

Lecture Notes in Artificial Intelligence 3371
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Michael Wayne Barley Nik Kasabov (Eds.)

Intelligent Agents
and Multi-Agent
Systems

7th Pacific Rim International Workshop
on Multi-Agents, PRIMA 2004
Auckland, New Zealand, August 8-13, 2004
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Michael Wayne Barley
University of Auckland
Department of Computer Science
Private Bag 92019, Auckland, New Zealand
E-mail: barley@cs.auckland.ac.nz

Nik Kasabov
Auckland University of Technology
School of Computer and Information Sciences
Knowledge Engineering and Discovery Research Institute (KEDRI)
Private Bag 92006, Auckland, New Zealand
E-mail: nkasabov@aut.ac.nz

Library of Congress Control Number: 2005922102

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2, F.3

ISSN 0302-9743
ISBN 3-540-25340-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11407997 06/3142 5 4 3 2 1 0

Preface

Autonomous agents and multi-agent systems are computational systems in which
several (semi-)autonomous agents interact with each other or work together to
perform some set of tasks or satisfy some set of goals. These systems may involve
computational agents that are homogeneous or heterogeneous, they may involve
activities on the part of agents having common or distinct goals, and they may
involve participation on the part of humans and intelligent agents.

This volume contains selected papers from PRIMA 2004, the 7th Pacific Rim
International Workshop on Multi-agents, held in Auckland, New Zealand, during
August 8–13, 2004 in conjunction with the 8th Pacific Rim International Confer-
ence on Artificial Intelligence (PRICAI 2004). PRIMA is a series of workshops
on autonomous agents and multi-agents that focusses on the research activities
in the Asian and Pacific Rim countries. PRIMA 2004 was built upon the great
successes of its predecessors.

Fifty-two papers were submitted to the workshop, each paper was reviewed
by three internationally renowned program committee members. After careful
review, 24 papers were selected for this volume. We would like to thank all the
authors who submitted papers to the workshop. We would also like to thank
all the program committee members for their diligent work in reviewing the
papers. We would like to thank our invited speakers, Sandip Sen and Toru Ishida.
Additionally, we thank the editorial staff of Springer for publishing this volume
in the series Lecture Notes in Artificial Intelligence. Lastly, we want to thank
our sponsors, the Auckland University of Technology’s Knowledge Engineering
and Discovery Research Institute (KEDRI), and the University of Auckland’s
Department of Computer Science, for the financial support provided.

December 2004 Mike Barley
Nik Kasabov

PRIMA 2004 Organization

General Chair

Nik Kasabov
KEDRI, Auckland University of Technology
New Zealand
nkasabov@aut.ac.nz

Program Chair

Mike Barley
Department of Computer Science
University of New Zealand
barley@cs.auckland.ac.nz

Local Organizing Committee

Gary Cleveland (University of Auckland)
Stephen Cranefield (University of Otago)
Hans Guesgen (University of Auckland)
Ute Loerch (University of Auckland)
Cameron Skinner (University of Auckland)
Ian Watson (University of Auckland)

VIII Organization

Program Committee

Cristiano Castelfranchi (Italy) Jian Lu (China)
Brahim Chaib-draa (Canada) Xudong Luo (UK)
Joongmin Choi (Korea) John Jules Meyer (The Netherlands)
John Debenham (Australia) Joerg Mueller (Germany)
Klaus Fisher (Germany) Hideyuki Nakashima (Japan)
Chun-Nan Hsu (Taiwan) Ichiro Osawa (Japan)
Michael Huhns (USA) Sascha Ossowski (Spain)
Toru Ishida (Japan) Young-Tack Park (Korea)
Ilkon Kim (Korea) Anita Raja (USA)
Incheol Kim (Korea) Zhongzhi Shi (China)
Minkoo Kim (Korea) Liz Sonenberg (Australia)
David Kinney (Australia) Von-Wun Soo (Taiwan)
Yasuhiko Kitamura (Japan) Toshiharu Sugawara (Japan)
Kazuhiro Kuwabara (Japan) Ron Sun (USA)
Jaeho Lee (Korea) Qijia Tian (China)
Jimmy H.M. Lee (China) Jung-Jin Yang (Korea)
Ho-fung Leung (China) Makoto Yokoo (Japan)
Chao-Lin Liu (Taiwan) Soe-Tsyr Yuan (Taiwan)
Jyi-shane Liu (Taiwan) Zili Zhang (Australia)
Rey-long Liu (Taiwan)

Additional Reviewers

Jamal Bentahar
Emiliano Lorini

Ris Falcone
Fabio Paglieri

Jonathan Teutenberg

Table of Contents

A Combined System for Update Logic and Belief Revision 1
Guillaume Aucher

Using Messaging Structure to Evolve Agents Roles
in Electronic Markets . 18

Ghassan Beydoun, John Debenham, and Achim Hoffmann

Specifying DIMA Multi-agents Models Using Maude 29
Noura Boudiaf, Farid Mokhati, Mourad Badri, and Linda Badri

picoPlangent: An Intelligent Mobile Agent System
for Ubiquitous Computing . 43

Kenta Cho, Hisashi Hayashi, Masanori Hattori, Akihiko Ohsuga,
and Shinichi Honiden

An Approach to Safe Continuous Planning . 57
Gary Cleveland and Mike Barley

Modeling e-Procurement as Co-adaptive Matchmaking
with Mutual Relevance Feedback . 67

Reiko Hishiyama and Toru Ishida

Price Determination and Profit Sharing for Bidding Groups
in Agent-Mediated Auctions . 81

Ming-Chih Hsu and Von-Wun Soo

Agent Based Risk Management Methods for Speculative Actions 92
Yasuhiko Kitamura and Takuya Murao

Handling Emergent Resource Use Oscillations . 104
Mark Klein, Richard Metzler, and Yaneer Bar-Yam

The Role of Agents in Intelligent Mobile Services . 115
Fernando Koch and Iyad Rahwan

A Trust/Honesty Model in Multiagent Semi-competitive Environments . . . 128
Ka-man Lam and Ho-fung Leung

An Image Annotation Guide Agent . 148
Chen-Yu Lee, Von-Wun Soo, and Yi-Ting Fu

A Dedicated Approach for Developing Agent Interaction Protocols 162
Ayodele Oluyomi and Leon Sterling

X Table of Contents

Introducing Participative Personal Assistant Teams
in Negotiation Support Systems . 178

Eric Platon and Shinichi Honiden

A Distributed Workflow System with Autonomous Components 193
Maryam Purvis, Martin Purvis, Azhar Haidar,
and Bastin Tony Roy Savarimuthu

Evaluation of a Multi-agent Based Workflow Management System
Modeled Using Coloured Petri Nets . 206

Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

Supporting Impromptu Coordination Using Automated Negotiation 217
Iyad Rahwan, Connor Graham, and Liz Sonenberg

Specification and Design of Multi-agent Applications Using Temporal Z . . . 228
Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

Bio-inspired Deployment of Distributed Applications 243
Ichiro Satoh

How Agents Should Exploit Tetralemma
with an Eastern Mind in Argumentation . 259

Hajime Sawamura and Edwin D. Mares

Agent-Based Support System for Project Teaming for Teleworkers 279
Kenji Sugawara

An Interface Agent for Wrapper-Based Information Extraction 291
Jaeyoung Yang, Tae-Hyung Kim, and Joongmin Choi

Building Web Navigation Agents Using Domain-Specific Ontologies 303
Jaeyoung Yang, Hyunsub Jung, and Joongmin Choi

Agent-Based System for Confirming User Appointment
Through SMS Callback URL Push . 317

Jung-Jin Yang

Author Index . 329

A Combined System
for Update Logic and Belief Revision

Guillaume Aucher

Department of Computer Science,
University of Otago,

PO Box 56 Dunedin 9015,
New Zealand

aucher@atlas.otago.ac.nz

Abstract. In this paper we propose a logical system combining the
update logic of A. Baltag, L. Moss and S. Solecki (to which we will refer
to by the generic term BMS, [BMS04]) with the belief revision theory as
conceived by C. Alchouròn, P. Gärdenfors and D. Mackinson (that we
will call the AGM theory, [GardRott95]) viewed from the point of view
of W. Spohn ([Spohn90,Spohn88]). We also give a proof system and a
comparison with the AGM postulates.

Introduction and Motivation: Update logic is a modal logic trying to model
epistemic situations involving several agents, and changes that can occur in
these situations due to incoming information or more generally incoming action.
Belief revision theory typically deals with changes (revisions) that a database
representing a belief state of a unique agent must undergo after adding conflicting
information to the database. Roughly speaking, these two theories thus deal
with the same kind of phenomenon. However, there are some dissimilarities. On
the one hand, belief revision theory is not a logic and it deals with a single
agent, unlike update logic. On the other hand, belief revision theory deals with
revision (and expansion) of information unlike update logic which deals only
with expansion of information. Far from being in contradiction, it seems then
that these theories have a lot to give each other. So it makes sense to look for a
way in which they can be merged.

In Sect. 1, we will set out the BMS theory and the AGM theory viewed from
the point of view of W. Spohn. In Sect. 2 we will propose a system combining
these two theories. In Sect. 3, we will give an axiomatization of it with a sound-
ness and completeness proof. In Sect. 4, we will show that it fulfills the 8 AGM
postulates.

1 Update Logic and Belief Revision Theory

1.1 Update Logic

In this section we set out the core of update logic as viewed by BMS. We split this
account into three parts: 1. static part, 2. dynamic part (‘dynamic’ because we

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 1–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Guillaume Aucher

deal with actions) and 3. update mechanism. Throughout this exposition and this
paper we follow a simple example called the ‘coin’ example taken from [BMS04].
This is the following:

“A and B enter a large room containing a remote-control mechanical coin
flipper. One presses the button, and the coin spins through the air, landing in
a small box on a table. The box closes. The two people are much too far to see
the coin. The coin actually heads up.”

1. Static Part. We classically represent the above (static) situation s by the
‘epistemic model’ depicted in Fig. 1.

w : H
A,B ��

A,B

��
v : T��

A,B

��

Fig. 1. BMS model for the ‘coin’ example.

The tokens w and v represent possible worlds. The double border around w
means that it is the actual world. In this world, the coin is heads up. This last
point is rendered formally by assigning the propositional letter H to w, which
stands for ‘the coin is Heads up’. Similarly, in the possible world v the coin is
tails up. this is rendered formally by assigning the propositional letter T to v,
which stands for ‘the coin is Tails up’. This assignment of propositional letters
to worlds is rendered formally by what we call a valuation: see definition below.

The accessibility relation w →A v intuitively means that while A is in world
w where the coin is heads up, he still considers possible that he is in world v
where the coin is tails up (because he does not know whether the coin is heads
or tails up). More generally, we set an accessibility relation w →j v when ‘on
the basis of agent j’s information in world w, the world v is a possible world’.

This epistemic representation of a particular situation is caught by the fol-
lowing general definition:

Definition: We call epistemic model M a tuple M = (W,→j , V, w0) where W is
a set of possible worlds, →j are finitely many accessibility relations indexed by
the agents j, V is a valuation function which assigns a set of possible worlds to
each propositional letter, and w0 is the actual world. �

We can then ‘say things’ about specific epistemic models (modeling specific
situations) by introducing a language whose one of the components is a knowl-
edge operator Kj defined like that:

M, w |= Kjφ iff for all v such that w →j v, M, v |= φ.

Intuitively M, w |= Kjφ means ‘in world w, j Knows that φ’ . We can
then check with this definition that in our example, the epistemic model of
Fig. 1 captures what we want (e.g. the sentence ‘in the actual world, A does

A Combined System for Update Logic and Belief Revision 3

not know whether the coin is Heads or Tails up’ is rendered by the formula
M, w |= ¬KAH ∧ ¬KAT).

See [FHMV95] for an extensive account of what is just outlined here.

2. Dynamic Part. Now we consider the following epistemic action a: ‘A cheats
and learns that the coin is Heads up, B suspecting anything about it’. We use
the term “epistemic” (in “epistemic action”) in the sense that the action doesn’t
change facts in the world. We represent how this action is perceived by the agents
(just as we represented above how a situation is perceived by the agents) by the
action model depicted in Fig. 2.

μ : True

A,B

��

σ : H

A

��

B

��

Fig. 2. BMS action model for the action ‘A cheats’.

The token σ represents the simple action ‘A looks at the coin and observes
that the coin is heads up’. A double border around σ means that it is the actual
action. For this action to be carried out in a particular possible world, the coin
needs to be Heads up in this possible world. That’s the intuitive meaning of the
precondition H in the action model. The token τ represents the simple action
‘nothing happens’. This action can be carried out in any possible world, hence
its precondition is the tautology True, which is true in any possible world.

The accessibility relation σ →B τ intuitively means that ‘while A looks at
the coin and observes that it is heads up (σ), for B nothing actually happens
(τ)’. More generally, we set an accessibility relation σ →j τ when the following
condition is fulfilled: ‘if σ occurs then in j’s view τ is one of the action that
might have happened’.

This epistemic representation of a particular action is caught by the following
general definition:

Definition: We call an action model Σ a tuple Σ= (Σ,→j, P re, σ0) where Σ is a
set of simple action tokens, →j are finitely many accessibility relations indexed
by the agents j, Pre is a function which assigns preconditions to each action
token, and σ0 is the actual action. �

3. Update Mechanism. Now, in reality the agents update their beliefs accord-
ing to these two pieces of information: action a and situation s. This gives rise to
a new situation s× a. This actual update is rendered formally by the following
mathematical update product:

4 Guillaume Aucher

Definition: Let M = (W,→j , V, w0) be an epistemic model and Σ =(Σ,→j, V, σ0)
an action structure. We define their update product to be the epistemic model
M ⊗Σ = (W ⊗Σ,→′

j , V
′, w′

0) where

1. W ⊗Σ = {(w, σ) ∈W ×Σ; w ∈ V (Pre(σ))}.
2. (w, σ) →′

j (v, τ) iff w →j v and σ →j τ .
3. V ′(p) = {(w, σ) ∈W ⊗Σ; w ∈ V (p)}.
4. w′

0 = (w0, σ0). �

Intuitive Interpretation: 1. The possible worlds that we consider after the update
are all the ones resulting from the performance of one of the actions in one of
the worlds, under the assumption that the action can ‘possibly’ take place in the
corresponding world (assumption expressed by the function Pre).

2. The components of our action model are ‘simple’ actions (in the sense of
BMS, see [BMS04] for more precision). It allows us to state that the accessibility
(or uncertainty) relations for the epistemic model and the epistemic action model
are independent from one another. This independence allows us to ‘multiply’
these uncertainties to compute the new accessibility (or uncertainty) relation.

3. The definition of the valuation exemplifies the fact that our actions do
not change facts. (That is why we call them epistemic actions, as already said
above.)

4. Finally, we naturally assume that the actual action can ‘possibly’ take
place in the actual world.

Let us get back to our ‘coin’ example. The update product of Fig. 1 and
Fig. 2 yields the model depicted in Fig. 3. This model presents some flaws and
will be discussed in the rest of the paper.

We have set out the core of update logic as viewed by BMS. Yet, bear in
mind that in [BMS04] a genuine logical system is built out of it, that we do not
expound here.

(t, μ) : H

A,B

��
A,B �� (v, μ)

A,B

��
��

(w, σ) : H

A

		

B

���������
B

��

Fig. 3. BMS model corresponding to the situation after the action ‘A cheats’.

1.2 Belief Revision Theory: W.Spohn’s Approach

In this section, we set out a simplified account of W.Spohn’s approach to belief
revision theory as conceived by AGM (see [GardRott95]).

Generally speaking, belief revision theory deals with changes that must un-
dergo a database representing a belief state of an agent after adding to the
database information. (Note that it deals only with the notion of belief and not
with the one of knowledge like in update logic.)

A Combined System for Update Logic and Belief Revision 5

The format of the database can take two main different forms: syntactic
and semantic. The former consists of a belief set K that consists of propositional
formulas (also called sentences, representing the facts accepted in the belief state)
and that is closed under logical consequences. The latter consists of a set W of
possible worlds (representing the narrowest set of possible worlds in which the
individual believes that the actual world is located). It can be shown that these
two representations are actually equivalent.

The type of change for a state of belief which interests us most is revision
(the other classical ones are expansion and contraction). It consists of adding to
the belief set K a new sentence φ that is typically inconsistent with K. In order
that the resulting belief set K ∗ φ be consistent, some of the old sentences in φ
are deleted. Now two basic questions come up to mind:

1. What general conditions this revised belief set K ∗ φ must fulfill in order
that the revision process be the closest possible to one performed by ratio-
nal agents? This is the concern of the 8 AGM postulates that can be found
in [GardRott95].

2. What sentences should be actually deleted from the belief set in order to
form the new belief set K ∗ φ? In the literature, there are several explicit proce-
dures that compute the new belief set K ∗φ after a revision. We focus on the one
proposed by W.Spohn based on a possible world semantics ([Spohn90,Spohn88]).
His approach satisfies moreover the 8 AGM postulates.

Definition: An ordinal conditional function is a function κ from a given set W
of possible worlds into the class of ordinals such that some possible worlds are
assigned the smallest ordinal 0. �

Intuitively, κ represents a plausibility grading of the possible worlds: the
worlds that are assigned the smallest ordinals are the most plausible, according
to the beliefs of the individual. Then,

Definition: We define κ(φ) as κ(φ) := min{κ(w); w ∈ φ}.
We say that a formula φ is believed (with degree of firmness α) when κ−1(0) ⊆

{w; w ∈ φ} (resp. and κ(¬φ) = α).
The belief set K associated with the ordinal conditional function κ is the set

of all propositions believed in κ. �

Now assume the sentence φ is announced and the agent believes it with
a degree of firmness α. We can then define the resulting ordinal conditional
function κ ∗ (φ, α) representing the new state of belief:

Definition: Let φ be a proposition such that {w; w ∈ φ} 	= ∅. We define the
ordinal conditional function κ ∗ (φ, α) by:

κ ∗ (φ, α)(w) =
{

κ(w)− κ(φ) if w ∈ φ
α + κ(w)− κ(φc) if w ∈ φc. �

Note that in this new belief state, φ is believed with firmness α. Finally,

6 Guillaume Aucher

Proposition: If we define K ∗ φ as the belief set associated with κ ∗ (φ, α), the
revision function * thus defined satisfies the 8 AGM postulates. �

So we have set out update logic and belief revision theory as viewed by W.
Spohn. Now we are going to propose a system combining these two theories and
see what insights it provides us regarding information change. As in the BMS
exposition, we split our account in three parts: 1. Static part 2. Dynamic part
3. Update mechanism (inspired from W. Spohn’s theory).

2 A Combined System

2.1 The Static Part

Definition. Just as in the BMS system, we want to represent how a static
situation is perceived by the agents from the point of view of their beliefs and
knowledge. That is to say, we want to represent what the agents know and believe
about the actual world and also about what the other agents know and believe
in general. We do that thanks to what we call a belief epistemic model.

From now on and in the rest of the paper, Max is an arbitrary fixed natural
number different from 0.

Definition 1. A belief epistemic model (be-model) M = (W, {∼j; j ∈ G},
{κj; j ∈ G}, V, w0) is a tuple where:

1. W is a set of possible worlds.
2. w0 is the possible world corresponding to the actual world.
3. ∼j is an equivalence relation defined on W for each agent j.
4. κj is an operator, ranging from 0 to Max, defined on the set of possible

worlds.
5. V is a valuation.
6. G is a set of agents.

Intuitive Interpretation. Points 1,2,5,6 are clear (see Sect. 1.1). It remains to
give intuitive interpretations for points 3 and 4.

3. The equivalence relation ∼j intuitively models the notion of knowledge. Its
intuitive interpretation is:

w ∼j v iff agent j’s knowledge in w and v is the same.

Note that this implies that j cannot distinguish world w from v (otherwise
she would not have the same knowledge in w and v) and that her information
is the same in w and v. This also implies that ∼j is an equivalence relation, as
mentioned in the definition.

4. The plausibility assignment κj intuitively models the notion of belief. Among
the worlds j cannot distinguish (the worlds where her knowledge is the same),
there are worlds that j might consider more plausible than others. This is ex-
pressed by the plausibility grading κj: the more plausible a world is for the agent

A Combined System for Update Logic and Belief Revision 7

j, the closer its plausibility value is to 0 (this is of course completely similar to
W. Spohn’s approach set out in Sect. 1.2). A maximal degree of plausibility
Max (originally needed for technical reasons: see Sect. 3.1) is introduced and we
assume that beyond a certain degree of plausibility (Max), the agent can not
distinguish two different worlds of different plausibility.

Remark 1. Note that one could argue that this plausibility assignment should
be dependent on the world w in which the agent dwells. This is wrong. Indeed,
in a particular world w, j bases her plausibility assignment only on information
she has in w. Yet this information is the same in any world indistinguishable
from w, as noted in point 3. So the assignment will be the same for any world
indistinguishable from w: that is why we consider a ‘global’ plausibility assign-
ment.

Static Language and Example. We can easily define a language LSt for
be-models (St for Static).

Definition 2. The syntax of the language LSt is defined by,

φ := p | ¬φ | φ ∧ ψ | Kjφ | Bn
j φ where n ∈ N

Its semantics is defined by,

M, w |= Kjφ iff for all v st w ∼j v, M, v |= φ.

M, w |= Bn
j φ iff for all v st w ∼j v and κj(v) ≤ n, M, v |= φ.

The intuitive meaning of M, w |= Bn
j φ is that ‘in world w, j believes with

plausibility (a degree of) at most n that φ is true’. The definition of Bn
j is taken

from [vDL03]. Kj is the usual knowledge operator (see [FHMV95] or Sect. 1.1).

Example 1. Let us get back to the ‘coin’ example introduced in Sect. 1.1. We
model the initial situation in our system by the be-model depicted in Fig. 4. The
same situation is modeled in the BMS system by the model depicted in Fig. 1.

w : H
A,B

v : T

κA(x) = κB(x) = 0 for all x.

Fig. 4. be-model for the ‘coin’ example.

The belief epistemic model depicted in Fig. 5 corresponds to the situation
resulting from the action ‘A cheats and learns that the coin is heads up’ occurring
in the initial situation. We assume moreover that in this action ‘B suspects that
A cheats’, unlike the BMS framework . The labeling of the worlds will become
clear in Sect. 2.3; for the time being, just ignore it. Relations in the model are
equivalence relations; again, H is for ‘Heads’, T is for ‘Tails’ and the double
bordered world corresponds to the actual world.

8 Guillaume Aucher

In this model and in the actual world (w, σ), A knows that the coin is heads
up (formally: KAH) and B believes that A doesn’t know whether the coin is
Heads or Tails (formally: B0

B(¬KAH ∧ ¬KAT)).
The corresponding model of BMS is depicted in Fig. 6 (or Fig. 3.). In this

model, The nuance of concepts (belief B and knowledge K) is not displayed
because we use the same crude accessibility relation →j for both the notions of
knowledge and belief. So, when we read what is true in the actual world (w, σ), we
have personally to introduce this nuance of concept (belief B and knowledge K)
because it is not displayed in the formalism itself. This is of course a flaw of the
BMS system.

(t, μ) : H
A,B

B

(u, μ) : T

(w, σ) : H
B

(v, τ) : T

B

κA(x) = 0 for all worlds x, and κB(w, σ) = α > 0, κB(v, τ) = β > 0,
κB(t, μ) = κB(u, μ) = 0

Fig. 5. be-model corresponding to the situation after the action ‘A cheats’.

(t, μ) : H

A,B

��
A,B �� (v, μ)

A,B

��
��

(w, σ) : H

A

		

B

���������
B

��

Fig. 6. BMS model corresponding to the situation after the action ‘A cheats’.

2.2 The Dynamic Part

Again, just as in BMS, we want to represent how an action is perceived by several
agents from the point of view of their beliefs and knowledge. That is to say, we
want to do the same thing as in the last section, but with an action instead of
a static situation. We do that thanks to what we call a belief epistemic action
model.

Definition 3. A belief epistemic action model (be-action-model) Σ is a tuple
(Σ, {∼j; j ∈ G}, {κ∗

j ; j ∈ G}, P re, σ0) such that:

1. Σ is a set of possible actions.
2. σ0 is the possible action corresponding to the actual action.
3. ∼j is an equivalence relation on Σ indexed by the set of agents.
4. κ∗

j is an operator indexed by the set of agents, ranging from 0 to Max.
5. Pre is a function from the set of simple actions to the formulas of LSt.
6. G is a set of agents.

A Combined System for Update Logic and Belief Revision 9

The intuitive interpretation is very similar to the one spelled out for the no-
tion of a belief epistemic model. So we refer the reader to the previous section for
a correct interpretation of the definition: the term ‘world’ just has to be replaced
by the term ‘action’. The only differences concern the absence of a valuation and
the introduction of the function Pre. Intuitively, Pre(σ) is a necessary condition
for the action σ to be performed in a particular world (see Sect. 1.1).

Here again, ∼j and κj, modeling respectively the notions of knowledge and
belief, are refinements of the crude epistemic relation →j of BMS.
Example 2. We reconsider the example of cheating (see Sect. 1.1): ‘A cheats and
learns that the coin is heads up, B suspecting that A cheats’. We propose the
belief epistemic action model depicted in Fig. 7 for this action (where the double
border corresponds to the actual action and relations are equivalence relations).
In this be-action-model, while ‘A looks at the coin and observes H’ (action σ), B
believes ‘nothing happens’ (action μ) but nevertheless considers plausible (with
plausibility α and β) that A looked at the coin (actions σ and τ respectively),
because she suspects that A has cheated.

The corresponding action model of BMS is depicted in Fig. 8 (or Fig. 2).
Contrary to this one, we add one other possible action, that B may consider
possible: ‘A looks at the coin and observes tail’ (depicted as τ). Indeed, in our
framework, B suspects A of having cheated but doesn’t know whether in that
case A has observed Heads or Tails. Hence we have to consider two possible
actions for cheating: ‘A looks at the coin and observes H’ (action σ) and ‘A
looks at the coin and observes T’ (action τ). The third action μ represents the
action where ‘nothing happens’.

μ : True

B
B

���������

σ : H
B

τ : T

κA(x) = 0 for all x and κB(σ) = α > 0, κB(τ) = β > 0 ,κB(μ) = 0.

Fig. 7. be-action-model for the action ‘A cheats’.

μ : True

A,B

��

σ : H

A

��

B

��

Fig. 8. BMS action model for the action ‘A cheats’.

Example 3. We consider the action consisting of the public announcement ‘A
knows whether the coin is Heads or Tails’ (formally: KAH ∨ KAT). There is
no essential difference between our model (depicted in Fig. 9) and the BMS
model (depicted in Fig. 10) but we need their introduction for the purpose of
the following section.

10 Guillaume Aucher

ρ : KAH ∨ KAT

κA(ρ) = κB(ρ) = 0.

Fig. 9. be-action-model for the action ‘public announcement that A knows whether
the coin is Heads or Tails’.

ρ : KAH ∨ KAT

A,B

��

Fig. 10. BMS action model for the action ‘public announcement that A knows whether
the coin is Head or Tail’.

2.3 The Update Mechanism

We now define the mathematical update product. It is supposed to render the
actual update performed by the agents which follows their apprehension of the
action. The apprehension (or perception) of the action corresponds to what
we modeled in the last section by a be-action-model. Note that this process
(apprehension + update) may be done simultaneously in reality, but in our
formalism we clearly separate it.

Definition 4. Given a belief epistemic model M = (W,∼j , κj, V, w0) and a
belief epistemic action model Σ = (Σ,∼j , κ

∗
j , P re, σ0) we define their update

product to be the belief epistemic model M⊗Σ = (W ⊗Σ,∼′
j, κ

′
j , V

′, w′
0), where:

1. W ⊗Σ = {(w, σ) ∈W ×Σ; w ∈ V (Pre(σ))}.
2. (w, σ) ∼′

j (v, τ) iff w ∼j v and σ ∼j τ
3. κ′

j(w, σ) = CutMax(κ∗
j (σ) + κj(w) − κw

j (φ)) where φ = Pre(σ), κw
j (φ) =

min{κj(v); v ∈ V (φ) and v ∼j w} and

CutMax(x) =
{

x if 0 � x � Max.
Max if x > Max

4. V ′(p) = {(w, σ) ∈W ×Σ; w ∈ V (p)}
5. w′

0 = (w0, σ0).

Intuitive Interpretation. Points 1,2,4,5 have exactly the same interpretation
as in BMS (see Sect. 1.1). It remains to motivate the key point concerning the
update of plausibility, which is inspired from W. Spohn’s ordinal conditional
function κ ∗ (φ, α) (see Sect. 1.2). We will give two justifications. The first one
is ‘intuitive’ and the second one is related to probability theory.

First of all, κ∗
j (σ) + κj(w)− κw

j (φ) is the core of the update. CutMax is just
a minor technical device so that the new plausibility assignment fits into the set
{0, .., Max}. However it has also an intuitive import if we refer to the assumption
motivating the introduction of Max in Sect. 1.1.

1. Now the first justification. We are interested in an update performing a gen-
uine belief revision. So, our rational intuition should guide us in order to deter-
mine the correct plausibility update. In that respect, it seems intuitively clear
that,

A Combined System for Update Logic and Belief Revision 11

‘If you believe an action has taken place, then after the update you should
believe what is then (after the update) true in the worlds where the action has
taken place.’

Or more generally and precisely,

‘In a current world w, if you believe with plausibility κ∗
j (σ) that an action σ

has taken place, then after the update you should believe with plausibility κ∗
j (σ)

what is then true in the worlds where the action has taken place and that you
cannot distinguish from your current world w.’

So we would be tempted to assign roughly to the worlds accessible from w
where the action σ has taken place the plausibility κ∗

j (σ). Yet doing so, we would
lose part of the overtones and information present in the former model amongst
the worlds where the action σ has taken place (and that are accessible from w).
So we add κj(w)−κw

j (φ) to κ∗
j (σ) in order to keep track of and incorporate this

former information (glance at the definition of κw
j (φ)).

2. Now another justification. W. Spohn showed in [Spohn90] that we can draw
a precise and rigorous parallel between probability theory and his plausibility
theory. More precisely, he showed that sum, multiplication, and division of prob-
abilities can be replaced respectively by the minimum, addition, and subtraction
of plausibilities. This will be of interest for us: we will jump from plausibility to
probability, then use probability results to get what we want and finally jump
back to plausibility by translating our probabilistic outcome.

For our purpose, note that we can perfectly replace in this justification plau-
sibility of worlds κj(w) (and actions κj(σ)) by probability of worlds Pj(w) (and
actions Pj(σ) respectively). Now, we want to determine κj(w, σ). That is to say,
in a probabilistic setting, we want to determine Pj(w, σ) = Pj(W ∩A) where W
stands for ‘we were in world w’ and A for ‘action σ occurred in w’. Probability
theory tells us that

Pj(W ∩A) = Pj(A).Pj(W |A).

Clearly,
Pj(A) = Pj(σ).

So it remains to determine Pj(W |A), that is to say the probability that we
were in world w given the extra assumption that action σ occurred in this world.
We reasonably claim

Pj(W |A) =
Pj(w)∑

{Pj(v); w ∼j v and v ∈ V (Pre(σ))} .

That is to say, we conditionalize the probability of w for j (Pj(w)) to the
worlds where the action σ has taken place and that may correspond for j to
the actual world w ({v; w ∼j v and v ∈ V (Pre(σ))}). That is how it would
be done in classical probability theory. The intuition behind it is that we now
possess the extra piece of information that σ occurred in w, so the worlds indis-
tinguishable from w where the action σ did not occur do not play a role anymore

12 Guillaume Aucher

for the determination of the probability of w: we can then get rid of them and
conditionalize on the relevant worlds.

Finally we get:

Pj(w, σ) =
Pj(σ).Pj(w)∑

{Pj(v); w ∼j v and v ∈ V (Pre(σ))} .

Now with the translation from probability to plausibility proved in [Spohn90]
(‘sum → minimum’, ‘multiplication → addition’, ‘division → subtraction’), we
get the expected outcome:

κ′
j(w, σ) = κ∗

j (σ) + κj(w)− κw
j (φ)

Remark 2. The first justification of the plausibility assignment stresses the pri-
ority of the plausibility assignment of the be-action-model upon the plausibility
assignment of the be-model. So in a sense, it stresses also the priority of new
information upon former information, just as in belief revision theory. We think
this is how the plausibility assignment of action should be interpreted.

Remark 3. We have implicitly assumed in these two justifications that the plau-
sibility of the actions are independent from the worlds in which they are per-
formed. However, this is wrong for some cases. Indeed, for example consider a
vague announcement of a formula φ that the agent j cannot distinguish from φ′

because she is not sure whether she heard it correctly. In a ∼j-equivalence class
where the agent j knows more formulas that logically imply φ than φ′, j will find
the announcement φ more plausible than φ′ because she will have more actual
evidence at her disposal to think so. However, in another ∼j-equivalence class
of the same model where the agent j knows more formulas that logically imply
φ′ than φ, j will find the announcement of φ less plausible than φ′ because she
will have less actual evidence that would prompt her to think so.

Example 4. In this example, we are going to see the added value of a combined
system.

Yet, first, let us briefly give an example of update. If we update the be-model
depicted in Fig. 4 by the be-action-model depicted in Fig. 7, we get the be-model
depicted in Fig. 5. That is what we want. (Note that correlatively, in the BMS
system, the update of the model depicted in Fig. 1 by the action model depicted
in Fig. 8 (or Fig. 2) would yield the model depicted in Fig. 6 (or Fig. 3).)

Now in the actual world of the model depicted in Fig. 5 (respectively Fig. 6
for the BMS system), B believes that A doesn’t know whether the coin is Heads
or Tails. Yet, A actually knows whether the coin is Heads or Tails. B’s belief is
consequently wrong. So, what happens if we update these models by a public
announcement that ‘A knows whether the coin is Heads or Tails’? Indeed this
public announcement would contradict B’s beliefs and then B would have to
revise her beliefs.

This public announcement is depicted in Fig. 9 (respectively Fig. 10 for the
BMS system). This update yields the be-model depicted in Fig. 11 (respectively

A Combined System for Update Logic and Belief Revision 13

Fig. 12 for the BMS system). In this be-model (Fig. 11), B now believes that
A knows whether the coin is Heads or Tails, so B did revise her beliefs. On the
other hand, in the BMS model (Fig. 12) B now believes everything. In a sense
we could say that the announcement drives her ‘crazy’ because it contradicts
her beliefs.

So, we see in this example that the BMS system does not perform belief
revision, unlike our system. This is of course a flaw of the BMS system.

((w, σ), ρ) : H
B

((v, τ), ρ) : T

κB((w, σ), ρ) = κB((v, τ), ρ) = 0.

Fig. 11. be-model corresponding to the situation after the announcement ‘A knows
whether the coin is Head or Tail’.

((w, σ), ρ) : H

A

��

Fig. 12. BMS model corresponding to the situation after A has cheated and after the
announcement ‘A knows whether the coin is Head or Tail’.

Generally speaking, it seems that a system allowing for misperception (like
cheating) has to incorporate a revision of belief feature.

2.4 The Full Language L(Σsg)

We extend the static language defined in Sect. 2.1. in order to incorporate the
dynamic feature. This dynamic feature will be displayed in the full language by
the programs and the modality [π].

Let Σsg = (Σ,∼j, κ
∗
j) be a fixed action signature (see [BMS04]).

Definition 5. The syntax of the language L(Σsg) is defined by,

– Sentences φ := True | p | ¬φ | φ ∧ ψ | Kjφ | Bn
j φ | [π]φ where n ∈ N

– Programs π := σψ | π + ρ | π.ρ (see [BMS04])

Its semantics is completely similar to the BMS one (see [BMS04]), except for
the operator Bn

j (see Sect. 2.1).

Intuitively, M, w |= [π]φ says that ‘in world w, after the action corresponding
to the program π has been performed, φ will hold’.

Our system is a semantically driven logical system. So naturally, we can try
to find an axiomatization and a completeness proof for it. That is the concern
of the next section.

14 Guillaume Aucher

3 Logic of Combined Update and Revision

3.1 The Full Proof System

We set out in this section the core of the proof system AX w.r.t. the semantics
of L(Σsg). The core of the sub-proof system AX’ w.r.t. the semantics of LSt

(see Sect. 2.1) is labeled with *. (For a full version of the proof system, see the
web-site http://www.illc.uva.nl/Publications/reportlist.php?Series=MoL.)

1. � [σiψ]p ↔ (ψi → p)
2. � [σiψ]¬χ ↔ (ψi → ¬[σiψ]χ)
3. � [σiψ]φ ∧ χ↔ ([σiψ]φ ∧ [σiψ]χ)
4. � [σiψ]Kjφ↔ {ψi →

∧
{Kj[σkψ]φ; σk ∼j σi}}

5. � [σiψ]Bn
j φ ↔ (ψi →

∧
{Bp−1

j ¬ψk ∧ ¬Bp
j¬ψk → B

n+p−κ∗
j (Pre(σk))

j [σkψ]φ;
σk ∼j σi and p ∈ {0..Max}}) where n < Max.

6. � [π.ρ]φ ↔ [π][ρ]φ
7. � [π + ρ]φ↔ [π] ∧ [ρ]φ
8. *� Kjφ → φ
9. *� Bn

j φ→ KjB
n
j φ for all n ∈ N

10. *� ¬Bn
j φ → Kj¬Bn

j φ for all n ∈ N

11. *� Bn
j φ→ Bn′

j φ for all n ≥ n′

12. *� Kjφ ↔ Bn
j φ for all n ≥ Max.

Axiom 12 is somewhat problematic. Indeed, we ‘jump’ from the notion of
belief with highest plausibility to the notion of knowledge: this is somewhat
mysterious! Note that we could avoid that by allowing an infinite number of
degrees of belief (and then get rid of Max), but then in axiom 5 we would get
an infinite conjunction in the second term.

Moreover, it seems unfortunately impossible to give an intuitive import to
axiom 5.

3.2 Completeness and Soundness Proofs

An exhaustive completeness and soundness proof can be found on the web-
site http://www.illc.uva.nl/Publications/reportlist.php?Series=MoL . We only
provide a sketch of the proof here.

Soundness Proof. We only give the soundness proof of axiom 5. The soundness
of the other axioms can be easily checked or are spelled out in [BMS04].

First, note that in any be-model M ,

Fact: κw
j (φ) = l ⇔M, w |= Bl−1

j ¬φ ∧ ¬Bl
j¬φ.

Now, if we spell out the definition of M, w |= [σiψ]Bn
j φ, we get at a certain

point to the expression CutMax(κ∗
j (σj) + κj(v) − κw

j (ψj)) ≤ n. Yet, n < Max,
so this expression is equivalent to κ∗

j (σj) + κj(v) − κw
j (ψj) ≤ n which is again

equivalent to κj(v) ≤ n + κw
j (ψj) − κ∗

j (σj). That is how the positions of [σiψ]
and Bj are swapped in axiom 5. Finally the value of κw

j (ψj) is determined by
the Fact.

A Combined System for Update Logic and Belief Revision 15

Completeness Proof. First we show:

Theorem 1. AX’ is a sound and strongly complete axiomatization with respect
to the semantics of LSt.

Proof. We use the following canonical model:

M c = (W c,∼j , κj , V) where,
– W c = {wW ; W maximal AX’-consistent set}.
– ∼j= {(wV , wW); V/Kj ⊆W} where V/Kj = {φ; Kjφ ∈ V }.
– κj(wW) = min{n; W/Bn

j
⊆ W}.

– wW ∈ V (p) iff p ∈W .

Lemma 1. For all φ ∈ L(Σsg), there is φSt ∈ LSt such that � φ ↔ φSt

Proof. We prove it by successive inductions (see the web-site mentioned above).
We use in great extent the ‘reduction’ axioms 1 to 5: they all ‘push through’
the epistemic operators and connectives, except for the basic case 1 where [σiψ]
disappears.

Theorem 2. AX is strongly complete with respect to the semantics of L(Σsg).

Proof. Thanks to lemma 1 and the soundness of our logic, the completeness proof
with respect to the semantics of the full language boils down to the completeness
proof with respect to the static language. This last point has been shown in
theorem 1, so we have the expected result.

4 Comparison with the AGM Postulates

To check whether the AGM postulates are fulfilled, we first need to define, rel-
atively to a world w and for an agent j, the belief set, the expanded belief set
and the revised belief set. We will deal with propositional language as in the
AGM theory (see Sect. 1.2). The type of be-action-model we naturally consider
for the update is a public announcement of a propositional formula φ, depicted
in Fig. 13.

σ : φ

κj(σ) = 0 for all j.

Fig. 13. be-action-model for the action ‘public announcement of the propositional for-
mula φ’.

Definition 6. For each world w, we define

– the belief set Kw = {φ ∈ L; M, w |= B0
j φ},

– the revision of the belief set Kw by φ, Kw ∗φ = {ψ ∈ L; M, w |= [σ, φ]B0
j ψ},

– the expansion of the belief set Kw by φ, Kw + φ = {ψ ∈ L; M, w |=
B0

j [σ, φ](φ → ψ)},

where L is the propositional language.

16 Guillaume Aucher

Theorem 3. (If M, w |= ¬Kj¬φ then) * defined by Kw ∗φ satisfies the 8 AGM
postulates.

Proof. The proof is standard and can be found on the web-site
http://www.illc.uva.nl/Publications/reportlist.php?Series=MoL.

Note 1. In the theorem, the assumption within brackets is a natural one.

Remark 4. If we consider the epistemic language (i.e. with knowledge) instead
of the propositional language L for the formation of belief sets, then some AGM
postulates are not fulfilled. This failure is due to the fact that the epistemic
formulas satisfiable in any world may change after an update with a public
announcement (phenomenon called ‘persistence’). Yet, assume we slightly change
the be-action-model depicted in Fig. 13 and replace it with the one depicted in
Fig. 14.

σ : φ
j

τ : ¬φ

κ∗
j (σ) = 0 and κ∗

j (τ) = αj for all agents j.

Fig. 14.

Then the 8 AGM postulates are satisfied for the epistemic language. (For a
proof see the web-site mentioned above.) Indeed, the epistemic formulas satisfi-
able in any world are the same after an update with this type of be-action-model.

Moreover, after the update, φ is believed by all the agents j with firmness
αj in world w (see Sect. 1.2 for a definition of the notion of firmness).

General Conclusion: We have set out a logical system merging update logic
and belief revision theory. This system satisfies the AGM postulates. However,
extending the BMS framework with an accessibility relation for the notion of
belief and updating it by ‘multiplication’ does not perform a revision of belief
but rather an expansion of beliefs.

Nevertheless, our system presents some limitations. First, as mentioned in
remark 3, we assume that the plausibility of an action does not depend on the
world in which it is performed. Unfortunately, we cannot make small variations
to our current system in order to avoid this assumption. This then shrinks the
set of actions we can consider in our system. Second, the relationship between
the notions of knowledge and belief is not properly rendered as it is suggested
in axiom 12, and the theorem ¬Kjφ → Kj¬Kjφ is inadmissible in many types
of situations (although not in our example).

Concerning the second point, we believe one can tackle epistemic issues and
describe (actual) epistemic situations accurately only with an epistemic formal-
ism which renders properly all the nuances and overtones within and between
these notions. This paper is a first step towards it: we enriched and refined our
epistemic formalism by introducing the notion of belief explicitly. Further and
better refinement is the concern of ongoing research.

A Combined System for Update Logic and Belief Revision 17

Acknowledgement

I thank my master’s thesis supervisors Johan van Benthem and Hans van Dit-
marsch for their support during the process of my master’s thesis. I also want to
thank Andreas Herzig, Gary Cleveland and three anonymous referees for their
comments about this paper.

References

[BMS04] A. Baltag, L.S. Moss,and S. Solecki. Logic for epistemic program. In Synthese
Volume 139, Issue, March 2004. Pages: 165 - 224.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about knowl-
edge. MIT Press, Cambridge MA, 1995.

[GardRott95] P. Gardenfors and H. Rott, 1995, ‘Belief Revision’, in D. M. Gabbay, C.
J. Hogger and J. A. Robinson, eds., Handbook of Logic in Artificial Intelligence and
Logic Programming 4, Oxford University Press, Oxford 1995.

[Spohn90] W. Spohn. A general non-probability theory of inductive reasoning. In R.
D. Schachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in
artificial intelligence 4, pages149-15. Norht-Holland, Amsterdam, 1990.

[Spohn88] W. Spohn. Ordinal conditional functions: A dynamic theory of epistemic
states. In W. L. Harper and B. Skyrms,editors, Causation in Decision, Belief
Change, and Statistics, vol.2, pages 105-134. reidel, Dordrecht, 1988.

[vDL03] H.P. van Ditmarsch and W.A. Labuschagne. A multimodal language for revis-
ing defeasible beliefs. In E. Álvarez and R. Bosch and L. Villamil, editors, Proceedings
of the 12th International Congress of Logic, Methodology, and Philosophy of Science
(LMPS), pages 140-141, Oviedo University Press, 2003.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 18–28, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Messaging Structure
to Evolve Agents Roles in Electronic Markets

Ghassan Beydoun1, John Debenham1, and Achim Hoffmann2

1 E-markets group, University of Technology of Sydney, Australia
{ghassan,debenham}@it.uts.edu.au

2 AI group, University of New South Wales, Australia
achim@cse.unsw.edu.au

Abstract. Exogenous dynamics play a central role in survival and evolution of
institutions. In this paper, we develop an approach to automate part of this evo-
lution process for electronic market places which bring together many online
buyers and suppliers. In particular, for a given market place, we focus on other
market places doing similar business, as a form of exogenous evolutionary fac-
tor. Automatically tracking and analyzing how other market places do their
business has a number of difficulties; for example, different electronic markets-
with similar purpose- might use different names for similar agent roles and
tasks. In this paper, we argue that low level analysis of sequences of messages
exchanged between agents within e-markets is an effective mechanism in inte-
grating similar roles specifications, independent of what names these roles – or
even the messages themselves – may take. We focus on the structure of mes-
sages (message schemas), sequences of message schemas, sets of sequences of
message schemas to compare and integrate roles. Using statistical analysis over
such structures we bypass the difficult problem of identifying semantics of roles
and exchanged messages through their human readable names (syntactic
forms). To allow such low level analysis, different e-market specifications are
expressed using the same language. Our language of choice is a recently devel-
oped multi agent systems specification language, Islander 2.0. We illustrate our
approach with example specifications and institutions simulation traces.

1 Introduction

The world is a changing place and evolution is central to survival of any institution.
Continuously, institutions dynamically evolve, it is their very structure which changes
[8] throughout their lifetime. They evolve due to internal interactions within (endoge-
nous) or exogenous interactions without [1]. Examples of endogenous interactions for
a retailing institution are satisfaction surveys provided as buyers leave a store, man-
agement consulting intervention. An important example of exogenous variables inter-
actions is observing how other stores might process their sales. In this paper, we focus
on this second type of evolution due to interactions with external variables. We pre-
sent a framework to automate part of such evolution processes for electronic markets
(e-markets) which are multi-agent systems (MAS) places which bring together many
online buyers and suppliers. For a given market place, we focus on how it can learn
and evolve by considering how other similar market places do business. In other
words, ‘other market places’ is the exogenous evolutionary factor of our interest.

Using Messaging Structure to Evolve Agents Roles in Electronic Markets 19

Much existing e-commerce ontology integration research work attempt to integrate
products description catalogs e.g. [2, 9]. However, our work is distinct, in that we
want to integrate the actual business processes. In other words, it is specifications of
business processes which we want integrate for the purpose of improving the actual
performance of an electronic e-market. Descriptions of behavior of different agents
from different market places are ontological units in our framework.

Automatically tracking and analyzing how other market places do their business
has a number of difficulties; for example, different electronic markets- with similar
purpose- might use different names for similar agent roles and tasks. Syntactic analy-
sis and comparison of agent roles is not sufficient. In this paper, we argue that low
level analysis of sequences of messages exchanged between agents within e-markets
is an effective mechanism in integrating similar roles specifications, independent of
what names these roles -or even the messages themselves- may take. We focus on the
structure of messages (message schemas), sequences of message schemas, sets of
sequences of messages schema to compare and integrate roles. Using statistical analy-
sis over such structures we bypass the difficult problem of identifying semantics of
roles and exchanged messages through their human readable names (syntactic forms).
To allow such low level analysis, different e-market specifications are expressed us-
ing the same language. Our language of choice is a recently developed multi agent
systems specification language, Islander 2.0 [6, 7]. We illustrate our approach with
example specifications of e-markets.

This paper is organized as follows: Sections 2 motivates and describes our e-
market evolution approach in the context of ontology integration and the specific
features of our work in that context. Section 3 presents technical details our approach,
it introduces steps involved in evolving e-markets and illustrates our approach with
example e-market specifications expressed in Islander 2.0. Section 4 analyses the
steps involved theoretically and points to their statistical limits. Section 5 concludes
with a discussion, summary and future work.

2 Evolving e-Markets by Integrating Their Specifications

In this section, we overview the motivation of evolving e-markets using their specifi-
cations. We foreshadow some of the problems and our approach to resolve these
problems, in particular, we highlight those problems associated with ontology integra-
tion efforts in general.

Electronic institutions specification describes the high level aspect of the infra-
structure of a multi agent system which implements the behavior and interactions
between different agents within the system. In the case of e-market, agents would play
the role of online sellers, online buyers, online auctioneers, .. Such high level or socie-
tal [10] aspects of the MAS systems can then be used as an input to development tools
(e.g. JADE [3]) that automatically implements synchronization and low level generic
aspects of the MAS and its agents. Thence nowadays implementing an e-market is
largely a specification task. Against this background of automatic code generation and
electronic distributed interactions, it is becomes more important to model and imple-
ment e-market automatic evolution mechanisms and tools. Without such mechanisms
and tools, continuous manual tinkering of e-market agent systems would eventually
dissipate gains and benefits of the automatic present development frameworks which

20 Ghassan Beydoun, John Debenham, and Achim Hoffmann

are already in use. Further, opportunity for automatic learning from other e-markets
(from the net) would be lost.

Electronic Institutions (and e-markets) are specified as a set of roles (and rules
governing multiple agents and their behavior. Roles are recurring patterns of behavior
of agents. Agents are assigned roles as agents enter an e-market. Roles dictate what
messages can be received or sent by an agent. Roles can overlap between agents
within institutions, and more importantly for our evolutionary goal, they might over-
lap between agents from different institutions which might be similar in purpose or
culture. Agents in different institutions might behave in different ways to solve simi-
lar tasks: better ways for solving similar tasks, or agents in different institutions with
similar intended roles might solve different tasks: there might be scope for broaden-
ing agents’ roles within their institutions. For example, two mortgage brokers A and
B from different lending firms could be achieving similar lending goals, but with
broker A going through a more effective procedure; or borrower B might be doing
more steps which enhance the overall function of the bank, e.g. he might be doing
some the legal checking normally undertaken by the solicitor. In either case, host
institutions would benefit by examining each other’s lending brokers behavior.

We define institutional evolutionary learning as operations on agent roles within an
institution (e.g. e-market). The purpose of these operations is to maximize us-
ing/serving/managing their internal and external agents. These operations include:
extending, restricting or deleting an existing role, adding a new role, or merging two
roles.

Agents in electronic markets with similar tasks might have different names to de-
scribe their roles and tasks. This is the problem of synonymous terms which is inher-
ent in any ontology integration task [4, 9, 11, 12]. On the other hand, two roles in two
different e-markets might not be always the same, but they might overlap under some
conditions. Again, this is a form of the classical overlapping information problem in
ontology integration. In our approach detailed in the rest of this paper, we use exten-
sional definitions of roles, as a set of sequences of message schemas (that is a mes-
sage template). Such level analysis of sequences of messages exchanged between
agents within e-markets bypasses the aforementioned problems.

In our integration approach, we follow a hybrid ontology integration approach as
described in [12]: our e-market specifications are integrated by taking a single speci-
fication at a time, however, a common ontology for low level role descriptions is
assumed. Our chosen common language (ontology) is a recently developed multi
agent systems specification language, Islander 2.0 [7]. This is overviewed in the next
section; where we give a high level description of our integration approach.

3 e-Markets Learning from Each Other

In this section, we first give an overview of the common specification language we
use, Islander 2.0. We then detail our assumptions in integrating two e-market specifi-
cation. We give a high level description of the steps involved in the evolution, from
detecting a possibility for learning from another e-market on the net, to integrating
roles description from the discovered candidate e-market.

Using Messaging Structure to Evolve Agents Roles in Electronic Markets 21

3.1 Islander 2.0

To enable low-level analysis of different e-markets agent roles, we assume a common
language which describes them. We chose the language Islander 2.0 [6, 7]. Using
Islander, an institution is described as a formal specification consisting of three com-
ponents: The dialogical framework which describes the set of roles and the format of
messages exchanged (i.e. the communication language between agents within the
institution); the set of scenes which describe sequences of actions within different
activities taken by groups agents; the performative structure which establishes how
different activities relate in broader context of the institution [6, 7]. A high level
specification of an e-market negotiation_space looks as follows in Islander:

(define-institution negotiation_space as
 dialogic-framework = negotiation_space_df
 performative-structure = negotiation_scenes
 norms = ())

Intra-scene activities are conditioned by messages exchanged and ‘constraints’
which can apply to the whole set of messages exchanged within a scene. Inter-scene
activities are conditioned by inter scene obligations generated as a result of activities
(communication) within a scene. Such obligations constitute a set of institutional
‘norms’. Using Islander assumptions, the activities taken by agents are receiving and
sending messages. Indeed, the lowest level description of all activities generated
within an institution can be expressed as a sequence of messages. The list of permitted
messages for our e-market negotiation_space is shown in Figure 3.2 (Top left). Figure
3.1 shows part of specification for the e-market negotiation_space, which models
mediated negotiation between two generic negotiators (that usually are buyers and
sellers). The figure shows specification of a scene and the list of agent roles within the
market.

The specification in Islander is a description of messages exchanged between
agents and constraints on which agent sends which message and when, according to
the role of the agent and their state in the e-market. In the next section, based on this
view, we describe our evolution framework which uses sets of messages as the basis
of integration.

3.2 e-Market Evolution Framework

We assume that there is a population of e-markets and the structure of each of these e-
markets is available to individual markets within this population. The first question to
an e-market looking out for an exogenous evolutionary source, is which e-markets in
this population it should consider learning from. Secondly, how is this learning im-
plemented. As earlier mentioned, e-market evolution is a special case of institution
evolution which is considered a dynamic evolution [8]. The structure of the e-market
changes as a result.

To identify which individual e-markets may be useful for an evolving market, we
examine the structure of the messages exchanged within. If a high degree of low-level
similarity exists with an external market, then this external market is a candidate for
use as an external evolutionary factor. Our heuristic is based on the idea that a high
degree of similarity at the low level description of market interactions within, may

22 Ghassan Beydoun, John Debenham, and Achim Hoffmann

imply a level of similarity at the high level between markets. This constitutes a first
step ‘DNA test’ before high level checks and integration steps are carried through.

Once a candidate external evolutionary e-market is chosen, the second step is to
examine structural similarity of messages used by individual roles between the
evolved market and the external found market. This prepares candidate sets of roles
for evolutionary operators between different e-markets

As earlier discussed, we define e-market evolution as evolving agent roles. Thus
institutional evolutionary learning can be implemented as operations on agent roles
within an institution (e.g. e-market). An e-market agent role may be extended so that
the agent can send/receive a larger set of messages, it can be restricted to decrease
that set, or finally a new role can be created as a result of examining an external e-
market.

We define a role as a set message schema sequences. We say schema because our
focus is on the structure of messages exchanged within the market rather than their
content. This way we by-pass problems associated with naming within messages.

Defining a role as a set of sequence of message structures, bypasses integration
problems associated with the naming conflict of roles between different markets. This

define-scene negotiation as
 roles = (mediator negotiator)
 scene-dialogic-framework = generic_negotiation
 states = (Negotiator_act Initial_State Mediator_act Exit)
 initial-state = Initial_State
 final-states = (Exit)

acces-states = ((mediator (Initial_State)) (negotiator (Initial_State)))
 exit-states = ((mediator (Exit)) (negotiator (Exit)))
 agents-per-role = (
 (1 <= mediator <= 1)
 (negotiator <= 2))
 connections = (
 (….
 (Mediator_act Exit (inform (!x mediator) (?y negotiator) offer(!good !neg_id

!price)) (= !price !price(Mediator_act, Negotiator_act)))
(Mediator_act Negotiator_act (inform (!x mediator) (?y negotiator) offer(!good
!neg_id ?price)) (notin ?y !y(Negotiator_act, Mediator_act)

 != ?neg_id !neg_id(Negotiator_act, Mediator_act)
 != ?price !price(Mediator_act, Negotiator_act)))
)
)
(define-dialogic-framework generic_negotiation as
 ontology = negotiation
 illocutionary-particles = (inform request failure)
 external-roles = (negotiator)
 internal-roles = (mediator)
 social-structure = (
 (negotiator ssd mediator))

)

Fig. 3.1. Part of Islander specification for mediated e-market negotiation_space. The first part
is the specification of a scene, and the second part (below) is the set of roles within the dialogi-
cal framework.

Using Messaging Structure to Evolve Agents Roles in Electronic Markets 23

also allows to do merge operations, and even when part of role definition is only
available.

Let R1 be a role in institution I1 and R2 a role in institution I2 (I1 and I2 are identi-
fied according to step 1, R1 and R2 are identified according to step 2) then a new role
Rm=R1 R2 is the role resulting from the merging of the two roles. A most general
evolutionary operator would be the set union of tasks of both roles. Applying role
merge operators to ‘promising roles’ (as identified by step 2), is the third step of our
evolutionary framework.

The more accurate the set representation of roles of R1 and R2, the more rewarding
the merge operation and the more effective role Rm would be. Relation between actual
Rm and the theoretical maximum merge possible between roles will be formalized in
section 4. This will be the basis of evaluating the result of the merge and is the fourth
step in our evolution framework.

Only those promising merges are filtered through to the final step. This is to inter-
pret the new sets developed into the broad specification of the evolved e-market.
There are a number of ways to change the specification e.g. adding a new state into
scene (i.e. changing a scene specification), adding a new scene and using this in the
performative structure, or adding a new scene instance within the performative struc-
ture. Note that it is the performative structure which gets used as the design of the e-
market multi agent system.

In summary, given an e-market I1 (formulated using Islander 2.0) to evolve, the
evolution framework is as follows:

1. Using set of possible message structures, identify a candidate e-market as Ie an
external evolutionary factor

2. Using corresponding subset of possible message structures for each role, identify
subset of roles Se in Ie which can be used for merging with a corresponding subset
of roles S1 in I1

3. Merge corresponding roles:
i. For each agent role in S1 and Se generate an extension using the performative

structure of I1 and Ie respectively.
ii. Apply merge operators between corresponding role extensions

4. Evaluate result of merging and filter good ‘merges’ only
5. Map ‘good’ merges back to specification in expressed in Islander 2.0.

In Section 3.3, we show details of steps 1 and 2 from above using required parts
from example Islander e-market specifications. In Section 4, we introduce theoretical
framework to develop steps 4 and 5. Ideas to develop step 6 will be discussed in Sec-
tion 5.

3.3 e-Markets Integration Algorithm

Role merging operations are executed using inputs from roles descriptions from other
institutions similar to the current institution. In our framework, the first step is to
identify candidate institutions where similar agent roles may be encountered. The next
step is to identify which roles within the chosen institutions are worthy of examining
for triggering our roles operations. These two preliminary steps are illustrated with
examples in this section.

24 Ghassan Beydoun, John Debenham, and Achim Hoffmann

Our starting point in this example is the relevant parts of five Islander specifica-
tions1 for five e-markets: negotiation_space (offering a generic space for mediated
negotiation between two agents, potentially a buyer and a seller), lottery, supplychain,
auctionhouse and electricity market. The relevant parts for this step 1 of the market
specifications is the one, which specifies the set of types of messages exchanged be-
tween agents (called ‘ontologies’ in Islander 2.0) shown in figure 3.2. A comparison
matrix is generated between the set of structure of messages exchanged in each e-
market and is shown in table 3.1. It should be noted that the actual structure of the
message is only compared.

At this first step, we are only pursuing ‘potential’ external evolutionary e-market
factors. This comparison is a heuristic based on the idea that the low level similarities
in messaging structure is essential in most high level similarity between different e-
markets. In itself, it is not a guarantee to identify external evolutionary potential. In
our preliminary example, the auctionhouse can be used as an external evolutionary
factor for the negotiation_space e-market.

A 6: Negotiation_space
M1. (String -> boolean)
M2. (String -> boolean)
M3. (String -> boolean)
M4. (String*String*int -> boolean)
M5. (String*String*String -> boolean)
M6. (String*String*int -> boolean)

C 9: SupplyChain
M1. (-> boolean)
M2. (String list*String list*int list*float ->
boolean)
M3. (int*float -> boolean)
M4 (int*float -> boolean)
M5. (String -> boolean)
M6. (String -> boolean)
M7. (String*int -> boolean)
M8. (-> boolean)
M9. (-> boolean)

E 12: ElectricityMarket
M1. (String list*String list*int list*float ->
boolean) (-> boolean)
M2. (int*float -> boolean)
M3. (int*float -> boolean)
M4. (int*float -> boolean)
M5. (int -> boolean)
M6. (int -> boolean)
M7. (-> boolean)
M8. (-> boolean)
M9. (-> boolean)
M10. (-> boolean)
M11. (-> boolean)

B 5: Lottery
M1. (-> boolean)
M2. (-> boolean)
M3. (int list -> boolean)
M4. (-> boolean)
M5. (-> boolean)

D 16: AuctionHouse
m1. (String*String -> boolean)
M2. (int -> boolean)
M3. (-> boolean)
M4. (-> boolean)
M5. (String -> boolean)
M6. (String*int list*String list * long ->
boolean)
M7. (String -> boolean)
M8. (String*int*int -> boolean)
M9. (String*int -> boolean)
M10. (String*int -> boolean)
M11. (String*int*Agent ->boolean)
M12. (String*int -> boolean)
M13. (String -> boolean)
M14. (String*int*String -> boolean)
M15 .(String -> boolean)
M16. (String -> boolean)

Fig. 3.2. The set of e-markets specifications.

1 The last four specifications were downloaded from the website www.iiia.csic.es

Using Messaging Structure to Evolve Agents Roles in Electronic Markets 25

The next step is to identify roles within the found evolutionary factor (e.g. ‘auc-
tionhouse’ e-market) which can be used to evolve roles with the evolving e-market
(e.g. ‘negotiation_space’ e-market). That is, if the e-market negotiation_space is to
use the auctionhouse as an external evolutionary source, in our framework we identify
agent roles within auctionhouse which can be potentially used to evolve or merge
with specific roles within negotiation_space e-market. This information is available
dispersed in the scene specifications in Islander 2.0. We develop a comparison matrix
with the promising evolutionary factor, where the comparison is between roles in each
of the two e-markets. For example, in the negotiation_space there are two roles: nego-
tiator and mediator; and in the most promising external e-market evolutionary factor
auctionhouse there are five agent roles: buyer, seller, guest, auctioneer, roommanager
and staff. The comparison matrix between these roles is shown in table 3.2.

Our similarity measure S (R1, R2) between two roles, R1 and R2, is defined as fol-
lows:

S (R1, R2)= ∑ w∈N Ψ (w, L) + ∑ x ∈O Ψ (x, M) +

∑ y ∈L Ψ (y, N) + ∑ z ∈M Ψ (z, O)

Where, L is the set of message schemas received by R1, M is the set of message sche-
mas sent by R1, N is the set of message schemas received by R2, O is the set of mes-
sage schemas sent by R2. Ψ(m, M) is a function which accepts a message structure m
and calculates a degree of membership of the structure in a set M. It returns 1 if the
exact structure of m exists in M, it returns 0.5 if the structure of m is subsumed by the
structure of some message structure in M and it returns 0.25 if the structure m of sub-
sumes a structure of some message in M.

Table 3.1. Comparison matrix of the five e-markets messages. 0.5 point is allocated to the
measure when the message type of the evolved e-market is a super type of external e-market, it
is 1 point when it is the same (regardless of the ordering of components).

Negotia-
tion_space

Lottery Supply
Chain

AuctionHouse Electricity_market

Negotia-
tion_Space

1 0 2.5/6 4.5/6 0

Lottery 0 1 3.5/5 2/5 5/5

SupplyChain 2.5 3/9 1 5.5 6.5

Auction-House 5/16 3/16 3/16 1 3.5/16
Electric-
ity_Market

0 2.5/12 6.5/12 3.5/12 1

Our similarity function S is non-commutative (hence the matrix is asymmetric).
Moreover, we compare messages sent by R1 to those sent by R2, and those received by
R1 to those received by R2. The roles similarities matrix between the e-markets nego-
tiation_space and auction_house is shown in table 3.2.

According to our heuristic results in table 3.2, the mediator in negotiation_space e-
market might have something to learn from the auctioneer in the auctionhouse. The
negotiator might have something to learn from the staff role in the auctionhouse. The
room manager in the auction house seems to be of little use to the evolution of nego-
tiation_space.

26 Ghassan Beydoun, John Debenham, and Achim Hoffmann

Table 3.2. Comparison matrix between roles in the negotiation space e-market (vertical), and
roles in the auction house e-market (horizontal).

 Buyer Seller Guest Auctioneer Staff Room manager
Negotiator 3 3.5 1.5 2.5 4.75 0
Mediator 1.5 2 0.75 3.0 2.5 0

In the next section, we examine the question of how many instances of messages is
required in the extension of roles so that a merge operation can be meaningful.

4 Theoretical Analysis of Role Merging

A role in an e-market restricts messages sent and received by an agent. A role is de-
fined as a set of sequences of messages. In an e-market, a log of agent performances
can be easily kept and used to generate set extensions for roles. How accurate these
sets represent the intended roles by the e-market designers, depends on the number of
tasks (sequences of messages) which have been performed and logged by agents with
those roles. Simulation of e-markets might produce such logs artificially. In this sec-
tion, we assume extensional definition of roles (from log of tasks or artificially gener-
ated) to evaluate the effectiveness of merge between two candidate roles. The critical
issue of how many examples are required to implement the actual evolution is consid-
ered.

Given a role R1 in institution I1 and a role R2 in institution I2 (which are mergeable
according to the heuristics shown in the previous section), then let Rm=R1 R2 be the
role resulting from the merging of the two roles using the merge operator . A most
general merge operator would be the set union of tasks of both roles. However, it is
not always possible to represent the complete extension of a role. How much Rm re-
flects the merging of intended roles clearly depends on the extensional representation
of R1 and R2, which is an important issue. Clearly, the more examples of the intended
roles R1 and R2 are available, the more accurate can Rm be expected to match the tar-
get role Rt. The target Rt does not need to be precisely specified. It is only indicated
by the message schemas being used, i.e. some examplaes of its full extension are
provided. We assume some arbitrary, fixed but unknown probability distribution P on
the possible set of tasks T. Then we say that a role R deviates from a target role Rt by
, if the probability of randomly selecting a task t according to P such that t is either

part of role R and not part of role S or vice versa is .

Theorem 4.1. Let R1 be a role in institution I1 and R2 a role in institution I2. Let
Rm=R1 R2 be the role resulting from the merging of the two roles. If (Rm \ (R1 ∪
R2)) = ∅ then, the extension of Rm deviates from the target role Rt by at most more
than either of R1 or R2 with probability of at least 1- , where the following inequality
holds: < (1-)1/k where k is the number of randomly generated tasks to test Rm

.

Proof. The condition (Rm \ (R1 ∪ R2)) = ∅ means all tasks generated by Rm have also
been generated by either R1 or R2. If Rm deviates from the target role by more than
than either R1 or R2, then the probability executing a task randomly chosen (according
to P) falling into (R1 ∪ R2) \ Rm is greater than . If that is the case, then the probabil-
ity of not executing a task falling into (R1 ∪ R2) \ Rm among k randomly generated

Using Messaging Structure to Evolve Agents Roles in Electronic Markets 27

tasks is greater or equal to (1-)k. Since the task record (database) containing k tasks
does not contain a task in (Rm \ (R1 ∪ R2)), we obtain < (1-)1/k.. QED

Theorem 4.1 allows to automatically merge two role descriptions: For a required
degree of accuracy it bounds the probability that a merged role definition will devi-
ate from the target role by more than over the maximum deviation by any of the two
merged specifications. I.e. it allows to perform merge operations automatically, if the
probability of an inaccurate result is acceptable. If the chance of obtaining an inaccu-
rate merged role is unacceptably large, a human expert can be requested to approve a
proposed role merge operation.

5 Discussion and Conclusion

Evolution in response to a changing business environment is central to survival of
institutions in general, and e-markets in particular. They dynamically must evolve
continuously throughout their lifetime. In this paper, we focused on e-markets evolu-
tion due to interactions with other e-markets. We presented a framework to automate
part of such evolution processes. For a given market place, we focus on how it can
learn and evolve by considering how other similar market places do business. The
result of the evolution is integration between agents ’roles from different e-markets.

Our integration framework relies on similarity in structures of messages exchanged
between agents. Content of messages is ignored. The idea of this paper is that similar-
ity in communication structure beyond a certain degree implies similarity in content
and purpose on a higher level. Our current comparison of structures relies on examin-
ing the type of the messages. In the near future, we will consider the possibility of
introducing higher-level intermediate structures, e.g. type sets. These are used in some
functional languages, e.g. in Haskell, types int and float could belong to the same type
set Num. Use of types sets would overcome any differences in messages due to the e-
market specification being too domain specific. Currently, names of messages (avail-
able in Islander specification) are not used. Use of names dictionaries could also assist
in detecting similarities which might not be captured by looking at the structure of the
messages.

To complete our role integration framework, we need to map set theoretic merge of
roles- in the form of sets of messages, to Islander specification. In particular the map-
ping required is to the performative structure. This is the component of Islander
specification used to generate Java code implementing the MAS.

Updating the performative structure could take a direct form: adding a new in-
stance of a scene to the performative structure or adding new transitions between
scenes. Alternatively, it could take an indirect form: changing a scene specification
used within the performative structure. This can be achieved by adding a new state, or
a new state transition to the finite state description of the scene.

From past experience, changes at the higher level of the knowledge representation
are more specific and easier to introduce than changes at the lower level of the speci-
fication, which might have some unforeseen side effect (e.g. inconsistencies) [5]. The
decision between the levels of impact of the change might require human interven-
tion. The exact details of this step in updating Islander specifications are currently
work in progress.

28 Ghassan Beydoun, John Debenham, and Achim Hoffmann

References

1. Apesteguia, J.J. Institutions and Institutional Evolution. in Workshop In Political Theory
and Policy Analysis. 1998. Indiana: Indiana University.

2. Baron, J., M. Shaw, and A. Bailey, Web-based E-catalog Systems in B2B Procurement.
Communications of the ACM, 2000. 43(5): p. 93-100.

3. Bellifemine, F., A. Poggi, and G. Rimassa, Developing multi agent systems with a FIPA-
compliant agent framework, in Software Practice and Experience. 2001, John Wiley and
Sons. p. 103-128.

4. Beydoun, G., J.T.F. Breis, et al. Statistical Monitoring of Ontology Integration for Corpo-
rate Memory. in Pacific Rim Knowledge Acquisition Conference (PKAW20002). 2002.
Japan.

5. Beydoun, G. and A. Hoffmann, Theoretical Basis of Hierarchical Incremental Acquisition.
International Journal of Human Computer Interactions, Academic Press, 2001. 54(3): p.
407-452.

6. Esteva, M., Electronic Institutions: From Specification To Development, in Artificial Intel-
ligence Research Insitute. 2003, UAB - Universitat Auton�ma de Barcelona: Barcelona.

7. Esteva, M., D.d.l. Cruz, and C. Sierra. ISLANDER: an electronic institutions editor. in In-
ternational Conference on Autonomous Agents & Multiagent Systems (AAMAS02). 2002.
Italy: ACM.

8. Hurwick, L., Toward Analyzing Institutions and Institutional Change, in Markets and De-
mocracy, S. Bowles, H. Gintis, and B. Gustafsson, Editors. 1993, Cambridge University
Press: New York. p. 51-67.

9. Omelayenko, B. Syntactic-Level Ontology Integration Rules for E-commerce. in 14th
FLAIRS Conference. 2001. Florida, USA: AAAI Press.

10. Rodriguez, J.A., On The Design and Construction of Agent-Mediated Electronic Institu-
tions, in Artificial Intelligence Research Insitute. 2003, UAB - Universitat Auton�ma de
Barcelona: Barcelona.

11. Vargas-Vera, M., E. Motta, et al. MnM: Ontology Driven Semi-automatic and Automatic
Support for Semantic Markup. in Knowledge Engineering and Knowledge Management.
2002. Spain: Springer.

12. Wache, H., T. Vogele, et al. Ontology-Based Integration of Information - A Survey of Ex-
isting Approaches in IJCAI Workshop on Ontologies and Information Sharing. 2001. Seat-
tle.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 29–42, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Specifying DIMA Multi-agents Models Using Maude

Noura Boudiaf1, Farid Mokhati1, Mourad Badri2, and Linda Badri2

1 Département d’Informatique, Université d’Oum El-Bouaghi, Algérie
Boudiafn@yahoo.com, Mokhati@yahoo.fr

2 Département de Mathématiques et d'Informatique
Université du Québec à Trois-Rivières, Canada, G9A 5H7

{Mourad_Badri,Linda_Badri}@uqtr.ca

Abstract. The lack of formalism and rigor in existing multi-agents models of-
ten leads to ambiguities and different interpretations. Those weaknesses com-
bined with the inherent complexity of multi-agents systems generate many
problems in their development process. Using formal notations to specify multi-
agents systems' behavior makes it possible to produce precise description. This
also offers a better support to their verification and validation process. The
Maude language, based on rewriting logic, presents a rich notation supporting
formal specification and implementation of concurrent systems. In this paper,
we demonstrate the feasibility and the interest of formalizing the behavior of
DIMA model’s agents with the Maude language. The elaborated formal ap-
proach captures the inherent aspects of a DIMA model. The generated Maude
descriptions have been validated using the platform supporting this language.
Moreover, the proposed approach is generic and extensible. It offers, in particu-
lar, the advantage of being applicable to all multi-agents systems based on
DIMA architecture and presents interesting extension possibilities.

1 Introduction

Research on Multi-Agents Systems (MAS) always gives an important place to the
study of individual and collective behavior of agents [2]. It is, in fact, difficult to spec-
ify MAS’ behavior without highlighting the behavior of their composing agents. In
the field of agent's behavior specification, three major approaches emerge in the
literature: state-charts based approaches [22, 20], Petri Nets (PN) based approaches
[7, 3] and, finally, approaches representing adaptations of object-oriented specifica-
tion methods [18, 19]. However, these methods offer only semi-formal specifications.
This weakness, combined with the inherent problems of MAS’ specification, often
generates several difficulties and problems in their development process. The numer-
ous underlying concepts of multi-agents models, as well as their complexity, require a
powerful formal model in terms of description. Furthermore, this model must be able
to support the description of diverse important aspects related to MAS' behavior, such
as interactions between agents, and their concurrence at different levels. The presence
of a tool supporting the model, for simulation and verification objectives, is in our
opinion essential.

DIMA model’s architecture, thanks to its modularity features, helps to decompose
the complex behavior of an agent within a set of specialized behaviors. Those diverse
behaviors can eventually be leaded by a meta-behavior [12]. Aside from being con-

30 Noura Boudiaf et al.

sidered as an open system, DIMA allows implementing agents having diverse
granularities (size, internal behavior, knowledge). Moreover, heterogeneity is an im-
portant characteristic of MAS. The major existing systems do not grant the possibility
to implement heterogeneous agents. Unlike others, DIMA supports three types of
heterogeneity: multiplicity of execution platforms, multiplicity of knowledge repre-
sentation formalisms and multiplicity of agent’s models.

Knowing the richness and the complexity of the DIMA model, we retained in our
approach the formal and object-oriented language Maude [13, 16]. The constructs
offered by this language seem interesting and rich enough to capture the multiple
aspects of the DIMA multi-agents model. Maude is, in fact, a formal language based
on a sound and complete logic called the rewriting logic [16]. On certain aspects, it is
close to the language Troll [21], also having a sound semantics. However, the absence
of concurrence within objects in Troll makes Maude more advantages. The G-
ECATNets [6], also represent another interesting and very expressive candidate. They
present a sound integration of ECATNets [4] and of the object paradigm. The ECAT-
Nets are also high-level Petri Nets. They integrate abstract algebraic types and Petri
Nets formalism. The G-ECATNets have, in fact, a representation in the Maude lan-
guage, making them a particular case of Maude. Furthermore, the G-ECATNets do
not dispose of a tool independent of Maude. An execution of a description in G-
ECATNets is exactly like executing their representation in Maude. In this paper, we
demonstrate the feasibility as well as the interest of formalizing agent’s behavior
(individual and social) in DIMA model using the Maude language. The elaborated
formal approach allows capturing the inherent aspects of the DIMA model. The
Maude descriptions generated in the framework of our approach have been validated
using the platform supporting this language. Our approach is generic and extensible. It
has the advantage of being applicable to all MAS based on DIMA architecture and
presents interesting extension possibilities.

The remainder of this paper is organized as follows: In section 2, we give a general
outline on the major related works. We briefly present, in section 3, the DIMA multi-
agents model. In Section 4, we introduce briefly the rewriting logic as well as the
Maude language. Section 5 presents the process we propose to formalize the DIMA
model using Maude. In order to validate the generated descriptions and the adopted
approach, the simulation we realized is illustrated in section 6. In section 7, we give
some conclusions and future work directions.

2 Related Works

Many researches based on previously quoted approaches have been conducted during
the last decade. Tranvouez and al. proposed a formalism supporting the RCA roles
protocol’s descriptions [22]. This formalism, based on state diagrams, is used to rep-
resent agent's behaviors. Cost and al. [7] proposed an approach that allows represent-
ing the conversations between agents using Colored Petri Nets. Furthermore, Odell
and al. proposed AUML [18] as an extension of UML, allowing modeling agent’s
behavior using artifacts such as activity diagrams, state diagrams and sequence dia-
grams. However, AUML remains, like UML, a semi-formal notation. Our approach is
similar, in terms of objectives, to previously quoted approaches. Essentially, it con-
sists of supporting the important step of MAS' specification. However, we adopted a

Specifying DIMA Multi-agents Models Using Maude 31

more formal way in our approach because of the different advantages it procures. It is
based on the formal and object-oriented language Maude [13, 14, 16].

3 DIMA Multi-agents Model

The first steps of MAS development process are very important and must be sup-
ported adequately. During those steps, several major and strategic decisions are taken,
often starting from informal requirements. Those are often incomplete, ambiguous,
contradictory and, in numerous cases, in continuous evolution [1]. Formalizing these
requirements offers several advantages. It allows developers having a formal basis in
the system’s development process. In fact, formal specification greatly contributes to
the production of high quality systems, in particular, in the case of complex systems
such as MAS. Such an approach leads to precise and rigorous descriptions of MAS’
properties, supporting as a consequence their verification and validation process.
MAS' design, as mentioned by many authors, is still anticipated. One of the major
reasons is related to the fact that no standard exists nowadays for an agent’s definition
nor for its internal architecture [9]. Throughout our approach, we opted for the DIMA
agent’s model proposed by Guessoum in [10]. This model is illustrated in figure 1.
Contrary to different hybrid models (Touring Machines [8], InterRRap [17] and the
Bussmann and Demazeau model [5]) that do not offer static planning of the different
modules, the agent in the DIMA model has a supervision module that allows dynami-
cally adapting its behavior to the changes it detects in its environment [11]. The major
advantage of the DIMA model resides in its architecture model that allows producing
modular agents. It also can be considered as an open model [12]. In this paper, we
consider three types of modules: the perception module, the reasoning module
(knowledge based behavior) and, finally, the communication module (procedural
behavior).

3.1 Informal Description of the DIMA Multi-agents Model

Each agent is composed of three modules (perception, reasoning and communication)
representing its behaviors and a supervision module representing its meta-behavior
[11]:

− The perception module manages the interactions between the agent and its envi-
ronment. The major role of this module is to initialize and update a set of data
where are stored the external variables accessible by captors.

− The reasoning module represents the different abilities of the agent. It defines the
adapted response, whether to the request received by the communication module,
or by the evolution of the environment perceived through the perception module.

− The communication module has a mailbox and performs two functions: 1) Recep-
tion of messages from other agents and 2) Sending of messages for communicating
with the agent’s acquaintances or for acting on the environment.

− The supervision module is based on state and transition notions. Those states and
transitions define and ATN (Augmented Transition Network) that is a synthetic and
deterministic representation of the agent’s behavior.

32 Noura Boudiaf et al.

Fig. 1. DIMA.agents’ model

Each of those modules can be found in an active or suspended state. The supervi-
sor’s state that represents an agent’s state at a given moment is expressed in function
of the states of different modules.

3.2 Control Mechanism

The control is on two levels: internal to each agent and inter-agents.

Internal Control. The internal control is managed on three levels:

− Supervision module: an ATN grants the possibility to specify an agent’s behavior
according to its internal states.

− Reasoning module: a meta-level architecture grants the possibility to specify in a
declarative way the reasoning strategies of the agent.

− Internal parallelism: The management process associated to the asynchronous dif-
ferent modules of the agent grants the possibility to specify the allocation of avail-
able resources [10].

Inter-agents Control. The control of complex dynamic systems needs the collabora-
tion of several agents. Agents reason according to their abilities on parts of the global
task to realize. They must coordinate their actions to avoid inconsistencies. The use of
messages as sole communication process does not solve certain problems related to
the sharing of data or resources. Two mechanisms are used: a dependency mechanism
and an anti-interference mechanism. Those two mechanisms are discussed in what
follows.

Dependency Mechanism. The dependency mechanism can be defined on two differ-
ent aspects:

− We associate to each agent a dependency graph giving the list of the other agents
using it for each shared resource.

− The dependency graph is used by the agent to inform other agents about the modi-
fication, the creation or the suppression of a shared resource. It is updated progres-
sively when the production rules using the shared resources are started.

Anti-interference Mechanism. The production rules are written without considering
the interference with other rules. Knowing that they can be started on different loca-
tions and in a concurrent manner, interferences between executions can lead to an

Behaviors

...

Meta-behavior

Supervision
Module

Module 1 Module 2� Module n

Data
Control

Specifying DIMA Multi-agents Models Using Maude 33

incoherent global execution on several base rules. The principle of the anti-
interference mechanism is defined on four aspects:

− Each agent must have a used-resources list giving the list of shared resources pres-
ently used by the agent itself.

− Each agent must have a collection of used-resources list of the shared resources
currently used by the other agents.

− Before starting a rule, the agent consults its collection of used-resources to verify
that the shared resources used by this rule are available. In that case, it adds the
shared resources used by this rule to its own used-resources list.

− At the end of the release, the agent removes from its used-resources list, the shared
resources used by the started rule.

This mechanism allows avoiding all the inconsistencies that can provoke the concur-
rent execution of several interfering rules.

4 Rewriting Logic and Maude Language

4.1 Rewriting Logic

The rewriting logic, having a sound and complete semantics, was introduced by Me-
seguer [16]. It allows describing concurrent systems. This logic unifies most of the
formal models describing concurrency [15]. In rewriting logic, the formulas are called
rewriting rules. They have the following form: R: [t] � [t’] if C. Rule R indicates that
term t becomes (is transformed into) t’ if a certain condition C if verified. Term t
represents a partial state of a global state S of the described system. The modification
of the global state S of the system to another state S’ is realized by the parallel rewrit-
ing of one or more terms expressing partial states.

The distributed state of a concurrent system is represented as a term which sub-
terms represent the different component’s states of the composite state. The concur-
rent state’s structure can have a variety of equivalent representations because it satis-
fies certain structural laws (equivalence class). For example, in an object-oriented
system, the concurrent state that is usually called configuration has the structure of a
multi-set of objects and messages. Therefore, we can see the constructed configura-
tions by a binary operator applied to binary sets:
1. sort Configuration .
2. sort Object .
3. sort Msg .
4. subsort Object < Configuration .
5. subsort Msg < Configuration .
6. op null : -> Configuration .
7. op __ : Configuration Configuration -> Configuration [assoc comm

id : null] .

The previous portion of program gives a definition of three types: Configuration
Object and Msg. Object and Msg are sub-types of Configuration. Objects and mes-
sages are, in fact, multi-set configuration singletons. More complex configurations are
generated from the application of the union on these multi-set singletons (objects and
messages). In the case where there is neither floating messages nor live objects, we
have an empty configuration (line 6). The construction of a new configuration in

34 Noura Boudiaf et al.

terms of other configurations is done with the operation given in line 7. We can see
that this operation has no name and the two under-lines indicate the positions of the
two parameters of configuration type. This operation, which is the multi-set union,
satisfies the structural laws of association and of commutation. It also possesses a
neutral element null. For example, if we have a message M1 that represents a configu-
ration, and an object <O : C|atts > (please note that O an object’s identifier, C the
class to which it belongs and atts is the list of its attributes) that represents in itself
another configuration, then we can construct another configuration in terms of those
two configurations: M1 < O : C | atts >. This one is equivalent to the configuration <
O : C | atts > M1 because the __ operation is commutative.

4.2 Maude

Maude is a specification and programming language based on the rewriting logic [13,
16]. Three types of modules are defined in Maude. The functional modules allow
defining data types and their functions through equations theory. The system modules
allow defining the dynamic behavior of a system. This type of module augments the
functional modules by the introduction of rewriting rules. A maximal degree of con-
currency is offered by this type of module. Finally, there are the object-oriented mod-
ules that can be reduced to system modules. The object-oriented modules explicitly
offer the advantages related to the object paradigm. In relation to the system modules,
the object-oriented modules offer a more appropriate syntax to describe the basic
entities of the object paradigm, like messages or configuration, for example. Only one
rewriting rule allows expressing the consumption of certain floating messages, the
sending of new messages, the destruction of objects, the creation of new objects, state
change of certain objects, etc.

5 Modeling of the DIMA Model Using Maude

In the context of the adopted method for the formalization of the DIMA model, we
developed several modules (figure 2). Some are functional and others are object-
oriented. Because of space limitation reasons, we only give a brief survey of certain
parts of our modeling. They are elaborated enough to illustrate our approach. The
functional modules developed are numerous; therefore we only illustrate some of
them in what follows.

Module RESSOURCE-LIST allows describing the abstract algebraic type ‘list of
resources’. We also define another list, containing identifiers of agents. Module DEP-
MECLIST contains a list’s description (dependency mechanism) in which the ele-
ments are couples. The first element of the couple represents a resource and the sec-
ond is a list of agents having the access right to this resource. Module RESSOURCE-
USE also contains a list of couple’s description. A couple of this list contains the
identifier of an agent followed by a list of resources used by this agent at a given
moment. In what follows, we discuss the object-oriented modules that capture the
inherent aspects of the DIMA model. We use an object-oriented model AGENT to
encapsulate all the components of an agent. This module contains both the structure
and the internal behavior of the agent.

Specifying DIMA Multi-agents Models Using Maude 35

Fig. 2. Module Browser of the application

5.1 Formalizing the Internal Behavior of an Agent

For a formal description of an agent, we propose a class for each ‘agent’s component’
module. In this case, we have four classes modeling the four modules of an agent:
Supervisor, Perception, Reasoning and Communication. We add another class
AgentMec to model the inter-agents controls mechanisms. All those classes are de-
fined within the same AGENT model. Class Supervisor’s definition possesses attrib-
utes idSA, idSP, idSR and idSC to contain, in order, the identifiers of its agents, of the
perception, of the reasoning and of communication:
class Supervisor������ idSA : Aoid, idSP : Poid, idSR : Roid, idSC : Coid,
StateS : SupervisorStateValues����

Types Aoid, Poid and Coid describe the identification mechanism of agent, percep-
tion, reasoning and communication objects. Attribute StateS contains the supervisor’s
state. Now, let’s consider class AgentMec :
class AgentMec | DepMecListAtt : DepMecList, RessourceListAtt : Ressour-
ceList, RessourceUseListAtt : RessourceUseList .

It contains three attributes. Attribute DepMecListAtt defines the access's rights of
the agents to the resources. This attribute is a list of couples, composed of a resource
and a list of agents having the right to use this resource. Attribute RessourceListAtt
contains the resources in progress of utilization by the agent. Finally, the attribute
RessourceUseListAtt is a list of couples composed of an agent’s identifier and of a list
of resources in progress of utilization by that agent. To illustrate the definition of
messages in Maude, we take as an example the definition of message CatchP that
serves to import information to perception from the external environment:
msg CatchP : Poid Information -> Msg .

The dynamic behavior of an agent is expressed using rewriting rules. The interaction
between different components of an agent belongs to this behavior. The quoted rule
below describes how a perception object consumes an external message:

36 Noura Boudiaf et al.

crl [PReceiveMsg]: CatchP(P, IP)� Check(EmptyMsg, MR, MC)
< P : Perception | idPR : R, InfP : EmptyInformation, StateP : Activated
> < R : Reasoning | idRP : P, idRC : C, InfR : IR, StateR : SVR >�
< C : Communication | idCR : R, InfC : IC, StateC : SVC >�
< S : Supervisor | idSA : A, idSP : P, idSR : R, idSC : C, StateS : SVS
> => Check(CheckP(S, P, Activated) , MR, MC)�
< P : Perception | idPR : R, InfP : IP, StateP : Suspended >�
< R : Reasoning | idRP : P, idRC : C, InfR : IR, StateR : SVR >�
< C : Communication | idCR : R, InfC : IC, StateC : SVC >�
< S : Supervisor | idSA : A, idSP : P, idSR : R, idSC : C, StateS :
MappingState(Suspended, SVR, SVC) > if (IP =/= EmptyInformation) .�

In the initial state (left part of the rule), we have the message’s arrival CatchP(P,
IP), the empty attribute infP (Information) and the activated perception’s state. After
rewriting this rule (message consumption), the perception’s state becomes Suspended,
therefore the state of S must be recalculated using function MappingState and percep-
tion sends a message CheckP(S, P, Activated) (within message Check) to prevent
supervisor S for activating it after. The received information IP by the perception
must not be empty after the if-statement. We propose a message Check having three
parameters. Each of those parameters contains an asked activation coming from the
perception, from the reasoning and from the communication. This solution allows the
supervisor to compare the requests and to activate the most urgent one. We can also
choose the solution that consists of activating simultaneously all the modules sending
their requests in parallel. In the following, we have an activation request coming from
perception and another coming from reasoning:
Check(CheckP(S, P, Activated), CheckR(S, R, Activated), EmptyMsg)
=> Check(EmptyMsg, EmptyMsg, EmptyMsg) CheckP(S, P, Activated)
CheckR(S, R, Activated) .

The following rule shows a perfect synchronization between a perception and rea-
soning during sending information from the first to the second:
crl [PsendToR]: Check(MP, EmptyMsg, MC) < P : Perception | idPR : R,
InfP : IP, StateP : Activated >�
< R : Reasoning | idRP : P, idRC : C, InfR������EmptyInformation, StateR :
Activated > < C : Communication | idCR : R, InfC : IC, StateC : SVC >�
< S : Supervisor | idSA : A, idSP : P, idSR : R, idSC : C, StateS : SVS
> => < P : Perception | idPR : R, InfP : EmptyInformation, StateP :
Activated��>�
< R : Reasoning | idRP : P, idRC : C, InfR : IP, StateR : Suspended >�
< C : Communication | idCR : R, InfC : IC, StateC : SVC >�
< S : Supervisor | idSA : A, idSP : P, idSR : R, idSC : C, StateS :
MappingState(Activated, Suspended, SVC) >�
Check(MP, CheckR(S, R, Activated), MC) if (IP =/= EmptyInformation) .

The initial information IP of InfP is put in InfR after applying this rule. In this same
rule, InfP became empty. This rule requires that the perception and the reasoning are
both activated. The reasoning suspends itself when the rule ends and the supervisor
state is recalculated to be adapted to the change of reasoning's state. A condition de-
notes that IP must not be empty.

5.2 Formalizing an Inter-agents Control Mechanism Using Maude

Interactions between agents are described in the module AGENT-INTERACTION.
Especially, the description concerns the synchronization between agents in terms of
resources sharing. If an agent A1 requests the use of resources saved in list L, it con-

Specifying DIMA Multi-agents Models Using Maude 37

firms that those resources are free. Then, it sends this information to all other agents
within its own RessourceUseListAtt. Agent A1 cannot be totally synchronized with all
the other agents within a sole rule. Such synchronization is not possible because the
number of agents is not defined beforehand.

We go through the list RessourceUseListAtt of A1. We take each time the next
agent, named A2, which is in this list. We add the list of resources L requested by A1
in RessourceUseListAtt. Several agents can ask to use the resources in parallel. For
this reason, the next scenario is possible: suppose that we have A1,…, An agents in our
system. Take agent A1 that wants to reserve resources L, it just informed a certain
number of agents but it did not yet informed Ai. Suppose that Ai, in turn, wants to use
resources that are in L. It starts informing the other agents. We can have a situation in
which Ai has contacted agent Ar, which was not yet contacted by Ai. This one cannot
transmit the reservation information of resources to Ar. In this case, A1 blocks itself
and waits for Ai to finish using the resources, and vice-versa. We are confronted with
a deadlock situation. A simple solution to this problem consists of using another ob-
ject called Synchronization. This object has RessourceRequest attribute containing the
agent’s requests during its communication with the other agents to inform them that it
is in progress of utilization of certain resources. In the first contact of agent A1 with
the agent at the head of list RessourceUseListAtt, A1 and the requested resources are
placed in RessourceRequest. The agent removes its request when it finishes informing
all the other agents. The previous scenario cannot take place: when another agent Ai
wants to use the same resources as A1, it is forced to go through Synchronization
object or it must find other resources already requested by another. Also note that
agent A1 puts the list L1 (ConcatRessourceList(L, L1)), which it requests in its own
list of currently used resources attribute L:
crl [AgentAskUseRessources] : UsingRessource(A1, L)�
< A1 : AgenMec | DepMecListAtt : DM1, RessourceListAtt : L1, RessourceU-
seListAtt : RU1� > < Y : Synchronisation | RessourceRequest : RQ > < A2
: AgentMec | DepMecListAtt : DM2, RessourceListAtt : L2, RessourceU-
seListAtt : RU2 >
=> UsingRessource(A1, L) Order(2) < A1 : AgentMec | DepMecListAtt : DM1,
RessourceListAtt : ConcatRessourceList(L, L1), RessourceUseListAtt : RU1
> < Y : Synchronisation | RessourceRequest : (A1 ;; L) :: RQ > < A2 :
AgentMec | DepMecListAtt : DM2, RessourceListAtt : L2, RessourceU-
seListAtt : AddAgentInRessourceUseList((A1 ;; L), RU2) >
if (RessourceListInDepMecList(L, DM1) == true) and
(A2 == 1stAgentElement(ReturnInOrder(RU1, 1))) �and (DisjRessourceList-
WithRessourceUseList(L, RU1) == true) � and (FindInRessourceUseList((A1
;; L), RQ) == false) �and (DisjRessourceListWithRessourceUseList(L, RQ)
== true) and (RU1 =/= EmptyRessourceUseList) .

This rule generates a message Order(2) to converse with the next agent in the list.
The following rules works recursively with the other agents in its list:
crl [AgentAskUseRessources] : UsingRessource(A1, L) Order(N)
< A1 : AgentMec | DepMecListAtt : DM1, RessourceListAtt : L1, Ressour-
ceUseListAtt : RU1 >�
< ��Y : Synchronisation | RessourceRequest : RQ >�
< A2 : AgentMec | DepMecListAtt : DM2, RessourceListAtt : L2, Ressour-
ceUseListAtt : RU2 >�
=> UsingRessource(A1, L) Order(N + 1)
< ��A1 : AgentMec | DepMecListAtt : DM1, RessourceListAtt : L1, Ressour-
ceUseListAtt : RU1 >�

38 Noura Boudiaf et al.

< Y : Synchronisation | RessourceRequest : RQ >�
< A2 : AgentMec | DepMecListAtt : DM2, RessourceListAtt : L2, Ressour-
ceUseListAtt : AddAgentInRessourceUseList((A1 ;; L), RU2) >�
if (A2 == 1stAgentElement(ReturnInOrder(DL, N))) � and (DisjRessource-
ListWithRessourceUseList(L, RU2) == true) � and (FindInRessourceU-
seList((A1 ;; L), RQ) == true) � and (DisjRessourceListWithRessourceU-
seList(L, RQ) == true) �and (RU1 =/= EmptyRessourceUseList) �and (N <
LengthRessourceUseList(RU1)) .

When an agent A1 finishes communicating with all the other agents of its list, (N >
LengthRessourceList(RU1)), it makes disappear messages UsingRessource(A1, L) and
Order(N) to stop the communication process as following :
crl [AgentAskUseRessources] : UsingRessource(A1, L) Order(N)
< A1 : AgentMec | DepMecListAtt : DM1, RessourceListAtt : L1, Ressour-
ceUseListAtt : RU1 > < Y : Synchronisation | RessourceRequest : RQ > =>
< A1 : AgentMec | DepMecListAtt : DM1, RessourceListAtt : L1, Ressour-
ceUseListAtt : RU1 > < Y : Synchronisation | RessourceRequest :
EliminateRessourceUseElement((A1 ;; L), RQ) >
if (N > LengthRessourceUseList(RU1)) .

An agent must remove resources from all RessourceUseListAtt of the other agents
to get such resources free. We define rewriting rules to describe this operation. A first
rule specifying the liberation process of resources by the agent is as following :
crl [AgentLetRessources] : LetRessource(A1, L)�
< A1 : AgentMec | DepMecListAtt : DM1, RessourceListAtt : L1, Ressour-
ceUseListAtt : RU1 > < A2 : AgentMec | DepMecListAtt : DM2, Ressource-
ListAtt : L2, RessourceUseListAtt : RU2 >
=> LetRessource(A1, L) Order(2)
< A1 : AgentMec������DepMecListAtt : DM1, RessourceListAtt : L1, Ressour-
ceUseListAtt : RU1 >
< A2 : AgentMec | DepMecListAtt : DM2, RessourceListAtt : L2, Ressour-
ceUseListAtt : EliminateRessourceListFromRUList ((A1 ;; L), RU2) > if
(A2 == 1stAgentElement(ReturnInOrder(RU1, 1)))����and (RU1 =/= EmptyRes-
sourceUseList) .

A second rule describes the contact of this agent with the others by removing the
free resources from RessourceUseListAtt of each agent. A third rule ends the libera-
tion process between the concerned agent and the others. We only explain the first.
When agent A1 finishes using the resources in list L, it generates message LetRes-
source(A1, L). Agent A1 contacts the agent at the head of its RessourceUseListAtt list
and it removes itself from the list of this agent (EliminateRessourceUseElement((A1;
L), RU2)).

5.3 Integrity Constraints

To control the system’s state, we introduced a part of Maude’s code that insures the
respect of certain constraints. We introduced a control on the initial state relative to
the internal structure of a system and another on the configuration of the agent’s
community when they interact. The constraints related to this last case are devised in
three points that can lead to an inconsistent state of the system. The first point guaran-
tees that all resource lists currently being used by all agents are disjoined two by two
in any system’s state. In the second, we verify that the lists used by the anti-
interference mechanism are identical. In the last, we verify that each list of resources
currently used by the agents do not contain duplicates. We propose function Coher-

Specifying DIMA Multi-agents Models Using Maude 39

entStateVerification having as parameter a configuration and returning a configura-
tion. This function verifies that the initial configuration is perfectly coherent. Function
CoherentStateVerification returns the configuration itself if it is coherent; otherwise it
returns an error message configuration Incoherent-System-State.
eq CoherentStateVetification(C) =
if (CoherentRessourceList(C) == true) and (CoherentRessourceUseList(C)
== true) and (DisjointResssourceList(C) == true) then C else Incoher-
ent-System-State fi .

This function calls three other functions, each one has as parameter a configuration
and returns a boolean. Function DisjointRessourceList(C) extracts the currently used
resources by the agents and verifies that they are completely disjoint. Function Co-
herentRessourceUseList(C) verifies that the lists used by the anti-interference mecha-
nism are identical. Finally, the function CoherentRessourceList returns a positive
response if each one of the resources lists currently used by an agent does not contain
duplicates.

6 Simulation and Validation of a Multi-agents Model Using Maude

The rewriting logic offers a great flexibility in terms of simulation of a specification,
in particular, concerning the choice of the initial configuration. Using all the system’s
description, we can validate a part of the system without involving the rest. We put
forward the difference between the simulation of the internal behavior of an agent and
the one related to the behavior of a group of agents in terms of information exchange
and sharing of resources. The results of the first simulation do not affect the results of
the second one. Because of space limitation reasons, we present only the validation of
the internal behavior of an agent. For a validation of the internal behavior of an agent,
we choose an initial configuration that contains solely the models related to this agent.
In this case, the executed rules are only those relevant to the internal behavior of the
agent. The same method is adopted when validating the relational behavior between
agents.

6.1 Simulation and Validation of the Internal Behavior of an Agent

We worked on the simulation of several aspects related to the dynamic behavior of the
agents. We also consider: (1) the behavior that begins by capturing a message by the
perception module and ends by its sending away (environment or another agent) by
the communication module and, (2) the behavior that is related to the reception of a
message by the communication module and its sending by the reasoning module. We
also can have the two cases together. We take an example of the first case with a
given initial configuration:
CatchP(P, ExampleInformation) Check(EmptyMsg, EmptyMsg, EmptyMsg)
< P : Perception | idPR : R, InfP : EmptyInformation, StateP : Activated
> < R : Reasoning | idRP : P, idRC : C, InfR������EmptyInformation, StateR
: Suspended > < C : Communication | idCR : R, InfC : IC, StateC : Sus-
pended > < S : Supervisor | idSA : A, idSP : P, idSR : R, idSC : C,
StateS : State3 >

The infinite rewriting process (without indicating the number of rewriting steps) of
this configuration gives the following result:

40 Noura Boudiaf et al.

< P : Perception | idPR : R, InfP : EmptyInformation, StateP : Activated
> < R : Reasoning | idRP : P, idRC : C, InfR������EmptyInformation, StateR
: Suspended > < C : Communication | idCR : R, InfC : InsertInOrderQ((A ;
A1 ; ExampleInformation ; PR), IC), StateC : Activated > < S : Supervi-
sor | idSA : A, idSP : P, idSR : R, idSC : C, StateS : State2 >
Check(EmptyMsg, EmptyMsg, EmptyMsg)

The perception receives information from the environment and transmits it to the
reasoning. This last entity starts its own internal rules and constructs a message des-
tined to agent A1 (A1 ��) with a priority flag of PR. The reasoning module sends a
message to the communication module. Communication integrates the message in its
sending queue, organized by priority. The rewriting of our initial configuration stops
at this level because it contains the internal description of an agent A, not A1’s. This
gives us the advantage of validating separately the parts of the specification. The
rewriting of a configuration can also be limited by the number of rewriting steps,
which allows us controling the intermediary steps. The rewriting of the previous ini-
tial configuration in 10 steps gives the following result:
< P : Perception | idPR : R, InfP : EmptyInformation, StateP : Activated
> < R : Reasoning | idRP : P, idRC : C, InfR������ExampleInformation,
StateR : Suspended > < C : Communication | idCR : R, InfC : IC, StateC :
Suspended > < S : Supervisor | idSA : A, idSP : P, idSR : R, idSC : C,
StateS : State3 > CheckR(S, R, Activated) Check(EmptyMsg, EmptyMsg,
EmptyMsg)

We can rewrite the resulting configuration with a certain number of steps. Also,
note that the initial state proposed is incoherent (for example, the value of the supervi-
sor’s state is not state3 but state0, which does not correspond to Activated, Suspended,
Suspended respectively for perception, reasoning and communication), we have in
this case an error message.

6.2 Implementation

Figure 3 illustrates a part of the programming code we developed. It visualizes both
the rewriting rule describing an agent’s behavior when it captures an external event
from its environment and the rewriting process limited to a certain number of steps

Fig. 3. Part of the developed code

Specifying DIMA Multi-agents Models Using Maude 41

(here 10 steps) of an initial configuration. The result of the rewriting process on the
previous initial configuration after 10 steps is indicated in figure 4.

Fig. 4. Intermediary result (after 10 steps) of the rewriting process of the initial configuration

7 Conclusions and Future Work

In this paper, we proposed an approach based on the formal and object-oriented lan-
guage Maude to formalize the behavior of agents of the DIMA model. Throughout the
paper, we demonstrated the ability of this language to describe this type of system.
The DIMA model presents an architectural model allowing to produce modular
agents. It can also be seen as an open model. This model uses both the internal con-
currency of an agent (between the different components of an agent) and the inter-
agents concurrence. Using the Maude language we captured all these aspects, includ-
ing concurrence.

The Maude language is supported by a tool. Aside from modeling, this allowed us
performing a validation (based on a simulation) of our method. Our model is reusable
and extendable. This reusability is expressed by the decomposition we performed.
The validation of the internal behavior of the agents does not affect the collective
behavior, and vice-versa. This is possible because of the high abstraction level of this
language as well as its characteristic of being executable. The application of this ap-
proach on a real project is in progress.

References

1. Amyot, D., Logrippo, L., Burh, R.J.A.: Spécification et Conception de Systèmes Commu-
nicants: une Approche Rigoureuse Basée sur des Scénarios d’Usage. In: G. Leduc (Ed.),
CFIP 97, Ingénierie des protocoles, Liège, Belgium, Hermès, (1997) 159-174

2. Andriamasinoro, F., Courdier, R.: Un Modèle Dynamique de Comportement Agent à Base
de Besoins. In Journées Francophones sur l’IAD et les SMAs (JFIADSMA’01), Montréal,
Québec, Canada (2001)

42 Noura Boudiaf et al.

3. Bakam, I., Kordon, F., Le Page, C., Bousquet, F.: Formalization of a Spatialized Multi-
agent Model Using Coloured Petri Nets for the Study of a Hunting Management System.
First International Workshop, FAABS 2000, Greenbelt, MD, USA, April 2000. FAABS
(2000)

4. Bettaz, M., Maouche, M.: How to specify Non Determinism and True Concurrency with
Algebraic Term Nets. LNCS, N 655, Spring Verlag, Berlin, (1992) 11-30

5. Bussmann, S., Demazeau, Y.: An agent model combining reactive and cognitive capabili-
ties. Proc of IEEE International conference on intelligent Robots and Systems - IROS’S
94, Munchen (1994)

6. Chaoui, A., Bouzenada, M.: G-ECATNets: An Object Petri Net-Based Framework for the
Modular Design of Complex Information Systems. ISIICT’2001 (2001)

7. Cost, R., and al.: Modeling Agent Conversations with colored Petri Nets. Working Notes
of the Workshop on Specifing and Implementing Conversation Policies, Autonomous
Agents’99, Seattle, Washington (1999)

8. Ferguson, I. A.: On supporting rational behavior in real time multi-agent domains. Proc.
Of AAAI Full Symposium on Rational Agency: concepts, theories, models and applica-
tions, Cambridge, MA, November, (1995) 61-65

9. Franchesquin, N., Espinasse, B.: Analyse multi-agents de la gestion hydraulique de la ca-
mangue: considérations méthodologiques. Communication soumise à JFIADSMA’2000,
2-4 oct 2000 Saint Etienne (2000)

10. Guessoum, Z.: Un Environnement Opérationnel de Conception et de Réalisation de
Systèmes Multi-agents. Thèse de l’Université Paris 6, LAFORIA (1996)

11. Guessoum, Z., Briot, J-P., Dojat M.: Des objets concurrents aux agents autonomes.
JFIADSMA’ 97, J. Quinqueton, M.C. Thomas et B. Trousse (eds.), Hermès, (1997) 93-
106

12. Guessoum, Z.: Modèles et Architéctures d’Agents et de Systèmes Multi-Agents Adapta-
tifs. Dossier d’habilitation à diriger des recherches de l’Université Pierre et Marie Curie,
(2003)

13. Clavel, M. and al.: Maude: Specification and Programming in Rewriting Logic. Internal
report, SRI International (1999)

14. McCombs, T.: Maude 2.0 Primer, Version 1.0. Internal report, SRI International (2003)
15. Meseguer, J.: Rewriting as a unified model of concurrency. In Proceedings of the Con-

cur’90 Conference, Amsterdam, Springer LNCS Vol. 458 (1990) 384-400
16. Meseguer, J.: A Logical Theory of Concurrent Objects and its Realization in the Maude

Language. In G. Agha, P. Wegner, and A. Yonezawa, Editors, Research Directions in Ob-
ject-Based Concurrency. MIT Press (1992)

17. Muller, J-P., Pischel, M.: Modeling reactive behavior in vertically layered agents architec-
tures. Proc of ECAI’94, Amsterdam, (NL) (1994) 709-713

18. Odell, J., Parunak, H. V. D., Bauer, B.: Representing agent Interaction protocol In UML.
Conférence AAAI Agents 2000, Barcelone (2000)

19. Odell, J., Parunak, H. V. D., Bauer, B.: Representing agent Interaction protocol In UML.
Agent Oriented Software Enginering, Paolo Ciancarini and Michael Wooldridge (eds.),
Springer-Verlag, Berlin, (2001) 121-140

20. Paurobally, S., Cunningham, J.: Achieving Common Interaction Protocols in Open Agent
Environments. 2nd international workshop on Challenges in Open Agent Environments,
AAMAS 2003, Melbourne, Australia (2003)

21. G. Saake, T. Hartman, R. Junglaus, H-D. Ehrich: Object-Oriented Design of Information
Systems: Troll language Features. In Procedings CISM School Udine’93, LNCS, Springer
Verlag, (1993)

22. Tranvouez, E., Espinasse, B.: Protocoles de coopération pour le réordonnancement
d’atelier. in actes des journées francophones d’IAD et SMAs (JFIADSMA’99) à Saint-
Gilles, île de la Réunion, novembre 1999, Gleizes J.-P., Marcenac P., Ed. Hermès (1999)

picoPlangent: An Intelligent Mobile Agent
System for Ubiquitous Computing

Kenta Cho1, Hisashi Hayashi1, Masanori Hattori1,
Akihiko Ohsuga1, and Shinichi Honiden2

1 TOSHIBA Corporation,
1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki-shi, 212-8582, Japan

{kenta.cho,hisashi3.hayashi,masanori.hattori,akihiko.ohsuga}
@toshiba.co.jp

2 National Institute of Informatics,
Graduate School of Information Science and Technology, University of Tokyo

Abstract. This paper describes an intelligent mobile agent named pi-
coPlangent that we developed for use with portable devices. picoPlangent
is designed with a component-based architecture. The agent functions are
implemented by a set of small components, and the arrangement of these
components can be easily changed within the limits of the available re-
sources of each portable device. Agent actions are described into the goal
tree that realizes the flexible actions of the agent on portable devices.
The picoPlangent architecture is simple and easy to implement on vari-
ous devices. We implemented picoPlangent using J2SE on PCs, GCC on
PDAs (Palm devices) and J2ME on cellular phones (iAppli/ezPlus).

1 Introduction

In a ubiquitous computing environment, portable devices play an important
role. PDAs and cellular phones enable mobile users to handle information wher-
ever they are. However, since these devices have very small displays and limited
storage, users cannot deal with large amounts of information at the same time.
To support information handling with portable devices, systems that cooperate
with portable devices need to summarize information in a form that users can
handle easily on small displays. This information should be presented at the
exact moment the user needs the information.

An intelligent mobile agent on a portable device can offer such a service.
An agent on a portable device observes the user’s action to learn the user’s
interests, and presents the appropriate information at the appropriate time. An
agent moves to any device that the user uses so an agent can receive user’s
requests anytime, anywhere, and gather the knowledge required to infer the
user’s interests from the user’s actions. The mobile agent can work in a stand-
alone mode on the portable device and communicates with the server only when
it needs the data or services on the server, and so the mobile agent can improve
the response time and reduce the communication cost.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 43–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

44 Kenta Cho et al.

Since portable devices have very limited resources, an agent on a portable
device has to be very small. Even if an agent is small, it has to be intelligent
enough to offer appropriate information to a user in a timely fashion.

This paper gives an account of picoPlangent, our intelligent mobile agent
system. The picoPlangent agent can work with limited resources and perform
flexible actions on portable devices. picoPlangent provides a planner that makes
plans using a Prolog-like procedure. If the environment around the agent is
dynamically changed, the agent uses the planner to create new plans adapted to
the new environment.

In Section 2 we discuss the background to the problem and our approach.
Section 3 presents the software architecture of picoPlangent. Details of an imple-
mentation are discussed in Section 4. Section 5 describes related work. Section 6
presents the discussion and indicates future work. Conclusions are presented in
Section 7.

2 Background

In a ubiquitous computing environment, there are various types of devices, in-
cluding cellular phones, PDAs, internet appliances, telematics equipment, sens-
ing devices and PCs. Many of these devices have very restricted resources. To
integrate information provided by these devices, mobile system middleware and
a distributed system with mobility support for wide ranging devices are required
in order to realize ‘anytime anywhere’ connectivity.

Our approach is to use an intelligent mobile agent to realize flexible soft-
ware architecture for an open network environment. Intelligent agent technology
provides autonomy, adaptability and flexibility for the system and mobile agent
technology provides mobility.

We developed Plangent[1] an intelligent mobile agent system implemented
in Java Standard Edition, which operates with PCs. Plangent provides a pro-
gramming model based on knowledge definition and dynamic re-production of a
plan(replanning).

We tried to develop an intelligent mobile agent that capable of operating with
small devices, particularly with a cellular phone. Recently, Java enabled highly
functional cellular phones have entered widespread use and so have Java-enabled
sensor devices such as GPS for location awareness, RFID for authentication and
camera for image recognition.

However, implementation of such agents is beset by several problems.

Limited Resources
The traditional intelligent mobile agent is too large to work with a cellular
phone. Program size should be less than 10Kbytes on the J2ME platform
with tight memory constraints.

Vendor Dependency
Each cellular phone vendor uses a different virtual machine. All VMs are
based on Java Micro Edition, but class libraries, application lifecycles and
extensions differ according to the vendor. Since the agent should respond to
differences between VMs.

picoPlangent: An Intelligent Mobile Agent System for Ubiquitous Computing 45

It is necessary for an agent to satisfy various requirements in order to work
with a cellular phone.

Small Footprint
The agent should be designed for limited resources.

Vendor Neutral and Generality
The agent platform should support various vendors so that the developer of
the agent does not have to pay strict attention to dependency issues.

Adaptability and Flexibility
Even in an environment with limited resources, the agent should still be
adaptable and flexible.

For the implementation of out picoPlangent agent system, we adopted the
approach described below.

Small Agent
The agent functions are divided into small components. These components
are distributed to portable devices, and the agent works by using these com-
ponents. So a minimum set of the agent system can be very small and agents
can operate with the cellular phone despite rigid limitations.

Simple Goal-Based Architecture
Agents have a goal that describes the user’s requirements. The lifecycle of
the agent is managed by the plans consisting of sub-goals. As the plans are
vendor neutral, the agent can move around the platform on various types of
cellular phones, PDAs and PCs.

Planning Capabilities
To adapt to a dynamic environment, Prolog-like procedures are used to make
inferences before performing actions. Plans are computed in a resource rich
environment, and the agent uses these plans to migrate to a platform with
limited resources.

3 Software Architecture

Here, we describe the details of the architecture of picoPlangent. The way to
realize an agent’s mobility is described in Section 4, The size of an agent system
is evaluated in Section 6.

3.1 Agent and Agent’s Goal

A picoPlangent agent has the goal that describes the user’s requirements. The
goals given to the agent can be general in nature such as ‘get the information
concerning ubiquitous computing’ specific such as ‘display this message’. These
goals are described by Prolog terms (e.g., ‘searchAbout(‘ubiquitous comput-
ing’)’, ‘putMessage([‘node1’, ‘node2’], ‘hello’)’), and decomposed into agent’s
actions. Each action is resolved by a picoPlangent component, a software com-
ponent with an interface for communication with the agent.

46 Kenta Cho et al.

Platform

Agent
Goal Tree

Component

Planning Component

Migration Component

Platform

Migration

Network

Fig. 1. Software Architecture.

Decomposed goals and actions are called sub-goals and the list of sub-goals
is called a plan. picoPlangent provides a data structure called a goal tree that
manages plans and a planner to decompose goals according to the rules.

The agent uses the picoPlangent component to solve the goal. The compo-
nent receives the goal from the agent and executes the tasks to solve the goal.
Components are registered on the platform, and the platform searches for the
proper component to solve the goal. (Fig. 1) This process is performed as follows:

1. The agent sends the goal to the platform.
2. The platform asks each component whether it can solve this goal.
3. The platform gets a list of components that can solve the goal, and sends it

to the agent.
4. The agent selects a component from the list and asks the component to solve

the goal.
5. If the goal is specific, the component can solve the goal directly. But if it is

general and there is no component that can solve the goal, the agent uses
the planning component to decompose the goal.

There are many ways to know whether a component can solve the goal or not.
A simple implementation is that of checking the predicate of the goal and if the
predicate matches the keyword in the component, the component is considered
to be able to resolve the goal.

3.2 Goal Tree

When the agent receives the goal, the agent divides the goal into plans. The
plans are composed of sequences of sub-goals. The agent can hold several plans
corresponding to one goal. These plans are composed of one main plan and
several alternative plans. The structure to control the several plans is called the
‘Goal Tree’. (Fig. 2)

The agent resolves the user’s goal by solving the sub-goals in sequence. To
accomplish the goal, the agent works as follows:

picoPlangent: An Intelligent Mobile Agent System for Ubiquitous Computing 47

Goal Tree

Sub-goal

Main Plan
Alternative Plans

Agent

Fig. 2. Goal Tree.

1. Read the first sub-goal in the main plan.
2. Solve the first sub-goal.
3. If the agent succeeds in solving the sub-goal, this sub-goal is removed from

the main plan. If the alternative plans have the same sub-goal as the first
sub-goal, these sub-goals are also removed.

4. If the agent fails to solve the sub-goal, the main plan is removed from the
goal tree and the next alternative plan becomes the main plan.

5. These actions are performed until all sub-goals in the main plan are solved
or all plans are removed.

6. If all sub-goals are solved, the agent has carried out its task. If not, the agent
has failed to end the task.

When the agent has to execute the action to solve the goal, the side effects
of the action must be considered. The picoPlangent agent can handle knowledge
about canceling actions in a plan that prevents execution of another plan. Due to
space constraints, it isn’t described here. Reference [10] shows details of action
execution and side effects.

3.3 Planning Component

The goal tree is created according to the rules that represent the way to de-
compose a goal to sub-goals. This mechanism is performed by the planning
component. (Fig. 3) The decomposition from a goal to sub-goals is done by the
literal decomposition of Prolog. A plan in the goal tree corresponds to a total-
order plan described by a list of literals[10]. We also developed an agent that can
handle partial-order plans[11]. A partial-order plan can describe the actions that
can be performed concurrently and avoid redoing unnecessary actions. Reference
[12] shows our planning agent system is also useful for speculative computation
in multi-agent systems.

Fig. 4 is an example of planning rules. The action represents the sub-goal
that can be solved by the component. There are two actions in this example.
A ‘print’ action means that an agent displays the message described in the

48 Kenta Cho et al.

Planning Component

Rules

Goal/Sub-goal

Plan

Goal

User

Agent

Goal Tree

Fig. 3. Planning.

action(print(Msg)).

action(goto(_)).

axiom(message([],_),[]).

axiom(message([Node|Rest],Msg),

[goto(Node),print(Msg),

message(Rest,Msg)]).

Fig. 4. Planning Rules Example.

argument. A ‘goto’ action means that an agent migrates to the platform of that
name is described in the argument. The axiom represents the rule to decompose
the goal into sub-goals. Following the rules in Fig. 4 it is possible to create the
plan that the agent moves around the platforms described in the first argument
of the ‘message’ goal, and shows the message on each platform.

The developer can change the agent’s behavior by writing the proper rules.
The types of rules frequently used are listed below.
Reduction Rules

If the goal is too general to be solved by a single component, the reduction
rules decompose the goal into more specific sub-goals. For example, the goal
‘get the information concerning this keyword’ is divided into ‘send the key-
word to a search engine’, ‘parse the result page’, ‘make the list of URLs’ and
‘get these pages’.

Replacement Rules
Replacement rules can make an alias of the goal by changing the goal to
another goal. picoPlangent uses the ‘goto’ goal to move the agent to another
device, but the components for the agent migration are prepared for each
communication protocol. So the replacement rules change the ‘goto’ goal into
‘gotoRmi’ goal, ‘gotoSoap’ goal, etc. according to a schema of a destination
URL.

Forwarding Rules
If the proper component for the goal exists at a remote device, forwarding
rules are applied to send the agent to the device temporarily. The forwarding

picoPlangent: An Intelligent Mobile Agent System for Ubiquitous Computing 49

rule works as the directory service of the components and inserts a proper
‘goto’ goal in the plan.

Exception Handler Rules
A goal tree can handle the alternative plans executed when the agent fails
to carry out a main plan. Exception handler rules add the alternative plans
to the goal tree. For example, if the agent fails to execute the plan on the
cellular phone, the agent goes back to the server and records the error log
according to the alternative plan.

If the agent tries all plans in the goal tree and fails, the agent can try replan-
ning. The agent uses the planner again to create new plans. If the environment
around the agent changes (e.g., the agent moved from the platform where the
agent created the first plan, and the planner on each platform has different rules),
the planner may create another plan and that plan will be adapted to the new
environment.

4 Implementation Details

In this section we shall discuss the way to implement the picoPlangent agent
system on several devices.

The implementation of the agent, the component and the platform varies
due to the distinctive features of the various devices. On a PC, it has a large
amount of memory and computing power, and so the components can be fully
functional. On a cellular phone, resources are very limited, and so some features
of the component are omitted.

However, the agent has to move between these platforms seamlessly and
answer user’s requests on any platform continuously in order to accomplish the
goal on the various devices that the user uses. To realize this seamless migration,
the agent, component and platform should provide these functions:

– The agent should carry the goal tree and should handle the goal tree on any
device. The goal tree represents what the agent should do next to complete
the user’s request.

– The component should know which goal can be solved by this component
and have the interface to receive the goal from the agent.

– The platform should have an interface to register the component on the
platform and should be able to ask these registered components whether or
not a goal can be solved. In addition, the platform should have an interface
to create the agent on the platform.

If these functions are realized on a device, the picoPlangent system can be
implemented with any language on any device and the agent can be sent by
any protocol. Language differences are absorbed by the goal tree and protocol
differences are absorbed by the migration component.

Let us, for the moment, consider the practical implementation on PC, PDA
(Palm) and a cellular phone (iAppli/ezPlus).

50 Kenta Cho et al.

4.1 Implementation on PCs

On PCs, we implemented the system with J2SE. Java was used because it has
an OS-independent VM and many cellular phones have recently included a Java
VM.

The agent on PCs is implemented by the Agent class. The developer can
customize the agent lifecycle and the data that the agent carries by extending
the Agent class. The goal consists of the predicate represented by String class
and arguments that can hold any Java objects.

The platform should implement the Platform interface. The basic platform
implementation is offered by the DefaultPlatform class that provides the basic
function to find the proper components to solve the goal.

The component should implement the Component interface. The Component
interface has two methods. One is for asking if this component can solve the goal
passed from the agent. The other is called when the agent asks the component
to solve the goal.

To transport the agent between devices, the agent uses the migration compo-
nent. The agent is serialized in the component and is sent to the remote device.
There are several migration components corresponding to the communication
protocols (RmiMigration, HotsyncMigration and SOAPMigration) to send the
agent.

An RmiMigration component enables the migration of the agent by the Java
RMI. The agent is serialized by the Java object serialization mechanism, and
resumed at the remote platform. The agent’s lifecycle is managed by the goal
tree, and so the agent can realize the strong migration.

To move the agent from a PC behind a firewall to a servlet, we provide a
SOAPMigration component. The agent is serialized by the SOAP serialization
and sent to the remote Web server.

4.2 Implementation on Palm Devices

On Palm devices, the picoPlangent system is implemented by GCC. Although
there is a Java VM, KVM that works on Palm devices, we didn’t use it in view
of its poor performance.

We implemented the platform and the component as native applications of
PalmOS. To move the agent from a PC to a Palm device, we used Hotsync.
Hotsync is a function to synchronize data between a PC and a Palm device.

When Hotsync starts, the picoPlangent conduit (conduit is the PalmOS
framework for adding new functions to Hotsync) sends the agent data serial-
ized by the HotsyncMigration component.

Agents moved to Palm devices are serialized by the HotsyncMigration com-
ponent. The goal tree is converted into byte data that can be handled by the
PalmOS. (Fig. 5)

The platform is composed of an OS-dependent part and an OS-independent
part. If the developer wants to port the platform to another OS, the developer
implements an OS-dependent part.

picoPlangent: An Intelligent Mobile Agent System for Ubiquitous Computing 51

Platform on PC
Platform on Palm

databasemanager

Agent

HotsyncMigration

picoPlangent Conduit
Palm Database

Hotsync

Fig. 5. HotsyncMigration Component.

Platform on Servlet Platform on iAppli

Component

Component class

Agent

Proxy Component
ServerConnector

Http

Fig. 6. Proxy Component.

An OS-independent part consists of two modules, an agent manager and a
goal tree manager. The agent manager module handles the agent’s lifecycle that
checks the first goal in the main plan and calls a suitable component. The goal
tree module manages the goal tree. It offers functions to add/delete goals/plans.

An OS-dependent part of PalmOS consists of two modules, a PalmOS boot-
strap and component caller and a database manager. PalmOS’s bootstrap (Pilot-
Main) and the function to call a component are defined in the PalmOS bootstrap
and component caller module. The database manager provides the functions to
pack/unpack the agent data from/to the PalmOS database. The agent data sent
by Hotsync is stored in the PalmOS database.

4.3 Implementation on the Cellular Phone(iAppli/ezPlus)

iAppli[9] is the Java VM for NTT Docomo cellular phones. iAppli is based on
J2ME, but the program size has a strict limit. In the most restricted environment,
class files of the application cannot exceed 10 kilobytes in JAR (Java Archive)
form.

To overcome this limit, the platform on iAppli uses a proxy component that
works on the servlet. Since the proxy component has the same interface as the
component on the PC, so the agent can deal it with the same way. Since the
request from the agent is passed the component on iAppli by the proxy compo-
nent via HTTP. (Fig. 6) The platform on iAppli handles the direct requests to
the component only and the major part of the agent lifecycle is managed on the
servlet, the platform on iAppli can be very simple and small.

The platform on iAppli consists of two classes:

ServerConnecter
The ServerConnector opens the connection to the servlet and receives the
request from the proxy component. The request and the reply between the
ServerConnector and the proxy component are performed by the protocol
described in Fig. 7. This protocol is very simple, and has been designed with
the objective of decreasing the amount of communications.

Component Class
On PCs, we implemented each component with a separate class. But on
iAppli, all components on the platform are implemented in one class to
reduce the size of the JAR file.

52 Kenta Cho et al.

‘A’(Authenticate)

•UserID
•Password
•Application Name

‘O’(Ok)

•Session ID

‘W’(Wait)

•SessionID

‘I’(Invoke)

•Predicate
•Arguments

‘R’(Result)

•Result

‘E’(End)

•Session End

Servlet iAppli

Authenticate user

Session starts

Wait until an agent comes

Invoke a component

Send results

Session ends

Fig. 7. Communication Protcol on iAppli.

We provide a utility to make templates of component classes on iAppli. The
developer should write the component property file that represents which
goal the component can solve. The utility converts the component property
file (Fig. 8) into the template. The component property files are also referred
to by the servlet to register the appropriate proxy components.

We also implemented the platform that can handle the whole agent lifecycle
on a cellular phone. This platform can retrieve a goal from the goal tree, and
executes a goal with the component. If the component failed to solve the goal
or the agent couldn’t find the proper component, the agent switches to the
next plan in the goal tree. So if the planner on the server creates enough plans
that can deal with many accidents on the cellular phone and these plans are
packed into the goal tree, the agent can cope with many eventualities without
communication with the server.

Since this platform inevitably increases the total size, the target device should
have more memory resources than iAppli. We use cellular phones from au(KDDI)
that have Java VMs based on J2ME (ezPlus) and the limit on the program size
is 50 Kb.

The agent is serialized at the server and sent to the cellular phone by HTTP.
Since ezPlus doesn’t support Java RMI, we implemented the serialization mech-
anism for the basic Java objects and the goal tree.

We have to care about security issues of an agent that works on cellular
phones. Java VMs on cellular phones have a sandbox model to restrict the access
of Java applications, but there are still some possibilities that the harmful agent
does inappropriate actions on a cellular phone. There are some ways to solve this
problem 1) use authorized components or 2) limit the number of times an agent
performs actions on a cellular phone. Due to space constraints, it isn’t described
here and we leave it to the future work.

5 Related Work

There are several mobile agent systems and ORBs for PDAs and cellular phones.
In the SCARAB project[2], PDAProxy is used to implement an ORB on Palm

picoPlangent: An Intelligent Mobile Agent System for Ubiquitous Computing 53

<?xml version=’’1.0’’?>

<pico-app

name=’’RadioP’’ id=’’radiop’’

version=’’1.0’’>

<agent-class>

picoplangent.agent.radiop.RadioPAgent

</agent-class>

<iappli>

<iappli-component>

<predicate>putCnt</predicate>

<argument>

<type>int</type>

<type>String</type>

</argument>

</iappli>

<server>

<server-component>

<predicate>getGoogleQuery</predicate>

<component-class>

picoplangent.component.GoogleQueryMaker

</component-class>

</server-component>

</server>

</pico-app>

Fig. 8. Component Property File Example.

devices. The PDAProxy works like a proxy component of the picoPlangent sys-
tem, but the communication between the PDAProxy and the Palm device is
done by SMS (Short Message Service), and so the PDAProxy can’t send compli-
cated messages. The component that receives the message from the PDAProxy
is called PDAGUI, which handles the GUI on Palm devices.

Ubiquitous Devices United[3] also has a feature to send notifications to cellu-
lar phones via SMS. CUES[4] realizes the remote control UI of embedded systems
on cellular phones by WML (Wireless Markup Language) pages. These two sys-
tems apply mobile code techniques, but do not concern themselves with code
migration to cellular phones.

The LEAP project[5] has implemented the FIPA platform on Java-enabled
portable devices. On the LEAP platform, the agent can send an ACL message to
another agent. The LEAP platform can be implemented with J2ME, but these
target devices have much richer resources than the target devices of picoPlan-
gent. The LEAP platform’s implementations depend heavily on Java, but the
picoPlangent platform can be implemented in other languages.

MobiAgent[6] is a mobile agent system implemented using J2ME. It uses an
Agent Gateway to access the Voyager agent on the server. Agent Gateways do
not have a function to move the agent from the server to the J2ME device.

MIA[7] is a mobile agent system using agent technology based on logic pro-
gramming. The picoPlangent agent also uses the logic program at the planning

54 Kenta Cho et al.

component to create the agent’s plan. The MIA agent mainly uses the logic
program to provide information access at any time. The mobile agent on the
portable device uses KQML to retrieve the information from the static agent on
the server. The picoPlangent agent uses the planning component to create the
plan to solve the user goal.

Jumon[8] is a mobile agent that works on ezPlus. This system emphasizes the
ORB functions provided by Voyager. On the other hand, picoPlangent provides
the goal tree to realize the flexible behavior of the agent.

6 Discussion and Future Work

picoPlangent helps realize an intelligent mobile agent system that works on de-
vices with very limited resources. There are several Java VM implementations
based on J2ME, but iAppli has an extremely severe memory limit. A JAR file
downloaded to a cellular phone cannot be larger than 10K bytes.

The picoPlangent platform can be very small because its agent has a very
simple lifecycle and the functions of the agent are separated from the platform
as the components. On iAppli, the picoPlangent platform is about 4.6 Kb. On
Palm devices, the picoPlangent platform written with GCC is about 6 Kb.

A simple agent’s lifecycle also helps to port the system to other systems. The
agent can be serialized in a suitable form according to the protocol that sends
the agent between devices. The picoPlangent agent can be sent via RMI, SOAP,
Hotsync, and the original protocol via HTTP.

Agent lifecycles implemented by the goal tree are very simple but are able
to realize flexible action on portable devices. The main purpose of the goal tree
is to use the planner’s faculty on devices that do not have sufficient resources to
use the planning component. The goal tree can manage the main plan and the
alternative plans generated in the planning component. These plans are carried
to the portable device with the agent. Even if the main plan fails, the agent can
continue the process without the planner by using the alternative plan.

With the implementation on the iAppli platform, the proxy component on the
server helps to reduce the platform size. However it also increases the frequency
of communication between the server and the cellular phone because whenever
the agent solves a goal, the proxy component communicates with a component
in the cellular phone.

To reduce the amount of communication, the platform on cellular phones
should implement functions to handle the agent’s lifecycle. Fig. 9 represents the
size of each subsystem on iAppli and the servlet. Since we assumed that class
files are compressed to half the size by JAR, the developer can use 15.4 Kb for
components.

On iAppli, the agent’s lifecycle handler is placed on the servlet, and so a
cellular phone and a server have to communicate each time an agent solves a
goal. Each communication (receiving an invocation message and sending a result
message) costs two packets(about 256bytes).

On ezPlus, the agent’s lifecycle manager is placed on the cellular phone. The
agent is created by the create message. This message includes the whole goal tree

picoPlangent: An Intelligent Mobile Agent System for Ubiquitous Computing 55

Agent
Lifecycle

Management

HTTP
Communication

Management

HTTP
Communication

Management

Components
Caller

Components

Servlet iAppli
20 Kb

3.4 Kb1.2 Kb 16.4 Kb9.3 Kb
‘A’(Authenticate)

•UserID
•Password
•Application Name

‘O’(Ok)

•Session ID

‘W’(Wait)

•SessionID

‘I’(Invoke)

•Predicate
•Arguments

‘R’(Result)

•Result
‘I’

‘R’

‘I’

‘R’

‘I’

‘R’

‘E’(End)
•Session End

Fig. 9. Architecture on iAppli.

Agent
Serializer

HTTP
Communication

Management
Platform

Agent
Lifecycle

Management
Components

Servlet ezPlus
100 Kb

7.7 Kb10.1 Kb 74.7 Kb7.7 Kb
‘A’(Authenticate)

•UserID
•Password
•Application Name

‘O’(Ok)

•Session ID

‘W’(Wait)

•SessionID

‘C’(Create)

•Agent Agent
Serializer

7.5 Kb

‘C’(Create)

•Agent

Fig. 10. Architecture on ezPlus.

structure, and the goal tree is handled by the agent’s lifecycle manager. When
the agent solves the migration goal, the agent is returned to the server. (Fig. 10)

Because the program size of components on cellular phones is limited, the de-
veloper should select the proper components to be placed on the cellular phone.
Some components may be placed on the server, and the agent goes back to
the server temporarily to use these components. The decision as to which com-

56 Kenta Cho et al.

ponents should be placed on the cellular phone affects the amount of commu-
nication and the response time. We plan to add a component rearrangement
function to the agent. Agents with a rearrangement function will have a profiler
that records how frequently a component is used. The agent decides the priority
in which components should be placed on the cellular phone, and rearranges the
components within the limits of the resources.

7 Conclusion

We have presented the architecture of picoPlangent and shown how this archi-
tecture is implemented on PCs, Palm devices and cellular phones. The agent can
move around between the various devices with various protocols, and the user
can share the same data on these devices. The picoPlangent platform can be im-
plemented with a very small footprint, and the implementation can be changed
easily to fit the resource limits of the device. The goal tree can simplify the agent
lifecycle, and realize flexible action on a portable device with the assistance of
the planning component on the server.

References

1. Ohsuga, A., Nagai, Y., Irie, Y., Hattori, M., and Honiden, S. :PLANGENT: An
Approach to Making Mobile Agents Intelligent, IEEE Internet Computing, Vol. 1,
No. 4, pp. 50–57, 1997. http://computer.org/internet/ic1997/w4050abs.htm

2. Ciminiera, L., Maggi, P., Sisto, R.: SCRAB: innovative services supporting user
and terminal mobility, IEEE Distributed Computing System Workshop, 2001 In-
ternational Conference on, pp. 487–493, 2001.

3. Kjetil Jacobsen, Dag Johansen: Ubiquitous devices united, 1999 ACM symposium
on Applied computing, 1999.

4. Kangas, K., Roning, J.: CUES: Control for Ubiquitous Embedded Systems, Inter-
national Symposium on Handheld and Ubiquitous Computing, 1999.

5. Bergenti, F., Poggi,A.: LEAP: A FIPA platform for handheld and mobile devices,
International Workshop on Agent Theories, Architectures, and Languages, 2001.

6. Mahmoud,Q.: MobiAgent: A mobile agent-based approach to wireless information
systems, Agent-Oriented Information Systems, pp. 87–90, 2001.

7. Beuster, G., Thomas,B., Wolff, C.: MIA: An ubiquitous multi-agent web informa-
tion system, International ICSC Symposium on Multi-Agents and Mobile Agents
in Virtual Organizations and E-Commerce, 2000.

8. http://www.jumon-agent.com/ OMRON SOFTWARE: Jumon.
9. http://www.nttdocomo.co.jp/english/p s/i/java/ NTT DoCoMo: Java for i-mode.

10. H. Hayashi, K. Cho, A. Ohsuga: Mobile Agents and Logic Programming, IEEE
International Conference on Mobile Agents, pp. 32–46, 2002.

11. H. Hayashi, K. Cho, A. Ohsuga: A New HTN Planning Framework for Agents
in Dynamic Environments, International Workshop on Computational Logic and
Multi-Agent Systems, 2004.

12. H. Hayashi, K. Cho, and A. Ohsuga: Speculative Computation and Action Execu-
tion in Multi-Agent Systems, ICLP Workshop on Computational Logic in Multi-
Agent Systems, Electronic Notes in Theoretical Computer Science 70(5), 2002.

An Approach to Safe Continuous Planning

Gary Cleveland and Mike Barley

University of Auckland, New Zealand

Abstract. In this paper we discuss the “safe to act” problem, a problem
associated with the safe interleaving of acting and planning. We also dis-
cuss previous research that is relevant to this problem. We then propose
a specific search strategy for a general hierarchical plan-space planner
that pushes portions of the emerging plan to become “execution ready”
as quickly as possible. Finally, we discuss a property, critical serialisabil-
ity, that is sufficient for a domain to possess in order for these portions
to be “safely” executed.

1 Introduction

In this paper we discuss a problem associated with interleaving acting and plan-
ning, the “safe to act” problem. We also discuss previous research that is relevant
to this problem. We then propose a specific search strategy for a general hierar-
chical plan-space planner that pushes portions of the emerging plan to become
“execution ready” as quickly as possible. We also discuss a property, critical se-
rialisability, that is sufficient for a domain to possess in order for these portions
to be “safely” executed.

1.1 The “Safe to Act” Problem

Deliberative agents face a problem of knowing when to stop planning and when
to start executing the plan. Often, it is neither desirable nor possible for the
agent to defer acting until the entire plan has been created – there may not be
enough information, or enough time, or the environment might be too volatile.
So the agent must interleave its plan execution with its plan creation activities.
However, the agent cannot just arbitrarily start executing its current partial
plan. To do so is to risk the agent jeopardising its being able to achieve the
rest of its goals – the so-called “painting oneself into a corner” effect where a
partial solution can not be monotonically extended into an overall solution. We
call this the “safe to act” problem: how should a deliberative agent interleave
its plan execution and plan creation activities so that its actions do not jeopar-
dise achieving the rest of its goals? Are there any formal criteria for when it is
guaranteed to be safe for an agent to begin executing part of its plan?

One way to view the problem would be as a balance between deliberation
and reaction. To be able to make the needed guarantees, the agent must plan
at least some minimum amount. In many cases, the agent will otherwise wish to
be as reactive as possible and execute the “next action” as soon as that action

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 57–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

58 Gary Cleveland and Mike Barley

is determined and it is known that that action will not cause conflicts with later
goals. Given an agent with this capability to execute planned steps as early
as possible, one has a better handle on soft real-time issues. Similarly, greater
planning efficiency may follow as a result of backtrack points being eliminated
as actions are executed. Finally, this type of reassurance allows for a greater
ability to guarantee the safety of the agent, the agent’s goals, and the world
at large. These three points – safety, efficiency, and real-time abilities – are the
motivations behind this work.

One approach currently seen is that of hierarchical continuous planners, like
Aspen [4]. However, there are currently no guarantees that their actions will not
jeopardise their ability to solve the entire problem, e.g., that they won’t paint
themselves into a corner. At present, they rely solely upon the experience of the
experts who represent the domain models through different levels of abstraction.
Our research is interested in formulating the properties (sufficient for safe par-
tial plan execution) that must be possessed by these abstraction levels, domain
descriptions, and problem-solvers.

2 Related Research

As stated above, the problem being addressed is that of identifying points in the
search where backtracking can be eliminated without affecting the solvability
of the problem. This problem has been explored many times in the past. The
core idea has been identifying planning islands which, in effect, decompose the
goal into a sequence of simpler subgoals which can be achieved with no mutual
threats. There has been two lines of attack. One line has been to employ levels
of abstraction where the planner attempts to find a complete plan at a given
level of abstraction before moving down to the next less abstract level. This is
often called hierarchical planning. In hierarchical planning the abstraction levels
recursively identify the planning islands. The other line of attack has been to
find a sequence of subgoals which can be completely achieved in sequence and
remain achieved without affecting the achievability of the remaining subgoals.
This line of attack was called finding serialisable subgoals and was primarily
pursued using totally ordered plan planners. Both lines are relevant to our own
approach. We will first look at the research on serialisable subgoals and then at
hierarchical planning and levels of abstraction.

2.1 Subgoal Independence and Serializability

Subgoal independence is defined by Korf [11] for subgoals having a set of op-
erators partitioned into subsets such that each subset is relevant to only one
subgoal. Clearly, one may solve each subgoal separately and, after creating a
plan for one subgoal, the planner need never backtrack across it. Korf defines
subgoal serializability for subgoals that can be ordered such that their plans do
not threaten the preceding subgoals. Subgoal serializability can be thought of as
a weak form of subgoal independence where subgoals can be solved sequentially,
in smaller search spaces. Korf also found a weaker form of serialisability, called

An Approach to Safe Continuous Planning 59

block serializability, where macro-operators are allowed to negate a preceding
subgoal but then re-establish it before moving on to the next subgoal.

Ernst et al [8] described the concept of invariants and found ways of discov-
ering them mechanically. Invariants provides the same forward motion through
the problem space that serializability does. After achieving a subgoal, it is not
necessary to consider backtracking to states that negate it.

The Remote Agent planner [2] is a recent example of a complex planner that
used serialisable subgoals drastically reduce the size of its search space. Accord-
ing to Russell and Norvig [15] (page 407): “Taking advantage of the serialized
ordering of goals, the Remote Agent planner was able to eliminate most of the
search. This meant that it was fast enough to control the spacecraft in real time,
something previously considered impossible.”

2.2 Hierarchical Planning

Hierarchical planning lays out a search space through an abstraction hierarchy
and attempts to solve a problem at a given level and only then advances to
the next level of the hierarchy. Some hierarchical planners limit backtracking
to within the current level and thus reducing search. Numerous systems have
employed this approach in order to guide the search (and avoiding backtrack-
ing as much as possible). GPS [13], ABTWEAK [17], PRODIGY [9] have all
used the technique successfully. A small number have also automatically gen-
erated those abstraction hierarchies to match the domains ([16, 5]) or even the
individual problems [9]. All of these systems that automatically generate the
hierarchies, do so by drawing out the hierarchy through the preconditions of the
domain’s operators. Fink and Yang [7] describe a way to include the effects into
the construction of the hierarchy in order to arrive at a finer-grained abstraction
hierarchies.

2.3 Downward Refinability

Bacchus and Yang [3] defined the Downward Refinement Property (DRP) for
abstraction hierarchies. The definition states that for abstraction hierarchies
with this property, every abstract plan can be refined into a detailed plan. An
important feature for our purposes is that these refinements can be found without
backtracking across levels of the hierarchy – i.e., without needing to replan any
of the established abstract plan. Bacchus and Yang show that planning problems
can be more efficiently solved if their abstraction hierarchies have this property.

Knoblock, Tenenberg, and Yang [6] defined what consitutes a “good” ab-
straction. In this work, they defined the Monotonicity and Ordered Monotonic-
ity Properties rather similarly to the DRP and with the same intent – to prune
the search space and elliminate backtracking.

2.4 Other Related Research

There has also been work concerning landmarks [14] which resemble Melis’ notion
of island planning [12] in that they specifically work towards avoiding backtrack-

60 Gary Cleveland and Mike Barley

ing by identifying strong points in the search space. Strong points are important
intermediate goal states that must be visited in most valid plans. Accordingly,
landmark states provide important information regarding the reasonable goal
orderings. They do not, however, work towards completely eliminating back-
tracking. In this case, one may not be able to completely avoid backtracking but
should be able to greatly reduce it.

Knoblock’s work of SAGE [10] delves into the world of tightly coupled plan-
ning and execution but with no real assurances that the plan being either con-
structed or acted upon does not carry negative consequences. This work takes a
different tack of trying to spot and correct problems before they get too far out
of hand.

3 Our Approach

Our objective is to push portions of the plan as quickly as possible towards
being executable without jeopardising achieving the rest of the goals. In the next
section, we will briefly describe what we think are components of a property that
will guarantee the safeness of executing those portions of the partial plan. In the
sections after that, we will describe our planner’s architecture and how it pushes
a portion of the plan quickly towards being executable.

3.1 Guaranteeing “Safeness to Act”: Critical Serialisability

Serialisable subgoals allow us to plan for the first subgoal in the sequence, then
execute that plan and still be guaranteed that we have not caused the rest of
the subgoals to become unachievable. While there are important domains where
experts know how to generate and serialise subgoals for certain problems, we
suspect serialisability is too strong a property for general use. We do not believe
that planners will usually be able to quickly and automatically generate useful
serialisable subgoals for problems without looking at how those subgoals interact
with each other.

In particular, serialisability says we can totally ignore how we are going to
achieve the rest of the subgoals while we are working on how to achieve the
current subgoal. This seems too strong an assumption. Instead, what we believe
is more reasonable is that the planner should be able to make critical commit-
ments about how we will achieve some of those other subgoals before we have
totally committed to how we achieve the current subgoal. These commitments
should then constrain how we achieve our current subgoal. This sounds similar
to hierarchical planning.

We use an ABSTRIPS-style of abstraction and the definitions used in [3].
In this venue, hierarchical planning is about focusing on the different levels of
critical decisions (commitments) in turn. Commitments are made concerning
the current level of criticality before starting to consider what commitments
to make about less critical decisions. These commitments then constrain what
commitments can be made at lower levels. The Downward Refinement Property
(DRP) states when the planner is guaranteed never to need to backtrack across

An Approach to Safe Continuous Planning 61

levels of criticality in order to find a concrete solution. DRP is similar to the
property we are seeking in that it eliminates backtracking across criticality levels.
However, DRP only guarantees this when we move the entire plan down to lower
criticality levels. Unfortunately, this would not allow us to execute any part of
the plan until we have finished the entire plan.

We are in the process of formally defining a property, which we call critical
serialisability, that is a synthesis of DRP and subgoal serialisability and which
guarantees the safeness of executing the appropriate initial portion of the plan.
Critical serialisability states that once a complete and correct plan is found
at a given level of criticality, a step can be found in that plan which can be
executed before any of the other steps, that we can then pursue making that
step executable independently of the rest of the plan, and that this property
holds recursively across the levels of criticality. We believe critical serialisability
is weaker than serialisability but stronger than downward refinability.

Our planner will follow this procedure of finding a complete and correct
plan at the highest criticality level, then finding a step that can be first to
be executed, then focussing on making that step executable. To make the step
executable, the agent will normally need to plan for steps that establish that
step’s preconditions, etc. This procedure will be recursively followed until we
hit the least critical level and can start scheduling steps to be executed. When
we select a step to be first made executable, there will be some causal links
(as described in [15] p. 389) from the initial state to later steps. We must not
introduce threats to these causal links while trying to make that step executable.
The goals involved in these causal links, we will call maintenance goals. The goals
involved in the causal links created at this level will be called achievement goals.

We will now try to make this planning process a little more concrete.
Figure 1 shows the situation after we have created a complete and correct

plan at the highest criticality level. The figure shows I, the current initial state,
G, the problem’s goal, and two steps, op1 and op2. The figure shows the causal
links between the steps. We assume there are no additional ordering constraints.

Figure 2 shows the plan after we have expanded op1 down to the next lower
criticality level. The solid lines represent causal links created for the achievement
goals at that criticality level. These are revokable at this level. The dashed
lines represent the maintenance goals inherited from the higher criticality levels,
threats to these cannot be introduced at this level. Assuming that this is the
lowest criticality level then op3 will executed followed by op1 being executed.

Figure 3 shows the plan after the two steps have been executed and the
current initial state has been updated to I’. Now op2 is the next step to be
made executable. The figure shows the expansion of that step to the next lower
criticality level and the complete and correct plan created at that level.

Fig. 1. Initial Abstract Plan.

62 Gary Cleveland and Mike Barley

Fig. 2. 1st Detailed Subproblem Plan.

Fig. 3. 2nd Detailed Subproblem Plan.

Fig. 4. Final Plan.

Figure 4 shows the plan after op4 and op2 have been executed and the
current initial state has been updated to I”. We would now expand G down to
the next lower criticality level (G might have goals at that next lower level which
would need to be achieved). Assuming that there are no new goals at the lower
levels and that the lower level is lowest level, then I” satisfies the preconditions
of G and the planner is done.

3.2 Plans

Our planning algorithm uses pretty much the standard plan-space plan compo-
nents. The planner has a current (partial) plan and an agenda. The plan has a
“current state” pseudo-step which represents what the agent currently believes
to be true about the world and a “goal” pseudo-step which represents what
the agent desires to eventually be true . Plans are represented as a set of steps
with ordering and (non)co-designation constraints and with causal links. One
difference is that plans may also have one or more steps that are labelled as

An Approach to Safe Continuous Planning 63

executable. An executable step must have all of its preconditions satisfied by
the current state. When a step is executed its postconditions update the current
state description and the step is removed from the plan.

The agenda describes what needs to be done in order to make the goal pseudo-
step “executable” in the current state, i.e., to cause the current state to satisfy
the problem’s goal description. The agenda contains the following types of items:

– Achieve goal.
– Resolve threat.
– Expand step.
– Execute step.

Goals are simply preconditions of steps and have criticality levels associated
with them. These criticality levels can be assumed to be the same as found
in standard hierarchical planners. Specifically, criticality levels are assigned to
partially instantiated goals, which we call critical goal patterns. If a goal unifies
with more than one critical goal pattern, that goal assumes the criticality level
of the most critical goal pattern it unifies with. A goal is achieved by creating a
causal link from a step which has a postcondition that matches the goal to the
step with that goal as a precondition.

Threats are to causal links and are steps which have either preconditions or
effects that are inconsistent with the goal involved in that causal link. Threats
are either necessary or possible. Necessary threats mean that the causal link is
destroyed by that step. Possible threats are ones that might be resolved without
necessarily destroying the causal link. The standard resolutions are to add either
ordering or non-codesignation constraints.

Preconditions of a step are achieved in the order of their criticality. When
the preconditions of a step have all been achieved at a certain criticality level,
we can then start trying to achieve its next lower level of critical preconditions.
We call this expanding the step and indicate that this should be done by adding
an expand step item to the agenda.

When the planner determines both that a step can be executed in the current
state and that it is safe to execute that step, then an execute step item is added
to the agenda.

3.3 Determining Which Step Should Be Made Executable First:
Distance to Execution

The notion of serialisable subgoals was developed during the classical period of
totally-ordered plan planners, when planning order determined execution order.
This meant that it was difficult, if not impossible, for a planner to dynamically
determine which step should be first to be executed. Thus, the sequence of
serialisable subgoals was normally given with the problem specification. However,
the emergence of partially-ordered plan planners separated planning order from
execution order. In partially-ordered plan planners, the planner can dynamically
determine which step should be executed first. Our conjecture is that, for domain

64 Gary Cleveland and Mike Barley

criticality levels which satisfy the critical serialisability criterion, the normal
partially-ordered plan operations will identify those steps that, at the next lower
level of criticality, can be planned for first and then executed without preventing
the planner from being able to achieve the remaining goals.

Given a standard partially-ordered plan with its steps, causal links, order
and (non-) co-designation constraints, there may be a number of steps which
do not have any steps that necessarily precede them. How should the planner
select which one to try to make executable first? Since our objective is to make
some part of the plan executable as quickly as possible, we would like some
estimate of the earliest we would be likely to be able to execute them. We call
this estimated time, the distance to execution (DE). The DE of a step is best
viewed as a guess of how many steps will be needed to make that step executable
and is an extension of the idea of using a heuristic evaluation function to estimate
how many steps will be need to be added to the current plan for it to solve the
problem. However, here we are estimating for a given step how many steps will
be needed to transform the initial state into one where that given step can be
executed. So instead of estimating how many more steps need to be added to the
plan so that it achieves all of the problem’s goals, DE estimates how many more
steps need to be added to the plan so that the current candidate first-to-execute
step can be executed. Since the current plan may have causal links from the
initial state to later steps, the DE is with respect to achieving the preconditions
of the candidate step while not clobbering any of those existing causal links.
The candidate with the lowest estimate is the one chosen to focus on making
executable.

3.4 Simulating Hierarchical Planning via Agenda Selection

Unlike standard hierarchical planners, we do not have different plans at the
different levels of abstraction. There is only one plan. Each agenda item is as-
sociated with a particular criticality level. The planner simulates hierarchical
planning by only selecting agenda items from the current criticality level. For
the moment, a depth-first strategy is employed where the planner selects only
those agenda items with the current criticality level and whose DE measure is
minimal. This strategy keeps the planner focused on the steps it believes can be
expanded and safely executed the soonest.

4 Conclusions and Future Research

In this paper, we discussed the “safe to act” problem where an agent has to
balance how much planning to do before it is safe to start executing any part of
its current plan. We reviewed research relevant to this problem. In particular,
we discussed the research that has been done on serialisable subgoals and on
the downward refinement property for hierarchical planners. We then described
a new approach to this problem that combines both of these lines of research.
This approach involves a new planning strategy, which pushes portions of the
plan to being executed before the rest of the problem has been completely solved.

An Approach to Safe Continuous Planning 65

We informally defined a property, critical serialisability, that specifies the type
of abstraction hierarchy for which it is guaranteed that the planning strategy’s
early execution of actions will not cause the agent to become unable to achieve
the rest of the problem’s goals.

We are still in the very early stages of this research. Our next step is to
implement a prototype hierarchical planner that uses our strategy to inter-
leave its execution and planning activities on a simple domain. Our eventual
target domain is the more complex RoboCup Rescue Simulation domain (url:
http://www.rescuesystem.org/robocuprescue/).

Our early explorations have shown us that we will need to extend the least-
commitment approach to planning to include the use of abstract actions. We
have started work on this but have not incorporated it yet into our strategy. We
expect this will be one of our first extensions to our prototype. An example of
the need for this type of extension was shown to arise in the computation of the
hierarchical distance to execution when the literal on(a,b) from the lowest level
proved to be both a precondition for the goal step and also a hindrance to nec-
essary operations at higher levels. This gives the metaplanning agent the choice
among several ways to handle the conflict. As Knoblock treated the condition,
we can graduate the level of the literal up to the higher level. This often has the
effect of collapsing the hierarchy. The metaplanning agent may also choose to
view the low level goal as “established” and treat it as a maintenance goal which
brings forth a need for a form of “block serializability” and macro-operations.
Another choice is to leave the low level goal as an agenda item (on the “To Do”
list) and finally establish it with one of the last operations in the plan. This last
choice is currently the one we favor but truly all of the solutions mentioned have
serious faults and a comparison of various strategies needs to be made.

References

1. Robocup-rescue official web page. http://www.rescuesystem.org/robocuprescue/.

2. Nicola Muscettola Kanna Rajan Ari Jonsson, Paul Morris and Ben Smith. Plan-
ning in interplanetary space: Theory and practice. In Proceedings of the 5th AIPS,
Breckenridge, CO, 2000.

3. Fahiem Bacchus and Qiang Yang. The downward refinement property. In Proceed-
ings of the Twelfth International Joint Conference on Artificial Intelligence, pages
286–292, Sydney, Australia, 1991. IJCAI.

4. S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Muts, T. Estlin,
B. Smith, F. Fisher, T. Barrett, G. Stebbins, and D. Tran. Aspen – automating
space mission operations using automated planning and scheduling, operations. In
International Conference on Space Operations (SpaceOps 2000), Toulouse, France,
June 2000. European Space Agency.

5. Jens Christensen. Automatic Abstraction in Planning. PhD thesis, Department of
Computer Science, Stanford University, 1991.

6. Josh D. Tenenberg Craig A. Knoblock and Qiang Yang. Characterizing abstraction
hierarchies for planning. In Proceedings of the Ninth International Conference on
Artificial Intelligence, pages 692–697, Anaheim, CA, 1991. AAAI.

66 Gary Cleveland and Mike Barley

7. Eugene Fink and Qiang Yang. Automatically abstracting the effects of operators.
In J. Hendler, editor, Artificial Intelligence Planning Systems: Proceedings of the
First International Conference (AIPS92), pages 243–251, San Mateo, CA, 1992.
AIPS, Morgan Kaufmann.

8. Raymond J. Hookway Richard A. Oyen George W. Ernst, Ranan B. Banerji and
Donald E. Shaffer. Mechanical discovery of certain heuristics. Technical Report
1136-A, Case Western Reserve University, Cleveland, OH, January 1974.

9. Craig A. Knoblock. Automatically Generating Abstractions for Problem Solving.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, 1991.

10. Craig A. Knoblock. Why plan generation and plan execution are inseparable. In
Proceedings of the AAAI Fall Symposium on Plan Execution, Cambridge, MA,
1996.

11. Richard E. Korf. Planning as search: A quantitative approach. Artificial Intelli-
gence, 33:65–88, 1987.

12. E. Melis and J.H. Siekmann. Knowledge-based proof planning. Articial Intelligence,
115(1), 1999.

13. Allen Newell and Herbert A. Simon. Human Problem Solving. Prentice-Hall, En-
glewood Cliffs, NJ, 1972.

14. J. Porteous and L. Sebastia. Extracting landmarks and ordering them for planning.
In H. R. Arabnia, editor, Proceedings of the International Conference on Artificial
Intelligence, Las Vegas, NV, 2001. ICAI.

15. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2nd edition, 2003.

16. Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. 5(2):115–135,
1974.

17. Qiang Yang and Josh D. Tenenberg. Abtweak: Abstracting a nonlinear, least com-
mitment planner. In Proceedings of the Eighth National Conference on Artificial
Intelligence, pages 204–209, Boston MA, 1990. AAAI.

Modeling e-Procurement as Co-adaptive Matchmaking
with Mutual Relevance Feedback

Reiko Hishiyama� and Toru Ishida

Department of Social Informatics, Kyoto University,
Yoshida honmachi, Sakyo-ku, Kyoto 606-8501, Japan

hishiyama@kuis.kyoto-u.ac.jp,ishida@i.kyoto-u.ac.jp

Abstract. This paper proposes a new e-procurement model for a large number
of buyers and sellers interacting via the Internet. The goal of e-procurement is
to create a satisfactory match between buyers’ demand and sellers’ supply. From
our real-world experience, we view e-procurement as a process of negotiation to
increase the matching quality of two corresponding specifications: one for buy-
ers’ demand and another for sellers’ supply. To model scalable e-procurement,
we propose a co-adaptive matchmaking mechanism using mutual relevance feed-
back. In order to understand the nature of the mechanism, we have developed two
types of software agents, called e-buyers and e-sellers, to simulate human buyers
and sellers. Multiagent simulation results show that the matching quality is in-
crementally improved if agents adaptively change their specifications. A realistic
example is also provided to discuss how to extend our simulation to real-world
e-procurement infrastructure.

1 Introduction

In the procurement process, buyers and sellers incrementally develop their mutual
knowledge through making a deal between specifications of buyers’ demand and sell-
ers’ supply. This paper proposes a computational model of an e-procurement process
with a large number of buyers and sellers using the Internet. The motivation behind this
research is as follows. There is a need for e-procurement infrastructure conducive to
supporting complex dealings while taking into account a process for adjusting speci-
fications. Procurement activities between buyers and sellers require negotiation to find
ideal matching between demand and supply specifications, and there is a strong demand
from industries to make procurement activities more open so that buyers have access to
more sellers. This enables buyers to explore purchasing possibilities and to increase the
transparency of their transactions. To develop e-procurement infrastructure, however,
we need an e-procurement simulation model to help understand market performance
when the market is scaled up.

According to literature on management science, in procurement, buyers and sellers
share their purchasing and selling intentions through the exchange of information, ex-
pectations and perceptions. Their creative collaboration [20] leads to a successful deal.
Landerous et al. [14] propose a buyer-seller partnership model that consists of five

� Reiko Hishiyama has been working in the procurement section of Japan Telecom Co., Ltd.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 67–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 Reiko Hishiyama and Toru Ishida

stages: buyer’s expectations, seller’s perceptions, mutual understanding, performance
activities, and collective actions. This model explains how the buyer-seller partnership
mitigates troubles in the activity stage and increases long-term stability. Though several
procurement models exist, no large-scale e-procurement model, which requires compu-
tational formalization, has been studied intensively in the field of management science.

In the multiagent research community, enormous effort has been spent on study-
ing e-auction and e-negotiation mechanisms. In particular, theoretical mechanisms and
computational models of multi-attribute negotiation [7] and multi-attribute auction [5,
3, 6] have been studied. This paper focuses on the “n:n” mutual selection process, un-
like the multi-attribute negotiation, which generally focuses on the “1:1” negotiation
process. In addition, the multi-attribute auction has been dealt with as a winner deter-
mination problem based on the optimization of utility functions from the view of eco-
nomics. In contrast, we deal with matchmaking problems, where buyers and suppliers
have heterogeneous utilities.

In real-world procurement, it is relatively common that the buyer shortlists suppliers
through multilateral negotiation before auction, or negotiates with multiple suppliers
to build a prototype of a new product after short-listing via auction [16].The overall
procurement process is designed by combining auction and other selection methods.
In the planning phase of procurement, the buyer does not have sufficient knowledge
or information about the goods and services to give an announcement prepared for
auction. Therefore, to make up for this lack, the buyers try to gather information and
knowledge with making contact with the suppliers. These activities provide “clear focus
and possibly a shortlist of qualified suppliers” [13]. On the other hand, the suppliers
present several alternative proposals and look for the buyer’s reaction, then conduct
marketing activities to assess whether or not the buyer will be a profitable customer in
the foreseeable future.

The goal of our research is to create a multiagent model for large-scale e-procure-
ment, where buyers/sellers improve their demand/supply specifications interactively,
while keeping their intentions (needs for the buyer and seeds for the supplier). To model
a scalable e-procurement, we propose a co-adaptive matchmaking mechanism using
mutual relevance feedback. To understand the nature of this mechanism, we have de-
veloped two types of software agents, called e-buyers and e-sellers, to simulate human
buyers and sellers. Both agents present multiple attribute specifications to the market,
and adjust their specifications to maximize their satisfaction. Simulation results show
that the matching quality is incrementally improved if agents adaptively change their
relevance feedback threshold. We have also applied this model to a procurement ex-
ample in the real world, and clarified its performance and effectiveness in a practical
domain.

2 Co-adaptive Matchmaking

When a buyer is willing to deal with sellers, he/she prescribes an RFI (Request for In-
formation) and offers it to the market. However, it may not completely represent the
buyer’s purchasing intention. There are two reasons for this. First, the buyer does not
know all products in the market. Sometimes, it is difficult for such a buyer to create
RFIs to effectively distinguish a target product from others. Second, sellers may easily

Modeling e-Procurement as Co-adaptive Matchmaking 69

produce a new catalog if requested. There is also a chance that the buyer’s RFI triggers
sellers to create a new catalog, which may generate feedback to the original RFI. Thus,
we view the buyer’s and seller’s demand/supply specifications as tentative representa-
tions of their intention. An interactive feedback process is necessary for both buyers
and sellers to improve their specifications.

Real worldReal world Market

Buyer Seller

Delegating purchasing task Delegating supplying task
e-Buyer e-Seller

Demand
Intention

Demand
Specification

Supply
Intention

Supply
Specification

Buyer Seller

Delegating purchasing task Delegating supplying task
e-Buyer e-Seller

Demand
Intention

Demand
Specification

Supply
Intention

Supply
Specification

Feedback Feedback

FeedbackFeedback

Fig. 1. Co-adaptive matchmaking.

In our model, each buyer delegates the desired specification to his/her e-buyer. The
e-buyer retrieves sellers’ specifications and supports the buyer to refine his/her specifi-
cation incrementally. Similarly, each seller delegates the desired specification to his/her
e-seller. The e-seller retrieves buyers’ specifications and supports the seller to refine
his/her specification. Figure 1 represents the e-procurement process model, which we
call co-adaptive matchmaking.

The four elements of this model are listed in Table 1. Demand intention represents
the buyer’s intention to purchase, and demand specification is a description that ex-
presses that demand intention to the market. Similarly, supply intention is the seller’s
intention to sell, and supply specification is a description that expresses that supply in-
tention to the market. In short, we denote the buyer’s and seller’s intention as retrieval
intention or query, and the buyer’s and seller’s specification as retrieval specification
or data. We also denote a buyer and a seller as a searcher. Retrieval intention shows
an abstract idea of goods/services that searchers want to find through negotiation, and
is explicitly represented as retrieval specification. Searchers use their retrieval speci-
fication to search corresponding counterpart specifications, and the specifications that
searchers find are called retrieved specification.

70 Reiko Hishiyama and Toru Ishida

Table 1. Four elements in e-procurement.

element definition
Buyer-side Demand intention Buyer’s intention to purchase.

Demand specification Description that expresses demand intention to the market.
Seller-side Supply intention Sellers’ intention to sell.

Supply specification Description that expresses supply intention to the market.

3 Mutual Relevance Feedback

3.1 Background

In this section, we implement co-adaptive matchmaking by using mutual relevance
feedback. Relevance feedback [15] is one of the most popular query reformulation
strategies, which automatically changes the set of query terms as well as the weights
associated with those terms.

In term-weighting retrieval, a weight wik is associated with the index term tk (k =
1, . . . , l) of a document di (i = 1, . . . , n), thus the subject of document i can be rep-
resented by l dimensional vectors (wi1, wi2, · · ·, wil)T . The weight of an index term
is, for instance, the product of its term frequency (TF), an occurrence frequency of the
index term in a particular document, and its inverse document frequency (IDF), a fac-
tor which enhances the terms which appear in fewer documents. The query vector qj is
also represented by l dimensional vectors (wj1, wj2, · · ·, wjl)T . This is called the vector
space model [1]. The similarity between query qj and document di is calculated by the
cosine function of the query term-weight vector (wj1, wj2, · · ·, wjl)T and the document
term-weight vector (wi1, wi2, · · ·, wil)T , i.e.,

Similarity(qj, di) =

l∑
k=1

wikwjk

√√√√ l∑
k=1

w2
ik

√√√√ l∑
k=1

w2
jk

(1)

When retrieving documents, this similarity value is compared to the pre-defined thresh-
old: if the value exceeds the threshold, the document is retrieved.

In relevance feedback using the vector space model, the retrieved documents are
further classified into relevant and irrelevant documents. Let D+ be a set of relevant
documents, where d+

1 , · · ·, d+
|D+| are members of D+, and let D− be a set of irrelevance

documents, where d−1 , · · ·, d−|D−| are members of D−. This classification is performed
by humans. Then, the result of the classification leads to an improvement in the query
term-weight vector: adjust the query term-weight vector toward the document term-
weight vectors of relevant documents D+ and away from the document term-weight
vectors of irrelevant documents D−. The adjusted query term-weight vector is given
by,

Modeling e-Procurement as Co-adaptive Matchmaking 71

α · qj +
β

|D+|

|D+|∑
i=1

d+
i −

γ

|D−|

|D−|∑
i=1

d−i (2)

where α, β, and γ are appropriate constants. Generally, the relevant documents provide
more important information than the irrelevant ones. Thus, the constant γ is usually
smaller than the constant β.

3.2 Mechanism

In this paper, we apply relevance feedback to both buyers’ and sellers’ specifications.
Figure 2 shows the matchmaking process among buyers and sellers. The intentions are
explicitly written into specifications, which are to be enhanced through mutual rele-
vance feedback. In the matchmaking process, the buyer’s and seller’s specifications are
used as queries. At the same time, they are also data to be retrieved. In this paper, we
assume that buyers’ and sellers’ intentions do not change in the course of procurement.
This is because we are focusing on a short-term problem solving process in procure-
ment; a long-term learning process will be discussed in later different paper. Rather,
we assume these intentions are not clearly recognized by buyers or sellers at the be-
ginning of procurement. Let i(i = 1, · · ·, m) be buyers and j(j = 1, · · ·, n) be sellers.
Let b̂i be buyer i’s demand intention, and bi be buyer i’s demand specification, ŝj be
seller j’s supply intention, and sj be seller j’s supply specification. b̂i, bi, ŝj and sj

represent the attribute value of goods or services in the range of [0, 1]. We define co-
adaptive matchmaking as a mutual selection process in which demand specifications are
selected by buyers, while supply specifications are selected by sellers. As discussed in
Section 3.1, let wik be the weight associated with attribute tk (k = 1, . . . , l) of the spec-
ification di (i = 1, . . . , n). Then, each specification is represented by a l dimensional
attribute-weight vector (wi1, wi2, · · ·, wil)T . Next, let us consider the case of a human
buyer delegating demand specification bi to his/her e-buyer. The delegation is carried
out based on his/her demand intention. The e-buyer openly expresses the demand spec-
ification, and retrieves the set of supply specifications S from the market. Let Sbi be
the result of the retrieval, that is, Sbi = {s|Similarity(bi, s) > θ, s ∈ S}, where θ is

Buyer's
Specification

Seller's
Specification

Buyer's
Intention

Seller's
Intention

Relevant
Specifications

Irrelevant
Specifications

Relevant
Specifications

Irrelevant
Specifications

Retrieving

Classification

Specification improvement through
relevance feedback

Specification improvement through
relevance feedback

Retrieving
Selection

Selection

Classification

Fig. 2. Co-adaptive matchmaking process using mutual relevance feedback.

72 Reiko Hishiyama and Toru Ishida

a selection threshold of similarity in specification retrieval. In the same way, a human
seller delegates supply specification sj to his/her e-seller. The delegation is carried out
based on his/her supply intention. The e-seller subsequently openly expresses the sup-
ply specification, and retrieves the set of demand specifications B from the market. Let
Bsj be the result of the retrieval, that is, Bsj = {b|Similarity(sj, b) > θ, b ∈ B} .

A set of the retrieved supply specifications, compiled by the e-buyer, is examined
by the human buyer, and classified into relevant specifications S+

bi
and irrelevant spec-

ifications S−
bi

. The e-buyer then computes the relevance feedback using S+
bi

and S−
bi

to
refine the original demand specification. Similarly, a set of retrieved demand specifi-
cations, compiled by the e-seller, is examined by the human seller, and classified into
relevant specifications B+

sj
and irrelevant specifications B−

sj
. Then the e-seller computes

relevance feedback using B+
sj

and B−
sj

to refine the original supply specification.
Mutual relevance feedback is very different to traditional information retrieval. In

information retrieval, query term-weight vectors can be expanded but document term-
weight vectors are always fixed. In this model, however, both buyers’ and sellers’
attribute-weight vectors can change. Relevance feedback is applied at both sides, though
to the best of our knowledge, no studies have been conducted where relevance feedback
is mutually applied. The performance of mutual relevance feedback can be evaluated
by comparing retrieval intentions and specifications, but it is necessary to conduct sim-
ulations to determine how this co-adaptive process works in various situations.

4 Multiagent Simulation

4.1 Setting

In order to examine the behavior of co-adaptive matchmaking, we have implemented
a multiagent simulator. To simulate human buyers and suppliers, we extend e-buyers
and e-sellers so that they can distinguish relevant and irrelevant specifications. Figure 3
illustrates the relevance feedback cycle of e-buyers. We assume that demand inten-
tions, which are usually determined by purchasing planners, can also be represented by
attribute-weight vectors. Demand specifications, on the other hand, are often provided
by operational buyers. As in Figure 3, the e-buyer comprises two main components: a
search and selection module and a relevance feedback module. Note that the relevance
feedback module is for simulating the behavior of human buyers. The search and selec-
tion module retrieves supply specifications based on the selection threshold θ, while the
relevance feedback module classifies the selected specifications into relevant and irrele-
vant specifications based on the feedback threshold ϕ. That is, a set of relevant supplier
specifications is represented by S+

bi
= {s|Similarity(b̂i, s) > ϕ, s ∈ Sbi}, where ϕ

is a feedback threshold of similarity. The same computational process is applied to e-
sellers. (In the case of e-seller, a set of relevant demand specifications is represented
by B+

sj
= {b|Similarity(ŝj, b) > ϕ, b ∈ Bsj}.) The threshold θ represents the per-

formance of information retrieval. We use a fixed value for θ (0.5 in this simulation),
while the threshold ϕ represents the procurement allowance. We implement two types
of agents with ϕ as follows:

Modeling e-Procurement as Co-adaptive Matchmaking 73

Fig. 3. Relevance feedback cycle of e-buyers.

Fixed Agent. The allowance ϕ is fixed (0.5 in this simulation). If the similarity exceeds
the threshold, the specification is relevant, and if not, it is classified into irrelevant
specifications.

Adaptive Agent. The allowance ϕ adaptively changes according to the market status.
The threshold is set to the average similarity between the retrieval specification
and all the selected specifications. The threshold ϕ for the buyer’s classification is
computed as follows.

ϕ =

∑
s∈Sbi

Similarity(b̂i, s)

|Sbi |
(3)

If the similarity exceeds ϕ, the specification is relevant, and if not, it is classified
into irrelevant specifications.

The simulation settings are as follows. The number of buyers is 10 and the number of
sellers is 100. The intention of each buyer and seller is initially represented by a five-
dimensional binary random vector, which means there are five attributes for each item
(i.e. good/service). Each initial value of the buyer’s and seller’s specifications is also
defined by a five-dimensional binary random vector.

4.2 Result

The simulation results are shown in Figures 4, 5 and 61. Figure 4 shows a comparison of
the average similarity between retrieval intention and retrieval specification. The results

1 Some agents remain at zero similarity, simply because the binary-vector dimension is small
(five in this case).

74 Reiko Hishiyama and Toru Ishida

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of relevance feedback cycles

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
ri

ty

Avg. of 10 adaptive e-buyers

Avg. of 100 adaptive e-sellers

Avg. of 10 fixed e-buyers

Avg. of 100 fixed e-sellers

Adaptive agents

Fixed agents

Fig. 4. Time-series similarity between intentions and specifications.

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
ri

ty

Similarity of intention and specification : 10 Buyers

Left : step 0 Right : step 30

Specification ID
0 2 4 6 8 10

Specification ID

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
ri

ty

Fig. 5. Similarity distribution between inten-
tions and specifications (10 buyers).

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
ri

ty

Similarity of intention and specification : 100 Sellers

Left : step 0 Right : step 30

Specification ID

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
ri

ty

Specification ID

Fig. 6. Similarity distribution between inten-
tions and specifications (100 sellers).

were obtained by averaging over 50 runs. The x-axis represents the number of relevance
feedback cycles illustrated in Fig. 3, while the y-axis represents the average similarity
between retrieval intentions and corresponding retrieval specifications. In the case of
fixed agents, the similarity between intentions and specifications is not sufficient for
successful matchmaking because the retrieval specifications cannot appropriately re-
flect buyers’ or sellers’ intentions. Conversely, in the case of adaptive agents, the result
is satisfactory. The similarity between intentions and specifications is greatly improved
in comparison to the case of fixed agents. Interestingly, in both cases, the average sim-
ilarity among buyers is much higher than that among sellers, which means that a large
population of counterparts provides a greater chance of retrieving a better specification.
This shows that co-adaptive matchmaking is scalable: a large, open market can provide
a better solution to agents.

Figures 5 and 6 display a similarity distribution between intentions and specifica-
tions. Figure 5 shows the similarity distribution of 10 buyers, and Fig. 6 shows the case

Modeling e-Procurement as Co-adaptive Matchmaking 75

Criteria

10

Full dimensions : W

Full dimensions : D

10

5

5

Other conditions

On-site service delivery

Cost estimation

Delivery charge

Performance charge

 Designated leasing
company

20

50

No

Technical specifications

ScoringVendor Proposal

1,401 1,463 1,202

777 865 858

3.2 3.3 3.4

0.00 4.44 10.00

10.00 5.00 0.00

1.19 0.00 5.00

5.00 0.00 0.37

3H 7H 3H

Yes
Group
busi-

nesses
No

35,000 0 45,000

20.00 0.00 20.00

49.88 0.00 50.00

86.07 9.44 85.37

Importance Weight

81.0 85.0 90.0

33,554 38,714 33,002

20,772 28,980 21,276

Vendor
A

Vendor
B

Vendor
C

Vendor
A

Vendor
B

Vendor
C

First copy time : sec.

Copying speed : PPM

Fig. 7. Example of vendor proposal analysis in real business world.

Table 2. Improvement in specification #42.

Feedback Cycle w1 w2 w3 w4 w5 Similarity

Intention 0.333 0.333 0.667 0 1 −−
0 0.8 0.8 0.0 0.0 0.0 0.3652

1 0.831 1 0.315 0 0.611 0.7538

2 0.657 0.874 0.67 0 1 0.9322

3 0.479 0.645 0.648 0 1 0.9738

4 0.378 0.616 0.661 0 1 0.9806

5 0.255 0.563 0.572 0 1 0.9800

6 0.547 0.489 0.502 0 1 0.9727

of 100 sellers. Each figure presents the initial state (left) and the final state after 30 rel-
evance feedback cycles (right), clearly showing that mutual relevance feedback largely
increases similarities in both cases. The specification is improved with respect to the
humans’ intention, which is not clearly recognized at the beginning of procurement.

5 Realistic Experiment

5.1 Setting

We applied co-adaptive matchmaking to a real-world procurement example. We con-
sider a weighted point method to evaluate the specifications, and to ensure transparency
(i.e. fairness) and objectivity in the selection process, the evaluation method weights
the specifications in order of importance. This widely-used method is known as a seller
rating process. In previous work, Forker and Lanson [8] and Thompson [19] also used
weighted point models. In many cases, quantitative and qualitative information is mixed
in the sellers’ specifications; to rate each specification, all information is required to be

2 Vector attributes are standardized.

76 Reiko Hishiyama and Toru Ishida

Table 3. Best matching candidates for intention #4.

Ranking Spec No.(ŝi) w1 w2 w3 w4 w5 Sim.(b̂4 · ŝi)

1 20 0.2 0.4 0.6 0.2 0.8 0.974

2 29 0.2 0.4 0.8 0.4 1.0 0.949

3 81 0.8 0.4 0.6 0.0 1.0 0.948

4 62 0.6 0.2 0.8 0.2 0.8 0.945

5 8 0.6 0.6 1.0 0.4 1.0 0.943

6 33 0.6 0.2 0.4 0.2 0.8 0.927

7 99 0.6 0.6 0.4 0.0 0.8 0.921

8 10 0.0 0.4 0.4 0.2 0.6 0.913

9 31 0.8 0.6 0.6 0.0 0.8 0.913

10 96 0.8 0.8 0.8 0.0 0.8 0.904

quantified. Figure 7 shows a typical example of purchasing decision employing the
weighted point method in a real business process. When mapping a real world problem,
such as is shown in Figure 7, onto the simulation, the following points should be consid-
ered: 1) Not only for achieving the match of demand specification and supply specifica-
tion, we should calculate its utility. Goods/services are originally represented with a pair
of an attribute and its value, for example, (Copying speed, 81.0ppm), (Designated leas-
ing company, No), and buyers/suppliers have heterogeneous utilities. In section 4, we
presented the value in the range of [0,1]. However, the similarity calculation is not bet-
ter using the discrete data such as designated leasing company. In case of procurement
of the copying speed, the speed does not need to be just 81.0ppm; it is better to have
faster copying speed. Therefore, to calculate the coincidence level between the demand
specification and the supply specification is not sufficient for this type of mapping; the
degree of buyer’s/supplier’s satisfaction should be calculated from the (attribute) value
of the demand specification and the supply specification. For example, when a buyer
evaluates a supplier’s specification, the degree of satisfaction for the (attribute) value
that composes the supply specification is evaluated by utility. 2) The satisfaction is im-
portant for some attributes. However, for other some attributes, it may be less important.
It is necessary to define the degree of importance from the both the buyer’s and the sup-
plier’s viewpoints. The overall utility is calculated by adding up each utility of attribute
value that is multiplied by the degree of importance.

Formula (1), which is the similarity calculation used for the relevance feedback, can
be replaced by this overall utility calculation. To justify the formulation of the relevance
feedback, the utility function should be a monotone increasing or decreasing function.

In the experiment we conduct, the settings are as follows. Each e-buyer and e-seller
takes a five-dimensional vector for its intention and specification, and each of these
vectors contains significance attribute value such as (First copy time, Copying speed,
Wide, Depth, Cost estimation), encoded into an integer value from 0 to 1. If the demand
intention is (0.8, 0.6, 0.6, 0.2, 0.2), and the selected supply specification is (0.4, 0.6, 0.2,
0.2, 0.2), then the similarity between the intention and specification is 0.917, which is
very high. On the contrary, if the demand intention is (0.6, 0.2, 0.4, 1.0, 0.2), and the
selected supply specification is (0.4, 0.8, 0.6, 0.2, 1.0), the similarity is 0.554, which is
very low. The buyer’s goal in matchmaking is to retrieve supply specifications as similar
as possible to the demand intention.

Modeling e-Procurement as Co-adaptive Matchmaking 77

Table 4. Time-series similarity between a buyer’s intention and selected sellers’ specifications3.

Number of relevance feedback cycles Similarity

1 2 3 4 5 6 1 6

Ranking Spec. Sim. Spec. Sim. Spec. Sim. Spec. Sim. Spce. Sim. Spec. Sim. Sim. Sim. Improve-

(a) (b) (a) (b) ment

1 100 0.924 88 0.963 ∗20 0.953 ∗81 0.979 ∗62 0.998 ∗62 0.953 0.924 0.953 3.146

2 49 0.915 66 0.957 51 0.950 ∗20 0.965 84 0.985 1 0.950 0.915 0.950 3.831

3 91 0.915 15 0.943 88 0.945 13 0.963 48 0.977 ∗81 0.941 0.915 0.941 2.840

4 45 0.906 32 0.939 ∗62 0.926 ∗62 0.961 ∗20 0.948 35 0.939 0.906 0.939 3.727

5 57 0.893 100 0.937 1 0.920 51 0.951 13 0.946 13 0.918 0.893 0.918 2.832

6 19 0.885 89 0.924 6 0.914 1 0.947 51 0.944 ∗20 0.917 0.885 0.917 3.602

7 23 0.877 6 0.911 32 0.914 ∗99 0.920 1 0.937 ∗96 0.911 0.877 0.911 3.967

8 41 0.873 91 0.895 5 0.912 84 0.916 ∗99 0.930 51 0.910 0.873 0.910 4.243

9 59 0.854 45 0.889 22 0.905 94 0.909 94 0.926 ∗99 0.909 0.854 0.909 6.498

10 18 0.852 2 0.885 15 0.897 ∗10 0.882 95 0.902 ∗31 0.905 0.852 0.905 6.178

11 ∗20 0.835 19 0.884 14 0.891 66 0.871 35 0.898 84 0.878 0.835 0.878 5.130

12 51 0.829 41 0.883 64 0.878 76 0.866 ∗8 0.893 ∗8 0.873 0.829 0.873 5.371

13 92 0.808 57 0.882 67 0.867 73 0.865 73 0.884 ∗10 0.872 0.808 0.872 7.885

14 97 0.807 74 0.872 ∗99 0.866 17 0.859 ∗10 0.875 52 0.872 0.807 0.872 7.974

15 ∗62 0.807 49 0.868 28 0.863 5 0.846 ∗96 0.862 ∗33 0.871 0.807 0.871 7.911

Number of
satisfying

specifications 2 0 3 5 6 9

5.2 Result

Table 2 analyzes the negotiation process of buyer No. 4 (demand intention b̂4 =(0.2, 0.2,
0.4, 0.0, 0.6) and demand specification b4 =(0.8, 0.8, 0.0, 0.0, 0.0)) in which the simi-
larity between intention b̂i and specification bi is lower than other matching candidates
at the beginning of procurement. In this example, attribute weight w5 is considered im-
portant, whereas w4 is not. The iterations show how the e-buyer’s demand specification
has been improved. The similarity between the demand intention and selected supply
specifications increases step by step, and eventually arrives at a satisfactory close.

Table 3 shows best matching candidates for the demand intention of buyer No. 4,
i.e., the table lists a similarity ranking of supply intentions for the demand intention of
buyer No. 4. Table 4 shows a similarity ranking of the top 15 supply specifications for
the demand intention of buyer No. 4, clearly indicating that the similarity increases at
each cycle. The precise ranking changes at every cycle because of the change in market
status. However, specifications with high similarity scores always stay in the list. The
three rightmost columns of Table 4 show similarities before and after the repeated rel-
evance feedback. Note that the lower the ranking, the greater the improvement. After
six cycles of mutual relevance feedback, Table 4 includes nine out of ten best-matching
candidates (seller’s supply intentions) in Table 3. This fact supports the applicability of
co-adaptive matchmaking in a procurement domain. Figure 8 displays similarities be-
tween buyer No. 4’s intention and selected supply specifications. The average similarity

3 The selected seller’s specification marked with an asterisk (*) indicates that the specification
is one of the best matching candidates; the corresponding seller’s supply intention appears in
Table 3.

78 Reiko Hishiyama and Toru Ishida

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
ri
ty

Number of relevance feedback cycles

Min.

Max.

Avg.

Box-and-whiskers plot of

selected specifications

Fig. 8. Similarity between the buyer’s intention and selected sellers’ specifications.

of all the selected supply specifications increases; in practice, however, a few specifi-
cations with low similarity are still selected. To exclude low similarity specifications,
it is reasonable to recommend the top five or so specifications. The human buyer, then,
selects a few from the recommended list based on his/her purchasing knowledge. Thus,
a combination of the human knowledge and co-adaptive matchmaking can offer a better
way of enhancing the quality of e-procurement.

6 Related Work

A number of research projects have focused on autonomous agent technology for B2B
e-commerce applications [11]. Our research was inspired by agent-mediated e-com-
merce systems with brokering, matchmaking, and bilateral negotiation. For example,
MARI [18] was proposed as an agent-based intermediary architecture capable of sup-
porting multiple sellers and buyers within a multiple product domain. MARI builds
upon multi-attribute utility theory formulation, as introduced in Tete-a-Tete [9].

This paper also relates to matchmaking among profiles, which are mostly referred
to as agent service descriptions. Kuokka and Harada [12] presented two matchmaking
systems: COINS and SHADE. The former is based on free text matchmaking using
TF-IDF. The latter uses a subset of KIF and a structured logic text representation called
MAX. A more recent service broker-based information system is InfoSleuth [2]. They
adopt constrains matching, which satisfies a user query with data constraints. Sycara
et al. developed LARKS [17] for advertising, requesting, and matchmaking. LARKS
performs both syntactic and semantic matchings. Veit et al. developed GRAPPA [21],
whose matchmaking hosts an extensive collection of predefined profile schemas and
distance functions based on a cosine similarity measure. We inherit the basic ideas of
matchmaking from previous work to create a new co-adaptive matchmaking model.

In the context of e-auctions, we confirm that our system links to a special form of
auction in which there are many kinds of goods to sell, and in which bidders can bid on
combinations of items. Several multiple-attribute algorithms and protocols have been
developed [4, 11].

Modeling e-Procurement as Co-adaptive Matchmaking 79

He et al. [10] surveyed various e-commerce research projects, and pointed out that
more advanced services (e.g. collaboration with other brokers) should emerge in order
to provide more support to buyers and sellers involved in transactions. We think co-
adaptive matchmaking will be the first step towards emerging long-term collaboration
with other brokers through repeated negotiation.

7 Conclusions

In this paper, we proposed a multiagent model for a large-scale e-procurement: co-
adaptive matchmaking using mutual relevance feedback. Our contribution is three-fold.

First, we studied cases of procurement in the real business world and proposed a
co-adaptive matchmaking process in a simulation model of e-procurement using the
Internet. Mutual relevance feedback is applied for modeling the negotiations between
buyers and sellers to improve their demand/supply specifications. Second, to simulate
human buyers and sellers, we implemented a simulation for e-buyers and e-sellers to an-
alyze the behavior of this model. The simulation result showed that the matching quality
is incrementally improved if both buyers’ and sellers’ adaptively change their relevance
feedback threshold. Finally, we conducted realistic experiments in the context of real-
world procurement activities, and confirm that co-adaptive agents are able to find de-
sired specifications through repeated negotiation.The e-buyers/e-suppliers showed su-
perior performance in handling transactions, monitoring the main features of products
that are widely needed in the market, and screening the specifications to find the best.

This paper shows the effectiveness of co-adaptive matchmaking for model a large-
scale e-procurement on the Internet. However, we still require an effective and efficient
procurement infrastructure that actually plays a practical role in human users affording
a diversity of reasoning. In order to handle transactions for goods/services with a large
number of attributes from several hundred traders, we need software agents that act
on behalf of human buyers or sellers. To extend our simulation model to real-world
e-procurement infrastructure, software agents should be capable of estimating human
intentions. The next step in this research, entails a plan to embed co-adaptive agents in
actual e-procurement processes so as to enhance collaboration between human buyers
and sellers.

References

1. Baeza-Yates, R. and Ribeiro-Neto, B.: Modern Information Retrieval, Addison Wesley
(1999).

2. Bayardo, R., et al.: Infosleuth: Agent-based Semantic Integration of Information in Open
and Dynamic Environments. In ACM SIGMOD Conf. on Management of Data , pp. 195–206
(1997).

3. Bichler, M., Kalagnanam, J.: Bidding Languages and Winner Determination in Multi-
Attribute Auctions. IBM Research Report, RC22478, W0206-018 (2002).

4. Bichler, M. : An Experimental Analysis of Multi-attribute Auctions, Decision Support Sys-
tems, Vol. 29, No. 3, pp. 249–268 (2000).

5. Che, Y.K.: Design Competition Through Multidimensional Auctions, RAND Journal of Eco-
nomics , Vol. 24, No. 4, pp. 668–680 (1993).

80 Reiko Hishiyama and Toru Ishida

6. David, E., Azoulay-Schwartz, R. and Kraus, S.: Protocols and strategies for automated multi-
attribute auctions, Proceedings of the first international joint conference on Autonomous
agents and multiagent systems (AAMAS-2002) , pp. 77–85 (2002).

7. Faratin, P., Sierra, C. and Jennings, N.R.: Using Similarity Criteria to Make Issue Trade-offs
in Automated Negotiations, Artificial Intelligence , Vol. 142, No. 2, pp. 205–237 (2002).

8. Forker, L.B. and Janson, R.L.: Ethical Practices in Purchasing, Journal of Purchasing and
Materials Management , Vol. 26, No. 1, pp. 19–26 (1990).

9. Guttman, R.H. and Maes, P.: Agent-Mediated Integrative Negotiation for Retail Electronic
Commerce, Proceedings of the Workshop on Agent Mediated Electronic Trading (1998).

10. He, M., Jennings, N.R. and Leung, H.F.: On Agent-Mediated Electronic Commerce, IEEE
Transactions on knowledge and data engineering, Vol. 15, No. 4, pp. 985–1003 (2003)

11. Jennings, N.R., Norman, T.J., Faratin, P., O’Brian, P. and Odgers, B.: Autonomous agents
for business process management, Journal of Applied Artificial Intelligence , Vol. 14, No. 2,
pp. 145–189 (2000).

12. Kuokka, D. and Harada, L.: Supporting Information Retrieval via Matchmaking. Working
Notes 1995 AAAI Spring Symposium on Information Gathering in Heterogeneous, Dis-
tributed Environments, Technical Report SS-95-08, AAAI Press (1995).

13. Laseter, T.: Balanced Sourcing :Cooperation and Competition in Supplier Relationships,
Jossey-Bass Pulishers (1995).

14. Landeros, R., Reck, R. and Plank, E.: Maintaining Buyer-Supplier Partnership, International
Journal of Purchasing and Materials Management , Vol. 31, No. 3, pp. 3–11 (1995).

15. Salton, G.: The SMART Retrieval System – Experiments in Automatic Document Process-
ing, Prentice Hall (1971).

16. Samtani, G.: B2B Integration – A Practical Guide to Collaborative E-commerce, Imperial
College Press (2002).

17. Sycara, K., Widoff, S., Klusch, M. and Lu, J.: LARKS: Dynamic Matchmaking Among Het-
erogeneous Software Agents in Cyberspace, Autonomous Agents and Multi-Agent Systems,
Vol. 5, pp. 173–203 (2002).

18. Tewari, G. and Maes, P.: Design and Implementation of an Agent-Based Intermediary In-
frastructure for Electronic Markets, Proceedings of the 2nd ACM conference on Electronic
commerce, pp. 86–94 (2000).

19. Thompson, K.N.: Scaling Evaluative Criteria and Supplier Performance Estimates in
Weighted Point Prepurchase Decision Models, International Journal of Purchasing and Ma-
terials Management , Vol. 27, No. 1, pp. 27–36 (1991).

20. Tully, S.: Purchasing’s New Muscle, Fortune , February 20, pp. 75–83 (1995).
21. Veit, D., Müller, J.P. and Weinhardt, C.: Multidimensional Matchmaking for Electronic Mar-

kets, Journal of Applied Artificial Intelligence , Vol. 16, No. 9-10, pp. 853–869 (2002).

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 81–91, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Price Determination and Profit Sharing
for Bidding Groups in Agent-Mediated Auctions

Ming-Chih Hsu and Von-Wun Soo

Department of Computer Science, National Tsing Hua University, Hsin Chu, Taiwan 30043
{scat,soo}@cs.nthu.edu.tw

Abstract. It is a common behavior that a group of rational agents cooperate to-
gether as a bidder/seller to bid in an auction. How to determine the group bid-
ding price and how to share the profit among the members in a group has been
problems that are not studied thoroughly. In time-critical auctions, the problem
is getting more complicated since the group has to decide new bidding prices
within time limits. Conventional approaches used a centralized mechanism to
assign profit share to each bidding agent in the group that usually lead to nega-
tive profit of individual bidding agent. We propose a distributed approach
called Z-process that allows individual bidding agents to declare their compro-
mised profit share based on their rationalities, and determines the group bidding
prices simultaneously. We show that in Z-process there exists a dominant strat-
egy for rational agents that can let them obtain maximum profit. We can also
show that the compromised profit of each individual bidding agent by Z-process
satisfies each agent’s rationality.

1 Introduction

Auctions play important roles in human economics. Traditionally, buyers and sellers
use many kinds of auctions to trade goods ranging from fishes to valuable antiques.
Nowadays, auction mechanisms have been used to schedule tasks, find delivery route
and allocate resources [1,2,3,4].

In micro-economics, different auction types, basic theorems and individual
buyer/seller behavior analysis have been investigated in great depth [5,6].

Auctions can be considered as a market game of multiple agents. Each agent repre-
sents either a buyer or a seller. Of course in some settings an agent can be both a
buyer and a seller. Although there are basically four kinds of auctions, the above set-
tings still holds. In other words, we have a market game with all participants as ra-
tional agents. With this assumption, the dominant strategy, bidding price and even
expected profit can be analyzed according to micro-economics.

However, situations in real life are becoming more complex. We can find cases
where multiple agents collude together as one bidder or buyer group and bid in auc-
tions. Companies of different capabilities join together as a coalition to bid for a gov-
ernment contract. Buyers of different needs join together to bid for a bunch of goods
in order to get a better deal.

There are several issues about group bidding. In [7,8], the problem of how groups
(or coalitions) are formed is discussed. Various techniques are proposed to cope with
this problem such as negotiation [9], combinatorial auction [7,8], and others [10].

82 Ming-Chih Hsu and Von-Wun Soo

Another problem arises after groups (or coalitions) are formed. How should the re-
source/profit/cost be distributed among the members of the group? What are the crite-
ria for distributing resource/profit/cost? There are also works such as resource sharing
[11,12], surplus/cost sharing [13,14] which are related to these problems.

As the importance of the rationality of individual bidders is being addressed, dis-
tributed solutions of the above problems are proposed [15].

In this work we focus on the problem of how to determine prices and share profits
for group bidding using individual agent rationality. We don’t address how the bid-
ding group is formed. For example, if a group of companies (all the companies in the
group are necessary) cooperate together to bid for a government contract in an Eng-
lish auction, then the problem of how these companies find each other belongs to the
problem domain of group (coalition) formation. The decision of the bidding prices of
the group can be solved using resource sharing or surplus/cost sharing methods
(which directly assigns a price share to each company). But directly assigning price
shares to companies sometimes lead to negative profits. We propose an approach
which allows individual company to decide its own price, therefore each company
gets positive profit. This approach also fulfills the requirement of English auctions
that new bids must be placed within a certain time constraint.

We want to answer the following questions: How a bidding group determine its
bidding prices in a multi-round auction (for example: English auction)? Is it possible
that a feasible bidding price be generated within the time bound of a multi-round
auction? What is the best strategy for a rational agent to bid in a bidding group? What
is the expected group price when using our approach?

In this paper, we propose a mechanism called Z-process (ZP) that allows multiple
rational agents to bid as a bidding group in an auction. In Z-process, we design a
group pricing and profit sharing mechanism. Using this mechanism a bidding group
can determine the optimal bidding prices in reverse English auctions and simultane-
ous derives the profit share for each member agent.

This work is organized as follows. In section 2, the terms and definitions used in
the work are defined. In section 3, the algorithm of the Z-process is described. In
section 4, the proof of properties of Z-process is mentioned. Finally, the applications
of Z-process, discussion and conclusion are made in the fifth and sixth section respec-
tively.

2 Terms and Definitions Used in Z-Process

We first define the terms used in this work (illustrated in Fig.1). Then the mechanism
of the Z-process is described.

2.1 The Auction Scheme

We use a reverse English auction to demonstrate how Z-process works. In our reverse
English auction setting there is a customer who wants to buy a service, so he opens an
auction to have all possible service providers bid for his contract. The bidders (which
are also sellers) in this auction are the service providers. The customer specifies his
requirements of the service and the bidders bid the contract with the price of their
service. The contract is given to the bidder with the lowest price.

Price Determination and Profit Sharing for Bidding Groups in Agent-Mediated Auctions 83

Fig. 1. The reverse English auction scheme

2.2 The Reservation Price

The reservation price of a service provided by an agent is defined by the following
statements. If a service is sold at its reservation price, the service providing agent
gains zero profit. If a service is sold at a price lower than the reservation price, the
service providing agent gets negative profit, and vice versa. So a rational service
providing agent will refuse to sell its service with a price under its reservation price to
avoid negative profit. However, the reservation price of a service is only known by
the service providing agent itself.

2.3 Bidding Group and Bidding Agents

A bidding agent is an agent who provides a certain type of service and knows how to
bid in an auction. Each bidding agent knows the reservation price of its service and
will try to maximize its profit by selling its service at a high price.

In some situations a single agent’s service cannot fulfill buyers’ requirements, so
multiple service providing agents must cooperate together to bid for contracts. A
bidding group consists of a set of bidding agents who cooperate together to provide an
integrated service to win a contract in the auction. We assume each of the agents in a
bidding group is necessary for the bidding group (e.g. no dummy or redundant bid-
ding agent). If any one of the agents quits, the group is failed.

2.4 Individual Price and Group Bidding Price

The individual price denotes the price an agent declares to charge for the service it
provides. The group bidding price (sometimes called group price) equals the summa-
tion of all the individual prices in the group.

2.5 Profit

The profit of a service provided by an agent denotes the difference between the indi-
vidual price and the reservation price of the service (Fig.2).

84 Ming-Chih Hsu and Von-Wun Soo

0
2
4
6
8

10

R
ev

en
ue

A0 A1 A2 A3 A4 A5
Bidding agents

Reservation Price Profit

Fig. 2. The revenue distribution of the bidding agents of a bidding group

2.6 The Goal of Z-Process

The goal of Z-process is to have each bidding agents in a bidding group an incentive
to maximize its group wining probability by reducing its price. Therefore the key
issue to the goal is to balancing out these two factors: group wining probability and
individual profit.

3 The Z-Process in a Reverse English Auction

In an English auction the dominant bidding strategy of a bidder (buyer) is to stay in
the auction as long as the current bidding price is below its valuation of the service.
This situation still holds for reverse English auctions where the bidders are sellers.
The only difference is that the bidder should keep on bidding if its valuation is below
the current bidding price. For a naive bidder the bidding decision is usually to com-
pare the current price and its valuation. But if the bidder represents a group of bidding
agents the situation is getting more complicated. For a bidding group the initial bid-
ding price can be obtained easily by asking all the bidding agents of the group to
declare their initial prices. But in the consequent bidding, the above method does not
work. The bidding group needs to reduce its bidding price by a certain amount to stay
in the auction. But do all the bidding agents of the group agree to bid this new group
bidding price? Which bidding agents in the group should cut their individual prices to
achieve such a group bidding price reduction? A certain procedure is needed to per-
form two tasks: to determine new bidding prices, and do it within the time bound
sanctioned by the auction. And the Z-process does both (Fig.3).

The Z-process is an intermediate process that helps a bidding group to determine
new group prices and profit sharing among bidding agents in the group. In a reverse
English auction, if some other bidder places a winning bid, a bidding group will use
the Z-process to determine if the bidding agents of the group agree to cut their prices
to derive a new group bidding price that is lower than the winning price. And the
decision must be made within the time bound of the reverse English auction. Z-
process is a multi-round procedure. In each round Z-process asks all the bidding
agents of the bidding group if some of them could cut their prices a certain amount. Z-
process ends when the goal group price is reached (enough price cuts collected) or
there is no bidding agent cuts its price in a certain round. If Z-process ends without
achieving goal group price, it is failed and therefore the bidding group will not place
the bid with the goal group price in the auction. However, if Z-process is successful,

Price Determination and Profit Sharing for Bidding Groups in Agent-Mediated Auctions 85

the group will bid in the reverse English auction. The bidding agents that agreed to
cut their prices will receive profits that are decreased by the amount they promised to
cut.

Fig. 3. In a reverse English auction, a bidding group has to decide within time limit T whether
to place a bid with price Pgoal. The dotted area represents the possible group bidding price and
feasible bidding time

3.1 The Coordinator

The coordinator is a simple facility that performs the following task.
• Keep group information such as the list of bidding agents of the group.
• Keep known parameters
• Calculate unknown parameters
• Execute Z-process algorithm

3.2 Initial Condition

Before the Z-process is applied the following parameters are already known:
• A bidding group G
• Member bidding agents of G

3.3 Known Parameters

The values of these parameters are already known before Z-process.
• Total available time T

The total time that is available to the Z-process execution. In reverse English auc-
tion, this parameter equals the clearing time.

• Initial group bid price Pinit
• Goal group bid price Pgoal
• Number of group members N
• Bidding agent response time ti for agent I

The time used to sending a message and receiving response to agent i. This pa-
rameter affects the execution speed of Z-process because we have to wait this
much time to ensure that every bidding agent did receive messages.

86 Ming-Chih Hsu and Von-Wun Soo

3.4 Unknown Parameters

The values of these parameters are unknown before Z-process. These two parameters
determine the speed and efficiency of Z-process.

• Number of rounds R
The maximum number of rounds a Z-process can have.

• Price decrement dS
This is the price reduction unit. Each time a bidding agent agrees to cut its price,
its price is decreased by one price decrement dS.

3.5 Parameter Relations

• One round time constraint

)max(/ itRT ≥

• Price constraint

 initgoal PPRdS −≥×

From the above two constraints we derived the following relation which denotes
the lower bound of dS:

TtPPdS iinitgoal /)max()(×−≥

Now we have to determine the value of dS and R, thereafter the Z-process can pro-
ceed.

3.6 Parameter Decision Considerations

Upon determining dS two important factors must be considered: speed and resolution.
The speed factor means that we need dS to be large enough to achieve Pgoal in reason-
able rounds. The resolution factor means that dS should be small enough to fit the
difference of agent profit. For large dS some agents with profits smaller than dS will
not want to cut their price to avoid negative profits.

Since we have derived the lower bound of dS, and dS needs to be as small as possi-
ble, we have

TtPPdS iinitgoal /)max()(×−= , and

)max(/ itTR =

3.7 Z-Process Algorithm

With all the needed parameters in hand, the coordinator can carry out the Z-process
algorithm. The steps of the algorithm are listed below.

**Main Steps of Z-process

Step 1:
Calculate initial group bid price Pinit

Price Determination and Profit Sharing for Bidding Groups in Agent-Mediated Auctions 87

Step 2:
Determine the known parameters

Step 3:
Calculate unknown parameters

• Bid increment

TtPPdS iinitgoal /)max()(×−=

• Number of rounds

)max(/ itTR =

• Round time

RTTR /=

Step 4:
Repeat the following round operations until no bidding

agents agrees to cut its price.

**Z-process round operations

GroupPrice = Pinit
CurrentRound=0
repeat
AnswerBidderNumber = 0
CurrentRound+1
Repeat the following while time < TR
• Accept incoming dS from bidding agents
• Calculate the new individual price of the answering

agent
• AnswerBidderNumber+1
• GroupPrice+dS
End of repeat

while
GroupPrice<Pgoal and
AnswerBidderNumber > 0 and
CurrentRound < R

if GroupPrice<Pgoal then return FAIL
Otherwise G can bid Pgoal in the reverse English auction
process

Extra Rule E:
If a bidder decides not to cut its price at a certain
round in a Z-process, it will not be able to bid at the
following rounds.

4 Analysis of the Z-Process in a Reverse English Auction

The group bidding prices and profit sharing of Z-process is based on two factors:
group wining probability and individual prices. We made an analysis from the view
point of a single bidding agent in a bidding group.

88 Ming-Chih Hsu and Von-Wun Soo

4.1 Expected Profit and Dominant Strategy

For a bidding agent X in a bidding group in the reverse English auction settings, the
only decision it has to make is "Should I bid (compromise) or not?" in each round in
the Z-process. From simple strategy analysis in (Fig.4) we found that if the other
bidding agents in the same group tend not to bid (compromise), then the agent X will
have to bid (compromise) to prevent the bidding group from losing in the reverse
English auction. But if the other bidding agents tend to bid for the benefit of the bid-
ding group, the agent may not have to bid to obtain better profit for itself if doing this
won’t affect the wining probability of the group.

 Other Agents
Bid

Other Agents
No Bid

Agent X
Bid

Initial Profit-dS Initial Profit-dS

Agent X
No Bid

Initial Profit or 0 0

Fig. 4. Strategy analysis (expected profit of agent X) of different bidding behavior

Let’s consider a simple scenario. Suppose a bidding agent X who wants to decide
whether to bid at the first round in a Z-process. If X places a bid at the first round,
then it will have to reduce its profit by dS but will be allowed to join the next round. If
X does not bid at the first round, its profit will not be reduced but it will not be al-
lowed to join the remaining rounds. So X has to evaluate the expect profits of these
two decisions.

Let p be the probability that a bidding agent places a bid at a round in a Z-process,
u is the total number of bids needed for the Z-process to succeed, and r is the initial
profit of X. We assume that all the other bidding agents are homogeneous and have
the same p. Then if X refuses to bid at the first round, the expected profit of X in the
whole Z-process will be

upr × (1)

If X agrees to bid at the first round but refuses to bid in the second round, its ex-
pected profit will be

1)(−×− updSr (2)

By subtracting (2) from (1), we have

))1((1 prdSpu −×−×− (3)

In the following paragraph we will have an inspection on (3) to see if X should
choose to bid. If (3) > 0, then X will be better off by give up bidding at the first round,
otherwise it should place a bid at the first round. Following the above discussion the
bidding strategy function (3a) is derived. If (3a) >= 0 then agent X should bid, other-
wise X should not bid.

dSprprBid −−×=)1(),((3a)

Price Determination and Profit Sharing for Bidding Groups in Agent-Mediated Auctions 89

From (3a), we know that if X’s profit is close to dS (dS must be larger than r, oth-
erwise X will has nothing to worry about!), agent X should bid (expression (3a) > 0)
when the other bidding agents have low probability to bid (small p). If X’s profit is
much greater than dS, X should bid even when the other bidding agents have very
high probability to bid (large p). This result is compatible with (Fig.4).

From (3a) we find that the dominant strategy for X at the first round is adaptive:
agent X’s willingness to bid is proportional to its current profit. In other words, agent
X should places bids in a Z-process if its profit is larger than dS.

The relation between r and p is illustrated in (Fig.5). Since the bidding strategy for
agent X in the first round of Z-process has been derived, we can use a similar ap-
proach to prove that the same strategy still holds for the other rounds.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 6 11 16
Agent A’s profit

O
th

er
 a

ge
nt

s’
 p

Range of P that A bids

Fig. 5. Relation between agent X’s profit and other agents’ bidding probabilities

4.2 Heterogeneous Bidding Agents

If the bidding agents are not homogeneous, the bidding probabilities of them will not
be the same and hence the formulas derived above should be modified. Let p(u) de-
notes the cumulative product of the probabilities of all needed u bids. We have a
modified version of formula (1) and (2) as

)(upr × (1m)

)1()(−×− updSr (2m)

By subtracting (2m) from (1m), and let p denotes the term that only exist in p(u)
but not in p(u-1) we have

))1(()1(prdSup −×−×− (3m)

Since we only care about the sign (negative or positive) of (3m), the term p(u-1) is
ignored because it is always positive. Following a similar procedure mentioned above,
we can derive a similar result and therefore the dominant bidding strategy for a bid-
ding agent of a group is the same one that was mentioned above: an agent should
places bids in a Z-process if its profit is larger than dS.

90 Ming-Chih Hsu and Von-Wun Soo

4.3 The Expected Final Group Price

If we apply Z-process to a bidding group repeatedly until Z-process fails, and if all the
agents in a bidding group are rational, the expected final group bidding price can be
derived in the following way. We know that

Initial group price Pinit =
Group reservation price Preserve + Initial group profit R.

For each bidding agent
Initial agent price pinit =

Agent reservation price preserve + Initial agent profit r.

The initial agent profit for agent i:

iii ssdSur +×= , ui is an integer, 0 <= ssi < dS. So ui can be interpreted as the

maximum number of bids the bidding agent will place in a Z-process. Each rational
bidding agent will place bids until its profit is below or equal to dS. The expected

final profit of individual agent will be ssi. The total final group profit is ∑= issR’ .

The expected final group price is

∑+= ireserveected ssPPexp (4)

From (4) we can find that the smaller dS is (which means that the time bound for a
Z-process is large, and therefore the number of rounds in a Z-process is large), the
closer the expected final group price will be to the group reservation price.

5 Applications of Z-Process

In [15] we have applied the Z-process to a travel planning system. We use graph the-
ory to find a suitable travel route that meets user preference. Then the transportation
companies that provide transportation services of the route segments are informed and
assigned the same group. Therefore each transportation company in a group is neces-
sary. Any company quits and the entire group is failed because of incomplete travel
route.

In order to get a better deal in travel transportation expense, the travel agent asks
all the groups attend a reverse English auction. The Z-process is used when a group
tries to win the travel contract by decreasing it price.

By using Z-process, bidding groups can refine their group bidding prices based on
the progress and situation of an auction. In the same time the rationalities of individ-
ual bidding agents are still preserved.

6 Conclusion and Future Work

We figure out the problem of price determination and profit sharing for group bid-
ding. The focus of this work is on the situation when a bidding group wants to change
their group bidding price in response to the progress of the auction the group attend.
A mechanism call Z-process is constructed to deal with this problem. In Z-process the
rationalities of the bidding agents of a bidding group is used to make the agents cut

Price Determination and Profit Sharing for Bidding Groups in Agent-Mediated Auctions 91

their prices in order to maximize group winning probability. Using Z-process a bid-
ding group can derives new group bidding prices within the time bound sanctioned by
English auctions. The final group bidding price obtained by repeatedly applying Z-
process to a bidding group is also prove to be optimal when the individual rationality
and privacy preservation properties are to be fulfilled.

We have found that with minor modification the Z-process can be used in other
types of auctions (Vickrey, first-price sealed bid, Dutch). The properties of such
modification are being studied.

References

1. www.e-bay.com
2. http://wireless.fcc.gov/auctions/
3. Allard, Nicholas W.: The New Spectrum Auction Law. 18 Seton Hall Legis. J. (1993), 13-

58
4. Cramton, Peter: The Efficiency of the FCC Spectrum Auctions. 41 J. L. & Econ. (1998),

727-735
5. Andreo Mas-Colell, Michael Whinston and Jerry R. Green, Microeconomic Theory, Ox-

ford University Press, 1995.
6. P. Preston McAffe and J. McMillan, Auctions and Bidding, Journal of Economic Litera-

ture, 25:699-738, 1987.
7. C. Li and K. Syacara, Algorithm for Combinatorial Coalition Formation and Payoff Divi-

sion in an Electronic Market Place, in Proc. of International Conference on Autonomous
and Multi-agent Systems, 2001.

8. W. Conen and T. Sandholm, Partial Revelation VCG Mechanism for Combinatorial Auc-
tions, National Conference on Artificial Intelligence (AAAI), 2003.

9. Onn Shehory, Sarit Kraus, Coalition formation among autonomous agents: Strategies and
complexity, From Reaction to Cognition --- Fifth European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, MAAMAW-93 (LNAI Volume 957)

10. Kevin Leyton-Brown, Yoav Shoham, Moshe Tennenholtz, Bidding Clubs: Institutionalized
Collusion in Auctions, ACM Conference on Electronic Commerce, 2000

11. Gelman, A. D., and Halfin, S., Analysis of Resource Sharing in Information Providing Ser-
vices, Proceedings of IEEE Global Telecommunications Conference and Exhibition 1990,
Vol. 1, 1990. resource sharing

12. A. Lazar and N. Semret. Auctions for Network Resource Sharing. CTR Technical Report,
Columbia University, February 1997

13. Friedman, E. and H. Moulin (1995). "Three Additive Cost Sharing Methods: Shapley-
Shubik, Aumann-Shapley, and Serial". Mimeo, Duke University. Shapley, L. S. #1981#.
Discussant’s Comments. In Moriarity, S., editor, Joint Cost Allocation. Oklahoma Press,
Tulsa, Oklahoma, U.S.A.

14. T. Sandholm, Distributed Rational Decision Making, In the textbook Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence, Weiss, G, ed. MIT Press, pp.
201-258, 1999.

15. Ming-Chih Hsu, Hsueh-Min Chang, Yi-Ming Wang and Von-Wun Soo, Multi-Agent
Travel Planning through Coalition and Negotiation in an Auction, PRIMA 2003.

Agent Based Risk Management Methods
for Speculative Actions

Yasuhiko Kitamura1 and Takuya Murao2

1 School of Science and Technology, Kwansei Gakuin University,
2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

ykitamura@ksc.kwansei.ac.jp

http://ist.ksc.kwansei.ac.jp/~kitamura/
2 Osaka City University, Osaka 558-8585, Japan

murao@kdel.info.eng.osaka-cu.ac.jp

Abstract. In multiagent systems, a cooperative action requires the mu-
tual agreement of multiple agents which is generally achieved by ex-
changing messages. Any delay in message transfer will, however, delay
the realization of agreement, and this may reduce the effectiveness of the
cooperative action. One solution is to use speculative actions, actions
taken before agreement is reached with the goal being to ”lock in” the
benefits of the cooperative action; its downside is the penalty incurred
in unwinding the speculative actions if indeed the agents do not reach
agreement. In this framework, we have two risks; the risk of losing the
benefits of the cooperative action and the risk of unwinding the specula-
tive actions. It is clear that some form of risk management is needed. In
this paper, we propose two risk management methods, the hybrid method
and the leveled method, which are viewed as a single agent approach and
a multiagent approach, respectively. We discuss their advantages using
the meeting room reservation problem.

1 Introduction

Generally speaking, concluding a cooperative action between multiple agents
requires agreement and the agreement is normally achieved by exchanging mes-
sages among the agents [5, 6]. Agreement may, however, be delayed by either
communication in the channels connecting the agents or by the agents them-
selves.

The first problem reflects the congestion or interruption of the communica-
tion channels that connect the agents. The second one is more subtle. In mul-
tiagent systems, we often assume that each agent behaves autonomously and
rationally to maximize its profit. When the profit to the agent depends on the
reply, it may take some time to gather all the information needed to maximize
its profit.

This paper considers only the second problem and focuses on cases where the
delay reduces the effectiveness or value of the cooperative action. For example,
consider the meeting room reservation problem in which a host agent and a
member agent must reach agreement about when to have a meeting; the room

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 92–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Agent Based Risk Management Methods for Speculative Actions 93

for the meeting is to be reserved in advance by the host agent. When they succeed
in having a meeting, the host agent receives a reward from some external party
and the member agent receives some share of the reward from the host agent.
We assume that the more time the agents take to reach agreement, the more
difficult it is to reserve a room, and that a cost is charged when an agent cancels a
reserved room. In this problem, if the agents take a long time to reach agreement
(when to hold a meeting), they risk having no room in which to meet.

Speculative action [4] is one solution to the delay in reaching agreement. It
is an action taken before agreement is reached later that attempts to lock-in the
reward of having the meeting. If agreement is reached, the speculative action
is effective. On the other hand, if agreement is not reached, the action should
be cancelled or rolled back which would, we assume, incur some penalty. For
example, in the problem considered, let us assume that the host agent reserves a
room as a speculative action before reaching agreement with the member agent.
If agreement is reached, the two agents can have the meeting without the need
to worry about the room reservation. On the other hand, if no agreement is
reached, the host agent has to cancel the reserved room and pay a cancellation
charge. When an agent takes a speculative action, it accepts the risk of needing
to cancel the action. This illustrates the need for an effective risk management
method.

This paper proposes two risk management methods for speculative actions:
the hybrid method and the leveled method. In the hybrid method, the host
agent estimates the probability of agreement and decides whether to initiate
a speculative action. This method can be viewed as a single agent approach
because the decision is made by a single agent. In the leveled method, the host
agent concludes a pre-agreement with the member agent and either agent can
cancel the pre-agreement by paying a penalty. This method can be viewed as
a multi-agent approach because it is based on pre-agreement among the agents
involved.

In Section 2, we define the meeting room reservation problem and two funda-
mental agreement methods called the basic method and the speculative method
and discuss these methods from the viewpoint of expected profit. Section 3 intro-
duces the hybrid method and the leveled method and discusses the circumstances
under which the agents would accept the leveled method. We mention related
works in Section 4 and conclude this paper in Section 5.

2 Meeting Room Reservation Problem

2.1 Definition

To make the discussion of speculative action concrete, we use the meeting room
reservation problem. There exist a host agent and a member agent, and they
negotiate to decide when to have a meeting in a room to be reserved in advance
by the host agent.

For the negotiation, the agents exchange messages following a protocol like
the Contract Net Protocol [5]. Initially, the host agent sends an announcement

94 Yasuhiko Kitamura and Takuya Murao

of the meeting date to the member agent. The member agent sends a reply of
agreement or disagreement to the host agent. Finally the host agent reserves a
meeting room if they reached agreement as to when to have the meeting.

The host agent receives a reward a from some external party when the meet-
ing takes place and the member agent receives a share, value ρ, of the reward
from the host agent. The value amount is specified in the announcement mes-
sage. The member agent receives announcements not only from the host agent
but also other agents, and decides whether it accepts to have a meeting with the
host agent considering the shares offered by the other agents. Announcements
sequentially reach the member agent, and the probability of getting a better
share monotonically increases as the time goes by. Hence, the member agent
does not reply promptly to the host agent, but rather waits as long as possi-
ble to increase its profit, which delays the agreement. If the agents follow the
Contract Net Protocol, the host agent can set an time limit for receiving replies
to the announcement and the member agent sends a reply within the limit. For
convenience, we fix the time interval of expiration to T . Hence, after the member
agent receives an announcement, it waits T for to receive announcements from
the other agents. The probability, Pm, that the member agent agrees with the
host agent to have the meeting on the date specified is given by

Pm =
∫ ρ

0

f(b)db, (1)

where b is the best share offered by the other agents up to the expiration time,
f(b) is the probability distribution function of b, and is the share offered by the
host agent.

We assume that the probability of successfully reserving a meeting room
decreases as time goes by. For convenience, we set the probability to be 1 when
the host agent sends the announcement, and Pr when the host agent receives a
reply after time interval T .

2.2 Agreement Formation for Meeting Room Reservation Problem

We discuss two naive agreement formation methods, the basic method and the
speculative method, for the meeting room reservation problem.

In the basic method, shown in Fig. 1(a), the host agent first sends an an-
nouncement message which indicates the date and share ρ to the member agent.
After it receives an agreement message from the member agent, it tries to re-
serves a meeting room and succeeds with probability Pr.

In the basic method, after the member agent agrees to have the meeting, the
host agent may fail to reserve a room because of the delay. When it fails in this
manner, the host agent must pay share ρ to the member agent.

In the speculative method, shown in Fig. 1(b), the host agent sends the
same announcement message as well as reserving a room. We assume that this
reservation will always succeed. If the reply is ’agree’, then the meeting will be
held. Otherwise, the host agent has to cancel the reservation and pay cancellation
charge c.

Agent Based Risk Management Methods for Speculative Actions 95

Room

announcement(ρ)

agreement with
Pm

if agreement
then reservation

(a)Basic method

Host Member

announcements
from other agents (b)

success
with Pr

(b)Speculative method

Room Host Member

announcement(ρ) reservation

Success

if disagreement
then cancel

T

T
announcements
from other agents (b)

agreement with
Pm

Fig. 1. Basic method and speculative method.

2.3 Expected Profit of Agents
in Meeting Room Reservation Problem

The profit tree in Fig. 2 shows the expected profits of the host and member agents
in the meeting room reservation problem. If the host agent and the member agent
agree to have a meeting by using the speculative method, the host agent receives
reward a and pays share ρ to the member agent, so the profit of the host agent
is a−ρ while that of the member agent is ρ. If the member agent does not agree,
the host agent has to pay c to cancel the meeting room, so the profit of the host
agent is −c and that of the member agent is 0. Hence, the expected profit of the
host agent and the member agent using the speculative method is calculated as

profithSM = Pm · (a− ρ) + (1− Pm) · (−c) (2)

and
profitmSM = Pm · ρ (3)

respectively.

96 Yasuhiko Kitamura and Takuya Murao

If the host agent and the member agent agree to have a meeting and the host
agent succeeds to reserve a meeting room by using the basic method, the host
agent receives reward a and pays share ρ to the member agent, so the profit of
the host agent is a − ρ while that of the member agent is ρ. If the host agent
fails to reserve a meeting room, it receives no reward and pay ρ, so the profit of
the host agent is −ρ while that of the member agent is ρ. Hence, the expected
profit of the host and member agents using the basic method is calculated as

profithBM = Pm · Pr · (a− ρ) + Pm · (1 − Pr) · (−ρ) (4)

and
profitmBM = Pm · ρ (5)

respectively.

Fig. 2. Profit tree of the host and member agents.

Fig. 3 shows the expected profit of the host agent using the basic and spec-
ulative methods with a = 50, ρ = 35, and c = 10.

In the basic method, when Pr is large, the profit of the host agent increases
with Pm. When Pr is small, it is difficult to reserve a room, which negates the
value of the member agent’s agreement. The profit of the host agent decreases
as Pm increases because it has to pay ρ to the member agent even though it
receives no reward.

The speculative method never fails to reserve a meeting room, and the profit
of the host monotonically increases as the probability of the member’s agree-
ment increases. However, if the probability is low, the host agent has to pay the
cancellation charge.

In conclusion, the speculative method has no risk of failing to reserve a room,
but has the risk of canceling the reservation. Especially when the probability of
agreement is low and c > 0, the basic method returns a better profit than the
speculative method. Hence, we need a risk management method for speculative
actions that can increase the profit. To that end, we propose two methods in the
next section.

Agent Based Risk Management Methods for Speculative Actions 97

Fig. 3. Expected profit of the host agent versus Pm.

3 Risk Management Methods for Speculative Actions

The speculative method eliminates the risk of causing the failure of the cooper-
ative action, while creating the risk of having to unwind the speculative action.
We here propose two risk management methods called the hybrid method and
the leveled method to balance these two risks according to the situation.

3.1 Hybrid Method: A Single Agent Approach

As shown in Fig. 3, the speculative method should be used if the probability of
the member’s agreement is high while the basic method should be used if the
probability is low. The hybrid method switches between the speculative method
and the basic method by estimating the probability of the member’s agreement.
If the probability is estimated to be high, it uses the speculative method, other-
wise the basic method. Because it is based on an estimation performed by the
host agent, it is viewed as a single agent approach.

In this method, it is important to decide the timing to switch from one
method to another. The condition in which the speculative method is superior
to the basic method is given as

Pm · (a− ρ) + (1− Pm) · (−c) ≥ Pm · Pr · (a− ρ) + Pm · (1 − Pr) · (−ρ), (6)

considering the expected profit of each method.
When we pay attention to the probability, Pm, of the member’s agreement,

the inequality can be rewritten as

Pm ≥ c

(1− Pr) · a + c
. (7)

98 Yasuhiko Kitamura and Takuya Murao

Fig. 4 shows the expected profit of the host agent using the hybrid method
when a = 50, ρ = 35, c = 10, and Pm = 0.5. If the host agent can accurately
estimate Pm, the hybrid method returns a better profit regardless of Pr than
the basic method or the speculative method. If, however, the host estimates Pm

incorrectly, the profit decreases. For example as shown in Fig. 4, if the host agent
wrongly estimates Pm∗ to be 0.3, it uses the speculative method in the interval
of 0.53 < Pr < 0.8 inappropriately which reduces the profit. Likewise, if Pm is
wrongly estimates to be 0.7, the host agent uses the basic method in the interval
of 0.8 < Pr < 0.91 inappropriately and the profit reduces.

We need to discuss how the host agent estimates the probability of the mem-
ber’s agreement. As suggested in Section 2, the probability can be estimated
from ρ, the share given by the host, and f(b), the probability distribution func-
tion of the maximum shares offered by other agents. The host agent does not
know f(b) accurately. However, it may be able to estimate f(b) by using the
history of past agreements.

We need to discuss how the host agent estimates the probability of the mem-
ber’s agreement. As mentioned in Section 2, the probability can be estimated
from ρ, the share given by the host, and f(b), the probability distribution func-
tion of the maximum shares offered by other agents. The host agent does not
know f(b), but it may be able to estimate f(b) by using the history information
of agreements in the past. If the member agent has agreed 5 times out of 10
invitations, the host agent can estimate that Pm = 0.5. The agreement made by
the host agent actually depends on ρ. If the agent records the history according
to ρ, its estimation will be more accurate. Generally speaking, if the host agent

Fig. 4. Expected profit in the hybrid method. Pm∗ means the estimated value of Pm.

Agent Based Risk Management Methods for Speculative Actions 99

fails to estimate Pm correctly, its profit reduces. This means a limitation of the
hybrid method in which the host agent switches between two methods based on
the estimation of agreement.

3.2 Leveled Method: A Multi-agent Approach

In the leveled method, the host agent and the member agent make a pre-
agreement, and either can cancel it by paying a penalty. By making a pre-
agreement, the host agent can reduce the risk of unwinding the speculative ac-
tion when the member agent disagrees. The leveled method is a risk management
method based on a pre-agreement made by the host and member agents and so
is viewed as a multi-agent approach.

The protocol of the leveled method is shown in Fig. 5. The host agent initiates
the speculative action after it concludes the pre-agreement. When the expiration
limit of the main agreement is reached, the member agent replies whether it
agrees or not to the host agent. If the member agent disagrees, the member
agent pays penalty d and the host agent cancels the room by paying cancellation
charge c. The profit tree of the leveled method is shown in Fig. 6.

The profit of the host agent in the leveled method, given as

profithLM = Pm · (a− ρ) + (1− Pm) · (d− c) (8)

is more than that in the speculative method for (1 − Pm) · d. This is because
the member agent offsets some of the cancellation charge. Fig. 3 shows that the
expected profit of host agent with the leveled method is better than that with
the speculative method at any Pm. When Pm is low, the basic method is superior

 Room Host Member

announcement(ρ)
reservation

success announcements
from other agents
(b)

agreement
with Pm if disagreement,

then cancel

pre-agreement

if disagreement,
then pay d.

T

Fig. 5. The leveled method.

100 Yasuhiko Kitamura and Takuya Murao

mP

mP−1

ρρ−a

ddc −+−

host

pre-agreement

no pre-agreement
00

member

Fig. 6. The profit tree of the leveled method.

to the leveled method. If we can estimate Pm properly, we can switch between
the basic method and the leveled method as in the hybrid method.

If we increase d, the expected profit of the host agent increases but that of
the member agent decreases. Since this obviously involves a tradeoff, the next
section examines the conditions under which the host and the member agents
enter into the pre-agreement.

3.3 Entering into Pre-agreement

In the leveled method, the condition under which the host agent should accept
the pre-agreement is given as

profithLM ≥ 0. (9)

That for the member agent is given as

profitmLM ≥ E[b], (10)

and only if both conditions are satisfied, the host and member agents make
pre-agreement.

For example, let us consider a case when a = 45, c = 10, and

f(b) =
{

0.01 (0 ≤ b ≤ 100)
0 (otherwise) (11)

If b is less than ρ, the member agent keeps the pre-agreement, otherwise, it
breaks it, so the host’s expected profit is calculated as

profithLM = (45− ρ)
∫ ρ

0

f(b)db + (d− 10)
∫ 100

ρ

f(b)db

= (45− ρ) · ρ

100
+ (d− 10) · 100− ρ

100
(12)

Agent Based Risk Management Methods for Speculative Actions 101

The member’s expected profit is calculated as

profitmLM = ρ

∫ ρ

0

f(b)db +
∫ 100

ρ

(b− d) · f(b)db

=
ρ2

100
+

1
100

[(5000− 100d)− (
ρ2

2
− dρ)]

=
1

200
(ρ2 + 2dρ + 10000− 200d) (13)

Fig. 7 and Fig. 8 depict the condition in which both agents are happy with
the pre-agreement. Fig. 7 shows the expected profit graph when we fix d = 10
and change share ρ. Fig. 8 shows that when we fix ρ = 40 and change penalty d.
These figures show that the agents will accept the pre-agreement only in a limited
range of ρ or d.

Fig. 7. Share ρ that balances agents’ profits.

Fig. 7 shows that the host agent maximizes its profit if the pre-agreement uses
ρ = 45/2. This, unfortunately, imposes a loss on the member agent, who would
thus reject the pre-agreement. Pre-agreement is feasible only when 34.20<ρ<45.

A similar discussion can be made for d. When d is too large, the member
agent is not satisfied, and when too small, the host agent is not satisfied. Fig. 8
shows that the pre-agreement is possible when 6.67 < d < 13.33.

4 Related Work

The idea of speculative action is based on the work on speculative computa-
tion [2, 1]. Speculative computation has been proposed as a method to acceler-
ate the processing speed of pipelined parallel computers. A pipelined parallel
computer can pre-fetch as many commands as there are processors and execute
them in parallel. However, if a branch command is included in the pre-fetched

102 Yasuhiko Kitamura and Takuya Murao

Fig. 8. Penalty d that balances agents’ profits.

commands, the following sequence of commands to be executed changes depend-
ing on the result of the branch command. Speculative computation attempts to
choose the most plausible command and to execute it speculatively. It runs the
risk of choosing a wrong command, which must be canceled or rolled back.

Satoh et al. [4] introduced the idea of speculative computation into the field of
multi-agent systems. They discussed the issue of communication delay in multi-
agent systems and dealt with it by using a default reasoning technique, which is
viewed as a variant of speculative computation.

In previous works, the failure of speculative computation is recovered simply
by canceling the computation and no side effects are assumed to occur. In this
paper, we assume that unwinding a speculative action has a cost. The leveled
method described here is based on the leveled commitment method proposed by
Toumas Sandholm et al. [3].

5 Conclusions and Future Work

Speculative actions are effective if agreement cannot be reached rapidly. Since
we assume that unwinding them incurs a cost, they are not a universal pallia-
tive. We proposed two methods in this paper to reduce the risk of unwinding a
speculative action: the hybrid method, which switches between the speculative
method and the basic method based on the estimated probability of agreement;

Agent Based Risk Management Methods for Speculative Actions 103

and the leveled method, which makes the host and the member agents enter
a pre-agreement and forces them to pay a penalty when they break the pre-
agreement. We showed the advantages and disadvantages of these methods by
using the example of the meeting room reservation problem. The hybrid method
has better performance than either of its constituents, the basic method and
the speculative method, if the probability of agreement is correctly estimated.
Otherwise, its performance is degraded, so estimation accuracy is a critical is-
sue. The leveled method is based on establishing a pre-agreement between the
two agents, so the logic of why the agents would accept the pre-agreement is a
critical issue. We discussed the settings in which the two agents would accept a
pre-agreement.

In this paper, we used the meeting room reservation problem as a case study
to discuss speculative actions, but we need to further discuss how we can apply
the proposed methods in more general contexts. We also need to deal with cases
where there are more than two agents.

Acknowledgement

This work is partly supported by the Grant-in-Aide for Scientific Research
(No.13358004) from Japan Society for the Promotion of Science. We would to
like to show our thanks to Ken Satoh, Chiaki Sakama, Katsumi Inoue, Koji
Iwanuma, and anonymous reviewer for their helpful comments.

References

1. Burton, F.W.: Speculative Computation, Parallelism, and Functional Programming,
IEEE Transactions on Computers, Vol. C-34, pp.1190-1193 (1985)

2. Halstead, R.H.Jr.: Parallel Symbolic Computing, IEEE Computer, Vol.19, No.8,
pp.35-43 (1986)

3. Sandholm, T. and Lesser, V.: Leveled Commitment Contracting: A Backtracking
Instrument for Multiagent Systems, AI Magazine, Vol.23, No.3, pp.89-100 (2002)

4. Satoh, K., Inoue, K., Iwanuma, K., and Sakama, C.: Speculative Computation by
Abduction under Incomplete Communication Environments, Proceedings of the
Fourth International Conference on MultiAgent Systems, pp. 263-270 (2000)

5. Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in
a Distributed Problem Solver, IEEE Trans. on Computers, Vol. 29, No. 12, pp.1104-
1113 (1980)

6. Smith, R. G. and Davis, R.: Frameworks for Cooperation in Distributed Problem
Solving, IEEE Trans. on System, Man, and Cybernetics, Vol. SMC-11, No. 1, pp.61-
70 (1981)

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 104–114, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Handling Emergent Resource Use Oscillations*

Mark Klein1, Richard Metzler2, and Yaneer Bar-Yam2

1 Massachusetts Institute of Technology
m_klein@mit.edu

2 New England Complex Systems Institute
{richard,yaneer}@necsi.org

Abstract. Business and engineering systems are increasingly being created as
collections of many autonomous (human or software) agents cooperating as
peers. Peer-to-peer coordination introduces, however, unique and potentially se-
rious challenges. When there is no one ‘in charge’, dysfunctions can emerge as
the collective effect of locally reasonable decisions. In this paper, we consider
the dysfunction wherein inefficient resource use oscillations occur due to de-
layed status information, and describe novel approaches, based on the selective
use of misinformation, for dealing with this problem.

1 The Challenge

Business and engineering systems are increasingly being created as collections of
many autonomous (human or software) agents cooperating as peers. The reasons for
this are simple: the challenges we now face are simply too large, both in scale and
complexity, to be handled by hierarchical control schemes. In many cases, moreover,
political or other concerns exclude the possibility of centralized control even when it
is technically feasible.

In such systems we face, however, the potential of highly dysfunctional dynamics
emerging as the result of many locally reasonable agent decisions [1]. Such “emergent
dysfunctions” can take many forms, ranging from inefficient resource allocation [2]
[3] to chaotic inventory and price fluctuations [4] [5] [6] [7] to non-convergent and
sub-optimal collective decision processes [8]. The properties of these dysfunctions
often appear paradoxical, and their solutions often require new kinds of thinking.

In this paper we focus on one type of emergent dysfunction: resource use oscilla-
tion in request-based resource sharing. Imagine that we have a collection of consumer
agents faced with a range of competing providers for a given resource (e.g. a piece of
information, a sensor or effector, a communication link, a storage capability, or a web
service). Typically, the utility of a resource is inversely related to how many consum-
ers are using it. Each agent strives to select the least-utilized resource, and resources
are allocated first-come first-served to those who request them. This is a peer-to-peer
mechanism: there is no one ‘in charge’. This kind of resource allocation is widely
used in settings that include markets, internet routing, and so on. It is simple to im-

* This is a revised version of a paper submitted to the Agents for Business and Engineering

Systems track of the 2004 Conference on Autonomous Computing and Agents for Business
Automation.

Handling Emergent Resource Use Oscillations 105

plement, makes minimal bandwidth requirements, and - in the absence of delays in
resource status information – allows consumers to quickly converge to a near optimal
distribution across resources.

Consumers, however, will often have a delayed picture of how busy each resource
is. Agents could imaginably poll every resource before every request. This would
cause, however, a N-fold increase in number of required messages for N servers, and
does not eliminate the delays caused by the travel time for status messages. In a real-
istic open system context [9], moreover, consumers probably cannot fully rely on
resource providers to accurately characterize the utility of their own offerings (in a
way that is comparable, moreover, across providers). Resource providers may be
self-interested and thus reluctant to release utilization information for fear of com-
promising their competitive advantage. In that case, agents will need to estimate re-
source utilization using other criteria such as their own previous experience, consult-
ing reputation services, or watching what other consumers are doing. Such estimates
will often lag behind the actual resource utility.

When status information is delayed in some way, we find that resource use oscilla-
tions emerge, potentially reducing the utility achieved by the consumer agents far
below optimum [10].What happens is the following. Imagine that we have two re-
sources, R1 and R2. We can expect that at some point one of the resources, say R1,
will be utilized less than the other. Consumers at that point will of course tend to
select R1. The problem is that, since their image of resource utilization is delayed,
they will continue to select R1 even after it is no longer the less utilized resource,
leading to an “overshoot” in R1’s utilization. When the agents finally realize that R2
is now the better choice, they will tend to select R2 with the same delay-induced
overshoot. The net result is that the utilization of R1 and R2 will oscillate around the
optimal equilibrium value. The amplitude of the oscillations, moreover, increases with
the delay, to the extent that all consumers may at times select one resource when the
other is idle:

-5

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

Time

R1
R2
Max

Delay = 50 Delay = 100 Delay = 0 Delay = 150

U
ti

liz
at

io
n

Fig. 1. The utilization of two equivalent resources with and without delays in status information

Such oscillations have two undesirable effects. One is that they can increase how
long consumers have to wait for resources (i.e. reduce system throughput), because
some resources may lay idle even when there are consumers not being served. The

106 Mark Klein, Richard Metzler, and Yaneer Bar-Yam

other is that they can increase the variability in how long consumers have to wait for a
resource, which may be significant in domains where consistency, and thus
predictability, is valued.

Fig. 2. Decline in throughput as a function of number of consumers (5 resources)

This problem is influenced, in seemingly paradoxical ways, by changing the num-
ber of resources and consumers. Figure 2 shows the decline in throughput for a sys-
tem with 5 resources as a function of status delay and number of consumers. We see
that reducing resource utilization actually worsens the decline in throughput, and
causes throughput losses to occur at lower status delay values. The throughput reduc-
tion can be substantial, reaching as high as 40% Figure 3 shows the decline in
throughput for systems with differing numbers of resources, where the number of
consumers per resource is fixed.

Fig. 3. Decline in throughput as a function of number of resources (10 consumers per resource)

We find that the throughput losses increase and come at shorter status delays, as
we increase the number of resources. The traditional ‘fix-all’ of increasing system
capacity thus actually makes this emergent dysfunction worse. Despite their appar-
ently counter-intuitive nature, these results can be explained simply. When the utiliza-
tion of a resource is low, even small amplitude oscillations can cause it to go idle.
And since all consumers shift to what they believe is the least-utilized resource, many
resources can potentially go idle as a result of delay-induced oscillations.

Handling Emergent Resource Use Oscillations 107

Another paradox is that the more aggressive agents are at requesting only the least-
utilized resource, the worse the problem gets. This strategy, moreover, is the indi-
vidually rational one despite the throughput losses that can result. The incentives
follow a prisoner’s dilemma game [11]. While everyone would be better off if all
consumers occasionally selected what they believe to be the more heavily utilized
resource (i.e. if everyone ‘cooperated’) the temptation is for agents to ‘defect’ (i.e.
only request the least-utilized resource) to take advantage of the cooperators and/or
avoid being taken advantage of themselves. Self-interested agents will thus find them-
selves driven to behaviors that cause resource use oscillations.

Resource use oscillations have been studied, primarily for the two resource case, in
the literatures on “minority games” and distributed systems. The minority games
literature [12] [13] has investigated how to design agents, typical using evolutionary
techniques, so that their local decisions do not interact to produce oscillations. While
this approach does work under some conditions, it is unrealistic in an open systems
context where agents are developed independently, so their resource request strategies
are not subject to centralized control. The distributed computing work took the ap-
proach of creating an ecology of agents that each look at resource status information
with some characteristic additional delay. Those agents whose total status delay
matches the period of the resource use oscillation will, in theory, do a superior job of
estimating current utilization and will come to dominate the population [14]. This
approach has several disadvantages. First of all, it is a closed systems approach, in
that it assumes that agents adhere to a centrally defined decision function. It also as-
sumes that the delay in status information (and thus the oscillatory period) changes
slowly or not at all. If the status delay changes more quickly than the agent population
can evolve, the population will tend to be dominated by agents with inappropriate
additional delays. It has been shown, in addition, that such systems are prone to spo-
radic bursts of strategy instability that can affect the period of resource use oscilla-
tions even in the absence of changes in actual status delays [15]. Finally, this work
was only evaluated for the two resource case, so it’s value for larger numbers of re-
sources is unknown. Our challenge, therefore, is to find an approach that moderates or
eliminates oscillatory resource utilization dynamics without needing to control the
design or operation of the consumer agents.

2 Efficiency Through Misinformation

As we have seem emergent dysfunctions often have counter-intuitive properties. The
solutions for emergent dysfunctions can, similarly, grow out of behavior that seems
locally sub-optimal. This is the case with the techniques we have investigated. Our
approach is predicated on resources (selectively) misinforming consumers about how
busy the resource is. Paradoxically this can lead, as we show below, to superior re-
source allocation performance, including greater throughput and reduced variability.

The Scenario: All the approaches were evaluated in a scenario with multiple (from
20 – 50) consumers and multiple (2 – 5) resources. Consumers submit requests to the
resource that they judge is the least heavily utilized. Resources differ in how quickly
they can complete requests. When a request is received by a resource, it is placed on a
queue and, once it reaches the front of the queue, the resource is allocated to the con-
sumer for a length of time inversely proportional to the speed of the resource. When

108 Mark Klein, Richard Metzler, and Yaneer Bar-Yam

that period is over, a notification message is sent to the consumer. Messages take a
fixed amount of time to travel from sender to receiver. Consumers wait a randomly
selected amount of time, after a notification is received, before submitting a new re-
quest. The value of a resource to a consumer (though not of course the time it takes to
access the resource) is independent of the resource’s utilization. The case where utili-
zation does affect resource value is considered in [16]. The two metrics of interest to
consumers in this scenario include (1) the aggregate throughput of the system, in
terms of requests processed per time unit, and (2) the variability in request processing
times. In our simulations, messages took 20 time units to propagate, the time gap
between receiving a completion notification and a sending a subsequent request was
normally distributed with an average of 40 and a standard deviation of 10, one server
took 80 time units to service a request, and the other took 160 time units. Each simu-
lation run was 10,000 time units long.

The dynamics of this system can be described analytically [17]. We can show that
queue lengths will follow a triangle function where the frequency is determined only
by the delay in status information, and the amplitude, for a given scenario, is deter-
mined only by the ratio of the delay time to the time it takes a resource to process a
request. Message travel time has the same impact as status delays, because both in-
crease the lag between a change in resource utilization and the response by consum-
ers. When oscillations become so strong that the resources go idle periodically, the
throughput of the system is inversely proportional to the status delay.

Status Misinformation: Let us assume that the resources have control over the status
information that the consumers are given when they decide which resource to request.
Let us further assume that consumers have a probability p of being given information
that leads them to select the ‘wrong’ (more heavily utilized) resource. The notion that
agents can have somewhat ‘corrupted’ status information was broached in [14], but
that work did not investigate how status misinformation can be beneficial by dampen-
ing delay-induced oscillations. Oscillations are damped because misinformation
causes requests are spread to some extent to both resources, irregardless of which one
is actually less utilized. In the following figure, for example, we can see how the os-
cillations in resource queue lengths were substantially reduced when resource status
misinformation (p = 0.5) was introduced at time = 10000:

-5

0

5

10

15

20

25

0 5000 10000 15000 20000 25000

Time

R0
R1

Q
ue

ue
 L

en
gh

t

Fig. 4. Effect of introducing status misinformation with delay-induced resource use oscillations

Handling Emergent Resource Use Oscillations 109

It can be shown analytically [17] that for small levels of p, the variability in re-
source utilization is reduced linearly with p. As p approaches 1, however, consumers
get less and less ‘real’ information, and are increasingly likely to choose resources
without regards to their actual utilization, so resource utilization performs a ‘random
walk’ [18], increasing the variability in request processing times and raising the pos-
sibility that the queue for one of the resources will empty out, thereby reducing
throughput. So we are faced with a tradeoff. Small levels of p reduce the oscillatory
amplitude, but larger ones increase it again due to the impact of random fluctuations.
These insights are confirmed by simulations:

Fig. 5a. Throughput as a function of delay and misinformation probability p

Fig. 5b. Variability in completion time as a function of delay and misinformation probability p

When p is zero, we find that the variability in how long an consumer must wait for
a resource increases, as we would expect, with the status information delay, due to

110 Mark Klein, Richard Metzler, and Yaneer Bar-Yam

periodic oscillations. When the delays get large enough to cause queue emptying,
throughput drops. For intermediate values of p, throughput is returned to near-optimal
levels even with large delays, but variability is high. As p approaches 1, throughout
drops off again (due to queue emptying caused by random walk fluctuations) and
variability becomes higher yet. Throughput is maximized when p is about 0.7. Re-
markably, performance is improved by imposing substantial misinformation.

Stochastic Request Rejection: The approach just discussed relies on the ability to
control the information that consumers use to decide which resources to request. This
is an unrealistic assumption, however, for many domains. In an open system, we do
not have the control of consumer design that would be necessary to assure this. This
approach also assumes that messages with resource status information are sent to
consumers, either periodically (with a frequency at least as high as that of the delay-
induced oscillations) or when they are about to make a resource request. This can
substantially increase the message traffic required by the resource sharing protocol.
This motivated us to explore an alternative approach for alleviating delay-induced
resource use oscillations. The idea is simple: some fixed fraction of resource requests
are rejected, at random, by resources. When a consumer receives a rejection message,
it is (reasonably) assumed to send its request to some other server instead. The net
effect is the same as with the previous approach in that, for some constant fraction of
requests, consumers are misled about which resource is the least utilized. In the sce-
nario we studied, throughput was maximized when 1/2 of all requests were stochasti-
cally rejected.

The stochastic request rejection approach can, however, reduce throughput if re-
source demands are low enough that the resource queues are forced to empty out due
a request rejection. It also increases message traffic due to the addition of reject mes-
sages. Using this technique, the average number of rejections for a request is given
by:

∑ pi

 i=1

where p is the probability of a request being rejected by a resource. For p = 0.5 this
value is 1, so an average of 2 requests will be needed to access a resource, increasing
total required message traffic from 2 (one request and one notification) to 4 (two re-
quests, one reject, and one notification).

Both of these disadvantages can be substantially ameliorated by adopting a load-
dependent rejection scheme, inspired by the ‘random early drop’ scheme proposed for
avoiding send-rate synchronization among network router clients [19]. Instead of
using a fixed request rejection frequency, resources reject requests with a frequency
proportional to how full their queue is. The number of rejection messages generated is
less (because high rejection rates are only incurred at the utilization peaks) and very
few rejections occur when the resources are under-utilized, making it unlikely that
throughput will be reduced because a request was rejected when a resource was avail-
able. Load-dependent rejection also offers the bonus of somewhat higher throughout
than fixed-rate rejection; because the rejection rate (and thus the degree of damping)
increases with the amplitude, the oscillations have a rounded shape that results in a
smaller peak amplitude.

Handling Emergent Resource Use Oscillations 111

The average rate of rejection needs to be tuned to the current average load. There is
a tradeoff involved. If the rejection regime is too aggressive, we incur excessive reject
message traffic, and the possibility of causing queue emptying by rejecting requests
when a resource is lightly utilized. If the rejection regime is not aggressive enough,
however, there will be insufficient damping which can also led to queue emptying and
throughput loss. The following figure shows a typical tradeoff:

Fig. 6. Throughput (completes) vs reject messages for different levels of load-dependent rejec-
tion. For 5 resources, 50 consumers, and a status delay of 1000

Each point on the curve represents a different level of load-dependent rejection: a
relatively mild rejection regime (i.e. where the rejection rate increases slowly with
load) on the left, and increasingly aggressive rejection to the right. As we can see,
there is an optimum rejection ‘strength’, beyond which throughout begins to decrease.

The impact of the schemes we have discussed can be summarized and contrasted as
follows:

���������	

Fig. 7a. Throughput for different oscillation remediation schemes

112 Mark Klein, Richard Metzler, and Yaneer Bar-Yam

�������	�

Fig. 7b. Variability for different oscillation remediation schemes

���������������

Fig. 7c. Message traffic for different oscillation remediation schemes

Misinformation-based techniques substantially increase throughput and reduce the
variability in the time it takes to get a consumer request satisfied, for a wide range of
delays, relative to the base case where these techniques were not used. Load-based
rejection is the best technique in terms of throughput and variability, with the addi-
tional advantage of not assuming we can control the status information received by
consumer agents, but incurs increased message traffic. These effects were statistically
significant (p < .01).

One final refinement involves the realization that there is no point in incurring the
increased message traffic caused by request rejection if there are no resource use
oscillations, or if the oscillations are caused by variations in aggregate consumer
demand rather than by status delays. This challenge, fortunately, is easy to address.
Stochastic request rejection should only be activated if (1) there are significant peri-
odic oscillations in resource utilization (determined by looking for above-threshold
values in the power spectrum derived by a fast Fourier transform), and (2) the re-
source utilization across servers is negatively correlated (positive correlation would
imply that aggregate demand is varying). We have implemented this approach and
found that it successfully avoids being triggered by aggregate demand variations
while remaining effective in responding to delay-induced oscillations.

Handling Emergent Resource Use Oscillations 113

The load-dependent stochastic rejection approach has also been shown, in our
simulations, to effectively reduce the impact of status delay-induced oscillations when
there are more than 2 resources.

3 Contributions and Future Work

We have presented a novel and promising approach for mitigating the deleterious
effects of delay-induced resource-use oscillations on request-based resource sharing,
by exploiting the paradoxical power of selectively misinforming consumers. The
approach is designed to be appropriate for the important context of distributed sys-
tems with peer-to-peer coordination, where we can not rely on being able to control
the design or operation of the resource consumers.

Our future efforts will include empirical and analytic work. We will extend our
analytic treatment to cover more than two resources. We also are developing an ana-
lytic way to determine the correct rejection regime for different contexts; we have
done this empirically to date. We also plan to use our models to predict the degree of
resource oscillation, as well as the potential benefits of selective misinformation, for
real-world resources such as competing web sites.

Acknowledgements

This work was supported by the NSF Computational and Social Systems program as
well as the DARPA Control of Agent-Based Systems program.

References

1. Jensen, D. and V. Lesser. Social pathologies of adaptive agents. in Safe Learning Agents
Workshop in the 2002 AAAI Spring Symposium. 2002: AAAI Press.

2. Chia, M.H., D.E. Neiman, and V.R. Lesser. Poaching and distraction in asynchronous
agent activities. in Proceedings of the Third International Conference on Multi-Agent Sys-
tems. 1998. Paris, France.

3. Hardin, G., The Tragedy of the Commons. Science, 1968. 162: p. 1243 - 1248.
4. Youssefmir, M. and B. Huberman. Resource contention in multi-agent systems. in First In-

ternational Conference on Multi-Agent Systems (ICMAS-95). 1995. San Francisco, CA,
USA: AAAI Press.

5. Sterman, J.D., Learning in and about complex systems. 1994, Cambridge, Mass.: Alfred P.
Sloan School of Management, Massachusetts Institute of Technology. 51.

6. Kephart, J.O., J.E. Hanson, and A.R. Greenwald, Dynamic pricing by software agents.
Computer Networks: the International Journal of Distributed Informatique, 2000. 32(6): p.
731-52.

7. Ranjan, P., et al. Decision Making in Logistics: A Chaos Theory Based Analysis. in AAAI
Spring Symposium on Diagnosis, Prognosis and Decision Making. 2002.

8. Klein, M., et al., The Dynamics of Collaborative Design: Insights From Complex Systems
and Negotiation Research. Concurrent Engineering Research & Applications, 2003. 11(3):
p. 201-210.

9. Hewitt, C. and P.D. Jong, Open Systems. 1982, Massachusetts Institute of Technology.
10. Hogg, T., Controlling chaos in distributed computational systems. SMC’98 Conference

Proceedings, 1998(98CH36218): p. 632-7.

114 Mark Klein, Richard Metzler, and Yaneer Bar-Yam

11. Osborne, M.J. and A. Rubinstein, A course in game theory. 1994, Cambridge, Mass.: MIT
Press. xv, 352.

12. Challet, D. and Y.-C. Zhang, Emergence of Cooperation and Organization in an Evolu-
tionary Game. arXiv:adap-org/9708006, 1997. 2(3).

13. Zhang, Y.-C., Modeling Market Mechanism with Evolutionary Games. arXiv:cond-
mat/9803308, 1998. 1(25).

14. Hogg, T. and B. Huberman, Controlling chaos in distributed systems. IEEE Transactions
on Systems, Man & Cybernetics, 1991. 21(6): p. 1325-32.

15. Youssefmir, M. and B.A. Huberman, Clustered volatility in multiagent dynamics. Journal
of Economic Behavior & Organization, 1997. 32(1): p. 101-118.

16. Klein, M. and Y. Bar-Yam. Handling Resource Use Oscillation in Multi-Agent Markets. in
AAMAS Workshop on Agent-Mediated Electronic Commerce V. 2003. Melbourne Austra-
lia.

17. Metzler, R., M. Klein, and Y. Bar-Yam. Efficiency Through Disinformation. 2004. New
England Complex Systems Institute. http://www.arxiv.org/abs/cond-mat/0312266

18. Bar-Yam, Y., Dynamics of complex systems. 1997, Reading, Mass.: Addison-Wesley. xvi,
848.

19. Braden, B., et al., Recommendations on Queue Management and Congestion Avoidance in
the Internet. 1998, Network Working Group.

The Role of Agents in Intelligent Mobile Services

Fernando Koch1 and Iyad Rahwan2

1 Institute of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

fkoch@acm.org
2 Department of Information Systems,

University of Melbourne, Parkville, VIC, Australia
i.rahwan@pgrad.unimelb.edu.au

Abstract. In this paper we argue that the agent paradigm offers promis-
ing techniques for dealing with the challenges of building intelligent mo-
bile services. We present Agent Oriented Software Engineering as a so-
lution for the problems in designing a new generation of mobile services.
To illustrate our position, we present a brief agent-oriented analysis of a
mobile commerce scenario.

1 Introduction

Existing commercial mobile services are only scratching the surface of what is
possible. As pointed out by the survey presented in [23], the main problems
against technology adoption are lack of interest, unappealing services and com-
munication costs. Hence, in a new generation of mobile services, human-device
interaction must become more useful and concise, reducing the number of user
interventions while providing appealing value.

The power of pervasive computing is unleashed when the application has the
intelligence to process contextual information about the user and the environ-
ment in order to provide the user with the right information at the right time. A
framework for building these applications must provide the means to handle the
distribution inherent in the environment and, at the same time, allow the easy
mapping of human knowledge into computer applications. We call this class of
applications as Intelligent Mobile Services.

To address these requirements we must deal with new issues in the field of
Distributed Computing and Artificial Intelligence. Mobile computing introduces
new elements of complexity [20]: dynamic environments, changes in actual and
relative location, constrained computing power, connectivity latency and unre-
liability, limited battery power, and constrained input and output interfaces.
These constraints are not artefacts of current technology, but are intrinsic to
mobility.

We argue that agent-based computing [25] is a promising enabling technology
for second-generation mobile services. The agent paradigm offers methodologies
for creating distributed, intelligent, integrated and cooperative applications. This
paper tries to link the requirements of the new generation mobile services to the

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 115–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 Fernando Koch and Iyad Rahwan

solutions provided by agent-oriented software paradigm. This exercise serves
as a guide for analysing existing systems and as a mean for identifying new
opportunities.

This work is structured as follows: section 2 describes the requirements for
mobile services and presents key definitions like context-awareness; the section 3
presents the agent technology and its relationship to the development of intelli-
gent mobile services; section 4 presents the exercise of building an agent-based
solution based on the presented ideas, then conclude in section 5.

2 Requirements

Mobile service provision imposes two major challenges: the infrastructure chal-
lenge, which is concerned with building robust hardware and software technology
that facilitate mobile connectivity, location-identification, service discovery, fault
tolerance, etc. [9]; second is the services challenge, which is concerned with how
we can use the infrastructure available in order to provide new and useful ser-
vices, such as trip planning or and mobile commerce [20]. In this study, our focus
is on the latter. In particular, we are interested in high-level intelligent services,
which take advantage of the processing power of mobile devices in order to pro-
vide users with context-aware support.

Zambonelli and Parunak [27, 26] argue that situadedness, openness, locality
in control and locality in interaction are fundamental characteristics of future
software systems. We argue that these characteristics are intrinsically related to
known issues in mobile computing:
– Situatedness: This property means that the software system is situated in

an environment, which it can influence and be influenced by. A mobile device
aimed at providing support to the user in a dynamic environment would
benefit from representing and processing information about this environment
in order to provide appropriate support.

– Openness: This property refers to the system’s ability to accommodate
changes in the system structure as when, for example, new components enter
the system or existing components leave. In the world of mobile services,
new services and devices might appear and disappear due to changes in
connectivity, user location, and because users’ availability itself changes [16].
The software needs to adapt to such changes appropriately.

– Locality in Control: This means that software components may be re-
quired to operate ‘autonomously’ based on local policies. In mobile services,
this may be a necessity to ensure service robustness, for example if connec-
tivity is lost when outside a coverage area. This may also be required for
cost reduction because contacting a service on a centralised server might
be expensive. To deal with this, devices must be capable of tracking their
execution and interaction states when communicating to external services.

– Locality in Interactions: This refers to a software component’s ability to
interact with other components in local geographical or logical neighbour-
hoods. In mobile services, such interaction is needed for reliability and quality
related reasons. Interaction between different mobile devices or between a

The Role of Agents in Intelligent Mobile Services 117

device and other services takes place over unstable and unreliable commu-
nication channels, and hence must be endowed with the ability to recover
such interaction appropriately in case of error.

A key feature of the above characteristics is context-awareness. Context is
any information that can be used to characterize the situation of an entity [6].
Context-awareness involves the means to capture, represent and process con-
text information. In Figure 1, we demonstrate the typical processes involved in
a mobile service environment: collecting raw data about the device, user and
network, combining this data into context information, and inferring some ap-
propriate action to take.

+

Location

Time

User's facts

Device's facts

Position
Landmarks
Positional Evts.

Time of the Day
Agenda
Events

Believes
Desires
Shopping Lists

Battery life
Connection speed
Connectivity

CONTEXT

ACTIONS
Inform
Intervene
Negotiate

Environment

Fig. 1. Context-awareness in mobile services workflow.

3 Agents and Mobile Services

Ultimately, the new generation of mobile services must deliver an enhanced user
experience. The human-device interactions must become more concise, reducing
the number of user interventions. Pervasive software applications should make
use of local processing to reason about the user’s context and predict user’s
intents, actions and location, behaving as an always present personal assistant,
available anytime, anywhere. A framework for building these applications must
provide the means to handle the distribution inherent in the environment and
at the same time allow the easy mapping of human knowledge into computer
applications.

3.1 The Role of Agents

Agent-based computing is becoming increasingly popular because it enables
building modular software systems capable of operating in dynamic, unpre-

118 Fernando Koch and Iyad Rahwan

dictable environments. The agent paradigm has produced a wide variety of con-
cepts and tools for constructing sophisticated autonomous software and struc-
turing high-level interaction patterns that facilitate cooperative behaviour [12].
In addition, a set of methodologies have been developed that enable system de-
signers to distil domain knowledge and transform it into agent or multi-agent
system specifications [10]. Hence, agents seem to offer a set of features that
are very closely aligned with the requirements of service delivery challenge in
pervasive computing.

Abstraction from physical
 and logical structures
Adaptation capable of recognize
 and adapt to new internal modules

Integration to other services
Adaptation : capable of recognize
 and adapt to new services
 (external modules)

Interaction to other modules
Interaction to the environment
 (context-awareness)

Autonomy
Self-sufficiency

S
it

u
at

ed
n

es
s

O
p

en
n

es
s

L
o

ca
l I

n
te

ra
ct

io
n

L
o

ca
l C

o
n

tr
o

l

Representation structures for:
- device data
- user data
- connectivity data

Structures for
Knowledge Representation

Service dynamic
User dynamic
Changing execution environment

Responsiveness
Adaptability
Integration
Stability

Sense environment
Act upon environment
Communication with other modules
- Heterogeneity
- Negotiate interaction state

Multi-Agent System
- Interactive
- Sociability
 - Cooperative
 - Integrative
 - Negotiation

Connectivity issues
- performance
- intermittence
Self-adaptability
- enhance communication
- enhance processing performance

Autonomy

REQUIREMENTS ISSUES IN MOBILE SERVICES M.A.S. SOLUTION

S
Y

S
T

E
M

 C
H

A
R

A
C

T
E

R
IS

T
IC

S

Fig. 2. Role of Agents in Mobile Services.

In Figure 2 we summarise the characteristics of mobile services discussed
in the previous section, and demonstrate how the agent paradigm can provide
solutions to support these characteristics, and hence address the requirements
of mobile computing. We detail this in the following:

– Structures for Knowledge Representation: Existing agent systems can
provide an answer to the situadeness requirement. The agent paradigm has
produced a variety of methods for explicit representation of the environment,
and for reasoning about this environment to produce decisions [24]. We de-
note, however, that agent systems are not the only paradigm to provide this
ability. Nonetheless it is an intrinsic problem in multi-agent systems, and
hence inherent in agent architectures.

– Responsiveness and Adaptivity: Jennings and Wooldridge [13] pointed
out that responsiveness and adaptivity are inherent features provided by

The Role of Agents in Intelligent Mobile Services 119

agent systems; agents should be able to adapt to constantly changing exe-
cution environments, one of the predictable problems of mobile computing.

– Sociability and Locality of Interaction: As also pointed out by Jennings
and Wooldridge [13], agents are able to interact with other agents or humans
when needed. Sophisticated interaction mechanisms have been developed in
the agent community to facilitate information exchange [4], coordination [8],
collaboration [17], and negotiation [1]. Such mechanisms offer great potential
to address the local interaction requirement in mobile service delivery.

– Autonomy: As we argued in an earlier paper [14], the agent paradigm
offers mechanisms that address varying degrees of autonomy, from basic
reactive architectures based on a set of pre-determined rules, to mechanisms
for proactive behaviour [3] considering the context and user preferences and
behaviours. This inherent feature is useful to configure agents to react to
and plan for changes in a mobile service environment.

Another important feature of the agent paradigm is that it provides an in-
frastructure for decomposition and abstraction [11]. Jennings describes decom-
position by stating that “the most basic technique for tackling large problems is
to divide them into smaller, more manageable chunks, each of which can then
be dealt with in relative isolation.”

3.2 Relevant Aspects of Agents

Having outlined the different roles an agent can play in mobile service delivery,
it would be useful to have a perspective through which to look at existing agent-
based mobile applications and to recognise opportunities for further work.

Agent-based services can be analysed on several different dimensions. We find
the following classification, due to Jennings et al. [13], useful for our purposes.
Agent systems can be classified according to the: sophistication of the application,
from agents work based on well-defined, pre-specified rules and assumptions, to
service performing and the more complex predictive/proactive agents; role of the
agent, like decision support and problem solving automation, and; granularity of
the view, from single-agents to more complex multi-agent systems. By correlating
these aspects of agent-based applications and the roles of agents in mobile service
applications, we came up with a taxonomy based on the aspects of granularity,
role and level of autonomy, as described below. This taxonomy is one way to
describe the different aspects of using agents in mobile service delivery:

– Granularity: An agent-based application can provide single user support
or multi-user interaction support. The decision about whether to adopt a
single-agent or multi-agent approach is generally determined by the domain
and is similar in nature to decisions about whether monolithic, centralized
solutions or distributed, decentralized solutions are appropriate.

– Role: Agents running on mobile devices can play different roles, offering
varying levels of support to the user. Sheridan [22] presents a taxonomy of
four main stages of complex human-machine tasks: (a) acquiring informa-
tion, where the application gathers information and saves it for future pro-
cessing; (b) analysing and displaying results is where the application analyses

120 Fernando Koch and Iyad Rahwan

and displays the collected information, considering the context and tailoring
the output information to the user’s preferences; (c) deciding on an action
or sequence of actions means the application suggests actions based on the
analysis of environmental information; and (d) implementing decided actions,
where the application is responsible for carrying out the steps required for
the task completion.

– Autonomy: An agent application may behave in a reactive manner to en-
vironment stimuli based on a set of pre-determined rules or user commands.
Instead, an agent may act proactively considering the context and user pref-
erences and behaviours. Different levels of autonomy exist between these two
extremes, and the degree of this autonomy may be adjustable by the user [21].

Using the above taxonomy, we look at some existing agent-based mobile
services in the next section.

4 Some Early Attempts

Several efforts in building applications that utilize agent-based techniques to
provide services to mobile users have been conduced by other groups. Our aim is
to provide the reader with a snapshot of current developments, and to describe
these within the above taxonomy.

– MyCampus [19] is a Semantic Web environment for context-aware mobile
services at Carnegie Mellon University. In this project, the agent-based ap-
proach provides autonomous discovery of services and personalized services
based on users’ preferences and contextual attributes. According to the tax-
onomy we have given above, MyCampus would be classified as single-user
support, with the role of acquiring information to analyse and display. Es-
sentially, MyCampus is a reactive system, as it works by responding to en-
vironment changes.

– AbIMA [18] is an agent-based intelligent mobile assistant that runs on
a hand-held device and assists the user through the execution of individ-
ual tasks. AbIMA uses a set of pre-programmed plans for executing differ-
ent tasks. These plans can be distilled from domain knowledge, or learned
through observation of user behaviour. AbIMA offers agent-based support
for a single user, acting by performing analysis and displaying suggestions
to the user. It exhibits proactive behaviour by providing proactive advice to
the user when things go wrong and initial plans cannot be executed.

– Paurobally et al. [15] proposed an agent-based framework for providing
personalised mobile services. Producers and consumers of services are viewed
as software agents, some of which are located on users’ mobile devices. These
agents use negotiation as a mechanism for reaching agreement on the terms
of a transaction in a mobile-commerce scenario. As per our taxonomy, this
infrastructure would be classified as multiple-user support, as it supports a
community of users and their inter-operations with the environment; the role
would be implement action and on autonomy it would classify as pro-active.

The Role of Agents in Intelligent Mobile Services 121

– The Electric Elves project [2] exploits agent technology to support hu-
man organisation. Teams of agents help users conduct routine, well struc-
tured tasks, such as organising meetings. Each person has their own proxy
agent running on a mobile device. The Electric Elves project is based on a
multi-agent approach to coordinating multiple mobile users. Agents’ roles
range from deciding what information to acquire, to analysing situations us-
ing decision-theoretic planning, to making suggested actions. Agents exhibit
varying degrees of autonomy based on the type of situation at hand and
learned user preferences

In Figure 3 we present which depicts the classifications given above.

xxxPaurabally’s

xxxAbima

xxxxxElectricElves

xxxxMycampus

ProactReactImplem.DecideDisplayAcquireMultiSingle

AutonomyRoleGranularity

xxxPaurabally’s

xxxAbima

xxxxxElectricElves

xxxxMycampus

ProactReactImplem.DecideDisplayAcquireMultiSingle

AutonomyRoleGranularity

Fig. 3. Classification of early attempts.

5 Engineering Agents-Based Mobile Services:
Mobile Computing Example Scenario

Our long-term aim is to provide an agent-based approach to specifying and con-
structing intelligent mobile services. In this section, we take a preliminary step
in this direction through a brief case-study. Our aim is not to give a comprehen-
sive methodology but rather to outline a coherent sequence of steps for building
agent-based intelligent mobile services and discuss the agent-based techniques
that can prove useful. The steps start from scoping the problem to defining the
requirements and functional specifications, to defining the various processing
components, processing rules and their interaction. We go through these steps
through an illustrative scenario (depicted in Figure 4).

Define the Problem

Purpose: Provide a clear definition of the problem to guide subsequent steps.
The problem in the proposed example is to create a context-aware mobile

commerce application that utilises pervasive computing technologies in order to
deliver the right information (shopping list quotation) at the right time (while
nearby a grocery store).

122 Fernando Koch and Iyad Rahwan

(a)

(b)
(d) (c)

(I) (II)

(I) user learns about the need of
purchasing more soft-drinks while
grabbing the last can from the refrigerator
at home;
(II) that information will be most useful
when passing by a food store.

Fig. 4. Mobile commerce scenario.

Define the Requirements and Functional Specification

Purpose: Scope the aimed level of automation, assess the available enabling and
support technology, what context-awareness support infrastructure is available,
and describe the requirements from the service with regards to feedback loops,
human-computer integration and group of participants.

The requirements for running this mobile service are: (1) a location-based
system, with landmark event generation, which detects the user’s device nearby
a setup landmark and sends a notification; (2) the interface definition between
the device-based application and the grocery store server; (3) connectivity; (4)
plan resolution while the user is walking nearby the store; (5) interfacing to
present the solution (e.g. price quote) to the user.

Considering these requirements, this application’s architecture can be model
as either client-server or local-processing applications, depending on the available
device connectivity.

Decompose the Problem

Purpose: to define the autonomous entities in the problem and how they can be
distributed. Decomposition is the most basic technique for tackling large problems
is to divide them into smaller, more manageable chunks, each of which can then
be dealt with in relative isolation, as described by Jennings [11].

By decomposing the problem into the minimum parts, we came up with an
abstract sketch of a multi-agent system where each module addresses one specific
part of the problem. The modules are presented in Figure 5 and described below.

– Location Agent: knows about the user’s position and processes landmark
events. Although at first glance it may look unnecessary to have an agent
dedicated to location-based services, for the sake of this exercise we are
decomposing the problem to the minimum components. This agent would
contain the skills necessary to interface with location-based services, to han-
dle the landmark table and to related positioning information (coordinates)
to landmarks proximity.

– Calendar Agent: keeps track of user‘s appointments and provide the func-
tions to check user availability;

The Role of Agents in Intelligent Mobile Services 123

Location

Location API
LandMarks
Events

Shopping
Assistant

ShoppingList
ShoppingStores

Calendar

Agenda
Events

Context Solver

Context-Rules

Negotiator

NegotiationRules
Quotes
Offers

Quoter Agent

PriceList
Events

Promoter
Agent

PromotionRules

SUPERMARKET

(I)

(a)

(b)
(d) (c)

(II)

Fig. 5. Application architecture.

– Shopping Assistant Agent: keeps track of user’s shopping lists and pre-
ferred stores;

– Context Solver Agent: implements the context inferencing and triggers
the selected actions;

– Negotiation Agent: implements the negotiation strategies and functions.

Define the Processing Rules

Purpose: describing the process events and, specially for Mobile Services, the
relationship between events, context and actions. For context-aware computing,
these are the context inference rules, as described by Dey [5, 7].

The Context Solver Agent receives the landmark event and must process it
accordingly. For example, it should check if there is a shopping list available, if
the user’s agenda allows a visit to the nearby shopping store and, if possible,
compare the received quote with the quotes provided by the user’s preferred
stores. Finally, it should present the quote along with a suggest of action to the
user. This context resolution rule is presented in the pseudo-code below.

Event: Near a Supermarket

EVENT –
location(near, supermarket(SUPER-A))

CONTEXT –
location(near, supermarket(SUPER-A)) AND
Agenda(available, next(30mins)), AND
ShoppingList(supermarket, SHOPPINGLIST))

124 Fernando Koch and Iyad Rahwan

ACTION –
setContext(NegotiatingList, SHOPPINGLIST),
Negotiate(SHOPPINGLIST, SUPER-A, QUOTE),
Store(quote(SUPER-A,QUOTE)),
ShoppingStores(supermarket, STORESLIST),
Negotiate(SHOPPINGLIST, STORESLIST, LISTQUOTES),
Store(quotes(STORESLIST, LISTQUOTES)),
Compare(QUOTE, LISTQUOTE, RESULT),
Display(RESULT)

Define the Modules Interdependencies and Interoperations

Purpose: This phase leads to the distribution problem and the developer must
decide where eachmodule will execute (server-based, client-server, local-processing
and/or mobile code) and the interactions between the modules.

In this environment, when the user passes by a food store the Location Agent
detects the landmark and throws an event to the Context Solver Agent. The
system checks for time availability and presence of a shopping list. If there is a
positive context (i.e. if a certain condition is satisfied based on the observation of
the environment), the system triggers the negotiation process, which will interact
with the supermarkets’ agent, bargain and display the best price quote it could
find. The modules interdependencies are presented in the Figure 5.

Exercise Conclusions

Other steps include lower level definitions such as the specification of the graphi-
cal user interface, aspects of human-computer interactions, application program-
ming interfaces to access contextual data and connectivity and networking issues.
These stages are essential for the development of the final product but as they
enter into lower-level details and technological issues we regard them as beyond
the scope for this paper.

Several other factors could be improved and extended in this architecture
sketch, such as perception of device and network conditions. For example, if the
battery level is low or the network is expensive or unreliable then the agent may
not conduct the time-consuming price bargaining process. This would address
an extra requirement in mobile computing: local control.

In our classification system, the Personal Assistant described in the above
scenario would be classified as a single-user support for granularity, has the
role of suggesting action and is pro-active in terms of autonomy. Several other
possibilities are feasible, and here are some examples:

– Acquire Information, Analyse and Display and Reactive: The agent could be
reactive in the sense that it only responds to an explicit request for quotes
by the user based on the given shopping list and, once processed, the quote
information is acquired and displayed to the user. This is a rather simplistic
agent and would not require location-based context-awareness infrastructure.

The Role of Agents in Intelligent Mobile Services 125

– Decide Action and Reactive: The user can delegate the act of bargaining
and finalising a deal to the agent. For instance, the agent collects the quotes
from the nearby and remote store. It also checks for alternative brands that
the user configured as acceptable and compile the best quote from every
store, based on what user preferences. The agent will work to find the best
deal possible to the customer and direct him to a particular food store to
shop. This solution requires connectivity but, since the action is initiated by
the user, does not require a location-based service that proactively initiates
interaction via detecting user location. This scenario can be engineered using
a client-server architecture with the context rules processing in the server.

– Decide Action and Proactive: In this variant, the user’s agent starts to bar-
gain by itself when it detects the food store’s proximity and if the stored
shopping list and other scheduled activities permit (it wouldn’t make sense
to spend processing power and communication if the user doesn’t have time
availability for shopping at that time). Moreover, the proativiness could also
take place on the merchant side, for example, as the merchant’s agent de-
tects the customer’s proximity and the amount it intends to shop, it could
provide a discount coupon valid for a period of time, teasing this customer
to step in. Of course, this raises privacy issues worthwhile of serious separate
investigation.

Although simplistic, this exercise demonstrates some solutions provided by
the agent-oriented approach, and provides the reader with a hands-on feel for
building a mobile service using agent-oriented software engineering.

6 Conclusions

We hope to have demonstrated that the agent paradigm provides useful tools
and abstractions for addressing the requirements of the new generation of mobile
services. We also hope that our classification would help future research in the
area by enabling the identification of opportunities to extend existing efforts. We
described a recipe for engineering agent-based mobile applications and presented
a quick hands-on exercise utilizing agents for mobile services.

The use of context information will be important for mobile services. Agent-
based software development could provide the structures for building context-
aware systems. It is important to create better methods to collect, represent and
process contextual information. Agent-oriented approaches can supply the tools
for such development.

Our future work includes extending our classification model and use it to
analyse other existing systems. We also plan to engineer more elaborate mo-
bile service architectures based on these classifications. Finally, we will work on
the implementation of the proposed examples, creating proof-of-concept appli-
cations.

126 Fernando Koch and Iyad Rahwan

Acknowledgement

This work was conducted while Fernando Koch was a visitor at the Department
of Information Systems, University of Melbourne.

References

1. M. Beer, M. d’Inverno, M. Luck, N. Jennings, C. Preist, and M. Schroeder. Nego-
tiation in multi-agent systems. Knowledge Engineering Review 14, pages 285–289,
1999.

2. H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. V. Pynadath, T. A.
Russ, and M. Tambe. Electric elves: Applying agent technology to support human
organizations. In H. Hirsh and S. Chien, editors, Proceedings of the 13th Interna-
tional Conference of Innovative Application of Artificial Intelligence (IAAI-2001).
AAAI Press, 2001.

3. M. Dastani, F. Dignum, and J.-J. Meyer. Autonomy and agent deliberation. In
M. Rovatsos and M. Nickles, editors, The First International Workshop on Com-
putatinal Autonomy - Potential, Risks, Solutions (Autonomous 2003), pages 23–35,
Melbourne, Australia, July 2003.

4. F. de Boer, R. M. van Eijk, W. van der Hoek, and J.-J. Meyer. A fully abstract
model for the exchange of information in multi-agent systems. Theoretical Com-
puter Science, 290(3):1753–1773, 2003.

5. A. K. Dey. Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology, November 2000.

6. A. K. Dey and G. D. Abowd. Towards a better understanding of context and
context-awareness. Technical Report GIT-GVU-99-22, College of Computing,
Georgia Institute of Technology, June 1999.

7. A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human Computer
Interaction Journal, 16:97–166, 2001.

8. E. H. Durfee. Practically coordinating. Artificial Intelligence Magazine, 20(1):99–
116, Spring 1999.

9. K. Henricksen, J. Indulska, and A. Rakotonirainy. Infrastructure for pervasive com-
puting: Challenges. In K. Bauknecht, W. Brauer, and T. A. Mück, editors, Infor-
matik 2001: Wirtschaft und Wissenschaft in der Network Economy - Visionen und
Wirklichkeit, volume 1 of Tagungsband der GI/OCG-Jahrestagung, pages 214–222,
Universität Wien, September 2001.

10. N. R. Jennings. Agent-oriented software engineering. In F. J. Garijo and M. Bo-
man, editors, Proceedings of the 9th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World : Multi-Agent System Engineering (MAAMAW-99),
volume 1647, pages 1–7, Spain, 30– 2 1999. Springer-Verlag: Heidelberg, Germany.

11. N. R. Jennings. An agent-based approach for building complex software systems.
Commun. ACM, 44(4):35–41, 2001.

12. N. R. Jennings, K. Sycara, and M. J. Wooldridge. A roadmap of agent research and
development. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7–38,
1998.

13. N. R. Jennings and M. J. Wooldridge. Applications of intelligent agents. Agent
technology: foundations, applications, and markets, pages 3–28, 1998.

The Role of Agents in Intelligent Mobile Services 127

14. F. Koch and I. Rahwan. Classification of agents-based mobile assistants. In Proceed-
ings of the AAMAS Workshop on Agents for Ubiquitous Computing (UbiAgents),
New York, USA, Jul 2004.

15. S. Paurobally, P. J. Turner, and N. R. Jennings. Automating negotiation for m-
services. IEEE Trans. on Systems, Man and Cybernetics (Part A: Systems and
Humans), 33(6):709–724, 2003.

16. G. P. Picco, G.-C. Roman, and A. L. Murphy. The future of Software Engineer-
ing, chapter Software Engineering for Mobility: A Roadmap, pages 241–258. ACM
Press, 2000.

17. D. Pynadath and M. Tambe. Multiagent teamwork: Analyzing key teamwork the-
ories and models. In C. Castelfranchi and L. Johnson, editors, Proceedings of the
1st International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), pages 873–880, New York, USA, 2002. ACM Press.

18. T. Rahwan, T. Rahwan, I. Rahwan, and R. Ashri. Agent-based support for mobile
users using agentspeak(l). In P. Giorgini, B. Hederson-Sellers, and M. Winikoff, ed-
itors, Agent Oriented Information Systems, Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin, Germany, 2004.

19. N. Sadeh, T.-C. Chan, L. Van, O. Kwon, and K. Takizawa. Creating an open agent
environment for context-aware m-commerce. In Burg, Dale, Finin, Nakashima,
Padgham, Sierra, and Willmott, editors, Agentcities: Challenges in Open Agent
Environments, LNAI, pages 152–158, Heidelberg, Germany, 2003. Springer Verlag.

20. M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal
Communications, 8(4):10–17, 2001.

21. P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable autonomy for the real-
world. Journal of AI Research (JAIR), 17:171–228, 2002.

22. T. B. Sheridan. Rumination on automation. In Proceedings of 7th
IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design and Evaluation of Man-
Machine Systems, Kyoto, Japan, 1998. Oxford: Pergamon Press. Plenary address.

23. M. Uncapher. M-commerce e-data: Jupiter media metrix says mobile transactions
to comprise only a sliver of all online shopping. ITAA E-LETTER, page 2, July
2001.

24. G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. The MIT Press, 1999.

25. M. J. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
Chichester, England, 2002.

26. F. Zambonelli and H. V. D. Parunak. Towards a paradigm change in computer
science and software engineering: a synthesis. The Knowledge Engineering Review,
2004. (to appear).

27. F. Zambonelli and H. Van Dyke Parunak. From design to intention: Signs of a rev-
olution. In Proceedings of the First International Joint Conference on Autonomous
agents and Multiagent Systems, pages 455–456. ACM Press, 2002.

A Trust/Honesty Model
in Multiagent Semi-competitive Environments

Ka-man Lam and Ho-fung Leung

Department of Computer Science and Engineering,
The Chinese University of Hong Kong,

Sha Tin, Hong Kong, China
{kmlam,lhf}@cse.cuhk.edu.hk

Abstract. Much research has been done on the calculation of trust,
impression and reputation, as well as using these information to decide
whether to cooperate with other agents in cooperative environments.
However, little is about how to use these information to help agents make
decision on whether to believe a particular message when the message
sender has intention to be honest as well as dishonest, and make decision
on whether to lie. In this paper, we describe a framework to help agents
make these decisions in a semi-competitive environment, and show that
agents adopting the proposed model have better performance than agents
adopting previous models or strategies.

1 Introduction

Much research has been done on agents coordination [6–8, 12, 17, 22, 23]. Be-
sides, the issues about honesty and trust among agents have also been addressed
by various researchers [1–5, 9, 13–16,19–21]. However, the discussions have been
mainly concentrated on cooperative environments.

In this paper, we discuss the issues of trust and honesty in semi-competitive
multi-agent environments. In purely cooperative environments, agents share
their utilities, so there is no reason to lie to the partners. In strictly compet-
itive environments such as zero-sum games, that one agent wins means that
other agents lose, so there is no need to be honest to the competitors. In
(semi-)competitive environments, agents compete with each other in some as-
pects, and at the same time, agents might cooperate with each other to increase
their utilities. Therefore, there are reasons for the agents to lie as well as to be
honest. Consequently, on receiving information from other agents, receivers need
to decide whether to trust the messages. On the other hand, before sending infor-
mation to other agents, senders need to decide whether to lie or not. Compared
to those in purely cooperative or strictly competitive environments, the issues
about trust and honesty among agents become more significant and complicated
in semi-competitive environments. In this paper, we describe a framework to
help receivers make decision on whether to believe a particular message, and
help senders make decision on whether to be honest in a semi-competitive game.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 128–147, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Trust/Honesty Model in Multiagent Semi-competitive Environments 129

The rest of the paper is organized as follows. In the next section, we briefly
review the background of this work. In sections 3 and 4, we introduce our model.
We analyze the performance of agents employing this model in section 5, based
on simulation results. We show that agents employing our trust model greatly
outperform agents employing other trust models available in the literature. Sec-
tion 6 concludes the paper and discusses possible future work.

2 Background

Marsh [13] is among the first to investigate trust in multiagent systems. In his
thesis, he mentions that an agent decides to cooperate with another agent on
a matter, if the trust it has on that agent in that matter is greater than a
cooperation threshold, which is calculated from the risk and importance of the
matter, as well as the competence of that agent on that matter. However, the
risk of a matter and the competence of an agent on a particular matter are
difficult to estimate in real practice. In addition, the framework is incomplete,
as the way in which trust can be modified is not defined.

Mui et al. [14–16] use a Bayesian approach in the computational model of
trust and reputation, in which they estimate the reputation of agent x in the eye’s
of agent y as the probability that agent x cooperates with agent y, that is the
number of cooperation that agent x has made toward agent y out of the previous
encounters. The reputation defined there is an opinion that a single agent has
about a particular agent, rather than the opinion that a group of agents have
about a particular agent. This deviates from the definitions in the dictionaries
[10, 11]. In the computational model, they define trust as the expected probability
that agent x will cooperate the next time, given a history of encounters. There is
a problem with this approach. Agents adopting this model can be cheated easily.
For example, out of 10 encounters, agent x cooperates with agent y in 9 rounds
bringing a utility gain of 10, but it does not cooperate in 1 round bringing a
utility loss of 100, the expected probability that agent x will cooperate the next
time is 0.9, so agent y will still trust agent x. However, agent x actually brings
much more harm than gain to agent y, that is agent y is trusting a harmful agent.
The reason for this is that this model only calculates the expected probability for
cooperation, but does not include the utility that the interacting agent brings.

Sabater and Sierra [19] propose another reputation model. There they define
impression that an agent has on another agent as the subjective evaluations made
by an agent on certain aspects of the agent being evaluated, and they calculate
individual-experienced reputation that an agent has on another agent, directly
from an agent’s impression database. For example, to evaluate the reputation
of being a trustworthy sender, agent will consider the reputation of telling the
truth. In this model, there is a group-experienced reputation that a group of
agents have on a particular agent being evaluated. This is calculated by the
weighted sum of the individual-experienced reputation that the member agents
in the group has, on the agent being evaluated. This matches the definition from
the dictionary [10, 11]. However, this work mainly concentrates on the calculation
of impression and reputation, rather than showing how to use these information
to make decisions.

130 Ka-man Lam and Ho-fung Leung

On the other hand, Rubiera et al. [18] propose a fuzzy model of reputation
rather qualitatively. Castelfranchi and Falcone [1, 3] also describe the importance
of trust and explain what trust is in a qualitative way. Much other research [4,
9, 20, 21] has been done on the application of trust, impression, reputation, and
reputation management, rather than a framework for decision making.

3 The Trust Model

3.1 A Motivating Example

Consider the example semi-competitive scenario depicted in Fig. 1. In this envi-
ronment, the agents R1, R2 and R3 interact to maximize their respective payoffs.
There are three goals, G1, G2 and G3. Agents have four possible actions: obtain-
ing G1, obtaining G2, obtaining G3, or staying still. Note that R2 will not be
able to obtain G3 as it does not know that goal. The costs for agents to obtain
the goals are shown besides the arrows in the figure, and the cost for staying still
is zero. The payoff for agent Ri to obtain goal Gj is defined to be the worth of
the goal (if Ri wins the worth of Gj) minus the cost for the agent to obtain the
goal (denote as cost(Ri→Gj)). When more than one agent decides to obtain the
same goal, the worth of the goal will be completely given to one agent among
all the full-cost paying agents. To decide which agent can win the worth of a
certain goal, different systems may apply different mechanisms. For ease of pre-
sentation and without loss of generality, it is assumed that for each goal, there
is an associated priority ordering of agents, which is shown in the figure. For
example, if R1 decides to obtain G1, it can win the worth only if both R3 and
R2 do not compete with it. There are several rounds in this game, one round
proceeds after another. In each round, agents are free to communicate until all
agents openly announce their choices of actions, then the round ends and the
worths of the goals are given to the winning agents. Each agent can only choose
one action in each round. An agent knows which messages it received from other
agents are true, and which are lies, only after the round ends.

2

13

15

17
R1

R2

G3, worth=20
Priority: R2>R3>R1

6
5

10

G2, worth=15
Priority: R2>R3>R1

R3

G1, worth=10
Priority: R3>R2>R1

2 4
obstacles

Fig. 1. Example scenario of interacting agents in a semi-competitive environment.

Using Lam and Leung’s extension [12] to the Recursive Modeling Method
(RMM) of Gmytrasiewicz and Durfee [6–8], R1 can determine that before any
communication, R2 will choose to obtain G1, and R3 will choose to obtain G2,
so R1 will choose to obtain G3.

A Trust/Honesty Model in Multiagent Semi-competitive Environments 131

Motivation to Tell the Truth: Invitation to Cooperate. Agents are self-
interested, and always want to maximize their own respective utilities. Therefore,
in the semi-competitive environment, it is not always good for an agent to share
all of its information with other agents. In the decision-making process, we note
that R1 can increase its payoff if R2 chooses to obtain G3. To invite R2 for
cooperation, R1 considers it rational to send R2 the information about G3, which
is unknown to R2. This message, M1, should look like this: “You can obtain the
goal G3, with worth 20, cost(R1→G3) = 15, cost(R2→G3) = 2, cost(R3→G3) =
5 and G3’s priority is R2 > R3 > R1.” After communication, if R2 believes the
message M1, it will choose to obtain G3. This is because R2 can get a payoff of
18 by obtaining G3, no matter what actions other agents take. In fact this payoff
is also the best payoff it can get among all its possible actions. This shows an
example in which agents can benefit mutually by cooperation. This also shows
that agents have incentives to tell the truth.

Motivation to Tell a Lie: To Prevent Competition. At the same time,
we can see that R3 can maximize its payoff by obtaining G3. However, it has a
lower priority than R2, which means that it needs to compete with R2. So, to
prevent competition with R2, R3 considers it rational lying to R2 and directing
it to a fake goal. This message, M2, should look like this: “You can obtain the
goal G4, with worth 24, cost(R1→G4) = 50, cost(R2→G4) = 4, cost(R3→G4)
= 50 and G4’s priority is R2 > R1 > R3.” This shows an incentive for an agent
to lie.

To Believe, or Not to Believe, That Is the Question. Now R2 receives
two messages: M1 from R1 and M2 from R3. If R2 believe M1, it will choose
to obtain G3. If R2 believe M2, it will choose to obtain G4. Otherwise, it will
choose to obtain G1. The payoffs of R2 with respect to its trust on M1 and M2

as well as the nature of M1 and M2 are summarized below:

Nature Nature

M1 is True M1 is False M2 is True M2 is False
R2 Believe 18 −2 R2 Believe 20 −4

Not Believe 6 6 Not Believe 6 6

Now, R2 faces a difficult question. If R2 makes the simple assumption that the
probability for R1 or R3 telling the truth to be 1

2 , then the following expected
utilities result:

Expected Utility Expected Utility

believe M1
1
2 × (18− 2)=8 Not Believe M1

1
2 × (6 + 6)=6

believe M2
1
2 × (20− 4)=8 Not Believe M2

1
2 × (6 + 6)=6

Since both the expected utilities of believing M1 and M2 are higher than that of
believing neither M1 nor M2, R2 will believe either M1 or M2, or both. However,

132 Ka-man Lam and Ho-fung Leung

the two messages lead R2 to two different actions, but each agent can only choose
one action. So, R2 has to choose to follow either M1 or M2, but not both. As the
expected utilities of believing M1 and M2 are the same, R2 cannot determine
whether to follow M1 or M2. In this example, we show that agents have incentives
to tell the truth as well as to tell lies in semi-competitive environments. Besides,
we show in the example that considering only the expected utility is not enough
in making the decision on which message to believe. To solve the problem, we
need to consider trustworthiness in addition to expected utilities1.

3.2 Impression

– From Cambridge Dictionaries Online [10], Impression is “the opinion you
form when you meet someone or see something.”

– From Merriam-Webster Online [11], Impression is “a telling image impressed
on the senses or the mind.”

We suggest that in semi-competitive environments, each receiver agent should
maintain an impression on each sender agent about based on its experience.
A sender gives a good impression to a receiver if and only if the former has
told truths to the latter, which has brought the latter benefits. We define the
impression that receiver i has towards sender j to be a real number in [−1, 1]:

impij = fi(
∑

gainij,
∑

lossij , p, n)

where
∑

gainij (
∑

lossij) is the sum of the utility that agent i has gained (lost)
by having believed the truths (lies) from agent j, p is the number of times that
agent j has told truth, and n is the total number of messages that agent i has
received from agent j. The function fi must satisfy the following axioms:

Axiom fi1: fi is continuous.
Axiom fi2: fi strictly increases as p increases.
Axiom fi3: fi increases as

∑
gainij increases.

Axiom fi4: fi decreases as
∑

lossij increases.
Axiom fi5: fi = 0 when n = 0.
Axiom fi6: For

∑
gainij =

∑
lossij , fi = 0 when p = n− p, fi > 0 when

p > n− p, and fi < 0 when p < n− p.
Axiom fi7: fi > 0 when

∑
gainij >

∑
lossij and p ≥ n− p.

Axiom fi8: fi < 0 when
∑

gainij <
∑

lossij and p ≤ n− p.
Axiom fi9: fi < 0 when

∑
gainij >

∑
lossij and p < n− p.

Axiom fi10: fi < 0 when
∑

gainij <
∑

lossij and p > n− p.

It is rational that receiver will have better impression on a sender if the
sender tells much truth, or the sender brings much gain, but receiver will lower
the impression on the sender if it brings much loss. These are expressed by axioms
1 In this paper, we assume that if an agent believes a message, the agent believes all

the information provided by the message. Choosing to believe only some parts of
the message will much complicate the discussion and we leave it to the future work.

A Trust/Honesty Model in Multiagent Semi-competitive Environments 133

fi2, fi3, and fi4. Impression will be neutral if agent i receives no message from
agent j (axiom fi5). Axiom fi6 states that if a sender brings the same amounts
of gain and loss, then impression will be neutral if the sender has told the same
number of truths and lies, or positive if the sender has told more truths than
lies, or negative otherwise. From axioms fi7 and fi8, if a sender brings more
gain than loss and has told more truths than lies (or the same number of truths
and lies), this means that the sender is good to the receiver, so the receiver will
have a positive impression on the sender and vice versa. Axiom fi9 says that
if a sender brings more gain than loss, but has told more lies than truths (for
example, a sender tells a truth bringing a utility of 100 to the receiver at the
first encounter, but the sender lies and makes the receiver lose a utility of 90
in total in the following nine encounters), it is obvious that the sender is doing
harm to the receiver. So, the impression in this case should be negative. Axiom
fi10 shows that impression is also negative if a sender has told more truths than
lies, but brings more loss than gain.

The following is an example function satisfying the above axioms and the
intuitive meanings:

impij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 n = 0
p−(n−p)

n

∑
gainij =

∑
lossij

−(p−(n−p)
n)(

∑
gainij−

∑
lossij∑

gainij+
∑

lossij
)

∑
gainij <

∑
lossij

∧
p ≤ n− p

(p−(n−p)
n)(

∑
gainij−

∑
lossij∑

gainij+
∑

lossij
) otherwise

3.3 Reputation

– From Cambridge Dictionaries Online [10], Reputation is “the opinion that
people in general have about someone or something, . . . , based on past be-
havior or character.”

– From Merriam-Webster Online [11], Reputation is the “overall quality or
character as seen or judged by people in general.”

Following the definition in the dictionaries, we define the reputation of an
agent to be an averaged impression that the population has towards that agent.
However, the only way for an agent to access other agents’ impressions on a
particular agent is to ask other agents for their impressions on that particular
agent. It is possible that an agent can lie in answering the query, so a weight could
be introduced to the answer. In an N agents environment, we define reputation
of a sender j, as seen by a receiver i, as a weighted sum of individual impressions
of a subset of the population:

repij =
∑k=n

k=1 impkj ×Wik

n

where Wik is the weight that agent i attaches to agent k’s impression on agent j
and n ≤ N . Note that each receiver can choose its own subset of population and

134 Ka-man Lam and Ho-fung Leung

decide the corresponding weights in calculating the reputation of a particular
sender. Much research has been done on this issue [16, 18, 19]. In the absence of
any knowledge about other agents’ honesty and trustworthiness, the weights can
be assumed to be 1.

3.4 Risk Attitude and Trustworthiness

In human interaction, different people have different reactions when they are
cheated by the same lie, and the degree of trust that different people have towards
the liar will be different. For example, one will consider not trusting the liar
anymore once he is cheated, while another person may continue trusting the
liar even he is cheated. This is because different people have different attitudes
towards risk: some do not mind taking any risk, some do not want to take
any risk, while others are neutral. To model this, we propose to include the risk
attitude of the receiver agent in calculating its trustworthiness on the sender. The
risk attitude here does not mean the risk undertaken by the agent, but rather an
index, which reflects the amount of risk that the agent is willing to undertake.
Here, we define risk attitude, r, of an agent to be a real number in [0,1]. Agents
with risk attitude being 0 is the most risk-averse while agents with risk attitude
being 1 is the most risk-seeking. A risk-averse agent prefers messages from a
sender with high trustworthiness, while a risk-seeking agent prefers messages
with high utilities. This risk attitude is determined by the agent itself, like the
personality of human, and can change over time.

In section 3.1, we show that considering expected utility alone is not enough
for an agent to determine which message(s) to believe when multiple messages
are received. In fact, it is dangerous for an agent to believe a message just because
the expected utility of the message is attractive: the agent can be cheated easily.
We propose that in a multi-agent semi-competitive environment, each receiver
should maintain a trustworthiness to every sender of the messages it receives.

– From Cambridge Dictionaries Online [10], Trustworthiness is the property
of being “able to be trusted,” while trusting is “to have belief or confidence
in the honesty, goodness, skill or safety of a person, organization or thing.”

– From Merriam-Webster Online [11], Trustworthiness is the property of being
“worthy of confidence.”

We define trustworthiness, tij , that receiver i has towards sender j as a func-
tion of the impression that agent i has about agent j, agent i’s calculation on
the reputation of agent j as well as the risk attitude of agent i:

tij = ft(impij , repij , ri)

The function ft returns a real number in [−1, 1], and must satisfy the following
axioms:
Axiom ft1: ft is continuous.
Axiom ft2: ft decreases as impij decreases and vice versa.
Axiom ft3: ft decreases as repij decreases and vice versa.
Axiom ft4: ft decreases as ri decreases and vice versa.

A Trust/Honesty Model in Multiagent Semi-competitive Environments 135

Axioms ft2 and ft3 state that it is rational that if the receiver’s impression
on the sender, or the sender’s reputation, decreases, then trustworthiness of the
sender decreases, and vice versa. Axiom ft4 states that if the risk attitude of the
receiver decreases, which means the receiver becomes more risk-averse and thus
less willing to trust other agents, the evaluated trustworthiness of the sender will
decreases.

An example function satisfying the above axioms and the intuitive meanings
is shown below, which attaches the same degree of importance to impression and
reputation, and is in proportion to the agent’s risk attitude.

tij =
impij + repij

2
× ri

3.5 Persuasiveness of a Message vs. Stubbornness of the Receiver

On determining whether to believe a particular message, besides considering the
expected payoffs that the receiver can gain by believing the message, trustworthi-
ness of the message sender should also be considered. Formally, a receiver makes
use of a persuasiveness function fp to rank the messages and choose to follow
the message that has the highest value of persuasiveness. The persuasiveness,
pM , of a message M is defined by:

pM = fp(ri, tij , uk)

Intuitively, the function fp takes the risk attitude ri of receiver i as the first
argument, the trustworthiness tij of the message sender j, as seen by receiver i,
as the second argument and the expected utility uk of the message k as the last
argument, and returns a real number in [−1, 1] as the rank of the message. The
function fp must satisfy the following axioms:

Axiom fp1: fp is continuous.
Axiom fp2: (Adventurousness of risk-seeking agents) There exists a

value r0 ∈ � such that fp(r, t2, u1) > fp(r, t1, u2) if and only
if r > r0, t1 > t2 and u1 > u2.

Axiom fp3: (Cautiousness of risk-averse agents) There exists a value
r′0 ∈ � such that fp(r, t2, u1) < fp(r, t1, u2) if and only if
r < r′0, t1 > t2 and u1 > u2.

Axiom fp4: if u1 ≥ u2, fp(r, t, u1) ≥ fp(r, t, u2).
Axiom fp5: if t1 ≥ t2, fp(r, t1, u) ≥ fp(r, t2, u).
Axiom fp6: if r1 ≥ r2, fp(r1, t, u) ≥ fp(r2, t, u).

It is obvious that the domains of the inputs of fp are continuous, so fp

should be continuous. Besides, it is reasonable that utility will be more attractive
than the trustworthiness of the message sender to a risk-seeking agent, and vice
versa to a risk-averse agent. These bring about Axioms fp2 and fp3. Axiom
fp4 states that if an agent receives two messages from senders with the same
trustworthiness, but with different payoffs, it is rational that the receiver is
more willing to follow the message with the higher payoff. Axiom fp5 states that

136 Ka-man Lam and Ho-fung Leung

if an agent receives two messages from senders with different trustworthiness,
but with same payoffs, it is rational that the receiver is more willing to follow
the message from sender, which is more trustworthy. Axiom fp6 means that
the persuasiveness of the same message from the same sender, with the same
trustworthiness, decreases if the receiver become more risk-averse.

Theorem 1 r0 (in axiom fp2) equals r′0 (in axiom fp3).

Proof. Assume r0 is not equal to r′0, this results in the following two cases:
Case 1. r′0 > r0 By axiom fp2, if r > r0, t1 > t2 and u1 > u2, fp(r, t2, u1) >

fp(r, t1, u2). By axiom fp3, if r < r′0, t1 > t2 and u1 > u2, fp(r, t2, u1) < fp(r,
t1, u2). As a result, for r0 < r < r′0, fp(r, t2, u1) > fp(r, t1, u2) and fp(r, t2,
u1) ¡ fp(r, t1, u2), which is a contradiction.

Case 2. r′0 < r0 By axiom fp2, fp(r, t2, u1) > fp(r, t1, u2) if and only if
r > r0, t1 > t2 and u1 > u2, so for r < r0, fp(r, t2, u1) ≤ fp(r, t1, u2). By axiom
fp3, fp(r, t2, u1) < fp(r, t1, u2) if and only if r < r′0, t1 > t2 and u1 > u2, so for
r > r′0, fp(r, t2, u1) ≥ fp(r, t1, u2). As a result, for r′0 < r < r0, fp(r, t2, u1) ≤
fp(r, t1, u2) and fp(r, t2, u1) ≥ fp(r, t1, u2), which is a contradiction.

So r0 equals r′0.

A simple example satisfying the above axioms, fp can be defined as follows2:

fp(r, t, u) =
{

r
1−r u + t for r 	= 1
u for r = 1

With this function, the most risk-averse agent, with zero risk attitude, considers
only trustworthiness of the sender in making decision. The most risk-seeking
agent, with risk attitude 1, considers only utilities of the messages, while agents
with other risk attitudes consider trustworthiness of the sender and utility of the
message in a certain ratio.

If a receiver receives only one message, it should believe the message only
if the persuasiveness of the message is higher than a certain threshold. We call
this the stubbornness of the receiver to the sender, which is a real number in
[−1, 1]. Each agent maintains a stubbornness to each message sender, which
can change over time, like personality of human. If more than one message
is received at a time, as an agent can only choose one action in one single
round, the receiver should believe the message with the greatest persuasiveness,
among those messages having a persuasiveness greater than the corresponding
stubbornness to the senders.

From the definition of the fp function, it is easy to see that it is possible that
two messages have the same value of persuasiveness. This means that the two
messages are having the same expected utility and both are from sources with
the same degree of reliability. In this case, the effect on believing and following
which message will have no difference, so the agent can simply throw a dice to
determine which message to believe. Another problem is that a message with
an extremely high utility will cause an agent to follow. First, we note that this
2 In this formula, the utility is assumed to be in the range [−1, 1].

A Trust/Honesty Model in Multiagent Semi-competitive Environments 137

actually mimics a real-life phenomenon occurring in human community. Second,
a cheated agent will decrease the trustworthiness of a message sender who lied
to it. Possibly, the agent will also become more risk-averse. Consequently, an
agent will be cheated for only the first few times, and will not believe further
messages from the same message sender. This will be discussed in future work.

Theorem 2 If two messages M1 and M2, with expected utilities u1, u2 and
trustworthiness of message senders t1, t2, respectively, where u1 > u2 and t2 >
t1, are sent to all agents with different risk attitudes. Then there exists a constant
r0 ∈ � depending only on u1, u2 and t1, t2, such that all the agents with risk
attitude r > r0 will choose to believe M1 and all the agents with risk attitude
r < r0 will choose to believe M2.

Proof. Agent uses a function fp to rank the messages and choose to believe and
follow the message that has the highest value of fp, where fp must satisfy axioms
fp1 to axioms fp6. Since t2 > t1 and u1 > u2, by axiom fp2, there exists a value
r0 ∈ � such that fp(r, t1, u1) > fp(r, t2, u2) if and only if r > r0. And by axiom
fp3, there exists a value r′0 ∈ � such that fp(r, t1, u1) < fp(r, t2, u2) if and only
if r < r′0. By Theorem 1, r = r′0. So, for u1 > u2 and t2 > t1, there exists a
value r0 ∈ � such that if r > r0, then fp(r, t1, u1) > fp(r, t2, u2), which means
the agent will choose to believe and follow message M1, and if r < r0, then fp(r,
t1, u1) < fp(r, t2, u2), which means the agent will choose to believe and follow
message M2.

Theorem 3 Suppose there are two agents R1 and R2, with risk attitudes r1 and
r2 respectively, where r1 > r2, that is agent R1 is more risk-seeking than agent
R2. Then there exist two messages M1 and M2, with expected utilities u1, u2

and trustworthiness of message senders t1, t2, respectively, where u1 > u2 and
t2 > t1, such that when these two messages are sent to R1 and R2, R1 will choose
to believe message M1 and R2 will choose to believe message M2.

Proof. By theorem 2, for any two messages M1 and M2, with expected utilities
u1, u2 and trustworthiness of message senders t1, t2, respectively, where u1 > u2

and t2 > t1, there exists a constant r0 ∈ � depending only on u1, u2 and t1,
t2, such that all the agents with risk attitude r > r0 will choose to believe and
follow M1 and all the agents with risk attitude r < r0 will choose to believe
and follow M2. In other words, proving theorem 3 is to find the two messages
such that r2 < r0 < r1. We do this by first initialize two messages M1 and
M2, with expected utilities u1, u2 and trustworthiness of message sender t1, t2,
respectively, where u1 > u2 and t2 > t1. When these two messages are sent to
the two agents, one of the following four cases will result:

Case 1. Both of R1 and R2 choose to believe and follow message M1. In
this case, generate another two messages M ′

1 and M ′
2, with expected utilities u′

1,
u′

2 and trustworthiness of message sender t′1, t′2, respectively, where u′
1 > u′

2,
t′2 > t′1, t′2 >t2 and t′1 < t1.

Case 2. Both of R1 and R2 choose to believe and follow message M2. In
this case, generate another two messages M ′

1 and M ′
2, with expected utilities u′

1,

138 Ka-man Lam and Ho-fung Leung

u′
2 and trustworthiness of message sender t′1, t′2, respectively, where u′

1 > u′
2,

t′2 > t′1, u′
1 > u1 and u′

2 < u2.
In case 1 and case 2, the process is continued by sending the new messages

M ′
1 and M ′

2 to the agents, replacing the old messages M1 and M2. As r is a real
number, as long as r1 > r2, there exists r0 ∈ � , such that r2 < r0 < r1. So,
eventually, the process converge and case 3 will results.

Case 3. R1 chooses to believe and follow message M1 and R2 chooses to
believe and follow message M2. In this case, the theorem is proved.

Case 4. R1 chooses to believe an follow message M2 and R2 chooses to believe
and follow message M1. In fact, this case will never happen. Suppose R1 and R2

choose to believe and follow different messages, as r1 > r2, and by theorem 2,
r2 < r0 < r1, which means R1 will choose to believe and follow message M1 and
R2 will choose to believe and follow message M2.

The following theorem states that it is rational for an agent to believe a
message with a higher utility and from a more trustworthy source, rather than
a message with a lower utility and from a less trustworthy source.

Theorem 4 For risk attitude r, trustworthiness t1 and t2, and utilities u1 and
u2, where t1 ≥ t2 and u1 ≥ u2, fp(r, t1, u1) ≥ fp(r, t2, u2).

Proof. From axiom fp4, if u1 ≥ u2, fp(r, t1, u1) ≥ fp(r, t1, u2). From axiom fp5,
if t1 ≥ t2, fp(r, t1, u2) ≥ fp(r, t2, u2). So, fp(r, t1, u1) ≥ fp(r, t1, u2) ≥ fp(r,
t2, u2). That is fp(r, t1, u1) ≥ fp(r, t2, u2).

Intuitively, if an agent becomes more risk-averse and lowers the trustwor-
thiness of the message sender after it is being cheated, then when this agent
receives the same message from the same sender (with trustworthiness lowered),
it should be less willing to follow the message. This phenomenon is confirmed
by the following theorem.

Theorem 5 For risk attitudes r1 and r2, trustworthiness t1 and t2, and utility
u, where r1 ≥ r2 and t1 ≥ t2, fp(r1, t1, u) ≥ fp(r2, t2, u).

Proof. From axiom fp6, if r1 ≥ r2, fp(r1, t1, u) ≥ fp(r2, t1, u). From axiom fp5,
if t1 ≥ t2, fp(r2, t1, u) ≥ fp(r2, t2, u). So, fp(r1, t1, u) ≥ fp(r2, t1, u) ≥ fp(r2,
t2, u). That is fp(r1, t1, u) ≥ fp(r2, t2, u).

A dual of Theorem 5, Theorem 6 shown below has no intuitive meaning; it
is shown here only for completeness.

Theorem 6 For risk attitudes r1 and r2, trustworthiness t, and utilities u1 and
u2, where r1 ≥ r2 and u1 ≥ u2, fp(r1, t, u1) ≥ fp(r2, t, u2).

Proof. From axiom fp6, if r1 ≥ r2, fp(r1, t, u1) ≥ fp(r2, t, u1). From axiom fp4,
if u1 ≥ u2, fp(r2, t, u1) ≥ fp(r2, t, u2). So, fp(r1, t, u1) ≥ fp(r2, t, u1) ≥ fp(r2,
t, u2). That is fp(r1, t, u1) ≥ fp(r2, t, u2).

A Trust/Honesty Model in Multiagent Semi-competitive Environments 139

4 The Honesty Model

4.1 Motivation: To Lie, or Not to Lie, That Is the Question

For naive receiver agents that do not employ any trust model, it is rational for
a sender to lie, if it can model that the receiver will believe the message and
change its action accordingly, which brings the sender an increase in utility. In
fact, a sender agent can lie that the worth of a fake goal is extremely large, so
that it can always be sure that the receiver will believe the message as receivers
with no trust model consider only expected utility. This means that agents will
always choose to lie. However, the receivers become less easy to be cheated after
employing a trust model. In addition to the expected utility, a receiver also takes
into account the trustworthiness of the message sender, when it decides whether
to believe the received message. As a result, a sender also needs to consider if
the receiver will actually be cheated before telling lies. So, whether or not to lie
becomes a question.

4.2 Impression

In semi-competitive environments, each sender also maintains an impression on
each receiver, based on its past experience. We define the impression that sender
i has towards receiver j to be a real number in [−1, 1]:

impij = fi(
∑

gainij,
∑

lossij , p, n)

where
∑

gainij is the sum of the utility that agent i has gained by successfully
cheating agent j,

∑
lossij is the sum of the utility that agent i has lost by

unsuccessfully cheating agent j, p is the number of times that agent j has been
successfully cheated by agent i, and n is the total number of times that agent i lie
to agent j. This function follows the same set of axioms as described in section 3.2:

Axiom fi1: fi is continuous.
Axiom fi2: fi strictly increases as p increases.
Axiom fi3: fi increases as

∑
gainij increases.

Axiom fi4: fi decreases as
∑

lossij increases.
Axiom fi5: fi = 0 when n = 0.
Axiom fi6: For

∑
gainij =

∑
lossij , fi = 0 when p = n− p, fi > 0 when

p > n− p, and fi < 0 when p < n− p.
Axiom fi7: fi > 0 when

∑
gainij >

∑
lossij and p ≥ n− p.

Axiom fi8: fi < 0 when
∑

gainij <
∑

lossij and p ≤ n− p.
Axiom fi9: fi < 0 when

∑
gainij >

∑
lossij and p < n− p.

Axiom fi10: fi < 0 when
∑

gainij <
∑

lossij and p > n− p.

Axioms fi2 and fi3 state that sender will have a better impression on the re-
ceiver if the number of times that the receiver is cheated by the sender increases,
or the sum of utility that the sender has gained from the receiver increases. On
the other hand, axiom fi4 states that impression decreases when the sum of
utility that the sender has lost increases due to the receiver’s distrust on it.

140 Ka-man Lam and Ho-fung Leung

Axioms fi5 and fi6 say that impression will be neutral if there is no inter-
action between the sender and the receiver, or if the sender gains as much as
loses and the receiver is cheated successfully and unsuccessfully for the same
number of times, while impression will be positive if the number of times that
the receiver is cheated successfully is more than that of unsuccessfully, and vice
versa.

From axioms fi7 and fi8, impression is positive if the sender gains more than
loses and the number of times that the receiver is cheated successfully is more
than (or equal to) that of unsuccessfully and vice versa. Axiom fi9 state that
even if the sender gains more than loses but the number of times that the receiver
is cheated successfully is less than that of unsuccessfully, the sender should be
cautious for this receiver and the impression is negative. Similarly, impression
should also be negative if the sender loses more than gains even if the number of
times that the receiver is cheated successfully is more than that of unsuccessfully,
which is axiom fi10.

The following is an example function satisfying the above axioms and the
intuitive meanings:

impij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 n = 0
p−(n−p)

n

∑
gainij =

∑
lossij

−(p−(n−p)
n)(

∑
gainij−

∑
lossij∑

gainij+
∑

lossij
)

∑
gainij <

∑
lossij

∧
p ≤ n− p

(p−(n−p)
n)(

∑
gainij−

∑
lossij∑

gainij+
∑

lossij
) otherwise

4.3 Reputation

Similarly, each sender also maintains a reputation on each receiver about ease
of being cheated by asking other agents for their impressions on that particular
agent. It is also possible that an agent can lie in answering the query, so a
weight could be introduced to the answer. In an N agents environment, we define
reputation of a receiver j, as seen by a sender i, as a weighted sum of individual
impressions of a subset of the population:

repij =
∑k=n

k=1 impkj ×Wik

n

where Wik is the weight that agent i attaches to agent k’s impression on agent
j and n ≤ N . In the absence of any knowledge about other agents’ honesty and
trustworthiness, the weights can be assumed to be 1.

4.4 Risk Attitude and Deceivability

A dual of the trustworthiness in the trust model, a deceivability is maintained by
each sender to each receiver, which shows how easily the receiver can be cheated
as seen by the sender. We define deceivability, cij , of receiver j from sender i’s
point of view, as a function of the impression that agent i has about agent j,

A Trust/Honesty Model in Multiagent Semi-competitive Environments 141

agent i’s calculation on the reputation of agent j as well as the risk attitude of
agent i, which returns a real number in [−1, 1]:

cij = fc(impij , repij , ri)

The function fc must satisfy a similar set of axioms for function ft as stated in
section 3.4:
Axiom fc1: fc is continuous.
Axiom fc2: fc decreases as impij decreases and vice versa.
Axiom fc3: fc decreases as repij decreases and vice versa.
Axiom fc4: fc decreases as ri decreases and vice versa.

Axioms fc2 and fc3 state that it is rational that the deceivability of the
receiver decreases if the sender’s impression on it decreases, or the receiver’s
reputation decreases and vice versa. If the risk attitude of the sender decreases,
which implies that the sender becomes more risk-averse and thus less willing to
cheat other agents, then the evaluated deceivability of the receiver will decrease.
This is axiom fc4.

An example function satisfying the above axioms and the intuitive meanings
is shown below, which attaches the same degree of importance to impression and
reputation, and is in proportion to the agent’s risk attitude.

cij =
impij + repij

2
× (1− ri)

4.5 Temptation of Lying vs. Sincerity of the Sender

For a sender to decide whether to tell a lie, besides considering the expected
payoffs that the agent can gain by lying, it should also consider the deceivability
of the receiver. Formally, a sender makes use of a temptation function ftp to
calculate the temptation of lying. The temptation, tL, of a lie L is defined by:

tL = ftp(ri, cij , uk)

Intuitively, the function ftp takes the risk attitude ri of sender i as the first
argument, the deceivability cij of receiver j as seen by agent i as the second
argument and the expected increase in utility uk as the last argument, and
returns a real number in [−1, 1] as the temptation of lying. The function ftp

must satisfy a similar set of axioms for function fp as stated in section 3.5:

Axiom ftp1: ftp is continuous.
Axiom ftp2: (Adventurousness of risk-seeking agents) There exists a

value r0 ∈ � such that ftp(r, c2, u1) > ftp(r, c1, u2) if and only
if r > r0, c1 > c2 and u1 > u2.

Axiom ftp3: (Cautiousness of risk-averse agents) There exists a value
r′0 ∈ � such that ftp(r, c2, u1) < ftp(r, c1, u2) if and only if
r < r′0, c1 > c2 and u1 > u2.

Axiom ftp4: if u1 ≥ u2, ftp(r, c, u1) ≥ ftp(r, c, u2) for r > r0 and
ftp(r, c, u1) ≤ ftp(r, c, u2) for r < r′0.

Axiom ftp5: if c1 ≥ c2, ftp(r, c1, u) ≥ ftp(r, c2, u).
Axiom ftp6: if r1 ≥ r2, ftp(r1, c, u) ≥ ftp(r2, c, u).

142 Ka-man Lam and Ho-fung Leung

Axiom ftp2 and ftp3 state that it is rational for a risk-seeking sender to
consider expected gain in utility to be more important than deceivability of the
receiver, and vice versa to a risk-averse sender. At the same time, temptation of
lies that bring more utility should be higher for a risk-seeking sender, but lower
for a risk-averse sender, as it is rational for a risk-averse sender to be hesitate
to tell a lie with higher utility. This brings about axiom ftp4. In addition, the
temptation of lying a more deceivable receiver should be higher, which is axiom
ftp5. However, the temptation of lying decreases if the sender becomes more
risk-averse, which is axiom ftp6.

A simple example satisfying the above axioms, ftp can be defined as follows3:

ftp(r, c, u) =

⎧⎨
⎩

(r−1)u+c
2 for r < 0.5

u+c
2 for r = 0.5

(r+1)u+c
3 for r < 0.5

With this function, the more risk-averse the sender is, the more important the
deceivability of the receiver is in making decision. The more risk-seeking the
sender is, the more important the utility of the lie is, while senders with neutral
risk attitude consider deceivability of the receiver and utility of the lie to be
the same important. Note that the functions suggested in this paper are only
example satisfying the axioms, anyone can use other functions in the model if
the functions satisfy the axioms.

A sender should decide to tell a lie only if the temptation of lying is greater
than a certain threshold. We call this the threshold the sincerity of the sender to
the receiver, which is a real number in [−1, 1]. Each sender maintains a sincerity
to each receiver, which can change over time. If more than one lie can be chosen
from, the sender should send the lie with the greatest temptation, among those
lies having a temptation higher than the corresponding sincerity to the receivers.
Since agents can only choose one action in each round, and the aim of lying is to
change the competitor’s action so as to make its own action compatible, agents
will only choose at most one lie to send.

The function ftp also have a set of theorems similar to that stated in sec-
tion 3.5:

Theorem 7 r0 (in axiom ftp2) equals r′0 (in axiom ftp3).

Theorem 8 If two lies M1 and M2 are available to all senders with different
risk attitudes, while M1 and M2 have expected utilities u1, u2 and deceivability
of receivers c1, c2, respectively, where u1 > u2 and c2 > c1. Then there exists a
constant r0 ∈ � depending only on u1, u2 and c1, c2, such that all the senders
with risk attitude r > r0 will choose to send out M1 and all the senders with risk
attitude r < r0 will choose to send out M2 if temptation of the lies are greater
than the senders’ sincerity.

Theorem 9 Suppose there are two senders R1 and R2, with risk attitudes r1

and r2 respectively, where r1 > r2, that is sender R1 is more risk-seeking than
3 In this formula, the utility is assumed to be in the range [0, 1].

A Trust/Honesty Model in Multiagent Semi-competitive Environments 143

sender R2. Then there exist two lies M1 and M2, with expected utilities u1, u2

and deceivability of receivers c1, c2, respectively, where u1 > u2 and c2 > c1,
such that when these two messages are available to R1 and R2, R1 will choose
to send message M1 and R2 will choose to send message M2 if temptation of the
lies are greater than the senders’ sincerity.

It is rational for a risk-seeking sender to send out a lie with a higher utility
to a more deceivable receiver, rather than a lie with a lower utility and to a less
deceivable receiver. For a risk-averse sender, as it will be hesitate to tell a lie
with a higher utility, which lie it chooses to send depends on the actual values
of the deceivability, utilities, risk attitude and sincerity. This is represented by
the following theorem.

Theorem 10 For risk attitude r > r0, deceivability c1 and c2, and utilities u1

and u2, where c1 ≥ c2 and u1 ≥ u2, ftp(r, c1, u1) ≥ ftp(r, c2, u2).

The following theorem confirms that if a sender becomes more risk-averse
and lowers the deceivability of the receiver after it fails to cheat the receiver,
then it should be less willing for the sender to tell the same lie to the same
receiver (with deceivability lowered).

Theorem 11 For risk attitudes r1 and r2, deceivability c1 and c2, and utility
u, where r1 ≥ r2 and c1 ≥ c2, ftp(r1, c1, u) ≥ ftp(r2, c2, u).

5 Performance Analysis

Simulation is done to compare performance of agents employing our Trust/Hon-
esty model with performance of agents adopting other models or strategies. The
setting of the simulation is as follows. We include receivers and senders adopting
our Trust/Honesty model. In addition, we include receivers and senders adopting
other models or strategies. For receivers adopting our Trust/Honesty model, a
negative stubbornness and a risk attitude of 0.2 are used4. For receivers adopt-
ing Sabater and Sierra’s REGRET model [19] and Mui et al.’s computational
model of trust and reputation [16], reputation and trust are calculated with
the parameters suggested in these papers. Receivers adopting the “choose maxi-
mum reputation” strategy choose to believe the message from a sender with the
maximum reputation when several messages are received at a time. If only one
message is received, it chooses to believe the message if and only if the reputation
of the message sender is greater than 0.5, where the reputation is normalized to 1.
Similarly, receiver adopting the “choose maximum utility” strategy choose the
message with maximum utility to believe when several messages are received at
a time, and chooses to believe the message if the utility of the message is greater
than 0.5, where the utility is normalized to 1. Finally, receivers adopting the
random strategy randomly choose to believe a message when several messages
4 This is the best value we obtain in previous experiments, which are not shown here

due to lack of space.

144 Ka-man Lam and Ho-fung Leung

are received at a time, and randomly choose to believe or not to believe the
message when only one message is received.

In each round, a random semi-competitive scenario is virtually generated.
Each sender decides whether to tell a lie to a receiver according to its adopted
strategy. Therefore, it is possible that a receiver receives more than one message
at a time. Each receiver then chooses whether to believe the message according
to its adopted strategy. Note that a receiver adopting the Trust/Honesty Model
may believe no message at all if the persuasiveness of the messages it receives
are all less than its stubbornness. At the end of each round, a receiver gains if it
has believed a true message, or loses if it has believed a lie. On the other hand,
a sender gains if the receiver has believed its message, or loses if the receiver
has not. Then all agents update the impressions, reputations, trustworthiness,
and deceivability accordingly. In this simulation, all agents’ risk attitudes, stub-
bornness values, and sincerity values do not change throughout the game. Each
game contains 5,000 rounds, and the average results of 100 games are shown in
Table 1 and Table 2.

Table 1 shows the average utility gain5 of receivers6. In the table, maximum
possible utility means the maximum utility a receiver can possibly gain if it is
so smart as to always choose the right message to believe, and has never been
cheated. Note that this just serves as a benchmark for the comparison. Ex-
periments show that receivers adopting our Trust/Honesty Model significantly
outperform the others by at least 3 times. This is because the REGRET model
and Mui et al.’s computational model do not take utility into account in mak-
ing decisions. Utility of the receiver adopting the “choose maximum reputation”
strategy is similar to those of the receivers adopting Sabater and Sierra’s RE-
GRET model and Mui et al.’s computational model. The receivers adopting the
Choose maximum utility strategy and the random strategy end up with negative
utilities, because they are easily cheated.

Table 1. Average utility gain of receivers.

Models/strategies Utility gain

Maximum possible utility 1980
Trust/Honesty Model 1502
Sabater and Sierra’s REGRET model [19] 521
Choose maximum reputation 508
Mui et al.’s computational model [16] 499
Random -724
Choose maximum utility -812

5 Rounded up to the nearest integer.
6 We have not implemented Marsh’s model [13] because agents’ competence is irrele-

vant in our model, and the way trust should be modified is not defined, as discussed
in section 2. Also, Mui et al.’s Reputation Tic-for-tat [14] is not implemented, either.
This is because it cannot handle the case when a receiver receives more than one
message at a time. Mui et al.’s another model [16] is used for comparison instead.

A Trust/Honesty Model in Multiagent Semi-competitive Environments 145

Table 2. Average utility gain of senders.

Models/strategies Utility gain

Maximum possible utility 1868
Trust/Honesty Model 1230
100% truth 616
Mui et al.’s computational model [16] 540
Sabater and Sierra’s REGRET model [19] 501
Random 50% truth -678
Always lie -1769

Table 2 shows the average utility gain of senders. Again in the table, maxi-
mum possible utility means the maximum utility that a sender can possibly get
if it can always gain receivers’ trust. Again, this serves only as a benchmark for
comparison. Among all senders, sender adopting our Trust/Honesty Model with
risk attitude 0.4 and sincerity 0.8 has the highest utility. The sender adopting
the 100% truth strategy always tells the truth. However, receivers may not be-
lieve it if the utility brought by the messages is not attractive, so its performance
is not the best. Senders adopting the REGRET model and Mui et al.’s model
choose to tell lies if the target receiver has good reputation of being deceivable.
Their results are similar but not very good as they only take reputation into
account, but do not consider utility in making decision. The sender adopting the
Random 50% truth strategy randomly tells 50% of truth and the one adopting
the Always lie strategy always tells lies. As a result, their utilities are negative,
as their reputations are low and no receiver believe them.

These experiments show that our Trust/Honesty model significantly outper-
forms other trust models. It helps agents to achieve a utility that is about two to
three times better than that achieved by agents adopting other trust models re-
ported in the literature. Experiments also show that considering only reputation
or only expected utility cannot achieve high utility.

6 Conclusion

In semi-competitive environments, agents have intentions to be honesty and have
intentions to lie. This paper introduces a Trust/Honesty Model for receivers to
decide whether to believe a received message, and for senders to decide whether
to be honest. In the model, risk attitude, stubbornness and sincerity of agents
are similar to personality of human, which will be altered in gaining experiences.
Experiments show that our Trust/Honesty model significantly outperforms other
trust models reported in the literature.

We note that the utility gain much depends on the choice of the parameters
of risk attitude, stubbornness and sincerity, etc. In addition, choice of parameters
depends on the types of opponents and the actual environment. However, agents
in general cannot know the types of opponents and environment in advance.
Worse, one set of parameters excelling in a particular environment might not

146 Ka-man Lam and Ho-fung Leung

work well in others. To solve this problem, we are developing adaptive agents,
which can adjust the parameters autonomously according to their experience.
We shall present the adaptive Trust/Honesty Model in another paper.

References

1. C. Castelfranchi and R. Falcone. Principles of trust for mas: Cognitive anatomy,
social importance, and quantification. In Proceedings of the Third International
Conference on Multiagent Systems, pages 72–79, 1998.

2. C. Castelfranchi, R. Falcone, and G. Pezzulo. Trust in information sources as a
source for trust: A fuzzy approac. In Proceedings of The Second International Joint
Conference on Autonomous Agent and Multiagent Systems, pages 89–96, 2003.

3. R. Falcone and C. Castelfranchi. Social trust: A cognitive approach. In Trust and
Deception in Virtual Societies, pages 55–90. Kluwer Academic Publishers, 2001.

4. A. Glass and B. Grosz. Socially conscious decision-making. In Proceedings of the
Fourth International Conference on Autonomous Agents, pages 217–224, 2000.

5. P. J. Gmytrasiewicz and E. H. Durfee. Toward a theory of honesty and trust among
communicating autonomous agents. Group Decision and Negotiation, 2:237–258,
1993.

6. P. J. Gmytrasiewicz and E. H. Durfee. A rigorous, operational formalization of
recursive modeling. In Proceedings of the First International Conference on Multi-
Agent Systems, pages 125–132, 1995.

7. P. J. Gmytrasiewicz and E. H. Durfee. Rational coordination in multi-agent envi-
ronments. Autonomous Agents and Multi-Agent Systems, 3(4):319–350, 2000.

8. P. J. Gmytrasiewicz and E. H. Durfee. Rational communication in multi-agent
environments. Autonomous Agents and Multi-Agent Systems, 4:233–272, 2001.

9. N. Griffiths and M. Luck. Coalition formation through motivation and trust. In
Proceedings of The Second International Joint Conference on Autonomous Agent
and Multiagent Systems, pages 17–24, 2003.

10. http://dictionary.cambridge.org/. Cambridge dictionaries online.

11. http://www.webster.com/. Merriam-webster online.

12. K. M. Lam and H. F. Leung. An infinite belief hierarchy based on the recursive
modeling method. In Proceedings of Sixth Pacific Rim International Workshop on
Multi-Agents, pages 25–36, 2003.

13. S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, University
of Stirling, 1994.

14. L. Mui, A. Halberstadt, and M. Mohtashemi. Notions of reputation in multi-agent
systems: A review. In Proceedings of Autonomous Agents and Multi-Agent Systems,
2002.

15. L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt. Ratings in dis-
tributed systems: A bayesian approach. In Workshop on Information Technologies
and Systems, 2001.

16. L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of trust and
reputation. In Proceedings of 35th Hawaii International Conference on System
Science, 2002.

17. J. S. Rosenschein and M. R. Genesereth. Deals among rational agents. In Proceed-
ings of the Ninth International Joint Conference on Artificial Intelligence, pages
91–99, 1985.

A Trust/Honesty Model in Multiagent Semi-competitive Environments 147

18. J. C. Rubiera, J. M. M. Lopez, and J. D. Muro. A fuzzy model of reputation
in multi-agent systems. In Proceedings of the Fifth International Conference on
Autonomous Agents, pages 25–26, 2001.

19. J. Sabater and C. Sierra. Regret: A reputation model for gregarious societies. In
Proceedings of Fourth International Workshop on Deception, Fraud and Trust in
Agent Societies, 2001.

20. B. Yu and M. P. Singh. Towards a probabilistic model of distributed reputa-
tion management. In Proceedings of Fourth International Workshop on Deception,
Fraud and Trust in Agent Societies, pages 125–137, 2001.

21. B. Yu and M. P. Singh. Detecting deception in reputation management. In Pro-
ceedings of The Second International Joint Conference on Autonomous Agent and
Multiagent Systems, pages 73–80, 2003.

22. G. Zlotkin and J. S. Rosenschein. Negotiation and task sharing among autonomous
agents in cooperative domains. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pages 912–917, 1989.

23. G. Zlotkin and J. S. Rosenschein. Negotiation and conflict resolution in non-
cooperative domains. In Proceedings of the National Conference on Artificial In-
telligence, pages 100–105, 1990.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 148–161, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Image Annotation Guide Agent

Chen-Yu Lee, Von-Wun Soo, and Yi-Ting Fu

Department of Computer Science
National Tsing Hua University, HsinChu, 30043, Taiwan
{leoli,soo,mr916792}@cs.nthu.edu.tw

Abstract. The performance of retrieving an image in terms of text-type of que-
ries depends heavily on the quality of the annotated descriptive metadata that
describes the content of the images. However, the effective annotation of an
image can often be a laborious task that requires consistent domain knowledge.
Annotators may annotate features in the images that could not contribute much to
retrieval of the images. For effective annotation, an annotation guide agent
(AGA) is proposed to aid annotators. Basically AGA monitors the annotator’s
behaviors and based on the common sense induced from previous annotation
instances as well as the domain ontology suggests critical property that will yield
the most valuable information for image retrieval. We showed by experiments
that the critical property and common sense heuristics used by AGA to aid the
annotation of images could significantly lead to the improvement of the recall
and precision of image retrieval.

1 Introduction

Retrieving an image from a large set of images based on its content cannot be an easy
task. One way to reduce the task is to allow the image content to be described in ad-
vance in terms of natural language descriptive metadata so that a text-based retrieval
method can match the descriptive metadata with the text-based query to retrieve the
image with the described content. We call the process of associating the descriptive
metadata with an image as the image annotation process. However, since it is difficult
for machines to deal with natural language in the retrieval of images, we had estab-
lished a case-based learning framework for facilitating image retrieval based on domain
ontology and the annotated descriptive metadata of the images [1,2]. We had developed
techniques to automate the process of converting the natural language descriptive
metadata of an image into machine-readable format that conforms by the semantic web
RDF (resource description framework) standards. However, even with these tools, the
annotators can still have the difficulty of knowing how to efficiently annotate an image.
This is because, first of all, as “an image is worth more than a thousand words” that
there are so many details to say for an image. “What details should be annotated and
what should not?” can sometimes be a non-trivial decision. On the other hand, if all the
details of an image are to be annotated, it could become a tedious task if not an im-
possible one. On the other hand, when there are common descriptions shared by similar
images the annotators may have to go through the redundant annotation process by
simply complete the descriptive metadata one by one. Thirdly, when it comes to the
domain that an annotator is unfamiliar with, the annotator might accidentally annotate
with descriptive metadata that is inconsistent with the domain concepts or ontology.

An Image Annotation Guide Agent 149

Fourthly, when different annotators who possess different partial point of views of the
domain are annotating a set of images, they might annotate the images in terms of quite
different set of vocabularies that make coherent annotation of an image impossible and
consequently might jeopardize the image retrieval as well.

In order to process a huge amount of annotated images, the automatic semantic tag-
ging system that can convert the descriptive metadata into machine-readable format is a
necessary step for the annotated images to be retrieved easily by intelligent retrieval
agents. More specifically speaking, the annotator can annotate images with descriptive
metadata in natural language statements but the system can automatically convert them
into machine-readable format based on the domain ontology. Therefore, the intelligent
retrieval agents can share the same domain ontology with the annotator. However, if an
annotator has an incomplete or wrong knowledge and ontology, the annotation may
become a problem for intelligent retrieval agent to retrieve the correct image. The ideal
annotated image base for an image retrieval system is that every image is fully anno-
tated (complete annotation) with correct ontology; which means that all the relations in
the domain ontology that are associated with the image have to be completely ex-
pressed and specified. But this is a difficult goal to achieve in reality. Human annotators
without complete knowledge! Therefore how to make an annotation more precise and
complete without requiring a human annotator to completely specify and annotate all
possible relations in the image has become an important issue.

Due to the above reasons, we design of an annotator guide agent (AGA) who could
guide an annotator to decide what to annotate for an image in a more effective and
coherent manner. In section 2 we describe an overview of an automatic semantic
annotation system and its relation to AGA. In section 3, we describe the notion of
critical property that is used by AGA to guide annotation. In section 4, we describe the
experiments that were used to evaluate performance of image retrieval of the annota-
tion results guided by AGA. In section 5, we discuss and make conclusions.

2 Overview of Automatic Semantic Annotation Systems
for Image Retrieval

The semantic web [3-14] proposed a knowledge representation framework that enabled
the sharing of the domain knowledge on web in terms of XML-based (Extensible
Markup Language) ontology languages such as RDF/RDFS (Resource Description
Framework/Schema) and OWL [12-14]. The ontology languages provide a
well-defined set of relational terms that are essential for building domain concepts.
They also provide the semantic interoperability at different platforms that allow
knowledge exchange in machine-readable format. RDF/RDFS represents each seman-
tic relation as an information resource in terms of a triple of Subject, Predicate, and
Object.

In Figure 1, we showed an automatic image annotation and retrieval system that can
help to convert annotator’s natural language descriptive metadata of an image into
RDF/OWL format so that the image retrieval users can retrieve images in terms of
natural language queries. In our previous work [1,2,15] we have implemented a
case-based learning parser that can convert the natural language descriptive Meta data
as well as the retriever’s queries into RDF/OWL format so that the annotation and
retrieval can be shared with the same domain ontology. The image retrieval process can

150 Chen-Yu Lee, Von-Wun Soo, and Yi-Ting Fu

therefore be conducted by matching the user’s query descriptions with the image
descriptions at the structural and semantic level. However, since the performance of
retrieving an image in terms of text queries depends heavily on the quality of the
annotated descriptive metadata that describes the content of the images, we have pro-
posed in this paper an Annotation Guide Agent to ensure an image be annotated ef-
fectively and coherently.

Fig. 1. An automatic semantic annotation system for image retrieval

2.1 The Annotation Guide Agent

As mentioned above, an annotation process requires an annotator to describe image
content in natural language descriptive metadata and the AGA can convert it into OWL
instances with the aid of sharable thesauri and ontology. And we also mentioned that
images should be annotated in a complete and error-proof manner to ensure the per-
formance of image retrieval. But we can’t guarantee that annotators always have the
same complete knowledge with the system’s domain ontology or be patient enough to
annotate all the details in the image. Therefore, Annotation Guide Agent should help
human annotators to deal with the difficulties.

As in Figure 2, an Annotation Guide Agent (AGA) should keep track of the anno-
tation behaviors of annotators, infer domain common sense from previous annotation
instances, record and analyze the queries of image retrievers and prompt an annotator
with appropriate suggestions of annotation at an appropriate moment. AGA could
provide three possible aids: 1) request the value of a critical property to make images
distinguishable in retrieval, 2) provide a set of well-known property-value pairs based
on domain common sense to save annotator’s effort, and 3) detect and resolve the
possible conflicts or inconsistencies. Since the page is limited, the conflict resolution
tasks of AGA won’t be discussed in this paper.

An Image Annotation Guide Agent 151

Fig. 2. Annotation Guide Agent

3 The Notion of a Critical Property

In our system, it does not require an annotator to know or learn the system’s ontology
before annotation; this could reduce the burdens and restrictions of the annotator.
However, annotators without knowing the system’s ontology may end up with similar
annotations for different images. For example, a naive annotator may describe all the
terracotta soldier’s images in terms of only viewpoints of such as “material”, “func-
tionality”, and “gender”. In the terracotta soldier domain, the material, functionality
and gender of a terracotta soldier tend to be the same. The kind of annotation would not
be good from the point of view of image retrieval because the images cannot be dis-
tinguished from the retrieval point of view. Second, different annotators may annotate
the same image from different partial point-of-view, for example, an annotator may
annotate the terracotta soldier’s images from the viewpoint of “name”, “birthday”,
“Occupation”, and “gender”, yet another one could annotate from the viewpoint: of
“material”, “age”, and “functionality”. This makes the image retrieval difficult also,
namely, users interested in “occupation” of terracotta soldiers cannot retrieve the image
at all if it is simply annotated with “materials”, “age” and “functionality” viewpoints.
Since the natural language annotation descriptions have been converted by AGA into
RDF format, the descriptions of images are composed of many RDF relation triples.
The critical property is an attribute in the RDF triple in the ontology that makes the
annotation of an image more precise and easy for retrieval. We evaluate a property as a
critical property based on three factors: degree of scatter, common sense inducibility
and query effect that will be discussed as following sections.

3.1 The Degree of Scatter

The degree of scatter is a measure based on the annotator’s previous annotations. In
general, two sub-factors Multiplicity and Equalization are considered. Multiplicity is a

152 Chen-Yu Lee, Von-Wun Soo, and Yi-Ting Fu

property that possesses more different value types for a property, and Equalization is a
property whose values types tend to have the same probability of occurrences. A
property with above two sub-factors would be regarded as higher degree of scatter and
thus tends to be a critical property. For example, if an annotator annotates a human
image, an AGA may suggest the annotator to fill in the value of “hasOccupation” based
on pervious instances due to the reason that the property “Occupation” tends to have
more value types whose occurrences are equally probabilistically distributed. There-
fore we calculate the following formula to estimate the degree of scatter for each
property, the higher the expected number of values of a property, the lower the degree
of scatter.

Degree of scatter = Sum (Pi
2), i = 1 to n (1)

Where Pi denotes the occurrence probability of ith value type, and n denotes the number
of all different value types in this property.

Figure 3 shows a case of 30 annotated image instances and AGA had recognized that
the object under annotation was a “Person”. The ratio attached to each property value
represents the number of instances that the property has the corresponding value. For
example, the degree of scatter for property “hasSkinColor” (the third property from the
top in Figure 3) is estimated as 1(12) and for property “hasDuty” (the last property in
Figure 3) is estimated as 0.36 [(11/30)2+(2/30)2+(14/30)2+(1/30)2+(1/30)2+(1/30)2]. It
implies that “hasDuty” has a higher degree of scatter than “hasSkinColor”. (Note: The
lower the ratio the higher the degree of scatter).

Fig. 3. An example of the data-type properties for the class of a “person”

3.2 The Common Sense Inducibility

The common sense [16] inducibility of a property is a measure of how much chance the
property can make the annotation more complete. We estimate the common sense

An Image Annotation Guide Agent 153

inducibility of a property as the expected number of associated common sense relations
that can be inferred by the property. For example, the class “Person” in Figure 3 has
several associated properties. Supposed that “hasOccupation = General” can always
infer “hasGender=male” and “hasDuty = command” based on previous annotation
instances, then AGA estimates that “hasOccupation= General” can infer on average
two more common sense relations. The concept of common sense features is to reduce
the efforts that might be needed in annotating an image for a human annotator. If AGA
could automatically infer common sense, a human annotator does not need to describe
the trivial well-known facts, namely the domain common sense features, all the time.
The method to acquire the common sense features is to find those triples that are of the
same value in a particular class of objects based on their appearance frequencies. For
example, supposed that an annotator is annotating an image of a “general” and the
AGA had recorded many of its image annotation instances with the following annota-
tion information as: 1.This is a “person”, and the person’s occupation is a “General”.
According to the information, AGA may infer that the “gender” of a general should be
a “male” because almost all instances that are annotated as “generals” turned out to be a
“male” also.

A threshold is used to decide if a property-value pair is a common sense feature. If
the occurence frequency of a property-value pair in a triple exceeds a threshold, AGA
can infer the corresponding property as a common sense feature in the class of objects.
This leads to the method to decide a property-value pair as a common sense feature by
calculating the expected frequency of triples whose property-value pairs are the same
and check if it exceeds a threshold. We ignore those properties with null values.

<hasCategoryName,Person>
<hasSkinColor,Yellow>
<hasGender,Male>

Fig. 4. An interface of AGA that can assist an annotator to find the critical property and common
sense

154 Chen-Yu Lee, Von-Wun Soo, and Yi-Ting Fu

In Figure 4, we show an interface of AGA that assists an annotator to annotate an
image. AGA showed a subject “person” that the annotator was focusing and showed
probability distribution of different properties attached to the person as well as the
domain common sense. It shows that most persons have the skin color as “yellow” and
the gender as “male”. When the annotator hits the button “Find critical property”, AGA
would suggest the critical property as shown. However, the interface in Figure 4 is
suitable for the system development purpose only, not for the actual annotation usage.

Using default rules is another way to express domain common sense. But the human
experts need to first establish a set of default rules based on their own domain knowl-
edge. The advantages of using expert default rules are that it can yield nice performance
at the outset without any training data and it responds faster to user in comparison to
probabilistic or statistical estimation approaches. But it has several drawbacks too:

1) It requires domain experts to write down the default rules first.
2) The default rules cannot guarantee to cover all possible cases and are difficult to

adapt.
3) Extra space for the default rules and a parser are needed.

Therefore the statistical estimation approach was adopted in calculating the com-
monsense in this paper.

3.3 The Query Effect

Query effect of a property is estimated from user’s (image retriever) query. Because the
annotation process is usually independent of the user queries, the critical property
determined by degree of scatter and common sense inducibility does not take the user
query into consideration. For example, the image size (bits that an image is encoded) is
a very scattered property. But, generally a user would not use the query “I want to find
images whose sizes are one Megabits.” This means even a property that is scattered in
nature might not always lead to useful information for image retrieval. AGA records
the frequencies of properties used in the retrieval queries. AGA can guide annotators to
annotate by taking into consideration of the properties that are often queried by image
retrievers.

3.4 Normalization

In order to calculate the overall degree of criticality of a property, a normalization
process is proposed. The degree of scatter will fall into the range [0...1] because the
sum of all probability’s range is [0...1]. Common sense inducibility and query effect
can also be normalized by dividing themselves with the maximum amount so that
their values will range within [0...1] interval. Finally, AGA will get its reciprocal after
normalization (lower value is better than higher value).
So the degree of criticality of a property p can be calculated as

Degree of criticality (p) = degree of scatter (p) + common sense induciabilty (p)
+ Query effect (p)

An Image Annotation Guide Agent 155

4 Experimental Results

Two Experiments were conducted in this paper. The first one was to examine the
effectiveness of annotation using the critical property as the guide to annotate an image.
The second experiment was to evaluate the effectiveness of domain common sense as a
guide to annotate an image.

4.1 Experimental Design and Data Collection

We used the images and their metadata description texts from First Emperor of China
CD ROM [17] of Prof. Ching-Chih Chen and website of Museum of Qin Shihuang
Terracotta Warriors and Horses [18]. The domain ontology defines domain concepts
and schemas in terms of the objects and relations among the objects. The objects and
relations are described in terms of classes and properties. Currently there are 14 classes
and 129 properties for the whole terracotta soldier domain. 30 images of terracotta
soldiers including generals, officers, solider, and archers are collected as the training
cases for AGA. The descriptive metadata texts were converted into OWL instance
format by AGA using the domain ontology. The descriptive metadata are taken from
the domain ontology of terracotta soldier domain, which include the background in-
formation about a person (such as occupation, duty, and gender…etc.), the body de-
scriptions (such as dressing, equipments, direction, and gesture… etc), and the item
attribute descriptions (such as color, shape, material, and texture…etc.). The training
data of 30 images were annotated as complete as possible since we filled in all possible
property-value (feature) pairs that are applicable to each image. In Figure 5, a terracotta
general image with its OWL annotation is illustrated.

Fig. 5. An image of a terracotta general with its OWL format annotation

156 Chen-Yu Lee, Von-Wun Soo, and Yi-Ting Fu

4.2 Experiment 1

Six students were asked to annotate fifty images (all belong to the terracotta soldier
pictures). The annotators were allowed to use only six simple feature descriptions for
each image. The experiments were conducted in two groups: Group 1 (Normal) the
annotators annotated the image without the aid of AGA1, and Group 2 (AGA1), the last
feature annotation would be suggested by AGA. Namely, the AGA suggested a critical
property as the sixth feature after the annotator had given five feature annotations. Only
the sixth feature was suggested because AGA must base on the annotator’s behavior to
make suggestions. Then 20 user queries for the terracotta soldier image domain were
collected from five different users that were used as the test queries to retrieve the
images from the two groups of the fifty annotated images. We calculated and compared
the recall and precision of the image retrieval between the two groups based on the 20
test queries. The recall and precision results are shown in Figure 6 (recall) and 7 (pre-
cision) respectively, where the x-coordinate indicates queries and y-coordinate indi-
cates the recall and precision.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Querie ID

R
ec

al
l Normal

AGA1

Fig. 6. Recall of experiment 1: Normal vs AGA1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query ID

Pr
ec

is
io

n

Normal

AGA1

Fig. 7. Precision of experiment 1: Normal vs AGA1

The experimental results show that the average recall in the Normal group is 0.254
with an average precision of 0.613 while that in the AGA1 group is 0.359 with an
average precision of 0.767. The average recall and average precision are of 10.5 percent
and 15.4 percent difference respectively. Why did the group in AGA perform better
than the group in Normal? We analyzed the annotator’s annotated features and found

An Image Annotation Guide Agent 157

that most annotators described images in terms of the same properties (fewer properties
are used by annotators), and kept on using those properties to describe what they saw in
the images. So although sometimes some useful sixth feature of the original annotator
may be replaced by AGA and thus decreased the performance (as in the query #1 and
#11 in Figure 6), but more likely the useless sixth features will be replaced with ap-
propriate one (at query #12, #14, and #17 in Figure 7) that’s why AGA1 group out-
performed Normal group. Thus, we concluded that the annotation guided by AGA
could significantly improve the annotation performance in the sense of recall and
precision of image retrieval.

4.3 Experiment 2

By further evaluation of the performance of AGA using domain common sense heu-
ristic, we used the same experimental design as Experiment 1. But AGA used the
common sense heuristic as the basis to make annotation recommendation (where the
common sense threshold is chosen as 0.8). It would automatically augment the anno-
tation by recommending all possible property-value pairs implied by the domain
common sense based on AGA1’s sixth property. In this way, the number of prop-
erty-value pairs to be annotated would increase. As shown in Figure 8, in the case study
the average number of property-value pairs (common sense inferred) increased was
3.86 property-value pairs on average for each image.

0

1

2

3

4

5

6

7

8

1 5 9 13 17 21 25 29 33 37 41 45 49

Fig. 8. Increasing property-value set number of AGA with Domain common sense

We use the same set of 20 queries to calculate the recall and precision of image re-
trieval from the 50 images. These experimental results are shown in Figure 9 (recall)
and Figure 10 (precision), where AGA2 indicate AGA are using critical property as
well as augmented by the domain common sense.

The experimental results show that the average recall in AGA2 group was 0.516 and
the average precision was 0.965. Thus, we concluded that on the AGA2 group sig-
nificantly outperformed the Normal group by about 26.2 percent for recall and 35.2
percent for precision.

158 Chen-Yu Lee, Von-Wun Soo, and Yi-Ting Fu

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query ID

R
ec

al
l Normal

AGA1

AGA2

Fig. 9. Recall of experiment 2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query ID

P
re

ci
si

on

Normal

AGA1

AGA2

Fig. 10. Precision of experiment 2

5 Discussion and Conclusions

Figure 11, 12 and 13 show the annotation property distribution of fifty images in the
experiments, where the x-coordinate indicates the possible properties in ontology and
the y-coordinate indicates the indices of images annotated by the annotators, each dot in
the figures represents a case that the annotator annotated property x in image y, the
frequencies of annotation are indicated by the grey levels of the dots that vary from
black (many times) to white (zero time), and the horizontal lines in Figure 11 separate
different annotators.

Fig. 11. The property distribution of fifty images by six human annotators

An Image Annotation Guide Agent 159

Fig. 12. The property distribution of fifty images by six human annotators with the aid of AGA1

Fig. 13. The property distribution of fifty images by six human annotators with the aid of AGA2

In Figure 11, two phenomena were observed. Firstly, all annotators tended to an-
notate using similar properties as indicated by the black vertical lines. Secondly, an-
notators tended to use similar properties to describe different images. Figure 12 shows
the annotation property distribution of AGA1. It indicated that the phenomenon of
repeating annotation properties was decreased by the fact that the black lines became
lighter. The annotation properties tended to become more scattered by the fact that the
number of darker (black) spots were decreased. The second vertical line from the left
became the most critical property suggested by AGA1 because the property turned into
a solid line (e.g. most images were suggested to annotate with this property) in com-
parison to the sparse dots in Figure 11. Figure 13 shows the annotation property dis-
tribution of AGA2 (augmented with domain common sense). It indicated that gray
areas spread much wider because totally 193 property-value pairs were taken into
consideration.

Due to the possible discrepancy of the domain knowledge of image annotators and
image retrieval, the annotation results cannot always be effective from the point of view
of image retrieval. In designing an automated semantic annotation system for image
retrieval, we have realized that an annotation guide agent (AGA) is necessary to me-
diate in the loop to aid human annotator to describe the images in terms of more ef-
fective features so that the images could be much easier to retrieve later on. Our ex-
perimental results had justified our conjectures that using both critical property and
domain common sense heuristics could help annotators to annotate the image more
effectively. From Figure 11, 12, 13 and the experimental results reported in section 5,
we concluded that AGA tended to guide the annotator to annotate an image with more
discriminating and relevant properties that lead to a better performance of image re-
trieval.

160 Chen-Yu Lee, Von-Wun Soo, and Yi-Ting Fu

The Annotation and Retrieval Integration Agent (ARIA)[19] is a interface agent
proposed by MIT media Lab. ARIA system assists an annotator suggested all possible
annotations and common senses for an image and retrieve relevant images in the con-
text, but ARIA did not guide an annotator how to annotate, what to annotate and the
annotation tended to be personalized that can’t be shared in open web environment.
Instead, AGA analyzes the annotator’s behavior and can provide not only possible
common sense but also can guide the annotator to make better annotation that can be
shared by most of people based on their own domain ontology.

Although in the experiments, we had tentatively restricted the number of annotation
features to only six and allowed only the sixth feature to be modified or recommended
by the AGA. In practice, AGA could be invoked at any proper time.

In the performance evaluation experiments we did not include the query effect in the
guidance of suggesting the critical property, this is because in doing so it will bias the
evaluation on the test query we prepared. But if we allow AGA to use the query effect,
the performance should be more effective from the sense of image retrieval because the
AGA would recommend those properties that tend to be used for retrieval queries.
Also, in this paper, we did not show the actual performance of AGA in resolving the
conflicts. They should be invoked whenever the conflicts are detected. However, when
will be the most appropriate time to invoke AGA so that the annotation process of the
annotators will not become annoying will be the future work.

Acknowledgment

This research is supported in part by Taiwan Ministry of Education Program for Pro-
moting Academic Excellence of Universities under grant number 89-E-FA04-1-4.

The images and image illustration that we used in our experiment were authorized
by:

1. Ching-chih Chen, "The First Emperor of China", CD-ROM, Voyager, 1991[17],
and

2. Museum of Qin Shihhuang Terra-catta Warriors and Horses, Xi’an city, China [18].

The ontology we constructed is using the Protégé-2000 that developed by Stanford
Medical Informatics at the Stanford University School of Medicine [20].

References

1. Von-Wun Soo, Chen-Yu Lee, Chung-Cheng Li, Shu Lei Chen and Ching-chih Chen,
"Automated Semantic Annotation and Retrieval Based on Sharable Ontology and
Case-based Learning Techniques", in Proc. of ACM/IEEE International Joint Conference of
Digital Library, pp. 61 - 72, 2003.

2. Von-Wun Soo, Chen-Yu Lee, Chao-Chun Yeh and Ching-chih Chen, “Using Sharable On-
tology to Retrieve Historical Images”, in Proc. of ACM/IEEE International Joint Conference
of Digit al Library, pp.197-198, 2002.

3. James Hendler, Tim Berners-Lee, and Eric Miller, "Integrating Applications on the Semantic
Web," Journal of the Institute of Electrical Engineers of Japan, Vol 122(10), October, 2002,
pp. 676-680, http://www.w3.org/2001/sw/.

4. Stephen Cranefield, "Networked Knowledge Representation and Exchange using UML and
RDF", Journal of Digital Information, Vol.1, Issue 8, 2001.

An Image Annotation Guide Agent 161

5. Boris Motik and Vlado Glavinic, "Enabling Agent Architecture through an RDF Query and
Inference Engine", 10th Mediterranean Electro-technical Conference, MeleCon, 2000.

6. Steffen Staaba and Michael Erdmann, "An Extensible Approach for Modeling Ontologies in
RDF(S)", in Proc. of ECDL Workshop on the Semantic Web, pp.11-22, 2000.

7. Stefan Decker and Sergey Melnik, "The Semantic Web: The Roles of XML and RDF", IEEE
Internet Computing, Vol. 4(5), pp. 63-74, October 2000.

8. B. Amann and I. Fundulaki, “Integrating Ontologies and Thesauri to Build RDF Schemas”,
Third European Conference ECDL'99, Paris, France, Springer Verlag, pp. 234-253, Sep-
tember, 1999.

9. "Resource Description Framework (RDF) Model and Syntax Specification W3C Recom-
mendation 22, February, 1999", http://www.w3.org/RDF/.

10. Stefan Decker, Frank Van Harmelen and Jeen Broekstra, "The semantic Web - on the re-
spective Role of XML and RDF", http://www.ontoknowledge.org/.

11. "The DARPA Agent Markup Language Homepage", http://www.daml.org/.
12. Deborah L. McGuinness and Frank van Harmelen, "OWL Web Ontology Language Over-

view", W3C Candidate Recommendation 18 August 2003,
http://www.w3.org/TR/2003/CR-owl-features-20030818/.

13. Michael K. Smith, and Deborah McGuinness, "Web Ontology Language (OWL) Guide
Version 1.0", http://www.w3.org/TR/owl-guide/.

14. Peter F. Patel-Schneider, and Patrick Hayes, "Web Ontology Language (OWL) Abstract
Syntax and Semantics", http://www.w3.org/TR/owl-semantics/.

15. Yi-Jia Chen and Von-Wun Soo, "Ontology-based Information Gathering Agents", in Proc. of
Web Intelligence, pp.423-427, 2001.

16. Henry Lieberman ,“Common Sense Reasoning for Interactive Applications”, MIT Media
Lab Course - Fall 2002,
http://web.media.mit.edu/~lieber/Teaching/Common-Sense-Course-02/Common-Sense-Co
urse-Intro.html.

17. Ching-chih Chen, "The First Emperor of China", CD-ROM, Voyager, 1991.
18. The museum of Qin shihuang terra-cotta warrior and horses, http://www.bmy.com.cn/.
19. Aria, http://web.media.mit.edu/~lieber/Lieberary/Aria/Aria-Intro.html.
20. �������	
��	���	���	�������	http://protege.stanford.edu/.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 162–177, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Dedicated Approach
for Developing Agent Interaction Protocols

Ayodele Oluyomi and Leon Sterling

Department of Computer Science and Software Engineering
The University of Melbourne, 111 Barry Street, Carlton, Victoria 3053, Australia

{aoo,leon}@cs.mu.oz.au

Abstract. Much current research is focussed on developing agent interaction
protocols (AIPs) that will ensure seamless interaction amongst agents in multi
agent systems. The research covers areas such as desired properties of AIPs,
reasoning about interaction types, languages and tools for representing AIPs,
and implementing AIPs. However, there has been little work on defining the
structural make up of an agent interaction protocol, or defining dedicated ap-
proaches for developing agent interaction protocols from a clear problem defi-
nition to the final specification. This paper addresses these gaps. We present a
dedicated approach for developing agent interaction protocols. Our approach is
driven by an analysis of the application domain and our proposed structured
agent interaction protocol definition.

1 Introduction

Interaction is generally recognized as an important characteristic of multiagent sys-
tems (MAS) [1, 5]. A widely acceptable view conceptualizes an agent as an autono-
mous agent possessing the ability to interact with other agents to achieve its goals and
that of the multiagent system. Agent Interaction Protocols (AIPs) are used for manag-
ing and controlling the interactions in MAS [3].

There are two issues that are important in thinking about AIPs. The first one is that
an AIP within a MAS has its particular identity, that is, a component part of the MAS
that is present to serve the interaction needs of the agents while remaining separate
from the individual agents within the system. Secondly, interaction in a MAS is con-
text sensitive. The nature and structure of interaction, and therefore the structure and
properties of the AIPs that will achieve a specific interaction, are dependent on the
purpose and peculiarities of the domain of application of the MAS in which the spe-
cific interaction takes place.

Several Agent Oriented Software Engineering (AOSE) methodologies have been
and are still being developed [2, 1, 4]. However, a review of these AOSE methodolo-
gies reveals that most of them do not have a clear process for developing AIPs that
will be used in the MAS to be developed [1, 4].

The existing body of research work on AIP is largely focused on areas such as AIP
specification methods [18, 19]; analysis of interaction types e.g. negotiation, argu-
mentation, persuasion, etc and their underlying philosophies [12, 21, 6]; AIP concate-
nation and extension issues [22]; languages and tools for representing AIPs [7]; im-
plementing AIPs [13], and so on. In as much as they all have their significant
contributions to the agent world, they seem to be going in their individual directions

A Dedicated Approach for Developing Agent Interaction Protocols 163

with no convergence of these efforts and their results, because there is not much effort
yet in developing a dedicated approach to engineering AIPs.

Further, a good number of the existing AIPs have weaknesses. A common major
weakness is that AIPs do not have important properties such as termination and rule-
consistency, which may limit their suitability for their application [6]. It is also impor-
tant to note that different AIP properties or different combinations of these properties
are required for different domains of MAS applications.

Interaction in MAS is high level and significantly context sensitive when compared
with data communication protocols. The aspiration of the agent community is to make
these interactions as close as possible to human interactions. This conceptual view
and the aspiration therefore emphasize the context sensitivity of interagent interaction
and therefore the AIPs that will guide these interactions [2]. The contexts of the do-
main of MAS applications determine the structure and properties of AIPs necessary to
achieve effective and efficient interactions within the MAS. Issues such as time criti-
cality, safety criticality, concurrency, control hierarchy, goal diversity and so on are
domain dependent and these all influence the way and manner in which effective
interaction in such systems should occur.

Most of the MAS development methodologies that consider interaction identify the
interaction needs of the system and then implement an existing AIP. For instance, a
MAS that requires a Negotiation type interaction may implement the FIPA Contract
Net Protocol [8]. Although this suggests the software engineering concept of reuse, it
does not always achieve desired results due to the following possibilities: the AIP
chosen may be too generic for the intended application making it inefficient; the AIP
chosen may not be comprehensive enough for the intended application; the AIP cho-
sen may not have the desired properties such as safety, confidentiality, or timing con-
straints, to ensure rich context based interaction that are well suited for the intended
application. Also, it is well accepted that inadequately planned reuse is counter pro-
ductive.

To address these inadequacies, we propose a comprehensive and dedicated ap-
proach for developing AIPs with the aim of generating readily customizable and well
structured AIPs that will be appropriate for their domains of application. There are
two main drivers for this approach.

1. The first driver is the recognition of the impact of the peculiarities of individual
domains of application on the AIP being designed. Based on this recognition, a
comprehensive analysis of the domain of application of a MAS is necessary for
the development of appropriate AIPs.

2. The second driver is the need for a structure for AIPs. Apart from the concepts of
micro and macro protocols, nested protocols and concatenation of protocols, it is
necessary to appropriately conceptualize the definition of agent interaction proto-
cols. This will facilitate reusability as it will make it easy to customize a protocol
where there is a clear structure to its definition.

In this paper, we present a new dedicated approach for developing AIPs.
The remainder of this paper is organized in the following way. Section 2 discusses

the motivation for this work. The drivers for the proposed approach are presented in
section 3 with a description of the proposed structure for defining AIPs. Section 4
presents a description of the new approach for engineering AIPs. In Section 5, we
present an example of the use of our protocol structure in specifying the analysis of a

164 Ayodele Oluyomi and Leon Sterling

domain. Section 6 is a brief discussion of AIPs and the open problems surrounding
them. Section 7 concludes the paper.

2 Motivation

In principle, a MAS is a system of interacting agents. Regardless of the complexities
or sophistication or simplicity of the individual agents in any MAS, a common char-
acteristic of such systems is interaction amongst the different agents within the sys-
tem. According to [1], interaction is arguably the most important single characteristic
of complex software which constitute a MAS. According to [15], interaction is identi-
fied as an essential component of the dynamics of the MAS. The significance of inter-
action in MAS is expressed in fundamental attributes of a software agent. An agent in
a MAS that will be reactive and proactive in its sphere of operation, its environment,
will do so via interaction with the other agents. Interaction Protocols are the concrete
definition and means of implementation of the interactions in a MAS. Interaction
Protocols give context and direction to the interactions in a MAS. Interaction is a
driver of the overall behaviour of a MAS since an agent’s perception of its environ-
ment is modified by results of interactions, and these modifications influence the
agent’s decision process [6]. Therefore AIPs are crucial aspects of the development,
implementation and operation of the MAS.

AIPs are a somewhat different component of the MAS. Unlike the individual
agents which take up specific roles [16, 4], AIPs have no function without at least two
agents, and two agents cannot interact effectively without an AIP. Hence an AIP is
defined in the light of a minimum of two agents engaged in an interaction. So where
agents require attributes that will ensure the achievement of their goals, AIPs require
attributes that will ensure that two or more agents with similar or divergent goals
interact effectively in order to achieve their respective objectives. Examples of these
properties include rule consistency, rule simplicity, inclusiveness, architecture inde-
pendence, etc. These attributes define the identity of the AIPs and determine their
success in achieving interaction in the domain of application.

The significance and peculiarity of AIPs in MAS as described above, demands a
dedicated approach to the development of AIPs when building MAS. However many
(if not most) of the existing AOSE methodologies do not define specific processes for
developing AIPs [1, 6, 5]. Though there is doubtless a large body of research work in
the area of AIPs, to the best of our knowledge, very little work is focussed on defining
a dedicated process for the development of AIPs [5, 11, 3].

In consideration of the existing work on AIP development, we are of the view that:

1. AIPs resulting from a general approach may not be well suited to the particular
application for which they were intended.

2. Assumptions about the character of AIPs are implicit, and not separate from the
actual rules guiding the sequencing of the messages in the conversation [14].

3. A proper understanding of the essence of a protocol is lacking, for instance de-
scribing the same message structure only with different parameters as separate
protocols.

4. A proper understanding of a protocol structure is lacking, for instance, the differ-
ence between a protocol and a performative is unclear.

5. Reuse of existing AIPs is hard to achieve.

A Dedicated Approach for Developing Agent Interaction Protocols 165

The process of developing appropriate AIPs requires that the problem be well-
defined [10]. A problem should be carefully defined before design tasks are under-
taken. For the problem definition to be able to solve the problem appropriately, it
needs to be expressed in the light of the problem domain.

Our dedicated approach for developing AIPs is motivated by the fact that interac-
tion and therefore AIPs describe the peculiar characteristics and overall behaviour of
a domain of MAS application. The consideration is, negotiation in a business to busi-
ness transaction is different in some attributes from negotiation in a business to con-
sumer transaction. While one may be critical on time, for instance a business to busi-
ness transaction for raw materials required for production scheduling, the other may
not be. Another example is the difference in the cooperation that is required amongst
a set of agents assisting surgeons in a critical operation when compared to the coop-
eration among a set of telecommunications service provider agents in a bid to present
a common tariff regime to their customers. We see from these two examples that the
nature of the interaction reflects the peculiar characteristics of the domains. Hence,
the right applicability of MAS to these domains is dependent on how the interagent
interactions in the system are conceptualized and implemented. Also, these two ex-
amples also show that the differences in similar interaction types needed for different
domains could either be subtle, requiring certain attribute modifications or fundamen-
tal, impacting on the entire structure of the interaction.

This proposed AIP development approach is situated in the context of the
ROADMAP methodology [4, 9] for building MAS. This approach is an extension of
the Interaction model component of the methodology. However, it is being designed
with the concept of an AOSE feature [17] in mind such that it can be used for devel-
oping AIPs alongside other AOSE methodologies as well.

3 Structured AIP Definition

As expressed by the examples in the preceding section, we believe that understanding
the domain of application of a MAS, in order to determine its peculiar features, is
pivotal to the success of interaction in the MAS. Domain understanding should be the
primary driver for the AIP development process. A clear analysis of the domain of
application will provide the features of the AIPs required for interaction within the
system. These features will define the identity of the AIP during the design to ensure
adequate applicability and also, provide a proper basis for the verification of any AIP
specified for the system.

We highlight three conceptual issues informing our work on AIP. The first is de-
termining the component parts of a complete protocol. The second is how these com-
ponent parts are related to or dependent on one another in describing a complete pro-
tocol. The third is specifying the mandatory and optional components for a protocol to
be complete.

These issues relate to protocol definition, the secondary driver of our approach.
Protocol definition significantly impacts on how AIPs are designed and serves as a
basis for assessing the completeness of the protocol specified.

Our new structured definition states that an AIP is made up of two broad compo-
nents. These are the Protocol Structure and the Protocol Property Suite. Our work on
protocol structure is based on work on communication protocols [10]. However, we

166 Ayodele Oluyomi and Leon Sterling

present this in the concept of interagent interaction. We also show the way in which
the component parts of the protocol structure are connected to model a complete AIP,
see figure 1. The protocol property suite on the other hand, defines the collection of
the values of the properties of a particular protocol being specified. Our claim is that a
protocol changes to become another protocol by changes to its properties, as these
define the protocol’s structural component and therefore its function and identity.

Fig. 1. Agent Interaction Protocol Structure

3.1 AIP Structure

Purpose: the purpose component of the protocol structure is the most significant
component. It is the representation of the analysis of the interaction that the protocol
is being designed to implement. This component provides a basis for the specification
of the interaction model (specified in the Players component) in the light of the char-
acteristic features of the interaction domain. It is not just a description of the essence
of the AIP to be built, it is a structured specification that describes the interaction
behind the AIP. Hence, this component determines the kind and structure of the mes-
sages and the rules that will guide the exchange of these messages amongst the inter-
acting agents. The purpose specification also describes the properties of the protocol
and these influence the other components of the protocol structure. See Table 1 for the
definition of the elements of the Purpose component.

Players: the agents involved in the interaction are described as the players. This com-
ponent of the protocol structure documents the interacting agents and their roles
within the MAS. The relationships between these agents are also specified in this
component. These relationships include organizational hierarchies, buyer/seller, com-
petitor relationships and so on. Based on the relationships, restriction on interaction

A Dedicated Approach for Developing Agent Interaction Protocols 167

involvement to either any or specific instances of certain agent roles are specified in
this component as well as the part (initiator, participant or responder) to be played by
particular agents in the interaction. The players component also describes the interac-
tion mode i.e. bilateral or multilateral interaction. See Table 2 for the definition of the
elements of the Players component.

Performatives: this component is a listing of all the performatives that will be used in
the AIP and their meanings. It is important to clearly define the meaning of the per-
formatives in order to avoid misinterpretation by the interacting agents. Connections
between a performative and an agent or interaction part (initiator or responder) are
specified in this component, for instance, the specification that a performative is an
interaction initiating performative. Also, the number of times it is permitted to have a
performative in an interaction is specified in this component.

Message Structure: a message is defined by a performative, however, the structure of
each message in the interaction is a specification of the information that the message
will carry when it is sent. The different fields that each message should have and a
representation of information in each field are specified in this component of the pro-
tocol structure.

Message Exchange Rules: this component of the protocol structure defines the charac-
teristic behaviour of the interaction. This presents a specification of the different
guidelines that direct how messages are exchanged in order to efficiently and effec-
tively realize the interaction. The specification includes how an interaction should be
initiated, how the interaction should end, message exchange mode, timing constraints
between receiving and sending of messages, and so on.

Table 1. Elements of the Purpose component

Interaction: A statement of the interaction e.g. Stocks
Transaction

Related Sys-
tem Goal:

A statement of the system goal that requires
the interaction e.g. optimize investments

Domain of
application:

A specification of the domain stratification
e.g. Business-Stock Exchange-Stock Market

Domain type: A specification of the type of the domain e.g.
open, distributed, closed, real-time, etc

Interaction
objective:

A description of the essence of the interaction
within the system and in the context of the
domain

Interaction
type:

A specification of the type of interaction e.g.
negotiation, collaboration, competition, etc

System
Safety:

A statement of the impact of this interaction
on the physical safety of the system

Pre condi-
tions:

A specification of the system state necessary
to trigger the interaction e.g. presence of an
open order on the stock exchange

Post condi-
tions:

A specification of the expected system state
(or possible states) after a successful comple-
tion of the interaction e.g. the stock is pur-
chased

168 Ayodele Oluyomi and Leon Sterling

Table 2. Elements of the Players component

Interacting
agents:

A specification of the type of agents involved
in the interaction

Initiator: A specification of the agent that initiates
the interaction

Responder(s): A specification of the agent(s) allowed to
respond to the Initiator

Inter-agent
Relationships:

A description of the association between the
interacting agents e.g. Client/Server,
Buyer/Seller

Priviledges: A specification of the permission given to one
of the participants to change the rules of the
interaction

Number of
agents:

A specification of the number of agents to be
involved in the interaction if known(or range
i.e. Greater than two, if the number is not
known)

Diversity of
agents:

A description of the source of the agents in
the interaction i.e. Heterogeneous or Homoge-
neous agents

Distribution: A description of how the initiator(s) connect
with the responder(s) based on the number of
each category of agents interacting i.e. One-
to-Many, Many-to-One, Many-to-Many, etc

Accessibility: A specification of the initiator agent’s
awareness of the other participants and how to
contact each of them (addresses). There could
be Complete or Partial or No Accessibility

Inclusiveness: A specification whether the number of partici-
pating agents is fixed or variable at the
start of the interaction

The different components of the protocol structure are connected to one another, as
shown in figure 1, to show how one component influences the content of another one.
These connections reveal the part a component plays in specification of other compo-
nents. These connections present a relationship amongst the components and they
give a better conceptualization of the motivation for this proposed AIP definition.
This relationship provides a guide for the sort of information and specification that
should be stated in the different components.

The purpose component determines the content of the performatives, message
structure and message exchange rules components. The purpose of the interaction
dictates the number and type of performatives required to achieve such an interaction.
The message structure is affected by the purpose as some of the information to be
included or not included in the message structure will be determined by the purpose
of the interaction. For instance, a purchase interaction between a buyer and a seller
requires settlement details in one of the messages while an advertisement interaction
between a seller and potential buyer may or may not include only modes of payment
and not settlement details. The major determinant of the message exchange rules is
the purpose component since the purpose details what the interaction seeks to achieve,
how critical it is to the system, how quickly the interaction should happen, how it
should end, how it should handle errors in the interaction, and so on.

A Dedicated Approach for Developing Agent Interaction Protocols 169

The players specification influences the performatives and the message exchange
rules since some of the players may have overriding roles in the interaction, hence
considerations will be given to such roles where they exist, in defining the performa-
tives and the message exchange rules. Performatives affect message structure since a
performative gives meaning to a message. Also, message exchange rules in some
cases influence the message structure, an example is where a message exchange rule
states that ‘the interaction initiating message must state the purpose of the message’
(where this is not part of the performative’s semantic meaning), the structure for such
a message will therefore include a field for this information.

It is needful to specify these details explicitly because it helps in achieving uniform
protocol interpretation and also in appropriate interaction error handling. For instance,
if a responder is sending a cfp message, which has been declared in the performatives
component to be an initiator performative or if a performative that is defined to be
used only once is being used a second time within the same interaction, it indicates a
high likelihood of an error or an exception in the interaction being executed.

3.2 AIP Property Suite

The properties of a protocol are the features or attributes that define the protocol’s
identity. Each of these properties has more than one possible value. The set of values
of the properties applicable to an AIP make up the Protocol Property Suite, according
to our definition. As the interaction is analyzed in the context of the domain, the prop-
erties that are applicable to the protocol to be designed are identified. The values of
the identified properties make up the protocol property suite for this particular proto-
col. See Table 3 for a brief description of the properties.

We differentiate the protocol properties which are integral to our definition, from
the quality attributes that the protocol is expected to have in the larger context of the
MAS that the protocol is a part of. It is needful to separately represent the protocol
property suite because it makes it a lot easier to modify and upgrade a protocol and
also to make another protocol out of an existing one easily.

To illustrate some of the concepts we introduce here and the claim that two AIPs
with the same protocol structure will differ in function by their properties, we present
the following example:

Consider two AIPs PA and PB. They both have the same set of performatives ask,
tell and end with the message sequence in the order ask – tell – end (an example of a
subset of their protocol structure). A property timing sensitivity with values False for
PA and True for PB (the values False and True for property timing sensitivity represent
the protocol property suite) will differentiate the behaviour of the protocols by defin-
ing the following message exchange rules for the two protocols.

PA: An agent A that sends the message ask to another agent B does not send the mes-
sage end to close the interaction until it receives the message tell within a time inter-
val of 0 – 300 seconds, after which it may close the interaction with the message end.

PB: If an Agent A does not receive a message tell within a time interval of 0 – 5 sec-
onds after sending the message ask to an agent B, A should send the message ask to
another agent C. If A receives a tell message from either of B or C within 5 seconds
of sending to C, A closes both interactions by sending end messages to B and C, oth-
erwise it closes interaction with B alone.

170 Ayodele Oluyomi and Leon Sterling

Table 3. Elements of the Protocol Property Suite component

Timing con-
straint:

A description of the impact of time in achiev-
ing the interaction objective e.g. bid submis-
sion is deadline constrained

Security
concerns:

A specification of the impact of this interac-
tion on the security concerns of the system
(e.g. confidentiality of information exchanged)

Error sensi-
tivity:

A description of the sort of error (content and
control) that the interaction can cope with
e.g. high error sensitivity in air traffic con-
trol related interaction

Messaging
mode

A specification of the message sequencing mode
i.e. Asynchronous or Synchronous

Messaging
mechanism

A specification of method of sending messages
to the intended recipients i.e. broadcast, mul-
ticast

Interaction
mode

A specification of the number of agents that an
agent can simultaneously connect with for mes-
sage exchange i.e. Multilateral, Bilateral

Ontology A specification of the uniformity or otherwise
of the participating agents’ representation of
the real world

This is a clear instance of how the values of a property, will differentiate the func-
tions of two AIPs with the same structure. AIP PB represents a time critical system,
while PA represents a system that is not time critical. The essence of expressiveness is
evident by this illustration as the level of details in specifying the protocols will re-
duce ambiguity in the protocol interpretation.

Our protocol definition is conceptualized as follows. The Purpose and Players
specifications generate the Protocol Property Suite as well as the Performatives, Mes-
sage Exchange Rules and Message Structure. The protocol property suite is used to
define the Message Exchange Rules, the Performatives and the Message structure, see
Figure 2. This presents a clear relationship amongst the different aspects of our proto-
col definition and is useful in specifying an approach for protocol engineering.

Fig. 2. Relationship between Protocol Structure and Protocol Property Suite

A Dedicated Approach for Developing Agent Interaction Protocols 171

4 Our Dedicated Approach for Developing AIPs

In the preceding section, we presented the structured AIP definition, one of the drivers
for this approach. Here, we present a brief description of the new approach. Our ap-
proach to AIP engineering is a 2 phase model consisting of the domain-directed
analysis and the design/verification phases, see figure 3. This approach focuses on
analysis and design since an AIP can not be implemented outside of a MAS imple-
mentation. Also, it is our intention that this AIP development approach will be appli-
cable to different MAS development methodologies.

4.1 Domain-Directed Analysis Phase

The analysis phase of the AIP engineering process is divided into two stages. The first
stage is the actual analysis which is carried out in the context of the domain of appli-
cation. The characteristics of the domain are the basis for the analysis in order to draw
out the requirements of the AIP to be engineered. Identity is given to the protocol
developed and its appropriate applicability is assured when its requirements are ana-
lyzed in the context of the domain. Examples of domains of application of MAS tech-
nology include the smart home (a network of intelligent appliances), air traffic man-
agement, medical applications, internet based e-markets and so on. The domain-
directed analysis is carried out using the following process:

1. At the completion of the MAS requirements analysis, identify the system goals
that require more than one agent to achieve them.

2. For system goals that require more than one agent to fulfill them, define if the
agents need to interact with one another or with external sources in order to
achieve the goal.

3. For system goals that are achievable by only one agent, define if the agent requires
information or assistance (resources) from other sources in order to achieve the
goal.

4. Where interaction is identified to be necessary from steps 2 and 3 above, analyze
the goal and the domain of application in order to define the elements of the Pur-
pose component for each interaction required.

5. Identify the agents that are required for each interaction.
6. Analyze the goal, the domain of application and the agents involved in each inter-

action in order to define the elements of the Players component for each interac-
tion.

7. Using the Purpose and the Players component and analysis of the domain of appli-
cation, define the Protocol Property Suite.

The outcomes of this phase of the engineering process are the specifications of the
Purpose and Players components and the Protocol Property Suite of our protocol defi-
nition. These components present a detailed and structured representation of the
analysis in the context of the domain such that it can be effectively translated into
design with very minimal ambiguity.

The second stage in the analysis phase of our approach is the search for existing
AIPs. This is separately represented and emphasized to show our recognition of the
existing body of work on AIP specifications and to emphasize our consideration for
reuse. The specifications generated from the analysis are used as a basis to search for

172 Ayodele Oluyomi and Leon Sterling

an existing AIP that is most suited to the AIP to be developed. The outcome of the
directed search could be an existing AIP that suits the intended AIP, an existing AIP
that needs to be modified to suit the intended AIP or no existing AIP that is close to
the intended AIP, hence requiring design from scratch.

4.2 Design/Verification Phase

The design phase of our AIP development approach has two possible paths depending
on the outcome of the directed search in the analysis phase. Where a similar existing
AIP is found, the reuse path is taken. If no similar AIP is found, the develop path is
followed. Where an AIP that matches the intended AIP is found after the directed
search, the process proceeds to the Verification phase, Figure 3.

Fig. 3. Proposed AIP engineering process

Where the design follows the reuse path, the first stage in reuse is to determine if
the existing AIP can be modified to make it fit into the requirements of the intended
AIP. A major consideration at this stage is to assess the cost of modifying in terms of
time and effort, against that of developing the protocol from scratch. Some of the
things to consider in determining if an existing protocol can be readily modified in-
clude method of specification, understanding of the heuristics or logic behind the
design, complexity of the protocol, etc. If it is determined that this existing protocol
can be readily modified, the next stage along this design path is to customize the pro-
tocol using the specifications from the analysis phase.

A Dedicated Approach for Developing Agent Interaction Protocols 173

Where there is no existing AIP that matches the intended AIP, or the existing AIPs
are not customizable, the develop path is followed i.e. the intended AIP is designed
from scratch. The develop path of the design phase starts by defining the set of per-
formatives to be used by the AIP and their semantics using the specifications from the
analysis phase. Then the message exchange rules are defined and a model of the mes-
sage structure for each of the performatives is also defined. Subsequently, the proto-
col is graphically specified. Here, we propose the use of Scenario-Based Program-
ming (SBP) for graphically specifying the protocol. Scenario-Based Programming is
based on the formal language of Live Sequence Charts [20]. SBP representation of an
AIP creates expressive specifications of AIPs.

Verification of the AIP developed (specified or modified) and the unmodified ex-
isting AIP is the final stage of the design/verification phase of our AIP engineering
process. The verification process is dependent on the method used in specifying the
AIP. SBP has automated techniques for carrying out the verification of the accuracy
of the specified agent interaction protocols. The design/verification phase is iterative.
It is repeated until the verification proves that the protocol has been properly speci-
fied.

The relationship between our protocol definition and the protocol engineering
process is shown in figure 4. The analysis phase of the Process generates the three
Products Purpose and Players specifications and the Protocol Property Suite. The
design/verification phase generates the performatives, message structure and message
exchange rules.

Fig. 4. Relationship between Protocol definition and Protocol development process

5 Example

In this section, we illustrate the use of our protocol structure in describing the domain
analysis for developing an AIP. The AIP used for this illustration is the Provisional

174 Ayodele Oluyomi and Leon Sterling

Agreement Protocol (PAP) for Global Transportation Scheduling [23] developed for
interaction in military operations transportation scheduling. According to [23], a typi-
cal military transportation operation is to move large quantities of resources on a
global scale. As a result, a transportation operation may require the services of many
transportation organizations. Each of these transportation organizations is usually
only capable of moving a portion of the quantity of the resource through only a por-
tion of the distance to be covered. The domain is open and dynamic. Transportation
organizations enter and leave the system at will with the possibility of their capabili-
ties continually changing.

We present the specifications of the Purpose, Players and Protocol Property Suite
components of the PAP in the following tables, 4, 5, and 6:

Table 4. PAP Purpose component

Interaction: Transportation Scheduling
Related Sys-
tem Goal:

Plan Logistics

Domain of
application:

Military Operations – Transportation

Domain type: Decentralized, Open, Dynamic
Interaction
objective:

Efficient scheduling for transporting large
quantities of resources globally

Interaction
type:

Complex negotiations (allowing partial quantity
and route bids and backtracking)

System
Safety:

Interaction has no direct impact on the physi-
cal safety of the system

Pre condi-
tions:

A minimum quantity q of resources is to be
moved over a minimum distance d over a time t

Post condi-
tions:

A comprehensive schedule within time frame
A conclusion that task is not feasible within
time frame

Table 5. PAP Players component

Interacting agents: Manager Agents –
Military Organization
Transportation Agents –
Transportation Organizations

Initiator: Manager Agent
Responder(s): Transport Agents
Inter-agent
Relationships:

Client / Service Provider

Priviledges: None
Number of agents: Greater than two
Diversity of agents: Heterogeneous
Distribution: One-to-Many
Accessibility: Complete
Inclusiveness: Variable

6 Discussion

AIP is a peculiar kind of software as it serves as the software infrastructure for inter-
acting agents in a system that seeks to closely model real world interactions. The
behaviour of the real world system being modeled is represented and implemented by

A Dedicated Approach for Developing Agent Interaction Protocols 175

the AIP. AIPs are different from communication protocols as AIPs bring contextual
dimension into the interactions they implement instead of merely transporting data
packets with some convention. The context of an application domain is a fundamental
consideration in conceptualizing and developing AIPs. Therefore, a dedicated ap-
proach is required to develop well suited AIPs in a manner that makes them readily
reusable.

Most of the existing work on AIPs focus on either design or implementation with-
out a dedicated approach for developing AIPs. Also, the crucial aspect of application
domain analysis is not given the attention it demands. As a result, existing AIPs,
which may not necessarily be appropriate in modeling the particular system interac-
tions, are plugged into MAS development projects. Software quality attributes depend
on the context of the application domain. To achieve good software quality, dedicated
engineering approaches are required for the aspect of the software being developed
[17], in this case, AIPs.

7 Conclusions

This paper presents a new dedicated approach for developing agent interaction proto-
cols. This approach, which specifies the Analysis and Design/Verification phases of
the development process, is driven by the analysis of the characteristics/peculiarities
of the domain of application as they affect interaction. We also propose a new struc-
tured definition for agent interaction protocols as a second driver for the new ap-
proach. Our aim is to present a well defined and reusable process for the design and
development of AIPs based on an AIP structure that facilitates productive reusability.
This paper presents the description of the proposed protocol structure, establishing the
link between the components of the structure. Also, we present a brief description of
the approach in this paper. Work continues to further describe the process, procedures
and products of the approach.

References

1. Wooldridge, M. and Ciancarini, P. Agent-Oriented Software Engineering: The State of the
Art. In Agent-Oriented Software Engineering. Ciancarini, P. and Wooldridge, M. (eds),
Springer-Verlag Lecture Notes in AI Volume 1957, 2001.

2. S Bussman, N.R. Jennings, M. Wooldridge. Re-use of interaction protocols for agent-based
control applications 73-87 Electronic Edition (Springer Link). AOSE 2002, Bologna Italy.

Table 6. PAP Protocol Property Suite component

Timing constraint: Time sensitive. Bids are deadline driven
Security concerns: Low
Error sensitivity: High
Messaging mode Asynchronous
Messaging mechanism Broadcast
Interaction mode Multilateral
Ontology Uniform

176 Ayodele Oluyomi and Leon Sterling

3. J. L. Koning. Compiling a conversation policy’s Implementation from its validated specifi-
cation model. International Conference on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, USA, June 2000.

4. Juan, T., Pearce, A. and Sterling, L., ROADMAP: Extending the Gaia Methodology for
Complex Open Systems, Proceedings of the 1st Int. Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), p3-10, Bologna, Italy, July 2002.

5. M.-P. Huget and J.-L. Koning. Requirement analysis for interaction protocols. In V. Marik,
J. Mueller, and M. Pechoucek, editors, Proceedings of the Third Central and Eastern Euro-
pean Conference on Multi-Agents Systems (CEEMAS 2003), Prague, Czech Republic,
June 2003.

6. P. McBurney, S. Parsons, and M. Wooldridge. Desiderata for agent argumentation proto-
cols. In Proceedings of the First International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS-02), Bologna, Italy, July 2002.

7. S. Paurobally and R. Cunningham. Achieving common interaction protocols in open agent
environments, AAMAS, 2002.

8. FIPA Specification. Foundation for Intelligent and Physical Agents,
http://www.fipa.org/repository

9. Juan, T. and Sterling, L., A Meta-model for Intelligent Adaptive Multi-Agent Systems in
Open Environments (Poster), Proceedings of the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), Melbourne, Australia, July
2003.

10. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, November
1990.

11. J.L. Koning, M.P. Hugget, Interaction Protocol design: Application to an agent-based
teleteaching project. The Second IEEE International Conference on Cognitive Informatics
(ICCI'03). August, 2003

12. J.L. Koning. Designing and testing negotiation protocols for electronic commerce applica-
tions. 34-60 Electronic Edition (Springer LINK)

13. R. König: State-Based Modeling Method for Multiagent Conversation Protocols and Deci-
sion Activities. Agent Technologies, Infrastructures, Tools, and Applications for E-Services
2002: 151-166

14. M. Greaves, H. Holmback, and J. Bradshaw. What is a conversation policy? In F. Dignum
and M. Greaves, editors, Issues in Agent Communication, Lecture Notes in Artificial Intel-
ligence 1916, pages 118--131. Springer, Berlin, Germany, 2000

15. A. E F-Seghrouchni, S. Haddad, H. Mazouzi. A formal study of interactions in multi-agent
systems. In Proceedings of ISCA International Conference in Computer and their Applica-
tions (CATA `99), April 1999.

16. Wooldridge, M., Jennings, N. and Kinny, D. The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3 (3). 2000,
285-312.

17. Juan, T., Sterling, L., Martelli, M. and Mascardi, V.,Customizing AOSE Methodologies by
Reusing AOSE Features, Proc. 2nd Int. Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), Melbourne Australia, July, 2003, pp. 113-120.

18. S. Paurobally, R. Cunningham, and N. R. Jennings. Developing agent interaction protocols
using graphical and logical methodologies. In Workshop on Programming MAS, AAMAS,
2003.

19. J. Odell, H.V.D. Parunak, B. Bauer. Representing Agent Interaction Protocols in UML.
Agent-Oriented Software Engineering, P. Ciancarini and M. Wooldridge eds., Springer-
Verlag, Berlin (2001), 121--140.

20. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming using LSCs and
the Play-Engine. Springer-Verlag, 2003.

A Dedicated Approach for Developing Agent Interaction Protocols 177

21. C. Bartolini, C. Preist, N.R. Jennings. Architecting for reuse: a software framework for
automated negotiation. Proc. 3rd Int Workshop on Agent-Oriented Software Engineering,
Bologna, Italy, 87-98.

22. M.H. Nodine, A Unruh. Constructing robust conversation policies in dynamic agent com-
munities. Technical Report MCC-INSL-020-99, Microelectronics and Computer Technol-
ogy Corporation, 1999

23. Don Perugini, Dale Lambert, Leon Sterling, and Adrian Pearce. Provisional Agreement
Protocol for Global Transportation Scheduling. In Workshop on agents in traffic and trans-
portation held in conjunction with the International Conference on Autonomous Agents and
Multi Agent Systems (AAMAS), New York, 2004.

Introducing
Participative Personal Assistant Teams

in Negotiation Support Systems

Eric Platon and Shinichi Honiden

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda, Tokyo 101-8430, Japan
{platon,honiden}@nii.ac.jp

Abstract. This paper introduces teams of personal agents that support
users individually in electronic negotiations. These agents listen to the
running negotiation and to each other to point out relevant information
and compile advice for the user. In this frame, we first describe the
architecture of this system and propose assistance interaction protocols
to specify agent external behaviours in performing their tasks. Then, we
discuss the semantic representation of agent communication and describe
an abstraction layer to let agents understand user message issues. Our
future work aims at improving these mechanisms and enriching them
toward a full-fledged implementation.

1 Introduction

The last decade reveals a multiplication of software agents that organize our time,
advice in booking airplane tickets, perform auctions on our behalf, or maintain
business process [1–4]. In most systems, a central mechanism is the negotiation
between cooperative or conflicting agents that need ways to reach an agreement
in the fulfilment of their tasks. Most projects also have in common to assign a
single agent to each user and to concentrate on the challenging concept of dele-
gated negotiation in which agents autonomously act on behalf of their owners,
under customised constraints. The restriction to one agent is natural as users
need to deal with one entity at a time, but it seems also limiting when com-
paring standalone agents to multi-agent systems (MAS). We argue that teams
of specialised agents can ease both the understanding of the system behaviours
for the user and the engineering of smaller interactive software for the system
designer. Delegated negotiation is a very active discipline in multi-agent systems
[3, 5, 6], but we think potential users are still reluctant to delegate any power to
artificial agents in affairs concerning personal issues. Assistants that act with the
user should be more easily trusted, since they mainly suggest possibly relevant
information or anticipate user needs rather than negotiate automatically.

In this context, we introduce a personal assistance system (PAS) that fea-
tures assistant teams to participate to negotiation processes aside the user, rather
than on her behalf. This intermediate stance between manual mode (no support)
and delegated negotiation should steadily strengthen user trust in artificial as-
sistance, and probably lead to higher acceptance in delegation. Such PAS have

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 178–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Introducing Participative Personal Assistant Teams in Negotiation Support 179

already been partially explored with single assistants [2, 7], but we will describe
active teams that clarify the system reactions to the user, and permit flexible
management of the agent population in terms of available service (user point of
view) and software engineering (incremental population of more simple units).

The paper is organised as follows: we first situate and motivate our research
in the field of Negotiation Support Systems (NSS) in section 2. After presenting
our settings and assistant teams in section 3, we introduce in section 4 our
methodology describing team protocols and participative features that address
the system issues. In section 5, we detail work related to NSS and assistance,
and finally compile our current concerns and future work in section 6.

2 Negotiation Support and Participative Assistance

This section is first devoted to the description of our concept of PAS relative
to NSS and the motivations to propose another model for assisted negotiation.
Then, we highlight the issues we address in conducting this research.

2.1 Personal and Participative Assistance in Negotiation

Online negotiation becomes a standard so that NSS appear in numerous projects.
For most researchers, agent-mediated solutions represent appropriate models,
mainly for the challenging delegated negotiation. However, user reluctance stems
from the idea of transferring decision power to artificial agents, since delegation-
based software usually do not reach the ‘trust threshold’, as shown on Fig. 1.
We think this threshold is shifting and people will accept such a support in
the future, when solutions are robust enough to deaden most worries about
automated processes. The work of Klein et al. advances in this direction [8], and
steady introductions in the industry should encourage for acceptance.

Fig. 1. Our distribution of participation and delegation on the trust ladder.

Meanwhile, we suggest an intermediate stance to address this user reluc-
tance. PAS are NSS that negotiate aside rather than for users, so that it solves
intrinsically the delegation concern. We reuse the term and concept of partic-
ipation exploited by Drogoul in Agent-Oriented Simulation [9] to refer to our
type of negotiation assistance, where user and assistants are paired and bound
with the same aim. If this approach is accepted by users, we think it may reduce
the gap for eventually accepting delegated negotiation. Little work already ex-
ists [7], and the proposal we introduce should lead farther. Indeed, our vision of
assistant is strongly akin to human one. For example, a secretary initially exe-
cutes exactly chief’s orders, provides few valuable feedbacks, and has no power.

180 Eric Platon and Shinichi Honiden

After bilateral adaptation, the chief increasingly trusts the secretary and dele-
gates more power; the secretary learns about chief’s methods and can anticipate
some requests and give relevant information. Hence, some secretaries negotiate
efficiently the real business schedule of chiefs that trust them. Thus, PAS aim at
designing assistants that reply to user requests, and also take such meaningful
and understandable initiatives that can serve the user in its activity. The latter
functions include searching non-requested information related to the context,
suggesting alternatives, and so forth.

Second, NSS solutions are restricted to one single assistant. Standalone agents
can become fairly monolithic in this situation and cannot leverage the potential
of MAS. One central requirement from users to accept an artificial agent is to
sufficiently understand and predict its behaviours. In complex knowledge-based
systems, explanation facilities are exploited, but we think a team of simpler
agents can generate easier justifications of their actions, in addition to explain
their interactions. Moreover, the engineering of simple agents that cooperate
allows dividing design over specialised entities and their interaction patterns,
i.e. a multi-agent system.

Beyond the case of negotiation assistance, we finally see personal agent teams
as the future of user interfaces. Trends like ubiquitous computing show software
belongs to our private daily life through our mobile phones or PDA. One day
users might head a family of persistent agents that assist them in their digital
life. A specialised team like our proposal can lead to an appropriate foundation.

2.2 Research Issues

The purpose of this work is first to design adequate interaction protocols that
orchestrate agents to reply to user requests, and enact the initiative feature of
efficient assistants. These protocols must deal with both the assistance provided
by one single agent (e.g. simple smart search on Internet) and a group of cooper-
ative agents (e.g. the search agent initiates a search on its own to assist another
agent – itself assisting the user) to provide advanced services and straightforward
identification of actors by users.

Once protocols set up the required infrastructure, assistance needs represent-
ing and reasoning about events and their semantics. This provides an appropriate
knowledge of the current affairs and allows agents reacting accordingly. In addi-
tion to simply communicate directly as in most current MAS, we think agents
should be endowed with mechanisms to listen to others’ interactions. Indeed, the
recent concept in MAS named overhearing [10, 11] provides much more knowl-
edge resources that agents can exploit to improve their services.

Such mechanisms emphasize the issue of communicative act semantics with
assistants. Natural Language Processing (NLP) is a very active field, but free
communication with computers remains a technical challenge. Computer-based
assistants suffer from the poor meaning that we can currently embed in user
interfaces. An abstraction layer for communication should normalise the form
and semantics of messages input to the system, in a specialised and restricted
way of the Semantic Web [12]. Such an alternative could convey human- and

Introducing Participative Personal Assistant Teams in Negotiation Support 181

machine-understandable meaning among assistants and users. In our context, it
should be a compromise between simplicity to bypass most NLP challenges and
richness for our purpose of negotiation support.

Finally, our future view of daily life assistants requires flexibility for users
and software designers. One may want a dynamic population of communicative
agents to add or remove services, upgrade or customise heterogeneous compo-
nents. This is directly related to an incremental design approach that allows such
dynamism and also reduces the complexity of each piece of agent. This flexibility
at runtime represents one major reason to consider MAS. In the scope of this
paper, we describe PAS as a solution to address those above issues, the least
advanced state being the knowledge management part.

3 Assistant Team Model

3.1 Architecture

The central mechanism of our negotiation assistance model is the interaction
among agents and humans. Our infrastructure is laid out on Fig. 2 among three
negotiation participants, together with their assistant teams.

Conversely to most NSS (see Sect.5), agents do not substitute users but
participate to the overall process discussing, listening to exchanged messages,
and reacting for their owner’s sake. Rather than delegating the negotiation per-
formance to their agents, users act directly with other parties and keep full
control of their strategy. Assistants stay aside and intervene as necessary on

Electronic

Negotiation

Negotiation

Assistant

Team

Negotiation

Assistant

Team

Negotiation

Assistant

Team

Listen Listen

Listen

Negotiate Negotiate

Negotiate

Cooperate Cooperate

Cooperate

Electronic

Negotiation

Negotiation

Assistant

Team

Negotiation

Assistant

Team

Negotiation

Assistant

Team

Listen Listen

Listen

Negotiate Negotiate

Negotiate

Cooperate Cooperate

Cooperate

Fig. 2. Architecture view: online negotiation and assistant teams.

182 Eric Platon and Shinichi Honiden

user invocation or key event occurrence (detection of irregularities, discovery of
relevant information or even some comparison results with past events).

Each user is endowed with a team of assistants, i.e. a set of agents that
collaborate to provide support. Services first consist in individual activities of
each assistant (such as search, history, or strategy advice) that produce local
arguments for the system and perform tasks directly required by the user. Sec-
ond, the service features a system-level argumentation synthesising individual
grounds to deduce a global argument. The user can access both individual and
global information depending on the strategy (one may prefer peculiar types of
data) and the will to trust system conclusions. The main idea is to consider
this team as a board of advisors in a meeting room. All participants discuss the
agenda under ruling of the chairman, who is the user in our present case, and
they provide personal opinions to allow the chairman synthesising all viewpoints
to define the company’s strategy.

3.2 Illustrative Example

This section describes a negotiation assistant team through an example. Our
illustrative scenario is stated as follow: John in Australia and Takezo in Japan
have decided to meet in front of Victoria station, London on their common free
day and agree upon the details by email. The email client has an interface that
allows assistant teams performing their service. They both come by different
airports. The negotiated issue is to decide the meeting time.

The agent team that intervenes in this example features three different spe-
cialists:

– Presentation Agent manages the user interface (proxy), interprets user events
as communication acts, broadcasts events, and compiles global arguments.

– Search Agent can access the Internet to feed agent peers with fresh and
parsed information, and can initiate complementary search on its own.

– Strategic Agent computes information and events under the essential nego-
tiation point of view and breeds strategic arguments.

First, users negotiate along with their required Presentation Agent and one
single Search Agent. We then run the scenario once more, introducing a strategic
agent dynamically to the assistance population. The Presentation Agent plays
the unique role to bridge the actual communication between user and assistants,
albeit each agent virtually interacts with all peers and the user. When other
agents ‘talk’ to the user, they indeed talk to the Presentation Agent. This al-
lows treating all interactions similarly. Initial beliefs of our agents are stated in
Table 1.

The first run starts with this initial knowledge when John writes a proposal:

I will be at Heathrow at 8am, so let’s meet at lunch time. (1)

Before relaying the message to Takezo, the Presentation Agent (P) broad-
casts it in the system. The Search Assistant (SE) knows from its beliefs the
context of meeting organisation and switches to the schedule issue. Typically,

Introducing Participative Personal Assistant Teams in Negotiation Support 183

Table 1. Initial Agent Beliefs.

John’s Assistants Takezo’s Assistants

1. Internet time table search engine
2. In meeting issues, users usually need time table information
3. Meeting place: Victoria StationSearch Agent

4. User schedule (Heathrow 8am) 4’. User schedule (Gatwick 10am)

1. User intention to organise a meeting
2. Check inconsistencies in schedules (overlapping, etc.)
3. Meeting place: Victoria Station

Strategic Agent

4. User schedule (Heathrow 8am) 4’. User schedule (Gatwick 10am)

it autonomously checks online time tables for transportation means and times
along John’s itinerary. John can ask for all the results directly to this assistant
and require farther search. On its own initiative, SE can also inform John about
any relevant result it may find (strikes, track engineering, etc.). A timeout ends
the system deliberation if nothing occurs, then P can relay the message. At this
point, John’s assistants have no belief regarding Takezo for the meeting time
question.

When Takezo receives the message, the Presentation Agent listens to this
virtual discussion and broadcasts the incoming information. While Takezo is
considering the new elements, assistants update their beliefs, infer intermediate
results and verify the applicability. For instance, SE gets information to reach
Victoria station at noon and suggest its results automatically. Takezo can exploit
this behaviour and answer back to accept, deny or propose an alternative.

The second situation introduces a strategic agent in the assistant population.
This can be a new run of the above scenario or users can dynamically activate
the new service in the system. From the same first proposal sent by John, P and
SE have the same reaction. The Strategic Assistant (ST) infers from (1) that
John must be at Victoria station by noon, so it checks that John is free on this
period and can reach the meeting point on time. The former check is immediate
as the schedule is empty. For the second check, ST needs search support. It
forwards the verification request argument to SE and waits for its reply. John
can consult ST to check its trace of reasoning and perhaps find inconsistencies
in the offer (1). In the case where SE replies in a timely fashion (the timeout
managed by P ensures system reactivity for the user), ST completes its concern
verification and validates John’s idea as there is no apparent reason to fail, so
that P eventually sends the proposal.

On the side of Takezo, the same analysis is performed by P and SE. ST
also listens to the discussion and to SE, since the critical strategic point is the
schedule here. ST deduces from its beliefs and SE results that the schedule is a
little tight. Takezo can consult each agent trace or their compiled advice, and
can reply:

I am not sure to reach Victoria Station by noon. How about 1pm? (2)

Before relaying this message, assistants process it as stated for John and the
negotiation process continues.

184 Eric Platon and Shinichi Honiden

From this basic example, we intend to build a system that address general
negotiation situations including buying, organising time and solving conflicts. It
appears from the example that interactions between assistants imply part of the
system ‘intelligence’ and performance, while the incremental and dynamic agent
population serves both users and software engineers.

4 Protocols and Participation Methodology

In this section we first present our models of assistance protocols to orchestrate
the system. Then, interactions carry messages that specialise assistance in nego-
tiation, so we describe how agents participate by exploiting message semantics.

4.1 Interaction Protocols

The assistant team should behave as a coherent whole at the user level. Agents
in teams have the common goal to individually and collectively serve the owner
by local and global interventions that can be described by interaction proto-
cols. In our research, we aim at protocols that verify properties related to the
concept of participative personal assistance. First, protocols must depict inter-
actions representing both user services and cooperation among agents. This last
feature details how specialised agents build up arguments they cannot produce
independently, and consequently better serve the user while their actions remain
understandable and dynamic. Second, the agent population must be freely de-
cided by the user so that protocols should be as much as possible independent
from the number of actors (our proposal do not currently fulfil this point). Fi-
nally, protocols must enforce agent reactivity with time management. Indeed, the
agent debate is meaningful to the user only when available in a timely fashion.
For instance, we address this issue in our protocol by endowing the Presentation
Agent with a timeout. All system agents must submit their results on time, if
relevant. This constraint binds the reasoning cycles, so that users receive sup-
port on time at the cost of shallower performance. Although most simple agents
can complete their individual tasks on time, crossing and revising arguments can
be time-consuming. Time bounds mostly limit the revision depth. Experimen-
tal results to explore this claim are required and consist in part of our future
endeavours.

From these properties, we split interaction protocols into two connected parts.
First, the assistance diagram presented on Fig. 3 intends to formalise with the
FIPA syntax [13, 14] how assistants and users are situated. This first schema
refers to the second part that describes the assistant team diagram deployed on
Fig. 4 in the case of our example. It is the effective interaction protocol between
assistants. Messages exchanged in these diagrams do not follow exactly the FIPA
Communicative Acts recommendation [14]; we chose mnemonics instead of the
FIPA language for space and readability reasons. For example, ‘invoke’ message
refers to the ‘request’ in FIPA and could be defined as in Code 1.

Fig. 3 shows the Presentation Agent as user proxy, i.e. a relay interface with
other assistants. The user may invoke the system intentionally (Alternative 1;

Introducing Participative Personal Assistant Teams in Negotiation Support 185

Fig. 3. Assistance Protocol: the Presentation Agent is the user proxy.

e.g. consult the Search Agent), trigger its invocation by issuing an event (Alter-
native 1: send a message to other parties), or terminate the agent service (Al-
ternative 3). Furthermore, real assistants would take initiatives (inform about
sudden bad weather conditions, strikes, etc.) and this is modelled with Alter-
native 2 in the diagram. Invocation and agent initiative activate the external
protocol ‘Assistant Interaction Protocol’, partially laid out on Fig. 4.

Code 1. FIPA ‘request’ to formalise the message ‘invoke’.

(request

:sender (agent-identifier :name PresentationAgent)

:receiver (set (agent-identifier :name SearchAgent))

:content

‘‘(search list route A B)’’

:language lisp)

The FIPA recommendation reuses the gates from UML2.0 to connect two
diagrams. As the standard has no explicit representation of the gate, we present
it on Fig. 4 similarly to an agent and its lifeline as it can be confounded with the
Presentation Agent. Cases presented on this schema are limited to the ‘invoke’
and ‘terminate’ messages from P. In the global invocation process, agents act in

186 Eric Platon and Shinichi Honiden

Fig. 4. Assistant Interaction Protocol, Partial View limited to user invocation.

parallel, as described in our example scenario. If the invocation targets only one
agent, other agents listen to the event and only intervene in case they can infer
critical arguments.

When the user sends a message to another one (initial invocation on top
of Fig. 4), the Strategic Agent (ST) may ask for a search to the Search Agent
(SE), and wait for an answer before informing P about its results (possibly after
revision exploiting SE information). Otherwise, ST may already hold sufficient
results and directly contact P. Concurrently, SE can inform on its own initia-
tive ST about relevant events (strikes, etc.) and reports to P. The individual
invocations are limited here to reply to user’s requests. Extensions of our model
will allow the polled agent to send messages to peers in this case. Finally, the
termination case ends the assistant protocol and asks for shutdown.

The assistant diagram is designed to be a generic assistance model. Our cur-
rent status for the assistant team diagram is still idiosyncratic and our endeavour
is to deduce a generic protocol that still validates the previous properties, inde-
pendently of the agent population.

4.2 Assistance and Participation

Besides interaction protocols, our system requires semantic process to carry on
user assistance. The semantics is expressed at two levels, namely the interac-
tion patterns and the message content carried by these interactions. Although

Introducing Participative Personal Assistant Teams in Negotiation Support 187

our illustrative scenario was detailed with natural-language syntax for readabil-
ity, formal communication and argumentation are needed, such as the typical
illustrations by Parsons, Ramchurn [15, 16]. Implementation of these seman-
tics enables constructing automatically sound, pragmatic, and both user- and
machine-understandable arguments.

First, interaction patterns may carry meaningful information about the be-
haviour and intention of agents, such as cases where one can infer that running
interactions follow the contract net protocol or an intimidation process. Hence,
our agents should identify some recurrent or unusual patterns in the user-user,
user-agent, and agent-agent discussions. The method of Sabouret allows one
agent extracting knowledge from its interaction patterns with peers by compil-
ing and integrating relevant information in chronicles [17]. These time-dependent
internal representations contain summaries of interactions by grouping similar
events in behaviours. Regular and essential features of patterns are maintained
so that the agent can reason about them, react in accordance, and explain their
occurence. Agents can answer common sense questions such as ‘why do you turn
left?’ or ‘what is on the table?’. Our model will extend this method so that agents
are furthermore able to process knowledge from any multi-agent interaction pat-
terns they can listen or observe, say ‘overhear’, as in the simplest case depicted
on Fig. 5. The mechanisms rely on the assumption that listening agents receive
‘copies’ of interaction messages so that they can integrate them and intervene
when they consider it necessary and on time. The concept of assistant team is
here a foundamental requirement as these copies imply cooperative agents.

Discussion

Listen

Fig. 5. Listener Agent.

Hi John,

Sorry, I can’t be at the station on time.

How about 1pm?

Cheers,

Takezo

Negotiator

Negotiation

Object

Issue

Communicative

Act 1

Communicative

Act 2

Fig. 6. Semantic Mapping.

Second, the participation of agents to the user activity needs one more im-
portant brick at the interface level to exploit message content. From well-defined
semantic languages and ontology, one can build user-readable arguments auto-
matically. However, the converse action to understand user input is a stumbling
block. Our abstraction layer to address this issue aims at appropriate compro-
mise between expressive power and complexity alleviation by well-formed ar-
guments mapping. It is mostly based on a MAS version of the project in [18]
that exploits Natural Language packages. The Presentation Agent (P) filters all
messages issued and received by the user and builds up with her a temporary
ontology of the running negotiation. In the case of multiple negotiation threads,
the assistant selects the corresponding ontology by extracting case data from the
message (who, what, etc.). The ontology serves to write down standard FIPA-
ACL messages so that all agents can acquire the appropriate knowledge. This

188 Eric Platon and Shinichi Honiden

process starts with the negotiation initiation. The user sends or receives a natu-
ral language message from a peer negotiator. P parses this message and extracts
term candidates for the negotiation context (communicative acts, who, what,
issues, etc.) in the local ontology. These candidates are then validated by the
user so that P is sure the semantic mapping is correct. To reduce the inconve-
nience of this participative process, we think a proper presentation to the user is
required. Thus, the original message is shown to the user with highlighted term
candidates and semantic annotation. Figure 6 lays out this interface. The user
can click on incorrect mappings and specify the right ones. Once the agent un-
derstanding is ensured, P can compile its ontology for reuse with next messages
(learning stage), translate the message into ACL, forward the original message
to the recipient, and the ACL message to system agents. For a given process, P
is increasingly efficient as it learns the right semantics and requires fewer user
interruptions (like the secretary we introduced earlier). This method maintains
sufficient expressive power for our case and bypasses the language processing
barriers. It however lacks convenience for humans and need the definition of a
rough natural language parsing.

5 Related Work

This section comments work akin to assistance systems and current NSS tech-
nology in comparison with our assistant team.

5.1 Assistance Projects

The Helper Agent (HA) from Isbister et al. [19] has similarities with the model
we presented in this paper. In computer-supported communication, instant mes-
saging is very popular and HA aims at improving and motivating its usage to
better connect people. The main differences with PAS are that HA is standalone
middleware that communicates with all actors of the communication channel,
and is designed in the context of friendly relationship between actors. Our assis-
tants form a personal multi-agent system that supports only one user, and will
interact with outside agents in the future. So there is no assumption about the
relationship between human users. Our example with John and Takezo would
be similar if they are friends, client/provider, or competitors (the process would
certainly end with different results).

The main common point between HA and our assistants is the behaviour
extraction issue. HA reacts to silence detection and when the communication
channel is idle for a too long time, HA contacts both users to figure out a new
topic of discussion, if desired. Our assistants listen to all messages transferred
to the system to extract as much information as possible, then to revise their
beliefs and possibly react.

Another project is from Helmy et al. [20] about their Kodama agents assisting
web search. Kodamas form an assistant team, specialised in retrieving informa-
tion on Internet. Their collaboration and underlying interactions allow certain

Introducing Participative Personal Assistant Teams in Negotiation Support 189

information retrieval performance and a flexible load distribution. The main dif-
ference with our project is most Kodamas serve different users simultaneously as
local infrastructure. Also, Kodamas do not provide explicit explanation facilities
so that users have no insight of the system mechanisms. They mainly exploit the
user browsing history and the static profile to refine their search.

5.2 Negotiation Support Systems

Much recent work relies on agents that negotiate on behalf of human users.
The typical protocol collects information from the user, performs the negotia-
tion, confirms results with the user, and eventually commits the transaction [5].
These systems often improve time- and cost-efficiency in any kind of negotiation
[1, 5], so that successful simple industrial versions were derived as EBayTM [21].
The reason of this simplification is that most users lack faith in most types
of automation that reduce their feeling of control. Consequently, users are of-
ten reluctant to the idea of letting artificial agents negotiate for real personal
affairs and prefer self-performance with possible assistance as our proposal. In
the commerce-centric NSS domain, Kasbah, AuctionBot and MAGMA are three
reference architectures. Other solutions feature either similar functions or less
expressive properties, so we focused only on these three ones. In addition, we
discuss the particular case of ASPIRE as it has a similar stance as ours in NSS.

To begin, Kasbah is the first attempt to design an agent-mediated negoti-
ation platform [6]. Buying and selling users send their negotiation agents with
constraints. Agents negotiate by following a decay function (defining the ’strat-
egy’ of the agent depending on the function profile). This first platform was
innovative but suffers from its early model. Agents just follow a function, and
although they can autonomously complete negotiations, their lack of reactivity
limits the range of application and we cannot really trust them. The work of
Klein at al in [8] shows the drawbacks of that type of framework in terms of
robustness and reliability.

AuctionBot is a client-server architecture that was used to organise online
auctions between anyone endowed with a web-browser [3]. In this platform, buy-
ers and sellers participate to auctions either with simple agents (idea of a proxy)
that just inform owners about the state of their auctions (no autonomy), or ex-
ploit their self-developed agents based on the AuctionBot API to negotiate on
their behalf. Users can join or create auctions, and choose the type among the
most frequents. Although very flexible and comprehensive auction performer,
this platform suffers from the same drawbacks as Kasbah. However, the strict
auction protocols often allow enforcing the rules. As stated in [22], one impor-
tant feature of the AuctionBot is its neutral stance toward sellers and buyers.
This third-party ensures strict compliance to the auction protocol and so breeds
higher trust in that kind of automated negotiation.

MAGMA represents one attempt to implement the marketplace metaphor
in computing environments for the future electronic commerce world [5]. The
framework aims at comprehensive models of actors and entities of marketplaces
and so relies on multi-agent systems. Built on the experience acquired from the

190 Eric Platon and Shinichi Honiden

previous Kasbah and AuctionBot platforms, MAGMA embodies agents that ne-
gotiate for users and a complete environment including banks, balanced commu-
nication infrastructure (no central ‘hub’), advertising, and software representa-
tion of physical goods to ensure coherence with real products and prevent from
defrauding. The negotiation process exploited for this experiment is only the
Vickrey auction, described in detail in their paper. The realistic virtual market
goal lets perform direct negotiations, but the main focus is on agent-brokered
processes that act similarly to the AuctionBot. The comprehensive set of features
implemented by MAGMA clarifies the concept of electronic automated negoti-
ations. The experimental restriction actually ensures higher degree of trust in
the agent reactions owing to the strict auction rules, and perhaps because the
Vickrey protocol best practice to maximise one’s utility is ‘to be honest’. This
project shows trust can be achieved by clear rule enforcement in a dedicated
electronic institution. However, such infrastructures is still in the long term and
the participative assistance can be an alternative meanwhile.

Finally, ASPIRE turns delegated negotiation into collaborative negotia-
tion [7]. This collaboration seems matching better the idea of assistant that pro-
vides support or aid (inspired from Merriam-Webster online dictionary) rather
than the ‘proxy’ represented by the delegated negotiation agent. Thus, ASPIRE
provides an asynchronous negotiation platform enabling two parties negotiat-
ing any goods by exchanging messages and negotiation field values (price, etc.).
Personal assistants intervene for instance when a user submits a message. Be-
fore letting the system relaying the message to the opponent, the agent detects
some inconsistencies or unusual negotiation behaviours such as an over- or under-
evaluated offer compared to the previous one. The agent features other functions
that allow correcting potential strategic errors. ASPIRE is in the direction of
our work and shows promising results along practical experiments conducted in
simulations. However, we think the engineering of ASPIRE may be a limiting
factor. The project intends to extend the personal assistant abilities to larger
‘communication channels’ (multimodal) with the owner but also other agents.
Our multi-agent framework encompasses inherently these functions with assis-
tant teams that intrinsically interact with both human, team members, and soon
other agents. Furthermore, it covers more issues including user service, explana-
tion facilities and other engineering concerns.

6 Conclusion

In this paper, we presented a team of personal agents that supports one user in
electronic negotiations. The agent team replies to user request and also takes ini-
tiatives as would do efficient assistants. The latter functions rely on the principle
of listening to user interactions with the outer world, by means of the recent con-
cept of overhearing. Teams offer the advantage to diversify functions of agents,
exploit the intelligence emerging from their interactions, and engineer incremen-
tally the agent population, i.e. extend and modify available services. Through
an example, we laid out our current status in describing the key mechanisms in
the interaction protocols of these MAS.

Introducing Participative Personal Assistant Teams in Negotiation Support 191

As stated along this paper, the present model of our assistant teams for
negotiation support is an original platform compared with both NSS systems
and with assistance solutions. We identified the central endeavours as the study
of interactions, knowledge representation and extraction from these interactions
and the consequent reasoning issues.

Our ongoing work first addresses the development of a generic assistant in-
teraction protocol verifying the properties introduced in section 4. Second, the
example presented in this paper featured three agents. We are investigating
which services are pertinent in the negotiation process to answer user needs.
Thus, we intend to integrate for example a history agent as negotiation requires
knowledge of the past to both avoid reproducing errors and adapt to new situ-
ations [23]. Also, the abstraction layer we proposed in this paper to let agents
understand the semantics of natural language messages from users suffers from
its interfering process. We aim at a more transparent mechanism that would
interrupt the user only on critical dilemma and to base parsing on pre-defined
negotiation ontology. Finally, agents cooperate with each other and the user in
our present model. Next, they will be authorised to compete with other systems
on issues the owner considers secondary and releasable to agents, thus bridging
participative and delegated negotiation techniques.

Acknowledgement

We would like to thank Nicolas Sabouret for our fruitful discussions on this
research, the anonymous members of the PRIMA’04 program commitee that
reviewed this paper, and the editors and authors of this volume for their advice.

References

1. Chalupsky, H.; Gil, Y.; Knoblock, C.A.; Lerman, K.; Oh, J.; Pynadath, D.V.; Russ,
T.A.; Tambe, M.: ‘Electric Elves: Applying Agent Technologies to Support Human
Organisations’, 13th IAAI Conference, pp.51-58, 2001.

2. Rich, C.; Sidner, C.: ‘COLLAGEN: When Agents Collaborate With People’, First
International Conference on Autonomous Agents, 1997.

3. Wurman, P.R.; Wellman, M.P.; Walsh, W.E.: ‘The Michigan Internet AuctionBot:
A Configurable Auction Server for Human and Software Agents’, Second Interna-
tional Conference on Autonomous Agents, 1998.

4. Alty, J. L.; Griffiths, D.; Jennings, N. R.; Mamdani, E. H.; Struthers, A. and
Wiegand, M. E.: ‘ADEPT - Advanced Decision Environment for Process Tasks:
Overview and Architecture’, BCS Expert Systems 94 Conference, pp.359-371, 1994.

5. Tsvetovatyy, M.; Gini, M.; Mobasher, B.; Wieckowski, Z.: ‘MAGMA: An Agent-
Based Virtual Market for Electronic Commerce’, Journal of Applied Artificial In-
telligence, Vol. 11, No6, pp.501-523, 1997.

6. Chavez, A.; Maes, P.: ‘Kasbah: An Agent Marketplace for Buying and Selling
Goods’, First International Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, 1996.

7. Kersten, G.; Koszegi, S.T.; Vetschera, R.: ‘The Effects of Culture in Anonymous
Negotiations: Experiments in Four Countries’, 35th HICSS, 2002.

192 Eric Platon and Shinichi Honiden

8. Klein, M.; Faratin, P.; Sayama, H.; Bar-Yam, Y.: ‘Protocols for Negotiating Com-
plex Contracts’, IEEE Intelligent Systems, pp.32-38, Nov./Dec. 2003.

9. Drogoul, A.; Vanbergue, D.; Meurisse, T.: ‘Multi-Agent Based Simulation: Where
are the Agents?’, MABS02 Workshop, AAMAS’02 Conference, 2002.

10. Busetta, P., Donà, A., Nori, M.:‘Channeled Multicast for Group Communications’,
First International Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS’02 Conference, 2002.

11. Gutnik, G. and Kaminka, G.: ‘Towards a Formal Approach to Overhearing: Algo-
rithms for Conversation Identification’, AAMAS’04 Conference, 2004.

12. World-Wide Web Consortium: The Semantic Web: http://www.w3.org/2001/sw/
13. FIPA Specifications: FIPA Modelling: Interaction Diagrams, Working Draft, 2002.
14. FIPA Specifications: FIPA Communicative Act Library Specification, 2002.
15. Parsons, S. and Jennings, N.R.: ‘Negotiation through argumentation - a prelimi-

nary report’, Second International Conference on Multi-Agent Systems, 1996.
16. Ramchurn, S.D.; Jennings, N.R.; Sierra, C.: ‘Persuasive Negotiation for Au-

tonomous Agents: A Rhetorical Approach’, IJCAI Workshop on Computational
Models of Natural Argument, 2003.

17. Sabouret, N.: ‘Representing, requesting and reasoning about actions for active
components in human-computer interaction’, LIMSI-CNRS, Report 2002-09, 2002.

18. Vargas-Vera, M.; Motta, E.; Domingue, J.; Buckingham Shum, S; Lanzoni, M.:
‘Knowledge Extraction by using Ontology-based Annotation Tool’, ACM, 2000.

19. Isbister, K.; Nakanishi, H.; Ishida, T.; Nass, C.: ‘Helper Agent: Designing an As-
sistant for Human-Human Interaction in a Virtual Meeting Space’, CHI’00, 2000.

20. Helmy, T.: Amamiya, S.; Amamiya, M.: ‘Collaborative Kodama Agents with Au-
tomated Learning and Adapting for Personalised Web Searching’, 13th IAAI Con-
ference, pp.65-72, 2001.

21. EbayTM Web site: http://www.ebay.com
22. Han, B.; Lim, J.: ‘Influence of Culture and Explanation Facility on Performance

of Negotiation Agents’, 35th HICSS, 2002.
23. Tzu, S.: ‘The Art of War’, Oxford Press, June 1971.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 193–205, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Distributed Workflow System
with Autonomous Components

Maryam Purvis, Martin Purvis, Azhar Haidar, and Bastin Tony Roy Savarimuthu

Information Science Department, University of Otago, Dunedin, New Zealand
{tehrany,mpurvis,tonyr}@infoscience.otago.ac.nz

Abstract. This paper describes the architecture of a distributed workflow man-
agement system in a dynamic environment. The system features autonomous
agent components that can adapt to both structural changes in business proc-
esses and changes in system parameters, such as the number of available re-
sources. This adaptation could be a permanent adjustment that should be re-
flected in all the incoming work cases, or be associated with a particular
instance of a work case. In addition, parts of the system can be modified by ob-
serving the behaviour of the system for possible shortcomings due to a non-
optimal distribution of resources or faulty inter-process dependencies which
could result in bottlenecks. Because of the autonomous nature of subsystem
components, the workflow system can adapt to changes without the necessity of
centralized control. The architecture of the system is described in the context of
a distributed workflow example.

Keywords: dynamic workflow, autonomous components, interaction protocols,
coloured Petri nets, adaptability

1 Introduction

Workflow management systems (WfMS) [1-3] are increasingly being used to manage
business processes associated with distributed global enterprises. Some of the benefits
of using a WfMS are

• ability to visualize the overall process and interdependencies between various
tasks,

• automation of the processes, and
• coordination and collaboration between various business entities.

Traditionally, however, most WfMSs have had centralized control architectures
along with fixed process model specifications. The current research trend is in the
direction of (a) more distributed architectures which can reduce potential bottlenecks
with respect to particular system components and (b) more flexible process model
specifications, which can accommodate dynamic and changing requirements that
occur in today’s business environment [4,5].

It is often desirable to have the capability of modifying the existing process model
due to changing external influences or of dealing with exceptional cases in which the
normal processes may not be appropriate. In the past WfMSs were used in well-
defined activities, such as manufacturing, where the processes tend to be more estab-
lished and stable. But in the current climate WfMS may be used in connection with
more fluid business processes, such as e-commerce, or in more complicated processes

194 Maryam Purvis et al.

involving human interactions, such as the software development process. In such
situations, at times, it is not always possible to predict in advance all parameters that
may be important for the overall processes. In addition, it is often appropriate for
certain groups within a distributed organisation to be autonomous and not always
under centralized control. Consequently it would be helpful if we could design WfMS
systems that could cope with these dynamic requirements and provide some level of
process modification. It is important to make the workflow system dynamic and
adaptable, since workflows of multi national companies span across countries. For
example the main workflow might be present in New Zealand and the sub processes
could be distributed in countries like India and Germany.

One of the benefits of using a WfMS is to be able to streamline processes associ-
ated with an organization and be able to visualize some of the interdependencies be-
tween various tasks or various processes in a larger context. It is desirable to represent
these processes in a formal way that could be used for further analysis and at the same
time have a graphical and intuitive representation. The coloured Petri net (CPN) nota-
tion [6] meets this requirement. In the past, the CPN formalism has been used suc-
cessfully to model the dynamic behaviour associated with particular processes repre-
senting various activities of a complex system, such as business processes. In the
context of the WfMS, CPNs have been used to specify the process model of a WfMS
component [2,7], and CPNs have been used to model processes generally, since they
offer a well-established modelling technique that combines expressiveness, simplicity
and formal semantics. However, in the present work we are extending this idea so that
the various sub-processes associated with a large enterprise could be distributed on
different hosts, while at the same time being interconnected with one another accord-
ing to the overall process model associated with a given organization.

An advantage of having a formal representation that is executable is that one can
examine the behaviour of the system according to various what-if scenarios that may
be considered as a result of potential changes to the process or some of the model
parameters such as the various constraints that might affect the outcome. By simulat-
ing the model for typical scenarios, it is possible to analyse the outcome of the simu-
lation and fine-tune the specified resources or constraints so that more favourable
results can be achieved; and this is also possible with coloured Petri nets.

2 Architecture of the System

To accommodate this level of adaptability, the system should be flexible and made of
loosely coupled modules. Our workflow system uses JFern [8], a Java-based tool for
the enactment and simulation of coloured Petri nets. We are also using the Opal agent
framework [9], which conforms to the Foundation for Intelligent Physical Agents
(FIPA) specifications [10] and which provides an agent-based infrastructure for the
support of distributed, adaptable computing.

The system architecture (shown in Figure 1) is based on a framework that was de-
veloped by the NZDIS research group [11]. In this framework various agents are
responsible for performing their tasks by executing a model of their activity specified
with Petri nets. The open and dynamic nature of the agents facilitate the incorporation
of adaptable process models. Each model is associated with a sub-process associated
with the overall workflow.

A Distributed Workflow System with Autonomous Components 195

Fig. 1. Architecture of the agent system.

Each agent runs an instance of JFern for Petri net protocol enactment. The agents
interact by sending messages to other agents as specified in their protocol model.
When an agent receives a message, the appropriate information is deposited in an In
place in its Petri net, and this may enable transitions to be fired that are associated
with the protocol model. Similarly any message going to another agent is deposited in
the Out place. All these nodes are fused with the out place of the process manager.
The process manager dispatches the messages to the appropriate agents as specified in
the message content.

An agent can receive a proposal for a new or modified interaction protocol, associ-
ated with its participation in the overall workflow, from another agent by means of a
FIPA-specified propose message. The content of this message contains the proposed
interaction protocol encoded in XML format. The interaction protocol actually com-
prises a coloured Petri net and the associated ontology, which describes the terms
used in the model and their relationships. The ontology is represented in UML, and
both the Petri net and the UML-encoded ontology information are encoded in XML
and sent together as the overall interaction protocol. Because the agents are autono-

196 Maryam Purvis et al.

mous, they may not agree to the new proposed protocol and may inform the proposing
agent of their refusal to agree. Under certain circumstances, such as in loosely-
organised confederations of service providers that are distributed across the Internet,
this option of refusing the newly proposed protocol may be appropriate. The system
architecture described here provides support for this kind of semi-autonomous work-
flow structure.

The agent-based architecture also supports the notion of incorporating new agents
appearing on the scene (joining the agent group) and offering new services on the fly.
These new agents will be informed on arrival of current interaction protocols for the
group by means of the same propose message mentioned above.

The governance of the interaction protocols is handled by one or more ‘manager’
agents, which maintain a model repository. At the present stage of technology, such
manager agents are expected to be interfaces to human managers. Thus if it is deter-
mined during the middle of workflow execution that a new model is required, the
manager or workflow designer would have the opportunity to create a new model and
register it with the ‘manager’ agent’s model repository which can then be distributed
to the appropriate agent that may require an alternative protocol.

A separate workflow designer component can exist on different hosts. The work-
flow administrator of a branch of an organisation can design the process associated
with that particular office and send the model and the associated work cases to a spe-
cific agent.

The system architecture comprises several components including the workflow en-
gine, workflow modeller, and various services such as an XML-to-Petri net (in Java)
translator, and generic service provider agents that can locate a resource and provide a
service for a particular task.

This architecture allows for monitoring of the system based on a set of predefined
conditions such as availability of resources, which could be used as a feedback
mechanism for human administrators.

2.1 The Workflow Modeller

This workflow modeller component is used to specify the processes associated with
performing a particular activity. Coloured Petri nets are used to model workflow sys-
tems, due in part to their sound mathematical foundation and to the fact that they have
been used extensively for modelling of distributed systems [12]. Coloured Petri nets
consist of the following basic elements:

tokens which are typed markers with values - the type can be any Java class.
places (circles), which are typed locations that can contain zero or more tokens.
transitions (squares), which represent actions whose occurrence (firing) can change

the number and/or value of tokens in one or more of the places connected to them.
Tokens may have guards which must evaluate to TRUE in order for the transition to
fire. In a workflow model a transition may represent a task.

arcs (arrows) connecting places and transitions. An arc can have associated
inscriptions, which are Java expressions whose evaluation to token values affects
the enabling and firing of transitions.

Some reasons for preferring Petri net modelling in connection with workflow
modelling to other notations are:

A Distributed Workflow System with Autonomous Components 197

They have formal semantics, which make the execution and simulation of Petri net
models unambiguous.

It can be shown that Petri nets can be used to model workflow primitives identified
by the Workflow Management Coalition (WfMC) [13]

Typical process modelling notations, such as dataflow diagrams, are event-based,
but Petri nets can model both states and events.

There are many analysis techniques associated with Petri nets, which make it pos-
sible to identify ’dangling’ tasks, deadlocks, and safety issues.

Other standardization protocols do not cater to expressiveness, simplicity and for-
mal semantics. The comparison of high-level Petri nets with other proposed stan-
dardization protocols can be found in [15].

The Petri net models created using the JFern engine are instantiated as workflow
components in our system.

2.2 Workflow Engine

The workflow engine is the component that executes the interaction protocol that has
been modelled using Petri nets. The JFern tool can be used as a process modeller and
also the execution engine.

2.3 Conversation Manager

The conversation manager is the component that organizes the interaction between
various interaction protocols. It is responsible for dispatching the messages from the
“in” and “out” places and the ontology component which defines the terms that ap-
pear in the model (the places, transitions and the arc expressions). The conversation
manager plays the role of the resource manager. It identifies the list of resources that
can perform a certain task. These resources can be chosen from a pool of resources
available in the form of ‘agent societies’ [17]. The conversation manager can choose a
service provider agent that is less flexible and less expensive than some other provider
that offers more expensive services. Each agent in the society has certain capabilities
inscribed as attributes.

3 Example Scenario

In order to show the operational aspect of the system, as well as how it can adapt to
changes, an example scenario is described. In this scenario, various sub-nets associ-
ated with different sub-processes of the system are discussed. This model has been
adapted from a travel agent model example discussed by Van der Aalst [2].

3.1 A Distributed Process Model

In this scenario the interactions involving a customer, a travel agent, a transport ticket
seller (travel service provider) are described. Figure 2 depicts a simplified version of
the interaction protocol for the travel agent. The protocol is initiated when a cus-
tomer’s request has been submitted to the travel agent, indicated in the model by the
placement of a token at the In place of the net. The travel agent then searches some

198 Maryam Purvis et al.

external database (not shown in the diagram) to come up with some possible trip
options (the Prod Opts transition). The result of the search is placed in the Opts place.
These options are then placed in the Out place so that they can be sent back to the
customer. At this point the customer is contacted (the customer interaction is not
shown in this diagram). When the customer responds, the travel agent’s Get Cus Res
transition will fire. Either the customer will select an option for purchasing a ticket
(an external travel service provider will have to be contacted for the purchase of such
a ticket) or the customer will not be satisfied with the options he was sent and will
need more options (Need More Opts). Assuming that the customer does select one of
the options for purchase (as indicated by the value of the token in the Cus Res place),
the Res Tick transition is enabled, causing the travel agent to send a ticket reservation
request to a travel service provider, such as a bus company or sightseeing operation.
A copy of the customer’s ticket reservation request is kept in the Res Sent place for
later consultation. The travel service provider will either send back a notification that
a reservation has been made (enabling the Get Tick Res transition) or send back noti-
fication that there are no tickets available (enabling the Get Rej transition, which will
cause a notification of that fact to be sent back to the customer). If the travel service
provider does return a confirmed ticket reservation, it is matched with the ticket res-
ervation request stored in the Res Sent place and then deposited in the Tick Res place.
This will, in turn, enable the Send Bill transition, causing a bill to be sent to the cus-
tomer for payment. After payment is received, the travel agent will send the payment
to the service provider, get the ticket from the service provider, and then forward the
ticket on to the customer.

 In
Get

Request

Get
Cus
Res

Get
Tick
Res

Get
$$

Out

Req

Prod
Opts

Opts

Send
Opts

Cus
Res

Res
Tick

Tick
Res

Send
Bill

$$

Pay for
Tick

Get
Tick

Tick

Res
Sent

Opts
Sent

Bill
Sent

Tick
Paid

Send
Tick

Need
More
Opts

Get
Rej

Fig. 2. Interaction protocol for the travel agent.

A Distributed Workflow System with Autonomous Components 199

Note that information is stored in the Opts Sent, Res Sent, Bill Sent, and Tick Paid
places for matching up with later messages that arrive. This enables the travel agent to
conduct activities with many customers and travel service providers concurrently.

Figure 3 shows the interaction protocol1 for the customer. This protocol has a Start
place that has a token placed in it (specifying the customer’s travel interests) when the
customer wants to initiate a conversation with the travel agent. The Send Request
transition causes the request to be placed in the Out place for sending a message to the
travel agent and a copy of the request is stored in the Req Sent place. Later, the cus-
tomer expects to receive a set of options for selection from the travel agent, and these
options should match his or her travel request. After an option is selected, this is
placed in the Out place for sending back to the travel agent, and a copy of the reserva-
tion selected is stored in the Res Sent place. Subsequently, the customer expects to get
a bill, pay it, and ultimately get tickets matching what he or she has paid for.

 In
Get
Opts

Get Bill

Out

Opts

Select
Opt

Bill

Send
Request

Res
Sent

Start
Send $$

Opt

Send
Res

$$ Sent

Get Prod

Req
Sent

Fig. 3. Interaction protocol for the Customer.

Figure 4 shows the interaction protocol for the travel service provider. The travel
service provider might supply any kind of travel service, such as boat passage, tramp-
ing guides, etc. The travel service provider initially receives a message from the travel
agent indicating that a reservation has been requested for his or her service, such as a
transport ticket. The service provider must then see if the requested resource (usually
a ticket booking) is available. So both the Prep Prod and Send Reject transitions ex-
amine the single token located in the Available Resources place. The single token in
the Available Resources place contains a list of available resources, and information

1 At times we use the term protocol to refer to the activities of individual participants and at

other times to the collection of activities of all participants. The context should make clear
the difference.

200 Maryam Purvis et al.

for the list in this token is maintained by access to an external database. The Prep
Prod transition is enabled if the relevant information (i.e. what is desired, for exam-
ple, a bus ticket) on the reservation request token in the Res place matches up with
one of the resources listed on the token in the Available Resources place. On the
other hand, the Send Reject transition is enabled if the information on the token in the
Res place fails to match up with an item listed on the token in the Available Re-
sources place. In the case where there are tickets available, the service provider then
prepares the product (a ticket, say) and sends the bill back to the travel agent and
keeps a copy of it in the Bill Sent place. When payment is received later, the service
provider will send the product that has been stored in Prod Ready. In the simplified
scenario described here, there is only a single generic protocol for a travel service
provider shown, but there could be many such protocols that are used for particular
service providers. There could also be more complicated interactions with the cus-
tomer. In our example, payment is made directly to the travel agent. But there could
be other options available, including having the travel agent act as a broker, with
payment transactions ultimately taking place directly between the customer and the
travel service provider.

Fig. 4. Interaction protocol for the service provider.

Figure 5 shows how all the interaction protocols are created and executed. The
human manager can create interaction protocols using the JFern process modeller and
store them in the system using the storage agent. The stored protocols can be viewed
querying the storage agent. When sets of interaction protocols are to be executed, the
protocols are selected and submitted to the workflow engine.

 In

Get
Res

Get $

Out

Res

Prep
Prod

$$

Send
Bill

Prod
ready

Prod

Send
Prod

Bill
Sent

Available
Resources

Send
Reject

A Distributed Workflow System with Autonomous Components 201

Fig. 5. Creation and execution of the interaction protocols.

The conversation manager plays the important role of the co-ordinating agent be-
tween various interaction protocols. It is responsible for matching the “in” and “out”
tokens from various agents. Figure 6 shows the interaction between a customer agent,
travel agent, service provider and the conversation manager.

The customer agent executes the interaction protocol and places a request for re-
serving a ticket to the travel agent through the conversation manager. The conversa-
tion manager transfers the requests to the travel agent from the customer agent. This
corresponds to the transfer of a token from the out place of the customer agent to the
in place of conversation manager. The token is then placed at the out place of the
conversation manager which is appropriately moved to the travel agent’s in place by
the conversation manager.

The travel agent could then get the appropriate service provider to perform a par-
ticular task from the resource agent. All these interactions are co-ordinated through
the conversation manager.

Fig. 6. Interaction protocol for the service provider.

202 Maryam Purvis et al.

3.2 Adaptive Workflow Process Operation

Consider now an international travel agency with individual travel agents spread
across the globe (or region). The individual agents may be using an interaction proto-
col associated with customers and service providers such as we have described in
Figures 2-4. These sets of interaction protocols represent the workflow cases for the
travel agents of the agency. Suppose, now, that a health crisis emerges in some re-
gions of the world, and that the global manager of the travel agency decides to rec-
ommend a new interaction protocol for some of his or her travel agents.

 In Get
Request

Get
Cus
Res Get

Tick
Res

Get
$$

Out

Req

Prod
Opts

Opts

Send
Opts

Cus
Res

Reserve
Ticket

Tick
Res

Send
Bill

$ for
Tick

Pay
Tick

Get
Tick

Tick Tick
Res
sent

Opts
sent

Bill
Sent

Tick
Paid

Send
Tick+Ins

Res
Ins

Get
Ins
Res

Tick+Ins
Res

Ins
Res
Sent
(+TR)

$ for
Ins

Pay
Ins

Get
Ins

Ins
Paid

Ins

Need
More
Opts

Get
rej

Fig. 7. New interaction protocol for travel agent involving two coupled service providers (for
tickets and insurance).

The newly proposed protocol is to require that all ticket transactions must be bun-
dled with a health insurance policy that is offered by some recommended health in-
surance agents. This new interaction protocol is now recommended for those travel
agents in parts of the world that are affected by the health crisis, and the new travel
agent protocol is shown in Figure 7. The entire protocol is sent to all travel agents in
the organisation in the form of an encoded XML expression in the body of a FIPA
propose message. Those travel agents that are dealing with customers in affected

A Distributed Workflow System with Autonomous Components 203

areas would be urged to adopt the new protocol. For a resilient and adaptive global
organisation, this kind of autonomy may be essential for success in a competitive
environment.

In the new protocol, there is now a ticket selling travel service provider and an in-
surance service provider. For this new scenario, we assume that the customer and both
service provider protocols remain as shown in Figures 3 and 4, respectively. Both of
the service provider agents use the interaction protocol depicted in Figure 4: they
prepare a product when requested by the travel agent, and that product is delivered to
the travel agent when payment is received. The protocol for the travel agent is modi-
fied, though, as shown in Figure 7. When the initial request comes in from the cus-
tomer, the early stages of interaction are as before in Figure 2. However after the
ticket reservation request is confirmed by receipt of a message from the ticket selling
service provider, the travel agent proceeds to request purchase of insurance from an
insurance provider (a message to the insurance provider is prepared in connection
with the Res Ins transaction, and a token for the message is placed in the Out place).
Information about the insurance request and the confirmed ticket reservation is stored
in the Ins Res Sent (+TR) place. Later when the bill is sent to the customer and pay-
ment is received, the travel agent arranges to pay both the ticket selling service pro-
vider and the insurance provider. After the travel agent receives authorisation from
both the ticket selling agent (in the form of tickets) and the insurance provider (possi-
bly just some authorisation number) these vouchers are bundled together and for-
warded on to the customer.

4 Discussions and Future Work

The ability to design and update interaction protocols that, together, represent work-
flow scenarios enables an organisation of semi-autonomous entities or agents to re-
spond and adapt to changing conditions in a distributed environment. For illustrative
purposes, we have described a distributed example involving travel agents. This is an
appropriate example, because the conditions and available service providers are con-
stantly changing in the travel and tourism industry, and it can be difficult to maintain
an organised sense of workflow activities under these conditions. As new types of
service providers become available, there can be new types of interaction protocols
that are appropriate for those service providers, and all the agents that interact with
them would need to be informed about those interactions protocols.

Another application domain can be in the area of distributed software development,
where many independent, autonomous software developers are working together on a
large, possibly open-source, development project. Integration, testing, and acceptance
activities can be adapted to deal with changing scheduling requirements, customer-
imposed constraints, or preferences among the distributed collection of team mem-
bers.

This work is also applicable in those areas that are less human-dominated and in
which electronic agents are performing most of the work. In these environments, it is
essential to be able to monitor and coordinate the activities of groups of autonomous
agents. Facilities such as those we are developing can offer more choice in the organi-
sation of distributed enterprises, because they can provide coordination facilities
while, at the same time, allowing individual entities to retain more autonomy.

204 Maryam Purvis et al.

The following enhancements to the existing system are planned for future work in
this research.

Provide more explicit facilities for resource management so that conventional
workflow models can be incorporated.

Provide a direct interface to one of the exiting analysis tools so that process mod-
els can be analysed on the spot. The resulting analysis can lead to improved sys-
tem performance.

Improve the monitoring capability so that various performance statistics and
throughput information is available graphically.

Improve the visualization of linked and hierarchical models.
We are in the process of extending the proposed prototype and evaluating various

process model scenarios. In particular we are examining the integration of the web
services as discussed by Paul et al [16].

The authors would like to acknowledge the technical support and consultation pro-
vided by Mariusz Nowostawski and Peter Hwang of the University of Otago.

References

1. Schael, T.: Workflow Management Systems for Process Organisations. Springer-Verlag.
(1998)

2. Van der Aalst, W., Van Hee, K., Schmidt, J. W.: Workflow Management: Models,
Methods, and Systems. MIT Press. (2002)

3. Meilin, S., Guangxin, Y. , Yong, X. , Shangguang, W.: Workflow Management Systems:
A Survey. In: Proceedings of IEEE Intl. Conf. On Communication Technology, Beijing,
(1998)

4. Borghoff, U.M. , Bottoni, P. , Mussio, P., Pareschi, R.: Reflective Agents for Adaptive
Workflows. In: Proc. 2nd Conf. on the Practical Application of Intelligent Agents and
Multi_Agent Technology (PAAM’97), London, U.K., (1997) 405-420

5. Stormer, H.:A Flexible Agent-Based Workflow Systems. In: Workshop on Agent-Based
Approaches to B2B, Fifth International Conference on Autonomous Agents, Montreal,
Canada (2001)

6. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use,
Vol. 1: Basic Concepts. Springer-Verlag, Berlin (1992).

7. van der Aalst, W.M.P.: The application of Petri nets to workflow management. In: The
Journal of Circuits, Systems and Computers vol. (1998) 8(1), 21-66.

8. Nowostawski, M.: JFern, version 1.2.1,
http://sourceforge.net/project/showfiles.php?group_id=16338 (2002).

9. Purvis, M., Cranefield, S., Nowostawski, M., and Carter, D.: Opal: A Multi-Level Infra-
structure for Agent-Oriented Software Development. In: Information Science Discussion
Paper Series, No. 2002/01, ISSN 1172-6024, University of Otago, Dunedin, New Zealand.

10. FIPA. Foundation For Intelligent Physical Agents (FIPA). FIPA 2001 specifications,
http://www.fipa.org/specifications/ (2003)

11. Purvis, M. K., Huang, P., Purvis, M. A., Cranefield, S. J., and Schievink, M.: Interaction
Protocols for a Network of Environmental Problem Solver. In: Proceedings of the 2002
iEMSs International Meeting: Integrated Assessment and Decision Support (iEMSs 2002),
Volume 3, Andrea E. Rizzoli and Anthony J. Jakeman (eds.), The International Environ-
mental Modelling and Software Society, Lugano, Switzerland (2002) 318-323

A Distributed Workflow System with Autonomous Components 205

12. van der Aalst, W.M.P.: Three good reasons for using a Petri-net-based workflow manage-
ment system. In: Navathe, S., Wakayama, T. (eds.): Proc of International Working Con-
ference on Information and Process Integration in Enterprises (IPIC’96),. Massachusetts
Institute of Technology, Cambridge, Massachusetts, (1996) 179-201.

13. Workflow Management Coalition: The Workflow Reference Model, Document No. TC00-
1003, Issue 1.1. (1995)

14. Theoretical Foundations Group and Distributed Systems Group of the Department of
Informatics, University of Hamburg. Renew – The Reference Net Workshop, Release 1.2,
(2000)

15. van der Aalst, W.M.P.: Don’t go with the flow: Web Services composition standards ex-
posed, Jan/Feb 2003 issue of IEEE intelligent systems.

16. Paul Buhler and José M. Vidal. Enacting BPEL4WS specified workflows with multiagent
systems. In Proceedings of the Workshop on Web Services and Agent-Based Engi-
neering, 2004.

17. B.T.R Savarimuthu and M.Purvis, A Collaborative mulit-agent based workflow system.
In: M. G. Negoita, R. J. Howlett, L. C. Jain (eds.), Knowledge-Based Intelligent Informa-
tion and Engineering Systems, 8th International Conference, KES2004, Wellington, New
Zealand, September 2004, Proceedings, Part II, Springer LNAI 3214, pp. 1187-1193,
2004.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 206–216, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evaluation of a Multi-agent Based Workflow
Management System Modeled Using Coloured Petri Nets

Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

Department of Information Science, University of Otago,
P O Box 56, Dunedin, New Zealand

{tehrany,tonyr,mpurvis}@infoscience.otago.ac.nz

Abstract. Workflow management systems (WfMS) should address the needs of
rapidly changing business environments. We have built a multi-agent based
framework, JBees, which addresses these needs. We evaluate our agent-based
workflow system, which employs coloured Petri net workflow modeling, with
the proposed standards for various workflow patterns and communication pat-
terns. The coloured Petri net models support the workflow patterns and the
agent-based framework supports the communication standards developed by the
Foundation for Intelligent Physical Agents (FIPA). The agent-based communi-
cation technology patterns along with the workflow patterns equip the work-
flow management system with a comprehensive set of capabilities, such as
adaptability and distribution.

1 Introduction

Most of the commercially available workflow management systems do not offer suf-
ficient flexibility for distributed organizations that participate in the global market.
These systems have rigid, centralized architectures that do not operate across multiple
platforms [8]. Employing a distributed network of autonomous software agents that
can adapt to changing circumstances would result in an improved workflow manage-
ment system technology. In the past, workflow management systems (WfMS) were
used in well-defined activities, such as manufacturing, where the processes tend to be
more established and stable. But in the current climate WfMS may be used for more
fluid business processes, such as e-commerce, or in processes involving human inter-
actions, such as the software development process. In such situations it is not always
possible to predict in advance all the parameters that may be important for the overall
processes. This gives rise to the need for adaptive WfMS. Our previous work ([2] and
[17]) describes issues addressed by our agent-based framework JBees.

In this paper we evaluate our agent based workflow system, JBees, in two ways.
We first evaluate our system for various workflow patterns. Secondly we compare the
communication patterns supported by our system. These comparisons are made with
reference to the patterns described in previous work by van der Aalst ([10], [11], [12],
[13], [14] and [15]). The paper is organized as follows. Brief descriptions of various
notations used and our agent-based framework are given in Section 2. The third sec-
tion describes how we evaluate our system using various workflow and communica-
tion patterns. The concluding remarks are presented in the fourth section.

Evaluation of a Multi-agent Based Workflow Management System Modeled 207

2 System Technology Background

In this section we discuss system technologies on which our work is based, which
includes (a) the use of coloured Petri nets, which are used to design the process mod-
els and (b) the multi-agent system on which our workflow system has been built.

2.1 Coloured Petri Nets

The sound mathematical foundation behind Coloured Petri nets (CPN) [16] offers
advantages for modelling distributed systems. Petri nets consist of four basic ele-
ments. The tokens which are typed markers with values, the places that are typed
locations that can contain zero or more tokens, the transitions which represent actions
whose occurrence can change the number and value of tokens at the places, and the
arcs that connect places and transitions. When a transition occurs (fires), the place-
ment and values of tokens can be changed depending on expressions specified on the
arcs connected to that transition. Some reasons for preferring Petri net modeling to
other notations used for workflow modeling are given by [20]:

– They have formal semantics, which make the execution and simulation of Petri net
models unambiguous.

– It has been shown that Petri nets can be used to model workflow primitives identi-
fied by the Workflow Management Coalition (WfMC) [21]

– Unlike some event-based process modeling notations, such as dataflow diagrams,
Petri nets can model both states and events.

– There are many analysis techniques associated with Petri nets, which make it pos-
sible to identify ‘dangling’ tasks, deadlocks, and safety issues.

2.2 Agent Systems

Sycara [25] identifies several benefits associated with using multi-agent systems for
building complex software. For example, multi-agent systems can offer a high level
of encapsulation and abstraction. Some commonly accepted characteristics of agents
are listed in [22, 23, 24]. Because agents are independent, every agent can have its
own strategy for solving a particular problem. Different developers can build agents
and as long as these agents understand each other through agent communication, they
can work together. A second important benefit is that multi-agent systems offer dis-
tributed and open platform architecture. Agents can support a dynamically changing
system without the necessity of knowing each part in advance. This requires, however
a matchmaking infrastructure. Our system is based on the Java-based agent platform
Opal [7], developed at the University of Otago since 2000. It meets the standards of
the Foundation for Intelligent Physical Agents (FIPA) [6] for agent platforms and
incorporates a modular approach to agent development [26].

2.3 Related Work

In the context of WfMSs, agent technology has been used in different ways [27]. In
some cases the agents fulfill particular roles that are required by different tasks in the
workflow. In these cases the existing workflow model is used to structure the coordi-

208 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

nation of these agents [28, 29]. An example of this approach is the work by M. Nissen
in designing a set of agents to perform activities associated with the supply chain
process in the area of e-commerce [29].

In other cases, the agents have been used as part of the infrastructure associated
with the WfMS itself in order to create an agent-enhanced WfMS [30, 31]. These
agents provide an open system with loosely coupled components, which provides
more flexibility than the traditional system architectures. Some researchers have com-
bined both of these approaches [32], where an agent-based WfMS is used in conjunc-
tion with specialized agents that provide appropriate application-related services. We
have taken the latter approach, which provides sufficient flexibility required for a
dynamic and adaptive system.

Adaptive workflows have been discussed for some time, and many people have
discussed the problem [10, 32]. Only a few have proposed techniques to manage
adaptability and only a small number of actual implementations have been made that
tackle some aspects of adaptability [32]. Transferring running work cases to a new
model is still a difficult issue. The work done in the paper [32] describes a prototype,
which provides some adaptability by manual transfer of tokens in the new process
model, as indicated in a comparison of current WfMS done by Van der Aalst et al
[13].

2.4 Architectural Overview

Our research is focused on developing an agent-enhanced WfMS, where the work
associated with running a WfMS has been partitioned among various collaborating
agents that are interacting with each other by following standard agent communica-
tion protocols. JBees is based on Opal [7] and uses the CPN execution tool JFern [5].
A first description of JBees can be found in the previously published papers [2] and
[17]. Our enhanced system consists of seven Opal agents, which provide the function-
ality to control the workflow. Figure 1 shows these seven agents and their collabora-
tion.

The manager agent provides all functionality the workflow manager needs, such as
creation and deletion of tasks, roles and process definitions, instantiation of new proc-
ess instances, and creation of resource agents. The process agent executes a process
instance. Each resource in the system has its own resource agent. Every resource in
the system gets registered to one of the broker agents that allocate the resources to the
process. The storage agent manages the persistent data that is needed. The monitor
agent collects all the process-specific data and sends them to the storage agent. The
control agent continuously looks for anomalies to the criteria specified by the human
manager and reports the violations to these criteria to the manager agent. The man-
ager agent provides information to the human manager, which can be used as a feed-
back mechanism.

2.5 Flexibilities of Our Workflow System

The flexibilities of our workflow system enable us to provide the support for distribu-
tion, adaptability, monitoring, and controlling of processes. JBees supports inter-
organizational co-operation through the distribution of processes. For example, the

Evaluation of a Multi-agent Based Workflow Management System Modeled 209

main process could be present in Germany and the sub-process could be present in
New Zealand. The use of multi-agent technology facilitates the distribution of such
processes. Also, the persistent data can be distributed. The user of the system can
decide to modify or change a running process [1]. Our system has also been endowed
with the monitoring and controlling of processes. The process data is stored and the
controlling agent constantly checks for anomalies for the criteria entered by the proc-
ess manager.

3 Evaluation

Workflow systems are driven by the process models, which describe the workflow
process. A sample process model for ordering a book is shown in figure 2. The activi-
ties associated with the process include order entry, inventory check, credit check,
evaluation, approval, billing, shipping, archiving and the activity associated with
writing a rejection letter. Evaluation of workflow systems are carried out on the basis
of 20 workflow patterns described by Van der Aalst[13]. We evaluate our system for
these workflow patterns (and also the communication patterns) and explain the fea-
tures of the agent framework, which provide support for these patterns.

3.1 Workflow Patterns

Since we use coloured Petri nets [16] as the process-modeling tool, we satisfy the
basic workflow patterns such as sequence, parallel split, synchronization, exclusive
choice and simple merge [13]. Table 1 shows the categorization of patterns and
shows the level of support that our system provides. The notation “++” is used when

Fig. 1. Showing the architecture of JBees

210 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

the pattern is supported by Petri nets, and “+” notation denotes that the pattern is not
supported by Petri nets but can be achieved by using our agent-based framework.
Van der Aalst categorizes workflow patterns into the following.

1. Advanced branching and synchronization patterns
2. Structural patterns
3. Patterns involving multiple instances
4. State-based patterns
5. Cancellation patterns

Out of these categories of patterns, the coloured Petri net formalism supports pat-
terns described by categories 1, 2 and 4 [13].

3.1.1 Advanced Branching and Synchronization Patterns
The patterns in this category include the multiple-choice pattern, synchronization
merge pattern, multiple merge pattern and the discriminator pattern. All the four of
the above-described patterns can be achieved by examining the colour of the token.
The token can have attributes, which can be evaluated so that the transition could be
fired and one of the possible paths (branching or merging) can be chosen.

3.1.2 Structural Patterns
Structural patterns include the Aribitrary cycles pattern, which describes the point in a
workflow process where one or more activities can be done repeatedly. This can be
implemented in Petri nets.

The Implicit termination pattern occurs when the given sub-process should be ter-
minated when there is nothing else to be done. Our framework supports implicit ter-
mination (refer to the example given in figure 4). The user can interact with the sys-
tem to indicate the occurrence of an external event, which could trigger the
termination of the process.

3.1.3 Patterns Involving Multiple Instances (MI’s)
Patterns involving multiple instances are not directly supported through Petri nets[13].
But the same can be achieved by the combination of other patterns or through the
agent framework. MI without synchronization is possible by using the arbitrary cycles
pattern. In this case instead of having multiple instances of the same activity, the
process is repeated for a certain number of cycles. Figure 3 shows a process (Case A),
the MI described by Aalst (Case B), and the arbitrary cycles (Case C). It can be seen
that the Case B described by Aalst can be modified into Case C, which uses the arbi-
trary cycles. This can be achieved by the arc expression, which would check the at-
tribute of the token representing the number of times the task has to be repeated.

3.1.4 State Based Patterns
The deferred choice pattern describes the execution of one of the two alternatives
paths. The choice of which path is to be executed should be determined by some envi-
ronmental variables. The interleaved parallel routing pattern describes execution of
two activities in random order, but not in parallel. The milestone pattern enables an
activity until a milestone is reached. These patterns are inherently supported by col-
oured Petri nets [13].

Evaluation of a Multi-agent Based Workflow Management System Modeled 211

Fig. 2. Process model of ordering a book Fig. 3. Showing processes with a single
instance activity, multi instance activity and
multi instance activity achieved through
arbitrary cycles (iteration)

3.1.5 Cancellation Patterns
The cancel activity pattern is cancellation or disabling of an activity. The CPN will
not be able to cancel an activity because, in CPN, we only have local control around a
transition. Depending upon the value of tokens in the input places, the tokens on the
output place can be generated. But this can be achieved using the higher-level lan-
guage support that executes the process model.�The agent-based framework can pro-
vide a user interface such as a stop activity button so that the activity can be can-
celled. This is possible since a separate process agent executes every case.

The cancel case pattern is the cancellation of the entire case of a process. The
same argument for the previous case holds good. The user interface of the agent
framework can support it. Figure 4 shows how the framework can support the cancel-
lation patterns. Activity2 is the active activity. The user can now decide to cancel the
activity or the entire case. There might be a few activities, which would need to be
undone as the case is cancelled. Those activities which are to be undone can be mod-
eled as compensation activities.

Fig. 4. Showing the user interface for cancellation of running case/activity of the Petri net
process model

212 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

Table 1. Showing the categorization of workflow patterns and their support in JBees

Categorization of workflow patterns Workflow Patterns Support in JBees
 (++ or +)

Sequence ++
Parallel Split ++
Synchronization ++
Exclusive Choice ++

Basic Patterns

Simple Merge ++
Multi Choice ++
Synchronizing Merge ++
Multi Merge ++

Advanced branching and synchroniza-
tion patterns

Discriminator ++
Arbitrary Cycles ++ Structural patterns
Implicit Termination +
MI without Synchronization +
MI with a Priori Design Time Knowledge +
MI with a Priori Runtime Knowledge +

Patterns involving multiple instances

MI without a Priori Runtime Knowledge +
Deferred Choice ++
Interleaved Parallel Routing ++

State based patterns

Milestone ++
Cancel Activity + Cancellation patterns
Cancel Case +

Table 2. Showing the categorization of communication patterns and their support in JBees

Categorization of communication patterns Communication Patterns Support in JBees
(++ or +)

Request/Reply ++
One-way ++

Synchronous

Synchronous Polling ++
Message Passing ++
Publish/Subscribe +

Asynchronous

Broadcast +

3.2 Communication Patterns

Communication is realized by the exchange of messages between different processes.
Our agent-based system is designed for sending and receiving messages based on the
FIPA [6] protocols. In this section we evaluate JBees for the various communication
patterns. An example (shown in figure 5) of the communication is how the sub-
processes are executed. To execute a sub-process, the process agent of the parent
process instantiates another process agent. The process-related communication takes
place between the parent process agent and the sub process agent. Table 2 shows the
categorization of communication patterns and shows the level of support that our
system provides. The notation “++” is used when the pattern is supported by FIPA
specification that our framework is built upon and “+” notation denotes that the pat-
tern is not supported by FIPA but can be achieved by using our framework.

3.2.1 Synchronous Communication
The request/reply pattern is the communication pattern in which the sender sends a
request and waits for a reply. The communication scenario shown in Figure 5 is an

Evaluation of a Multi-agent Based Workflow Management System Modeled 213

example of this pattern. The one-way pattern is the pattern where a sender makes a
request to a receiver and does not wait for response. The receiver sends the acknowl-
edgement message but not the actual reply. Our FIPA compliant framework supports
these patterns. The synchronous polling pattern occurs when the sender communi-
cates a request to a receiver, but instead of blocking it continues processing and con-
stantly checks for response. If a resource is not available at a point of time, the proc-
ess agent continuously keeps checking with the resource broker whether any resource
is available after a fixed interval of time. Figure 6 shows the communication between
the process agent and the resource broker agent.

Fig. 6. Showing the communication between the process agent executing a process model and
the resource broker agent

3.2.2 Asynchronous Communication
The message passing pattern is an asynchronous communication pattern in which the
sender receives no response. When the request reaches the receiver, it processes the
message and performs appropriate actions. Though our FIPA-compliant framework
supports this form of communication, it is not used in the context of workflows, since
the feedback from agents about the starting and completion of tasks/activities should
have a reply/response. The publish/subscribe pattern is the asynchronous communica-
tion pattern in which the sender sends the message to those who have already ex-
pressed their interest in receiving the messages when an event has occurred. This
pattern is not supported by FIPA yet, but it can be implemented in the framework by
maintaining the list of all agents that would express their interest in receiving certain
kinds of messages. The broadcast pattern is the form of communication in which all

Fig. 5. Showing the communication between the parent process agent and the sub process agent
executing the main and sub process respectively

214 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

the participants receive a message. Though this has not been supported by the FIPA
protocol, it can be achieved in our framework by sending messages to all agents that
collaborate in a particular platform. The list of all collaborating agents can be ob-
tained and the message can be sent to all agents individually.

3.3 Support for Workflow and Communication Patterns in JBees

It can be observed form sections 3.1, 3.2 and figure 7 that sixty five percent of the
workflow patterns are supported directly by Petri nets, and the agent-based frame-
work can support the rest of the patterns. We have also described the communication
patterns that our system supports. Four out of the six communication patterns are
supported directly by our agent-based framework and the other two can be supported
with few changes.

Fig. 7. Graph showing the support for workflow and communication patterns in JBees

4 Conclusion

We have evaluated the capability of our workflow system, both from a process mod-
eling point of view, as well as the inter-process communication viewpoint. Through
these patterns, the CPN models executed by the multi-agents have addressed issues on
flexible workflow systems by supporting distribution and adaptability of processes.
We agree with the viewpoints of van der Aalst [14] that Petri nets could be considered
as a standard for modeling workflows, but they should be aided by multi-agents to
provide the additional flexibilities associated with adaptability and the distribution of
processes. Owing to the support of distributed and adaptive processes, workflow sys-
tems modeled using CPNs and managed by multi-agents have started emerging ([18]
and [19]). Our described system is available under the GNU Lesser General Public
License [3] on the Internet [9].

Acknowledgements

The authors wish to acknowledge the work of Lars Ehrler and Martin Fleurke in the
implementation of the agent-based workflow system.

Evaluation of a Multi-agent Based Workflow Management System Modeled 215

References

1. Martin Fleurke, JBees, an adaptive workflow management system – an approach based on
Petri nets and agents, Master’s thesis, Department of Computer Science, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, 2004.

2. Martin Fleurke, Lars Ehrler, and Maryam Purvis, ‘JBees - an adaptive and distributed
framework for workflow systems’, in Workshop on Collaboration Agents: Autonomous
Agents for Collaborative Environments (COLA), Halifax, Canada, eds., Ali Ghorbani and
Stephen Marsh, pp. 69–76, http://www.cs.unb.ca/˜ ghorbani/cola/proceedings/NRC-
46519.pdf, (2003). National Research Council Canada, Institute for Information Technol-
ogy.

3. Free Software Foundation. GNU Lesser General Public License, 2000.
4. S. Meilin, Y. Guangxin, X. Yong, and W. Shangguang,‘ Workflow Management Systems:

A Survey. ’, in Proceedings of IEEE International Conference on Communication Technol-
ogy, (1998).

5. Mariusz Nowostawski. JFern – Java based Petri Net framework , 2003.
6. FIPA, FIPA Communicative Act Library - Specification. 2002.

http://www.fipa.org/specs/fipa00037
7. Martin K. Purvis, Stephen Cranefield, Mariusz Nowostawski, and Dan Carter, ‘Opal: A

multi-level infrastructure for agent-oriented software development’, The information sci-
ence discussion paper series no 2002/01, Department of Information Science, University of
Otago, Dunedin, New Zealand, (2002).

8. J.W. Shepherdson, S.G. Thompson, and B. Odgers, ‘Cross Organisational Workflow Coor-
dinated by Software Agents’, in CEUR Workshop Proceedings No 17. Cross Organisa-
tional Workflow Management and Coordination, San Francisco, USA, (1998)

9. Department of Information Science University of Otago. JBees.
http://jbees.sourceforge.net, 2004.

10. W.M.P van der Aalst, ‘ Exterminating the Dynamic Change Bug: A Concrete Approach to
Support Workflow Change ’, Information Systems Frontiers, 3(3), 297–317, (2001).

11. W.M.P van der Aalst and K. van Hee, Workflow Management: Models, Methods, and Sys-
tems , MIT Press, 2002.

12. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Jour-
nal of Circuits, Systems and Computers, 8(1):21–66, 1998.

13. W.M.P. van der Aalst and A.H.M. ter Hofstede Workflow Patterns: On the Expressive
Power of (Petri-net-based) Workflow Languages. In: Kurt Jensen (Ed.): Proc. of the Fourth
International Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, Aar-
hus, Denmark, August 28-30, 2002, pages 1-20. Technical Report DAIMI PB-560, August
2002.

14. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards ex-
posed, IEEE Intelligent Systems, Jan/Feb 2003.

15. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. Hofstede. Pattern Based Analy-
sis of BPEL4WS. QUT Technical report, FIT-TR-2002-04, Queens-land University of
Technology, Brisbane, 2002.

16. Jensen, K., Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use,
Vol. 1: Basic Concepts. EATCS Monographs on Theoretical Computer Science. 1992,
Heidelberg, Berlin: Springer Verlag GmbH. 1-234.

17. Savarimuthu, B.T.R., Purvis, M. and Fleurke, M. (2004). Monitoring and Controlling of a
Multi-agent Based Workflow System. In Proc. Australasian Workshop on Data Mining and
Web Intelligence (DMWI2004), Dunedin, New Zealand. CRPIT, 32. Purvis, M., Ed. ACS.
127-132.

18. Vidal, J.M Buhler, P and Stahl, C (2004), Multi agent systems with workflows. IEEE com-
puter society, Jan-Feb, 76-82

216 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

19. K. Palacz and D.C. Marinescu. An agent-based workflow management system. In Proc.
AAAI Spring Symposium Workshop "Bringing Knowledge to Business Processes", Stand-
ford University, CA

20. W.M.P. van der Aalst. Three Good reasons for Using a Petri-net based Workflow Man-
agement System. In S. Navathe and T. Wakayama, editors, Proceedings of the International
Working Conference on Information and Process Integration in Enterprises (IPIC’96),
pages 179– 201, Cambridge, Massachusetts, 1996.

21. The workflow management coalition. The workflow reference model, 1995.
22. J. Bradshaw. An Introduction to Software Agents . In J. Bradshaw, editor, Software Agents,

pages 3–46. MIT Press, 1997.
23. M.J. Wooldridge. Intelligent Agents . In G. Weiss, editor, Multiagent Systems, pages 27–

77. MIT Press, 1999.
24. Y. Shoham. An Overview of Agent-Oriented Programming. In J. Bradshaw, editor, Soft-

ware Agents, pages 271–290. MIT Press, 1997.
25. K.P. Sycara. Multiagent Systems . AI magazine, 19(2):79–92.
26. Mariusz Nowostawski, Geoff Bush, Martin K.Purvis, and Stephen Cranefield. A Multilevel

Approach and Infrastructure for Agent-Oriented Software Development. In International
Work-shop on Infrastructure for Agents, MAS and Scalable MAS,
http://www.umcs.maine.edu/˜wagner/workshop/01_nowostawski_bush_purvis_etal.pdf,
2001.

27. G. Joeris. Decentralized and Flexible Workflow Enactment Based on Task Coordination
Agents. In 2nd Int’l. Bi-Conference Workshop on Agent-Oriented Information Systems
(AOIS 2000 @ CAiSE*00), Stockholm, Sweden, pages 41–62. iCue Publishing, Berlin,
Germany.

28. N.R. Jennings, P. Faratin, T.J. Norman, P. O’Brien, and B. Odgers. Autonomous Agents
for Business Process Management. Int. Journal of Applied Artificial Intelligence, 14(2):
145–189, 2000.

29. M.E. Nissen. Supply Chain Process and Agent Design for E-Commerce. In 33rd Hawaii In-
ternational Conference on System Sciences, 2000.

30. M. Wang and H. Wang. Intelligent Agent Supported Flexible Workflow Monitoring Sys-
tem . In Advanced In-formation Systems Engineering: 14th International Conference,
CAiSE 2002, Toronto, Canada, 2002.

31. H. Stormer. AWA - A flexible Agent-Workflow System . In Workshop on Agent-Based
Approaches to B2B at the Fifth International Conference on Autonomous Agents
(AGENTS 2001), Montreal, Canada, 2001.

32. Q. Chen, M. Hsu, U. Dayal, and M.L. Griss. Multi-agent cooperation, dynamic work ow
and XML for e-commerce automation. In fourth international conference on Autonomous
agents, Barcelona, Spain, 2000.

33. Purvis, M. K. and Purvis, M. A. and Lemalu, S., "A Framework for Distributed Workflow
Systems", Proceedings of the Hawai`i International Conference on System Sciences
(HICSS-34), (CD-ROM) IEEE Computer Society Press, Los Alamitos, CA (2001).

Supporting Impromptu Coordination
Using Automated Negotiation

Iyad Rahwan, Connor Graham, and Liz Sonenberg

Department of Information Systems, University of Melbourne,
Parkville, VIC 3010, Australia

i.rahwan@pgrad.unimelb.edu.au,
{cgraham,l.sonenberg}@unimelb.edu.au

Abstract. We are concerned with forms of interaction in which multiple users,
with differing agendas and interests, may realise opportunities for useful synchro-
nisation of their activities. We present a framework in which intelligent software
agents act as semi-autonomous intermediaries among nomadic users. Agents cap-
ture and process information about situations (specifically about the environment,
users and their activities) in order to jointly find and negotiate opportunities for
coordinating the activities of their respective users. The interaction is structured
using a negotiation protocol that exploits a hierarchical representation of tasks
and goals.

1 Introduction

The use of mobile computing devices and services in everyday life is increasing largely
due to the advancement of enabling technologies [13] as well as increasing efforts to
make the technology more usable [16]. One of the challenges presented to the developer
of such technologies is dealing with the complexity imposed by situations involving
users who are mobile. Scenarios involving mobile technology usage often do not in-
volve single, well-modeled users operating within a stable environment and interacting
with stationary technologies. Part of the challenge for the developers of mobile tech-
nologies is to respond to a user’s embeddedness in such situations in a sensible way.
Opportunities exist to utilise new technologies to augment and alleviate the complexity
of user situations, including the reconciliation of different interests and agendas among
multiple parties. This might involve, for example, coordinating a meeting at a particular
time in a particular place among many busy individuals.

An additional challenge for developing context-aware mobile systems is responding
to actions and interactions that are neither planned nor routine [14] but evolving from in-
teraction with an ever-changing environment. These actions and interactions are aligned
to those well documented in computer-supported cooperative work that often form the
cement that binds ’core’ actions and interactions together: spontaneous, lightweight in-
teractions [15, 17]. They are described as “impromptu,” “quick and easy to initiate,”
“short and informal,” “brief,” “unplanned,” and “intermittent” [ibid]. These interactions
often manifest themselves as accidental, corridor conversations among work colleagues
[4]. Thus they are not routine, as some reflection on work practice is often involved. Nor
are they planned in a deterministic sense as they are often accidental. However, they are

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 217–227, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

218 Iyad Rahwan, Connor Graham, and Liz Sonenberg

related to individual actors’ ongoing courses of action, or generic goals and they often
involve negotiating multiple courses of action to achieve a shared goal. We dub these
interactions impromptu coordination.

Impromptu coordination poses a challenge for technology support not only because
of its unpredictability but due to the very nature of the mobile situations that form
their backdrop: these situations involve physical movement or traversal through envi-
ronments possessing multifarious agents (such as people and computational agents) and
resources (such as digital displays and mobile phones). In addition, due to the nature
of interaction investigated here (impromptu coordination) the demand on the effective
exchange of information among agents is high and as a result there is a very high com-
putational load for both the user and the supporting context-aware device. Here we
suggest there is an opportunity to utilize specific agent technology to assist with these
kind of interactions through the effective use of available resources by involved agents.

Research into computational multi-agent systems [18] has produced a variety of
techniques for facilitating and controlling interaction among computational agents.
In particular, a wide range of frameworks for automated negotiation have been
presented [5].

In this paper, we explore the use of a novel automated negotiation technique, dubbed
interest-based negotiation [11], to support impromptu coordination among mobile users.
By doing so, the paper advances the state of the art in two ways. First, it is the first at-
tempt at using negotiation techniques to support non-routine coordination of mobile
users. Most existing work on agents for mobile devices focuses on supporting single
users [12] or collaborative teams executing routine tasks [1]. Second, the paper in-
troduces a novel coordination architecture, which integrates context-aware networked
devices, agent-based reasoning, and automated negotiation. This approach may be used
for building a variety of mobile coordination-support systems, that suit domains beyond
that of the simple narrative used here for illustration.

Our argument for the possibility of using interest-based negotiation to support im-
promptu coordination proceeds as follows. In the next section, we outline key charac-
teristics of mobile user coordination and how they require some form of negotiation.
In section 3, we present our conceptual and technical framework for supporting mobile
coordination through automated negotiation, and illustrate the use of the framework
through an example. We conclude in section 4.

2 The Problem of Impromptu Coordination

We begin in section 2.1 by defining impromptu coordination. Then, in section 2.2, we
describe some informal observations on the role of technology in facilitating interac-
tions through which multiple users, with differing agendas and interests, may realise
opportunities for useful coordination of their activities. To better understand the oppor-
tunities for technology intervention, we take Luff and Heath’s [7] advice and “examine
activities in which people engage with others when they are ‘mobile’ and how vari-
ous tools and artefacts feature in those activities.” To this end, we analyse an informal
narrative in section 2.3 to distill essential characteristics of mobile use.

Supporting Impromptu Coordination Using Automated Negotiation 219

2.1 Impromptu Coordination

For mobile users, opportunities for collaboration arise more frequently than with static
users due to the more diverse forms of context change, such as change in the user’s
location or the proximity of multiple users. Such opportunities usually cannot be antic-
ipated a priori. Negotiation is a way of dynamically realising and taking advantage of
such opportunities1. This also relates to the findings of Perry et al [8], who build on the
Luff and Heath [7] study through the examination of 17 mobile workers in the United
Kingdom. Specifically, they recommend that technologies supporting mobile workers
should “allow more effective planning of activities and flexible allocation of resources”
and “allow the location, use of, and access to locally available resources.”

2.2 Supporting Impromptu Coordination

In the settings of interest, the user is mobile, connected, and engaged in complex in-
teractions. This creates an opportunity for technology to support the user. In Table 1,
we list different levels of support that technology could provide, and compare the ex-
tent to which different technologies go. The most basic approach would be to provide
connectivity, for example, using mobile telephones. However, when support only takes
the form of communication facilitation, users would, ‘in their heads,’ need to keep track
of all changes to their context, manage the complexity of identifying opportunities as
events unfold, deal with multiple interaction partners, and so on. This places great cog-
nitive load on mobile users, and it is precisely for this reason that support software such
as calendar applications are appropriate tools.

When a mobile phone is endowed with a calendar functionality, the user can ‘out-
source’ the storage of large amounts of information about activities (meetings, special
occasions, etc.) to their device. This representation of individual activities can then be
used to help a user coordinate with others. Applications allowing for group task rep-
resentation, such as Microsoft Outlook with the Exchange Sever, go a step further by
providing stationary users with representations of multiple users activities in a globally
accessible manner.

One could envisage device support not only through representation of individual
and group activities, but also automation to support the cognitive processes that exploit
and manipulate those representations. Such automatic processes would use the available
information about the user’s situation as well as information available about other users
in order to automatically negotiate agreements over collaboration and coordination of
activities. Through more elaborate examples, in the following section we demonstrate
that making explicit and available a representation of users’ goals and task structures
and some ability to view and configure these, through communication or automatically,
can better support impromptu coordination.

2.3 Characteristics of Impromptu Coordination

We now discuss particular characteristics of impromptu coordination and how they
require some form of negotiation. These characteristics emerged from discussions in a

1 This characteristic stresses the contrast between the focus of this paper and the objectives of
intelligent scheduling applications.

220 Iyad Rahwan, Connor Graham, and Liz Sonenberg

Table 1. Levels of support for impromptu coordination.

Feature Connected Represent Manual task Auto task

while tasks manipulation manipulation

mobile Individual Group Individual Group

Technology tasks tasks tasks tasks

Phone �
Ph/Calendar � � �
MS Outlook � � �
All above +

automated � � � � � �
negotiation

multi-disciplinary focus group and among the authors of a narrative based on a diary
of an actual PhD student renamed Omar, generated over a period of three days. The
narrative approach has been used in order to understand individual mobile activities in
other projects, such as ActiveCampus [3]. An approach grounded in broader and more
systematic data collection would be desirable in the future, c.f. [4].

Narrative 1 I realized I had not set up a lift home so I called my wife. I couldn’t get
through, so I left her a message and asked her to call me when she was close. While
waiting for her to reply, I continued work. Then I called Jack to discuss our Wednesday
meeting. Jack happened to be in his car on his way in a direction not too far from my
home. He was short on time because he needed to pick up a book from the city first. I
managed to get myself a lift by offering to borrow a copy for him from the University
library.

In the narrative above, Omar being connected to Jack was critical to him being
able to capitalise on the opportunity presented by Jack’s proximity. The phone did not
allow him to predict the possible chances of the success of this opportunistic interaction
through a representation of Jack’s goals or tasks.

Fluidity. Kakihara and Sorenson [6] describe how the interaction experienced by mo-
bile individuals is ‘fluid’. Thus “human interaction is becoming ambiguous and tran-
sitory. The patterns of social interaction are dynamically reshaped and renegotiated
through our everyday activities significantly freed from spatial, temporal and contex-
tual constraints” [ibid]. Fluidity is apparent in the narrative above, describing Omar’s
activity.

Fluidity in the narrative above suggests that interaction can be rather occasional dur-
ing impromptu coordination among mobile individuals, since the environment in which
these portable devices operate changes more frequently than with stationary computers.
Thus, for the agents involved, well-established, long-term relationships, in which task
structures are well-defined and agreed upon, are less likely. In addition, the dynamism
in the presence of resources within the immediate environment (such as a car) as a result

Supporting Impromptu Coordination Using Automated Negotiation 221

User

Context info,
goals, etc.

Options,
Deals

Negotiate

Context info,
goals, etc.

Options,
Deals

User

Environment

Act Act

context
info

context
info

Domain
Knowledge

Domain
Knowledge

Fig. 1. Conceptual framework for mobile coordination through automated negotiation.

of mobile situations involving impromptu coordination makes it even more difficult for
the agents involved to reduce uncertainty. Negotiation is one way of reaching temporary
agreement in such dynamic situations.

Heterogeneity. When the modelling of situations involving impromptu coordination
among mobile individuals is to take into account varying location, time, user profiles,
tasks, interaction history, etc., we are confronted with a much greater variety of agent
(and user) types. Each individual agent may achieve tasks in a different way. It is un-
likely that information about this heterogeneity will be available a priori. Negotiation is
a natural way to exchange information and reach useful agreement or compromise with
collaborators (or in collaboration settings) not known before.

In the above narrative, Omar’s coordination could have been made easier by a repre-
sentation of Jack’s and, at the very least, his availability. Given the complexity of these
representations, some automation of the process of reconciling goals and availability
among the multiple parties involved would also have been desirable.

Privacy and Connectivity. Mobile users who are involved in impromptu coordination
are constantly confronted with different interaction partners that want to obtain infor-
mation about them. Users may be unwilling to disclose all the information required to
run a centralised algorithm for coordinating joint activity. They may be willing to do
so only when interacting with particular partners, or when the they realise the potential
benefit of exchanging such information. Negotiation is a natural way to reconcile one’s
own wish to protect private information with the potential benefit of interacting with
others.

3 Negotiation for Impromptu Coordination

In the previous section, we argued that impromptu mobile coordination requires the
ability to represent information about the tasks of different users, and the ability to in-
teractively process this information. The situations in which these users are involved,

222 Iyad Rahwan, Connor Graham, and Liz Sonenberg

as already discussed, are complex. In this section, we present how an automated ne-
gotiation framework can fulfill these requirements, and hence may be used in order to
support interacting mobile users.

3.1 Conceptual Overview

Our conceptual framework for mobile coordination through automated negotiation is
illustrated in figure 1. An agent running on a user’s mobile device acts as an interme-
diary between the user and other potential collaborators. The agent gathers information
from the environment (e.g., lecture times, location of user and colleagues) and from the
user (e.g., availability, goals). The agent then uses this information, as well as domain-
specific knowledge (e.g., procedures for borrowing books from the library) in order to
negotiate with agents representing other users. Negotiations are motivated by the user’s
goals and aim at achieving ‘deals’ with other users and present the opportunity to al-
leviate the difficulties presented to mobile users involved in impromptu coordination.
Negotiation may result in useful potential deals (e.g., appointment, lunch, lift home),
these are proposed to the respective users, who might accept, reject, or modify these
deals as they see suitable. To enable this kind of automated support, we need to encode
information about users goals and use this information in the negotiation process. In or-
der to address this issue, the automated negotiation framework we adopt enables agents
to exchange information about their respective users’ goals. As a result, agents are more
likely to improve the likelihood and quality of a deal.

3.2 The Negotiation Framework

Since we require a negotiation mechanism that exploits representations of users’ tasks
and goals, we base our framework on the recently proposed interest-based negotiation
framework [11]. We now give a brief overview of the framework.

Each computational agent has explicit representations of its desires. In order to
achieve its desires, an agent decomposes these desires into less abstract goals, which
may themselves be decomposable into other (sub-)goals, until concrete actions are
reached (i.e., physical actions agents may execute directly in the world). This results
in a hierarchical structure in which the top-level root nodes represent desires, interme-
diate nodes represent abstract goals, and leaf nodes represent concrete actions to be
executed.

The framework involves a set AGENTS of agents, a set PROPS of belief propo-
sitions representing the agent’s view of the world, and a set ACTIONS of actions.
The framework makes use of planning rules of the form ϕ1 & . . . & ϕn → h, where
ϕ1, . . . , ϕn ∈ PROPS ∪ ACTIONS and h ∈ PROPS . Intuitively, a planning rule
means that the agent believes that if actions or sub-goals ϕ1, . . . , ϕn were realised, then
h will be realised. We denote by PRULES the set of all possible planning rules.

Definition 1. (Plan) A plan for desire d ∈ PROPS is a finite tree such that:

– d is the root of the tree.
– A non-leaf node is a proposition p ∈ PROPS and has exactly n children ϕ1, . . . , ϕn

where ϕ1 & . . . & ϕn → p ∈ PRULES .
– The leaves of the tree are actions.

Supporting Impromptu Coordination Using Automated Negotiation 223

An agent i may have more than one desire, defined in a desire set Di. Given a set of
initial desires, the agent selects a consistent (sub-)set of these desires, which can also be
achieved using a set of consistent plans2. The agent intends (i.e., becomes committed to)
these desires as well as their corresponding plans. The exact mechanism by which the
agent selects its intended desires and plans (e.g., based on desires’ relative importance,
or plans’ relative costs) is outside the scope of our study3.

Part (a) in Fig. 2 shows a sketch of (parts of) the plan structures for Omar and Jack
from the narrative 1 above. Jack intends to go to the city because it is part of a plan for
getting a book, which is, in turn, part of a larger plan for writing a research paper. To
get a book, Jack needs to both get the book details and go to the city. To write the paper,
Jack also needs to collect data, and possibly achieve other goals and actions. This is
encoded in the following rules4:

getBookDetails & goToCity → getBook

getBook & collectData → writePaper

On the other hand, Omar wants to go home, and one way to do so is to get a lift.
Since agents are not always capable of achieving their goals individually, they may

choose (or need) to negotiate with other agents in order to obtain their commitments
towards achieving certain actions. A contract specifies what actions each agent has to
perform.

Definition 2. (Contract) A contract is an expression of the form

Do(x1, α1) ∧ · · · ∧Do(xn, αn)

where xi ∈ AGENTS | 1 ≤ i ≤ n and where Do(xi, α) denotes that agent xi will
execute action α.

Negotiation aims at achieving a deal: a contract that is acceptable by all agents required
to perform actions within that contract.

Participants in the negotiation dialogue may exchange information about each oth-
ers’ plan structures according to a specific interaction protocol. They can then exploit
and/or influence each others’ plan structures in order to enable or improve agreement(s).
Agents interact using a set of locutions (or primitive message types), which can be ex-
changed by agents according to a protocol. Due to space limitations, we only present
the locutions along with an informal explanation.

L1 PROPOSE(i, j, Ω): Agent i proposes a contract Ω to agent j.
L2 ACCEPT(i, j, Ω): Agent i accepts contract Ω previously proposed by j.
L3 REJECT(i, j, Ω): Agent i states that contract Ω is not acceptable to it.
L4 ASSERT(i, j, X): Agent i states that it believes statement X .
L5 QUESTION(i, j, X): Agent i asks agent j whether it believes statement X .

2 More details on the formal model can be found in [9].
3 This may be operationalised, for example, using a hierarchical planner [2].
4 Note that for the time being, we use a simple notation for describing rules. More realistically,

one would need to express and reason about the temporal aspects of actions.

224 Iyad Rahwan, Connor Graham, and Liz Sonenberg

L6 CHALLENGE(i, j, X): Agent i asks agent j to provide a justification for formula
X .

L7 RETRACT(i, j, X): Agent i retracts formula X that it previously asserted.
L8 REQ-PURPOSE(i, j, x): Agent i asks agent j to assert one of the super-goals of

the action or goal denoted by x.
L9 REQ-ACHIEVE(i, j, x): Agent i asks agent j to explain how it intends to achieve

the goal or desire denoted by x.
L10 QUIT(i): Agent i announces its withdrawal from the negotiation dialogue.
L11 PASS(i): Allows agent i to pass its turn in the dialogue.

Using locutions L5, L8, L9 and L4, agents can exchange information about each others’
plans. Then, they could influence each others’ plans by doing one of the following:

– Argue that some of the beliefs or rules used in constructing a plan is incorrect. This
may be achieved through a combination of challenges and counter assertions (using
L6 and L4);

– Introduce new beliefs or planning rules, by making new assertions;

These forms of influence may cause a variety of changes in the receiving agent’s adop-
ted plans and selected desires. Based on this, agents may be endowed with a variety of
strategies that guide the way they influence each other. We do not further explore these
issues here, but the reader may refer to [10, 11] for a more elaborate discussion.

3.3 Illustrative Example

Let us revisit the narrative introduced in section 2.3. Recall the situation where Omar
fails to get in contact with his wife to secure a lift home. A device equipped with nego-
tiation abilities could automatically attempt to find alternative ways to get a lift home
by searching for nearby friends and checking (with their devices) for potential coordi-
nation. As soon as Omar’s device detects that Jack is in a nearby area, it requests a lift
from Jack’s device. Upon inspection of the request, Jack’s device discovers there is not
enough time to drop by the university if Jack was to pick the book from the city on time;
i.e., that there is some form of conflict between the two actions (in this case, the conflict
is temporal). Omar’s device could attempt to find out the reason behind the rejection,
and suggest an alternative plan for getting the book (by Omar lending his copy of the
book to Jack), in exchange for getting a lift.

Table 2 shows the dialogue sequence just described, using the locutions defined in
the previous section, between Omar’s and Jack’s negotiation-enabled mobile devices.
Part (b) in Fig. 2 shows Jack’s modified plan, which now help achieve the desires of
both himself and Omar.

There are other types of arguments that Omar could provide in an attempt to entice
Jack to drop the goal of going to the library. For example, after acquiring more informa-
tion about Jack’s goal structure, Omar may attempt to disqualify Jack’s ultimate goal
of writing a paper, say by stating that data collection cannot be done on time anyway.
See [11] for more details on arguments and locutions.

Supporting Impromptu Coordination Using Automated Negotiation 225

Table 2. Example negotiation dialogue.

Omar: PROPOSE(omar, jack, Do(jack, giveLift)

Jack: REJECT(jack, omar, Do(jack, giveLift)

Omar: PASS

Jack: ASSERT(jack, omar, conflict(goToCity , giveLift))

Omar: REQ-PURPOSE(omar, jack, goToCity)

Jack: ASSERT(jack, omar, prule(getBookDetails &

goToCity → getBook))

Omar: ASSERT(omar , jack, prule(lendBook → getBook))

Jack: PASS

Omar: PROPOSE(omar, jack, Do(omar, lendBook) & Do(jack, giveLift))

Jack: ACCEPT(jack , omar, Do(omar, lendBook) & Do(jack, giveLift))

3.4 Characteristics Revisited

The framework we presented offers the features required to deal with the character-
istics of impromptu mobile coordination discussed in section 2.3 above. In particular,
the framework caters for the fluidity encountered in situations of mobile use involv-
ing impromptu coordination, since coordination does not assume predetermined and
pre-negotiated task structures. Moreover, the focus on tasks and their underlying goals
also enables impromptu realisation of opportunities for coordinating activities. By ex-
pressing the resources and objectives explicitly, it becomes possible to build technology
that processes this information in order to “allow more effective planning and flexible
allocation of resources” [8].

Write paper

Get book

Get
book
details

Go to
city

Negotiate

Jack Omar

Collect
data

Get lift
home

Get
home

8
00

9
00

7
00

Write paper

Get book X

Get
book
details

Give
Omar
Lift

Jack

Collect
data

8
00

9
00

7
00

8
00

9
00

7
00

B
or

ro
w

 b
oo

k

(a) Both agents during negotiation (b) Jack's new plan structure

Fig. 2. An abstract view of negotiation.

226 Iyad Rahwan, Connor Graham, and Liz Sonenberg

4 Conclusions

In this paper, we have argued that automated negotiation technologies, from the multi-
agent systems literature, are valuable for facilitating impromptu coordination among
mobile individuals. We have grounded our discussion in current studies of mobile users
and, through a narrative, identified key issues of mobile coordination and showed how
they may be addressed using negotiation technologies. In particular, we argued for the
suitability of negotiation frameworks that represent and manipulate users’ goals. This
is because negotiation allows coordination to be task-focused in the context of a user’s
current situation, and so no long term coordination structures are required (as is re-
quired, for example, in the Electric Elves project [1]). We have presented a framework
for automated negotiation that exploits a hierarchical representation of tasks and goals,
and demonstrated how it can be used to provide the required support.

In the longer term, future work includes experimenting with, testing, and validating
various negotiation strategies within the negotiation framework in real usage situations
involving interaction with the environment by users and computational agents. Other
future research include detailed consideration of the design and usability issues sur-
rounding the interaction with the user. There is also an opportunity to rationalise the
environment in terms of resources and affordances that agents and users alike can in-
teract with and utilise. For example, a GPS service running on the Internet can be seen
as a resource-for-computational agent and a city building as an affordance-for-human
agent. We hope to explore these notions in future work.

Acknowledgement

Thanks to Michael Rovatsos, Christine Satchell, Greg Wadley, Anton Kattan, and Fer-
nando Koch for useful discussions. We thank Hewlett Packard’s Philanthropy Division
for donating equipment. Iyad Rahwan is grateful for the support of a Melbourne Uni-
versity Research Scholarship and a top-up scholarship from CMIS, CSIRO.

References

1. H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. V. Pynadath, T. A. Russ, and
M. Tambe. Electric elves: Applying agent technology to support human organizations. In
H. Hirsh and S. Chien, editors, Proceedings of the 13th International Conference of Innova-
tive Application of Artificial Intelligence (IAAI-2001). AAAI Press, 2001.

2. K. Erol, J. Hendler, and D. Nau. Semantics for hierarchical task network planning. Technical
Report CS-TR-3239, UMIACS-TR-94-31, Department of Computer Science, University of
Maryland, 1994.

3. W. G. Griswold, R. Boyer, S. W. Brown, T. M. Truong, E. Bhasker, G. R. Jay, and R. B.
Shapiro. Using mobile technology to create opportunitistic interactions on a university cam-
pus. In UbiComp 2002 Workshop on Supporting Spontaneous Interaction in Ubiquitous
Computing Settings, September 2002.

4. E. A. Isaacs, J. C. Tang, and T. Morris. Piazza: a desktop environment supporting impromptu
and planned interactions. In Proceedings of the 1996 ACM conference on Computer sup-
ported cooperative work, pages 315–324. ACM Press, 1996.

Supporting Impromptu Coordination Using Automated Negotiation 227

5. N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and M. J. Wooldridge.
Automated negotiation: prospects, methods and challenges. International Journal of Group
Decision and Negotiation, 10(2):199–215, 2001.

6. M. Kakihara and C. Sørensen. Mobility: An extended perspective. In R. S. Jr, editor, Proceed-
ings of the 35th Hawaii International Conference on Systems Sciences, Big Island, Hawaii,
USA, 2002. IEEE Press.

7. P. Luff and C. Heath. Mobility in collaboration. In Proceedings of the 1998 ACM conference
on Computer Supported Cooperative Work, pages 305–314. ACM Press, 1998.

8. M. Perry, K. O’Hara, A. Sellen, B. Brown, and R. Harper. Dealing with mobility: under-
standing access anytime, anywhere. ACM Transactions on Computer-Human Interaction,
8(4):323–347, 2001.

9. I. Rahwan. Interest-based Negotiation in Multi-Agent Systems. PhD thesis, Department of
Information Systems, University of Melbourne, Melbourne, Australia, 2004. (to appear).

10. I. Rahwan, P. McBurney, and L. Sonenberg. Towards a theory of negotiation strategy (a
preliminary report). In S. Parsons and P. Gmytrasiewicz, editors, Proceedings of the 5th
Workshop on Game Theoretic and Decision Theoretic Agents (GTDT-2003), pages 73–80,
2003.

11. I. Rahwan, L. Sonenberg, and F. Dignum. On interest-based negotiation. In F. Dignum, ed-
itor, Advances in Agent Communication, volume 2922 of Lecture Notes in Artificial Intelli-
gence, pages 383–401. Springer Verlag, Berlin, Germany, 2004.

12. T. Rahwan, T. Rahwan, I. Rahwan, and R. Ashri. Agent-based support for mobile users
using AgentSpeak(L). In P. Giorgini, B. Hederson-Sellers, and M. Winikoff, editors, Agent
Oriented Information Systems, volume 3030 of Lecture Notes in Artificial Intelligence, pages
47–62. Springer Verlag, Berlin, Germany, 2004.

13. N. M. Sadeh. M–Commerce Technologies, Service, and Business Models. Wiley, Hoboken
NJ, USA, 2003.

14. A. Strauss. The Continual Permutations of Action. Aldine de Gruyter, New York NY, USA,
1993.

15. J. Tang, , E. Isaacs, and M. Rua. Supporting distributed groups with a montage of lightweight
interactions. In Proceedings of Conference on Computer Supported Co-operative Work,
Chapel Hill NC, USA, pages 23–34, New York NY, USA, 1994. ACM Press.

16. S. Weiss. Handheld Usability. Wiley, Hoboken NJ, USA, 2002.
17. S. Whittaker, G. Swanson, J. Kucan, and C. Sidner. Telenotes: Managing lightweight inter-

actions in the desktop. Transactions on Computer Human Interaction, 4:137–168, 1997.
18. M. J. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Chichester,

England, 2002.

Specification and Design
of Multi-agent Applications Using Temporal Z

Amira Regayeg1, Ahmed Hadj Kacem1, and Mohamed Jmaiel2

1 Faculté des Sciences Économiques et de Gestion de Sfax,
B.P. 1088, 3018 Sfax, Tunisia

{Amira.Regayeg,Ahmed}@fsegs.rnu.tn
2 École Nationale d’Ingénieurs de Sfax,

B.P.W., 3038 Sfax, Tunisia
Mohamed.Jmaiel@enis.rnu.tn

Abstract. This paper proposes a formal approach, based on stepwise
refinements, for specifying and designing multi-agent applications. This
approach provides a specification language which integrates temporal
logic in the Z notation allowing, in this way, to cover static, behavioural,
as well as dynamic aspects of multi-agent systems. Moreover, it proposes
a methodology giving a set of hints and principles which help and guide
the design process. Indeed, this methodology enables the user to develop
step by step, in an incremental way, an implementation starting from
an abstract requirements (goal) specification. Finally, we illustrate our
approach by developing an agent based solution for the pursuit problem.

1 Introduction

A multi-agent system is defined as a set of autonomous and distributed enti-
ties which cooperate in order to reach a common objective. This cooperation
is essentially based on the exchange of data between these entities, on the one
hand, and on the coordination of their activities particularly when they access
to shared resources, on the other hand. In order to handle these aspects, auton-
omy, communication and coordination, the development of a multi-agent system
should follow two ways diametrically opposite but closely dependent. The first
focuses on the internal structure of agents (intra-agent), whereas the second
concentrates only on the interactions between them (inter-agent). Considering
intra-agent as well as inter-agent aspects makes the development of multi-agent
systems an intricate task. Hence, mastering this complexity requires the appli-
cation of rigourous approaches of software engineering.

In this paper we propose an approach which aims to facilitate the devel-
opment of multi-agent applications while mastering its complexity. In order to
achieve this objective, we follow two complementary principles of formal software
design. The first principle stresses the need of a requirements specification phase.
This phase makes use of formal specifications in order to perform rigourous rea-
soning. The second principle puts the emphasis on the formal design, in order
to ensure the correctness of the design specification with respect to the require-
ments one. Our design process is based on stepwise refinements enabling us to

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 228–242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Specification and Design of Multi-agent Applications Using Temporal Z 229

construct a detailed design specification, step by step, starting from an abstract
requirements one. Doing so, we will be able to better follow the evolution of the
design specification. In this context, refining a specification means enriching it,
in the sense that it becomes closer to the implementation. An abstract speci-
fication may leave some design decisions open, which will be resolved in later
refinement steps [8]. In order to guarantee the correctness of the design specifi-
cation the refinement steps should preserve the properties of the applications to
be developed. Accordingly, it is very important to define a refinement relation
which states if a specification implements another.

In our approach, we suggest a formal specification language which allows
to cover individual (static and behavioural) aspects of agents such as knowl-
edge, goal, and role, as well as collective aspects of a multi-agent application
like interaction protocols, organization structure and planning activities. This
language is an integration of a first order temporal logic [5] in the framework
of the Z notation [7]. In order to provide a formal interpretation for our tempo-
ral operators we suggest an operational semantics for multi-agent applications
in terms of sequences of system states. The definition of this temporal model
within the Z notation enables us to make use of tools supporting pure Z no-
tation, such as Z/EVES [6]. These tools allowed us to perform syntax, type,
and domain checking of our specifications as well as to reason about them by
proving interesting properties. In the context of Z notation, a specification of
a data structure includes two types of schemas in order to describe data and
the operation on them. Generally, the refinement of such a specification requires
data refinement as well as operation refinement respectively for data schema
and operation schema. Since we do not use operation schemas (called also Δ
schemas), we are only interested in refining Z schemas including data as well as
behavioural description in terms of temporal properties. Accordingly, we define
an appropriate data and behavioural refinement relation which extends the data
one presented in [9].

This paper is organized as follows. Section 2 defines the specification language
and its semantics. Then, in section 3 we present our development methodology.
Thereafter, we illustrate our approach by developing a multi-agent solution for
the pursuit problem. Finally, we conclude this paper with some future perspec-
tives.

2 The Specification Language

We consider a multi-agent application as a collection of components which evolve
in a continuously changing environment containing active agents and passive ob-
jects. Accordingly, the specification of a multi-agent application includes descrip-
tions of the environment, the behaviour of individual agents (intra-agent), and
the communication primitives as well as the interaction protocols (inter-agent).
In addition, we may add to the collective part a description of the organizational
structures and planning activities.

For the specification of multi-agent applications, we use an integration of
temporal logic in Z schemas.

230 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

2.1 The Z Notation

The Z notation, as presented in [7], is a model oriented formal specification
language which is based on the set theory and the first order predicate logic.
This language is used to describe an application in terms of states which may
change. A basic type is defined using one or several basic types. The definition
of a composed type, with a collection of objects, needs a schema language. The
latter is used to structure and to compose such specifications: collecting objects,
encapsulating them, and naming them for reuse. A schema consists of two parts:
a declaration part and a predicate part constraining the values of the declared
variables. A Z schema has the following form:

SchemaName
Declaration

Predicate, . . . , Predicate

2.2 The Temporal Logic

The linear temporal logic, as presented by Manna and Pnueli [5], is suitable
for the specification and the verification of concurrent and interactive systems.
Actually, there is a variety of temporal operators that can be used to express
agents behavioural properties. However, all these operators can be defined in
terms of two basic operators. In this paper, we make use only of the necessary
operators for development of our multi-agent applications. In the following, we
briefly present these operators with an intuitive explanation. Let P be a logical
or a temporal formula:

�P P holds “now”1 (� may be omitted);
� P “always P”, i.e. P holds for the present and for all future points in time;
♦P “eventually P”, i.e. P holds at some present or future point in time;◦P “nexttime P”, i.e. P holds at the next point in time.

In order to integrate these temporal operators in the framework of the Z lan-
guage, we give the following definition of temporal formulas according to the
syntax of Z. We distinguish simple predicate formulas (formula), which are
closely related to the application to specify, and temporal formulas (Tempfor-
mula) which connect predicate formulas with temporal operators.

Tempformula ::= 〈〈formula〉〉 | ◦ 〈〈Tempformula〉〉 | � 〈〈Tempformula〉〉 |
♦ 〈〈Tempformula〉〉 | � 〈〈Tempformula〉〉

We will see later that these operators are sufficient to express interesting prop-
erties of multi-agent applications.

1 We explain the operators while being based on a concept of “time”, but really the
fundamental notion is the one of causality.

Specification and Design of Multi-agent Applications Using Temporal Z 231

2.3 The Time Model

The basic unit of the underlying time model is the agent state. Let [State] be
the set of possible agent states. We define an entity state (Entstate) as a pair
of a state and a point of time, where the time is specified as the set of natural
numbers (Time == {x : N}):

Entstate
time : Time
state : State

A system state (Syststate) is defined as the union of all agents states:

Syststate
syststate : FEntstate

A time structure (StrTime) is defined as an axiomatic function that associates
to each point of time the corresponding system state:

StrTime : Time → Syststate

∀ t : Time • ∃ s : Syststate • ∀ e : Entstate | e ∈ s .syststate •
StrTime(t) = s ⇔ e.time = t

Based on this time structure we will be able to interpret any temporal formula.

2.4 The Semantics of Temporal Formulas

In this section, we define an evaluation function that associates the value true
or false to any temporal formula. This step is very significant since it enables to
translate temporal formulas into the pure Z notation2. In this way, it becomes
easy to use the verification tools, such as Z/EVES or Isabelle, which accept
the standard syntax of Z. First, we provide an axiomatic function (Eval) which
evaluates a simple formula in a given system state:

Eval : formula × Syststate → bool

Next, we define a similar axiomatic function for temporal formulas. This func-
tion gives a formal interpretation for the temporal operators � , � , ♦ , and ◦
with respect to a given time structure. For each operator, the recursive function
TempEval defines a predicate which matches its intuitive meaning. In the fol-
lowing Z schema we present only the predicate defining the “always” operator.
The predicates defining the other operators are similar.

2 It should be stressed that temporal operators do not extend the expressive power of
the Z notation based on the first order predicate logic.

232 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

TempEval : Tempformula × StrTime → bool

∀ f : Tempformula • ∀ t : Time • ∀ tt : Time | tt ≥ t • ∀S ,SS : Syststate •
TempEval(� f , (t ,S)) = T ⇔ SS = StrTime(tt) ∧

TempEval(f , (tt ,SS)) = T

Finally, in order to integrate the temporal operators in their usual notations (i.e.
� for always) in the Z schema it is necessary to introduce them as axiomatic
functions defined with the help of the interpretation function TempEval. In this
way, we establish a logical equivalence between a temporal operator and the cor-
responding predicate specified in the above function TempEval. This equivalence
is described for the � operator as follows:

[Tempformula]
� : Tempformula → bool

∀ f : Tempformula • ∃ present : Time • ∀ t : Time | t > present •
∃S : Syststate • � f = T ⇔ S = StrTime(t) ∧
TempEval(� f , (t ,S)) = T

The other temporal operators are introduced with similar axiomatic functions.

3 Formal Design Approach

In order to be useful, a formalism or a set of tools have to be supported with a
specification approach. This approach should provide some principles that help
and guide the specification process. In this section, some of those principles are
clarified.

Indeed, our approach is based on three principal phases. The first one is a
specification phase in which we describe, in an abstract way, the user require-
ments. The second one is a design phase based on a succession of refinements
in terms of collective behaviours (inter-agents) as well as individual behaviours
(intra-agent). The requirements specification is thus presented by Z schemas
which language is extended by temporal logic. The third phase consists of per-
forming verification tasks by formulating and reasoning about the main proper-
ties of the multi-agent application to be developed.

3.1 Specification Phase

Generally, in this first phase we specify the requirements which correspond, in
the context of multi-agent, to the common objective they have to achieve. It
should be stressed that we are not interested, at this stage, in the manner of
achieving this goal. In our approach, this stage includes also the description of the
environment in which the agents evolve. This environment includes, generally,
the work area, the passive objects, and the active entities representing the agents
to be employed. The requirements specification is thus presented by a set of Z
schema which properties language is extended by temporal logic.

Specification and Design of Multi-agent Applications Using Temporal Z 233

1. Specification of theActiveEntities: The description of an active entity (agent),
at specification phase, consists in presenting, in terms of temporal formula, its
static and dynamic original properties. These properties are the information
acquired on the agents at the beginning. This description is given by a Z
schema which declares the entity attributes, defines its static properties, in
term of predicate logic, and its behavioural properties, in term of temporal
logic.

Entity
atr1 : Type1, atr2 : Type2 . . . atrm : Typem

Spr1, . . . , Sprn
Cpr1, . . . , Cprn′

Where atri corresponds to an attribute, Spri represents a static property and
Cpri represents a behavioural property.

2. Specification of the Environment: The environment includes active entities
(agents) as well as passive entities belonging to the operating field. This
specification is given by a set formulas making in relation passive entities
with those which are active. Generally, this leads to Z schema of the form:

Environment
obj1 : TypeObject1, obj2 : TypeObject2, . . . , objk : TypeObject1
Entities : set of Entity

Pr1, Pr2, . . . , Prl

Where obji corresponds to a passive entity, Entities represents a set of entities
where cardinality is unknown at the beginning, and Pri represents a temporal
formula.

3. Specification of the Requirements: This specification describes what we require
from the system to develop. In the context of multi-agent, this corresponds
to formulate, in term of temporal formula, a future environment state to be
reached. According to the Z approach, such a specification is well expressed
by a specialization of the schema specifying the environment. Generally, re-
quirements specifications have the following form:

Spec
Environment

Tpr1, Tpr2, . . . , Tprn

Where Tpr1 represents a temporal formula.

3.2 Refinement Phase

The basic idea consists in performing a succession of refinements in terms of
specializations of Z schemas (data refinement) and deriving of temporal formulas
(behaviour refinement).

234 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

Refinement Relation. First of all we define a refinement relation between
specifications telling if a specification implements another. In the context of Z
notation, we adopt the � relation defined in [9] with some restrictions. Concern-
ing the data refinement, a schema Sj refines another schema Si (written Si � Sj)
if and only if the attributes of Si are included in the declaration part of Sj . This
inclusion of attributes can appear following a schema inclusion (Sj schema) or
by a new declaration of these attributes (S ′

j schema):

Si

Att1 : Type1

Att2 : Type2

Operations

Sj

Si (schema inclusion)
Att3 : Type3

Operations

S ′
j

Att1 : Type1 (attribute of Si)
Att2 : Type2 (attribute of Si)
Att3 : Type3

Operations

Concerning the behavioural part which is specified in terms of temporal for-
mulas the refinement relation is defined between temporal specifications. For
this purpose, we adopt the refinement relation applied in [3] for designing com-
municating protocols using algebraic and temporal specifications. A temporal
specification (set of temporal formulas) TSpec = {F1, F2, . . . , Fn} refines an-
other one TSpec′ = {F ′

1, F ′
2, . . . , F ′

m}, written TSpec′ � TSpec, if every formula
F ′

i in TSpec′ could be derived from TSpec, denoted TSpec � F ′
i , that is the

validity of F ′
i could be inferred from the validity of the formulas in TSpec using

the calculus of the first order temporal logic.

Refinement Process. The refinements are carried out at two complementary
levels. The first, is the environment level which will be augmented by properties
referring, primarily, to collective aspects (inter-agent) characterizing, in particu-
lar, organization and communication structures. The second level rather stresses
on the individual aspects (intra-agent) by extending the specifications of the
active entities provided in the first phase. The extensions of individual speci-
fications have to remain consistent with the extensions made at the collective
level.

Collective Level: Here we invent a suitable organization structure as well as a
communication topology for the system to be developed. An organization struc-
ture assigns a role for each active entity belonging to the system. Furthermore,
it implicitly defines a control strategy to be respected by these entities. This
structure is, generally, defined in terms of temporal formulas referring to several
entities at the same time. A sequence of Z schemas will be then generated:

Implementation1, Implementation2, . . . , Implementationn

Specification and Design of Multi-agent Applications Using Temporal Z 235

The first schema corresponds to a direct refinement of the environment specifi-
cation. It is of the form:

Implementation1

Environment

Org1, Org2, . . . , Orgk

Where Orgi is a temporal formula that assigns roles to one or many entities.
These formulas correspond to design decisions describing an organization struc-
ture. Each Z schema implementationi (i > 1) is a refinement (specialization) of
the previous one implementationi−1. These intermediate schemas may contain
design decisions related to the communication topology and actions. It is obvi-
ous that the last schema implementationn is, by transitivity, a refinement of the
initial environment schema.

Individual Level: Here we make use of the choices made at the collective level
in order to refine, step by step, the internal structure and the behaviour of each
agent. For each entity, we develop a succession of refinements as follows:

EntityImpl1, EntityImpl2, . . . , EntityImplm

The first schema is an immediate refinement of the retained one at the specifi-
cation phase. This schema is of the form:

EntityImpl1
Entity

Behav1, Behav2, . . . , Behavl

Where Behavi is a property describing a design decision related to the behaviour
of the considered entity. These properties are given by individual temporal for-
mulas referring to only one entity. Hence, each intermediate schema Entityimpli
is a refinement of the diagram Entityimpli−1. The design phase leads to a de-
tailed specification of the environment and detailed behaviours of the active
entities. The refinement specification corresponds to the schema for the environ-
ment (Environment) extended with the union of the properties added at both
collective and individual levels.

3.3 Verification Phase

This phase allows to reason, according to the Z notation combined with temporal
logic, about the schemas developed during the specification phase. Essentially,
we are interested in proving the consistency and the completeness of the global
specification resulting from the composition of the agent’s individual specifica-
tions. On the basis of a set of abstract properties, which are specific to the
application to be developed, we try to check the mentioned properties of consis-
tency and the completeness of the global specification. Generally, we develop a
schema Z which gathers a set of global and abstract properties:

236 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

Spec
Environment

Tpr1, Tpr2, . . . , Tprn

Where Tpr1 represents a temporal formula. It is very important to use automatic
tools which support the proof of the desired theorems. The temporal logic model
that we proposed in the previous section makes possible the use of automatic
tools, such as Z-Eves [6], while integrating temporal formulas in our specifications
and theorems.

4 Case Study: The Pursuit Problem

We illustrate our approach by specifying a multi-agent solution for the pursuit
problem. This application includes one prey and four predators. The prey moves
randomly on a grid without perception of its environment. The predators coop-
erate to capture the prey using their perception and communication abilities.

Initially, each predator moves independently of the others. As soon as one
predator perceives the prey, it follows the prey until its capture from the nearest
side. This predator, which will play the supervisor role, will regularly inform the
others about the current prey position. From this moment and based on the re-
ceived information, each predator tries to capture the prey from the appropriate
side, according to its position on the grid.

4.1 Specification Phase

Specification of the Environment: A box on the grid is defined by its ab-
scissa and ordinate.

Box
abs : N

ord : N

abs ≥ 0 ∧ ord ≥ 0

The basic concept, Entity, is characterized by its state (Entstate). So, we specify
formally the entity state by the position (pos) that it occupies on the grid at a
given time point.

Entstate
time : Time
pos : Box

A system state (Syststate) is defined as the union of the states of all agents:

Specification and Design of Multi-agent Applications Using Temporal Z 237

Syststate
syststate : FEntstate

An Entity is able to move randomly (ChangePos) on the grid. However, it can
make at most one step (to the left, the right, the south, or the north) at a
moment. This ability is formally specified in the following schema:

Entity
state : Entstate
ChangePos : Box × Box → bool

∀ s1, s2 : Box | s1 = state.pos • ∃ i , j : N | i ∈ {0, 1,−1} ∧ j ∈ {0, 1,−1}
∧ (i = 0 ∨ j = 0) • ChangePos(s1 , s2) = T ⇔ s2.abs = s1.abs + i ∧

s2.ord = s1.ord + j
∀ s1, s2 : Box | s1 = state.pos • nextChangePos(s1, s2) = T

As mentioned in the previous section, atomic formulas are, generally, specific
for the application to specify. So, we define, in the following, the set of atomic
formulas relating to our application. An atomic formula may be a predicate
describing an entity state. Formally:

formula == {predicate : bool} (1)

A Prey is a simple entity, whereas a Predator is able to perceive other entities.

Predator
Entity
Perception : F Entity

Perception = {e : Entity |
(state.pos .abs − 2 ≤ e.state.pos .abs ≤ state.pos .abs + 2) ∧
(state.pos .ord − 2 ≤ e.state.pos .ord ≤ state.pos .ord + 2)}

An environment is composed of a grid, a prey and four predators. It has to
meet two conditions. First, two entities cannot occupy the same box on the grid.
Second, an entity should not leave the grid. Formally:

Environment
X : N

Y : N

prey : Entity
pr1, pr2, pr3, pr4 : Predator

∀ e : Entity • (e.state.pos .abs ≤ X) ∧ (e.state.pos .ord ≤ Y)
∀ e1, e2 : Entity • (e1.state.pos = e2.state.pos) ⇔ (e1 = e2)

238 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

Useful Definitions: In order to simplify our specifications and make them
more readable, we provide some useful abbreviations. First, we define the Side
type including exactly four values corresponding to the sides from which the
prey can be captured.

Side ::= North | South | East |West

Second, we define an axiomatic function SideCaptured testing if the prey is
captured by a predator from a given side. The following definition presents only
the predicate relating to the South side. The predicates for the other sides are
similar.

SideCaptured : Entity × Predator × Side → bool

∀ a : Entity • ∃ b : Predator •
SideCaptured(a, b,South) = T ⇔ b.pos .abs = a.pos .abs ∧
b.pos .ord = (a.pos .ord + 1)

The axiomatic function Captured abbreviates the fact that the prey is captured
from all sides by the four predators.

Captured : Entity × PPredator → bool

∀ a : Entity • ∃ b1, b2, b3, b4 : Predator •
Captured(a, {b1, b2, b3, b4}) = T ⇔ SideCaptured(a, b1 ,North) = T ∧

SideCaptured(a, b2,South) = T ∧ SideCaptured(a, b3,East) = T ∧
SideCaptured(a, b4,West) = T

Agent Actions: Before presenting the detailed specifications of the individual
and collective aspects of our application, we introduce the set of possible actions
which may be performed by a predator. We distinguish two kinds of actions:
internal and external. Internal actions are instructions enabling a predator to
update its mental state by revising its knowledge base or changing its local goal.

– Updating the knowledge base: updateBase 〈〈Predator × Box 〉〉
It consists in updating the knowledge base after receiving a new prey posi-
tion.

– Updating the goal: updateGoal 〈〈Predator × Side〉〉
Corresponds to updating the goal after receiving the information telling that
the prey has been already captured from the envisaged side.

– Updating the destination: updateDest 〈〈Predator × Box × Side〉〉
It consists in updating the attribute destination following the reception of a
captured side.

In our context, the communication actions which are considered as external are
very essential. We identified three communication actions: send, receive, and
broadcast.

Specification and Design of Multi-agent Applications Using Temporal Z 239

– Send action: send 〈〈Predator × Predator ×Message〉〉
This action enables a predator to send some information to another predator.

– Diffusion action: broadcast 〈〈Predator × P Predator ×Message〉〉
This action allows to broadcast the same information to a set of predators.

– Receipt action: receive 〈〈Predator × Predator ×Message〉〉
This action enables a predator to receive an information sent by another
predator.

A message may inform about the prey position (Pos), it may be a request made
by a predator to the supervisor (Request), or it may be an assignment of a local
goal made by the supervisor to a predator (Assign).

Message ::= Pos〈〈Box 〉〉 | Request〈〈Box 〉〉 | Assign〈〈Entity × Side〉〉

It is very important to note that we consider in our approach synchronous com-
munication between agents. Moreover, we suppose that communication mediums
are absolutely reliable. This is formally described by the following equivalences:

∀ a, b, b1, ..., bn : Predator • ∀message : Message •
broadcast(a, {b1, ..., bn},message) = T ⇔∧

i∈{1,...,n}
receive(bi , a,message) = T

send(a, b,message) = T ⇔ receive(b, a,message) = T

4.2 Refinement Phase

In this section, we propose to design, in a first level, the individual aspect of the
application and in a second level, the collective aspect. These two levels will be
described by axioms that will be added to the schema of the predator.

Individual Aspect. During the game, the possible scenarios as well as the
different acts of communication determine the agent mental state (knowledge
base) and its future behaviour. This is represented in the different refinements
that follow:

– The predator updates its knowledge base as soon as it perceives the prey:

Predator0
Predator

∃ prey : Entity •
updateBase(prey.state.pos) = T ⇒ posprey = prey.state.pos

∀ prey : Entity • ∃ s : Syststate | prey.state ∈ s .syststate •
prey ∈ Perception ⇒◦ (updateBase(prey.state.pos), s) = T

– others updates of the knowledge base, the destination or the goal are done
due to:
• the receipt of an information about the prey position: Predator1
• the receipt of an affectation of capture side: Predator2

240 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

– Another conceptual decision concerns the speed of predator displacement.
The predator speed must be superior to the prey speed: Predator3

– Once a predator comes to capture the prey on one side, it is going to remain
there always.

Predator4
Predator3

∃ prey : Entity • ∃ side : Side •
∃ s : Syststate | prey.state ∈ s .syststate •
SideCaptured(prey, side) = T ⇒ � (SideCaptured(prey, side)), s) = T

These refinements constitute the description of the individual aspect of the
MAS. This aspect concerns the properties referring to one agent whereas the
proprieties in the collective aspect, subject of the next section, refer to many
agents.

Collective Aspect. Our methodology consists in refining, step by step, the
initial specification.
So, we give some modifications to Environment where we use the Preda-
tor4 and where we describe the Captured predicate and the communication
equivalence between send and receive actions.
• Definition of the organizational structure: In our example, we can distin-

guish between a supervisor predator (the first that perceives the prey)
and the other predators. We define, then, a supervisor schema:

Supervisor == {pr : Predator | ∃ e : Entity • e ∈ pr .Perception}

The supervisor is charged to capture the prey of the nearest side and
to distribute a request of information about the current positions of the
other predators in order to affect the remaining sides. Thus, in this stage,
a first implementation of the game is:

GameImpl0
Environment0

pr1 ∈ Supervisor

• In order to describe the communication structure, we will define the
communication acts that could take place between the different predators
referring to the following property:

a, b, b1, ..., bn : Predator
message : Message
broadcast(a, {b1, ..., bn},message) = T ⇔∧

i∈{1,...,n}
receive(bi , a,message) = T

send(a, b,message) = T ⇔ receive(b, a,message) = T

Specification and Design of Multi-agent Applications Using Temporal Z 241

We can, further, refine the conception of the game : GameImpl1 and
GameImpl2.
Finally, the receipt of the capture side, by each predator, guarantees the
sides affectation:

GameImpl3
GameImpl2

∀ pr : Predator4 | pr ∈ {pr2, pr3, pr4} • ∃ side : Side •
∃S : Syststate • pr1.receive(pr ,Pospr .state.pos) = T ⇒

♦ (pr1.send(pr ,Affect(prey, side)),S) = T

4.3 Verification

In the verification phase, starting from a requirements specification, we try to
prove the set of the theorems that may be generated from it. The requirements
specification of the pursuit problem requires that the four predators eventually
capture the prey from all sides. This is given by the following schema:

ReqSpec
Environment

♦� Captured(prey, {pr1, pr2, pr3, pr4}) = T

To this schema leads the following theorem those we are charged to reduce to
true:

Theorem 1. axiomGameSpecFin
PreyPredSpec ⇒ ♦� Captured(prey, {pr1, pr2, pr3, pr4}) = T

The proof of these theorems has been accomplished with the Z/EVES tool.

5 Conclusion

In this paper we proposed a formal approach for the development of multi-agent
applications. Our contribution concerns, first, the definition of a formal language
which covers the static and the behavioural aspects of agents by integrating tem-
poral operators within Z notation. Then, we defined a methodology that permits
to develop, step by step, in an incremental way, a design from an abstract specifi-
cation. The investigation of the pursuit problem allowed a first illustration of our
approach. Other case studies are under realization (e.g. the conflicts control in
the air-traffic). However, it is necessary to point out that these first results, even
original and promising, constitute a modest contribution to the problematic of
multi-agent formal development. In a short term, we will proceed to automate
the syntactic verification and the semantic validation of the well constructed
specifications as well as the formal reasoning on these latest. Further, we plan to
implement a tool-kit to deal with the steps of the proposed methodology. It is
obvious that such tools must be coupled up with an environment that provides
verification and reasoning about specifications such as Z/EVES [6] or Z-Hol [4].

242 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

References

1. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of
dMARS. In Intelligent Agents IV: Proceedings of the Fourth International Workshop
on Agent Theories, Architectures and Languages, 1998.

2. A. El Fallah. Représentation et manipulation de plans à l’aide des réseaux de Petri.
Actes des 2èmes Journées Francophones IAD-SMA, 1994.

3. M. Jmaiel and P. Pepper. Development of communication protocols using algebraic
and temporal specifications. Computer Networks Journal, 42:737–764, 2003.

4. R. Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in
isabelle-Hol. In J. von Wright, J. Grundy, and J. Harrison, editors, 9th International
Conference on Theorem Proving in Higher Order Logics, LNCS 1125, pages 283–298.
Springer Verlag, 1996.

5. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

6. I. Meisels and M. Saaltink. The Z/EVES 2.0 reference manual. Technical Report
TR-99-5493-03e, ORA Canada, Canada, 1999.

7. M. Spivey. The Z notation (second edition). Prentice Hall International, 1992.
8. V. Von. An Integration of Z and Timed CSP for specifying Real-Time Embedded

Systems. PhD thesis, 2002.
9. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice

Hall, 1996.

Bio-inspired Deployment of Distributed Applications

Ichiro Satoh

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Tel: +81-3-4212-2546, Fax: +81-3-3556-1916
ichiro@nii.ac.jp

Abstract. This paper presents an approach to developing and managing self-
organizing distributed computing systems. The approach is used to construct an
application as a dynamic federation of mobile components that can migrate from
computer to computer while the application is being executed. It also enables
each component to explicitly define its own migration policy as the migration of
other components. Therefore, a federation of components can be migrated and
transformed according to its components’ local policies, including bio-inspired
deployment approaches. The approach was implemented as not only a test-bed
system for the organization of multi-agents but also a middleware for real dis-
tributed systems. This paper describes a prototype implementation of the middle-
ware built on a Java-based mobile agent system and its applications that illustrates
the utility and effectiveness of the approach.

1 Introduction

Distributed computing systems are often composed of a number of software compo-
nents, which run on different computers and interact with each other via a network. The
complexity of modern distributed systems has already frustrated our ability to deploy
components at appropriate computers through traditional approaches, such as central-
ized and top-down techniques. It is difficult to adapt such systems to changes in exe-
cution environments, such as adding or removing components and network topology,
and to the requirements of users. This problem becomes more serious in ubiquitous
computing as well as large-scale distributed systems, because ubiquitous computers are
heterogeneous and their computational resources, such as processors, storage, and input
and output devices, are limited so that they can only support their own initial applica-
tions. An application can execute on a group of one or more computers to satisfy its
own requirements beyond the capabilities of individual computers. Moreover, such a
group must be configurable in run-time because the goals and positions of users may
change dynamically. We believe that the solutions to extreme dynamics and complex-
ity in distributed systems, including ubiquitous computing environments, are based on
metaphors drawn from biological processes.

Therefore, this paper presents a framework to adapt a federation of components,
which may run on heterogeneous computers, to changes in user requirements and their
associated contexts, such as locations and tasks. The framework is based on two key
ideas. The first is to implement components as mobile agents that can travel from com-
puter to computer under their own control. That is, each component can autonomously

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 243–258, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 Ichiro Satoh

Speculative Deployment of Components as Cell-Lamellipodia. Lamellipodia are
flattened and protrusive projections that periodically expand from the surface of a cell.
Effective movement requires a motile cell to be polarised, so that its protoplasm mem-
brane is relatively quiescent everywhere else except its leading edge where lamellipodia
periodically project outward in all directions. As they pull on one another they create
intervening regions in which the cortex is stretched. This tug of war continues until one
lamellipodium aligns in a dominant direction and becomes unipolar, then migrates in
that direction. Lamellipodia can be viewed in terms of speculative migration or expan-
sion. Each component, however, should migrate to one of the most eligible computers
that can satisfy its requirements as long as its migration constraints are valid. However,
it cannot always establish precisely which destination is the most suitable. This frame-
work permits a component to speculatively deploy its clones at multiple computers and
to select one of the most appropriate clones. This mechanism corresponds to the process
lamellipodia go through in motile cells.

2.3 Architecture

Our framework should be used as a general test-bed for providing various bio-inspired
approaches in distributed systems as well as a middleware for adaptive distributed sys-
tems. There may also be one or more approaches to deploying components in a dis-
tributed system, because these are often application-specific. Therefore, the framework
itself should be as independent as possible of any component-deployment approach
and of any particular phenomenon in biological processes. By separating component-
deployment approaches from infrastructures, the framework provides a general middle-
ware for exchanging components between computers and enables such approaches to
be implemented within components instead of the middleware. That is, each compo-
nent can have its own deployment policy for specifying spatial constraints between its
location and the locations of other components at neighboring computers. As a result,
a federation of components is managed by each of the components’ policies instead of
any global policy.

3 Design and Implementation

The framework presented in this paper was implemented in Sun’s Java Developer Kit
version 1.4 and uses a Java-based mobile agent system to provide mobile components.
It consists of two parts: mobile components and component hosts. The first defines par-
titioned applications. The second is a middleware and enables components to migrate
from computer to computer.

3.1 Mobile Component

It is almost impossible to automatically partition existing standalone applications across
multiple computers. Instead, this framework relies on the concept of a component-based
application construction [21]. That is, an application is loosely composed of software
components, which may run on different computers. In the current implementation of
the framework, each component is a collection of Java objects in the standard JAR

Bio-inspired Deployment of Distributed Applications 247

file format that can migrate from computer to computer and duplicate itself through
mobile agent technology1. After arriving at its destination or being duplicated, each
component can continue working without losing the accumulated work, such as the
content of instance variables in the component’s program, at the source computers. It
is also equipped with its own identifier and that of the federation that it should belong
to. It can explicitly specify the computational capability that its destination hosts must
offer in CC/PP (composite capability/preference profiles) [23] form as we will discuss
later. If a component is on a computer that cannot satisfy its requirements, its intent is
to leave the computer.

As we will discuss in the following section, although the current implementation
supports five several migration policies for the mobilities of two components, we will
only present two typical policies as follows:

– When a component declares follow for another component, if the other component
moves, the declarer or its clone migrates to the destination or a nearby proper host.

– When a component declares fill for another component, if the other component
moves, the declarer or its clone migrates to the source of the latter component or a
nearby proper host.

The first policy gathers components around specified components like aggregating dic-
tyostelium and the second policy makes components track the footprints of other mov-
ing components like cytoplasmic streaming in cells. Fig. 3 and 4 have examples of
the group migration of three components. When component B has a follow policy for
component A and component C has a dispatch policy for component B, if compo-
nent A moves, component B moves to component A’s destination host because the host

follow
hook

step 2

step 3

follow hook

step 1

follow
hook

component
migration

cell cell

cell cell

cell cell

component
migration

computercomputer

A

computercomputer

follow hook

A

A

B

B

B

step 2

step 3

fill hook

step 1

fill
hook

cell cell

cell cell

cell cell

computercomputer

A

computercomputer

fill hook

A

A

B

B

B

fill
hook

component
migration

component duplication and
migration

B

original

Fig. 3. Component migration with relocation policies.

1 JavaBeans can easily be translated into components in the framework.

250 Ichiro Satoh

support digital signatures, allowing for authentication. It also uses Java’s object seri-
alization package for marshaling components, which can save the content of instance
variables in a component program but does not support the stack frames of threads
being captured. Consequently, component hosts cannot serialize the execution states
of any thread objects. Instead, when a component is marshaled and unmarshaled, the
component host propagates certain events to its components to instruct the components
to stop their active threads, and then automatically stops and marshals them after a
given period. Moreover, each host has a database on the locations of components it has
received to support migration-transparent inter-component interactions. When a com-
ponent moves, the source host forwards messages to the moved component and the
destination host updates the databases of other hosts by multicasting control messages.

4 Component Programming

In this framework, each component is implemented as a collection of Java objects that
are defined as subclasses of the Component class as follows:

class Component extends MobileAgent implements Serializable {
void go(URL url) throws NoSuchHostException { ... }
setPolicy(ComponnetProfile cref,

MigrationPolicy mpolicy, boolean coexist) { ... }
setTTL(int lifespan) { ... }
void setGroupIdentifier(GroupIdentifier gid) { ... }
GroupIdentifier getGroupIdentifier() { ... }
void setComponentProfile(ComponentProfile cpf) { ... }
ComponentProfile getComponentProfile(ComponentRef ref) { ... }
boolean isConformableHost(HostProfile hfs) { ... }
....

}

We will explain some of the methods defined in the Component class. A component
executes the go(URL url) method to move to the destination host specified as the
url by its runtime system. The setTTL() specifies the life span, called Time-To-
Live (TTL), of the component. The span decrements the TTL value as the passage
of time. When the TTL of a component becomes zero, the component automatically
removes itself. The setGroupIdentifier() method ties the component to the
identity of the federation specified as gid. Each component can specify a requirement
that its destination hosts must satisfy by invoking the setComponentProfile()
method, with the requirement specified as cpf. The class has a service method called
isConformableHost(), which the component uses to decide whether or not the
capabilities of the component hosts specified as an instance of the HostProfile
class can satisfy the requirements of the component. Each component can have more
than one listener object that implements a specific listener interface to hook certain
events issued by the runtime system before or after changes in its life-cycle state.

4.1 Migration Policy Programming

While each component is running, it can declare its own migration policy by invoking
the setPolicy method of the Component class as follows:

setPolicy(cref, mp);

Bio-inspired Deployment of Distributed Applications 251

where the first argument is a reference to another component. The second argument is
an instance of the MigrationPolicy class.

MigrationPolicy mp = new MigrationPolicy(int policy);

When a component specified as cref migrates from its source to its destination, the
component creates an instance of the class with one of the following actions:

– If the second argument is new MigrationPolicy(Policy.FOLLOW), the
component migrates to the same destination computer.

– If the second argument is new MigrationPolicy(Policy.DISPTACH),
the component duplicates itself and migrates its clone to the same destination com-
puter.

– If the second argument is new MigrationPolicy(Policy.SHIFT), the
component migrates to the source computer.

– If the second argument is new MigrationPolicy(Policy.FILL), the
component duplicates itself and migrates its clone to the source computer.

– If the second argument is new MigrationPolicy(Policy.STAY), the
component stays at the current computer.

where each component can have at most one policy. Figure 6 outlines four basic poli-
cies, where two components, B and C, have policies for component A.

These policies are related to phenomena in biological processes. For example,
Policy.FOLLOW enables a component to come near another component. When mul-
tiple components declares a policy for a leader component, they can swarm around

B

C

A AB

C

B

C

A Clone B

Clone C

B

C

A A
B

C

B

C

A A

C

B

C

B

Clone B

Clone C

A

Policy.FOLLOW

Policy.FOLLOW

Policy.DISPATCH

Policy.DISPATCH

Policy.SHIFT

Policy.SHIFT

Policy.FILL

Policy.FILL

Step 1 (Policy.FOLLOW) Step 2 (Policy.FOLLOW)

Step 1 (Policy.DISPATCH) Step 2 (Policy.DISPATCH)

Step 1 (Policy.SHIFT) Step 2 (Policy.SHIFT)

Step 1 (Policy.FILL) Step 2 (Policy.FILL)

Fig. 6. Basic migration policies.

252 Ichiro Satoh

the leader component. Policy.SHIFT enables a component to follow the move-
ment of another component. The former component can track the latter component
as it moves. The policy thus corresponds to the phenomenon of cytoplasmic streaming.
Policy.DISPATCH) enables a component to stay in the current location and then de-
ploys its clone at the destination of another moving component.Policy.DISPATCH)
can model the footprint of a motile cell. We have assumed that a component can declare
the policy for another component and specify the TTLs of its clones as their life-spans.
As the latter component moves, cloned former component are deployed at the footmark
of the latter component and these clones are automatically volatilized after their life-
spans are over. Therefore, the clone components can be viewed as a pheromone that
is left behind after the latter component has moved on. Policy.FILL corresponds
to the phenomenon of cell division. The framework is open to define policies as long
as they are subclasses of the MigrationPolicy so that we can easily define new
policies, including bio-inspired ones.

4.2 Component Coordination Programming

Component references are responsible for tracking possibly moving targets and for in-
voking the targets’ methods. This framework provides the APIs for invoking the meth-
ods of other components on local or other computers with copies of arguments. Our
programming interface to invoke methods is similar to CORBA’s dynamic invocation
interface and does not have to statically define any stub or skeleton interfaces through a
precompiler approach, because our target is a dynamic computing system.

Message msg = new Message("print");
msg.setArg("hello world");
Object result = cref.invoke(msg);

The above code fragment is used to invoke a method of the component specified as
the cref reference. Apart from this, the framework supports a generic remote pub-
lish/subscribe mechanism that enables subscribers to express their interest in an event
so that they can be notified afterwards of any event fired by a publisher. This is imple-
mented through Java’s dynamic proxy mechanism, which has been a new feature of the
Java 2 Platform since version 1.32.

5 Current Status

A prototype implementation of this framework was constructed with Sun’s Java Devel-
oper Kit version 1.4 and although it was not built for performance, we measured the
cost of component migration. For example, the cost of migrating the federation of three
components in Fig. 4 is 180 ms, where the cost of migrating a component between two
hosts over a TCP connection is 42 msec. This experiment was done with five computers
(1.2-GHz Pentium III, with Windows XP and JDK 1.4.2) connected through a Fast Eth-
ernet network. The latency included the costs of the following processes: transmitting

2 As the dynamic creation mechanism is beyond the scope of the papers. we have left it for
future publications.

Bio-inspired Deployment of Distributed Applications 253

the component’s requirements from the source host to the LIS through TCP, transmit-
ting a candidate destination from the LIS to the source host through TCP, marshaling
the component, migrating the component from the source host to the destination host
through TCP, unmarshaling the agent, and verifying security.

The current implementation can encrypt components before migrating them over a
network and then decrypt them after they arrive at their destination. Moreover, since
each component is just a programmable entity, it can explicitly encrypt its particular
fields and migrate itself with these fields and its own cryptographic procedure. The Java
virtual machine can explicitly restrict components to only access specified resources to
protect hosts from malicious components. Although the current implementation cannot
protect components from malicious hosts, the runtime system supports some authen-
tication mechanisms to migrate components through mobile agent technology so that
each component host can only send agents to and only receive from trusted hosts.

6 Initial Experience

This section presents three examples that illustrate how the framework works.

6.1 Desktop Teleporting in Ubiquitous Computing Environments

The first example is a mobile editor and is composed of three partitioned components.
The first, called application logic, manages and stores text data and should be executed
on a host equipped with a powerful processor with much amount memory. The sec-
ond, called a viewer, displays text data on the screen of its current host and should
be deployed at hosts equipped with large screens. The third is called a controller and
forwards texts from its current host’s keyboard to the first component. They have the
following relocation policies. The application logic and control components have fol-
low hook policies for the viewer component to deploy itself at the current host of the
viewer component or nearby hosts. As we can see from Fig. 7, we assumed that the
three components had been initially stored in two hosts.

The system can track the movement of the user in physical space through RFID-tag
technology3. It also introduces a component, called a user-counterpart, since the com-
ponent works as a virtual counterpart in cyberspace. The component can automatically
move to hosts near the current location of the user, even while the user is moving. That
is, a user-counterpart is always at a host near the user. Because the viewer component
has a follow hook policy to move the user-counterpart component, it moves to a host
that has a user-counterpart or nearby hosts. When a user moves to another location, the
components can be dynamically allocated at suitable hosts without the loss of any coor-
dination as we can see from Fig. 7. When application-specific components are animal
cells, the counter component can be treated as a bait for those cells.

3 An RFID-based location-dependent deployment of component was presented in our previous
paper [17].

Bio-inspired Deployment of Distributed Applications 255

anism was inspired by lamellipodia in cells. It assumes that the sensor field is a two-
dimensional surface composed of sensor nodes and it monitors environmental changes,
such as motion in objects and variations in temperature. It is a well known fact that
after a sensor node detects environmental changes in its area of coverage, some of its
geographically neighboring nodes tend to detect similar changes after a short time. Dif-
fusion occurs as follows. When a component on a sensor node finds changes in its en-
vironment, the component duplicates itself and deploys the copy at neighboring nodes
as long as the nodes have the same kinds of components (Fig. 8). Each component is
associated with a resource limit that functions as a generalized Time-To-Live field. Al-
though a node can monitor changes in interesting environments, it sets the TTLs of its
components as their own initial value. It otherwise decrements TTLs as the passage of
time. When the TTL of a component becomes zero, the component automatically re-
moves itself. This example is still in the early stages of experimentation but we have
developed a mobile agent-based middleware for sensor networks [22] and plan to ex-
tend this framework to the middleware.

Step 1

duplication

duplication

volatilizing

volatilizing

volatilizing

volatilizing

Step 2

moving entity moving entity

sensor node sensor node

Fig. 8. Component diffusion in moving entity.

7 Related Work

The section discusses several bio-inspired approaches to distributed and multi-agents
systems. Most of the work has been based on simulators. For example, Swarm [7] and
MASS [6] are general simulators for multi-agent models. However, real systems are
complex and varied. Our goal was also to provide a practical middleware for adap-
tive distributed systems. Unfortunately, we could not gain a rich experience with bio-
inspired approaches in real systems because there have been few real systems based on
approaches in the real world4. We still lack a lot of data that are essential to simulating
the approaches accurately. Therefore, real experiments in a real distributed system must
have priority over simulation-based experiments for actual experience to accumulate.

A few attempts have provided infrastructures for real distributed systems, like ours.
The Anthill project [1] by University of Bologna developed a bio-inspired middleware

4 In fact, several existing simulation-based results seem to be based on arbitrary hypotheses in
the sense that various parameters in their experiments lack any technical grounds.

256 Ichiro Satoh

for peer-to-peer systems, which is composed of a collection of interconnected nests.
Autonomous agents, called ants can travel across the network trying to satisfy user re-
quests, like ours. The project provided bio-inspired frameworks, called Messor [11]
and Bison [12]. Messor is a load-balancing application of Anthill and Bison is a con-
ceptual bio-inspired framework based on Anthill. The main difference between Anthill,
including its applications, and our framework is that it introduces agents as independent
entities and ours permits components to be organized in a self-organized manner. The
Co-Field project [10] by University di Modena e Reggio Emilia proposed the notion of
a computational force-field model for coordinating the movements of a group of agents,
including mobile devices, mobile robots, and sensors. However, the model only seems
to be available within the limits of simulation and not within a real distributed system.
Hive [8] is a distributed agent middleware for building decentralized applications and it
can deploy agents at devices in ubiquitous computing environments and organize these
devices as groups of agents. Although it introduced metaphors drawn from ecology, it
cannot change the structure of agents dynamically whereas ours can.

We described an infrastructure for location-aware mobile agents in a previous pa-
per [17]. Like the framework presented in this paper, this infrastructure provides tagged
entities, including people and things, with application-level software to support and an-
notate them. However, since it cannot partition an application into one or more compo-
nents, it must deploy and run an application within single instead of multiple computers.
We presented an early prototype implementation of the federation mechanism presented
in this paper in another previous paper [18].

8 Conclusion

This paper presented a middleware system for providing a dynamic federation of com-
ponents on a distributed system. Since the middleware enabled each component to mi-
grate over a distributed system under its own policy, the federation was mobile and able
to be transformed in a self-organized manner. For example, it permitted components to
follow other moving components and deployed their clones at different computers sim-
ilar to what happens in the locomotion of motile cells. We designed and implemented a
prototype middleware system and demonstrated its effectiveness in several applications.

To conclude, we would like to point out further issues that need to be resolved. The
final goal of this middleware is to provide a general test-bed for various bio-inspired
approaches for adaptive distributed systems. Although the current implementation fo-
cuses on the deployment of components, we plan to extend it so that it can be used to
modify the behavior of each component, while they are running. Also, as its perfor-
mance is not yet entirely satisfactory, further measurements and optimizations will be
needed. The current migration policy for partitioned applications may still be naive. We
have studied some higher-level routings for mobile agents in previous papers [14, 16,
19] and are interested in applying routing approaches to partitioned applications. We
plan to develop a monitoring and testing system for components by using an approach
where we test context-aware applications on mobile computers [15].

Bio-inspired Deployment of Distributed Applications 257

References

1. O. Babaoglu and H. Meling and A. Montresor, Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems, Proceeding of 22th IEEE International Conference on
Distributed Computing Systems, July 2002.

2. B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer, EasyLiving: Technologies for Intel-
ligent Environments, Proceedings of International Symposium on Handheld and Ubiquitous
Computing (HUC’00), pp. 12-27, September, 2000.

3. G. Di Caro and M. Dorigo, AntNet: Distributed Stigmergetic Control for Communications
Networks, Journal of Artificial Intelligence Research, vol.9, pp. 317-365, 1998.

4. K. J. Goldman, B. Swaminathan, T. P. McCartney, M. D. Anderson, R. Sethuraman The
Programmers’ Playground: I/O Abstraction for User-Configurable Distributed Applications,
IEEE Transactions on Software Engineering, vol. 21, no. 9, pp.735-746, September 1995.

5. A. Harter, A. Hopper, P. Steggeles, A. Ward, P. Webster, The Anatomy of a Context-Aware
Application, Proceedings of Conference on Mobile Computing and Networking (MOBI-
COM’99), pp. 59-68, ACM Press, 1999.

6. B. Horling, and V. Lesser, and R. Vincent, Multi-Agent System Simulation Framework Pro-
ceeding of IMACS World Congress 2000 on Scientific Computation, Applied Mathematics
and Simulation, August 2000.

7. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simulation System, A
Toolkit for Building Multi-Agent Simulations, Technical report, Swarm Development Group,
June 1996.

8. N. Minar, M. Gray, O. Roup, R. Krikorian, P. Maes, Hive: Distributed Agents for Network-
ing Things, International Symposium on Agent Systems and Applications / International
Symposium on Mobile Agents (ASA/MA’99), 1999.

9. O. Holder, I. Ben-Shaul, and H. Gazit, System Support for Dynamic Layout of Distributed
Applications, Proceedings of International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Society, 1999.

10. M. Mamei, L. Leonardi, F. Zambonelli, Co-Fields: A Unifying Approach to Swarm Intelli-
gence, International Workshop on Engineering Societies in the Agents World (ESAW 2002),
Lecture Notes in Computer Science, vol. 2577, Springer Verlag 2003.

11. A. Montresor, H. Meling, and O. Babaoglu, Messor: Load-Balancing through a Swarm of
Autonomous Agents, Proceedings of International Workshop on Agents and Peer-to-Peer
Computing, July 2002.

12. A. Montresor and O. Babaoglu, Biology-Inspired Approaches to Peer-to-Peer Computing in
BISON Proceedings of International Conference on Intelligent System Design and Applica-
tions, Oklahoma, August 2003.

13. M. Román, H. Ho, R. H. Campbell, Application Mobility in Active Spaces, Proceedings of
International Conference on Mobile and Ubiquitous Multimedia, 2002.

14. I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE Transactions on
Systems, Man and Cybernetics, vol.33, no. 3, part-C, pp.350-357, August 2003.

15. I. Satoh, A Testing Framework for Mobile Computing Software, IEEE Transactions on Soft-
ware Engineering, vol. 29, no. 12, pp.1112-1121, December 2003.

16. I. Satoh, Configurable Network Processing for Mobile Agents on the Internet Cluster Com-
puting (The Journal of Networks, Software Tools and Applications), vol. 7, no.1, pp.73-83,
Kluwer, January 2004.

17. I. Satoh, Linking Phyical Worlds to Logical Worlds with Mobile Agents, Proceedings of
IEEE International Conference on Mobile Data Management (MDM’2004), pp. 332-343,
IEEE Computer Society, January 2004.

258 Ichiro Satoh

18. I. Satoh, Dynamic Federation of Partitioned Applications in Ubiquitous Computing Environ-
ments, Proceedings of IEEE International Conference on Pervasive Computing and Commu-
nications (PerCom’2004), pp.356-360, IEEE Computer Society, March 2004.

19. I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’2004), pp.484-493, IEEE Computer Society, March
2004.

20. R. Schoonderwoerd, O. Holland, and J. Bruten, Ant-like agents for load balancing in
telecommunications networks, Proceedings of Conference on Autonomous Agents, pages
209-216. ACM Press, 1997.

21. C. Szyperski, Component Software, Addison-Wesley, 1998.
22. Umezawa T, Satoh I, Anzai Y. A Mobile Agent-based Framework for Configurable Sensor

Networks. Proceedings of International Workshop on Mobile Agents for Telecommunication
Applications (MATA’2002); Lecture Notes in Computer Science 2002; Springer; Vol. 2521:
128-140.

23. World Wide Web Consortium (W3C), Composite Capability/Preference Profiles (CC/PP),
http://www.w3.org/TR/NOTE-CCPP, 1999.

How Agents Should Exploit Tetralemma
with an Eastern Mind in Argumentation

Hajime Sawamura1 and Edwin D. Mares2

1 Department of Information Engineering and
Graduate School of Science and Technology,

Niigata University, 8050, 2-cho, Ikarashi, Niigata, 950-2181 Japan
sawamura@ie.niigata-u.ac.jp

2 Philosophy Department, Victoria University of Wellington,
P. O. Box 600, Wellington, New Zealand

edwin.mares@vuw.ac.nz

Abstract. Argumentation is a ubiquitous but effective mode of interac-
tion and dialogue in the human society. It has come to be known that ar-
gumentation has many implications to interaction among computational
agents as well. After observing and discussing the tetralemma, which is
said to characterize the Eastern thought, in this paper we propose an
argumentation framework with the paraconsistent logic programming
based on the tetralemma. It allows us to represent typical eastern modes
of truth: �,⊥ which are considered epistemic states of propositions. We
introduce various notions for our argumentation framework, such as at-
tack relations in terms of differences as a momentum of argumentation,
argument justification, preferential criteria of arguments based on social
norms, and so on, in a way proper to the four-valued paraconsistent logic
programming. Finally, we provide the fixpoint semantics and dialectical
proof theory for the argumentation framework. We illustrate our ideas
with various argument examples.

1 Introduction

In this paper, we are concerned with a complex of the Western and Eastern
thoughts and cultures in knowledge representation and reasoning. More specifi-
cally, we reconsider from an eastern point of view the paraconsistent logic pro-
gramming of Blair and Subrahmanian [5] and intend to exploit it as a knowledge
representation language, and then we build an argumentation model on top of
this, taking into account Eastern meanings of the four truth values and the
antagonism among them.

Argumentation is a ubiquitous form and way of dialogue in the human society.
Recently in the fields of artificial intelligence and computer science, there has
been a growing interest in argumentation as an effective means of interaction for
intelligent systems [6], as a general framework for relating nonmonotonic logics
of different styles [9] and so on. The underlying frameworks of argumentation
have been mainly built using the normal logic programs or the extended logic
programs (ELP) as knowledge representation languages (e. g., [8, 19, 6]) with
which the belief and knowledge of each agent are described for argumentation.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 259–278, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

260 Hajime Sawamura and Edwin D. Mares

In this paper we propose an argumentation framework with the paraconsis-
tent logic programming whose literals are annotated with four values. They are a
set of truth-values {t, f, �, ⊥} with a lattice structure. The apparatus of the four
values is introduced to admit inconsistency (paraconsistency) and at the same
time reject ‘ex falso quodlibet’. Tolerance and acceptance of inconsistency that
this logic has as its logical feature is useful to allow for arguments on inconsistent
knowledge bases with which we are often confronted. The four-valued semantics
was first introduced by Dunn for the logic of the first-degree entailments, and
then advocated as a useful logic for computer applications [2, 3]. In this paper,
we, however, pay much attention to the eastern meanings of the four values
that has been originated in the era of the early Buddhism in India (more than
2500 years ago) and now called the tetralemma. The tetralemma is often said to
characterize the Eastern thought. It is in general considered modes of truth or
epistemic states of propositions. It further allows handling the inexpressible or
inexplicable which are impredicative symbolically.

After observing and discussing the tetralemma in the first part of the paper,
we will present an argumentation framework that has unique features induced
by the paraconsistent logic programming language and the tetralemma. They in-
clude the argument definition, attack and defeat relations in terms of differences
as a momentum of argumentation, argument justification, and preferential crite-
ria of arguments based on conventional wisdom or standards and evidences. The
notion, differences as a momentum of argumentation, is particularly outstanding
as expressing disagreement among arguments since in the past argumentation
models, the disagreement has been specified only for contradictory propositions
of the form p and ¬p. In our model, “difference” is to be identified alike or fairly
among the four truth-values, expecting a more versatile development of argu-
mentation or dialogue. We provide the fixpoint semantics and dialectical proof
theory for our argumentation framework along the line of Dung [8], and Prakken
and Sarter [19]. We demonstrate our syncretic ideas on logic of argumentation
based on the tetralemma, by applying it to many argument examples on worldly
or unworldly issues.

Finally, as a significant extension, we consider how to incorporate dialectical
reasoning or thought as a basic component of our argumentation model. Accord-
ing to Aristotle, argumentation consists of three components: deduction, rhetoric
and dialectic. Three laws of the Hegelian and Marxist dialectics are particularly
worthy to consider for agents’ world as well as in our society: (1) the unity of
opposites, (2) the transformation of quantity into quality, and (3) the negation
of the negation.

The paper is organized as follows. In Section 2, tetralemma is revisited. In
Section 3, the paraconsistent logic programming language for knowledge rep-
resentation is outlined, and its features and significances in argumentation are
discussed. In Section 4, an argumentation framework for paraconsistent logic
programming language is described. In Section 5 and 6, a semantics for the
argumentation framework and a dialogical proof theory for the argumentation
framework are described respectively. In Section 7, our paraconsistent argumen-

How Agents Should Exploit Tetralemma 261

tation framework is illustrated using various argument examples. In Section 8,
we consider incorporating Hegelian dialectics into argumentation as an effective
form of attaining a consensus or reaching an agreement. Finally in Section 9,
concluding remark and future work are described.

2 Tetralemma

In the early philosophical literature and text of Buddhism, the notion of four
alternative positions (catus.kot.i in Sanskrit; shikufunbetsu in Japanese) appears
very often in arguments on metaphysical questions such as whether Nirvāna.
is an existent, whether Tathāgata exists after death, in such a way that all
conceptually imaginable positions are exhaustive and exclusive.

Nirvāna. is an existent.
Nirvāna. is a non-existent.
Nirvāna. is both an existent and a non-existent.
Nirvāna. is neither an existent nor a non-existent.

These represent four logical possibilities of the form: (1) affirmation, (2)
negation, (3) both affirmation and negation, and (4) neither affirmation nor
negation. The ancient Indians believed that the truth with regard to any matter
lay in one of these alternatives. Over the last few decades, the logical structure
of the four alternative positions has been the subject of a considerable amount
of discussion and controversy, and also of some speculation in the context of
what is sometimes called East-West philosophical comparison. Nowadays “the
four alternatives (positions)” is also termed “tetralemma” or “tetrachotomy” in
the literature [32, 22, 11, 4, 20].

Tetralemma is an epistemic state or way of recognizing things, beings, ob-
jects, propositions, etc. We use similar patterns of expressions very often in our
daily life, for example,

Animals have moral rights.
Animals do not have moral rights.
Animals have moral rights and do not.
Animals neither have moral rights nor do not.

In his book, Logos and Lemma [32], Yamauchi Tokuryu contrasted Western
and Eastern thought by characterizing the first as being determined by logos
and the latter as being structured by the principles of the tetralemma, thereby
conceiving of logos as a method of exclusion and of lemma as a way of friendly
inclusion (even of the middle). The tetralemma, in fact, is closely related to the
view of emptiness in Buddhism and the cultural idiosyncrasy such as holistic
view on world, society and ecosystem in nature [18].

It would be helpful to speculate about the meanings of the third and fourth
lemmas in more details since they are beyond simply saying either true or false,
so that we could exploit them in applications to knowledge representation and
argumentative reasoning.

262 Hajime Sawamura and Edwin D. Mares

2.1 The Third Lemma: ‘It Is and It Is Not’

The third lemma obviously seems to violate the law of noncontradiction by
Aristotle. It, however, often appears in the sutras of Buddhism and the east-
ern tradition of thought and culture. Daoists and Zen Buddhists, for example,
see the two sides of any apparent contradiction existing in a harmony, opposed
but interconnected, interpenetrating, and interdependent. In everyday situations
where experience or desire is dominant, easterners are tolerant of contradictions.
They have thought that the law of noncontradiction applies only to the realm
of concepts and abstractions, which are merely reflections of things. In his re-
cent book [18], a cultural psychologist, Nisbett has demonstrated tendency and
evidence which indicate various differences of cognition and reasoning between
Easterners and Westerners, including the preferential examination of acceptance
or avoidance of contradictions.

Let us see some multi-faceted meanings of the third lemma since we think
they are helpful to understand and use it in actual knowledge representation as
well. Murti [16] says that the third lemma represents that we have the conscious-
ness of the one-sidedness of mere is or mere is not, for example, God exist and
does not. Jayatilleke [11] says that the historical examples show that the second
alternative is the contrary and not the contradictory of the first, for example,
west vs. east, knowledge vs. conduct. Then, the third asserts that the subject has
a combination of the contrary characteristics. For example, when the statement
‘universe is both finite and infinite’ is made, it is intended that ‘the universe is
finite in one dimension (in some respects) and infinite in another. Here is a typ-
ical locution for ‘it is and is not’ in our daily life (or rather, politicians may use
this): When they are asked a hard question to deal with, the answer would be
‘yes and no’. Also in our daily life, we sometimes rhetorically use the oxymoron.
It is a phrase that combines two words that seem to be the opposite of each
other. For example, an open secret, too much of a good thing (bear’s service),
a happy scream, a deafening silence and so on. Oxymoron unites two opposing
words into an expression with a single meaning, without contradiction.

The third lemma also can be found even in Western dialectics. It is a dialec-
tical contradiction but not a contradiction in formal logic, being a form of the
unity of opposites as a dialectical law in Hegelian and Marxist dialectics. The
eastern style of reasoning is basically dialectical from scratch in the sense that it
focuses on contradictions and how to resolve them or transcend them or find the
truth in both. In either world, we need to invent concepts to both discard and
absorb those contradictory propositions. Turning our eyes to the development
in other traditional sciences, we can see that dialectical thought unites various
opposite concepts, principles, and theories through mediating logical links in
higher synthetic constructions.

We use the top symbol � for such an epistemic state or way of recognizing
things, beings, objects, propositions, etc., and annotate propositions with the
symbol � as in [5].

How Agents Should Exploit Tetralemma 263

2.2 The Fourth Lemma: ‘It Neither Is Nor Is Not’

Like the third lemma, the fourth lemma also appears very often in the su-
tras of Buddhism and the eastern tradition of thought and culture, such as in
Nāgārjuna’s Mūlamadhyamakakārikā, which is one of the most influential work
in the history of Indian philosophy [17], and in the Heart Sutra.

Murti interprets it like this. It represents the full consciousness that no cor-
responding affirmation is available. This is an extreme form of non-committal.
It is not an attitude of decision, but of doubt. The competence of thought is
not questioned and reason is not transcended. It may correspond to the agnos-
tic position [16]. According to the interpretation of Jayatilleke, there is left a
part of the determinable constituting the universe of discourse which is referred
to by the fourth lemma since the second alternative is the contrary and not
the contradictory, and the third asserts that the subject has a combination of
some of the contrary characteristics [11]. Here is a good example illustrated by
Jayatilleke [11]:

A person is happy.
A person is not happy.
A person is both happy and unhappy.
A person is neither happy nor unhappy.

Happiness in this context is a determinate quality characterizing a person’s
hedonic tone. When we remove the qualities of “happiness”, “unhappiness”, or
a mixture of the two, we are left with “neutral hedonic tone”. So a person who is
“neither happy nor unhappy” comprises the class of people expressing a neutral
hedonic tone. Such a class need not necessarily be a null class, although it could
be so sometimes. Here is another similar type of locutions, which can be seen
in our daily life as well: His act is neither right nor wrong, or we are neither for
nor against his act.

The fourth lemma has had a wide spectrum of meanings or epistemic states
of things, beings, objects, and propositions. It would be worthy and useful to list
up it as follows for the knowledge representation and argumentation described
later: no commitment, no comment, no concern, no information, an attitude of
doubt, a neutral or transcendental epistemic state, and a view of Emptiness:
the Buddhist technical terms for the lack of independent existence, inherent
existence, or essence in things. We degenerate these into the bottom symbol ⊥
and the context is supposed to specify a meaning of it.

3 Paraconsistent Logic Programming Language

We employ the paraconsistent logic programming language for knowledge repre-
sentation language with which our argumentation model is to be built. This was
first introduced by Blair and Subrahmanian [5] and then extended to general-
ized annotated logic programming by Kifer and Subrahmanian [12], preserving
paraconsistency of a knowledge base. They formalized generalized Horn clauses

264 Hajime Sawamura and Edwin D. Mares

Τ

f t

⊥

The amount of truth

The amount of knowledge

Fig. 1. 4-element lattice of truth values (epistemic states) FOUR [2, 1].

(GHC) with annotations, and gave a fixpoint semantics and procedural seman-
tics for GHC [5]. Below, we will outline it to the extent that it is needed in the
paper.

Definition 1 (Truth-values [5] or Epistemic states). T = {�, t, f,⊥} is
a set of truth values or epistemic states). Its partial order � is defined to be
(∀x, y ∈ T) x � y ⇔ x = y ∨ x = ⊥ ∨ y = �. (see Fig. 1).

Definition 2 (Annotation, Annotated Atoms and Literals [5, 12]). Let
A be an atom, L a literal and μ ∈ T . Then μ is an annotation, A : μ is an
annotated atom and L : μ is an annotated literal.

Definition 3 (Rules [5, 12]). Rules are of the form L0 ⇐ L1 ∧ ...∧Ln, where
Li(0 ≤ i ≤ n) are annotated literals. (It is noted that rules containing variables
are assumed to represent any ground instances of them.)

The annotated literals L1, ..., Ln in the right hand side of a rule is called
antecedents and L0 is called a consequent of the rule. A knowledge base of an
agent is a set of rules. A knowledge base Kb consisting of rules with names
r1, ..., rn is represented by Kb = {r1, ..., rn} or Kb = {r1 : L1

0 ⇐ L1
1 ∧ ... ∧

L1
m., · · · , rn : Ln

0 ⇐ Ln
1 ∧ ... ∧ Ln

m.}.

Definition 4 (Formulas). Formulas are defined inductively as follows.

1. Annotated literals are formulas.
2. If F1, ..., Fn are annotated literals, F1∧, ...,∧Fn is a conjunctive formula.
3. If F1 is a literal and F2 a conjunctive formula, F1 ⇐ F2 is a formula.

Definition 5 (Negation of Annotation [5]). The negation of an annotation
is defined as: ¬(t) = f,¬(f) = t,¬(�) = �,¬(⊥) = ⊥ .

Definition 6 (Satisfaction [5, 12]). Let I be a function from the Herbrand
base under consideration to T , and F a formula. We write I |= F to say that
I satisfies F , and I 	|= F that I does not satisfy F . Then I |= F is defined as
follows.

How Agents Should Exploit Tetralemma 265

1. For an annotated atom A : μ, I |= A : μ iff I(A) μ.
2. For an annotated literal ¬L : μ, I |= ¬L : μ iff I |= L : ¬μ.
3. For a conjunctive formula of the form F1 ∧ ... ∧ Fn, I |= F1 ∧ ... ∧ Fn iff for

every i (i = 1, ..., n), I |= Fi.
4. For a formula of the form F1 ⇐ F2, I |= F1 ⇐ F2 iff I |= F1 or I 	|= F2.

Definition 6 (2) gurantees that it is not necessary to consider any negated lit-
erals since negations can be implicitly present in the form of atoms annotated
with f [5].

Definition 7 (Model [5, 12]).
– An interpretation I is a model of a formula F iff I |= F .
– An interpretation I is a model of a knowledge base Kb, symbolically, I |= Kb

iff I satisfies evry rule in Kb.

Definition 8 (Logical consequence [5, 12]). Let Kb, I and F be a knowledge
base, an interpretation and a formula respectively. F is a logical consequence from
Kb, symbolically, Kb |= F iff for every interpretation I, if I |= Kb then I |= F .

It should be noted that this notion of logical consequence is given along the axis
of the amount of knowledge or information, not the axis of the measure of truth
[2, 3].

The logicians or computer scientists in the Occident (e. g., Dunn, Belnap,
Blair, Subrahmanian, Kifer, Arieli, etc. [10, 2, 5, 12, 1]) have not considered a wide
variety of meanings of the four values of the tetralemma from various viewpoints.
It seems to be enough for their purposes that the number of truth values is four
and the mathematical structure is a lattice. As discussed in the previous Section,
we have regarded the tetralemma as epistemic states of propositions, which is
typically attendant to the eastern thought and mind. For our purpose, GHC
with annotations as the tetralemma will make it possible to build a logic of
argumentation with the following advantages:

– We need not to worry about inconsistency caused by each agent’s knowledge
base, due to the paraconsistency of GHC,

– GHC gives us an easy way to represent and build knowledge bases for argu-
mentation,

– GHC allows us to directly construct arguments under incomplete, vague,
partial, indefinite, imprecise, plausible knowledge and information, having
four values in mind. In other knowledge representation, the multi-valuedness
is, in general, hidden in the interpretation of formulas.

– The tetralemma suggests a way of handling the inexpressible and inexplicable
which are impredicative symbolically. For example, p : ⊥ and p : � are their
representation. This might lead to another way to grasp without explicit
representation and reason.

One weak point of the paraconsistent logic programming language is that
it lacks the so-called weak negation (or default negation) the extended logic
programming has (ELP). Interested readers should refer to [28] for the extended

266 Hajime Sawamura and Edwin D. Mares

generalized logic programming language (EGAP) as a knowledge representation
and the argumentation framework for it. EGAP includes two negations: the
epistemological negation and default one like in ELP. The argumentation model
developed in [28], however, differs from the present paper in its philosophy.

4 Paraconsistent Argumentation Framework

Now having various meanings of the tetralemma in Section 2 in mind, we will get
down to building a new argumentation model. The argumentation framework AF
for the paraconsistent logic programming language is a triple 〈Γ, C, D〉, where
Γ = {Kb1, ..., Kbn} is a multiple theory of knowledge bases of agents, C is the
conventional wisdom or social standards, and D is the defeat relation based on
the notion of ‘difference as a momentum of argumentation’.

4.1 Arguments

The rules of GHC are of the form, L0 ⇐ L1∧ ...∧Ln. Then, we define arguments
as follows.

Definition 9 (Arguments). An argument is a finite non-null sequence [r1, . . . ,
rn] of ground instances of rules in a knowledge base such that

1. for every i (2 ≤ i ≤ n) and for every Lj : μj (1 ≤ j ≤ m) in the antecedent
of ri, there exists a rule rk(k < i) whose consequent is Lj : μk(μk μj).
Then Lj : μk is called a ground of the antecedent of the rule ri, and

2. no pair of distinct rules in the sequence have the same atomic formula in
their consequents.

The condition (1) above yields the correctness of arguments and the condition
(2) is for the uniqueness of arguments. For example, [p(a) : t, p(a) : �] is not an
argument. We sometimes abuse symbols such as A = [r1, ..., rn] or A = [r1 : L1

0 :
μ1

0., · · · , rn : Ln
0 : μn

0 ⇐ Ln
1 : μn

1 ∧ ... ∧ Ln
m : μn

m.] for arguments, where r1, ..., rn

are rule names.

Definition 10 (Conclusions of arguments). The consequents of rules in an
argument A are called conclusions of the argument A.

Obviously every conclusion of an argument A is a logical consequence from A.
The converse does not hold, for example, p(a) : ⊥ is a logical consequence from
an argument [p(a) : �], but it is not a conclusion of the argument. For another
example, q : � is a logical consequence from a knowledge base {q : t, q : f}
which is equivalent to a knowledge base {q : �} called a reductant in [12],
and hence could have been a logical consequence from an argument [q : �].
For these anomaly, we take a stand that we take into account only arguments
constructed by rules provided explicitly. Also we should note that this reflects
a view that we do not live with logic, but with argumentation in the daily
life, and Easterners’ preference for logical vs. dialectical arguments [18]. We

How Agents Should Exploit Tetralemma 267

would rather welcome the difference between logic and argument to building
our argumentation framework. For the reductant above, it should be left as a
reorganization problem of knowledge base.

Definition 11 (Subarguments). An argument A′ is a subargument of an ar-
gument A iff A′ is a subsequence of A satisfying the conditions of arguments.

4.2 Difference as a Momentum of Argumentation

Identifying two opposites such as A and ¬A is a typical momentum of argu-
mentation or dialogue in general in the previous argumentation models [6] as
well as in the western culture. In this paper, we will depart from this fixed idea
and introduce a broader and liberal one, that is, “difference as a momentum of
argumentation”. Otherwise, we might have introduced such a way of defining
a conflict between arguments that is induced by the order of the truth values.
For example, an annotated literal p : f is entitled to attack an annotated literal
p : � since � f), and conversely p : � is not entitled to attack p : f since
p : � contains the information of p : f . Put it differently, this would be said to be
roughly an attack relation based on the measure of truth in the logical lattice L4
[2, 3]. In this paper, however, we give such a formalization that this “difference”
should be identified alike or fairly among the four truth values, expecting a more
versatile development of argumentation or dialogue. In other words, it would be
said to be roughly an attack relation based on the amount of knowledge in the
approximation-lattice A4 [2, 3].

Definition 12 (Attack). Let A1 and A2 be arguments. Then A1 attacks A2 iff
L : μ is a conclusion of A1 and L : μ′(μ 	= μ′) is a conclusion of A2

Definition 13 (Coherent). A knowledge base is coherent iff it does not include
any two rules whose consequents have the forms of L : μ and L : μ′(μ 	= μ′)
respectively.

Note that arguments as subsets of a knowledge base are always coherent
according to the condition 2 of the argument definition.

Definition 14 (Conflict-free [8]). A set Args of arguments is conflict-free iff
no argument in Args attacks an argument in Args.

The attack relation is symmetric and thus can not decide which side is su-
perior to. To remedy this, we introduce two superiority criteria to compare and
judge conflicting arguments. One is a social criterion aimed at incorporating
conventional wisdom or standards. The other is a formal syntactic one. The rea-
son why we introduce such two kinds of criteria is just to avoid biased unfair
judgements although they are still preliminary and tentative.

Definition 15 (Conventional wisdom or standards). The conventional
wisdom or standards C is a set of annotated literals satisfying: For any L1 :
μ1 and L2 : μ2 ∈ C, if L1 = L2 then μ1 = μ2.

268 Hajime Sawamura and Edwin D. Mares

An argument with a conclusion against the conventional wisdom or stan-
dards (in other words, a conclusion with a different truth value from that of the
conventional wisdom or standards) may be considered unacceptable for the time
being. Of course, we should have thought of the conventional wisdom of a soci-
ety so that agents constantly challenge and modify it since the emergence and
evolution of conventions are highly dynamical phenomena. In this paper, how-
ever, we will not deal with this issue since it is beyond the aim of this work, and
distinguish two kinds of social attack: indirect (hence weak) and direct (hence
strong) as follows.

Definition 16 (Social attacks).

1. Let A1 be an argument and A2 be an argument with a conclusion L : μ, and
L : μ′ ∈ C. Then A1 indirectly and socially attacks A2 iff A1 attacks A2 and
μ 	= μ′.

2. Let A1 be an argument with a conclusion L : μ1 and A2 an argument with
a conclusion L : μ2(μ1 	= μ2). Then A1 directly and socially attacks A2 iff
L : μ1 ∈ C.

For syntactically determined criteria of arguments, we introduce a compara-
tively objective one. It should be noted that the following criterion is different
from Loui’s evidential criterion, which simply compares the number of evidences
as the grounds of arguments [15].

Definition 17 (Syntactic attack by the evidential inclusion). Let A1 be
an argument including a rule r1 whose consequent is L : μ and A2 be an argument
including a rule r2 whose consequent is L : μ′(μ 	= μ′). Let S1 be a set of factual
grounds of antecedents of r1 and S2 be a set of factual grounds of antecedents
of r2. Then A1 syntactically attacks A2 iff S2 is a proper subset of S1.

Definition 18 (Priority order of attacking force). Attack≺Syntactic attack
by the evidential inclusion≺Indirect and social attack≺Direct and social attack.

Definition 19 (Defeat). An argument A1 defeats an argument A2 iff A1 at-
tacks A2 and the priority order of A1’s attack is higher than that of A2’s attack.

The defeat relation is not necessarily asymmetric and thus we need one-
directional defeat relation.

Definition 20 (Strictly defeat). Let A1 and A2 be two arguments. Then A1

strictly defeats A2 iff A1 defeats A2 and A2 does not defeat A1.

5 Semantics for the Argumentation Framework

We have proposed an argument model which idiosyncratically makes the most
of the four-valuedness. In this section, we are interested in characterizing a set
of justified arguments which corresponds to a set of valid formulas in the formal
logics. We will give a fixpoint semantics for our argumentation framework, fol-
lowing a pioneering work by Dung on the argumentation based semantics of the

How Agents Should Exploit Tetralemma 269

extended logic programming [8, 9] and the work by Prakken and Sarter on the
legal argument models for the extended logic programming language [19], whose
theoretical parts derive from the Dung’s work. We extend their treatment for the
semantics and proof theory of argumentation frameworks to a multiple theory of
knowledge bases described in terms of the paraconsistent logic programming lan-
guage with the four-valued interpretation. In doing so, we will add explanation
to the definitions introduced in Section 4, from Eastern and dialogical points of
views.

Our argumentation framework assumed each agent has its own knowledge
base. We let ArgsKb be a set of arguments built from a knowledge base Kb in a
multiple theory Γ = {Kb1, ..., Kbn}. Then, we define ArgsΓ = ArgsKb1 ∪ ... ∪
ArgsKbn . Γ will be omitted when it is implicitly assumed. In this paper, we will
not consider merging knowledge bases of each agent since it is unrealistic at least
at first to do so like in other works on arguement models [6]. Of course, each
agent could have had knowledge about the knowledge of other agents during the
argument process, but we will not take into consideration such dynamism in this
paper. It is just noted that ArgsΓ ⊆ ArgsKb1∪...∪Kbn .

Definition 21 (Acceptability of arguments [8]). An argument A is accept-
able with respect to a set of arguments, S ⊆ ArgsΓ iff each argument defeating
A is strictly defeated by an argument in S.

Dung first introduced this definition that plays a key role in the fixpoint
theory below. Symbolically, an argument A is acceptable wrt. S ⊆ Args iff
∀x∃y.(x defeats A → x is defeated by y ∈ S). Here we will digress a little from
the subject but touch upon its significance from a different angle. This definition
is very dialectical in the sense that in order to define the acceptability of an
argument, an antagonist who inhibits the argument from becoming acceptable
and a protagonist who supports the argument are assumed, and those opposing
two are united in the form of such a relation that the former is strictly defeated
by the latter. In other words, the definition by the medium of antagonists and
protagonists is said to be founded on the unity of opposites and have a form
of the negation of the negation in the Hegelian and Marxist dialectics. This
definition would remind us of Cauchy’s definitions of limit and convergence in
analysis (e.g., ∀ε∃N∀n.(n ≥ N → |an − a| < ε).

Definition 22 (Characteristic function [8]). Let S be any subset of ArgsΓ .
The characteristic function F of a multiple theory Γ is defined as follows.

– FΓ : Pow(ArgsΓ) → Pow(ArgsΓ)
– FΓ (S) = {A ∈ ArgsΓ | A is acceptable wrt. S}

By the well-known result, FΓ has a least fixpoint lfp(FΓ) since FΓ is mono-
tonic w. r. t. the set inclusion [29, 14]. On the basis of this result, the notion of
a justified argument is defined as follows.

Definition 23 (Justified, overruled, defensible [19]). For a multiple theory
Γ and an argument A, we say that

270 Hajime Sawamura and Edwin D. Mares

– A is justified iff A is in the least fixpoint of FΓ denoted by JustArgsΓ),
– A is overruled iff A is defeated by a justified argument,
– A is defensible iff A is neither justified nor overruled.

An annotated literal L : μ is said to be a justified conclusion in Γ when it is
a conclusion of a justified argument.

Definition 24 (Finitary [8]). A multiple theory Γ is finitary iff each argument
in ArgsΓ is attacked by at most a finite number of arguments in ArgsΓ

Then, we have the following propositions whose proofs are basically similar
to [8, 19]. Interested readers should refer to [31] for the proofs.

Proposition 1 (Iterative calulation of fixpoint [8, 19]). For a multiple
theory Γ , define the following sequence of subsets of ArgsΓ ,

– F 0 = ∅
– F i+1 = FArgsΓ (F i)

1. Then, ∪∞
i=0(F

i) ⊆ JustArgsΓ .
2. If ArgsΓ is finitary, then ∪∞

i=0(F
i) = JustArgsΓ .

From here on, we assume ArgsΓ is finitary.

Proposition 2. The set of justified arguments is conflict-free.

Proposition 3. If an argument is justified, then all its subarguments are justi-
fied.

6 Dialogical Proof Theory
for the Argumentation Framework

As in the previous section, we assume we have a multiple theory Γ = {Kb1, . . . ,
Kbn} and ArgsΓ . We introduce the dialogical proof theory in which an argument
is justified in terms of dialogues put forward by agents. The following dialogue
is different from [19] in the points that it is defined for a multiple theory of
knowledge bases of each agents, and the dialogue is to be done with a more free
protocol among agents than that of [19].

Definition 25 (Dialogue). A dialogue is a finite nonempty sequence of argu-
ments [Arg1, ..., Argn], Argi ∈ ArgsΓ for any i, such that

1. If i (i ≥ 3) is odd, Argi is a minimal (w.r.t set inclusion) argument strictly
defeating Argi−1.

2. If i (i ≥ 2) is even, Argi defeats Argi−1.
3. If i and j are odd and i 	= j, Argi 	= Argj .

(n is called the length of a dialogue.)

How Agents Should Exploit Tetralemma 271

At first glance, this definition looks unfair in the point that agents at the
even stages can put forward the same arguments, but agents at the odd stages
are not permitted to do so. This is because in order for the first argument put
forward to be justified, it has to overturn all possible attacks during the dialogue
whether they are repeated ones or not, and the repetitions at the odd stages may
lead to an infinite loop that is no more a dialogue which can determine justified
arguments. The dialogue definition is one whose goal is to justify an argument,
not a chat talking about nothing. Also note that agents of this dialogue simply
do not need to take turns to put forward arguments between proponents and
opponents. It allows agents to take both stance of proponents and opponents.
So we would say that it is not only a dialogue or polylogue but also a monologue
by self-criticism. We think this might be a better setting for argumentative
dialogue since our knowledge base lies in a paraconsistent state in general and an
inconsistent one in the sense of classical logic. Finally, the minimality condition
prohibits arguments from pretending to be different from previous ones, with
some redundant and irrelevant rules.

Definition 26 (Dialogue tree). A dialogue tree is a finite tree of dialogues
such that

1. Every branch is a dialogue.
2. If i is odd, the children at node Argi are all arguements defeating Argi.

The height of a dialogue tree is the length of the longest branch in the dialogue
tree.

Definition 27 (Provably justified). An argument A is a provably justified
argument iff there is a dialogue tree with A as its root, and the length of any
branch (dialogue) in the tree is odd. We call such a tree a justified dialogue tree.

An annotated literal L : μ is called a provably justified conclusion when L : μ
is a conclusion of a provably justified argument.

The following important propositions can be obtained in the same manner
as [8, 19]. So the proofs are omitted here (see [31] for the proofs).

Proposition 4 (Soundness). If an argument A is provably justified, it is jus-
tified.

Proposition 5 (Completeness). Let Γ be finitary. If an argument A is jus-
tified, it is provably justified.

Proposition 6. If an argument A is provably justified, all its subarguments are
provably justified.

7 Illustrative Examples

We have attempted to apply our argument model to a variety of arguments,
particularly to issues involved in an Eastern view and mind of thought, such as
the difference between knowledge and wisdom [13], dying words of people, sig-
nificance of pilgrimage [7], ethical issue on animal rights and liberation [26, 21]

272 Hajime Sawamura and Edwin D. Mares

and so on. Here we describe three argument examples in illustration of the argu-
mentation framework, in which arguments are developed with knowledge bases,
beyond simply saying either true or false.

Example 1 (Western and Eastern arguments against Aristotle’s belief). Aristotle
believed that the heavier a body is, the faster it falls to the ground. We write
this as

AAristotle = [aristotle hyp : t].

Then an Western agent argues against it as follows (this is actually said to
be Galileo’s logical and analytic argument [18]):

AWestern = [
brake(L, H) : t,
faster(L + H, H) : t,
slower(L + H, H) : t⇐ brake(L, H) : t,
aristotle hyp : � ⇐ faster(L + H, H) : t, slower(L + H, H) : t].
This argument represents, in a sense, a proof by reductio ad absurdum. On the
other hand, an Eastern agent puts forward such an Eastern holistic argument
as:
AEastern = [
aristotle hyp : f⇐ distrust decontextualization : t,
distrust decontextualization : t].

Obviously, AAristotle is defeated by AWestern and AEastern, and results in be-
ing overruled by two culturally different kinds of counter-arguments: an Western
analytic argument and an Eastern holistic one.

Example 2 (The death penalty institution). Consider a multiple theory Γ =
{Kb1, Kb2, Kb3} together with
C = {decrease(crime) : f}, where
Kb1 = {
r1: heal(execution, the bereaved): f,
r2: hate(the bereaved, criminal): t,
r3: desire(the bereaved, death penalty):� ⇐

heal(execution, the bereaved): f∧ hate(the bereaved, criminal): t.,
r4: decrease(crime): t.,
r5: deterrent(death penalty, crime): t⇐ decrease(crime): t.,
r6: assent(death penalty):� ⇐

desire(the bereaved, death penalty): f ∧deterrent(death penalty, crime): t. }.
The agent with Kb1 has both stances of assent and dissent for the death

penalty institution. ArgsKb1 conisits of an argument: A1 = [r1, r2, r3, r4, r5, r6],
and its subarguments: A2 = [r1, r2, r3], A3 = [r4, r5], A4 = [r1], A5 = [r2],A6 =
[r4].

How Agents Should Exploit Tetralemma 273

Kb2 = {
r7: hate(the bereaved, criminal): t,
r8: desire(the bereaved, death penalty):t⇐ hate(the bereaved, criminal): t.,
r9: assent(death penalty):t⇐ desire(the bereaved, death penalty): t.
r10: atone(death, crime): t.,
r11: assent(death penalty): t⇐ atone(death, crime): t. }.

The agent with Kb2 assents the death penalty institution. ArgsKb2 consists
of 5 arguments A7 = [r7, r8, r9], A8 = [r7, r8], A9 = [r7], A10 = [r10, r11], A11 =
[r10].

Kb3 = {
r12: regret(the dead): f
r13: atone(death, crime): f⇐ regret(the dead): f.,
r14: assent(death penalty): f⇐ atone(death, crime: f.
r15: decrease(crime): t.,
r16: deterrent(death penalty, crime): f⇐ decrease(crime): t. }.

The agent with Kb3 dissents the death penalty institution. ArgsKb3 conists
of 5 arguments A12 = [r12, r13, r14], A13 = [r12, r13], A14 = [r12], A15 = [r15,
r16], A16 = [r15].

Then, F 0 = ∅
F 1 = FArgsΓ (F 0) = {A4, A5, A9, A14, A16, A15, A2, A13}

F 1 is a set of arguments acceptable w. r. t. ∅. In fact, A4, A5, A9, A14 are not
defeated by any arguments, A16 is attacked by A1, A3 and A6, but it directly
and socially attacks them. Thus A16 is not defeated by its attackers A1, A3 and
A6, or rather it strictly defeats them. Similarly, A15 is attacked by A3 and A6,
but it indirectly and socially attacks A3, and directly and socially attacks A6.
Thus A15 is not defeated by its attackers A3 and A6, or rather it strictly defeats
them. A2 and A13 strictly defeat their attackers A8 and A11 respectively through
syntactc attack by the evidential inclusion.

F 2 = FArgsΓ (F 1) = {A4, A5, A9, A14, A16, A15, A2, A13, A12}

A12 is only one argument to be added to F 1 since it is attacked by A1, A7

and A10, but it is not defeated by A1 and A10 since it indirectly and socially
attacks A1, and it syntactically attacks A10. A7 defeats A12, but it is strictly
defeated by A2 ∈ F 1.

F 2 = F 3 = ... = JustArgsΓ .

A set of justified arguments is thought of as reflecting a present social wind
about the death penalty institution. This suggests a promising possibility of ap-
plying argument-based agent systems to decision or policy-making in the actual
or virtual e-government system.

Next, let us turn our eyes to the dialectical proof theory and see how a
dialogical tree of A12 is constructed. A7 is only one argument defeating A12

among ArgsΓ . However, it is strictly defeated by A2 in ArgsΓ . The dialogue
stops there since there is no arguments defeating A2. Therefore we say that

274 Hajime Sawamura and Edwin D. Mares

A12 is dialogically justified and the consequent assent(death penalty) : f of the
argument A12 is a dialogically justified conclusion.

Example 3 (A path to enlightenment). There are two agents who have a different
idea on how to acquire wisdom. Then we assume some of the well-known religious
or moral teachings as an conventional wisdom.

C = {emptiness : t, no substance : t, dependent arising : t, everything
changing : t}

The following is a knowledge base of an agent who aspires to enlightenment
with some of the teachings of Buddhism [17], Daoism [13] and Zen [27]:

Kb1 = {
r0: no substance:t,
r1: dependent arising:t⇐ no substance:t,
r2: everything changing:t,
r3: emptiness:t⇐ dependent arising:t ∧

everything changing:t (Initial Buddhism),
r4: spiritual enlightenment:t⇐ emptiness:t,
r5: spiritual enlightenment:t⇐ attain wisdom:t,
r6: attain wisdom:t⇐ remove knowledge:t (Daoism),
r7: remove knowledge:t⇐ persist in things:f,
r8: persist in things:f⇐ have(worldly desire):⊥,
r9: know enough:t,
r10: everything connected:t⇐ dependent arising:t(Buddhism),
r11: everything connected:t,
r12: persist in things:f⇐ everything connected:t,
r13: persist in things:f⇐ know enough:t,
r14: training:t,
r15: have(worldly desire):⊥ ⇐ training:t,
r16: meditation:t,
r17: have(worldly desire):⊥ ⇐ meditation:t(Zen Buddhism). }

The next may be a worldly agent’s knowledge base.

Kb2 = {
r1: remove things:f⇐ add things:t,
r2: have(worldly desire):t,
r3: add things:t⇐ have(worldly desire):t,
r4: attain knowledge:t⇐ add things:t,
r5: attain wisdom:t⇐ attain knowledge:t. }

The noble truths from syncretism finally brings a way to spiritual enlighten
ment:t through attainning wisdom by means of training and meditation. It is
a justified conclusion that defeated a way of attainning wisdom through simply
attaining knowledge.

How Agents Should Exploit Tetralemma 275

A1

A2

A7

A8

A9

A10

A11

A12

A3

A5A4 A6

A13

A14

A15

A16

Kb1

Kb2

Kb3

: Direct and social attack

: Indirect and social attack

:Syntactic attack

: Attack

:Subargument

Fig. 2. An example of the attack relation in a multiple theory Γ = {Kb1, Kb2, Kb3}
with C.

8 Incorporation of Dialectics into Argumentation

We have attempted to incorporate some aspects of Hegelian and Marxist di-
alectics in which the extended logic programming language was employed as
the knowledge representation language for argumentation [23, 30, 24, 25]. Among
other things, the three laws of the dialectics: (1) the unity of opposites, (2) the
transformation of quantity into quality, and (3) the negation of the negation,
in particular, are considered most useful for argument-directed computation as
well just as they are prominent notions for explaining a social or historical devel-
opmental process from contradictions. In this section, we briefly present an idea
of introducing dialectical reasoning or thought to our argumentation model. We
will embody the dialectical dynamism in relation to argumentation as follows. In
the dialectical proof theory of our argumentation framework, the argumentation
proceeds with mutually casting arguments and counterarguments, resulting in
‘justified’ (sort of ‘win’) or ‘overruled’ (sort of ‘lose’) of the either side. However,
if an argument has not been settled, it might be better or necessary for the both
sides to attain an agreement (consensus) satisfactory to some extent rather than
leaving it unsettled, proposing a dialectical consensus. This is obviously a way
to reach truth by arguments (dialogue), and are sort of inventive and/or cre-
ative social processes in the sense that they cannot be attained by other types
of reasoning such as deduction, induction, abduction and analogy.

We will just sketch our tentative suggestion towards dialectical reasoning in
a consistent way with our tetralemma-based argumentation. Suppose that the
issue is of the form A : t ∧ B : f, and the first part A : t is justified by the
argument, but the second part B : f is overruled by the argument. Then if B : ⊥

276 Hajime Sawamura and Edwin D. Mares

is justified by an opponent’s argument, the Aufheben process (a sort of oracle)
lifts up the conflict and proposes A : t ∧ B : ⊥ as a dialectical agreement.
This is a realization of one aspect of the dialectics by Hegel, that is, the logical
development of thought or reality through thesis and antithesis to a synthesis of
these opposites. The Hegelian dialectic accepts the contradiction as a real aspect
of the world, which is continually overcome and continually renews itself in the
process of change. The above temporal agreement might be challenged by other
agents all the time in the future. Then, all the processes may be viewed as the
developmental process by the law of the negation of the negation. (Interested
readers should refer to [24] for another example in a series of arguments on
the pros and cons of gene-altered crops and foods, such as genetically modified
corn). As to the law of the transformation of quantity into quality, we will need
to interleave it in the processes of applying the dialectical laws of (1) and (3) by
paying special attention to the quantity parameter included in knowledge base.

9 Concluding Remark and Future Work

Starting with the quest for the meanings of the tetralemma overlooked so far,
we arrived at a logic of argumentation based on the tetralemma. We should
note that it is not a simply extended argumentation framework in which argu-
ments can be done with multi-valued knowledge bases, but it allows for Eastern
arguments as well as Western arguments. It is aimed at achieving a fusion of
Eastern and Western reasoning in argumentation. The main technical contribu-
tions of the paper are summarized as follows: (1) the elucidation of the various
meanings of the tetralemma, (2) the use of the tetralemma in knowledge repre-
sentation and argumentation, (3) the introduction of difference as a momentum
of argumentation.

We have incorporated many philosophical ideas into the argumentation
framework for agents. But theoretically, we would say that if we depicts the
research program as ‘Argument model = Argumentation framework + Fixpoint
semantics × Dialogical proof theory’, our theoretical contribution mainly lies
in the Argumentation framework, as far as we employ Dung’s fixpoint theory
for argumentation semantics and Prakken’s dialogical system for argumentation
proof theory as a stable developmental scheme of argumentation. Here it is noted
that we analogize ‘Argument model = Argumentation framework + Fixpoint se-
mantics × Dialogical proof theory’ with ‘Theory = Axiom + Logic (semantics
and proof theory)’ in the scheme of traditional logic. Natural number theory and
group theory, for example, only differ in the axiom part and share the logic part.

We hope that what we have attempted here could lead to bridge the gulf of
incommensurability between at least Occidental and Oriental schemata and no-
tations. For our argumentation framework, we have taken a syncretic or eclectic
approach to the fusion of Eastern and Western logical argumentation. We think
that it makes the best of both worlds. Both the combination of Western and
Eastern rationalism would be useful for decision-making in the agent society as
well as in the human society. Only either of them will lead to the cul-de-sacs.

How Agents Should Exploit Tetralemma 277

In the future, we are going to introduce a more fruitful and versatile rebuttal
relation based on bilattices which fuses two axes: the amount of knowledge and
the measure of truth in the four-valued lattice Four. The tetralemma-based logic
of argumentation begins where logos ends just as fuzzy logic begins at the eastern
edge where western logic ends. Of course we admit that there is more East in
the West than meets the eye.

Acknowledgments

We would like to thank the anonymous reviewers, and the editors and authors
of this volume, who contributed to increase the quality of this paper through
their both technical and philosophical reviews.

References

1. Arieli, O. and Avron, A.: The Value of the Four Values, Artificial Intelligence, pp.
97-141, 1998.

2. Belnap, D. D.: How a Computer should Think, in Ryle G.(ed.): Contemporary
Aspects of Philosophy, Oriel Press, pp. 30-56, 1977.

3. Belnap, D. D.: A Useful Four-Valued Logic, in Dunn, J. M. and Epstein, G.(eds.):
Modern Uses of Multiple-Valued Logic, D. Reidel Pub. Comp., pp. 8-37, 1977.

4. Bharadwaja, V.: Form and Validity in Indian Logic, Indian Institute of Advanced
Study, 1990.

5. Blair, A. H. and Subrahmanian, V. S.: Paraconsistent Logic Programming, Theo-
retical Computer Science, Vol. 68, pp. 135-154, 1989.

6. Chesnevar, C. I., Maguitman, A. G. and Loui, R. P.: Logical Models of Argument.
ACM Computing Surveys, Vol. 32, No. 4, pp. 337-383, 2000.

7. Cousineau, P.: The Art of Pilgrimage, Conari Press, 1998.
8. Dung, P. M.: An Argumentation Semantics for Logic Programming with Explicit

Negation, Proc. of 10th Int. Conference on Logic Programming, pp. 616-630, 1993.
9. Dung, P. M.: On the Acceptability of Arguments and its Fundamental Role in

Nonmonotonic Reasoning, Logic Programming and N-person Games, Artificial In-
telligence, Vol. 77, pp. 321-357,1995.

10. Dunn, J. M.: Intuitive Semantics for First-Degree Entailment and Coupled Trees,
Philosophical Studies, Vol. 29, pp. 149-168, 1976.

11. Jayatilleke, K. N.: The Logic of Four Alternatives, Philosophy East and West, Vol.
17, pp. 69-83, 1967.

12. Kifer, M. and Subrahmanian, V .S.: Theory of Generalized Annotated Logic Pro-
gramming and its Applications, J. of Logic Programming, Vol. 12, pp. 335-397,
1992.

13. Laozi: Dao De Jing, The book of the Way (translation and commentary by Roberts,
M.), Univ. California Press, 2001.

14. Lloyd, L.W.: Foundations of Logic Programming, Springer-Verlag, 1984.
15. Loui, R.P.: Defeat Among Arguments: A System of Defeasible Inference, Compu-

tational Intelligence, Vol. 3, No. 2, pp. 100-106, 1987.
16. Murti, T. R. V.: The Central Philosophy of Buddhism - A Study of the Madhyamika

System -, George Allen and Unwin Ltd., 1960.

278 Hajime Sawamura and Edwin D. Mares

17. Nāgārjuna: The Fundamental Wisdom of the Middle Way, Nāgārjuna’s
Mūlamadhyamakakārikā (translated and commented by Garfield, J. L.), Oxford
University Press, 1995.

18. Nisbett, R. E.: The Geography of Thought: How Asians and Westerners Think
Differently... and Why, The Free Press, 2003.

19. Prakken, H. and Sartor, G.: Argument-based Extended Logic Programming with
Defeasible Priorities, J. of Applied Non-Classical Logics, Vol. 7, No. 1, pp. 25-75,
1997.

20. Raju, P. T.: The Principle of Four-Cornered Negation in Indian Philosophy, Review
of Metaphysics, Vol. 7, pp. 694-713, 1954.

21. Regan, T.: Defending Animal Rights, Univ. Of Illinois Press, 2001.
22. Ruegg, D. S.: The Uses of the Four Positions of the Catus.kot.i and the Problem of

the Description of Reality in Mahayana Buddhism, J. of Indian Philosophy, Vo. 5,
pp. 1-71, 1977.

23. Sawamura, H., Umeda, Y. and Meyer, R. K.: Computational Dialectics for
Argument-based Agent Systems, Proc. of the Fourth International Conference on
MultiAgents Systems (ICMAS’2000), IEEE Computer Society, pp. 271-278, 2000.

24. Sawamura, H.: Computational Realization of Dialectics by Argumentation, Work-
ing Notes of the IJCAI’2001 Workshop on Inconsistency in Data and Knowledge,
pp. 50-59, 2001.

25. Sawamura, H., Yamashita, M. and Umeda, Y.: Applying Dialectic Agents to Ar-
gumentation in E-Commerce, Electronic Commerce Research, Vol. 3, pp. 297-313,
2003, Kluwer Academic Publishers, Netherlands.

26. Singer, P.: Animal Liberation, New York Review of Books, 1975.
27. Suzuki, D. T.: The Zen Doctrine of No-Mind, edited by C. Humphreys, Samuel

Weiser, Inc., 1972.
28. Takahashi,T., Umeda, Y. and Sawamura, H.: Formal Argumentation Frameworks

for the Extended Generalized Annotated Logic Programs, 7th International Con-
ference on Knowledge-Based Intelligent Information and Engineering Systems
(KES’2003), Lecture Notes in Artificial Intelligence, Vol. 2773, Springer-Verlag,
pp. 28-38, 2003.

29. Tarski, A.: A Lattice-Theoretical Fixpoint Theorem and its Application, Pacific
Journal of Mathematics,Vol. 5, pp. 85-309, 1955.

30. Umeda, Y., Yamashita, M., Inagaki, M. and Sawamura, H.: Argumentation as a
Social Computing Paradigm, Proc. of 3rd Pacific RIM Int. Workshop on Multi-
Agents (PRIMA’2000), Lecture Notes in AI, Vol. 1881, pp. 46-60, 2000.

31. Umeda, Y., Takahashi, T. and Sawamura, H.: An Argumentation Framework based
on Paraconsistent Logic, J. of Artificial Intelligence of Japan, Vol. 19, No. 2, pp.
83-94, 2004. (in Japanese).

32. Yamauchi, T.: Logos and Lemma, Iwanami, 1974. (in Japanese).

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 279–290, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent-Based Support System
for Project Teaming for Teleworkers

Kenji Sugawara

Department of Information and Network Science, Chiba Institute of Technology
2-17-1, Tsudanuma, Narashino-shi, Chiba-ken 275-0016 Japan

Abstract. Telework is becoming an important aspect of our social life, and it is
raising many new problems for us to solve, such as how to match the most ap-
propriate teleworkers to the most appropriate positions of a project, thus dy-
namically organizing a project team (Optimal Project Teaming) in a huge tele-
work community. The objective in this paper is to propose a concept of a web-
based and agent-based support system for project teaming carried out in a huge
telework community, and develop a prototypical system based on the concept.
We defined a model of project teaming in telework community, and pointed out
current problems in web-based job matchmaking. Next, we proposed a concept
of agent-based support system for project teaming which consists of an agent-
based job matchmaking process and an elaborating process of the result by col-
laborative agents. The domain-specific heuristics used in the agent-based sup-
port process are formalized, and each agent in two processes is designed. Fi-
nally, a prototypical system based on the design is demonstrated.

1 Introduction

In recent years, IT has become an integral component of every aspect of our social
infrastructure. Our lifestyle now includes new activities, such as teleworking [1][2],
e-commerce, and even e-government. It also includes new problems for us to solve,
such as searching in an exploding infosphere and the need for intelligent information
filtering.

The agent technology and other related technologies are increasingly expected to
serve as effective solutions to the above problems that are caused by immature IT
[3][4]. Agent-based applications, such as matchmaking and web-search applications
[5], are continuously developing and maturing through the course of research and
experiments.

There have been many researches to aid the matchmaking process among service
providers and service requesters using intelligent agents. For example, the Intelligent
Software Agent Group at CMU has developed several matchmaking systems [6][7]
for an agent to find another who has the desired ability to carry out a task. Also, re-
searchers in the Market-Based Method Group at the University of Pennsylvania are
trying to use market-based methods such as auctions to help the service requester find
the best service provider[8][9].

280 Kenji Sugawara

The goal of our project is to develop an agent-based system to support teleworking
activities. Telework includes the following two categories:

(1) A work style of a virtual enterprise composed either of geographically separated
departments within the same company or of departments of different companies.

(2) A work style of a temporary and dynamic organization, which is formed by small
companies and individual teleworkers in order to gain and fulfill projects.

Currently, there are almost 4 million teleworkers in Japan and about 28 million
teleworkers in the US. It is reported that the number of teleworkers in the world in
following years will increase greatly. Telework is becoming an important aspect of
our social life and, at the same time, it is raising many new problems for us to solve.
One problem related to the second category of telework, which is also the focus of
our research, is how to match the most appropriate teleworkers to the most appropri-
ate positions of a project, thus dynamically organizing a project team (Optimal Pro-
ject Teaming). This is an important service to support people in a huge teleworking
community.

The objective in this paper is to propose a concept of a web-based and agent-based
support system for project teaming carried out by the second category of teleworkers,
and develop a prototypical system based on the concept. In section 2, we formalized a
model of Project Teaming in Telework Community, and pointed out current problems
in web-based job matchmaking in section 3. In section 4, we proposed a concept of
agent-based support system for project teaming in a huge telework community, which
consists of an agent-based job matchmaking process and a elaborating process of the
result by collaborative agents. The heuristics used in the agent-based support process
is formalized in section 5. In section 6, each agent in two processes is designed. Pro-
totypical system based on the design is explained in section 7.

2 Project Teaming in Telework Community

In a telework community, teleworkers may cooperate and/or compete with one an-
other for contracts. Every task of a project can be delivered by matchmaking between
teleworkers. Thus, a project team can be formed dynamically by distributed telework-
ers. For example, when a teleworker becomes a job consignor of a project, who we
call a employer in the project team, he can divide the project into many tasks and
consigns those jobs he cannot finish individually to other teleworkers by using the
matchmaking system. When such action happens in a hierarchy (a teleworker takes a
contract as a worker and consigns some of his tasks out as a employer, as shown in
Fig. 1), a project team can be formed. The relationships can be seen as a tree. Such a
process is called Project Teaming. The team is dynamic because of the short-term
relationship between employers and workers. Teams organized in this way can be
very distributed. In the above project teaming process, how efficiently the matchmak-
ing agents work affects the efficiency of the process greatly.

Agent-Based Support System for Project Teaming for Teleworkers 281

3 Current Problems in Web-Based Job Matchmaking

There are many web portals that provide information and simple utilities to help tele-
workers find jobs and/or workers. Information provided on web portals is public
information. Information not available on web portals which needs to be made clear
through contacts and negotiations by teleworkers is non-public information. A com-
mon scenario of contract making based on the current information and existing tech-
nology provided by web portals might be (as shown in Fig. 2): A teleworker searches
the portal and makes a list of contract candidates. He then uses email, telephone, or
other means to contact each candidate on the list to obtain non-public information.
According to the public and non-public information he obtains, he will make his
decisions. In this process, we see the following two kinds of burdens for teleworkers,

(1) There is a great deal of information to check before deciding on a list of appro-
priate contract candidates.

(2) It is very time-consuming for a teleworker to obtain non-public information.

Our system aims to remove these burdens in the job matchmaking process in pro-
ject teaming defined in section 2.2 by having intelligent agents maintain non-public
information and providing an agent-based matchmaking system.

4 Overview of Agent-Based Support System for Project Teaming

The structure of the proposed support system is shown in Fig. 3. It consists of two
layers of agent spaces. The lower layer called Job-Matchmake-Agent Space (JMAS)
is a set of agents and databases. This agent space JMAS is a place where each agent
carries out Job-finding tasks for a worker, which is collaborating with agents which
carry out Worker-finding tasks for employers. In order to deal with large number of
job-requests and worker-requests in JMAS, the function of the agents and the proto-
cols between agents are designed simply to carry out a job matchmaking process in
practically short interval. The upper layer called Elaborating-Agent Space (EAS) is a
set of agents which act for workers and employers to elaborate job matchmaking

��������	�
�
������

���������

� �

�� �

��������	��
�
�����

�����������
���

�������������

���

���
���

�������� ��

����

���	�������

Fig. 1. Project Teaming in Telework Community

282 Kenji Sugawara

information which gained by agent’s activities in JMAS using heuristics of workers
and employers. We call the job request information on heuristics used in JMAS as
primary information, and worker request information used in EAS as secondar
information.

JMAS consists of the following agents;

(1) Job Search Agent (JSA)
When JSA receives a Primary Job Request (PJR) from a Worker Agent (WA) in
EAS, JSA writes Job Request Information (JRI) which is included in the PJA into
JRI Database (JRIDB). Then JSA searchs Worker Request Information (WRI) from
WRI Database (WRIDB) to make a List of Job Candidate (LJC) based on the Job
Evaluation Criteria (JEC) which is also included the PJA. After making a LJC, JSA
query the rank of JRI of itself in JRIDB for all Worker Search Agents (WSA) in-
cluded in the LJC. A LJC which includes pairs of a job candidate and self rank of the
job candidate is sent back to the WA.

(2)Worker Search Agent (WSA)
When WSA receives a Primary Worker Request (PWR) from a Employer Agent
(EA) in EAS, WSA writes WRI which is included in the PWR into WRIDB. Then
WSA searchs JRI in JRIDB to make a list of JRIs ranked by Worker Evaluation Cri-
teria (WEC) included in the PWR. When a JSA ask the rank of it self for the WSA,
the WSA sends back the rank it has made to the JSA.

Upper layer EAS consists of the following agents;

(3)Worker Agent (WA)
When WA receives Job Request (JR) from a worker via a user interface, WA gener-
ates a PJR and Secondary Job Request (SJR) from the JR. The generated PJR is sent
to the corresponding JSA. SJR includes the worker’s heuristics to elaborate a LJC
from JSA such as elaboration strategy and criteria. After elaborating the LJC, the
results are sent to the worker.

����
������
������	

�����
���

������	

���	�
��
	�

������ �
�����

�
��
�	��
���	���
	�

�����
�	��

�����
�	��

�
��
�	�
���	���
	�

����� ����
��!

Fig. 2 Web-based Job Matchmaking Support System

Agent-Based Support System for Project Teaming for Teleworkers 283

(4)Employer Agent (EA)
When EA receives Worker Request (WR) from an employer via a user interface, EA
generates a PWR and Secondary Worker Request (SWR) from the WR. The PWR is
sent to the corresponding WSA. SWR includes the employer’s heuristics to elaborate
a LJC collaborating with WAs.

The details of design of the agents and the database will be discussed in the later
part.

5 Domain Specific Model of Job Request and Worker Request

5.1 Representation of Job Request

JR is defined by a pair of a primary job request PJR and a secondary job request SJR,

�"# �"#

�$%&' �$%&'

���(���)
��� (#�����"����

�# �#

������ �
�����

����������� (#�����"����

���	�
��
	���������
���	��������������	��

���������������������� �#	 ���
�#	 ��������������)��*��

*�	���+�����
���������	
*��,

��$

"�������
�$

�������$�-��	�
�$,

����$�-��	�
�$,

$�+�����*��
$*��,

�����
����
%�+��
�����

�����
������
%�+��
�����

������
�������

����
�������

��$ �����������

-��� (
(����

Fig. 3. Conceptual Design of Agent-based Support System for Project Teaming

JR = < PJR, SJR >.

PJR is defined by a pair of JRI and JRH (Job Ranking Heuristics),

PJR = <JRI, JRH >.

JRI is primary information of worker’s request on desirable jobs to contract. JRI is
described as a record which is written in a table in the JRIDB as the following form;

JRI = < jr-id, w-id, expiration, ITEM-LIST >.

Where "jr-id" is the identifier of the JRI, "w-id" is the identifier of the worker, "expi-
ration" is a time when the request is expired, and ITEM-LIST is a list of items such as

item = < item-name, item-value >

284 Kenji Sugawara

The "item-name" will be used as keys for job matchmaking. For example, it includes
"work skill"," requested salary ", "desirable work style", "desirable work place",
"work carrier", and so on. The "item-value" should be written depending on the
"item-name".

JRH defines heuristics of a worker to search candidates of jobs he wants to con-
tract and to rank them into order of preference of the worker. JRH is described as a
set of rules which represents heuristics depending on abilities, preference and carrier
of each worker for ranking WRI. JRH is a program of domain-specific and worker
specific heuristics, which is described a set of rules which represents heuristics de-
pending on abilities, preference, carrier of each worker for ranking WRI, and is inter-
preted by the JSA to search WRIDB and to make a ranking of the searched list of
WRI. The program is described as a set of rules which is interpreted by a production
system which is implemented in JSA and executed actions designated by the worker
to achieve the task of search and rank. The reason why the RHF is programmed by
production model is the followings;

(a) (a)Because it is difficult for the designer of this support system to define the uni-
versal evaluation function to rank the set of WRI for every worker, the criteria of
searching WRIDB and ranking candidate retrieved from WRIDB should be de-
fined depending on the heuristics of each worker.

(b) (b)Because there are many areas of jobs to support, enormous volume of WRI in
each area of job and heterogeneous representation of WRI, mathematical model
approach to designing matchmaking mechanism to deal with huge and heteroge-
neous requests does not seem to be practical to develop this kind of support sys-
tem.

SJR is a set of secondary job requests to elaborate a LJC in order to reduce burdens
of the worker’s negotiation with employers who are included in the LJC. The SJR is
also a set of rules as well as RHF and consists of several kinds of heuristics such as
analysis of LJC which is set back from JSA, decision of items to elaborates, strategy
of elaboration with corresponding EA and so on.

5.2 Representation of Worker Request

WR is defined by a pair of a primary worker request PWR and a secondary worker
request SWR,

WR = <PWR, SWR>.

PWR is defined by a pair of WRI and WRH (Worker Ranking Heuristics),

PWR = <WRI, WRH>.

WRI is primary information of employer’s request on desirable workers to employ.
WRI is described as a record which is written in a table in the WRIDB as the follow-
ing form;

WRI = <wr-id, e-id, expiration, item-list>

Agent-Based Support System for Project Teaming for Teleworkers 285

where "wr-id" is the identifier of the WRI, "e-id" is the identifier of the employer,
"expiration" is a time when the request is expired and ITEM-LIST is a list of items
such as

item = < item-name, item-value >

The "item-name" includes "necessary work skill", "proposed salary", "work style",
"work place", "desirable work carrier", and so on. The "item-value" should be written
depending on the "item-name".

WRH defines heuristics of an employer to search and rank workers into order of
preference of the employer. WRH is a program of domain-specific amd employer
specific heuristics whichh is also described as a set of rules and works like JRH.
When WSA receive a message of query-ranking from JSA, WSA sends back the rank
of the JRI of the JSA which is ranked in the previous action to the JSA.

SWR is a set of secondary worker requests to collaborate with WA to notify re-
quested information to an EA which ask secondary information to be used for elabo-
rating its LJC. The SWR is not provided for the WSAs in JMAS, because they can
not be formalize in the form of table of a database or the employer don’t want to open
the information in the teleworking community. SWR is described as a set of rules to
analyse an request from a WA and decide the content of responding message accord-
ing to situation of matchmaking.

5.3 Model of Elaboration of LJC

Let p be a name of worker who is supported by WA[p] and JSA[p], and let LJC[p] be
a LJC sent by JSA[p]. LJC[p] is an ordered list of pairs of < WRI[q], R[q]> where q
is a name of an employer who propose the WRI[q], WRI[q] is a WRI proposed by q
and R[q] is a rank of JRI[p] in the ordered list of JRIs which is made by WSA[q].
O(WRI[q]) is a rank of WRI[q] in the ordered list LJC[p]. Let sum[p,q] be a sum
O(WRI[q]) + R[q] in LJC[p] and let MinP(LJC[p]) be a pair of < WRI[q], R[q]> of
which sum[p,q] is the minimum in the LJC[p]. Let MinN (LJC[p]) be O(WRI[q]) +
R[q] of the MinP(LJC[p]).

The criterion of elaboration of LJC[p] which determines the behavior of WA is de-
fined as follows;

[C1] If O(WRI[q]) = 1 & R[q] = 1 then WA[p] reports the LJC[p] to the worker p.
[C2] If MinN(LJC[p])<= D[p] and N= O(WRI[q]) of MinP(LJC[p]) then WA[p]

tries to elaborate the pair <JRI[p], WRI[q]> collaborating with EA[q] where
O(WRI[q])<= N.

[C3] if MinN(LJC[p])> D[p] then WA[p] sends a new PJR generated by JRH to
JSA[p] again and reports it to the worker p.

D[p] is called "decision number" to determine the behavior of WA[p] which is
stored in SJR. In the [C2], WA[p] modify the original JRI[p] to new JRI[p] depend-
ing on the content of < WRI[q], R[q]> by production system interpreting a set of
rules in JRH. Receiving the message from WA[p], EA[q] generate a pair of a new
rank of the JRI[p] and modified WRI[q]. After finishing this operation for every <
WRI[q], R[q]> of which rank is higher than the rank on MinP(LJC[p]), WA[p] send

286 Kenji Sugawara

the list of triple of < modified JRI[p], modified WRI[q], modified R[q]> to a worker
p. The worker p analyse the elaborated LJC and determine the negotiation strategy to
contract better job. Although the protocol for elaboration of the LJC is still simple for
reducing the teleworkers proposed in this paper, we believe this support service is
more useful for project teaming for teleworkers than the service shown in Fig.2 be-
cause they should keep watching, searching and checking the enormous volume of
WRIs and JRIs. We are improving this protocol to reduce the burden of teleworkers
more intellectually.

6 Design of Job Matchmaking Agents

6.1 Design of JSA and WSA in JMAS

Fig. 4 shows a state transition diagram of a JSA. It has three states: "wait PJR",
"search & rank WRIDB" and "ask self rank". When JSA receives a PJR from a WA
at a state "wait PJR", JSA writes JRI in the PJA into JRIDB and stored JRH in PJR
into a production system of JSA. Then JSA change the state to "search & rank
WRIDB". At the state, JSA searchs job candidate from WRIDB based on a search
strategy designated by a worker’s heuristics stored in the JRH. The set of job searched
candidates is ranked in order of preference based on the worker’s job evaluation crite-
rion which is stored in JRH. The ordered list of candidates is called a partial LJC.
When the partial LJC is completed, JSA changes the state to "ask self rank". At the
state, JSA sends a message of "query-my-rank" to WSAs listed in the partial LJC.
When the LJC is filled out as a list of pairs of WRI and self rank of WSA, JSA sends
the completed LJC to WA and changes the state to "wait PJR".

����
��$

	����)�
.�����
�$%&'

��$�+��
��#/
������$%

�	�
	��+�����

�����0���������+��
��"#/
	�������)����!���$%������������*��
	���� -���(
(���� �����)���"#

+��� (���(*��/
	����*�������# ��������*��/

����
��$

	����)
.�����
�$%&'

��$�+��
��#/
������$%

������/

����
-���

-���(
(���� �+��
��"#/
������)�����������"#

��(�����
����
��

�!�����/
��
�0���$%

Fig. 4. State Transition of JSA Fig. 5. State Transition of WSA

Fig.5 shows a state transition diagram of a WSA. It also has three states; "wait
PWR", "search & rank JRDBI" and "wait query". When WSA receives a PWR from
EA at a state "wait PWR", WSA writes WRI into WRIDB and stored WRH into a
production system in WSA. Then WSA changes the state to "search & rank JRIDB".

Agent-Based Support System for Project Teaming for Teleworkers 287

At the state, WSA searchs worker candidates from JRIDB and ranks the searched set
of JRIs based on the heuristics stored in the production system. When the ranked list
of JRIs is completed, WSA changes the state to "wait query" and waits a message
from JSAs. When WSA receives "query-my-rank" message from a JSA, it replies the
rank of the JRI of JSA in the ranked list of it to the JSA. When the WRI of the WSA
is expired, WSA removes the WRI from WRIDB and changes the state to "wait
PWR".

6.2 Design of WA and EA in EAS

Fig.6 shows a transition diagram of WA. When WA receives JR at "wait JR", it sends
PJR to JSA and changes the state to "wait LJC". When WA at "wait LJC" receives
LJC, it activates JRH[D] to make a decision of the next action based on the criterion
and changes the state to "decision". At "decision", when [C1] is decided, WA sends
the original LJC to a worker, when [C2], WA activates JRH[E] and changes the state
to "elaboration", and when [C3], WA sends a new PJR to JSA modified by a set of
rules in JRH[D] and changes the state to "wait LJC". At "elaboration", when a
WRI[q] is selected as a objective to elaborate, WA modifies the original JRI to a new
JRI based on the JRH[E] and sends a message "elaborate(new JRI)" to the EA[q] and
waits the reply message. After finishing the operation, WA sends the elaborated LJC
(ELJC) to a worker and changes the sate to "wait JR".

Fig.7 shows a state transition diagram of EA. When EA receives "elaborate
(JRI[p])" from WA[p] at the state "wait message", it activates the WRH. When the
process of elaboration is finished, EA sends the new rank of modified JRI[p] and a
modified WRI[q] to WA[p].

����
�$

����
*��

�$��	������0��/
	������$�����"#

�12/
	�����)��*��
���������

����	���

�����0���*�� /
����0�����$3 &2

�����������
�42/
����0�����$3 �2

�52/
	����������$
����"#

	�������$% - 2/

���+��$%
	���� ���������
���+��� �$%, �����)���#

+���)/
	�����*��
���������

����
�$

����

�		���

�����0���$/�
	������$�����"# �!�����/

�����������

��������� �$% � 2, /
����0�����$3

+���)��/
	�������������.�

���+�����$%�����#

Fig. 6. State Transition of WA Fig. 7. State Transition of EA

7 Prototypical System of Agent-Based Support System
for Project Teaming for Teleworkers

Fig.8 shows a prototypical system developed based on the proposed model which
consists of an EAS server and a JMAS server working in PCs. Agents in EAS and
JMAS are developed using an agent framework named DASH which provides an

288 Kenji Sugawara

agent programming language R-DASH and a virtual machine DASHVM to execute
multi-agent systems programmed by the language. Architecture of a DASH agent is
shown in Fug.8, consisting of Communication Module CM, Knowledge Module KM
and Action Module AM. CM sends and receives ACL with other agents and put the
data parsed from the ACL to KM. KM is a simple production system which interprets
a set of rules programmed using R-DASH. The data from CM is written in a working
memory in the production system. AM is a set of procedures programmed using Java,
which are invoked by a fired rule in the production system. The procedures are called
"action" of an agent in DASH framework. For example, a database can be operated
by KM using these interface programs stored in the AM as actions of the agent. A
virtual machine DASHVM is developed using Java, and distributed agents working
on a DASHVM can communicate with agents working on other DASHVMs distrib-
uted in a network.

An employer accesses a web interface program and creates an EA for a WR in
EAS and a WSA in JMAS in this prototypical system. A worker also creates a WA
and JAS to search a LJC and described his JR using the web interface. The JR and
WR are dealt with by WA, JSA, EA and WSA and the search result LJC is informed
to the worker. If the worker decide that he should organize a sub-project to carry out
the contract as shown in Fig.1, then he create his EA and WSA newly as an em-
ployer, and wait contacts on job contract with workers.

In this empirical system, we have not developed an intelligent user interface for
workers and employers. So, users should describe their JR and WR using R-DASH
and SQL language via web interface as shown in Fig.8. An example of web interface
to describe R-DASH is illustrated in Fig.9. It is a very difficult problem to acquire
user’s heuristics and describe it by a program language. Our next research plan is to
develop such intelligent user interface.

�#"

&#"36

� #"

&#"36

�$%
&'

�$%
&'

���
�����+���

��������

������	 �
�����	

�

7

&'

&#"3
�����

#�*

Fig. 8. Prototypical System of Agent-based Support System

Agent-Based Support System for Project Teaming for Teleworkers 289

������

��������
�+�$(&#"3

8�����������
+��
�&#"3������

Fig. 9. User Interface provided in DASH framework

8 Conclusion

In this paper, we proposed a conceptual design of agent-based support system for
project teaming for teleworkers, and developed a prototypical system based on the
conceptual design. A goal of our project is to develop a framework to provide intelli-
gent services for various kinds of and huge telework communities because telework is
becoming an important aspect of our social life and the number of teleworkers is
going to increase greatly all over the world. Therefore, to provide a better support
service for teleworkers is emergent and challenging issues for creating the next gen-
eration work style.

For example, searching for work partners or employers using current web services
imposes a heavy burden for especially individual telewprkers, because they have to
search a very big list for several candidates, and then contact the candidates to obtain
non-public information and to negotiate for a better situation. Compared to this, pro-
posed system reduces the burdens of teleworkers partially supported by agents which
act for them in the processes of searching job candidates and elaborating the informa-
tion.

Agent-based matchmaking technologies have been studied in several projects
which we should refer to in order to develop our system [7-10]. The studiies are fo-
cused on the technology based on the ontology-based matching approach, the game-
theory-based matching approach and domain-independent approach to providing
common matchmaking function. On the other hand, our design in this paper is do-
main-specific and worker/employer-specific approach to developing heuristic-based
matchmaking based on the domain of teleworking. It may be very effective to inte-
grate this approach to develop the practical support system for job matchmaking.

There are many problems to solve in the proposed design to use this system in the
practical situation of teleworking. We should add the functions of user interface and
security to EAS and of scalability to JMAS for example.

290 Kenji Sugawara

Acknowledgement

The author would like to thank the members of the Dynamic Networking project
funded by the Japanese Society for Promotion of Science, for their contributions and
comments on the conceptual design of this system. The DASH framework, which is
used to develop the prototypical system, has been developed and improved by profes-
sor Shiratori, professor Kinoshita, professor Hara and their graduated students.

References

1. Bailey, D.E. and Kurland, N.B. “A review of telework research: Findings, new directions,
and lessons for the study of modern work”, Journal of Organizational Behavior, 23(4): 383-
400

2. Anne E. Dunning, “Telecommuting Policy: Implementation and Efficacy”
http://web.mit.edu/adunning/www/telecom/telecom.htm

3. Kenji Sugawara, “An Agent-Based Framework for Developing Flexible Distributed Sys-
tems”, Proceedings of First IEEE International Conference on Cognitive Informatics
(ICCI), 2002, pp. 101-106

4. Jennings, N.R., “An Agent-based Approach for Building Complex Software System”,
CACM, Vol.44, No.4, pp.35-41, 2001

5. G. Michael Youngblood, “Web Hunting: Design of a Simple Intelligent Web Search
Agent”, http://www.acm.org/crossroads/xrds5-4/webhunting.html

6. K. Decker, K.Sycara, and M. Williamson, “Middle-agents for the Internet”, Proc. 15th
IJCAI, 1997, pp.578-583

7. K.Sycara, J. Lu, M. Klusch, and S. Widoff, “Matchmaking among Heterogeneous Agents
on the Internet”, Proceedings of the 1999 AAAI Spring Symposium on Intelligent Agents
in Cyberspace, March, 1999

8. Harker, P. T. and Ungar, L. H. “A Market-Based Approach to Workflow Automation” , In
Proc. NSF Workshop on Workflow and Process Automation in Information Systems, Ath-
ens, GA, 1996.

9. Jose, R. A. and Ungar, L. H. “Auction-Driven Coordination for Plantwide Optimization”,
In Proc. Foundations of Computer-Aided Process Operation FOCAPO, 1998.

10. Sycara K., Widoff S., Klusch M. and Lu J., LARKS: Dynamic Matchmaking among Het-
erogeneous Software Agents in Cyberspace, Autonomous Agents and Multi-Agent Sys-
tems, 5, pp.173-203, 2002

An Interface Agent
for Wrapper-Based Information Extraction

Jaeyoung Yang1, Tae-Hyung Kim2, and Joongmin Choi2

1 Openbase Inc., Seoul, Korea
jyyang@openbase.co.kr

2 Department of Computer Science and Engineering,
Hanyang University,

Ansan, Kyunggi-Do 426-791, Korea
{tkim,jmchoi}@cse.hanyang.ac.kr

Abstract. This paper proposes a new method of building information
extraction rules for Web documents by exploiting a user interface agent
that combines the manual and automatic approaches of rule generation.
We adopt the scheme of supervised learning in which the interface agent
is designed to get information from the user regarding what to extract
from a document and XML-based wrappers are generated according to
these inputs. The interface agent is used not only to generate new ex-
traction rules but also to modify and extend existing ones to enhance the
precision and the recall measures of Web information extraction systems.
We have done a series of experiments to test the system, and the results
are very promising.

1 Introduction

Information extraction is the task of obtaining a particular fragment of a doc-
ument that is relevant to the user interest. In general, information extraction
is difficult mainly due to the heterogeneity inherent in different information
sources. For example, Fig. 1 shows two different display styles of conference
CALL FOR PAPERS pages, one with the list style and the other with the table
style.

In order to cope with structural heterogeneity, the information-extraction sys-
tems usually rely on extraction rules tailored to a particular information source,
often called the wrappers. In the previous methods of information extraction
for semi-structured Web documents, wrappers are generated manually or auto-
matically. In the manual wrapper generation method, the wrapper is written
by a human expert who analyzes documents and builds rules. ARANEUS [1]
and TSIMMIS [3] are the example systems that adopt the manual approach.
The manual method reveals highly precise performance, but generally it is not
scalable and effective.

On the other hand, the automatic method is known as the wrapper induc-
tion [4] in which the agent program analyzes a set of example documents and pro-
duces a wrapper through learning. Automatic wrapper induction can be based

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 291–302, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

292 Jaeyoung Yang, Tae-Hyung Kim, and Joongmin Choi

Fig. 1. Example of heterogeneous information sources.

on either heuristics or domain knowledge. Heuristic wrapper induction uses sim-
ple heuristics, e.g. a dollar sign followed by a digit such as $250 denotes the price
information, to recognize the pattern of the target information. This approach
has been adopted by most traditional wrapper-based information extraction sys-
tems such as SHOPBOT [2], STALKER [5], WHISK [6], and MORPHEUS [8].
Knowledge-based wrapper induction tries to solve the ineffectiveness of naive
heuristics by defining and applying the domain knowledge during wrapper gen-
eration. Knowledge-based approach is expected to extract more features from the
document than the heuristic approach. We have implemented knowledge-based
information extraction systems named XTROS [9] and XTROS+ [10]. Overall,
the automatic wrapper-generation method is scalable and effective than the man-
ual one, but it also has difficulty in generating correct rules due to the diversity
and the heterogeneity of Web information structures. Also, the generated rules
are sometimes unreliable.

To take advantage of both the preciseness of manual extraction-rule con-
struction and the scalability of wrapper induction, this paper proposes a new
method of building information extraction rules for Web documents through the
user interface agent. This method combines manual and automatic approaches
of rule generation. We adopt the scheme of supervised learning in which a user
interface agent is designed to get information from the user regarding what to
extract from a document and XML-based wrappers are generated according to
these inputs. The interface agent is used not only to generate new extraction
rules but also to modify and extend existing ones to enhance the precision and
the recall measures of Web information extraction systems.

This paper is organized as follows. Section 2 presents our approach of in-
formation extraction system based on the interface agent. Section 3 defines the

An Interface Agent for Wrapper-Based Information Extraction 293

format of XML-based extraction rules. The algorithms of rule learner and rule
interpreter are described in Section 4. Section 5 assesses the system with some
experimental results. Finally, Section 6 concludes with the summary and future
direction.

2 Interface Agent

The system architecture of the information extraction system we are proposing
is shown in Fig. 2. In this system, the user inputs are obtained and converted
into training examples through the interface agent. The rule learner, also called
the wrapper generator, analyzes the training data and produces information
extraction rules. These rules play the role of the wrapper and stored in the
rule repository. The rule interpreter executes the learned rules for real Web
documents to extract the target information.

The interface agent acts as a mediator between the user and the rule learner
in the task of recognizing the category of each data fragment to be extracted.
In order to do this, the interface agent provides an environment in which the
user can easily assign a category to a user-selected data item. As a result of a
series of interactions via the interface agent, training examples are produced and
supplied to the rule learner. The interaction between the user and the interface
agent is accomplished by the drag-and-click action of the mouse and the popup
menu, which enables the user to select a data item to be extracted and assign a
category to it.

Fig. 2. The architecture of an information extraction system with an interface agent.

294 Jaeyoung Yang, Tae-Hyung Kim, and Joongmin Choi

Fig. 3. Interface agents with popup menus.

A running example of the interface agent with the popup menu is shown in
Fig. 3. The user first selects a data fragment from a Web document displayed in
the interface by dragging it with the mouse. (In our example, a phone number
is selected.) Then, the user clicks the right mouse button to bring up a special
menu that enables the user to assign a category to the data item by selecting
the Slot-Name menu and typing in a proper slot name in a dialog box. (In our
example, phone number would be an appropriate slot name.) Finally, when the
user selects the Target-Data menu, the data item is automatically associated
with the slot name and stored as a training example. The interface agent also
delivers the trigger information to the rule learner. A trigger is the symbol or
word that helps to recognize the role of the target data item. In this example,
the trigger for the phone number slot might be TEL, Tel, or Telephone. Triggers
and slot names are determined according to specific application domains.

In short, the interface agent is required to have the following capabilities:
recognition of mouse events initiated by the user, convenient display of Web

An Interface Agent for Wrapper-Based Information Extraction 295

Fig. 4. Format of information extraction rules.

documents, and acceptance of user feedback. To facilitate these functions, the
interface agent is implemented by extending popup menus of a Web browser(in
our paper, the Microsoft Internet Explorer) and by employing a proxy server.
Extending popup menus to the browser is realized by adding new events to
the context menu of the Internet Explorer in the MS Windows registry. Once
extending the popup menus, the user input committed to the interface agent is
delivered to the proxy server that relays information to the rule learner. Likewise,
all the menu handling events are processed in the proxy server.

3 IE Rule Format

Information extraction rules are written in XML for readability and maintain-
ability. The format of rules used in this paper is shown in Fig. 4.

An extraction rule corresponds to a single domain. A rule consists of a set
of slots with different slot names, and each slot consists of a set of information
patterns. An information pattern, denoted by the <pattern> element, is the
smallest unit of a rule, and is obtained from the user input. Patterns are incre-
mentally added to a slot as more user inputs come, and the learning is performed
based on this pattern information.

The <pattern> element consists of several subelements including <id>,
<type>, <trigger>, and <format>. Among these, the value for <trigger> is
obtained from the user input, and other values are determined automatically by
analyzing the data. The <id> element denotes the identifier of a pattern. The
<type> element indicates the structural type of the target data, and is defined as
either TOKEN or PHRASE. Here, TOKEN means the target data must be separable as
a single token in the document sentence, and PHRASE means the target consists of
multiple words and the correct data can be extracted by partial matching. The
<trigger> element plays the role of delimiter to determine whether the current
rule should be applied to the target sentences. Only one trigger is assigned for

296 Jaeyoung Yang, Tae-Hyung Kim, and Joongmin Choi

Fig. 5. An example rule for job advertisement.

each pattern, but each slot may be associated with several triggers. This phe-
nomenon handles the situation where particular information can be expressed
differently with various terms. The <format> element describes the position of
the target data and its structural characteristics. Here, [TRIG] is the reference
to a <trigger> element in a pattern, TARG is the target information to be ex-
tracted, and {String} is a string that should be included in the target data or
in the sentence. <format> is used in analyzing strings in the rule interpreter,
and the system is able to extract the right information from a wide range of
documents by defining multiple <format> elements.

Figure 5 is an example of information extraction rules generated from a real
Web site for job advertisement. In this rule, the first pattern is related to the
company name, and the second pattern is for the application submission period.
As you can see in this rule description, the <trigger> element acts not only
as the initiator of sentence analysis, but also as a delimiter that indicates the
existence of a particular slot data by redescribing it in the <format> element.

4 IE Rule Learner and Rule Interpreter

The rule learner produces patterns of information extraction rules from the user
inputs obtained through the interface agent. The information provided by the
interface agent includes slot names, target data, and trigger information. By

An Interface Agent for Wrapper-Based Information Extraction 297

Fig. 6. Pattern learning algorithm by using the covering algorithm.

analyzing these data, the rule learner first determines whether the type of target
data is TOKEN or PHRASE, and sets the value of the <type> element accordingly.
Then, the rule learner finds the trigger and input data, identifies the relationship
between the two, and sets the value of the <format> element. For example, in
a document sentence TEL: 031-400-5666, if the target data is 031-400-5666 and
the trigger is TEL, the value of <format> should be [TRIG]: TARG.

Basically, the rule learner uses a covering algorithm. In this algorithm, a set
of training documents are collected, and every time a new pattern is produced,
the learner calculates the covering value of the pattern. Here, the covering value
of a pattern is the number of training documents from which the system can ex-
tract the target information successfully by using the pattern. According to this
covering value, the learner decides whether the new pattern should be accepted
or rejected. In our system, the threshold of covering value for accepting a new
pattern is set to 2. Figure 6 describes the pseudo-code of pattern learning by
using the covering algorithm.

The rule interpreter executes the rules obtained by the rule learner to ex-
tract the target information from real documents. The rule interpreter works
as follows. First, the test documents are reconstructed as a set of sentences.
Next, each sentence is analyzed to determine whether the trigger words occur in
the sentence. Only the sentences that contain the triggers are selected, and by
applying the value of the <format> element, it is determined if the structural

298 Jaeyoung Yang, Tae-Hyung Kim, and Joongmin Choi

Fig. 7. A running screen of the rule interpreter.

characteristics of the target data is matched with the rule. If the matching is
successful, TARG part which indicates the correct target data is extracted as a
result.

The rule interpreter is implemented by using the XML DOM parser and
the Java language. Figure 7 shows a running screen of the rule interpreter. In
this figure, the left pane of the window shows the hierarchical structure of the
generated XML rule, and the right pane shows the preprocessed document at
the top and the result of information extraction at the bottom.

Rules are verified and refined by using the WEKA module [7] that uses the
decision tree method. The rules are reconstructed by using the decision tree, and
by this way, new rules can be generated. Adding new rules generated from the
decision trees to the rule repository enhances the precision and recall measures.
Also, the original rules can be verified by re-generating them by decision trees.
Furthermore, learned rules can be modified by WEKA if they are not matched
with the newly generated rules.

Figure 8 shows the input data including rules and sample data used by the
WEKA module to produce decision trees. The attributes are those used in ex-
tracting slot values from learned patterns, and the data is produced by the rule
interpreter.

An Interface Agent for Wrapper-Based Information Extraction 299

Fig. 8. Rules and data used by the WEKA module.

5 Experimental Results

Performance of our system is evaluated for a collection of documents in three
domains: online bookstores(Book), job advertisements(Job), and conference call
for papers(CFP). For the Book domain, we choose 32 bookstores in the Internet,
and collect five search-result pages from each store. Collected documents are
divided evenly into training and test sets. For this domain, we extract the author,
the publisher, and the price information. A similar document-collecting process
is done for the Job domain, and we extract four kinds of target information
including the company’s name, phone number, and email address, and the job
application deadline. For the CFP domain, we select the first 100 documents from
the search results of Google for the conference call for papers, and divide them
into 50 training documents and 50 test documents. The target information in this
domain includes the submission deadline, the date for acceptance notification,
and the date for camera-ready version submission.

Figure 9 shows the precision and recall measures for the three domains. For
the Job domain described in Fig. 9(a), the precision and recall values are both
over 80 percent in average. In particular, the measures are over 90 percent for
the email address attribute, since there are only a few number of trigger words
and also the format of the target data is limited, which makes the recognition
easier. Since a single trigger exists for each pattern, the precision and recall
measures get higher as there are more patterns. In the case of the phone number
which is mostly represented in digits, the chances are that it can be mistakenly
recognized as the submission deadline. In this case, the triggers play crucial role
in distinguishing the two kinds of data.

Fig. 9(b) depicts the result for the CFP domain. Here, the measures for the
paper submission deadline are good, so are the date for acceptance notification.

300 Jaeyoung Yang, Tae-Hyung Kim, and Joongmin Choi

Fig. 9. Experimental results for three domains.

But, the recognition of the date for camera-ready submission is not done well,
since the word final version which rarely occurred in the training documents
appeared frequently in the test documents. This is the result of overfitting of
learning algorithm to the training data. To remedy this, we have used the WEKA
module that performs the learning processing again to enhance the extraction
performance of the system. In this case, by adding the word final as a new trigger
in WEKA, the measures for the camera-ready attribute get better while the

An Interface Agent for Wrapper-Based Information Extraction 301

Fig. 10. Experimental results by using the WEKA module.

results for other attributes remain unchanged. This is reflected in the up-camera
part of the figure, whereas camera-re indicates the original result.

To evaluate the effect of rule refinement by using the WEKA module more
specifically, we test the system by adding new patterns obtained from the decision
tree structure of WEKA to the original learned rules. The result is shown in
Fig. 10. We found that in average only one or two new patterns are added to
the original rule, which are effective enough to contribute to the improvement
of 6% in recall and 1% in precision.

302 Jaeyoung Yang, Tae-Hyung Kim, and Joongmin Choi

6 Conclusion

We have presented a new method of building information extraction rules for
Web documents through the user-interface agent. This method combines the
manual and automatic approaches of rule generation, and adopts the scheme of
supervised learning in which a user interface agent is designed to get information
from the user regarding what to extract from a document, and XML-based
wrappers are generated according to these inputs.

In a prototype system that we have implemented, the user inputs are ob-
tained and converted into training examples through the interface agent. The
rule learner analyzes the training data and produces information extraction rules,
and the rule interpreter executes the learned rules for real Web documents in
order to extract the target information. Our prototype system shows good per-
formance for a collection of documents in three different domains.

One of the limitations of our approach is that the triggers have to be rigour-
ously handled, which means that the word comprising the trigger must be exactly
matched to activate it. To resolve this, we are working on managing a semantic
ontology for each domain to facilitate the semantic matching of trigger words.
Also, we plan to employ a learning method that uses both positive examples and
negative examples to avoid overfitting.

References

1. P. Atzeni, G. Mecca, P. Merialdo: Semi-structured and structured data in the
Web: Going back and forth. Proc. ACM SIGMOD Workshop on Management of
Semistructured Data (1997) 1–9

2. R. Doorenbos, O. Etzioni, D. Weld: A scalable comparison-shopping agent for the
world wide web. Proc. Int. Conf. on Autonomous Agents (1997) 39–48

3. J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, V. Vassalos:
Template-based wrappers in the TSIMMIS system. Proc. ACM SIGMOD Int. Conf.
on Management of Data (1997) 532–535

4. N. Kushmerick: Wrapper induction: Efficiency and expressiveness. Artif. Intell.
118 (2000) 15–68

5. I. Muslea, S. Minton, C. Knoblock: A hierarchical approach to wrapper induction.
Proc. Int. Conf. on Autonomous Agents (1999) 190–197

6. S. Soderland: Learning information extraction rules for semi-structured and free
text. Machine Learning, 34 (1999) 233–272

7. I. Witten, E. Frank: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations, Morgan Kaufmann (1999)

8. J. Yang, E. Lee, J. Choi: A shopping agent that automatically constructs wrap-
pers for semi-structured online vendors. Lecture Notes in Computer Science. 1983
(2000) 368–373

9. J. Yang, J. Choi: Knowledge-based wrapper induction for intelligent Web infor-
mation extraction. In: N. Zhong, J. Liu, Y. Yao (eds.), Web Intelligence, Springer
(2003) 153–172

10. J. Yang, J. Choi: Agents for intelligent information extraction by using domain
knowledge and token-based morphological patterns. Lecture Notes in Artif. Intell.
2891 (2003) 74–85

Building Web Navigation Agents
Using Domain-Specific Ontologies

Jaeyoung Yang1, Hyunsub Jung2, and Joongmin Choi3

1 Openbase Inc., Seoul, Korea
jyyang@openbase.co.kr

2 KT Corp., Daejeon, Korea
flyhigh@kt.co.kr

3 Department of Computer Science and Engineering,
Hanyang University, Ansan, Korea

jmchoi@cse.hanyang.ac.kr

Abstract. This paper proposes a method of constructing navigation
agents that provide more personalized Web navigation by exploiting
domain-specific ontologies. In general, ontology is regarded as the speci-
fication of conceptualization that enables formal definitions about things
and states by using terms and relationships between them. In our ap-
proach, Web pages are converted into concepts by referring to domain-
specific ontologies which employ a hierarchical concept structure. This
concept mapping makes it easy to handle Web pages, and also provides
higher level classification information. The proposed navigation agent
eventually recommends the Web documents that are associated with the
concept nodes in the upper-levels of the hierarchy by analyzing the cur-
rent Web page and its outwardly-linked pages.

1 Introduction

With the rapid growth of the Internet, people are facing the information overload
that makes the users spend more time and put more efforts to find the infor-
mation they need. To resolve this problem, the idea of Web personalization has
been suggested by using the mining technology [8]. The mining methodologies
that help the navigation by personalized information can be classified into Web
content mining, Web usage mining, and ontology-based mining.

Webwatcher, Syskill&Webert, Letizia, and Webmate use the Web content min-
ing technique. Webwatcher [5] can be considered as a tour guide that takes ex-
plicit goals from a user and recommends relevant hyperlinks. Syskill&Webert [10]
gets explicit feedbacks from a user, and makes a decision whether a page is
an interest based on the rank of page links. Additionally, this system recom-
mends documents by retrieving them from the Lycos with the requesting queries
built from a user profile. Letizia [7] is an interface agent system that recommends
hyperlinked Web pages based on a user profile built from implicit feedback. Web-
mate [3] is a system based on a stand-alone proxy server that monitors user’s
behaviors, builds profiles, computes similarity measures, and recommends Web
documents according to these measures.

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 303–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

304 Jaeyoung Yang, Hyunsub Jung, and Joongmin Choi

WebPersonalizer [8, 9] combines the Web usage mining with the Web content
mining in order to make more sophisticated recommendation. In this system,
profiles are produced by the usage mining technique, and document weights are
measured by the content mining technique. Another research on the personal-
ization by using Web usage mining can be found in [11].

OBIWAN [2] uses ontologies to help navigation. This system is based on a
personal ontology, and each site has an agent that communicates with regional
agents which provide and characterize web pages in a local site.

However, most of previous researches about the Web personalization reveal
many problems. First, most personalization methods only adopt lexical analysis
by using term frequencies to measure the impact of words, without consider-
ing their semantic relations to other terms in the document. Second, they as-
sume that user’s information needs are fixed, only fail to cope with the frequent
changes in user interests. Third, most systems require explicit inputs from the
user about whether he or she has interests in the topic. This could be a bur-
den to the user who would not want to interact with the system, and also the
results may be subjective. Consequently, the performance of a system adopting
this strategy may not get better without explicit inputs. Finally, for the systems
using the Web mining techniques, extracting useful information itself is a hard
work and the performance is not promising for frequently-changed Web pages.

We try to solve these problems by using an ontology-based recommendation
agent. We propose a method of building Web navigation agents that facilitate
effective browsing by providing personalized information for the domain of Web
news sites in which the semantic structures of Web documents are clearly de-
fined and the changes in contents occur frequently. By these agents, Web pages
are classified according to the ontology that describes the semantic structures of
pages. This classification leads the agents to identify semantic contents and rela-
tions contained in the pages, and grasp users’ specific intentions while browsing.
For recommendation, Web pages are fetched by a look-ahead search and those
matched with user’s need are selected as locally optimal pages. We use the se-
lected pages to construct a user profile in order to provide more personalized and
high level news articles that satisfy user’s interests. The general architecture of
our personalized Web navigation system is depicted in Fig. 1.

This paper is organized as follows. Section 2 explains problem domains and
our views of optimal pages in Web navigation. Section 3 presents the ontology
structure used in this paper. Section 4 describes recommendation and classifi-
cation procedures using ontology. Section 5 describes the implementation and
evaluation of the classification with some experimental results. Finally, Section 6
concludes with summary and future direction.

2 Web Navigation Using Hyperlinks

A model for the Web structure can be represented by a graph G = {V, E}, where
each node in V denotes a Web page and each edge in E denotes a hyperlink
between pages. The graph consists of a virtually infinite number of vertices

Building Web Navigation Agents Using Domain-Specific Ontologies 305

Fig. 1. Architecture for our personalized Web navigation system.

V = {v1, v2, · · ·} and edges E = {e1, e2, · · ·}, so searching a particular page
that satisfies the user’s information need is an impractical task. To resolve this
problem, we modify the model by redefining the graph as G = SG1 ∪SG2 ∪ · · ·,
meaning that the graph consists of an infinite number of subgraphs SGi, but
each subgraph has a finite number of nodes and edges. Each subgraph can be
regarded as a local group of pages obtained by considering the point of current
browsing. Our efforts are focused on finding a locally optimal page in a subgraph
which contains the currently fetched page and has a reasonable number of nodes.

This subgraph model has different characteristics compared to the ordinary
graph model, mainly due to the properties of the Web structure. First, while the
graph model has a fixed start node, the subgraph model has a dynamic start
node depending on the current page. Second, goal nodes are also fixed in the
graph model, whereas goals in the subgraph model are changed according to the
start node. Finally, the subgraph model does not have a fixed structure as in
the graph model, rather its structure is changing according to time and network
states.

In this paper, some assumptions are made in the course of finding and rec-
ommending the page that is most relevant to user’s information need. First, at
any point in browsing, the current page node may have hyperlinks to several
pages with different weight values, and among these pages, we select the one
with the largest weight value as a locally optimal page. We hope that if the

306 Jaeyoung Yang, Hyunsub Jung, and Joongmin Choi

Fig. 2. Local Web structure with weighted links.

agent continues to chase locally optimal pages, we may end up with the globally
optimal page. However, in reality, this may not be the case since the agent may
be stuck with a local maximum that is not a global maximum. Figure 2 shows
this problem graphically.

In this figure, a directed arc indicates that two nodes are connected by a
hyperlink in the direction of the arrow. The number on each edge is the similar-
ity value between the connected nodes. Suppose the shaded node in the figure
denotes the current page the user is looking at, and the target page is an optimal
page that has to be found. The agent searches a locally optimal page from the
current page by examining the three hyperlinked pages in the next depth level.
Since the link to the page 2 has the highest similarity score, the agent moves to
it. At the node of the page 2, the agent will do the same operation, and moves
to the page 3. In this case, although the target page is optimal, the agent selects
other document in the graph as the optimal page. We will not mention how
to solve this problem in detail in this paper, although we solve it by using an
optimization strategy such as the hill-climbing search.

The second assumption is that even when the user switches to other pages
by explicitly typing in the URL of a Web page during browsing, the agent knows
the appropriate ontology used to convert the content of the page into a set of
concepts. In other words, our agent is assumed to have a corresponding domain-
specific ontology when the domain is changed by the user explicitly.

3 Ontology as a Knowledge Base

An ontology is defined as a specification of conceptualization, and is comprised
of the objects and their relationships [4]. Also, an ontology is an axiomatic char-
acterization of the meaning of a logical vocabulary. Hence, an ontology consists

Building Web Navigation Agents Using Domain-Specific Ontologies 307

Fig. 3. The general structure of an ontology.

Fig. 4. Concept hierarchy for the baseball domain.

308 Jaeyoung Yang, Hyunsub Jung, and Joongmin Choi

Fig. 5. Expressing hierarchical ontology by XML.

of a representative vocabulary for objects and relations that define the interre-
lationships between objects.

In this paper, we use an ontology as a knowledge base. The knowledge base
is treated as a vocabulary that consists of logical terms and axioms. Our assis-
tant agent is able to convert the contents in a page into a corresponding set of
concepts. An advantage of this concept mapping is that the agent can provide
the information about a Web page not by a sequence of frequently-occurring
terms but by a hierarchy of concepts so that the agents can recognize what is
contained in a page.

We focus on constructing the ontology for the classification of Web doc-
uments [6]. In order to facilitate the description and the classification of the
hierarchical conceptual structure of Web pages, the ontology is represented by a
hierarchy of nodes where each node denotes a concept, a feature, a relation, or a
constraint. A concept is a name to represent a node. A feature consists of words
and phrases (a sequence of words) to describe a concept. A relation describes the
interrelationship between concepts by using OOP-like relationships such as isA,
partOf, and hasPart. The isA relation defines a generalization or specialization
connection, and partOf and hasPart relations define inclusion connections. A
constraint has two conditions: isRelatedTo and followedBy. Closely related fea-
tures or conditions are used to solve ambiguity in word-based document analysis
to improve the accuracy. Figure 3 shows the general structure of an ontology.

Building Web Navigation Agents Using Domain-Specific Ontologies 309

Figure 4 shows an example ontology for the baseball domain, and Fig. 5
shows its XML representation. Here, history is defined as a child concept of
baseball which is the topmost concept, and at the same time, another history
is defined in the path of baseball-major league-history. This feature is realized
in the XML representation by using the nested concept definitions and the con-
straint descriptions.

4 Navigation Agent as a Classifier

In this paper, the classification of Web pages is a task of mapping a document
to a suitable node in the concept hierarchy. Documents are mapped to the most
relevant node by navigating the concept hierarchy from the root node, and only
those children nodes whose parent node is satisfied with the similarity measure
are considered. Otherwise the last traversed node will be the proper node for the
document. Clearly, a document is not necessarily mapped to a leaf node in the
hierarchy. As a result, we are able to represent a concept hierarchy using a small
number of nodes, and do more sophisticated recommendation using hierarchical
classification. Our navigation agent can also provide high-level Web document
recommendation using this concept hierarchy.

Equation (1) is the similarity measure function for the classification. A node
with the highest score will be the relevant concept that is regarded as the class
for a document.

Sim(Node, d) =
∑N

i=0 freqi,d/Maxl,d

N
· Vd

V
(1)

In this equation, d is the current document, Node is a node in the concept
hierarchy, N is the total number of features, freqi,d is the frequency weight of
the feature i in d, Maxl,d is the maximum of all values of freqi,d, V is the
total number of constraints, and Vd is the number of satisfied constraints in d.
Relations are also used in the course of classifying document in a way that,
if a node has relationships with other nodes in terms of partOf or hasPart, the
navigation agent measures the similarity including these relationships. Then, the
agent records the last mapped node along with the path from the root to this
mapped node in the user profile.

To recommend personalized Web documents, we use a user profile that re-
flects the user’s interests and preferences. In the user profile, each interest is
represented by a pair of information <P, R>, where P is the path for a mapped
node from the root in the hierarchy after the classification, and R is the number
of requests to the corresponding document for the same interest. In this way, the
user profile can be regarded as a weighted ontology with the concept hierarchy
in which a weight is represented by a number that reflects the degree of fitness
to user interests. Figure 6 shows the structure of the user profile in which the
paths are represented by bold lines and the number of requests is represented
by a number inside a node.

310 Jaeyoung Yang, Hyunsub Jung, and Joongmin Choi

Fig. 6. The structure of the user profile.

Fig. 7. The overall procedure for recommending Web documents.

Candidate documents are fetched by using the look-ahead search starting
from the user-specified document. Recommendations are done based on a mea-
sure called the recommendation score(RS) that is calculated and assigned to each
candidate document. Equation (2) shows how to measure the recommendation
score for a document.

RS(d) =
√

DD(d)× PD(d) (2)

Building Web Navigation Agents Using Domain-Specific Ontologies 311

Fig. 8. An example page about baseball.

Here, DD denotes the document distance and PD denotes the profile dis-
tance. DD considers the distance between the node in the concept hierarchy
that is mapped from the current document and the node mapped from the doc-
ument obtained from look-ahead search. Equation (3) shows how to measure the
document distance for a document. Here, dist(d, di) denotes the difference in
path length in the hierarchy between the current document d and the document
di which is a result of the look-ahead search. (N is the collection of documents
obtained from the look-ahead search.) Notice that the document distance is the
location-based factor that considers only the node position in the concept hier-
archy.

DD(d) = Maxi

(
1

log2(dist(d, di) + 1) + 1

)
, di ∈ N (3)

The profile distance PD considers the profile information. Equation (4) shows
how to measure the profile distance for a document.

PD(d) = Maxi

(
freqp,i

Max freqp,l
× 1

log2(Cdist(d, p)+1)× log2(Wdist(d, di)+1)

)

(4)
In this equation, freqp,i

Maxfreqp,l
normalizes the number of visits to the node(or the

path to the node) which is associated with the document page. Also, Wdist(d, di)
is a Web distance that denotes the number of hyperlinks from the current doc-

312 Jaeyoung Yang, Hyunsub Jung, and Joongmin Choi

Fig. 9. An interface for extracting hyperlinks from the Web pages.

ument d to a candidate document di in the Web space, and Cdist(d, p) is a
concept distance that is the distance between the current document d and the
node p in the concept hierarchy that reflects user’s interest. As in Equation (3),
di is a member of N .

We assume that the nearest document from the currently visiting node in the
concept hierarchy is the most relevant page, so we assign a high RS score to this
node. Weights are assigned differently by traversing the path from the current
node to the root node. An advantage of using this strategy is that the navigation
agent is able to recommend a concept in the upper level of the hierarchy. As
the final step, the user gets the Web page that is regarded as relevant by the
agent based on RS scores, and this recommended page is augmented with the
links to other relevant documents. The overall procedure for recommending Web
documents by using user profiles is depicted in Fig 7.

5 Empirical Results

The navigation agent recommends hyperlinks, annotated with a concept hierar-
chy. An example page about baseball is shown in Fig. 8, from which the system
extracts hyperlinks by using the interface as shown in Fig. 9.

Building Web Navigation Agents Using Domain-Specific Ontologies 313

Fig. 10. The result of recommending four high-scored documents.

Figure 10 shows the result of recommending four high-scored documents,
along with annotations of mapped concept. The recommendation scores are cal-
culated by considering the user profile and the classified documents. Measuring
the performance of recommendation is a subjective task, mainly because the user
decides whether the recommended pages are correct. Hence, instead of measuring
the performance of recommendation, we have tested the performance of classifi-
cation using ontology. Actually, the performance of recommendation intensively
depends on the accuracy of the classification.

To evaluate the performance of our classification procedure using ontology,
we test the system with the wired news about the baseball. The ontology about
the baseball is already shown in Fig. 4. We collect documents in the recreation,
sports, and baseball categories of the Yahoo search engine [12]. We select those
documents that belong to this category in Yahoo and also to a concept in the
ontology at the same time. We feed these documents to the classification module
to examine whether they are classified into the same category as in Yahoo. We
have tested the total of 421 document pages about baseball, 56 of which belong
to the history category, 79 to amateur, 122 to college, 108 to minor league, and
56 to major league.

For the purpose of precision comparison, we test two different methods: the
one is constructing the ontology solely by a human and the other is constructing
it automatically by using the TF-IDF technique [1]. The procedure of automatic

314 Jaeyoung Yang, Hyunsub Jung, and Joongmin Choi

Fig. 11. Features used to construct the ontology.

construction of the ontology is as follows. As we already have the ontology frame,
we calculate term weights by using TF-IDF for the documents in each category
of Yahoo so as to generate the features used in leaf nodes of the ontology. We
select 10 low ranked terms as the features and assign these features to each leaf
node. Then, we go up one level to a parent node and filter out 10 low ranked
features from the child nodes. Figure 11 compares the list of features obtained
by the two methods.

Figure 12 shows the precision measures about whether the documents are
classified into the baseball class, which is the topmost class in the hierarchy. In
this experiment, we compare the manual ontology construction method with the
automatic one. The average precision for the manually-built ontology is 82.7%
and that of automatically-built ontology is 84.2%. From this result, we can notice
that the constructing method using TF-IDF shows a little bit better performance
than the manual method. It is mainly caused by the TF-IDF characteristics that
prefer terms occurred in several documents uniformly.

6 Conclusion

In this paper, we propose a method of building personalized agents that help a
user with the navigation on the Web by using ontology. The navigation agents
represent the semantic relationship between Web documents by a concept struc-
ture, and classify them using the ontology that consists of the concepts. The
navigation agents based on the ontology identify user’s information need more
efficiently and correctly. The agents are able to provide personalized information
based on the user profile when the user is browsing the Web.

Building Web Navigation Agents Using Domain-Specific Ontologies 315

Fig. 12. Percentage of being classified into the baseball class.

The tests for classification and recommendation are not done with very large
amount of data, but if we use the ontology constructed by combining manual
and automatic methods, we could get more accurate classification results.

We have described the navigation agents with domain-specific ontologies.
But there are some challenges, which we have to resolve. First, the manual con-
struction of the ontology is time consuming, and we are developing an interface
for extracting semantic concepts or relationships to facilitate the automatic or
semi-automatic construction. Second, in this paper, we assign a document only
to a single class, but a document can be assigned to several classes. We study
algorithms on multi-class assignment. Third, we may need to construct a collab-
orative system for supporting information sharing. Finally, since the look-ahead
search takes a fair amount time, a new method that reduces the time to fetch
documents in the next hyperlink level should be studied.

References

1. R. Baeza-Yates and B. Ribeiro. Modern Information Retrieval, Addision Wesley,
1998.

2. J. Chaffee and S. Gauch. Personal Ontologies for Web Navigation. In Proc. 9th
Intl. Conf. on Information and Knowledge Management (CIKM’00), pp.227-234,
2000.

3. L. Chen and K. Sycara. Webmate: A Personal Agent for Browsing and Searching.
In Proc. of 2nd Intl. Conf. on Autonomous Agents, pp. 132-139, 1998.

4. T. Gruber. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal on Human and Computer Studies, 43(5/6): 907-
929, 1995.

316 Jaeyoung Yang, Hyunsub Jung, and Joongmin Choi

5. T. Joachims, D. Freitag, and T. Mitchell. Webwatcher: A Tour Guide for The
World Wide Web. In IJCAI’97, pp.770-777, 1997.

6. W. Koh and L. Mui. An Information Theoretic Approach to Ontology-based In-
terest Matching. In IJCAI’01 Workshop on Ontology Learning,, 2001.

7. H. Lieberman. Letizia: An Agent that Assists Web Browsing. In IJCAI’95, pp.475-
480, 1995.

8. B. Mobasher, R. Cooley, and J. Srivastave. Automatic Personalization Based on
Web Usage Mining. Communications of ACM, 43(8): 144-151, 2000.

9. B. Mobasher, H. Dai, T. Luo, Y. Sung, and J. Zhu. Integrating Web Usage and
Content Mining for More Effective Personalization. In Proc. of First Intl. Conf. on
E-Commerce and Web Technologies (ECWeb2000), pp.165-176, 2000.

10. M. Pazzani, J. Muramatsu, and D. Billsus. Syskill&Webert: Identifying Interesting
Web Sites. In Proc. of 13th Natl. Conf. on Artificial Intelligence, pp.54-61, 1996.

11. M. Spiliopoulou. Web Usage Mining for Web Site Evaluation. Communications of
ACM, 43(8): 127-134, 2000.

12. Yahoo!. http://www.yahoo.com

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 317–328, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Agent-Based System for Confirming User Appointment
Through SMS Callback URL Push

Jung-Jin Yang

School of Computer Science and Information Engineering
The Catholic University of Korea, Yeouido Post Office, P.O.Box 960,

35-1 Yeouido-dong, Yeongdeungpo-gu, Seoul, Korea (150-010)
Tel: +82-2-2164-4377, Fax: +82-2-2164-4777

jungjin@catholic.ac.kr

Abstract. With the drastic increase of mobile phone usage, infrastructures have
been established to better network and connect the users. Consequently, the ser-
vices through mobile devices, called M-services, are thriving with plausible ap-
plications. This work presents building an agent-based system for confirming
user appointment through Callback URL, which is using SMS on the mobile
phone in order to reduce the rate of failing appointment and the loss from such
failures. To avoid the degradation of the system caused by the excessive ac-
cesses per try, methods in processing large-scale transactions and preventing
obstacles, along with the comparison of the two methods are introduced.

1 Introduction

Nowadays, the mobile phone is a commodity and it is the most common way of di-
rectly communicating with others. With the availability of the infrastructure for net-
working mobile phones, people can obtain additional services apart from the basic
voice communication. Mobile services (M-Services) range from Internet to VOD
services through IMT2000 and CDMA EVDO. Additionally, the integration of mul-
timedia with contents such as games and leisure instigates users to demand such ser-
vices on mobile devices even more. This paper presents the building agent-based
system used to confirm user appointment through SMS (Short Message Service) Call-
back URL Push along with examples of actual applications. WAP (Wireless Applica-
tion Protocol) Push is presented as a way of implementing SMS Callback URL, and
the use of SMS-based WAP Push 1.0 is applied for the compatibility and interopera-
bility superior to that of WAP Push 1.2 that does not provide the service necessary.
The domestic population of mobile phone users exceeds 30,000,000 people and it is
still on the rise. This brings our attention to the servers dealing with large-scale traf-
fic. This paper also focuses on the prevention of failovers, which is getting over fail-
ure, and the solution to traffic problems.�

Overall, the agent-based system for confirming user appointment is expected to re-
duce the rate of dishonored appointments. Moreover, the database for the appoint-
ments can be used in analyzing the characteristics of a member or a guest who has an
appointment. Hence the analyzed data can be utilized in accordance with
eCRM(electronic Customer Relationship Management) to help business marketing
and other additional services. This paper consists of protocol description in imple-
menting Callback URL Push, architecture of an agent-based system for confirming

318 Jung-Jin Yang

user appointments, core network technology and constructing a scheme according to
its scope, and components of traffic processing. The empirical result and the plans for
future development are presented in Section 5 and 6 respectively.

2 Related Work

The base protocols and services for implementing “Callback URL” is described in
this section along with the traffic processing with respect to 2-tier and 3-tier architec-
tures.

2.1 2-Tier and 3-Tier Architecture

In implementing “Callback URL,” two network models may be employed. The first is
the 2-tier architecture which embodies both the Presentation Logic and Business
Logic simultaneously, and the latter is the 3-tier which separates and presents the two
in different positions.

2-Tier [1] architecture embodies the Presentation Logic on the client system through
the typical client/server model’s immense server model. Because it materializes the
Business Logic on the server, it carries problems such as errors in data handling, dif-
ficulty in maintaining and conserving the application, dependency on the database,
and a substantial lack of supportive languages.

3-Tier [1] architecture employs a middleware to disperse transaction loads and to
increase the efficiency in managing the transactions. The clients use the middleware
to request services from mid-level server modules. These server modules connect and
handle database by stably allocating the requests, thus providing trustworthy services.
Middleware software agent, like the former singular system computing, can easily
embody disperse computing, and is usually placed between the management structure
and the applied programs to help as a bridge between the client and the server.

2.2 Infrastructure

1) Protocols
WAP Push [2] is employed in implementing the two-way SMS. WAP Push service
sends SMS messages through the WAP Gateway, and this can log on to the Internet
via WAP Protocol. Push service provides services even without specific requests from
customers, and this helps the user obtain diverse pertinent information, and in the case
of WAP Push, WAP Push 1.0 [3] and WAP Push 1.2 [3] versions are being re-
searched upon its foundation. Currently WAP Push 1.0 service is performing as the
SMS basis service and WAP Push 1.2 is interacting with it. If WAP Push 1.0 is not
linked with SMS, it cannot function as an interactive device. Hence WAP Push 1.2
makes up for this shortcoming by providing an interactive service disregarding its
connection to SMS. Figure 1 shows the structure of WAP Push 1.2. WAP Push 1.2
consists of the Push Initiator which is connected to the Internet, Push proxy gateway,
and the mobile phone known as the WAP client. Protocols consist of the Push Access
Protocol for Internet access, and the POTAP (Push Over-The-Air Protocol) for wire-
less Internet connection.

Agent-Based System for Confirming User Appointment 319

�

Fig. 1. WAP Push 1.2 Structure

SMS Data formation consists of the following:
• ������	��
������������������’��������
• �����������������������������

• �����	�	����	�	�

• �	���	�����������������������
�������������	���

Methods in implementing SMS Callback URL Push are different for every mobile
phone producer in the Republic of Korea [9][11]. KTF, using 016 and 018 as the first
three digits of the cell phone number, and LG Telecom using 019 have opened their
telecommunication nets to put the SMS Callback URL into effect, but SK Telecom
establishes its own SK Network and use its private net for the SMS Callback URL. In
other words, KTF and LG are able to use the Public Network through the Internet,
whereas SK Telecom must install a private VPN. SK’s reclusive policy leads to
budget increase in implementing the mobile solution. The Internet’s VPN is an alter-
native, but since this depends on SK’s policy, the possibility of its embodiment is the
only issue under consideration.

2) Method of Traffic Processing
If the users that simultaneously log on to the system are few in number, handling the
traffic is not a big issue since the web server can sufficiently manage the users. How-
ever, if the number exceeds 1000, we observe that some problems occur. In the case
of the Apache web server, the system slows down or crashes if more than 1000 people
log on at once; IIS (Internet Information Server) is even worse [4]. Moreover, if the
environment is based on 2-tier, the traffic load freezes its own system due to the fail-
ure of its Business Logic. To allocate the load, network load balancing should be
employed or L4 Switch should be installed. This, however, only pertains to the alloca-
tion of the Web server connection and not to the Business Logic. For Business Logic,
constituting 3-tier architecture is probably the best solution. Business Logic manage-
ment is possible if a Web Application Server (WAS) agent [5] is set up at the channel
that connects to the Web server, and TP Monitoring agent at each telecommunication
connecting channels to facilitate the allocation. TP Monitoring agent functions to
handle the transactions in a Client/Server environment, here in the C/S environment
of the telecommunication companies.

3 System Architecture

This section describes the architecture of the agent-based system for confirming user
appointment. Along with the overall architecture, problems and solutions to Multi-

320 Jung-Jin Yang

Routing and the analysis of its extent and expense, 3-tier architecture for processing
large-scale traffic is discussed.

3.1 SMS Callback URL Push

SMS Callback URL Push is a WAP push service based on the basis of SMS. WAP
Push 1.2, which has previously been mentioned, is not in use and there are no cellular
phones or services that support this system. Therefore, the WAP Push 1.0 interaction
can be implemented through the WAP Push based on SMS by sending the URL ad-
dress when connecting on the SMS message. The general concept is similar to the
SMS Callback Number Push, but in the case of SMS Callback URL Push, the URL
address pertains to the Internet URL not the return number. This can be explained by
analyzing the services provided by SMS. SMS can be employed by practically apply-
ing it to specific purposes, such as sending and receiving short messages, offering
broadcasting services and conversation services. Broadcasting services send messages
to people within the range of a particular base station, and conversation services send
and receive messages between the user’s cellular phone and Web server [6]. These
practical applications provide methods in implementing the SMS Callback URL [8].
Within the parameter of the SMS, Teleservice parameters can be used, and instead of
the Callback Number a Callback URL can be designated. For example, a Teleservice
ID can be assigned at the SMS Header and a Callback URL after that.

The flow of sending and receiving messages in implementing the application of
WAP Alert [3] is following. The Content Provider (CP) Server agent embodies the
application of WAP Alert, and the SMS Server sends the message from the CP Server
agent to the cellular phone. The cellular phone, upon receiving the message, connects
to the CP Server agent. SMS interaction is activated through such a process, and Tele-
service ID is defined by the practical services to specific purposes so that the SMS
message inside the User Data may designate a Callback URL to allow the user to
connect to the site appointed by the Callback URL.�

3.2 Overall Architecture

Figure 2 shows the reservation confirmation agent system’s complete system configu-
ration. The user connects to the CP Database System via personal computers, phones,
or cellular phones, and makes a reservation. According to the reservation data, the CP
Server agent operates the SMS Callback URL Push through the SMSS (Short Mes-
sage Service Server) before the reserved date, and the user, upon receiving a message,
presses [Send] or [OK] button to connect to the pertaining URL.

After logging on, the user may choose options such as [Visit], [Postpone], [Can-
cel]. After the user chooses one of the options, the CP Server agent saves the informa-
tion in the CP reservation Database System and accepts reservations again to fill in
the vacancies of those cancelled. This shows the workflow of the existing system
configuration, and the focus of this work is on the communication process through a
two-way transmission. Therefore, in implementing this service, traffic will occur
twice as much as the one-way traffic SMS service and controlling the overflow of
traffic is crucial.

Agent-Based System for Confirming User Appointment 321

Fig. 2. Agent-based Reservation Confirmation System

3.3 SMSS (Short Message Service Server)

SMSS is a server that is connected to other businesses in order to provide SMS ser-
vices. SMSS is in charge of transmitting short messages accompanied by SMS Call-
back URL data. The user, upon receiving the message, logs on to the URL by press-
ing [OK] or [Send] button on his/her cellular phone. SMSS is an important element in
transmitting the Callback URL via short messages. Because SMSS is in the C/S envi-
ronment of telecommunication companies and is liable to traffic problems, the con-
version to 3-tier system is essential.

3.4 Mobile Web Server Agent (CP Server Agent)

Mobile Web Server agent is a CP server agent, so users ultimately perform their tasks
through the CP server agent. In the case of the reservation confirmation agent system
discussed in this paper, users can access the reservation contents and modify their
reservation data. Not only reservations, but services such as Mobile Poll and stock
exchange are also available; such applications may be developed with the arrival of
new contents. Also, the language used for wireless Internet is based on XML, thus the
possibility of integrating XML data with other compound systems is high. The goal of
this work is to suggest ways that allow users to choose among [Visit], [Postpone],
[Cancel] to automatically update the reservation database from the data saved in the
Mobile Web Server, mainly used for reservation confirmation. In the case of [Post-
pone] and [Cancel], the reservation database’s reservation data is deleted to receive
new reservations. CP server agent is operated by Business Logic, but the web server
cannot accommodate so many simultaneous users and the problems of Business Logic
remain. A switch-over to 3-tier architecture is necessary.

3.5 Traffic Processing and Measuring Against Obstacles

Figure 3 is different from the previous CP reservation system in Figure 2 since it
established a separate Presentation Logic and a Web Application Server (WAS) agent

322 Jung-Jin Yang

toward the back to allocate and manage traffic. Business Logic is embodied in place
of WAS agent. For a two-way configuration, Fail Over, Session Clustering, and Net-
work Load Balancing are also shown. TP Monitoring agent is situated near the con-
necting channels to the telecommunication C/S environment. For continual connec-
tion, TP Monitoring agent’s UCS (Universal Character Set) aids in facilitating the
connection with the telecommunication companies. Through this system configura-
tion, WAS agent manages the traffic from the Web, and between the Web server and
WAS, Stream Pipe is used instead of TCP/IP therefore doubling the efficacy of inter-
nal telecommunication performance. However, to employ the Stream Pipe, the Web
server and WAS agent must be placed on the same node. In the case of the TP Moni-
toring agent, continual connection is possible only through UCS, thus emphasizing
the importance of applying the TP Monitoring agent supports the UCS.

Fig. 3. WAS Agent-based Reservation Confirmation System

3.6 Application of WAS Agent and TP Monitoring Agent

WAS agent manages the connections coming through from the Web server. Because
the Stream Pipe method is quicker than that of TCP/IP in telecommunicating between
the Web server and WAS agent, it is obviously better to place the Stream Pipe [5] to
facilitate the transmission. However, the Web server and WAS agent must be placed
on the same node, and at the same time a double configuration is needed to prevent
failures.

When the same service is running on multiple servers, data based load can be dis-
tributed depending on a custom or specified range of data. System based load balanc-
ing: this type of load balancing gives the control of assigning greater load to a more
robust server in case users are working with a heterogeneous server environment. If
one server has more RAM, CPUs, etc. than other servers, then users can force that
server to undertake a greater load. Depending on traffic to a node, if traffic increases,
TP-Monitor agent dynamically distributes traffic to other nodes.

Agent-Based System for Confirming User Appointment 323

There are two ways in configuring session clusters that settle problems occurring
between the Web server and WAS agent. In the case of Figure 4 (a), if one part is
defective, all requests are channeled to the other side which is still in tact. This seri-
ously deteriorates the performances of the session engines. This method shows the
classical example of session clustering, and the session data management is compara-
tively slow [1]. The remainder in Figure 4 (b) keeps a session management agent so
that the session data is equally allocated to each engine. This system distributes the
system resources evenly thus preventing an overflow in a single engine.

Two methods are available for overload dispersion and hindrances. One is assign-
ing the task to the adjacent node as soon as the problem occurs. If this freezes the
adjacent node, another adjacent node is designated to carry out the task. This can
cause a domino effect and crash the whole system. A solution to solve this chain reac-
tion and final crash must be devised – a method in which the concentrated load that is
automatically relocated to the adjacent node should be equally allocated to all other
nodes. The demerit of the chain reaction can be compensated with a better solution.
Seemingly, the necessity of a manager agent emerges to evenly distribute the loads as
in Figure 5. An action to automatically restart the system after its crash also needs to
be taken.

(a)

(b)

Fig. 4. Application of WAS Agent

324 Jung-Jin Yang

Fig. 5. Load-Balancing based on TP-Monitoring Agent

4 Implementation

4.1 Problems and Solution of Multi-routing in Implementation

As explained in section 2.2, SMSS and the CP Server agent are the key factors in
executing the SMS Callback URL Push service, which connect through private nets of
telecommunication companies or the VPN. The system configuration for such service
can be divided into two different methods, of which one is as follows. SMSS and CP
server agent are connected directly by Fast Ethernet Adapter by a Cross Cable. SMSS
only needs to set a Gateway address for the telecommunication companies’ equipment
and the CP Server agent needs to set a Gateway address for the Internet Service Pro-
vider. This prevents problems that occur in setting a Multi Route address which cause
links between the SMSS and telecommunication companies to become disconnected.
This method, however, brings about difficulties in management since a supervisor
must manage the CP Server and SMSS by connecting from the CP Server to the
SMSS server through the Thin Client [1][12] or control two completely separate serv-
ers. The problem can be resolved by integrating the SMSS and CP Server.

4.2 Implementation Scheme

The expense and extent of the implementation must be considered. If many equipment
and private line fees for the SMS Callback Push service are considered, by collecting
information about the total number of SMS transmissions, first, a self-developed
server may be established or secondly a separate business branch that receives the
service [7] from the Application Service Provider (ASP) may be created so that it may
manage the tasks of other corporations or organizations simultaneously. In establish-
ing a self-developed server, expenses concerning internal supervision and system
construction are likely to increase, but it would be adequate to utilize it when sending
a large number of SMS transmissions. The latter can provide services to various or-
ganizations and can become a profit-making system since it is established as an inde-

Agent-Based System for Confirming User Appointment 325

pendent corporation. Corporations using the ASP for SMS transmission are able to
economize on their budgets since the system establishment is cheaper and is favorable
for small quantity SMS transmissions.

The configuration of the Web server and WAS agent pictured in section 3.4 for the
existing two-way SMS system traffic and hindrances is designed that each node has
an identical Web server and WAS agent so that in the case of a Fail Over, system
clustering or session clustering occurs along with the reallocation of transactions due
to its 3-tier formation. Moreover, since the Web server and WAS agent are operated
on the same node,� the Stream Pipe telecommunication is employed to double the
efficiency compared to TCP/IP. The TP monitoring agent manages the transactions
for the telecommunication companies composed of the C/S environment. Telebanking
and Mobile Banking are additional services that can be provided through SMS trans-
mission.

4.3 Activation Method

When sending the previous reservation data to the user by SMS in Figure 6, in read-
ing the data from the CP Server the transaction of the CP Server database is executed
from the telecommunication companies’ TP Monitoring agent. When receiving an
SMS for the reservation made for his or her medical treatment, the user connects to
the pertaining URL by pressing [OK] or [Send] button of the cellular phone. The user
may choose among [Visit], [Postpone], and [Cancel] that appear on the URL screen.
After selecting, the result is managed by the Business Logic situated within the WAS
agent to renew the database and receive new reservations or preserve the reservations
made before. If the user chooses [Postpone], it can be set up so that an automatic call
is made to the pertaining organization. In this case, the Call Setup must be established
for each telecommunication company and transaction management is carried out by
the TP monitoring agent.

�

Fig. 6. SMS on Client Side in Korean

5 Empirical Result and Analysis

In this section, the expected results for the reservation confirmation agent system are
reviewed, and the methods for minimizing the losses incurred by the reservations
along with its profits are explained based on the cases of actual application.

326 Jung-Jin Yang

5.1 Effect of Confirming Appointment Agent System

The following is the expected effects of the SMS Push service only.

• Decrease of unfulfilled reservations
• Decrease of No-Show rate (Increase of customer feedback)
• Decrease in Call center calls (Save on employee salaries and telecommunication

expenses)
• Increase in customer appreciation
• Decrease in overall expenses

This paper examined the unfulfilled reservation and the losses it incurred from the
initiation of the system to the present. The following charts 1), 2), and 3) show Hospi-
tal A’s improvement concerning the unfulfilled reservations before December 2001
and after January 2002 until the present.(As a part of the project mentioned in this
paper, Hospital A in Kyong-gi Province of our nation has established the reservation
confirmation agent system in December 2002 which has taken effect beginning Janu-
ary 2003.)

���		�
� �	���
�� 	����� �
���
!� �	���������

"��
�� #$%� $%� �
&������

����� $%� '%� $(%�

#)������	��
����	������*
����	����+,��
���-	��	.�/((#��
���������/((')�

0�
��,	������������������	.� /(((����
��1�	.�

�234�0�
��,	�����������������5
������� 6((((����
��15
���� �

/)�����������������	��
����
�*
����	����

�234��	���
�� 	��������
�������.��������
������

+�234�
���	���'�.�)�

'(%�

+6'/(((����
��)�

�234��	���
�� 	�����	���������.�����

+/(('7(#��
��/(('7(8)�

#9%�

+$#/((����
��)�

')�����������������	��
���	��������
.��:���������	��
���
����	��
���.�����

2 4
2 0 1 7 1 8

1 3 1 2 1 2
9

0
5

1 0
1 5
2 0
2 5

1 s t
M o n th

4 th 7 th

R a te o f F a i lu re
�

Agent-Based System for Confirming User Appointment 327

There is another example employing eCRM via reservation confirmation agent sys-
tem database, where characteristics of a customer are evaluated to provide informa-
tion that may be applied on marketing information. Frequent users and those who
keep their reservation promises may receive special services or benefit from reduced
rates, which may strengthen customer service support systems that can, in turn, ele-
vate the status of the organization. Also, by researching customer participation, target-
ing customers that are trustworthy can give rise to new services and businesses. For
example, in the case of the reservation confirmation agent system employed at the
airport, those clients who have a low rate of unfulfilled reservations may receive more
mileages or a special reduction. The continuous interaction between the corporations
and customers could become the basis for customer maintenance. In short, because
Repeat Customers can be secured by this method, greater profit can be expected from
the additional services that will be provided to such customers in the future.

The test was carried out by dividing the transaction time for the WAS agent and
the transaction time for the TP Monitoring agent. Table 1 shows the task execution
speed for the existing system’s Web server tests.

Table 1. Task Execution Speed in Web server

Synchronous Threads (2Min. Duration) Action
Taken

Checked Item
100 200 500

Total Hits 691 708
Hit’s per Second 5.75 5.89
Error Occurrences (Socket Error) 0 0

 Select

Average Response Time (Unit: Second) 29.695 28.955
Total Hits 738 7.34
Hit’s per Second 6.14 6.16
Error Occurrences (Socket Error) 0 0

 Insert

Average Response Time (Unit: Second) 14.011 27.575
Total Hits 700 688
Hit’s per Second 5.83 5.73
Error Occurrences (Socket Error) 0 0

 Update

Average Response Time (Unit: Second) 14.840 29.629

Table 2 presents the results for the WAS agent environment.

Table 2. Task Execution Speed in WAS Agent

SYN. Threads (2Min. Duration)
Action
Taken

Checked Item 100 200 500

Total Hits 2678 3575 1561
Hit’s per Second 22.28 29.75 12.99
Error Occurrences (Socket Error) 0 0 0

 Select

Average Response Time (Unit: Second) 3.854 5.596 22.399
Total Hits 2045 2228 669
Hit’s per Second 17.16 18.54 5.57
Error Occurrences (Socket Error) 0 0 0

 Insert

Average Response Time (Unit: Second) 4.912 8.686 32.970
Total Hits 2181 2277 783
Hit’s per Second 18.15 18.95 6.57
Error Occurrences (Socket Error) 0 0 0

 Update

Average Response Time (Unit: Second) 4.735 8.565 34.603

328 Jung-Jin Yang

As shown in the result, the result for Select is 10 times greater and the results for
Insert and Update are 3 times faster. There are no entries for in the Table 1 under
column “500” because the Web server is unable to handle more than 500 users simul-
taneously and has crashed. However, as shown in the Table 2, WAS agent is able to
manage more than 500.

The following shows the results for the performance of SMSS connected to tele-
communication companies. The results after applying existing TCP/IP socket tele-
communication and TP Monitoring agent are shown in Table 3. As is evident in the
result, the performance has improved by ten times, and transaction management is far
superior than that of the existing socket telecommunication.

Table 3. The Performances of SMSS with TCP/IP Socket and TP Monitoring Agent

 Occurrences
 Separator

10Times 20Times 40Times

Node First Second First Second First Second Socket
1 13.67 15.54 35.07 33.80 61.47 61.83
Node First Second First Second First Second TP Agent
1 1.20 2.00 2.43 2.96 4.44 4.52

6 Future Work and Conclusion

The work in this paper discusses the ways to improve service portability through
SMS-based WAP Push. The application of an agent-based system for reservation
confirmation is presented using Callback URL Push to improve the profit of the busi-
nesses where reservations are made frequently. It opens up the possibility of other
services through SMS Callback URL Push such as e-Health information. Derivative
industries of building and applying intelligent agent systems have a promising future
with the extended infrastructure of wireless network. We must look into the agent-
based location prediction systems and hope to expand the scope of location-based
contextual services for our future profit and convenience.

References

1. Robert orfail, dan harkey, Client/Server Survival Guide(wiley), 2002
2. SMS Callback Push Development Documentataion by MorningTech, 2002
3. http://www.wapforum.org
4. C.U. Kang, “Introduction to Mobile Telecommunication” , YangSeo-Gak, 1999
5. Tmax Soft Incorporation, JEUS White Paper, 2001
6. DigitMate Incorporation, “WAP Push Wireless Internet”, 2001
7. Message Wise Medical Documentation by MorningTech, 2000
8. SMS Callback URL Push Service Development Specification (Ver 1.5). : SK Telecom Plat-

form Research Group, 2002
9. Y.H. Kim, Window2K/.NET , HongReung Publisher, 2000

10. http://www.mosca.co.kr/mosca.htm
11. Y.H. Kim and J.J. Yang, “ The Study of Preventing Reservation Loss through SMS Call-

back URL Push”, Proceedings of KIISS 2002, Seoul, Korea, pp 457—465, 2002
12. http://www.middleware.com/

Author Index

Aucher, Guillaume 1

Badri, Linda 29
Badri, Mourad 29
Barley, Mike 57
Bar-Yam, Yaneer 104
Beydoun, Ghassan 18
Boudiaf, Noura 29

Cho, Kenta 43
Choi, Joongmin 291, 303
Cleveland, Gary 57

Debenham, John 18

Fu, Yi-Ting 148

Graham, Connor 217

Haidar, Azhar 193
Hattori, Masanori 43
Hayashi, Hisashi 43
Hishiyama, Reiko 67
Hoffmann, Achim 18
Honiden, Shinichi 43, 178
Hsu, Ming-Chih 81

Ishida, Toru 67

Jmaiel, Mohamed 228
Jung, Hyunsub 303

Kacem, Ahmed Hadj 228
Kim, Tae-Hyung 291

Kitamura, Yasuhiko 92
Klein, Mark 104
Koch, Fernando 115

Lam, Ka-man 128
Lee, Chen-Yu 148
Leung, Ho-fung 128

Mares, Edwin D. 259
Metzler, Richard 104
Mokhati, Farid 29
Murao, Takuya 92

Ohsuga, Akihiko 43
Oluyomi, Ayodele 162

Platon, Eric 178
Purvis, Martin 193, 206
Purvis, Maryam 193, 206

Rahwan, Iyad 115, 217
Regayeg, Amira 228

Satoh, Ichiro 243
Savarimuthu, Bastin Tony Roy 193, 206
Sawamura, Hajime 259
Sonenberg, Liz 217
Soo, Von-Wun 81, 148
Sterling, Leon 162
Sugawara, Kenji 279

Yang, Jaeyoung 291, 303
Yang, Jung-Jin 317

	Frontmatter
	A Combined System for Update Logic and Belief Revision
	Using Messaging Structure to Evolve Agents Roles in Electronic Markets
	Specifying DIMA Multi-agents Models Using Maude
	picoPlangent: An Intelligent Mobile Agent System for Ubiquitous Computing
	An Approach to Safe Continuous Planning
	Modeling e-Procurement as Co-adaptive Matchmaking with Mutual Relevance Feedback
	Price Determination and Profit Sharing for Bidding Groups in Agent-Mediated Auctions
	Agent Based Risk Management Methods for Speculative Actions
	Handling Emergent Resource Use Oscillations
	The Role of Agents in Intelligent Mobile Services
	A Trust/Honesty Model in Multiagent Semi-competitive Environments
	An Image Annotation Guide Agent
	A Dedicated Approach for Developing Agent Interaction Protocols
	Introducing Participative Personal Assistant Teams in Negotiation Support Systems
	A Distributed Workflow System with Autonomous Components
	Evaluation of a Multi-agent Based Workflow Management System Modeled Using Coloured Petri Nets
	Supporting Impromptu Coordination Using Automated Negotiation
	Specification and Design of Multi-agent Applications Using Temporal Z
	Bio-inspired Deployment of Distributed Applications
	How Agents Should Exploit Tetralemma with an Eastern Mind in Argumentation
	Agent-Based Support System for Project Teaming for Teleworkers
	An Interface Agent for Wrapper-Based Information Extraction
	Building Web Navigation Agents Using Domain-Specific Ontologies
	Agent-Based System for Confirming User Appointment Through SMS Callback URL Push
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

