent components in the residual. It is accelerated by coarse
grid corrections, resolving the low-frequent components on coarser grids with
increasing mesh-size. The algorithm of MGD9V is therefore an example of a



400 P.M. de Zeeuw

multigrid method. Let un be an approximation of un, the coarse grid correction
(CGC) then reads:

rn−1 = Rn−1(fn − Lnun); (4)
solve Ln−1en−1 = rn−1; (5)

ũn = un + Pnen−1. (6)

Where
Rk−1 : S(Ωk) → S(Ωk−1), k = n, . . . , 1 (7)

is the restriction operator that transfers the residual from the grid Ωk onto the
coarser grid Ωk−1, and

Pk : S(Ωk−1) → S(Ωk), k = n, . . . , 1 (8)

is the prolongation operator that interpolates and transfers a correction for the
solution from the coarser towards the finer grid. The operator Lk−1 is defined
by the sequence of operations

Lk−1 ≡ Rk−1LkPk, k = n, . . . , 1. (9)

known as the Galerkin coarse grid approximation. The diagram of Figure 3 illus-
trates the coherence of the above mentioned operators. We choose the restriction
to be the transpose of the prolongation

Rk−1 = PT
k , k = n, . . . , 1. (10)

Hence, once Pk has been chosen, Rk−1 and Lk−1 follow automatically. The code
actually computes the coarse grid matrix of Lk−1. Note that by (10) the pos-
sible (anti)symmetry of Lk is maintained on the coarser grid. Further, it has
been proved [24] that when Lk is a conservative discretization of L and Pk in-
terpolates a constant function exactly, then the Galerkin approximation Lk−1 is
conservative as well. In the case of e.g. the Poisson equation and discretization
by bilinear finite elements, bilinear interpolation is the natural choice for Pk. In
the case of discontinuous diffusion coefficients a far more sophisticated choice is
required [24].

The importance of the CGC can be seen as follows (for pointers to a more
rigorous analysis see the earlier listed references). For the sake of argument
suppose that the system of stage (5) has been solved exactly. By (9) it follows
that after such an ideal coarse grid correction the restriction of the residual
vanishes

Rk−1(fk − Lkũk) = 0k−1. (11)

This means that at each coarse grid point a weighted average (with non-negative
weights) of the fine-grid residual is zero, which implies that the residual consists
of short wavelength components only. Such components can be reduced efficiently
by a subsequent smoothing (relaxation) step. In practice, the system of stage (5)
is not solved exactly. Instead, the algorithm is applied in a recursive manner with
respect to the solution of (5). This completes one so-called multigrid cycle.
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S(Ω0) S(Ω0)

S(Ωn−2) S(Ωn−2)

S(Ωn−1) S(Ωn−1)
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�

S(Ωn) S(Ωn)

Pn−1

Pn

Rn−2

Rn−1

L0

Ln−2

Ln−1

Ln

...
...

Fig. 3. Diagram of Galerkin approximation

In general, the multigrid method holds out the prospect of a computational
complexity which is directly proportional to the number of unknowns. The al-
gorithm of MGD9V comes up to these expectations.

3 The Multigrid Image Transform

We introduce the multigrid image transform and discuss some of its properties.

3.1 Definition and Properties

We define the multigrid approximation operator: Ek : S(Ωk) → S(Ωk) as follows:

Ek ≡ L−1
k − PkL

−1
k−1Rk−1, k = 1, . . . , n. (12)

This operator plays an important role in convergence proofs in multigrid the-
ory. It is associated with the so-called approximation property. Under a certain
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regularity of the boundary value problem (2), a discretization (3) by (bilinear)
finite elements, and Pk is bilinear interpolation, it can be shown that (see Hack-
busch [8–§6.3]):

‖Ek‖2 ≤ Ch2
k (13)

where hk is the mesh-size of Ωk and ‖ · ‖2 is the Euclidean norm on S(Ωk).
Let un be an image, defined as a grid-function on S(Ωn). Then compute

grid-function fn = Lnun, for the definition of Ln see (2) and (3). An important
example for L is the Poisson operator, this is discussed in Section 4.2. Let

fk ≡ Rkfk+1, k = n− 1, . . . , 0 (14)

then we define the multigrid image transform or multigrid image decomposition
as follows {

a0 = L−1
0 f0,

dk = Ekfk, k = 1, . . . , n. (15)

The ak are called approximations and the dk are called details. The reconstruc-
tion counterpart reads:

ak = Pkak−1 + dk, k = 1, . . . , n. (16)

Proposition 1. Regarding (3), (7)–(9), (12), (14)–(16) it follows that

Lkak = fk, k = 0, . . . , n.

Proof. By definition, the statement holds for k = 0. From decomposition (15) it
follows that

Lkdk = LkEkfk = (Ik − LkPkL
−1
k−1Rk−1)fk, k = 1, . . . , n

where Ik is the identity operator on S(Ωk). Then multiplying (16) by Lk leads
to

Lkak = LkPkak−1 +(Ik −LkPkL
−1
k−1Rk−1)fk = fk −LkPk(ak−1 −L−1

k−1Rk−1fk).

But then, through induction, the proof can be completed at once. �

Hence, the reconstruction (16) with respect to the decomposition (15) is a
perfect one.

4 The Multigrid Fusion Algorithm

Firstly we describe fusion algorithms by means of the above transform. Secondly
we address the important topic of boundary conditions. Thirdly we elaborate on
an example case using the Poisson operator.

We assume to have a set of m multiple input images {i1,n, . . . , im,n} ∈ S(Ωn)
that need to be fused. The decomposition (15)–(16) suggests several options for
image fusion. The most basic one is to select from each set of m geometrically
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corresponding details on each level k the one that is largest in absolute value.
This line of research is not pursued in this paper. Instead, we opt here for
fusion in the space of right-hand side grid-functions. For that we proceed as
follows. Firstly, we compute fj,n = Lnij,n for 1 ≤ j ≤ m. Secondly, we compute
fj,k = Rkfj,k+1 for 1 ≤ j ≤ m and k = n− 1, . . . , 0. At each level k we apply a
recombination Ck : S(Ωk) × . . .× S(Ωk → S(Ωk) on fj,k:

fk = Ck (f1,k, . . . , fm,k) . (17)

We discuss one particular and generic example of such Ck below in Section 4.2.
Now we compute: {

a0 = L−1
0 f0,

ak = Pkak−1 + Ekfk, k = 1, . . . , n. (18)

In the case of just one input image (m = 1) the construction (18) reduces to (16).

4.1 Boundary Conditions

At the boundaries of Ω we assume homogeneous Neumann boundary conditions
which we discretize in a conservative fashion at Ωn, e.g. by using bilinear finite
elements. The following statements can all be derived from [24]. The boundary
conditions inherited by Lk, 0 ≤ k < n, remain homogeneous Neumann ones.
All Lk, 0 ≤ k ≤ n have a singular matrix and therefore the L−1

k do not exist.
However, systems of type Lkuk = gk can still be solved, provided that gk is in
the range of Lk. A sufficient and necessary condition for the latter is proved to
be that the sum of elements of gk vanishes. The said discretization warrants this
condition for k = n. Further, it is proved that for k < n the fk defined by (14)
inherit the condition. If the condition is satisfied then the algorithm MGD9V [24]
is able to solve such singular linear systems iteratively (by multigrid, as explained
in Section 2.3). The solution uk is unique up to a constant (grid-function).

4.2 The Poisson Case

Motivation in 1D. Approximation of second order derivatives of an image grid-
function is a popular component of edge detection methods, e.g. Canny [7].
Figure 4 shows an example of an edge profile in one space dimension together
with its second derivative. We observe how this edge gives rise to local sources
and sinks in the second derivative. This observation provides the basic idea for
our fusion method where, loosely formulated, the recombination will be based
on choosing the values (+ or −) with highest amplitude at geometrically cor-
responding pixels from a set of input image functions upon which the second
derivative operator has been applied. We perform this at each level k and then
apply the construction (18). The resulting image combines the edges as observed
at all scales of all input images.
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Fig. 4. Edge profile (left) with second derivative (right)

�
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�

(i, j)hk (i + 1, j)hk

(i, j + 1)hk (i + 1, j + 1)hk

�

dijk

Fig. 5. Cell Cijk ⊂ Ωk with vertices

Generalization. We now have to generalize to two space dimensions. We let Ln

be the operator stemming from a discretization by the bilinear finite element
method of the Poisson operator −Δ. It can be represented by the 3 × 3 stencil
(or mask)

Ln ∼

⎡⎢⎣ − 1 − 1 − 1
− 1 + 8 − 1
− 1 − 1 − 1

⎤⎥⎦ . (19)

Both the original operator −Δ and its above approximation are invariant to
rotation. If Pk, k = 1, . . . , n are prolongations by means of bilinear interpolation
then at the coarser grids all Lk produced by (9) turn out to be represented by
the stencil (19) as well (but associated with subsequently coarser grids S(Ωk),
0 ≤ k < n), see [24].

Fusion and Finite Elements. Considering the definition (12) of Ek we have to
ensure that at each level k the fk resulting from the recombination (17) remains
in the range of Lk or else Ekfk cannot be applied. We achieve this by composing
fk in a finite element manner. The horizontal diffusion operator and vertical
diffusion operator are treated separately. Only the contribution of the horizontal
operator is described, the contribution of the vertical operator is the analogue.
Consider the cell Cijk ⊂ Ωk defined by four indices as indicated in Figure 5.
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This cell yields contributions to the stencils of Lk at the four corners, e.g. at
gridpoints (i, j) and (i+ 1, j) it contributes the respective stencils

dijk
1
6

⎡⎢⎣ 0 1 − 1
0 2 − 2
0 0 0

⎤⎥⎦ and dijk
1
6

⎡⎢⎣ − 1 1 0
− 2 2 0

0 0 0

⎤⎥⎦
where dijk ∈ R is the diffusion coefficient located at the center of the cell (for now
dijk = 1). Such stencils, together with their horizontally mirrored counterparts,
add up to stencil (19). When the above stencils are applied on an image grid-
function we observe that the contributions at the pixels (i, j) and (i+ 1, j) have
the same amplitude but opposite sign, hence their sum vanishes.

When fusing a set of m images, for each image grid-function we compute per
cell Cijk the contribution, then choose the one from the set of m that is largest

Fig. 6. Top: out-of-focus input images with focus on the right-hand side (left), and
with focus on the left-hand side (right). Bottom: fusion of out-of-focus images (left),
detail (right)



406 P.M. de Zeeuw

in absolute value and add this value to the value at pixel (i, j) and the same
value but with opposite sign to the value at pixel (i + 1, j). After scanning all
cells, the resulting recombined fk has the desired property.

4.3 Example Fusion Problem

We apply the fusion algorithm of Section 4.2 to two out-of-focus input images,
see the top row of Figure 6, the result is to be seen at the bottom row. The quality
matches the one obtained by use of the Laplacian pyramid [5] as multiresolution
scheme (result not shown).

5 Concluding Remarks

A new multiresolution scheme has been proposed, based on an image transform
by a discretized elliptic partial differential operator and use of a multigrid oper-
ator, leading to a pyramidal representation. It is shown how this scheme can be
applied for image fusion. A single experiment has been added to demonstrate its
usefulness. More experiments and an comparison with established methods are
in preparation.

The Poisson case as described is just a special case. The framework of the
multigrid image transform and multigrid fusion algorithm remains valid if we
use the Laplace operator with varying diffusion coefficients instead. An appli-
cation thereof can be envisaged if we involve segmentation. This is a topic for
future research.
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Abstract. We propose a new way of deinterlacing using a total vari-
ation scheme. Starting by the Bayesian inference formulation of total
variation we do MAP by rewriting the problem into PDEs that can be
solved by simple numerical schemes. Normally deinterlacing schemes are
developed ad hoc with online hardware implementation directly at eye,
sometimes with some frequency analysis as only theoretical base. Our
belief is that mathematically well based image models are needed to
do optimal deinterlacing and by our work presented here, we hope to
prove it. Comparing the output of our scheme with those of ten known
deinterlacing schemes shows very promising results.

1 Introduction

Interlaced scan has been use since the birth of television in the 1930’s and is the
scanning format used in the television standards PAL and NTSC. Interlacing
is separates a full frame image into two parts called fields, one containing all
horizontally odd numbered line and the other containing all the even lines. When
recorded in interlaced scan the fields are separated in time and two neighboring
fields cannot be merged to one full frame without problems.

Interlacing saves bandwidth and lowers the cost of cameras and CRTs as it
is possible to combine a high rate of fields per second (to avoid large area flicker
in the image) with a relatively high vertical resolution. This looked fine to the
human visual system (HVS) in the early days of television but as screen size
grew and television sets produced brighter images, interlacing artefacts started
to show.

Interlacing artefacts have many names and are often mixed up when de-
scribed, as they can be described both from a frequency analysis point of view
and by their visual appearance. They are by visual appearance

- Line crawl due to vertical motion in the image and the time difference be-
tween the two fields composing one frame.

- Serration of edges due to horizontal motion in the image and the time dif-
ference between the two fields composing a frame. It happens to edges at all
orientations except those close to and at horizontal orientation.
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- Interline flicker due to fine stationary details appearing only in either odd
or even fields of the image as they are to small (that is of to high a vertical
frequency) to be sampled in both even and odd fields.

A further discussion of frequency analysis and aliasing in interlaced image
sequences can be seen in [2] and [11].

One way of reducing the effect of these artifacts in terms of visibility to the
human eye is to interpolate new fields and raise the field rate as done in 100 Hz
TV sets [7] and [2]. Another way is to convert the interlaced sequence to a pro-
gressive sequence by interpolation of image information in the missing lines of
the fields to make a full frame of each field. This conversion is called deinterlac-
ing. Progressive scan is used in all PC monitors, in projectors, and in flat panel
displays (LCDs and Plasmas). So as many new displays for television are pro-
gressive and as PC and television are merged (set top boxes for digital television,
DVDs, television tuners for PCs, and video editing on PCs) there is obviously a
big need for deinterlacing. Deinterlacing is difficult, as turning e.g. 50 fields per
second into 50 frames per second requires a doubling of the amount of image
data without introducing new artefacts to annoy the human visual perception.
We propose a new scheme for deinterlacing developed from techniques used in
image and image sequence inpainting, and we have implemented ten known and
widely used deinterlacing schemes to compare it with. Our scheme uses Total
Variation (TV) based in a Bayesian framework and do MAP by minimizing an
energy functional. This is accomplished by deriving and solving solving corre-
sponding Partial Differential Equations (PDEs) obtained through the calculus
of variations. This is in contrast to many known deinterlacers that have been
developed ad hoc (and in a heuristic way) with online hardware implementa-
tion directly in eye. Therefore they are often simplified to keep hardware costs
down. We start with a theoretically well-based offline design that by further de-
velopment could end up as online hardware. Section 2 will describe the other
deinterlacing schemes implemented, section 3 will describe our proposed scheme,
section 4 shows the results and in section 5 we draw our conclusions.

2 Standard Deinterlacing

To measure the performance of our deinterlacing scheme, we have implemented
ten other schemes known from literature and/or available software and hard-
ware ([2]).

Line Doubling (LDB) is very simple. Every interpolated horizontal line is a
repetition of the previous existing line ([15] and [17]). Line Averaging (LAV)
is a vertical average of the above and below pixels, since they are both known
([2], [15] and [17]). Field Insertion (FI), a.k.a. merging or weaving, fills in the
blanks with neighbouring lines in time and is essentially a temporal version
of LDB. The result is very similar to the image seen on an interlaced display
([2] and [17]). Field averaging (FAV) is a temporal version of LAV ([17]), while
Vertical Temporal interpolation (VT) is a simple 50/50 combination of LAV
and FAV ([17]). Many more advanced but not significantly better VT filters
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have been suggested, e.g. by BBC Research ([16]). All schemes mentioned so
far are fixed, linear filters, whereas the next five are nonlinear and adapt to
certain conditions in their local neighborhood and chose one of several possible
interpolations depending on the local image content to yield better results.

Median filtering (Med) is a real classic in image processing and is used for
deinterlacing in many variations ([2], [3], [8], [14], [13] and [15]). We have chosen
a 3-tap vertical temporal version from [2] although we use the forward temporal
neighbor instead of the backwards. Motion adaptive deinterlacing (MA) can be
done in a countless number of ways and we have chosen a version suggested
in [13] and [14]. It does simple Motion detection and takes advantage of the
qualities of simpler schemes under different conditions: FAV in presence of no
motion, Median filtering when motion is slow and LAV when fast motion is
detected. Thresholds classify the motion. Weighted Vertical Temporal deinter-
lacing (wVT) is a simpler way of doing motion adaptation than the previous
mentioned scheme, MA, and gives, instead of a hard switching between schemes,
a smooth weighted transition between temporal and vertical interpolation. The
scheme is described in detail in [9]. Edge Adaptive deinterlacing (EA) has been
suggested in several forms, e.g. in [6], [9] and [15]. We have chosen a scheme that
based on Summed Absolute Differences (SAD) selects a direction of interpola-
tion as described in [15], although we have modified it to detect the best of five
directions, 0o, ±26o and ±45o from vertical. Successive Approximation (SA) is
the second level of approximation in [9] although the its edge adaptive scheme
working on the first deinterlaced approximation has been swapped with the EA
scheme that works directly on the interpolated original and thereby taking the
successiveness out of the scheme but in the same instance also removing the
possibility of error propagation.

Med is a simple adaptive scheme, EA adopts to the orientation of edges while
MA, wVT and SA are Motion adaptive.

3 Total Variation Deinterlacing

In this section we introduce a novel deinterlacing scheme based on Total Vari-
ation minimization. We first proceed in a Bayesian fashion and deduce a vari-
ational formulation through MAP estimation in continuous settings following
[10]. We then compute the associated Euler-Lagrange equations and their asso-
ciated gradient descent formulations. The discretization of the latter will provide
our numerical schemes. We first introduce the notations used in the sequel. Ω
will denote the spatio-temporal domain of the progressive sequence, F ⊂ Ω the
domain of the known fields, u0 will denote the interlaced sequence, and by abuse
of notations, it will also denote the known data on F .

3.1 Bayesian Framework

Let u denote a progressive sequence and u0 the known sequence of interlaced
fields. According to Bayes’ Theorem
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p(u|u0) ∝ p(u0|u)p(u) . (1)

The term on the left hand side is the a posteriori to be maximized (MAP) and
the first term on the right hand the side is a model term and the second is a prior
on image sequences. For the model term we choose a simple Dirac distribution
p(u0|u) = δ((u− u0)|F ) because we wish to keep the existing pixels unchanged.

We have investigated two distributions for the prior term p(u). First, by
viewing the image sequence u as a 3D volume, we set

p(u) ∝ e−λ
∑

x |∇3u(x)| (2)

with x running over all the pixels in the sequence, ∇3u a discrete spatio-temporal
gradient and λ a positive constant.

Nevertheless, it is somewhat unnatural to treat an image sequence as a 3D
volume. We introduce therefore a simple model that separates spatial and tem-
poral dimensions and we assume independence of the spatial and temporal dis-
tributions. Our image prior thus becomes

p(u) = p(us, ut) = p(us)p(ut) (3)

where p(us) refers to the spatial distribution of images and p(ut) to the temporal
correlation between frames. For the spatial prior we use

p(us) ∝ e−λ
∑

x |∇u(x)| (4)

with x again running over all the pixels in the sequence, ∇u a discrete spa-
tial gradient and λ a positive constant. This has proven a robust model, well
studied in the computer vision community; see for instance [1], [4] or [12]. The
temporal prior

p(ut) ∝ e−μ
∑

x |∂tu(x)| (5)

where ∂tu denotes the time-derivative of u and introduces the motion adaptive
aspect of our algorithm, μ being a positive constant.

3.2 Variational Formulation - Euler-Lagrange Equations

Following [10] in order to compute the Maximum A Posteriori (MAP) solution,
u, for our problems, we take the − log of each term to reformulate it as a mini-
mization problem. Instead of using the | · | function which is non differentiable at
the origin, we replace it by the approximation ψ(s2) =

√
s2 + ε2, with ε = 0.1

or 0.01 in our experiments. From (2), with this modification we obtain u as the
solution of

Arg min
u

∫
Ω

ψ(|∇3u|)dx, u = u0|F . (6)

From standard calculus of variations and the fact that ψ′(s)/s = 1/ψ(s), its
Euler-Lagrange equation is

−div
(

∇3u

ψ(|∇3u|)

)
= 0, u = u0|F (7)
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where div is the divergence operator. The associated gradient descent equation is

∂τu = div
(

∇3u

ψ(|∇3u|)

)
= 0, u = u0|F (8)

where τ denotes the evolution parameter (in order to not confuse it with the
time parameter t of the sequence), which is a 3D total variation filter.

From (4) and (5) we obtain the following minimization problem:

Arg min
u

∫
Ω

(ψ(|∇u|) + αψ(|∂tu|)) dx, u = u0|F (9)

the corresponding Euler-Lagrange equation being

−div
(

∇u
ψ(|∇u|)

)
− α∂t

(
∂tu

ψ(|∂tu|)

)
= 0, u = u0|F (10)

and its associated gradient descent equation is

∂τu = div
(

∇u
ψ(|∇u|)

)
+ α∂t

(
∂tu

ψ(|∂tu|)

)
, u = u0|F (11)

which combines a 2D total variation filter for the spatial part and a simple 1D
total variation filter for the temporal part. The constant α = μ/λ is a weight
between the spatial and the temporal part of the filter. This approach to energy
minimization gives convex but not strictly convex, solutions so several global
minimums might exist. Therefore the solution can be sensible to initialization.

3.3 Discretizations

The gradient descent equations are solved explicitly, using forward difference for
the evolution derivative ∂τ and central difference for the divergence terms.

For the 3D divergence, we have used a standard discretization on the 6 points
spatio-temporal neighborhood (see for instance [5], appendices, for details). For
the 2D divergence we have used three different schemes, one using a 4-point
neighborhood of the current pixel and two using a full 8-point neighborhood, as
described in [1]. The sensibility of the above PDEs to initial values has not given
us problems: At τ = 0 to initialize we take the LAV deinterlaced sequence as a
rough estimate with good results.

4 Results

We present now the results obtained with four image sequences. The first one,
Person, is a medium shot of a sitting person, turning the head and talking,
the motion can be said to be small. The second sequence, C&T, is a shot of
a driving car and truck followed by a tracking camera, the motion, which is
primarily horizontal, is up to ten pixels between two consecutive frames. The last
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Fig. 1. From the top: A frame from the 128x128 sequence BSNM and frame one of the
512x512 sequence BS

two sequences are both artificial with high contrast details. The BSNM sequence
is stationary while the BS has vertical, horizontal and diagonal motion, both
accelerated and constant. Figure 1 shows stills of the two sequences BS and
BSNM, whereas stills of the sequences C&T and Person cannot be published due
to copyright issues.

The four sequences are all progressive, so we have chosen to give the Mean
Square Error (MSE) as an objective measure of the performance of the schemes,

MSE =
1
N

∑
Ω\F

(u− uorg)2 (12)

which measures the square difference between the N interpolated pixels in the
output, u, and their removed counterparts in the original progressive sequence,
uorg.
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Table 1. MSE from deinterlacing the four sequences Person, C&T, BS and BSNM. 3D
and 2D+1D are the two versions of our scheme with the number of iterations given
after the name. Clearly our schemes give the best results of all on the natural image
sequences Person and C&T

Scheme Person C&T BS BSNM

LDB 17.90 79.72 1623.6 755.8
LAV 5.53 26.31 924.6 678.4
FI 22.26 472.25 3935.1 0
FAV 9.03 284.22 2514.4 0
VT 5.62 94.34 1146.8 169.6
Med 9.27 65.72 1154.1 363.4
MA 5.53 28.18 840.6 363.4
wVT 5.07 67.97 1056.0 0
EA 8.77 32.87 957.1 210.1
SA 5.36 48.79 862.4 82.0
3D TV 2 5.02 27.00 1066.2 666.8
3D TV 50 4.85 56.29 1078.3 461.8
2D+1D TV 2 4.97 26.06 919.2 666.2
2D+1D TV 20 4.86 26.23 890.9 567.9
2D+1D TV 200 5.11 32.89 804.4 242.5

We also give a subjective evaluation as the final judge of the result is the hu-
man visual system. A discussion of how to determine the quality of deinterlacing
is given in [2]. Table 1 gives the objective results.

On C&T and BS it is seen from the MSE’s that in presence of large motion, our
scheme offers only little improvement, and only for the motion adaptive 2D+1D
version, where the spatial and temporal gradients are separated. The 3D version
suffers from having a spatio-temporal gradient. Over time (in terms of number of
iterations) the 2D+1D improves a lot on the BS but not on C&T, which contains
the larger motions of the two. Although the 3D does not perform to good overall,
it actually improves the per-frame MSE in 23 of the 98 frames in C&T. In presence
of none or only small motion, our scheme wins as it can be seen from the MSE’s
on the BSNM and Person. After only 2 iterations a 10 % improvement is seen on
the MSE of Person and it increases with the number of iterations. Taking SA
as initial guess instead of LAV on BSNM gave a 9 % improvement in MSE after
20 iterations of 2D+1D.

The results for 2D+1D after 200 iterations show that convergence in MSE
stops for the two natural sequences. This is due to the smoothing of the TV
prior and noise in the original sequence. Further studies showed that the lowest
values in MSE was reached after 40-60 iterations.

Subjectively our scheme produces the best visible results on all four sequences
but BSNM. BSNM is fully stationary, so the temporal schemes give 100 % perfect
results on it. On BS and C&T the improvement is moderate, but on Person the
results from our scheme are clearly the best. After two iterations we already
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Fig. 2. From top to bottom: deinterlacing with MA, wVT and 2D+1D TV. Only zoom-
ins of the full frame is shown here

se a good subjective result for the 2D+1D scheme, but after 20 iterations (and
50 for the 3D) the results are really good, even making us doubt which is the
deinterlaced when comparing to the progressive original.

Figure 2 top, middle and bottom also illustrate the potential of our method.
The sequence used for the illustration shows a pan of Christianborg Castle in
Copenhagen and as it only exists as interlaced, no MSE’s can be calculated. The
top picture shows the result of the wVT scheme while the middle one shows the
result of the MA scheme. Serious artifacts are visible for both schemes, serration
for wVT and erroneous detection and interpolation for MA. The bottom picture
shows the result of our 2D+1D scheme after 20 iterations, and clearly asserts
the quality improvement obtained with our scheme.

LAV in itself is, given its simplicity, a remarkably well performing deinterlacer
as the results in table 1 indicates, but as figure 3 shows, the 2D+1D scheme is
able to improve the quality of deinterlacing significantly after 20 iterations. Note
in the ornaments how the details have been sharpened and the jagged edges have
been removed. The sequence used, Church, is stationary, shot with the camera
on a camera mounting but rather noisy do to low lighting.
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Fig. 3. Deinterlacing of the sequence Church. Left: 2D+1D TV after 20 iterations.
Right: LAV used as initialization for 2D+1D TV. Clearly 2D+1D TV improves on
the LAV initialization. Only zoom-ins of the full frame is shown here. Notice the in
particular the arm of the upper angel and the helixes (spirals) in the middle

Further investigations on the 2D+1D schemes has also shown that the number
of iterations to obtain a certain quality of the result can be reduced by a factor of
three to six by increasing the time step in the gradient descent without the loss of
stability. The number of operations and complexity per iteration of the 2D+1D
schemes are the same as for the most complex of the ten known deinterlacing
schemes, SA. This together with the increase in time step and good results after
a few iterations gives rise to our believes that an online hardware implementation
of 2D+1D TV MA Deinterlacing is possible.
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5 Conclusion

We have shown that a technique so far used for inpainting can be redeveloped to
do deinterlacing and further on our Total Variation Motion Adaptive Deinter-
lacing outperforms ten known fixed or adaptive deinterlacers. Our deinterlacer
is still in its youth and its potential not yet fully explored. The quality of results
and the computational complexity both indicate that hardware implementation
can reach high quality results in realtime.

TV deinterlacing is a novel approach and introduces a whole new theoretical
framework for video processing and the results advocate the further exploration
of the ideas presented here.
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Malmö University, Sweden

{jes, nco}@ts.mah.se

Abstract. Developments within the computer vision community have
led to the formulation of many interesting problems in a variational set-
ting. This paper introduces the manifold of admissible surfaces and a
scalar product on its tangent spaces. This makes it possible to properly
define gradients and gradient descent procedures for variational problems
involving m-surfaces. These concepts lead to a geometric understanding
of current state of the art evolution methods and steepest descent evo-
lution equations. By geometric reasoning, common procedures within
the variational level set framework are explained and justified. Concrete
computations for a general class of functionals are presented and applied
to common variational problems for curves and surfaces.

Keywords: variational methods, level set methods, differential geome-
try, functionals, surface and curve evolution, geometric flows, gradient.

1 Introduction

Formulating problems in a variational setting has become a common procedure
for solving problems in computer vision and image analysis. This paper will focus
on variational formulations involving surfaces of codimension one, e.g. curves in
images, surfaces in space and their generalization to higher dimensions. Some
useful examples are the alignment of curves to image edges [1], segmentation in
medical images [2], surface fitting to 3D data [3], variational stereo reconstruction
[4], the popular geodesic active contours [5] which find shortest curves using
derived metrics and minimal surface approaches [6, 7]. In all these examples a
curve- or surface motion is derived from a functional and using this motion the
curve or surface is evolved until some interesting local minimum is found.

It is the purpose of this paper to analyze this process, simplify it, and give a
proper definition of the gradient descent procedure. This will explain and justify
some commonly used procedures for these types of variational problems.

Let us first recall how gradient descent works in the finite dimensional setting.
To find the minimum of a differentiable function f : Rm → R, pick a point
x0 ∈ Rm and solve the initial value problem

ẋ(t) = −∇f(x(t)), x(0) = x0 , (1)

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 419–430, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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where ∇f = (∂f/∂x1, . . . , ∂f/∂xm) is the gradient of f . If the limit x∗ =
limt→∞ x(t) exists, then ∇f(x∗) = 0, that is, x∗ is a stationary point of f ,
possibly the sought minimum.

Completely analogous to the case above one can devise gradient descent
schemes for minimizing functions on manifolds. Suppose M is an m-dimensional
manifold (or regular surface) embedded in Rm+1, f : M → R a continuous
function and consider the following generalization of the above problem: Find
x∗ ∈ M such that f(x∗) = minx∈M f(x). In order to construct a gradient de-
scent scheme for this minimization problem it is necessary to recall the notions
of tangent space and differential, and the definition of the gradient on a surface
from differential geometry.

Let x be a point of M and take a differentiable curve α : (−ε, ε) → M ⊂
Rm+1, such that α(0) = x. Then the velocity α̇(0) = v is called a tangent vector
to M at x. The set of all tangent vectors at x is called the tangent space of M
at x, and is denoted TxM . It is easy to prove that TxM is a vector space and
that dim TxM = m.

A function f : M → R is said to be differentiable if there exists a differen-
tiable function f̃ : Rm+1 → R whose restriction to M is f .

Let f : M → R be differentiable, x ∈ M and v ∈ TxM . The map df(x) :
TxM → R defined by

df(x)v =
d

dt
f(α(t))

∣∣∣∣
t=0

, (2)

for some differentiable curve α in M with α(0) = x and α̇(0) = v, is called the
differential of f at x. It is well known that this definition is independent of the
particular choice of curve α through x, and that the differential df(x) is linear.

If v · w =
∑m+1

i=1 viwi denotes the standard scalar product between vectors
v = (v1, . . . , vm+1),w = (w1, . . . , wm+1) ∈ Rm+1, then a scalar product 〈·, ·〉x
can be defined on TxM by setting 〈v,w〉x = v · w for v,w ∈ TxM . Equipped
with this metric structure M becomes a Riemannian manifold, which is exactly
what is needed in order to introduce the notion of gradients on surfaces, cf.
do Carmo [8–p. 101]:

Definition 1. The gradient at x ∈ M of a differentiable function f : M → R
is the unique vector ∇Mf(x) ∈ TxM such that

df(x)v = 〈∇Mf(x),v〉x
for all v ∈ TxM .

Example. Let n : M → Sm denote the unit normal vector field (or Gauss map)
of M , and suppose f : M → R is differentiable. Using that n(x) ∈ TxM⊥ it is
easy to verify that

∇Mf(x) = ∇f̃ − 〈n(x),∇f̃〉x n(x) ,

where ∇f̃ is the gradient in Rm+1 of the differentiable extension f̃ of f . If
M = Sm, the m-dimensional unit sphere, then n(x) = x so

∇Smf(x) = ∇f̃ − 〈x,∇f̃〉x x . (3)
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This formula will be used in Sections 5 and 7.

We now turn to the infinite dimensional problem of minimizing a functional
of the form

E(Γ ) =
∫

Γ

g(x,n(x)) dσ ,

where Γ is an m-dimensional surface in Rm+1, for instance a curve in the plane
or a surface in space, n = n(x) is the Gauss map for Γ , and g = g(x,n) is a
sufficiently differentiable function. The functionals referred to at the beginning
of the introduction can all be written in this form, and more examples can be
found in Section 7. The simplest case is g = 1, which corresponds to the surface
area1 functional E =

∫
Γ

1 dσ.
In order to apply the ideas above to the infinite dimensional case, we will

introduce a manifold M of admissible surfaces Γ . We determine the tangent space
TΓ M of M at the ”point” Γ ∈ M , and equip it with a natural scalar product
〈·, ·〉Γ . Then we show how to compute the differential (or Gâteaux derivative)
dE(Γ ) of the functional E. Finally, using the scalar product and Definition 1,
we find the gradient ∇E(Γ ) of E, and show how it can be used to construct the
equations of motion for the gradient descent surface evolution corresponding to
the minimization of E on M .

In our opinion, this point of view will simplify many computations in the vari-
ational formulation of computer vision problems, and the geometric reasoning
used here explains some common procedures in the variational level set frame-
work.

The contributions of this paper are described in Sections 4, 5 and 6. In short,
this paper fills some gaps in the theory of deriving gradient descent procedures.
In particular a gradient is introduced using a scalar product defined in Section 4.
This gradient is a stronger tool than the usual ”directional derivatives” of the
first variation, and makes it easy to e.g. check if a given evolution PDE is a
descent equation. The normal velocity of a surface evolution is shown to be a
geometric quantity and the normal velocity associated with a proper gradient
descent motion this is derived for a general class of functionals in Section 5. In
Section 6 the standard procedure of substituting δ(φ) for |∇φ| in a variational
level set formulation is explained geometrically. That the equation of motion is
morphological is also explained.

2 The Level Set Representation

Let Γ be a regular m-surface in Rm+1. Then Γ has codimension equal to one,
and can be represented as the zero set of a Ck-function φ : Rm+1 → R, k ≥ 1 as

Γ = {x : φ(x) = 0} . (4)

1 Throughout this paper we will use the terminology surface, area and volume to mean
the proper extension of these concepts to any dimension m.



422 J.E. Solem and N.Chr. Overgaard

We require the level set function to satisfy the condition ∇φ(x) �= 0 for
all x ∈ Γ . This is always possible because Γ is a regular surface. The sets
{x : φ(x) < 0} and {x : φ(x) > 0} are called the inside and the outside of Γ ,
respectively. Using this convention, the outward unit normal n and the mean
curvature κ of Γ is given by, cf. [9],

n =
∇φ

|∇φ| and κ = ∇ · ∇φ

|∇φ| . (5)

The latter requires k ≥ 2 thus we will assume k = 2 in the rest of this paper.
Using the representation above we define a regular surface evolution or regular

motion by adding a time dependence to the level set function, φ : Rm+1 × I →
R for some open (time-) interval I ⊂ R, where φ is C2 with respect to the
space variables and C1 with respect to t. Moreover we require that2 ∇φ �= 0 on
Γ (t) = {x : φ(x, t) = 0}. The function φ(x, t) then represents the regular surface
evolution t �→ Γ (t).

Let t �→ Γ (t) be such a regular surface evolution. Suppose that a point, or
particle, moves along with the evolving surface. If the motion of the particle is
given by the curve α : I → Rm+1 then the identity φ(α(t), t) ≡ 0 holds, and
differentiation with respect to time yields

∂φ

∂t
+ α̇ · ∇φ = 0 or

∂φ

∂t
+ vn|∇φ| = 0 , (6)

where ˙ = d/dt and vn = α̇ · n is the normal component of the particle velocity.
This is the well-known level set equation.

3 Deriving the Equations of Motion: Common Approach

As a motivation for the work in Sections 4, 5 and 6, we give a brief review of the
standard procedure for deriving the evolution equation for Γ in the variational
level set formulation. It is our goal to explain this procedure.

A common approach is to use a parametrization of the m-surface to derive
the normal velocity, cf. e.g. [1, 2, 4]. The drawbacks of this approach are that
unless m = 1, i.e. planar curves, the computations are tedious and also they do
not easily generalize to arbitrary dimensions. An elegant way of deriving motion
equations was proposed in [7] using the method of moving frames. Another
alternative, which will be reviewed here, is to derive the equation of motion
directly on the level set function φ as in e.g. [10, 11].

To illustrate the procedure we will use a simple example. If Γ is represented
by a level set function φ, the area functional E(Γ ) =

∫
Γ

1 dσ can be written3

E(φ) =
∫
Rm+1

|∇φ|δ(φ) dx =
∫
Rm+1

F (φ,∇φ) dx ,

2 ∇φ is the gradient with respect to the spatial directions, i.e. the x-variable.
3 It is often convenient to write E(φ) instead of E(Γ ), as we shall see later.
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where |∇φ|δ(φ) dx is the surface measure, see e.g. Hörmander [12–Thm. 6.1.5].
Standard formulas from calculus of variations give the following necessary con-
dition for extremals [13],

∂F

∂φ
−

m+1∑
i=1

∂

∂xi

(
∂F

∂φxi

)
= 0 ,

which gives the simple Euler-Lagrange equation κδ(φ) = 0 for the problem. The
standard procedure is to evolve an initial surface using either of the PDEs

∂φ

∂t
= ±κδ(φ) , (7)

until a steady state is reached, which is then an extremal of E. First one checks
whether the plus or the minus sign in (7) gives a descent direction, since this
information is not contained in the Euler-Lagrange equation (here plus is the
correct sign). Then (7) is made into an equation of the form (6), thus extending
the motion to all level sets of φ, by replacing δ(φ) with |∇φ|, which yields

∂φ

∂t
= κ|∇φ| .

It has been shown [10] that this procedure of replacing δ(φ) by |∇φ| indeed gives
a descent PDE and we will present a geometric explanation of this in Section 6.

4 Gradient Interpretation

In this section a manifold M of m-surfaces Γ ⊂ Rm+1 is defined, and the tangent
space of the manifold is determined at any Γ ∈ M . Then a scalar product on
the tangent spaces is introduced, allowing us to give a gradient interpretation of
the Gteaux derivative (or differential) dE of a given functional E : M → R.

Let Γ0 be a closed, connected, m-dimensional surface in Rm+1. The manifold
M is defined as the set of surfaces Γ ′ which can be obtained from Γ0 by some
regular surface evolution t �→ Γ (t). This means that there should exist a level
set function φ : Rm+1 × I → R, such that if we set Γ (t) = {x : φ(x, t)} then
Γ (0) = Γ0 and Γ (t) = Γ ′, for some t > 0.

If we agree to write Γ ′ ∼ Γ if Γ ′ can be obtained from Γ by a regular surface
evolution, then clearly Γ ∼ Γ ′ (symmetry) because we can always reverse the
time in the evolution. Also Γ ∼ Γ (reflexivity). Finally it can be shown that
if Γ ′ ∼ Γ and Γ ′′ ∼ Γ ′, then Γ ′′ ∼ Γ (transitivity). Thus ∼ is an equivalence
relation on surfaces in Rm+1 and M = {Γ ′ : Γ ′ ∼ Γ0} is an equivalence class of
∼. In particular, any Γ ∈ M can be used in the definition of M .

Our next aim is to determine the tangent space of M at the ”point” Γ0 ∈ M .
Before we can do that, we need to clarify what we mean by a tangent vector of
M at Γ0. For this purpose, take a point x0 ∈ Γ0, and let φ = φ(x, t) be a level
set function which defines a regular surface evolution Γ (t) = {x : φ(x, t) = 0}
for −ε < t < ε with Γ (0) = Γ0.
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Choose a differentiable curve α : (ε, ε) → Rm+1 such that α(t) belongs to
Γ (t), for all t, and α(0) = x0. Then by the level set equation (6)

α̇(0) · n(x0) = −∂φ(x0, 0)/∂t

|∇φ(x0, 0)| . (8)

where vn(x0) = α̇(0) · n(x0) is the normal velocity of the particle at t = 0. The
following result, although easy, is the key to our analysis.

Lemma 1. The normal velocity vn(x0) does not depend on the curve α through
x0, nor does it depend on the particular choice of level set function φ = φ(x, t)
which represents the evolution t �→ Γ (t).

Proof. This follows directly from (8). The normal velocity vn(x0) does not de-
pend on the curve α because the right hand side of the equation only refers to
the level set function φ and the point x0, and not to α. Conversely, the level set
function does not appear on the left hand side of the equation, so the normal
velocity vn(x0) must be independent of the choice of φ.

The point of this lemma is that vn(x0) is not a property of the particular
α chosen, nor of the surface representation. Consequently vn(x0) must be an
intrinsic property of the evolution t �→ Γ (t) itself. In view of (8) we therefore
define the normal velocity of the evolution Γ (t) as the function

Γ̇ (t,x) = −∂φ(x, t)/∂t

|∇φ(x, t)| (x ∈ Γ (t)) .

Therefore, recalling the differentiability assumption on φ from the previous sec-
tion, the normal velocity Γ̇ (0) is a continuous function on Γ0 which, in analogy
with the finite dimensional case, we interpret as a tangent vector of M at Γ0.
This shows that TΓ0M ⊂ C(Γ0). The following result shows that there are plenty
of tangent vectors.

Lemma 2. Let v ∈ C2(Γ0), then v is a tangent vector of M at Γ0. Thus
C2(Γ0) ⊂ TΓ0M ⊂ C(Γ0).

Proof. Let ṽ ∈ C2(Rm+1) be an extension of v, and choose a level set function
φ0 = φ0(x) of Γ0. Define φ(x, t) = φ0(x) − tṽ(x)|∇φ0(x)|. Then φ is sufficiently
differentiable and, since ∇φ0 �= 0 on Γ0, there exists a positive number ε > 0
such that Γ (t) = {x : φ(x, t) = 0}, −ε < t < ε, is a regular evolution with
Γ (0) = Γ0. An easy computation gives

Γ̇ (0) = −∂φ/∂t

|∇φ| =
v|∇φ0|
|∇φ0|

= v ,

which proves the claim.

Now, consider a functional E : M → R. Inspired by (2) in the introduction
we say that E is differentiable at Γ0 ∈ M if, for any v ∈ TΓ0M , and any regular



A Geometric Formulation of Gradient Descent 425

evolution Γ (t) with Γ (0) = Γ0 and Γ̇ (0) = v, the function t �→ E(Γ (t)) is
differentiable at t = 0. If E is differentiable at Γ0, then we define the differential
of E at Γ0 ∈ M to be the linear mapping dE(Γ0) : TΓ0M → R given by

dE(Γ0)v =
d

dt
E(Γ (t))

∣∣∣∣
t=0

. (9)

We now define a scalar product on the tangent space of M at Γ as the non-
degenerate, symmetric, bilinear map 〈·, ·〉Γ : TΓ M × TΓ M → R given by the
formula

〈v, w〉Γ =
∫

Γ

v(x)w(x) dσ , (10)

for normal velocities v, w ∈ TΓ M . Then TΓ M is a subspace of the Hilbert space
L2(Γ ).

Now, suppose E : M → R is a functional which is differentiable at Γ ∈ M .
By Riesz’ lemma there exists a vector w ∈ L2(Γ ) such that

dE(Γ )v = 〈w, v〉Γ

for all v ∈ TΓ M . If w ∈ TΓ M then, in accordance with Definition 1, w is called
the gradient of E at Γ , and is denoted w = ∇ME(Γ ).

Contrary to the finite dimensional case, w does not necessarily belong to
TΓ M and so the gradient ∇ME may not always exist, even if the differential
dE does. However, when the gradient exists, it is clearly unique. For the class
of functionals studied in this paper, we will see that no such existence problems
occurs.

Having formally introduced the notion of a gradient of a functional, we are
now able to construct gradient descent surface evolutions.

Definition 2. A gradient descent evolution for a differentiable functional E
(for which a gradient is defined) is a regular surface evolution I � t �→ Γ (t) ∈ M
which satisfies the equation

Γ̇ (t) = −∇ME(Γ (t)) (11)

for all t ∈ I.

It follows from this definition that if Γ (t) is a gradient descent evolution for
E, then dE(Γ (t))/dt = −〈∇ME,∇ME〉Γ ≤ 0, so E’s value decreases along the
evolution until ∇ME = 0, as wanted.

It is sometimes advantageous to replace −∇ME in (11) by a descent direction.
By a descent direction we mean a normal velocity field v = v(Γ ) ∈ TΓ M , such
that dE(Γ )v ≤ 0. It is now easy to decide whether a given normal velocity v is
a descent direction, one simply checks that 〈∇ME, v〉Γ ≤ 0.
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5 Gradient Descent for Functionals Defined on Surfaces

In this section the gradient is computed, and the corresponding gradient de-
scent motion constructed, for a general class of functionals defined on surfaces.
The functionals under consideration may depend on surface points and normals,
and the class is general enough to cover most applications in computer vision.
Concrete examples are found in Section 7.

The result in Theorem 1 below is not new in itself, it was derived recently
by Goldlücke and Magnor [7] using Cartan’s aesthetically pleasing method of
moving frames. Our reason for rederiving this result is to illustrate the theory
in Section 4, and to show that the computations can also be carried out in the
level set framework, by relying on distribution theory.

Let Γ be an m-surface in Rm+1 and

E(Γ ) =
∫

Γ

g(x,n) dσ , (12)

be an energy functional with g : Rm+1 × Sm → R. Representing Γ as the zero
set of φ(x) gives,

E(φ) =
∫

g

(
x,

∇φ

|∇φ|

)
|∇φ|δ(φ) dx .

Consider the variation φs = φ + sψ of φ. This gives the normal velocity v =
−ψ/|∇φ| at s = 0. The following results are needed

d

ds
(|∇φs|)

∣∣∣
s=0

=
∇φ

|∇φ| · ∇ψ , (13)

d

ds
(
∇φs

|∇φs| )
∣∣∣
s=0

=
∇ψ

|∇φ| −
(

∇φ

|∇φ| ·
∇ψ

|∇φ|

)
∇φ

|∇φ| , (14)

and
d

ds
(δ(φs))

∣∣∣
s=0

= δ′(φ)ψ . (15)

Taking the Gteaux derivative with v = −ψ/|∇φ| gives

dE(Γ )v =
d

ds
E(φ + sψ)

∣∣∣
s=0

=
∫

d

ds

[
g

(
x,

∇φs

|∇φs|

)
|∇φs|δ(φs)

]
dx
∣∣∣
s=0

.

Let us use the notation gn = ∇Smg, for the gradient on the unit sphere Sm, as
defined in (3). Since g : Rm+1 × Sm → R we have gn ∈ TnSm, hence gn ·n = 0.
This means that the derivative d

dsg
(
x, ∇φs

|∇φs|

)
is simply the tangential component

d

ds
g

(
x,

∇φs

|∇φs|

)
= gn ·

[
∇ψ

|∇φ| −
(

∇φ

|∇φ| ·
∇ψ

|∇φ|

)
∇φ

|∇φ|

]
= gn · ∇ψ

|∇φ| ,

where we have used (14). The Gteaux derivative is then simply

dE(Γ )v =
∫

gn · ∇ψ δ(φ) dx +
∫

g

[
∇φ

|∇φ| · ∇ψ

]
δ(φ) dx +

∫
g |∇φ|δ′(φ)ψ dx .
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Integration by parts on ∇ψ gives

dE(Γ )v =
∫

(−ψ)∇ · [gnδ(φ)] dx +
∫

(−ψ)∇ ·
[
g

∇φ

|∇φ|δ(φ)
]

dx

−
∫

(−ψ)g |∇φ|δ′(φ) dx

=
∫

(−ψ)
{

(∇ · gn) δ(φ) + gn · ∇φ δ′(φ) + ∇ ·
[
g

∇φ

|∇φ|

]
δ(φ)

+g
∇φ

|∇φ| · ∇φ δ′(φ) − g |∇φ|δ′(φ)
}

dx .

Since gn · n = 0 implies gn · ∇φ = 0 and the two last terms cancel we get

dE(Γ )v =
∫

(
−ψ

|∇φ| )∇ ·
[
gn + g

∇φ

|∇φ|

]
|∇φ|δ(φ) dx = 〈v,∇ · [gn + g n]〉Γ ,

The results of the derivations above are summarized in the following theorem.

Theorem 1. Let g = g(x,n) be continuously differentiable with respect to x and
twice continuously differentiable with respect to n. Then the functional E defined
by (12) has the differential

dE(Γ )v = 〈∇ · [gn + g n] , v 〉Γ ,

for v ∈ TΓ M , in particular ∇ME = ∇ · [gn + g n].

Corollary 1. The gradient descent evolution for the minimization of (12), when
formulated in terms of a level set function φ, is

∂φ

∂t
= (∇ · [gn + g n])|∇φ| .

Proof. The normal velocity of the evolution Γ (t) given by φ(x, t) is Γ̇ (t) =
−(∂φ/∂t)/|∇φ|, and −∇ME = −∇ · [gn + g n]. In view of (11) in Definition 2
the desired result follows.

This result is in agreement with [7] and [4]. Let us use the notation ∇E = ∇ME
from now on.

6 Explaining the “Common Approach”

As pointed out in Section 3, a common approach, which is found in nearly
all cases where the the Euler-Lagrange equation contains the factor δ(φ), is
to replace this factor by |∇φ| with the motivation that it does not affect the
steady state solution, but only the speed of descent, cf. [10]. This section offers
a geometric explanation and justification for this procedure. In order not to
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obscure the argument with technicalities, the explanation is carried out for the
surface area functional E(Γ ) =

∫
Γ

1 dσ, already considered in Section 3.
Using the formulas (13) and (15) from the previous section, the Gâteaux

derivative of E is found to be

dE(Γ )v =
d

ds
E(φ + sψ)

∣∣∣
s=0

=
∫ [ ∇φ

|∇φ| · ∇ψ

]
δ(φ) dx +

∫
|∇φ|δ′(φ)ψ dx

=
∫

(−ψ)
(
∇ · ∇φ

|∇φ|

)
δ(φ) dx =

∫
(−ψ)κ δ(φ) dx , (16)

where v = −ψ/|∇φ| is the normal velocity of the surface evolution φs(x) =
φ(x) + sψ(x). If the integrand on the right hand side of (16) is multiplied by
|∇φ|/|∇φ|, then the numerator of this quote can be absorbed in the surface
measure dσ = |∇φ|δ(φ) dx, and the the denominator together with −ψ forms
the normal velocity v. Thus the differential becomes

dE(Γ )v =
∫

(
−ψ

|∇φ| )κ dσ =
∫

Γ

v κ dσ = 〈v, κ〉Γ . (17)

So the gradient is ∇E = κ. The gradient descent is obtained by setting the
normal velocity of the moving surface φ(x, t) = 0 equal to minus the gradient,
that is −(∂φ/∂t)/|∇φ| = −∇E = −κ or ∂φ/∂t = κ|∇φ|, which agrees with the
result in Section 3. This amounts to the same as replacing δ(φ) with |∇φ| in the
Euler-Lagrange equation and using this as the right hand side of the evolution
equation, but here there is a geometric meaning behind the reasoning.

This extension of the motion by replacing δ(φ) with |∇φ| is sometimes mo-
tivated by the fact that it makes the equation of motion morphological, i.e. it
does not depend on the slope of φ, cf. [10]. This means that for a monotone and
increasing function f : R → R with f(0) = 0 the equation of motion (6) has
the same solution if φ is replaced by the new level set function f(φ(x)). This is
no surprise since it follows directly from the analysis of the normal velocity in
Section 4, in particular Lemma 1.

7 Examples

This section shows how the framework introduced in the previous sections can
be applied to concrete examples commonly used in computer vision and image
analysis applications.

Flux. The functional representing the outward flux of a vector field v : Rm+1 →
Rm+1 through the surface Γ , as in [2] and [1],

E(Γ ) =
∫

Γ

v(x) · n dσ ,

where g(x,n) = v(x) · n, has gradient

∇E = ∇ · [gn + g n] = ∇ · [v − (v · n)n + (v · n)n] = ∇ · v ,

and gradient evolution equation equal to ∂φ/∂t = (∇ · v)|∇φ|.
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Geodesic Active Contours and Surface Potential. Let I : R2 → R denote
an image. To find a smooth curve Γ that fits the edges in the image the following
functional has been proposed

E(Γ ) =
∫

Γ

f(|∇I|) dσ , (18)

for some function f : R+ → R+. This elegant approach is called the geodesic ac-
tive contours [5] since extremal curves are a geodesics on a Riemannian manifold
whose metric is determined by f .

Here g(x,n) = f(|∇I(x)|) does not depend on n so the gradient is ∇E =
∇ · (f(|∇I|)n), which gives the gradient descent motion,

∂φ

∂t
=
[
∇ · (f(|∇I|)n)

]
|∇φ| =

[
f(|∇I|)κ + ∇f(|∇I|) · n

]
|∇φ| .

This approach extends naturally to higher dimensional images, cf. [6]. For in-
stance, the gradient of surface potential functional E(Γ ) =

∫
Γ

d(x) dσ, where
e.g. d(x) : Rm+1 → R is the distance potential in [3], is ∇E = ∇d · n + dκ.

Average Potential. Consider the case of the surface potential above. Some-
times it is desirable to minimize (maximize) the average potential value over Γ
thereby removing the area dependence. This can be formulated as

E(Γ ) =

∫
Γ

d(x) dσ∫
Γ

dσ
=

F (Γ )
G(Γ )

,

as has been done in e.g. [14] and [1]. It was shown above that ∇F = ∇d ·n+ dκ
and ∇G = κ, so by the quotient rule the gradient is simply

∇E =
(∇d · n + dκ)G(Γ ) − F (Γ )κ

G(Γ )2
=

∇d · n + κ(d − E(Γ ))
G(Γ )

,

Notice that the numerator can be used as a descent direction because G(Γ ) > 0.

Volume Potential. The analysis above has been focused on functionals involv-
ing surface integrals. A final example shows that it is possible to use the same
framework for volume integrals. Let Ω denote the interior of Γ , d(x) : Rm+1 → R
be a potential function and define the energy as the volume integral

E(Γ ) =
∫

Ω

d(x) dx =
∫

d(x)(1 − H(φ)) dx ,

where H(·) is the Heaviside function. The Gâteaux derivative of E is

dE(Γ )v =
d

ds
E(φ + sψ)

∣∣∣
s=0

=
∫

d

ds
(1 − H(φ + sψ))

∣∣∣
s=0

d(x) dx

=
∫

(−ψ)δ(φ)d(x) dx =
∫

(
−ψ

|∇φ| )d(x)|∇φ|δ(φ) dx

=
∫

Γ

v d(x) dσ = 〈v, d(x)〉Γ , (19)

which shows that the gradient is ∇E = d(x) and the gradient descent motion
∂φ/∂t = d(x)|∇φ|. This is a classical result, cf. e.g. [15].



430 J.E. Solem and N.Chr. Overgaard

8 Conclusions

In this paper we introduced a scalar product on the manifold of admissible sur-
faces which made it possible to define the gradient of m-surface functionals in
arbitrary dimensions and proper gradient descent procedures. Using distribution
theory and a level set representation we derived gradient descent motion equa-
tions for a general class of functionals. This class covers most variational surface
formulations in computer vision and image analysis. The derivations were per-
formed using geometric quantities such as normal velocity and gradient and are
therefore valid for any choice of surface representation. Finally, we used this
framework to explain common procedures in the variational level set domain,
and apply the framework to some useful examples.
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Abstract. Image reconstruction from a fiducial collection of scale space interest
points and attributes (e.g. in terms of image derivatives) can be used to make
the amount of information contained in them explicit. Previous work by various
authors includes both linear and non-linear image reconstruction schemes. In this
paper, the authors present new results on image reconstruction using a top point
representation of an image.A hierarchical ordering of top points based on a stability
measure is presented, comparable to feature strength presented in various other
works. By taking this into account our results show improved reconstructions from
top points compared to previous work. The proposed top point representation is
compared with previously proposed representations based on alternative feature
sets, such as blobs using two reconstruction schemes (one linear, one non-linear).
The stability of the reconstruction from the proposed top point representation
under noise is also considered.

1 Introduction

Nielsen, Lillholm and Griffin presented a linear minimal variance reconstruction scheme
to reconstruct an image given a set of scale space interest points and the local N-jet in
those points [7, 5]. Based on that reconstruction algorithm, Kanters et al. [3] presented a
closed form solution for the Gram matrix of that linear framework. The prior used in these
linear frameworks is however not sufficient to create visually attractive reconstructions
if not enough constraints are used. To overcome this problem Nielsen and Lillholm
proposed a prior based on natural image statistics, the Brownian reconstruction [7, 5].
Recently a generalization of the linear reconstruction framework is proposed by Janssen
et al. which — in a different way — also tries to overcome this problem while maintaining
linearity [2].

These algorithms have been used with various feature points (collections of scale
space interest points as input for the reconstruction algorithm), but only very little re-
sults are presented using so-called top points. In this paper, we present new results in
reconstructions from top points using the Brownian reconstruction algorithm as well
as the reconstruction scheme proposed by Janssen. Reconstructions from top points are
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c© Springer-Verlag Berlin Heidelberg 2005



432 F. Kanters et al.

compared with results obtained from previously proposed image representations based
on alternative feature sets such as blobs [6] in section 4. Furthermore, a hierarchical or-
dering of top points is introduced in section 3, based on a stability measure. Lillholm and
Nielsen showed that for blobs it makes sense to use an ordering by feature strength for
reconstruction, to select the most salient feature points [5]. In section 4, we present re-
sults comparing our ordering of top points with the ordering of blobs by feature strength.
Finally the stability of the reconstruction from top points is considered in section 4.

2 Reconstruction Schemes

To reconstruct an image from a set of points and measurements in these points, two
different reconstruction schemes are used. These schemes are projections on the in-
tersection of a set of measurement filters. Both methods try to minimize an "energy"
function while maintaining the same measurements in the points of the reconstructed
image (constraints). The first method is proposed by Lillholm and Nielsen [5] and min-
imizes a global property while the second method proposed by Janssen et. al. [2] uses
a more general inner product to calculate the measurements and minimizes the norm of
that inner product space.

For the first method a measurement ci in a certain point i is defined as an L2 inner
product between a given filter φi and the original image I:

ci = 〈φi|I〉L2 =
∫

Ω

φi(x)I(x)dx (1)

The following functional should be minimized to get the reconstruction Î:

S[Î] = Ψ +
∑

i

λi〈I − Î|φi〉L2 (2)

whereΨ is some prior which should be minimized and the other terms are the constraints.
For the remainder of this paper we use a prior known as the Tikhonov regularizer [9]
which results in:

S[Î] =
∫

Ω

|∇Î|2dx+
∑

i

λi〈I − Î|φi〉L2 (3)

This prior is based on a Brownian motion image model and therefore the reconstruction
is referred to as Brownian reconstruction. The solution Î of this non linear minimization
problem is found using an iterative algorithm, cf. Lillholm and Nielsen [5].

For the second method the definition of the inner product is generalized. For a positive,
symmetric operator A we can define the inner product:

〈f |g〉A = 〈f |g〉L2 + 〈Af |Ag〉L2 = 〈f |(I +A†A)g〉L2 (4)

Given a filter ψi and minimizing the norm of the A-inner product space, the functional
to minimize becomes:

S[Î] =
1
2
〈Î|Î〉A +

∑
i

λi〈I − Î|ψi〉A (5)
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Note that ψi is chosen in such a way that: ci = 〈φi|I〉L2 = 〈ψi|I〉A. The solution
Î of this linear minimization problem boils down to an orthogonal projection on the
intersection of the measurement filters, cf. Janssen et al. [2]. For the remainder of this
paper, the definition of A proposed by Janssen et al. is used:

A = γ
√
−Δ (6)

Which results in minimizing:

S[Î] =
1
2

∫
Ω

Î2dx+ γ2
∫

Ω

|∇Î|2dx+
∑

i

λi〈I − Î|φi〉L2 (7)

In which again the Tikhonov regularizer can be identified, among with another term in
the prior. Note that there is a free parameter γ which has an optimum value dependent
on the image, number of points and reconstruction order [2]. Since the reconstruction
scheme is based on a Sobolev type inner product it is referred to as a STIP (Sobolev
Type Inner Product) reconstruction for the remainder of this paper.

Both reconstruction methods try to "complete" the reconstructed image in areas
where no constraints are present by some regularization. However, the first method
minimizes a global constraint and is implemented in an iterative way (but with a nice
statistical background for the prior) while the second method uses an alternative inner
product which results in a linear system.

3 Feature Points and Their Feature Strength

This section describes the various feature points used for image reconstruction with the
previously described algorithms. Note that in principle every point in scale space can be
used but it is shown by various authors that some feature points are more suitable than
others [5, 3].

Blobs. The first feature points used in this paper are blobs as proposed by Lindeberg
[6]. Blobs have been successfully used as feature points in the work by Nielsen and
Lillholm [7]. They are defined by:

max
x,σ

(σ2ΔI) (8)

The feature strength of blobs is defined as: |ΔI|.

Top Points. Top points have previously been used as feature points in work by various
authors [7, 5, 3]. A top point is a critical point at which the determinant of the Hessian
is zero: {

∇I = 0
det(H) = 0 (9)

Defining the feature strength of a top point is not as straight forward as defining it for
blobs. We assume that feature strength can be linked to the stability of a top point.
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Instabilities of critical points arise in areas in the image that consist of almost con-
stant intensity (genericity implies that flat plateaux do not occur in the image). On the
other hand, critical points are more stable in an area with structure. The amount of
structure contained in a spatial area around a critical point can be quantified by the
total (quadratic) variation (TV) norm over that area [1]. By using a spatial Taylor series
around a considered critical point the TV-norm simplifies to Eqn. (10) which is referred
to as the differential TV-norm [8].

diff tv = σ4Tr(H2) (10)

in which H denotes the Hessian matrix and σ denotes the scale at which the stability of
the critical point, or top point in this context, is calculated.

Besides the top points of the original image, top points of the gradient magnitude of
the image, the Laplacian of the image or higher order differential invariants of the image
also yield sparse sets of points in scale space. These can also be used as feature point
sets for our reconstruction algorithms.

Scale Space Saddle Points. Scale space saddle points are critical points in scale space,
for which not only the spatial derivatives, but also the scale derivative is zero:{

∇I = 0
ΔI = 0 (11)

Scale space saddle points have been used for (pre)segmentation by Kuiper and Florack
[4]. Since they are critical points just like the top points, the same measure of stability,
Eqn. (10), can be used.

Figure 1 shows all the different points for an image of Lena’s eye projected on the
original image. In each feature point a number of measurements can be used to constrain
the reconstruction. In this paper, we use measurements in the form of an inner product
of the image with a derivative of a Gaussian filter, resulting in a derivative of the image
at a certain spatial position and scale. Since the image can be locally well described by
a Taylor expansion, a natural choice of measurements is the local N-jet (Complete set
of derivatives from 0-th order up to N-th order) in each feature point.

Fig. 1. Examples of the different points used for reconstruction, projected on the lena64 image.
From left to right: Blobs, scale space saddles, top points of image I , top points of |∇I| and top
points of �I . For all feature points, the 19 strongest (relative to their respective feature strength)
points are shown
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4 Experimental Results

Experiments are done only using two images. The first one is a sub image of the famous
Lena image and has dimensions of 64x64 pixels. The second image is a magnetic reso-
nance image of the human brain with dimensions of 128x128 pixels. This image has a
large homogeneous black background and therefore is not considered a generic image.
It is, however, a real life image and for future medical applications it is important to
investigate reconstructions of this image. Figure 2 shows the two images. In all cases up
to fourth order derivatives (4-jet) were used as measurements in each point unless stated
differently. Note that for real quantitative conclusions the experiments should be run on
a larger number of different images.

Fig. 2. Our test images lena64 and MR128

4.1 Ordering of the Feature Points

The first experiment is to show the influence of the ordering of the feature points on
the reconstruction quality. To measure the reconstruction quality the Root Mean Square
Error (RMSE) is used on the normalized images:

RMSE =
1√
MN

√∑
(I − Î)2 (12)

with I the original image, Î the reconstructed image and M and N the dimensions of
the images. Reconstructions were done from top points, ordered by their differential
TV norm and from blobs, ordered by their feature strength using both reconstruction
algorithms. Figure 3 shows the resulting RMSE for the lena image. Figure 4 shows
some examples of the reconstructions for the lena64 image. For the STIP reconstruction
γ = 32 is used.

In general one can observe that the brownian reconstructions outperform the STIP
reconstructions both in terms of RMSE as well as visually. Comparing reconstructions
from a low number of feature points a human observer would prefer reconstructions from
top points, since more visually attractive information is present. However, a large clear
geometric feature is missing (The ridge to the left of the eye), which is present in the blob
reconstruction. The RMSE for the Brownian reconstruction shows almost no difference
between the top points and the blobs for a low number of points since apparently the
same amount of information is missing. This shows that in case of different feature
points the RMSE does not always reflect the visual quality of the reconstruction. For
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RMSE RMSE vs number of points for Lena64 image
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top �Brownian�

blob �STIP�
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Fig. 3. RMSE of reconstructed Lena64 image with respect to number of reconstruction points

Top Pts (STIP)

Blobs (STIP)

Top Pts (Brownian)

Blobs (Brownian)

Fig. 4. Examples of reconstructed Lena64 image with respect to number of reconstruction points.
The top row is reconstructed from top points using STIP reconstruction, The second row is recon-
structed from blob points using STIP reconstruction, the third and fourth row are reconstructions
using Brownian reconstruction from the same number of resp. top points and blobs. The columns
from left to right show reconstructions from resp. 19,31,39,51 and 63 feature points
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a higher number of feature points the top points are outperformed by the blobs both in
RMSE as visually. From figure 4 one can conclude that the ordering of the top points is
performing well. The reconstruction from the 20 most stable top points is visually very
close to the reconstruction from all 63 top points, which is not the case for the blobs.

The experiment is repeated for the MR128 image. Figure 5 shows the resulting RMSE
for the MR128 image and figure 6 shows some examples of the reconstructions for the
MR128 image. Again for a low number of feature points the top points seem to perform
better than blobs in terms of visual quality, while for a high number of feature points
it is the other way around. Both reconstruction methods have a slightly higher RMSE
due to intensity "leakage" into the black background which can also be seen in figure
6. As can be expected this problem is less present in the STIP reconstruction, since it is
suppressed by the first term of Eqn. (7). Also from figure 6 one can conclude that the
ordering of top points is performing well since most of the visually interesting image
information is present in the reconstruction from the 55 most stable top points.

4.2 Robustness of the Reconstruction from Top Points

An experiment is done to investigate the robustness of the reconstruction from top points
under noise. This experiment is to simulate detection errors by adding random noise to the
position of the top points after detection but before calculating the measurements. Figure
7 shows the RMSE for noise on the top point positions up to 2 pixels for reconstructions
from resp. 20, 30 and 40 top points (ordered by their feature strength).All reconstructions
were made using the STIP algorithm with γ = 32 using up to second order derivatives.
Figure 8 shows some examples of the experiments done with 30 points.

Figure 7 shows that for a small perturbation on the top point positions, the RMSE
does not change much, which is also reflected in the visual quality of the images in figure
8. For perturbations up to 2 pixels the RMSE stays below 0.09 and the visual quality
of the reconstructions is still very reasonable. From figure 7 one can also conclude that
for small perturbations reconstructions from 20 points have a slightly higher RMSE
than reconstructions from 30 or 40 points, as expected. However, the reconstructions
from 20 points have an almost constant RMSE up to perturbations of 1 pixel, while
reconstructions from 30 or 40 points only have a constant RMSE for perturbations up
to approximately 0.6 pixels. This shows that the proposed ordering is strongly related
to the stability of the points. Note that in some cases the random noise on the position
can result in near dependant equations, which can result in some artefacts as is shown in
figure 8.Also note that there seems to be a local maximum in the RMSE for perturbations
of approximately 1-1.25 pixels. This is related to the spatial distribution of the top points
in the image and the previously mentioned problem of dependant equations.

4.3 Influence of Points Used for the Reconstruction

This experiment is to compare reconstructions from different feature points. Table 1
shows the results. The first two columns show reconstructions using the Brownian re-
construction, the last two columns show reconstructions using the STIP reconstruction.
For the blobs, the points with the highest feature strength were used. For the top points
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Fig. 5. RMSE of reconstructed MR128 image with respect to number of reconstruction points

Top Pts (STIP)

Blobs (STIP)

Top Pts (Brownian)

Blobs (Brownian)

Fig. 6. Examples of reconstructed MR128 image with respect to number of reconstruction points.
The top row is reconstructed from top points using STIP reconstruction, The second row is recon-
structed from blob points using STIP reconstruction, the third and fourth row are reconstructions
using Brownian reconstruction from the same number of resp. top points and blobs. The columns
from left to right show reconstructions from resp. 55,86,117,128 and 155 feature points
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Fig. 7. RMSE of reconstructed Lena64 image with respect to noise on the top point positions

Fig. 8. Examples of reconstructed Lena64 image with respect to noise on the top point positions.
From left to right: Original image, reconstructed image from 30 top points with absolute errors in
position of the reconstruction points of resp. 0.0, 0.4, 0.8, 1.6, 2.0 pixels

of I and the scale space saddles 1 the points with the highest differential TV norm were
used. For all combinations of top points taken from the image and its derived differential
invariants an equal number of points was taken from each separate (ordered) point set.

The first two rows show again that for a low number of feature points, the reconstruc-
tions from top points are visually more appealing, while for a large number of feature
points the reconstructions from blobs are visually more appealing. Scale space saddles
do not perform very well as feature points compared to blobs or top points. For a very
low number of feature points they do however seem to contain some more detailed image
information than blobs. Adding top points of the gradient magnitude to the top points of
the intensity does not seem to add much information, but adding top points of the Lapla-
cian of the image does seem to add extra information. This combination even seems to
slightly outperform the reconstruction from blobs only. An important conclusion is that
in cases where different feature points complement each other the visual reconstruction

1 Note that instead of 63 scale space saddles, only 51 scale space saddles were used for this
experiment since no more scale space saddles were detected in the Lena64 image.
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Table 1. Comparisons of the different points for image reconstruction. Left column from the first
reconstruction method, right column from the second reconstruction method. From top to bottom,
reconstructions from: Blobs, Top points from I , Scale Space Saddles, Top points from I and |∇I|,
Top points from I and �I and Top points from I , |∇I| and �I

Brownian STIP (γ = 24)

19 points 63 points 19 points 63 points
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quality can be improved. It is however not trivial to find complementing sets and ways to
combine those sets. In general one can again conclude that the Brownian reconstruction
outperforms the STIP reconstruction.

5 Conclusions and Discussion

We have presented new results of reconstructions from top points using a recently pro-
posed linear reconstruction algorithm as well as a previously proposed non linear recon-
struction scheme. Furthermore, we have presented a hierarchical ordering of top points
using a stability measure, which can be compared to feature strength in previously pro-
posed work. Using this ordering our results show improved reconstructions from top
points compared to previously presented reconstructions from top points. The ordering
also shows that most of the information in the top points is contained in a very limited
number of points. Our results also show that the linear reconstruction is outperformed
by the non linear one, but the first one is because of its linearity less cumbersome to
implement. It is also shown that adding top points of the Laplacian of the image to the
top points of the intensity increases reconstruction quality.

Since the presented results are based on only two images, future work will include
reconstructions with a larger number of images. Furthermore, we concluded that com-
plementing sets of feature points can greatly improve the reconstruction quality. It is
however not trivial to find such sets and ways to combine them and further research will
be necessary to find such sets.
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Abstract. We present a technique for texture mapping arbitrary sphere-like sur-
faces with minimal distortions by spherical embedding. The embedding is com-
puted using spherical multi-dimensional scaling (MDS). MDS is a family of meth-
ods that map a set of points into a finite dimensional domain by minimizing the
difference in distances between every pair of points in the original and the new em-
bedding domains. In this paper spherical embedding is derived using geodesic dis-
tances on triangulated domains, computed by the fast marching method. The MDS
is formulated as a non-linear optimization problem and a fast multi-resolution so-
lution is derived. Finally, we show that the embedding of complex objects which
are not sphere-like, can be improved by defining a texture dependent scale factor.
This scale is the maximal distance to be preserved by the embedding and can be
estimated using spherical harmonics. Experimental results show the benefits of
the proposed approach.

1 Introduction

Texture mapping is a fundamental technique in computer graphics where an image is
mapped onto a given surface. This problem is closely related to the embedding of high
dimensional data in a low dimensional space, such that a certain distortion measure is
minimized. As texture maps are usually defined on a plane or a sphere, the problem can
be viewed as the embedding of curved surface onto a two dimensional flat or spherical
space. Two coordinates are assigned to each of the original mesh vertices, a procedure
also known as parametrization. The texture pixels are then mapped from the texture
image (parametrization surface) to the faces of the triangle in 3D, and the embedding
errors are perceived as visual artifacts.

This topic was extensively studied in the computer graphics literature.Arad and Elber
[1] preserve the local area of textures by finding, for a specific viewing direction, the four
intersecting curves (in the parametric space) between a swept rectangle in the viewing
direction and the surface. Then, they warp the square texture image to fit the four curves.
This method is useful when the texture is mapped on a small region of the surface.

In [2], Azariadis and Aspragathos proposed to minimize a functional that combines
a dissimilarity measure for neighboring vertices and an area measure for the flattened
triangles. They also restricted two curves in their mapping to have identical lengths
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as two selected curves on the surface. This constraint can be considered a boundary
condition for their scheme.

Neyret and Cani [3] dealt with general surface topology by tiling together small
textured patches with matching boundaries. Their method is limited to textures with
relatively small details, as the tiles should be relatively small. A similar solution was
introduced in [4], where features are detected in a small texture patch, and are repeatedly
pasted onto any given surface until it is completely covered. These methods are impose
some non-trivial difficulties for mapping an image onto a curved domain.

The problem of computing global conformal structures for general closed meshes was
addressed in [5], where the proposed method approximates De Rham cohomology by
simplicial cohomology, and compute a basis of holomorphic one-forms. It is generalized
for surfaces with boundaries and there is no restriction of the geometric realization for
homology basis. A conformal mapping which preserves the angles of the mesh triangles
was proposed by Haker et al. [6] to embed a closed surface onto a sphere.

Sheffer and de Sturler [7] concentrate on preserving the angles of the mesh while
mapping it onto the 2D plane. The mapping is defined in terms of the angles only, and an
optimal solution is proven to exist. However, these methods still impose high distortion
on highly curved surfaces and may even lead to self-intersections.

To cope with the distortion problem, the input mesh can be partitioned into several
parts and each part will be mapped to a sphere. Thus, a set of embeddings is derived
and a seam construction algorithm is needed to provide a continuous mapping within
the set of embeddings. Such approaches were first applied to planar embeddings. In [8]
the mesh is partitioned by computing a coarse base mesh, where each triangle in the
base mesh defines a parametrization for a corresponding cluster of triangles in the input
mesh. The embedding is then computed by harmonic maps. Similarly, in [9], the mesh
was clustered according to the similarity in the directions of normals and of maximal
curvatures. Each region is then embedded on a plane.

For spherical embeddings, Sheffer [10] introduced seams into the surface, computed
by a minimal-spanning-tree algorithm. Since cutting the surface at the regions of high
curvature reduces the Gaussian curvature, the seams improve the overall quality of the
mapping. The self-intersections are detected in a post-process, and the parametrization
needs to be recomputed to eliminate them.

The pioneering papers [11] and [12], are closely related to the algorithm presented
here. First, geodesic distances between pairs of points on the surface are computed,
using a computationally intensive scheme. Then, the MDS (Multi-Dimensional Scaling)
is applied to flatten the surface using the geodesic distances.

Related approaches to planar embedding were more recently applied to volumetric
and triangulated data in [13] and [14], respectively. They start by computing the geodesic
distances on volumetric ([13]) or triangulated data ([14]), and then apply classical scaling
to D, the matrix of distances between each pair of vertices on the mesh. The planar em-
bedding is given by the first two eigenvectors and eigenvalues of the double centeredD.

Such an embedding is also applicable to unfolding of the curved and convoluted outer
surface of the brain (known as the cortex or cortical surface) [15]. The 3D structure of
the cortex (a mesh) is mapped onto a sphere or a plane, and the embedded representation
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can then be used to compare inter-patient neuroimaging data and visualize it using
texture mapping.

In this paper, we present a spherical texture mapping scheme based on Multi-
Dimensional Scaling (MDS) [16, 17, 18], which minimizes the difference in geodesic
distances between corresponding vertices on the mesh and their embedding on the sphere.
Formally, denote by DG (i, j) the geodesic distance between two vertices in the in-
put mesh and DE

G (i, j) the geodesic distance between their corresponding dual points
on a sphere.

The MDS aims to compute an embedding E that minimizes the embedding error

ε =
n∑
i,j

wij(DG (i, j) −DE
G (i, j))2 (1.1)

where wij ≥ 0 and n is the number of vertices in the mesh.
The geodesic distances on the curved surface are efficiently computed using the fast

marching method on triangulated domains [19]. Spherical mapping is more computa-
tionally demanding than planar mapping. Yet, for sphere-like surfaces such as faces and
the brain cortex, it yields lower embedding errors.

The unweighted MDS (wij = 1) preserves both the ‘local’ (small DG (i, j) values)
as well as the ‘global’ (large DG (i, j) values) structure of the texture and does not
require boundary conditions, while most of the previous schemes require them as they
integrate local measures to preserve the global structure.

A preliminary version of the above scheme was used in [20] to texture map the
Cortex. Next we extend these results by providing a faster scheme that better handles
the embedding of meshes which are not sphere-like.

The embedding error of such meshes is large, yielding poor visual quality. We show
that by adaptively setting the weights wij , the texture mapping quality is improved and
that such a technique is related to local regression [21]. The weighted MDS allows us to
specify a certain range of distances for which the texture structure should be preserved.
This range can be determined for a given texture image using spherical harmonics.

Finally, we present an efficient multi-resolution numerical scheme for the solution
of Eq. (1.1) in both weighted and the unweighted cases and show its applicability.

We note that our scheme is conceptually related to the schwartz et al. dimensionality
reduction algorithm [12] (that was recently popularized under the name of ISOMAP
[22]). In our case the restriction of the distance on a sphere (rather than a plane) leads
to better preservation of the original geodesic distances.

The outline of this paper is as follows: preliminaries are given in Sections 2 and
3 which provide a brief review of fast marching on triangulated domains and distance
computations on spheres, respectively. Section 4 presents the proposed spherical MDS
algorithm which is experimentally verified in Section 5. Concluding remarks are given
in Section 6.

2 Fast Marching Method on Triangulated Domains

The first step of the embedding procedure is to compute the geodesic distances between
pairs of points on the surface. The fast marching method (FMM), introduced by Sethian
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[23] is a numerically consistent distance computation approach that is applicable to rect-
angular grids and was extended to triangulated domains by Kimmel and Sethian in [19].

The basic idea is to numerically solve a wave propagation problem given by an
Eikonal equation , where at the source point the distance is known to be zero. The
distance function is iteratively constructed by patching together small planes supported
by neighboring grid points with gradient magnitude equal to one.

The distance function is constructed by starting from the sources point and propagat-
ing outwards. Applying the method to triangulated domains requires a careful analysis
of the update of a single vertex in a triangle, when the distance function at the other
vertices is given. The FMM on triangulated domains computes the geodesic distances
between a single vertex and the rest of the n surface vertices inO (n) operations. Repeat-
ing this computation for each vertex, we compute all the geodesic distances DG (i, j)
{1 ≤ i ≤ n, j < i} in O

(
n2
)

operations.
Thus, the essence of the FMM, is its low computational complexity as the distance

from the source point gets larger. Note that, if the numerical grid given by triangles
is pre-processed properly, that is, obtuse angles are subdivided by virtual edges [19],
then the geodesic distance computation is accurate (first order) and the whole scheme
is consistent.

3 Spherical Geometry

Spherical MDS schemes map vertices onto a surface of a unit sphere. Points on a surface

of the sphere are parameterized by a vector of spherical angles θ =
[
θ1 θ2

]T
, where

each point l is given by the coordinates
{
θl
1, θ

l
2
}

.
Let θl

1
(
−π

2 ≤ θl
1 ≤ π

2

)
and θl

2
(
0 ≤ θl

1 ≤ 2π
)

be the spherical angles, such that

xl = cos θl
1 sin θl

2
yl = sin θl

1 sin θl
2

zl = cos θl
2.

(3.1)

Then, the Euclidean distance de
ij between points on the sphere is given by

(
de

ij

)2 = (xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2
. (3.2)
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Fig. 1. Spherical geometry. The geodesic distance on the surface of the sphere is given by the
length of the arc corresponding to the angle ϕ
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Substituting Eq. (3.1) we have that(
de

ij

)2 = 2 − 2 sin θi
2 sin θj

2 cos
(
θi
1 − θj

1

)
− 2 cos θi

2 cos θj
2 (3.3)

and by applying the Low of Cosines to the triangle depicted in Fig. 1 we get(
de

ij

)2 = 2R2 − 2R cosϕ, (3.4)

where ϕ is the planar angle and for the unit sphere R = 1.
dg

ij (i, j), the geodesic distance on the sphere is then given by

dg
ij (i, j) = ϕ = arccos

2 −
(
de

ij

)2
2

. (3.5)

4 Spherical MDS Formulation

This Section applies the least squares MDS formulation to the spherical embedding
problem. First we compute the geodesic distances between the vertices of the input mesh
using the FMM described in Section 2. The spherical MDS is formulated in Section 4.1
and an iterative optimization scheme is presented. Further improvement is achieved
by embedding the above procedure in a multi-resolution scheme given in Section 4.2.
Finally, we introduce the weighted MDS in Section 4.3, which allows us to better handle
the embedding of non-sphere-like objects.

4.1 The Spherical MDS Formulation

For the spherical MDS, DE
G (i, j) , the distance between the embedded vertices is the

geodesic distance on the sphere given by Eq. (3.5). The spherical MDS is derived by
substituting dg

ij

(
θi, θj

)
, into Eq. (1.1) and solving for the spherical embedding param-

eters θ

θ = arg min
θ

∑
i,j

wij(d
g
ij

(
θi, θj

)
−DG (i, j))2. (4.1)

The minimization is computed using steepest-decent [24]. Note that DG (i, j), the
geodesic distance on the mesh, remains fixed. Let ε be the embedding error

ε =
∑
i,j

wij(d
g
ij

(
θi, θj

)
−DG (i, j))2 =

∑
i,j

wijε
2
ij , (4.2)

the steepest-decent iteration is given by

θk+1 = θk − λ
∂ε

∂θ
, k = 0.. (4.3)

where ∂ε
∂θ =

[
∂ε
∂θ1

∂ε
∂θ2

]T
, λ is the step size discussed in Section 4.1 and θ0 is given as

input. εk denotes the embedding error after iteration k.
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The partial derivatives are computed using the chain rule

∂ε

∂θl
m

=
n∑

j=1

wij2(dg
lj

(
θi, θj

)
−DG (l, j))

∂dg
ij

(
θi, θj

)
∂θi

(4.4)

=
n∑

j=1

wij2εil

∂dg
ij

(
θi, θj

)
∂θi

m

,m = 1, 2, l = 1..n.

By applying the chain rule again and substituting Eqs. (3.3) and (3.5) we get

∂dg
ij

(
θi, θj

)
∂θi

m

=
∂dg

ij

(
θi, θj

)
∂de

il

∂de
il

∂θi
m

where
∂dg

ij

(
θi, θj

)
∂de

il

=
∂dg

ij

(
θi, θj

)
∂ (de

il)
2 2de

il =
−2de

il√
1 −
(

2−(de
ij)

2

2

)2

and

∂de
il

∂θl
1

= − 1
de

ij

sin θi
2 sin θj

2 sin
(
θi
1 − θl

1
)

(4.5)

∂de
il

∂θl
2

=
1
de

ij

(
− cos θi

2 sin θj
2 cos

(
θi
1 − θl

1
)

+ sin θi
2 cos θl

2

)
Equation (4.3) is reiterated until at mostNmax iterations are performed or the decrease

of the embedding error |εk − εk−1| is less than a predetermined threshold.

Line Search. An appropriate choice of the iterative step-sizeλused in Eq. (4.3) is critical
for the convergence properties of the steepest-decent scheme. Setting a low value for λ
would result in slow convergence, while setting it too high, may cause the algorithm to
diverge. A possible solution is to use a line search [24] to find the optimal value of λ
that minimizes εk given ∂ε

∂θ .
Thus, at each iteration k,

1. Start by setting λ = 1.
2. Compute the updated solution θk using Eq. (4.3) and the embedding error εk.
3. If εk < εk−1, set λ = 2λ, εk−1 = εk and go to Step 2.
4. If εk > εk−1, set λ = λ

2 , εk−1 = εk.
5. If the current value of λ was already used then quit, else, go to Step 2.

Due to the symmetry of the geodesic distances dg
ij

(
θi, θj

)
= dg

ij

(
θj , θi

)
, the eval-

uation of Eq. (4.2) can be reduced to

ε =
n∑

i=1

j<i∑
j=1

wij(d
g
ij

(
θi, θj

)
−DG (i, j))2,

and the computation of the embedding error is faster than the evaluation of the embedding
error’s derivative in Eq. (4.4).
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4.2 Fast Multi-resolution Spherical MDS

Multi-resolution optimization techniques are widely used in computer vision [25] and are
usually computationally more efficient than single resolution schemes, as they improve
the accuracy and numerical conditioning. Denote {0 ≤ s ≤ smax} the scale of the mesh,
where s = 0 corresponds to the finest resolution and smax is predefined. Then Vs, Es

and Ds are the mesh, its embedding and the distance matrix in a scale s, respectively.
Next, we define downscaling and upscaling procedures that relate {Ms, Es, Ds}

to {Ms+1, Es+1, Ds+1}. The downscaling is implemented using the mesh decimation
scheme given in [26]. Thus, the embeddingEs+1 is computed by copying the embedding
of each vertex Vi ∈ Ms+1 from Es, and Ds+1 is a decimated replica of Ds where any
row and column i such that Vi /∈ Ms+1 are removed.

The upscaling is given by copying the embedding inEs+1 of the vertices Vi ∈ Ms+1,
to the corresponding entries in Es. The initial embedding of each vertex Vi /∈ Ms+1 is
approximated by using the embedding of the vertexVi ∈ Ms+1 closest to it. The upscaled
embedding is then used to initialize θ0 in the iterative scheme given in Section 4.1.

The solver is randomly initialized in the coarsest scale. In general, this makes the
scheme robust to local minima. As we did not encounter such cases in our tests, the
solver can also be initialized by projecting the vertices on the unit sphere by computing
their spherical coordinates and setting r = 1.

The computation is performed from coarse to fine. The result is refined in the finest
resolution level, the global minimum is achieved. The downscaling and upscaling of Es

andDs use only data structure operations and no numerical computations, making them
fast and suitable for the embedding of large meshes.

4.3 Weighted MDS

For the particular application of texture mapping, the spherical embedding can be modi-
fied to improve the visual quality. The embedding error of meshes which are not sphere-
like is large, yielding poor visual quality. Preserving both the local and global structure
for such meshes is sometimes impossible. A possible solution is to partition the mesh
and map each part separately. Such approaches were discussed in Section 1. The main

(a)

Fig. 2. Deriving the intrinsic scale of a texture. In such a texture, it suffices to retain the distances
between the points A and B which is the intrinsic scale σ. The distances AC and AB are visually
less significant
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problem there, is the seamless integration of the partial embeddings into a single contin-
uous mapping. Hence, we are motivated to extend the current scheme to better handle
complex meshes. It can also be used as a component of a partitioning based scheme.

For textures such as the soccer ball shown in Fig. 2, we denote σ, the intrinsic scale
of the texture image. σ is the largest distance that should be preserved by the embedding,
while larger distances can be distorted. For example, for the soccer ball, σ is the width
of the pentagon.

This approach is related to local regression [21], where functions are estimated locally
by polynomials and the local scale is given by the scale parameter σ. Following the local
regression formulations in [21] the weights were computed using the Nadaraya-Watson
kernel

Kσ (x) = D

(
|x|
σ

)
with

D (t) =
{ 3

4

(
1 − t2

)
if |t| ≤ 1

0 otherwise.

Equation (4.2) is reduced to

ε =
∑
i,j

wijε
2
ij =

∑
|DG(i,j)|<σ

Kσ (DG (i, j)) ε2ij . (4.6)

Note that by using the weighted MDS (WMDS), the scheme preserves only the distances∣∣DG

(
θi, θj

)∣∣ < σ. Thus, there is no need to store all of the relative distances and
compared to the unweighted MDS and [14] the matrix of distances becomes sparse.
This makes the weighted MDS more suitable for embedding large meshes.

Intrinsic Scale Estimation. For a given spherical texture map the intrinsic scale can
be estimated using spherical harmonics. This is a set of basis function defined on the
surface of the sphere analogous to Fourier analysis. Spherical harmonics have been
used in graphics to efficiently represent the bidirectional reflection distribution function

(a)
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(b)

Fig. 3. Computing the intrinsic scale of a texture using spherical harmonics. The spherical texture
map used in Fig. 2 is given in (a) in spherical coordinates. The spherical harmonics coefficients
are shown in (b). The maxima is detected in (m = 2, n = 4), corresponding to 2 cycles in the
latitude (vertical axis of (a) ) and 4 cycles in the longtitude (horizontal axis of (a) )
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(BRDF) of different materials. Thus by computing the spherical harmonics coefficients,
one can estimate the dominant spherical frequencies corresponding to the intrinsic scale
σ. Such an example is given in Fig. 3 where the spherical harmonics coefficients of Fig.
3a are given in Fig. 3b.

We note that the Weighted MDS can also be applied to planar least squares MDS,
where the intrinsic scale σ can be estimated by the Fourier transform of a given texture
map and detecting the dominant frequencies.

5 Experimental Results

The proposed technique was tested using several meshes. We start by comparing the
proposed scheme to the MDS based planar embedding given in [14]. The ‘face’ mesh
(6000 vertices) has a half-sphere-like topology and the ‘David’ mesh (10000 vertices) is
used to compare the embeddings of a full-sphere-like object. We show the applicability
of the scheme to medical visualization by annotating and texture mapping the ‘cortex’
mesh (6000 vertices) and a segment of it. Finally, we apply the WMDS to texture
mapping the ‘Stanford bunny’ (6000 vertices) and show the improvement compared
to the regular MDS.

Given θi (the spherical embedding of a vertex Vi), the color associated to Vi was
determined by sampling the spherical texture image I at θi. Subpixel values of θi were
handled by bilinear interpolation of I . The visualizations of the texture mapped meshes
were produced by the VTK mesh viewer [27]. The multi-resolution MDS scheme was
used in all of the simulations, with three resolution scales. At each scale the computation
continued until Δε, the reduction of the embedding error, became less than 10−7.

Figure 4 and Table 1 show the visualizations artifacts and the embedding error of the
‘face’ mesh, respectively. This is a half-sphere-like object with low curvature, except for
the nose area which is a high curvature structure. The embedding was computed using
the regular (unweighted) MDS. Figures 4a and 4b, show similar visual quality, except for
the nose area, where the planar MDS shows a larger distortion. Thus, both embedding
have a similar average error.

(a) Spherical
MDS

(b) Carte-
sian MDS

Fig. 4. The Spherical and Planar MDS applied to the ‘face’ mesh (6000 vertices). Note the em-
bedding error of the cartesian MDS around the region of the nose
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Table 1. Embedding error comparison between cartesian and spherical embeddings

Name Vertices# Embedding type Embedding error

Face 3000 spherical 3.1 · 10−5

Face 3000 cartesian 3.4 · 10−5

Face 6000 spherical 1.15 · 10−5

Face 6000 cartesian 1.25 · 10−5

(a) (b) (c)

(d) (e) (f)

Fig. 5. Texture mapping of a sphere-like mesh. (a) The head of the David mesh (1000 vertices) .
(b) The planar chess texture used for the planar texture mapping in (c). (c) The results of a LSMDS
based planar texture mapping. (d), (e) and (f) Texture mapping results using the spherical MDS

A significant improvement is evident in the embedding of the full-sphere-like ‘David’
mesh given in Fig. 5. The planar embedding results in significant embedding error, while
the spherical MDS gives reasonable results.

(a) (b) (c) (d)

Fig. 6. Annotation of parts of the Cortex
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Fig. 7. Coloring part of the cortex. Note the accuracy with which the pentagon patterns are pre-
served

(a) (b) (c) (d)

Fig. 8. Local spherical MDS texture mapping results. (a) and (b) are the results of the regular
spherical MDS while (c) and (d) are both sides of the Stanford bunny textured mapped using the
local spherical MDS. Note the improved mapping in (b)

Figures 6 and 7 apply the spherical MDS to the unfolding of the brain cortex for
medical visualization. We were able to annotate the cortex in Fig. 6 and color it in Fig. 7.
Note the lack of geometrical distortions in these figures.

Finally, we compare the results of the spherical and weighted spherical MDS using the
‘Stanford bunny’. This object is far from a sphere and has points of negative and positive
mean curvature. Texture mapping it using the spherical MDS, results in significant
embedding errors, as depicted in Figs. 8a and 8b. There is no embedding that minimizes
the difference in both the local and global distances. The results of the WMDS applied
with σ = 0.1 are demonstrated in Figs. 8c and 8d, that depict the improved texture
mapping. Fig. 8e depicts the texture mapping of the earth’s texture.

These results asses the validity of the mapping (bijectivity). For patches with high
isoperimetric distortion (sphere-like shapes), classical geodesic-MDS often gives wrong
results. This is not evident in our results. Note that the measure we optimize is a global

Table 2. Timing results for the single scale and multiscale MDS. The multi-scale scheme signifi-
cantly reduces the computation time

Mesh size [vertices#] 1000 2000 3000 6000 10000
Single scale 4.4s 11.4s 32.7s 166.8s 420.0s
Multiscale 2.0s 5.2s 25.2s 67.1s 217.5s
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one. The triangulation is a particular numerical representation of the geometry. While
mapping a sphere-like surface onto a plane one could experience face flips. However,
choosing the sphere as a target simplified map, such effects are reduced drastically. Using
least squares scaling one could restrict the triangles to preserve their orientation on the
sphere. However, we did not find such a restriction a necessity in our applications.

The timing results for the single and multiscale MDS are given table 2. The algorithms
were implemented using non-optimized C++ and the multi-scale MDS implementation
uses the same code as the single scale scheme for the computations within each resolution
scale. The ‘Stanford bunny’ (6000 vertices) was used for the timing measurements on
a 2.8GHz PC. Evidently, the multi-scale scheme improved the algorithm’s timing by
50-100 percent.

6 Summary

An efficient and accurate method for embedding surfaces onto a sphere was presented.
The method is based on the fast marching on triangulated domains algorithm followed by
multi-dimensional scaling, and was shown to provide improved visual results compared
to planar flattening. Furthermore, we presented a weighted MDS formulation which
allows us to better handle objects with non-sphere-like geometry. Finally, we derived
a fast multi-scale optimization scheme for the numerical solution of the problem. In
future work we will study the use of the proposed scheme in a partitioning based em-
bedding scheme. The main challenge is to device a partitioning scheme that will allow
a continuous mapping between the embedded partitions.
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Abstract. After introducing the basic principles behind the similarity-
invariant smoothness measures for curves and surfaces, with references
to the relevant literature, we discuss the ramifications of scale-invariance
in various problems of image processing and analysis, and point out some
unanswered questions.

1 Introduction

In this paper we consider variational measures of fairness which are invariant
under similarity transformations and reparametrizations, that is integrals of the
form

J(γ) =
∫

γ

F (p, C,C ′
p, C

′′
pp, . . . ) dp

(and analogous integrals for surfaces) invariant under

– change of parametrization p = p(p̄), where p is a smooth monotonically
increasing function,

– translation C = C̄ + v, v being a constant vector,
– rotation C = UC̄, for any orthonormal matrix U ,
– scaling C = αC̄, for any nonzero (usually positive) scalar α.

The combination of the first three properties is usually called Euclidean invari-
ance. Most image processing theories and algorithms are Euclidean invariant, so
we will focus on scale invariance.

In this paper we discuss the different (but often confused) meanings of invari-
ance and review the previous work on fairness measures for curves and surfaces,
trying to produce an exhaustive list of functionals that are such measures. We
then consider the need for (and the possibility of) scale invariance in image
processing and image analysis (in particular edge detection and integration).

2 Invariance of a Measure Versus Invariance of a
Solution

An important distinction, which is often overlooked in works dealing with in-
variance of variational solutions, is the difference between the invariance of the
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solution to a minimization problem and the invariance of the functional being
minimized.

There are two possible uses for a fairness measure. One is the general question
“Is this a nice curve?” or “Which of these two curves looks better?” (see [1–p. 30]
for a discussion of definitions of fairness). Another is the specific question “What
is the best curve satisfying the given conditions?” Most frequently, this is used in
contour completion. The basic setting is of two short segments in the plane that
are to be connected in the smoothest way possible. Such segments are usually
treated as 1-jets, that is, the only information extracted from them is the position
and the tangent.

The invariance of the functional is important if we use the functional as a
universal measure of smoothness; we wish to give each curve a number that will
be a measure of its smoothness, and this number should be scale-invariant.

On the other hand, if we are only interested in solving a specific problem of
finding the most fair curve that connects two given segments, for example, we
are only dealing with the minimizers of the functional. It is possible that the
minimizers will be scale-invariant while the functional is not.

This phenomenon is remarked upon in [1–p. 72]:

Minimal Variation Curves are invariant under rigid body transformation
and uniform scaling. The value of the Minimal Variation Curve func-
tional, however, changes with a change of scale.

Let us consider a very simple example. Say, we want to connect two points
by the shortest possible curve. The corresponding functional is just the length of
the curve,

∫
γ
ds, and the solution is, of course, the straight segment connecting

the two points. Both the functional and the solution are invariant under rigid
motions.

However, the solution is also scale invariant. Indeed, if we dilate the plane,
the straight segment will remain the shortest possible line even after dilation.
And yet the functional that defines this curve is not scale invariant, of course!

How does this happen? If we dilate the space by λ, the length functional is
multiplied by λ: ∫

γ

ds �→ λ

∫
γ

ds,

and so is the Euler-Lagrange equation:

C ′′ = 0 �→ λC ′′ = 0,

but these two equations are equivalent. Thus, a functional which is not invariant
under certain group (dilations) possesses an Euler-Lagrange equation which is
invariant under this group.

This non-equivalence is mentioned in [2–p. 255] and [3–p. 236]. In both cases,
after the theorem that says “every symmetry of the functional is a symmetry
of the Euler-Lagrange equation”, it is mentioned that the converse is not true
and that “the most common examples” are those of scaling transformations.
Also, the above theorem (if the functional is invariant then the Euler-Lagrange
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equation is invariant) is not a trivial one, due to the fact that generally, not all
of the Euler-Lagrange equation’s solutions are minimizers of the functional.

We do not know whether these are the only examples, or whether it is possible
to give a complete classification of such counterexamples. We hope to answer
these questions elsewhere.

3 Smoothness Measures for Curves

3.1 Basic Invariants

Classical Similarity Invariants. First of all, if we drop the requirement of
invariance to scale, we are left with parametrization and Euclidean invariance. It
is well known and easily established (see [4–p. 81] and [5–8.1.1]) that Euclidean
and reparametrization invariant functionals must have the form∫

γ

F (κ, κs, κss, . . . )ds,

where s is the arclength parameter, and κ is the curvature. (For a curve in space
we will have to add torsion to the list, but space curves are rarely, if ever, used
in image processing.)

From these functionals we want to select those that are invariant to scaling.
If we replace C with αC, κ(i) becomes κ(i)/αi+1. Substituting these to F , we see
that we are looking for functions F that are homogeneous (of order −1, so that
F ds is invariant) with respect to α (the same idea is used in [6]). Let us see what
this leaves us. One possibility is just to write down the list of these functions:

κ,
κs

κ
= − d

ds
(ln |κ|), κ2

s

κ3 ,
κss

κ2 ,
κss

κs
= − d

ds
(ln |κs|) (1)

and so on.
We can go on with this list, by considering higher order derivatives and higher

powers, none of which is a good idea. High order derivatives are numerically
challenging; PDEs of order higher than four are nearly impossible to implement.
High powers are unreasonable in a smoothness measure because of their high
sensitivity to noise (also known as sensitivity to outliers or non-robustness).

We can bring some order to the list (1) with the help of invariants theory.
The invariant arclength and curvature for the similarity group are given in [3] as

uxx dx

1 + u2
x

and
(1 + u2

x)uxxx − 3uxu
2
xx

u2
xx

,

which upon inspection turn out to be dθ = κ ds (notice that the turn angle
θ itself is not even Euclidean invariant!) and μ = κs/κ

2. Appropriately, both
quantities are homogeneous of degree 0 in the sense described above. Thus, the
invariant measures are

∫
Φ(μ, dμ

dθ , . . . )dθ, which generates the same list as above;
in particular,

dμ =
(
κss

κ2 − κ2
s

κ3

)
dθ.
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Winding Number and Total Absolute Curvature. The integral 1
2π

∫
γ
κ ds

is called the winding number, for it equals 1
2π

∫
γ
dθ, which is the number of the

turns the (closed) curve makes. The integral
∫
κ ds on an open piece of a curve

is the turn angle. This in particular means that κ is a null Lagrangian, that is,
an attempt to write down the Euler-Lagrange equation for the winding number
will result in 0 = 0. In any case, the winding number is obviously unsuitable as
a smoothness measure.

We can consider another similarity invariant, the total absolute curvature∫
γ
|κ| ds. The excess of this functional above 2π shows how much the curve

wiggles before closing upon itself ([7] calls it “angular total variation”). This
quantity was a subject of some research; see the review [8]. The relevant result
is that

∫
γ
|κ| ds � 2π for any closed curve, and the equality holds if and only if

γ is a convex curve. Thus, in principle, it is a fairness measure, and the corre-
sponding flow should bring any closed curve to a convex one, which is a desirable
behavior for a short time. However, |κ| is also a null Lagrangian, except at the
inflection points.

The article [9] gives an algorithm for minimizing
∫

γ
(a + b|κ|) ds by a direct

construction of the minimum, which is a polygonal path. This approach will not
work for a = 0.

Other Invariants. First of all, there are two functionals that are integrals
of full differentials: the similarity arclength

∫
dθ (the turn angle) and

∫
μdθ =∫

κs

κ ds =
∫
d ln |κ|. Since they result in 0 for any closed curve, they are unsuitable

for our needs.
What is left is

∫
μ2 dθ =

∫ κ2
s

κ3 ds. It is unclear whether it has any meaning in
familiar terms.

3.2 The Idea of Weiss and Others

So far, the situation is far from satisfying. What we want is something that is
invariant, numerically feasible and has a clear meaning. Being unable to achieve
this goal within the framework of standard variational problems, researchers
turned to other possibilities, namely, to non-local functionals. The following idea
was first published in [10], then in [11] and [12].

If we have a functional J that is Euclidean invariant, parametrization invari-
ant, and homogeneous with respect to scaling (α from Sect. 3.1), then (

∫
γ
ds)pJ

is similarity invariant for some value of p. The most popular example is the
scale-invariant elastica (called Minimal Energy Curve in [12])

∫
γ
ds
∫

γ
κ2 ds.

3.3 Scale-Invariant Minimal Energy Curve (Elastica)

The functional
∫

γ
κ2 ds gives the bending energy of an elastic rod. The usual

boundary conditions are derivatives at the endpoints, which is the common set-
ting of the contour interpolation problem. Sometimes the constant length con-
straint

∫
γ
ds = L is added.
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The paper [11] introduces length-constrained elastica and scale-invariant elas-
tica, and provides the Euler-Lagrange equations in terms of the turn angle. An-
other measure suggested there is the weighted functional L

∫ L

0 W (s)κ2(s) ds; the
article does not mention the now obvious possibility to select an image dependent
weight W and use this for segmentation.

The article [12] introduces all four functionals (Minimal Energy Curve and
Minimal Variation Curve and their scale-invariant counterparts) in a quest for
a fair and stable curve interpolation. The main rationale for the scale-invariant
measures is that they are more stable. The minimization is by quintic Hermite
splines (Hermite splines readily accommodate the constraints provided by the
boundary segments). A different discretization approach to these functionals is
offered in [13].

In [14] an area constraint is added to the usual length constraint on elastica:

α

∫
κ2 dl + μ

(∫
dl − L

)
+ σ

(∫∫
interior

dx−A

)
(notice that the constraints are not squared). The authors are mainly interested
in the dependence of the minimizers’ behavior on the Lagrange multipliers μ
and σ. Their basic approach is through the phase plane of the Euler-Lagrange
equations for κ, that is the plane κ, κ′; the basic ideas were present in [15], but
here they are taken much further.

Non-closed elastica with fixed endpoints or fixed endpoints and end directions
is the subject of [16]. Existence is shown and explicit formulas are given.

There is a standing conjecture of De Giorgi (mentioned in [17]) that
∫
κ2 dl

can be approximated in the sense of Γ -convergence by

1
ε

∫
Ω

(
2εΔz − W ′(z)

4ε

)2

dx dy,

where W (z) = (1 − z2)2, and the curve is the zero level set of z(x, y). Some
results on this can be found in [18].

3.4 Scale-Invariant Minimal Variation Curve

The functional
(∫

γ
ds
)3 ∫

γ
κ2

s ds is proposed in [12] as a scale-invariant version

of the minimal variation curve
∫

γ
κ2

s ds and later studied numerically in [13]. The
generated curves are usually more smooth than elasticae, of course, and the scale-
invariant version is more stable then the usual Minimal Variation Curve [12].

A recent article [19] deals with the problem of curve completion. The authors
propose a scale-invariant completion model which they think is scale-invariant
Minimal Variation Curve; unfortunately, they are wrong. Their solution, namely
Euler spiral, satisfies κss = 0; the authors erroneously claim that this is the
Euler-Lagrange equation of the Minimal Variation Curve functional

∫
γ
κ2

s ds.
The correct equation κ(4) +κ2κ̈− 1

2κκ̇
2 = 0 is given in [20], and is also contained

in [21], derived by the methods from [15]. Note that since the equation κss = 0
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is homogeneous it is indeed, obviously, scale-invariant. This is similar to the
situation we have described in Sect. 2.

In [22] the energy
∫

(ακ2
s+β) ds arises as the mode of a certain type of random

walk, that attempts to model curve completion.

3.5 Other Possibilities

One possibility to go in a different (though not necessarily more promising) di-
rection is to use the area inside the curve instead of the length, for example
[area(γ)]1/2

∫
γ
κ2 ds. The most obvious invariant using the area is the isoperi-

metric ratio length2

area . Of course, it is only suited for closed curves [23].
Also, if we want a solution to a specific problem, we might as well consider

flows (PDEs) that do not come from an Euler-Lagrange equation of a functional.
For some examples see [19, 24, 25].

4 Smoothness Measures for Surfaces

4.1 Integrals of Curvatures

Just as with curves, we are led to the study of integrals of powers of curvatures,
namely of the Gaussian curvature K and the mean curvature H.

K is a null Lagrangian; the Gauss-Bonnet theorem states that on a closed
surface

∫
S
K = 2πχ(S), where χ the Euler characteristic of the surface.

The integrals
∫

S
K2 and

∫
S
(K2 + λ) are treated in [25]. The integral of the

mean curvature vector is zero on a closed surface:
∫

S
Hn̂ = 0 [26]. The integral

of H itself is widely studied in integral geometry (e.g. [27]) and gives, in a sense,
the mean width of the body enclosed by a surface. It is unlikely that it will make
a good smoothness measure.

The most widely studied is the Willmore functional
∫

S
H2, which is similarity

invariant. The book [28] gives some basic results on this functional, including the
Euler-Lagrange equation, and provides an introduction to the literature. In par-
ticular, there are works on numerical minimization of the Willmore functional.

4.2 Other Invariant Measures

Besides Willmore functional
∫

S
H2 there are other similarity invariant smooth-

ness measures for surfaces.
The paper [12] proposes the following “minimal variation surface” scale-

invariant functional: ∫
dS

∫ [(
∂κ1

∂ê1

)2

+
(
∂κ2

∂ê2

)2
]
dS.

Here ∂κ1
∂ê1

is a directional derivative of a principal curvature in the corresponding
principal direction (see [1] for details).

The isoperimetric ratio can be generalized to closed surfaces as area3

volume2 [23].
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5 Smoothness Measures for Images and Scale-Invariant
Image Processing

5.1 Scale-Invariant Smoothness Measures for Images

If we accept the “morphological” point of view, and regard an image as a col-
lection of isophotes, we can generate a smoothness measure on images from
any smoothness measure on curves, by integrating over the intensity range:∫

R
f(I−1(u)) du, where I : Ω → R is the image. Using the coarea formula we

obtain for f(γ) =
∫

γ
ds and for f(γ) =

∫
γ
|κ|p ds∫

R

∫
I−1(u)

du =
∫

Ω

|∇u| dx dy,∫
R

∫
I−1(u)

|κ|p du =
∫

Ω

|κ|p|∇u| dx dy =
∫

Ω

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣p |∇u| dx dy.

These formulas appear in [9] and [29] as a justification of a functional∫
Ω

(a+ b|κ|p)|∇u| dx dy,

used to solve the problem of disocclusion. To obtain a scale-invariant functional,
we have to multiply the functionals instead of adding them, arriving at∫

Ω

|∇u| dx dy ·
∫

Ω

κ2|∇u| dx dy (2)

and (∫
Ω

|∇u| dx dy
)3

·
∫

Ω

κ2
s|∇u| dx dy

(note that κs = ∇
(
∇ · ∇u

|∇u|

)
· (uy,−ux)

|∇u| ).

5.2 Do we Want Image Processing to be Scale Invariant?

It seems difficult to really justify the need for scale invariance in image process-
ing. Our main objection to the idea from [11] that

a small circle should be considered as smooth as a large one

is that in an image, the ultimately small one-pixel circle is most probably due
to noise, and most image restoration techniques rely on this distinction in scale
between noise and signal. Thus, scale-invariant image processing will be very
noise-sensitive, if not unstable.

We did not check this objection numerically. It might ultimately turn out that
the regularizing effect of a discretization will overcome these problems somehow.
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Also, it is possible to achieve partial scale invariance by building an image pro-
cessing algorithm on a pyramid, that is, on a range of scales; in this case, we can
decide explicitly on the minimal scale at which we “stop the invariance”. But
complete scale invariance means inability to detect noise.

The only kind of image processing that probably needs scale invariance
is inpainting (disocclusion) [30, 31]. As noted (in a somewhat different con-
text) in [31]:

In application, an average image often contains objects of a large dy-
namic range of scales. Hence in most inpainting problems, it is com-
monly found that “slim” objects are broken by the inpainting domains
even though the domains themselves are small (to human observers). A
good inpainting scheme should encourage the connection of these broken
slim objects.

Still, so far there are no inpainting algorithms that are completely invariant.

5.3 What is Similarity-Invariant Image Processing?

What condition should an image processing algorithm satisfy to be called “scale-
invariant”? There are at least two answers to this question, both unsatisfactory
in our opinion.

The first possibility is to demand that the processing results on a scaled ver-
sion of an image will be the same as the results on the image itself, up to scaling.
This is the usual commutativity demand for invariance. The only problem with
this criterion is that it is too easily satisfied—we just scale all images to a fixed
size before processing. Usually this is done even without actually scaling the
image, which will introduce errors, but by selecting the image size as the unit of
measurement [32, 33].

Another variant on basically the same principle is to ask that an object will
be processed the same, regardless of its size in a given picture. This, again, is
customarily done by selecting some characteristic dimension of the object as the
unit length for the algorithm [34, 35].

On the other hand, we can ask for an algorithm that will act invariantly on
each object in the image, regardless of the scale, this without trying to actu-
ally measure the object as part of the algorithm. This is what we see in most
Euclidean invariant algorithms, so it seems to be a reasonable requirement. For
example, if two identical chairs are seen in an image from different distances, we
would like to have in the processed image two corresponding parts, differing only
by scale, and that without any attempt on the part of the algorithm to identify
the objects and their dimensions.

If we want to have a variational model to have this property, the functional
must be local. In particular, we can not allow products of non-trivial integrals,
like in (2). We are not aware of any image processing or image analysis algorithm,
which is scale-invariant in this sense.
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6 Scale Invariance in Edge Detection and Contour
Completion

If we turn from image processing to image analysis, the situation changes. Edge
detection, contour completion and object recognition algorithms will probably
benefit from scale invariance, as noted e.g. in [19] with regard to curve comple-
tion:

Scale invariance is necessary since these curves are used to model, say
gap completion, in a world where the distance from the observer to the
imaged object varies constantly, yet the gaps must be completed consis-
tently.

We should also mention the work [36], pointing out the need for scale invari-
ance in salient curve detection, and the lack of such invariance in the well-known
model of [37]. It seems that currently there is no scale invariant contour com-
pletion or saliency detection algorithm.

Still, we must be careful not to introduce scale invariance at all costs. For
example, [13] motivates introduction of the scale-invariant elastica by mentioning

. . . a counterintuitive result of Horn asserting that the least energy curve
(minimizing

∫
κ2 ds) which starts vertically up at (0, 0) and arrives ver-

tically down at (1, 0) is not a semicircle.

The hidden claim here is that if we have two co-circular segments (small pieces
of a curve), then a good curve interpolation algorithm must connect them by a
circle. However, we should distinguish between purely “geometric” co-circularity
and “perceptional” co-circularity. Two parallel segments, while being indeed ge-
ometrically co-circular, are not perceived as such. When modeling the perceptual
co-circularity we must take into account the relative direction of the segments,
the distance between them, their “strength”, and possibly other parameters.
Some ideas on modeling co-circularity perception appear in the work on tensor
voting [38] and other works on contour saliency. Some examples that use the
elastic energy are [39, 22].

Usually, edge detection that is done by zero-crossings is scale-invariant. In
particular, the Laplacian zero crossing (Marr-Hildreth) and the zeros of the
second directional derivative in the gradient’s direction (Haralik-Canny) are
similarity-invariant.

As an illustrative example, we may consider the edge integration functional
(snake) proposed in [40]. It is a variant of the Haralik-Canny scheme, being the
difference of two double integrals, both similarity-invariant: the integral of the
Laplacian

∫∫
ΔI dx dy (which by itself will detect the Laplacian zero crossings)

and the integral of the second directional derivative in the direction normal to
the gradient

∫∫
Iηη dx dy.

Figure 1 shows the results of this edge integration algorithm and nicely illus-
trates several of our points.

Since the functional is scale-invariant, there is no incentive for the edges to be
short. This means that the detected edge will follow the zero-crossing as close as
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Fig. 1. This is a part of figure 8(b) from [40]

possible within the limits of the discretization, which in most cases in much more
wiggling than desirable. What prevents endless squirming in this specific case is
probably the implicit regularization provided by the level set implementation.
Still, it can be seen that the edge is very rugged.

In the same figure we can also see the problem predicted in Sect. 5.2: the
detection of very small “objects”, that are obviously a result of a few noisy
pixels (or even one pixel). The solution proposed in [40] is an additional energy
term for regularization; unsurprisingly, this term is not scale invariant.

Another scale-invariant active contour formulation was proposed in [41], with
better stability. However, it seems that this method demands a very close ini-
tialization. Also, since the paper does not go into any implementation details,
it is difficult to say whether the stability is inherent to the method, or (more
likely) to the numerical implementation.

7 Conclusions

We think that the ramifications of the scale invariance demand are not as clear
as sometimes thought. In particular,

– it is possible for a non-invariant minimization problem to provide invariant
solutions;

– scale invariance is probably undesirable in image processing, since it will
make noise suppression impossible;

– in edge detection, scale invariance is more reasonable but still has to be very
carefully handled.
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Abstract. The probability distribution on the set of naturally occur-
ring images is sparse with most of the probability mass on a small subset
of all possible images, hence not all images are equally likely to be seen
in nature. This can indirectly be observed by studying the marginal
statistics of filter responses on natural images. Intensity differences, or
equivalently responses of linear filters, of natural images have a spiky
distribution with heavy tails, which puts a large proportion of the prob-
ability mass on small intensity differences, but at the same time giving
a reasonable probability on large differences. This is due to the fact
that images consist mostly of smooth regions separated by discontinu-
ous boundaries. We propose to model natural images as stochastic Lévy
processes with α kernel distributed intensity differences. We will argue
that the scale invariant α kernels of the recently proposed α scale space
theory provides a promising model of the intensity difference distribu-
tion (or in general linear filter responses) in conjunction with the Lévy
process model of natural images.

1 Introduction

By a natural image we mean any image that we may encounter on our walk
through life. This include both scenes of man-made objects as well as nature
scenes. In Fig. 1, we give two examples of natural images.

One of the most striking statistical properties of natural images is the oc-
currence of scale invariant (or self similar) statistics [1, 2, 3]. Besides this, results
show that natural images are non-Gaussian and that the probability distribution
on the space of images is sparse (see e.g. [4]). Statistical models of images tak-
ing into account the statistical properties of natural images have proven to be
useful in various application areas within image analysis and computer vision,
e.g. [5, 6].

Mumford and Gidas [7] suggest that infinitely divisible distributions are the
natural tool for stochastic models of images. They suggest the random wavelet
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Fig. 1. Two examples of natural images

expansion, an image formation model under which an image is a linear combi-
nation of randomly positioned and scaled random wavelets or object profiles.
The model consists of a Gaussian part and a part governed by a compound
Poisson process (see e.g. [8] for a def.), hence the model form a stochastic
Lévy process (see e.g. [8]). In this paper, we propose a simplified version of
this model in which the Lévy measure of the compound Poisson process is the
Lévy measure of the α kernel distribution and we ignore the Gaussian part of
the model. We suggest that images can be modelled as sample functions from
the Lévy process with α kernel distribution on IR. The α kernel distribution
is interesting, for among other reasons, because it is an α-stable infinitely di-
visible distribution. Hence, the Lévy process {Xt : t ≥ 0} is self-similar with
{Xat : t ≥ 0} d= {a1/(2α)Xt : t ≥ 0}, where d= denotes equality in law (identi-
cally distributed). α kernels are also the only non-trivial symmetric and α-stable
distributions on IR with 0 < α ≤ 1.

The α kernel distribution of the image Lévy process is connected to the
marginal statistics of intensity differences or in general linear filter responses.
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Fig. 2. Histogram of intensity differences P (ΔI) and log-histogram of intensity differ-
ences log(P (ΔI)). Each curve represent one of the 50 bootstrap histograms of ΔxI and
ΔyI combined (see Sec. 4 for definition of ΔI, ΔxI, and ΔyI)
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Fig. 3. Log-histograms log(P (·)) of scale space derivatives (Lx, Ly) measured at four
different scales, s1/2 ∈ [2, 32]

The marginal statistics of natural images tells us something about the struc-
ture of the probability distribution on the set of naturally occurring images. For
instance the distribution of intensity differences ΔxI(i, j) = I(i, j+1)−I(i, j), an
approximation to derivatives of the image function, is a spiky distribution with
heavy tails (see Fig. 2 and Fig. 3). This first of all shows us the non-Gaussian
nature of natural images. Furthermore, the spike at ΔxI = 0 tells us that smooth
regions occur often in images, but at the same time the heavy tails tell us that
abrupt changes occur frequently. One interpretation is that the smooth regions
have boundaries at which abrupt changes occur.

The marginal statistics of natural images in the form of the distribution of
intensity differences, and in general linear filter responses, have been studied
and parametric models of the distributions have been proposed. These models
include the generalised Laplace distribution proposed by Huang and Mumford [9]
and the Bessel K forms proposed by Grenander and Srivastava [10, 11]. Contrary
to the generalised Laplace distribution the Bessel K forms [10] are based on an
image formation model. This model is called the transported generator model,
under which an image is formed by a linear combination of randomly transformed
2D object profiles. This model leads to the Bessel K forms as the distribution of
the marginal filter statistics [11].

We propose to use the α kernel distributions as a parametric model of the
distribution of linear filter responses on natural images. The underlying Lévy
process model accounts for this marginal statistics.

α kernels were first introduced by Pauwels et al. [12] as a family of scale
invariant scale space kernels which include the Gaussian kernel as a member.
Recently, this family of kernels have been studied by Duits et al. [13, 14] who
introduced α scale space theory.

It is interesting to note the connection between Lévy processes and α scale
space theory, since the α scale space evolution equation is the pseudo differen-
tial equation corresponding to an α-stable Lévy process. This is seen from the
the generator −(−Δ)α of the α scale spaces. In particular, for α = 1 the diffu-
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sion equation is the Kolmogorov equation of the well-known Wiener process or
Brownian motion. The case α = 1/2, leads to the Poisson scale space [15, 14],
which is a harmonic extension to the upper plane. This directly follows from the
factorisation uss +Δu = (∂s −

√
−Δ)(∂s +

√
−Δ)u = 0.

Finally, we would like to mention the scale invariant dead leaves model of
natural images [16] which has some resemblance to the random wavelet expansion
proposed by Mumford and Gidas [7]. In the dead leaves model images are build
by throwing (substituting) random objects on to the image plane. The model can
generate images which has similar marginal statistics as natural images. One of
the differences is that in the dead-leaves model it is not assumed that images are
formed by an additive process, as is the case for the random wavelet expansion,
but by substitution. The drawback of the dead leaves model is that it is difficult
to operationalise.

The structure of the paper is as follows: In Sec. 2, we introduce α kernels as
probability distributions. We proceed in Sec. 3 by introducing Lévy processes
and proposing that Lévy processes with α kernel distribution can be used as a
statistical model of natural images. In Sec. 4, we argue by showing empirical
results that α kernels can be used as parametric models of the statistics of linear
filter responses. We end in Sec. 5 with concluding remarks.

2 α Kernels as Probability Distributions

Pauwels et al. [12] prove that from the four axioms, scale invariance, the re-
cursivity principle (also known as the semi-group property), and rotation and
translation invariance, one can deduce a family of scale space kernels — α ker-
nels — parameterised by the α parameter and a scale parameter. This family of
kernels form the basis of the recently developed α scale space theory by Duits
et al. [13, 14].

The recursivity principle (or semi-group property) of a kernel functionK(x, s)
can be stated as

∀s, t ≥ 0 : (K(·, s) ∗K(·, t))(x) = K(x, s+ t) (1)

where ∗ denotes convolution.
A kernel function K(x, s) is scale invariant, if there exist a parent kernel φ

such that, for any s, K(x, s) can be expressed in terms of a rescaling of φ

K(x, s) =
1

ψ(s)
φ

(
x

ψ(s)

)
, (2)

where ψ : IR+ → IR+ is a rescaling function.
Besides these two conditions Pauwels et al. [12] suggest that a scale space

kernel should fulfil the following conditions: rotation and translation invariance,
mass preservation, i.e.

∫
IRK(x, s) dx = 1, K(x, s) should be even, i.e. K(x, s) =

K(−x, s), and K(x, s) should be integrable and continuous in both x and s.
Kernels fulfilling these conditions we will call the α kernels.
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Pauwels et al. [12] prove that, given the above stated conditions, the Fourier
transform of the α kernels K(α)(x, s) have the form

K̂(α)(ω, s) = e−s|ω|2α

, ω ∈ IR , 0 < α ≤ 1 , s > 0 . (3)

Unfortunately, an analytical expression for K(α)(x, s) only exists for α = 1/2
and α = 1. Note that the case α = 1/2 correspond to the Poisson scale space
filter [17] and α = 1 correspond to the Gaussian filter of linear scale space [18].

The α kernels, as defined in (3), are everywhere positive for 0 < α ≤ 1
and normalised such that

∫
IRK

(α)(x, s) dx = 1 due to mass preservation. The
α kernels thereby fulfils the properties of a probability density function. From
now on we write P (α)(x, s) = K(α)(x, s) for the parametric α kernel probability
density on IR in order to make clear that we use the α kernels as probability
distributions and not as filters. The Fourier transform of the kernel K(α)(x, s)
given in (3) is the characteristic function P̂ (α)(ω, s) of the distribution P (α)(x, s).

It is interesting to note that for α = 1/2, (3) is the characteristic function
of the Cauchy distribution. For α = 1, (3) corresponds to the characteristic
function of the Gaussian distribution.

As probability density functions, the α kernels have various interesting prop-
erties. The most interesting is that α kernels are so-called infinitely divisible
distributions. The following definition is taken from Sato [8] (page 31, Def. 7.1).

Definition 1. A probability measure μ on IRd is infinitely divisible if, for any
positive integer n, there is a probability measure μn on IRd such that μ = μn∗

n .
Where μn∗ denotes n-fold convolution, μn∗ = μ ∗ · · · ∗ μ︸ ︷︷ ︸

n

.

The α kernels P (α)(x, s) are infinitely divisible distributions, because we can
easily find a distribution, namely the α kernels themselves P (α)(x, s/n), that by
n-fold convolution gives the α kernels P (α)(x, s) = (P (α)(x, s/n))n∗. This follows
from

P̂ (α)(x, s) = e−s|ω|2α

= P̂ (α)(x, s/n) · · · · · P̂ (α)(x, s/n)︸ ︷︷ ︸
n

= e−|ω|2α ∑n
i=1 s/n .

(4)
Other examples of infinitely divisible distributions are the Gaussian, Cauchy,

and Dirac δ distributions on IRd. The Poisson distribution on IR is another
example (see e.g. [8] for more examples). We find it interesting to note that
the Laplace distribution on IRd, p(x) = 1/Ze−|x/s|, is infinitely divisible. To
our knowledge there is no proof or disproof of the infinitely divisibility of the
generalised Laplace distribution p(x) = 1/Ze−|x/s|β

, except for β = 1 and β = 2.
To make explicit the connection between infinitely divisibility and the sum

of independent random variables we state the following definition:

Definition 2. A random variable X is said to be infinite divisible if for all n ∈ N

there exists a random variable Xn such that X d=
n∑

i=1
Xn,i, where {Xn,i}i=1,...n

are independent and distributed as Xn.
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Notice that according to this definition the distribution function must satisfy
F (x) = Fn∗

n (x), where Fn is the probability distribution function of Xn (and F
of X).

To see that this definition coincides with the definition of infinitely divisible
probability measures, definition 1, we need to apply the well known theorem,
which states that if two random variables X and Y are independent and dis-
tributed by resp. f and g then X+Y is distributed (∼) by f ∗g (see e.g. [19]), i.e.

{X + Y } ∼ f ∗ g . (5)

From this it follows that definition 2 coincides with definition 1.
Infinitely divisibility is tightly related to the class of stochastic processes

known as Lévy processes and self similarity, a generalisation of scale invariance,
of stochastic processes. We will discuss this further in Sec. 3.

We would also like to mention that the α kernels do not have finite variance
for 0 < α < 1. If the α kernels had finite variance, then the infinitely divisibility
of the α kernels and the central limit theorem implies that the α kernels must
be Gaussian. Hence, variance is not a good measure of scale.

3 α Kernels, Lévy Processes, and Image Models

We will now argue for the use of stochastic Lévy processes with α kernel distri-
bution as a model of natural images. A stochastic process is usually defined as a
family of random variables {Xt : t ≥ 0}, where Xt is a random variable on IRd.
Here we are interested in the case d = 1. The definition of Lévy processes is as
follows (Sato [8], page 3, Def. 1.6):

Definition 3. A stochastic process {Xt : t ≥ 0} on IRd is a Lévy process (in
law) if the following conditions are satisfied:

1. For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, the random variables
Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn

−Xtn−1 are independent.
2. X0 = 0 almost surely.
3. The distribution of Xs+t −Xs does not depend on s.
4. It is stochastically continuous, i.e.

lim
s→t

P [‖Xs −Xt‖ > ε] = 0 , ∀ε > 0 .

The following theorem states the connection between Lévy processes and
infinitely divisible distributions.

Theorem 1. 1. If {Xt : t ≥ 0} is a Lévy process in law on IRd, then, for any
t ≥ 0, the distribution PXt of Xt is an infinitely divisible distribution and,
letting PX1 = μ, we have PXt = μt.

2. Conversely, if μ is an infinitely divisible distribution on IRd, then there is a
Lévy process in law {Xt : t ≥ 0} such that PX1 = μ.
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3. If {Xt} and {X ′
t} are Lévy processes in law on IRd such that PX1 = PX′

1
,

then {Xt} and {X ′
t} are identical in law.

(The proof can be found in Sato [8], page 35, Theorem 7.10).
We want to use stochastic processes as a model of images, hence we need to

think of the parameter t ∈ IR as the parameterisation of an oriented1 straight
line in the domain of the image, i.e. the plane IR2. Then Xt is the intensity of
the image as we move along the line. The above stated definition and theorem
then applies to any non-overlapping oriented straight lines in the plane. Hence, all
non-overlapping oriented straight lines in a Lévy process image are 1 dimensional
Lévy processes Xt.

Brownian motion is an example of a Lévy process, which has a Gaussian
distribution. Brownian images have been investigated as stochastic models of
images, e.g. [7, 20].

In the next section, we model the distribution of increments Xtk
−Xtk−1 by

the α kernels. We suggest the Lévy process with α kernel distributed increments
Xtk

−Xtk−1 as a simple non-Gaussian stochastic model of natural images. But
what is the distribution of Xt? The answer is that it is also α kernel distributed.
To see this, first realise given n steps on an oriented line through the stochastic
process we have

Xt = (Xt1 −Xt0) + · · · + (Xtn
−Xtn−1) . (6)

From (5) it follows that a sum Xt of n α kernel distributed P (α) independent
random variables (Xtk

−Xtk−1) has a distribution determined by the n-fold con-
volution of P (α), i.e. P (Xt, s

′) = (P (α)(Xtk
−Xtk−1 , s))

n∗, which as we proofed
in (4) is also an α kernel distribution P (Xt, s

′) = P (α)(Xt, ns).
One of the important properties of the Lévy process with α kernel distribution

is that it is self similar, a generalisation of scale invariance.
Self similarity is related to the concept of stability of the distribution of the

Lévy process [8]. An infinitely divisible probability measure μ is called stable if,
for any a > 0, there are b > 0 and c ∈ IRd such that

μ̂(ω)a = μ̂(bω)ei〈c,ω〉 . (7)

If c = 0, then the measure μ is called strictly stable. A stochastic process {Xt :
t ≥ 0} is called broad sense self similar if, for any a > 0, there are b > 0 and a
function c(t) : [0,∞) → IRd such that

{Xat : t ≥ 0} d= {bXt + c(t) : t ≥ 0} . (8)

If c(t) = 0, the process {Xt : t ≥ 0} is called self similar. A Lévy process is self
similar or broad sense self similar if and only if, its distribution is respectively
strictly stable or stable (a proof can be found in Sato [8], page 71, Prop. 13.5).

1 Assuming an orientation means that we consider the increments to be independent.
Otherwise, we would be able to go back following our own footsteps and the incre-
ments will no longer be independent.
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If b = a1/(2α), the Lévy process {Xt : t ≥ 0} is called α-stable. α-stable
processes has various important properties, see Sato [8] and the theorem below.

α kernel distributions are strictly stable and α-stable. Hence, the Lévy process
with α kernel distribution is self similar with b = a1/(2α) and c(t) = 0.

It is interesting to note that in the literature on Lévy processes and infinitely
divisible distributions, e.g. [8], the α kernel distribution is also pointed out as
being special, as the following theorem reveals.

Theorem 2. A non-trivial probability measure μ on IRd is rotation invariant
(symmetric for d = 1) and α-stable with 0 < α ≤ 1 if and only if

μ̂(ω) = e−s|ω|2α

with s > 0.

(For a proof see Sato [8], page 86, first part of Theorem 14.14)
α stability is connected with the generalisation of the well-known central limit

theorem. Recall that the central limit theorem states that given n independently
identically distributed random variables Xi with finite mean and variance, then
the distribution of the sum

∑n
i=1Xi converges to the Gaussian distribution in

the limit n → ∞ (see e.g. for a proof [21]).
But the sum of independently identically Cauchy distributed random vari-

ables (with infinite variance) will converge to a Cauchy distribution. There also
exist examples of sums of independent random variables identically distributed
with infinite variance that will converge to a Gaussian distribution (for example
f(x) = 2|x|−3 log |x| for |x| ≥ 1 and f(x) = 0 for |x| ≤ 1).

The generalisation of the central limit theorem states that if a sum of in-
dependently identically distributed random variables converges, it converges to
a stable distribution. In particularly, a convergent sum of identically (by say
f) distributed symmetric random variables will converge to a stable symmetri-
cally distributed (i.e. distributed by α-kernel) random variable. By considering

asymptotics on
x∫

−x

y2f(y)dy it is possible to characterise the unique limiting

distribution (see Feller [19], chapter IX.8).
The image formation model we propose here is essentially a simplification of

the random wavelet expansion model proposed by Mumford and Gidas [7]. To
see this we first have to introduce the Lévy-Khintchine representation, which
states that the characteristic function of any infinitely divisible distribution μ
must have a form dependent on a constant part, a Gaussian part and a measure
ν known as the Lévy measure. For μ on IR this boils down to

μ̂(ω) = eiγω−σ2ω/2+ν̂(ω) (9)

where ν must satisfy ν({0}) = 0 and have finite variance on the closed unit ball∫
IRmin{|x|

2, 1)}ν(dx) < ∞. Here ν̂ is essentially the Fourier transform of ν (see
[8], page 37, Theorem 8.1, for further details and proof of this theorem).

Mumford and Gidas [7] propose that images I are formed by adding inde-
pendent random images Ii, I = I0 + I1 +

∑
i≥2 Ii, where I0 is constant and I1 is
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a Gaussian random image. The random images Ii for i ≥ 2 are samples from a
compound Poisson process governed by some distribution ν. This model implies
a Lévy process with a distribution having the characteristic function given in
(9) and ν as Lévy measure.

What we suggest in this paper is to choose the Lévy measure ν to be the Lévy
measure of α kernels, that is ν̂(ω) = −s|ω|2α. Here we also ignore the constant
and Gaussian part, hence our model essentially boils down to a compound Pois-
son process with ν̂(ω) = −s|ω|2α. But the missing constant and Gaussian parts
could be added to the α kernel based model with the drawback that we will lose
the symmetry and α stability property of the distribution. We believe that the
Lévy process with α kernel distribution is an interesting model because of the
α-stability of the distribution which implies the special form of self-similarity,
{Xat : t ≥ 0} d= {a1/αXt : t ≥ 0}. Self-similarity or scale invariance is apparently
an important property of natural images [1, 2, 3, 4].

4 Statistics of Linear Filter Responses

We will now argue that α kernels P (α)(x, s) can be used as a parametric model of
the distribution of linear filter responses on natural images. We do not attempt to
argue that α kernels fit the marginal statistics of natural images better than for
instance the generalised Laplace distribution [9] or the Bessel K forms [10, 11].
Our goal is simply to point out the existence of the α kernels as parametric
models of this statistics. As we argued in the previous sections, the α kernels
have a lot to offer as basis for stochastic models of natural images, because of
the connection with Lévy processes and infinitely divisibility.

In the following experiments, we do all processing on the log intensities
log(I(i, j) + 1), where a discrete image is considered to be a matrix of real num-
bers I : ZZ2 → IR. The choice of log intensities was pointed out by Koenderink
[22] as the natural choice for image processing. By intensity difference we mean
ΔxI(i, j) = log(I(i, j+1)+1)− log(I(i, j)+1), ΔyI(i, j) = log(I(i+1, j)+1)−
log(I(i, j) + 1), and write ΔI = {ΔxI,ΔyI} for the combined data set.

As examples of linear filters we use scale normalised scale space derivatives,
see e.g. Florack [23],

Lxnym(x, y, s) = s
n+m

2
∂n+m

∂xn∂ym
G(x, y, s) ∗ f(x, y) , (10)

where G(x, y, s) = 1
4πse

−(x2+y2)/(4s) is the Gaussian kernel and s is the scale
parameter.

The intensity differences histograms can be seen in Fig. 2 and examples of
histograms for scale space derivatives can be found in Fig. 3.

We picked approximately 1600 images from the van Hateren natural image
database [24] and we bootstrapped 50 histograms by taking 50.000 samples at
random from each image followed by 50 times sampling with replacement of
50.000 points from this per image set. The bootstrap histograms gives a measure
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Fig. 4. Graphs of p(ΔI) and log p(ΔI). The dash dotted graph represents the fitted
α kernel distribution with the bootstrap mean α and s, α = 0.376 ± 8 · 10−5, s =
0.187 ± 7 · 10−5

of the robustness of the estimated parameter values when we fit α kernels to the
histograms, i.e. we can calculate the parameter bootstrap mean and standard
deviation error.

In order to fit the α kernels to the histograms we use the L2 norm as a
measure of difference between two distributions. We do the minimisation in the
Fourier domain,

L2(Ĥ, P̂ (α)) =
1
N

N∑
i=1

|Ĥ(ωi) − P̂ (α)(ωi, s)|2 , (11)

where Ĥ(ωi) denotes the discrete Fourier transform of the histogram. The min-
imisation is implemented by using the Nelder-Mead simplex direct search method
as implemented in Matlab. The results of fitting the α kernels to intensity dif-
ference histograms can be seen in Fig. 4. The fitted α kernels match the central
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Fig. 5. Estimated bootstrap mean α values of Lx and Ly across scale s
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part of the distribution fairly well, but there are problems with the tails because
of lack of sufficient data.

The α kernels can also be fitted to histograms of linear filter responses, and
Fig. 5 shows estimated α values as a function of scale for Lx and Ly scale space
derivatives. What we observe is that when the scale goes up the estimated α
values increase as well. This means that convolving with a Gaussian kernel alters
the statistics (i.e. the shape of the distribution) of the image Lévy process. One
may argue that we could choose another scale space filter that would preserve the
statistics of the Lévy process and this choice would be the α kernel corresponding
to the α kernel distribution of the image process.

5 Conclusion

We propose to use the Lévy processes with α kernel distribution as a non-
Gaussian stochastic model of natural images. This model explains the marginal
statistics of natural images. The model is essentially a simplification of the ran-
dom wavelet expansion model proposed by Mumford and Gidas [7]. Furthermore,
we have argued that α kernels can be used as parametric models of the marginal
linear filter statistics of natural images. Hence, the increments of the natural
image stochastic process are α kernel distributed.

The image formation model we propose is simpler, but however crude, com-
pared to the model suggested by Mumford and Gidas [7], but nevertheless we
believe that this model can be useful, especially because of its simplicity and that
we are capable of analysing its properties. Future applications will tell whether
this is correct or not.

Lévy processes have independent increments, but one can easily argue that
this is not true for images, because objects or homogeneous regions introduce
dependencies between pairs of pixels inside of the same object. Furthermore,
using a Lévy process implies that images are formed by an additive process,
which might not be a correct image formation model (substitution seems more
appropriate). These are limitations of the model.

For futurework,wewould like to study the probability distribution of themodel
in the scale space jet. Here it is interesting to notice that the statistical properties
of wavelet decompositions ofα-stable processes have been studied by among others
Pesquet-Popescu [25]. Pesquet-Popescu proves that the wavelet coefficients of an
α-stable process also form an α-stable process (Prop. 4 in [25]). We find it interest-
ing to extend the results reported in [25] to linear scale space on images, i.e. extend
from compact support test functions to the infinite support Gaussian test func-
tions.Furthermore, itwouldbehelpful ifwe coulddraw samples fromour stochastic
image model. This might require the use of Markov Chain Monte Carlo methods.
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Abstract. In this paper a common variational formulation for align-
ment of curves to vector fields is analyzed. This variational approach is
often used to solve the problem of aligning curves to edges in images by
choosing the vector field to be the image gradient. The main contribu-
tion of this paper is an analysis of the Gteaux derivative and the descent
motion of the corresponding alignment functional, improving on earlier
research in this area. Several intermediate results are proved and finally a
theorem concerning necessary conditions for extremals of the alignment
functional is derived. The analysis of the evolution is performed using a
level set formulation and results from distribution theory.

Keywords: variational methods, level set methods, edge integration,
curve evolution, alignment.

1 Introduction

In this paper we study the properties of an alignment functional, proposed by
Kimmel and Bruckstein, which is frequently used for variational alignment of
curves and surfaces in image analysis and computer vision. The focus will be on
the two-dimensional case. A common problem is to align curves to the edges in
an image where edges are found at locations with high image gradient. This is a
fundamental problem within many applications such as e.g. image segmentation.
This paper will deal with some unresolved issues of this particular alignment
functional. These issues will be described below, and the analysis will result
in theorems about ascent directions and a criterium, which is stronger than
the results found in the literature, for a local maximum of this particular and
common case.

The paper is neither concerned with edge detection in the low level image
analysis sense, nor with edge detection using area based segmentation techniques
[1, 2], recently analyzed in [3]. Instead, the paper is in the spirit of the active
contours or snakes [4] and the geodesic active contours [5, 6] in that curves are
aligned to edges using a curve integral measure. In the latter case the resulting
curve will be a geodesic in a Riemannian space with a specified metric. The
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in-depth analysis of such functionals in [7] leads to the functional which is the
topic of this paper. The work presented here builds directly on the treatment of
this special alignment functional in [8] which is further developed in [9].

1.1 Variational Alignment

Let v : R2 → R2 be a continuously differentiable vector field, and Γ be a
regular curve in the plane. We shall study the alignment functional given by the
following curve integral,

EA(Γ ) =
∫

Γ

|v · n| dσ , (1)

where dσ is the Euclidian curve length element on Γ , and n is a unit normal
vector field on Γ . This functional was used in [8, 7] and analyzed in [9]. The
functional EA is defined entirely in terms of geometric quantities, and its value
is therefore independent of the way we choose to represent Γ . In this paper we
use the level set method as a theoretical tool, and the calculations for EA are
all carried out in this framework, using results from distribution theory.

One aim with this paper is to discuss the use of the PDE

∂φ

∂t
= signε(v · n)(∇ · v)|∇φ| , (2)

as an ascent motion1 for the problem of finding a curve Γ ∗ such that

EA(Γ ∗) = max
Γ

EA(Γ ) . (3)

Here ∇ · v = ∂v1/∂x1 + ∂v2/∂x2 is the divergence of v and signε : R → [−1, 1]
is any continuous, nondecreasing approximation of the sign-function satisfying

signε(0) = 0 and signε(x) = sign(x) for |x| > ε . (4)

We shall also touch upon the minimization problem for (1) in Section 4, since it
has some relevance even for the problem in (3).

In [7] the following result, which we state as a theorem, regarding extremals
of (1) was proved.

Theorem 1 (Kimmel-Bruckstein). Let Γ be a local maximum of (1). If v ·n
does not change sign along Γ , then (∇ · v)(x) = 0 for all x ∈ Γ .

If v = ∇u, where u : R2 → R is an image, and the curve Γ is a local maximum
for EA which satisfies the hypothesis of the theorem, then ∇ · v = ∇ · (∇u) =
Δu = 0 on Γ . This means that the extremal curves are Marr-Hildreth edges,
cf. [7]. In Section 8 we prove a result in which the hypothesis about v · n is not
needed, hence it strengthens the above theorem.

1 In our context it is more natural to consider the max-problem for EA instead of the
min-problem for −EA, thus we speak of ”ascent” instead of ”descent”.
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1.2 Contribution of the Paper

The contributions of this paper are described in Sections 6 to 8. In addition to
the written analysis, the contributions are stated and proved in Lemma 1 and
Theorem 2, 3, 4 and 5. In this paper we compute the correct Gteaux derivative
of (1) and show that there are cases where the functional is not differentiable.
We also show that the evolution equation derived in [7], i.e. the PDE (2), is
an ascent direction under the weak assumption that the sign-function satisfies
(4). This justifies the derivations of Kimmel and Bruckstein [7] even without the
assumption of constant sign on Γ . Finally we derive a necessary condition for
local maxima of (1) which is stronger than Theorem 1.

2 Level Set Representation

A time dependent curve Γ (t) is implicitly represented as the zero level set of a
function φ(x, t) : R2 × I → R as Γ (t) = {x ; φ(x, t) = 0}, where I ⊂ R is some
open (time-) interval. The sets {x : φ(x, t) < 0} and {x : φ(x, t) > 0} are called
the inside and outside of Γ , respectively. Using this convention the outward unit
normal n and the (mean) curvature κ are given in terms of the level set functions
by the formulas, cf. [10]:

n =
∇φ

|∇φ| and κ = ∇ · ∇φ

|∇φ| . (5)

Suppose a particle, whose motion is described by the parametrized curve
x = x(t), follows the moving curve Γ (t) at all times t ∈ I, then φ(x(t), t) ≡ 0,
and differentiation of this identity with respect to t gives

∂φ

∂t
+ u · ∇φ = 0 ⇔ ∂φ

∂t
+ un|∇φ| = 0 , (6)

where u = dx(t)/dt and un = u · n is the normal component of the particle
velocity. This is the so-called level set equation. By solving (6) from some initial
value, Γ will evolve according to the velocity u. More details can be found in
e.g. [11].

3 A Simple Example: Edges in Images

In this section we will consider the example of v = ∇u for aligning curves to
edges in images. We will refer to this concrete example to illustrate some of the
ideas presented in the following sections such as the singular curve in Section 7.
In addition to the alignment term in the functional, in practice a regularizing
term is needed to avoid aligning the curve to image noise, cf. [8]. The following
functional is minimized

E(Γ ) = α

∫
Γ

1 dσ − EA(Γ ) =
∫

Γ

(α − |∇u · n|) dσ , (7)
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(a) (b)

Fig. 1. Image used for illustrating the curve motion (8). (a) original image. (b) image
smoothed with a Gaussian filter and down-sampled

where the first term is the curve length weighted with a constant α > 0 and the
second term maximizes the alignment of the curve normal to the image gradient.
This means that the curve is attracted to regions with large gradient magnitude
|∇u| and oriented so that n or −n is in the gradient direction. An initial curve
is evolved using the following PDE

∂φ

∂t
= (ακ − signε(∇u · n)Δu)|∇φ| . (8)

To illustrate the curve motion we used an image of a lamp seen from above,
see Figure 1. The image was smoothed using a Gaussian filter and then down-
sampled. The smoothening is applied in order to eliminate alignment to noise
and also to determines the scale of the edges. The function φ is at all times kept
to be a signed distance function. The curve evolution is shown in the top row of
Figure 4 overlaid on the images.

4 Incidence Sets

A curve Γ is clearly a (global) minimum for the alignment functional EA if
the vector field v is everywhere tangent to Γ . If this is the case we say that Γ
is incident with v. If v(x) is tangent to Γ for all points x belonging to some
segment I of Γ we say that Γ is locally incident with v. The following analysis
shows that it is important to know whether Γ has this property or not.

Let v be a continuous vector field, and assume that Γ is a curve which is
locally incident with v on a segment I ⊂ Γ , and assume further that v �= 0 in I.
Consider a deformation Γ ′ of Γ such that Γ ′ = Γ outside I, see Figure 2, and
let I ′ denote the part of the deformed curve which corresponds to the segment
I. The change in the value of the functional is

EA(Γ ′) − EA(Γ ) =
∫

I′
|v · n| dσ −

∫
I

|v · n| dσ︸ ︷︷ ︸
=0

> 0 (strict inequality), (9)

since the continuity implies that v has almost the same magnitude and direction
in a neighbourhood of the deformation, and because of the | · |-sign in the defi-
nition of EA. It follows that any perturbation of Γ in I will increase the value
of EA, which proves
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I

I'

Γ

Γ'

n
n' n'

v

Fig. 2. The case where v · n = 0 on a segment I of the curve Γ

Lemma 1. If a curve Γ is locally incident with v on some segment I, and v
does not vanish on some neighbourhood of I, then Γ cannot be a local maximum
of (1), in particular Γ is not a solution to (3).

Let Γ be represented by the level set function φ, and pick a smooth function ψ
such that Γ ′ is represented by φ(x)+tψ(x) when t = 1. A more careful analysis of
the difference in (9), which lack of space prevents us from giving here, shows that
unless v satisfies certain strict conditions near I, then EA(φ+ tψ)−EA(φ) = c|t|
for some constant c > 0. This implies that if Γ is locally incident with v, then the
functional need not be (Gâteaux-) differentiable at Γ . It is therefore important
to avoid curves which are locally incident to v, if we are to apply differential
calculus to solve the problem (3).

5 Mathematical Results for Curve Measures

In this section we briefly recall some results from distribution theory concerning
the composition of a distribution with a smooth function. We also establish a
lemma showing that a certain product of two distributions makes sense.

First a bit of useful terminology from differential calculus: Let U ⊂ Rn be an
open set and f : U → Rm a (sufficiently) smooth function. We use the symbol
f ′(x), x ∈ U , to denote the Jacobian matrix (∂fi(x)/∂xj). A point y ∈ Rm is
called a regular value of f if, for all x such that f(x) = y, the matrix f ′(x) has
full rank. (If m = 1 this means that f ′(x) = ∇f(x) does not vanish on the set
where f(x) = y, and if m = n then det f ′(x) �= 0 on the solution set.)

Let f : U → Rm be as above and u ∈ D′(Rm) a given distribution. It is a
standard result in distribution theory, that if all y ∈ supp(u) (=the support of
u) are regular values of f , then the composition u ◦ f = u(f), of u by f , is a
well-defined distribution in D′(U). In this paper we need two particular instances
of this result involving the Dirac distribution δ ∈ D′(Rm).

(a) If f : U → R (m = 1) is C1 and zero is a regular value for f , then δ(f) ∈
D′(U) is a distribution with support on the set Σ = {x : f(x) = 0} and

δ(f) =
dσ

|∇f | , (10)
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where dσ is the Euclidean surface measure on Σ, here considered as a dis-
tribution in U with supp(dσ) ⊂ Σ.

(b) If f : U → Rn (n = m) is C1 and 0 = (0, . . . , 0) is a regular value for f ,
then the composition of δ ∈ D′(Rn) by f is

δ(f) =
∑
p∈U :

f(p)=0

δp
|det f ′(p)| , (11)

where δp ∈ D′(U) is the Dirac distribution situated at p ∈ U .

From now on we focus on the two-dimensional case. If u = (u1, u2) ∈ R2

then the vector obtained by a counter-clockwise rotation of π/2 radians is

û = (−u2, u1). (12)

Also, if u,v ∈ R2, we define the anti-symmetric scalar product

u ∧ v = û · v.

Suppose U ⊂ R2 is an open connected set (for instance the image domain)
and g, h : U → R is a pair of continuously differentiable functions. Set A =
{x ∈ U : g(x) = 0} and B = {x ∈ U : h(x) = 0}. If we assume zero to be a
regular value of both g and h, then, by the implicit function theorem, A and B
are well-defined differentiable curves in U , see Figure 3(a).

Consider also the mapping G : U → R2 defined by G(x) = (g(x), h(x)).
If (0, 0) is a regular value for G, that is, if detG′(p) = ∇g(p) ∧ ∇h(p) �= 0
for all p ∈ A ∩ B, then the curves A and B will intersect non-tangentially or
transversally at p ∈ A ∩ B, as indicated in Figure 3(a). In particular, A ∩ B
consists of isolated points.

An orientation of A is defined the following way. If we go along A, in the
direction of the orientation, then g(x) < 0 for points x on the left-hand side of
A. B is given an orientation in a similar manner. The orientations are indicated
in Figure 3(a) by arrows on the curves.

Using these orientations we can speak of an ”index” of an intersection p ∈
A ∩ B. The index is the function ind(g, h, ·) : A ∩ B → {−1,+1} given by:
ind(g, h,p) = +1 if h changes sign from negative to positive when we go along
A in the direction of the orientation, and ind(g, h,p) = −1 if h passes form
positive values to negative ones. (Our hypothesis of transversal intersections
guarantees that these are the only two possible cases, hence the index is well
defined.) There is a neat analytical expression for the index. Let ng = ∇g/|∇g|
and nh = ∇h/|∇h| denote the unit normal fields on A and B, respectively. If
p ∈ A∩B then the vector n̂g(p) is tangent to A and points along the orientation,
so it is easy check that

ind(g, h,p) =
ng(p) ∧ nh(p)
|ng(p) ∧ nh(p)| . (13)

The index depends on the order of g, h, in fact ind(h, g,p) = − ind(g, h,p).
When the order is understood we simply write ind(p).
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B: {h=0}
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Fig. 3. (a) Transversal intersections of A and B. (b) The continuity argument for
non-transversal intersection without crossing and (c) with crossing

Theorem 2. Assume that g, h : U → R are continuously differentiable func-
tions with zero as a regular value, and such that the associated curves A = {x :
g(x) = 0} and B = {x : h(x) = 0} intersect transversally. Then the product of
the distributions δ(g), δ(h) ∈ D′(U) is well-defined, and

(∇g ∧ ∇h)δ(g)δ(h) =
∑

p∈A∩B

ind(p) δp, (14)

where ind(p) = ind(g, h,p).

Proof. The product δ(g)δ(h) is to be interpreted as a tensor product of Dirac
distributions in the (g, h)-plane, hence we have δ(g)δ(h) = δ(g, h) ∈ D′(R2).
In order to express this product in the (x, y)-plane we need to compute the
composition by the mapping G(x, y) = (g(x, y), h(x, y)) from U to R2. Thus it
follows from (11) that

δ(g, h) = δ(G) =
∑

p∈G−1(0)

δp
|det G′(p)| =

∑
p∈A∩B

δp
|∇g(p) ∧ ∇h(p)| .

If we multiply this identity by the continuous function (∇g∧∇h), and apply the
analytic expression (13) for the index, then the assertion of the theorem follows.

The result of Theorem 2 can be extended to non-transversal (but discrete)
intersections of A and B by a continuity argument, which we sketch briefly.

Consider the situation in Figure 3(b), where A and B meet in a point p
without crossing (h does not change sign along A). Let B′ be a small perturbation
of B. Then there are two possibilities. Either B′ does not intersect any more,
in which case there is no contribution to (14), or B′ intersects A in two nearby
points with opposite indices, as in Figure 3(b). The two contributions to (14) are
equal in size but have opposite signs, so they cancel (in the sense of distributions)
as B′ approaches B. We conclude that the formula (14) holds if we agree to set
ind(p) = 0 if A and B meet without crossing.

Suppose instead that A and B meet non-transversally, but they cross, as in
Figure 3(c). Approximating B by a sequence of curves, like B′, which intersect A
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transversally, we see that all of these curves give exactly the same contribution
to (14), so passing to the limit, it follows that (14) must hold for B as well.

We shall therefore feel free to use the result of Theorem 2 in all cases where
A and B do not coincide along a common segment.

6 The Gâteaux Derivative of EA: Formal Calculations

In this section formal calculations show that the differential (or Gâteaux deriva-
tive) of the alignment functional (1) contains a term with the second order
(distributional) derivative of the | · |-function. This term is analyzed in Section 8.

First we rewrite the (1) as

EA(Γ ) =
∫

Γ

|v · n| dσ =
∫
R2

|v · ∇φ

|∇φ| ||∇φ|δ(φ) dx =
∫
R2

|v · ∇φ|δ(φ) dx .

Let Γ is represented by the level set function φ, and consider a variation of Γ
given by φs = φ + sψ. Then the normal velocity of the moving curves (at s = 0)
is v = −ψ/|∇φ|. The differential is given by

dE(Γ )v =
d

ds
E(φ + sψ)

∣∣∣
s=0

=
∫
R2

d

ds
[|v · ∇φs|δ(φs)] dx

∣∣∣
s=0

=
∫
R2

sign(v · ∇φ)(v · ∇ψ)δ(φ) + |v · ∇φ|δ′(φ)ψ dx . (15)

Integrating by parts on ∇ψ yields

dE(Γ )v =
∫
R2

(−ψ)∇ · [v sign(v · ∇φ)]δ(φ) + (−ψ) sign(v · ∇φ)(v · ∇φ)δ′(φ) dx

−
∫
R2

(−ψ)|v · ∇φ|δ′(φ) dx

=
∫
R2

−ψ

|∇φ|∇ · [v sign(v · ∇φ)]|∇φ|δ(φ) dx. (16)

If Γ is a local maximum for EA then dEA(Γ )v = 0 for all normal velocities
v = −ψ/|∇φ|, hence the Euler-Lagrange equation for the problem (3) becomes

sign(v · n)(∇ · v)|∇φ|δ(φ) + 2δ(v · n)(∇(v · n) · v)|∇φ|δ(φ)︸ ︷︷ ︸
(∗)

= 0 . (17)

From the result above we have shown that there is an additional term in the
Euler-Lagrange equation, containing the second order (distributional) derivative
of the | · |-function, which is not present in (2). In many applications the second
order term (∗) is neglected. Can this be justified and motivated mathematically?
Or in other words, is (2) still a descent direction for (1) if this term is neglected.
To answer this we need to consider the properties of (∗).

It should be noted that a part of this problem was analyzed in [7] and [9]
under the assumption that v · n does not change sign along the curve. For the
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case of aligning curves to edges in images this is a reasonable assumption at the
edges, e.g. a dark object on a bright background will have v pointing outward
along the edge if the vector field is the image gradient v = ∇u. However, away
from the edges this assumption is perhaps too strong.

One has to be cautious when analyzing the influence of this second order
term in the level set framework. The reason for this is that both v and n are
defined in R2 (or some subset of R2) but geometrically, the values of n are only
meaningful at Γ . This means that the influence of (∗) outside Γ can not be
considered a property of the alignment functional (1). Instead this is a property
of the representation chosen. This is not a problem as long as one keeps this in
mind throughout the analysis.

7 The Singular Curve

In this section we will show that the zero set of v · n can be interpreted as an
image curve. If v · n has constant sign, then the alignment functional is

EA(Γ ) =
∫

Γ

|v · n| dσ = sign(v · n)
∫

Γ

v · n dσ = sign(v · n)
∫

Ω

∇ · v dx ,

where Ω is the interior of Γ , so the corresponding motion PDE is exactly (2).
Together with the analysis above this indicates that the difficulties arise where
the zero set of v · n intersects Γ . This incidence set will play an important role
in the analysis of (∗).

Let f : R2 → R be defined by f(x) = v(x)·n(x) and set Σ = {x ; f(x) = 0}.
Here the extension of the curve normal n is determined by keeping φ as a signed
distance function, i.e. |∇φ| = 1. The curve Σ is called the singular curve and
may consist of several closed components. Figure 4 shows the singular curve as
Γ evolves for the example in Section 3. Although the properties of Σ away from

(a) (b) (c) (d)

Fig. 4. The curve evolution in the image using (8). (top) curve evolution overlaid on
the image. (bottom) the curve Γ (thick) together with the singular curve Σ
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Γ are in fact arbitrary (another extension of n could have been chosen), Figure 4
shows that there are several places where Σ and Γ coincide and intersect.

8 The Gâteaux Derivative of EA: Final Analysis

In this section we show how to compute the differential of EA, that is, we show
how to analyze the term (∗) in Section 6. In this analysis the singular curve Σ,
which was introduced in the previous section, will play a crucial rôle. In order
to state the following result, let 〈u, ϕ〉Γ denote the value of the distribution
u ∈ D′(Γ ) on Γ applied on the test function ϕ ∈ C∞(Γ ). Also, let t = n̂ denote
the unit tangent field on Γ . We now come to the main result of this paper:

Theorem 3. If Γ is a curve which is not incident with v (cf. Section 4) then
the functional EA defined by (1) is differentiable at Γ with the differential

dEA(Γ )v =
∫

Γ

sign(v · n)(∇ · v) v dσ +

〈
2
∑

p∈Γ∩Σ

(v · t) ind(p)δp, v

〉
Γ

(18)

for all normal velocities v at Γ .

Proof. The assertion of the theorem follows from the result (16) of our formal
calculations in Section 6, if we can show that

2δ(v · n)(∇(v · n) · v)|∇φ|δ(φ) , (19)

i.e. the term (∗) in (17), is well-defined and equals the bracket in equation (18).
First, observe that if p ∈ Γ ∩Σ, then v(p) is tangent to Γ , so v = (t ·v)t at

p. Therefore the scalar product (∇(v · n) · v)|∇φ| in (19) can be rewritten as

(∇f · v)|∇φ| = (t · v)(∇f · t)|∇φ| = (t · v)(∇f · n̂)|∇φ| = (t · v)(∇f ∧ ∇φ)

Since Γ is not incident with v it follows from Lemma 2 (with g = f and h = φ)
that (19) equals 〈

2
∑

p∈Γ∩Σ

(v · t) ind(p)δp, v

〉
Γ

,

as claimed, and the proof is complete.

The following result shows that the hypothesis of Theorem 1 will be auto-
matically satisfied in most cases.

Theorem 4. If Γ is a local maximum of (1), in particular if Γ solves (3), then
the vector field v must satisfy

(∇ · v)(x) = 0 for all x ∈ Γ , (20)

and at least one of the following two alternatives hold: Either
(i) v · n does not change sign on Γ , or
(ii) Γ ∩ Σ is non-empty and if p ∈ Γ ∩ Σ, with ind(p) �= 0, then v(p) = 0.
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Proof. It follows from Lemma 1 that Γ is not locally incident with v, so EA is
differentiable at Γ , by Theorem 3, and since Γ is a local maximum, dEA(Γ )v = 0
for all admissible normal velocities v at Γ .

We claim that each term in (18) must be zero independently. If not, then
v(p) · n(p) ind(p)δp �= 0 for at least one p ∈ Γ ∩ Σ. Choose a non-negative
normal velocity v ∈ C∞(Γ ), with v(p) = 1, which is zero except in the vicinity of
p. If the support of v is sufficiently concentrated around p, then the contribution
from the first term of (18) can be made arbitrarily small, whereas that from the
second term is constant and equal to v(p) · n(p) ind(p). This contradicts the
necessary condition dEA(Γ )v = 0, hence our claim is true, in particular (20)
holds.

Now, if (i) is not true, then Γ ∩Σ must necessarily be non-empty. Since each
term of (18) is zero, we see that v(p) ·n(p) ind(p)δp = 0 for each p ∈ Γ ∩Σ, but
this can be the case only if either ind(p) = 0 or v(p) · t(p) = 0. This proves that
(ii) holds because we know from earlier that v is tangent to Γ at p ∈ Γ ∩ Σ.

Theorem 3 can also be used to show the following result regarding ascent
directions for (3).

Theorem 5. The curve evolution with the normal velocity

v(Γ ) = signε(v · n)(∇ · v) ,

where signε is defined as in (4), is an ascent direction for the problem (3).

Proof. We only need to show that the differential of EA applied to v(Γ ) is non-
negative. Using Theorem 3 and the fact that signε(0) = 0, we find that

dE(Γ )v(Γ ) =
∫

Γ

sign(v · n)(∇ · v) v(Γ ) dσ +

〈
2
∑

p∈Γ∩Σ

(v · t) ind(p)δp, v(Γ )

〉
Γ

=
∫

Γ

sign(v · n)(∇ · v) signε(v · n)(∇ · v) dσ

+

〈
2
∑

p∈Γ∩Σ

(v · t) ind(p)δp ,− signε(v · n)(∇ · v)

〉
Γ︸ ︷︷ ︸

=0

=
∫

Γ

|∇ · v|2 | signε(v · n)| dσ ≥ 0 ,

which proves the claim.

This shows that the equation of motion (2) used in [8, 7], is indeed an ascent
direction even without assuming constant sign of v · n along Γ .
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9 Conclusions

In this paper we have extended earlier derivations [9, 8, 7] of the gradient mo-
tion for aligning curves to vector fields using a particular energy functional. We
derived the Gteaux derivative of this functional and showed that there are cases
where it is not differentiable. We also showed that the evolution equation (2) is
an ascent direction under some weak assumptions, justifying and extending the
applications of earlier work, e.g. [7]. Finally we derived necessary conditions for
local maxima of the alignment functional, improving on earlier results.
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Enhancing Images Painted on Manifolds

Department of Computer Science, Technion, Israel
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Abstract. The fields of image processing, computer vision and com-
puter graphics have concentrated traditionally on regular 2D images.
Recently, images painted on 2D manifolds are becoming more popular
and are used in face recognition, volumetric medical image processing,
3D computer graphics, and many other applications. The need has risen
to regularize this type of images.

Various manifold representations are the input for these applications.
Among the main representations are triangulated manifolds and para-
metric manifolds. We extend the short time image enhancing Beltrami
kernel from 2D images to these manifold representations. This approach
suits also other manifold representations that can be easily converted to
triangulated manifolds, such as implicit manifolds and point clouds.

The arbitrary time step enabled by the use of the kernel filtering
approach offers a tradeoff between the accuracy of the flow and its exe-
cution time. The numerical scheme used to construct the kernel makes
the method applicable to all types of manifolds, including open mani-
folds and self intersecting manifolds. The calculations are done on the
2D manifold itself and are not affected by the complexity of the manifold
or the dimension of the space in which it is embedded. The method is
demonstrated on images painted on synthetic manifolds and is used to
selectively smooth face images. Incorporating the geometrical informa-
tion of the face manifolds in the regularization process yields improved
results.

1 Introduction

The Beltrami framework [5, 17] enables state of the art image regularization. It
produces a spectrum of image enhancing algorithms ranging from the L2 linear
diffusion to the L1 non-linear flows. Apart from regular 2D images, the frame-
work was used for textures, video, and volumetric data [6], non-Euclidean color
spaces [18], and orientation diffusion [8]. A detailed review can be found in [23].

The recent increase in applications using images painted on 2D manifolds,
requires the development of computational tools for regularizing such images.
An approach based on harmonic maps was developed to enhance images painted
on implicit manifolds [2, 3, 9]. In this approach the manifold is the zero set of
a level set function [10] defined in the space in which the manifold is embed-
ded. As noted before [19], this approach has three main drawbacks: the need to
extend the manifold to the embedding space, performing the calculations there

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 492–502, 2005.
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(which might be computationally prohibitive for spaces with more than three
dimensions) and the method’s applicability only to manifolds represented by a
level set and thus excluding more general manifolds, such as open manifolds and
self intersecting ones.

Sochen et. al. [15, 14] extended the Beltrami flow for images painted on ex-
plicit and implicit manifolds. They have also shown the Beltrami flow to be a
generalization of the approach discussed in the previous paragraph. Still, the ex-
plicit numerical schemes used to implement the Beltrami flow require an upper
bound on the time step used and might result in many iterations. Furthermore,
the method was not extended to triangulated manifolds, which are common in
many applications.

Recently, Bajaj et. al. [1] and Clarenz et. al. [4] presented combined regu-
larizations of triangulated manifolds and the images painted on them. Both the
manifolds and the images undergo anisotropic diffusions. The numerical scheme
in [1] consists of Loop’s subdivision while [4] uses a finite element discretization
in space. Both use semi-implicit finite difference discretizations in time.

A short time kernel for the Beltrami flow on regular 2D images was presented
in [22]. It followed the introduction of a short time kernel for 1D non-linear
diffusion [16] and an approximation for the 2D Beltrami operator [13]. These
kernels implement the flows by ‘convolving’ the signals with the kernels, similar
to the implementation of the heat equation by a convolution with a gaussian
kernel. The numerical implementation of the kernels enables an arbitrary time
step that gives a tradeoff between the accuracy of the flow and its execution time.

We present here an extension of the short time Beltrami kernel to images
painted on manifolds. This kernel enjoys several important advantages,

– Efficiency achieved by performing the calculations on the 2D manifold itself.
– Flexibility through the tradeoff enabled by the selection of an arbitrary time

step.
– Robustness by the applicability of the kernel to all possible 2D manifolds,

including open manifolds and self intersecting ones.
– Simplicity due to the applicability of the method to all popular manifold

representations including triangulated manifolds, parametric manifolds, im-
plicit manifolds and point clouds. The difference in the implementation of
the method to the various manifold representations lies only in the pre-
processing stage.

In order to compute the short time kernel we need to calculate geodesic dis-
tances between pixels in the image. For images painted on parametric manifolds
we use fast marching [11, 12, 24] on parametric manifolds [20, 21]. For images
painted on triangulated manifolds we use fast marching on triangulated mani-
folds [7].

This paper is organized as follows. The first section describes the Beltrami
flow for images painted on manifolds. In Section 2 it is implemented by the short
time kernel. Section 3 describes the calculation of geodesic distance maps on
images. In Section 4 the kernel is demonstrated on images painted on synthetic
manifolds and is used to regularize face images. The conclusions are in Section 5.
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2 The Beltrami Flow

According to the Beltrami framework [5, 17] the image is represented by {X1, X2,
. . . , XM , I1, I2, . . . , IN}, with Xi the spatial coordinates and Ij the intensity
components. The following derivation will assume color images painted on para-
metric manifolds embedded in R3, where we have M = 3, N = 3 and the image
is {x(u1, u2), y(u1, u2), z(u1, u2), I1(u1, u2), I2(u1, u2), I3(u1, u2)}. For other val-
ues of M and N the derivation is virtually identical.

If we choose the embedding space to be Euclidean, its metric hij is represented
by the diagonal matrixH, with ones in the firstM rows and β2 in the nextN . β is
the relative scale between the spatial coordinates and the intensity components.
The metric elements gij of the image are derived from the metric elements hij

and the embedding by the pullback procedure

G = (gij) =
(

1 + β2∑
a(Ia

1 )2 β2∑
a I

a
1 I

a
2

β2∑
a I

a
1 I

a
2 1 + β2∑

a(Ia
2 )2

)
, (1)

with Ii
j the derivative of Ii with respect to uj .

The Beltrami flow is obtained by minimizing the area of the image

S =
∫∫ √

gdu1du2, (2)

with respect to the embedding, where g = det(G) = g11g22 − g2
12. The corre-

sponding Euler-Lagrange equations as a gradient descent process are

Ii
t = ΔgI

i, (3)

where Δg is the Laplace-Beltrami operator which is the extension of the Lapla-
cian to manifolds.

x

y

I

^

^

Fig. 1. In the Beltrami flow for 2D regular gray level images the image surface moves
according to the intensity component of the mean curvature flow. Geometrically, only
the projection of this movement on the normal to the surface matters
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For gray level images we have

It = ΔgI = H〈Î ,N〉,

i.e., the image surface moves according to the intensity component of the mean
curvature flow, see Fig. 1.

3 A Short Time Kernel for the Beltrami Flow

As shown in [22], a kernel exists for the Beltrami flow on 2D regular images.
This is similar to the simpler case of linear diffusion, where applying the PDE

It = ΔI (4)

to the 2D regular image I(u1, u2, t0) for the duration t is equivalent to convolving
the image with a Gaussian kernel

I(u1, u2, t0 + t) =
∫∫

I(ũ1, ũ2, t0)K(|u1 − ũ1|, |u2 − ũ2|; t)dũ1dũ2 =

= I(u1, u2, t0) ∗K(u1, u2; t) , (5)

where the kernel is given by

K(u1, u2; t) =
1

4πt
exp
(
− (u1)2 + (u2)2

4t

)
. (6)

Because of the non-linearity of the Beltrami flow (the Beltrami operator
depends on the data I), the Beltrami kernel is a short time kernel, that if used
iteratively, has an equivalent effect to that of the Beltrami flow.

The main idea behind the kernel is presented in Fig 2. For the Gaussian
kernel the amplitude of the filtered image at a specific pixel is the sum of the
neighboring pixels’ amplitudes weighted according to their distance along the
coordinate axis. For the nonlinear Beltrami kernel the weighting is according to
the geodesic distance on the image itself. The Beltrami kernel ‘resides’ on the
image while for the linear kernel the Gaussian ‘resides’ on the coordinate axis.
This is the reason why linear diffusion blurs the image while the Beltrami flow
removes the noise but keeps the edges intact.

In each iteration of the Beltrami kernel we use

Ii(u1, u2, t0 + t) =
∫∫

Ii(ũ1, ũ2, t0)K(u1, u2, ũ1, ũ2; t)dũ1dũ2 , (7)

with the kernel

K(u1, u2, ũ1, ũ2; t) =
H0

t
exp

⎛⎜⎝−

(∫ (ũ1,ũ2)
(u1,u2) ds

)2

4t

⎞⎟⎠
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Fig. 2. Filtering an image with a linear Gaussian kernel (top) and a nonlinear Beltrami
kernel (bottom)

=
H0

t
exp

(
−
d2

g

(
(u1, u2), (ũ1, ũ2)

)
4t

)
, (8)

where ds is an arc-length element on the image, and dg(p1, p2) is the geodesic
distance between two pixels p1 and p2. For the full derivation of the kernel
see [22]. The derivation of the short time kernel for the Beltrami flow on images
painted on manifolds is the same. The difference lies in the calculation of geodesic
distances on this kind of images, which will be detailed in the next section.

The resulting update step for the Beltrami kernel is

Ii(u1, u2, t0+t) =
H0

t

∫∫
(ũ1,ũ2)∈N(u1,u2)

Ii(ũ1, ũ2, t0) exp

⎛⎜⎝−

(∫ (ũ1,ũ2)
(u1,u2) ds

)2

4t

⎞⎟⎠ dũ1dũ2,

(9)
with N(u1, u2) the neighborhood of the pixel (u1, u2), where the value of the ker-
nel is above a certain threshold. Due to the monotone nature of the fast marching
algorithm used in the next section for the solution of the eikonal equation, once
a pixel is reached, where the value of the kernel is smaller than the threshold, the
algorithm can stop and thereby naturally bound the numerical support of the
kernel. The value of the kernel for the remaining pixels is negligible. Therefore,
the eikonal equation is solved only in a small neighborhood of each pixel. H0 is
taken such that integration over the kernel in the neighborhood N(u1, u2) of the
pixel equals one.
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4 Solving the Eikonal Equation on Images Painted on
Manifolds

As shown in the previous section, the construction of the kernel for a pixel re-
quires the calculation of the geodesic distances between the pixel and its neigh-
bors. We place the origin of the coordinate system of the image (u1 = u2 = 0)
at the pixel. The viscosity solution φ(u1, u2) of the eikonal equation

‖∇gφ‖ = 1, (10)

is the required geodesic distance map from the pixel to its neighbors, where ∇gφ
is the gradient of φ on the image. To solve the eikonal equation on the image we
use the fast marching method.

Regular 2D images are parametric manifolds, where the metric gij is given
for every point. Therefore, calculating the geodesic distances needed for imple-
menting the kernel to these images [22] was done by an extension of the fast
marching method [11, 12, 24] to parametric manifolds [20, 21]. The same method
is used here for images painted on parametric manifolds. For images painted on
triangulated manifolds we use fast marching on triangulated manifolds [7]. Since
the embedding space in our case has at least four dimensions (gray scale images
painted on manifolds), calculating the distances explicitly on the 2D image is
advantageous.

The original fast marching method solves the eikonal equation in an orthog-
onal coordinate system. In this case, the numerical support for the update of a
grid point consists of one or two points out of its four neighbors. For images,
where g12 �= 0, we get a non-orthogonal coordinate system on the image. The
numerical support should include non-neighboring grid points (pixels). For para-
metric manifolds the method uses the metric of the image at each pixel in order
to find the pixels used for the numerical scheme. In the case of triangulated
manifolds, the triangulation is given in advance and it determines the numerical
support for each pixel.

The updated pixel together with the two other pixels in its numerical support
constitute the vertices of a triangle. This triangle is the numerical stencil for
updating the pixel. If the triangle is obtuse, it should be split and replaced by
two acute triangles. For parametric manifolds the splitting is done according
to the metric at the updated pixel, see [20, 21]. For triangulated manifolds an
“unfolding” scheme is used, see [7].

After this pre-processing stage, all the triangles in the numerical grid are
acute, as in Fig. 3. The figure shows the method by which the vertex (pixel) C
is updated according to the vertices A and B. The objective is to find t such
that t−u

h = 1 and use it to calculate φ(C) based on φ(A) and φ(B).
The numerical scheme according to [7] is

– u = φ(B) − φ(A).
– Solve the quadratic equation

(a2 + b2 − 2ab cos θ)t2 + 2bu(a cos θ − b)t+ b2(u2 − a2 sin2 θ) = 0.
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Fig. 3. The numerical stencil used to update φ(C) according to φ(A) and φ(B)

– If u < t and a cos θ < b(t−u)
t < a

cos θ , then φ(C) = min{φ(C), t+φ(A)}. Else,
φ(C) = min{φ(C), b+ φ(A), a+ φ(B)}.

The numerical scheme described in the previous paragraph enables the up-
date of a pixel according to two of its neighbors. In order to use this scheme to
generate the entire distance map the following algorithm [12] is used.

Initialization:

1. The pixel at the origin (for which the kernel is constructed) is defined as
Accepted and given an initial value of zero.

2. All the other pixels are defined as Far and given the value infinity.

Iterations:

1. Far ‘neighbors’ of Accepted pixels are defined as Close.
2. The values of the Close pixels are updated according to the numerical

scheme.
3. The Close pixel with the minimal value becomes an Accepted pixel.
4. If there remain any Far pixels, return to step 1.

We use the term ‘neighbors’ to describe pixels that belong to the same nu-
merical stencil. These pixels are not necessarily neighboring pixels in the image.
We find these ‘neighbors’ during the pre-processing stage described previously.

The complexity of the algorithm is upper bounded by O(n log n), where n
is the number of pixels in the image. The log n results from using a min-heap
data structure for sorting the Close pixels [12]. Since There is no need to use all
the pixels in the image in order to update one pixel (the value of the kernel for
most of these pixels is negligible), we can bound in advance the neighborhood
in which the eikonal equation is solved. Thus, we decrease substantially the size
of the heap used for the fast marching and enhance its efficiency.
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5 Simulations and Results

We first demonstrate the effect of the manifold on the resulting enhanced image.
In Fig. 4 a texture image is painted on a flat plane (a regular 2D image) as well
as on the manifold {x, y, sin(2πx) sin(2πy)}. Both images are enhanced using
the short time Beltrami kernel. While the texture in the regular 2D image is
smoothed evenly, the degree of smoothing in the image painted on the manifold
differs according to the geometry of the manifold. In planar areas of the manifold
(its peaks and troughs) the smoothing is the same as in the regular image, but on
the slopes the spatial extent of the kernel is smaller and there is less smoothing,
as can be expected from Fig. 2.

Figure 5 shows the difference between enhancing a color face image as a
regular 2D image and enhancing it as an image painted on the face manifold. In
both cases one iteration of the kernel with a time step of t = 0.5 was applied, only
grid points with a kernel value above 0.01 were used for the filtering and the fast

Fig. 4. The effect of the manifold on the enhanced images. The regular 2D image is on
the left and the texture painted on the manifold is on the right. The original textures
are on the top and the enhanced textures on the bottom
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Fig. 5. Enhancing a color face image with the Beltrami kernel. On the left the image
is treated as a regular 2D image and on the right as an image painted on the face
manifold. On the top are the original images and in the middle and the bottom are the
enhanced images. The image in the middle right is the difference between the images
on its left
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marching was restricted to a neighborhood of 7 × 7 around each updated pixel.
An average of 20 pixels were used in the kernel as a result of these parameters.
A comparison between the output images shows that a kernel that takes into
account the geometry of the manifold smoothes more in flat regions such as the
forehead and smoothes less in edges of the manifold such as the lips. The overall
effect is a more selective smoothing and a better looking output image.

6 Conclusions

We have presented a short time kernel for the Beltrami flow for images painted on
manifolds. Incorporating the metric of the manifold in the flow produces better
results in applications such as face image regularization. The numerical imple-
mentation of the kernel handles every possible manifold represented by virtually
every common manifold representation. It enjoys low computational complexity
further enhanced by an arbitrary time step that enables trading accuracy for a
shorter execution time. All these attributes make the Beltrami kernel a highly
practical tool for real life graphics and 3D image processing applications.
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Abstract. An important prognostic parameter for assessing the success
of an in vitro fertilization treatment is the variation in thickness of the
zona pellucida. Zona pellucida, the envelope of the human embryo, is usu-
ally visualized using Hoffman modulation contrast microscopy (HMC).
This paper considers automatic segmentation of zona pellucida in HMC
images of human embryos. There are two subproblems: (a) the embryo
should be separated from the background and (b) the zona should be
separated from the rest of the embryo. (a) is solved using a robust for-
mulation of a classical area based method and (b) is solved using a prob-
abilistic method. Both solutions are set in a variational framework using
a novel image model for the zona. This variational framework is adapted
to handle images in which large artefacts are covered with masks. Since
the zona has a simple topology we focus on parametric models and a
representation by trigonometric sums is considered.

1 Introduction

In the Nordic countries about 2% of all childbirths are the results of assisted
reproductive technology. This has resulted in a significant increase of multi-
ple pregnancies. Multiple pregnancies are associated with an increased risk of
complications, resulting in unnecessary suffering for the offspring and increased
health care costs. To reduce the number of multiple pregnancies a single embryo
transfer would be necessary in many of the in vitro fertilization (IVF) treat-
ments. This raises the need for more accurate and reliable criteria for assessing
the potential of an embryo to give rise to a normal pregnancy resulting in a
healthy child. It has recently been shown that the zona pellucida thickness vari-
ation (ZPTV) is a very good predictor for the development potential. ZPTV
might reflect other qualities of the embryo than the older morphological criteria
[1, 2]. The hypothesis is that ZPTV could represent the ability of hatching.
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Γ+

Γ−

R

Fig. 1. Form left to right: a) An HMC image of a human embryo. The zona pellucida
is the non cellular envelope. b) The curves Γ+ and Γ− defining the regions R+ and R−

Fig. 1a shows an image of a human embryo. The zona pellucida is the non
cellular layer enveloping the embryo. The image is taken using a video cam-
era mounted on a Hoffman Modulation Contrast (HMC) microscope. The HMC
technique is a light microscopy contrast technique which generates contrast from
phase gradients, originating from differences in the refractive index of the spec-
imen [3]. Since this technique requires no staining it is well suited for studies of
living specimen. The HMC microscope uses a modulator with a given orienta-
tion. This results in phase differences being most clearly visible in one direction
and invisible in the orthogonal direction.

This paper considers the problem of automatically segmenting the zona in
HMC images, which is the crucial step in an automated procedure for ZPTV
measurements. An automated system would be time-saving and the measure-
ments obtained would be independent from the system operator. Today it is
hard to achieve reproducible measurements among different technicians.

An appealing method for segmentation problems is to use some sort of active
contour model [4]. However, most active contour models rely on the use of edge
maps and in our case, since the zona is diffuse, it is difficult to develop good
edge maps. Instead, we consider area based segmentation methods.

Relation to Previous Work. The variational framework used has similarities
to the minimal partitioning problem of Mumford and Shah [5], studied in [6, 7]
by Chan and Vese, and to its probabilistic counterpart developed by Paragios,
Rousson and Deriche [8, 9]. In [10] the characteristics of HMC images are stud-
ied, in [11] modelling of human embryos is considered and in [12] an approach
to blastomere detection is presented. None of these papers address automatic
segmentation. There are commercially available tools for assisting laboratory
technicians in measuring embryo parameters [13]. To our knowledge these sys-
tems use little automation and require much user interaction. The work most
closely related to the present paper is the authors’ [14], in which the first steps
were taken towards an automated procedure for segmentation of the zona.

Contribution of the Paper. The contributions of this paper are found in Sec-
tions 3 to 8. First of all, the application automatic segmentation of HMC images
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of human embryos, must be considered novel, see above. A new image model for
the zona, which improves the one in [14], is developed, cf. Section 3, and used
again, as an expectation prior, in the probabilistic area based method in Sec-
tion 4. A two-step iterative strategy for optimizing the segmentation functionals
is presented in Section 7. Some of the images contain large artefacts, which ruins
the segmentation results. To solve this problem, a modification of the functionals
is introduced in Section 5. This modification allows the application of the method
on images where artefacts are covered by masks. Smaller artefacts are handled
automatically using a robust formulation of the classical area-based method, see
Section 3. Curves are represented by trigonometric polynomials. In Section 6 the
Gâteaux derivatives of the functionals are computed in terms of the (Fourier-)
coefficients of these trigonometric sums. The formulas, which we believe are new,
can be used in more general active contour problems.

Problem Formulation. The segmentation of the zona can be divided into two
subproblems: (a) The segmentation of the embryo from the background, i.e. find-
ing the outer circumference of the zona (cf. Section 3) and (b) the segmentation
of the zona from the interior of the embryo, i.e. finding the inner circumference
of the zona (cf. Section 4). Since the segmentations are to be used for measure-
ments (of ZPTV), and not for tasks like e.g. tracking of objects, it is critical that
the localization of the outer and inner circumferences are precise. That is, the
segmentation must be tight.

When describing the segmentation procedures for (a) and (b) we assume that
we have already found an initialization consisting of two simple closed curves Γ+
and Γ−, cf. Fig. 1(b), such that Γ+ lies in the background and surrounds Γ− and
the embryo, and Γ− lies in the zona and surrounds the interior of the embryo.
How such an initialization is obtained is described in Section 7.

2 Area Based Segmentation

We are going to use two different variants of area based variational segmentation,
both of which are covered by the general description given in this section.

Functionals for Area Based Segmentation. Let I : R → [−1, 1] be an
image. A pair of subsets (D0, D1) of R is called a decomposition of R (into two
parts) if D0 and D1 have no interior points in common and R = D0 ∪ D1. The
common boundary of D0 and D1 is denoted Γ . It is sometimes easier to refer to
a decomposition (D0, D1) by referring to Γ .

A two-phase segmentation of I is a decomposition (D∗
0 , D∗

1) of the image do-
main R which is optimal with respect to some criterium. One of the subdomains,
D∗

1 say, is often referred to as the object. D∗
0 is then called the background.

An area-based two-phase segmentation method consists of two ingredients:
(a) A pair of image models I0, I1 : R → [−1, 1]. Each image model depends
on points (pixels) x in the image domain, and a number of parameters μi =
(μ1

i , . . . , μ
pi

i ) ∈ Rpi , that is Ii = Ii(x,μi), i = 0, 1.
(b) A pair of penalty functions V0, V1 : R → R+.
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The segmentation functional is the total penalty over the entire image:

J [(D0, D1), (μ0,μ1)] =
∫

D0

V0(I(x)−I0(x,μ0)) dx+
∫

D1

V1(I(x)−I1(x,μ1)) dx.

(1)
A segmentation in the area based framework is a decomposition R = D∗

0 ∪D∗
1

and a choice of parameters μ∗
0,μ

∗
1 which are optimal in the sense that

J [(D∗
0 , D∗

1), (μ∗
0,μ

∗
1)] = min

(D0,D1),(μ0,μ1)
J [(D0, D1), (μ0,μ1)]. (2)

If the penalty functions depend on parameters, Vi = Vi(·,σi), where σi ∈
Rqi , i = 0, 1, then σ0 and σ1 must be included in the variational problem (2).

Minimizing the Segmentation Functional. In order to solve the minimiza-
tion problem (2) we use the identity

min
(D0,D1),(μ0,μ1)

J [(D0, D1), (μ0,μ1)] = min
(D0,D1)

{
min

(μ0,μ1)
J [(D0, D1), (μ0,μ1)]

}
.

The inner optimization problem can be solve for R = D0 ∪ D1 fixed. Clearly

min
(μ0,μ1)

J = min
μ0

∫
D0

V0(I − I0(·,μ0)) dx + min
μ1

∫
D1

V1(I − I1(·,μ1)) dx. (3)

If the parameter dependence μi �→ Ii(·,μi) is linear, which it is in our case, then
reasonable assumptions on the penalty functions V0, V1 ensure that there exist
unique parameters μ∗

0 = μ∗
0(D0) and μ∗

1 = μ∗
1(D1) which solve (3). For quadratic

penalty functions the optimal parameters are given by explicit formulas, as we
shall see in the following sections.

Next, introduce the reduced functional depending only on the decomposition:

Ĵ [(D0, D1)] = J [(D0, D1), (μ∗
0(D0),μ∗

1(D1))].

Then (2) becomes the problem of finding a decomposition D∗
0 , D∗

1 such that

Ĵ [(D∗
0 , D∗

1)] = min
(D0,D1)

Ĵ [(D0, D1)]. (4)

To compute the Gâteaux derivative (or differential) of Ĵ at Γ , take a differ-
entiable function ν : Γ → R defined on the curve, and define a curve evolution
by Γ (t) = x + tν(x)n(x), for x ∈ Γ . Here n denotes the outward unit normal
field on Γ . Clearly Γ (0) = Γ and the normal velocity of the curve evolution at
t = 0 is Γ̇ (0) = ν. The differential of Ĵ is given by

dĴ(Γ ; ν) =
d

dt
Ĵ(Γ (t))

∣∣∣
t=0

=
∫

Γ

{
V1(I − I1(·,μ∗

1)) − V0(I − I0(·,μ∗
0))
}

ν ds,

where ds is the curve element on Γ . The gradient of Ĵ is defined as the real
valued function on Γ given by

∇Ĵ(Γ ;x) = V1(I(x) − I1(x,μ∗
1)) − V0(I(x) − I0(x,μ∗

0)), (x ∈ Γ ), (5)
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where μ∗
i = μ∗

i (Di) are the optimal parameters.
Given an initial decomposition Γ0, a (local) minimizer of Ĵ (and a solution

of (4)) can be found by solving the gradient descent motion problem,

Γ̇ (t) = −∇Ĵ(Γ (t)), Γ (0) = Γ0, (6)

where Γ̇ (t) denotes the normal velocity of the curve evolution.

3 Finding the Outer Circumference

This section describes the segmentation functional for the outer circumference
of the zona. This functional is inspired by the one in [6], but differs from it by
the introduction of a new, more elaborate, image model and the use of truncated
penalty functions, which leads to a more robust penalization procedure.

The segmentation functional is defined on the restriction of the original image
to the set R+ = {x ∈ R : x is outside Γ−}, see Fig. 1b. We seek a decomposition
of R+ into D1, the zona, and D0, the background.

The intensity of the background is essentially constant, so we set

I+
0 (x, μ0) = μ0. (7)

The model, I+
1 , for the zona is much more interesting. The angular dependence

of the intensity, which is so conspicuous in HMC images, see Fig. 1a, is built into
the model by the introduction of the distance function d+(x) = dist(x, Γ−):

I+
1 (x, μ1,w) = μ1 + wT∇d+(x), (8)

where μ1 ∈ R and w ∈ R2 are parameters. The outward unit vector field
∇d+ describes the angular dependence in the images, and w corresponds to the
direction and amplitude of this angular dependence.

Many of the images we study contain small artefacts, in the form of sper-
matozoa and cell fragments. This makes the commonly used penalty function
1
2 | · |2 unsuitable, because it is sensitive to outliers. Instead, we consider a robust
formulation in which the penalty functions are truncated:

Vi(t) =
1
2

min(t2, τ2
i ) (i = 0, 1), (9)

where τ0, τ1 > 0 are fixed parameters.
Plugging (7), (8) and (9) into equation (1) in Section 2 we get the segmen-

tation functional for the outer circumference:

J+(Γ, μ0, μ1,w) =
1
2

∫
D0

min
[
(I(x) − μ0)2, τ2

0
]
dx

+
1
2

∫
D1

min
[
(I(x) − μ1 − wT∇d+(x))2, τ2

1
]
dx. (10)
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To find the optimal parameters μ∗
0, μ∗

1 and w∗ for a fixed decomposition R+ =
D0 ∪D1, we differentiate under the integral signs in (10), and get the identities

μ∗
0 = |D′

0(μ
∗
0)|−1

∫
D′

0(μ
∗
0)

I(x) dx (11)

and

μ∗
1 = |D′

1(μ
∗
1,w

∗)|−1
∫

D′
1(μ

∗
1 ,w∗)

I(x) dx,

w∗ =

[∫
D′

1(μ
∗
1 ,w∗)

∇d+(x)(∇d+(x))T dx

]−1 ∫
D′

1(μ
∗
1 ,w∗

1)
I(x)∇d+(x) dx, (12)

where D′
0(μ

∗
0) = {x ∈ D0 : |I(x)− I+

0 (x, μ∗
0)| < τ0} and D′

1(μ
∗
0,w

∗) = {x ∈ D1 :
|I(x) − I+

1 (x, μ∗
0,w

∗)| < τ1}. Equations (11) and (12) are fixed point problems
for the optimal parameters μ∗

0, μ∗
1 and w∗ and can in principle be solved using

fixed point iterations. If τ0 = τ1 = ∞ then Vi(·) = 1
2 | · |2 and the solution is

μ∗
0 = |D0|−1

∫
D0

I(x) dx, μ∗
1 = |D1|−1

∫
D1

I(x) dx, (13)

w∗ =
[∫

D1

∇d+(x)(∇d+(x))T dx
]−1 ∫

D1

I(x)∇d+(x) dx. (14)

In our implementation (11) and (12) are not solved exactly. Instead (13) and
(14) are used as predictors of the optimal parameter values, after which one
iteration using (11) and (12) is performed.

From (5) it follows that the gradient of Ĵ+ is

∇Ĵ+(Γ ) = 1
2 min

[
(I − μ∗

1 − ∇dT
+w∗)2, τ2

1
]
− 1

2 min
[
(I − μ∗

0)
2, τ2

0
]
, (15)

where μ∗
0, μ

∗
1 and w∗ solve (11) and (12).

4 Finding the Inner Circumference

For finding the inner circumference a segmentation functional is again defined
on a restriction of the image, the set R− = {x ∈ R : x is inside Γ+}, see Fig. 1b.
For an optimal placement of Γ+, R− would correspond to the embryo. We seek
a decomposition of R− into D0, the interior of the embryo, and D1, the zona.

We use a probabilistic method similar to that of Rousson and Deriche in [9].
This is a Bayesian approach in which the likelihood of a decomposition (D0, D1)
is maximized given an observation of the image I. The method assumes that the
gray levels of the pixels are independent random variables which are normally
distributed. More precisely, if a pixel x ∈ R is assigned to Di, it is assumed that
I(x) ∼ N (I−

i (x), σi) for i = 0, 1. The means I−
i are the models of our framework

(cf. Section 2) used as expectation priors.
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We have yet to define a model which describes the structure in the interior
of the embryo. Instead, we use a constant image model

I0(x, μ0) = μ0. (16)

The thesis being, that our zona model and the variance differences are sufficient
to model the difference between the interior and the zona. For the zona we use

I−
1 (x, μ1,w) = μ1 + wT∇d−(x) (17)

where d−(x) = −dist(x, Γ+). The minus sign has been introduced for conve-
nience, since then ∇d+(x) ≈ ∇d−(x) in the zona, which gives the same inter-
pretation of w in both zona models (8) and (17).

The segmentation functional, which is essentially minus the logarithm of the
likelihood functions, is

J−(Γ, μ,w,σ) =
1
2

∫
D0

log σ2
0 +

|I(x) − μ0|2
σ2

0
dx

+
1
2

∫
D1

log σ2
1 +

|I(x) − μ1 − wT∇d−(x)|2
σ2

1
dx. (18)

This is the same as (1) with the image models (16) and (17), and the param-
eter dependent penalty functions

Vi(t, σi) =
1
2

[
log σ2

i +
|t|2
σ2

i

]
(i = 0, 1).

The optimal values for the parameters μ0, μ1 and w are found using the
formulas (13) and (14) of Section 3 with d−(x) replacing d+(x) in (14) and the
optimum for the standard deviations are clearly given by

σ∗
i =

[
1

|Di|

∫
Di

|I − Ii|2 dx
]1/2

(i = 0, 1).

The gradient of Ĵ− is

∇Ĵ−(Γ ) = log
σ∗

1

σ∗
0

+
1
2
|I − μ∗

1 − ∇dT
−w∗|2

σ∗
1
2 − 1

2
|I − μ∗

0|2

σ∗
0
2 . (19)

5 Supervised Segmentation Using Masks

In this section we generalize the formulation given in Section 2 to include han-
dling of occlusion. If it can be a priori established that parts of an image scene
belongs to neither the background D0 nor the object D1, it would be preferable
to exclude these parts from the calculations. In our application such regions
consist of large artefacts occluding parts of the image scene.
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For this purpose we introduce a new fixed set M , called a mask, and de-
compose the image domain R into four regions D0 \ M , D0 ∩ M , D1 \ M and
D1 ∩ M . For the regions where image information is retrievable, D0 \ M and
D1 \M , we use the penalty functions V0 and V1, as before. For the regions were
no information is given, each pixel is assigned a penalty which is equal to the
average penalty over the corresponding region with known information, i.e. for
x ∈ Di ∩M the penalty is

∫
Di\M

Vi(x,μi) dx. The total penalty over the image
domain becomes

J [(D0, D1), (μ0,μ1)] = |D0|
∫

D0\M

V0(x,μ0) dx + |D1|
∫

D1\M

V1(x,μ1) dx.

Under the same assumptions as in Section 2 the minimum over the parameters
(μ0,μ1) can be solved for explicitly. For our segmentation problem we can use
the formulas (11), (12), (13) and (14) if D0 is replaced by D0 \ M and D1 by
D1 \ M , to find the optimal values for the parameters.

Set Ĵi(Di) = |Di|
∫

Di\M
Vi(x,μ∗

i ) dx and define Ĵ(D0, D1) = Ĵ0(D0)+Ĵ1(D1).

The differential of Ĵ is computed using the product and quotient rule:

dĴ(Γ ; ν) =
∫

Γ∩Mc

{
V1(·,μ∗

1) − V0(·,μ∗
0) +

Ĵ0(D0)
|D0 \ M | −

Ĵ1(D1)
|D1 \ M |

}
ν ds+

+
∫

Γ

{
Ĵ1(D1)
|D1|

− Ĵ0(D0)
|D0|

}
ν ds (20)

where M c is the the complement of M with respect to R.

6 Representation by Trigonometric Sums

Here we introduce a trigonometric representation of the curve Γ :

Γ (θ) = Γ (θ;a,A1, . . . ,AN ) = a +
N∑

k=1

Ak

[
cos(kθ)
sin(kθ)

]
, θ ∈ [0, 2π], (21)

where N ≥ 1 is fixed, a ∈ R2 and A1, . . . ,AN are 2-by-2 matrices. From the
differential (2) of the reduced functional Ĵ , we calculate the gradient with respect
to the parameters of this representation. An outward orthogonal field Γ̂ of Γ is
constructed by making a 90 degree clockwise rotation of the tangent vector Γ ′(θ),
that is:

Γ̂ (θ) =
N∑

k=1

kPAkPT

[
cos(kθ)
sin(kθ)

]
, (22)

were P =
[

0 1
−1 0

]
. Recall formula (2) for the differential of Ĵ and consider an

arbitrary small displacement δΓ of Γ . This displacement gives a normal velocity
ν = nT δΓ and since n ds = Γ̂ dθ we, with G(θ) = (∇Ĵ)(Γ (θ)), get:
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dĴ(Γ ; δΓ ) =
∫ 2π

0
G(θ)δΓT Γ̂ (θ) dθ. (23)

We now seek an expression for the gradient ∇Ĵ = (∇aĴ ,∇A1 Ĵ , . . . ,∇AN
Ĵ)

of Ĵ with respect to the parameters a and Aj . Suppose the Aj are kept fixed
and consider the variation a → a + δa, where δa ∈ R2. Then it is easy to see
that δΓ = δa, so dĴ(Γ ; δΓ ) = δaT

∫ 2π

0 G(θ)Γ̂ (θ) dθ. Thus

∇aĴ(Γ ) =
∫ 2π

0
G(θ)Γ̂ (θ) dθ. (24)

Now, if we make a small variation of Aj , Aj → Aj +δA then δΓ = δA
[

cos(jθ)
sin(jθ)

]
so by equation (23) dĴ(Γ ; δΓ ) =

∫ 2π

0 G(θ)
[
cos(jθ) sin(jθ)

]
δAT Γ̂ dθ.

The expression tr(BT A), where A,B ∈ R2×2, defines a scalar product on
the vector space of 2-by-2-matrices. Hence, the linear functional Λ : A �→ uT Av,
where u,v ∈ R2 are fixed vectors, can be written in the form Λ(A) = tr(BT A)
with B = uvT . It follows that dĴ(Γ ; δΓ ) = tr(BT δA), where B = ∇Aj

Ĵ and

∇Aj
(Γ )Ĵ =

∫ 2π

0
G(θ)Γ̂

[
cos(jθ) sin(jθ)

]
dθ. (25)

Introducing the Fourier coefficients of G(θ),
[ αk

βk

]
= 1

π

∫ 2π

0 G(θ)
[

cos(kθ)
sin(kθ)

]
dθ,

k = 0, . . . , 2N , we may rewrite the formulas (24) and (25) as:

∇aĴ(Γ ) = π

N∑
k=1

kPAkPT

[
αk

βk

]

∇Aj
Ĵ(Γ ) =

π

2

N∑
k=1

kPAkPT

[
αk+j + αk−j βk+j − βk−j

βk+j + βk−j αk−j − αk+j

]
.

Given an initial curve Γ = Γ (·;a0,A0
1, . . . ,A

0
N ), a gradient descent curve

evolution, cf. (6), is obtained by solving the initial value problem:{
ȧ = −∇aĴ(Γ ), a(0) = a0,

Ȧj = −∇Aj
Ĵ(Γ ), Aj(0) = A0

j , j = 1, . . . , N,
(26)

where Γ = Γ (·;a,A1, . . . ,AN ).

7 Implementation

The images are normalized by subtraction of a linear intensity model adapted
to the image in a very rough segmentation of the background. This background
estimate is found using a fixed threshold and mathematical morphology. For
practical purposes we therefore use μ0 = 0 in (7). This procedure also gives an
initial ellipse E surrounding the embryo.
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To find the segmentation of the zona we seek the solutions of (10) and (18).
Using trigonometric representations the solutions are found by solving (26). This
is done repeatedly as described last in this section under The Two-Step Method.
Before this process can start we need the initial curves Γ+ and Γ−.

Initialization. The curve Γ+ is found from the ellipse E by using the curve
evolution t �→ Γ (t), with Γ (0) = E and

Γ̇ (t) = −∇Ĵ+(Γ (t)),

where Γ̇ (t) is the normal velocity of the moving curve. ∇Ĵ+(Γ ) is the gradient
of Ĵ+ given in equation (15) using τ0 = τ1 = ∞, except for the fact that μ∗

1,w
∗

are computed by (13) and (14) using an annular region A instead of D1. The
annular region A = A(t), which has a fixed width and Γ (t) as its outer boundary,
actually moves along with the evolving curve.

Now, Γ+ is defined as Γ (+∞), i.e. the curve that the evolution converges
to. Notice that the procedure does not (necessarily) come from a minimization
problem (because of A). Γ (t) is, nevertheless, a well-defined curve evolution
which is evolved using (26). The curve Γ− is found by scaling Γ+. We use Γ− =
αΓ+, where α = 0.8.

The Two-Step Method. Given the initializations Γ+, Γ− the inner segmen-
tation problem is solved (cf. Section 4) using (26) with with N = 1 and Γ− as
initial curve. This yields a segmentation Γ ∗

− for the inner circumference. A new
pair of initializers Γ+, Γ ∗

− is then formed and the outer segmentation problem
(cf. Section 3) is solved using N = 1 and with Γ+ as initial curve. This gives a
segmentation Γ ∗

+ for the outer circumference. The pair Γ ∗
+, Γ ∗

− is a segmentation
of the zona with N = 1.

If a segmentation of the zona with N = 2 is wanted, the above procedure is
repeated with the initializers Γ ∗

+, Γ ∗
− and N = 2. This can be done any number

of times giving segmentations for N > 2.

8 Experiments

The proposed method has been on 60 images. The images have been manually
collected and were not primarily intended for automatic measurements. There-
fore, the image quality, with respect to e.g. illumination and focusing, is far from
optimal. Furthermore, some of the images contain small or large artefacts.

The evaluation was performed as outlined in Section 7. To represent the
outer circumference two matrices were used (N = 2) and the inner circumference
was described using three matrices (N = 3). The truncation parameters in the
robust penalty function (9) were set to τ1 = τ2 = 10. Out of the 60 images
12 were considered to have large artefacts. For these, manually specified masks
and the modified method described in Section 5 were used. Fig. 2 shows some
of the results obtained using the proposed method on embryos with small or
no artefacts. Notice that the small artefacts in the bottom two images do not
disturb the method. In Fig. 3a result obtained using a mask is shown together
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Fig. 2. Segmentation results using the proposed method on embryos with small or no
artefacts. The top left image is the same as shown in Fig. 1a

Fig. 3. Segmentation result on an image with a large artefact using a manually specified
mask and the modified method of Section 5

with the mask. Out of the 48 images with small or no artefacts, 44 were correctly
segmented and 8 of the 12 images with large artefacts were correctly segmented.
This corresponds to success rates of 92% and 75%, respectively, and an overall
success rate of 88%.

9 Conclusion

We have presented an area based method for segmentation of zona pellucida in
HMC images of human embryos. The method is robust and does not depend on
edges in the images. Instead an image model is used, which takes advantage of
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the characteristic appearance of HMC images. Considering that the quality of
the images used for evaluation are far from optimal, the results of the proposed
method are very good. The few unsuccessful results can be traced to poor image
quality. The results indicate that if an automated image acquiring system is
used, assuring more stable image quality, we have a segmentation method which
is tight and stable enough for automatic measurements of the zona pellucida.
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Abstract. We study the connection between higher order total variation
(TV) regularization and support vector regression (SVR) with spline
kernels in a one-dimensional discrete setting. We prove that the contact
problem arising in the tube formulation of the TV minimization problem
is equivalent to the SVR problem. Since the SVR problem can be solved
by standard quadratic programming methods this provides us with an
algorithm for the solution of the contact problem even for higher order
derivatives. Our numerical experiments illustrate the approach for va-
rious orders of derivatives and show its close relation to corresponding
nonlinear diffusion and diffusion–reaction equations.

1 Introduction

In this paper, we are interested in constructing a function u that minimizes the
functional ∫ 1

0
(u(x) − f(x))2 + 2λ|u(m)(x)|dx. (1)

More precisely, we are concerned with a discrete version of (1), where the func-
tions are only considered at equispaced points.

For m = 1 and arbitrary space dimensions, we are in the classical Rudin–
Osher–Fatemi setting [16] applied in image denoising and segmentation. Sev-
eral numerical solution algorithms were proposed, see, e.g., [24] and references
therein. A quite interesting method uses the tube formulation of (1). In one space
dimension, the tube approach is known as a non–parametric regression model in
statistics [10]. A generalization to the two-dimensional setting was proposed in
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[7]. The heart of the tube method consists in the solution of a contact problem
within a tube of width depending on the regularization parameter λ > 0. For
m = 1, this contact problem can be solved efficiently by the so–called ’taut string
algorithm’ [4] in one dimension, but becomes harder in higher dimensions [7].

In recent years, there has been a growing interest in higher order variational
methods [13, 17, 3, 26, 9, 8]. In particular, a tube approach for m ≥ 2 was ad-
dressed for one dimension in [10] and for higher dimensions based on Meyer’s
G–norm [12] in [14].

In this paper, we will see that the contact problem can be tackled by solv-
ing a simple quadratic optimization problem, namely a so–called support vec-
tor regression (SVR) problem. SVR methods became very popular in machine
learning during the last years, see [23]. The SVR approach also approximates
a given function within a tube, but by minimizing a different cost functional.
The SVR solution is always contained in a previously determined reproducing
kernel Hilbert space. We will prove that in our discrete setting the solution of
the contact problem corresponding to (1) coincides with the SVR solution in an
appropriately chosen reproducing kernel Hilbert space. This space is a discrete
variant of the Sobolev space Wm

0 which has a reproducing kernel determined
by splines of degree 2m− 1. We remark that similar results can be obtained by
applying the dual approach of Chambolle [2] to our setting. This is discussed in
[20]. In this paper, we want to emphasize the spline point of view.

Our paper is organized as follows. We start by developing the tube formu-
lation and SVR with spline kernels in a discrete setting in Sections 2 and 3,
respectively. In Section 4, we prove the equivalence of the SVR problem and the
key part of the tube algorithm, the contact problem. To prepare a numerical com-
parison, a discretization of corresponding partial differential equations (PDEs)
is provided in Section 5. Our denoising experiments in Section 6 demonstrate
properties of our method for various orders of derivatives and show the relation
of the variational approach to the numerical solution of corresponding diffusion
and diffusion–reaction equations. The paper is concluded with Section 7.

2 Tube Characterization of TV Regularization
Functionals with Higher Order Derivatives

In the following, we are concerned with discrete functions defined on some subsets
of the integers. As a discrete version of the m–th derivative we choose the m–th
finite difference

Dmu(j) :=
m∑

k=0

(−1)k+m

(
m

k

)
u
(
j −
⌊m

2

⌋
+ k
)
, (2)

where  x! denotes the largest integer ≤ x. Given the values f(j), j = 1, . . . , n,
we are interested in finding a discrete function u that minimizes the functional

J(u) :=
n∑

j=1

(u(j) − f(j))2 + 2λ
n∑

j=1

|Dmu(j)|, (3)
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where we suppose the boundary conditions

Dmu(j) := 0, j = −
⌊
m− 1

2

⌋
, . . . ,

⌊m
2

⌋
; n−

⌊
m− 1

2

⌋
, . . . , n+

⌊m
2

⌋
. (4)

The boundary conditions for j = 1, . . . ,
⌊

m
2

⌋
;n −

⌊
m−1

2

⌋
, . . . , n imply that the

second sum in (3) runs indeed only from
⌊

m
2

⌋
+ 1 to n −

⌊
m+1

2

⌋
. The other

boundary conditions are imposed to keep the summation index in the following
derivation simple. We remark that these boundary conditions are equivalent to
Dku(0) = Dku(n) = 0, k = m, . . . , 2m− 1.

Since the functional J is strictly convex, our problem has a unique solution.
A necessary and sufficient condition for u to be the minimizer of (3) is that the
zero vector is an element of the subgradient ∂J(u), i.e., for j = 1, . . . , n, the
following inclusions must be fulfilled:

0 ∈ u(j) − f(j) + λ
m∑

k=0

(−1)k

(
m

k

)
Dmu(j −

⌊
m+1

2

⌋
+ k)

|Dmu(j −
⌊

m+1
2

⌋
+ k)|

, (5)

where y/|y| := [−1, 1] if y = 0, and where the same quotient Dmu(·)/|Dmu(·)|
in different inclusions denotes the same numbers in [−1, 1]. Moreover, the sum-
mands corresponding to our boundary conditions (4) are zero.

We want to find linear combinations of the right–hand sides of (5) such
that most of the terms in the sum vanish. For this, we introduce a discrete
equivalent to the m–th power function by k(m) := 1 for m = 0 and k(m) :=
k(k + 1) . . . (k + m − 1) for m ≥ 1 and a discrete version of the m–th anti-
derivative of a function f by

Ff (j) :=
j∑

k=1

(j + 1 − k)(m−1)

(m− 1)!
f(k), j = 1, . . . , n. (6)

Then we obtain the following proposition which can be considered as a discrete
counterpart of a result in [10].

Proposition 1 (Tube Characterization of TV Minimization).
The function u is a solution of (3) if and only if Fu fulfills the conditions

Fu(j) ∈ Ff (j) − (−1)mλ
Dmu(j +

⌊
m
2

⌋
)

|Dmu(j +
⌊

m
2

⌋
)|
, j = 1, . . . , n−m (7)

and Fu(n− j) = Ff (n− j), j = 0, . . . ,m− 1.

The basic idea of the proof is the following: For j ∈ {1, . . . , n} and k =
1, . . . , j, we multiply the k–th inclusion in (5) by (j + 1− k)(m−1)/(m− 1)!, add
the corresponding j expressions and transfer Fu(j) to the opposite side. By (6)
and setting Fu(j) := 0, j = −(m− 1), . . . , 0, we obtain u from given Fu by

u(j) =
m∑

k=0

(−1)k

(
m

k

)
Fu(j − k), j = 1, . . . , n. (8)
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Then, by (2), the finite differences appearing in (7) can be written as

Dmu
(
j +
⌊m

2

⌋)
= D2mFu(j), j = 1, . . . , n−m.

Together with Proposition 1 this implies that the function Fu corresponding to
the minimizer u of (3) is uniquely determined by the following contact problem:

(T1) Fu(j) = 0 for j = −(m− 1), . . . , 0,
(T2) Fu(n− j) = Ff (n− j) for j = 0, . . . ,m− 1.
(T3) Fu lies in a tube around Ff of width 2λ, i.e.,

|Ff (j) − Fu(j)| ≤ λ for j = 1, . . . , n−m.
(T4) Let Λ := {j ∈ {1, . . . , n} : D2mFu(j) �= 0}.

If j ∈ Λ, then Fu(j) contacts the boundary of the tube, where
D2mFu(j) > 0 =⇒ Fu(j) = Ff (j) − (−1)mλ,
D2mFu(j) < 0 =⇒ Fu(j) = Ff (j) + (−1)mλ.

Then the usual tube method for solving (3) consists of the three steps
1. compute Ff from given f by (6),
2. solve the contact problem (T1) – (T4) to obtain Fu,
3. compute u by (8),

where the second step requires further explanation.
For the classical setting m = 1, it is well-known, see, e.g., [4], that (T1) –

(T4) is equivalent to the construction of the uniquely determined taut string
within the tube around Ff of width 2λ fixed at (0, 0) and (n, Ff (n)), i.e., to the
solution Fu of the following optimization problem:

n−1∑
j=0

(
1 + (Fu(j + 1) − Fu(j))2

)1/2 → min, (9)

subject to |Fu(j)−Ff (j)| ≤ λ, j = 1, . . . , n−1 and Fu(0) = 0, Fu(n) = Ff (n). For
solving this problem there exists a very efficient algorithm of complexity O(n),
the so–called ’taut string algorithm’, which is based on a convex hull algorithm.

For m ≥ 2, the computation of Fu is more complicated. An iterative method
based on an exchange of contact knots of conjectured complexity O(n2) was,
e.g., proposed in [10].

Finally, we remark that discrete functions F fulfilling the propertyD2mF (j) =
0 for all j �∈ Λ and some boundary conditions were introduced as discrete splines
of degree 2m− 1 with spline knots Λ by Mangasarian and Schumaker [11].

3 Support Vector Regression with Spline Kernels

The SVR method searches for approximations of functions in reproducing ker-
nel Hilbert spaces. Among the large amount of literature on SVR we refer to
[23–Chapter 11]. Well–known examples of reproducing kernel Hilbert spaces are
the Sobolev spaces Wm

0 of real–valued functions having a weak m–th derivative
in L2 [0, 1] and fulfilling F (j)(0) = 0 for j = 0, . . . ,m − 1 with inner product
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〈F,G〉W m
0

:=
∫ 1
0 F

(m)(x)G(m)(x) dx. These spaces have the positive definite re-
producing kernels K(x, y) :=

∫ 1
0 (x − t)m−1

+ (y − t)m−1
+ /((m − 1)!)2 dt, where

(x)+ := max{0, x}; see [25–p. 5–14].
For our purposes, we introduce discrete versions of Wm

0 by the Hilbert spaces
Wm

0 of real–valued functions defined on {−(m−1), . . . , n} and fulfilling F (j) = 0
for j = −(m− 1), . . . , 0 with inner products

〈F,G〉Wm
0

:=
n− m+1

2 !∑
j=− m−1

2 !
DmF (j)DmG(j). (10)

We can prove that Wm
0 has the reproducing kernel

K(i, j) :=
min(i,j)−1∑

k=0

(i− k)(m−1)

(m− 1)!
(j − k)(m−1)

(m− 1)!
,

i.e., 〈F,K(i, ·)〉Wm
0

= F (i). Moreover, K(i, ·) fulfills for fixed i ∈ {1, . . . , n} the
properties D2mK(i, i) �= 0 and

D2mK(i, j) = 0, j = 1, . . . , n; j �= i, (11)
K(i, j) = 0, j = −(m− 1), . . . , 0. (12)

Let K := (K(i, j))n
i,j=1 and F := (F (1), . . . , F (n))′ be given. Then we are looking

for a function

U(j) :=
n∑

i=1

ciK(i, j) (13)

with coefficient vector c := (c1, . . . , cn)′ that solves the following constrained
quadratic optimization problem:

c′Kc → min,

subject to F − Kc ≤ λe,
−F + Kc ≤ λe,∑n

i=1 ciK(i, n− j) = F (n− j) j = 0, . . . ,m− 1.

(14)

Here e denotes the vector consisting of n components one and the inequalities are
taken componentwise. This problem without the equality constraints is known
as SVR problem. Since K is positive definite, it has a unique solution which can
be computed by standard quadratic programming methods. Obviously, by (13),
the inequality constraints in (14) can be rewritten as |F (j)−U(j)| ≤ λ while the
equality constraints read F (n−j) = U(n−j), j = 0, . . . ,m−1. Further, the kernel
property (12) implies together with (13) that U(j) = 0 for j = −(m− 1), . . . , 0.
Based on the Karush–Kuhn–Tucker conditions and the dual formulation of (14),
see [6], one can further show that ci �= 0 implies |F (i) − U(i)| = λ. The points
i ∈ {1, . . . , n} with ci �= 0 are called support vectors. Clearly, the function U only
depends on the support vectors. If Λ̃ denotes the set of support vectors, then

U(j) =
∑
i∈Λ̃

ciK(i, j), (15)
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so that by (11), the support vectors j can be also characterized by D2mU(j) �= 0.
We summarize the properties of the SVR solution:

(S1) U(j) = 0 for j = −(m− 1), . . . , 0,
(S2) U(n− j) = F (n− j) for j = 0, . . . ,m− 1,
(S3) U lies in a tube around F of width 2λ, i.e.,

|F (j) − U(j)| ≤ λ for j = 1, . . . , n−m.
(S4) Let Λ̃ := {j ∈ {1, . . . , n} : D2mU(j) �= 0}.

If j ∈ Λ̃, then U(j) contacts the boundary of the tube,
where j are the support vectors obtained by solving (14).

Comparing these properties with (T1) – (T4), we see that for F = Ff only the
fourth condition differs.

Finally, we remark that the SVR solution U can be considered as sparse
approximation of F . In particular, by [6], U (without the last m equality con-
straints) is also the solution of the unconstrained minimization problem

‖F − U‖2
Wm

0
+ 2λ‖c‖�1 → min .

4 Equivalence of Tube and SVR Solution

In the following, we set F := Ff in (14) and show that the solution U of (14)
coincides with the solution of the contact problem (T1) – (T4). Since by the
reproducing kernel property c′Kc = ‖U‖2

Wm
0

, we can use (10) to rewrite (14) as

E(U) :=
n− m+1

2 !∑
j=− m−1

2 !
(DmU(j))2 → min, (16)

subject to |U(j) − Ff (j)| ≤ λ, j = 1, . . . , n−m,
U(n− j) = Ff (n− j), j = 0, . . . ,m− 1.

In particular, for m = 1, we minimize just the sum of the squared lengths

n−1∑
j=0

(U(j + 1) − U(j))2 → min,

instead of the lengths in (9). However, by the following proposition both problems
are equivalent.

Proposition 2 (Equivalence of Contact and SVR Problem).
The solution of the contact problem (T1) – (T4) coincides with the solution of
the SVR problem (16).

Proof. Let U be the solution of (16). Assume that j ∈ Λ̃ is an upper contact
point that does not fulfill (T4), i.e., (−1)mD2mU(j) > 0. (Similar arguments
can be used for lower contact points.) By (2), this means that
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Fig. 1. Property (T4) of U computed by (16) for m = 2 (left) and m = 3 (right). Top:
U (solid line) with tube (dashed line) and contact points. Bottom: Sign of D2mU

U(j) > W (j) := −(−1)m
2m∑
k=0
k �=m

(
2m
k

)
(−1)kU(j −m+ k)/

(
2m
m

)
.

By definition W (j) lies on the discrete spline of degree 2m−1 through U(j±k),
k = 1, . . . ,m. Now we define a function V which is equal to U except at j, where

V (j) :=
{

W (j), if W (j) > U(j) − 2λ,
U(j) − 2λ otherwise.

Obviously, V fulfills the constraints of (16) and

U(j) > V (j) ≥ W (j). (17)

We show that E(V ) < E(U). This contradicts the choice of U as minimizer of
(16) and we are done. Replacing Dm in E by (2) and regarding that V (i) = U(i)
for i �= j, we obtain after some technical computations that

E(U) − E(V ) =
(

2m
m

)(
U(j) − V (j)

) (
U(j) + V (j) − 2 W (j)

)
.

Now we have by (17) that E(U) − E(V ) > 0. This completes the proof. �

Fig. 1 demonstrates property (T4) for the solution U of (16).

5 Parabolic PDEs with Higher Order Derivatives

Regularization methods are closely related to parabolic PDEs by the Euler–
Lagrange equation, see, e.g.,[19]. To allow for a comparison of our tube–SVR
method with PDE approaches we shortly describe their relations. For this, we
consider the slightly modified version of (1) suggested in [1, 3]
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∫ 1

0
(u(x) − f(x))2 + 2λϕ

(
(u(m))2

)
dx

with ϕ(s2) :=
(
ε2 + s2

) 1
2 . A minimizer u of this functional necessarily satisfies

the Euler–Lagrange equation

u− f

λ
= (−1)m+1 ∂m

∂xm

(
2ϕ′

(
(u(m))2

)
u(m)

)
(18)

with natural boundary conditions u(k)(0) = u(k)(1) = 0, k = m, . . . , 2m− 1, see
[5]. These boundary conditions are in agreement with our boundary conditions
(4). Introducing an additional time variable t, the left–hand side of equation (18)
can be understood as fully implicit time discretization of the diffusion equation

∂u

∂t
= (−1)m+1 ∂m

∂xm

(
u(m)√

(u(m))2 + ε2

)
(19)

with natural boundary conditions, initial value f and stopping time λ. To solve
(19) we use finite differences for the derivatives in space and an explicit Euler
scheme in time. This leads to the following iterative scheme:

u0(j) := f(j),

vk(j) :=
Dmuk(j)√

(Dmuk(j))2 + ε2
,

uk+1(j) := uk(j) − τ

m∑
l=0

(−1)l

(
m

l

)
vk

(
j −
⌊
m+ 1

2

⌋
+ l

)
,

where we set Dmuk(j) := 0 for j = 0, . . . ,  m
2 !;n −  m−1

2 !, . . . , n. This scheme
satisfies stability in the Euclidean norm if the time step size τ is chosen suffi-
ciently small, namely τ ≤ ε

22m−1 . In comparisons with regularization methods we
use the regularization parameter λ as stopping time, i.e., we iterate until k = λ

τ .
Alternatively, we can also approximate a solution of (18) by solving the

diffusion–reaction equation

∂u

∂t
=
u− f

λ
+ (−1)m ∂m

∂xm

(
2ϕ′

(
(u(m))2

)
u(m)

)
. (20)

A discretization of this equation can be obtained in a similar way to the one for
the diffusion equation. It should be noted that the steady state of (20) for t → ∞
yields a solution of (18) while the diffusion approach (19) leads in general only
to an approximation of the solution. Only for the classical setting m = 1 without
additional ε–regularization, it was shown in [21, 15] that the analytical solution
of the space discrete diffusion equation (19) is equivalent to the solution of the
optimization problem (1). For a space continuous version we refer to [22]. Even
for first order derivatives this is a very special property of the TV regularization
function ϕ.
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6 Denoising Experiments

In this section, we show by denoising experiments that our tube–SVR approach
works well even in comparison with corresponding PDE methods and demon-
strate the influence of higher order derivatives.

As examples we have used the signals shown in Fig. 2. The first signal is piece-
wise polynomial, and Gaussian noise with standard deviation 10 was added. The
other one consists of piecewise sine signals and the noise standard deviation is 1.
First, we have determined the optimal parameters λ for our tube–SVR denois-
ing method with respect to the maximal signal–to–noise–ratio (SNR) defined
by SNR(g, u) := 10 log10

(
‖g‖2

2
‖g−u‖2

2

)
with original signal g. We have applied the

tube–SVR method described at the end of Section 2, where the contact prob-
lem was solved by applying the Matlab quadratic programming routine to (16).
This routine is based on an active set method. The results are contained in
Tab. 1.

Then we compared the quality of the results obtained by our tube–SVR
approach and by the PDE methods for various orders of derivatives m. In
our PDE experiments we have used a regularization parameter ε = 10−4 and
for each order the maximal time step size. One should be aware of the in-
fluence of the parameter ε for both PDE methods and the number of iter-
ations for the diffusion–reaction method. For smaller values of ε one could
even obtain better results at the cost of a higher number of iterations. Figs. 3
and 4 show the denoising results. Since one can visually not distinguish be-
tween the tube–SVR and the diffusion–reaction results we have only plotted
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Fig. 2. Test signals. Left: Piecewise polynomial signal, 256 pixels, SNR 14.74dB. Right:
Piecewise sine signal, 512 pixels, SNR 10.25dB

Table 1. Optimal parameters λ and SNR values for tube–SVR denoising

Polynomial signal Sine signal
Order m λ SNR (dB) λ SNR (dB)

1 15 21.34 3 20.03
2 5 18.45 16 21.96
3 2 17.59 174 21.91
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Fig. 3. Denoising results for the piecewise polynomial signal with λ = 15. Left: Tube–
SVR method. Right: Diffusion method. Top: First order. Middle: Second order. Bottom:
Third order

Table 2. Difference between tube–SVR method and diffusion/diffusion–reaction ap-
proach

Polynomial signal Sine signal
Order m Diffusion–reaction Diffusion Diffusion–reaction Diffusion

Iterations l∞–norm l∞–norm Iterations l∞–norm l∞–norm
1 107 6.2 · 10−4 1.2 · 10−2 107 9.0 · 10−4 8.5 · 10−3

2 108 8.2 · 10−4 7.2 108 1.3 · 10−2 1.9 · 10−1

3 108 6.0 · 10−4 5.1 5 · 108 1.1 · 10−1 1.0 · 10−1

the diffusion results in the PDE part. However, the diffusion results look also
very similar except for slight smoothing effects for m = 2. To affirm this im-
pression numerically, Tab. 2 shows the maximal absolute differences between
the results of our tube–SVR method and the diffusion/diffusion–reaction
methods.
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Fig. 4. Denoising results for the piecewise sine signal. Left: Tube–SVR method. Right:
Diffusion method. Top: First order, λ = 3. Middle: Second order, λ = 16. Bottom: Third
order, λ = 174

7 Conclusions

We have proved that the contact problem arising in the tube formulation of the
minimization problem with �2 data term and TV regularization term with higher
order derivatives can be formulated as SVR problem with discrete spline kernels.
Therefore the problem is closely related to spline interpolation with variable
knots. The results can also be considered from a different point of view, namely
by applying Chambolle’s dual approach to our setting, see [20]. This will be
the basis for handling higher space dimensions. In our denoising experiments we
have also incorporated corresponding nonlinear diffusion and diffusion–reaction
equations with higher order derivatives which lead to similar results.
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Abstract. Doppler has been used for many years for cardiovascular ex-
ploration in order to visualize vessel walls as well as anatomical or func-
tional diseases. The use of ultrasound contrast agents makes it possible
to improve ultrasonic information.

Recently, nonlinear imaging has emerged as a powerful tool for char-
acterizing pathologies by studying their perfusion. In this paper, we
present a new method for estimating the perfusion parameter over a
sliding window in order to accurately characterize liver lesions from two-
dimensional nonlinear ultrasound images. This method is inspired by the
Lucas and Kanade Algorithm coupled with coherence enhancing diffu-
sion in order to suppress the speckle and transparent motions due to the
presence of contrast agents.

1 Introduction

Doppler echography is an imaging modality that enables to visualize blood flow
and perfusion. When it is coupled with ultrasound contrast agents, it allows to
ensure a high quality of perfusion study which is of great interest for effective di-
agnosis. Several methods have been proposed to quantify perfusion especially in
contrast echocardiography. They are based on optical flow methods with promis-
ing results.

However, images are buried in speckle noise, depending on contrast agents
density and their nonlinear behavior. Furthermore, there are transparent motions
due to the presence of contrast agents. In this study, we present a new method
to characterize liver lesions by perfusion quantification. It is based on Lucas and
Kanade algorithm for optical flow which estimates perfusion parameters over a
sliding window.

This paper is organized as follow: Section 1 describes ultrasound contrast
agents and nonlinear imaging. Sections 2 and 3 presents our method which is
divided into two steps, first of all a coherence enhancing diffusion and then the
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Lucas Kanade algorithm. And finally, section 4 shows the results of our method
in liver lesions. To the best of our knowledge, there are no published works about
perfusion analysis with optical flow in nonlinear liver ultrasound imaging.

2 Nonlinear Ultrasound Imaging

Conventional Doppler imaging is able to image vascular flow. It is thus best
seen as a tool for imaging the macrocirculation, rather than the microcirculation
(small or deep vessels with minimal flow). Despite this, it is considerably useful in
tumor imaging, as many benign lesions are hypovascular compared with adjacent
tissues, while most malignant lesions show hypervascularity. It is the simplest
approach for a qualitative visual assessment of Doppler blood flow.

To image microcirculation as macrocirculation, a common approach is to
use an injection of intravenous ultrasound contrast agents for boosting detected
signal from small blood vessels. These agents are encapsulated microbubbles
which diameter (3μm) is much below than the red blood cells one. The partic-
ular behavior of the bubbles makes that, in presence of ultrasound wave, they
can be expanded more easily than they can be compressed: this phenomenon
is described as ”non-linearity”. They vibrate particularly strongly at moderate
acoustic intensity, used for diagnostic ultrasound imaging. This makes them sev-
eral thousand times more reflective than blood cells and thus enhances reflected
ultrasound signals. The mean frequency of reception is twice the mean frequency
of emission, and thus the corresponding non-linear signal from bubbles is only
detected, since solid tissues weakly resonate [3].

At high acoustic intensity, the bubbles vibrate and are destroyed emitting
transient harmonics.

Nonlinear imaging uses the nonlinear response from bubbles for image for-
mation. Signal intensity depends on the density of contrast agent. As bubbles
are strictly intravascular, it enables to image exclusively the blood supply for
an organ.

The perfusion of an organ provides information on the relative vascularization
of a suspected lesion, so it can be characterized. The contrast enhancement can
be quantified to give an index of the tissue perfusion. The liver is filled according
to the following equation:

SI(t) = SImax(1 − exp(−βt)) (1)

where SImax represents the maximum signal reached within the dedicated re-
gion of interest, β the perfusion frequency. The lesion is characterized by its
perfusion index R such as R = 1/β. This index R representats the rapidity of
the enhancement in a given area.

Injection of microbubbles contributes to a reduction of artifacts acoustically
generated in the image (side lobe effects, multiple scattering, on-axis reverbera-
tions). But in the same time, as conventional echographic images, harmonic im-
ages are buried in noise, called speckle depending on contrast agents density and
their nonlinear response [12], [11]. However, because bubbles response depends
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nonlinearly on incident amplitude, the speckle formation becomes nonlinear too,
inducing marked limitation in quantifying contrast enhancement.

3 Optical Flow

The optical flow is used to track the pathology during a perfusion sequence.
According to the theory, let IA(x) and IB(x) be intensity values. When there is
motion between these images, we have IA(x) = IB(x+ v), where v is the motion
vector. The injection of contrast agents disturbs motion estimates by the creation
of additive transparent signals [7]. We obtain: IA(x) = IB(x+ v) + ε(x+ v).

To obtain a good optical flow estimation, ε has to converge towards 0. In
angiography, Ferrant et al. in [2] has proposed to match away from contrast
agent region to avoid transparent motions. In our study, contrast agents spread
all over the region of interest. Thus, this previous method cannot be applied so
we choose to develop a preprocessing smoothing step to eliminate the speckle
and the transparent motions.

3.1 Image Filtering

As proved in [1] and [8], the coherence enhancing diffusion enables to eliminate
the speckle. The basic idea of this process is to smooth along the orientation
of image structures. In order to represent the orientation of structures, a ten-
sor is used. The structure tensor, introduced in the 80’s, provides a consistent
representation of both local orientation and type of structure. It can be repre-
sented by a matrix function, depending on the image gradient, according to the
following equation:

Jρ(∇Iσ) = Lσ ∗ (∇Iσ∇Iσt) (2)

where Lσ denotes a gaussian with standard deviation σ (window size over which
the orientation information is averaged), and Iσ = Lσ ∗ I. The structure tensor
can be decomposed by its eigenvalues μi and eigenvectors ωi:

Jρ(∇Iσ) =
(
ω1 ω2

)(μ1 0
0 μ2

)(
ωt

1
ωt

2

)
(3)

The eigensystem of the structure tensor carries the orientation representation.
The eigenvalues λi reflects the type of structure, depending on the gray level
variations, and the eigenvectors ωi, the orientation of this structure.

The structure tensor allows us to separate the image into constant areas,
corners and straight edges according to the number of non-zero eigenvalues. The
parameter used to measure the spread of the eigenvalues is the coherence, noted
ϕ. It is measured by:

ϕ = (μ1 − μ2)2 (4)

The diffusion tensor D uses the same eigenvectors as the structure tensor in order
to apply smoothing in directions given by the structure image [14]. It adapts its
eigenvalues to enhance the coherence. Thus, the eigenvalues are related to the
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anisotropy of the image (μ1−μ2) through the Tuckey’s biweight robust estimator.
It preserves sharp boundaries and improves automatic stopping of the diffusion
in the gradient direction. Hence, the eigenvalues are chosen as:

λ1 =
{
α ∗ (1 − ϕ

s2 ) if(μ1 − μ2)2 < s2

0 else
λ2 = α

(5)

For the discretization, an explicit model introduced in [15] is used. It uses rota-
tional optimal filters.

3.2 Optical Flow Estimation

Optical flow estimation is of major interest in computer vision. It has been
applied in biomedical imaging as in the assessment of myocardial deformation [9].
In ultrasound contrast imaging, optical flow has been used in echocardiography
to guide snakes for studying the right ventricule hemodynamics and to analyse
the intramyocardial perfusion with promising results [5].

The Lucas and Kanade algorithm for optical flow estimates the local motion
by assuming that it is constant all over the window. The following equation has
to be resolved:

fxu+ fyv + fz = 0 (6)

where fx, fy, fz are partial derivates and (u, v) the parameters of optical flow.
The equation of structure tensor in (2) can also be used to calculate motion
estimates as proved by Weickert and Brox in [13]. Furthermore, the coupling
between the nonlinear anisotropic diffusion (such as edge or coherence enhanc-
ing diffusion) and optical flow can improve the optical flow estimation in noisy
sequences [10]. Thus, we use the structure tensor in the denoising step for esti-
mating optical. The parameter ρ gives the window size over which the optical
flow is averaged. Then, it allows to eliminate transparent motions. We obtain
the following equation:(

Lρ ∗ I2
x Lρ ∗ IxIy

Lρ ∗ IxIy Lρ ∗ I2
y

)(
u
v

)
=
(
−Lρ ∗ IxIz
−Lρ ∗ IyIz

)
(7)

In order to have (u, v), we use a broad Gaussian filter to avoid the aperture
problem and to obtain dense optical flow. In our study, we use ρ = 5.

4 Results

To illustrate the performance of the process described, two applications on focal
liver lesions are proposed below. Fifteen sequences of 160 non compressed images
have been obtained, using a Siemens Acuson Sequoia 512 with a 4C1 probe,
in CPS mode, after Sonovue injection (Bracco SpA imaging, Italy) with an
MI = 0.21.
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In our experiments, the frame rate is high enough to obtain a gradual per-
fusion and constant brightness variations. Haussecker and Fleet have proposed
in [6] to use a physical model of the time varying brightness in image sequence
in order to estimate the optical flow. In contrast liver harmonic imaging, the
perfusion may differ between patients as well as image zones.

The first shortcoming of ultrasound images is its noise. For conventionnal
images, noise is mainly defined by the speckle [4]. For the contrast harmonic
imaging, the definition is more complex since it behavior changes as function of
their size, transmition frequency and strongly on the concentration. In our case,
at the early stage of perfusion, the concentration of bubbles is still too low and
we might approximate the image speckle noise by conventionnal tissue speckle.
However, at late stages of perfusion, the scattering of bubbles becomes dominant
and nonlinear. Hence, the conventionnal speckle definition is not applicable. To
the best of our knowledge, there is not published paper about bubble noise
characterization and this issue is out of the scope of this manuscript.

In our study, the diffusion parameters have been set on the maximum of per-
fusion and used during the sequence. As the spatial local anisotropy or coherence
differed in healthy versus pathologic tissues, a nonlinear anisotropic diffusion was
applied for smoothing and emphasizing structural features with σ = 5.

Motion ambiguities may arise when there is an insufficient representation
of spatial information. This holds in regions with a specular reflection or in
homogeneous regions of weak scattering. The local coherence, measured by (μ1−
μ2)2, help us to adapt locally the smoothing according to the type of tissue
and thus overcome this shortcoming. When the tissue is ”homogeneous”, μ1
and μ2 are close and the diffusion becomes isotropic. On the other hand, when
the tissue is fully structured, the diffusion becomes anisotropic. These regions
correspond to (μ1−μ2)2 > s2 [1]. In our study, the stopping criterion s has been
set

√
2.

We used a sliding window over wich we calculate the perfusion parameters.
It followed the liver movements which are associated to the breath respiration.
They are a combination of three translations (lateral, anterio-posterior, cranio-

(a) (b) (c)

Fig. 1. Exemple of a hypervascular metastasis taken at the maximum of perfusion :
(a) the original image, (b) and (c) are the smoothed image with respectivelly s = 0.5
and s =

√
2
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(a) (b)

Fig. 2. Exemple of the flow for a hypervascular metastasis : (a) the original image, (b)
the flow obtained

(a) (b)

(c) (d)

Fig. 3. Exemple of two hypovascular metastasis :(a) is the original image, (b) its
smoothed version and (d) the optical flow over a window around the little metastasis
in figure (a)

caudal). Over the window, we calculate the optical flow and the mean grey level
during the sequence. An example of two successive images and their optical flow
is given in figures 2. We obtained the curve given by the figure 3.
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Fig. 4. Evolution of the mean grey level value over the sliding window for a metastasis

The quantification is improved providing some differences in calculated values
between our algorithm and previous methods. We believe that by this process
we eliminated some errors in positionning and thus in the calculated intensity
from a given lesion. We obtain for metastasis, a β = 0.21 and thus R = 4.71.

5 Conclusion

We have presented a novel framework dedicated to perfusion quantification in
nonlinear liver ultrasound images. The coupling between coherence enhancing
and Lucas and Kanade algorithm allows us to remove transparent motions due
to the presence of contrast agents and speckle. Thus, it allows to obtain a ro-
bust quantification. Several experiments were presented on medical liver studies
showing that our method enables to give an index perfusion to characterize a
metastasis. Actual studies are conducted to generalize our method for other liver
diseases and to include elastic model to correct tissue deformations in particular
pathologies.
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Abstract. Stabilised backward diffusion processes have shown their use for a
number of image enhancement tasks. The goal of this paper is to show that they
are also highly useful for designing shock capturing numerical schemes for hy-
perbolic conservation laws. We propose and investigate a novel flux corrected
transport (FCT) type algorithm. It is composed of an advection step capturing
the flow dynamics, and a stabilised nonlinear backward diffusion step in order
to improve the resolution properties of the scheme. In contrast to classical FCT
procedures, we base our method on an analysis of the discrete viscosity form. This
analysis shows that nonlinear backward diffusion is necessary. We employ a slope
limiting type approach where the antidiffusive flux determined by the viscosity
form is controlled by a limiter that prohibits oscillations. Numerical experiments
confirm the high accuracy and shock capturing properties of the resulting scheme.
This shows the fruitful interaction of PDE-based image processing ideas and nu-
merical analysis.

1 Introduction

Starting with Rudin’s Ph.D. thesis in 1987 [18], many ideas from computational fluid
dynamics and the numerics of hyperbolic conservation laws have entered the field of
image processing. Because problems of fluid dynamics and hyperbolic conservation
laws involve the formation of shocks, sophisticated numerical methods such as total
variation diminishing (TVD) and essentially non-oscillatory (ENO) schemes had to be
devised to give a sharp resolution at shocks and to avoid visible numerical oscillations
[8, 9, 13]. On the image processing side, image edges carry important information and
may be regarded as shocks as well. Often edges are blurred, so it is natural to apply
shock-enhancing concepts from computational fluid dynamics. This has led to PDE for-
mulations of shock filters [14] and to stabilised linear backward diffusion [15]; see Fig. 1
for an example. In case that noise is present as well, one aims at preserving or enhancing
edges, while simultaneously smoothing at more homogeneous regions. Combinations
of shock filtering with mean curvature motion [1] and in particular nonlinear diffusion
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Fig. 1. Left: Original image with blurred edges. Right: Image sharpened with stabilized linear
backward diffusion [15]

filtering [16] are suitable concepts to achieve this goal. Interesting variants of nonlin-
ear diffusion include stabilised inverse diffusion equations (SIDEs) [17] and so-called
forward-and-backward (FAB) diffusion [7] that explicitly uses negative diffusivities in
a certain gradient range. Last but not least, total variation minimisation [19] has been
proposed as a variational framework for discontinuity-preserving denoising.

While numerical ideas for hyperbolic conservation laws had undoubtedly a strong
impact on modern image analysis, fertilisation in the inverse direction – where image
processing methods are applied to improve the numerics of hyperbolic conservation
laws – have started only recently: in [10, 11] different variants of numerical schemes
are proposed that combine the second-order Lax-Wendroff scheme with anisotropic
diffusion filtering with a diffusion tensor [23]; see also [22] for related ideas. All these
strategies start with a hyperbolic scheme that gives sharp shock resolution, but suffers
from oscillations in the shock areas. Anisotropic diffusion regards such oscillations as
noise at edges that can be removed by smoothing along the edge.

On the other hand, there are also monotone first order schemes for hyperbolic con-
servation laws that do not produce oscillations at shocks. Unfortunately, they suffer from
strong blurring effects (dissipation) since they involve a significant amount of numeri-
cal diffusion (viscosity) to achieve their favourable stability properties. However, if one
takes such a scheme as starting point, an interesting question would be if there are useful
ideas inspired from edge-enhancing PDE-based image processing that allow to sharpen
these shocks. Ideally they should also turn the first order basis method having low ac-
curacy into a higher accurate second-order method without introducing oscillations. For
simplicity we focus on the one-dimensional scalar case. We will see that the resulting
methods can be regarded to belong to the class of flux-corrected transport (FCT) schemes
[2], but in contrast to classical FCT schemes they offer the advantage that they are also
applicable to the important class of nonlinear conservation laws. It turns out that the
appropriate sharpening process from image processing must be a stabilised nonlinear
inverse diffusion step. It resembles the stabilised linear inverse diffusion filter that has
been proposed by Osher and Rudin [15] for deblurring images.

Our paper is organised as follows: in Section 2 we describe a classical Upwind scheme
and analyse its intrinsic numerical diffusion, while Section 3 gives an introduction to
FCT schemes. This analysis forms the basis for our novel image-processing inspired
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FCT scheme that we present in Section 4. Its stability properties are analysed in Section
5. Section 6 presents experiments with linear and nonlinear test scenarios where we
compare our method with a state-of-the-art shock capturing scheme: a TVD method
with van Leer flux limiter. We conclude our paper with a summary in Section 7.

2 The Classical Upwind Scheme and Its Numerical Diffusion

In this paper, we deal with the numerical approximation of hyperbolic conservation laws
of type

ut + (f(u))x = 0, (1)

where u := u(x, t) is a scalar-valued function of a one-dimensional space variable x
and time t, subscripts denote partial derivatives, and the flux function f is supposed to
satisfy f ′(.) ≥ 0.

The underlying method for our novel FCT technique in the next section is the classical
Upwind scheme

Uk+1
j = Uk

j − λ
(
fk

j − fk
j−1
)

. (2)

Thereby, we use as in the following the notation U for discrete data in contrast to the
sought solution u, and we denote the ratio of mesh parameters as λ = Δt/Δx. The upper
index k inUk

j denotes as usual the temporal level kΔtwhile analogously the lower index
j denotes the spatial mesh point jΔx. For shortness of notation, we abbreviate

fk
j := f

(
Uk

j

)
.

Unless stated otherwise, we consider all occurring methods to be stable under the usual
CFL condition, see e.g. [13] for details concerning this notion.

One desirable property of the Upwind scheme consists of the fact that the scheme
does not produce numerical oscillations:

Proposition 1 (Extrema Diminishing Properties of the Upwind Scheme).
The Upwind scheme (2) is a generalised monotone scheme in the sense of LeFloch
and Liu [12], i.e., it is a local extremum diminishing (LED) scheme, while it also does
not introduce new extrema during a computation, i.e., it diminishes also the number of
extrema (NED property).

Proof. The validity of the assertion follows since under a CFL condition

Uk+1
j ∈ conv

(
Uk

j−1, U
k
j

)
always follows, where conv denotes the convex hull. (Compare the data compatibility
notion due to Roe [20].) ♣

Unfortunately, the Upwind scheme also has a severe disadvantage: it suffers from
undesirable blurring effects (dissipation). To quantify these viscous artifacts we write
the scheme (2) in its viscous form, i.e.,

Uk+1
j = Uk

j − λ

2
(
fk

j+1 − fk
j−1
)

︸ ︷︷ ︸
(A)

+
Q+,k

j

2
(
Uk

j+1 − Uk
j

)
−
Q−,k

j

2
(
Uk

j − Uk
j−1
)

︸ ︷︷ ︸
(B)

.

(3)
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The underlying idea behind this decomposition is to consider part (A) as a second order
approximation of (1) in space (and first order in time), while part (B) is (in leading order)
the discrete counterpart of the numerical diffusion incorporated in the method (2).

One easily verifies that (2) and (3) can be made identical by choosing viscosity
coefficients Q+

j and Q−
j that satisfy

Q+,k
j = λ

fk
j+1 − fk

j

Uk
j+1 − Uk

j

and Q−,k
j = λ

fk
j − fk

j−1

Uk
j − Uk

j−1
. (4)

for Uk
l+1 �= Uk

l , l ∈ {j, j − 1}. Note that our assumption f ′(.) ≥ 0 ensures that the
viscosities Q±

j are nonnegative. Since the viscosities are proportional to the diffusion
coefficients it follows that forward diffusion takes place. This numerical diffusion is
responsible for the undesirable blurring effects that are observed with this first-order
method. We observe that, in spite of the simplicity of the Upwind scheme, an inherent
diffusion process with nonlinear (!) viscositiesQ±

j is involved. These nonlinear viscosi-
ties are inversely proportional to the derivative of u. In this respect they closely resemble
the diffusivities in TV denoising of images [19].

3 FCT Schemes

A common method to compensate for the before mentioned blurring artifacts is the
flux corrected transport (FCT) algorithm of Boris and Book [2]: a numerical scheme
with much numerical diffusion used as a predictor for the evolution is corrected by
an antidiffusive step. This principle is used as a basis of many successful FCT type
algorithms, see especially [24] and the references therein.

The classical FCT approach as described in [2] is motivated by the method of the mod-
ified equation: the numerical diffusion incorporated in the predictor step is computed by
means of the differential advection-diffusion-equation that the viscous predictor scheme
actually approximates with second order accuracy. The resulting diffusion coefficient is
annihilated by the antidiffusive step while a limiting procedure ensures that no oscilla-
tions develop. For more information on the modified equation, see e.g. the books [8, 13].
The described strategy can be refined by considering an analysis of wave coefficients in
the linear case, ensuring especially for linear advection problems a high approximation
quality; see [3, 4].

In order to describe the classical FCT method based on the Upwind scheme we use
the following data notions:

– U
k+1/2
j for the data obtained with the Upwind scheme starting from Uk

j

– Uk+1
j for the data obtained after the antidiffusive step.

Let us define the abbreviate notion

ΔUk
j+1/2 := Uk

j+1 − Uk
j . (5)

Then the traditional FCT approach amounts to an antidiffusion step realised via

Uk+1
j = U

k+1/2
j − gj+1/2 + gj−1/2 (6)
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where the fluxes g are chosen in a fashion such that the following directive holds:

Construction Principle 1 (Boris and Book [2]).
“No antidiffusive flux transfer of mass can push the density value at any grid point
beyond the density value at neighboring points.”

The traditional FCT scheme realises this principle by setting

gj+1/2 := minmod
(
ΔU

k+1/2
j−1/2 , ηj+1/2ΔU

k+1/2
j+1/2 , ΔU

k+1/2
j+3/2

)
(7)

where

minmod(a,b, c) := sgn(b) max
(
0,min(sgn(b)a, |b|, sgn(b)c)

)
(8)

and

ηj+1/2 :=
λ

2
ā (1 − λā) , (9)

with ā determined by

ā := max
U∈conv

(
U

k+1/2
j , U

k+1/2
j+1

) |f ′ (U)| .

Note that (9) is equivalent to Δt times the discrete version of the viscous term of the
modified equation obtained by using a local linearisation of (1).

4 A New FCT Scheme with Nonlinear Inverse Diffusion

Let us now introduce a novel variant of FCT schemes that incorporates image processing
ideas on stabilised inverse diffusion. In contrast to the previous section, our consider-
ations are based solely on the viscosity form (3). This is a new feature of possible
FCT algorithms. Our method of derivation can be advantageous concerning a rigorous
analysis of the combined method, especially with respect to the nonlinear case.

A naive step to achieve inverse diffusion would consist of applying a direct antidif-
fusion process to the predicted data Uk+1/2 from the Upwind scheme by setting

g̃j+1/2 :=
1
2
Q

+,k+1/2
j ΔU

k+1/2
j+1/2 . (10)

It is immediately clear that such an antidiffusive step without a direct minmod-
type stabilisation as used in (7) may introduce many oscillations. Thus, we limit the
antidiffusive flux g̃ from (10) by

gj+1/2 := minmod
(
g̃j−1/2, g̃j+1/2, g̃j+3/2

)
(11)

using the minmod function (8).
The discrete inverse diffusion employed here is similar to an image enhancement

algorithm due to Osher and Rudin [15]. However, while the filter of Osher and Rudin
is the stabilised inverse filter to linear diffusion, we extend this algorithm to be the
stabilised inverse filter to nonlinear diffusion.
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5 Stability Analysis

We are now ready to prove the following stability assertion.

Lemma 1 (Local Extremum Principle).
Let

sign
(
ΔU

k+1/2
j+1/2

)
= sign

(
ΔU

k+1/2
j−1/2

)
�= 0 (12)

hold. Then the FCT scheme defined by

Uk+1
j = U

k+1/2
j − gj+1/2 + gj−1/2 (13)

using g from (11) satisfies locally a discrete minimum–maximum principle.

Proof. The aim is to show that

Uk+1
j ∈ conv

(
U

k+1/2
j−1 , U

k+1/2
j , U

k+1/2
j+1

)
holds. We only consider the situation defined by∣∣∣Uk+1/2

j − U
k+1/2
j−1

∣∣∣ ≤ ∣∣∣Uk+1/2
j+1 − U

k+1/2
j

∣∣∣ , (14)

the other case can be treated analogously.
For simplicity, we omit the superscript k + 1/2 in the following computations. The

idea is, starting from (13), to derive the estimate∣∣−gj+1/2 + gj−1/2
∣∣ ≤ |Uj − Uj−1|

since then the sought convex hull condition is satisfied. Thus, we compute using the
Lipschitz continuity of f and a corresponding Lipschitz constant L∣∣−gj+1/2 + gj−1/2

∣∣
≤
∣∣gj+1/2

∣∣+ ∣∣gj−1/2
∣∣

(11)
≤
∣∣∣∣12Q+

j ΔUj−1/2

∣∣∣∣+ ∣∣∣∣12Q+
j ΔUj−1/2

∣∣∣∣
(4)
= λ

∣∣∣∣ fj − fj−1

Uj − Uj−1

∣∣∣∣ ∣∣Uk
j − Uk

j−1

∣∣
= λ |fj − fj−1|
≤ λL |Uj − Uj−1|
≤ |Uj − Uj−1|

by the CFL condition. ♣
Because of the properties of the minmod function, the core of the proof also works

without the assumption (12). Thus we can give directly
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Corollary 1 (Global Extremum Principle).
The investigated scheme satisfies locally and globally a discrete minimum–maximum
principle.

It is also possible to prove in the same fashion as in Lemma 1 directly the validity of
the NED property if we restrict the time step size such that

Δtmax
U∈I

|f ′(U)| ≤ Δx

2
,

where I is the relevant range of data values. However, the resulting scheme is in practice
quite viscous.

Concerning the approximation of the entropy solution, it is clear by the properties of
the underlying Upwind scheme that shocks are approximated at the correct position as
long as the data feeding the shock are arranged as a plateau: in this case, the antidiffusive
flux becomes zero at the edge of the plateau, leaving at the shock location the Upwind
method which propagates the right amount of mass into the shock. The situation becomes
more difficult if the data are not arranged in this fashion. This is subject of current
investigation.

6 Numerical Experiments

Our tests consist of an order test using the approximation of a linear equation with
smooth initial condition as well as of two nonlinear test cases, where we consider the
approximation of a square-wave solution of Burgers’equation and the numerical solution
of a Riemann problem for the Buckley-Leverett equation.

Let us stress that the linear advection equation and Burgers’ equation can be seen
as simple test cases for systems of equations with linearly degenerate and genuinely
nonlinear characteristic fields, respectively [9]. The Buckley-Leverett equation imposes
the considerable difficulty to approximate a mixed wave solution.

Linear Advection - The Order Test

The order test uses the linear advection equation

ut + ux = 0

propagating smooth initial data

u0(x) = sin(πx)

on a grid over [−1, 1] with periodic boundary conditions. We choose a very small time
step size, i.e., Δt = 0.0001, and investigate the error in the L1-Norm for a sequence
of spatial grids with diminishing mesh widths Δx. The time at which we evaluate the
arising sequence of errors is set fixed, i.e., we measure after one revolution after which
the analytical solution exactly matches the initial condition. The quantity of interest is
the experimental order of convergence EOC defined by



Stabilised Nonlinear Inverse Diffusion for Approximating Hyperbolic PDEs 543

Table 1. Arrangement of the computational parameters for the numerical convergence study to-
gether with the corresponding L1-error and the experimental order of convergence (EOC)

� nodes DX DT time steps L1-error eΔx EOC

20 0.1 0.0001 20000 0.394969 -
40 0.05 0.0001 20000 0.135555 1.54286
80 0.025 0.0001 20000 0.0508049 1.41584
160 0.0125 0.0001 20000 0.0147794 1.78138
320 0.00625 0.0001 20000 0.00460051 1.68372
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Fig. 2. Linear advection. Left: Grey line: initial condition. Solid line: correct solution after t =
100. Dotted line: Upwind with antidiffusion. Dashed line: TVD method. Dash-dotted line: Upwind
without antidiffusion. Right: Zoom

EOC :=
log
(
eΔx/eΔx/2

)
log (2)

,

where eΔx is the L1-error measured using the spatial mesh with the parameter Δx. The
exact setup and the results of the computations together with the corresponding EOC can
be found in Tab. 1. The results show that the inverse diffusion turns the classical Upwind
scheme from first order to nearly second order, from which we deduce the sought high
resolution property.

Fig. 2 depicts a comparison of our scheme to the Upwind scheme without antidif-
fusion as well as a contemporary TVD method with van Leer limiter, see e.g. [8, 13].
The corresponding numerical solutions are displayed together with the exact solution
and the initial condition. The computational parameters have been set to Δt = 0.5 and
Δx = 1.

Let us note here that there is a wide variety of possibilities to obtain higher order
accuracy in standard TVD schemes, for instance flux limiting, slope limiting, or ENO
schemes, compare again [8]. We choose here to compare our method with a slope limiter
method since this is arguably the simplest and most efficient choice. Concerning the
numerical results, no large difference using either method is to be expected with respect
to our example.
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Fig. 3. Burgers equation. Left: Grey line: initial condition. Solid line: correct solution after
t = 100. Dotted line: Upwind with antidiffusion. Dashed line: TVD method. Dash-dotted line:
Upwind without antidiffusion. Right: Zoom

It can be observed that the proposed FCT-like scheme yields approximately the same
accuracy as the TVD method, which supports the order test. When compared to the
Upwind scheme without antidiffusion, the antidiffusion step clearly reveals its impact.

Burgers’ Equation

A nonlinear test problem is concerned with Burgers’ equation

ut +
(

1
2
u2
)

x

= 0

supplemented by the initial condition

u0(x) =
{

1 : 20 ≤ x < 40
0 : else

.

This square wave decays to an N-wave like every solution of Burgers’ equation. Thus
the example has a profound meaning, see e.g. [6, 13] for discussions.

The computational parameters are the same as in the linear example before, and we
compute the solution at t = 100. We compare again the numerical solutions obtained
by the Upwind scheme with and without antidiffusion, as well as the TVD method.
The corresponding numerical solutions together with the exact solution are displayed in
Fig. 3. For better comparison, a detailed cutout of the region around the shock is depicted
beside. Again it can be seen that the proposed scheme yields results very close to those
of the TVD method. Note that in this nonlinear case, the classical FCT scheme is not
applicable anymore without additional considerations.

Buckley-Leverett Equation

A second nonlinear and even non-convex test problem is based on the Buckley-Leverett
equation

ut +
(

u2

u2 + 1
2 (1 − u)2

)
x

= 0

supplemented by a Riemann problem as initial condition:
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Fig. 4. Buckley-Leverett equation. Left: Grey line: initial condition. Solid line: correct solution
after t = 100. Dotted line: Upwind with antidiffusion. Dashed line: TVD method. Dash-dotted
line: Upwind without antidiffusion. Right: Zoom

u0(x) =
{

1 : 0 ≤ x < 50
0 : else

.

With the same settings as in the tests before, we obtain the numerical solutions depicted
in Fig. 4. The outcome is similar to the experiments before: while the scheme with
nonlinear antidiffusion is very close to the TVD scheme, there is quite some difference
to the Upwind scheme without antidiffusion, although this difference is smaller than in
the other experiments.

7 Conclusions

We have presented a novel FCT-type algorithm for hyperbolic conservation laws. It in-
corporates stabilised nonlinear inverse diffusion in order to improve the shock resolution
of a first-order Upwind scheme. The nonlinear inverse diffusion step is inspired from a
stabilised linear inverse diffision filter that has been proposed by Osher and Rudin for
deblurring images. In contrast to classical FCT methods, our scheme arises naturally
from the viscosity form of the basic scheme. As a consequence it also applies to the
important class of nonlinear problems, even if the flux function is nonconvex. A theo-
retical analysis has shown that the novel scheme satisfies a global extremum principle
and other desirable stability properties, while experiments with linear and nonlinear test
scenarios indicate that it has approximately second order accuracy properties. It gives
far better results than its underlying Upwind scheme and – in spite of its simplicity –
it is even competitive to modern TVD methods for shock capturing approximations of
hyperbolic PDEs. Its simplicity accounts for expectations that the method may be better
accessible to theoretical analysis than TVD methods. In our ongoing work we further
intend to analyse generalisations to the higher dimensional case as well as to systems of
conservation laws.

Our work has shown that the connection between numerical schemes for hyper-
bolic conservation laws and image enhancement methods is not a one-way road: in
the meantime, many PDE-based image enhancement techniques have reached a degree
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of maturity such that they may be highly useful for a number of problems outside the field
of image analysis. It is our goal to investigate more of these fascinating interdisciplinary
connections in the future.
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Abstract. Level-Set methods have been successfully applied to 2D and
3D boundary detection problems. The geodesic active contour model
has been particularly successful. Several algorithms for the discretisation
have been proposed and the banded approach has been used to improve
efficiency, which is crucial in 3D boundary detection. In this paper we
propose a new scheme to numerically represent and evolve surfaces in
3D. With the new scheme, efficiency and accuracy are further improved.
For the representation, space is partitioned into tetrahedra and finite
elements are used to define the level-set function. Extreme sparsity is
obtained by maintaining data only for tetrahedra that contain the zero
level-set. We formulate the evolution PDE in weak form and incorporate
a normalisation term. We obtain a stable scheme with consistent sub-
grid accuracy without having to rely on any re-initialisation procedure.
Boundary detection is performed using an anisotropic extension of the
isotropic geodesic model. With the sparse representation, the anisotropic
model is computationally feasible. We present experimental results on
volumetric data sets including images with a significant amount of noise.

1 Introduction

Boundary surface detection in noisy 3D images is a vital ingredient for the
analysis of medical scans, such as 3D ultrasound. In principle, one can attempt to
form a surface by combining the contours of slices through the volumetric image.
However, noisy images require a 3D method to facilitate the exploitation of the
full spatial context of the problem. Geodesic [1, 2, 3, 4] surface detection has been
proposed and Boykov and Kolmogorov [5] have recently presented an efficient
discrete algorithm using graph cuts, including the anisotropic case. However,
greater accuracy can be achieved in the continuous setting when a consistent
sub-grid definition is being employed. Deformable models [6] have been used to
estimate curve and surface models from image data. Level-set methods [7, 8, 9,
10, 1, 2] represent the surface implicitly, are topologically flexible and overcome
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Fig. 1. Topological changes: stages of a geodesic evolution in the novel finite element
scheme (starting from the top left). Three synthetic objects are to be detected. The
evolution is initialised as a cube and splits automatically into the components. The
generation of the hole inside the torus (bottom right) is an example of a topological
change where the number of components remains unchanged (resolution 40 × 40 × 40)

other problems of parametric models, such as self-intersection. However, level-set
implementations in 3D are computationally involved. Preusser and Rumpf [11]
have proposed a level-set framework with cubical finite elements. However, their
numerical representation is not sparse (all levels are evolved) which requires a
computational power exceeding that of current PCs.

Level set-methods [7, 8, 9, 10] introduce a level-set function φ, to represent
the interface Γ implicitly as the zero level-set: Γ := φ−1(0) where φ : R

3 → R is
a Lipschitz-continuous, real valued function. The implicit representation links φ
(as the introduced analytic entity) with the geometric entity Γ : φ �→ Γ (φ) and
allows for changes in the topology during the evolution (Figure 1). Furthermore,
it was pointed out [12] that this relationship can be made one-to-one by imposing
the signed distance constraint. That is, the constraint fixes the gauge freedom1.
The conceptual advantage is then that φ is (up to a sign) uniquely determined
by Γ and that one can also write Γ �→ φ(Γ ). In this way φ gets the intrinsic
geometric meaning as the distance function for Γ .

1.1 Differential Minimisation and Level-Set Evolution

For the evolution, one introduces an evolution parameter t ∈ R and φ becomes
time-dependent2. One starts with an initial function φ(0, .) and prescribes an

1 the freedom of using any multiple ψ φ in the place of φ with any positive valued
function ψ > 0.

2 One refers to the parameter t as time although it is not related to physical time.
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evolution φ(t, .). In Section 2, we introduce a cost-functional C and define the
evolution via gradient descent. The resulting evolution equation is a PDE:

dφ
dt = β (1)

where at the interface Γ , β is the differential of the cost: β|Γ := − δC
δφ and is

defined elsewhere in such a way as to maintain the signed distance constraint
[12]. The signed distance constraint is well known for its desirable conceptual
and numerical properties. Where φ is differentiable, we have |∇φ(x)| = 1 and,
for x ∈ Γ the particularly simple expressions for the normal N(x) = ∇φ(x) ∈ S2

and mean curvature κ(x) = Δφ(x) ∈ R along Γ .

1.2 Previous Level-Set Methods and Numerical Problems

In the following sections, u denotes the numerical representation of the level-
set function φ. The major issues for the numerical implementation of (1) con-
cern efficiency, stability and accuracy. Improved efficiency and stability was ob-
tained using sparse finite element level-sets, as we reported in [13]. Here we
extend the 2D scheme to 3D and include anisotropic cost-functionals. One ad-
vantage of level-set methods over discrete methods is the potential for sub-grid
accuracy.

Consistent Sub-Grid Accuracy: sub-grid accuracy requires the definition of
the level-set function inside each cell of the grid. Figure 2 details the standard
way in which this can be achieved [12].

Unfortunately, this sub-grid definition has several problems:

– mixed polynomial degree: the standard representation (see Figure 2)
singles out the directions of the coordinate axes (along which u is piece-wise
affine). In the interior of the cell it is generally a cubic polynomial.

– tiling ambiguities: the graphical output of the implicit interface is not
straightforward. To obtain a facet approximation, one employs so called iso-
contour algorithms ([10] p.425) such as the marching cube algorithm, in which
case ambiguities in the tiling have to be resolved.

– sub-grid definition cannot be used for the evolution: the definition
of curvature motion [8] inside a cell is problematic. To see this, let us assume
that we have an initial signed distance function φ. Then, curvature motion
is simply given by the Laplacian: β = Δφ. However, the Laplacian of the
numerical representation u vanishes identically: Δu(x) = 0 for any x inside
the cell, independent of any node-values on the grid. This is related to the
fact that u is affine along coordinate directions (alternatively, one can verify
in Figure 2 that Δe0 = 0, like any other nodal basis function). Therefore, the
sub-grid definition cannot be used when the interface is evolved. Instead, one
[8] computes differential operators (like the Laplacian) with finite difference
operators on stencils that contain several cells. However, it is not entirely
clear how the evolution in terms of finite difference operators is related to
the sub-grid localisation of interfaces as defined in Figure 2.
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Fig. 2. Sub-grid definition: The figure illustrates the sub-grid definition of a level-
set function u in terms of (a) cubical cells and (b) tetrahedral elements. (a) in the case
of cubical cells, a product of functions that are affine in the direction of the coordinate-
axes is used. One can express u as linear combination u =

∑7
i=0 uiei of nodal basis

functions ei. For instance, the basis function for node 0 is: e0(x) = (1−x1) (1−x2) (1−
x3) which evaluates to 1 at node 0 and vanishes on all other nodes. Unfortunately, the
ei (and hence u) are of mixed polynomial degree: along all coordinate axes they are
affine but on the diagonal they are cubic polynomials. (b) tetrahedral elements are
defined by the 4 nodes located at the vertices (1st degree case) and, 6 additional nodes
at the edge-midpoints in the 2nd degree case. A general 1st or 2nd degree polynomial
is prescribed by the values ui at the nodes. Coordinate axes are not treated as special
directions here
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Fig. 3. Implicit facet in 3D: depending on the signs of the node-values, the implicit
facet is either (a) a triangle (if one sign differs from the other three) or (b) a planar
quadrangle (if there are two pairs of different signs)

These problems are resolved when simplices are used instead of cubical cells:
– fixed degree: inside each element, u is a polynomial of fixed degree.
– simple graphical output: with first degree simplex-elements, the interface

inside each element is always a planar facet (Figure 3). Hence, no tiling
ambiguity occurs and the output of the interface is straightforward.
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– consistent use of the sub-grid definition in the evolution: the evo-
lution equations are treated in weak formulation, which allows us to define
the evolution equation consistently with the defined sub-grid accuracy.

2 Anisotropic Interface Optimisation

By adopting an interface optimisation formulation, we incorporate the prior
knowledge/demand that the interface is a continuous boundary Γ . As is well
known, this implies robustness to noise. The task is to find local minima of
the cost

C =
∫

Γ

γ (2)

which is a two-dimensional Lebesgue integral of a density γ > 0 (specified below)
over the interface Γ . In the anisotropic case, γ depends not just on location but
also orientation. Global minima of (2) are trivial (sets of measure zero) unless
additional constraints are imposed [5]. We follow here the strategy of interface
evolution [7, 8] by deforming an initial interface to obtain local minima.

2.1 Edge Indication Function

We denote the real-valued volumetric image by f : R
3 → R. Edges are related

to the gradient of f . In order to quantify the strength of edges, a function g is
introduced. In the literature [14], g is referred to as edge indication function.
The particular functional form of g is not crucial. It is however essential that
g ≥ 0 and usually g is monotonous with respect to feature gradient magnitude.
We also adopt the convention to normalise g to have values in the unit interval
[0; 1]. We let g(x) depend on the gradient magnitude |∇f(x)| and choose [15]:

g := 1 − exp
(
− a

|∇fσ|q

)
(3)

where fσ denotes the smoothed version of the image f obtained by convolution of
f with a Gaussian of width σ. Furthermore, a and q are real, positive constants
that determine the response of the edge/feature detection.

In order to complete the definition of the edge detector function g, one can
adjust the parameters a and q in (3) automatically to the image-data. For in-
stance we determine a, q in such a way that the average gradient magnitude
〈|∇fσ|〉 over the image results in g = 1

2 and that the slope of g with respect
to the gradient magnitude equals −1/〈|∇fσ|〉 at this point. These are sensible
choices which are invariant to the affine value-transformations of the image [16].

2.2 An Anisotropic Density

In this section we define a cost C(Γ ) for the boundary detection by specifying
the density γ in (2). One viable density γ is obtained by simply choosing the
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edge indication function g itself: γ(x,N) = g(x). In this case, one refers to the
density as (isotropic) Riemannian metric [17, 9] since the cost C(Γ ) =

∫
Γ
g

is the Riemannian area. The attraction to the edges/features in the image is
geometrically obtained by driving the evolution towards g-minimal surfaces.

This is the geodesic model, which is capable of detecting boundaries even in
the presence of noise. However, the isotropic model is known to be sub-optimal.
While the edge-strength is taken into account, the orientation information pro-
vided by ∇fσ is not utilised. We can further improve the performance of the
geodesic boundary detection by including an orientation-dependent term. For-
mally, this means that we consider anisotropic densities γ which depend non-
trivially on the orientation of the interface N .

Orientation-dependent terms have been used previously: Kimmel and Bruck-
stein [18] detect boundary-curves in 2D images using Laplacian zero crossings.
However, their formulation requires additional regularising functionals and pa-
rameters which are needed to determine their relative strength. Instead, the
formulation presented here is based on a single cost-functional that is to be
minimised. Boykov and Kolmogorov [5] consider an anisotropic extension of
the geodesic model in their discrete setting. In our continuous formulation, the
anisotropic extension is conceptually straightforward with consistent sub-grid
accuracy and computationally feasible due to the extreme sparsity of the repre-
sentation.

We consider the general quadratic expression

γ = 1
2 〈N,N〉G (4)

where G is a matrix-valued function and 〈N,N〉G := N�GN . We use the edge
detector g to define G:

G := 1 +
g − 1
|∇fσ|2

∇fσ ⊗ ∇fσ (5)

where v ⊗ v := v v�. This choice is motivated by the following properties:

– alignment case (∇fσ ∝ N): we obtain GN = g N , which is equivalent to
geodesic motion.

– non-alignment case (dfσ N = 0): we obtain GN = N , equivalent to
curvature motion.

– weak gradient case (∇fσ ≈ 0): since g → 1, we obtain G → 1 which
results in curvature motion.

When compared to the isotropic geodesic motion, there is an additional aligning
force. Figure 4 demonstrates the orienting force for the special case where g = 0.
In this case (5) becomes G = 1 − 1

|∇f |2∇f ⊗ ∇f . The following proposition
(proved in [16]) quantifies the aligning property :
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Fig. 4. Orienting motion: the figure illustrates the orienting property of quadratic
motion γ = 1

2 〈N, N〉G. Orientation is prescribed here by selecting a distance map f and
setting G := 1−∇f ⊗∇f . In this example, f is the distance from a circle. The interface
is oriented by the evolution without being contracted or attracted to any features
such as edges (|∇f | ≡ 1). Rather, any initial interface is progressively aligned to the
orientation prescribed by f . A temporary local ‘folding’ of the interface can be observed.
This is related to the fact that the cost functional does not discriminate between N

and −N ; however, the cost of transitions between the two possible alignments means
that eventually there is one consistent alignment

Proposition 1. Difference between the anisotropic and geodesic cost-functionals:

The difference between the cost functionals is given by ΔC := 2
∫

Γ
γ −

∫
Γ
g =∫

Γ
Δγ (here Δ denotes differences, not the Lapacian) with the difference-density

Δγ = 〈N,N〉G − g (6)
= (1 − g) (1 − a)

with the aligning term a :=
〈
N, 1

|∇fσ|∇fσ

〉2
∈ [0; 1]. Consequently,

– Δγ ≥ 0: hence an additional cost is present in the anisotropic density.
– Δγ ∝ (1 − g): hence the orienting power is most pronounced at edges and

vanishes in feature-free regions.
– Δγ ∝ (1 − a): if the interface is aligned with the feature (a ≈ 1) there is

no additional cost; when the alignment is worst (i.e. orthogonal, a ≈ 0) the
orienting force is maximal.

2.3 Gradient Descent for the Anisotropic Scheme

Surface evolution is defined as the gradient descent of the cost (2) with density
(4). Using variational calculus, one can derive [16] the following result:

Proposition 2. Gradient descent of quadratic densities

The normal motion β|Γ = − δC
δφ for the gradient descent is given by

β|Γ = divV (7)
V = (G− γ 1)N (8)
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where N is the surface normal. We call V the descent-generating vector field. The
geodesic model is a special case in which G = 2 g1 and hence V = g N . Equation
(7) has also been used by Vasilevskiy and Siddiqi in their flux maximising finite
difference scheme [19]. Here, the vector filed V derives from (8) and we exploit
equation (7) in our weak scheme. The fact that such a vector field exists is of
prime importance to our scheme since it enables a straightforward application
of Gauss’s integral theorem for the weak formulation of Section 4.

3 Sparse Finite Element Representation

The new numerical representation u of the level-set function employs a sparse
finite element complex [13]. For its definition in 3D, we have to partition space
into tetrahedra.

3.1 Partitioning of Three-Space into Tetrahedra

Unfortunately, unlike in the 2D case, it is not possible to partition R
3 into stan-

dard 3-simplices. However, the methodology of [13] is not confined to standard
simplices. Here, we obtain a convenient partitioning M of space as Delaunay
tetrahedrisation [20] of the vertex-set (2 Z

3) ∪
(
(1, 1, 1)� + (2 Z

3)
)
. A particu-

larly convenient feature of this mesh is that all tetrahedra of the mesh have the
same shape. Each element has two even (2Z

3) and two odd (2Z
3+(1, 1, 1)�) ver-

tices. For instance, the four vertices {
(
0 0 0

)�
,
(
2 0 0

)�
,
(
1 −1 1

)�
,
(
1 1 1

)�}
span a tetrahedron of the mesh M.

As in the 2D case [13], we restrict the actual numerical representation to
the sparse simplicial sub-complex which consists only of those elements which
contain the zero level-set. We call this minimal set the active complex A ⊂ M.

3.2 Finite Elements for Functional Representations

The evolution equations of Section 4 involve the continuous functionals u and
Gij which have to be represented numerically. This is achieved with consistent
sub-grid definition by using standard finite element methods [21]. We briefly
describe the technique for u (every component of G is represented similarly).

u is a linear combination of nodal-basis functions: u(x) =
∑

j uj ej(x). The
nodes are located at the vertices that are contained in the active complex A. In
the second degree case (p = 2), additional nodes are inserted as in Figure 2b.
Each node defines a nodal basis function ej . Inside a tetrahedral element T ∈ A,
ej is defined as the unique [21] polynomial of degree p which evaluates to 1 at
the node and vanishes on all other nodes: ej(xi) = δij . Note that ej is a globally
defined continuous function over the area Ω covered by the active complex A.

The fact that the integral over u is a linear map allows us to integrate ef-
ficiently by using linear combinations of pre-computed integrals over (products
of) basis functions. In fact, this type of integration can be performed analytically
[16] and we only need to store one real value uj at each node. For first degree
elements, each active element T ∈ A contains one planar facet (Figure 3).
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4 Surface Evolution with Sparse Finite Elements

We now show how a stable evolution can be defined to realise the gradient descent
expression (7) in terms of the sparse representation. The sparse representation
is updated in two stages:

– first, a differential update corresponding to a time-step Δt is performed. This
alters the values of nodes uj .

– secondly, the active complex A is updated to restore the minimal containing
property. Elements that no longer contain the zero level-set are deleted while
neighbouring elements get activated if the zero-level set has moved into their
domain. As in the 2D case, the criteria that control the activation and re-
moval of elements are simply obtained3 and functional extrapolation is used
to initialise newly activated nodes.

For the algorithmic details of this process, we refer to [13, 16]. The differential
update with time-step Δt: u(t+Δt, .) = u(t, .) + v(t, .), v = Δtβ combines two
equations, which we formulate in weak form (Petrov Galerkin):

– the normalisation of the level-set function is maintained by demanding
〈∇u,∇u〉 − 1 = 0. This is formulated in the weak sense by

zi
1 =

∫
Ω

ei (〈∇(u+ v),∇(u+ v)〉 − 1) (9)

– the interface motion v −Δtβ|Γ = 0 is formulated as

zi
2 =

∫
Ω

ei (v −Δt β) (10)

Note that 〈∇u,∇u〉 − 1 = 0 (and likewise (9)) has a flat direction since it is
invariant to any level-shift u → u + c, c ∈ R. While this would complicate
the use of the equation in isolation4, it is not a problem when the equation is
combined with the interface motion equation (10).

If there are n active nodes, we have 2n equations and determine the update
v as the least-square solution to |z1|2 + |z2|2. This is a sparse, banded problem
which we solve [13] by the conjugate gradient method [22].

The interface speed βΓ = divV depends on second order derivatives, since
V depends on N = ∇u. In strong form, this causes the same problems as the
finite-difference approach (Section 1.2) since the desired second order derivatives
cannot be obtained from the sub-grid definition inside the elements and are ill
defined at element-transitions. This problem is resolved in the weak formulation.
Instead of having second order derivatives which are ill-defined at element tran-
sitions, we encounter boundary integrals (which we compute efficiently [16]).

3 This reduces to the task of determining if a boundary-face of A (a triangle) contains
any part of the zero level-set. For p = 1 this simply depends on whether all signs of
uj at the nodes of the triangle agree.

4 This equation is used in some re-initialisation schemes [8].
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By Proposition 2, the gradient descent has a descent-generating vector field
β = divV , hence we can apply Gauss’s theorem and perform partial integration.
This allows us to eliminate second order derivative operators in (10):∫

Ω

eiβ =
∫

∂Ω

ei 〈V,V〉 −
∫

Ω

dei V (11)

where V denotes the normal along the boundary ∂Ω. The right hand side does
not contain any second order derivatives of the level-set function.

5 Experimental Results

In this section, we apply the new method to real medical image data. Figures 5
and 6 illustrate results of the boundary detection (white-grey matter boundary)

(a) (b) (c)

Fig. 5. Cortical brain structure: (a) displays a slice through the volumetric MRI
data. (b) and (c) show views of the VRML model created by the described method

(a) (b)

Fig. 6. MRI-brain scan: the cortical brain structure is detected from an MRI-image,
using the quadratic cost. The evolution was initialised by a sphere located in the area
of white matter and inflated with the aid of a balloon force (c = −0.1). (a) shows
a projective view of the obtained surface and in (b) a section of the 3D interface is
superimposed on the corresponding slice of the input-image
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(a) (b)

Fig. 7. Ultrasound scan of a liver (vessel system): boundaries of the vessel
system are detected in an ultrasound scan. The evolution was initialised by a sphere
located inside one of the vessels. (a) shows a projective view of the obtained surface
and in (b) a section of the 3D interface is superimposed on the corresponding slice
of the input-image. The boundary was detected successfully, despite the considerable
amount of noise. σ = 5 was used to smoothen the intensity and quadratic evolution
with additional balloon force c = −0.1 was employed. A similar result could not have
been obtained by considering slices in isolation

based on MRI scans5. Figure 7 shows the detection of the vessel-system in a 3D
ultrasound scan of a liver6. The ultrasound data shows a significant amount of
noise and the detection of the vessel-contours in the slice requires a 3D method
which which takes the full spatial context into account.

For all examples, we used 1st degree elements (i.e. p = 1) and determined
the constants a, q of (3) automatically, as described in Section 2.1.

6 Conclusion and Future Work

We presented a novel sparse finite element scheme and applied it to boundary
detection problems in 3D images. The geodesic model was extended to include
quadratic densities. The performance of the geodesic model was improved by
this anisotropic extension and the aligning force was analysed.

Boundary detection was formulated as interface optimisation problem and
gradient-descent was used for the differential minimisation. A key observation

5 sources: http://www.bic.mni.mcgill.ca/brainweb/, http://www.wbic.cam.ac.uk
6 source: http://svr-www.eng.cam.ac.uk/~rwp/stradx/sample_data.html
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was the existence of a descent-generating vector field which simplified the weak
formulation of the evolution. This had several numerical advantages: first degree
elements were sufficient for the evolution, a consistent sub-grid definition was
established and extreme sparsity was obtained since no additional elements were
required to define the evolution. Like in the 2D case, numerical stability was
obtained by incorporating a normalising term into the evolution equation with
no need for re-initialisation. Applications of the method to synthetic and real
data were presented and the robust performance in the case of noisy images
was confirmed experimentally. With the efficient representation, high resolution
boundary detections were feasible on a standard laptop computer.

Future work will include the implementation of the second degree scheme
and the inclusion of further application-specific types of optimisation problems.
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Abstract. Image registration is an inherently ill-posed problem. There-
fore one typically aims to provide as much information about the under-
lying application as possible. In particular for tumor monitoring, volume
preservation of the wanted deformation is a central point. Based on [9],
we propose a new scale space approach to volume preserving image regis-
tration. The main advantage of the new approach is that the constraints
appear linearly and therefore the system matrices resembles Stokes ma-
trices, which appears in computational fluid dynamics.

We present the scale space framework, a composition based numerical
approach and its implementation. Finally, we demonstrate the outstand-
ing features of this idea by a real life example.

1 Introduction

Image registration is one of the fundamental tasks in today’s image processing
and in particular in medical imaging; see, e.g., [11, 4, 15] and references therein.
The objective of image registration is to make images which are taken at different
times, from different perspectives, and/or from different devices to be more alike.
Loosely, the goal of image registration is to find a “reasonable ” deformation such
that the “distance ” between a reference image R and a deformed version of a
template image T becomes small.

Image registration is an ill-posed problem (cf., e.g., [12]) and therefore need to
be regularized. Different types of regularizers can be used to specify the meaning
of reasonable. However, for particular applications, one may want to provide
additional information. Typical examples include the knowledge of the location
of anatomical landmarks or markers in the images and/or additional physical
properties of the deformation field.

A situation of particular clinical interest is the analysis of pairs of images
acquired before and after contrast administration; see, e.g., [13] and references
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Fig. 1. MRI’s of a female breast, left: during the wash-in phase, middle: during the
wash-out phase, and right: difference image

therein. As a typical example, Figure 1 shows two different magnetic resonance
images (MRIs) of a female breast as they are used routinely for tumor monitoring
(images from Bruce Daniel, Lucas Center for Magnetic Resonance Spectroscopy
and Imaging, Stanford University). The first image shows an MRI section taken
during the so-called wash-in phase of a radiopaque marker and the second image
shows the analogous section during the so-called wash-out phase. A comparison
of these two images indicates a suspicious region in the upper part of the images.
This region can be detected easily if the images have been registered: tissue
located at a certain position in the wash-in image is related to the tissue at the
same position in the wash-out phase. Generally, however, a quantitative analysis
is a delicate matter since observable differences are not only related to contrast
uptake but also due to motion of the patient, like, for example, breathing or
heart beat. Therefore, image registration becomes an inevitable task. However,
as pointed out by Rohlfing et al. [13], there is a substantial difficulty with the
registration of pre- and post-contrast images. Bright regions seem to enlarge
during the so-called wash-in phase. This enhancement is due to contrast uptake
but not to movement of the patient. Therefore, the geometry of these regions
should not be changed by the registration procedure. Most importantly, for this
particular application, a distance minimizing registration can produce unrealistic
results. A critical feature of the wanted deformation is that it has to preserve
tissue volume, particularly the tumor volume. From a clinical point of view, a
volume change is unacceptable even if it results in a much smaller image distance.

A general approach to constrained image registration has been proposed
in [9]. Focussing on volume preserving registration, a variational approach with
a Tikhonov-type regularization has been presented. The approach leads to a
nonlinear constrained optimization problem which is solved by a Sequential
Quadratic Programming (SQP). At each iteration a large system of linear equa-
tions has to be solved and the iteration matrix changes as the iteration proceeds.
As it is typical for constrained optimization, the system is a so-called KKT sys-
tem, where for this application the off-diagonal blocks are nonlinear. In this
paper, we explore a scale space type regularization applied to the constrained
problem. We replace the Tikhonov regularization by a dynamical process. The
regularization of the problem is obtained by performing a finite number of steps
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of the discretized process. We demonstrate that this approach has unique prop-
erties when applied to the problem of volume preserving image registration. A
major advantage of this new scale space approach is that the linear systems to
be solved at each iteration simplify. Particularly, the off-diagonals become linear.
Therefore, one can use a wealth of efficient algorithms developed for computa-
tional fluid dynamics.

This paper is organized as follows. In Section 2 we discuss the scale space
regularization and formulate the system of equations it leads to. In Section 3 we
discuss discretization issues of the problem. In Section 4 we present a numerical
scheme for the solution of the discrete scale space problem. In Section 5 we
apply the new approach and demonstrate the effectiveness of our algorithm on
a realistic example.

2 Scale Space Regularization for Image Registration

In the first part we explain our notation and a straightforward Tikhonov reg-
ularization. We introduce the building blocks of our implementation. Here, for
ease of presentation, we focus on the sum of squared differences (or L2 Norm)
as a distance measure (or misfit) and the elastic potential as a regularizer (or
displacement semi-norm). However, other distance measures or regularizer can
be used as well; see [8, 12].

In the second part we discuss our scale space Tikhonov regularization. The
main observation is that a composition type approach for the transformation
does allow for locally linear constraints. Therefore, a numerical treatment of the
scale space approach has severe advantages.

2.1 General Notations and Tikhonov Regularization

With d ∈ N we denote the spatial dimension of the given images R, T : Rd → R

which are assumed to be sufficiently smooth. Thus, T (x) gives a gray value at
a spatial position x. Without loss of generality, we assume that the supports of
the images are contained in a bounded domain Ω := (0, 1)d and in particular
R(x) = T (x) = 0 for x /∈ Ω.

Our goal is to find a “reasonable ” transformation ϕ such that the “distance ”
between the reference image and the deformed template image is small. As usual
in image registration, we set ϕ(x) = x + u(x) and work the displacement u =
(u1, . . . , ud)T : Rd → Rd rather than the transformation ϕ. However, we will
also use ϕ whenever it makes notation shorter.

It is well-known that the registration problem is ill-posed and therefore needs
to be regularized [12]. Tikhonov-type regularization is commonly used to balance
between image distance and regularity of u. A mathematical formulation of the
regularized and constrained problem thus reads:

minimize D(T, R;u) + α
2 ‖Bu‖2 (1a)

subject to C(u) = 0, (1b)
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where D measures image distance, ‖Bu‖2 is a quadratic regularizer, B a partial
differential operator, α > 0 is a regularization parameter that compromises
between similarity and regularity, and C are the volume preserving constraints.
Problem (1) is usually solved for a sequence of decreasing α’s. For each α of
this sequence, we obtain a smaller misfit and a generally larger displacement
semi-norm.

For ease of presentation, we focus on the Sum of Square Differences (SSD)
as a distance measure,

D(u) := D(T, R;u) := 1
2‖T (x + u) − R‖2, (2)

and the elastic potential with Laḿe constants λ and μ as regularizer. Hence,

S[u] =
∫

Ω

〈Bu,Bu〉 dx (3)

:=
∫

Ω

λ + μ

2
‖ ∇ · u‖2 +

μ

2

d∑
i=1

‖ ∇ ui‖2 dx.

For the purpose of this paper, a transformation is volume preserving if

det(∇ϕ(x)) = 1 for all x ∈ Ω;

see [9] for an extended discussion. Our definition implies that volume preserving
maps also preserve orientation, which is an additional desirable feature in medical
registration. With Id ∈ Rd,d denoting the d-by-d identity matrix, our pointwise
constraint thus becomes

C(u) := det(Id + ∇u) − 1 = 0. (4)

Introducing a Lagrange multiplier p, the Lagrangian of (1) is

L(u, p) = 1
2‖T (u) − R‖2 +

α

2
‖Bu‖2 +

∫
Ω

C(u) · p dx

and the continuous Euler-Lagrange equations for (1) are

0 = ( ∇ T (u))�(T (u) − R) + αB∗Bu

− ∇ · [ det(Id + ∇u)(Id + ∇u)−� · p ], (5a)
0 = det(Id + ∇u) − 1, (5b)
0 = n · ∇ ui; i = 1..d (5c)

see [9]. Here, ∇T is the gradient of T and B∗ the adjoint of B. The system (5) is
a highly coupled system of nonlinear partial differential equations (PDE). The
differential operator B∗B in (5a) is a linear, elliptic operator. The last term in
(5a) is related to the derivative of the constraints which also show up in (5b). It
is not easy to show either existence or uniqueness of a solution of the PDE (5).
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For the purpose of this paper, we therefore assume existence of a solution and
remark that proving its existence is a subject of further research.

After freezing the coefficients of the linearized system (5), a Local Fourier
Analysis can be used to show ellipticity of the system for small displacements u;
see, e.g. [8]. However, for large displacements ellipticity is crucial and numeri-
cal difficulties may arise; see [15]. This motivates us to use a modified Iterative
Tikhonov Regularization approach where only small displacements are consid-
ered and a sequence of elliptic problems has to be solved.

2.2 A Modified Iterated Tikhonov regularization

We now explore a modified iterated Tikhonov regularization approach and show
that it has some favorable numerical properties.

We assume that at some stage k we have an approximate solution ϕk(x) =
x + uk(x) which is volume preserving and therefore obeys Eq. (4). We can also
associate to this solution an image distance D(uk) and a displacement norm
‖Buk‖2. We seek a method to update ϕk such that the new transformation ϕk+1
gives a smaller image distance and an equal or larger displacement norm. Using
the common iterated Tikhonov regularization techniques, one would compute a
linear perturbation v and set

ϕk+1 = ϕk + vk or uk+1 = uk + vk. (6)

However, this straightforward approach does not lead to a simplification of the
equations or to an improvement of the numerics. The main problem is that the
volume preserving constraint is nonlinear and therefore

C(uk + vk) �= C(uk) + C(vk).

A better approach is to update the whole ϕk in terms of a composition. This
can be done by computing a new function ψk(x) = x + vk(x) and setting

ϕk+1(x) = ϕk(ψk(x)) or uk+1(x) = uk(x + vk(x)) + vk(x).

The following Lemma is a key observation for the development of an efficient
algorithm.

Lemma 1. The set of volume preserving mappings with the composition is a
non-commutative group.

Proof. Since the set of continuous functions forms a group with respect to com-
position, the statement follows from

det(∇[ϕ(ψ(x))]) = det(∇ϕ(ψ(x)) · ∇ψ(x)) = det(∇ϕ) · det(∇ψ) = 1,

where ϕ and ψ are assumed to be volume preserving. �
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The above Lemma allows us to derive efficient algorithms. At stage k, we
define Tk(x) := T (ϕk(x)). We are than seeking for a (small) update v as a
solution of

minimize 1
2‖Tk(x + v) − R‖2 + α

2 ‖Bv‖2 (7a)
subject to C(v) = 0. (7b)

Note that for a minimizer vk of problem (7) we have

Tk(x + vk) = T (ϕk(x + vk)) = T (ϕk(ψk(x))).

In contrast to the straightforward linear approach (6), the new approach is based
on composition. This approach is related to the Euler coordinates framework as
used in fluid registration [1], see also [12–§10.4.2]. In other words, we change
from material to spatial coordinates but drop the material derivative within the
regularizer. Thus, the new scale space approach give different solutions than the
Iterative Tikhonov regularization. In the next section we demonstrate that the
solution of the sequence of problems (7) can be computed very effectively using
a Newton-Multigrid method.

3 Discretization

There are two main approaches for the discretization of the registration prob-
lems (1) and (7)). In the first so-called optimize-discretize approach one forms
the objective function, then differentiates to obtain the continuous Euler-La-
grange equations, which are finally discretized and solved numerically; see, e.g.,
[10, 2, 12]. In the second so-called discretize-optimize approach one directly dis-
cretizes the problem and then solves a finite but typically high-dimensional op-
timization problem; see, e.g., [7]. The advantage of the latter approach is that
standard optimization methods can be used. We therefore prefer the discretize-
optimize approach. However, in order to take advantage of efficient optimization
techniques, all parts of the discrete problem need to be continuously differen-
tiable.

Choosing a stable discretization method for a system of partial differential
equations (PDE’s) with mixed derivatives is a non-trivial matter. As proposed
in [9], we use staggered grids (cf. Figure 2) which are very common for stable
discretizations of the related problem of incompressible fluid flow (see, e.g., [5])
and electromagnetics (see, e.g., [17, 7]) where operators such as the gradient,
curl, and divergence are discretized.

In this section we briefly summarize the discretization we use. Further dis-
cussion and details are given in [9].

3.1 Discretizing u and S
We assume that our discrete images have m1 × . . .×md pixels, where d = 2, 3 is
the image dimensionality. For ease of presentation, we also assume that each pixel
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Fig. 2. Staggered grids for dimensions d = 2, 3, nodal �, cell centered •, face staggered
grids (� in x1-, � in x2-, and � in x3-direction), and edge staggered grids (� in x1-,
	 in x2-, and 
 in x3-direction). Top left: d = 2, four pixels, top right: d = 2 pixel
(i1, i2) with grids, bottom left: d = 3, voxel (i1, i2, i3) with face staggered grids and
positions of u1, u2, u3, bottom right: d = 3, edge staggered grids

is square or cubic where each side has length h. In our description we allow for
half step indices. As usual in image processing, we identify pixels/voxels with cell
centered grid points xj,k,�, which are therefore labeled with full integers indices.
Given a pixel/voxel xj,k,�, their faces are numbered with a half index, xj± 1

2 ,k,�,
xj,k± 1

2 ,�, and xj,k,�± 1
2
, and we discretize the ith component ui of u on the ith

face for every pixel/voxel. With some abuse of notation, we denote the discrete
analog of the continuous vector field by u = (u1, . . . , ud)�, where ui denotes the
grid function which is approximated on the face-staggered grid.

If needed, the derivatives ∂ju
k are approximated by the short (central) dif-

ferences,

∂ju
k ≈ ∂h

j uk := 1
h (uk

...,ij+ 1
2 ,... − uk

...,ij− 1
2 ,...). (8)

Note that no boundary conditions are needed to approximate derivatives in the
normal directions (∂ju

j). For the tangential directions (∂ju
k, j �= k) we imposed

Neumann boundary conditions.
Since many regularizers are phrased in terms of the more complex differential

operators ∇ and divergence ∇· , we introduce the notation ∇h and ∇h·
for the discrete analogs. Using these discrete analogs the elastic potential S is
discretized as
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‖Bu‖2 :=
λ + μ

2
‖ ∇h · u‖2 +

μ

2

d∑
i=1

‖ ∇h ui‖2

In the course of the registration process we require derivatives. Upon differ-
entiation of the regularizer we obtain the Navier-Lamé operator

1
2

∂‖Bu‖2

∂u
= (λ + μ)( ∇h· )� ∇h · u + μΔhu =: Au.

where Δh is the vector Laplacian on a staggered grid

3.2 Discretizing T and D
We are heading for fast and efficient optimization scheme and therefore differen-
tiability does play a key role. Thus, although computationally superior, d-linear
image approximations can not be used, since they are not continuously differen-
tiable.

If we require a continuously differentiable objective function we require to
have a continuous image model. Since the images are typically noisy but deriva-
tives are needed we use a smoothing B-spline to approximate the image where the
smoothing parameter is chosen using the Generalized Cross Validation method [6].
For data interpolation using B-splines see [16]. Since the grid is regular, we can
quickly evaluate the spline coefficients using a cosine transform. The continuous
smooth approximation is denoted by T spline; see [9] for details.

Given the staggered grid representation of u we use averaging operators Pj

for the transfer to the cell centered positions, we set

T (u) := T spline(x1 + P1u
1, . . . , xd + Pdu

d),

see [9] for details. We denote the Jacobian of T by

Tu :=
∂T

∂u
(u) =

(
diag(P�

1 ∂1T ), . . . diag(P�
d ∂dT )

)
,

where the partial derivatives ∂jT are evaluated at the spatial positions (x1 +
P1u

1, . . . , xd + Pdu
d). Using a spline approximation for T , Tu becomes a sparse

matrix with only four non-zero diagonals.
Our discretization of the SSD (2) is straightforward,

D(u) := 1
2‖T (u) − R‖2

2 and thus Du(u) = Tu(u)�(T (u) − R).

3.3 Discretizing C
In our discretization of the volume preserving constraints we note that derivatives
of every field to every direction are needed and that they need to be centered at
the same location. We shortly review the work in [9]. To simplify the discussion
we discuss the 2D case only, the extension to 3D is lengthy but straightforward.



A Scale Space Method for Volume Preserving Image Registration 569

In 2D the constraint reads

C(u) = ∇ · u + u1
xu2

y − u1
yu2

x = u1
x + u2

y + u1
xu2

y − u1
yu2

x.

Using the short difference (8) the derivatives u1
x and u2

y naturally centered at
the cell center. To discretize derivatives in the tangential direction we simply use
long differences.

4 The Discrete Scale Space Process

After discretization we obtain a discrete scale space process. At each iteration
we require to approximately solve the discrete system

minimize 1
2‖Tk(v) − R‖2 + α

2 ‖Bv‖2 (9a)
subject to C(v) = 0. (9b)

Common to other iterative regularization methods (cf., e.g., [3]), we use a
single Gauss-Newton step to approximate the solution of the discrete system
(9) and immediately update Tk. After linearization we obtained the following
quadratic constrained optimization problem

minimize 1
2‖Tk + ( ∇h Tk)v − R‖2 + α

2 ‖Bv‖2

subject to ∇h · v = 0.

The main advantage of the scale space approach is that the constraints in (9) are
linearized with respect to v. Therefore, the nonlinear parts vanish and we end
up with linear constraints. The Gauss-Newton step is given by the solution of(

M + αA ( ∇h· )�

∇h· 0

)(
v
p

)
=
(

( ∇h Tk)�(Tk − R)
0

)
, (10)

where p is a discrete Lagrange multiplier and M is a diagonal positive semi-
definite matrix which approximates (∇hTk)�∇hTk. The system (10) is similar to
the Stokes system in Fluid Dynamics. It is well known that staggered discretiza-
tion is crucial in order to obtain a stable system; see, e.g., [5]. For Fluid Dynamic
problems, effective numerical methods where developed; see, e.g., [14, 15]). In
particular, multigrid solvers are among the most efficient schemes to solve prob-
lem (10).

The system (10) is solved numerically and v is updated. However, since v is
a solution for the linearized problem, this update may not be volume preserv-
ing. In order to guarantee the volume preservation of our numerical solution,
we explicitly project this solution onto the constraint. As explained in [9], the
projection is computed by solving

C(v + w) = 0
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for the correction w. To be precise, we compute a least squares solution of the
linearized problem

C(v + w) ≈ C(v) + Cvw = 0, (11)

where Cv is the derivative of C. This system is underdetermined because we
have less equations than unknowns. The above process can be thought of as an
orthogonal projection to the volume preserving constraint.

The above algorithm is summarized in Algorithm 1.

Algorithm 1
A scale space approach to volume preserving image registration.
u ← SPIR(α,u);

set k = 0, Tk(x) = T (x), ϕk(x) = x;
while not stop do

compute image distance, displacement semi-norm, and M ;
set up system (10) and solve for v;
project to the constraint by solving (11) for w;
set ψk(x) = x + v + w and ϕk+1(x) = ϕk(ψk(x));
compute Tk+1(x) = T (ϕk+1(x));
update k ← k + 1;

end while

5 A Numerical Example and Discussion

To demonstrate the effectiveness of our new scale space approach we apply the
algorithm to the breast images in Figure 1. The images where analyzed in [9]
using the straighforward Tikhonov regularization discussed in Section 2.1 and
we use them for comparison here. The magnetic resonance images are noisy and
only slightly shifted and therefore it is expected that a small number of scale
space iterations is needed to achieve a sufficient level of image similarity. Indeed,
setting the regularization parameter of each iteration to α = 10−4 it takes nine
iterations to obtain a relative image distance of 0.87. The history of the iteration
is presented in Table 1.

The Tikhonov regularization approach presented in [9] takes ten iterations
with a fixed regularization parameter α = 10−5 to achieve about the same im-
age distance and about the same displacement semi-norm. For this particular
example, the images and the displacements obtained using the new scale space
approach and those obtained from the Tikhonov regularization method are vi-
sually identical; see Figure 3.

There are two main advantages to the scale approach over the Traditional
Tikhonov regularization. First, every iteration of the scale space method is sig-
nificatively simpler compared with the Tikhonov regularization approach. The
main advantage is that the iteration matrix is fixed and therefore efficient meth-
ods can be designed for the solution of the linear system. In particular, the
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Table 1. The relative image distance D(uk)/D(0) and the displacement semi-
norm versus iteration k for the scale space iteration

iteration 1 2 3 4 5 6 7 8 9
distance 0.98 0.96 0.91 0.90 0.90 0.89 0.88 0.88 0.87
103 · ‖Bu‖2 1.2 1.4 1.8 1.7 1.8 1.8 1.9 2.0 2.0
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Fig. 3. Registration results for the images of Fig. 1. Left column deformed template
images Tk, middle column difference image |R − Tk| with a region of interest (ROI),
right column ROI with nodal grid, vertices connected by straight lines ; row 1:
no registration, row 2: no constraints ten iterations, and row 3: volume preserving
constraints ten iterations

system is similar to the Stokes system and we intend to explore the use of
multigrid methods for its solution in a consecutive paper. The second advantage
is that we need not search for the regularization parameter. A rough choice is
sufficient and the SSD is reduced by the scale space iteration.
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Abstract. In this work we discuss variants of a PDE based level set
method. Traditionally interfaces are represented by the zero level set of
continuous level set functions. We instead use piecewise constant level
set functions, and let interfaces be represented by discontinuities. Some
of the properties of the standard level set function are preserved in the
proposed method. Using the methods for interface problems, we mini-
mize a smooth locally convex functional under a constraint. We show
numerical results using the methods for image segmentation.

1 Introduction

The level set method was proposed by Osher and Sethian in [19] as a versatile
tool for tracing interfaces separating a domain Ω into subdomains. Interfaces are
treated as the zero level set of higher dimensional functions. Moving the inter-
faces can implicitly be done by evolving level set functions instead of explicitly
moving the interfaces. Applications of the level set method include image anal-
ysis, reservoir simulation, inverse problems, computer vision and optimal shape
design [5, 4, 10, 26, 18, 22, 24]. In this work, we discuss some variants of the level
set method. The primary concern for our approach is to remove the connection
between the level set functions and the signed distance function and thus re-
move some of the computational difficulties associated with the calculation of
the Eikonal equation. Another motivation is to avoid numerical problems associ-
ated with the Heaviside and Delta functions used in some level set formulations
[5, 25]. The third concern of this approach is to develop fast algorithms for level
set methods. Due to the fact that the functional and the constraints for this
approach are rather smooth, it is possible to apply Newton types of iterations
to construct fast algorithms for the proposed model. For experimental purposes,
we have used gradient type of methods here, and we restrict ourselves to image
segmentation.
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For a given digital image u0 : Ω → R, the aim is to separate Ω into a set of
subdomains Ωi such that Ω = ∪n

i=1Ωi and u0 is nearly a constant in each Ωi.
Having determined the partition of Ω into a set of subdomains Ωi, one can do
further modelling on each domain independently and automatically. One general
image segmentation model was proposed by Mumford and Shah in [16]. For
numerical approximations, see [2]. Using this model, the image u0 is decomposed
into Ω = ∪iΩi ∪ Γ , where Γ is a curve separating the different domains. Inside
each Ωi, u0 is approximated by a smooth function. The optimal partition of
Ω is found by minimizing the Mumford-Shah functional. Chan and Vese [5,
25] minimized the piecewise constant Mumford-Shah functional using level set
functions. Motivated by the Chan-Vese approach, we will in this article solve the
segmentation problem in a different way, i.e. by introducing a piecewise constant
level set function φ. Instead of using the zero level of a function to represent
the interface between subdomains, the interfaces are implicitly represented by
the discontinuities of a set of characteristic functions ψi. Note that both the
Chan-Vese model and our model can be extended to shape recognition using the
framework of [7, 6].

The rest of this article is structured as follows. Our framework and the min-
imization functional used for image segmentation is formulated in §2. The seg-
mentation problem is formulated as a minimization problem with a smooth
cost functional under a constraint. We are minimizing the piecewise constant
Mumford-Shah functional associated with special level set models. In §3 and §4
we explain our two variants of the level set method for image segmentation in
more detail. Both sections include algorithms and numerical results. We con-
clude with a brief discussion. For a more detailed treatment of the methods,
including more numerical results we refer the reader to [14, 15]. We also refer the
reader to [23, 21, 9, 11, 7] for some related methods.

2 A Framework for Subdomain Representation

In this section a framework for representing subdomains of Ω is developed. Each
subdomain Ωi is associated with a basis function ψi, such that ψi = 1 in Ωi and
zero elsewhere. The basis functions are constructed using one or several level set
functions {φj}l

j=1. Two different realizations of the basis functions ψi are shown
in §3 and §4. Each ψi is compactly supported in Ωi. Thus we can construct a
piecewise constant function u by a weighted sum of the characteristic functions.
If we let c = {ci}n

i=1 be a set of real scalars, we can represent a piecewise constant
function u taking these n distinct constant values by

u =
n∑

i=1

ciψi. (1)

Let η be Gaussian noise, and u0 = u + η. If u0 is almost equal to a constant
in n subdomains it can be approximated by (1) provided we optimally choose
c and {ψi}n

i=1. This is done by solving a minimization problem subject to a
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constraint corresponding to the choice of basis functions. The constraint con-
trols the structure of possible solutions. We return to the specific constraints in
§3 and §4.

The simple structure of the characteristic functions gives us the opportunity
to measure the lengths of curves surroundingΩi and the area of each regionΩi by

|∂Ωi| =
∫
Ω

|∇ψi|dx, and |Ωi| =
∫
Ω

ψidx. (2)

Here we note that |∂Ωi| is the Total Variation (TV)-norm of ψi [20].
The above framework can be used as a tool for image segmentation. Let u0 be

an image to be segmented. We want to construct a piecewise constant function
u which approximates u0 in a proper sense. The segmentation can be formulated
as a minimization of the following functional

F (φ, c) =
1
2

∫
Ω

|u− u0 | 2dx+ β

n∑
i=1

∫
Ω

|∇ψi|dx, (3)

where u is on the form (1). The first term of F is a least squares fidelity term,
measuring the closeness of u to u0. The second term is a regularizer term mea-
suring the length of all the curves separating the subdomains. We here note the
similarity between functional (3) and the functional used by Chan and Vese in
[25], where u is represented using Heaviside functions. For uniquely classifying
each point in the image, we need to introduce a constraint K(φ) = 0 (c.f. §3 §4)
and solve the constrained optimization problem

min
c,φ

F (c, φ) subject to K(φ) = 0. (4)

This problem is solved using the augmented Lagrangian method [1, 17]. A mini-
mizer of F corresponds to a saddle-point of the augmented Lagrangian functional

L(c, φ, λ) = F (c, φ) +
∫
Ω

λK(φ) dx+
r

2

∫
Ω

|K(φ)|2dx, (5)

where λ is a function defined on the same domain as φ called the Lagrangian mul-
tiplier, r ∈ R+ is a penalty parameter being characteristic for the augmented
Lagrangian method. r can either be chosen to be a fixed small number dur-
ing the iterative process or it can be increased during iterations to accellerate
convergence [17]. We have used both the augmented Lagrangian method and
the standard Lagrangian method. Numerical experiments indicate that the aug-
mented Lagrangian method is best suited for this minimization problem. At a
saddle-point of (5) we must have

∂L

∂φ
= 0,

∂L

∂ci
= 0 and

∂L

∂λ
= 0. (6)

Essentially we minimize L w.r.t c and φ, and maximize L w.r.t λ. In §3 and §4
we introduce iterative algorithms to find the saddle-points in (6) coming from
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two different level set formulations. The rest of the current section is devoted to
calculations being common for both approaches.

Since u is linear with respect to c, we see that L is quadratic with respect to
c. Thus the minimization problem w.r.t c can be solved exactly. Note that

∂L

∂ci
=
∫
Ω

∂L

∂u

∂u

∂ci
=
∫
Ω

(u− u0)ψi dx, for i = 1, 2, . . . n. (7)

Therefore, the minimizer satisfies a linear system of equations Ack = b in the
following form

n∑
j=1

∫
Ω

(ψjψi)cki dx =
∫
Ω

u0ψi dx, for i = 1, 2, . . . n. (8)

In the above ψj = ψj(φk), ψi = ψi(φk) and thus, ck = {cki }n
i=1 depends on φk.

We form the (n × n) matrix A and vector b and solve the equation Ac k = b
using an exact solver. The minimization with respect to φ will be solved by the
following gradient method

φnew = φold −Δt
∂L

∂φ
(c, φold, λ), (9)

where Δt is a small positive number determined by trial and error. For a given c
and λ, we need to iterate many times in order to find the minimizer with respect
to φ. This can be interpreted as a scalespace method with t as the scale.

3 Piecewise Constant Level Set Method Using a
Polynomial Approach

We first present the polynomial piecewise constant level set method (PCLSM).
Assume that we need to find n regions {Ωi}n

i=1 which form a portion of Ω.
In order to identify the regions, we want to find a piecewise constant function
taking the values

φ = i in Ωi, i = 1, 2, . . . , n. (10)

With this approach we just need one function to identify all the phases in Ω.
The basis functions ψi associated with φ are defined in the following form

ψi =
1
αi

n∏
j=1
j �=i

(φ− j) and αi =
n∏

k=1
k �=i

(i− k). (11)

It is clear that the function u given by (1) is a piecewise constant function and
u = ci in Ωi if φ is as given in (10). The function u is a polynomial of order
n−1 in φ. Each ψi is expressed as a product of linear factors of the form (φ− j),
with the ith factor omitted. Thereupon ψi(x)=1 for x ∈ Ωi, and ψi(x = 0
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elsewhere as long as (10) holds. To ensure that equation (1) gives us a unique
representation of u, i.e. at convergence different values of φ should correspond
to different function values u(φ) in (1), we introduce

K(φ) = (φ− 1)(φ− 2) · · · (φ− n) =
n∏

i=1

(φ− i). (12)

If a given function φ : Ω �→ R satisfies

K(φ) = 0, (13)

there exists a unique i ∈ {1, 2, . . . , n} for every x ∈ Ω such that φ(x) = i.
Thus, each point x ∈ Ω can belong to one and only one phase if K(φ) = 0.
The constraint (13) is used to guarantee that there is no vacuum and overlap
between the different phases. In [27] some other constraints for the classical level
set methods were used to avoid vacuum and overlap.

Following the framework in §2, we will use the basis functions (11), the con-
straint (12) and the representation (1) of u. To find a minimizer of (5), we need
to find the saddle point where ∂L

∂φ = 0 and ∂L
∂λ = 0. Remember that ∂L

∂ci
is zero

if {ci}n
i=1 are computed from (8). We use the Uzawa-type Algorithm 1 to find a

saddle point of L(c, φ, λ). The algorithm has a linear convergence rate and its
convergence has been analyzed in [13] and used in [4, 3].

Algorithm 1. Choose initial values for φ0 and λ0. For k = 1, 2, . . ., do:

– Find ck from

L(ck, φk−1, λk−1) = min
c
L(c, φk−1, λk−1). (14)

– Use (1) to update u =
∑n

i=1 c
k
i ψi(φk−1).

– Find φk from
L(ck, φk, λk−1) = min

φ
L(ck, φ, λk−1). (15)

– Use (1) to update u =
∑n

i=1 c
k
i ψi(φk).

– Update the Lagrange-multiplier by

λk = λk−1 + rK(φk). (16)

– If not converged: Set k=k+1 and go to step 1.

To compute dL
dφ we utilize the chain rule to get

∂L

∂φ
= (u− u0)

∂u

∂φ
− β

n∑
i=1

∇·
( ∇ψi

|∇ψi|

)∂ψi

∂φ
+ λ

∂K

∂φ
+ rK

∂K

∂φ
. (17)

It is easy to get ∂u/∂φ, ∂ψi/∂φ and ∂K/∂φ from (1), (11) and (12). We use
the gradient method (9) to solve (15). We do a fixed number of iterations, for
example 400 iterations or stop the iteration after the L2 norm of gradient has
been reduced by 10%.
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Remark 1. The updating for the constant values in (14) is ill-posed. A small
perturbation of the φ function produces a large perturbation for the ci val-
ues. Due to this reason, we have tried out a variant of Algorithm 1. In each
iteration we alternate between (15) and (16), while (14) is only carried out if
‖K(φnew)‖L2 < 1

10‖K(φold)‖L2 . Here, φold denotes the value of φ when (14) was
carried out the last time and φnew denotes the current value of φ. If we use such
a strategy, we can do just one or a few iterations for the gradient scheme (9)
and Algorithm 1 is still convergent. This strategy is particular efficient when the
amount of noise is high.

Remark 2. In Algorithm 1, we give initial values for φ and λ. We first minimize
with the constant values, and then minimize with the level set function. The
multiplier is updated in the end of each iteration. In situations where good
initial values for c are available, an alternative variant of Algorithm 1 may be
used, i.e. we first minimize with the level set function followed by a minimization
for the constant values and then update the multiplier.

Remark 3. There is no particular reason why we chose to use integers as roots of
the polynomial. Perhaps a better choice would be to use a Chebyshev polynomial
with its roots as buildingblocks for the characteristic functions ψi. This could
for example be accomplished by interchanging the integer values in (10) by the
roots of a Chebyshev polynomial of degree n defined on the interval [−1, 1] [12].

zi = cos
(
π(i− 1

2 )
n

)
in Ωi, i = 1, 2, . . . , n. (18)

The exact same framework could then be used to construct a set of characteristic
functions {ψi}n

i=1 by

ψi =
1
αi

n∏
j=1
j �=i

(φ− zj) and αi =
n∏

k=1
k �=i

(i− zk). (19)

The corresponding constraint would then be

K(φ) = (φ− z1)(φ− z2) · · · (φ− zn) =
n∏

i=1

(φ− zi). (20)

In this work we have not implemented this approach.

3.1 Numerical Experiments Using the Polynomial Approach

In this section we validate the piecewise constant level set method with numerical
examples. We only consider 2-D images and restrict ourself to gray-scale images,
although the model permits any dimension and can be extended to vector-valued
images as well. Our results will be compared with the related works [5, 25]. To
complicate the segmentation process we typically expose the original image with
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Fig. 1. (a) Observed image u0 (SNR≈ 5.2). (b) Initial level set function φ. (c) Each
separate phase φ = 1 ∨ 2 ∨ 3 ∨ 4 are depicted as a bright region. (d) At convergence φ

approaches 4 constant values

Gaussian distributed noise and use the polluted image as the observation data u0.
To demonstrate a 4-phase segmentation we begin with a noisy synthetic image
containing 3 objects (and the background) as shown in Figure 1(a). This is the
same image as Chan and Vese used to examine their multiphase algorithm [5, 25].
The observation data u0 is given in Figure 1(a) and the only assumption we
make is that a 4-phase model should be utilized to find the segmentation. In
Figure 1(d) the φ function is depicted at convergence. The function φ approaches
the predetermined constants φ = 1∨2∨3∨4. Each of these constants represents
one unique phase as seen in Figure 1(c). Our result is in accordance with what
Chan and Vese reported in [5, 25].

In many applications the number of objects to detect are not known a pri-
ori. A robust and reliable algorithm should find the correct segmentation even
when the exact number of phases is not known. By introducing a model with
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Fig. 2. (a) Each phase φ = 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5 is depicted as a bright region. (b) At
convergence φ approaches 4 constant values
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(a) (b) (c)

(d) (e)

Fig. 3. Character and number segmentation from a car plate using our method (b),(c)
and CV (d),(e)

more phases than one actually needs, we can find the correct segmentation if all
superfluous phases are empty when the algorithm has converged. To see if our
algorithm can handle such a case we again use Figure 1(a) as the observation
image and utilize a 5-phase model. Our results are reported in Figure 2. One of
the 5 phases must be empty if a 5-phase model is used to find a 4-phase segmen-
tation. Due to the high noise level some pixels can easily be misclassified and
contribute to the phase that should be empty. (The regularization parameter β
is not tuned in order to get rid of this misclassification.) The level set function
shown in Figure 2(b) approaches the constants φ = 1 ∨ 2 ∨ 4 ∨ 5, except from
the few misclassified pixels where φ = 3 as seen in Figure 2(a). By comparing
Figure 1(c) (where a 4-phase model is used) and Figure 2(a) (where a 5-phase
model is used), we observe only small changes in the segmented phases, except
from the extra nonempty phase φ = 3 in Figure 2(a).

Below we proceed with one example using a real image. We want to demon-
strate that PPCLSM (polynomial PCLSM) can be uses to extract characters or
numbers from images. We use an image of a license plate. To evaluate the seg-
mentation process, the Chan/Vese method [5, 25], for short (CVM), is examined
using the same input image. Both algorithms are processed using two different
regularization parameters. With the amount of noise in Fig. 3 (a), both PPCLSM
and CVM miss some details along the edges of the characters and numbers. To
compare the result of (CV) and (PPCLSM), both algorithms were terminated
after 500 iterations. The regularization parameters used in the experiment are
(b) β = 0.1, (c) β = 3, (d) β = 1 and (e) β = 104. Thus we observe that both
our method and CVM are quite robust to noise, and the choice of regulariza-
tion parameters. The processing time is almost equal for both methods in this
example. We have done no efforts for code optimization. The complexity of the
implementation is also almost equal for both methods.
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4 The Binary Approach for PCLSM

We will now introduce an alternative realization of the characteristic functions
in (1). Using the following approach, we can represent a maximum of 2N sub-
domains, using N level set functions {φi}N

i=1. To simplify notation, we form the
vector φ = {φ1, φ2, . . . , φN}. Let us first assume that the interface Γ is enclosing
Ω1 ⊂ Ω. By standard level set methods the interior of Ω1 is represented by points
x : φ(x) > 0, and the exterior of Ω1 is represented by points x : φ(x) < 0. We
instead let φ(x) = 1 if x is an interior point of Ω1 and φ(x) = −1 if x is an
exterior point of Ω1. As proposed, Γ is implicitly defined as the discontinuity of
φ. Representing four subdomains is done analogously as in [25, 7] by

u(x) =

⎧⎪⎪⎨⎪⎪⎩
c1, if φ1(x) = 1, φ2(x) = 1,
c2, if φ1(x) = 1, φ2(x) =−1,
c3, if φ1(x) =−1, φ2(x) = 1,
c4, if φ1(x) =−1, φ2(x) =−1.

Thus, a piecewise constant function taking four different constant values can be
written

u =
c1
4

(φ1 + 1)(φ2 + 1) − c2
4

(φ1 + 1)(φ2 − 1)

−c3
4

(φ1 − 1)(φ2 + 1) +
c4
4

(φ1 − 1)(φ2 − 1). (21)

Using (21), we can form the set of basis functions ψi as in the following

u = c1
1
4
(φ1 + 1)(φ2 + 1)︸ ︷︷ ︸

ψ1

+c2 (−1)
1
4
(φ1 + 1)(φ2 − 1)︸ ︷︷ ︸

ψ2

+ . . . , (22)

and we can write: u =
∑4

i=1 ciψi. The set of ψi for the multiple subdomain case is
constructed by generalization of this. For i = 1, 2, . . . , 2N , let (bi−1

1 , bi−1
2 , . . . , bi−1

N )
be the binary representation of i− 1, where bi−1

j = 0 ∨ 1. Let s(i) =
∑N

j=1 b
i−1
j ,

and write ψi and u as

ψi = (−1)s(i)

2N

∏N
j=1(φj + 1 − 2bi−1

j ) and u =
2N∑
i=1

ciψi. (23)

It is now easy to see that these basis functions have the properties needed for
the framework in §2. Using this representation for the basis functions, we need
N constraints, one constraint Ki to each of the level set functions φi. We use
the constraints: Ki(φi) = φ2

i − 1 ∀ i. Setting Ki(φi) = 0 implies φi can only take
the values ±1 at convergence.

Having determined the choice of basis functions {ψi}n
i=1 and the representa-

tion of u by (23), we find the saddle point of L by the augmented Lagrangian
method. This means that we must minimize L w.r.t φ and c, and maximize L
w.r.t λ, which has the same dimension as φ.
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We minimize L w.r.t φ by using the gradient method (9) for all the N level
set functions. The gradients for the level set functions are given as

∂L

∂φi
=(u− u0)

2N∑
j=1

cj
∂ψj

∂φi
− β

2N∑
j=1

∇·
( ∇ψj

|∇ψj |

)∂ψj

∂φi

+2λiφi + 2r(φ2
i − 1)φi. (24)

The constraints Ki are independent of the constant values ci and thus the same
formula (8) can be used to update the ci values.

Similar to the algorithm used for the polynomial approach for the PCLSM,
we use the following algorithm to find a saddle point for the binary approach for
the PCLSM.

Algorithm 2. Choose initial values for φ0 and λ0. For k = 1, 2, . . ., do:

– Update φk by (9), to approximately solve

L(ck−1, φk, λk−1) = min
φ

L(ck−1, φ, λk−1). (25)

– Construct u(ck−1,φk) by u =
∑2N

i=1 c
k−1
i ψk

i .

– Update ck by (8), to solve

L(ck, φk, λk−1) = min
c

L(c, φk, λk−1). (26)

– Update the multiplier by

λk = λk−1 + rK(φk). (27)

– If not converged: Set k=k+1 and go to step 1.

Remark 4. Remarks 1 and 2 after Algorithm 1 also apply to algorithm 2.

(a) (b) (c)

Fig. 4. In this example, the image (a) is first segmented using the isodata method
(b). Then the result is further processed using our method, and the final result is
shown in (c)
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4.1 Numerical Experiments Using the Binary Approach

Now we will present one of the numerical results achieved using the binary piece-
wise constant level set formulation (BPCLSM). For more numerical results, see
[15]. We will here show a segmentation of a Magnetic Resonance image of a brain
using two level set functions. The goal is to partition the image into three differ-
ent tissue classes in addition to the background. To accelerate the convergence
of our method, we first preprocess the image using a simple tresholding, the iso-
data method [8]. In (b), we show the result of the isodata segmentation of u0 [8].
We here observe that main structures are preserved, but also highly oscillating
patterns occur. We use the results from the isodata segmentation to construct
initial values for φ1 and φ2, run our algorithm with these initial values, and end
up with the image depicted in Fig. 4 (c). Observe that the main structures are
still very well preserved, but most of the (unwanted) highly oscillating patterns
are removed. By initializing the algorithm in this way, we both accelerate the
convergence of our algorithm, and in addition more or less avoid the problem of
local minimizers. In the example, we used the parameters β = 5 · 10−3, μ = 5,
and 1000 iterations.

5 Conclusion

In this article we have discussed a framework for subdomain identification. We
have also pointed out two methods for image segmentation using this framework.
Recently, there has been done work to extend the method to 3-D data sets.
Work is also done to incorporate a Newton-type of iteration for improving the
convergence properties of the method. The PPCLSM is favourable in terms of
computational complexity and memory requirements, and in terms of handling
cases where a priori information of the number of subdomains is lacking. Molding
BPCLSM into existing software for level set methods is possibly easier than
PPCLSM because of similarities in the machinery of standard level set methods.

References

1. D. P. Bertsekas, Constrained optimization and Lagrange multiplier meth-
ods,Academic Press Inc.,1982.

2. A. Chambolle, Image segmentation by variational methods: Mumford and Shah
functional and the discrete approximations, SIAM J. Appl. Math., 55 (1995),
pp. 827–863.

3. T. F. Chan and X.-C. Tai, Identification of discontinuous coefficients in elliptic
problems using total variation regularization, SIAM J. Sci. Comput., 25 (2003),
pp. 881–904.

4. T. F. Chan and X.-C. Tai, Level set and total variation regularization for elliptic
inverse problems with discontinuous coefficients, J. Comput. Phys., 193 (2003),
pp. 40–66.

5. T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. Im.
Proc., 10 (2001), pp. 266–277.



584 J. Lie, M. Lysaker, and X.-C. Tai

6. D. Cremers, T. Kohlberger, and C. Schnörr, Shape statistics in kernel space
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Abstract. Deblurring with a spatially invariant kernel of arbitrary shape
is a frequent problem in image processing. We address this task by
studying nonconvex variational functionals that lead to diffusion-reaction
equations of Perona–Malik type. Further we consider novel deblurring
PDEs with anisotropic diffusion tensors. In order to improve deblurring
quality we propose a continuation strategy in which the diffusion weight
is reduced during the process. To evaluate our methods, we compare
them to two established techniques: Wiener filtering which is regarded
as the best linear filter, and a total variation based deconvolution which
is the most widespread deblurring PDE. The experiments confirm the
favourable performance of our methods, both visually and in terms of
signal-to-noise ratio.

1 Introduction

In many application contexts, image acquisition leads to blurred images. Blurring
is caused e.g. by motion of objects and/or camera during the recording, from
defocussing or from specific errors in the optics of the camera. It is therefore
desirable to devise methods how to sharpen – to deblur – images. A variety of
different approaches has been proposed in the literature which differ greatly in
the assumptions made about the image and the blurring process.

An important case of image blurring is convolution with a fixed kernel. This
type of space-invariant blurring is especially found when defocussing and optical
errors or translatory motion of the camera have caused the blurring.

Under ideal conditions, convolution could be reverted by convolving with an
inverse kernel that could, e.g., be computed via the Fourier domain. However,
taking the reciprocal of the Fourier transform of some kernel always leads to an
unbounded function that needs to be cut at some frequency; moreover, for other
than very simple kernels (like Gaussians), zeroes occur which introduce poles into
the inverse. For these reasons, a pseudo-inverse is used. By a slight extension of
this idea, one obtains Wiener filtering which relies essentially on a regularisation
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of the inversion operation [16, 7]. These linear approaches give reasonable results
but the cut-off of high frequencies introduces characteristic oscillatory artifacts
(Gibbs-like phenomena) that cannot be avoided by any linear approach [2].

In the case of blurring by Gaussian convolution the special relation between
Gaussian convolution and linear diffusion also makes methods based on stabilised
inverse diffusion a possible choice [9].

Another class of methods aims at so-called blind deconvolution in which the
kernel is not known a priori but is reconstructed simultaneously with the sharp-
ened image. Obviously, assumptions on the image are inevitable here, otherwise
the problem is principally underdetermined. A favourable way to encode a-priori
assumptions on the image is the use of a variational framework [17]. Variational
blind deconvolution has been investigated in [1]. This approach combines decon-
volution with segmentation. The convolution kernels are restricted to Gaussians.
In the second part of [1], the combination of deconvolution with a known (not
necessarily Gaussian) kernel with segmentation is discussed.

The ill-posedness of all deblurring problems makes it reasonable to involve
any available a-priori knowledge in the reconstruction process. Methods for de-
blurring with known kernels are therefore not made superfluous by blind decon-
volution techniques; their better understanding can even support the develop-
ment of blind deconvolution methods.

In this article, we describe PDE-based approaches for deblurring in case of
convolution with a space-invariant kernel. We do not make specific assumptions
on symmetry of the kernel, instead, our method is designed to work even for
fairly irregularly shaped kernels. Our approach is motivated first by a varia-
tional model for deconvolution. The involved variational problem is solved via
a diffusion–reaction equation where the diffusivity is linked to the regulariser.
While total variation (TV) regularisation is a common choice in the literature,
we investigate the nonconvex regularisation which leads to forward-backward
diffusivity. By generalising to diffusion-reaction PDEs which are no longer as-
sociated with variational formulations, we can also include anisotropic diffusion
tensors in our study. Experiments show that improvements over established de-
blurring techniques can be achieved by these methods. Since the non-uniqueness
of steady states plays an important role, the treatment of the diffusion weight is
a central issue. We present a strategy to avoid unwanted solutions.

We also discuss problems occurring at image boundaries which are caused
by the admission of kernels without particular symmetries. Note that many
deconvolution methods discussed in the literature restrict the shape of the kernel,
e.g. to Gaussians with principal axes parallel to the image boundaries, or motion
blurs in directions parallel to the image boundaries. The specific symmetries of
such kernels make the treatment of boundaries considerably easier.

We proceed as follows. In Section 2, we discuss linear deconvolution meth-
ods. Section 3 then describes a variational deblurring model and derives our
basic deblurring PDE. Boundary conditions and the choice of the regularisation
parameter are discussed separately. Section 4 is dedicated to extensions of the
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basic model. These include the continuation strategy and the introduction of
anisotropic diffusivities. Experiments are presented in Section 5.
Related Work. Deblurring problems have attracted the attention of computer
vision researchers for a long time, and numerous publications exist on this and
related topics. Variational approaches to deconvolution with total variation (TV)
regularisation have been investigated e.g. by Marquina and Osher [8] for non-
blind, and Chan and Wong [6] for blind deconvolution, or recently Bar, Sochen,
and Kiryati [1] which addresses both classes of problems. TV regularisation in
image restoration has earlier been studied by Rudin, Osher, and Fatemi [12],
see also [10]. A variational approach to blind deconvolution with more general
regularisation has been presented by You and Kaveh [17].

Research on existence, uniqueness, and stability of solutions for these and
related problems can be found in the work by Bertero, Poggio, and Torre [3].
Continuation strategies have been considered for non-convex variational prob-
lems in visual reconstruction by Blake and Zisserman [4] and more specifically
in the context of total-variation based denoising by Chan, Chan and Zhou [5].

2 Linear Models

We assume that we have an image f which is the result of convolving the original
(sharp) image u with some kernel h and superposing some additive noise n,

f(x, y) = (u ∗ h)(x, y) + n(x, y) .

Assume first that the noise n can be neglected. By Fourier transform, the equa-
tion then goes into

f̂ = û · ĥ .
If h is known, one could in principle divide f̂ by ĥ to restore û and thereby u.
However, this inverse filtering procedure faces the problem that in general ĥ will
possess zeroes. These represent frequencies which are deleted by blurring with
h and must therefore not be present in a noise-free blurred image. But still ĥ is
close to zero in the vicinity of its zeroes, and, even if it has no zeroes, for high
frequencies. But in frequency ranges where |ĥ| is small, even minimal amounts of
noise are tremendously amplified, rendering the procedure extremely unstable.

The simplest approach to handle this difficulty is the pseudo-inverse filtering
which eliminates frequencies for which ĥ is smaller than some threshold H. A
more advanced regularisation of inverse filtering is Wiener filtering [16] which
replaces ĥ−1 by ĥ−1 |ĥ|2 /(|ĥ|2 +H2) such that we obtain

û =
1

ĥ
· |ĥ|2

|ĥ|2 +H2
· f̂ .

This filter displays better stability than pseudoinverse filtering. It has properties
of a band-pass and is therefore even well-suited to deal with moderate noise.

All deconvolution methods described up to here are linear methods which
allow for efficient implementations via Fourier transforms. However, all of them
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display characteristic, shadow-like artifacts particularly near edges and also near
the image boundaries depending on the boundary conditions used. As proven in
[2–p. 119pp.], linear methods cannot avoid these artifacts. Further improvements
can therefore be achieved only with nonlinear methods.

3 The Basic Deblurring PDE

3.1 Variational Motivation

Deconvolution of an image can be achieved by minimising the energy functional

E(u) =
∫
Ω

(h ∗ u− f)2 + αΨ(|∇u|2) dx . (1)

The first summand in the integral – the data term – is the square error of
the reconstruction of the blurred image from the deblurred image candidate.
This data term arises naturally in the deconvolution context and is also used
in the variational blind deconvolution models in [17, 1]. The second summand –
the smoothness term or regulariser – uses a monotonically increasing function
Ψ : IR+

0 → IR to enforce the smoothness of the deconvolved image.
Note that an unregularised energy consisting only of the data term already

has the original image as a global minimiser. Unfortunately, this minimum is by
far not unique since the data term is in general not strictly convex. If the Fourier
transform of h has zeroes, then contributions of the corresponding frequencies
may be added to u without changing the data term. Even if ĥ has no zeroes, it is
very small for e.g. high frequencies. Contributions from such frequencies hardly
influence the data term. Hence, the data term cannot effectively suppress arti-
facts like those encountered for linear methods. The smoothness term is needed
to reduce these ambiguities. In the case of a strictly convex regulariser Ψ , the
energy E as a whole might even be convex and the minimum therefore unique.

Solutions of our variational problem satisfy the Euler-Lagrange equation

0 = h̃ ∗ (h ∗ u− f) − α div
(
Ψ ′(|∇u|2)∇u

)
.

Here h̃ denotes the mirror-kernel h̃(x, y) := h(−x,−y). A gradient descent lead-
ing for t → ∞ to a minimiser of E is given by

∂tu = −h̃ ∗ (h ∗ u− f) + α div
(
g(|∇u|2)∇u

)
, (2)

a diffusion–reaction equation where the diffusion term with diffusivity g(s2) =
Ψ ′(s2) is related to the regulariser in the energy functional. This PDE can be
solved numerically, in the simplest case by an explicit discretisation.

3.2 Choice of the Diffusivity

An important point in determining the properties of the deconvolution process
is the choice of the diffusivity g. The simplest case, the constant diffusivity
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g(s2) = 1 which corresponds to Tikhonov regularisation Ψ(s2) = s2, tends to-
wards an over-smoothed deblurring result because high gradients at edges of the
reconstructed image are penalised over-proportionally. Moreover, in this case
the whole deconvolution method is again linear and suffers from the artifacts
described in the previous section.

Total variation (TV) diffusivity g(s2) = 1/ |s|, mostly in its regularised form
g(s2) = 1/

√
s2 + ε2, is a popular choice (see [6, 8, 1]), particularly since it en-

forces piecewise constant results and therefore encourages sharp edges in the
image. We therefore include TV diffusivity in our experiments.

Another interesting choice in isotropic nonlinear diffusion models is the
Perona–Malik diffusivity g(s2) = (1 + s2/λ2)−1 that is related to the noncon-
vex regulariser Ψ(s2) = λ2 ln(1 + s2/λ2), see [11, 14]. Note that the smoothness
energy Ψ(|∇u|2) is no longer convex in this case. It is therefore expected that
depending on the initial conditions different solutions are obtained.

To reduce the noise sensitivity of isotropic Perona–Malik diffusion (see
[14, 13]) it can be stabilised by using a Gaussian-smoothed gradient ∇uσ in the
diffusivity argument, turning the diffusion expression into div(g(|∇uσ|2)∇u).
Though this stabilised Perona–Malik diffusivity can easily be used in our
diffusion–reaction equations (which in this case cease to be gradient descents
for energy functionals), experiments indicate that it bears no clear advantages
in this case.

3.3 Boundary Conditions

For solving the diffusion–reaction equations of type (2), suitable boundary con-
ditions must be specified. In many diffusion-based image processing methods,
reflecting Neumann boundary conditions work well because they guarantee con-
servation properties as well as a continuous extension of the image at its bound-
ary. Periodic boundary conditions for a rectangular domain lead instead to a
wrap-around of image information between opposite boundaries; moreover, they
introduce discontinuities which often entail artifacts in the processed image.

Unfortunately, the usage of reflecting boundary conditions for deconvolution
with space-invariant kernels is bound to fail if the kernel is not symmetric w.r.t.
the image boundary directions because reflected parts of the image would be
blurred with a reflected kernel, violating the model assumptions. Since periodic
boundary conditions are compatible with any shift-invariant blur, without im-
posing symmetry constraints on the kernel, we use periodic boundary conditions
or modifications of them.

A chief disadvantage of periodic boundary conditions are the discontinuities
introduced at the image boundaries. These lead to strong artifacts near the im-
age boundaries. To mitigate these artifacts as well as the undesired wrap-around
of image information in the deblurring with periodic boundary conditions, the
image can be extended continuously to a larger image with equal grey-values
at opposing boundaries. Periodic boundary conditions then no longer introduce
discontinuities, and the wrap-around influences mostly the amended parts of
the image. Since the assumptions of our deblurring model are still violated near



590 M. Welk et al.

the image boundaries, boundary artifacts are reduced but not perfectly elimi-
nated.

For quality measurements in our experiments, we therefore arrange a special
setting. We start by extending the sharp test image via horizontal and vertical
reflection to quadruple size. Periodic extension of this larger image is equivalent
to reflecting extension of the original image. Now the large image is blurred in
a periodic setting (i.e. with the left boundary wrapping over into the right one
etc.) with the irregular kernel. The resulting image has lost the symmetry of the
original larger image. In deblurring this image, we use again periodic boundary
conditions. While this approach cannot be used in real deblurring applications
where the blurring process is not subject to our control, its advantage is that
it admits a measurement of the deblurring quality, e.g. in terms of signal-to-
noise ratio, without including discontinuity and boundary artifacts which would
dominate the total result otherwise. By doing so, we ensure that the model
assumptions are met everywhere, at the cost of making this boundary treatment
unsuitable for naturally blurred images.

3.4 Choice of the Diffusion Weight

The extreme ill-posedness of the problem makes the choice of the diffusion weight
a difficult problem. We discuss this for the deblurring processes which minimise
a variational functional. In absence of noise, the non-regularised energy con-
sisting only of the data term is minimised by the correct solution. However,
the data term is insensitive to certain perturbations (those being annihilated
by convolution with h), preventing in general the solution to be unique. The
diffusion–reaction equation (2) in this case turns into a fixed-point equation
without diffusion part.

Assume now the energy is made convex by a suitable regulariser such that
a unique solution exists. Even if the weight of the regularisation (and thus of
the diffusion) is very small, it is practically only the regularisation term which
chooses the solution among those which cannot be discriminated by the smooth-
ness term. As a consequence, even a small diffusion weight can drive the solution
far away from the true unblurred image, leading to a deblurring result which
heavily depends on the type of regulariser (hence, diffusivity) used.

Particularly with nonconvex regularisers and the corresponding forward–
backward diffusivities, the existence of multiple steady states of the deblurring
process constitutes another issue. The solution which is really obtained depends
heavily on the initial conditions. When using the blurred image as initialisation
with small diffusion weight, similar artifacts as for linear deblurring methods
evolve. Large diffusion weights, on the other hand, induce an over-smoothing
and loss of small-scale details in the image.

3.5 Numerical Implementation

In order to solve equation (2) numerically, finite difference discretisations are
used for the diffusion term as well as for the left-hand side. The simplest way to
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do so is to use a forward difference for ∂tu and central differences from the old
time step for the diffusion term. Denoting by τ the time step size and by Δx,
Δy the spatial step sizes in x, y direction, we are led to the explicit scheme

uk+1
ij − uk

ij

τ

= −Rk
ij + α

2Δx ((gk
i+1,j + gk

ij)(u
k
i+1,j − uk

ij) − (gk
ij + gk

i−1,j)(u
k
ij − uk

i−1,j))

+ α
2Δy ((gk

i,j+1 + gk
ij)(u

k
i,j+1 − uk

ij) − (gk
ij + gk

i,j−1)(u
k
ij − uk

i,j−1))

where the diffusivity g(|∇u|2) (or stabilised g(|∇uσ|2)) is discretised by

gk
ij = Ψ ′

⎛⎝(uk
i+1,j − uk

i−1,j

Δx

)2

+

(
uk

i,j+1 − uk
i,j−1

Δy

)2
⎞⎠

and Rk
ij discretises the reaction term h̃ ∗ (h ∗ u− f) at pixel (i, j) and time kτ .

The discretisation of the reaction term poses a difficulty. Since it contains
convolutions, its direct computation in each time step would be extremely cost-
some, even taking into account that h̃ ∗ h can be precomputed once for all time
steps. Note that Rk

ij is computed via the Fourier domain. Though this still re-
quires one DFT (or FFT for suitable image size) and one inverse transform per
time step, computing time is considerably reduced for kernels with large support.

4 Extensions

4.1 Continuation Strategy for Optimisation

It has been explicated that the deblurring model is ill-posed, i.e., it reveals not
only several local optima, but may even have multiple global optimum solutions
that do not depend continuously on the initial data. Consequently, the gradient
descent often does not yield the original image as solution, but some other steady
state which can be significantly different. In most cases it contains a rather huge
amount of oscillatory structures not present in the original data.

A remedy for this ill-posedness has been the supplement of a regulariser to
the energy functional. This regulariser introduces the a-priori knowledge that
smooth solutions should be preferred. However, despite the usefulness of non-
quadratic regularisers which allow for discontinuities in the solution, the negative
consequence of the regularisation is a result that is smoother than the original
image, since not the complete amount of blurring is reversed by the process.

Actually, there is no regularisation necessary for the model to yield the orig-
inal image as an optimum solution of the energy. Even the opposite is true: just
in the case without regularisation the model has the original image as one of
the optimum solutions. The regularisation must only be introduced in order to
guide the gradient descent towards one out of several optima that shows the
least oscillatory behaviour.
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Since the regularisation primarily serves as guidance for the optimisation
process, the proposed alternative approach continuously reduces the amount
of regularisation during optimization. Instead of considering only one energy
functional with a fixed amount of regularisation, a cascade of functionals is
taken into account. Starting with a rather large amount of regularisation, this
amount is reduced from one member of the cascade to the next, and finally leads
to the energy functional without any regularisation. The first members of the
cascade prefer smooth solutions and therefore may yield good initialisations close
to the smoothest optimum of the next version with less regularisation. On the
other hand, the later members of the cascade tend more and more to solve the
original deblurring problem without regularisation and therefore yield sharper
results. This way, one finally runs into an optimum of the functional without
regularisation, yet choosing a specific optimum that is smooth. In most cases
this optimum is not exactly the original image (it is often still too smooth),
yet it is supposed to be closer to this image than the solutions one obtains
without this continuation strategy, i.e. either with a fixed amount of smoothness
or without any regularisation.

4.2 Anisotropic Model

An improved reconstruction of edges can further be achieved by substituting the
isotropic diffusivity g with an anisotropic diffusion tensor D(∇uσ). In our model,
we use D(∇uσ) = g(∇uσ∇uT

σ ) where the Perona–Malik diffusivity g is applied
to the symmetric matrix ∇uσ∇uT

σ , as usual, by letting g act on the eigenvalues
and leaving the eigenvectors unchanged [14]. The resulting equation

0 = h̃ ∗ (h ∗ u− f) − α div (D(∇uσ)∇u)

is not the gradient descent for an energy because of the smoothed gradient.
However, this smoothing is inevitable in order to have true anisotropy.

5 Experiments

To illustrate and validate the methods described in the preceding sections, we
show experimental results obtained with two test images and two different convo-
lution kernels, Fig. 1. One is a banana-shaped blob with irregularly distributed

Fig. 1. Convolution kernels. Left: Banana-shaped kernel. Right: Discontinuous kernel
consisting of two line-shaped components
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Fig. 2. Left to right: Photograph, 480 × 640 pixels. – Blurred with banana-shaped
kernel. – Deblurred by diffusion–reaction method with Perona–Malik diffusivity, λ = 5,
α = 0.001, 1000 iterations. – Photograph blurred with discontinuous kernel. – De-
blurred by diffusion–reaction method with Perona–Malik diffusivity, λ = 1; the contin-
uation strategy was used with two steps for the diffusion weight: 2400 iterations with
α = 0.01 followed by 2400 iterations with α = 0

Fig. 3. Deblurring of a detail of the photograph from Fig. 2 with different boundary
treatment. Left to right: Photograph detail blurred with discontinuous kernel. – Lin-
ear deblurring by Wiener filter. – Diffusion–reaction deblurring with TV diffusivity.
– Diffusion–reaction deblurring with Perona–Malik diffusivity. Top row: Continuous
periodic extrapolation of the blurred image (realistic method). While details are well
reconstructed, shadow-like boundary artifacts affect the overall quality. Bottom row:
Same with special setting to suppress boundary artifacts. The image was extended by
reflection to four times its original size before blurring. This quadruple-size blurred
image was then blurred and deblurred with periodic continuation

intensity. This comes close to the blurring of photographs taken with bad il-
lumination and moving camera and objects. The second convolution kernel is
discontinuous; it is assembled from two line-shaped parts which are similar to
motion blurs. It has been selected as an example of a very challenging kernel.

The first test image used in Figs. 2 and 3 is a photograph with many small-
scale details. In fact, this is a colour image to which our diffusion–reaction equa-
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Fig. 4. Top left: Grey-value test image. Top middle: Blurred with discontinuous
kernel. Top right: Linear deblurring by Wiener filter, boundary treatment by contin-
uous extrapolation. Bottom left: Diffusion–reaction deblurring with TV diffusivity
and continuation strategy (2 levels). Bottom middle: Same with Perona–Malik dif-
fusivity. Bottom right: Same with anisotropic diffusion tensor

Fig. 5. Detail from deblurred grey-value images, with boundary artifacts suppressed by
special test setting. Left to right: Linear filtering. – Unregularised variational model.
– Perona–Malik, constant diffusion weight. – Perona–Malik followed by nonregularised
iteration (two-step continuation strategy). – Perona–Malik, continuation strategy with
10 steps. – Anisotropic diffusion–reaction, continuation strategy with 10 steps

tions were adapted in the straightforward way with channel coupling. This pro-
cedure is well-established in nonlinear diffusion literature [14]. The second test
image used in Figs. 4 and 5 is a grey-value image of three print letters. It differs
from the first image by its composition of fairly homogeneous regions.

In Fig. 2 we blur the first test image with both kernels and restore it by
diffusion–reaction deblurring with Perona–Malik diffusivity. For the discontin-
uous kernel, we also use the continuation strategy in a simple form with one
positive α followed by a fixed-point iteration with α = 0. Excellent deblurring
quality is achieved for the banana kernel (despite its irregularity) while for the
discontinuous kernel some shadow-like boundary artifacts are observed.

In Fig. 3, a more detailed comparison of deblurring algorithms is presented
for a detail from the photograph blurred with the discontinuous kernel, including
Wiener filter as an example of linear deblurring, diffusion–reaction filtering with
TV, and Perona–Malik diffusivity. Here we also demonstrate the use of our
special test setting to avoid boundary artifacts in quality measurements.

Results for the grey-value test image are shown in Fig. 4. Here, we concentrate
on the discontinuous kernel. Besides the methods mentioned above we show also
diffusion–reaction deblurring with anisotropic diffusion tensor which performs
particularly well for this type of strongly segmented images.
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Table 1. SNR (dB) for deblurring with the discontinuous kernel. First values: specific
test setting for boundary conditions, second values: with continuous extrapolation

Wiener filtering Diffusion–reaction,
Perona–Malik

Diffusion–reaction,
TV diffusivity

Letters 15.6 / 7.1 18.4 / 7.3 17.1 / 7.2
– with contin. strategy 19.3 / 7.4 19.2 / 7.1
Photograph detail 15.9 / 9.4 14.9 / 6.0 14.3 / 5.9

Fig. 5 shows a detail of our grey-value test image to demonstrate the improve-
ments made by anisotropic diffusion tensors and continuation strategy. Pure
Perona–Malik deblurring reduces oscillatory artifacts quite well but smears thin
lines while the fixed-point iteration with α = 0 restores many details but gener-
ates artifacts similar to those of linear deconvolution. The continuation strategy
combines a better restoration of details with a reasonable suppression of arti-
facts. Even in its simplest form with two steps it bears a clear improvement; more
steps lead to further enhancement. The sharpness of edges is further improved
by using the anisotropic diffusion tensor.

In Table 1 we compile measurements of the signal-to-noise ratio (SNR)

SNR(v, u) = 10 log10
var(u)

var(u− v)
dB

where u is the original image and v the deblurring result. Throughout the mea-
surements Perona–Malik deblurring tends to slightly better SNR than deblur-
ring with TV diffusivity. However, not always do SNR measurements reflect
sufficiently well visual judgement. For the photograph, e.g., the Wiener filter
performs better than diffusion–reaction deblurring in terms of SNR. On the
other hand, Fig. 3 clearly reveals the superiority of diffusion–reaction deblur-
ring.

6 Conclusions and Ongoing Work

In this paper we have developed diffusion–reaction based deconvolution methods
with forward–backward diffusivities motivated from non-convex regularisation.
We have established a continuation strategy for the control of the diffusivity
weight that allows to combine the suppression of artifacts provided by large dif-
fusion weights with the good reconstruction of details that is typically achieved
with small diffusion weights. We have further extended our algorithm by intro-
ducing an anisotropic diffusion tensor which allows for a further enhancement of
edges in the deblurring process. The favourable performance of the algorithms
even for severely blurred images and irregularly shaped kernels has been demon-
strated visually and by signal-to-noise ratio measurements.
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Ongoing work is dedicated to improvements in the numerical efficiency of
our deblurring algorithms, e.g. by utilising additive operator splitting schemes
(see [15]). We also work on improving the treatment of boundaries to reduce
artifacts even in the restoration of severely blurred images. Because of the ob-
served discrepancies between SNR measurements and visual quality judgement,
the development of more adequate quality criteria is a further issue.
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Abstract. Nonlinear diffusion has long proven its capability for discon-
tinuity-preserving removal of noise in image processing. We investigate
the possibility to employ diffusion ideas for the denoising of audio sig-
nals. An important difference between image and audio signals is which
parts of the signal are considered as useful information and noise. While
small-scale oscillations in visual images are noise, they encode essential
information in audio data. To adapt diffusion to this setting, we apply
it to the coefficients of a wavelet decomposition instead of the audio
samples themselves. Experiments demonstrate that the denoising results
are surprisingly good in view of the simplicity of our approach. Nonlin-
ear diffusion promises therefore to become a powerful tool also in audio
signal processing.

1 Introduction

Degradation of signals by noise is a ubiquitous phenomenon. In practically any
field of signal processing the removal of noise therefore is a key problem. In the
field of image processing, diffusion processes are among the most effective and
theoretically best understood denoising techniques [18]. While linear diffusion is
highly effective in removing noise, it blurs indiscriminately all image information
and therefore removes, or at least severely degrades, important image features
such as edges along with the noise. Nonlinear diffusion processes – isotropic as
well as anisotropic – have therefore gained increasing interest in the last 15 years
[14, 2, 18, 17]. They allow to treat details of different size and contrast differently.
Thus they enable the design of image filters which remove noise effectively while
at the same time edges are preserved and in some cases even enhanced.

The question therefore arises naturally whether diffusion filters can also be
used to denoise other classes of signals. Audio signals are one class of signals
which is of similar importance as images. We want therefore to investigate the
possibility of denoising digital audio signals by diffusion processes.

First of all, audio signals are one-dimensional, so the range of applicable
techniques is constrained to linear and isotropic nonlinear diffusion. Another ob-
servation is that music samples, like images, contain well-localised features that
should be preserved in the denoising process. It can therefore be expected that
a good filtering process should again be inhomogeneous and therefore nonlinear.

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 598–609, 2005.
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Direct application of diffusion to sampled audio signals faces a serious prob-
lem. Typically, small oscillatory details are the first structures that a diffusion
filter removes from a signal. This is well appropriate for image processing; how-
ever, in audio signals the most important features consist of oscillations. It needs
therefore a re-consideration which features in an audio signal are typically noise
and which are useful information.

Targeting at the denoising of sampled music or speech, we see that useful in-
formation basically should consist of periodic oscillations with only a moderate
number of different frequencies occurring at the same time while noise is sup-
posed to be made up of irregular oscillations which are not concentrated at single
frequencies. It seems therefore reasonable to separate useful signal components
from noise by a suitable frequency analysis method. The necessity to keep signal
components well localised in time motivates us to prefer wavelet decomposition
[5, 13] over Fourier analysis.

An established technique for denoising of data in wavelet representations
is wavelet shrinkage [6, 7]. Though it is by far not an optimal denoising tech-
nique for audio data, it serves for us as a reference because of its simplicity. We
will compare the denoising results of our diffusion-based methods with those of
wavelet shrinkage working on the same wavelet representations.

A signal restoration approach that is related to ours since it manipulates
wavelet coefficients using variational ideas is described in [4]. Further approaches
which combine variational and wavelet ideas in a different manner to denoise
signals and images can be found in [1, 8, 12].

Section 2 gives an outline of the wavelet methods that will be needed in
this paper. In Section 3 we introduce diffusion processes for wavelet coefficients.
Application of these filters to digital audio data is illustrated by experiments in
Section 4 which are discussed quantitatively and qualitatively. A summary and
outlook in Section 5 conclude the paper.

2 Signal Processing with Wavelets

Wavelet methods in signal processing rely on the representation of a signal f
with respect to a basis consisting of scaling functions ϕj

i and wavelet functions
ψj

i . All scaling and wavelet functions are shifted and dilated versions of one
scaling function ϕ with low-pass characteristics and one wavelet function ψ with
band-pass properties, i.e.

ϕj
i (z) = 2−j/2ϕ(2−jz − i), ψj

i (z) = 2−j/2ψ(2−jz − i) .

If the wavelet functions ψj
i and scaling functions ϕj0

i form an orthonormal basis,
we have

f(z) =
∑
i∈Z

cj0i ϕ
j0
i (z) +

j0∑
j=−∞

∑
i∈Z

dj
iψ

j
i (z)

where cji := 〈f, ϕj
i 〉, d

j
i := 〈f, ψj

i 〉 with 〈·, ·〉 being the L2(R) inner product. Note
that this representation uses scaling functions only on the coarsest level j0 while
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wavelet functions of level j0 and all finer levels are used. For a discrete signal,
represented by a function f which is constant on [k, k + 1) for every integer k,
only wavelet levels j ≥ 1 occur.

2.1 Haar Wavelet Representations

Let us consider the simplest wavelet, the Haar wavelet [10] ψ(z) = χ[0, 1
2 )(z) −

χ[ 12 ,1)(z) with corresponding scaling function ϕ(z) = χ[0,1), where χI is the
characteristic function of the interval I. Then, wavelet analysis and synthesis
can be efficiently carried out via the two-scale relations

cji =
cj−1
2i + cj−1

2i+1√
2

, dj
i =

cj−1
2i − cj−1

2i+1√
2

.

For a discrete signal as described above, the c0i equal the signal samples.
A wavelet representation of this kind, called decimated wavelet decomposi-

tion, constitutes a hierarchical subdivision of the domain of definition of the
signal, thereby bearing the clear disadvantage of lacking translation invariance.
A simple but effective way to overcome this problem in case of a discrete signal of
finite length is the cycle-spinning procedure [3]. Cycle-spinning essentially means
that the decimated wavelet analysis and synthesis of a signal of length N is car-
ried out N times: for the original signal and all N − 1 possible cyclically shifted
copies of it. The analysis step therefore yields N redundant wavelet representa-
tions encoding the same signal. In the synthesis step, N concurrent signals are
generated. However, if the reconstruction is done with processed wavelet coeffi-
cients, these N signals will in general no longer coincide. The final reconstruction
result is therefore obtained by averaging the concurrent reconstructions. Filters
designed with these transforms are shift-invariant by construction.

2.2 Soft Wavelet Shrinkage

The processing of a signal is typically performed in three steps. First, the analysis
step in which the given signal is transformed into wavelet representation; second,
some operation on the wavelet coefficients; third, the synthesis in which the
modified coefficients are used to reconstruct the processed version of the signal.

One class of denoising methods widely studied in literature are wavelet shrink-
age procedures. Soft wavelet shrinkage applies the shrinkage function

Sθ(y) =
{
y − θ sgn(y), |y| > θ,
0, |y| ≤ θ

to the wavelet coefficients after the analysis step. The modified coefficients d̃j
i :=

Sθ(d
j
i ) are used with the unchanged scaling coefficients cji in the synthesis step.

In [16] it was shown that the denoising quality of shift-invariant soft Haar
wavelet shrinkage is improved by using the level-dependent shrinkage parameter
θj = 2−j/2θ0 on level j instead of one uniform parameter θ.
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Fig. 1. Basis for a two-level decimated Haar wavelet decomposition. Top left: Scaling
function ϕ1

0. Top right: Wavelet function ψ1
0 . Bottom left: Wavelet function ψ2

0 .
Bottom right: Wavelet function ψ2

1

2.3 Daubechies Wavelets

In image processing, excellent denoising results can be achieved using Haar
wavelets, particularly its shift-invariant modification. However, for audio signal
processing Haar wavelets are often considered insufficient because they have only
one vanishing moment. Daubechies wavelets [5] are often suggested as a better
choice in this context. They can be constructed with arbitrarily many vanishing
moments. In every case, their wavelet and scaling functions can be found via a re-
cursive procedure. For the simplest Daubechies wavelet (Daubechies-4), one has

ϕ(1) =
1 +

√
3

2
, ϕ(2) =

1 −
√

3
2

, ϕ(k) = 0, k ∈ Z \ {1, 2},

ϕ(z) =
1
4

(
(1 +

√
3)ϕ(2z) + (3 +

√
3)ϕ(2z − 1)

+ (3 −
√

3)ϕ(2z − 2) + (1 −
√

3)ϕ(2z − 3)
)

ψ(z) =
1
4

(
− (1 +

√
3)ϕ(2z) + (3 +

√
3)ϕ(2z − 1)

− (3 −
√

3)ϕ(2z − 2) + (1 −
√

3)ϕ(2z − 3)
)

for all z = 2−jk, with integers j, k, and by continuity on the whole real line
(see [5, 11]).
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Fig. 2. Left to right: Scaling function for Daubechies-4 wavelet. – Correspond-
ing wavelet function. – Scaling function for Daubechies-20 wavelet. – Corresponding
wavelet function. Generated using MATLAB with Wavelet toolbox

Scaling and wavelet functions of the Daubechies-4 and Daubechies-20
wavelets used in our experiments are shown in Fig. 2.

3 Diffusion of Wavelet Coefficients

Let a one-dimensional signal s(z) be given. The partial differential equation

vt = ∂z(g(v2
z) vz), (z, t) ∈ R × (0,+∞) (1)

with initial condition v(z, 0) = s(z) describes a one-dimensional diffusion process
which embeds the signal s(z) into a family v(z, t) of signals, parametrised with
t ∈ [0,+∞), which constitute smoothed versions of s. The parameter t can be
considered as a diffusion time which, however, must be well distinguished from
the signal time z. Here, the diffusivity g(y2) should be a bounded, non-increasing,
positive function of its nonnegative argument. For t → ∞, the signal will tend
to a constant function. To obtain a smoothed signal, it is therefore necessary to
choose a stopping time T which determines the degree of smoothing.

Besides the case g(y2) = 1 of linear diffusion we consider the Perona–Malik
diffusivity g(y2) = 1

1+y2/λ2 where λ is a threshold parameter [15]. The purpose of
non-linear diffusion with such a decreasing diffusivity is to suppress smoothing at
locations with large gradients which are supposed to be edge-like discontinuities
holding important information.

A simple explicit discretisation of (1) is given by

vk+1
i = vk

i +
τ

h

(
g((v̇k

i )2)v̇k
i − g((v̇k

i−1)
2)v̇k

i−1
)
, v̇k

i =
1
h

(vk
i+1 − vk

i )

with step sizes τ for diffusion time h for the signal parameter.
In applying the diffusion equation to the coefficients of a decimated wavelet

representation, the coefficients of each wavelet level are considered as one chan-
nel, such that diffusion does not transfer amplitudes between different frequency
bands. It requires attention that the step size h doubles from each level to
the next coarser one. Having this in mind, linear diffusion can be implemented
straightforward by

[dj
i ]

k+1 = [dj
i ]

k +
τ

22j
([dj

i+1]
k − 2[dj

i ]
k + [dj

i−1]
k)
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where [dj
i ]

k denotes the wavelet coefficient dj
i in the decomposition of the signal

in the k-th diffusion-time step, and we have assumed that the temporal resolution
in signal time is 1 for the samples, i.e. wavelet level 0.

In nonlinear diffusion of multi-channel signals (like colour images) it is essen-
tial that the discontinuities where smoothing is suppressed are localised at equal
positions in all channels [9]. To achieve this, one uses a common diffusivity which
incorporates gradient information from all channels and steers uniformly the dif-
fusion in all of them. The same argument applies also in our model. Here it is
assumed that large differences between neighbouring wavelet coefficients signify
boundaries of acoustic events extended in time which should not be blurred.

Consequently, we want to use a common diffusivity also in the nonlinear
diffusion of our wavelet coefficients. In computing this common diffusivity in a
decimated wavelet representation, it needs to be clarified which neighbour dif-
ferences should contribute to which diffusivities. Since diffusivities are to steer
diffusion between neighbouring wavelet coefficients of one level, the proper loca-
tion where to estimate the diffusivity is the central point between the coordinates
of the wavelet coefficients themselves. To determine which neighbour differences
should enter a particular diffusivity, we look at the influence zones of the wavelet
coefficients, i.e. for each coefficient the group of subsequent samples that it de-
pends on. Then each diffusivity is influenced exactly by the neighbour differences
of those wavelet coefficients with influence zones starting or ending at the posi-
tion of this diffusivity, see Fig. 3. Vice versa, the diffusion between two adjacent
wavelet coefficients is regulated only by the diffusivity at the single inter-sample
location where the two influence zones meet.

This procedure can directly be motivated as a simple subsampling of the
coarser wavelet levels. By writing down each wavelet coefficient [dj

i ]
k of the j-th

level 2j−1 times, a vector-valued signal with the signal-time resolution of the
finest wavelet level 1 arises. The i-th vector in this signal reads

([d1
i ]

k, [d2
�i/2�]

k, . . . , [dj0
�i/2j0−1�]

k)T

The diffusivity between the i-th and (i+ 1)-th vector in this signal is

gi+1 := g

⎛⎝ j0∑
j=1

(
[dj

�(i+1)/2j�]
k − [dj

�i/2j�]
k
)2

⎞⎠
where  z! denotes the largest integer less or equal z. Here we have weighted all
wavelet levels equally; one could also use different weights for the wavelet levels.

After computing the new diffusion time-step, the 2j−1 copies of the coefficient
[dj

i ]
k are no longer identical; the new value [dj

i ]
k+1 is then obtained by averaging

the concurrent values which amounts exactly to

[dj
i ]

k+1 = [dj
i ]

k+
τ

22j

(
g2j−1(i+1) ·

(
[dj

i+1]
k − [dj

i ]
k
)
− g2j−1i ·

(
[dj

i ]
k − [dj

i−1]
k
))

.

In the context of decimated wavelet shrinkage, it can be criticised that dif-
fusivities at different locations have different numbers of influencing coefficient
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Fig. 3. Influence of differences of neighbouring wavelet coefficients on diffusivities for
the coupled nonlinear diffusion. Left: Decimated Haar wavelet representation with 3
levels. Wavelet coefficients dk

j with their influence zones are shown. By g0, . . . , g4 subse-
quent diffusivities are denoted. Right: Shift-invariant Haar wavelet representation with
2 levels. Again, g0, . . . , g8 are subsequent diffusivities. Variables for wavelet coefficients
are omitted

pairs. One could consider compensation factors to remedy this. On the other
hand, as soon as we switch to shift-invariant Haar wavelets, the problem dis-
appears. In this situation, if we count identical wavelet coefficients only once,
we have for each inter-sample location exactly one pair of coefficients in each
wavelet level whose influence zones meet there; compare Fig. 3.

We emphasise that in the shift-invariant setting only coefficients of one
wavelet level which are part of the same decimated wavelet decomposition com-
municate directly in the diffusion process. These are coefficients which have not
only the same frequency but also the same phase. Coefficients of the same level
and different phase, as well as those of different levels, belong to different chan-
nels which are linked only by the channel coupling.

4 Experimental Results

For a first impression of the properties of different wavelet bases in audio pro-
cessing, we degrade a synthetic 200 Hz sine wave1 by adding Gaussian noise2

of 10 % the signal variance, and apply to it soft wavelet shrinkage with non-
shift-invariant and shift-invariant Haar wavelets as well as with two Daubechies
bases, see Fig. 4. It is evident that the signal shape of the shrinked signal is
strongly influenced by the shape of the used wavelets. Audio perception is very
sensitive to such details in the wave shape such that the signals denoised with
decimated Haar, and Daubechies-4 wavelets do not sound too well. Surprisingly,
the quality of shift-invariant Haar wavelet shrinkage is subjectively perceived

1 The sampling frequency of all our audio data is 44,100 Hz.
2 The choice of Gaussian noise in the experiments presented here is nothing special.

Denoising quality was quite similar when, e.g., white noise or recorded noise from
technical sources was added.
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Fig. 4. Soft wavelet shrinkage with different wavelet decompositions, shrinkage parame-
ter always θ = 10000. Top left: Original signal (sine wave of 200 Hz). Top right: Same
with Gaussian noise, noise variance ca. 10 % of signal variance. Middle left: Denoised
using decimated Haar wavelet shrinkage. Middle right: Shift-invariant Haar wavelet
shrinkage. Bottom left: With Daubechies-4 wavelets. Bottom right: Daubechies-20
wavelets



606 M. Welk, A. Bergmeister, and J. Weickert

Table 1. SNR measured for different denoising methods

Denoising method SNR (dB), drum SNR (dB) instr.
Wavelet shrinkage, shift-invariant Haar 12.50 13.54
Nonlin. diffusion, decimated Haar 12.57 14.13
Nonlin. diffusion, Daubechies-4 12.81 14.49
Nonlin. diffusion, Daubechies-20 13.01 15.05
Nonlin. diffusion, shift-invariant Haar 12.92 13.04
no denoising (noisy signal) 11.16 13.63

superior to that of Daubechies-20 shrinkage although the shift-invariant Haar
wavelet shrinkage result shows a slight deformation around the peaks. However,
the Daubechies-20 denoised sample displays a jitter of amplitude which is indeed
an audible perturbation.

In the further experimental validation of our diffusion denoising model, we use
two musical signals: First, a short drum loop; second, a clipping of instrumental
music (brass accompanied by strings)3. We add Gaussian noise to each of the
signals. The noise variance is about 10 % of the signal variance for the drum loop
and about 5 % for the instrumental piece. Table 1 compiles results of signal-to-
noise ratio (SNR) measurements for selected denoising methods. The SNR is
computed as

SNR(u, f) = 10 log10
var(f)

var(f − u)
dB

where f is the original and u the noisy signal.
According to subjective perception, our nonlinear diffusion method in general

leads to better denoising results than soft wavelet shrinkage. The SNR, however,
favours in some cases wavelet shrinkage (or even the noisy signal!) which indicates
that it might not be an adequate criterion for denoising quality. A characteristic
difference between shrinkage and diffusion denoising is shown in Fig. 5. Look-
ing at the right part of the original signal clipping displayed, one notices small
high-frequent oscillations which are visible particularly near the extrema of the
low-frequent base oscillation. These components are indeed essential for the char-
acteristic timbre of the drum. By removing these signal components along with
the noise, wavelet shrinkage compromises the timbre much more than nonlinear
diffusion which keeps at least part of these components.

In the remainder of this section, we discuss qualitatively a few more obser-
vations made during our experiments. As to the choice of the wavelet basis,
auditory impression as well as, in part, the SNR measurements suggest that
introducing shift-invariance into Haar wavelet shrinkage raises the quality to a
level comparable that of (decimated) Daubechies wavelets. This is observed both
for shrinkage and diffusion algorithms.

3 Audio samples are available via the first author’s web page,
http://www.mia.uni-saarland.de/welk
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Fig. 5. Denoising of a drum loop signal. Parameters are chosen such that similar degrees
of noise reduction are perceived. Top to bottom: A drum loop. – Same with Gaussian
noise. – Denoised by shift-invariant soft Haar-wavelet shrinkage (θ = 5000). – Denoised
by channel-coupled nonlinear diffusion on shift-invariant Haar wavelet decomposition
(t = 100, λ = 500, σ = 1.0)
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The number of wavelet levels which are used in our wavelet diffusion process
is less important than it appears. Most denoising is achieved just in the finest
five wavelet levels; with ten levels, no significant enhancement is encountered.
The reason is that the diffusion process is not very effective on coarse levels
because of their low resolution and the very small updates which are therefore
made per diffusion-time step. Low-frequent (rumbling) noise should therefore be
handled by other measures.

Denoising with Haar wavelet methods often creates a characteristic audible
artifact. It consists in a slightly rough-ringing noise of specific pitch which is com-
posed of frequencies standing in octave relations to the sampling frequency. This
noise gains intensity the longer diffusion acts or the more coefficients are shrunk
by wavelet shrinkage. It is also observed that many signals tend to be flattened
even by our nonlinear diffusion process for large t. We assume that these two
phenomena are two sides of the same medal: By admitting only transfer between
wavelet coefficients of equal frequency and phase, our diffusion process tries to
keep signal amplitude in the separated frequency and phase components and to
avoid extinction. However, this works perfectly only for frequencies which are
subdivisions of the sampling frequency by powers of two (and which therefore
in some sense are “in resonance” with the wavelet decomposition). Other fre-
quencies are still weakened during the process, inducing the tendency to flatten
signals. On the other hand, even some noise is kept in the resonance frequencies
and can be perceived with its pitch as soon as the other frequencies are gone.

In agreement with this reasoning, improvements in the algorithm which lead
to a better preservation of signal amplitude reduce the sound artifact at the same
time. Starting from a simple linear diffusion process on decimated Haar wavelet
coefficients, each of the following steps observably reduces both the diminishing
of signal amplitude and the appearance of the artifact tone: first, switching to
shift-invariant Haar wavelets; second, making diffusion in each channel nonlinear;
and third, establishing of the channel coupling.

5 Summary and Outlook

In this paper, we have introduced a method for the denoising of audio signals by
nonlinear diffusion. Because of the specifics of audio data compared to images,
the diffusion process is not formulated for the digital audio samples but for the
wavelet coefficients of a suitable wavelet representation.

Comparisons with wavelet shrinkage techniques reveal a fairly good perfor-
mance of our method despite its simplicity. Due to the high sensitivity of human
auditory perception for even tiny perturbations, the denoising achieved is not satis-
factory enough for immediate application Nevertheless, our results clearly indicate
that nonlinear diffusion can be successfully adapted to the denoising of audio data.

Ongoing work concentrates on the reduction of artifacts and improvement of
the homogeneity of denoising over the frequency range. We are also interested in
establishing better quantitative measures for denoising quality that reflect the
perceived quality as accurate as possible.
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Abstract. Singular diffusion equations such as total variation (TV) and
balanced forward–backward (BFB) diffusion are appealing: They have
a finite extinction time, and experiments show that piecewise constant
structures evolve. Unfortunately, their implementation is awkward. The
goal of this paper is to introduce a novel class of numerical methods for
these equations in the 2D case. They are simple to implement, absolutely
stable and do not require any regularisation in order to make the diffusiv-
ity bounded. Our schemes are based on analytical solutions for 2×2-pixel
images which are combined by means of an additive operator splitting
(AOS). We show that they may also be regarded as iterated 2D Haar
wavelet shrinkage. Experiments demonstrate the favourable performance
of our numerical algorithm.

1 Introduction

Nonlinear diffusion filters [15, 21] constitute an important class of image en-
hancement methods. Let Ω ⊂ IR2 denote our two-dimensional image domain
and f : Ω → IR an initial greyscale image. Then the idea behind nonlinear
diffusion filtering is to consider f(x) as initial condition

u(x, 0) = f(x) on Ω (1)

of a nonlinear diffusion process

∂tu = div (g(|∇u|)∇u) on Ω × (0,∞) (2)

with suitable boundary conditions, e.g. the reflecting (homogeneous Neumann)
boundary conditions

∂nu = 0 on ∂Ω × (0,∞). (3)
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Here ∇ = (∂x1 , ∂x2)
� denotes the spatial nabla operator and n is the outer

normal vector on the image boundary ∂Ω. The resulting solution u(x, t) creates a
scale-space family {u(x, t) | t ≥ 0} of processed images, where the diffusion time t
serves as scale parameter: Larger values of t give more simplified images u(x, t).
In order to preserve (or even enhance) edges and to simultaneously smooth
within more homogeneous regions, the diffusivity function g(|∇u|) is chosen as
a decreasing nonnegative function.

While early proposals for nonlinear diffusion filters use bounded diffusivities
[15, 6], more recently there has been a growing interest in unbounded diffusiv-
ities that become singular in zero [2, 9, 10, 11, 16]. Experimentally one observes
that singular diffusion filters lead to piecewise constant images. This is also in
accordance with theoretical results by Nikolova [14] who showed that related
discrete variational approaches allow piecewise constant solutions if and only if
the regulariser is nondifferentiable in zero.

As a prototype for a class of singular diffusivities we consider the family

g(|∇u|) =
1

|∇u|p (p ≥ 0). (4)

These diffusivities offer the advantage that they do not require to tune any
image specific contrast parameters. Moreover, they lead to scale invariant filters
[1], for which even some analytical results have been established [20].

For p = 1 one obtains the total variation (TV) diffusion [2, 9], the diffusion fil-
ter that corresponds to TV minimisation [18] with a penaliser Ψ(|∇u|2) = 2 |∇u|.
TV diffusion offers a number of interesting properties such as finite extinction
time [3], shape-preserving qualities [4], and equivalence to TV regularisation in
1-D [5, 17]. For p > 1 the diffusion not only preserves edges but even enhances
them. A diffusivity with p = 2 has been considered in [11] for the so-called
balanced forward–backward (BFB) diffusion filtering.1

Although singular diffusion equations have very attractive properties, their nu-
merical implementation is difficult. Explicit finite difference schemes are only sta-
ble for time step sizes that are inversely proportional to an upper bound for the
diffusivity, while absolutely stable implicit or semi-implicit schemes lead to linear
systems of equations with condition numbers that are increasing functions of this
bound. As a result, iterative numerical schemes may reveal slow convergence, and
in general numerical errors can be amplified. In order to limit all these problems,
it is common to regularise the diffusivity function by replacing it by the bounded
diffusivity

g(|∇u|) =
1

(|∇u|2 + ε2)
p/2 . (5)

In this case, however, one observes that blurring artifacts are introduced and
some of the nice theoretical properties of singular nonlinear diffusion filters do
no longer hold.

1 While a complete well-posedness theory exists for p ≤ 1, some theoretical questions
are a topic of ongoing research for the edge-enhancing case p > 1.
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The goal of the present paper is to address these problems by introducing a
novel class of numerical schemes for singular diffusion equations. They are based
on an analysis of the dynamical system that results from a space discretisation
of singular diffusion filters for images with 2 × 2 pixels. For this scenario we are
able to derive an analytical solution. It serves as a building block in a numerical
scheme for general 2-D images, since we can assemble these local analytical
solutions by means of an additive operator splitting (AOS) [12, 22] to a global
numerical approximation. Our scheme is very simple, it is absolutely stable and
reveals good rotation invariance. It does not require regularised diffusivities of
type (5). Interestingly, it can also be related to a recently introduced family of
shift invariant wavelet shrinkage methods with coupled shrinkage functions [13].

Our paper is organised as follows. In Section 2 we analyse space-discrete
singular diffusion filters for 2 × 2 images, derive their analytical solutions, and
relate them to Haar wavelet shrinkage of 2 × 2 images. These analytical solu-
tions are used in Section 3 for constructing numerical schemes for 2-D images of
arbitrary size. We analyse their stability and consistency properties, and show
their equivalence to suitable shift invariant wavelet shrinkages. Numerical exper-
iments are presented in Section 4, and the paper is concluded with a summary
in Section 5.

Related Work. Relations between one-dimensional discrete TV diffusion, TV
regularisation and Haar wavelet shrinkage were investigated in [19]. A main
instrument in studying one-dimensional total variation methods were consider-
ations of two-pixel signals. Based on the two-pixel dynamics, a novel scheme for
N -pixel TV diffusion could be established. We may regard our present work as
a two-dimensional extension. The two-dimensional situation, however, turns out
to be significantly more complicated than the one-dimensional scenario. With
respect to TV-diminishing flows along the directions of Haar wavelets, our work
can also be related to a paper by Coifman and Sowa [8]. A regularisation-free
approach to TV regularisation has been proposed by Chambolle [7]. It should
be noted that in our paper we consider the parabolic diffusion case instead of
the elliptic regularisation setting. Moreover, we do not restrict ourselves to the
TV case: Our results hold for any arbitrary singular diffusivity of type (4).

2 Analytical Results for 2 × 2-Pixel Images

We start by examining the simplest nontrivial 2-D images, namely those having
only 2 × 2 pixels. This will provide the basis of our new numerical scheme for
solving singular diffusion equations on N ×M -pixel images.

2.1 Nonlinear Diffusion

We consider the diffusion equation (2) for 2 × 2-pixel images u = (ui,j)
2
i,j=1

with periodic boundary conditions and initial image f = (fi,j)
2
i,j=1. Due to the

periodic boundary conditions every 2 × 2 cell in the extended image
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u2,2 u2,1 u2,2 u2,1

u1,2 u1,1 u1,2 u1,1
u2,2 u2,1 u2,2 u2,1

u1,2 u1,1 u1,2 u1,1

contains exactly the same pixels. This is not true for other boundary conditions,
e.g., reflecting boundary conditions.

We want to find an appropriate space discretisation of (2) that results in an
ordinary system of four differential equations which can be solved analytically.
First we notice that in our 2 × 2 cell there is one distinguished location where
the diffusivity can be optimally approximated, namely the midpoint of the cell.
Therefore we use only the midpoint diffusivity g := g(D(u)) within the whole
image, where

D(u) :=
1
2

(
(u1,1 − u1,2)2 + (u2,1 − u2,2)2 + (u1,1 − u2,1)2 + (u1,2 − u2,2)2

+ (u1,1 − u2,2)2 + (u1,2 − u2,1)2
)1/2

(6)

denotes the discretisation of |∇u| in the midpoint of the cell, if the grid size h := 1
is chosen in both directions. This disretisation is just the average of the two finite
difference discretisations of |∇u| with respect to the usual directions x = (1, 0)T,
y = (0, 1)T and with respect to the 45◦ diagonal directions ξ = 1√

2
(1, 1)T,

η = 1√
2
(1,−1)T, respectively. Next, we discretise the remaining gradient and

divergence of the right-hand side of ∂tu = div(g∇u) with respect to the same
directions.

With the uniform midpoint diffusivity g := g(D(u)), the discretisation related
to x and y leads for i, j = 1, 2 to

u̇i,j = g · (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j),

where the dot denotes time differentiation, and by our boundary conditions to

u̇1,1 = 2g · (u1,2 + u2,1 − 2u1,1) , u̇1,2 = 2g · (u1,1 + u2,2 − 2u1,2) ,
u̇2,1 = 2g · (u1,1 + u2,2 − 2u2,1) , u̇2,2 = 2g · (u1,2 + u2,1 − 2u2,2) .

The discretisation with respect to ξ and η results for i, j = 1, 2 in

u̇i,j = g · 1
2 (ui+1,j+1 + ui−1,j−1 + ui+1,j−1 + ui−1,j+1 − 4ui,j)

and by applying the boundary conditions in

u̇1,1 = 2g · (u2,2 − u1,1), u̇1,2 = 2g · (u2,1 − u1,2),
u̇2,1 = 2g · (u1,2 − u2,1), u̇2,2 = 2g · (u1,1 − u2,2).

Weighted averaging of both discretisations with weights α ∈ [0, 1] and 1−α gives
the ordinary system of differential equations
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u̇1,1 = 2g · (−(1 + α)u1,1 + αu1,2 + αu2,1 + (1 − α)u2,2) ,
u̇1,2 = 2g · (αu1,1 − (1 + α)u1,2 + (1 − α)u2,1 + αu2,2) ,
u̇2,1 = 2g · (αu1,1 + (1 − α)u1,2 − (1 + α)u2,1 + αu2,2) ,
u̇2,2 = 2g · ((1 − α)u1,1 + αu1,2 + αu2,1 − (1 + α)u2,2)

(7)

with initial conditions ui,j(0) = fi,j , i, j = 1, 2. From u̇1,1 + u̇1,2 + u̇2,1 + u̇2,2 = 0
we see that the average grey value μ := 1

4 (f1,1 + f1,2 + f2,1 + f2,2) is preserved
during the diffusion process.

In this paper, we are mainly interested in the case α = 1/2, where system
(7) further simplifies to

u̇i,j = 4g · (μ− ui,j), i, j = 1, 2, (8)

which is a dynamical system with discontinuous right hand side. It is not difficult
to verify that this system possesses the unique analytical solution

ui,j(t) =
{
μ+ (1 − 4p (D(f))−p t)1/p (fi,j − μ), 0 ≤ t < (D(f))p/(4p),
μ t ≥ (D(f))p/(4p).

(9)

For p = 1, particularly, (2) is the TV diffusion equation ∂tu = div (∇u/|∇u|).
The analytical solution of our 2 × 2-pixel version

ui,j(t) =
{
μ+ (1 − 4t/D(f)) (fi,j − μ), 0 ≤ t < D(f)/4,
μ, t ≥ D(f)/4 (10)

shows a linear evolution which can be written in a slightly different form as

ui,j(t) = fi,j + (4t/D(f)) · (μ− fi,j) min{1, D(f)/(4t)}, i, j = 1, 2. (11)

For p = 2, we obtain the BFB diffusion ∂tu = div
(
∇u/|∇u|2

)
. The analytical

solution in the 2 × 2 setting reads

ui,j(t) =
{
μ+

√
1 − 8t/(D(f))2 (fi,j − μ), 0 ≤ t < (D(f))2/8,

μ, t ≥ (D(f))2/8.
(12)

2.2 Haar Wavelet Shrinkage

In [19], it was shown that one-dimensional nonlinear diffusion on two-pixel signals
coincides with Haar wavelet shrinkage if the shrinkage function is chosen in accor-
dance with the diffusivity and the threshold parameter is equal to the diffusion
time. The two-dimensional Haar wavelet transform acts naturally on subsequent
2×2-pixel tiles of an image. Let us choose one such tile, say f := (fi,j)

2
i,j=1, and

explain how it changes under two-dimensional Haar wavelet shrinkage. One cycle
of Haar wavelet shrinkage consists of three steps. In the first step, the analysis
step, the low and high pass Haar filters are applied to the rows and columns of
f . More precisely, f is multiplied from the left and the right by the orthogonal

matrix W := 1√
2

(
1 1
1 −1

)
. This results in an image c := (ci,j)

2
i,j=1 with
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c1,1 = 1
2 (f1,1 + f1,2 + f2,1 + f2,2), c1,2 = 1

2 (f1,1 − f1,2 + f2,1 − f2,2),

c2,1 = 1
2 (f1,1 + f1,2 − f2,1 − f2,2), c2,2 = 1

2 (f1,1 − f1,2 − f2,1 + f2,2).

In the second step, the shrinkage step, we modify the high-pass coefficients by
reducing the absolute values of some or all of them. To this end, we apply a
shrinkage function Sθ depending on a threshold parameter θ to the high-pass
filtered coefficients, i.e. we compute Sθ(c1,2), Sθ(c2,1), Sθ(c2,2) and leave the
low-pass coefficient c1,1 as it is. In the third step, the synthesis step, we perform
just the inverse transform of step 1 on the shrunken image, i.e., since W−1 = W ,
we multiply again from the left and the right by W and obtain

v1,1 = μ+ 1
2 (Sθ(c1,2) + Sθ(c2,1) + Sθ(c2,2)) ,

v1,2 = μ+ 1
2 (−Sθ(c1,2) + Sθ(c2,1) − Sθ(c2,2)) ,

v2,1 = μ+ 1
2 (Sθ(c1,2) − Sθ(c2,1) − Sθ(c2,2)) ,

v2,2 = μ+ 1
2 (−Sθ(c1,2) − Sθ(c2,1) + Sθ(c2,2)) .

In [13], the authors proposed to choose a diffusion inspired shrinkage function
that simultaneously depends on c1,2, c2,1 and c2,2. In contrast to the classical
wavelet shrinkage, this results in an improved rotation invariance of the resulting
image. We use this knowledge and define our shrinkage function in dependence on

D(f) =
(
c21,2 + c22,1 + c22,2

)1/2
.

It is straightforward to check that the value D(f) indeed coincides with the one
defined in (6). Applying the shrinkage function

Sθ(s;D(f)) :=

{
(1 − 4p (D(f))−p θ)1/p

s, D(f) ≥ (4p θ)1/p,
0 D(f) < (4p θ)1/p.

(13)

our Haar wavelet shrinkage produces for i, j = 1, 2 the values

vi,j =

{
μ+ (1 − 4p (D(f))−p θ)1/p (fi,j − μ), D(f) ≥ (4p θ)1/p,
μ, D(f) < (4p θ)1/p.

(14)

Comparing this equation with (9) we observe that on 2 × 2 pixels our Haar
wavelet shrinkage with shrinkage function (13) coincides with the solution of the
nonlinear diffusion equation with diffusivity (4), where the shrinkage parameter
θ plays the same role as the diffusion time t.

3 A Numerical Scheme for Images of Arbitrary Size

Now we consider arbitrary N × M -pixel images u := (ui,j)
N,M
i,j=1 which are ex-

tended to the full planar grid by, e.g., reflecting boundary conditions.
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3.1 Numerical Scheme for Nonlinear Diffusion

We discretise the diffusion equation (2) in space again with respect to the x–y
and ξ–η directions. Approximating gradient and divergence by finite differences
in x and y directions leads to

div (g(|∇u|)∇u)i,j ≈ gi+ 1
2 ,j · (ui+1,j − ui,j) − gi− 1

2 ,j · (ui,j − ui−1,j)

+ gi,j+ 1
2
· (ui,j+1 − ui,j) − gi,j− 1

2
· (ui,j − ui,j−1) .

Again we only want to work with the diffusivities at the midpoints (i+ 1
2 , j+ 1

2 )
of the grid cells. Therefore we approximate gi± 1

2 ,j and gi,j± 1
2

by averaging the
values of the neighbouring cell centers, e.g., gi+ 1

2 ,j ≈ 1
2 (gi+ 1

2 ,j+ 1
2

+ gi+ 1
2 ,j− 1

2
).

We arrive at

div (g(|∇u|)∇u)i,j ≈ 1
2

(
gi+ 1

2 ,j+ 1
2
· (ui+1,j + ui,j+1 − 2ui,j)

+ gi+ 1
2 ,j− 1

2
· (ui+1,j + ui,j−1 − 2ui,j)

+ gi− 1
2 ,j+ 1

2
· (ui−1,j + ui,j+1 − 2ui,j)

+ gi− 1
2 ,j− 1

2
· (ui−1,j + ui,j−1 − 2ui,j)

)
.

(15)

On the other hand, approximation of both gradient and divergence with respect
to diagonal directions ξ, η leads to

div (g(|∇u|)∇u)i,j

≈ 1
2

(
gi+ 1

2 ,j+ 1
2
· (ui+1,j+1 − ui,j) + gi+ 1

2 ,j− 1
2
· (ui+1,j−1 − ui,j)

+ gi− 1
2 ,j+ 1

2
· (ui−1,j+1 − ui,j) + gi− 1

2 ,j− 1
2
· (ui−1,j−1 − ui,j)

)
.

(16)

Weighted averaging of both approximations results in

div (g(|∇u|)∇u)i,j

≈ 1
2

(
gi+ 1

2 ,j+ 1
2
· (αui+1,j + αui,j+1 + (1 − α)ui+1,j+1 − (1 + α)ui,j)

+ gi+ 1
2 ,j− 1

2
· (αui+1,j + αui,j−1 + (1 − α)ui+1,j−1 − (1 + α)ui,j)

+ gi− 1
2 ,j+ 1

2
· (αui−1,j + αui,j+1 + (1 − α)ui−1,j+1 − (1 + α)ui,j)

+ gi− 1
2 ,j− 1

2
· (αui−1,j + αui,j−1 + (1 − α)ui−1,j−1 − (1 + α)ui,j)

)
.

(17)

In the following, we consider diffusivities g defined by (4) and α = 1/2. We set

μk
i,j,++ := 1

4 (uk
i+1,j + uk

i,j+1 + uk
i+1,j+1 + uk

i,j) ,

μk
i,j,+− := 1

4 (uk
i+1,j + uk

i,j−1 + uk
i+1,j−1 + uk

i,j) ,

μk
i,j,−+ := 1

4 (uk
i−1,j + uk

i,j+1 + uk
i−1,j+1 + uk

i,j) ,

μk
i,j,−− := 1

4 (uk
i−1,j + uk

i,j−1 + uk
i−1,j−1 + uk

i,j) .
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Time discretisation via an explicit Euler scheme would yield as fully discretisa-
tion of (2) the naive scheme

uk+1
i,j = uk

i,j + τgi+ 1
2 ,j+ 1

2
· (μk

i,j,++ − uk
i,j) + τgi+ 1

2 ,j− 1
2
· (μk

i,j,+− − uk
i,j)

+ τgi− 1
2 ,j+ 1

2
· (μk

i,j,−+ − uk
i,j) + τgi− 1

2 ,j− 1
2
· (μk

i,j,−− − uk
i,j).

(18)

Here τ denotes the time step size and uk = (uk
i,j)i,j the approximate solution at

pixel (i, j) and time kτ . Unfortunately, due to the singularity of g at zero, this
scheme becomes instable with respect to the maximum-minimum principle for
arbitrary small time steps if neighbouring pixel values become arbitrary close.
We use therefore a different approximation.

The right-hand side of (17) is exactly the average of the four approximations
of div(g∇u) in the 2 × 2-pixel cells that pixel (i, j) belongs to. This inspires the
following simple algorithm to compute one time step of a numerical scheme:

For each pixel (∗) with coordinates (i, j):

• Consider the four cells

∗

(−−)

∗

(+−)

∗

(−+)

∗

(++)

.

• Compute the analytical solutions according to (9).

This gives four approximations

uk+1
i,j,−−, u

k+1
i,j,+−, u

k+1
i,j,−+, u

k+1
i,j,++ .

• Average:

uk+1
i,j = 1

4 (uk+1
i,j,−− + uk+1

i,j,+− + uk+1
i,j,−+ + uk+1

i,j,++) .

(19)

It is worth noting that this averaging scheme is similar to an additive operator
splitting (AOS) scheme [12, 22]. One way to look at a usual AOS scheme is
that it splits e.g. a two-dimensional dynamical system into two one-dimensional
systems, modeling interactions in x and y directions, for which efficient numerical
schemes exist. These numerical schemes are then averaged to approximate the
2D solution. Here, we split the dynamical system with right-hand side (17) into
four dynamical systems belonging to four-pixel cells each of which can even be
solved exactly. Again, an approximation for the solution of the full system is
obtained by averaging.

Stability Analysis. The values of the analytical solution (9) at arbitrary times
t ≥ 0 are convex combinations of its initial values. By its construction from the
analytical solution (9) the novel scheme (19) therefore satisfies the maximum–
minimum principle. Consequently, it is absolutely stable for each τ .
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Consistency Analysis. To analyse consistency, let us for simplicity focus on
the TV flow, i.e., p = 1. Then, by (11) our final scheme reads

uk+1
i,j = uk

i,j + τgi+ 1
2 ,j+ 1

2
· (μk

i,j,++ − uk
i,j) min{1, 1/(4τgi+ 1

2 ,j+ 1
2
)}

+ τgi+ 1
2 ,j− 1

2
· (μk

i,j,+− − uk
i,j) min{1, 1/(4τgi+ 1

2 ,j− 1
2
)}

+ τgi− 1
2 ,j+ 1

2
· (μk

i,j,−+ − uk
i,j) min{1, 1/(4τgi− 1

2 ,j+ 1
2
)}

+ τgi− 1
2 ,j− 1

2
· (μk

i,j,−− − uk
i,j) min{1, 1/(4τgi− 1

2 ,j− 1
2
)} .

(20)

This scheme can be considered as a stabilisation of the explicit scheme (18). It
coincides with (18), and is therefore a consistent approximation for TV diffusion,
if each of the four minimum operations on its right-hand side selects the value
1. This consistency condition is fulfilled for

0 ≤ τ ≤ min{1/(4gi+ 1
2 ,j+ 1

2
), 1/(4gi+ 1

2 ,j− 1
2
), 1/(4gi− 1

2 ,j+ 1
2
), 1/(4gi− 1

2 ,j− 1
2
)} .

For larger τ it is easy to see that linear diffusion ∂tu = Δu is approximated.
This happens in regions where the gradient is already close to zero. In this case,
however, the visual differences between linear diffusion and TV diffusion are
small.

3.2 Equivalence to Shift and Rotation Invariant Wavelet Shrinkage

Ordinary single scale Haar wavelet shrinkage divides the image into disjoint
2 × 2-pixel cells and performs Haar wavelet shrinkage on each of these cells as
prescribed in Subsection 2.2. Unfortunately, this process is neither shift invariant
nor rotation invariant. However, both properties can be achieved with a little
more effort by the following procedure:

1. Shift the original image f++ := (fi,j) one pixel to the right to obtain f−+ :=
(fi−1,j), one pixel down to get f+− := (fi,j−1) and one pixel to the right
and down resulting in f−− := (fi−1,j−1),

2. Perform wavelet shrinkage (14) on the 2 × 2 cells of the four images
f++, f−+, f+−, f−−, i.e., four times ordinary Haar wavelet shrinkage.

3. Shift the resulting images back and compute the average.

Obviously, this procedure describes exactly one time step of size τ = θ of our
novel diffusion scheme (20).

4 Experiments

In Figure 1, we contrast the regularisation-free scheme (20) based on the analyt-
ical 2 × 2-pixel solution for TV diffusion with a standard explicit discretisation.
In this scheme, TV diffusivity is approximated by the regularised TV diffusivity

1/
√

|∇u|2 + ε2. Since the stability condition for explicit schemes imposes to the
time step size a bound which is inversely proportional to the upper bound of the
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Fig. 1. Left: Original image, 93 × 93 pixels. Middle: TV diffusion with standard
explicit scheme, where TV diffusivity is regularised with ε = 0.01, τ = 0.0025, 10000
iterations. Right: TV diffusion with 2 × 2-pixel scheme (20) without regularisation of
diffusivity, τ = 0.1, 250 iterations

Fig. 2. Left: Rotationally symmetric original image, 256 × 256 pixels. Middle: TV
diffusion with standard explicit scheme, ε = 0.01, τ = 0.0025, 12000 iterations. Right:
TV diffusion with 2 × 2-pixel scheme (20), τ = 0.1, 300 iterations

Fig. 3. Left: Original image, 93 × 93 pixels. Middle: Balanced forward–backward
diffusion with standard explicit scheme, ε = 0.1, τ = 0.0025, 160000 iterations. Right:
2 × 2-pixel scheme (20), τ = 0.1, 4000 iterations

diffusivity, a high number of iterations is needed for reasonable ε. It can be seen
that the 2 × 2-pixel scheme and the unregularised TV diffusivity which cannot
be used in the explicit scheme considerably reduce blurring effects caused by the
discretisation.
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Figure 2 demonstrates that although the analytically solvable case of the
2 × 2-pixel cell is not the one with optimal rotational invariance, the rotational
invariance is reasonable anyway.

Figure 3 demonstrates balanced forward–backward diffusion. With equal pa-
rameters, it can be seen again that the 2 × 2-pixel scheme looks sharper by
preserving finer details. Moreover, it is worth mentioning that we took a time
step size that exceeded the largest admissible step size of the explicit scheme by
a factor of 40.

5 Conclusion

We have introduced novel numerical schemes for a favourable class of singu-
lar nonlinear diffusion equations that includes TV and BFB diffusion. These
schemes can be distinguished from other schemes by the fact that they do not
require to regularise the diffusivities. They are based on analytical solutions
for 4-pixel images. Combining these solutions in an AOS-like manner creates
extremely simple algorithms that are absolutely stable in the maximum norm,
conditionally consistent and reveal good rotation invariance. Our experiments
have shown that they gives sharper results at edges than traditional schemes
with regularised diffusivities, even for significantly larger time steps. This more
pronounced tendency to create piecewise constant images is particularly suited
for singular nonlinear PDEs.

It is our hope that this work will inspire more research on numerical schemes
for PDE-based image analysis, in which analytical and numerical concepts
are merged.
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Abstract. The problem of isometry-invariant representation and com-
parison of surfaces is of cardinal importance in pattern recognition
applications dealing with deformable objects. Particularly, in three-
dimensional face recognition treating facial expressions as isometries of
the facial surface allows to perform robust recognition insensitive to ex-
pressions.

Isometry-invariant representation of surfaces can be constructed by
isometrically embedding them into some convenient space, and carry-
ing out the comparison in that space. Presented here is a discussion
on isometric embedding into S

3, which appears to be superior over the
previously used Euclidean space in sense of the representation accuracy.

1 Introduction

The problem of isometry-invariant representation of surfaces arises in numerous
pattern recognition applications dealing with deformable objects. Particularly,
in three-dimensional face recognition, it was shown that facial expressions can
be modelled as isometric transformations of the facial surface [1, 2]. Under this
assumption, the problem of expression invariant face recognition is reduced to
finding similarity between isometric surfaces.

Figure 1 illustrates the problem of isometric surface matching. The first row
(a)-(c) shows three isometric transformations of the same hand (assume that
the fingers do not touch each other, such that the topology is preserved), which,
with a bit of imagination, look like a grenade, a dog and a cobra (d)-(f). In other
words, from the point of view of their extrinsic geometry1, isometric surfaces can
look completely different, while being just instances of the same surface.

1 Formally, intrinsic geometry refers to all the properties of the manifold expressed
in terms of the metric (first fundamental form), and extrinsic geometry refers to
properties expressed in terms of the second fundamental form. We use these terms
in a broader sense, by which extrinsic geometry defines the properties that describe
the way the manifold is immersed in the ambient space.

R. Kimmel, N. Sochen, J. Weickert (Eds.): Scale-Space 2005, LNCS 3459, pp. 622–631, 2005.
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(a) Hand 1

 
(b) Hand 2

 
(c) Hand 3

 
(d) Grenade

 
(e) Dog

 
(f) Cobra

Fig. 1. Illustration of the deformable surface matching problem. (a) - (c): isometries
of a hand. (d) - (f): different objects that resemble the hands from extrinsic geometry
point of view

    

Fig. 2. Several facial expressions of the same person that can be modelled as isometries.
Face data shown by courtesy of Eyal Gordon

Formally, given two complete compact smooth Riemannian manifolds (S, g)
and (Q, h), the diffeomorphism f : (S, g) → (Q, h) is called an isometry if
f∗h = g, where f∗h denotes pullback of the metric. As the result, all the intrinsic
geometric properties of the surface are preserved. Equivalently, an isometry can
be defined as a diffeomorphism preserving the geodesic distances, that is
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(a) Original surface (b) Isometric (c) Non-isometric
transformation transformation

Fig. 3. Illustration of isometric (b) and non-isometric (c) transformations of a sur-
face (a). Isometries do not change the intrinsic geometry of the surface, such that an
imaginable creature living on the surface does not feel the transformation

dS(ξ1, ξ2) = dQ(η1, η2) ∀ξ1, ξ2 ∈ S, η1, η2 ∈ Q. (1)

where dS and dQ denote the geodesic distances induced by g and h, respectively.

2 Bending-Invariant Canonical Forms

Let (S, h) and (Q, h) be two-dimensional Riemannian manifolds (surfaces) re-
lated by an isometry f(S) = Q. In the context of face recognition S and Q
are different expressions of the same face. Since geodesic distances are preserved
under an isometry, they are suitable candidates for an isometry-invariant repre-
sentation of the surface.

However, we should remember that the surfaces S and Q are sampled and
therefore in practice we have two finite metric spaces ({ξ1, ..., ξNS},DS) and
({η1, ..., ηNQ},DQ), respectively. The matrices DS = (dS(ξi, ξj)) and DQ =
(dQ(ηi, ηj)) denote the mutual geodesic distances between the points in S and
Q. There is neither guarantee that S and Q are sampled at the same points, nor
that the number of samples of the two surfaces is the same (NS �= NQ). Moreover,
even if the samples are the same, they can be ordered arbitrarily. This ambiguity
makes impractical the use of D itself as an invariant representation.

2.1 Isometric Embedding

An alternative proposed in [3] is to avoid dealing explicitly with the matrix of
geodesic distances and represent the Riemannian surface as a subset of some
convenient m-dimensional space S ′m, such that the original intrinsic geometry
is preserved. We call such a procedure isometric embedding. This embedding
allows to get rid of the extrinsic geometry, which no more exists in the new
space. As a consequence, the resulting representation is identical for all isometric
transformations of the surface. Another advantage is related to the fact that a
general Riemannian metric is usually inconvenient to work with. The embedding
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space, on the other hand, can be chosen completely to our discretion. That is,
the embedding replaces a complicate geometric structure by a convenient one.

Isometric embedding is a mapping between two finite metric spaces

ϕ : ({ξ1, ..., ξN} ⊂ S,D) → ({ξ′
1, ..., ξ

′
N} ⊂ S ′m,D′) , (2)

such that
d′

ij = dij ∀i, j = 1, ..., N. (3)

The matrices D = (dij) = (d(ξi, ξj)) and D′ = (d′
ij) = (d′(ξ′

i, ξ
′
j)) denote the

mutual geodesic distances between the points in the original and the embedding
space, respectively. Following Elad and Kimmel, the image of {ξ1, ..., ξN} under
ϕ is called the canonical form of (S, g) [3].

In general, such isometric embedding does not exist, and therefore one has to
bear in mind that the canonical form is an approximate representation of the dis-
crete surface. It is possible to find optimal canonical forms in sense of some metric
distortion criterion. Also, the canonical form is not defined uniquely, but up to
any transformation in the embedding space that does not alter the distances
(e.g. in an Euclidean space, such transformations are translations, rotations and
reflections). Yet this ambiguity is much easier to cope with compared to the vast
degrees of freedom in the matrix D.

2.2 The Choice of the Embedding Space

An important question is how to choose the embedding space. First, the geometry
of the embedding space is important. Popular choices include spaces with flat
[4, 3, 5, 6], spherical [7] or hyperbolic [8] geometry. This choice should be dictated
by the convenience of a specific space and the resulting embedding error, which,
in turn, depends on the embedding error definition.

Secondly, the dimension m of the embedding space must be chosen in such
a way that the codimension of ϕ(S) in S ′m is at least 1. The reason is made
clear if we limit our manifolds to be graphs of functions (in our case - functions
of two variables). Sampling of a graph z(x, y) produces a set of points, which
when embedded into R2 (or some other two-dimensional manifold), reflect the
sampling pattern while the intrinsic geometry is captured mainly by the de-
formation of the boundaries of that function. Increasing the sampling rate will
not enhance the intrinsic geometry captured by the embedded space. It would
mainly indicate the x, y parametric shadow, or numerical support in R2 of the
sampled function. On the other hand, when embedded into R3 (or other higher-
dimensional manifolds), the sample points will lie along some two-dimensional
submanifold of R3, and increasing the sampling rate would better capture the
geometry of this submanifold.

Embedding with codimension zero (e.g. embedding of a surface in a plane) is
useful when the manifold is endowed with some additional property, for example,
texture. Such embedding can be thought of as an intrinsic parameterization of
the manifold and has been explored in the context of medical visualization [4],
texture mapping [6] and registration of facial images [9].
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The main focus of present paper is embedding into a three-dimensional sphere
S3. This space appears to be more suitable for embedding of facial surfaces
than the Euclidean space used beforehand in [3, 1, 2]. Embedding into a two-
dimensional sphere S2 was employed by Elad and Kimmel for visualization of
convoluted brain cortical surface [7]. Here, we present embedding into S3 as a
more accurate representation of facial surfaces.

3 Embedding into

A unit2 m-dimensional sphere can be represented as the geometric locations of
all unit vectors in Rm+1

Sm =
{
x ∈ Rm+1 : ‖x‖2 = 1

}
. (4)

For every point on Sm, there exists a correspondence between the parameter-
ization coordinates ξ1, ..., ξm and the unit vector in Rm+1. Given two points
ξi, ξj on the sphere (corresponding to unit vectors xi,xj ∈ Rm+1), the geodesic
distance between them is the great circle arc length, given by

dSm(ξi, ξj) = cos−1(〈xi,xj〉). (5)

Specifically, S3 can be parameterized as

x1(ξ) = cos ξ1 cos ξ2 cos ξ3, (6)
x2(ξ) = cos ξ1 sin ξ2 cos ξ3,
x3(ξ) = sin ξ1 cos ξ3,
x4(ξ) = sin ξ3.

where ξ ∈ [0, π]× [0, 2π]× [0, π]. The geodesic distance is explicitly expressed as

dS3(ξi, ξj) = cos−1( cos ξ1i cos ξ3i cos ξ1j cos ξ3j cos(ξ2i − ξ2j ) + (7)

cos ξ3i cos ξ3j sin ξ1i sin ξ1j + sin ξ1i sin ξ3j ).

We use the normalized weighted stress [10] as the embedding error criterion

ε(Ξ′;D,W) =

∑
i<j wij(d′

ij(Ξ
′) − dij)2∑

i<j d
′2
ij(Ξ

′)
=
A

B
, (8)

where Ξ′ = (ξ′i
j ) is a 3 × N matrix representing the parametric coordinates of

the canonical form points, and D = (dij) and W = (wij) are N ×N matrices of
geodesic distances and weights, respectively. The weight are chosen as wij = 1;
choosing wij ∝ d−2

ij gives the relative stress [10].

2 Without loss of generality, we discuss a unit sphere. The sphere radius is taken into
account by scaling the distances.

S3
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The stress ε(Ξ′;D,W) is minimized w.r.t. Ξ using the BFGS quasi-Newton
algorithm (medium-scale optimization implemented in MATLAB function
fminunc). The gradient of ε(Ξ′;D,W) w.r.t. Ξ′ is given by

∂

∂ξ′l
k

ε(Ξ′;D,W) = B−2
(
B

∂

∂ξ′l
k

A−A
∂

∂ξ′l
k

B

)
, (9)

where
∂

∂ξ′l
k

A = 2
∑

i

wik(d′
ij − dij)

∂

∂ξ′l
k

d′
ik, (10)

∂

∂ξ′l
k

B = 2
∑

i

d′
ik

∂

∂ξ′l
k

d′
ik,

and
∂

∂ξ′l
k

d′
ik = (1 − C2

ik)−1/2 ∂

∂ξ′l
k

Cik,

Cik = cos ξ′1
i cos ξ′3

i cos ξ′1
k cos ξ′3

k cos(ξ′2
i − ξ′2

k ) +
cos ξ′3

i cos ξ′3
k sin ξ′1

i sin ξ′1
k + sin ξ′1

i sin ξ′1
k (11)

4 Numerical Results

The spherical embedding approach was tested on a set of human faces. Facial
surfaces were acquired using a structured light 3D scanner [11] and underwent
preprocessing by cropping, smoothing and subsampling (see details in [2]). The
final surfaces contained about 750 points. An efficient modification of the para-
metric Fast Marching algorithm [12, 13, 14] was used to measure geodesic dis-
tances on the discrete surfaces.

Comparison of canonical form was performed in R4 using the moments sig-
natures. A pqrs moment of the canonical form is defined as

μX′
pqrs =

N∑
i=1

(
x′1

i

)p (
x′2

i

)q (
x′3

i

)r (
x′4

i

)s
, (12)

where X′ = x′i
j denotes the 4×N matrix of R4 coordinates of the canonical form

points, corresponding to the parametric coordinates ξi
j .

Canonical forms were first aligned using an Euclidean transformation, by
eliminating the first-order moments m1000,m0100,m0010,m0001 and the mixed
second-order moments m1100,m1010,m1001,m0110,m0101,m0011. The axes were
reordered according to the second order moments, making the projection onto the
first axis x1 have the largest variance, and onto the fourth axis x4 the smallest
variance. This operation resolves the translation and rotation ambiguities for
non-trivial objects. Next, reflections were applied to each axis xk in order to set

N∑
i=1

sign
(
x′k

i

)
≥ 0. (13)

This operation resolves the reflection ambiguity.
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Fig. 4. Maximum-variance projection onto R
3 of a facial surface embedded into S

3

with radius R = 10cm

   

(a) R = 5cm (b) R = 7.5cm (c) R = 15cm

Fig. 5. Maximum-variance projections onto R
3 of a facial surface embedded into S

3

with different radii

Next, a signature of moments up to the fifth order was computed. The dis-
tance between two canonical forms X′ and Y′ was computed according to the
standard Euclidean distance between their moments signatures:

d2
mom(X′,Y′) =

∑
p+q+r+s=2,..,5

(
μX′

pqrs − μY′
pqrs

)2
. (14)

Figure 4 depicts the maximum-variance projection onto R3 of a canonical
form obtained by embedding into a sphere of radius R = 10cm. Figure 5 depicts
the embedding of the same face into spheres of different radii.

Figure 6 shows the embedding error ε as a function of the sphere radius. The
minimum error is obtained around R = 7.5cm and then increases asymptoti-
cally, as R grows to infinity. The asymptote corresponds to embedding into R3.
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Fig. 6. Embedding error as the function of the sphere radius in cm. The asymptote
R → ∞ corresponds to embedding into R

3

    

(a) Alex (b) Michael (c) Mark (d) Mitya

   

(e) Surprise (f) Disgust (g) Inflate

Fig. 7. (a) - (d) Faces used in the experiment. Alex and Michael are identical twins.
(e) - (g) Representative facial expressions of subject Mark

Therefore, spherical embedding allows to obtain more than twice lower embed-
ding error.

Finally, Figures 2–8 show a toy “face recognition” experiment that was per-
formed on a set of 33 faces of four subjects in the presence of extreme facial
expressions (Figure 2). Figure 8 depicts a two-dimensional visualization of the
similarities (in sense of dmom) between the faces.
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   Neutral    Smile  Anger  Surprise  Disgust  Inflate

Fig. 8. Two-dimensional visualization of dissimilarities between faces. Colors represent
different subjects. Symbols represent different facial expressions

5 Conclusions

We presented the three-dimensional sphere S3 as an alternative to the Euclidean
space used beforehand in [3, 1, 2] to construct expression-invariant representation
of human faces. Using S3 results in smaller embedding error, and leads to a more
accurate representation.
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