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Preface 

 
This volume contains the papers presented at the 10th Anniversary Workshop on Job 
Scheduling Strategies for Parallel Processing. The workshop was held in New York 
City, on June 13, 2004, at Columbia University, in conjunction with the 
SIGMETRICS 2004 conference. 
 
Although it is a workshop, the papers were conference-reviewed, with the full 
versions being read and evaluated by at least five and usually seven members of the 
Program Committee.  We refer to it as a workshop because of the very fast turnaround 
time, the intimate nature of the actual presentations, and the ability of the authors to 
revise their papers after getting feedback from workshop attendees. On the other 
hand, it was actually a conference in that the papers were accepted solely on their 
merits as decided upon by the Program Committee. 
 
We would like to thank the Program Committee members, Su-Hui Chiang, Walfredo 
Cirne, Allen Downey, Eitan Frachtenberg, Wolfgang Gentzsch, Allan Gottlieb, Moe 
Jette, Richard Lagerstrom, Virginia Lo, Reagan Moore, Bill Nitzberg, Mark 
Squillante, and John Towns, for an excellent job. 
 
Thanks are also due to the authors for their submissions, presentations, and final 
revisions for this volume. Finally, we would like to thank the MIT Computer Science 
and Artificial Intelligence Laboratory (CSAIL), The Hebrew University, and 
Columbia University for the use of their facilities in the preparation of the workshop 
and these proceedings. 
 
This year saw a continued interest in scheduling in grid and cluster environments, 
with a growing representation of real-system issues such as workload studies, network 
topology issues, and the effect of failures. At the same time, there was also a strong 
representation of research relating to classical multiprocessor systems, and lively 
discussions contrasting the academic point of view with that of administrators of 
‘real’ systems. We hope that the papers in this volume capture this range of interests 
and approaches, and that you, the reader, find them interesting and useful. 
 
This was the tenth annual workshop in this series, which reflects a consistent and 
ongoing interest; the organizers believe that the workshop satisfies a real need. The 
proceedings of previous workshops are available from Springer as LNCS volumes 
949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, and 2862 (and since 1998 they have 
also been available online). We look forward to the next workshop in 2005, and 
perhaps even to the next decade of workshops! 
 

 
September 2004                                                                                         Dror Feitelson 

Larry Rudolph 
Uwe Schwiegelshohn 
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Lúıs Fabŕıcio Wanderley Góes and
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Parallel Job Scheduling — A Status Report
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1 Introduction

The popularity of research on the scheduling of parallel jobs demands a periodic
review of the status of the field. Indeed, several surveys have been written on
this topic in the context of parallel supercomputers [17, 20]. The purpose of
the present paper is to update that material, and to extend it to include work
concerning clusters and the grid.

The paper is divided into three major parts. The first part addresses algo-
rithmic and research issues covering the two main approaches: backfilling and
gang scheduling. For each, recent advances are reviewed, both in terms of how to
perform the scheduling and in terms of understanding the performance results.
An underlying theme of the surveyed results is the shift from dogmatic use of
rigid formulations to a more flexible approach. This reflects a maturation of the
field and improved concern for real-world issues.

The second part of the paper addresses current usage. It presents a short
overview of vendor offerings, and then reviews the scheduling frameworks used
by top-ranking parallel systems. For vendor offerings, we highlight the distinction
between what is done in a research setting and what is actually developed for
production use. Regarding actual usage, we consider the alternative options of
procurement of an existing system vs. the development of an in-house solution
that more directly reflects desired attributes.

The third part of the paper looks both back and forward in time. As with
any field, the success, popularity, and influence of a particular approach depends
on a range of factors. We review some less successful ones. It is possible that
some of these techniques may only be relevant to future machines. The paper,
therefor concludes with some observations about the near-term future.

This paper contains a large number of references. In order to highlight the
more recent results, i.e. those with publication dates in this millennium, their
citation will be superscripted with the last two digits of the publication date.

D. Feitelson, L. Rudolph, and U. Schwiegelshohn (Eds.): JSSPP 2004, LNCS 3277, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Advances in Parallel Job Scheduling Research

There are many different ways to schedule parallel jobs and their constituent
threads [17], but only a few mechanisms are used in practice and studied in detail.
This section reviews backfilling and gang scheduling strategies, their variants,
and their connections. The special requirements and strategies for scheduling
parallel jobs on a grid are addressed as well.

2.1 Backfilling

The most basic batch scheduling algorithm is First-Come-First-Serve (FCFS)
[43] where jobs are considered in order of arrival. Each job specifies the number
of processors it requires and is placed in a FIFO queue upon arrival. If there
are sufficient available processors to run the job at the head of the queue, the
processors are allocated and the job is started. If there are not enough, the
scheduler waits for some currently running job to terminate and free additional
processors.

Backfilling is an optimization that tries to balance the goals of utilization and
maintaining FCFS order. It requires that each job also specifies its maximum
execution time. While the job at the head of the queue is waiting, it is possible
for other, smaller jobs, to be scheduled, especially if they would not delay the
start of the job on the head of the queue. Processors get to be used that would
otherwise remain idle.

By letting some jobs execute out of order, other jobs may get delayed. Back-
filling will never completely violate the FCFS order where some jobs are never
run (a phenomenon known as “starvation”). In particular, jobs that need to wait
are typically given a reservation for some future time.

The use of reservations was included in several early batch schedulers [29, 8].
Backfilling, in which small jobs move forward to utilize the idle resources, was
introduced by Lifka [33]. This was done in the context of EASY, the Extensible
Argonne Scheduling sYstem, which was developed for the first large IBM SP1
installation at Argonne National Lab.

Variations on Backfilling While the concept of backfilling is quite simple,
it nevertheless has several variants with subtle differences. We generalize the
behavior of backfilling by parameterizing several constants. Judicial choice of
parameter values lead to improved performance.

One parameter is the number of reservations. In the original EASY backfilling
algorithm, only the first queued job received a reservation. Jobs may be scheduled
out of order only if they do not delay the job at the head of the queue. The
scheduler estimates when a sufficient number of processors will be available for
that job and reserves them for this job. Other backfilled jobs may not violate
this reservation, they must either terminate before the time of the reservation
(known as the “shadow time”), or use only processors that are not required by
the first job [33].



Parallel Job Scheduling — A Status Report 3

Backfilling may cause delays in the execution of other waiting jobs (which
are not the first, and therefore do not get a reservation). The obvious alternative
is to make reservations for all jobs. This approach has been named “conservative
backfilling” [37]01. Simulation results indicate, however, that delaying other jobs
is rarely a problem, and that conservative backfilling tends to achieve reduced
performance in comparison with the more aggressive EASY backfilling. The
MAUI scheduler includes a parameter that allows system administrators to set
the number of reservations [30]01. Chiang et al. suggest that making up to four
reservations is a good compromise [6]02.

An intriguing recent suggestion is adaptive reservations depending on the
extent different jobs have been delayed by previous backfilling decisions. If a job
is delayed by too much, a reservation is made for this job [50]02. This is essentially
equivalent to the earlier “flexible backfilling”, in which all jobs have reservations,
but backfilling is allowed to violate these reservations up to a certain slack [51].
Setting the slack to the threshold used by adaptive reservations is equivalent to
only making a reservation if the delay exceeds this threshold.

Another parameter is the order of queued jobs. The original EASY scheduler,
and many other systems and designs, use a first come, first served (FCFS) order
[33]. A general alternative is to prioritize jobs in some way, and select jobs for
scheduling (including as candidates for backfilling) according to this priority
order. Flexible backfilling combines three types of priorities: an administrative
priority set to favor certain users or projects, a user priority used to differentiate
among the jobs of the same user, and a scheduler priority used to guarantee that
no job is starved [51]. The Maui scheduler has a priority function that includes
even more components [30]01.

A special type of prioritization depends on job characteristics. In particu-
lar, Chiang et al. have proposed a whole set of criteria based on resource con-
sumption, that are generalizations of the well-known Shortest Job First (SJF)
scheduling algorithm [6]02. These have been shown to improve performance met-
rics, especially those that are particularly sensitive to the performance of short
jobs, such as slowdown.

A final parameter is the amount of lookahead into the queue. All previous
backfilling algorithms consider the queued jobs one at a time, and try to schedule
them. But the order in which jobs are scheduled may lead to loss of resources
to fragmentation. The alternative is to consider the whole queue at once, and
try to find the set of jobs that together maximize desired performance metrics.
This can be done using dynamic programming, leading to optimal packing and
improved performance [47]03.

Effect of User Runtime Estimates Backfilling depends on estimates of how
long each job will run to figure out when additional processors will become
available, and to verify that backfilled jobs will terminate in time so as not
to violate reservations. The source of the estimates is typically the user who
submits the job. Jobs that execute beyond their estimated runtime are usually
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terminated by the system. Many users therefore regard these estimates as upper
bounds, rather than as tight estimates.

Initial expectations were that user runtime estimates will nevertheless be
tight, as low estimates improve the chance for backfilling. However, comparisons
of user estimates with real runtimes show that they tend to be inaccurate, even
when users are requested to provide their best possible estimate with no danger
of having their job killed if the estimate is too low [18],[37]01,[32]04. Attempts
to derive better estimates automatically based on historical information from
previous runs have not been successful, as they suffered from too many under-
estimations (which in backfilling would lead to killed jobs).

Probably, the most surprising result demonstrated by several studies has
shown that inaccurate runtime estimates actually lead to improved average per-
formance [18, 61],[37]01. This is not simply the result of more backfilling due to
more holes in the schedule, because inflated runtime estimates not only create
holes in the schedule, but also enlarge potential backfill jobs, making it harder
for them to fit into the holes. Rather, it is the result of a sequence of events
where small backfill jobs prevent the holes from closing up, leading to a strong
preference for short jobs and the automatic production of an SJF-like schedule
[53]04. This also motivates the construction of algorithms that explicitly favor
short jobs such as those proposed by Chiang et al. [6]02.

This does not necessarily indicate that more accurate runtime estimates are
impossible and useless. Not all estimates are bad; in most cases, some users
provide reasonably accurate estimates while others do not. Some studies indicate
that those users who do provide reliable estimates do indeed benefit, as their jobs
receive better service from the scheduler [6]02. Also, while it seems that deriving
good estimates automatically is not possible for all jobs, it might be possible to
do so for short jobs and for jobs that have exhibited especially small variability
in the past.

Incidently, inaccurate user runtime estimates have been shown to have sur-
prising effects on performance evaluations [16]03,[15]03. In a nutshell, it was seen
that for workloads with numerous long single-process jobs, the inaccurate esti-
mates allow for significant backfilling of these jobs under the aggressive EASY
backfilling, but not under conservative backfilling. This in turn was detrimental
for the performance of short jobs that were delayed by the long backfilled jobs.
But if accurate estimates were used the effect was reversed, leading to a situ-
ation where short jobs were favored over long ones. This has more to do with
evaluation methodology than will scheduling technology.

2.2 Gang Scheduling

The main alternative to batch scheduling is gang scheduling, where jobs are
preempted and re-scheduled as a unit, across all involved processors. The notion
was introduced by Ousterhout, using the analogy of a working set of memory
pages to argue that a “working set” of processes should be co-scheduled for the
application to make efficient progress [38]. Subsequent work emphasized gang
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scheduling, which is an all-or-nothing affair, i.e. either all of the job’s processes
run or none do.

The point of gang scheduling is that it provides an environment similar to a
dedicated machine, in which all a job’s threads progress together, and at the same
time allows resources to be shared. In particular, preemption is used to improve
performance in face of unknown runtimes. This prevents short jobs from being
stuck in the queue waiting for long ones, and improves fairness [44]00.

Flexible Algorithms One problem with gang scheduling is that the require-
ment that all a job’s processes always run together causes too much fragmenta-
tion. This has led to several proposals for more flexible variants.

One such variant, called “paired gang scheduling” is designed to alleviate
inefficiencies caused by I/O activity [56]03. In conventional gang scheduling, pro-
cessors running processes that perform I/O remain idle for the duration of the
I/O operation. In paired gang scheduling jobs with complementary characteris-
tics are paired together, so that when the processes of one perform I/O, those of
the other can compute. Given a good job mix, this can lead to improved resource
utilization at little penalty to individual jobs.

A more general approach is to monitor the communication behavior of all
applications, and try to determine whether they really benefit for gang scheduling
[24]03. Gang scheduling is then used for those that need it. Processes belonging
to other jobs are used as filler to reduce the fragmentation cause by the gang
scheduled jobs.

Dealing with Memory Pressure Early evaluations of gang scheduling as-
sumed that all arriving jobs can be started immediately. Under high loads this
could lead to situations where dozens of jobs share each processor. This is un-
realistic as all these jobs would need to be memory resident or else suffer from
paging, which would interfere with the synchronization among the job’s threads.

A simple approach for avoiding this problem is to use admission controls,
and only allow additional jobs to start if enough memory is available [3]00. An
alternative is placing an oblivious cap on the multiprogramming level (MPL),
usually in the range of 3–5 jobs [35]. While this avoids the need to estimate how
much memory a new job will need, it is more vulnerable to situations in which
memory becomes overcommitted causing excessive paging.

When admission controls are used and jobs wait in the queue the question of
queue order presents itself. The simplest option is to use a FCFS order. Improved
performance is obtained by using backfilling, and allowing small jobs to move
ahead in the queue [59]00,[58]03. In fact, using backfilling fully compensates for
the loss of performance due to the limited number of jobs that are actually run
concurrently [23]03.

All the above schemes may suffer from situations in which long jobs are
allocated resources while short jobs remain in the queue and await their turn.
The solution is to use a preemptive long-range scheduling scheme. With this
construction, the long term scheduler allocates memory to waiting jobs, and
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then the short term scheduler decides which jobs will actually run out of those
that are memory resident. The long term scheduler may decide to swap out a job
that has been in memory for a long time, to make room for a queued job that
has been waiting for a long time. Such a scheme was designed for Tera (Cray)
MTA machine [1].

System Integration The only commercially successful implementation of gang
scheduling that we know of so far was the one on the Connection Machine CM-5.
Other implementations, e.g. on the Intel Paragon, never moved beyond exper-
imentation because of significant performance overheads, probably due to the
cost of gang synchronization and coordination. Recent advances in the imple-
mentation of gang scheduling in experimental systems promise to reduce these
overheads.

Gang scheduling requires the context switching to be synchronized across
the nodes of the machine, and software-implemented synchronization on large
machines is expensive. But some modern interconnection networks provide hard-
ware support for global operations, and this can be exploited also in the runtime
system. For example, in the STORM, where all parallel system activities are
expressed in terms of three basic primitives, which in turn are supported by the
hardware of the Quadrics network. In particular, this design has resulted in a
very scalable implementation of gang scheduling [25]02.

While high performance networks enable efficient implementation of sys-
tem primitives, they may cause problems with multiprogramming. The difficulty
arises due to the use of user-level communication, in which user processes access
the network interface cards (NICs) directly so as to avoid the overheads involved
in trapping into the operating system. As a result no protection is available, and
only one job can use the NICs. This can be solved by switching communication
buffers as part of the gang scheduling’s context switch operation [14]01. It is also
possible that this problem will be reduced in the future, as the memory available
on NICs continues to grow.

Even tighter integration between communication and scheduling is used in
the “buffered coscheduling” scheme proposed by Petrini and Feng [39]00,[40]00.
In this scheme the execution of all jobs is partitioned by the system into phases.
In each phase, communication operations are buffered and at the end of the phase
all the required communications is scheduled and and performed during the next
phase. This leads to complete overlap of computation and communication.

Gang scheduling was originally developed in order to support fine-grain syn-
chronization of parallel applications [19]. But an even greater benefit may be
its contribution to reducing interference. The problem is that the nodes of par-
allel machines and clusters typically run a full operating system, with various
user-level daemons that are required for various system services. These daemons
may wake up at unpredictable times in order to perform their function. Ob-
viously this interferes with the application process running on the node [36].
If such interferences are not synchronized across nodes, the application will be
slowed considerably as different processes are delayed. But with gang scheduling
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it is possible to run all the daemons on the different nodes at the same time,
and eliminate their interference when user jobs are running [41]03. When this is
done, the full capabilities of the hardware are achieved.

2.3 Parallel Job Scheduling and the Grid

More recently, parallel computers are becoming part of a so called computational
grid. The name grid has been chosen in analogy to the electrical power grid where
several power plants provide numerous consumers with electrical power without
the consumer being aware of the origin of the power. Similarly, it is the goal
of a computational grid or simply Grid to allow users to run their jobs on any
suitable computer belonging to the Grid. This way the computational load is
balanced across many machines. Clearly, the Grid is mainly of interest for large
computational jobs or jobs using a large data set as smaller jobs will usually run
locally. However, the Grid is not restricted to this kind of jobs but will cover a
wide range of general services. Nevertheless at the moment large computational
jobs form the dominant grid application.

Before addressing the scheduling problem in a grid it is necessary to point
out some differences between a parallel computer and the grid. A parallel com-
puter has a central resource management system that can control all individual
processors. However in a grid, the compute resources typically have different
owners and as in most distributed systems there is no central control. Therefore,
a compute resource typically has its own local resource management system that
implements the policy of its owner. Hence, a grid scheduling architecture must
be built on top of those existing local resource management systems. This re-
quires communication between those different layers of the scheduling system in
a grid [45]03,[55]. As in a distributed system the use of a central grid scheduler
may result in a performance bottleneck and lead to a failure of the whole sys-
tem if the scheduler fails. It is therefore appropriate to use a decentralized grid
scheduler architecture and distributed algorithms.

Further, grid resources are heterogeneous in hardware and software which
imposes constraints on the suitability of a resource for a given job. In addi-
tion, not every user may be accepted on every machine due to the implemented
owner policy. A grid scheduler must determine which resources can be used for
a specific submitted job while such a problem is usually not encountered in a
parallel processor or even in a cluster of computers [10]02,[12]02. Moreover, the
grid is subject to frequent changes as some compute resources may be temporar-
ily withdrawn from the grid due to maintenance or privileged non-grid use on
request of the owner. To obtain these data, the grid scheduler needs a specific
grid information service while the necessary up-to-date information is always
assumed to be available in a parallel computer.

Today, the main purpose of grid computing is considered to be in the area of
cross-domain load balancing. To support this idea the Globus Toolbox provides
basic services that allow the construction of a grid scheduler [22]. With the help of
those basic services grid schedulers are constructed that run on top of commercial
resource management systems, like LSF, PBS or Loadleveler. Further, existing



8 Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn

Systems, like Condor [34, 42], are adapted to include grid scheduling abilities or
allow integration with a grid scheduler.

If a parallel computer is embedded in a grid, a large variety of jobs from
different users will be run on this machine. Then it will become increasingly
difficult to implement the usage policy of an owner with the help of those simple
scheduling criteria that are used today, like utilization and response time. There-
fore, it can be assumed that the grid will also change job scheduling strategies
for parallel computers. However in practice such an effect has not been observed
yet.

Large grid application projects, like LCG, Datagrid, GriPhyn, frequently
include the construction of some grid scheduler. Unfortunately, the scope of such
a scheduler is usually restricted to the corresponding application project. On
the other hand, there are academic projects that specifically address scheduling
issues like the generation, distribution and selection of resource offerings. To this
end various means are used, for instance economic methods.

In another approach, the job itself is responsible for its scheduling. Then
we speak of an application scheduler. This is important for jobs which have a
complex workflow and are subject to complex parallelization constraints. For
example, this is the approach taken in the AppLes project [7]00.

As a continuation of some metacomputing ideas it is sometimes considered
to use a computational grid as a single parallel processor, where many compu-
tational resources, that is parallel computers in the grid, are combined to solve
a single very large problem . In this situation, the network performance varies
greatly from communication within a parallel computer to communication be-
tween two parallel computers. Some models have been derived to evaluate the
performance of so called multi site computing [26, 4, 9, 11, 13]03. However in
practice, such an approach has not been implemented with the possible excep-
tion of the preplanned combination of a few specific parallel computers for a
specific purpose.

An important component of using the grid as a single parallel resource is co-
allocation [5, 4, 2, 48]04. This means that resources on several different machines
need to be allocated to the same job at the same time. This is hard to accomplish
due to the fact that the different resources belong to different owners, and do
not have a common resource management infrastructure. The way to circumvent
this problem is to try and reserve resources on the different machines, and then
to use them only if all required reservations are successful [49]00.

3 Parallel Job Scheduling Practice

3.1 Vendor Offerings

Commercial scheduling software for parallel jobs comes in two types: portable,
standalone systems, and components in a specific system.

There are two main competitors in the market for scheduling software. One
is the Platform Computing Load Sharing Facility (LSF), which is based on the
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Utopia project [60]. The other is the Veridian Portable Batch System (PBS)
[27]. Both provide similar functionality. In particular, they provide support for
various administrative tasks, which is often lacking from research prototypes.

In addition, vendors of parallel supercomputers typically provide some sort
of scheduling support with their systems. This includes schedulers on the IBM
SP, the Cray Origin, and HP and Sun systems.

3.2 Actual Usage

In order to determine which job scheduling strategies for parallel processors
are actually applied in practice we considered the 50 most powerful parallel
computers based on actual Top500 list. Information about the strategies used
in each case where mainly retrieved from publicly available information sources
like the web. In addition many sites were contacted directly and asked to provide
further information.

Those parallel computers can be classified into 3 groups:

Parallel Vector Processors There are only 4 entries in this class: the NEC’s
Earth-Simulator, which is the leader of the Top500 list, and 3 installations
of a Cray X1.

Parallel Processors Almost 40% of the considered computers are true parallel
processors. All but 4 of which are not IBM SP Power3 or IBM pSeries 690.

Clusters There is a larger variety of types for clusters although Xeon clusters
clearly dominate with more than 50% of all cluster installation among the
considered computer systems.

Parallel Vector Processors The Cray X1 installations all use the same schedul-
ing system consisting of PBS Pro in combination with Cray’s psched placement
scheduler. PBS is used for workload management. This means that it controls
the allocation of resources to different users and groups, the performs accounting
functions [27]. Psched, originally developed for the Cray T3E, includes a load
balancer and a gang scheduler [31]. It monitors the actual usage of the system’s
nodes, and passes the information to PBS to allow PBS to decide which job
should run. Psched is then responsible for the actual placement of this job in
the system, i.e. the allocations of specific nodes.

Scheduling is different for the Earth Simulator which is currently the most
powerful parallel processor according to the Top500 list. The system uses a queue
for small batch requests (S-queue) and a queue for large batch requests (L-queue)
[54]03. For the S-queue, ERS-II is used as a scheduling system. Although ERS-II
supports gang scheduling this feature is not used for the S-queue. The L-queue
has a customized scheduler which does not support gang scheduling. Further,
the Earth Simulator scheduling systems support backfilling and checkpointing.

Parallel Processors Most IBM systems use the LoadLeveler scheduler, which
supports backfilling. Although LoadLeveler also allows job prioritization, this
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is not mentioned as a feature in the description of most installations. As most
direct replies confirmed job prioritization, we may assume that it is actually
used in most systems but nor explicitly mentioned. At least the newer versions
of LoadLeveler also support gang scheduling which is also not found in most
descriptions. However, at least the Max-Plank-Society in Germany explicitly
states that gang scheduling is possible but not used. This shows that at least
some installations have decided against gang scheduling.

The Lawrence Livermore National Labs have developed a home grown re-
source management system called LCRM (Livermore Computing Resource Man-
agement System) that supports backfilling, reservation, preemption, and gang
scheduling. This system is used for the ASCI White installation and for cluster
installations at Lawrence Livermore National Labs. The ASCI White system has
batch partition and an interactive partition but uses only a single queue with 3
classes of jobs (expedited, normal and stand-by). However, it does not currently
use the preemption feature. The utilization is between 80% and 90%.

Reservation is also used in the installation at ECMWF (European Centre
for Medium-Range Weather Forecast) [28]04. Here, LoadLeveler is enhanced by
a special job filter. The system separates serial and parallel jobs by assigning
them to different classes (2 classes for serial jobs and 3 classes for parallel jobs).
The utilization of this system is between 94% and 97.5%. A similar utilization
is achieved on the above mentioned parallel processor of the Max-Plank-Society
with a more elaborate scheme of job queues.

We were not able to obtain much information on non-IBM parallel processors
except that gang scheduling is supported by the ASCI Red system consisting of
Intel Xeon processors and using the Paragon operating system.

Clusters Various commercial resource management systems can be found in
cluster installations, including various form of PBS [27] and LSF [60]. They
are frequently combined with the Maui scheduler [30]01. As already mentioned
Lawrence Livermore National Labs use LCRM also for their clusters. In many
Linux clusters SLURM (Simple Linux Utility for Resource Management) is espe-
cially used for low priority jobs [57]03. The Pittsburgh Supercomputing Center
has developed a custom scheduler called Simon on top of OpenPBS in order
to support a variety of advanced scheduling features like advance reservation,
backfilling, and checkpointing.

In general, it can be stated that the scheduler of most cluster installations
support backfilling and job prioritization. Gang scheduling, preemption, advance
reservations and checkpointing are more frequently found than in parallel pro-
cessor installations. In most installations, almost all computing nodes are in a
single partition. There are few exceptions. For instance the Pacific Northwest
National Lab has additional partitions for management and user log-in nodes (4
nodes) as well as for the Lustre file system nodes (34). However, these partitions
are relatively small in comparison to the total number of nodes in the compute
partition (940). The cluster at Los Alamos National Labs also has file serving
nodes that allow interactive access via LSF.
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Los Alamos National Lab also uses more queues (8-9 active queues and 4-
5 special purpose queues) than other installations.In addition queues can be
specifically set up for a project. In other clusters users can submit their hobs to
at most 3 different queues.

The utilization of the systems depends on the applications and ranges from
approximately 55% in 2003 (Los Alamos National Lab) to 95% for the last 30
days (Pittsburgh Supercomputing Center).

4 Conclusions

Parallel job scheduling has been useful for parallel processors. Recently, the
strategies and algorithms have been adapted to the grid and to clusters. In the
future, microprocessors are likely to contain several processors on a chip with the
numbers of processors per chip rapidly increasing over the years. Servers and even
personal computers will be parallel processors. These may then be organized into
clusters, grids, or tightly coupled microprocessors. To a degree, this is already
happening with the introduction of hyperthreading in Intel microprocessors [52].

Job schedulers will have to deal with at least two layers of scheduling and
even more if several processor chips are aggregated together into a server. Current
research projects are actively building processors with tens or even hundreds of
processors.

When used as a fast personal computer, some gang scheduling variant makes
sense. When used as a supercomputer, some variant on batch scheduling will be
used. This leads to the obvious convergence of both types of scheduling strategies.

To summarize, actual usage patterns in parallel job scheduling have advanced
in the past decade, but largely remain within the realm of batch scheduling.
Backfilling and prioritization are standard in many systems. More advanced
facilities such as reservations and checkpointing are also making inroads. The
alternative approach of gang scheduling is common, but not always deployed.

One outcome of this progress is the utilization is improving greatly. While
in the past utilization of 50-70% were accepted as the norm [46]00, now many
systems report utilization in the 90% range [28]04.

The competition between many different systems and designs testifies to
the fact that the field of parallel job scheduling is important and vibrant. The
flip side of the coin is that this may reach proportions that actually hamper
progress rather than promoting it. As each large installation starts from scratch
and develops its own home-grown solution, there is much duplication of effort.
At the same time novel ideas are left at the wayside, as developers struggle to
get new systems to perform. One may wonder at this point whether the time is
not ripe for some standardization effort, that will define a basic architecture for
parallel job schedulers, complete with interfaces between the major components.
This would allow researchers and developers to focus on that component that
they feel compelled to work on, with the assurance that the results of their labor
would be usable in combination with other components from different origins.

Another issue that raises concern is that of scalability. A review of the Top500
list of supercomputer installations reveals that since 1997 the largest machines
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in the world have always been just smaller than 10,000 nodes. While this may
reflect power and packaging limitations, it may also be interpreted as indicating
that we currently do not really know how to utilize more nodes effectively [21]04.
This has two aspects. One is programming models that allow such large numbers
of nodes to be harnessed to work in concert, while dealing effectively with the
occurrence of failures. The other is management of such large numbers of nodes.

Management is problematic because workload studies on current systems
indicate that many jobs run on parallel systems actually have a very limited
degree of parallelism. This implies that the load on the management system may
grow considerably as more nodes are added. It also conflicts with the common
approach of handling larger systems simply by increasing the unit of allocation,
e.g. by allocating blocks of 32 nodes rather than single nodes. Scalable and
effective management solutions for large systems are therefore an important
area for further research and development.
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Abstract. The well-known TOP500 list ranks the 500 most powerful
high-performance computers. However, the list lacks details about the job
management and scheduling on these machines. As this statistic is inter-
esting for researchers and system designers, this paper gives an overview
and survey on scheduling relevant information for the first 50 entries in
the TOP500 list.

1 Introduction

The task of scheduling computational jobs on parallel computers is subject to
research for quite a long time. Despite many different approaches from theory,
only a few scheduling strategies are practically in use. The actual statistics of the
actual implementations are of interest to researchers, system administrators and
manufacturers. The most known statistic about high-performance computers is
the TOP500 list which is published every half year [2]. The list contains the 500
most powerful computers according to the LINPACK benchmark [5].

Unfortunately, the TOP500 list focuses on the benchmark result, peak per-
formance, machine size, manufacturer and installation site. That is, there are no
information about the scheduling systems that are deployed on these machines.
To this end, this paper gives an survey about additional information of the top
50 machines on the TOP500 list from November 2003. The information has been
collected from available web sites, publications and by querying the correspond-
ing system administrators. The following section gives a description about the
data in the list.

2 List Description

TOP500: Position in the TOP500 ranking for the November 2003 edition of
the TOP500 list.

Name: Installation name from the TOP500 list.
Country and City: Location of the installation.
Year: Year of installation or last significant update.
Computer Family Model/Manufacturer: Information about the system

model and the manufacturer.
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Type: Type of the computer, e.g. parallel computer (MPP), vector computer,
cluster.

Inst. Type: Classification of the application field of the installation (research,
academic, industry).

Processors: Number of processors.

Op. System: Operating System of the machine.

Max. Mem./Total Mem.: Maximum available main memory on a single pro-
cessing node/cummulative total memory.

Rmax/Rpeak: Maximal LINPACK performance achieved and the theoretical
peak performance respectively (both in GFlops).

Nmax/Nhalf : LINPACK problem size for achieving Rmax and for achieving half
of Rmax.

Queues: Information about the existing queues in the job management system.

Scheduling: Information about the used job scheduling system and strategies.

Prioritization: shows whether priorities are assigned to users and/or jobs.

Backfilling: whether backfilling is used as a job scheduling strategy [4,3]

Reservations: whether processor allocations are reservable in advance.

Checkpointing: The local management supports the checkpointing of a job. A
file of a checkpointed job is generated that allows a later continuation from
that point. The checkpoint file may also be migratable to other resources,
but this feature is not required.

Preemption: A job is preempted on a given processor allocation and later con-
tinued [1]. In this case the corresponding application is stopped but remains
resident on the allocated processors and can be resumed later. This preemp-
tion is not synonymous with the preemption in a multitasking system that
typically happens in the time range of milliseconds.

Gang Scheduling: A parallel job can be preempted and continued on a given
processor allocation. The scheduling system assures that all tasks of a parallel
jobs are active at the same time, so that no process of a job has to wait for
communication with another process of the job which is not currently active.
That is preemption is synchronized for all processes of a job; within a ”gang”
all processes are active at the same time. This strategy can be used to allow
time-shared execution of several parallel applications within different gangs.

Partitions: Many systems use partitioning to split the existing number of pro-
cessors into groups for special applications. For instance, dedicated partitions
for interactive jobs or data-intensive applications.

Average Utilization: Information about the average utilization of the com-
plete machine.
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3 List

TOP5001: 1 Name: Earth Simulator Center

Country: Japan City: Yokohama Year: 2002

Computer Manufacturer: NEC
Family Model: Earth-Simulator

Type: Parallel vector Inst. Type: Research

Processors: 5120 Op. System: ESOS (SUPER-UX)

Max. Mem.: 16 GB Total Mem.: 10 TB

Rmax
2 : 35860 Rpeak

3 : 40960

Nmax
4 : 1,0752×106 Nhalf

5 : 266240

Queues:
• S-queue : small scale batch requests (Max 8 AP and 16 GB within 1 node)
• L-queue : large scale batch requests (Max 512 nodes)

Scheduling:
• NQS-II (ERS-II : S-queue, customized scheduler : L-queue), NEC

Prioritization: No Backfill: Yes

Reservations: No Checkpointing: Yes

Preemption: No Gang Scheduling: No

Partitions:
• 2048 Banks

Average Utilization: not given
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TOP500: 2 Name: Los Alamos National Lab

Country: USA City: Los Alamos, NM Year: 2002

Computer ASCI Q-AlphaServer Manufacturer: HP
Family Model: SC 45, 1.25 GHz

Type: Cluster Inst. Type: Research

Processors: 8192 Op. System: Tru64 Unix

Max. Mem.: not given Total Mem.: 22 TB

Rmax : 13880 Rpeak : 20480

Nmax : 633000 Nhalf : 225000

Queues:
• 8-9 active queues per cluster
• 4-5 queues per cluster that are activated for special purposes
• Queue configuration is changed according to customer input on current needs

averaging once per month.
• Queues maybe set up for a project with a deadline to give it on-demand

access (without preemption), special debugging queues, queues that allow
very long running jobs, etc.

Scheduling:
• LSF (Fair Share Scheduling)

Prioritization: Yes Backfill: Yes

Reservations: Yes Checkpointing: Yes

Preemption: Yes Gang Scheduling: Yes

Partitions:
• No login nodes in the Unix/RMS sense.
• All access is through LSF scheduled/controlled jobs.
• 128 nodes on each cluster are file serving nodes and permit the interactive login

to one or two whole nodes via a LSF interactive job.
• This provides immediate access for ”login jobs” since there are adequate resources

for our typical interactive development workload. These nodes are not normally
used for large parallel jobs.

• All queues support LSF interactive access up to the maximum size
allowed by the queue.

• User can schedule up to 384 whole nodes (1356 processors)
interactively via an LSF job using the large queue.

Average Utilization:
For 2003 the utilization was approximately 55%
on 8192 processors or 2048 nodes.

Information from:
Manuel Vigil, Los Alamos, NM
email: mbv@lanl.gov
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TOP500: 3 Name: Virginia Tech

Country: USA City: Falls Church, VA Year: 2003

Computer 1100 Dual 2.0 GHz Apple G5, Manufacturer: Self-made
Family Model: Mellanox Infiniband 4X

Type: Cluster Inst. Type: Academic

Processors: 2200 Op. System: Mac OS X

Max. Mem.: 4 GB Total Mem.: 4,4 TB

Rmax : 10280 Rpeak : 17600

Nmax : 520000 Nhalf : 152000

Queues: not given

Scheduling:
• Deja vu

Prioritization: No Backfill: No

Reservations: No Checkpointing: Yes

Preemption: No Gang Scheduling: No

Partitions: not given

Average Utilization: not given

TOP500: 4 Name: NCSA

Country: USA City: Champaign, IL Year: 2003

Computer PowerEdge 1750, Manufacturer: Dell
Family Model: P4 Xeon 3.06 GHz, Myrinet

Type: Cluster Inst. Type: Academic

Processors: 2500 Op. System: Linux (Red Hat 9.0)

Max. Mem.: 3 GB Total Mem.: 3,75 TB

Rmax : 9819 Rpeak : 15300

Nmax : 630000 Nhalf : not given

Queues: not given

Scheduling:
• Maui Scheduler

Prioritization: Yes Backfill: Yes

Reservations: No Checkpointing: No

Preemption: Yes Gang Scheduling: No

Partitions: not given

Average Utilization: not given
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TOP500: 5 Name: Pacific Northwest National Lab

Country: USA City: Richland, WA Year: 2003

Computer Integrity rx2600 Manufacturer: HP
Family Model: Itanium2 1.5 GHz, Quadics

Type: Cluster Inst. Type: Research

Processors: 1956 Op. System: Linux (Red Hat 7.2)

Max. Mem.: not given Total Mem.: 6,8 TB

Rmax : 8633 Rpeak : 11616

Nmax : 835000 Nhalf : 140000

Queues:
• three main queues for normal user jobs
• A large job queue that has a slightly higher priority and

only runs jobs requiring 256 CPU’s.
• A short queue for jobs of 8 CPU’s or less and less than 30 minutes of run time

and a normal queue of other user jobs.
• All of these jobs will backfill if possible.
• In addition to these we have some other queues for testing system issues

and for running special jobs that we need to tend.
• Also we have the SLURM queue for other extremely low priority jobs

that we can kill when we need the node for a ”real” job.

Scheduling:
• LSF as a scheduler on top of the Quadrics RMS resource management system.
• SLURM resource manager for some of the lowest priority,

preemptable backfill, jobs.
• SLURM jobs to backfill also but preempt them when LSF

jobs are scheduled to run.

Prioritization: Yes Backfill: Yes

Reservations: Yes Checkpointing: No

Preemption: Yes Gang Scheduling: Yes

Partitions:
• Partition for the user login nodes and the management nodes (4 nodes).
• Partition for the Lustre filesystem nodes (34 nodes).
• The remaining nodes are in a single partition (940 nodes).
• These nodes consist of ”Fat” nodes (8 GB memory and 400 GB local scratch disk

at 200MB/s).
• ”Thin” nodes (6 GB memory, 12 GB local scratch disk)

Average Utilization:
We average over 95% node utilization for the last 30 days.

Information from:
Gary B. Skouson
email: Gary.Skouson@pnl.gov
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TOP500: 6 Name: Los Alamos National Lab

Country: USA City: Los Alamos, NM Year: 2003

Computer Opteron 2 GHz, Myrinet Manufacturer: Linux Networx
Family Model:

Type: Cluster Inst. Type: Research

Processors: 2816 Op. System: Linux (Red Hat)

Max. Mem.: not given Total Mem.: not given

Rmax : 8051 Rpeak : 11264

Nmax : 761160 Nhalf : 109208

Queues: not given

Scheduling:
• LCRM
• SLURM
• Fair Share with Half-Life

Prioritization: Yes Backfill: No

Reservations: No Checkpointing: No

Preemption: Yes Gang Scheduling: Yes

Partitions: not given

Average Utilization: not given

TOP500: 7 Name: Lawrence Livermore National Lab

Country: USA City: Livermore, CA Year: 2002

Computer MCR Linux Cluster Manufacturer: Linux Networx
Family Model: Xeon 2.4 GHz, Quadrics

Type: Cluster Inst. Type: Research

Processors: 2304 Op. System: Chaos 1.2 (modified Red Hat 7.3)

Max. Mem.: 4 GB Total Mem.: 4,5 TB

Rmax : 7634 Rpeak : 11060

Nmax : 350000 Nhalf : 75000

Queues: not given

Scheduling:
• LCRM
• SLURM
• Fair Share with Half-Life

Prioritization: Yes Backfill: No

Reservations: No Checkpointing: No

Preemption: Yes Gang Scheduling: Yes

Partitions: not given

Average Utilization: not given
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TOP500: 8 Name: Lawrence Livermore National Lab

Country: USA City: Livermore, CA Year: 2000

Computer ASCI White, Manufacturer: IBM
Family Model: SP Power3 375 Mhz

Type: Parallel Inst. Type: Research

Processors: 8192 Op. System: AIX

Max. Mem.: 16 GB Total Mem.: 8 TB

Rmax : 7304 Rpeak : 12288

Nmax : 640000 Nhalf : not given

Queues: not given

Scheduling:
• DPCS
• LoadLeveler
• GangLL

Prioritization: Yes Backfill: No

Reservations: No Checkpointing: Yes

Preemption: Yes Gang Scheduling: Yes

Partitions:
• Debug Partition
• Batch Partition

Average Utilization: not given

TOP500: 9 Name: NERSC/LBNL

Country: USA City: Berkeley, CA Year: 2002

Computer SP Power3 375 Mhz 16way Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 6656 Op. System: AIX

Max. Mem.: 16 GB - 64 GB Total Mem.: 7 TB

Rmax : 7304 Rpeak : 9984

Nmax : 640000 Nhalf : not given

Queues: not given

Scheduling:
• LoadLeveler

Prioritization: No Backfill: Yes

Reservations: No Checkpointing: No

Preemption: No Gang Scheduling: Yes

Partitions: not given

Average Utilization: not given
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TOP500: 10 Name: Lawrence Livermore National Lab

Country: USA City: Livermore, CA Year: 2003

Computer xSeries Cluster Manufacturer: IBM/
Family Model: Xeon 2.4 GHz, Quadrics Quadrics

Type: Cluster Inst. Type: Research

Processors: 1920 Op. System: not given

Max. Mem.: 4 GB Total Mem.: 3,75 TB

Rmax : 6586 Rpeak : 9216

Nmax : 425000 Nhalf : 90000

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 11 Name: National Aerospace Lab of Japan

Country: Japan City: Tokyo Year: 2002

Computer PRIMEPOWER Manufacturer: Fujitsu
Family Model: HPC2500 1.3 GHz

Type: Parallel Inst. Type: Research

Processors: 2304 Op. System: not given

Max. Mem.: not given Total Mem.: not given

Rmax : 5406 Rpeak : 11980

Nmax : 658800 Nhalf : 100080

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given
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TOP500: 12 Name: Pittsburgh Supercomputing Center

Country: USA City: Pittsburgh, PA Year: 2001

Computer AlphaServer SC45, 1GHz Manufacturer: HP
Family Model:

Type: Cluster Inst. Type: Academic

Processors: 3016 Op. System: Tru64 UNIX

Max. Mem.: 32 GB Total Mem.: 3 TB

Rmax : 4463 Rpeak : 6032

Nmax : 280000 Nhalf : 85000

Queues:
• one large job queue (>= 256 nodes (>= 1024 cpus))
• one smaller job queue (< 256 nodes (< 1024 cpus))

Scheduling:
• OpenPBS with the custom scheduler Simon (written in TCL).
• Simon features advance reservations, backfilling, and co-scheduling

special purpose visualization nodes.
• Supports various job prioritizations based on job size and queue priority

to accommodate the user base and desired workload mix.

Prioritization: Yes Backfill: Yes

Reservations: Yes Checkpointing: Yes

Preemption: No Gang Scheduling: No

Partitions:
• One partition to which jobs are scheduled.
• 1 node (an SMP) is comprised of 4 cpus and 4 GB of memory.
• Scheduling at the node level so that no nodes are shared.

Average Utilization:
• Typical utilization runs about 90%.
• Allocating nodes is done by using a reserved resource model.

That is, once a node has been allocated to a job, it’s up to the user
to decide how to use the resources of the node
or nodes assigned as they are assigned exclusively to the user.

• Billing and measuring utilization is based on the number of nodes allocated
to jobs.

Information from:
Chad Vizino
email: vizino@psc.edu
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TOP500: 13 Name: NCAR

Country: USA City: Boulder, CO Year: 2003

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Cluster Inst. Type: Research

Processors: 1600 Op. System: AIX

Max. Mem.: 2 GB Total Mem.: 3 TB

Rmax : 4184 Rpeak : 8320

Nmax : 550000 Nhalf : 93000

Queues: 27

Scheduling:
• LoadLeveler

Prioritization: No Backfill: Yes

Reservations: No Checkpointing: No

Preemption: No Gang Scheduling: No

Partitions: not given

Average Utilization: not given

TOP500: 14 Name: Cinese Academy of Science

Country: China City: Beijing Year: 2003

Computer DeepComp 6800, Manufacturer: Legend
Family Model: Itanium2 1.3 GHz, QsNet

Type: Cluster Inst. Type: Academic

Processors: 1024 Op. System: not given

Max. Mem.: not given Total Mem.: not given

Rmax : 4183 Rpeak : 5324,8

Nmax : 491488 Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: 2
• Climate Simulation Laboratory jobs
• Community Computing Jobs

Average Utilization: not given
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TOP500: 15 Name: Comm. a l’Energie Atomique

Country: France City: St.-Paul-lez-Durance Year: 2001

Computer AlphaServer SC45, 1GHz Manufacturer: HP
Family Model:

Type: Cluster Inst. Type: Research

Processors: 2560 Op. System: Tru64 UNIX 5.1a

Max. Mem.: not given Total Mem.: not given

Rmax : 3980 Rpeak : 5120

Nmax : 360000 Nhalf : 85000

Queues:
• LSF batch management system

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 16 Name: HPCx

Country: UK City: Edinburgh Year: 2002

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Academic

Processors: 1280 Op. System: AIX

Max. Mem.: 1 GB Total Mem.: 1,2 TB

Rmax : 3406 Rpeak : 6656

Nmax : 317000 Nhalf : not given

Queues: not given

Scheduling:
• LoadLeveler

Prioritization: no Backfill: yes

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: no

Partitions: not given

Average Utilization: not given
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TOP500: 17 Name: Forecast Systems Laboratory

Country: USA City: Washington, DC Year: 2002

Computer Aspen Systems, Dual Manufacturer: HPTi
Family Model: Xeon 2.2 GHz,Myrinet2000

Type: Cluster Inst. Type: Research

Processors: 1536 Op. System: Linux (Red Hat 6)

Max. Mem.: 1 GB Total Mem.: 0,75 TB

Rmax : 3337 Rpeak : 6758

Nmax : 285000 Nhalf : 75000

Queues: not given

Scheduling:
• PBS Pro

Prioritization: no Backfill: yes

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: no

Partitions: not given

Average Utilization: not given

TOP500: 18 Name: Naval Oceanographic Office

Country: USA City: Stennis SC, MS Year: 2002

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 1184 Op. System: AIX 5.1

Max. Mem.: 8 GB-64 GB Total Mem.: 1,4 TB

Rmax : 3160 Rpeak : 6156,8

Nmax : not given Nhalf : not given

Queues: 7
• batch
• priority
• bigmem
• share
• transfer
• debug
• background

Scheduling:
• LoadLeveler

Prioritization: no Backfill: yes

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: no

Partitions: not given

Average Utilization: not given
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TOP500: 19 Name: Government

Country: USA City: not given Year: 2003

Computer Cray X1 Manufacturer: Cray Inc.
Family Model:

Type: Parallel vector Inst. Type: not given

Processors: 252 Op. System: UNICOS/mp

Max. Mem.: not given Total Mem.: 5 TB

Rmax : 2932,9 Rpeak : 3225,6

Nmax : 338688 Nhalf : 44288

Queues: not given

Scheduling:
• PBS Pro
• Load Balancer
• Gang Scheduler

Prioritization: no Backfill: no

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: yes

Partitions: not given

Average Utilization: not given

TOP500: 20 Name: Oak Ridge National Laboratory

Country: USA City: Oak Ridge, TN Year: 2003

Computer Cray X1 Manufacturer: Cray Inc.
Family Model:

Type: Parallel vector Inst. Type: Research

Processors: 252 Op. System: UNICOS/mp

Max. Mem.: not given Total Mem.: 5 TB

Rmax : 2932,9 Rpeak : 3225,6

Nmax : 338688 Nhalf : 44288

Queues: not given

Scheduling:
• PBS Pro
• Load Balancer
• Gang Scheduler

Prioritization: no Backfill: no

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: yes

Partitions: not given

Average Utilization: not given
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TOP500: 21 Name: Cray Inc.

Country: USA City: Seattle, WA Year: 2003

Computer Cray X1 Manufacturer: Cray Inc.
Family Model:

Type: Parallel vector Inst. Type: Vendor

Processors: 252 Op. System: UNICOS/mp

Max. Mem.: not given Total Mem.: 5 TB

Rmax : 2932,9 Rpeak : 3225,6

Nmax : 338688 Nhalf : 44288

Queues: not given

Scheduling:
• PBS Pro
• Load Balancer
• Gang Scheduler

Prioritization: no Backfill: no

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: yes

Partitions: not given

Average Utilization: not given

TOP500: 22 Name: Korea Institute of Science

Country: Korea City: Seoul Year: 2003

Computer eServer Cluster 1350 Manufacturer: IBM
Family Model: xSeries Xeon 2.4 GHz, Myrinet

Type: Cluster Inst. Type: Research

Processors: 1024 Op. System: Linux (Red Hat 7.3)

Max. Mem.: not given Total Mem.: 1024 GB

Rmax : 3067 Rpeak : 4915,2

Nmax : 300000 Nhalf : not given

Queues: not given

Scheduling:
• PBS Pro
• Maui Scheduler

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: no partitions

Average Utilization: not given
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TOP500: 23 Name: ECMWF

Country: UK City: Reading Year: 2002

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 960 Op. System: AIX

Max. Mem.: 8 GB Total Mem.: 2,7 TB

Rmax : 2560 Rpeak : 4992

Nmax : not given Nhalf : not given

Queues: 5 classes
• classes os and ns in the 3 LPAR for serial jobs
• classes op, debug and np in the 116 LPAR for parallel jobs.

Scheduling:
• The standard IBM LL backfill scheduling scheme aided by

own combined job-filter
• runtime history files that ensures most job are given an

accurate wall clock limit plus a base-time of 24 hours.

Prioritization: yes Backfill: yes

Reservations: yes Checkpointing: no

Preemption: no Gang Scheduling: no

Partitions:
• Each system has 30 × p690 compute frames and 2 × Nighthawk I/O frames.
• The 30 × p690 frames are subdivided.
• 4 LPAR/frame, so 120 compute LPAR in total, each with 8 CPU so in total

960 CPUs.
• 2 memory types in the 30 × p690 frames.
• 27 frames have 32 GB memory and 3 frames 128 GB memory.

Average Utilization: between 94% and 97.5%

Information from:
Graham Holt
Technical Group Leader

HPCF Scheduling Specialist

ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, UK
email: graham.holt@ecmwf.int
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TOP500: 26 Name: Texas Advanced Computing Center

Country: USA City: Austin, Texas Year: 2003

Computer PowerEdge 1750, Pentium4 Manufacturer: Dell-Cray
Family Model: Xeon 3.06 GHz, Myrinet

Type: Cluster Inst. Type: Academic

Processors: 600 Op. System: Linux

Max. Mem.: not given Total Mem.: 0,6 TB

Rmax : 2455 Rpeak : 3672

Nmax : 252000 Nhalf : not given

Queues: not given

Scheduling:
• Job Mix Scheduler

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 27 Name: Sandia National Laboratory

Country: USA City: Livermore, CA Year: 1999

Computer ASCI Red, Pentium II Xeon Manufacturer: Intel
Family Model:

Type: Parallel Inst. Type: Research

Processors: 9632 Op. System: Paragon OS

Max. Mem.: 256 MB/ 512 MB Total Mem.: 1,2 TB

Rmax : 2379 Rpeak : 3207

Nmax : 362880 Nhalf : 75400

Queues: not given

Scheduling:
• Gang Scheduler

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: yes

Partitions: not given

Average Utilization: not given
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TOP500: 28 Name: Oak Ridge National Laboratory

Country: USA City: Oak Ridge, TN Year: 2002

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 864 Op. System: AIX

Max. Mem.: 8 GB Total Mem.: not given

Rmax : 2310 Rpeak : 4492,8

Nmax : 275000 Nhalf : 62000

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 29 Name: IBM

Country: Canada City: Markham, Ontario Year: 2003

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Vendor

Processors: 864 Op. System: AIX

Max. Mem.: 8 GB Total Mem.: not given

Rmax : 2310 Rpeak : 4492,8

Nmax : 275000 Nhalf : 62000

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given
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TOP500: 30 Name: Louisiana State University

Country: USA City: Baton Rouge, LA Year: 2002

Computer P4 Xeon 1.8 GHz Myrinet Manufacturer: Atipa
Family Model:

Type: Cluster Inst. Type: Academic

Processors: 1024 Op. System: Linux (Red Hat 7.2)

Max. Mem.: 2 GB Total Mem.: 1 TB

Rmax : 2207 Rpeak : 3686,4

Nmax : 280000 Nhalf : 56000

Queues: not given

Scheduling:
• PBS Pro

Prioritization: no Backfill: yes

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: no

Partitions: not given

Average Utilization: not given

TOP500: 31 Name: Max-Planck-Gesellschaft MPI/IPP

Country: Germany City: Garching Year: 2003

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 832 Op. System: AIX

Max. Mem.: 21 × 64 GB + 2 × 96 GB + Total Mem.: 2 TB
2 × 256 GB

Rmax : 2198,4 Rpeak : 4326,4

Nmax : not given Nhalf : not given

Queues:
• 12 queues with different number of nodes (processors) and different runtimes.
• One special queue for the two ”fat” nodes with 256 GB main memory each.

Scheduling:
• IBM Loadleveler

Prioritization: yes Backfill: yes

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: not in use

Partitions:
• 25 compute (batch) nodes and 2 I/O nodes

Average Utilization: 93% on 25 compute nodes

Information from:
Dr. Ingeborg Weidl, Max-Planck-Gesellschaft, D-85748 Garching
email: weidl@rzg.mpg.de
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TOP500: 32 Name: NASA

Country: USA City: Greenbelt, MD Year: 2002

Computer AlphaServer SC45, 1GHz Manufacturer: HP
Family Model:

Type: Cluster Inst. Type: Research

Processors: 1392 Op. System: Tru64 UNIX 5.1a

Max. Mem.: not given Total Mem.: 0,6 TB

Rmax : 2164 Rpeak : 2784

Nmax : 320000 Nhalf : 40000

Queues:
• LSF batch management system

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 33 Name: Lawrence Livermore National Lab

Country: USA City: Livermore, CA Year: 1999

Computer ASCI Blue-Pacific SST, Manufacturer: IBM
Family Model: IBM SP 604e

Type: Parallel Inst. Type: Research

Processors: 5808 Op. System: AIX 5

Max. Mem.: 1,5-2,5 GB Total Mem.: 1,9 TB
(432 nodes with 2,5 GB)

Rmax : 2144 Rpeak : 3856,5

Nmax : 431344 Nhalf : not given

Queues: not given

Scheduling:
• Parallel Op. System (POE)

Prioritization: no Backfill: no

Reservations: no Checkpointing: no

Preemption: no Gang Scheduling: yes

Partitions:
• 976 4-CPU SMP nodes consisting of 2 × 488-node sectors, S and K
• 4 Login Nodes

Average Utilization: not given
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TOP500: 34 Name: US Army Research Laboratory

Country: USA City: Adelphi, MD Year: 2002

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 800 Op. System: AIX 5

Max. Mem.: 8 GB Total Mem.: not given

Rmax : 2140 Rpeak : 4160

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 35 Name: NCSA

Country: USA City: Champaign, IL Year: 2003

Computer TeraGrid, Itanium2 1.3 GHz, Manufacturer: IBM
Family Model: Myrinet

Type: Cluster Inst. Type: Academic

Processors: 512 Op. System: Suse SLES 8

Max. Mem.: 4 GB/ 12 GB Total Mem.: 2 TB

Rmax : 2110 Rpeak : 2662,4

Nmax : 308350 Nhalf : not given

Queues: not given

Scheduling:
• PBS Pro
• Maui Scheduler

Prioritization: yes Backfill: yes

Reservations: no Checkpointing: no

Preemption: yes Gang Scheduling: no

Partitions: not given

Average Utilization: not given
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TOP500: 36 Name: Atomic Weapons Establishment

Country: UK City: Reading Year: 2002

Computer SP Power3 375 Mhz 16way Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 1920 Op. System: AIX

Max. Mem.: 16 GB (2 Nodes of 64 GB) Total Mem.: not given

Rmax : 2106 Rpeak : 2880

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: 120 nodes with 16 proccessors

Average Utilization: not given

TOP500: 37 Name: Deutscher Wetterdienst

Country: Germany City: Offenbach Year: 2003

Computer SP Power3 375 Mhz 16way Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 1920 Op. System: AIX 5.1

Max. Mem.: not given Total Mem.: 1,24 TB

Rmax : 2106 Rpeak : 2880

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given
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TOP500: 38 Name: University at Buffalo

Country: USA City: Buffalo, NY Year: 2002

Computer PowerEdge 2650 Cluster Manufacturer: Dell
Family Model:

P4 Xeon 2.4 GHz - Myrinet

Type: Cluster Inst. Type: Academic

Processors: 600 Op. System: Linux (RedHat 7.3, 2.4 Kernel)

Max. Mem.: 2 GB Total Mem.: not given

Rmax : 2004 Rpeak : 2880

Nmax : 253400 Nhalf : 42200

Queues: not given

Scheduling:
• PBS Pro
• Maui Scheduler

Prioritization: yes Backfill: yes

Reservations: no Checkpointing: no

Preemption: yes Gang Scheduling: no

Partitions: 258 Nodes

Average Utilization: not given
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TOP500: 39 Name: NC for Environmental Prediction

Country: USA City: Camp Springs, MD Year: 2002

Computer pSeries 690 Turbo 1.3 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 704 Op. System: AIX

Max. Mem.: 8 GB Total Mem.: not given

Rmax : 1849 Rpeak : 3660,8

Nmax : 240000 Nhalf : 32500

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 40 Name: SARA

Country: Netherlands City: Almere Year: 2003

Computer SGI Altix 1.3 GHz Manufacturer: SGI
Family Model:

Type: Parallel Inst. Type: Academic

Processors: 416 Op. System: Linux (Red Hat)

Max. Mem.: not given Total Mem.: 0,83 TB

Rmax : 1793 Rpeak : 2163

Nmax : 298799 Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: 6 batch nodes / 1 interactive node

Average Utilization: not given
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TOP500: 41 Name: KISTI Supercomputing Center

Country: South Korea City: Daejeon City Year: 2003

Computer pSeries 690 Turbo 1.7 GHz Manufacturer: IBM
Family Model:

Type: Parallel Inst. Type: Research

Processors: 544 Op. System: AIX

Max. Mem.: 8 GB Total Mem.: not given

Rmax : 1760 Rpeak : 3699,2

Nmax : 400000 Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 42 Name: Semiconductor Company

Country: USA City: not given Year: 2003

Computer xSeries Cluster Xeon 2.4 GHz, Manufacturer: IBM
Family Model: Gig-E

Type: Cluster Inst. Type: Industry

Processors: 1834 Op. System: Linux

Max. Mem.: not given Total Mem.: not given

Rmax : 1755 Rpeak : 8803,2

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given
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TOP500: 43 Name: WETA Digital

Country: New Zealand City: Wellington Year: 2003

Computer BladeCenter Cluster Manufacturer: IBM
Family Model: Xeon 2.8 GHz, Gig-E

Type: Cluster Inst. Type: Industry

Processors: 1176 Op. System: Linux (Red Hat)

Max. Mem.: 6 GB Total Mem.: 3,4 TB

Rmax : 1755 Rpeak : 6585,6

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 44 Name: Semiconductor Company

Country: USA City: not given Year: 2003

Computer xSeries Cluster Manufacturer: IBM
Family Model: Xeon 2.8 GHz, Gig-E

Type: Cluster Inst. Type: Industry

Processors: 1140 Op. System: Linux

Max. Mem.: not given Total Mem.: not given

Rmax : 1755 Rpeak : 6384

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given
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TOP500: 47 Name: PGS

Country: USA City: Houston, TX Year: 2003

Computer xSeries Cluster Manufacturer: IBM
Family Model: Xeon 3.06 GHz, Gig-E

Type: Cluster Inst. Type: Industry

Processors: 1024 Op. System: Linux

Max. Mem.: not given Total Mem.: not given

Rmax : 1755 Rpeak : 6266,88

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 48 Name: WETA Digital

Country: New Zealand City: Wellington Year: 2003

Computer BladeCenter Cluster Manufacturer: IBM
Family Model: Xeon 2.8 GHz, Gig-E

Type: Cluster Inst. Type: Industry

Processors: 1080 Op. System: not given

Max. Mem.: not given Total Mem.: not given

Rmax : 1755 Rpeak : 6048

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given
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TOP500: 52 Name: CGG

Country: USA City: Houston, TX Year: 2003

Computer xSeries Cluster Manufacturer: IBM
Family Model: Xeon 2.4 GHz, Gig-E

Type: Cluster Inst. Type: Industry

Processors: 1100 Op. System: Linux

Max. Mem.: not given Total Mem.: not given

Rmax : 1755 Rpeak : 5280

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 53 Name: Arizona State University/TGEN

Country: USA City: Phoenix, AZ Year: 2003

Computer xSeries Cluster Manufacturer: IBM
Family Model: Xeon 2.4 GHz, Gig-E

Type: Cluster Inst. Type: Academic

Processors: 1100 Op. System: Linux

Max. Mem.: not given Total Mem.: not given

Rmax : 1755 Rpeak : 5030,4

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given
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TOP500: 54 Name: Paradigm Geophysical

Country: USA City: Houston, TX Year: 2003

Computer BladeCenter Cluster Manufacturer: IBM
Family Model: Xeon 2.4 GHz, Gig-E

Type: Cluster Inst. Type: Research

Processors: 1024 Op. System: not given

Max. Mem.: not given Total Mem.: not given

Rmax : 1755 Rpeak : 4915,2

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given

TOP500: 55 Name: TotalFinaElf

Country: France City: not given Year: 2003

Computer xSeries Cluster Manufacturer: IBM
Family Model: Xeon 2.4 GHz, Gig-E

Type: Cluster Inst. Type: Industry

Processors: 1024 Op. System: not given

Max. Mem.: not given Total Mem.: not given

Rmax : 1755 Rpeak : 4915,2

Nmax : not given Nhalf : not given

Queues: not given

Scheduling: not given

Prioritization: not given Backfill: not given

Reservations: not given Checkpointing: not given

Preemption: not given Gang Scheduling: not given

Partitions: not given

Average Utilization: not given
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Abstract. In order to evaluate different scheduling strategies for paral-
lel computers, simulations are often executed. As the scheduling quality
highly depends on the workload that is served on the parallel machine,
a representative workload model is required. Common approaches such
as using a probability distribution model can capture the static feature
of real workloads, but they do not consider the temporal relation in the
traces. In this paper, a workload model is presented which uses Markov
chains for modeling job parameters. In order to consider the interde-
pendence of individual parameters without requiring large scale Markov
chains, a novel method for transforming the states in different Markov
chains is presented. The results show that the model yields closer results
to the real workloads than other common approaches.

1 Introduction

The use of parallel computers and workstation clusters has become a common
approach for solving many problems. The efficient allocation of processing nodes
to jobs is the task of the scheduling system. Here, the quality of the scheduling
system has a high impact on the overall performance of the parallel computer.
To this end, many researchers have developed various job scheduling subsystems
for such parallel computers [28, 15, 17]. As already pointed out in [16, 7], the
performance of a scheduling algorithm highly depends on the workload it is
applied to. There is no single scheduling algorithm that is best for all scenarios.
To this end, the evaluation of scheduling algorithms for different workloads is an
important step in designing a scheduling system. Therefore, much effort has been
put in the characterization and modeling of the workload of parallel computers
[4, 1, 6, 24].

A typical approach for the performance evaluation of a scheduling system
is the application of an existing workload trace which has been recorded on
an existing machine [29, 25, 13]. However, while this represents a realistic user
behavior on a real machine, there are several drawbacks. For instance, such a
workload trace cannot directly be applied to configurations different from the
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original machine. In addition, the size of the workload, that is the number of
jobs in the trace, cannot be scaled easily.

Therefore, often a statistical workload model is adopted as an alternative.
The most common approach is the use of a probability distribution function
model (PDF) [16]. However the PDF model often omits the dynamic charac-
teristics of workloads. That is, the sequential correlation of different jobs is not
taken into account. In this paper, we propose an extended job model based on
Markov chains which uses information from the previous job to consider the
sequential dependencies for the next job submission. After a discussion of the
necessary background in Section 2, we discuss in Section 3 the relevant model
parameters. In Section 4, the model is constructed. The quality of the model is
evaluated by comparing its outcome with real workload data in Section 5. The
paper ends with a short conclusion.

2 Background

Many parallel computers or supercomputers use a space-sharing strategy for
efficient execution of parallel computational jobs. This means that a job runs
exclusively on the allocated processor set. Moreover, jobs are executed until
completion without any preemption. The scheduling problem is an online sce-
nario in which the jobs are not known in advance and are continuously submitted
to the scheduling systems by the users.

A workload model is an abstract description of the parameters of the jobs
in the workload. A job consists of several parameters, for instance the number
of required processing nodes, the job runtime, or memory requirements. In this
paper, we concentrate on the modeling of the required number of nodes and
the corresponding runtime. However, our approach is general and can easily be
extended to consider other parameters as well. Note, that we do not model the
submission time or inter-arrival time of jobs. For this task several other adequate
models are available [3, 6].

As mentioned before, often a probability distribution function model is cho-
sen for modeling workload parameters. Thereby, the parameters are typically
considered independently and, consequently, individual distributions are created
for each parameter. For example, Jann et al. used a hyper-Erlang distribution
to match the first 3 moments of an observed distribution [20]. Alternatively, Uri
Lublin and Dror Feitelson used a three-stage hyper-gamma distribution to fit
the original data [24].

Besides the isolated modeling of each attribute, the correlations between dif-
ferent attributes are also very important. Lo et al. [23] demonstrated how the
different degrees of correlation between job size and job runtime might lead to
discrepant conclusions about the evaluation of scheduling performance. To con-
sider such correlations, Jann et al. [20] divided the job sizes into subranges and
then created a separate model for the inter-arrival time and the service time
in each range, which may have a risk of over-fitting and too many unknown
parameters. Furthermore, Lublin and Feitelson in [24] considered the runtime
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attribute according to a two-stage hyper-gamma distribution with a linear rela-
tion between the job size and the parameters of the runtime distribution so that
the longer runtime can be emphasized by using the distribution with the higher
mean.

Although the PDF models can be adapted to fit the observed original dis-
tribution, the sequential dependencies in workload is lost. For instance, in [15]
Feitelson et al. showed that users tend to submit jobs which are similar to its
predecessor. Therefore a more realistic model is sought which incorporates the
correlation within the sequence of job submissions.

3 Analysis

The analysis of available workload traces shows several temporal relations of
job parameters which are very complex. We examined seven traces which are
publicly available in [30]. Each contains several thousands of job which have
been submitted during a time frame of several months, as shown in Table 1. For
analyzing statistical parameter of data series including temporal relations, the
software named R [19] has been chosen to extract the statistical information.

Identifier NASA CTC KTH LANL SDSC SP2 SDSC 95 SDSC 96

Machine iPSC/860 SP2 SP2 CM-5 SP2 SP2 SP2
Period 10/01/93

12/31/93
06/26/96
05/31/97

09/23/96
08/29/97

04/10/94
09/24/96

04/28/98
04/30/00

12/29/94
12/30/95

12/27/95
12/31/96

Processors 128 430 100 1024 128 416 416
Jobs 42264 79302 28490 201378 67667 76872 38719

Table 1. Workloads used in this Research.

By analyzing the workload data, it has been found that within a short exam-
ined time frame there is only a limited variance in the number of required node
and runtime that a user requests. This has also been found by [16] who consid-
ered a time frame of one week. Moreover, jobs are often identical if subsequently
submitted by a user, [15]. For considering such continuous submission of identical
jobs, Feitelson used a Zipf distribution to model the number of repetitions [15].
However, our examination holds for all jobs in a workload trace without dif-
ferentiating the submitting user. This is probably caused by the fact that only
a limited number of users is active system within a time frame. Moreover, the
inter-arrival time between jobs is relatively small.

In addition, we found that not all jobs are submitted with the same con-
tinuity. For a job series J in a workload, we extract the requested number of
nodes uj ∈ U for each job j. We examined the average continued appearance of
a node requirement in this sequence U . That is, for each job node requirement
in the workload trace the number of direct repetitions is considered. Note, that
we consider all job submissions in a workload and not jobs submitted by the
same user. As workloads contain predominantly jobs with a power of 2 number
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Fig. 1. Continuous Submission of Jobs with Similar Node Requirements.

of nodes, we restrict the examination on such jobs requiring 1 node, 2 nodes, 4
nodes, etc. That is, for now we neglect all jobs which do not have a power of
2 node requirement. In Figure 1 the average subsequent appearances of a job
requirement in a real workload is shown. As a reference the average number of
occurrences is shown if a simple probability distribution model is used for mod-
eling the node requirements. This strategy (denoted as SPM in the Figure) does
model each parameter independently according to the statistical occurrences in
the original trace. It can be seen, that sequences of the same node requirement
occur significantly more often in a real workload than it would be in the PDF
model. This shows that a simple distribution model does not correctly represent
this effect. Furthermore, jobs in the real traces with less nodes requirements have
a higher probability that the subsequent node is identical than jobs requiring
more nodes. That is, jobs with less parallelism have a higher probability to be
repeatedly submitted.

Even if those continuously appearing elements in U are removed, sequential
dependencies can be found. To this end, only one element are kept for each
sequence of identical node requirements. That is we create U ′ from U . For ex-
ample, an excerpt in a series of node requirements of 1, 1, 1, 2, 2, 5, 5, 5, 8, 16,
16, 16, 2, 2 is transformed to 1, 2, 5, 8, 16, 2. Note, here we also consider jobs
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Fig. 2. Temporal Relation of Node Requirements in U ′′.

with node requirements that are not power of 2. In a next step we transform U ′

to U ′′ by U ′′ = {2�log2(u
′
i)�|u′

i ∈ U ′}. That is, each node requirement is rounded
to the next lower power of 2. For each distinct node requirement, we calculate
the average number of nodes requested by its successor. Figure 2 shows that
the successors of those jobs with a large node requirement also tend to request
a large number of nodes for most workloads. That is, in most traces jobs with
high node requirements are followed by jobs with also a high or even higher
node requirement. The lines in the figure show the overall average for the node
requirements in each workload. However, the behavior for NASA, SDSC96 and
LANL is not clear. For the NASA workload it can be noted that the workload
in general shows an unusual behavior as jobs are only submitted if enough free
resources are available. That is, jobs start immediately after their submission.
Moreover, only a small number of different node requirements occur in the traces.

There are also temporal relations in the runtime of jobs. Here, we grouped
jobs by the integer part of the logarithm of their runtime and for each group
the average runtime of its successors has been calculated. The result is shown in
Figure 3.

Such sequential dependencies may become very important for optimizing
many scheduling algorithms, like e.g. backfilling. For instance, algorithms can
utilize probability information about future job arrivals. Such data can be in-
cluded in heuristics about current job allocations. Therefore a method to capture
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Fig. 3. Temporal Relation in the Sequence of Runtime Requirements.

the sequential dependencies in the workload would be beneficial. As shown in
Figures 2 and 3, the characteristic of the relation of subsequent jobs varies for
different node requirements and runtimes.

4 Modeling with Markov Chains

There are several classical methods to analyze stochastic processes. For exam-
ple, the ARIMA model [2] uses lags and shifts in the historical data to uncover
patterns (e.g. moving averages, seasonality) and predict the future. However the
theory of ARIMA model is based on the assumption that the process is sta-
tionary, which does not hold for workloads as shown in [18]. Another common
approach is the use of Neural Networks to analyze and model sequential depen-
dencies [31, 5]. However, it is difficult to adapt and extend such a model. Instead,
Markov chains [21] have been chosen for modeling the described patterns in Sec-
tion 3. Those chains have the important characteristic that a transition to the
next state just depends on the previous state. Therefore Markov Chains have
some kind of memory and the transition probabilities to move from one state to
the other within the whole model can be described by a transition matrix. The
element (i, j) within the matrix describes the probability to move from state i
to state j if the system was in state i.
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In our workload modeling we use two Markov chains to represent the number
of nodes and the runtime requirements respectively. However, as shown above it
is necessary to correlate both chains. Similar requirements for combining Markov
chains also occur in other application areas [8, 27, 26]. For instance, advanced
speed recognition systems use so-called Hidden Markov Models (HMM) to rep-
resent not only phonemes, the smallest sound units of which words are composed,
but also their combination to words. The method to correlated those different
Markov models is called ”embedded” HMM, in which each state in the model
(super states) can represent another Markov model (embedded states). How-
ever, this method is not suitable to our problem of workload modeling, as it will
dramatically increase the number of parameters. Correspondingly, the model be-
comes very hard to train. Therefore, in the following we propose a new algorithm
to correlate two Markov chains without increasing the number of states.

As mentioned above, our model is based on two independent Markov chains.
Here, the first chain is used to model the requested number of nodes. The second
chain represents the runtime requirements. At the beginning, these two chains
are independently constructed and then combined in order to create a model
for generating the next incoming job. Note, as mentioned before, the following
method does not consider the modelling of inter-arrival times. Moreover, it is
intended for combination with existing submission time models.

4.1 Markov Chain Construction

First, the construction of the Markov chain for the requested number of nodes
is given. The corresponding second Markov chain for runtime requirements is
similarly generated.

Assume a chain of p jobs where the series of requested nodes is described by
the sequence T = {t1, t2, · · · tp}. One of the key issues during the construction of a
Markov chain is to identify a small set of relevant states in this series. Otherwise
the Markov chain would require too many different states if all distinct node
requirements in the traces would be considered.

To this end, a transformation of T is used which classifies all node require-
ments into power of 2 groups. Thus, the reduced sequence S = {s1, s2 · · · sp} is
constructed from T as follows:

si = 2�log2ti�, i ∈ [1, p] (1)

Now each distinct element in S can be considered as a separate state within the
corresponding Markov chain. The set of states L of this Markov chain can be
constructed as follows:

L = {l1, l2, · · · lq|q ≤ p; ∀(i, j) : i �= j ∧ i, j ∈ [1, q]; li �= lj} (2)

The different values representing the states can be calculated by:

(lj = 2j−1|∃sx ∈ S : sx = 2j−1, ∀j : j ≤ log2tmax) (3)
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Using this transformation, the original sequence T can now be represented by
using S and L. In order to consider the state changes in the original workload,
we use series U to denote the order of occurrences of elements in L within the
original stream of job submissions. Thus, we define U = {u1, · · · , up} whereas the
different states in U can be described by ui = j with lj = si; si ∈ S and lj ∈ L
for i ∈ [1, p]. That is, the sequence U consists of the indices of the elements in L
corresponding to the job sequence. As an example, consider Table 2 where the
process of reducing the distinct number of node requirements in T is shown.

Index 1 2 3 4

ti ∈ T 2 4 6 16
si ∈ S 2 4 4 16
lj ∈ L 2 4 16 -
ui ∈ U 1 2 2 3

Table 2. Example for Deriving the States of the Markov Chains.

The presented method leads to the construction of the transition matrix P
for the Markov chain, where the values can be calculated as: pij = nij/ni where
nij and ni are defined as

ni = |{sj = li, j ∈ [1, p]; li ∈ L}| and (4)
nij = |{j|so = li ∧ so+1 = lj, o ∈ [1, p − 1]; i, j ∈ [1, q]}| . (5)

The transformations from T to S cause a loss of information about the precise
number of requested nodes, as they have been reduced to power of 2 values. In
addition, a quality ratio cj is calculated for each state in the Markov chain. This
ratio indicates how often the real value in the original group is exactly matched
by the representing number of nodes in this state of the chain. More precisely,
the set of quality ratios is calculated by:

C = {cj |cj =
|{i|ti = lj, i ∈ [1, p]}|
|{i|si = lj , i ∈ [1, p]}| , j ∈ [1, q]}. (6)

The definition of the quality ratios cj , j ∈ [1, q] is needed to model the exact
node number of a job. If the system is in state j, the corresponding value lj is
used as the system output with the probability of cj . With the probability of
(1− cj) a uniform distribution between [lj, lj+1[ is used to create the final value
for the requested number of nodes.

As mentioned earlier the same method for constructing the Markov chain
can be applied to the runtime requirements. This yields a second Markov chain.
The dimensions of these matrices for the considered workload representations
are presented in Table 3.
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Dimension of
Dimension of the number of
runtime chain nodes chains cor0 cor1

NASA 16 8 0.639 0.744
SDSC 96 19 9 0.509 0.475
CTC 17 9 −0.077 −0.041
KTH 18 8 0.037 0.142
LANL 18 6 0.136 0.325
SP2 19 8 0.177 0.292
SDSC95 19 9 0.465 0.510

Table 3. Some parameters in our workload modeling.

4.2 Correlation Between Runtime and Number of Nodes

It has been found that the runtime and number of nodes have a weak positive
correlation in all examined workloads, that is, the jobs requiring more nodes have
a longer runtime time on average [17]. It has been shown that such a correlation
has an impact on the performance of the scheduling algorithms [15]. Therefore
as key feature, this correlation should be reflected in our model.

To this end, the two independent Markov chains, for node and runtime re-
quirements, must be combined to incorporate the correlation. A straight forward
approach would be the merging of the two Markov chains into a single Markov
chain. However, this would yield a very high dimensional chain based on all
combinations of the states in the original two chains. Such a Markov chain is
very difficult to analyze and such an approach would not scale for incorporating
additional other job parameters.

Our algorithm is applied after a transition in both Markov chains. It adjusts
the new state in the Markov chain for node requirements according to the latest
transition in the chain for the runtime. As an example, consider the observation
that jobs requiring a longer runtime also tend to request a large number pro-
cessing nodes. Therefore, if the Markov chain for the job runtime is in a state
representing a longer runtime, the state of the Markov chain for the node re-
quirements would also move to a state of requesting more nodes with a certain
probability, an vice versa. If the runtime requirement changes dramatically in
a chain, the request for nodes will have a tendency to change as well. That is,
the transformation of the states in the different Markov chains incorporate the
correlations between the examined parameter.
The detailed correlation algorithm for the Markov chains is given in the following:

First, the correlation value of the requested number of nodes sequence and
the required runtime sequence is calculated from the original workload. In the
following the transformation path for the number of nodes is denoted by N ,
while R represented the runtime transformation path.

The procedure of adjusting the state in the node requirement chain depends
on the independent state changes in the two chains. Here, we distinguish three
cases. First, if the Markov chain for the number of nodes did not change, no
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adjustment is applied. Second, if the state changed only in the chain for node
requirement and not for runtime, then the state in the node requirement chain
is adjusted based on the state in the runtime chain and the correlation factor
cor0 between the chains. Third, if states changed in both chains, the correlation
of first-order differences cor1 and the last change in the runtime chain are used
to adjust the state in the node requirement chain.

The following mathematical description explains in more detail how the
Markov chains are combined. The parameter ni specifies the next node request
in the sequences and the corresponding mean is denoted as n. In regards to the
runtime sequence similar definitions apply to ri and r. Next, the correlation cor0

between the two sequences can be calculated as:

cor0 = cor(N, R) =
E((ni − n)(ri − r))√

E((ri − r)2) · √E((ni − n)2)
(7)

Here E() denotes the expected value function. The index 0 was used to spec-
ify that the original sequences were used without further modifications. Further-
more, the first-order difference correlation cor1 is used to denote how the changes
of one transformation path affect the other. In order to define the first-order cor-
relation precisely some more variables have to be introduced. Therefore, two new
sets are built which consist of the changes in the transformation path.

ΔN = {Δni = ni+1 − ni|∀ni : 0 < ni ≤ |N | − 1} (8)
ΔR = {Δri = ri+1 − ri|∀ri : 0 < ri ≤ |R| − 1} (9)

Second, as shown in Section 3 the elements in a sequence often do not differ.
As a consequence the sequence of first-order differences includes many zero val-
ues. As the modeling focuses on the changes of the system behavior all elements
have to be removed were the number of nodes or the required runtime is not
changing. This procedure leads to the new sets ΔN ′ and ΔR′. These two sets
can be formulated as follows:

ΔN ′ = {Δni|∀ni ∈ ΔN : Δni �= 0 ∧ Δri �= 0} (10)
ΔR′ = {Δri|∀ri ∈ ΔR : Δni �= 0 ∧ Δri �= 0} (11)

Now, the correlation cor1 can be defined as: cor1 = cor(ΔN ′, ΔR′). The
actual values in our examinations for cor0 and cor1 are also presented in Table 3.

Assume that the Markov chains for the number of nodes and the required
runtime have dimensions a and b respectively. Further assume that for the syn-
thetically generated transformation path of the requested number of nodes a
connection from the state j to the state k exists as well as the connection from
m to n within the synthetic transformation path of the runtime.

The above mentioned procedure can be summarized in the following three
rules in order to adjust the state in the Markov chain for the requested number
of nodes based on the the Markov chain of the required runtime:
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1. If j = k, no transformation is applied. As the state in the Markov chain for
the number of nodes is not changing (j = k), no adjustment by the Markov
chain of the required runtime is needed.

2. If j �= k; m = n, the destination state k is adjusted to k = n · (a/b) with
probability of correlation cor0. This means that the resulting number of
nodes is changed with the probability of correlation cor0 if the active state
within the Markov chain for the requested number of nodes changed while
the state in the runtime chain stayed constant. The factor a/b is used as a
normalization between the two matrices. The value of n reflects the fact that
the Markov chain of the runtime is used for the adjustment of the Markov
chain for the number of nodes. Here a job with a higher runtime should also
have a higher demand on the number of nodes as explained earlier.

3. If j �= k; m �= n, the destination state k is changed to k = (n − m) · (a/b) ·
sign(cor1) + j with probability of the correlation |cor1|. This rule is used in
situations were in both Markov chains the states are changing. Here the incre-
mental changes can be used for the adjustment. The term (n−m) describes
the incremental change in the Markov chain for the runtime requirement,
where the sign(cor1) indicates the direction of the change. Again, the factor
of a/b is used for the necessary normalization process. As the first terms
only describe the change, the originating state j is used as the basis. Similar
to step 2 the changes are only applied with a certain probability. This time
cor1 is used as the calculation is based on the incremental changes.

5 Results

For our evaluation we have examined workloads from the Standard Workload
Archive which are presented in Table 1. For all of those workloads the corre-
sponding Markov chains for the requested number of nodes and the required
runtime have been created. Using the presented modeling algorithm new syn-
thetical workload traces have been created with these Markov chains. The quality
of the presented modeling method is measured by comparing the original with
the newly generated traces with the following statistical and temporal criteria.

5.1 Statistical Comparison

A common method of comparing sequences is the Kolmogorov-Smirnov(KS)
test [22]. Here a small value indicates a high degree of similarity.

Another criteria in comparing different workloads is the squashed area which
is the total resource consumptions of all jobs:

squashed area =
∑

j∈Jobs
req processorsj · run timej (12)

Furthermore, we calculate the difference of squashed area (SA) by

dSA =
synthetic SA − original SA

original SA
. (13)
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KS Test KS Test Squashed Area
of Nodes of Runtime Difference

NASA 0.08 0.08 −16 %
SDSC 96 0.08 0.06 8 %

CTC 0.02 0.03 38 %
KTH 0.04 0.03 15 %

LANL 0.01 0.04 −1 %
SDSC SP2 0.02 0.04 8 %

SDSC 95 0.09 0.02 −3 %

Table 4. Statistical Comparison of the Modeled and the Original Workloads.

Real Data Markov chain Lublin/Feitelson
Model Model

SDSC 95 0.277 0.140 0.105
SDSC 96 0.371 0.155 0.116

KTH 0.011 0.005 0.005
LANL 0.172 0.226 0.29

Table 5. Correlation of Node and Runtime Requirements.

It can be seen in Table 4 that the explained Markov chains model match
well the original traces. In addition, Figure 4 shows the distributions of runtime
and node requirements for the KTH workload as an example. The results for
squashed area as well as for the KS test are quite acceptable. Only for the CTC
workload the squashed area criterion shows an inappropriate deviation in the
modeled amount of workload. The squashed area or amount of total workload
within a trace has significant impact on scheduling performance [13]. However,
information about this criteria is usually not provided for most workload models.

5.2 Correlation Between Parallelism and Runtime

We compared the presented model with the model by Lublin and Feitelson [24].
In terms of correlation between the models and the original traces it can be
seen from Table 5 that in most of the cases our model is closer to the real
correlation value as in the Lublin/Feitelson model. Note, that the results for the
Lublin/Feitelson model were taken from [24]. A more comprehensive comparison
in terms of the squashed area between the models failed as a first implementation
yielded different results from the paper. This will be addressed in our future
examinations.

5.3 Temporal Relations

The autocorrelation ρ1 of the original trace and the modeled workloads has been
used to examine the temporal dependencies within each sequence. Table 6 shows
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The number of nodes series The runtime series
Real data MCM PDF Real data MCM PDF

SDSC 95 0.43 0.31 −0.01 0.28 0.16 0.01
SDSC 96 0.41 0.37 −0.01 0.17 0.20 0.02

KTH 0.29 0.29 0.01 0.29 0.30 −0.01
LANL 0.16 0.20 −0.01 0.18 0.19 −0.03

Table 6. Comparison of the Autocorrelation ρ1 of the Node Requirements and Runtime
Sequences.

son to the real traces. Here, the statistical characteristics as well as the temporal
dependencies between jobs are resembled within the model.

The quality criteria used are based on the assumption that the model is used
to create a stream of new jobs without further interaction. This can be used to
create workload traces for the evaluation of scheduling algorithms as used in [10,
11].

However, as found in [9, 12, 14] new scheduling systems can also benefit by
dynamic adaptation according to the current system state. This enables the
scheduler to dynamically adjust its parametrization and consequently its behav-
ior. To this end, the workload modeling can also be used to dynamically predict
the next job given the last real job submission. This extension is partially already
included within our workload model as the parameters of the next created job
only depend on the last job. A qualitative evaluation has not yet been done and
will be part of future experiments. Currently, no other models are know that
incorporates such job predictions.
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Abstract. The self-tuning dynP scheduler for modern cluster resource
management systems switches between different basic scheduling policies
dynamically during run time. This allows to react on changing character-
istics of the waiting jobs. In this paper we present enhancements to the
decision process of the self-tuning dynP scheduler and evaluate their im-
pact on the performance: (i) While doing a self-tuning step a performance
metric is needed for ranking the schedules generated by the different ba-
sic scheduling policies. This allows different objectives for the self-tuning
process, e. g. more user centric by improving the response time, or more
owner centric by improving the makespan. (ii) Furthermore, a self-tuning
process can be called at different times of the scheduling process: only at
times when the characteristics of waiting jobs change (half self-tuning),
i. e. new jobs are submitted; or always when the schedule changes (full
self-tuning), i. e. when jobs are submitted or running jobs terminate.
We use discrete event simulations to evaluate the achieved performance.
As job input for driving the simulations we use original traces from real
supercomputer installations. The evaluation of the two enhancements
to the decision process of the self-tuning dynP scheduler shows that a
good performance is achieved, if the self-tuning metric is the same as
the metric used measuring the overall performance at the end of the
simulation. Additionally, calling the self-tuning process only when new
jobs are submitted, is sufficient in most scenarios and the performance
difference to full self-tuning is small.

1 Introduction

Resource management systems (RMS) for modern high performance computing
(HPC) clusters consist of many components which are all vital in keeping the ma-
chine fully operational. An efficient usage of the machines is important for users
and owners, as such systems are rare and high in cost. With regards to perfor-
mance aspects all components of a modern RMS should perform their assigned
tasks efficiently and fast, so that no additional overhead is induced. However, if
resource utilization and job response times are addressed, the scheduler plays a
major role. A clever scheduling strategy is essential for a high utilization of the
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machine and short response times for the jobs. However, these two objectives
are contradicting. Jobs tend to have to wait for execution on a highly utilized
system with space sharing. Short or even no waiting times are only achievable
with low utilizations or time-sharing. Typically a scheduling policy that opti-
mizes the utilization prefers jobs needing many resources for a long time. Jobs
requesting few resources for a short amount of time may have to wait longer
until adequate resources are available. If such small and short jobs are preferred
by the scheduler, the average waiting time would be reduced. As jobs typically
have different sizes and lengths, fragmentation of the schedule occurs and the
utilization drops [1]. The task of the scheduler is to find a good compromise
between optimizing these two contrary metrics.

Cluster systems usually have a large user community with different resource
requirements and general job characteristics [3]. For example, some users primar-
ily submit parallel and long running jobs, whilst others submit hundreds of short
and sequential jobs. Furthermore, the arrival patterns vary between specific user
groups. Hundreds of jobs for a parameter study might be submitted in one go via
a script. Other users might only submit their massively parallel jobs one after
the other. This results in a non-uniform workload and job characteristics that
permanently change. The job scheduling policy used in a RMS is chosen in order
to achieve a good overall performance for the expected workload. Most com-
monly used is first come first serve (FCFS) combined with backfilling [7,14,9], as
on average a good performance for the utilization and response time is achieved.
However, with certain job characteristics other scheduling policies might be supe-
rior to FCFS. For example, for mostly long running jobs, longest job first (LJF)
is beneficial, whilst shortest job first (SJF) is used with mostly short jobs [1].
Hence, a single policy is not enough for an efficient resource management of
clusters. Many modern RMSs have several scheduling policies implemented, or
it is even possible to replace the scheduling component.

The remainder of this paper is structured as follows. In Section 2 some related
work on self-tuning and dynamic policy switching is given. Section 3 starts with
a short history of development, contains the concept of the self-tuning dynP
scheduler, and presents the different decider mechanisms and enhancements to
them. The used performance metric and the applied workload for the evaluation
are presented in Section 4. The evaluation in Section 5 starts with a look on
the performance of the three basic policies. Then the evaluation results of the
different self-tuning metrics and of the comparison of half vs. full self-tuning are
presented. The paper ends with conclusions an a brief outlook on future work.

2 Related Work

In [13] the problem of scheduling a machine room of MPP-systems is described.
Users either submit long running batch jobs or they work interactively (typically
only for a short time). To accomplish this on a single MPP-system the resource
management system has to switch from batch mode (preferring batch jobs) to
interactive mode (preferring interactive jobs) and back. Usually this is done man-
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ually by the administrative staff, e. g. at fixed times of the day: interactive mode
during working hours, batch mode for the rest of the day and over weekends. In
general, the overall job throughput is the main objective of batch processing. As
batch jobs typically have a long run time, waiting is not very critical. On the
other hand, a user that works interactively counts the five minutes until he/she
can start working with the requested resources. Other issues like the overall job
throughput or the utilization are less important while operating in interactive
mode. Which in comparison to batch mode jobs are rather short. The idea [4]
is to allow the users to decide in which mode the system should be operating.
Hence, the Implicit Voting System (IVS) is introduced, as users should not vote
explicitly:

– If most of the waiting jobs are submitted for batch processing, IVS switches
to LJF (longest job first). As batch jobs are typically long, they receive a
higher priority in the scheduling process. Hence, resources are longer bound
to jobs, less resource fragmentation is caused and the utilization and through-
put of the system is increased.

– If most of the waiting jobs are submitted for interactive access, IVS switches
to SJF (shortest job first). As interactive jobs are usually short in their run
time and short jobs are preferred, the average waiting time is reduced.

– If the system is not saturated, the default scheduling strategy FCFS (first
come first serve) is used. Note, a threshold for defining when a system is
saturated and when not is defined by the administrative staff. For the authors
a MPP system becomes saturated, if more than five jobs can not be scheduled
immediately.

Unfortunately, the idea of IVS was never realized nor implemented and tested
in a real environment.

In [3] a similar approach for the NASA Ames iPSC/860 system is presented.
In the prime time during the day only a fraction of the resources is allocated
to the batch partition, while most of the resources are available for interactive
access. During non prime time all resources are assigned to the batch partition.
The re-partitioning is done manually and at fixed times of the day.

The problem of getting the best performance from a modern resource man-
agement system is described in [2]. Commonly such software systems are highly
parameterized and the administrative staff performs a lot of trial and error test-
ing in order to find a good parameter setting for the current workload. If the
workload changes, new parameter settings have to be found. However, they are
notoriously overworked and have little or no time for this fine tuning, so the
idea is to automate this process. Much information about the current and past
workload is available, which is used to run simulations in the idle loop of the
system (or on a dedicated machine). Various parameter settings are simulated
and the best setting is chosen. The authors call such a system self-tuning, as the
system itself searches for optimized parameter settings. To create new parameter
settings for the simulations, genetic algorithms are used. New parameter settings
are generated by randomly combining several potential combinations from the
previous step. Chromosomes are the binary representation of a parameter. A
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parameter setting is called individual and the according parameter values are
concatenated in their binary representation. In this example the fitness function
is the average utilization of the system achieved by the according parameter
setting. All simulated parameter settings (individuals) in one step represent a
generation. The chromosomes of the fittest individuals of a generation are used
to produce new individuals for the next generation. New generations are contin-
uously created with the latest system workload as input. The process is started
with default values. In a case study for scheduling batch jobs of the NASA Ames
iPSC/860 system the authors observed that with the self-tuning search for pa-
rameter settings the overall system utilization is improved from 88% (with the
default parameters) to 91%.

In [8] heuristics for the dynamic mapping of a class of independent tasks onto
heterogeneous computing systems are introduced. The mapping problem consist
of two parts: matching and scheduling. In the matching phase the assignment
of tasks to machines is computed, whilst during scheduling the execution order
of the tasks on each machine is computed. In their work a dynamic mapping is
needed, as the arrival times of the tasks may be random and the set of available
machines is changing. Machines may go off-line and new machines may come
on-line. Mapping heuristics can be grouped in two classes: on-line mode and
batch-mode heuristics. In the on-line mode tasks are mapped onto a machine im-
mediately after their submission. In the batch-mode, tasks are not immediately
mapped when they arrive, instead they are stored and the mapping is invoked at
pre-scheduled mapping events. The heuristic MCT (minimum completion time)
assigns each task to that machine which results in the task’s earliest comple-
tion time. Tasks may be assigned to machines, which do not have the minimum
execution time. In contrast, MET (minimum execution time) assigns each task
to that machine that performs the task in the least amount of execution time.
As the machines ready times are not considered by MET, load imbalance across
the machines may occur. The new batch-mode SA (switching algorithm) heuris-
tic uses these two heuristics (MCT and MET) in a cyclic fashion depending
on the load distribution across the machines. By switching between MCT and
MET a new heuristic with the desirable properties of the two single heuristics
is generated.

3 Self-Tuning dynP

A single scheduling policy is usually used in a resource management system and
it typically generates good schedules only for jobs with specific characteristics
(e. g. short jobs). If the job characteristics change, other scheduling policies might
perform better and it might be beneficial that the system administrator changes
the scheduling policy. However, system administrators are not able to monitor
the situation and continuously alter the scheduling policy in response to workload
changes.

We developed the dynP scheduler, which automatically switches the active
scheduling policy during run time. In general, the set of scheduling policies to
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choose from can consist of many policies one can think of. We started with a
variant of the dynP scheduler, which uses bounds for the average estimated run
time of waiting jobs to check, which policy is best suited for the current job
characteristics. A major drawback of this version is obvious, as the performance
depends on a proper setting of the bounds. And in order to reflect different job
characteristics, these bounds need to be changed. We developed the self-tuning
dynP scheduler which automatically searches for the best suited policy.

3.1 Concept

At the PC2 (Paderborn Center for Parallel Computing) the self-developed re-
source management system CCS (Computing Center Software, [6]) is used for
managing the PSC Pentium3 cluster [12] and the pling cluster [11]. Three
scheduling policies are currently implemented: FCFS, SJF, and LJF. Accord-
ing to the classification in [5], CCS is a planning based resource management
system. Planning based resource management systems schedule the present and
future resource usage, so that newly submitted jobs are placed in the active
schedule as soon as possible and they get a start time assigned. With this ap-
proach backfilling is done implicitly. By planning the future resource usage, a
sophisticated approach is possible for finding a new policy. For all waiting jobs
the scheduler computes a full schedule, which contains planned start times for
every waiting job in the system. With this information it is possible to measure
the schedule by means of a performance metric (e. g. response time, slowdown,
or makespan). The concept of self-tuning dynP is:

The self-tuning dynP scheduler computes full schedules for each available
policy (here: FCFS, SJF, and LJF). These schedules are evaluated by
means of a performance metric. Thereby, the performance of each policy
is expressed by a single value. These values are compared and a decider
mechanism chooses the best value, i. e. the smallest value.

In the following, the performance metric used in the self-tuning process is
called self-tuning metric for simplicity.

3.2 Decider Mechanisms

For the required decision, several levels of sophistication are thinkable. In [16]
we presented the simple decider that basically consists of three if-then-else con-
structs. It chooses that policy which generates the minimum value of the applied
self-tuning metric. The simple decider also has drawbacks, as it does not consider
the old policy. In particular if two policies are equal and a decision between them
is needed, information about the old policy is helpful. Table 5 shows a detailed
analysis of the simple decider. FCFS is favored in three and SJF in one case,
although staying with the old policy is the correct decision with these cases.
This behavior is implemented in the advanced decider. At a first glance it does
not make any difference which policy among equals is chosen. At this stage the
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scheduler only knows estimates of the job’s run time and usually the job’s actual
run time is shorter than estimated. When a job ends earlier than estimated,
the schedule changes and new planning is necessary. Depending on the chosen
policy different jobs might have been started in the meantime. Therefore, even
a decision between two equal policies is required. Previously, the fairness among
the policies was of major interest. However, it might be interesting to explicitly
prefer one of the policies and neglect the others. For that purpose we developed
the preferred decider [17]. The preferred policy is not switched unless any other
policy is better. Whenever any of the other policies are currently used, the pre-
ferred policy only has to achieve an equal performance and the decider switches
back.

The deciders of the self-tuning dynP scheduler consider only the three poli-
cies FCFS, SJF, and LJF for three reasons. First of all, we evaluate the general
behavior and performance of self-tuning dynP schedulers for the resource man-
agement of HPC systems. We do not evaluate, which combination of policies is
best suited for specific job characteristics. Presumably, combinations with other
and more scheduling policies exist, which generate even better results. Secondly,
FCFS, SJF, and LJF are the most known scheduling policies and many resource
management systems have at least these three implemented. And thirdly, these
three policies are implemented in the resource management software CCS, which
depicts the basis and starting position for our work.

In previous work we already presented the basics of the self-tuning dynP
scheduler. It started with the simple decider in [16]. Next, we developed the
advanced decider [15] and recently the preferred decider [17]. In this paper we
present further enhancements to the decision process, which can be applied to
all three mentioned decider mechanisms.

3.3 Enhancements to the Decision Process

As previously mentioned the aim of the self-tuning dynP scheduler is to elimi-
nate input parameters for the scheduler, especially those which depend on the
characteristics of the processed jobs and need to be re-adapted continuously.
Nevertheless, enhancements that influence the scheduler in a more general way
are thinkable. Of course they should be independent of any job characteristics
and easy to handle, so that a continuous manual re-adaptation is not needed.

Different Self-Tuning Metrics The concept of the self-tuning dynP sched-
uler is based on the planning-based scheduling approach, where all waiting jobs
are placed in a schedule. With assigning a proposed start time to each job, it
is possible to compute the waiting time of the jobs, so that schedules can be
compared. For this, different self-tuning metrics can be applied, e. g. user cen-
tric metrics like the average response time or the slowdown (both unweighted or
weighted), and owner centric metrics like the makespan. By choosing a specific
metric, the self-tuning dynP scheduler optimizes its behavior according to this
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metric. We use the following metrics, which are all defined in the next section:
average response time (ART), average response time weighted by area (ARTwA),
average response time weighted by width (ARTwW), average slowdown (SLD),
average slowdown weighted by area (SLDwA), average slowdown weighted by
width (SLDwW) and makespan.

Calling of Self-Tuning Doing self-tuning and potentially switching the active
scheduling policy, should be done whenever the schedule or the set of waiting
jobs changes, i. e. whenever a new job is submitted or an already running job
terminates earlier than estimated. In the following, we call this full self-tuning.
However, it might also be sufficient to do the self-tuning step only when new jobs
are submitted, i. e. the characteristics of waiting jobs in the system change. We
call this option half self-tuning, as roughly only half as much self-tuning calls
are performed. This option is interesting to evaluate in combination with the
compute time to do the self-tuning process. It might be beneficial to save up
some compute time and make the scheduling behavior more comprehensible for
the users.

4 Evaluation

It is common practice to use discrete event simulations for the evaluation of job-
scheduling strategies. For this purpose we developed MuPSiE (Multi Purpose
Scheduling Simulation Environment). Several policies and the planning-based
scheduling approach from [5] are implemented. All presented results are gener-
ated with MuPSiE.

4.1 Performance Metrics

We use the user centric slowdown metric for measuring the simulated schedules
with all processed jobs. The slowdown of a job is also often called stretch [10]
or relative response time, as the jobs response time is divided by the jobs run
time. The slowdown comes without a dimension in contrast to e. g. response
time. Additionally, we weight each job’s slowdown with its area. Thereby, it
is circumvented that jobs with the same run time, but with different resource
requirements, have the same impact on the overall performance.

With the parameters for a finished job i of a total of m processed jobs:

– tai is the arrival or submission time
– tsi is the start time
– tei is the end time
– wi is the width (number of requested/used resources)

– li = tei − tsi is the length (run time, duration)
– twi = tsi − tai is the waiting time
– tri = twi + li is the response time
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– si = tr
i

li
= 1 + tw

i

li
is the slowdown

– ai = wi · li is the area

The average slowdown weighted by job area (SLDwA) for all jobs is defined as:

SLDwA =

m∑
i=1

ai · si

m∑
i=1

ai

(1)

If the processed jobs are not changed in their width or run time, the average
slowdown weighted by job area is equal to the average response time weighted
by job width and the equation holds:

SLDwA = ARTwW ·

m∑
i=1

wi

m∑
i=1

ai

(2)

For completeness, the other metrics used during the self-tuning process are
defined as follows:

– the average response time:

ART =
1
m

·
m∑

i=1

tri (3)

– the average response time weighted by job area:

ARTwA =

m∑
i=1

ai · tri
m∑

i=1

ai

(4)

– the average response time weighted by job width:

ARTwW =

m∑
i=1

wi · tri
m∑

i=1

wi

(5)

– the average slowdown:

SLD =
1
m

·
m∑

i=1

si (6)
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– the average slowdown weighted by job width:

SLDwW =

m∑
i=1

wi · si

m∑
i=1

wi

(7)

– the makespan:
max

i=1,...,m
tei (8)

4.2 Workload

An evaluation of job scheduling policies requires to have job input. In this work
a job is defined by the submission time, the number of requested resources
(= width), and the estimated run time (= length). As we model a planning
based resource management system [5], run time estimates are mandatory. Ad-
ditionally, for the simulation the actual run time is needed.

In this paper, we use four traces from the Parallel Workloads Archive [18],
as all other traces do not come with information about run time estimates. The
characteristics of the four traces are shown in Table 1 (taken from [17]).

– CTC (Cornell Theory Center), system: 512-node IBM SP2 (only 430 nodes
are available for batch processing), duration: July 1996 - May 1997, jobs:
79,302

– KTH (Swedish Royal Institute of Technology), system: 100-node IBM SP2,
duration: October 1996 - August 1997, jobs: 28,490

– LANL (Los Alamos National Lab), system: 1024-node Connection Machine
CM-5 from Thinking Machines, duration: October 1994 - September 1996,
jobs: 201,387

– SDSC (San Diego Supercomputing Center), system: 128-node IBM SP2,
duration: May 1998 - April 2000, jobs: 67,667

requested estimated actual average interarrival
resources run time [sec.] run time [sec.] overest. time [sec.]

trace min avg. max min avg. max min avg. max factor min avg. max

CTC 1 10.72 336 0 24,324 64,800 0 10,958 64,800 2.220 0 369 164,472
KTH 1 7.66 100 60 13,678 216,000 0 8,858 216,000 1.544 0 1,031 327,952
LANL 32 104.95 1,024 1 3,683 30,000 1 1,659 25,200 2.220 0 509 201,006
SDSC 1 10.54 128 2 14,344 172,800 0 6,077 172,800 2.360 0 934 79,503

Table 1. Basic properties of the used traces (86,400 seconds = 1 day).



72 Achim Streit

5 Results

We start with presenting the results for the three basic policies FCFS, SJF, and
LJF in short. This gives a good reference for the subsequent evaluations. At
first, the results of the comparison of different self-tuning metrics are presented.
A comparison of half and full self-tuning for the mentioned decider mechanisms
follows. Finally, an analysis of the switching behavior for the simple and advanced
decider is done.

5.1 Basic Policies

As previously stated, the evaluation shows that none of the policies is the best for
every job set characteristic. In Table 2 the best basic policy with respect to the
average slowdown weighted by area is highlighted with bold font. Particularly
for the SDSC trace, the differences in slowdown are large as SJF is worse than
FCFS by a factor of almost two and LJF is even worse (twice as bad as FCFS).

Backfilling is done implicitly with the planning-based scheduling approach
for all three basic scheduling policies.

FCFS SJF LJF

CTC 2.0455 1.9277 2.5212
KTH 3.1015 2.5488 5.8118

LANL 1.6801 1.7031 2.0507
SDSC 6.8260 12.5662 26.8207

Table 2. Overall average slowdown weighted by area (SLDwA) for the three
basic policies FCFS, SJF, and LJF.

5.2 Different Self-Tuning Metrics

In the following, the results with different self-tuning metrics are presented. We
used the following user centric metrics: average response time (ART), average
response time weighted by area (ARTwA), average response time weighted by
width (ARTwW), average slowdown (SLD), average slowdown weighted by area
(SLDwA), and average slowdown weighted by width (SLDwW). Additionally,
the owner centric metric makespan is used.

One can assume that the best performance is achieved by using the same
metric during the self-tuning process and after the simulation is finished. As
stated earlier, we use the average slowdown weighted by area (SLDwA) metric
for measuring all simulated jobs. Hence, using SLDwA during self-tuning should
lead to the best performance (i. e. the smallest values). This is seen in the upper
part of Table 3. For the CTC, LANL, and SDSC trace the best self-tuning metric
is SLDwA and the mentioned expectation is fulfilled. However, it is interesting
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that for the KTH trace using the job’s width as a weight is slightly (0.8%)
better than using the job’s area as a weight. A possible reason for this is the
overestimation factor, which is smaller for the KTH trace (1.5) than for the other
three (2.2, cf. Table 1).

Using all other self-tuning metrics results in a significantly worse perfor-
mance. In particular this is seen for the ARTwA metric and the SDSC trace,
as the achieved performance is twice as bad. Observing the numbers for the
ARTwW and the SLDwA self-tuning metric shows that the numbers are equal.
This is a result of Equation 2 and the fact that the processed jobs are not changed
in their width or run time.

The bottom part of Table 3 shows the overall utilization with all simulated
jobs. Independent of the applied self-tuning metric the exact same utilizations
are generated for the traces CTC, KTH, and LANL. This indicates that those
jobs submitted towards the end of the schedule are always scheduled at the
same start time and are responsible for the makespan and therefore for the
utilization. Only for the SDSC trace different utilizations are achieved, as the
differences of the basic policies are large (cf. Table 2). Using the owner centric
metric makespan leads to the best utilization. This matches to the results with
SLDwA, as makespan and utilization are connected via the total sum of job
areas and the totally available resources on the simulated machine.

These observations reflect the different switching behavior of the self-tuning
dynP scheduler, if different performance metrics are applied. It is possible to tune
the system performance in either way: user or owner centric. Using either owner
or user centric metrics in the self-tuning process to generate good overall results
for opposing metrics, i. e. user and owner, generally leads to a poor performance
and should be avoided.

Comparing the best self-tuning metric with the best basic policy from Table 2
shows that only for the CTC and LANL trace the self-tuning dynP scheduler is
better. The performance loss of the self-tuning dynP scheduler is marginal (0.4%)
for the KTH trace, but almost 200% for the SDSC trace. This is a result of the
overestimation of the job’s run time by the users and the large differences of
the basic policies. This misleads the self-tuning dynP scheduler in the decision
process and results in wrong decisions. Although this also happens with the other
traces, the impact is most seen for the SDSC trace.

5.3 Half Vs. Full Self-Tuning

For the comparison of half and full self-tuning one can assume that applying full
self-tuning is the best option. With this the self-tuning dynP scheduler chooses
the best scheduling policy every time the schedule changes, i. e. when a new job
is placed in the schedule and a running job terminates earlier than estimated
and a re-scheduling is required. The self-tuning dynP scheduler plans schedules
for each available scheduling policy and for all waiting jobs. This results in an
increased computational time of the scheduler. As this can be unappropriate
in certain scenarios, half self-tuning is an option, as roughly only half as many
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self-tuning metrics
ART ARTwA ARTwW SLD SLDwA SLDwW Makespan

SLDwA
CTC 2.0073 2.2866 1.8781 1.9585 1.8781 1.9021 2.4582
KTH 3.1459 5.6542 2.5754 2.6939 2.5754 2.5594 5.3823

LANL 1.7008 1.8328 1.6177 1.6626 1.6177 1.6179 2.0357
SDSC 14.6495 20.5247 10.1598 12.6742 10.1598 11.8321 24.8958

Utilization
CTC for all self-tuning metrics: 65.701%
KTH for all self-tuning metrics: 68.716%

LANL for all self-tuning metrics: 55.607%
SDSC 81.787% 81.812% 81.633% 81.762% 81.633% 81.309% 82.473%

Table 3. Overall SLDwA and utilization values for different self-tuning metrics.
Advanced decider and full self-tuning applied. Values for ARTwW and SLDwA
are equal because of Equation 2.

self-tuning calls are done. Some performance loss might occur with half self-
tuning, as with new job submissions the scheduling policy might be changed. In
the MuPSiE simulation environment a single self-tuning call for finding a new
policy is completed within 6 ms for an average of 22.5 waiting jobs (simulated
configuration: advanced decider, full self-tuning, ARTwW as self-tuning metric,
CTC trace) and applying half self-tuning might not be necessary.

In Table 4 the slowdown results for the simple, advanced, SJF- and FCFS-
preferred decider are presented. One can see that the assumption from above is
not always true. In particular for the SDSC trace, half self-tuning is better than
full self-tuning. Also with the simple decider full self-tuning is not beneficial.
Looking at the performance of the advanced and SJF-preferred decider shows
that for the CTC and LANL trace the self-tuning dynP scheduler is always better
than the best basic policy. Furthermore, it is interesting to observe that half and
full self-tuning have no major impact on the performance of these two deciders.
The generated SLDwA values are closer together. Similar to the comparison
of the different self-tuning metrics, the SDSC trace is more vulnerable for the
switching behavior of the self-tuning dynP scheduler. In particular the simple and
FCFS-preferred deciders generate very bad results with full self-tuning applied.
In this case doing more self-tuning calls increases the SLDwA by a factor of two.
Again this can be a result of overestimating the job run times. By doing self-
tuning when jobs terminate and by potentially switching to a disadvantageous
scheduling policy, different jobs are immediately started.

One can also see that the advanced decider obviously outperforms the simple
decider due to its design. This is independent of whether full or half self-tuning
is performed. The performance benefit of the advanced decider is different for
the four traces; quite large for the KTH and SDSC trace and smaller for the
LANL trace. For the SDSC trace and full self-tuning the difference between the
two deciders is almost 70%.
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best basic decider mechanisms
policy self-tuning simple advanced SJF-preferred FCFS-preferred

CTC
1.9277 half 2.3036 1.9085 1.8567 2.3270

(SJF) full 2.2812 1.8781 1.8873 2.2804

KTH
2.5488 half 4.7256 2.5812 2.5734 4.9281

(SJF) full 5.7433 2.5754 2.5578 5.7492

LANL
1.6801 half 1.7534 1.6027 1.6330 1.7605

(FCFS) full 1.7610 1.6177 1.6143 1.7680

SDSC
6.8260 half 13.3353 10.0953 10.2896 16.1766

(FCFS) full 32.6934 10.1598 10.5198 32.6965

Table 4. Overall SLDwA comparison of full and half self-tuning with different
decider mechanisms.

As for the CTC and KTH trace SJF is the best basic policy and FCFS for
the LANL and SDSC trace, a SJF- and FCFS-preferred policy makes sense. The
results indeed show that the SJF-preferred decider can improve the performance
of the advanced decider for the CTC and KTH trace, but the same does not
apply for the FCFS-preferred decider and the LANL and SDSC traces. In fact
the FCFS-preferred decider is worse (almost three times for the SDSC trace) than
the advanced and SJF-preferred decider. This is surprising, as FCFS proves to
be a good basic policy. The poor performance can be based on the fact that some
jobs, which are not started by FCFS, alter the schedule in such a way that many
subsequent jobs have to wait long and therefore the SLDwA drops. A possible
example for this scenario could look like the following: some jobs with a large
area (requesting many resources and/or with a long estimated run time) may
induce a policy change in order to favor these jobs. However, the estimate of the
run time may have been wrong, so that the end after some time. In this case
delaying these jobs would be beneficial, as due to their short actual run time
their influence on the overall SLDwA performance may only be small.

Detailed Analysis of the Switching Behavior With full self-tuning the
difference between the simple and advanced decider is best seen for the SDSC
trace, hence a detailed case analysis is done in the following. Table 5 shows the
amount each case is reached during the decision process. The numbers show a
significant difference in case 6b: the performance of FCFS is equal to SJF, LJF
is worse than both, and the old policy is SJF. In 80,419 (75.11%) of 107,066
total self-tuning decisions this situation occurs and the advanced decider stays
with SJF. In contrast, the simple decider reaches this case in only 42.56% of all
self-tuning decisions and switches to FCFS in this situation.

In case 1 all three policies have the same performance. The correct decision
is to stay with the old policy like the advanced decider does, but the simple
decider arbitrarily favors FCFS. The other two cases 8c and 10c are not reached
by the simple or advanced decider, hence they can not induce the difference in
performance. With the large differences in case 6b the number of appearances
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simple advanced
case combinations decider counted decider counted

1 FCFS = SJF = LJF FCFS 11,135 old policy 15,861
2 SJF < FCFS, SJF < LJF SJF 47,285 SJF 962
3 FCFS < SJF, FCFS < LJF FCFS 60 FCFS 119
4 LJF < FCFS, LJF < SJF

a FCFS < SJF LJF 19 LJF 8
b FCFS = SJF LJF 2,007 LJF 7,178
c FCFS > SJF LJF 26 LJF 10

5 FCFS = SJF, LJF < FCFS (⇔ LJF < SJF) LJF 0 LJF 0
6 FCFS = SJF, FCFS < LJF (⇔ SJF < LJF)

a old policy = FCFS FCFS 362 FCFS 603
b old policy = SJF FCFS 46,617 SJF 80,419
c old policy = LJF FCFS 254 FCFS 1085

7 FCFS = LJF, SJF < FCFS (⇔ SJF < LJF) SJF 0 SJF 0
8 FCFS = LJF, FCFS < SJF (⇔ LJF < SJF)

a old policy = FCFS FCFS 1,751 FCFS 820
b old policy = SJF FCFS 0 FCFS 0
c old policy = LJF FCFS 0 LJF 0

9 SJF = LJF, FCFS < SJF (⇔ FCFS < LJF) FCFS 3 FCFS 0
10 SJF = LJF, SJF < FCFS (⇔ LJF < FCFS)

a old policy = FCFS SJF 2 SJF 1
b old policy = SJF SJF 0 SJF 0
c old policy = LJF SJF 0 LJF 0

totally counted 109,521 107,066

Table 5. Case analysis for the SDSC trace and the simple vs. advanced decider
with full self-tuning applied and SLDwA as self-tuning metric.

of the other cases is also influenced. This is best seen for case 4b. However, the
other cases have no influence on the different performance of the simple and
advanced decider, as both deciders choose the same policy (LJF) as their new
policy.

Focusing on the policy usage, Table 6 shows the differences, i. e. how many
times the decider switched to each policy and how many jobs were started with
each policy. If the advanced decider is applied almost 80% of all jobs are started
by SJF and only a minority of 6% by FCFS. About 15% of the jobs are started
with LJF. Focusing on the number of switches to each of the policies shows that
the advanced decider stays with the current policy and does not switch it in

simple decider advanced decider

FCFS 47,499 (43.37%) 1,086 (1.01%)
switches to each policy SJF 47,287 (43.17%) 963 (0.90%)

LJF 395 (0.36%) 1,085 (1.01%)

no policy switch 14,340 (13.09%) 103,932 (97.07%)

FCFS 39,936 (59.06%) 4,120 (6.09%)
job started with each policy SJF 26,737 (39.54%) 53,634 (79.32%)

LJF 947 (1.40%) 9,866 (14.59%)

Table 6. Comparison of the decision behavior and the usage of policies for the
SDSC trace with full self-tuning applied.
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most cases (97%). Only in about 1,000 cases the advanced decider switches to
one of the policies. This means that once the decider switched to a policy, many
jobs are started with this policy. This applies in particular to SJF.

If on the other hand the simple decider is applied, its switching behavior is
much more spontaneous. In only 10% of all cases the simple decider does not
switch its policy. Most of the time it switches back and forth between FCFS and
SJF. This results in an almost equal usage of the two policies over a period of
time (43%) and the difference in the number of jobs started with FCFS and SJF
is also considerably smaller than with the advanced decider. In only 13% of all
self-tuning decisions the simple decider stays with its current policy. Discarding
its previous decision leads to a scenario where preceding jobs are started by
alternating policies. Compared to the advanced decider about ten times more
jobs (60%) are started with FCFS by the simple decider, whereas about only half
as many jobs (40%) are started by SJF. Only a minority of all jobs are started
with LJF.

The number of self-tuning calls with the simple decider (109,521) is larger
than with the advanced decider (107,066). This results from the fact that more
than one job ends at the same time. Why? As full self-tuning is applied and the
same job trace is used, the amount of self-tuning calls at job submission does
not change for one of the deciders. However, if more than one job ends at the
same time, a reschedule takes place only once and therefore self-tuning is also
called only once. Hence, the advanced decider performs better than the simple
decider and at the same time induces less self-tuning calls.

From this fact another question arises: If only half self-tuning is applied, i. e.
self-tuning is not done when jobs end, the number of self-tuning calls should
almost be the same for both deciders? And yes, if half self-tuning is applied
the simple decider is called 56,738 times whereas the advanced decider is called
56,208 times. Both amounts are a slightly less than the number of totally sched-
uled jobs (67,620). This is based on the fact that if enough resources are free
to start all jobs immediately, these jobs do not have to wait. Self-tuning and
scheduling policies in general make no sense in this case, as the starting order of
jobs does not matter, as long as they are started immediately.

6 Conclusions and Future Work

In this paper we presented two options for the decision process of the self-tuning
dynP scheduler. The idea of dynamically switching the scheduling policy (dynP)
is based on the fact that usually no single policy generates good schedules for ev-
ery possible job characteristic. In order to achieve the best possible performance,
it becomes necessary to switch the active scheduling policies according to the
currently waiting jobs. The scheduler switches the scheduling policies without
the need of a permanent intervention of the system administrator. With the
planning-based scheduling approach, the self-tuning dynP scheduler generates
full schedules for each available basic policy, measures the generated schedules
with a performance metric, and finally switches to the best policy. A decider
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mechanism is in charge of choosing the best policy according to the applied per-
formance metric. In previous papers we presented different decider mechanisms.

In this paper we evaluated two general enhancements, which can be applied
to all decider mechanisms. We compared different owner and user centric perfor-
mance metrics for the self-tuning process and studied their influence. By using
different self-tuning metrics the objective of the self-tuning dynP scheduler can
be altered. Additionally, we studied the behavior of calling the self-tuning pro-
cess at different times (half and full self-tuning) of the scheduling process. The
evaluation is done by using discrete event simulation with job traces from real
supercomputer installations as input.

Studying the different self-tuning metrics one assumes that most likely the
best performance is achieved by using the same metric during the self-tuning
process and after the simulation is finished to measure all jobs. This is true,
the user centric average slowdown weighted by area (SLDwA) is the best self-
tuning metric for three traces (CTC, SDSC, and LANL). For the KTH trace
the average slowdown weighted by width (SLDwW) slightly improves the per-
formance slightly by 0.8%. If the objective of the self-tuning dynP scheduler is
to optimize the owner centric overall utilization of the system, the makespan
generates the best results, although only for the SDSC trace. The characteristics
of the remaining three traces generate equal overall utilizations for all applied
self-tuning metrics.

We also compared half and full self-tuning, i. e. calling the self-tuning pro-
cess only when new jobs are submitted or additionally when running jobs ter-
minate. Although much less self-tuning calls are done with half self-tuning, the
performance different to full self-tuning is small with the advanced and SJF-
preferred decider. Similar to the comparison of different self-tuning metrics, the
SDSC trace is more vulnerable for the switching behavior of the self-tuning dynP
scheduler. In particular the simple and FCFS-preferred decider generate very bad
results, which are almost three times as bad as for the other deciders. There-
fore, if less self-tuning calls are intended by the system administrators, e. g. to
reduce the switching behavior of the self-tuning dynP scheduler, the generated
performance is only sightly behind and half self-tuning is a good compromise.

We showed that in general the presented self-tuning scheduler with dy-
namic policy switching can be beneficial to commonly used static scheduling
approaches. Therefore, we think that self-tuning schedulers, which are able to
adapt their scheduling behavior according to the job characteristics of the cur-
rently waiting jobs, should be implemented in modern cluster resource manage-
ment systems. From a practical perspective the self-tuning dynP scheduler might
cause problems for the users, as the scheduling behavior of the system might be-
come unpredictable. For practical matters a policy switching might only be done
at well established times, e. g. only once an hour.

In the future it will be interesting to study, whether a combination of different
self-tuning performance metrics is beneficial. For example, the owner centric
makespan metric is considered with 20%, and the user centric average response
time weighted by job width is considered with 80%.
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Abstract. Using a single traditional gang scheduling algorithm cannot provide 
the best performance for all workloads and parallel architectures. A solution for 
this problem is an algorithm that is capable of dynamically changing its form 
(configuration) into a more appropriate one, according to environment varia-
tions and user requirements. In this paper, we propose, implement and analyze 
the performance of a Reconfigurable Gang Scheduling Algorithm (RGSA) us-
ing simulation.  A RGSA uses combinations of independent features that are of-
ten implemented in GSAs such as: packing and re-packing schemes (alternative 
scheduling etc.), multiprogramming levels etc. Ideally, the algorithm may as-
sume infinite configurations and it reconfigures itself according to entry pa-
rameters such as: performance metrics (mean utilization, mean response time of 
jobs etc.) and workload characteristics (mean execution time of jobs, mean par-
allelism degree of jobs etc.). Also ideally, a reconfiguration causes the algo-
rithm to output the best configuration for a particular situation considering the 
system’s state at a given moment. The main contributions of this paper are: the 
definition, proposal, implementation and performance analysis of RGSA.  

1   Introduction 

Nowadays, the service quality requirements of users and institutions increased. Thus, 
computer systems that provide many services (particularly, parallel machines) need to 
be highly utilized and provide a short response time for users jobs. Parallel job 
schedulers should match both requirements and workload (jobs) with resource avail-
ability (architecture, processors etc.) in order to maximize the system’s performance. 
The main problem is that workload, requirements and resources change continuously. 
In order to solve this problem, many works have been developed to make job sched-
uling algorithms more flexible and adaptable [1], [12], [13], [14], [18], [20]. Up to 
now, a poorly explored solution is the use of reconfigurable computing concepts [3], 
[4], [13], [14], [16] in parallel job scheduling algorithms (like gang scheduling).  

Reconfigurable computing emerged as a paradigm to fill in the gap between hard-
ware and software, reaching better performance than software and more flexibility 
than hardware [3], [4], [16]. The reconfigurable devices including FPGAs (Field 
Programmable Gate Arrays) contain an array of computing elements or constructive 
blocks, whose functionalities are determined through the programming of configura-
tion bits. Thus, an FPGA can implement different behaviors not established at design 
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time. Because of this, reconfigurable devices (hardware) are improving the solutions 
for problems from different areas [3], [4], [16]. 

Our basic idea in this paper is to use reconfigurable computing concepts in a paral-
lel job scheduling algorithm (gang scheduling) to maximize system’s performance. 
According to a deep bibliographic revision [3], [4], [13], [14], [16], we found works 
that apply reconfigurable computing in software, but we did not find a previous work 
that used it on algorithms. In [13], we used a first approach to build a reconfigurable 
algorithm of a static parallel job scheduling algorithm. We improved this first ap-
proach to reach our present stage.  

Ideally, the algorithm may assume infinite configurations and it reconfigures itself 
according to entry parameters such as: performance metrics (utilization, mean re-
sponse time of jobs etc.) and workload characteristics (mean execution time of jobs, 
mean parallelism degree of jobs etc.). Also ideally, a reconfiguration causes the algo-
rithm to output the best configuration for a particular situation considering the sys-
tem’s state at a given moment. 

Gang scheduling algorithms have been intensely studied in the last decade. They 
demonstrated many advantages over other parallel job scheduling algorithms, for 
instance, they: provide interactive response time for short jobs, through preemption; 
prevent long jobs from monopolizing processors; maximize the system’s utilization 
etc [1], [2], [5], [6], [11], [12], [14], [18], [19], [20]. In our specific case it presents 
some interesting characteristics. It is composed of independent and well defined parts 
(packing and re-packing schemes, multiprogramming level, etc.) and each one has 
infinite possible solutions (implementations).  

The main objectives of this paper are: to define, propose, develop and implement 
the RGSA; to analyze the performance of RGSA using simulation. The main goal is 
the implementation of RGSA in our simulation tool. 

In this paper, we introduce the reconfigurable gang scheduling algorithm (RGSA) 
and relate it to other works in sections 2 and 3. In section 4, we present our experi-
mental method: workload, metrics, configurations and parallel architecture used in 
our simulations.  Section 5 presents the experimental results and the performance 
analysis comparing RGSA and other traditional gang scheduling algorithms. Finally, 
in section 6 we highlight our conclusions and future works. 

2   Reconfigurable Gang Scheduling Algorithm (RGSA) 

Extending the reconfigurable hardware definition, we define a reconfigurable algo-
rithm as an algorithm that is composed of constructive blocks allowing its behavior to 
be modified through the form of its configuration.  

A reconfigurable algorithm is composed of three layers: Configuration Control 
Layer (CCL), Reconfigurable Layer (RL) and Basic Layer (BL), as shown in Fig.1. 
The BL consists of a frame set and data structures. A data structure may be a list, a 
queue, an array or some structure that stores data. For example, in Fig.2 a wait queue 
(data structure) stores jobs (data).  

A frame represents a part or phase of an algorithm. For example, in a gang sched-
uling algorithm, a frame may represent a packing scheme that fits a job inside the 
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Ousterhout matrix, which means it is only a part of a gang scheduling algorithm. 
There are two frame types: control and action frames. A control frame controls a 
specific characteristic of a data structure. In Fig.2, the Multiprogramming Levels 
Frame controls the multiprogramming level of the Ousterhout Matrix. An action 
frame is responsible for process or move data between or inside data structures and 
frames. In Fig. 2, the Packing Schemes Frame receives a job from the Queue Policies 
Frame and fits it inside the Ousterhout Matrix. 

  

 
Fig. 1. The general architecture of a reconfigurable algorithm composed of three layers: Con-
figuration Control Layer (CCL), Reconfigurable Layer (RL) and Basic Layer (BL). 

The Reconfigurable Layer represents a configuration or an instance of the BL, in 
which every frame is filled out with one or more compatible constructive blocks at a 
certain moment. A constructive block is a possible implementation that can fill out 
with a specific frame. For example, the Re-Packing Schemes Frame, shown in Fig. 2, 
can be filled out with different re-packing schemes like slot unification and alterna-
tive scheduling, one at a time or simultaneously. So, each re-packing scheme imple-
mentation is a constructive block. When two or more constructive blocks simultane-
ously fill out a frame, they are executed in sequence. The maximum number of possi-
ble constructive blocks that fill out a frame is the number of different known imple-
mentations, for example, the number of known re-packing schemes. 

The Configuration Control Layer chooses the constructive blocks that will fill out 
each frame at a given moment, thus it controls the configuration swapping. The 
choice is made based on entry parameters. The CCL can be implemented as a static 
table with pre-defined decisions, an evolutionary algorithm, a learning-based algo-
rithm (neural network) etc. For example, we have a workload composed of long jobs 
and the most important metric for the user is the reaction time. So, the CCL will set a 
configuration that reduces the reaction time of the long jobs. In our case, the CCL 
should fill the Multiprogramming Levels Frame with the Unlimited Constructive 
Block, allowing a job to start its execution as soon as it was submitted. 
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Fig. 2. The Basic Layer of the Reconfigurable Gang Scheduling Algorithm (RGSA) and some 
possible constructive blocks of the Reconfigurable Layer. 

A gang scheduling algorithm may be composed of four parts: a packing scheme, a 
re-packing scheme, a queue policy and a multiprogramming level. In our Reconfigur-
able Gang Scheduling Algorithm (RGSA), as show in Fig. 2, each part is a different 
frame with two constructive blocks, to simplify our study. The first three are action 
frames and the last one is a control frame. 

The Packing Schemes Frame may be filled out with two different packing schemes 
based on capacity: first fit or best fit. The Re-Packing Schemes Frame may be filled 
out with the slot unification and/or alternative scheduling re-packing schemes. The 
Queue Policies Frame can use the First Come First Served (FCFS) or Short Job First 
(SJF) policies. Finally, the Multiprogramming Levels Frame can be filled out with the 
Unlimited or Limited Multiprogramming Level Constructive Blocks.  

In our RGSA, the CCL is implemented as a table (or switch case structure) that 
knows the best configuration according to some workload parameters, as shown in 
Table 1. The workload parameters and possible values are: execution time (high (H) 
or low (L)), parallelism degree (high (H) or low (L)), predominance degree (60%, 
80% or 100%) and the most important metric (utilization (UT), reaction time (Re-
acT), slowdown (SD), response time (RespT) or simulation time (ST)). Then CCL 
evaluates these parameters and reconfigures RGSA to the best configuration. The 
workload parameters chosen and configurations will be better discussed in the Ex-
perimental Method section. 

The backfilling scheduling algorithm needs an estimated execution time for all 
submitted jobs as an input parameter [17]. As described before, the RGSA also needs 
input parameters, but these ones don’t need to be introduced by each user (per job). 
Using past information (log files etc.), depending on the day and time, we can classify  
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Table 1.  The actual CCL implementation that chooses the best configuration according to 
some workload parameters.  

Workload Parameters 
Case 

Metric Execution 
Time 

Parallelism 
Degree 

Predominance 
Level 

Configu-
ration 

1 UT or ST High Low 100 Conf 2 
2 UT or ST  Low  High  80 Conf 2 
3 RespT High High 80 Conf 2 
4 UT or ST Low Low 100 Conf 4 
5 RespT Low  Low 80 Conf 4 
6 UT or ST Low High 100 Conf 5 
7 ReacT High  High 100 Conf 5 
8 ReacT or RespT or SD High Low 80 Conf 5 
9 RespT Low High 60 Conf 5 
10 ReacT or RespT Low High 80 Conf 5 
11 ReacT Low Low 60 or 80 or 100 Conf 5 
12 SD Low Low 100 Conf 5 
13 SD or ReacT High High 60 Conf 6 
14 SD or ReacT High Low 100 Conf 6 
15 SD Low Low 60 or 80 Conf 6 
16 SD High Low 60 Conf 6 
17 RespT High High 100 Conf 7 
18 RespT High Low 100 Conf 7 
19 RespT Low Low 100 Conf 7 
20 UT or ST High Low 80 Conf 8 
21 UT or ST Low High 60 Conf 8 
22 RespT High High 60 Conf 8 
23 RespT Low High 100 Conf 8 
24 RespT Low Low 60 Conf 8 
25 UT or ST High Low 60 Conf 10 
26 UT or ST High High 60 or 80 or 100 Conf 11 
27 UT or ST Low Low 60 or 80 Conf 11 
28 ReacT High  High 80 Conf 11 
29 ReacT or RespT High  Low 60 Conf 11 
30 SD Low High 60 Conf 11 
31 ReacT or SD Low High 100 Conf 12 
32 SD High  High 80 or 100 Conf 12 
33 SD Low  High 80 Conf 12 

 
 
or divide workloads in groups (sub-workloads) in a time interval by the predomi-
nance level of a job type. For example, in Fig. 3, on Mondays between 0 a.m. to 6 
a.m., based on a hypothetical log file, we noted that all executed jobs (predominance 
level equal to 100%) have a high execution time and high parallelism degree 
(HH100%). And in this period (night), the most important metric could be utilization. 
So, according to our CCL implementation, the RGSA reconfigures to the configura-
tion 11.  
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Fig. 3. The classification of a log file in sub-workloads, along the time, by predominance level 
of a job type. 

This classification process can be done by a system administrator or an automated 
system that examines log files and classifies the sub-workloads. Along the time, the 
CCL table can be updated. As suggested in [9], the RGSA can use idle cycles to 
simulate the last executed sub-workload with all possible different configurations and 
update the table with the best configuration for this sub-workload. As we know, some 
system’s behaviors repeat over the time. For example, if on last Monday at night, the 
RGSA found that configuration 11 was the best one, probably this configuration will 
achieve a good performance if RGSA uses it in the next Monday at night.  

The selection of the most important metric can be done according to the predomi-
nance level of interactive and batch jobs in a workload. For interactive jobs, reaction 
time and response time are generally most important, because users want a quick 
answer. And for batch jobs, utilization is the most important, because the system 
administrator needs to use the maximum of the system resources. The definition of 
thresholds between high and low execution time and parallelism degree must be de-
termined according to each system.  

3   Related Work 

This paper presents the main results of a master’s thesis [14]. In this research, we 
found many works about gang scheduling [1], [2], [5], [6], [11], [12], [14], [18], [19], 
[20], few works about reconfigurable software [13], [14], [16] and algorithms, and 
none about reconfigurable parallel job scheduling algorithms. Even so, all related 
works are deeply discussed in [14] and really helped us to reach our objectives and 
goals. In this paper, we will discuss only four papers that are more relevant and close 
to our work [6], [9], [11], [17].  

In [12], a flexible co-scheduling algorithm is proposed and implemented. As well 
as our proposal, it uses a different algorithm depending on the workload. The gang 
scheduling is only used with jobs that really need it, while other jobs can be sched-
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uled with no restrictions. This approach is limited to a couple of scheduling options. 
Moreover, the used gang scheduling algorithm is the traditional one.  

Regarding the experimental results, [6] is the work that presents the closest ex-
perimental results to our research. By simulation, Feitelson compares many different 
packing schemes and few re-packing schemes, looking for the one which best per-
forms on average for the used workload. Thus he does not present the idea that the 
same algorithm can assume different configurations, by changing its packing 
schemes, for example. Moreover he does not vary others parameters like the multi-
programming level and queue policies. Even so, it is very important to compare that 
work with some results that were achieved in our simulations. 

In [9], Feiltelson presents the idea of self-tuning systems, in which the process to 
tune the system is automated. It uses genetic algorithms and log files as input for 
simulations. These simulations are performed during idle cycles, increasing the utili-
zation of the system, with no cost.  

Finally, in [17], a self-tuning job scheduler with dynamic policy switching is simu-
lated and analyzed using trace information from some computing centers. Like back-
filling schedulers it needs information about the job’s estimated execution time. It is 
limited to three policies and conservative backfilling. It presents a fine idea of self-
tuning that can be used in our Configuration Control Layer to change configurations. 

4   Experimental Method 

In this section, we first describe the metrics, parallel architecture and workload used 
in our simulations. Afterwards, we describe the experimental design in which we 
highlight the used configurations. 

4.1   Metrics, Parallel Architecture, and Workloads 

In order to analyze a parallel job scheduling algorithm, we can use different metrics. 
The most common are: utilization, response time, reaction time and slowdown [7], 
[8], [15]. 

4.1.1   Metrics 
 
The mean utilization of a parallel architecture may be calculated through Eq.1, where 
CPUBusyTime is the time in which a processor was busy and TotalTime is the total 
time involved in the execution of all the workload. The utilization value is always 
between 0 and 1. The utilization depends directly on the input load. To compare dif-
ferent job scheduling algorithms under the same load and workload, the relative dif-
ference of the obtained utilizations is an important parameter to evaluate the perform-
ance gained of the parallel architecture for use a certain scheduling algorithm. 
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TotalTimeocessorsNumberOfPr
eCPUBusyTim

ationMeanUtiliz  (1) 

The mean response time of a job (in seconds), defined in Eq.2, is the mean time in-
terval between the submission and end of a job. 

bsNumberOfJo
ionTimeJobSubmissJobEndTime

seTimeMeanRespon  (2) 

The mean reaction time of a job (in seconds), defined in Eq.3, is the mean time in-
terval between the submission and the start of a job. 

 

bsNumberOfJo
ionTimeJobSubmissmeJobStartTi

onTimeMeanReacti  

 

(3) 

As shown in Eq.4, the mean slowdown of jobs is the sum of jobs response times 
(reaction time + execution time) divided by the jobs execution times (dedicated time). 
This metric emerges as a solution to normalize the high variation of the response time 
of jobs. The nearest the value is from 1, the better is the slowdown. 

bsNumberOfJo
onTimeJobExecuti
eTimeJobRespons

wnMeanSlowdo  
(4) 

We decided to use the mean simulation time of the workload as a metric too, which 
is the time interval between the beginning and the end of the simulation (when the 
last job ends). 

4.1.2   Parallel Architecture 
 
The selected parallel architecture is a cluster composed of 16 nodes and a front-end 
node interconnected by a Fast Ethernet switch. Each node has a Pentium III 1 Ghz 
(real frequency = 0.938Ghz) processor. In Table 1, we see the main values of the 
cluster's characteristics, obtained from benchmarks and performance libraries (Sandra 
2003, PAPI 2.3 etc.). These values are essential as input parameters to our simulation 
tool called ClusterSim, developed by our group.  

The ClusterSim is a Java-based parallel discrete-event simulation tool for cluster 
computing. It supports visual modeling and simulation of clusters and their workloads 
for performance analysis. In the simulation model, a cluster is composed of single or 
multi-processed nodes, parallel job schedulers, network topologies and technologies. 
A workload is represented by users that submit jobs composed of tasks described by 
probability distributions and their internal structure (CPU, I/O and communications 
instructions).  The simulation model supports a lot of events: job arrival, end of job, 
unblock task, end of task, message arrival etc. For that reason, depending on cluster 
size and especially on the number of jobs, the execution of a simulation can be too 
long and the simulation tool can become out of memory.  
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Table 2. Cluster characteristics and respective values. 

Characteristic Value Characteristic Value 
Number of Processors 16 + 1 Network Fast Ethernet 
Processor Frequency 0.938 Ghz Network Latency 0.000179 s 

Cycles per Instruction 0.9997105 Max. Segment Size 1460 bytes 
Primary Memory Transfer 

Rate 11.146 MB/s Network Bandwidth (Max. 
Throughput) 11.0516 MB/s 

Secondary Memory Trans-
fer Rate 23.0 MB/s Protocol Overhead 58 bytes 

4.1.3   Workload 
 
As described before, in our simulation tool, a workload is composed of a set of jobs 
featured by: their types, internal structures, submission probabilities and inter-arrival 
distributions.  Due to the lack of information about the internal structure of the jobs, 
we decided to create a synthetic set of jobs [8], [10], [15]. 

In the related works [2], [5], [6], [10], [19], we found only information about the 
execution time of the jobs, but our simulation tool simulates a job execution based on 
its number of instructions. So we performed some pilot tests to define some of the 
values (number of instructions, granularity etc.) for our synthetic jobs. In order to 
simplify our jobs internal structures, we fixed some of the values and characteristics 
(Table 3).  

Table 3. Workload characteristics and their values. 

Characteristic Value 

Granularity Low – 1 million instructions 
High – 10 million instructions 

Number of Instructions Low – 100 million instructions 
High – 1 billion instructions 

Parallelism Degree  Low – uniform distribution (1,4) 
High – uniform distribution (5,16) 

Parallel Algorithm Model Process Farm (Master Slave) 
Message Size 16 Kbytes 

   
In the workload jobs, at each one of the iterations, the master task sends a different 

message to each slave task. On their turn, they process a certain number of instruc-
tions, according to the previously defined granularity, and then they return a message 
to the master task. The total number of instructions that is to be processed by the job 
and the size of the messages are divided among the slave tasks, that is, the greater is 
the number of tasks (high parallelism degree) the least is the number of instructions 
that a single task has to process. 

With regard to the parallelism level, which is represented by a probability distribu-
tion, we considered jobs between 1 and 4 tasks as low parallelism degree and between 
5 and 16 as high parallelism degree. As we know, real workload analyses show that 
for large parallel machines (bigger than 64 processors), there are more small jobs. In 
our case, we did a relative equivalence. For example, in a 128-processors machine, 
short jobs are less than 32 tasks (one quarter). So, for a 16-processor machine, we 
considered a short job as less than 4 tasks (one quarter). As usual, we used a uniform 
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distribution to represent the parallelism level, another more realistic way could be the 
use of a uniform distribution that samples power of 2 numbers. Combining the paral-
lelism level, number of instructions and granularity characteristics, we had 8 different 
basic job types. 

There are two main aspects through which a job can influence in a gang schedul-
ing: space and time [7]. In our case, space is related with the parallelism degree and 
time with the: number of instructions, granularity and the other factors. Combining 
space (parallelism degree) and time (execution time), we can cover the majority of 
possible workloads. So, after the simulation, we can identify, in a log file, sub-
workloads that fit into any of these combinations. Thus we combine these orthogonal 
aspects to form 4 workload types.  

In the first type, the most predominant are the jobs with a high parallelism degree 
and a structure that leads to a high execution time. In the second type, jobs with a 
high parallelism level and a low execution time predominate. The third one has the 
majority of jobs with a low parallelism degree and a high execution time. In the last 
workload, jobs with a low parallelism degree and a low execution time prevail. For 
each workload we varied the predominance level between 60%, 80% and 100% (ho-
mogeneous). For example, a workload HH60 is a workload composed of 60% of jobs 
with a high execution time and a high parallelism degree, and the other 40% is com-
posed of the opposite workload (low execution time and parallelism degree). So, we 
created 12 workloads to test the gang scheduling algorithms: HH60, HH80 and 
HH100; HL60, HL80 and HL100; LH60, LH80 and LH100; LL60, LL80 and LL100. 

In all workloads we use a total number of jobs equal to 100 (due to the ClusterSim 
simulation time and memory limitations) and the inter-arrival represented by an Er-
lang hyper-exponential distribution. To simulate a heavy load, we divided the inter-
arrival time by a load factor equal to 100. This value was obtained through experi-
mental tests. 

4.2   Experimental Design 

It is important to note that each RGSA configuration is a traditional gang scheduling 
algorithm (TGSA). Because in a TGSA, its parts are fixed and cannot be changed 
over time. For example, Conf01 has the first fit, alternative scheduling, limited multi-
programming level and FCFS, and it cannot changes over time. Through the rest of 
this paper, TGSA and configuration will be treated as synonyms.  

In order to test and analyze the performance of the RGSA, we used a full factorial 
model. A configuration of RGSA or a traditional gang scheduling algorithm is com-
posed of a packing scheme, a re-packing scheme, a multiprogramming level and a 
queue policy. In Table 4, we observe the possible configurations of RGSA. The mul-
tiprogramming level was limited in 3. When the multiprogramming level is unlimited, 
it does not make sense to use a wait queue. Because, as soon as a job arrives, it will 
always fit to the matrix. 

Each one of the 12 configurations was tested with each workload, using 10 differ-
ent simulation seeds. The selected seeds were: 51, 173, 19, 531, 211, 739, 413, 967, 
733 and 13. So we made a total of 1440  simulations. 
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Table 4. RGSA configurations composed of packing and re-packing schemes, mulitprogram-
ming levels and queue policies. 

Configurations Multiprogramming 
Level 

Queue 
Policy 

Packing 
Scheme Re-Packing Scheme 

Conf 01 Limited FCFS First Fit Alternative Scheduling 
Conf 02 Limited SJF First Fit Alternative Scheduling 
Conf 03 Limited FCFS First Fit Slot Unification 
Conf 04 Limited SJF First Fit Slot Unification 
Conf 05 Unlimited X First Fit Alternative Scheduling 
Conf 06 Unlimited X First Fit Slot Unification 
Conf 07 Limited FCFS Best Fit Alternative Scheduling 
Conf 08 Limited SJF Best Fit Alternative Scheduling 
Conf 09 Limited FCFS Best Fit Slot Unification 
Conf 10 Limited SJF Best Fit Slot Unification 
Conf 11 Unlimited X Best Fit Alternative Scheduling 
Conf 12 Unlimited X Best Fit Slot Unification 

5   Experimental Results 

In this section, we present and analyze the performance of RGSA. First, for each 
metric, we present the results obtained by simulation and analyze the performance 
and influence of every frame. To do it, we compare sets of configurations in which 
the analyzed frame is filled out with different blocks and the other frames have a 
fixed block. At the end of this section, we compare between the performance of 
RGSA and every configuration individually.  

5.1 Utilization 

In Fig. 4, we present the relative mean utilization of the cluster among each configu-
ration for all workloads. Considering the packing schemes (Fig. 5(a)), when the mul-
tiprogramming level is unlimited, the first fit provides higher utilization for HL and 
LH workloads.  

Initially, the best fit scheme finds the best slot for a job, but at long term, this deci-
sion may prevent new jobs from entering in more appropriate positions. In the case of 
HL and LH workloads, this chance increases, because the long jobs (with a low paral-
lelism degree) that remain after the execution of short jobs (with a high parallelism 
degree) will probably occupy columns in common, thus, making it difficult to de-
fragment the matrix. On the other hand, the first fit initially makes the matrix more 
fragmented. Besides, it increases the multiprogramming level. But at long term, it will 
make it easier to defragment the matrix, because the jobs will have fewer time slot 
columns in common. In the other cases, the best fit scheme presents a slightly better 
performance. In general, both packing schemes have an equivalent performance. The 
same happens to the re-packing schemes (Fig. 5 (b)). 
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Fig. 4. The relative mean utilization among each configuration for all workloads. 

 
Fig. 5. Mean utilization considering the (a) packing schemes; (b) re-packing schemes; multi-
programming level for (c) HH and LL workloads; and (d) HL and LH workloads. 

Regarding the multiprogramming level, we reached two conclusions: the unlimited 
is better for HH and LL workloads (Fig. 5 (c)), but it is very bad for HL and LH 
workloads (Fig. 5 (d)). With an unlimited multiprogramming level, for each new job 
that does not fit into the matrix, a new time slot is created. At the end of the simula-
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tion, as the load is high, a large number of time slots existed. In this case, the big jobs 
(high parallelism level) are the long ones. So when the small jobs terminate, the idle 
space is significantly smaller than the space occupied by the big jobs, that is, the 
fragmentation is low and the utilization is maximized. 

When we use LH and HL workloads, each matrix slot will be occupied by long 
and short jobs. As time goes by, the short jobs will end, leaving idle spaces on the 
matrix. In this case, the big jobs can not be the long ones, so a big space can become 
idle. Even if we use re-packing schemes, the fragmentation becomes high. 

With reference to the queue policies, the SJF policy presented a high utilization in 
all cases. When we remove the short jobs first, there is a higher probability that short 
idle slots exist where they can fit. Using the FCFS policy, if the first job is a big one, 
it can not fit into the matrix, thus, preventing other short jobs from being executed. So 
some slots become idle and the utilization low. 

5.2 Reaction Time 

In Fig. 7 we present the relative mean reaction time of jobs among each configuration 
for all workloads. Packing schemes have a very small influence on reaction time, 
because they depend on the new job that came from the wait queue. According to Fig. 
6 (a), we can say that the both packing schemes are quite similar. The same happens 
to the re-packing schemes, because the defragmentation occurs after the beginning of 
the job’s execution (Fig. 6 (b)).  

 

 
Fig. 6. Mean jobs reaction time considering the (a) packing schemes; (b) re-packing schemes; 
(c) multiprogramming levels; (d) queue policies. 
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The multiprogramming level has a direct influence on the reaction time of jobs, 
because with an unlimited number of slots, a job can always fit to the matrix without 
waiting in the queue. In the worst case, the reaction time of a job will be equal to the 
number of slots multiplied by the slot quantum. Configurations with an unlimited 
multiprogramming level present an insignificant reaction time in comparison with 
those with a limited multiprogramming level, as shown in Fig. 6 (c).   

With reference to the queue policies, on average, the SJF is better than FCFS, be-
cause the jobs in the queue waste less time waiting to be removed to the matrix and 
start their execution (Fig. 6 (d)). 

 
 

 
 

Fig. 7. The relative mean jobs reaction time among each configuration for all workloads. 
 

5.3 Response Time 

In Fig. 8 we present the relative mean response time of jobs among each configura-
tion for all workloads. According Fig. 9 (a) and (b), the results showed that both 
packing and re-packing schemes are equivalent. The multiprogramming level has a 
direct influence on the response time.  

When the multiprogramming level is unlimited, the jobs have a short reaction time, 
but the execution time tends to be higher, because there are more available time slots 
(providing more concurrency). The execution time of a job is increased by the reac-
tion time if the multiprogramming level was limited. On average,  configurations with 
an unlimited multiprogramming level are worse than those a with limited one, that is, 
more jobs concurring in the matrix is worse than more jobs waiting in the queue, but 
there are some exceptions.  
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Fig. 8. The relative mean jobs response time among each configuration for and all workloads. 

 
Fig. 9. Mean response time of jobs considering the (a) packing schemes; (b) re-packing 
schemes; queue policies for (c) HL and LH workloads and (d) HH and LL workloads. 

Generally, we believe that unlimited multiprogramming is always better if we are 
not considering memory paging, but in Fig 10, we see a simple example in which the 
mean jobs response time is better (smaller) for a limited multiprogramming level. 
Suppose a workload composed of three jobs with 2 tasks (each one) and an execution 
time equal to 2.1 seconds; and an Ousterhout matrix with two columns, a time slice 
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equal to 1 and a limited multiprogramming level equal to 2. In this example, when a 
job finishes before the time slice ends, a new time slice starts. 

In Fig. 10, we observe the following response times for limited multiprogramming 
level: Job1 = 4.1s; Job2 = 4.2s; Job3 = 6.3s; mean = 4.86s. And for unlimited multi-
programming level we observe the following response times: Job1 = 6.1s; Job2 = 
6.2s; Job3 = 6.3s; mean = 6.2s. So, we note that the use of a limited multiprogram-
ming level can achieve better response times for a certain workload, even not consid-
ering the memory paging. 

With reference to the queue policies, we reached two conclusions: the SJF policy 
is better for HH and LL workloads (Fig. 9 (c)) and the FCFS policy is better for HL 
and LH workloads (Fig. 9 (d)). In the first case, the LL jobs are initially executed and 
terminated quickly. Thus, HH jobs wait less time in the wait queue, reducing their 
reaction time and consequently their response time.  

 

 
Fig. 10. The simple workload execution using limited and unlimited multiprogramming levels. 

In the last case, when we use the SJF policy, the HL jobs are executed first. So LH 
jobs have to wait so much time in the queue, which increases their reaction time and 
consequently their response time. 

5.4 Slowdown 

In Fig. 11 we present the relative mean slowdown of jobs among each configuration 
for all workloads. Based on past analysis, we conclude that both the packing and re-
packing schemes are equivalent. The slowdown is based on response time and conse-
quently on reaction time. When the multiprogramming level is unlimited, the re-
sponse time is almost equal to the execution time. Thus, the slowdown value tends   
to 1.  
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Fig. 11. The relative mean jobs slowdown among each configuration for all workloads. 

 
 

Fig. 12. The relative mean simulation time among each configuration for all workloads. 

5.5 Simulation Time 

In Fig. 12 we present the relative mean simulation time among each configuration for 
all workloads. The simulation time depends directly on the utilization. So, all obser-
vations and analyses of the utilization metric may be extended to the simulation time. 
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5.6 RGSA Analysis 

In order to analyze the performance of RGSA, we need to compare it to each configu-
ration or traditional gang scheduling algorithm individually. As we said in the pro-
posal of RGSA, based on log files, the workload is divided in sub-workloads that fit 
into one of the workload classes (ex: LL100%). Then the CCL evaluates the entry 
parameters, reconfiguring RGSA to the best configuration. As we are not using a 
trace, we analyze RGSA for all proposed workloads. 

Table 5. Speedup, in percentage (%), of the RGSA performace when compared to each confi-
guration for a workload composed of 12 described workloads. 

Metrics 
Configura-

tions 

Utiliza-
tion 

Reaction 
Time 

Response 
Time Slowdown Simulation 

Time Mean 

Conf 01 18.8153 99.6937 18.1988 96.6667 19.4711 50.5691 
Conf 02 5.5793 99.6545 12.7879 96.3408 5.3772 43.9479 
Conf 03 20.2381 99.6986 20.1357 96.6585 21.5047 51.6471 
Conf 04 7.1421 99.6695 16.6365 96.4005 8.1059 45.5909 
Conf 05 12.2866 4.8307 21.1611 0.0566 18.9160 11.4502 
Conf 06 17.0448 11.4411 27.6418 0.1415 25.2068 16.2952 
Conf 07 16.0706 99.6884 16.7549 96.9840 17.8183 49.4632 
Conf 08 5.1443 99.6561 12.9742 96.4882 5.2786 43.9083 
Conf 09 14.6709 99.6726 13.7521 96.3212 15.1375 47.9109 
Conf 10 6.0941 99.6576 13.6044 96.4374 5.8391 44.3265 
Conf 11 16.6605 14.6595 23.2316 0.2179 27.7065 16.4952 
Conf 12 19.0915 11.0755 28.8892 0.0591 29.9556 17.8142 
Mean 13.2365 69.9498 18.8140 64.3977 16.6931 36.6182 

 

In Table 4, we observe that on average, considering all metrics, RGSA is 36.61% 
better than the 12 traditional gang scheduling algorithms. Note that if we had chosen 
Conf5 (the best configuration on average), RGSA would still be 11.45% better. 

Now, we analyze another example, in which the workload is composed of HL60 
and LH60 workloads. According to Table 5, on average, the speedup of RGSA in-
creases to 41.53%, and with reference to Conf5, this speedup increases to 18.83 con-
sidering all 5 metrics. If we consider only the utilization metric, the speedup of RGSA 
over Conf5 increases from 18.83% to 42.32%. In the last case, we note that Conf5 
(the best on average) would be worse than Conf3, which was previously considered 
the worst configuration. With these examples, we show that the use of reconfigura-
tion concepts in gang scheduling algorithms may provide a high speedup over tradi-
tional gang scheduling algorithms. 

In these examples, we considered that there weren’t reconfiguration overheads, 
neither wrong workload classifications nor classification overheads. The reconfigura-
tion overhead is insignificant, it is just the time spent to execute a switch case struc-
ture (to select the more appropriated configuration) and fit some specific blocks in the 
frames to change the configuration. The classification of the workload based on log 
files in sub-workloads and the CCL table’s update can be done using idle cycles. But 
how  to classify  the workload and the consequences of wrong classifications are open  
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Table 6. Speedup of RGSA, in percentage (%), when compared to each configuration for a 
workload composed of HL60 and LH60 workloads. 

 Metrics 
Configura-

tions 

Utiliza-
tion 

Reaction 
Time 

Response 
Time Slowdown Simulation 

Time Mean 

Conf 01 26.7836 99.7605 22.5123 98.4916 27.1878 54.9471 
Conf 02 0.8016 99.7739 31.9511 98.6920 0.7671 46.3972 
Conf 03 29.0247 99.7647 24.4469 98.4859 29.0702 56.1585 
Conf 04 4.2309 99.7809 34.1388 98.7164 4.3209 48.2376 
Conf 05 42.3255 4.0597 3.8764 0.0324 43.8949 18.8378 
Conf 06 50.3595 5.2884 19.6931 0.0742 51.3580 25.3546 
Conf 07 28.2399 99.7709 25.0613 98.7869 28.8798 56.1478 
Conf 08 0.7319 99.7739 31.6864 98.7537 0.8703 46.3632 
Conf 09 19.0918 99.7198 12.7145 98.1925 18.9861 49.7409 
Conf 10 1.0836 99.7729 31.9171 98.7256 0.8443 46.4687 
Conf 11 52.1549 0.0000 10.7741 0.0984 53.2991 23.2653 
Conf 12 54.4356 0.7533 21.7874 0.1247 55.1504 26.4503 
Mean 25.7720 67.3516 22.5466 65.7645 26.2191 41.5307 

 

and interesting topics to a more detailed research. In despite of these overheads and 
costs, the speedup may be great enough to make RGSA a good alternative. 

6   Conclusion 

In this paper, we defined, proposed, developed, implemented (in a simulation tool) 
and analyzed the performance of RGSA by simulation. As general conclusions about 
the RGSA frames, we can highlight: 

1. Packing Schemes Frame. Considering all metrics, on average, both packing 
schemes (first fit and best fit) presented an equivalent performance, as found in [6]. It 
suggests that other constructive blocks may be used. 

2. Re-Packing Schemes Frame. Considering all metrics, on average, both re-packing 
schemes (slot unification and alternative scheduling) presented an equivalent per-
formance. It suggests that other constructive blocks may be used. 

3. Multiprogramming Levels Frame. Considering the metrics: utilization and simula-
tion time, the unlimited multiprogramming level presented a better performance to 
HH and LL workloads, and the limited one for the HL and LH workloads. For reac-
tion time and slowdown metrics, the unlimited multiprogramming level presented a 
best performance in all cases. Finally, considering the response time metric, on aver-
age, the limited multiprogramming level was the best. 
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4. Queue Policies Frame. Considering the utilization and simulation time metrics, the 
SJF policy was always better than the FCFS. For reaction time and slowdown met-
rics, on average, the SJF policy presented a better performance, but in some specific 
cases FCFS was better than the other. Finally, considering the response time metric, 
the SJF policy presented a better performance for the HH and LL workloads and the 
FCFS policy for the HL and LH workloads.   
 

On average, the performance of RGSA was around 40% better than the other tradi-
tional gang scheduling algorithms for all tested workloads. One of the most important 
results was to show that depending on the selected metric and workload, the best 
algorithm on average for all situations (Conf5) may be worse than the worst algo-
rithm on average (Conf3). In our simulations, the performance of RGSA was 42.32% 
better than the one of Conf5 in a specific situation. So, the use of a reconfigurable 
algorithm may largely improve the system’s performance. 

In our specific case, the longest simulation took about 13000 seconds (3 hours and 
36 minutes). So we got to reduce the simulation time in 40% (1 hour and 26 minutes) 
using RGSA. But in real systems, a workload may execute for a week. In that case, a 
reduction of 40% would mean to reduce the workload execution time in 2.8 days  

In this paper, we proposed a model or architecture of a reconfigurable algorithm 
that was applied in gang scheduling. But this model can be applied on any other 
scheduling algorithm. Using a reconfigurable algorithm, developers don’t need to 
create a monolithic algorithm based on behavior description that works well for all 
situations. They may design a set of structural algorithms or parts of an algorithm that 
every one is optimized for a different situation.  

The main contributions of this paper are: the definition, proposal, implementation 
and performance analysis of RGSA, comparing it with other traditional gang schedul-
ing algorithms for different workloads. As future works and open researches we 
can highlight: the inclusion of new frames and blocks in RGSA; an adaptive CCL; 
compare RGSA with backfilling schemes; study on how to classify the workload 
found in log files into sub-workloads; tests with other workloads, simulation with a 
bigger number of jobs, different loads, other jobs algorithm models and real tests. 
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Abstract. This article is written in the context of running a suite of time-critical 
operational numerical weather prediction batch jobs, along with a substantial 
number of research batch jobs on a large IBM Cluster 1600 system. The batch 
subsystem used is IBM’s LoadLeveler incorporating a little known feature 
called Resource Reservation. 
 
The article describes how the mixture of operational and research parallel batch 
jobs are scheduled to run on the 117 nodes provided, and how Resource 
Reservation for operational jobs is performed without reference to job class. 
Where research parallel batch jobs are jobs requesting more than 1 CPU and 
must run consistently to ensure resources are released predictably. Note - 
information is given explaining how consistent runtimes are achieved. 

 
 

1. Background Information 
 
Before 2001, ECMWF had no experience of Loadleveler, having previously used 
systems from CDC, CRAY (NQE) and Fujitsu (NQS). So ECMWF’s experience of 
Loadleveler is limited to the needs of the system described, and the scheduling 
strategy, devised in early 2002, was kept simple to minimise the learning curve/time. 
More recently additional IBM Server systems again using Loadleveler have been 
installed, but experience has shown there is little common ground between the 
philosophy of scheduling batch and interactive work on Servers and the philosophy of 
scheduling high-performance parallel batch jobs on a Cluster. So my 
Loadleveler/scheduling experience is therefore fine-tuned in a blinkered way to the 

                                                           
* ECMWF (European Centre for Medium-Range Weather Forecasts) was founded in 1973 and is funded by 
25 European Countries (18 original participating Member States and 7 cooperating Member States) where 
Medium-Range Weather Forecasts concentrate on the period 4 – 10 days ahead.  The European Weather 
Centre, as it is more commonly known, is located 35 miles west of London, England on the outskirts of a 
town called Reading. See http://www.ecmwf.int/about/overview/ for more information. 
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needs of well balanced, highly parallelised batch jobs on a large Cluster to ensure 
good performance and consistent runtimes. Importantly the over-subscription of 
processes per node is not allowed, shared memory use is only permitted by up to 4 
jobs per node having a maximum 8 processes, as long as the total real memory 
requested by all the jobs does not exceed the total real memory available, and memory 
paging when detected is reported as very undesirable, even more so if job 
performance (CPU utilisation) appears to be compromised. 
      In 2002 the Loadleveler feature Resource Reservation was not known to 
ECMWF. At that time when operational jobs were about to be run nodes were 
‘reserved’ by draining ‘user’ batch job classes so that no new ‘user’ jobs could start. 
But this manual, time consuming and often complicated method was frequently found 
to be wasteful, with nodes being left idle unnecessarily. Then in 2003 a decision was 
taken to introduce a tighter operational schedule and as a result plans were made to 
develop an automated resource based scheduling scheme that would also overcome 
the known weaknesses in the manual system in use. 
      It was clear even in 2002 that predictable runtimes were essential for backfill to 
maximise node utilisation and for predictable node release. So it was agreed the 
scheduling scheme should be knowledge based and use predicted wall_clock_limits 
derived from historical run-time data. By good fortune a lot of work had already gone 
into creating tools and displays that enabled runtime data to be captured, visualised, 
and made available to enhance job selection and empower backfill. Importantly, 
having no previous understanding of IBM backfill, tools had already been created to 
monitor the results of backfill so that the way it worked could be studied and 
understood. So plans were made to enhance these displays for scheduling purposes 
during operational periods. But most importantly a dynamic reservation based 
scheduling scheme was sought, a scheme independent of physical nodes and physical 
classes. For this IBM suggested using Resource Reservation. 
 

2. Overview of Operational Needs at ECMWF 
 
At ECMWF, many types of operational forecasts are run on a daily, weekly and 
monthly basis, and hundreds of thousands of products are sent (disseminated) to the 
Member States each day. Twice a day for about 90 minutes all 117 nodes (936 CPUs) 
are reserved for and used by operational batch jobs (see Figure 1 below). 
      Please note – when all 936 CPUs are reserved for operational jobs, some CPUs 
become unallocated for a few seconds as jobs complete and new jobs start, and at 
times due to the job-mix at least 1 node (8 CPUs) may not be used for some minutes. 
So the average maximum use of around 920 CPUs out of 936 is seen as a very good 
achievement.   
      However when operational batch jobs are not being run or do not require all of the 
‘parallel’ nodes, every attempt is made to fully utilise ‘resources’ by running research 
user’s batch jobs  
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Figure 1 - the average number of CPU’s allocated to parallel operational jobs, plotted 
over 12 minute intervals, where for parallel jobs 936 CPUs (the red line) is the 
maximum possible. 
 
 
3. A Mixture of Parallel Operational and Research Batch Jobs 
 
Please note there is little difference between the computational needs and 
performance characteristics of research batch jobs and their operational equivalent 
jobs. The codes used are almost identical. The big difference is operational suites of 
jobs are run usually twice or four times a day and each time use as input the most 
recent world-wide observations acquired in the preceding few hours. But research 
experiments differ in that they use historical data (not real-time data acquisition), have 
no need to create end-user products and over a period of many days submit 28 data 
assimilations and forecasts, using alternately 00z and 12z data over a 14 date period. 
Normally there are from 10 to 15 research experiments running simultaneously and 
these plus other smaller jobs easily utilise the 117 nodes available (see Figure 2 
below) whenever resources are not being used operationally.  Please note – 00z data is 
collected globally and simultaneously at 00z GMT, likewise 12z data at 12z GMT.  
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Figure 2 – the average number of CPUs allocated to non-operational jobs, before 
Resource Reservation was introduced, plotted over 12-minute intervals, where 936 
CPUs (the red line) is the maximum possible. 
 
      Please note in Figure 2 above at 02:48, a 12-minute period when all 936 CPUs are 
allocated.  
 
4. Scheduling Requirements – Predictable Node Release 
 
One additional function of pre-operational testing is to detect research jobs that do not 
perform well or do not exhibit consistent runtimes in keeping with the existing 
operational schedule. Quite simply, jobs (new code) from research experiments 
cannot progress beyond the research stage to become operational if they do not 
perform well enough. So a lot of effort has been put into ensuring all parallel jobs 
have consistent runtimes, and as a result each job confirms by running in the given 
time that there are no I/O bottlenecks, the GPFS filesystems used are performing 
consistently, the high-performance internal switch network is performing consistently, 
that the jobs have not been slowed by paging to local disk and lastly that the jobs (the 
new code) perform as expected too. 
       As a result, in a research experiment of jobs run 28 times, at least 95% of the 
forecast jobs are not expected to vary by more than ±1%, with the preceding sets of 
28 data assimilation jobs varying by no more than ±3%. The big bonus being, once 3 
or 4 sets of jobs for an experiment have completed, the subsequent 24 sets of jobs 
become health checks (each a diagnostic) for good system performance.  It is true 
when a job has run less than twice it has an unknown runtime (shown on displays as a 
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wall_clock_limit of *1-day) but other jobs with similar job-names (for example 
ifstraj_uptraj_0) are likely to have a known run-time, giving an indication when new 
jobs might complete. 
      Importantly the golden rule before submitting an experiment or individual parallel 
job is – if the data needed by a parallel job is not on a GPFS filesystem, a serial job 
must first be run to obtain the initial data, and the data obtained must be written to a 
high-performance GPFS filesystem. 
 
As a result all parallel jobs in the Cluster can be scheduled independent of all other 
systems and will end as predicted. 
 
      If at any time a parallel job runs for longer than expected or the job is flagged as 
idle, the job is displayed in red on an operator display and immediately investigation 
begins. What has to be determined is – is the problem a function of the job, the 
environment or the system? 
 

5. The Mission – To Keep the System Fully Utilised Yet Run 
Operational Work to a Tight Schedule 

 
5.1 Fully Utilised 
 
Keeping the system lightly loaded to make it easy to run operational work on time is 
not our style (is for wimps). Users in the Research Department have always been able 
to expand their experimentation to fully utilise the system, and giving them the 
service they want by fully utilising the system is very rewarding. 
 
5.2 Keeping to Operational Schedules 
 
The plans made in 2003 to run the operational suites to a more demanding schedule 
made the introduction of an automatic and class-independent resource reservation 
system essential. The previous ‘on demand’ scheduling scheme could not guarantee 
consistent start-times, the variability often exceeded the 15 minute requirement, and 
as a result there was often insufficient recovery time should jobs fail and need to be 
rerun. 
 

6. The Main Objective 
 
The main objective of the reservation system was then defined like this: Resource 
reservation is needed to ensure that the day-to-day variation in the end-times of 
operational forecasts and the generation of products does not exceed 15 minutes 
compared with the predicted optimum time, whilst keeping node occupancy close to 
96% (which is what had been achieved beforehand). 
      Fortunately the basic building blocks were all in place based on the predicted run-
time for most jobs, the standard design of most experiments and the repetitive 
consistently running job mix, giving the ability to accurately assess node release and 
node availability times. 
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6.1 The Complexity of Operational Suites Should Not Be Underestimated 
 
Until now I have trivialised operational suites at ECMWF by talking only about the 
more substantial time-critical computational jobs. The reality is each suite contains 
1000's of jobs that run on multiple systems, have complex inter-dependencies, 
multiple-event triggers, time triggers and late flags. Amongst other things, operational 
jobs acquire observations (data), analyse and check the validity of this data, compute 
the relevant initial datasets used by the forecast, execute the forecasts, save data at 
many stages throughout the process, create end-user products, verify the results, 
archive the results, plot data, send products to users with many operations taking 
place in parallel. One concern with such a complex set-up, was tighter schedules 
would lead to new bottlenecks and a complete loss of flexibility, which would reduce 
efficiency and system utilisation. So the brief was altered subtly to request an 
automatic system that used the 15 minutes of flexibility if this increased system 
utilisation. 
 

7. Resource Reservation 
 
7.1 Defining the Need for Resources and Benefits of Resource Reservation 
 
The CPU allocation averages shown previously in Figure 1 indicate that most of the 
time none of the Cluster resources are used by operational jobs, and show during the 
main periods (08:20 to 11:40 and 19:45 to 23:35) the need for the resources provided 
to increase in 3 stages from 0% to 30%, from 30% to 60%, and finally from 60% 
to100% for about 90 minutes. But what Figure 1 does not show are the 2 small 
periods when CPU use drops for just a few minutes from 30% to 0% before rising to 
60%, and later from 60% down to 30% before rising up to 100%. If resources are not 
reserved or classes drained, user jobs flood the system. 
       Past experience showed it is possible, but by no means easy, to drain classes on 
some nodes to limit the use of resources by non-operational jobs to 40%, whilst the 
operational use dips briefly from 60% to 30% before rising to 100%. By comparison 
dynamic reservation independent of class using Resource Reservation provides a 
much needed simplicity. One might even say Resource Reservation brings elegance to 
the solution. 
      And by the same token with one operation, as soon as all operational jobs to be 
run are submitted, and because operational jobs are selected first by virtue of highest 
SYSPRIO, it is possible as soon as all operational jobs are submitted, to cancel (reset) 
reservation and make all non-operational jobs candidates for selection before the final 
operational jobs have started, which enables backfill to take place.  
 

7.2 Describing Resource Reservation 
 
Resource Reservation for the timely running of operational jobs combined with 
optimum system utilisation has as a core function the ability to request in advance a 
reduction to the resources available to non-operational jobs, irrespective of the class 
the jobs are in, whilst taking into account 
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 the requirements of operational jobs (scheduled start-time, CPUs needed, elapsed 
time), 

 the timely release of resources (expected elapsed/end times of research jobs in 
execution) 

 the possibility of late starts (if  research jobs do not appear to end soon enough) 

      Additionally the scheme should take into account  

 the flexibility of the operational schedule 
 how close to or far behind the optimum schedule today’s operational runs are 
 how consistent the historical runtime data is for the jobs that are running,  
 that it is possible to force some jobs to write checkpoint files then kill them 

without loss. 
 
      Finally the scheme should release resources for use by non-operational jobs 
whenever possible to optimise the use of all resources. The success of this is shown in 
Figure 3 below. 
 

 
Figure 3 - the allocation of CPU’s to all jobs before Resource Reservation was 
introduced, plotted over 12-minute intervals, where the red line (936 CPUs) is the 
maximum number that parallel jobs can use. 
 

8. Summary So Far 
 
The key to everything is predictability. ECMWF’s business relies on the timely 
production of weather forecast products (our weather predictions) so not surprisingly 
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ECMWF has a strong desire for all jobs to run predictably. Otherwise how do you 
keep to a schedule. And once the causes of variable job runtimes are eliminated (as 
they have been) and jobs run with little run-time variation, the data available enables 
 
 backfill to work most effectively. 
 the runtime and end-time of user batch jobs to be monitored. 
 most batch jobs to act as diagnostic checks on system performance as well as on 

job performance. 
 resources to be reserved sufficiently in advance to ensure operational jobs start 

optimally. 
 

9. Defining the Core Elements Required for Effective Resource 
Reservation 

 
Analysis of the associated issues have identified 4 main elements, which are listed 
below so that they may be checked and ticked off. In doing so one can be sure all 
problems have been identified and solutions put in place. It is true there is some 
duplication of what has gone before, but this is necessary. The 4 elements being 
 
A. The need to know in advance the resources needed by operational jobs and 
the time at which these jobs should start. 
 
B. The need to ensure that non-operational jobs in execution can be guaranteed 
to complete and release the resources in a predictable way (there is little point 
doing this if, in order to achieve it, many jobs have to be cancelled prematurely). 
 
C. The need to have processes that take the information about operational jobs 
and running jobs and use this along with other information to dynamically 
reserve resources, the purpose being to restrict or stop non-operational jobs 
from starting, then release resources. 
 
D. The need to be able to visualise what is happening and verify that it is 
working as designed. 
 

10. Expanding on the Core Elements for Effective Resource 
Reservation 

 
Taking the headings from 9. (and covering A. and B. very quickly) we have:- 
 
A. The need to know in advance what resources are required by operational jobs 
and the time at which these jobs should start. 
      The requirements of operational jobs, in terms of resources, start time, elapsed 
time and dependencies on other factors are well known. Nothing more needs to be 
added. 
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B. The need to ensure that non-operational jobs in execution can be guaranteed 
to complete and release the resources in a predictable way. 
      As mentioned before, predictability is paramount. There is no point reserving 
resources if job end-times are unreliable. Good utilisation is compatible with tight 
schedules only if you have a predictable set of non-operational jobs. The key elements 
of ECMWF’s success are the independence of parallel jobs, consistent job 
performance and consistent system performance. And to illustrate the point Figure 4 , 
which follows, shows historical run-time data for an assimilation job and the 
predicted Min and Max runtimes. Where the predicted 95% Max value is used for 
scheduling and backfill purposes. The runtime data for the job shown in Fig. 4 below 
does not quite have the quoted runtime range of ±3%, and this is commented on later. 
 
 

 
 
Figure 4 – historical run-time data and predicted run-time estimate (95%/Max) for 
job ehmv_ifsmin_uptraj_1 
 
 
Figure 4 shows 17 runtimes.    
 
Discarding the shortest and longest, the average runtime (under Avg) is shown to be 
00:49:27.   
 
The expected ±3% would give Min 00:47:59 and Max 00:50:55. Sadly 6 runtimes fall 
outside this range. 
 
The larger than expected spread of 00:44:58 to 00:51:52 means the predicted 95% 
Max runtime of 00:52:53 exceeds by 24 seconds the known longest run of 00:52:29, 
and exceeds the average by almost 3.5 minutes. But this is no disaster.  
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It means successive jobs will end about 3.5 minutes ahead of the predicted run-time, 
and as a result 16 nodes out of 117 may be idle for 3.5 minutes longer than expected 
before operational jobs run. Less than ideal but never-the-less still very acceptable. 
 
      What is clear however is the basic requirements exist for the introduction of a 
resource reservation system. We know in advance the resources needed by 
operational jobs and the time these jobs should start. We have confidence that the 
non-operational jobs have well predicted run-times and will finish as 
required/expected. 
 
C. The need to have processes that take the information about operational jobs 
and running jobs and use this along with other information to dynamically 
reserve resources, the purpose being to restrict or stop non-operational jobs 
from starting, then release resources.  
      To reserve resources IBM suggested ECMWF use a little-used Loadleveler 
feature called “floating resources”, where  “floating resources” are in effect cluster-
wide licenses to use CPUs. The floating resources we use are defined as 
“FloatingCpus”, the unit of which is a physical CPU. These are requested by non-
operational jobs in the same way as other resources, such as ConsumableCpus and 
ConsumableMemory via the “resources” LoadLeveler directive. e.g. 
# @ resources = ConsumableCpus(4) ConsumableMemory(3600Mb) FloatingCpus(4) 

      And as it is imperative that all non-operational jobs contain such a directive and 
request the correct number of FloatingCpus, all jobs are passed through a “job filter” 
and the job filter inserts the request. Then by reducing the number available (as 
specified in the ‘config’ file), it is possible to restrict all non-operational jobs to a 
limited number of CPUs, and ensure that only operational jobs, which by design do 
not request floating resources, may access the remaining CPUs. 
 
      With 117 nodes, each node an 8-way SMP system, making 936 CPUs in total, the 
following directive in LoadLeveler’s configuration file:  
FLOATING_RESOURCES = FloatingCpus(936) 

 This means that outside operational periods all 936 CPUs are available to non-
operational work.  
 
    So at some point ahead of the time, when CPU’s will be needed by operational 
jobs, the value of cluster-wide FloatingCpus limit is reduced in LoadLeveler’s 
configuration file, and by signalling the relevant LoadLeveler daemons the change is 
introduced. As non-operational jobs finish and release nodes, the number of 
FloatingCpus in use is reduced but no new non-operational jobs will start until the 
number of FloatingCpus in use becomes less than the value of FloatingCpus set in the 
LoadLeveler configuration file. Of course, as this is a reservation scheme, the value is 
reduced some time before the operational jobs are submitted, taking into account the 
time needed for user jobs to end (which will be covered later). 
      Ignoring the time in advance calculation for now, to reserve 256 CPUs for the first 
operational job, the  value of FloatingCpus in the LoadLeveler configuration file is 
reduced from:  
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FLOATING_RESOURCES = FloatingCpus(936)  

to 
FLOATING_RESOURCES = FloatingCpus(680)  
 
and once 256 CPUs are released, they will remain unused until the operational job 
starts. 
 
     However, the ‘skill’ is in working out when to reduce the value of FloatingCpus. 
Too early and resources will lie idle, waiting for the operational jobs to be submitted.  
Too late and the resources will not be released in time. However as the operational 
schedule has a degree of flexibility a little late is better than a little early. 
 
      Clearly much depends on the number of nodes needed (to give time for a running 
job or running jobs to end) and taking into account the known flexibility in the 
running of operational jobs. To maximise the use of the system it would be beneficial 
if shorter non-operational jobs with the most consistent historical run-times were to be 
selected just before operational periods. Additionally if the operational resources 
required are needed in stages rather than all at once, a more flexible approach can be 
made.  
     First ECMWF talked to IBM about this. IBM mentioned their plans for a resource 
reservation scheme that, like LoadLeveler’s backfill scheduler, works by using a job’s 
wall_clock_limit. Sadly on a basic IBM system wall_clock_limit is rarely set 
accurately, and if it is the kill on wall_clock_limit exceeded is a rigid scheme that is 
not acceptable to ECMWF. So a local fix was needed. 
 

11. The Backfill Problem 
 
11.1 First Identify the Problem 
 
IBM ask users to set the wall_clock_limit and then use the value given for backfill. 
Yet users are known to have a poor understanding of the length of time their jobs will 
take to run and even on the ‘best’ systems runtimes will vary. So expecting users to 
keep tabs on the spread in unrealistic. Then add to this the basic philosophy behind 
wall_clock_limit, which is to kill jobs which over-run, and it is no wonder that users 
never specify an “accurate” value. You do not have to be a rocket scientist to realise I 
have no faith in scheduling and backfill using user-specified wall_clock_limits. The 
system forces users to be inaccurate.  
 

11.2 The ECMWF Solution 
 

 Ask users to not specify a job wall_clock_limit. 

 When each job completes, to collect data (including actual run-time) and 
store it in a database. 

 To predict wall_clock_limits using the data collected. 
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      If a job (same name, same user) is submitted more than twice, the job filter uses 
the historical run-time data to create a predicted run-time, see Figure 4 using the 
Estim.95%/Max value 00:52:53 for this purpose. Then add one day to this and set the 
wall_clock_limit to “1+00:52:53”. The time added ensures the job is not killed should 
it over-run its’ expected runtime and the 1+ is used because it is very easy to code. 
Additionally it is very easy to mask out in displays leaving the true predicted run-time 
for all to see. Please note - the backfill scheduler works by comparing time 
differences. So provided all wall_clock_limits use the 24-hour baseline, which they 
do, the backfill scheduler functions as designed. The 1+ is only an offset used to stop 
backfill from killing jobs, it can otherwise be ignored. 
      As pointed out earlier, job runtimes are quite consistent, and the predicted run-
times are always a slight over-estimate using the “Estim.95%/ Max” value, so it is 
quite rare for jobs to over-run. It is much more common for non-operational jobs to 
end about 1 to 2 minutes ahead of the predicted run-time. But should a job run for 
more than 1 minute longer than the predicted run-time it will be highlighted in red on 
the operator display, to ensure investigation starts as soon as possible. An example of 
this comes later with Figure 7. 
      Up to now I have described all of the elements that enable a system to predict and 
control the reservation, use and release of CPUs (nodes). I have shown that the data 
exists to enable nodes to be filled and to ensure nodes are released in line with tight 
operational schedules. Theory is fine, but how is it done in practise?   

 
12. When Does the Value of FloatingCpus Get Modified in the 

LoadLeveler Configuration File? 
 
Analysis of the workload is used to determine the average time for nodes to be 
released. And from this we have determined the time in advance (in minutes) for each 
reduction of FloatingCpus. The values chosen can be seen under the heading ‘time’ in 
Figure 6. A more sophisticated scheme could be used but this simple scheme works 
and has not yet been improved on. 
 

13. How Does the Value of FloatingCpus Get Modified in the 
LoadLeveler Configuration File? 

 
A utility was written to modify the LoadLeveler configuration file “/loadl/config”. 
This utility “floating_cpus” takes care of file locking to ensure that the configuration 
file is not being manipulated by other utilities concurrently. At present 
“floating_cpus” is executed via “cron” at the times shown in Figure 6. The call to run 
“floating_cpus” comes with 2 parameters, the number of CPUs to be reserved and 
time in advance the new value is being applied. 
 
      Taking the first cron entry from Figure 6 
 
                                                           CPUs    time 
 
06  8   *   *   *   /loadl/floating_cpus    256     11 
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Figure 6 - the crontab runtimes where the first parameter is CPUs reserved and the 
second value is time (minutes), that is minutes in advance of the operational need. 
 
       
      At 08:06 the crontab job /loadl/floating_cpus is run to reserve 256 CPUs. This is 
done by altering the value of FloatingCpus in the /loadl/config file, reducing the value 
from 936 to 680 with the knowledge that the 256 CPUs requested will be needed. The 
value of time (11 minutes) means the first operational job is expected to be submitted 
at 08:17. 
      In the future, the script ‘floating_cpus’ will be executed by an event that is an 
integral part of the operational suite of jobs. Then if operational schedules are 
changed, the reservation times will automatically change too. However the “cron” 
mechanism will be retained as a safety net. If the start of operational activity is 
delayed significantly and the event-linked reservation of nodes does not run, a “cron” 
run a little later will ensure that resources are reserved so that when the operational 
activity eventually starts it is not be delayed further. Although potentially wasteful, on 
the few occasions when forecasts run very late it is essential that the resources needed 
are already available. 
 

14. When Does the Value of FloatingCpus Get Modified in the 
/loadl/config File? 

 
The utility “floating_cpus” that sets the limit of FloatingCpus in the configuration file, 
runs ahead of the time reserving resources based on our experience of the normal 
average release of nodes. We plan to change this “rule of thumb” mechanism to one 
that analyses running jobs, and pre-selects the ‘right’ jobs. But currently this is not 
done.  
      It is obvious that schemes to alter job selection before operational periods will 
influence the use of nodes, the release of nodes and the optimum time in advance that 
resource reservation should be made. The opportunity for complexity is large. 
However we keep this simple by using average node release patterns and checking to 
see what actually happens. There is some waste, but to start with if there is less than a 
15-minute variation to the runtimes of the operational suites we have achieved our 
primary aim. Slightly better node utilisation could be obtained but not a lot. 
Integrating Resource Reservation into the operational suite comes first. 
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15. Summarising A. B. and C. 
 
The components of Resource Reservation are 
 

    CPU resources called FloatingCpus defined in the /loadl/config file 
 

    the job-filter ensures all non-operational jobs request FloatingCpus 
 

    known requirements for all operational jobs 
 

    historical run-time data for most user jobs 
 

    A predicted run-time for most user jobs 
 

    Confidence factors (see Figures 4 on page 6, and later Figure 7 on page 10) 
are provided as Std.dev and Spread in the predicted run-times. 

 
    User job wall_clock_limits set to 1+ predicted run-times. 

 
    Efficient backfill but with kill on wall_clock_limit disabled. 

 
    A utility called floating_cpus that sets new values of FloatingCpus in the 

config file 
 

    No need to drain or resume job class globally or node by node. 
 

    A utility that gives information about the average frequency of released 
nodes 

 
    cron jobs that ensure the value of FloatingCpus is set sufficiently in 

advance 
 

16. Visualisation and Human Intervention 
 
So finally we get to D. The need to be able to visualise what is happening and 
verify that it is working as designed. 
 
      Visualising job selection and backfill activity is done with a single display called 
ll_jobs. Please note - ll_jobs is a display program and does no data gathering. A perl 
program called nll_sched provides the information displayed. nll_sched runs every 10 
seconds and uses  the Loadleveler API to get the data needed then processes the data.                
      ll_jobs has 2 modes - non-operational and operational, where operational is 
triggered by FloatingCpus <936. By watching the ll_jobs display over time, it is 
possible to be confident that what is supposed to happen actually happens. 
Importantly when resources have been reserved, but the display shows CPUs are not 
going to be released because the active jobs will run for too long, detailed information 
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is displayed from which action can be taken. And when action needs to be taken, it is 
shift staff taking the action. They make sure the nodes get released before a delay of 
more than 15 minutes occurs.  
 
So next a display of ll_jobs in non-operational mode and other related information.  
 
 

 
 
Figure 7 – ll_jobs in non-operational mode (with no mention of nodes reserved), 
where Running jobs, Queued jobs and 2 sets of predicted run-times for job 
ehn0_ifstraj_4dvar are shown.  
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Figure 7 (the top half) shows ll_jobs in a non-operational period – Running jobs first, 
below this Queued jobs. No mention is made of nodes being reserved. Running jobs 
are listed top down in the order that they are expected to complete. Some jobs are 
highlighted in colour. The job in red has run for longer than predicted.  Jobs in green 
started in the previous 3 minutes. Queued jobs are listed in the order they are expected 
to be dispatched according to SYSPRIO and UserPriority. Jobs in blue have been 
waiting for more than 1 hour, jobs in yellow are new and were submitted in the 
previous 2 minutes.   
      As there is a job that has run for longer than predicted I have extracted the original 
4 run-times from which a predicted run-time of 00:15:53 was calculated and the 5 
run-times, from which a new predicted run-time of 00:17:32 is calculated. 
 

17. How Many FloatingCpus Have Been Reserved? 
 
As mentioned before during operational periods, the value of FloatingCpus will be 
less than 936. The scripts fcpus can be used to check the value of FloatingCpus and 
the relationship with CPUs reserved. 
 
 

 
 
Figure 8 – a display showing the relationship between the value of FloatingCpus set a 
CPUs reserved. 
 
 
      When FloatingCpus is set to 8, 928 CPUS (116 nodes) are reserved (ask me later 
why FloatingCpus is not set to 0), and as the value of  FloatingCpus is 8 (<936) 
ll_jobs will show more information -see Figure 9 – below. 
 
      Please note the situation shown in Figure 9 was created artificially. Resource 
Reservation at 09:50 was delayed until 10:05. ll_jobs shows the time is 10:13:34, 116 
nodes reserved, where 10:09 is the time the nodes were needed operationally. 
Unusually 48 nodes remain in use by non-operational jobs. So some jobs need to be 
cleared out of the system manually. One decision is easy. Job hpcb2401.1474974.0 
(ehf9_model_fc) can be check-pointed and rerun. The other 2 jobs will complete 
soon, one at 10:17 (in 4 minutes time) and the other at 10:21 (in 8 minutes time), so 
waiting a few minutes for these 2 jobs to end will not cause a problem, both being 
well within the 15-minute flexibility. 
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Figure 9 - ll_jobs during an operational period. FloatingCpus = 8, so additional 
information is provided particularly as resources will not be released at the time 
specified. 
       
       
18. What Has Been Achieved So Far? 
 
Has the variability in the start-times and end-times of the operational runs been 
reduced? Do the daily runs of the operational forecasts complete within 15 minutes of 
the optimum time? 
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The variability of the start-time of the operational runs, before FloatingCpus were 
reserved, is shown in Figure 10 and the variability of the start-time of the operational 
run after FloatingCpus were reserved is shown in Figure 11.  
 

 
 
Figure 10 – the variability in the start-time of operational runs, before Resource 
Reservation was introduced. 
 

 
 
Figure 11 – the variability in the start-time of operational runs after Resource 
Reservation was introduced. 
     
Comparing Figures 10 and 11 you can see the reservation scheme has significantly 
reduced the variability in the scheduling of the first operational job. Only once in May 
2004 was more than 5 minutes of the flexibility used. 
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In Figures 12 and 13 below you can see the variability of the end-times of the 
operational runs before FloatingCpus were reserved and after FloatingCpus were 
reserved.  

 

 
 
Figure 12 – the variability in the end-times of operational jobs, before Resource 
Reservation was introduced. 
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Figure 13 - the variability in the end-time of operational jobs, after Resource 
Reservation was introduced. 
 
Comparing figures 12 and 13 you can see the variability in the end-times of all 
operational jobs have been reduced too. 
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Note – since October 2003 significant improvements have been made to the 
efficiency of operational jobs and they run faster than before. As a result, the optimal 
end time of 23:00 achieved in October 2003 has been replaced by an end-time of 
22:24 in May 2004. This means the need to keep operational jobs to a 15-minute 
variation is less acute at present, but not for long. Plans for higher quality forecasts 
(with greater computational needs) will soon push the end-time back to 23:00. 
 
So clearly the variation exceeds 15 minutes and more work is needed to limit the 
variation to 15 minutes. 2 solutions are already planned, to optimise the pre-selection 
of jobs and to ensure when human intervention is needed that action is taken quickly. 
 
Finally Figure 14 shows the allocation of CPUs to all jobs on a typical day since 
Resource Reservation was introduced. 
 

 
Figure 14 – the allocation of CPU’s to all jobs on a typical day since Resource 
Reservation was introduced, plotted over 12-minute intervals, where the red line (936 
CPUs) is the maximum number that parallel jobs can use. 
 
     
      Comparing Figure 14 with Figure 3 it is clear the allocation of CPU’s to all jobs 
since Resource Reservation was introduced has reduced by a little over 1%. This is 
greater than was hoped for.  But as mentioned earlier there are plans to optimise the 
selection of jobs before operational periods, which is when the greatest waste occurs. 
So importantly not only will optimising job selection minimise runtime variation it 
can be made to increase node utilisation too.  
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19. The Conclusion 
 
The basic elements of the Reservation Scheme are very sound. The scheme and has 
been very effective in keeping the start-time to a tighter schedule but less so the more 
important end-time. So some fine tuning is needed. In addition there has been a 
reduction in the overall system utilisation seen by comparing Figure 3 and Figure 14, 
but ways have been described to both minimise the variation and maximise the 
allocation of nodes. 
 

20. Main Points 
 
It is essential that parallel jobs can be scheduled independent of other systems, that 
the jobs are designed well (suit the system) and system performance (GPFS, I/O 
nodes, Loadleveler, network, paging) does not vary. Thus (using historical data) 
predicted run-times will be accurate. 
 
      The Loadleveler feature FloatingCpus enables resources to be controlled globally, 
dynamically and logically, independent of job class where jobs that request 
FloatingCpus are members of one logical class and jobs that do not request 
FloatingCpus are members of another logical class. Managing the resources to suit 
these 2 logical classes could not be easier. 
 
      Setting values of FloatingCpus a fixed time in advance based on averages is very 
straightforward and reasonably effective but the variation in runtimes and better 
system utilisation could be obtained by optimising job selection prior to operational 
periods. 
      Reducing the value of FloatingCpus without turning classes off means that the 
underlying scheduling of non-operational jobs continues as normal in the reduced set 
of nodes, and there is complete flexibility as to which nodes are used by operational 
jobs and which nodes are used by non-operational jobs. 
 
      Having the system set wall_clock_limit with offset 1+ overcomes the kill on 
wall_clock_limit exceeded.  
 
      Operational jobs have their wall_clock_limit set automatically too which means 
operators need not remember how long the multitude of operational jobs should take 
to run and any over-run is flagged immediately.   
       
       It is essential that monitoring tools (in our case operator displays) are created so 
that it is possible to confirm both backfill and scheduling are performing as expected 
or when events do not go to plan a mechanism (again operator displays) is in place to 
make operators, administrators and analysts aware of the problem(s). 
 
      There is no need to have lots of user batch classes (we had many NQS queues on 
previous systems) for jobs that are short, long, slow, fast, big, small etc so that in pre-
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operational periods the right jobs can be selected by draining classes, reducing job-
limits per class, per user etc. 
 

21. Other Thoughts 
 
The ability to schedule jobs as described stems from the understanding that the system 
used is a High Performance Cluster (HPC) System managed as a Super-Computer and 
is not a configuration of loosely coupled Server systems. All those involved in 
providing elements of the service on the HPC system; analysts, support staff, users, 
administrators, managers, have a fundamental desire for the system to be configured 
optimally and for jobs to run efficiently. I cannot stress enough that jobs must not use 
(need) swap space. The processes in each node of a multi-node, high performance, 
well parallelised, cpu-bound job, must not exceed physical memory as it only takes 1 
process to use too much memory and all nodes will perform badly as the rogue 
process swaps.  
 
      Ideally jobs will parallelise well, scale reasonable well and use a whole node or 
multiples of nodes. Memory sharing is only permitted if job performance and known-
runtimes are not altered. If users have CPU-bound jobs that use less than 1 node, 
particularly serial jobs with 1 process, the users are advised to run the jobs on Server 
systems. 
 
      Jobs that perform badly must be detected and users must know to call support 
staff for help (or eventually get caught) if they realise new jobs (for which there is no 
known run-time data) perform badly. Users and more importantly application 
programmers, who make it possible for suites of jobs (in the form of an experiment) 
to be submitted automatically, must be willing to help sort out job related problems 
and identify solutions.  
 
      As the release of all nodes for use by operational jobs occurs twice a day, all user 
jobs have to finish within 1 hour. Jobs that run for more than 1 hour should either 
create restart files so that they can be killed without substantial losses, or should have 
the ability to trap a signal and then create restart files before killing themselves. In 
Figure 9 such a job was labelled Chkpt. This job will accept and trap such a signal, 
write a restart file and kill itself. 
 
      There is no room for sloppy philosophy. The idea that it is OK for a job to be 
inefficient and run for a long time as long as the user pays for it, is just not acceptable. 
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Abstract. We are developing a distributed computing environment based on vir-
tual machines featuring application monitoring, network monitoring, and an adap-
tive virtual network. In this paper, we describe our initial results in monitoring the
communication traffic of parallel applications, and inferring its spatial commu-
nication properties. The ultimate goal is to be able to exploit such knowledge to
maximize the parallel efficiency of the running parallel application by using VM
migration, virtual overlay network configuration and network reservation tech-
niques, which are a part of the distributed computing environment. Specifically,
we demonstrate that: (1) we can monitor the parallel application network traffic
in our layer 2 virtual network system with very low overhead, (2) we can aggre-
gate the monitoring information captured on each host machine to form a global
picture of the parallel application’s traffic load matrix, and (3) we can infer from
the traffic load matrix the application topology. In earlier work, we have demon-
strated that we can capture the time dynamics of the applications. We begin here
by considering offline traffic monitoring and inference as a proof of concept,
testing it with a variety of synthetic and actual workloads. Next, we describe the
design and implementation of our online system, the Virtual Topology and Traffic
Inference Framework (VTTIF), and evaluate it using a NAS benchmark.

1 Introduction

Virtual machines have the potential to simplify the use of distributed resources in a way
unlike any other technology available today, making it possible to run diverse applica-
tions with high performance after only minimal or no programmer and administrator ef-
fort. Network and host bottlenecks, difficult placement decisions, and firewall obstacles
are routinely encountered, making effective use of distributed resources an obstacle to
innovative science. Such problems, and the human effort needed to work around them,
limit the development, deployment, and scalability of distributed parallel applications.

We have presented a detailed case for virtual machine-based distributed and parallel
computing [4], and we are now developing a system, Virtuoso, which has the following
model:
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– The user receives what appears to be a new computer or computers on his network
at very low cost. The user can install, use, and customize the operating system,
environment, and applications with full administrative control.

– The user chooses where to execute the virtual machines. Checkpointing and migra-
tion is handled efficiently through Virtuoso. The user can delegate these decisions
to the system.

– A service provider need only install the VM management software to support a
diverse set of users and applications.

– Monitoring, adaptation, resource reservation, and other services are retrofitted to
existing applications at the VM level with no modification of the application code,
resulting in broad application of these technologies with minimal application pro-
grammer involvement.

An important element of our system is a layer 2 virtual network, VNET, which we ini-
tially developed to create the “networking illusion” needed for the first element of the
model. It can “move” a set of virtual machines in a WAN environment to the user’s local
layer 2 domain. We are now expanding VNET into a tool that supports arbitrary over-
lay topologies and routing rules, passive application and network monitoring, adapta-
tion (based on VM migration and topology/routing changes), and resource reservation.
VNET is described in detail in a previous paper [12].

This paper reports on one of our first steps toward achieving the last element of the
model. The question we address in particular is: can we monitor, with low overhead
and no application or operating system modifications, the communication traffic of a
parallel application running in a set of virtual machines interconnected with a virtual
network, and compute from it the traffic load matrix and application communication
topology? Our initial results demonstrate that this is possible. We are integrating the
online implementation of our ideas, VTTIF (Virtual Topology and Traffic Inference
Framework), into the evolving VNET system.

We consider here Bulk-Synchronous Parallel [6] (BSP) style applications. Specifi-
cally, we consider parallel programs whose execution alternates between one or more
computing phases and one or more communication phases, including metaphases. We
are testing whether our results hold for more general applications. In earlier work, we
have demonstrated that the network traffic of compiler-parallelized BSP applications,
when measured using techniques similar to those used here, exhibits clear time dynami-
cal structure (periodicity with harmonics) [3]. Our results here show that we can quickly
and efficiently recover its spatial structure, its topology and traffic load, as well.

The ultimate motivation behind recovering the spatial and temporal properties of a
parallel application running in a virtual environment is to be able to maximize the par-
allel efficiency of the running application by migrating its VMs, changing the topology
and routing rules of the communication network, and taking advantage of underlying
network reservations on the application’s behalf.

A parallel program may employ various communication patterns for its execution.
A communication pattern consists of a list of all the message exchanges of a represen-
tative processor during a communication phase. The result of each processor executing
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its communication pattern gives us the application topology, such as a mesh, toroid,
hypercube, tree, etc, which is in turn mapped to the underlying network topology [8].
In this paper, we attempt to infer the application topology and the costs of its edges, the
traffic load matrix, by observing the low-level traffic entering and leaving each node of
the parallel application, which is running inside of a virtual machine.

It is important to note that application topologies may be arbitrarily complex. Al-
though our initial results are for BSP-style applications, our techniques can be used with
arbitrary applications, indeed, any application or OS that the virtual machine monitor
(we use VMWare GSX server in this work) can support. However, we do not yet know
the effectiveness of our load matrix and topology inference algorithms for arbitrary
applications.

In general, it is difficult for an application developer, or, for that matter, the user of
a “dusty deck” application, to analyze and describe his application at the level of detail
needed in order for a virtual machine distributed computing system to make adaptation
decisions on its behalf. Furthermore, the description may well be time or data dependent
or react to the conditions of the underlying network.

The goal of VTTIF is to provide these descriptions automatically, as the unmodified
application runs on an unmodified operating system. In conjunction with information
from other monitoring tools, and on the policy constraints, VTTIF information will then
be used to schedule the VMs, migrate them to appropriate hosts, and change the virtual
network connecting them. The adaptation control mechanisms will query VTTIF to un-
derstand what, from a communication perspective, the parallel application is attempting
to accomplish.

We began by offline analysis, using traffic logs of parallel applications to develop
our three step monitoring and analysis process. Although this initial work was carried
out without the use of VMs, using PVM applications whose traffic was captured using
tcpdump techniques, it is directly applicable for two reasons. First, VNET interacts
with the virtual interfaces of virtual machines in a manner identical (packet filter on the
virtual interface) to how tcpdump interacts with physical interfaces (packet filter on a
physical interface). Second, the physical machines generate considerably more “noise”
than the virtual machines, thus making the problem harder. In Section 2, we describe our
three step process and how it is implemented for physical monitoring. In Section 3 we
describe a set of synthetic applications and benchmarks we will use to evaluate VTTIF.
In Section 4, we show the performance results of applying the process to a wide variety
of application topologies and parallel benchmarks.

The results for the offline, physical machine-based were extremely positive, so we
designed and implemented an online process that is integrated with our VNET virtual
networking tool. Section 5 describes the design of the online VTTIF tool and provides
an initial evaluation of it. We are able to recover application topologies online for a NAS
benchmark running in VMs and communicating via VNET. The performance overhead
of the VTTIF implementation in VNET is negligible.
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Synced Parallel Traffic Monitoring

Traffic Filtering and Matrix Generation

Matrix Analysis and Topology 
Characterization

Fig. 1. The three stages involved in inferring the topology and traffic load matrix of a
parallel application

In Section 6, we conclude by describing our plans for using the VTTIF and other
monitoring information for heuristic adaptive control of the VMs and VNET to maxi-
mize application performance.

2 VTTIF and Its Offline Implementation

The inference of parallel application communication is based on the analysis of low
level traffic. We first wanted to test whether this approach was practical at all, and, if so,
to develop an initial framework for traffic monitoring, analysis and inference, enabling
us to test our ideas and algorithms. This initial step resulted in an offline process that
focused on parallel programs running on physical hosts. In Section 5, we describe how
these results have been extended to an online process that focuses on parallel programs
running in virtual machines.

In both our online and offline work, we study PVM [5] applications. Note that the
techniques described here are general and are also applicable to other parallel applica-
tions such as MPI programs. We run programs on the nodes of our Virtuoso cluster,
which is an IBM e1350 with 32 compute nodes, each of which is a dual 2.2 GHz In-
tel HT Xeon Processors, 1.5 GB RAM, and 40 GB of disk. Each node runs Red Hat
Linux 9, PVM 3.4.4, and VMWare GSX Server 2.5. Each VM runs Red Hat Linux 7.3
and PVM 3.4.4. The communication measured here is via a 100 mbit switched net-
work, specifically a Cisco 3550 48 port switch. The nodes speak NFS and NIS back to
a separate management machine via a separate network.

The VTTIF framework has three stages as shown in Figure 1. In the first stage, we
monitor the traffic being sourced and sinked by each process in the parallel program.
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In the offline analysis, this is accomplished by using tcpdump on the physical interface
with a packet filter that rejects all but PVM traffic. In the online analysis, we integrate
monitoring into our virtual network tool VNET. VNET does the equivalent of running
tcpdump on the virtual interface of the virtual machine, capturing all traffic. The Vir-
tuoso cluster uses a switched LAN, so the interface of each node must be monitored
separately and the data aggregated. A challenge in the online system is that it must
decide when to start and stop this monitoring.

The second stage of the framework eliminates irrelevant traffic from the aggregated
traffic and integrates the packet header traces captured by tcpdump to produce a traffic
matrix, T . Element Ti,j represents the amount of traffic sent from node i to node j. A
challenge in the online system is to decide when to recompute this matrix.

The final stage of the framework applies inference algorithms to eliminate noise
from the traffic matrix to infer from it the likely application topology. Both the original
matrix and the inferred topology are then returned. The topology is displayed graphi-
cally. A challenge in the online system is to decide when to recompute the topology.

The current offline framework is designed to automate all of the above steps, allow-
ing the user to run a single command, infer [parallel PVM program] This
runs the PVM program mentioned in the argument, monitors it for its entire execution,
completes the remaining steps of the framework, and prints the matrix and displays the
topology. The framework is implemented as a set of Perl scripts, as described below.

Monitor This script is responsible for synchronized traffic monitoring on all the physi-
cal hosts, running the parallel program, and storing the packet header traces to files. The
script also reads a configuration file that describes the set of hosts on which monitoring
is to be done. It runs tcpdump on each of the hosts. It then executes the parallel pro-
gram and waits for it to finish. Each tcpdump stores its packet header trace output into a
file named by the hostname, the date, and the time of execution. Hence, each execution
produces a group of related packet header trace files.

Generate This script parses, filters and analyzes the packet header traces to generate a
traffic matrix for the given hosts. It sums the packets sizes between each pair of hosts,
filtering out irrelevant packets. Filtering is done according to the following criteria:

– Type of packet. Packets which are known not to be a part of the parallel program
communication, like ARP, X11, ssh, etc, are discarded. This filtering has only a
modest effect in the Virtuoso cluster because there is little extra traffic. However,
in the future, we may want to run parallel programs in a wide area environment
or one shared with many other network applications, where filtering and extracting
the relevant traffic may pose extra challenges.

– The source and destination hosts involved in the packet transmission. We are only
interested traffic among a specific group of hosts.

The matrix is emitted in a single file.
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Infer This script infers the application topology from the traffic matrix file. In effect,
topology inference amounts to taking the potentially “noisy” graph described by the
traffic matrix and eliminating edges that are unlikely to be significant. The script also
outputs a version of the topology that is designed to be viewed by the algorithm anima-
tion system Samba [11].

For inferring the topology, various algorithms are possible. One method is to prune
all matrix entries below a certain threshold. More complex algorithms could employ
pattern detection techniques to choose an archetype topology that the traffic matrix is
most similar to. For the results we show, topology inference is done using a matrix
normalization and simple edge pruning technique. The pseudo-code description of the
algorithm is:

InferTopology(traffic matrix T,pruning threshold bmin)
{

bmax ← max(Ti,j) ∀i,j

G ← ∅
foreach(Ti,j)
{

ri,j ← Ti,j/bmax

if (ri,j ≥ bmin)
{

add edge(i,j) to G
}

}
return G

}

In effect, if the maximum bandwidth entry in T is bmax, then if ratio of any edge value
(Ti,j) to bmax is below a certain threshold bmin, then the edge is pruned. The value of
bmin determines the sensitivity of topology inference.

Visualization makes it very convenient to quickly understand the topology used by
the parallel program. By default, we have Samba draw each topology with the nodes
laid out in a circle, as this is versatile for a variety of different topologies. However,
there is an option to pass a custom graph layout. An automated layout tool such as Dot
could also be used.

Figure 2 shows an example of the final output for the program PVM POV, a parallel
ray tracer, running on four hosts. The thickness of an edge indicates the amount of
traffic for that particular run. Each host is represented by a different color and color of
the edge represents the source host for the edge traffic.
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Fig. 2. An example of the final output of the Topology Inference Framework for the
PVM-POV application. The PVM-POV application runs on four hosts.

3 Workloads for VTTIF

To test our ideas, we first needed some actual parallel applications to measure. We
created and collected the following applications.

– Patterns: This is a synthetic workload generator, which we describe below. It can
execute many different kinds of topologies common in BSP parallel programs. We
use this extensively to test our framework.

– NAS Parallel Benchmarks: We use the PVM implementation of the NAS bench-
marks [1] IS, MG, FT, and EP as developed by Sundaram, et al [13].

– PVM POV: PVM version of the popular ray tracer POVRAY. The PVM version
gives it the ability to distribute a rendering across multiple heterogeneous systems.
[2].

Except for patterns, these are all well known benchmark programs.

Patterns does message exchanges according to a topology provided at the command
line. Patterns emulates a BSP program with alternating dummy compute phases and
communication phases according to the chosen topology. It takes the following argu-
ments:

– pattern: The particular topology to be used for communication.
– numprocs: The number of processors to use. The processors are determined by a

special hostfile.
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– messagesize: The size of the message to exchange.
– numiters: The number of compute and communicate phases
– flopsperelement: The number of multiply-add steps
– readsperelement: The number of main memory reads
– writesperelement: The number of main memory writes

Patterns generates a deadlock free and efficient communication schedule at startup
time for the given topology and number of processors to be used. The following topolo-
gies are supported:

– n-dimensional mesh, neighbor communication pattern
– n-dimensional torus, neighbor communication pattern
– n-dimensional hypercube, neighbor communication pattern
– Binary reduction tree
– All-to-all communication

4 Evaluation of Offline VTTIF

We evaluated our offline inference framework with the various parallel benchmarks
described in the previous section. Figure 3 shows the inferred application topologies of
various patterns benchmark runs, as detected by our offline framework. These results
suggest that there is indeed considerable promise in traffic-based topology inference:
parallel program communication behavior can be inferred without any knowledge of
the parallel application itself. Of course, more complex filtering processes may need
to be used for more complex applications and complex network environments where
parallel application traffic is just a part of the network traffic.

We also ran the application benchmarks described earlier. These results are also
promising. Figure 4 shows a representative, the traffic matrix for an execution of the
Integer Sort (IS) NAS kernel benchmark on 8 physical hosts, with the corresponding
topology shown in Figure 5. The topology resembles an all-to-all communication, but
the thickness of the edges vary indicating that the bandwidth requirements vary depend-
ing on the host pairs. A closer look at the traffic matrix reveals that host1 receives data
in the range of 20 MB from each of the other hosts, indicating that this is a communi-
cation intensive benchmark. Other hosts host2 to host8 transfer data of � 10− 11 MB
with each other, almost half of that exchanged with host1.

Notice that this information could be used to boost the performance of the IS bench-
mark if it were running in our VM computing model. Ideally, we would move the VM
host1 to a host with relatively high bandwidth links and reconfigure the virtual network
with appropriate virtual routes over the physical network [10]. Such decisions need to
be dynamic, as the properties of a physical network vary [14]. Without any intervention
by the application developer or knowledge of the parallel application itself, it is feasi-
ble to infer the spatial and temporal [3] properties of the parallel application. Equipped
with this knowledge, we can use VM checkpointing and migration along with VNET’s
virtual networking capabilities to create a efficient network and host environment for
the application.
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tree-reduction 3x3 2D Mesh

3x2x3 3D toroid all-to-all

3D hypercube

Fig. 3. The communication topologies inferred by the framework from the patterns
benchmark. It shows the inferred tree-reduction, 3x3 2D Mesh, 3x2x3 3D toroid, all-to-
all for 6 hosts and 3D hypercube topologies.
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h1 h2 h3 h4 h5 h6 h7 h8

h1 19.0 19.6 19.2 19.6 18.8 13.7 19.3

h2 22.6 10.7 10.8 10.7 10.9 9.7 10.5

h3 22.2 8.78 11.2 10.4 10.1 10.5 10.5

h4 22.4 8.9 9.5 11.1 10.8 10.6 10.2

h5 22.3 10.0 9.51 9.72 11.7 10.9 11.9

h6 24.0 8.9 10.7 9.9 10.8 12.2 12.1

h7 23.2 10.0 9.7 9.5 10.3 10.2 12.0

h8 24.9 11.2 11.0 11.8 11.5 11.2 10.7

*numbers indicate MB of data trans ferred.

h1 h2 h3 h4 h5 h6 h7 h8

h1 19.0 19.6 19.2 19.6 18.8 13.7 19.3

h2 22.6 10.7 10.8 10.7 10.9 9.7 10.5

h3 22.2 8.78 11.2 10.4 10.1 10.5 10.5

h4 22.4 8.9 9.5 11.1 10.8 10.6 10.2

h5 22.3 10.0 9.51 9.72 11.7 10.9 11.9

h6 24.0 8.9 10.7 9.9 10.8 12.2 12.1

h7 23.2 10.0 9.7 9.5 10.3 10.2 12.0

h8 24.9 11.2 11.0 11.8 11.5 11.2 10.7

*numbers indicate MB of data trans ferred.

h1h1 h2h2 h3h3 h4h4 h5h5 h6h6 h7h7 h8h8

h1h1 19.019.0 19.619.6 19.219.2 19.619.6 18.818.8 13.713.7 19.319.3

h2h2 22.622.6 10.710.7 10.810.8 10.710.7 10.910.9 9.79.7 10.510.5

h3h3 22.222.2 8.788.78 11.211.2 10.410.4 10.110.1 10.510.5 10.510.5

h4h4 22.422.4 8.98.9 9.59.5 11.111.1 10.810.8 10.610.6 10.210.2

h5h5 22.322.3 10.010.0 9.519.51 9.729.72 11.711.7 10.910.9 11.911.9

h6h6 24.024.0 8.98.9 10.710.7 9.99.9 10.810.8 12.212.2 12.112.1

h7h7 23.223.2 10.010.0 9.79.7 9.59.5 10.310.3 10.210.2 12.012.0

h8h8 24.924.9 11.211.2 11.011.0 11.811.8 11.511.5 11.211.2 10.710.7

*numbers indicate MB of data trans ferred.*numbers indicate MB of data trans ferred.

Fig. 4. The traffic matrix for the NAS IS kernel benchmark on 8 hosts.

Fig. 5. The inferred topology for the NAS IS kernel benchmark

5 Online VTTIF

After working with offline parallel program topology inference on the physical hosts,
the next step was to develop an online framework for a virtual machine environment.
We extended VNET [12], our virtual networking tool, to include support for traffic
analysis and topology inference. VNET allows the creation of layer 2 virtual networks
interconnecting VMs distributed over an underlying TCP/IP networking infrastructure.
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A VNET daemon manages all the network traffic of the VMs running on its host, and
thus is an excellent place to observe the application’s network traffic. All traffic mon-
itoring is done at layer 2, providing flexibility in analyzing and filtering the traffic at
many layers.

Due to a networking issue with the Virtuoso cluster, the work in the section was
done on a slower cluster consisting of dual 1 GHz Pentium III processors with 1 GB
of RAM and 30 GB hard disks. We used a switched 100 mbit network connecting the
machines. As before VMWare GSX Server 2.5 was used, except here it was run on Red
Hat Linux 7.3. The VMs were identical. A Dell PowerEdge 4400 (dual 1 GHz Xeon, 2
GB, 240 GB RAID) running Red Hat 7.1 was used as the VNET proxy machine.

5.1 Observing Traffic Phenomena of Interest: Reactive and Proactive
Mechanisms

VMs can run for long periods of time, but their traffic may change dramatically over
time as they run multiple applications in parallel or serially. In the offline VTTIF, mon-
itoring and aggregation are triggered manually while running the parallel application.
This is not possible in an online design. The online VTTIF needs a mechanism to detect
and capture traffic patterns of interest, reacting automatically to interesting changes in
the communication behavior of the VMs. It must switch between active states, when
it is accumulating data and computing topologies, and passive states, when it is wait-
ing for traffic to intensify or otherwise become relevant. Ideally, VTTIF would have
appropriate information available whenever a scheduling agent requests it.

We have implemented two mechanisms for detecting interesting dynamic changes
in communication behavior: reactive and proactive. In the reactive mechanism, VTTIF
itself alerts the scheduling agent when it detects certain pre-specified changes in com-
munication. For example, in the current implementation, VTTIF monitors the rate of
traffic for all flows passing through it and starts aggregating traffic information when-
ever the rate crosses a threshold. If this rate is sustained, then VTTIF can alert the
scheduling agent about this interesting behavior along with conveying its local traffic
matrix.

In the proactive mechanism, VTTIF allows an external agent to make traffic-related
queries such as: what is traffic matrix for the last 512 seconds? VTTIF stores sufficient
history to answer various queries of interest, but it does not alert the scheduling agent,
unlike the reactive mechanism. The agent querying traffic information can determine its
own policy, for example polling periodically to detect any traffic phenomena of inter-
est and thus making appropriate scheduling, migration and network routing decisions
to boost parallel application performance. Figure 6 shows the high level view of the
VNET-VTTIF architecture. The VM and overlay network scheduling agent may be lo-
cated outside the VM-side VNET daemon, and all relevant information can conveyed
to it so that it can make appropriate scheduling decisions.
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Fig. 6. The VNET-VTTIF topology inference architecture. VTTIF provides both reac-
tive and proactive services for the scheduling agent.

5.2 Implementation

We extended VNET so that each incoming and outgoing Ethernet packet passes through
a packet analyzer module. This function parses the packet into protocol headers (Ether-
net, IP, TCP) and can filter it if it is irrelevant. Currently all non-IP packets are filtered
out—additional filtering mechanisms can be installed here. Packets that are accepted
are aggregated into a local traffic matrix. Specifically, for each flow, a row and column
of the matrix are determined in this way. The matrix is stored in a specialized module
TrafficMatrix. TrafficMatrix is invoked on every packet arrival.

Reactive mechanism The TrafficMatrix module does non-uniform discrete event sam-
pling for each source/destination VM pair to infer the traffic rate between the pair.
The functioning of rate_threshold mechanism is illustrated in Figure 7. It takes
two parameters: byte_threshold and time_bound. Traffic is said to cross the
rate_threshold, if for a particular VM pair, byte_threshold bytes of traf-
fic is transmitted in a time less than time_bound. This is detected by time-stamping
the packet arrival event whenever the number of transmitted bytes for a pair exceeds
a integral multiple of byte_threshold. If two successive time-stamps are less
than time_bound, this indicates our rate_threshold requirement has been met.
Once a pair crosses the rate_threshold, TrafficMatrix starts accumulating traf-
fic information for all the pairs. Before the rate_threshold is crossed, Traffic-
Matrix doesn’t accumulate any information, i.e. it is a memoryless system. After the
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Fig. 7. The rate-threshold detection based reactive mechanism in VNET-VTTIF. When-
ever two successive byte thresholds are exceeded within a time bound, the accumulation
of traffic is triggered.

rate_threshold is crossed, TrafficMatrix alerts the scheduling agent in two situa-
tions. First, if the high traffic rate is sustained up to time tmax, then it sends all its traffic
matrix information to the scheduling agent. In other words, TrafficMatrix informs the
scheduling agent if an interesting communication behavior persists for a long enough
period of time. The second situation is if the rate falls below the threshold and remains
there for more than twait seconds, in which case TrafficMatrix alerts the scheduling
agent that the application has gone quiet.

Figure 8 illustrates the operation of the reactive mechanism in flowchart form.

Proactive mechanism The proactive mechanism allows an external agent to pose
queries to VTTIF and then take decisions based on its own policy. VTTIF is responsible
solely for providing the answers to useful queries. TrafficMatrix maintains a history for
all pairs it is aware in order to answer queries of the following form: What is the traffic
matrix over the last n seconds? To do so, it maintains a circular buffer for all pairs in
which each entry corresponds to the number of bytes transferred in a particular second.
As every packet transmission is reported to TrafficMatrix, it updates the circular buffer
for the particular pair. To answer the query, the last n entries are summed up, up to the
size of the buffer.

The space requirements for storing the state history needs some consideration. The
space requirements depends on the maximum value of n. For each pair, 4n bytes are
needed for the circular buffer. If there are m VMs, then the total space allocation is
4nm2. For n = 3600 (1 hour) and m = 16 VMs, the worst case total space requirement
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Fig. 8. The steps taken in the VM-side VNET daemon for the reactive mechanism.

is 3.7 Mbytes. A sparse matrix representation could considerably reduce this cost and
thus the communication cost in answering the queries.

5.3 Aggregation

Aggregation of traffic matrices from the various VNET daemons provides a global view
of the communication behavior exhibited by the VMs. Currently, we aggregate the lo-
cally collected traffic matrices to a global, centralized matrix that is stored on the VNET
proxy daemon, which is responsible for managing the virtual overlay network in VNET.
We use a push mechanism—the VNET daemons decide when to send their traffic ma-
trix based on their reactive mechanism. A pull mechanism could also be provided, in
which the proxy would request traffic matrices when they are needed based on queries.

The storage analysis of the previous sections assumes that we will collect a com-
plete copy of the global traffic matrix on each VNET daemon—in other words, that
we will follow the reduction to the proxy VNET daemon with a broadcast to the other
VNET daemons. This is desirable so that the daemons can make independent decisions.
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Method Average STDEV Min Max
Direct 0.529 ms 0.026 ms 0.483 ms 0.666 ms
VNET 1.563 ms 0.222 ms 1.277 ms 2.177 ms
VNET-VTTIF 1.492 ms 0.198 ms 1.269 ms 2.218 ms

Fig. 9. Latency comparison between VTTIF and other cases

However, if we desire only a single global copy of the whole matrix, or a distributed
matrix, the storage and computation costs will scale with the number of VMs hosted on
the VNET daemon.

Scalability is an issue in larger instances of the VM-based distributed environment.
Many possibilities exist for decreasing the computation, communication and storage
costs of VTTIF. One optimization would be to maintain a distributed traffic matrix.
Another would be to implement reduction and broadcast using a hierarchical structure,
tuned to the performance of the underlying network as in ECO [9]. Fault tolerance is
also a concern that needs to be addressed.

5.4 Performance Overhead

Based on our measurements, VTTIF has minimal impact on bandwidth and latency.
We considered communication between two VMs in our cluster, measuring round-trip
latency with ping and bandwidth with ttcp. Figure 9 compares the latency between the
VMs for three cases:

– Direct communication. Here VNET is not involved. The machines communicate
locally using VMWare’s bridged networking. This measures the maximum perfor-
mance achievable between the hosts, without any network virtualization.

– VNET. Here we use VNET to proxy the VMs to a different network through the
PowerEdge 4400. This shows the overhead of network virtualization. Note that we
are using an initial version of VNET here without any performance enhancements
running on a stock kernel. We continue to work to make VNET itself faster.

– VNET-VTTIF. This case is identical to VNET except that we are monitoring the
traffic using VTTIF.

There is no significant difference between the latency of VNET and VNET-VTTIF.

Figure 10 shows the effect on throughput for the three cases enumerated above.
These tests were run using ttcp with a 200K socket buffer, and 8K writes. The overhead
of VNET-VTTIF compared to VNET is a mere 4.1%.

5.5 Online VTTIF in Action

Here we show results of running a parallel program in the online VNET-VTTIF system.
We use the NAS Integer Sort (IS) benchmark for illustration because of its interesting
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Method Throughput
Direct 11485.75 KB/sec
VNET 8231.82 KB/sec
VNET-VTTIF 7895.06 KB/sec

Fig. 10. Throughput comparison between VTTIF and other cases

Fig. 11. The PVM IS benchmark running on 4 VM hosts as inferred by VNET-VTTIF

communication pattern and traffic matrices. We executed NAS IS on 4 VMs intercon-
nected with VNET-VTTIF. Here, the Virtuoso cluster, as used in the offline work, was
employed. The rate-based reactive mechanism was used to intelligently trigger aggre-
gation mechanisms on detecting traffic flow from the benchmark. When the benchmark
finished executing, the traffic matrix was automatically aggregated at the VNET proxy.
For comparison, we also executed the same benchmark with on 4 physical hosts and
analyzed the traffic using the offline method.

Figures 11 and 12 show the topology and traffic matrix as inferred by the online
system. Figure 13 shows the matrix inferred from the physical hosts using the offline
method. The topology for the offline method is identical to that for the offline method
and is not shown. There are some differences between the online and offline traffic
matrices. This can be attributed to two factors. First, the byte count in VNET-VTTIF
includes the size of the entire ethernet packet whereas in the offline method, only the
TCP payload size is taken into account. Second, tcpdump, as used in the offline method,
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h1 h2 h3 h4

h1 7.7 7.6 7.8

h2 13.1 6.6 6.5

h3 13.5 6.4 6.6

h4 13.2 6.5 6.5

*numbers indicate MB o f data transferred.

h1 h2 h3 h4

h1 7.7 7.6 7.8

h2 13.1 6.6 6.5

h3 13.5 6.4 6.6

h4 13.2 6.5 6.5

*numbers indicate MB o f data transferred.

h1h1 h2h2 h3h3 h4h4

h1h1 7.77.7 7.67.6 7.87.8

h2h2 13.113.1 6.66.6 6.56.5

h3h3 13.513.5 6.46.4 6.66.6

h4h4 13.213.2 6.56.5 6.56.5

*numbers indicate MB o f data transferred.*numbers indicate MB o f data transferred.

Fig. 12. The PVM IS benchmark traffic matrix as inferred by VNET-VTTIF

h1 h2 h3 h4

h1 5.1 5.0 5.0

h2 4.5 4.3 3.8

h3 4.7 3.9 3.8

h4 4.5 3.9 3.9

*numbers indicate MB o f data transferred.

h1 h2 h3 h4

h1 5.1 5.0 5.0

h2 4.5 4.3 3.8

h3 4.7 3.9 3.8

h4 4.5 3.9 3.9

*numbers indicate MB o f data transferred.

h1h1 h2h2 h3h3 h4h4

h1h1 5.15.1 5.05.0 5.05.0

h2h2 4.54.5 4.34.3 3.83.8

h3h3 4.74.7 3.93.9 3.83.8

h4h4 4.54.5 3.93.9 3.93.9

*numbers indicate MB o f data transferred.*numbers indicate MB o f data transferred.

Fig. 13. The PVM IS benchmark traffic matrix running on physical hosts and inferred
using the offline method.

is configured to allow packet drops by the kernel packet filter. In the online method,
VNET’s packet filter is configured not to allow this. Hence, the offline method is seeing
a random sampling of packets while the online method is seeing all of the packets.

The main point here is that the online method (VNET-VTTIF) can effectively infer
the application topology and traffic matrix for a BSP parallel program running in a
collection of VMs.

6 Conclusions and Future Work

We have demonstrated that it is feasible to infer the topology and traffic matrix of a
bulk synchronous parallel application running in a virtual machine-based distributed
computing environment by observing the network traffic each VM sends and receives.
We have also designed and implemented an online framework (VTTIF) for automated
inference in such an environment. This monitoring can be piggy-backed, with very low
overhead, on existing, necessary infrastructure that establishes and optimizes network
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connectivity for the VMs. We are now focusing on expanding this work in the following
ways:

– We plan to generalize our results to other forms of applications and to determine
the limits of network behavior that can be inferred.

– We are implementing a general query interface for querying traffic matrix informa-
tion from our system.

– We plan to evaluate our system in more complex network environments, possibly
revealing more filtering and topology inference based issues.

– We plan to improve the scalability and resilience of the system by adopting a dis-
tributed information aggregation approach.

– We intend to exploit the topological information provided by VNET-VTTIF to do
optical call path setup on behalf of applications in networks that support it.

– We are working on leveraging VNET to do passive network measurement as a side
effect of inter-VM data transfers.

– Finally, we are working on adaptation algorithms that will make use of VNET-
VTTIF and network information to guide VM placement and migration, and VNET
overlay topology construction and routing in order to maximize the performance of
unmodified applications [7].
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Abstract. Three-dimensional torus is a common topology of network
interconnects of multicomputers due to its simplicity and high scalability.
A parallel job submitted to a three-dimensional toroidal machine typi-
cally requires an isolated, contiguous, rectangular partition connected as
a mesh or a torus. Such partitioning leads to fragmentation and thus
reduces resource utilization of the machines. In particular, toroidal par-
titions often require allocation of additional communication links to close
the torus. If the links are treated as dedicated resources (due to the parti-
tion isolation requirement) this may prevent allocation of other partitions
that could, otherwise, use those links. Overall, on toroidal machines, the
likelihood of successful allocation of a new partition decreases as the
number of toroidal partitions increases.
This paper presents a novel ”multi-toroidal” interconnect topology that
is able to accommodate multiple adjacent meshed and toroidal parti-
tions at the same time. We prove that this topology allows connecting
every free partition of the machine as a torus without affecting existing
partitions. We also show that for toroidal jobs this interconnect topol-
ogy increases machine utilization by a factor of 2 to 4 (depending on
the workload) compared with three-dimensional toroidal machines. This
effect exists for different scheduling policies. The BlueGene/L supercom-
puter being developed by IBM Research is an example of a multi-toroidal
interconnect architecture.

1 Introduction

Tightly coupled multicomputers provide a natural way to build large-scale par-
allel systems. A tightly coupled multicomputer consists of a collection of nodes.
Each node has one or several CPUs, memory, and network connections. Such
systems are intended to run massively parallel computational jobs. A typical job
requires a set of nodes, called a partition, connected in a particular fashion, e.g.
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a three-dimensional rectangular block wired as mesh or torus. The job manage-
ment system has to allocate a partition to each job and to schedule the waiting
jobs optimally in order to maximize the machine utilization and to reduce the
jobs’ response times.

The high performance network that connects the nodes is designed with the
jobs’ topology requirements in mind. A frequently used interconnect topology is
a three-dimensional mesh or torus where every node is connected to six neigh-
bors, two in each dimension (a torus differs from a mesh in that the six edges
are connected in a wrap-around fashion). This interconnect topology is simple,
scalable (the number of links grows linearly with the machine size), and fits
many types of real-world computations. Examples of three-dimensional toroidal
parallel systems are the Cray T3D and T3E machines [2,3,4].

Job partitions are usually allocated contiguously, i.e. the constituent nodes
are geometrically adjacent. Contiguous allocation simplifies allocation algorithms
and facilitates partition isolation, i.e. localization of the intra-job communica-
tions within the partition. The latter is required both for security reasons and/or
to reduce message congestion on shared network links. Under the isolation re-
quirement, the nodes that form a partition and the network links that connect
them are dedicated resources used by at most one job at a time.

Efficient partition allocation is of critical importance to the system perfor-
mance in terms of resource utilization and job response times. As shown in the
next section, a toroidal partition often requires allocation of additional links
to close the torus. If the links are treated as dedicated resources, this prevents
allocation of other partitions that could, otherwise, use those links. Overall,
on toroidal machines, the likelihood of successful allocation of a new partition
decreases as the number of toroidal partitions increases. The problem is particu-
larly acute when a first-come-first-served (FCFS) scheduling is used. Backfilling
[7,8] is an improvement over FCFS, but we show below that the adverse effect of
isolated toroidal partitions on utilization exists independently of the scheduling
policy used.

In this paper we present a novel approach, hereafter called multi-toroidal
topology, that augments the traditional toroidal interconnect with additional
links to improve machine utilization while allocating isolated rectangular parti-
tions connected as mesh or a torus. Unlike other existing solutions, such as full
crossbar interconnects [5], the number of additional links is small, linear in the
number of allocation units in the machine (see Section 2 for more details), and
thus is inexpensive and highly scalable. A variant of multi-toroidal interconnect
is implemented in the upcoming BlueGene/L supercomputer developed by IBM
Research [16].

Multi-toroidal topology suggests a practical compromise between additional
hardware complexity (due to additional communication links) and better sys-
tem performance (in terms of utilization) gained by introducing it. Utilization
is increased due to the ability to allocate multiple adjacent meshed and toroidal
partitions thanks to the additional connectivity options and to the possibility
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of non-contiguous allocation of isolated partitions leading to less machine frag-
mentation.

In this paper we shall restrict ourselves to isolated contiguous rectangular
partitions only. We thus focus on the ability of multi-toroidal interconnect to ac-
commodate multiple adjacent meshed and toroidal partitions at the same time.
We will show that this property alone gives the proposed interconnect a signif-
icant advantage over the traditional three-dimensional torus machines. We will
defer the discussion of non-contiguous allocation to a future work.

We experimented with partition allocation on a machine with a regular multi-
toroidal interconnect (see Section 2). We measured the machine utilization for
two job logs of real supercomputing centers, simulating allocation of mesh and
toroidal partitions on 512-unit machine, and varying the offered load. We ex-
plored two scheduling policies: FCFS and aggressive backfilling. We compared
the results with those of a basic three-dimensional toroidal architecture with the
same workloads, and found a significant improvement in utilization (by a factor
of 2 to 4 for purely toroidal workloads) of the multi-toroidal machine compared
to the traditional one.

The rest of the paper is organized as follows. In section 2 we discuss multi-
toroidal topology in detail. Section 3 describes our simulation environment. Sec-
tion 4 presents the main quantitative results. Section 5 concludes the paper and
discusses directions of future research.

2 The Multi-toroidal Topology

We shall use a model of the architecture of a machine that provides a topo-
logically correct representation of the traditional three-dimensional toroidal ma-
chines and, at the same time, can be generalized to more complex topologies.
This architecture separates the network connections from the processing compo-
nents of the machine. The model takes into account that for scalability reasons
large systems may operate in terms of allocation units that contain a number
of nodes (as a special case, an allocation unit may contain just one node). We
shall assume that an allocation unit is composed of a three-dimensional mesh of
nodes and has three network switches, one for each dimension1

Fig. 1 illustrates an allocation unit with its switches. Two of the ports of each
switch are connected to the opposing sides of the allocation unit. Remaining
ports can be connected to ports of other switches by communication links. Only
one link can be connected to each port. Some ports may be left unused. A switch
has the capability of making internal connections between any two of its ports,
thus connecting allocation units with each other.

The links connecting the switches determine the interconnect topology of the
machine. We will assume that the link topology is identical for all the dimensions
of the computer. We also assume that no link connects switches that belong to
different dimensions, i.e. different dimensions are independent of each other. This
1 It is easy to see that this guarantees that the topology of a rectangular network of

allocation units (mesh or torus) will be identical to that of the constituent nodes.



Multi-toroidal Interconnects 147

Fig. 1. An allocated unit and three switches

is the case, for example, with the BlueGene/L machine [16]. This separation of
dimensions permits a view of the three-dimensional machine as a collection of
independent one-dimensional ”lines” in each dimension (hereafter, X-line, Y-line
and Z-line). Using dimension X as an example, links exist only between switches
that belong to the same X-line, and all X-lines have the same link configuration.
This will allow us to focus on a single line rather than consider the full three-
dimensional machine throughout the rest of the paper.

Fig. 2 shows an X-line of a mesh-connected machine. The switches in an
X-line are connected to their nearest neighbors in a linear fashion and are enu-
merated in ascending order from left to right.

Fig. 2. An X-line of a mesh-connected machine.

Fig. 3 shows an X-line of a toroidal machine. The switches are connected in
a cyclic fashion, namely 0, 2, 4, 6, 7, 5, 3, 1 and back to 0. The torus could be
obtained from the mesh of Fig. 2 by adding a link between switch 0 and switch 7.
However, there may be a physical limitation on the length of the cables, and the
torus is often wired as shown in Fig. 3. A three-dimensional torus architecture
is defined by replicating the links of a single line to all the lines in the same
dimension.

Multiple meshed partitions can co-exist in a single line since each only needs
links between the switches that form it. Toroidal partitions that consist of one
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Fig. 3. An X-line of a toroidal machine.

allocation unit can live together as well: to create one it is enough to use an
internal link between the two switch ports that are connected to the allocation
unit. However, only one toroidal partition containing two or more allocation
units can exist in a single line of a toroidal machine at a time. For example, the
partition {0,1} in Fig. 4 can be connected as a torus only by using all of the
links in the line. Therefore, this partition cannot co-exist with other partitions
of more than one allocation unit, such as {6,7}, in the same line.

Fig. 4. A toroidal partition containing two allocation units {0,1}.

We propose augmenting the toroidal interconnect with additional links to
overcome this limitation. This assumes, of course, that the switches have free
ports that can be connected. Fig. 5 shows additional links (in bold) on top of the
toroidal line of Fig. 3. Each switch has now six ports instead of four ports. Note
that the total number of links we use is linear with the size of the machine in
allocation units. Specifically, for each machine line of N allocation units we now
have 2N−1 links in that line, for N > 2. This number may be much smaller than
the total number of links in the machine. Thus, the cost of such augmentation
is low and, unlike the full crossbar topology, this interconnect is still practical
even for a very large machine.

This connection scheme has a very important property that conventional
toroidal topology lacks; multiple toroidal partitions can co-exist in a single line.
This property is the central motivation for augmenting the traditional toroidal
interconnect with additional links (as well as for the ”multi-toroidal” moniker).
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In the following section, we will formulate and prove a central theorem that is
strictly valid for the particular wiring scheme shown in Fig. 5. We do not lose
generality, however: other schemes that allow wiring toroidal partitions that do
not occupy the whole line will have similar advantages. The described topology is
regular, scalable, efficient, and, as shown below, greatly simplifies the algorithms
of partition allocation.

Fig. 5. Additional links (in bold) added to a toroidal line.

2.1 Properties of the Multi-toroidal Interconnect

We describe several properties of the multi-toroidal interconnect. We focus on a
single line in one dimension. The generalization to a three-dimensional machine
is straightforward due to the independence of the machine dimensions and the
fact that all the lines of the dimensions are identical.

Property 1: Any partition of size N = 1 in a particular dimension can be
wired without using any links between switches in that dimension. To close a
torus we will use the internal connection between the two ports that are con-
nected to the allocation unit.

Property 2: Any mesh partition of size N > 1 in a particular dimension
can be wired using exactly N − 1 links in each line it spans in that dimension.
We simply connect the switches in a linear order: i, i+1, ., i+N−1. Such wiring
uses exactly N − 1 links (cf. Fig. 6).

Property 3: Any toroidal partition of size N > 2 in a particular dimension
can be wired using exactly N links in each line it spans in that dimension.
We distinguish between two cases: If N is odd, we connect the switches in the
following order: i, i + 2, , i + N − 1, i + N − 2, i + N − 4, , i + 1, i (cf. Fig. 7). If N
is even the order is i, i + 2, , i + N − 2, i + N − 1, i + N − 3, , i + 1, i (cf. Fig. 8).
With the above ordering, each switch is connected to each of its neighbors by a
single link, so a total of N links are used.

Property 4: A toroidal partition of size N = 2 at either the left or the right
boundary of the machine in a particular dimension can be wired using exactly
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2 links in each line it spans in that dimension. This is obvious from Fig.5: there
are two links that connect allocation units 0 and 1 (or 6 and 7).

Property 5: A toroidal partition of size N = 2 which is not next to either
the left boundary or the right boundary of the machine in a particular dimension
can be wired using exactly 3 links in each line it spans in that dimension. It is
the only case where links and switches lying beyond the geometrical boundaries
of the partition are used.

Fig. 6. A mesh partition wired in a linear manner.

Fig. 7. A toroidal partition of odd size.

There are two ways to connect such a partition: by using an additional link
to the right or to the left of the partition (right-oriented or left-oriented wiring,
respectively). Fig. 9 shows an example of two such partitions. The first uses
allocation units 1 and 2 and is right-oriented. The second uses allocation units
5 and 6 and is left-oriented. Fig. 9 also illustrates a fragmentation problem with
a mix of co-allocated right and left-oriented partitions. Suppose we now need to
connect allocation units 3 and 4 as a torus. Obviously, we lack links to close the
torus, and the allocation will fail.

The solution is to use a uniform orientation for all internal toroidal partitions
of size two in a particular dimension. Without loss of generality, we chose to use
right-oriented wiring for all partitions. As seen in Fig. 10, allocation units 3 and
4 can now be connected as a torus. We have described a set of connection rules
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Fig. 8. A toroidal partition of even size.

Fig. 9. Two toroidal partitions (1,2 and 5,6) of size two.

that satisfy the above properties. We now proceed to prove the main theorem
behind the multi-toroidal architecture.

Fig. 10. Right-oriented wiring solves allocation problems.

Theorem:

Let P1, . . . , Pk, be co-allocated meshed or toroidal contiguous partitions that
are wired according to the above connection rules. Let P be a new contiguous
partition that can fit into the free space of a multi-toroidal machine. P can al-
ways be connected according to the same rules without changing the wiring of
P1, . . . , Pk.
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Proof:

Allocation of P can fail only if one (or more) of its adjacent partitions uses
one or more links that P needs in one of the lines. By assumption, we always
connect partitions according to the rules described above. Assume in addition
that we always use right-oriented wiring in this line. The only way P may need a
link that is allocated to one of its neighbors in the line is if P and the neighbor are
both of size 2 in this dimension, neither is at the edge of the machine, and if they
are wired using different orientation (cf. Fig. 9). The last statement contradicts
the assumption that we always choose right-oriented wiring, thus proving the
theorem for a single line. Since all the lines are independent, the theorem holds
for a three-dimensional machine as well.

Note that we could have equally chosen left-oriented wiring, or different ori-
entation in different dimensions, or even different orientations in different lines
in the same dimension — the proof will still hold.

The significance of the theorem lies in the proof that any new partition can
be wired without modifying the existing ones, and in the following corollary that
stems directly from it.

Corollary:

Allocating meshed or toroidal partitions according to the connection rules
described above allows us to dispense with searching for a suitable set of links
to connect the partition as requested. The above theorem guarantees that such
a set exists, and the connection rules define the link set to be used.

As noted above, the theorem is strictly valid for the particular topology we
have chosen. In general, however, any alternative scheme that allows allocation
of multiple tori in a single line will be similarly beneficial. It may be not possible
to define a set of fixed connectivity rules for any given variant of multi-toroidal
topology. Accordingly, the allocation algorithms may have to be augmented with
a search for a suitable link set. Multiple valid link sets may exist for the same
partition, and an algorithm may be needed to determine the optimal one. Our
connectivity rules are, in fact, such an algorithm: they determine a valid link
set with the minimal number of wires and satisfy the above theorem. We defer
discussion of more general cases to a future work.

3 The Simulation Environment

We simulated a three-dimensional machine of 512 (8 × 8 × 8) allocation units,
connected as shown in Fig. 5 above. We simulated a batch system in which
arriving jobs are placed in a queue in the order of arrival. The scheduler is
invoked upon every job arrival and job termination to schedule queued jobs
(if any) for execution according to a specified policy. We experimented with
both FCFS and aggressive backfilling scheduling policies. With the former, if no
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partition is found for the first job in the queue the system will wait until one
or more running jobs terminate before attempting to allocate space for the first
waiting job again. With backfilling, if we cannot start the first waiting job, we
traverse the queue trying to schedule other jobs out of order.

We used two job logs of real parallel systems as inputs to the simulator: the
Cornell Theory Center (CTC) SP2 and the San Diego Supercomputer Center
(SDSC) SP2. Both logs are publicly available from [1]. Each job entry in these
logs contained the job’s size, arrival time, actual and estimated runtimes, and
other descriptive fields. The CTC log represents a 512 node machine, and the
SDSC log represents a 128 node machine. For the latter we multiplied the job
sizes by 4, to scale to our 512 node machine.

Neither of these systems is a 3-dimensional toroidal machine. Nor do the logs
contain the jobs’ shapes, only scalar sizes. We used them because of the scarcity
of publicly available realistic workloads that provide useful statistics. To adjust
for the shortcomings, we had to transform the scalar sizes to 3-dimensional
shapes and to specify the topology (mesh or torus) of each job. We used a simple
algorithm for the size transformation: we calculated three integers, a, b and c, so
that each of these integers was in the range of 1 . . . 8, and a× b× c was equal to
the job’s size. These integers can easily be found in a first-match manner u sing
three nested loops running from 1 to 8. We then set the job shape to be a×b×c.
If all combinations of a×b×c have been tried and none is found equal to the job
size, we use the first combination at which a × b × c is minimal but still larger
than the job size. Accordingly, a job of size 6 will request a partition’s shape of
1 × 1 × 6 and a job of size 27 will request a partition with shape of 3 × 3 × 3.
To determine the topology we used a simple probabilistic model that outputs
”torus” with a probability of Pt and ”mesh” with a probability of 1 − Pt.

To simulate different offered loads we multiplied the jobs’ arrival times in
the logs by different constant factors leaving the rest of the logs’ characteristics
unchanged. For each simulation, we calculated the average system utilization
(see [6] for details) to evaluate the system performance as a function of offered
load.

For partition allocation, we used a brute force first-fit algorithm. Its input is
the shape of a rectangular partition. We search for a free area with this exact
shape, allowing for rotation. The search always starts from a specific node (in our
case, the node in location (0,0,0) of the machine) and proceeds independently in
every dimension.

We rely on the theorem of Section 2.1 to guarantee that any free partition
in the multi-toroidal machine can be wired appropriately, as a mesh or a torus.
The rules described in Section 2.1 prescribe link allocation. Therefore, any free
partition of the required shape can be used to run a job. Note that the theorem
guarantees that any space allocation algorithm usable on traditional toroidal
machines (and more generally, on hypercubes) can be used instead of ours. Any
improvements in spatial allocation, including non-contiguous partition alloca-
tion, are left for future research.
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Fig. 11. System utilization of a simulated multi-toroidal machine versus a sim-
ulated three-dimensional toroidal machine — scheduling of different mixtures of
torus and mesh requests with FCFS: The graphs for the multi-toroidal machine
with toroidal jobs only and toroidal machine with mesh jobs only completely
overlap.
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Fig. 12. System utilization of a simulated multi-toroidal machine versus a sim-
ulated three-dimensional torus — scheduling of mixtures of torus and mesh re-
quests with aggressive backfilling: The graphs for the multi-toroidal machine
with toroidal jobs only and toroidal machine with mesh jobs only completely
overlap.
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4 Simulation Results

We compared the performance of a multi-toroidal machine of Fig. 5 with that
of a 3-dimensional toroidal machine of equal size. For each log, we ran three
sets of simulations on the toroidal machine. These simulation sets used different
mixtures of toroidal and mesh jobs. In the first set, all jobs requested a mesh.
In the second, 50% of the jobs requested a mesh and the rest requested a torus.
In the third, all jobs requested a torus. Each set consisted of simulations with
offered loads ranging between 20% and 100%, as described in Section 3. Then,
we ran a single set of simulations on the multi-toroidal machine of Fig.5. In these
simulations, all the jobs requested toroidal partitions.

The results for the system utilization are shown in Fig. 11 and Fig. 12 for
FCFS and backfilling scheduling, respectively. Overall, utilization is lower for
FCFS scheduling, which is consistent with numerous other results in the liter-
ature [9,10,11,12,13,14,15]. Torus-heavy workloads result in lower utilization of
toroidal machines than workloads that consist of meshes only, and the utiliza-
tion decreases as the percentage of toroidal jobs in the workload increases. The
reason was explained in Section 2: toroidal partitions that contain more than
one allocation unit can consume many links, thus preventing allocation of other
partitions in a large fraction of the remaining free space.

The utilization of the multi-toroidal machine is higher compared to the
toroidal machine, even though all the jobs are toroidal. Specifically, it is equal
to the utilization of the toroidal machine with mesh jobs only. If we think of al-
location of only toroidal partitions as a worst case scenario, then the worst case
performance of the multi-toroidal machine is equal to the best-case performance
(with allocation of only mesh jobs) of the toroidal machine. This readily follows
from the central theorem of Section 2.1.

This effect is qualitatively independent of the scheduling strategy; the ad-
vantage of the multi-toroidal topology is manifested clearly for both FCFS and
backfilling scheduling schemes. To assess the difference quantitatively, one should
focus on the points where each graph first deviates from a straight line: even
though utilization can be improved further with higher loads, in online systems
this deviation means that more jobs keep arriving than the system can accom-
modate, and the system will saturate unless some jobs are rejected. For fully
toroidal workloads derived from the SDSC logs, the multi-toroidal machine may
improve utilization by as much as a factor of 2 over the toroidal machine: 60% vs.
30% with FCFS scheduling (Fig. 11b), 80% vs. 40% with aggressive backfilling
(Fig. 12b).

For fully toroidal workloads derived from the CTC logs, the improvement is
more modest: 50% vs. 40% with FCFS scheduling (Fig. 11a), 80% vs. 60% with
aggressive backfilling. This is partly due to the particular algorithm we used to
generate the jobs’ shapes from their scalar sizes (cf. Section 3 above). It eases
allocation of tori on traditional toroidal machines by generating partition shapes
that are ”slim” in one or two dimensions. For example, a toroidal partition of
size 8 will be assigned a shape of 8× 1× 1 and will be wired as a torus without
consuming extra links. Similarly, a partition of size 64 will be shaped as 8×8×1,
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and there will be no extra links involved in wiring it as a torus, either. ”Fatter”
partitions such as 2 × 2 × 2 and 4 × 4 × 4 will consume many more links when
connected as tori (cf. Section 2). In fact, only two 4× 4× 4 partitions can be fit
into an 8 × 8 × 8 torus simultaneously, for the overall utilization of 25%.

We experimented with ”fat” shapes. To this end, we modified our shape-
generating algorithm to start from a minimal size of 2 in each dimension. Thus,
the smallest job will request a 2 × 2 × 2 partition. The results of these the sim-
ulations with backfilling are shown in Fig. 13. It is obvious that the utilization
of a three-dimensional torus is simply dismal in the case of torus-heavy work-
loads, while the results for the multi-toroidal machine (and for the purely mesh
workloads) are the same as in Fig. 12, as could be expected. The multi-toroidal
machine improves the resource utilization by toroidal jobs by a factor that lies
in the range of 2.5 (Fig. 13b) to 4 (Fig. 13a).

Note that the spatial allocation algorithm we used in all our experiments is
not optimized in any way — it is a first fit brute force search, as described in
Section 3. A significant body of research comparing different allocation schemes
for mesh partitions on three-dimensional toroidal machines: first fit, best fit,
worst fit, lookahead allocation, etc [9,10,11,12,13,14,15] show that the difference
in machine utilization between the different allocation schemes in not significant
— at most of the order of a few per cent. Part of our future research agenda
is to experiment with various algorithms for different kinds of multi-toroidal
machines and to validate that the advantage of the multi-toroidal interconnect
is maintained.

5 Concluding Remarks

We have presented a new connectivity scheme that augments the topology of
toroidal parallel machines with additional links. The new ”multi-toroidal” topol-
ogy is d designed to allow connecting a new partition as a mesh or a torus without
modifying any existing partition, as long as the new partition can fit into the
free space of the multicomputer. We have shown that for isolated contiguous
rectangular partitions the new topology can improve machine utilization by a
large factor of 2 to 4 (depending on the workload) compared with the traditional
toroidal interconnect, for different scheduling policies (FCFS or aggressive back-
filling). This improvement is due to the ability to co-allocate multiple toroidal
partitions in the same line of any dimension of the machine.

The multi-toroidal topology suggests other possible advantages such as non-
contiguous allocations of partitions by leveraging the additional links to connect
non-adjacent nodes. Non-contiguous allocation will require management (includ-
ing discovery, selection and allocation) of the communication links as dedicated
resources, since one will be generally able to connect a partition using one of
multiple valid link sets. Another advantage is the degree of redundancy offered
by the new topology that leads to increased fault tolerance. These are some of
the topics of our ongoing research.
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Fig. 13. System utilization of a simulated multi-toroidal machine versus a sim-
ulated 3-dimensional torus for different mixtures of torus and mesh requests —
scheduling of ”fat” jobs with aggressive backfilling: The graphs for the multi-
toroidal machine with toroidal jobs only and toroidal machine with mesh jobs
only completely overlaps.
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Abstract. We present an analysis of the costs and benefits of load shar-
ing of parallel jobs in the computational grid. We begin with a workload
generation model that captures the essential properties of parallel jobs
and use it as input to a grid simulation model. Our experiments are
performed for both homogeneous and heterogeneous grids. We measured
average job slowdown with respect to both local and remote jobs and we
show that, with some reasonable assumptions concerning the migration
policy, load sharing proves to be beneficial when the grid is homogeneous,
and that load sharing can adversely affect job slowdown for lightly-loaded
machines in a heterogeneous grid. With respect to the number of sites
in a grid, we find that the benefits obtained by load sharing do not scale
well. Small to modest-size grids can employ load sharing as effectively
as large-scale grids. We also present and evaluate an effective scheduling
heuristic for migrating a job within the grid.

1 Introduction

An emerging trend in high-performance computing is to build interconnected
networks of super-computing centers known as computational grids. Individu-
ally, these centers house computing resources and instruments needed for large-
scale collaborative applications. As these applications place increasing demands
on existing resources, increased efficiency in scheduling jobs onto the grid is
becoming more important. Already proven in the LAN environment, load shar-
ing is becoming feasible in WANs and grids. The emergence of test-beds like
TeraGrid[15] promises remarkable network bandwidth between distant sites, en-
abling load sharing with minimal network penalties.

In this work we investigated the costs and benefits of load sharing of par-
allel jobs in a simulated computational grid. First we present a detailed model
of a supercomputer workload. The nature of our workload model makes it easy
to use as input to the grid simulation experiments. We performed experiments
for both homogeneous and heterogeneous grids. The results indicate that load
sharing among sites is indeed worthwhile. We find that in a homogeneous grid
any amount of load sharing results in decreased wait times for users. In a het-
erogeneous grid with differing workloads and machine capacities, we find that
the processing of remote jobs on a (previously) lightly-loaded machine can cause
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delay to local jobs. We also investigate how well the benefits of load sharing scale
as the number of sites in a grid increases. The benefits are limited in that most
of the opportunities for load sharing are exploited in small and medium-sized
grids. Finally we present a simple heuristic for determining the target machine of
a migrated job. This heuristic, which we call Weighted Queue, is easy to compute
and does not require estimates of job run time. The paper is organized as follows:
In Section 2 we discuss related research. We present our workload model in Sec-
tion 3. Section 4 represents the bulk of the paper. It includes a description of the
simulation model, the homogeneous and heterogeneous grid results, the scaling
results, and the evaluation of the scheduling heuristic. Section 5 concludes the
work.

2 Related Work

The quality of the input data is paramount to any simulation model. Cirne and
Berman [1] developed a comprehensive model of workloads for space-shared par-
allel supercomputers. They modeled the variation in job arrival rates throughout
the work day and they examined the differences between estimated and actual
job run times. Our workload model differs from theirs in that we provide an alter-
native method for generating the job arrivals and for modeling the job run times
and job run lengths. We describe our workload model in the next section. In
considering the importance of workload traces in simulation experiments, Lo et.
al. [10] investigated the effects on job scheduling algorithms due to the use of real
workload traces vs. synthetic workload models. They found that the use of either
real or synthetic workloads did not affect the overall performance of job schedul-
ing algorithms. However, we note that the use of a real workload trace necessarily
limits the simulation to a single run. By using a workload model and its gener-
ated job traces, a large number of simulation runs may be conducted, thereby
producing enough data to make statistically significant comparisons among al-
ternative scenarios. Lo et. al. did find that other workload characteristics such
as the proportion of power-of-two job sizes and the correlation between job size
and job run time did affect scheduler performance. In the next section we discuss
these two characteristics as they relate to our experiments.

Hollingsworth and Maneewongvatana [7] propose a novel approach to schedul-
ing parallel jobs in a computational grid. They present the idea of an imprecise
calendar where jobs are scheduled into time slots by a hierarchical system of
manager nodes. Time slots that are further into the future are scheduled at a
coarse level. As the time for a slot nears, it is scheduled at a finer level. Like the
imprecise calendar approach, we wish to efficiently distribute parallel jobs in a
grid. However, we employed simple scheduling methods that do not require job
information such as run length1. Eager et. al. [2] examined the relative benefits of

1 That is, no estimate of run length is required for job migration to another machine
in the grid. However, we employ backfilling at the local machine level which requires
run time estimates.
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simple vs. complex load sharing policies. Using an analytical model for a homo-
geneous network, they concluded that simple policies that require only a small
amount of state information perform as well as complex policies. We also exam-
ined simple policies and we extended their work by comparing relative amounts
of load sharing in both homogeneous and in heterogeneous networks. More re-
cently Subramani et. al. [14] used simulation to evaluate distributed scheduling
algorithms in a grid environment. They use a scheme in which jobs are placed in
queues at multiple sites. The system tracks which copy of the job is first to begin
execution and all other copies are cancelled. Our work differs from theirs in that
we employ a scheduling algorithm that is easy to implement and we have a more
complete workload model with which we are able to make multiple simulation
runs and hence reduce the variance in our performance measures.

3 Modeling the Workload

Our workload generation model takes an actual job trace as input. It produces a
synthetic workload in standard workload format[12] that captures the following
job characteristics:

1. Job inter-arrival times
2. Job sizes
3. Job run times

In this section we discuss how we model each of these characteristics. Our model
was created from careful examination of the traces shown in Table 1. Since
the SDSC (San Diego Supercomputing Center) and the CTC (Cornell Theory
Center) traces are more recent and come from a machine that is more widely
used, these two traces were used as the basis for our simulation experiments.

Table 1. Actual Workloads Examined

Center Machine Nodes Time Period

LANL CM5 1024 Oct 1994 to Sep 1996
SDSC IBM SP2 128 Apr 1998 to Apr 2000
CTC IBM SP2 512 Jun 1996 to May 1997

In production systems it is likely that some jobs will be unable to begin exe-
cution until other jobs have finished due to precedence constraints. The standard
workload format allows for the specification of precedence constraints; however,
none of the workloads that we examined contained this information. For this rea-
son and for simplicity, we assume that all jobs arrive to the system independently.
Figure 1 shows the average arrival rates of jobs to the IBM SP2 supercomputer
at the San Diego Supercomputing Center. From the figure it is clear that more
jobs arrive to the system during the working hours than during the night. This
phenomenon, which was also observed by Cirne and Berman, occurs in all of
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the workload traces that we examined. We capture the variation in job arrival
rates by using a Non-stationary Poisson Process to model the job arrivals. In a
Poisson Process the inter-arrival times (the times between job arrivals) follow
an Exponential probability distribution. Thus in our model the job inter-arrival
times are generated from six Exponential distributions, one for each period of
the day as shown in Fig. 1. Modeling the job arrivals in this manner helps to
produce a realistic workload which is more intense during the middle of the day.
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For our workload model the size of a job is characterized by the number
of CPUs it requests. The workload traces that we examined are dominated by
power-of-two sizes, i.e. 2, 4, 8, 16, 32, and 64. All other job sizes occur infre-
quently. Cirne and Berman [1] model the size of a job with a uniform-log dis-
tribution. In order to capture the prevalence of the power-of-two job sizes, they
added a direct probability for turning a job size into its nearest power-of-two
neighbor. In contrast, we chose to use a discrete probability distribution that re-
flects the frequency with which the job sizes appear in an actual workload. The
discrete probabilities are computed directly from the ratios in the real workload.
Figure 2 shows the job size probabilities for the SDSC data up to 64 CPUs.

We made several attempts at modeling job run times as a function of job
size. However, we found no correlation between these two characteristics. At each
center we assume an independent work model in which there is no correlation
between job size and job run time. After experimenting with several probability
distributions we found that the job run times fit the Weibull distribution quite
well. The quality of the fit is not surprising since Weibull random variables are
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commonly used to model task completion times. Figure 3 shows the actual job
run times from the SDSC workload plotted against run times from a Weibull
distribution. The plot is a histogram with a bin size of 500 seconds. It is clear
from the figure that most jobs run for a short period of time, while a few jobs run
for very long periods of time. Again, the size of the job is not a good predictor
of job run time. We only included jobs that ran to completion in order to avoid
jobs that were killed or that died.

4 Simulation

4.1 Model Description

Our simulation model of a computational grid consists of four supercomputer
centers. Traditionally, each center would operate in an autonomous fashion with
no job migration to other sites. The model shown in Fig. 4 illustrates the idea
of cooperation among the centers by allowing some jobs to be migrated to re-
mote sites. Each center has a local workload that is representative of the actual
workload for its machine type. Some percentage of the job arrivals are flagged
as migratable. We envision this occurring as users indicating via a job submis-
sion script that they are willing to allow a particular job to be migrated. Of
course not all jobs are migratable due to various reasons: locality of data, paral-
lel architecture-specific code, security concerns, etc. Therefore, our experiments
were conducted with varying percentages of the workload being migratable. The
choice of which jobs are flagged as such is completely random. In this way we
are certain to simulate the migration of both large jobs and small jobs.

We say that a local job is a job that executes on the machine at which the
job originally arrived. A remote job is one that has been migrated and executes
on a remote machine. We make this distinction because a job that is flagged
as migratable might actually execute on its local machine if it appears more
favorable. There are two requirements for a job to be transferred to a remote
machine:

1. The originating machine’s job queue must be nonempty.
2. There must be a remote machine with a more favorable queue status.

In other words, if a machine is currently lightly loaded, i.e. its queue is empty,
then it will not attempt to migrate an arriving job (even though the job may be
flagged as migratable.) In addition, when a machine’s queue is nonempty and
it attempts to migrate a job that just arrived, then it will transfer the job to
the machine whose queue size is smallest. Thus we employ the Shortest Queue
scheduling policy for the experiments in this section. Later, we will introduce a
new scheduling policy called Weighted Queue. These requirements are common
sense attempts to create a reasonable migration policy. This means that before
a machine attempts to migrate a job, it must poll the other machines in the grid
to obtain their load information.

The cost of job migration includes estimates for network bandwidth and the
amount of data to be transferred. As part of their work in predicting data transfer
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costs, Vazhkudai et. al. [17] measured the end-to-end bandwidth between two re-
mote super-computing centers. Their measurements were made using GridFTP,
the file transfer service of the Globus Toolkit[5]. They found the network band-
width to vary from 1.5 to 10.2 MB/sec (megabits). For our experiments we use
a constant network bandwidth of 5 MB/sec. Based on the work of Vazhkudai et.
al., this represents an achievable bandwidth for current systems. In the future,
advances in network infrastructure will help to reduce the cost of job migration.
For example, the TeraGrid project [15] will have the ability to transfer data at
the rate of 40GB/sec. The actual workload traces that we examined did not con-
tain information about data sizes. In the absence of this information, we used
a Triangular distribution as an approximation. The range of the distribution is
from 1MB to 1GB, with a mode of 100MB (megabytes)2.

For scheduling jobs at each local machine we employ backfilling, a technique
by which a job is allowed to move ahead of other jobs in the queue and begin
execution as long it does not cause the first job in the queue to be delayed.
The version of backfilling that we use is known as aggressive backfilling. It is
employed in the EASY scheduler on the IBM SP2. Our implementation is exactly
the one described in Mu’alem and Feitelson [11]. For an excellent description of

2 Data sizes were estimated based on a survey by Cirne.
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backfilling and its sensitivity to user run time estimates, we refer the reader to
their work.

4.2 Experimental Design

Table 2. Network Configurations for Simulation Runs

Homogeneous Heterogeneous
Network Network

Machine 1 SDSC1 SDSC1
Machine 2 SDSC2 SDSC2
Machine 3 SDSC3 CTC1
Machine 4 SDSC4 CTC2

Table 2 shows the homogeneous and the heterogeneous grid makeup for our
simulation experiments. We made 20 independent replications of the simulation
for each type of network and for each level of load sharing, 0, 25, 50, 75, and
100%. A level of load sharing indicates the percentage of jobs that are able to
be migrated. Each replication of an experiment was performed with a different
(but statistically similar) workload that was generated in accordance with our
workload model. Our performance measure of interest is job slowdown, which is
defined as follows.

Slowdown =

{
Queue Time+Run Time

Run Time for a local job,
Migration Time+Queue Time+Run Time

Run Time for a remote job.

Job slowdown captures the notion that users are more willing to accept long
queue times for long-running jobs than for short-running jobs. For each measure-
ment shown in the Results section we present an average of the 20 replications
for an experiment. In order to be certain that performance differences among
the different levels of load sharing are not due to randomness in the synthetic
workloads, we used the same sets of synthetic workloads as input to each exper-
iment.

4.3 Results

Homogeneous Grid Simulation. In the homogeneous grid simulation all ma-
chines have statistically identical workloads. Therefore, all machines get roughly
the same intensity of workload regardless of the amount of load sharing per-
formed. We present the average job slowdown for each level of load sharing in
Fig. 5. Since the results for all machines in the homogeneous network are similar,
only the results for one SDSC-type machine are presented. Each level of load
sharing corresponds to an experiment and the average job slowdown is presented.
The results are broken out by local and remote jobs. From the figure we see that
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as the amount of load sharing is increased, the average slowdown for local jobs
decreases. This is because as more jobs are allowed to be migrated, there is more
opportunity to exploit the benefits of load sharing, i.e. machines are able to
off-load more work to less heavily-loaded machines. Also, by the nature of our
migration policy, a machine will not attempt to migrate a job if its own job queue
is empty. Therefore, local jobs arriving to an empty queue (which is common
when backfilling is employed) are guaranteed to execute on the lightly-loaded
local machine. At the 25% load sharing level remote jobs have shorter average
slowdown than local jobs. This is because migrated jobs get sent to machines
with more favorable queue statuses. At 25% load sharing, the majority of jobs
(75%) are not allowed to be migrated and so they must execute locally, regardless
of the load on the local machine. Compared to the slowdown for local jobs, the
slowdown for remote jobs remains relatively unchanged as the amount of load
sharing is increased, although there is a slight increase at the 100% level. We
note that this increase is possible because the Shortest Queue scheduling policy
is not optimal. Although not presented, we also collected average and median
job queue times and average queue sizes for each experiment. These statistics
exhibit the same general trends as job slowdown. We conclude that for a homo-
geneous grid even a small amount of load sharing produces benefits. In addition,
by the use of a reasonable migration policy, local jobs can greatly benefit from
large amounts of load sharing, while remote jobs still experience lower slowdown
than when there is no load sharing.

A Confidence Interval for Improvement in Average Job Slowdown.
Here we statistically compare the improvement in average job slowdown for local
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jobs when the amount of load sharing is increased from zero to 25%. We present
a paired-t confidence interval. Since different sets of workloads were used for
each replication of an experiment, our observations of average slowdown are IID
(Independent and Identically Distributed.) Let our observations of slowdown be
labeled as Xij for i = 1, 2 (for no load sharing and for 25% load sharing respec-
tively), and for j = 1, . . . , n (where n is 20 because there are 20 replications.)
Let Zj = X1j − X2j . We construct a 90% confidence interval for E(Zj), i.e. for
the expected value of the difference in average job slowdown. If this confidence
interval does not contain zero, then we can state with approximately 90% con-
fidence that a small amount of load sharing (25%) decreases the average job
slowdown (assuming the accurateness of our workload and simulation models.)
The confidence interval is constructed as follows. We first compute the average
and an estimate of the variance of the Zj’s.

Z̄(n) =

∑n
j=1 Zj

n

and

v̂ar[Z̄(n)] =

∑n
j=1[Zj − Z̄(n)]2

n(n − 1)
.

The 90% confidence interval is

Z̄(n) ± tn−1,0.95

√
v̂ar[Z̄(n)] .

We computed Z̄(20) = 34.2 and v̂ar[Z̄(20)] = 169.8, which leads to a 90%
confidence interval of [11.7, 56.7]. Therefore, we can state (with approximately
90% confidence) that under our workload and simulation assumptions, allowing
25% load sharing results in a decrease in slowdown for local jobs of between 11.7
and 56.7.

Heterogeneous Grid Simulation. Grids consist of machines that have differ-
ent capacities, speeds, and workload characteristics. Our simulation of a hetero-
geneous grid captures those differences in capacities and workload characteris-
tics. We did make the simplification that remote jobs, although generated from
different distributions for different machine types, will execute at the same speed
on any machine in the network, given the same number of processors. This is
a reasonable assumption for our simulations since all of the workloads in the
model are based on job traces from IBM SP2 supercomputers.

The model for the heterogeneous grid consists of two SDSC machines and two
CTC machines. Each CTC machine has 512 processors and each SDSC machine
has 128 processors. Although the CTC machines have more computing capacity,
their workloads are more intense than those at the SDSC machines. In fact, the
CTC machines handle more than twice the number of jobs than SDSC machines;
and the average and the median run times for CTC jobs are more than twice
those for SDSC jobs[12].
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Figures 6 and 7 show the average slowdown for SDSC-type and CTC-type
machines respectively. Again, we only present the results for one machine of
each type since the results for other two machines are similar. We can see from
the ordinate scale in the two figures that the CTC machines have lower job
slowdown. The computing capacity of these machines is able to handle their
heavy workloads. An interesting result is that the slowdown for SDSC local
jobs increases at the 25, 50, and 75% load sharing levels when compared to
no load sharing. This is because the remote jobs that get processed by the
SDSC machines are in general of a longer duration than the normal local SDSC
jobs. Hence, the long-running remote jobs tend to interfere with the processing
of local jobs. Not until we have 100% load sharing do the SDSC local jobs
actually experience lower average slowdown than under no load sharing (0%.)
The slowdown for remote jobs processed at the SDSC machines increases with
the amount of load sharing since the queue time increases as more long-running
CTC jobs are processed.

It is easy to see that load sharing has greater benefits for users of machines
that are more heavily loaded. The slowdown measurements for CTC local jobs
become more favorable as the amount of load sharing is increased. The slowdown
for remote jobs processed at the CTC machines remains relatively unchanged,
although there is a slight increase with the increase in the amount of load shar-
ing. We conclude that load sharing in a heterogeneous grid can adversely affect
local jobs on (previously) lightly-loaded machines. Machines that were previ-
ously heavily-loaded receive the most benefit. In this type of environment, our
results indicate that as much load sharing as possible should be permitted so
that the workload can be evenly distributed.

Scaling the Number of Sites. Large-scale projects that include the admin-
istration of a computational grid may need to consider expansion of the grid to
new sites. An example is the addition of the Pittsburgh Supercomputer Center
(PSC) to the TeraGrid project in October 2002. If load sharing is employed,
then the effect of the new site will be an important consideration. In this section
we test the performance of load sharing with respect to the number of sites in a
grid. In addition to the runs with 4 sites as described in the previous sections,
we made runs with 2, 6, 8, and 10 sites for both homogeneous and heterogeneous
grids. The homogeneous grid consists entirely of SDSC-type machines. For the
heterogeneous grid we split the number of machines evenly between SDSC-type
machines and CTC-type machines. For example, in the run with with 10 total
machines, the grid consists of 5 SDSC machines and 5 CTC machines. All runs
for this experiment were performed at the 50% load sharing level. We present
the average job queue times in Fig. 8. In this figure the average queue times for
the heterogeneous networks are higher due to the heavy workloads at the CTC
machines. The results for both types of grids are presented in the same figure
in order to save space. We are not implying that all homogeneous grids perform
better than heterogeneous grids. The figure shows that the average job queue
time decreases as the number of sites increases; however, the improvements come
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at a decreasing rate. In moving from a small number of sites (2 or 4) to a larger
number of sites, the benefits of load sharing are readily apparent. As the num-
ber of sites increases, the benefits of load sharing still exist, but there seems to
be a saturation point where all of the opportunities for load sharing have been
exploited. This suggests that small to modest-sized grids can be as effective as
large-scale grids with respect to load sharing.

A Proposed Scheduling Heuristic. In this section we present a new heuristic
for choosing the target machine for job migration. In the absence of detailed job
information, or when low scheduling overhead is desired, one simple measure is
the number of jobs in the remote machine’s job queue. By itself this criterion
does not always yield the best migration decisions because it does not take into
account the job runtime. Nevertheless, schedulers only have estimates of job run
time a priori to job execution and these estimates are notoriously inaccurate [9].
Also, backfilling has a significant effect on a machine’s queue size. A simple and
natural extension to using shortest queue size is to compute the ratio of the total
number of CPUs being requested by jobs currently in the queue to the number
of CPUs in the machine. We call this criterion Weighted Queue. It measures
the percentage of a machine’s capacity that has already been requested, which
could be greater than 100%. The appeal of this heuristic is that it is easy to
compute and it does not require estimates of job run time. In a homogeneous
grid the Weighted Queue heuristic performs exactly the same as Shortest Queue
because all machines have the same workload characteristics and the same ca-
pacity. However, in a heterogeneous grid this heuristic can exploit the differences
in workloads and machine capacities. We compare the performance of Weighted
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Queue vs. Shortest Queue in a simulation experiment for a heterogeneous grid of
two SDSC-type machines and two CTC-type machines. The average job queue
times are presented in Fig. 9. In this figure we are directly comparing the two
measures. For both heuristics the average queue time decreases as the amount
of load sharing increases. Depending on the level of load sharing, the reductions
in queue times range between 4% and 64% for Shortest Queue, and between
15% and 77% for Weighted Queue. Thus Weighted Queue performs better in
the heterogeneous environment.

5 Conclusions

In this work we investigated the benefits of load sharing of parallel jobs among
supercomputer centers in a computational grid. By closely examining actual job
traces, we were able to create a model that generates accurate synthetic work-
loads. Using these workloads as input, we employed a discrete-event simulation
model to explore the effects of load sharing in both homogeneous and hetero-
geneous grids. For homogeneous grids our results demonstrate that cooperation
among sites in the form of load sharing leads to overall reduced job slowdown.
By the use of a migration policy that only allows migration from a nonempty
queue to a queue that is more favorable, local jobs receive the most benefit from
load sharing. For heterogeneous grids, where there are large differences in work-
load characteristics among the sites, a small amount of load sharing results in
increased job slowdown for local jobs on lightly-loaded machines. Local jobs in
the heavily-loaded machines receive the most benefit. In this case the migration
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policy should be carefully considered and simulation is one tool that can help in
this evaluation. We also see that the benefits of load sharing do not scale particu-
larly well. There is a point of diminishing returns as the number of sites in a grid
increases. Thus we conclude that modest-sized grids can provide as much benefit
with respect to load sharing as large-scale grids. Finally, we presented a simple
heuristic for selecting the target machine of migrated job. The Weighted Queue
measure, which considers the number of CPUs being requested relative to a ma-
chine’s capacity, is effective, easy to compute, and does not require estimates of
job run time.
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Abstract. This paper presents a comprehensive characterization of a multi-cluster
supercomputer3 workload using twelve-month scientific research traces. Metrics
that we characterize include system utilization, job arrival rate and interarrival
time, job cancellation rate, job size (degree of parallelism), job runtime, memory
usage, and user/group behavior. Correlations between metrics (job runtime and
memory usage, requested and actual runtime, etc) are identified and extensively
studied. Differences with previously reported workloads are recognized and sta-
tistical distributions are fitted for generating synthetic workloads with the same
characteristics. This study provides a realistic basis for experiments in resource
management and evaluations of different scheduling strategies in a multi-cluster
research environment.

1 Introduction

Workload characterization of parallel supercomputers is important to understand the
system performance and develop workload models for evaluating different system de-
signs and scheduling strategies [1,2]. During the past several years, lots of workload
data has been collected [3], analyzed [4,5,6], and modeled [7,8,9]. Benchmarks and
standards are also proposed for job scheduling on parallel computers [10].

In previously studied workloads [4,5,6,7], some characteristics are similar. For ex-
ample, most of the workloads are collected from large custom-made production fa-
cilities (IBM SP2, SGI Origin, etc) in supercomputing centers. Jobs typically request
“power-of-two” number of processors and have different arrival patterns in different pe-
riods (e.g. peak and none-peak hours in a daily cycle). Some characteristics, such as job
attribute distributions and correlations, vary across different workloads [4,5,11]. Other
characteristics are studied and reported separately, such as job cancellation rate [9] and
conditional distributions (e.g. actual runtime distributions conditioned on requested run-
time [4]). In this paper we compare our workload with previous reported ones on a per
characteristics basis.

3 Distributed ASCI Supercomputer-2 (DAS-2). ASCI stands for Advanced School for Comput-
ing and Imaging in the Netherlands.
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This paper presents a comprehensive workload characterization of the DAS-2 [12]
supercomputer. The DAS-2 system is interesting in that it is built using the popular
COTS (Commodity Off The Shelf) components (e.g. Intel Pentium processors and Eth-
ernet networks) and consists of multiple distributed clusters serving the participating
universities. Not like other production machines, DAS-2 is dedicated to parallel and
distributed computing research thus has much lower system utilization. We analyze
twelve-month workloads on DAS-2 clusters in year 2003. Characteristics include sys-
tem utilization, job arrival rate and interarrival time, job cancellation rate, job size (de-
gree of parallelism), job runtime, memory usage, and user/group behavior. Correlations
between metrics are also identified and studied.

The contributions of this paper reside in the following. Firstly, our study is based on
cluster workloads. Cluster computing is a popular alternative in the HPC community
and to our knowledge, not much work has been done in characterizing cluster work-
loads. Secondly, the system we study is a research facility. This provides an interesting
comparison point to the well studied production workloads. Thirdly, we present a com-
prehensive characterization of the DAS-2 workloads. We not only analyze most of the
metrics appeared in previous work, but also extensively study the correlations between
different characteristics. Moreover, we fit the observed data with statistical distribu-
tions to facilitate synthetic workload generation. This research serves as a realistic basis
in modeling cluster workloads, which contributes as input for evaluations of different
scheduling strategies in a multi-cluster research environment [13].

The rest of the paper is organized as follows. Section 2 provides an overview of
the DAS-2 system and workload traces used in our study. Section 3 analyzes the over-
all system utilization. Section 4 describes the job arrival characteristics, including job
arrival rate, job interarrival time and job cancellation rate. Distributions are fitted for
job interarrival times and job cancellation lags. Section 5 describes job execution char-
acteristics. This includes job size, job actual runtime, memory usage, and correlations
between them. Distributions and/or conditional distributions are also provided. Sec-
tion 6 describes user/group behavior and its implications in modeling and predictions.
In section 7 conclusions are presented and future work is discussed.

2 The DAS-2 Supercomputer and Workload Traces

The DAS-2 supercomputer consists of five clusters located at five Dutch universities and
is primarily used for computing and scientific research. The largest cluster (Vrije Uni-

Cluster Location #CPUs Period #Job entries
fs0 Vrije Univ. (VU) 144 01-12/2003 219618
fs1 Leiden Univ. 64 01-12/2003 39356
fs2 Univ. of A’dam (UvA) 64 01-12/2003 65382
fs3 Delft Univ. of Tech. 64 01-12/2003 66112
fs4 Utrecht Univ. 64 02-12/2003 32953

Table 1. DAS-2 clusters and workload traces.
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Fig. 1. System utilization of DAS-2 clusters. “Average” stands for the average utilization
of all days in the year. “Average*” stands for the average utilization of all active days in
the year, excluding system downtime and days without job arrivals.

versiteit) contains 72 nodes and the other four clusters have 32 nodes each. Every node
contains two 1GHz Pentium III processors, 1GB RAM and 20GB local storage. The
clusters are interconnected by the Dutch university internet backbone and the nodes
within a local cluster are connected by high speed Myrinet as well as Fast Ethernet
LANs. All clusters use openPBS [14] as local batch system. Maui [15] (FCFS with
backfilling) is used as the local scheduler. Jobs that require multi-clusters can be sub-
mitted using toolkits such as Globus [16]. DAS-2 runs RedHat Linux as the operating
system.

We use job traces recorded in the PBS accounting logs for twelve months in year
2003 on the five clusters4. All jobs in the traces are rigid (jobs that do not change
parallelism at runtime) batch jobs. An overview of the DAS-2 system and workload
traces is provided in Table 1. As we can see, fs0 (VU) is the most active cluster, with
more than two hundred thousand job entries. Next we have clusters at UvA (fs2) and
Delft (fs3), each with more than sixty thousand entries. Leiden (fs1) and Utrecht (fs4)
are relatively less active among the DAS-2 clusters. Next section gives a more detailed
analysis on the overall system utilization.

3 System Utilization

Figure 1 shows the DAS-2 system utilization as function of time of day. Two plots are
shown for each cluster. One is average utilization of all days and the other is average uti-

4 Logs of January on fs4 are not available.
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Fig. 2. Daily cycle of job arrivals during weekdays on DAS-2 clusters.

lization of all active days in the year (excluding system down time and days without job
arrivals5). In average, fs0 has the highest (22%) and fs3 has the lowest system utilization
(7.3%) among DAS-2 clusters. The utilization (7.3% to 22%) is substantially lower than
previously reported workloads (e.g. 50% in average excluding downtime [5]). This is
because DAS-2 system is designed for scientific research and production jobs are pre-
cluded from it. The goal of DAS-2 is not on high utilization, but rather on provide
fast response time and more available processors for university researchers. Moreover,
DAS-2 schedulers define one special policy, which forbids jobs to be scheduled on
nodes (SMP dual processor) of which one processor is already used by another job.
This policy also has certain negative impact on the overall system utilization.

We can see that the utilization approximately follows the daily job arrival rate (see
Figure 2), although the differences between day and night are generally smaller. It is be-
cause nightly jobs often require more processors and run longer than daily jobs, despite
substantially fewer job arrivals. This is particularly evident on cluster fs3 and fs4.

4 Job Arrival Characteristics

In this section we analyze the job arrival characteristics. We first describe the job arrival
rate, focusing mainly on daily cycles. Daily peak and non-peak hours are identified.
Secondly, we characterize the job interarrival times during daily peak hours. Several
statistical distributions are examined to fit the job interarrival times. Finally, job cancel-

5 Since we calculate the system utilization based on traces, we could not distinguish whether it
is system down time or time without job arrivals.
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Cluster Period M (s) CV Best Fitted distribution KS
fs0 2003/12/02 17 1.6 gamma (a = 0.44, b = 39) 0.10
fs1 2003/11/25 26 2.4 gamma (a = 0.30, b = 86) 0.13
fs2 2003/12/29 14 1.3 hyperexp2 (c1=0.92, λ1=0.07, c2=0.08, λ2=100) 0.07
fs3 2003/05/26 10 1.8 hyperexp2 (c1=0.55, λ1=0.06, c2=0.45, λ2=0.42) 0.10
fs4 2003/08/13 62 3.0 hyperexp2 (c1=0.09, λ1=0.003, c2=0.91, λ2=0.03) 0.10

Table 2. High load distributions of job interarrival time during daily peak hours (M -
Mean, CV - Coefficient of Variation, KS - maximal distance between the cumulative
distribution function of the theoretical distribution and the sample’s empirical distribu-
tion).

Cluster Period M (s) CV Best Fitted distribution KS
fs0 Dec 27 4.5 hyperexp2 (c1=0.04, λ1=0.003, c2=0.96, λ2=0.06) 0.15
fs1 Aug, Dec 66 3.6 Weibull (a = 22.6, b = 0.44) 0.10
fs2 Dec 44 5.0 Weibull (a = 26.1, b = 0.58) 0.08
fs3 May, Dec 23 6.0 Weibull (a = 11.6, b = 0.53) 0.14
fs4 Aug, Nov 86 5.1 Weibull (a = 33.2, b = 0.5) 0.09

Table 3. Representative distributions of job interarrival time during daily peak hours
(M - Mean, CV - Coefficient of Variation, KS - maximal distance between the cumu-
lative distribution function of the theoretical distribution and the sample’s empirical
distribution).

lation rate and cancellation lags are analyzed and modeled, since it may also affect the
scheduling process.

4.1 Job Arrival Rate

As is studied in [7], job arrivals are expected to have cycles at three levels: daily, weekly,
and yearly. In a yearly cycle, we find that workloads are not distributed evenly through-
out the year. Instead, workloads concentrate on specific months and job entries in these
months are around two or more times above average. We call them “job-intensive”
months (October, November and December on fs0, August, November on fs1, Novem-
ber, December on fs2, May, December on fs3, and August, November on fs4). This
is because of the different active users/groups on different clusters and they are active
in specific periods during the year (see Section 6). In a weekly cycle, all clusters share
similar characteristics. Wednesday has the highest average job arrival rate and decreases
alongside, with Sunday and Saturday have the lowest arrival rate. This is natural since
people generally work more during weekdays (Monday - Friday) than weekends (Sat-
urday and Sunday).

The most important cycle is the daily cycle. As is shown in Figure 2, clusters share
similar daily workload distributions during weekdays. We identify the daily peak hours
as from 9am to 7pm on all five clusters. This is in accordance with normal “work-
ing hours” at Dutch universities. Similar job arrival distributions are reported on other
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Fig. 3. Fitting distributions of interarrival time during peak hours on fs0.

workloads with different peak hour periods (e.g. 8am to 6pm in [4], 8am to 7pm in [7]).
Additionally, an intermediate period is reported from 6pm to 11pm in [4]. We observed
similar characteristics on DAS-2 clusters, with an intermediate arrival period from 8pm
to 1am and a low arrival period from 1am to 8am. The arrival rate per hour can be di-
vided into three scales. The fs0 cluster has the highest one, with an average arrival rate
of 108 jobs per hour and peak arrival rate exceeding 200 jobs per hour. In the middle
there are fs2 and fs3, with average arrival rates of 31 and 32 jobs per hour each. Clusters
fs1 and fs4 have average arrival rates of 19 and 15 jobs per hour, respectively.

4.2 Job Interarrival Time

Based on the observed job interarrival patterns, we choose to characterize “representa-
tive” and “high load” period of job interarrival times. The representative period is de-
fined as the peak hours during weekdays in job-intensive months. The high load period
is the peak hours of the most heavily loaded days in the year. As is shown in Table 2,
during high load period the mean ranges from 14 to 62 seconds and the coefficient of
variation (CV) varies from 1.3 to 3.0 on DAS-2 clusters. The mean and CV are consid-
erably larger in the representative period (see Table 3). Both small (1-2) and large CVs
(3-6) have been reported in other workloads [4,6].

We have selected several statistical models to fit the interarrival times of represen-
tative and high load period, including hyperexponential, gamma, Weibull, and heavy-
tailed distributions like lognormal and Pareto [17]. We fit the above mentioned distribu-
tions (except hyperexponential) using Maximum Likelihood Estimation (MLE) method,
and a two-phase hyperexponential distribution using Expectation Maximization (EM)
algorithm6 [18]. The goodness of fit is assessed using the Kolmogorov-Smirnov test.

6 Matlab [19] and Dataplot [20] are used to calculate means, CVs, do MLE fitting and goodness
of fit test. EMpht [21] is used to fit the hyperexponential distribution.
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Fig. 4. Fitting distributions of interarrival time during peak hours on fs1.

Results of distribution fitting are shown in Table 2 and 3. Figure 3 and 4 further
illustrate how well the different distributions fit the trace data on fs0 and fs1. Generally
speaking, none of the chosen distributions pass the goodness of fit test. Some distri-
butions, such as gamma and hyperexponential, fit the head of the sample distribution
well but fail to fit the tail. Others like lognormal and Pareto, fit the tail but not the head.
It seems not likely to find a model that fits all parts of the empirical distribution well.
However, we provide the best fitted distributions for high load and representative period
on DAS-2 clusters. For the high load period (see Table 2), gamma and two-phase hy-
perexponential give the best results among the distributions. One is slightly better than
the other depending on the clusters. For the representative period where longer tails
and larger CV are observed, Weibull distribution has the best Kolmogorov-Smirnov
test results. The only exception occurs on fs0, where a two-phase hyperexponential dis-
tribution fits the sample tail better than Weibull. Parameters of fitted distributions are
provided in Table 2 and 3.

4.3 Cancelled Jobs

Cancelled jobs may also affect the scheduling process and should be taken into account
during workload modeling. In [9], reported job cancellation rates range from 12% to
23% and cancelled jobs are modeled separately. On DAS-2 clusters, as is shown in
Table 4, lower cancellation rate are observed. The average percentage of cancelled jobs
are 6.8 % (range from 3.3% on fs3 to 10.6% on fs0).

The cancellation lag (CL) is defined as the time between job arrival and cancella-
tion. On DAS-2 clusters, the average cancellation lag is 6429 seconds (Table 4). Plots
of cancellation lag distributions (CDF) on a log scale are shown in Figure 5 (a). In [9],
log-uniform distribution is used to fit the cancellation lag. We examined three distribu-
tions (two-phase hyperexponential, lognormal and weibull). Figure 5 (b) illustrates the
fitting results on fs0. In general, lognormal provides the best fit for the observed data.
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Fig. 5. Distributions of cancellation lags on DAS-2 clusters.

However, only on fs4 it passes the goodness of fit test. Fitted lognormal parameters are
provided in Table 4.

cluster job cancelled (%) M (s) CV lognormal parameters KS
fs0 10.6 3528 8.7 μ = 4.7, σ = 2.0 0.06
fs1 7.7 4749 6.4 μ = 4.4, σ = 2.0 0.16
fs2 3.6 13480 6.6 μ = 5.0, σ = 2.1 0.14
fs3 3.3 3931 6.5 μ = 4.0, σ = 2.3 0.09
fs4 8.6 6458 6.3 μ = 5.8, σ = 2.1 0.02
Average 6.8 6429 6.9 μ = 4.8, σ = 2.1 0.09

Table 4. Job cancellation rates and cancellation lags (CL) on DAS-2 clusters (M - CL
Mean, CV - CL Coefficient of Variation, KS - maximal distance between the cumu-
lative distribution function of the theoretical distribution and the sample’s empirical
distribution).

5 Job Execution Characteristics

In this section we describe the job execution characteristics. Firstly we characterize
job size (number of processors requested), job actual runtime, and memory usage. Sec-
ondly the correlations between these metrics are extensively studied and conditional
distributions are defined for the job actual runtime.



184 Hui Li, David Groep, and Lex Wolters

1 2 4 8 16 32 64
0

0.5

1

1.5

2
x 10

4

job size n (# processors)

# 
jo

bs

1 2 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

job size n (# processors)

C
D

F
 (

Y
 >

 n
)

fs0
fs1
fs2
fs3
fs4

(a) Histogram of job size on fs1 (b) CDFs of job size on DAS−2 clusters 

Fig. 6. Distributions of job sizes on DAS-2 clusters.

5.1 Job Size

Table 5 shows the job size characteristics on DAS-2 clusters. The “power-of-two” phe-
nomenon (78.8% in average) is clearly observed, as is found in many other work-
loads [4,7,9,11]. However, the “power-of-two” sizes on cluster fs0, fs1, and fs2 are
not as dominant as on fs3 and fs4. Instead, some multiple-2 sizes also contribute to a
significant portion of the total number of jobs (e.g. 6 and 14 processors on fs1, shown
in Figure 6 (a)). The fractions of serial (0.9-4.7%) and odd numbers (1% in average) are
significantly lower compared to previously reported workloads (30-40%). One possible
explanation could be the special policy mentioned in Section 3 , which forbids jobs to
be scheduled on nodes (SMP dual processor) with one processor busy. Researchers are
not encouraged to submit multi-processor jobs with odd numbers.

As we all noticed in Table 5, job size of two processors is surprisingly popular on
DAS-2 clusters and it is chosen by a major fraction of jobs (range from 39.6% on fs2
to 85.3% on fs4). To find a proper explanation for this phenomenon, we analyze the
internal structure of the workloads. On fs0, for instance, there are ten very active users
(out of 130 users in total). The most active user submitted more than 40,000 jobs (18%
of the total number of jobs on fs0) in consecutive seven weeks during October and
November 2003, which is his/her only active period throughout the year. All of these
jobs have the same name and request two processors. For the second most active user on
fs0, around 90% of his/her jobs have job sizes of two. On other DAS-2 clusters similar
user behavior are observed, resulting in the popularity of job size two and power-of-two.
We discuss more on user behavior and its impacts on workload modeling in Section 6.

In [7], the best results for fitting job sizes are obtained by gamma and two-stage uni-
form distributions. On DAS-2 clusters, we find that two-stage loguniform distribution
provides the best fit for job sizes. Plots of the job size distributions on a log scale are
shown in Figure 6 (b).
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Fig. 7. Distributions of job actual runtimes on DAS-2 clusters.

5.2 Job Actual Runtime

Job actual runtime has been extensively studied in previous reported workloads. Table 6
shows the characteristics of job actual runtimes on DAS-2 clusters. The actual runtimes
range from 374 to 2427 seconds, which is lower then previously reported workloads
(e.g. 3479 seconds on SDSC SP2 [6]). However, the CV (5.3 - 16) is substantially
higher than other production systems (2 - 5) [4,5,6]. This is in accordance with the
scientific and experimental nature of the DAS-2 usage: the majority of jobs have small
execution times and they vary a lot. Plots of the actual runtime distributions on a log
scale are shown in Figure 7 (a).

Different kinds of distributions have been used to model the actual runtime, for in-
stance, loguniform in [22], hypergamma in [7] and Weibull in [4]. We evaluate gamma,
lognormal and Weibull distributions for actual runtimes on DAS-2 clusters. Figure 7
(b) shows the distribution fitting on fs0. Weibull and lognormal have similar goodness
of fit test results, and they both fit better than gamma. Lognormal is a better model for
samples that have a lower head and a longer tail (fs2, fs3, and fs4, see Figure 7 (a)).
Parameters of fitted distributions are listed in Table 6.

cluster serial(%) two(%) power-of-two(%) others(%) odd (except serial) (%)
fs0 2.8 59.4 78.1 19.1 4.2
fs1 2.4 42.8 60.5 37.1 0.2
fs2 4.7 39.6 61.9 33.4 0.4
fs3 1.4 73.6 96.1 2.5 0.03
fs4 0.9 85.3 97.6 1.5 0.05
average 2.4 60.1 78.8 18.7 1.0

Table 5. Job size characteristics on DAS-2 clusters.
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cluster mean (s) CV fitted distributions KS
fs0 374 5.3 Weibull (a = 121.7, b = 0.46) 0.08
fs1 648 7.9 Weibull (a = 142.2, b = 0.45) 0.12
fs2 531 16 lognormal (μ = 4.2, σ = 1.8) 0.22
fs3 466 12 lognormal (μ = 3.7, σ = 1.7) 0.12
fs4 2427 6.4 lognormal (μ = 5.3, σ = 2.5) 0.13

Table 6. Job actual runtimes on DAS-2 clusters.

5.3 Memory Usage

The PBS [14] accounting logs record the maximum amount of physical memory used
by the job. Hereafter we refer to memory usage as the maximum used physical memory.
Memory usage per processor is defined as the maximum used memory divided by the
number of processors requested.

cluster 0KB (%) 324KB (%) 2600-3000KB (%)
fs0 32 19 34
fs1 29 20 16
fs2 25 18 21
fs3 40 17 34
fs4 24 6 62
Average 30 16 33

Table 7. Three special memory usage values and their corresponding job percentages.

Figure 8 (a) shows the distributions of memory usage on DAS-2 clusters. It is clearly
observed that three special values are chosen by a major fraction of jobs. These special
values are 0KB, 324KB and 2600-3000KB (slightly different values in this range de-
pending on the clusters), and their corresponding job percentages are listed in Table 7.
We can see that a large fraction (30% in average) of jobs have very small memory
usage7. 324KB and 2600-3000KB, on the other hand, contributes nearly one-sixth and
one-third (in average) to the total number of jobs, respectively. The reason why memory
usage concentrates on these special values might be that jobs typically have to load cer-
tain shared libraries (e.g. C, MPI, Globus), and these shared libraries normally require
a fixed amount of memory. To verify this claim, we run MPI jobs (fractal computation)
with different requested number of processors (4, 8, 16 and 32) on DAS-2 clusters. We
found that memory usage for these jobs is almost the same (324KB, for job size 4, 8 and
16). The exception occurs for job size 32, of which memory usage jumps to 52,620KB.
Other MPI programs also appears to use memory size of 324KB. Therefore, we might

7 0KB is recorded in the PBS accounting logs. It means that the job uses very small memory
(rounded to zero) instead of saying that the job does not use memory at all.
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Fig. 8. Distributions of memory usage and memory usage per processor on DAS-2 clus-
ters.

cluster memory ver-
sus job size

memory/proc
versus job size

actual runtime
versus job size

actual runtime
versus memory

actual versus re-
quested runtime

fs0 0.34 -0.02 0.01 0.72 0.44
fs1 0.59 0.22 0.27 0.71 0.61
fs2 0.64 0.13 0.46 0.68 0.45
fs3 0.25 0.08 -0.25 0.54 0.02
fs4 0.13 -0.08 -0.21 0.51 0.62

Table 8. Spearman’s rank correlation coefficients between job execution characteristics.

say that jobs which use 324KB memory most likely have to load certain libraries like
MPI. Memory usage of 2600-3000KB could be other shared libraries or objects.

Distributions of memory usage per processor on a log scale are shown in Figure 8
(b). As we can see, most of the jobs uses less than 10MB memory per processor (only
2% of the available amount). Correlations between memory usage and job sizes are
discussed in next section.

5.4 Correlations Between Job Execution Characteristics

A simple way to check the correlations between job execution characteristics is to cal-
culate the Pearson’s R correlation coefficients between these variables. However, Pear-
son’s R is very weak and misleading in our case since the variables we study are not
normally distributed. Instead, we use Spearman’s rank correlation coefficients to as-
sess the relationship between job execution characteristics, as it makes no assumptions
about the variable’s distributions. Correlations that we studied are: memory usage ver-
sus job size, memory usage per processor versus job size, actual runtime versus job size,
memory usage, and requested runtime. Spearman’s r coefficients are listed in Table 8.
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fs0.

Firstly we examine the correlations between memory usage and job size. The Spear-
man’s r coefficients show positive correlations. This indicates that larger size jobs (using
more processors) tend to use more memory than smaller jobs. Similar characteristics are
reported in [23]. Correlations between memory usage per processor and job size have
two folds on DAS-2 clusters. On fs1-3 small positive correlations are observed, while
on fs0 and fs4, weak inverse correlations are shown. We would expect that memory
usage per processor would increase as the job size increases. However, as is discussed
in Section 5.3, memory usage is concentrated on special values. Following the same ex-
ample in Section 5.3, MPI programs with different job sizes (e.g. 4, 8, 16) use the same
amount of memory (324KB). This will result an inverse correlation between memory
usage per processor and job size. As the job size increases to a certain extent (e.g. 32),
the maximum used memory jumps to another level (e.g. 52,620KB). Correspondingly
the memory usage per processor grows rapidly and exceeds those of smaller job sizes.
This explains why the correlations between memory usage per processor and job size
are weak and two-fold.

Correlations between job actual runtime and other characteristics (e.g. job size, re-
quested runtime, etc) are also extensively studied in previous workloads [4,7,9]. For
job runtime and size, small positive correlation coefficients are reported in [7], meaning
that in general larger jobs runs longer than smaller jobs. On DAS-2 clusters, however,
both positive and negative correlations are observed and it is hard to said in general
how the actual runtime is related with size. The correlations between actual and re-
quested runtime appear to be strong (except fs3). Naturally jobs with larger requested
runtimes generally run longer. This is clearly observed in Figure 9, which illustrates the
requested and actual runtime distributions on fs0. In Figure 9 (a), we can see that re-
quested runtimes can be divided into three ranges and each range contains a significant
portion of jobs. Actual runtime distributions conditioned on these ranges are shown in
Figure 9 (b). Jobs with larger requested runtimes run longer is evident by the fact that
their CDFs are below those of jobs with smaller requested runtimes.
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Fig. 10. CDF of memory usage and conditional distributions of actual job runtime on
fs0.

The most significant correlation is obtained between actual runtime and memory
usage. This is also illustrated in Figure 10. However, as our observed memory usage
is very special compared with other workloads [23], we choose to generate actual run-
times in a synthetic workload based on the requested runtimes. The fitted conditional
actual runtime distributions for the five DAS-2 clusters are given is Table 9. Generally
speaking, two-phase log-uniform, Weibull, and lognormal are the best fitted distribu-
tions for small, medium, and large requested runtimes, respectively. Exception occurs
on fs3, where requested runtimes are only divided into medium and large ranges. Above
all, distributions conditioned on requested runtimes are more realistic and accurate in
modeling job actual runtimes.

6 User/Group Behavior

User behavior has been discussed in [2,11] as an important structure in the workloads.
Workloads typically contain a pool of users with different activity levels and periods. A
few users and applications tend to dominate the workload. This special structure results
in uniformity and predictability on short time scales, allowing better predictions to be
made for improving the scheduler performance [11]. Similar structures are observed on
the DAS-2 clusters. In Figure 11 (a), we can see that there are twelve groups on fs0
in total. Six of them are dominant, contributing to the major fraction of the workload.
Among the six groups two of them are the most active. They are local groups8 at VU
(CS staff/group 3 and student/group 7). On other clusters similar behavior is observed:
local groups are the most active in their cluster workloads. Group Leiden and Delft are
of special interest and they are active on most of the DAS-2 clusters. This is partially
because Leiden students have to accomplish grid tasks utilizing more than one clusters,
and Delft researchers are experimenting processor co-allocation on multi-clusters.

8 The common group and user accounts are mapped onto all five clusters.
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Cluster Small requested runtime (R -
minutes)

Middle requested run-
time (R - minutes)

Large requested runtime
(R - minutes)

fs0 0<R≤10, 10<R≤16, R>16,
m = 34s, CV = 1.2, m=206s, CV = 1.2, m = 1624s, CV = 2.9,
loguniform-2 Weibull lognormal
(l=-2.5,m=1.2,h=2.1,p=0.1) (a=150, b=0.6) (μ=5.4, σ=2.2)

fs1 0<R≤10, 10<R≤60, R>60,
m = 40s, CV = 0.9, m=250s, CV = 1.5, m = 6022s, CV = 2.8,
loguniform-2 Weibull lognormal
(l=-2.5,m=1.2,h=2, p=0.08) (a=184, b=0.7) (μ=6.4, σ=2.9)

fs2 0<R≤10, 10<R≤60, R>60,
m = 69s, CV = 0.8, m=301s, CV = 1.5, m = 7473s, CV = 4.9,
loguniform-2 Weibull lognormal
(l=-2.6,m=1.6,h=2.1,p=0.03) (a=229, b=0.7) (μ=6, σ=2.7)

fs3 none 0<R≤61, R>61,
m=85s, CV = 1.8, m = 10060s,CV = 2.8,
Weibull lognormal
(a=71, b=0.8) (μ=6.9, σ=2.6)

fs4 0<R≤16, 16<R≤600, R>600,
m = 72s, CV = 1.5, m=3131s, CV = 10.5, m = 4270s,CV = 3.1,
loguniform-2 Weibull lognormal
(l=-2.5,m=1.7,h=2.3, p=0.04) (a=1369, b=0.5) (μ=6.6, σ=2.1)

Table 9. Distributions of job actual runtimes conditioned on requested runtimes
(loguniform-2 stands for two-stage log-uniform distribution).

As to the users, 10 out of 130 are the most active on fs0 (see Figure 11 (b)). We
further analyze two users with the largest portion of jobs. User 7 submitted more than
40,000 jobs in consecutive seven weeks during October and November 2003, which is
his/her only active period throughout the year. Moreover, these jobs all have the same
name and request two processors. Jobs from user 2 are distributed evenly throughout
the year, but 70% of them have the same name and 90% request two processors. This
structure explains some of our main observations before - a majority of DAS-2 work-
loads have a job size of two processors, and certain applications appear many more
times than others. Figure 11 (c) shows the application repeated times and their num-
ber of occurrences on fs0. We can see that while lots of applications run only once or
a small number of times, there are highly repeated applications that contribute to the
heavy tail in the distribution. Similar phenomena are reported on other workloads [11].

Since the user/group structure have an significant impact on the workload mod-
eling, techniques and models have been proposed to capture the user behavior in the
workloads [24]. We are also investigating multi-class models on other cluster work-
loads which are strongly group/VO (Virtual Organization) oriented.
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Fig. 11. Activity of groups, users and applications on the cluster fs0. From left to right
the color changes (gray scale on a none-color printer) of bars symbolize the consecutive
weeks in year 2003.

7 Conclusions and Future Work

In this paper, we present a comprehensive characterization of a multi-cluster supercom-
puter (DAS-2) workload. We characterized system utilization, job arrival process (ar-
rival rate, interarrival time, and cancellation rate), job execution characteristics (job size,
runtime, and memory usage), correlations between different metrics, and user/group be-
havior. Differences of DAS-2 workloads compared with previously reported workloads
include the following:

1. A substantially lower system utilization (from 7.3% to 22%) is observed.
2. Lower job cancellation rates (3.3%-10.6%) are observed than in previously reported

workloads (12%-23%).
3. Power-of-two phenomenon of job sizes is clearly observed, with an extreme popu-

larity of job size two. The fraction of serial jobs (0.9%-4.7%) is much lower than
other workloads (30%-40%).

4. The job actual runtimes are strongly correlated with memory usage as well as job
requested runtimes. Conditional distributions based on requested runtime ranges
are well fitted for actual runtimes.

5. A large portion of jobs has very small memory usage and several special values are
used by a major fraction of jobs.

To facilitate generating synthetic workloads, we provide distributions and condi-
tional distributions of the main characteristics. The distributions are summarized as
follows:

1. Interarrival time: in high load period, gamma or two phase hyperexponential are
the most suitable distributions; in representative period, Weibull gives the best fit.

2. Cancellation lag: lognormal is the best fitted distribution.
3. Job size: two-stage loguniform is the suitable distribution.
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4. Actual runtime: Weibull or lognormal is the best fitted distribution.
5. Actual runtime conditioned on requested time ranges (R): for small R, two-stage

loguniform is the most suitable distribution; for medium R, Weibull is the best fitted
distribution; for large R, lognormal gives the best fit.

In future work, we plan to generate workload models based on the results in this
paper and evaluate several scheduling strategies for DAS-2 clusters. Since the goal of
DAS-2 system is to provide fast response time to researchers, load balancing techniques
and higher level resource brokering are to be investigated. Another interesting point in
a multi-cluster environment is co-allocation. Currently multi-cluster job information
is not logged on the DAS-2 clusters. We plan to instrument the Globus gatekeeper to
collect the necessary traces and identify the key characteristics for multi-cluster jobs.
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Abstract. In multicluster systems, and more generally in grids, jobs may require
co-allocation, i.e., the simultaneous allocation of resources such as processors in
multiple clusters to improve their performance. In previous work, we have studied
processor co-allocation through simulations. Here, we extend this work with the
design and implementation of a dynamic processor co-allocation service in mul-
ticluster systems. While an implementation of basic co-allocation mechanisms
has existed for some years in the form of the DUROC component of the Globus
Toolkit, DUROC does not provide resource-brokering functionality or fault toler-
ance in the face of job submission or completion failures. Our design adds these
two elements in the form of a software layer on top of DUROC. We have per-
formed experiments that show that our co-allocation service works reliably.

1 Introduction

Computer systems consisting of multiple clusters, and more generally grids, offer the
promise of transparent access to large collections of resources for very demanding ap-
plications. In fact, the needs of a single application may exceed the capacity available
in any subsystem making up such a system, and so co-allocation, i.e., the simultaneous
access to resources of possibly multiple types (processors, data, network bandwidth)
in multiple locations, managed by different resource managers [1], may be required.
Then, the jobs executing such applications consist of multiple components, with each
component using resources in a different subsystem. When co-allocation is not used
in multiclusters and grids, such systems only act as large load-balancing devices with
higher-level schedulers trying to find good single locations for jobs to run. The real
challenge of using such systems is in trying to achieve good mechanisms and policies
for co-allocation.

Among the simplest types of applications that need co-allocation are parallel ap-
plications that require the simultaneous allocation of processors managed by different
schedulers. The feasibility of running such applications in multicluster systems with
their relatively slow wide-area connections has been demonstrated for instance in [2].
One of the main problems of processor co-allocation is to achieve the simultaneous
availability of the processors managed by different local schedulers. The basic mech-
anisms for processor co-allocation have existed for a number of years in the form of
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the Dynamically Updated Request Online Co-allocator (DUROC) [1] component of the
Globus Toolkit [3]. However, even though DUROC serves its basic purpose of submit-
ting multicomponent jobs, it cannot be regarded as a co-allocating scheduler for general
use in multiclusters or in grids. First, it lacks resource allocation policies by requiring
jobs to specify exactly the sites where their components should run. Secondly, DUROC
does not provide good fault tolerance in that it may wait for enough available resources
for an unspecified amount of time, and in that it requires the user’s intervention when
the submission or completion of a job fails.

In previous work we have studied processor co-allocation by means of simulations
[2,4,5]. In this paper, we extend this work by the design and implementation of a pro-
totype called the Dynamic Co-Allocation Service (DCS) on our wide-area Distributed
ASCI1 Supercomputer (DAS, see Section 4.1) that implements mechanisms and poli-
cies for processor co-allocation in multicluster systems. Our design is built on top of
DUROC and consists of a Scheduler that implements policies such as FCFS and a form
of backfilling, a Resource Monitor that reports on the available resources, a Resource
Broker that maps jobs onto the most suitable clusters, and a Co-allocator that submits
jobs to DUROC. In particular, our DCS solves the two problems with DUROC men-
tioned above. The results of the experiments with our prototype show that it works
reliably.

2 The Problem of Processor Co-allocation

In this section we formulate the problem of co-allocation in multiclusters, we discuss
the DUROC component of Globus, and we describe the structure of multicomponent
jobs and the placement and scheduling policies used in our design.

2.1 Processor Co-allocation

In itself, processor co-allocation is a simple notion: Assign processors in different sys-
tems in a multicluster or a grid to single jobs simultaneously. The potential advantage
to a job is that it may employ more processors than available in a single cluster and so
may experience a shorter runtime, and the potential advantage to the system is that the
system load may be increased. Of course, due to the relatively slow wide-area commu-
nications, not all applicatons will benefit from using processors in clusters connected
by a wide-area network, but some definitely will [2].

An important issue in processor co-allocation is that the processors in the different
clusters have to be available at the same time. What would be very helpful to guaran-
tee the simultaneous allocation of processors is a reservation mechanism of the local
resource managers. However, hardly any of the popular local resource managers such
as PBS [6] supports such a mechanism. A processor co-allocation mechanism built on
top of resource managers without reservation capabilities cannot do anything else than
repeatedly try to assess whether sufficient numbers of processors are available, and then
claim these.

1 ASCI is the acronym of the Advanced School for Computing and Imaging in the Netherlands.
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2.2 Motivation

Currently, the only available standard tool for processor co-allocation in grids is the
DUROC component of the Globus Toolkit. In general, Globus can accept job descrip-
tions written in the Globus Resource Specification Language (RSL), in which such
things as the name of the executable and the input and output files can be specified.
When a job consists of a single component, one of the things that also has to be speci-
fied is the name of the resource manager of the system where the job has to run. After
having parsed the RSL specification of a job, Globus sends the job to the Globus Re-
source Allocation Manager (GRAM) running on the specified resource, which in turn
hands over the job to the local resource manager. DUROC [1] is the component of the
Globus Toolkit that contains the basic mechanisms for co-allocation. It accepts what
are called multirequests, which consist of multiple simple requests, each written in RSL
and each specifying a component of a multicomponent job. DUROC supports two ap-
proaches for co-allocating resources to jobs. In the atomic trannsaction approach, all
resources specified by a job have to be available otherwise the job’s submission fails. In
the interactive transaction approach, some resources may be specified as nonessential
or optional, in order to tolerate resource failures.

DUROC cannot be regarded as a full-blown co-allocating scheduler in multiclus-
ters or grids, as it lacks certain functionality. First, it does not do any resource broker-
ing by picking suitable resources for a job, and the RSL specification of a job request
must be complete in that the subsystems (clusters) to be used by a job must be ex-
actly specified in advance. In other words, DUROC implements what we call a static
co-allocation mechanism, and it can only deal with what we call ordered jobs (see Sec-
tion 2.3). Secondly, a job submission may fail because the resources required by the job
are not immediately available, or because a job may not complete successfully. When
the first happens, DUROC cannot do anything except sending an error message to the
user telling that the submission has failed or just waiting until sufficient resources do
become available. In the latter case, there is no time-out mechanism for removing jobs
that are waiting too long. When the second happens, the user simply has to resubmit the
job.

This situation has motivated us to design our Dynamic Co-Allocation Service (DCS)
for multicluster systems on top of DUROC. The DCS detects the states of the clusters
and dynamically allocates resources according to those states. It gives users a more flex-
ible way of specifying multicomponent jobs in that they do not have to tell in advance
the locations where the the jobs’ components have to run. In addition, the DCS will re-
peatedly submit a job that experiences submission failures (for a maximum number of
times), and it will repeatedly resubmit a job that experiences completion failures (again
for a maximum number of times).

2.3 The Structure of the System and of Job Requests

Our model of multicluster systems is very simple: We assume a system of say C clusters
consisting of possibly different numbers of identical processors.

Jobs submitted to our DCS that consist of multiple components and require co-
allocation, have to specify the number and the sizes of their components, i.e., of the
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numbers of processors needed in the separate clusters. We assume jobs to be rigid,
which means that they do not change size over their lifetime. So a job is represented by
a tuple of C values (some of which may be zero), indicating its component sizes. We
will consider two cases for the structure of job requests:

1. In an ordered request the positions of the request components in the tuple specify
the clusters from which the processors must be allocated.

2. For an unordered request, by the components of the tuple the job only specifies the
numbers of processors it needs in the separate clusters, allowing the scheduler to
choose the clusters for the components. Here, we do allow different components of
unordered jobs to go to the same cluster.

Ordered requests are used in practice when a user has enough information about the
complete system to take full advantage of the characteristics of the different clusters.
Unordered requests model applications like FFT, which needs few data, and in which
tasks in the same job component share data and need intensive communication, while
tasks from different components exchange little or no information.

The RSL descriptions of unordered jobs submitted to the system are incomplete in
that the locations where the components should run have not been filled out; the RSL
descriptions of the ordered jobs submitted are complete.

2.4 The Placement and Scheduling Policies

For ordered requests it is clear when a job fits on the system or not, given the current
numbers of idle processors. To determine whether an unordered request fits, we use
the Worst-Fit (WF) placement policy avoiding as much as possible reusing the same
clusters. When placing a job, we first order the job components according to decreasing
size, and then assign the job components in that order. When assigning a job, we keep
two lists of clusters, both ordered according to decreasing numbers of idle processors.
The first is the list N of clusters that do not yet have a job component assigned (initially
all clusters), and the second is the (initially empty) list Y of clusters that already have
at least one job component assigned to them. For every job component, if it fits on the
cluster at the head of list N , it is assigned to that cluster and that cluster is removed from
N and inserted into the appropriate place into list Y . If it does not fit on the cluster at the
head of list N , the job component is assigned to the cluster at the head of list Y if it fits
there, and then that list is reordered if necessary. If the component also does not fit on
the cluster at the head of list Y , then the whole job cannot be placed. Our motivation for
using WF is that it balances the load, leaving roughly equal numbers of idle processors
in all clusters. However, WF can easily be replaced by any other placement policy that
better suits a multicluster’s objectives.

As we will see in Section 3, the DCS maintains a single global queue. As the
scheduling policy we use First Come First Served (FCFS) or Fit Processors First Served
(FPFS). In FPFS, when the job at the head of the queue does not fit, the queue is scanned
from head to tail for any jobs that may fit. FPFS may cause starvation, which may for
instance be repaired by putting a maximum to the number of times a job can be over-
taken by other jobs, but we have not implemented this. FPFS is a variation of backfilling
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[7], for which it is usually assumed that (estimates of) the service times are available
before jobs start, and in which the job at the head of the queue may not be delayed by
jobs overtaking it. However, we assume that we do not have runtime estimates, and so
we cannot implement this type of backfilling.

3 The Design of the Dynamic Co-allocation Service

In this section we will present the design of our Dynamic Co-allocation Service (DCS).
We will first give an overview of the architecture of the DCS and the flow of a multi-
component job through it. Then, we will focus on each component of the DCS in more
detail.

3.1 An Overview of the DCS

The basic idea underlying our design is to employ DUROC and to add several higher-
level components to it to implement fault-tolerant dynamic co-allocation. The software
components of the DCS are the Scheduler, the Resource Broker, the Resource Monitor,
and the Co-allocator. In addition, we maintain as data structures a wait queue and a run
list. Figure 1 depicts all of these components.

When a user submits a job to the system, the Scheduler appends it to the tail of
the wait queue, which contains all jobs submitted but not yet allocated. As long as the
wait queue is not empty, the Scheduler tries to schedule jobs from it by contacting the
Resource Broker.

When the Resource Broker receives a job request from the Scheduler, it attempts to
fit the job on the system taking into account the job type and the available resources. If
there are sufficient resources, the Resource Broker decides on an allocation and sends
the job request back to the Scheduler; otherwise it sends a failure message back to the
Scheduler. In order to fit a job to the resources, the Resource Broker needs to know
about the current resource status, which it gets from the Resource Monitor.

When the Scheduler gets a failure message from the Resource Broker, it will sim-
ply keep the job in its current location in the wait queue, and it will later attempt to
reschedule it. When the Scheduler gets a completed RSL file from the Resource Bro-
ker, it will send the job request to the Co-allocator, which in turn will forward it to
DUROC. DUROC will use its co-allocation mechanism to submit all subjobs to their
destination clusters.

The success or failure of a job submission to DUROC is noted by the Co-allocator
in a so-called submission status, which it returns to the Scheduler. If the job submission
is successful, the Scheduler removes the corresponding element from the wait queue,
and the Co-allocator puts the job request into the run list, which contains a record of all
currently running jobs so that the Co-allocator can monitor their progress.

However, even if the Resource Broker has found a suitable allocation for a job
request, it is possible that the job submission fails. For instance, there may have been a
change in the resource availability while the Resource Broker is working to fit the job
on the system so that the allocated resources are not available anymore, the executable
file cannot be found, etc. If this happens, the Co-allocator will cancel the job submission



A Dynamic Co-allocation Service in Multicluster Systems 199

Fig. 1. The architecture of the Dynamic Co-allocation Service.

and tell the Scheduler about the failure. The job request is then moved to the tail of the
wait queue.

The Co-allocator also keeps track of the completion status of jobs, which indicates
whether or not a runnning job has completed its execution successfully. If a running
job fails to complete its execution, the Co-allocator will put the job request back at the
tail of the wait queue so that it can later be rescheduled. When a running job finishes
successfully, the Co-allocator removes the job from the run list, and sends a message to
the Scheduler that contains the number of jobs that have successfully finished so far.

Now, we will see in more detail how each main component is designed.
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3.2 The Scheduler and the Wait Queue

The Scheduler is the central component in our design. It manages the wait queue as
the place for the requests of jobs that have not yet been allocated, it gets allocations of
jobs from the Resource Broker, and it calls the Co-allocator to actually submit jobs to
DUROC.

An element of the wait queue includes the following fields:

– The type of the job request (ordered or unordered).
– The text of the original job request in RSL that is still incomplete in case of un-

ordered jobs.
– The number of times the job has suffered a submission failure.
– The number of times the job has suffered a completion failure.

As long as the wait queue is not empty, the Scheduler tries to schedule jobs, based
on the scheduling policy, which is FCFS or FPFS. The Scheduler does this whenever
it gets a signal from the Resource Monitor that a change in the resource availability
has occurred. With FCFS, the Scheduler then invokes the Resource Broker for the job
at the head of the wait queue. Only when that job fits does the Scheduler invoke the
Resource Broker for the next job, etc. With FPFS, the Resource Broker is invoked once
for every job request in the queue. Nevertheless, with FPFS, the Resource Monitor will
be invoked only once during the activity of the Resource Broker in a single scheduling
action.

If the Resource Broker finds that an ordered job fits, or is able to find a suitable
allocation of an unordered job and can fill out its RSL specification, the Scheduler
sends the job to the Co-allocator, and waits until the Co-allocator notifies it whether or
not the job has been successfully submitted.

If there is a submission failure, the Scheduler increments the relevant field of the job
request in the wait queue. If the number of submission failures is then still less than a
configurable maximum number, the job request will be moved from its current position
to the tail of the queue. If the number of submission failures has reached the maximum
number, the Scheduler will remove the job from the queue.

3.3 The Resource Monitor

The Resource Monitor is responsible for collecting information about the resource sta-
tus of all the clusters and for providing this to the Resource Broker. In our case, the
only such information is the processor availability in the clusters. We considered two
options for the Resource Monitor to retrieve the processor availability, namely using the
Globus Toolkit’s MDS component, and directly contacting the local resource managers,
all of which in our case are PBS [6]. The MDS command grid-info-search in
principle provides the information we need, but unfortunately, the MDS information is
often not up-to-date since the GRAM reporter is not activated all the time to collect the
resource status and report it to the MDS. Therefore, we rejected the MDS as the basis
for the Resource Monitor.

PBS provides the qstat command to retrieve status information from a cluster,
which gives us the number of jobs running in the cluster, the number of compute nodes
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that are used by each job, and the identifier of each processor executing job processes,
etc. After straightening out some little problems in the output of qstat, we found
that we get accurate and timely information on processor availability, and so this is the
option we used. The Resource Monitor stores the information in an output file, which
is read by the Resource Broker.

3.4 The Resource Broker

When the Resource Broker gets a job request from the Scheduler, it depends on the re-
quest type how it operates. For ordered requests it simply checks whether the requested
numbers of processors the job wants to use are available in the specified clusters. After
it has done so, the Resource Broker sends a message back to the Scheduler whether the
job fits or not.

For unordered jobs the Resource Broker employs the WF algorithm avoiding reusing
clusters as much as possible (see Section 2.4). When the job can indeed be assigned to
the system according to this algorithm, the Resource Broker completes the RSL specifi-
cation of the job with the identifications of the clusters to which it has assigned the job’s
components, and sends it back to the Scheduler. Otherwise it sends a failure message
back.

Note that compared to the situation with only plain DUROC, when a job does not
fit, in our design DUROC is not called unnecessarily.

3.5 The Co-allocator and the Run List

The Co-allocator is responsible for the submission to DUROC of job requests it gets
from the Scheduler. It is also responsible for monitoring the progress of all subjobs in
every job while they are being executed. Therefore, it needs a so-called run list which
stores the elements representing the running jobs. Each element of this list includes:

– The ID given by DUROC to the job during its execution.
– The number of subjobs in the job.
– A set of states describing the status of every subjob in the job.

The Co-allocator continuously waits for the Scheduler to send it a job request. When
it receives such a request, the Co-allocator calls DUROC’s job request function to sub-
mit the job through DUROC to the system. This function is synchronous (blocking) so
the Co-allocator must wait until the function returns. When it does, the Co-allocator gets
the information of whether each subjob has been able to get to its destination cluster.
If any subjob fails to do so, the Co-allocator will call the DUROC job cancel func-
tion to remove all subjobs associated to the job from their clusters, and it will send a
submission failure message to the Scheduler. We have DCS use the Global Access to
Secondary Storage (GASS) component of the Globus toolkit to automatically move the
executable of the job to all clusters where a job component is going to run.

If all subjobs do get to their destination clusters, the Co-allocator must guarantee the
job submission success by calling the DUROC barrier release function. This function
will hold until all subjobs have entered their own barriers. It may happen that there
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is a subjob that fails to enter the barrier; after a time-out, the function then returns a
failure message to the Co-allocator. However, if the function returns correctly, all the
subjobs have been released from their barriers, and the Co-allocator will send a success
message to the Scheduler. If the job submission succeeds, the Co-allocator creates a run
list element for the job.

The monitoring component of the Co-allocator is active as long as the run list is
not empty. For each element in this list, the Co-allocator will call DUROC’s globus-
duroc-control-subjob-states function which has the Subjob States ar-
ray as its output parameter. The Co-allocator can get the status of every subjob of the
corresponding job from this array. If all subjobs have completed their execution suc-
cessfully, the Co-allocator will remove the element of the completed job from the run
list, and record the time when the job completes. When a job experiences a completion
failure, the job’s number of completion failures is incremented, and when this num-
ber does not exceed a maximum, the job is appended to the tail of the wait queue and
its number of submission failures is reset to zero. All the progress of the job will be
recorded in a log file.

As a note on the implementation, the whole of the DCS consists of four threads,
one for the Scheduler and Resource Broker together, one for Resource Monitor, one for
the submission function of the Co-Allocator, and one for the monitoring function of the
Co-Allocator.

4 Experiments with the DCS

In this section we present some experiments with our Dynamic Co-allocation Service
on the DAS. The purpose of these experiments is to show that indeed this service works
correctly and reliably, we do not pretend to do a complete performance analysis of it
here. Before we present the results of our experiments, we describe the DAS and the
application we submit to it in our experiments.

4.1 The Distributed ASCI Supercomputer

The DAS [8] is a wide-area computer system consisting of five clusters (one at each of
five universities in the Netherlands, amongst which Delft) of dual-processor Pentium-
based nodes, one with 72, the other four with 32 nodes each. The clusters are intercon-
nected by the Dutch university backbone (100 Mbit/s), while for local communications
inside the clusters Myrinet LANs are used (1200 Mbit/s). The system was designed for
research on parallel and distributed computing. On single DAS clusters the scheduler is
PBS [6]. Before the DCS was implemented, jobs spanning multiple clusters could only
be submitted with plain DUROC [3].

4.2 The Application

The application that we repeatedly submit to the DAS to test the DCS implements a
parallel iterative algorithm to find a discrete approximation to the solution of the two-
dimensional Poisson equation (a second-order differential equation governing steady-
state heat flow in a two-dimensional domain) on the unit square. For the discretization,
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a uniform grid of points in the unit square with a constant step in both directions is
considered. The application uses a red-black Gauss-Seidel scheme (see for instance [9],
pp. 429–433), for which the grid is split up into ”black” and ”red” points, with every
red point having only black neighbours and vice versa. In every iteration, each grid
point has its value updated as a function of its previous value and the values of its four
neighbours, and all points of one colour are visited first followed by the ones of the
other colour.

The domain of the problem is split up into a two-dimensional pattern of rectangles
of equal size among the participating processes; in our experiments, only one process is
assigned to each processor. Every process communicates with each of its neighbours in
order to exchange the values of the grid points on the borders and to compute a global
stopping criterion. When we execute the Poisson application on multiple clusters, the
process grid is split up into adjacent vertical strips of equal width, with each cluster run-
ning an equal consecutive number of processes (we assume processes to be numbered
in column-major order).

In [2] we have reported extensive measurements on the multicluster performance
of this application, showing that for this type of applications, co-allocating them across
wide-area systems is a viable option.

4.3 The Experimental Setup

In all of our experiments, we submit a batch of 40 jobs to the system, all of which
run the application explained in Section 4.2. That is, rather than have the jobs arrive
over some period of time, they arrive simultaneously. We note that this strains our DCS
more than when the jobs would not arrive together, as now many jobs will initially not
fit and the wait queue will be long. In all but one experiment we submit only ordered or
unordered jobs; in the remaining experiment we submit an even mix of these types. All
jobs always have 4 components of equal size, which is either 4 or 8 (indicated by 4x4
and 4x8). In none of our experiments was any job removed from the system because it
reached the maximum number of submission or completion failures, which were both
set to 3.

Only one of our experiments uses 4 clusters of the DAS, namely the largest cluster
with 144 processors and three clusters with 64 processors each (indicated by 144+3x64).
In all the other experiments, we could only employ two clusters, one of 144 and one of
64 processors (indicated by 144+64). In our experiments we use both the FCFS and the
FPFS policies.

4.4 Experimental Results

We will present the results of five experiments. For each experiment we show a graph
that plots the system loads due to our own jobs and due to the jobs of other users, and
the sum of these over the time period from the jobs’ submission until the last one of our
jobs completes. These system loads are normalized with respect to the total capacity of
the clusters that are actually used. In all of our five experiments the system loads due
to our jobs is (much) higher than the load due to the jobs of other users. In addition,
for all experiments we report the average and the standard deviation of the job response
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response time runtime overhead
(seconds)

avg 377.2 79.4 32.9
stdev 177.2 29.8 17.8

Fig. 2. The system loads and the job response time for the experiment with 4 clusters
(144+3x64), unordered jobs of size 4x8, and FCFS.

time (total time in the system), of the run time, and of the time due to the overhead
caused by DUROC. As it turns out, the standard deviation of the response time is rather
large, which is caused by all jobs being submitted at the same time. The overhead due to
DUROC has two components, one at job initialization and one at the job completion—
the former is by far the largest.

In the first experiment, 4 clusters are employed, all jobs are unordered, and the
scheduling policy is FCFS; the results are in Figure 2. We find that the DCS is able
to drive the system load to very high levels. This is not very surprising as the jobs
are unordered and the job component sizes are relatively small. The sudden drops in
system load due to our jobs and the subsequent increase occur at job departures. This
phenomenon is caused by the overhead of DUROC and of the DCS. When a job departs
from the system, it takes at least a few seconds before the Resource Monitor notices a
change in resource status, and then the Scheduler and Resource Broker have to do their
work before the Co-Allocator can submit another job to DUROC. Note that here FPFS
would have exhibited the same performance as FCFS because all jobs are of equal size.

In Figure 3 we compare two situations with 2 clusters, unordered jobs, and FCFS,
where the only difference is the job size. The graphs show the same high total system
load and spiky behavior as in Figure 2. Note that the total duration of the experiment
with the large job size is much longer, which is due to the larger job size but also to the
longer average job runtime. Similarly, a comparison of the graph in Figure 2 and the top
graph in Figure 3 shows that with identical workloads, the experiment in the 2-cluster
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response time runtime overhead
(seconds)

avg 581.3 102.1 25.4
stdev 295.2 12.5 3.5

response time runtime overhead
(seconds)

avg 267.2 76.8 26.9
stdev 108.2 17.0 3.2

Fig. 3. The system loads and the job response time for the experiments with 2 clusters
(144+64), unordered jobs of size 4x8 (top) and 4x4 (bottom), and FCFS.
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case takes much longer (although not quite twice as long because the background load
is lower).

In Figure 4 again we compare two situations with 2 clusters, one with ordered jobs
and FCFS, and one with an even mix of ordered and unordered jobs and FPFS. Here,
the ordered jobs consist of more components than there are clusters, and we specify two
components of those jobs to go to either cluster (so in fact, we would achieve the same
situation with ordered jobs of size 2x16). With only ordered jobs and FCFS (again we
would have the same behavior with FPFS) we find that the total system load achieved is
quite low. The reason is that the cluster with 64 processors is quite heavily used while
the cluster with 144 processors is not so, but still for every job we need equal numbers of
processors in either cluster. In the case of a mix of jobs and FPFS, the total system load
is again quite high (and the duration of the experiment is much lower). This is caused
by the presence of unordered jobs (which can use the capacity in the large cluster) and
the use of FPFS which can schedule unordered jobs even when an ordered job is stuck
at the head of the queue.

We conclude from our experiments first that our prototype works reliably. Further-
more, we can conclude from our sketchy experiments that ordered jobs may be an ob-
stacle to achieving high utilizations, and that when there are both unordered and ordered
jobs in the system, FPFS is definitely to be preferred over FCFS as the scheduling pol-
icy.

5 Related Work

Not very much work has been done on the design, implementation, and performance
analysis of co-allocation in multicluster systems and in grids. In terms of designs and
implementations, a system that is able to perform allocation of resources in different
administrative domains to a single job is Condor with its DAG-manager [10]. Con-
dor’s DAGMan takes as input job descriptions in the form of Directed Acyclic Graphs
(DAGs), and schedules a task in such a graph when it is enabled (i.e., when all its prece-
dence constraints have been resolved). However, no simultaneous resource possession
implemented by a co-allocation mechanism is implemented. In [11], the Condor class-
ad matchmaking mechanism for matching single jobs with single machines is extended
to ”gangmatching” for co-allocation. The running example in [11] is the inclusion of a
software license in a match of a job and a machine, but it seems that the gangmatching
mechanism might be extended to the co-allocation of processors and data.

In [12], the creation of abstract workflows consisting of application components,
their translation into concrete workflows, and the mapping of the latter onto grid re-
sources is considered. These operations have been implemented using the Pegasus [13]
planning tool and the Chimera [14] data definition tool. The workflows are represented
by DAGs, which are assigned to resources using the Condor DAGMan and Condor-G
[10].

In our previous work [2,4,5] we have studied the performance of processor co-
allocation in multiclusters through simulations for a wide range of such parameters as
the number and sizes of the job components, the number of clusters, the service-time
distributions, and the number of queues in the system. There, we considered both syn-
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response time runtime overhead
(seconds)

avg 1135.2 87.8 21.9
stdev 611.1 10.0 3.4

response time runtime overhead
(seconds)

avg 634.7 92.4 25.3
stdev 335.3 15.6 6.5

Fig. 4. The system loads and the job response time for the experiments with 2 clusters
(144+64), ordered jobs (top) and an even mix of ordered and unordered jobs (bottom)
of size 4x8, and FCFS (top) and FPFS (bottom).
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thetics workloads, and workloads derived from the logs of the DAS and from applica-
tion runtimes on the DAS. In [15,16], co-allocation (called multi-site computing there)
is studied with simulations, with as performance metric the average weighted response
time. One of the most important findings is that when the slowdown of jobs due to the
wide-area communication is less than or equal to 1.25, it pays to use co-allocation. In
[17], we consider the maximal utilization, i.e., the utilization at which the system be-
comes saturated, as a metric for assessing the performance of processor co-allocation.

6 Conclusions and Future Work

In this paper we have presented the design of a Dynamic Co-Allocation Service (DCS)
for processor co-allocation in multicluster systems, which has been implemented on our
DAS multicluster system. We have also shown the results of experiments that indeed
show that this DCS works reliably, and that it is able to achieve a quite high total system
load, although the jobs submitted in our experiments were not very large. As far as the
authors know this is the first implementation of processor co-allocation with proper
resource-brokering functionality and fault tolerance.

We are only at the beginning of our design and implementation efforts of co-allo-
cation in grids. In particular, we are planning to extend the current design of the DCS
to more types of resources, to more heterogeneous systems both with repect to the
hardware and the local resource managers, and to more complicated job types (e.g.,
work flows). We note that we have been experimenting with a design of mechanisms
for the co-allocation of both processors and information resources which does away
with DUROC altogether, but which does use components of the Globus toolkit. Finally,
we would like to do a better performance analysis. One of the complicating factors here
is the lack of reproducibility of experiments in systems that have a background load
submitted by other users that we cannot control.
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Abstract. Data-intensive applications executing over a computational
grid demand large data transfers. These are costly operations. There-
fore, taking them into account is mandatory to achieve efficient schedul-
ing of data-intensive applications on grids. Further, within a heteroge-
neous and ever changing environment such as a grid, better schedules
are typically attained by heuristics that use dynamic information about
the grid and the applications. However, this information is often diffi-
cult to be accurately obtained. On the other hand, although there are
schedulers that attain good performance without requiring dynamic in-
formation, they were not designed to take data transfer into account.
This paper presents Storage Affinity, a novel scheduling heuristic for
bag-of-tasks data-intensive applications running on grid environments.
Storage Affinity exploits a data reuse pattern, common on many data-
intensive applications, that allows it to take data transfer delays into
account and reduce the makespan of the application. Further, it uses a
replication strategy that yields efficient schedules without relying upon
dynamic information that is difficult to obtain. Our results show that
Storage Affinity may attain better performance than the state-of-the-
art knowledge-dependent schedulers. This is achieved at the expense of
consuming more CPU cycles and network bandwidth.

1 Introduction

Each year more data are generated and need to be processed [1]. Currently, there
are many scientific and enterprise applications that deal with a huge amount of
data [2][3][4]. These applications are called data-intensive. In order to process
large datasets, these applications typically need a high performance computing
infrastructure. Fortunately, since the data splitting procedure is easy and each
data element can often be processed independently, a solution based on data
parallelism can often be employed.

Task independence is the main characteristic of parallel Bag-of-Tasks (BoT)
applications [5][6]. A BoT application is composed of tasks that do not need to
communicate to proceed with their computation. In this work, we are interested
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in the class of applications which has both BoT and data-intensive character-
istics. We have named it processors of huge data (pHd). Shortly, pHd = BoT
+ data-intensive. There are innumerous important applications that fall in this
category. This is the case, for instance, of data mining, image processing, and
genomics.

Due to the independence of their tasks, BoT applications are normally suit-
able to be executed on grids [7][5]. However, since resources in the grid are con-
nected by wide area network links (wan), the bandwidth limitation is an issue
that must be considered when running pHd applications on such environments.
This is particularly relevant for those pHd applications that present a data reuti-
lization pattern. For these applications, the data reuse pattern can be exploited
to achieve better performance. Data reutilization can be either among tasks of
a particular application or among a succession of applications executions. For
instance, in the visualization process of quantum optics simulations results [4]
it is common to perform a sequence of executions of the same parallel visualiza-
tion application, simply sweeping some arguments (e.g. zoom, view angle) and
preserving a huge portion of the data input from the previous executions.

There exists some algorithms that are able to take data transfer into account
when scheduling pHd applications on grid environments [8][9][10][11]. However,
they require knowledge that is not trivial to be accurately obtained in practice,
especially on a widely dispersed environment such as a computational grid [7].
For example, XSufferage [9] uses information about the CPU and network loads,
as well as the execution time of each task on each machine, all of which must be
known a priori, to perform the scheduling.

On the other hand, for CPU-intensive BoT applications, there are sched-
ulers that do not use dynamic information, yet achieve good performance (e.g.
Workqueue with Replication - WQR [12][13]). They use replication to toler-
ate inefficient scheduling decisions taken due to the lack of accurate information
about both the environment and the application. However, these schedulers were
conceived to target CPU-intensive applications and thus data transfers are not
taken into account by them.

In this paper we introduce Storage Affinity, a new heuristic for scheduling
pHd applications on grids. Storage Affinity takes into account the fact that
input data is frequently reused either by multiple tasks of a pHd application
or by successive executions of the application. It tracks the location of data to
produce schedules that avoid, as much as possible, large data transfers. Further,
it reduces the effect of inefficient task-processor assignments via the judicious
use of task replication.

The rest of the paper is organized in the following way. In the next section we
present the system model that is considered in this work. In Section 3, we present
the Storage Affinity heuristic as well as other heuristics used for comparative
purposes. In Section 4, we evaluate the performance of the discussed schedulers.
Section 5 concludes the paper with our final remarks and a brief discussion on
future perspectives.
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2 System Model

This section formally describes the problem investigated and also provides the
terminology used in the rest of the paper.
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Fig. 1. The system environment model

2.1 System Environment

We consider the scheduling of a sequence of jobs1 over a grid infrastructure. The
grid G is formed by a collection of sites. Each site is comprised of a number of
processors, which are able to run tasks, and a single data server which is able to
store input data required in the execution of a task, and output data generated
by the execution of a task. More formally:

G = {site1, . . . , siteg}, g > 0, and sitei = Pi ∪ {Si},
where Pi is the non-empty set of processors at sitei and Si is the data server at
sitei. We assume that the resources owned by the various sites are disjoint, i.e.
∀i, j, i �= j, sitei ∩ sitej = ∅.

Processors belonging to the same site are connected to each other through
a high bandwidth local area network, whose latency is small and throughput
is large when compared to those experienced by the wide area networks that
interconnect processors belonging to different sites. Because of this assumption
we only consider one data server per site, i.e. the collection of data servers that
may be present in a site is collapsed into a single data server.
1 We use the terms job and application interchangeably.
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We define two sets to encompass all processors (PG) and all data servers (SG)
present in a grid G. That is to say:

PG =
⋃

1≤i≤|G|
Pi, and SG =

⋃
1≤i≤|G|

{Si}.

We assume that the user spawns the execution of applications from a home
machine that does not belong to the grid (phome �∈ G). Further, we assume
that before the first execution of an application, all its input data are stored
at the local file system of the home machine (Shome). The bandwidth is shared
equally among the transfers initiated by the user in the home machine. Figure 1
illustrates the assumed environment.

2.2 Application

Job Jj , j > 0, is the jth execution of the application J . A job is composed by a
non-empty collection of tasks, in which each task is defined by two datasets: the
input and the output datasets. Formally:

Jj = {tj1, . . . , tjn}, n > 0, and tjt = (I, O), I ∪ O �= ∅,

where tjt .I and tjt .O are the input and the output datasets of task tjt , respectively.
For each data server Si, Si ∈ SG, let dsj(Si) be the set of data elements that

are stored at Si before the execution of the jth job was started, and let ds(Shome)
be the set of data elements that are stored at the home machine. We define Dj

as the set of all data elements that are available to be taken as input by the jth

job to be executed. Dj is given by:

Dj = ds(Shome) ∪
{ ⋃

Si∈SG

dsj(Si)

}
.

We have that tjt .I ⊆ Dj and after the execution of the jth job, the set of
available data elements Dj+1 is given by the union of Dj with all data elements
that have been output by Jj :

Dj+1 = Dj ∪
⎧⎨⎩ ⋃

1≤t≤|Jj |
tjt .O

⎫⎬⎭ .

We also define the input dataset of the entire application as the union of the
input dataset of each task in the job. It is expressed by:

Jj .I =
|Jj|⋃
k=1

tjk.I
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2.3 Job Scheduling and Performance Metrics

A schedule Σj of the job Jj comprises the schedule of each one of the tasks that
form Jj . The schedule of a particular task tjt of Jj specifies the processor that
is assigned to execute tjt . Note that it is possible for the same processor to be
assigned to more than one task. Formally,

Σj = {pj
1, . . . , p

j
n}, n = |Jj |, pj

t ∈ PG, 0 � t � n

We assume that a task can only access the data server at the same site of
the processor on which the task is running. Consequently, if all data elements in
the dataset tjt .I are not already stored at Si, the absent data elements must be
first transferred to Si before the execution of tjt can be started at pj

t . Thus, after
tjt is executed at pj

t ∈ sitei, Si will have stored all data elements in the dataset
tjt .O.

We measure the application execution time to evaluate the efficiency of a
scheduling. Thus, the heuristic we propose in this paper and also the others
that we discuss, all have a common goal, which is to minimize this metric. The
application execution time, normally referred as its makespan [14], is the time
elapsed between the moment the first task is started until the earliest moment
in which all tasks have finished their execution.

3 Scheduling Heuristics

Despite the fact that pHd applications are suitable to run on computational
grids, the efficient scheduling of these applications on grid environments is not
trivial. The difficulty in scheduling pHd application is twofold. The first prob-
lem relates to the very nature of pHd applications, which must deal with a huge
amount of data. The issue here is that the application overall performance is
greatly affected by the large data transfers that occur before the execution of
tasks. The second problem is related to obtaining accurate information about
the performance resources will deliver to the application. Despite the fact that
this information is typically not available a priori, they are input for most
available schedulers. In fact, there has been a great deal of research on pre-
dicting future CPU and network performance as well as application execution
time [15][16][17][18][19]. As the results of these efforts show, this is by no means
an easy task. To complicate matters further, the lack of central grid control poses
an obstacle for deploying resource monitoring middleware.

We can observe that the difficulty in obtaining dynamic information and the
impact of large data transfers have been individually attacked. Therefore, we
comment two scheduling heuristics that deal with these problems separately,
Workqueue with Replication (WQR) [12] and XSufferage [9]. We also introduce
our approach to address the two pHd scheduling problems together.
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3.1 Workqueue with Replication

The WQR scheduling heuristic [12] has been conceived to solve the problem of
obtaining precise information about the future performance tasks will experi-
ence on grid resources. Initially, WQR is similar to the traditional Workqueue
scheduling heuristic. Tasks are sent at random to idle processors and when a
processor finishes a task, it receives a new task to execute. WQR differs from
Workqueue when a processor becomes available and there is no waiting task to
start. At this point, Workqueue would just wait for all tasks to finish. WQR,
however, starts replicating the tasks yet running. The result from a task comes
from the first replica to finish. After the first replica completes, all other replicas
are killed.

The idea behind the task replication is to improve the application perfor-
mance by increasing the chances of running a task on a fast/unloaded processors.
WQR achieves good performance for CPU-intensive application [12] without us-
ing any kind of dynamic information about processors, network links or tasks.
The drawback is that some CPU cycles are wasted with the replicas that do
not complete. Moreover, WQR does not take data transfers into account, what
results in poor performance for pHd applications, as we shall see in Section 4.

3.2 XSufferage

XSufferage [9] is a knowledge-based scheduling heuristic that deals with the
impact of large data transfers on pHd applications running on grid environments.
XSufferage is an extension of the Sufferage scheduling heuristic [20]. Sufferage
prioritizes the task that would “suffer” the most if not assigned to the processor
that fastest runs it. How much a task would suffer is gauged by its sufferage
value, which is defined as the difference between the best and the second best
completion time for the task.

The main difference between XSufferage and Sufferage algorithms is the suf-
ferage value determination method. In XSufferage, the sufferage value is calcu-
lated using the site-level task completion times. The site-level completion time
of a given task is the minimum completion time achieved among all processors
within the site. The site-level sufferage is the difference between the best and
second best site-level completion times of the task. The other difference is that
XSufferage considers input data transfers in the calculation of the completion
time of the task, thus, differently from Sufferage, it requires information about
network available bandwidth as input.

The algorithm input is a job Jj and a grid G. The algorithm traverses the set
Jj until it finds the task tjt with the highest sufferage value. This task is assigned
to the processor that has presented the earliest completion time. This action is
repeated until all tasks in Jj are scheduled.

The rationale behind XSufferage is to consider the data location when per-
forming the task-to-host assignments. The expected effect is the minimization
of the impact of unnecessary data transfers on the application makespan. The
evaluation of XSufferage shows that avoiding unnecessary data transfers indeed
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improves the application’s performance [9]. However, XSufferage calculates suf-
ferage values based on the knowledge about CPU loads, network bandwidth
utilization and task execution times. In general, this information is not easy to
obtain.

input : G, Jj

output : Σj ∪ Σr

while (Jj �= ∅) do

- Get (tjt ) which SA(tjt ) is the largest.
- Schedule (tjt ) to a processor at sitei.
- Jj ← Jj − tjt
if (∀ p ∈ PG | p is busy) then

waitForATaskCompletionEvent()

end

end

Jr ← getAllRunningTasks()

while (Jr �= ∅) do

- Remove from (Jr) which:
∗ SA(tjt , sitei) = 0

∗ getReplicationDegree(trt ) > Degreemin

- Get the (trt ) which (SA(trt , sitei)) is the largest.
- Schedule replica ((trt )d) to a processor at sitei.
if (∀ p ∈ PG | p is busy) then

waitForATaskCompletionEvent()

killAllReplicasOfTheCompletedTask()

end

- Jr ← ∗ getAllRunningTasks() ∗
end

Algorithm 1: Storage Affinity scheduling heuristic

3.3 Storage Affinity

Storage Affinity was conceived to exploit data reutilization to improve the per-
formance of the application. Data reutilization appears in two basic flavors:
inter-job and inter-task. The former arises when a job uses the data already
used by (or produced by) a job that executed previously, while the latter ap-
pears in applications whose tasks share the same input data. More formally, the
inter-job data reutilization pattern occurs if the following relation holds:

(j < k) ∧ ((Jj .I ∪ Jj .O) ∩ Jk.I �= ∅)

On the other hand, the inter-task data reutilization pattern occurs if this
other relation holds:
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|Jj |⋂
t=1

tjt .I �= ∅

In order to take advantage of the data reutilization pattern and improve the
performance of pHd applications, we introduce the storage affinity metric. This
metric determines how close to a site a given task is. By how close we mean how
many bytes of the task input dataset are already stored at a specific site. Thus,
storage affinity of a task to a site is the number of bytes within the task input
dataset that are already stored in the site. Formally, the storage affinity value
between tjt and sitei is given by:

SA(tjt , sitei) =
∑

d∈(tj
t .I∩dsj(Si))

|d|

in which, |d| represents the number of bytes of the data element d.
We claim that information about data size and data location can be obtained

a priori without difficulty and loss of accuracy, unlike, for example, CPU and
network loads or the completion time of tasks. For instance, this information
can be obtained if a data server is able to answer the requests about which data
elements it stores and how large is each data element. Alternatively, an imple-
mentation of a Storage Affinity scheduler can easily store a history of previous
data transfer operations containing the required information.

Naturally, since Storage Affinity does not use dynamic information about the
grid and the application which is difficult to obtain, inefficient task-to-processor
assignments may occur. In order to circumvent this problem, Storage Affinity
applies task replication. Replicas have a chance to be submitted to faster pro-
cessors than those processors assigned to the original task, thus increasing the
chance of the task completion time be decreased.

Algorithm 1 presents Storage Affinity. Note that this heuristic is divided in
two phases. In the first phase Storage Affinity assigns each task tjt ∈ Jj to a
processor p ∈ G. During this phase, the algorithm calculates the highest storage
affinity value for each task. After this calculation, the task with the largest
storage affinity value is chosen and scheduled. This continues until all tasks have
been scheduled. The second phase consists of task replication. It starts when
there are no more waiting tasks and there is, at least, one available processor. A
replica could be created for any running task. Considering that the replication
degree of a particular task is the number of replicas that have been created for
the task, whenever a processor is available, the following criteria are considered
to choose the task to be replicated: i) the task must have a positive storage
affinity with the site that has an available processor; ii) the current replication
degree of the task must be the smallest among all running tasks; and iii) the
task must have the largest storage affinity value among all remaining candidates.
When a task completes its execution, the scheduler kills all remaining replicas
of the task. The algorithm finishes when all the running tasks complete. Until
this occurs the algorithm proceeds with replications.
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4 Performance Evaluation

In this section we analyze the performance of Storage Affinity, comparing it
against WQR and XSufferage. We have decided to compare our approach to these
heuristics because WQR represents the state-of-the-art solution to circumvent
the dynamic information dependence, whereas XSufferage is the state-of-the-art
for dealing with the impact of large data transfers. We have used simulations to
evaluate the performance of the scheduling algorithms. These simulations were
validated by performing a set of real-life experiments (see Section 4.5).

Since the performance attained by a scheduler is strongly influenced by the
workload [21] [22][23], we have designed experiments that cover a wide variety
of scenarios. The scenarios vary in the heterogeneity of both the grid and the
application, as well as the application granularity (see Section 4.2). Our hope
was not only to identify which scheduler performs better, but also to understand
how different factors impact their performance.

4.1 Grid Environment

Each task has a computational cost, which expresses how long the task would
take to execute in a dedicated reference processor. Processors may run at differ-
ent speeds. By definition, the reference processor has speed = 1. So, a processor
with speed = 2 runs a 100-second task in 50 seconds (when dedicated). Since
the computational grid may comprise processors acquired at different points in
time, grids tend to be very heterogeneous (i.e. their processors speed may vary
widely). In order to investigate the impact of grid heterogeneity on scheduling,
we consider four levels of grid heterogeneity, as shown in Table 12. Thus, for
heterogeneity 1x, we always have speed = 10, and the grid is homogeneous. On
the other hand, for heterogeneity 8x, we have maximal heterogeneity, with the
fastest machines being up to 8 times faster than the slowest ones. Note that, in
all cases, the average speed of the machines forming the grid is 10.

Grid Heterogeneity Processor Speed Distributions

1x U(10, 10)
2x U(6.7, 13.4)
4x U(4, 16)
8x U(2.2, 17.6)

Table 1. Grid heterogeneity levels and the distributions of the relative speed of
processors

The grid power is the sum of the speed of all processors that comprise the
grid. For all experiments we fixed the grid power to 1, 000. Since the speed
of processors are obtained from the Processor Speed Distributions, a grid is
“constructed” by adding one processor at a time until the grid power reaches
2 Note the U(x, y) denotes the uniform distribution in the [x, y] range.
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1, 000. Therefore, the average number of processors in the grid is 100. Processors
are distributed over the sites that form the grid in equal proportions. Similarly
to Casanova et al [9], we assume that a grid has U(2, 12) sites.

For simplicity, we assume that the data servers do not run out of disk space
(i.e., we do not address data replacement policies in the present work). As previ-
ously indicated, we neglect data transfers within a site. Inter-site communication
is modeled as a single shared 1Mbps link that connects the home machine to sev-
eral sites. It important to highlight that, in the model, 1Mbps is the maximum
bandwidth that an application can use in the wide area network. However, the
connections are frequently shared among several applications, thus, the limit is
often not achieved by a particular application. We used NWS [24] real traces to
simulate contention for both CPU cycles and network bandwidth. For example,
a processor of speed = 1 and availability = 50% runs a 100-second task in 200
seconds.

4.2 pHd Applications

In pHd applications, the application execution time is typically related to the
size of the input data. The explanation for this fact is quite simple. The more
data there is to process, the longer the tasks take to complete. In fact, there are
pHd applications whose cost is completely determined by the size of the input
data. This is the case, for example, of a scientific data visualization application,
which processes the whole input data to produce the output image [4]. There are
other applications that have the cost influenced, but not completely determined,
by the size of the input data. This is the case of a pattern search application,
in which the size of the input data of each task determines an upper bound for
the cost of the task, not the cost of the task itself. We simulated both kinds of
applications.

The total size of the input data of each simulated application was fixed in
2GBytes. Based on experimental data available [4], we were able to convert the
amount of input data processed by each task of the visualization application into
the time (in seconds) required to process the data, which is its computational
cost. We have used the same proportionality factor (1.602171 ms/KByte) to cal-
culate the computational cost of the pattern search application, as a function of
the amount of data actually processed by its tasks. To determine the computa-
tional cost of each task of the pattern search application, we used an uniform
distribution U(1, UpperBound), in which UpperBound is the computational cost
to process the entire input of a particular task.

We also wanted to analyze how the relation between the average number of
tasks and the number of processors in the grid would impact the performance
of a schedule. Note that when both application and grid sizes are fixed, this
relation is inversely proportional to the average size of the input data of the
tasks that comprise the application, i.e. the application granularity. We have
considered three application groups that are defined by the following application
granularity values: 3MBytes, 15MBytes and 75MBytes.
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The tasks that comprise the application can vary in size. Therefore, to
simulate this variation, we introduced an application heterogeneity factor.
The heterogeneity factor determines how different are the sizes of the in-
put data elements of the tasks that form the job, and consequently their
costs. The size of the input data are taken from the uniform distribution
U(AverageSize× (1 − Ha

2 ), AverageSize× (1 + Ha

2 )), in which AverageSize ∈
{3MBytes, 15MBytes, 75MBytes} and Ha ∈ {0%, 25%, 50%, 75%, 100%}.

4.3 Simulation Setting and Environment

A total of 3, 000 simulations were performed, with half of them for each type of
application (Visualization and Pattern Search). As we shall see in Section 4.4,
3, 000 simulations make for good precision of results (in 95% confidence interval).
Each simulation consists of a sequence of 6 executions of the same job. Those 6
executions are repeated for each of 3 analyzed scheduling heuristics (Workqueue
with Replication, XSufferage and Storage Affinity). Therefore, we have 18000
makespan values for each scheduling heuristic analyzed.

Our simulation tool has been developed using an adapted version of the
Simgrid toolkit [25]. The Simgrid toolkit provides the basic functionalities for
the simulation of distributed applications on grid environments. Since the set
of simulations is itself a BoT application, we have executed it over a grid
composed of 107 machines distributed among five different administrative do-
mains (LSD/UFCG, Instituto Eldorado, LCAD/UFES, UniSantos and Grid-
Lab/UCSD). We have used the MyGrid middleware [5] to execute the simula-
tions.

4.4 Simulation Results

In this section we show the results obtained in the simulations of the scheduling
heuristics and discuss their statistical validity. We also analyze the influence of
the application granularity, as well as the heterogeneity of both the grid and the
application on the performance of the application scheduling.

Summary of the Results Table 2 presents a summary of the simulation
results. It is possible to note that, in average, Storage Affinity and XSufferage
achieve comparable performances. Nevertheless, the standard deviation values
indicate that the makespan presents a smaller variation when the application
is scheduled by Storage Affinity when compared to the other two heuristics.
It is important to explain that the resource wasting percentage is given by:
TimeConsumedByKilledReplicas
TimeConsumedByFinishedTasks . Obviously, we do not report any wasting values
in Table 2 for XSufferage because this heuristic does not apply any replication
strategy, consequently it does not kill any running task.

In order to evaluate the precision and confidence of the summarized means
presented in Table 2, we have determined the 95% confidence interval [26] for the
population mean (μ) based on those values in Table 2. That is, using the sample
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Makespan (seconds) Storage Affinity WQR XSufferage

Mean (x) 14377 42919 14665
Standard deviation (σ) 10653 24542 11451

CPU Wasting Storage Affinity WQR XSufferage

Mean (x) 59.243% 1.0175% −
Standard deviation (σ) 52.715% 4.1195% −
Bandwidth Wasting Storage Affinity WQR XSufferage

Mean (x) 3.1937% 130.88% −
Standard deviation (σ) 8.5670% 135.82% −

Table 2. Summary of simulation results

mean, standard deviation and the sample size (number of makespan values) we
estimate the confidence intervals, as shown in Table 3.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1  2  3  4  5  6

A
ve

ra
ge

 A
pp

lic
at

io
n 

M
ak

es
pa

n 
(s

ec
on

ds
)

Number of Executions (#)

XSufferage
Storage Affinity

WQR

Fig. 2. Summary of the performance of the scheduling heuristics

Since the width of the confidence interval (w) is relatively small compared
to the results (see Table 4), we feel that we have performed enough simulation
to obtain a good precision in the results.

In Figure 2 we show the average application makespan and in Figure 3 we
present the resource waste for all performed simulations with respect to all
heuristics analyzed. The results show that both data-aware heuristics attain
much better performance than WQR. This is because data transfer delays domi-
nate the makespan of the application, thus not taking them into account severely
hurts the performance of the application. In the case of WQR, the execution of
each task is always preceded by a costly data transfer operation (as can be in-
ferred from the large bandwidth and small CPU waste shown in Figure 3). This
impairs any improvement that the replication strategy of WQR could bring. On
the other hand, the replication strategy of Storage Affinity is able to cope with
the lack of dynamic information and yield a performance very similar to that
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Heuristic 95% Confidence interval

Storage Affinity 14241 < μ < 14513
Workqueue with Replication 42547 < μ < 43291

XSufferage 14498 < μ < 14832

Table 3. 95% confidence intervals for the mean of the makespan for each heuris-
tic.

Heuristic w % with respect the makespan

Storage Affinity 330 2.2%
Workqueue with Replication 330 2.2%

XSufferage 850 2%

Table 4. Width of the confidence intervals and proportion with respect the
mean

of XSufferage. The main inconvenience of XSufferage is the need for knowledge
about dynamic information, whereas the drawback of Storage Affinity is the
consumption of extra resources due to its replication strategy (an average of
59% of extra CPU cycles and a negligible amount of extra bandwidth). From
this result we can state that the Storage Affinity task replication strategy is a
feasible technique to obviate the need for dynamic information when scheduling
pHd applications, although at the expenses of consuming more CPU.

Application Granularity Next, we investigate the impact of application gran-
ularity on the application scheduling performance. In Figure 4 we can see the
influence of the three different granularities on the data-aware schedulers. From
the results presented we conclude that no matter the heuristic used, smaller
granularities yield better performance. This is because smaller tasks allow greater
parallelism. We can further observe that XSufferage achieves better performance
than Storage Affinity only when the granularity of the application is 75Mbytes.
This is because the larger a particular task is, the bigger its influence in the
makespan of the application. Thus, the impact of a possible inefficient task-host
assignment for a larger task is greater than that for a smaller one. In other words,
the replication strategy of Storage Affinity is more efficient when circumventing
the effects of inefficient task-host assignments when the application granularity
is small. Nevertheless, for pHd applications, it is normally possible - and quite
easy - to reduce the application granularity by converting a task with a large
input into several tasks with smaller input datasets. The conversion is performed
by simply slicing large input datasets into several smaller ones. It is important
to note that there is a trade off here, because the scheduling overhead when
running on real environments.

Given the above discussion, we show in Figure 5 the values for the makespan
of the applications, considering only the granularities 3Mbytes and 15Mbytes.
For these simulations, Storage Affinity outperforms XSufferage by 42%, in aver-
age. Further, as can be seen in Figure 6, the percentage of CPU cycles wasted
is reduced from 59% to 31%, in average. We emphasize that reducing the appli-
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cation granularity is a good policy as smaller tasks yields more parallelism (see
Figure 4).

Application Type In order to analyze the influence of the different character-
istics of pHd applications on the application makespan and the resource waste,
we have considered two types of applications (see Section 4.2). The results show
that the behavior of the heuristics has not been affected by the different char-
acteristics of the application. On the other hand, we found out that the waste
of resources was affected by the type of application considered. Figure 9 and
Figure 10 show the results attained. Recall that in the data visualization appli-
cation, the computational cost of the task is completely determined by the size
of its input dataset. Since Storage Affinity prioritizes the task with the largest
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Fig. 5. Performance of the heuristics with respect to the granularities 3Mbytes
and 15MBytes

storage affinity value, it means that the largest tasks are scheduled first. There-
fore, task replication only starts when most of the application has already been
executed. In the case of the pattern search application, the computational cost
of the tasks is not completely determined by the size of the input dataset of the
task, thus proportionally large tasks can be scheduled at later stages in the exe-
cution of the application. Therefore, replication may start when a large portion
of the application is still to be accomplished, and consequently more resources
are wasted to improve the application makespan.

Grid and Application Heterogeneity Finally, we have analyzed the impact
of the heterogeneity of the grid and the application in both Scientific Visualiza-
tion and Pattern Search applications.

In Figure 7 and Figure 8 we can see how the heterogeneity of the grid influ-
ences the makespan of both types of applications, considering the three heuristics
discussed. It is possible to see that the two data-aware heuristics are not greatly
affected by the variation of the grid heterogeneity. It is not surprising that XSuf-
ferage presents this behavior, given that it uses information about the environ-
ment. However, Storage Affinity shows that its replication strategy circumvents
the effects of the variations of the speed of processors in the grid, even without
using information about the environment. WQR is influenced a lot by the grid
heterogeneity variation, we can see that increasing the grid heterogeneity the
application makespan get worse.

Storage Affinity and XSufferage present a similar behavior with respect to
application heterogeneity. Both heuristics show good tolerance to the variation
of the application heterogeneity. In Figure 11 and Figure 12 we observe that the
application makespan presents a tiny fluctuation for both types of application
(Visualization and Search).
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Fig. 6. Resource waste with respect to the granularities 3Mbytes and 15MBytes
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Fig. 7. Grid Heterogeneity impact for Scientific Visualization application

4.5 Validation

In order to validate our simulations, we have conducted some experiments using
a prototype version of Storage Affinity. The Storage Affinity prototype has been
developed as a new scheduling heuristic for MyGrid [5,27].

The grid environment used in the experiments was comprised by 18 proces-
sors located at 2 sites (Carcara Cluster/LNCC - Teresópolis, Brazil and Grid-
Lab/UCSD - San Diego, USA). The home machine (phome) was located at the
Laboratório de Sistemas Distribúıdos/UFCG - Campina Grande, Brazil. It is
important to highlight that during the experiments the resources were shared
with other applications.

With respect to the application, we have used blast [2]. blast is an ap-
plication that searches a given sequence of characters into a database. These
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Fig. 8. Grid Heterogeneity impact for Pattern Search application
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Fig. 9. Resource waste considering the Scientific Visualization Application

characters represent a protein sequence and the database contains several iden-
tified sequences of proteins. The application receives two parameters: a database
and a sequence of characters to be searched. The database size is of the order of
many GBytes, but it can be sliced into many slices of few MBytes. On the other
hand, the size of the sequence of the characters to be searched does not surpass
4KBytes.

The application was composed of 20 tasks. Each task of the application re-
ceives a slice of 3MBytes of a large database downloaded from the blast site [28]
and a sequence of characters smaller than 4KBytes. Since the simulations have
been focused on applications that present inter-job data reuse pattern (Section
3.3), we have set the application to present the same data reuse pattern. Most
of the input of each task was reused (the database), while a minor part of the
input (the search target of few KBytes) has changed between executions.
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Fig. 10. Resources wasted considering the Pattern Search Application

Methodology Two scheduling heuristics have been analyzed in the experi-
ments: Storage Affinity and Workqueue with Replication. We did not use XSuf-
ferage due to the very lack of deployed monitoring infrastructure that could
provide resource load information. On the other hand, MyGrid already has a
version of Workqueue with Replication heuristic available.

In order to minimize the effect of the grid dynamism on the results, the
experiment consisted of back-to-back executions of the two scheduling heuristics
(i.e. we did intermixed the experiments of both scheduling heuristics). Following
this approach, 11 experiments have been executed. Each experiment consisted
of 4 successive executions of the same application for each scheduling heuristic,
thus adding to a total of 88 application executions.

Results In Figure 13 we present the average of the application makespan for
each scheduling heuristic. Figure 14 contains the simulation of the scenario used
in the experiment. The results show that both Storage Affinity and Workqueue
with Replication present the same overall behavior noticed in the simulations.
However, the experiment does differ from the simulation in some aspects. One
is the greater fluctuation the makespan values in the experiment. This is due to
the high level of heterogeneity of the grid environment, and to the fact that we
were ran much fewer cases than we simulated.

We can also observe a difference between the makespan in the experiment
results and the simulated scenario. We believe there are two reasons for this dis-
crepancy. First, we could not collect CPU and network loads experienced during
the real life experiments. The standard NWS logs we used instead. Therefore,
the grid scenario is not quite the same for the simulation and the experiments.
Second, the Storage Affinity prototype always queries the sites to obtain infor-
mation on the existence and size of files. This costly remote operation was not
modeled in the simulator. However, since the scheduler itself is the responsible
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Fig. 11. Application heterogeneity impact for Scientific Visualization applica-
tion

for transfering files to the sites, this information can be cached locally, thus
greatly reducing the need for remote invocations during the execution of Stor-
age Affinity. We are currently implementing such caching strategy and expect
such a modification to greatly reduce the discrepancy between simulation and
experimentation.

5 Conclusions and Future Work

In this paper we have presented Storage Affinity, a novel heuristic for scheduling
pHd on grid environments. We have also compared its performance against that
of two well-established heuristics, namely: XSufferage [9] and WQR [12]. The
former is a knowledge-centric heuristic that takes data transfer delays into ac-
count, while the latter is a knowledge-free approach, that uses replication to cope
with inefficient task-processor assignments, but does not consider data transfer
delays. Storage Affinity also uses replication and avoids unnecessary data trans-
fers by exploiting a data reutilization pattern that is commonly present in pHd
applications. In contrast with the information needed by XSufferage, the data
location information required by Storage Affinity is trivially obtained, even in
grid environments.

Our results show that taking data transfer into account is mandatory to
achieve efficient scheduling of pHd applications. Further, we have shown that
grid and application heterogeneity have little impact in the performance of the
studied schedulers. On the other hand, the granularity of the application has
an important impact on the performance of the two data-aware schedulers an-
alyzed. Storage Affinity is outperformed by XSufferage only when application
granularity is large. However, the granularity of pHd applications can be eas-
ily reduced to levels that make Storage Affinity outperform XSufferage. In fact,
independently of the heuristic used, the smaller the application granularity the
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Fig. 12. Application heterogeneity impact for Pattern Search application
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Fig. 13. Real application execution using prototype version of schedulers

better the performance of the scheduler (at least the granularity size which cor-
responds to an overhead starts to dominate the execution time). In the favorable
scenarios, Storage Affinity achieves a makespan that is in average 42% smaller
than XSufferage. The drawback of Storage Affinity is the waste of grid resources
due to its replication strategy. Our results show that the wasted bandwidth is
negligible and the wasted CPU can be reduced to 31%.

As future work, we intend to investigate the following issues: i) the impact
of the inter-task data reutilization pattern on application scheduling; ii) disk
space management on data servers; iii) the emergent behavior of a community
of Storage Affinity schedulers competing for shared resources; and iv) the use of
introspection techniques for data staging [29] to provide the scheduler with infor-
mation about data location and disk space utilization. Finally, we are about to
release a stable version of Storage Affinity within the MyGrid middleware [5,27].
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Fig. 14. Simulation of the scenario used in the experiments

We hope that practical experience with the scheduler will help us to identify
aspects of our model that need to be refined.
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Abstract. As we continue to evolve into large-scale parallel systems, many of
them employing hundreds of computing engines to take on mission-critical roles,
it is crucial to design those systems anticipating and accommodating the occur-
rence of failures. Failures become a commonplace feature of such large-scale sys-
tems, and one cannot continue to treat them as an exception. Despite the current
and increasing importance of failures in these systems, our understanding of the
performance impact of these critical issues on parallel computing environments
is extremely limited. In this paper we develop a general failure modeling frame-
work based on recent results from large-scale clusters and then we exploit this
framework to conduct a detailed performance analysis of the impact of failures on
system performance for a wide range of scheduling policies. Our results demon-
strate that such failures can have a significant impact on the mean job response
time and mean job slowdown under existing scheduling policies that ignore fail-
ures. We therefore investigate different scheduling mechanisms and policies to
address these performance issues. Our results show that periodic checkpointing
of jobs seems to do little to ease this problem. On the other hand, we demonstrate
that information about the spatial and temporal correlation of failure occurrences
can be very useful in designing a scheduling (job allocation) strategy to enhance
system performance, with the former providing the greatest benefits.

1 Introduction

Our growing reliance on computing and information processing services mandates not
only deploying systems that can meet the performance demands imposed on such sys-
tems, but also those that are available when needed. Several technological factors are
accentuating the problem of system failures, which are highly undesirable since these
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systems could be servicing the needs of hundreds of users. At the same time, solutions
for this problem need to keep the high costs of system maintenance personnel in mind,
which is growing to be a much more important factor in Total Cost of Ownership (TCO).
A deep understanding of the occurrence of failures in real environments can be useful
in several ways towards enhancing overall system availability. It can provide realistic
data when evaluating proposed solutions, together with developing strategies for proac-
tive prediction and remedies of faults ahead of their occurrence. Application demand
for high performance is continuing to fuel research and development of large scale par-
allel systems. The need for processing larger datasets in existing applications, and the
stringent demands of emerging applications necessitate parallelism in computational
and storage devices for their deployment. The cost-effectiveness in using off-the-shelf
hardware to put together clusters has contributed to a large extent in the widespread
availability of parallelism, and its successful usage. At the same time, several impor-
tant and challenging applications are driving the development of large scale parallel
machines, such as IBM’s BlueGene/L which is anticipated to have 65536 nodes.

As we continue to develop such large scale parallel systems, there are several im-
portant technological factors to keep in mind:

– Denser integration of semiconductor circuits, though preferable for performance,
makes them more susceptible to strikes by alpha particles and cosmic rays [41]. At
the same time, there is an increasing tendency to lower operating voltages in order
to reduce power consumption. Such reduction in voltage levels can increase the
likelihood of bit-flips when circuits are bombarded by cosmic rays and other parti-
cles, leading to transient errors. While memory structures are typically the target for
protection against errors using informational redundancy, more recent studies [31]
have pointed out that the error rates in combinational circuits are likely to surpass
those of memory cells in the next decade.

– At the macro granularity, we have dense blade-systems being packed in a rack as
a cluster. With a high load imposed on these dense systems – both on the CPUs
and on the disks – heat dissipation becomes a very important concern, potentially
leading to thermal instability that can cause system/node breakdowns [25,9].

– We find system software and applications becoming more complex. Such com-
plexity makes them more prone to bugs and other software failures [35,23,38]
(e.g. memory leaks, state corruption, etc.). These bugs/failures can cause system
crashes, and it has even been suggested that one should perform pro-active shut-
down/rejuvenation [39,38] to avoid catastrophic consequences.

All these factors point to the increasing occurrence of system failures in the future.
Failures become more commonplace when we consider parallel systems with thousands
of nodes. Rather than treat them as an exception, system design needs to recognize fault
occurrence, and manage the resources across the parallel system effectively so as to
hide their impact from the end users. One would ideally like to achieve the performance
of a system without any failures. Even if this is difficult to attain, there should be at
most a “graceful degradation” in performance under the presence of failures. Towards
this goal, the present paper specifically targets the management of CPU resources on a
large scale parallel system using a general failure modeling framework that accurately
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represents the node failure characteristics reported in recent studies of extensive error
logs collected from cluster systems over long periods.

When nodes5 fail, there are two important consequences on system performance:

– First, the process/task of the application running on this node dies, consequently
loosing all its work since it began. Further, in a parallel application, tasks frequently
communicate and consequently other tasks would also not be able to progress. In
effect, this can cause restarting the entire application (either on the same nodes or
on different nodes).

– Second, the unavailability of the failed node can cause longer queueing delays for
waiting jobs.

In this paper, we focus mainly on the first issue. With transient hardware errors and soft-
ware errors expected to be more prevalent than permanent failures, node reboots/restarts
can fix many of these problems. The duration of unavailability would then be relatively
low, given the long execution times of many of the parallel applications that we are
targeting – those in the scientific domain at national laboratories and supercomputing
centers. Note that the impact of node recovery time can become quite important for
permanent failures, and we postpone such an investigation for future work.

There are several options for managing the nodes in a faulty environment. One could
use an optimistic approach, and simply ignore the problem, assuming there would be
no failures. When a node does fail, then the application (all its tasks) could be restarted
as was just explained. However, as our results will show, such an approach can suffer
significant performance loss compared to a system where there is no failure. At the
other end of the spectrum, we could have a more pessimistic strategy, where application
processes are periodically checkpointed so that when a fault occurs, the amount of work
to be re-done is limited. In our results we will show that while this can be better than
ignoring the problem, the overheads of checkpointing can limit its benefits.

In this paper, we investigate an alternative strategy whose main philosophy is that
if we have a better idea of when and where failures occur, then one could use such
information for better management of the CPUs:

– If we could predict the time for the failure, then we could checkpoint immediately
before this point in time, so that we significantly limit the work lost while reducing
the checkpoint overheads. However, it may be very difficult to predict the exact
time for failures. If, on the other hand, temporal prediction of failures is possible
with a coarser granularity (a window) [29], then checkpointing could be initiated
only within those windows.

– If we could predict the nodes (spatial prediction) that fail, then we could either
avoid scheduling jobs on those nodes as far as possible, or only checkpoint those
nodes. The latter option may not be very fruitful since parallel applications typically
require all tasks to make progress at around the same rate.

One could also use a combination of spatial and temporal prediction to specifically
focus on the time and nodes where pro-active action needs to be taken to limit the work
loss upon failure while limiting the overheads of checkpointing.

5 Since we are mainly concerned with CPU management, we use the terms, node and CPU,
interchangeably in the rest of the paper.
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Investigation of these alternatives requires an understanding of the failure charac-
teristics of real parallel systems executing parallel applications. Unfortunately, the re-
search literature provides a wide variety of often conflicting results for different com-
puting environments (hardware and software) and there seems to be a lack of consistent
conclusions in previous computer failure studies. Moreover, only a few recent studies
have even considered large-scale clusters and they have tended to focus on sequential
commercial applications. The only exception that we are aware of is a recent study [28]
of extensive error logs collected from a large-scale distributed system consisting of
close to 400 machines over a period of close to 500 days, which includes some par-
allel applications. We therefore develop a general modeling framework that makes it
possible to vary the properties of the failure patterns to span the wide range of failure
characteristics found in the research literature. This framework is exploited to under-
stand the impact of different failure characteristics on overall system performance and
to propose scheduling strategies that can alleviate the performance impact of different
failure attributes.

A detailed simulation study using this failure modeling framework and character-
ized parallel job workloads from a supercomputing center reveals that the failures do
account for a significant drop in performance compared to a system without failures.
As can be expected, an exact temporal prediction of node failures almost completely
bridges this gap of performance loss due to failures. Our results also show that a signif-
icant portion of this gap can be bridged even if temporal prediction can be done at only
a granularity of 2–4 hours. While the results from our statistical analysis demonstrate
clear patterns that could be exploited to provide such coarse grain temporal prediction,
the results of our simulation study further show that even greater performance benefits
are possible by using the spatial (node) behavior of failures. Hence, our solution opts to
exploit the statistical spatial properties of failures and does so by developing a schedul-
ing strategy wherein nodes that have recently failed are given lower priority at being
assigned a job compared to others. We demonstrate that this simple strategy suffices to
extract most of the performance gap between a system with failures and one without,
and does significantly better than blindly checkpointing at periodic intervals.

The rest of this paper is organized as follows. The next section provides a brief
summary of work related to this study. Section 3 presents our evaluation methodology,
including our system model, our failure modeling framework, and the performance met-
rics of interest. Simulation results of the impact of failures on system performance are
provided in Section 4, followed by consideration of different failure-aware scheduling
strategies in Section 5.

2 Related Work

Job scheduling plays a critical role in the performance of large scale parallel systems
(e.g. refer to [8,43,44,10,12,16,18,32,33,34] and the references therein). At the same
time, scheduling can be used to improve the fault-tolerance [1,27] of a system in three
broad ways. First, a task can be replicated on multiple nodes so that even if a subset
of these nodes fail, the execution of a task is not impacted. Studies that employ this
technique ( [30,17]) assume a probability for node failure to determine the number of
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nodes on which to replicate the task. Second, the system can checkpoint all the jobs
periodically so that work loss is limited when a failure occurs, and there are several
studies on tuning checkpoint parameters [21,4,22]. Third, the scheduler allocates spare
nodes to a job so that it can quickly recover from potential failures [26]. With this
approach there is a trade-off between using the extra node(s) to improve the response
time versus time for recovery. To our knowledge, there has not been prior work in
analyzing and possibly managing system resources based on node failures.

3 Evaluation Methodology

3.1 System Model

We simulate a 320-node cluster that runs parallel workloads. A parallel job consists of
multiple tasks, and each task needs to run on a different node. After certain nodes are
allocated to a job, they are dedicated to the job until it completes (i.e., no other jobs can
run on the same nodes). Multiple parallel jobs can run side by side on different nodes
at the same time.

After a job arrives, it will start execution if it is the first waiting job and the system
has enough available nodes to accommodate it. Otherwise, it will be kept in the waiting
queue. In this paper, all the waiting jobs are managed in the First-Come-First-Serve
(FCFS) order. We also use backfilling in this exercise, which is a most commonly used
scheduling technique [44] for parallel workloads. Backfilling allows a job that arrived
later to start execution ahead of jobs that arrived earlier as long as its execution will not
delay the start of those jobs. Estimated job execution times are required to implement
backfilling.

Our experiments use a workload that is drawn from a characterization of a real
supercomputing environment at Lawrence Livermore National Labs. Job arrival, exe-
cution time and size information of this environment have been traced and characterized
to fit a mathematical model (Hyper-Erlang distribution of common order). The reader is
referred to [11] for details on this work and the use of the model in different evaluation
exercises [44]. The workload model provides (1) arrival time, (2) execution time, and
(3) size (number of nodes that it needs) for each incoming job.

3.2 Failure Injection

A large number of studies have considered the characteristics of failures and their im-
pact on performance across a wide variety of computer systems. Tang et al. [37,36] and
Buckley et al. [5,6] have investigated error/failure logs collected from various VAX-
cluster systems of different sizes. Lee et al. [19] and Lin et al. [20] analyzed the error
trends for Tandem systems and DCE environments. Xu et al. [40] performed a study
of error logs collected from a heterogeneous distributed system consisting of 503 PC
servers. Heath et al. [13] considered failure data from three different clustered servers,
ranging from 18 workstations to 89 workstations. Castillo et al. [7], Iyer et al. [15] and
Meyer et al. [24] have explored the effects of workload on different types of computer
system failures. Vaidyanathan et al. [38] demonstrated that software-related error con-
ditions will accumulate over time which will eventually lead to crashes/failures. Sahoo
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et al [28] have investigated the error logs from a networked environment of close to 400
heterogeneous servers over a period of close to 500 days.

Many of these studies have identified statistical properties and proposed stochastic
models to represent the failure characteristics of various computer systems. This in-
cludes the fitting of failure data to Weibull, lognormal and other specific distributions,
each with different parameter settings, under the assumption of independent and identi-
cally distributed failures [20,19,13]. Other studies have demonstrated that the sequence
of failures on some computer systems are correlated in various ways and that the failures
tend to occur in bursts [37,36,40,28]. Semi-Markov processes also have been proposed
to model the time-series of failure from certain systems [14,37,36].

Unfortunately, only a few of these previous studies have even considered clustered
server environments and those that have tend to focus on commercial servers like web
servers, file servers and database servers. We are not aware of any studies that inves-
tigate failures within the context of large-scale clusters executing parallel applications,
and no failure logs collected from such parallel computing environments are available to
us. Moreover, given the wide variety of often conflicting results and the lack of consis-
tent conclusions in previous computer failure studies, we expect that parallel computing
environments with different parallel application workloads, system software and system
hardware will similarly exhibit a broad range of failure behaviors. It is therefore impor-
tant to have a general modeling framework that makes it possible to vary the properties
of the failure patterns used to investigate parallel scheduling issues. Hence, we develop
such a failure modeling framework in this section which is then exploited in Sections
4 and 5 to understand the impact of different failure characteristics on overall system
performance and to propose scheduling strategies that can alleviate the performance
impact of different failure attributes.

Our framework consists of models for each of the three primary dimensions of fail-
ure characteristics together with controls over each of these dimensions and their inter-
actions. The first dimension concerns the times at which failures occur. This includes
the marginal distribution for the time between failures as well as any correlation struc-
ture among the individual failures. The second dimension concerns the assignment of
failures among the nodes comprising the system. This allows our framework to span the
range from uniformly distributed node failures assumed in some previous failure studies
to strong correlations between failures and nodes in order to yield the types of concen-
trations of failures on a subset of nodes as demonstrated in several recent failure studies
of large-scale clusters. The third dimension concerns the down time of each failure. An
overall control model is also used to directly capture any correlations or interactions
among these three dimensions. Thus, there is no loss of generality in separating out the
individual dimensions, while providing the ability to explicitly control and vary each
aspect of the individual dimensions.

We now define the specific aspects of each dimension of our general failure model-
ing framework that are used in this study to generate synthetic failure workload traces
each consisting of a number of failures. We use the job workload duration to determine
the total number of failures (F ) by making sure that the failures are spread throughout
the entire span of parallel job executions.
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Time of failures. Let ti denote the time at which failure i occurs, i = 1, . . . , F .
Heath [13] has shown that the marginal distribution for the times between arrivals of
failures in a cluster follow a Weibull distribution with shape parameters less than 1,

the PDF of which can be described as f(T ) = β
η (T

η )β−1e−( T
η )β

where β denotes the
shape parameter and η denotes the scale parameter. (Note that a Weibull distribution
with shape parameter 1 corresponds to an exponential distribution.) In this paper, we
use the family of Weibull distributions to generate the inter-arrival times for failures.
Specifically, the parameters that are used are summarized in Table 3.2. The resulting
failure arrival time distributions with different shape values are shown in Figures 3.2(a)
and (b).

scale shape number of failures failures/day
0.2 78 1.2

0.55 138 2.218000
0.65 198 3.2
0.85 266 4.3

Table 1. The parameters that are used to generate the Weibull distributions
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Fig. 1. The failure arrival time distribution with different shape parameters.

As noted above, the marginal distribution characterizes the statistical properties of
the times between failures without any consideration of the correlation structure in
the inter-failure process. Since it has been shown in [28] that there are strong tem-
poral correlations between failure arrivals, we seek to include in our framework a
general methodology for capturing different forms of temporal correlations within the
inter-failure process while maintaining a perfectly consistent marginal distribution. This
makes it possible for us to properly compare the impact of the inter-failure correlation
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structure on our results under a given marginal distribution. The following methodology
is used to model the temporal correlations between failure arrival times:

– We generate a sequence of failure inter-arrival times which follow a specific Weibull
distribution. Note that direct use of this time-series corresponding to assuming that
the failures are independent and identically distributed.

– We break this sequence into segments, each of which contains W elements. Within
each segment, we order the first W

2 elements in a descending manner, and order the
remaining W

2 elements in an ascending manner. Note that the degree of correlation
among the inter-failure times increases with increasing values of W .
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Fig. 2. The failure arrival time distribution with different correlation parameters. β =
0.85

Once again, using this method, we can model temporal correlation between failures
while maintaining a consistent marginal Weibull distribution. Figure 3.2 shows how the
failure arrival time series vary with different W values. Note that W = 2 corresponds
to the original time series and thus represents the case where there is no correlation. In
this study, we shall vary the degree of correlation according to W ∈ {2, 8, 32, 64}.

Location of failures. Let ni denote the location of failure i, i = 1, . . . , F . Several pre-
vious failure analysis studies have shown that the spatial distribution of failures among
the nodes is not uniform [37,13,28]. In fact, it has been shown in [28] that there are
strong spatial correlations between failures and nodes where a small fraction of the
nodes incur most of the failures. Possible reasons include: (1) some components (both
hardware and software) are more vulnerable than others [37]; and (2) a component that
just failed is more likely to fail again in the near future [13]. In order to capture this
non-uniform behavior, we adopt the Zipf distribution to model failure locations in this
study. We use α to denote the skewness parameter in the Zipf distribution. Specifically,
we vary the skewness parameter of the distribution using the values 0.01, 0.5 and 0.99,
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where 0.01 corresponds to an environment where failures are close to being uniformly
distributed among the nodes and 0.99 corresponds to a highly skewed distribution in
which the majority of failures are concentrated on a relatively small number of nodes.

Down time of failures. Let ri denote the down time of failure i, i = 1, . . . , F . Failure
down times can vary significantly due to the different ways of repairing the failures. If
a simple reboot can re-start the system, then the down time can be relatively small (at
most around minutes). However, if components need to be replaced, it could take hours
or even days to recover. In this study, we use a constant value to model the down time.
We vary this constant using down times of 2 minutes, 1 hour, and 4 hours.

3.3 Performance Metrics

In our simulations, we obtain the following statistics for each job: start time, work loss
(the total loss of work due to failures), and completion time. These statistics are then
used to calculate the following performance metrics:

– Utilization: The percentage of time that the system actually spends doing useful
work.

– Response Time: The time difference between when a job completes and when it
arrives to the system, averaged over all jobs.

– Slowdown: The ratio of the response time of a job to the time it requires on a
dedicated system, averaged over all jobs. This metric provides an indication of the
average slowdown that jobs experience when they execute in the presence of other
jobs compared to their running in isolation.

– Work Loss Ratio: The ratio of the work loss as a result of failures to the execution
time of a job, averaged over all jobs.

4 Impact of Failures on System Performance

We now move on to present results from detailed simulations of the system model
running the parallel job workloads described in the Section 3.1 that are subjected to
failures (Section 3.2).

4.1 Impact of Failure Arrival Statistics

As described early in this paper, the tasks of a parallel application often communicate
with each other in order to make forward progress. Consequently, if any one task has to
be restarted because of a failure, our model requires restarting all the tasks. Figures 3
illustrate the impact of the failure arrival characteristics on system performance. The
graphs show the average job slowdown and average work loss ratio as a function of
average job execution time. From Figure 3, we have the following observations:

– The impact of shape parameter (β). If we fix the scale parameter (η) of the Weibull
distribution, varying the value of β (β < 1) will lead to different number of failures,
further different inter-failure times. It thus has the most significant impact on the
system performance among all the failure parameters:
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Fig. 3. The impact of failures arrival characteristics.

• Failures can have a significant impact on the system performance (refer to Fig-
ures 3(a) (i) and (ii)). Even an average of 1.2 failures per day can increase the
average job slowdown by up to 40%. An average of 4.3 failures per day will
increase the job slowdown by up to 300%.
If we look at the average work loss for different β values shown in Figure 3(a)(i),
we observe an almost linear increase with β. Even a 0.2% work loss ratio suf-
fices to cause a considerable performance degradation since these are relatively
long running jobs.

• Failures have a higher impact on medium to high workloads. Let us look at the
average work loss for β = 0.85. Under high workloads, the work loss is 40%
higher than that under low workloads. This higher work loss ratio, together
with the already high system utilization, lead to a degraded performance.

– The impact of temporal correlation parameter W (refer to Figures 3(b) (i) and (ii)).
Compared to the impact of β , the impact of W is much less pronounced. We do
observe that a longer-range correlation can slightly increase the average work loss
and further job slowdown. A larger W can cause a more bursty failure arrivals,
which can increase the chances of a job being hit by the failures.
Although temporal correlation degree does not impact the average job slow down
greatly, we feel that it may affect the performance of individual jobs because the
same job may be hit multiple times at a higher temporal correlation degree. We are
currently working on these results.
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– The impact of spatial correlation parameter α (refer to Figures 3(c) (i) and (ii)). The
impact of α is also less obvious compared to that of β. We observe a significantly
higher work loss ratio under low loads for α = 0.99, but this difference diminishes
as the load increases. This observation may appear counter-intuitive. However, we
would like to point out that this is just a simulation artifact. In our simulation, node
0 is always ranked the first, and will experience more failures than others with
α = 0.99. At the same time, when we try to schedule jobs onto the nodes, we
always start from node 0 as well. Under low loads, the node utilization is low and
node 0 will be available most of the time. As a result, many jobs will be affected by
the failures on node 0, leading to a much higher work loss ratio.
Further, we would like to point out that α impacts job slowdown most at medium
loads. Under low loads, despite the work loss ratio difference, slowdown will not
be affected due to the low load. Under high loads, different α values result in the
same work loss ratio, thus leading to the same slowdown. On the other hand, the
medium loads combine both the work loss ratio and reasonable loads, resulting in
a more pronounced difference.

The results presented in this section are in agreement with our studies with a realistic
failure trace [28].

4.2 The Impact of Failure Down Times
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Fig. 4. The impact of failure down times.
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Earlier studies [] have shown that the failure down times have a great impact on the
system performance for commercial servers such as file server, email server, web server,
etc. However, we find that, for large-scale supercomputing clusters, an individual node’s
down time does not impact the performance significantly. As shown in Figures 4(a)-(c)
(i)-(ii), the performance gap with different failure down times (varying from 2 minutes
to 4 hours) is negligible. This is mainly due to the nature of the parallel workloads.
These jobs cannot start execution if the system does not have enough available nodes.
Therefore, in most of the times, the system will have a few free nodes while jobs are
waiting to execute, even under high loads (due to system fragmentation).

In summary, failures have a great impact since the job that got hit will lose its work,
but how long the failed node will remain down is not as important.

5 Failure-Aware Scheduling Strategies

In this section, we examine different possibilities to alleviate the impact of failures,
ranging from those that are oblivious to failure information (referred to as failure-
oblivious checkpointing in section 5.1), to those that have significant knowledge about
when and where failures occur (in section 5.2). Finally, we present a strategy that is
based on a simple observation about the failure properties, and show that it can do a
very good job of bridging this gap without requiring extensive failure prediction capa-
bilities.

5.1 Failure-Oblivious Checkpointing

A straightforward approach to limit the impact of work loss upon failures is by check-
pointing the application tasks periodically. Such an approach is oblivious to the occur-
rence of failures itself, and thus does not require any prediction about their occurrence.
In this section, we evaluate the effectiveness of this simple approach using different in-
tervals (2, 4, and 24 hours) for checkpointing. The scientific applications being targeted
in this study are long running, and manipulate large datasets. It is not only the memory
state of these applications that needs to be checkpointed but the network state of any
messages that may be in transit as well. Consequently, checkpointing costs can be quite
substantial, and can run into a few minutes especially with several processes swapping
to a few I/O nodes [42]. We use a checkpoint cost of 5 minutes in this exercise, and the
checkpoint intervals have been chosen in order to keep these overheads reasonable.

Figures 5 and 6 show the average slowdown, work loss ratio and checkpoint over-
head of this approach with different failure distributions. From this set of results, we
have the following observations:

– If the failures are i.i.d., oblivious checkpointing can only help the performance
marginally compared to not taking any proactive actions (refer to Figures 5(a)(i-ii)).
The relative performance gain due to checkpointing further decreases as the num-
ber of failures decreases (by comparing Figure 5(a)(ii) which has 1.2 failures per
day to Figure 5(a)(i) which has 3.2 failures per day). With an average of 3.2 failures
per day, a short checkpointing interval of 2/4 hours is better than a longer interval.
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(i) β=0.65; W =2; α=0.01; r=2 minutes, 4 hours.
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(ii) β=0.20; W =2; α=0.01; r=2 minutes, 4 hours.

Fig. 5. failure-oblivious checkpointing for failures that are iid.

With 1.2 failures per day, we do not observe a noticeable difference between differ-
ent checkpoint intervals. Although a small checkpoint interval can limit the work
loss due to failures, this gain can be offset by the added checkpoint overheads.
For example, if we checkpoint every 2 hours, the average work loss due to fail-
ures is less than 0.2%, but the resulted checkpoint overhead is above 0.4%, which
de-emphasizes the benefits of checkpoints. At the same time, a larger checkpoint
interval cannot effectively limit the work loss due to failures (Figure 5 (ii)).

– For failure traces that have temporal correlation, oblivious checkpointing does not
help either (refer to Figures 6(a)(i)).

– For failure traces that have spatial correlation, e.g., following a Zipf distribution
with α=0.99, the impact of oblivious checkpointing is again not obvious (refer to
Figures 6(a)(ii)). Readers can look at the corresponding work loss ratios (refer to
Figures 6(b)(ii)) and checkpointing overheads (refer to Figures 6(c)(ii)) to obtain
further performance details.

5.2 Checkpointing Using Failure Prediction

Perfect Temporal/Spatial Prediction The previous results suggest that a checkpoint-
ing strategy oblivious to failure occurrence is not very rewarding. On the other hand, if
one can predict when and where a failure occurs, then the specific job that would be af-
fected can alone be checkpointed exactly before the point of failure. The benefits of such
a perfect prediction strategy are quantified in Figure 7. The results show that the avail-
ability of exact failure information before-hand can help us schedule the checkpoint to
almost completely eliminate the performance loss due to failures.
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(i) Temporal correlation. β=0.65; W =64; α=0.01; r=2 minutes, 4 hours.
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(ii) Spatial correlation. β=0.65; W =2; α=0.99; r=2 minutes, 4 hours.

Fig. 6. failure-oblivious checkpointing for failures that have temporal or spatial corre-
lations.

Strategies Using Temporal Correlation While perfect prediction shows tremendous
potential, it is almost impossible to be able to accurately predict when and where fail-
ures would occur. We next relax the predictability of when (temporal) and where (spa-
tial) in the following way.

Even if one cannot predict exact times when failures occur, there could be under-
lying properties that make prediction at a coarser time granularity more feasible. For
instance, studies have pointed out that the likelihood of failures increases with the load
on the nodes [2]. At the same time, there have also been other studies [3] showing that
load on clusters exhibit some amount of periodicity, e.g. higher in the day/evenings,
and lower at nights. A recent study [28] has further showed that failures are correlated
to the time of the day. Such insights suggest that perhaps a time-of-day based coarse-
granularity prediction model may have some merit. Further, examination of our failure
logs earlier in this paper shows certain patterns that could be exploited to provide such
coarse grain temporal prediction. It is to be noted that our point here is not to say that
such a model is feasible. Rather, we are merely trying to examine whether such a model
(if developed) would be useful in alleviating the performance loss due to failures.

In our coarse-granularity temporal prediction model, we partition a day (24 hours)
into n buckets (each bucket represents 24

n hours). We assume that we know exactly
which bucket each failure belongs to, though we cannot predict the exact time within
this bucket nor the specific node where the failure would occur. With this prediction
model, at the beginning of each bucket, we know whether or not a failure will occur
within this bucket. If we know a failure is about to occur, we can turn on checkpoints
just for the duration of this bucket. At this time, how often we should checkpoint and
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(a) failures that are i.i.d:
β=0.85; W =2; α=0.01; r=2
minutes.

(b) failures with temporal
correlation: β=0.85; W =64;
α=0.5; r=2 minutes.

(c) failures with spatial corre-
lation: β=0.85; W =2; α=0.99;
r=2 minutes.

Fig. 7. Exact prediction and exact checkpointing.

which jobs to checkpoint become very important questions. In order to determine which
jobs to checkpoint (victims of the failures), we examine the following three heuristics:

– Checkpoint All. We checkpoint all the jobs that are running within this bucket.
Though this heuristic will not miss checkpointing the victim, it can incur higher
checkpoint overheads by checkpointing more jobs than necessary.

– Checkpoint Long. In order to avoid excessive checkpoint overheads, this heuristic
proposes to only checkpoint those jobs that have run for a certain duration (5 min-
utes in our experiments). The rationale is that even if we miss checkpointing the
victim, it has not run long enough to incur significant work loss.

– Checkpoint Big. This heuristic assumes that big (in terms of the number of nodes
that they use) jobs are more likely to be hit by failures because they occupy more
nodes. As a result, in this heuristic we only checkpoint the k biggest jobs running
within the bucket. Even though we have conducted experiments with different val-
ues of k, we only present results for k = 1 since the results are not very different.
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Fig. 8. Checkpointing based on relaxed prediction model for i.i.d failures (β=0.85;
W=2; α=0.01; r=2 minutes).

Figures 8 (a)-(c) present the performance of these heuristics for different bucket
sizes (1, 4 and 8 hours). With smaller buckets, while the results are closer to perfect
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prediction, note that predictability at those finer granularities can become more difficult.
Figure 8 shows that these heuristics can improve the performance noticeably even with
bucket sizes of 8 hours.
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Fig. 9. Comparing three heuristics using four-hour buckets for idd failures (β=0.85;
W=2; α=0.01; r=2 minutes).

Figure 9 compares these heuristics using four-hour buckets. It shows that these
heuristics have comparable performances which improve job slowdown by up to 70%.
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Fig. 10. Comparing three heuristics using four-hour buckets for failures that have either
temporal correlation or spatial correlation.

Similar trends are observed in the other failure traces (Figures 10) while the failures
that present temporal correlations benefits more from this approach since such failure
traces have more bursty failure arrivals.

Strategies Using Spatial Correlation: Least Failure First (LFF) Despite the less
stringent requirements from the prediction model examined in the previous section, it is
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quite possible as revealed in our analysis of the failure logs, that temporal prediction of
failures may be very difficult to attain. At the same time, we note an important property
of the failure logs - nodes that have failed in the past are more likely to fail again - and
investigate the possibility of using this observation that can mitigate the performance
loss due to failures.

We propose a scheduling strategy (rather a node assignment strategy for jobs), called
Least Failure First (LFF), to take advantage of this observation. The basic idea of this
strategy is to give lower priority to nodes that have exhibited the most failures until
that point when assigning them to jobs. Specifically, this objective is achieved by the
following two optimizations:

– Initial Assignment. We associate each node in the system with a failure count,
which indicates the number of failures this node has experienced so far. A node
that has a lower failure count is considered “safer” than another node with a higher
failure count. We then sort all the nodes in ascending order of their failure counts.
Amongst all the available nodes, we always allocate jobs to the safest ones (i.e., the
ones with lowest failure counts).

– Migration. It is still possible that at some point a node that is not assigned to any
job is more safe than another assigned to a job. To address this issue, when a job
finishes, we need to migrate jobs running on less safe nodes (that started after this
one) to more safe ones. As in [44], migration can be achieved by checkpointing on
the original nodes and restarting on the destination nodes. We assume the check-
pointing and restarting overheads to be 5 minutes. In order to avoid unnecessary
overheads (thrashing), we migrate a job from node A to node B only when the
difference between these two failure counts is above a certain threshold.

Figure 11 shows the performance results for LFF. As can be seen, for failure traces
that have non-uniform spatial distribution (Figure 11(c)), LFF cuts down nearly 50%
of the work loss incurred with failures by simply avoiding scheduling on failure-prone
nodes as far as possible .

It is to be noted that LFF does not really require any prediction about failures. It
is only exploiting a simple property of failures - a few nodes are likely to fail more
often - which is not only a behavior in our failure logs but is also borne out by similar
observations in other studies [37]. At the same time, it is easy to implement and can be
easily integrated into existing parallel job scheduling strategies.
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Abstract. Computer system batch schedulers typically require informa-
tion from the user upon job submission, including a runtime estimate.
Inaccuracy of these runtime estimates, relative to the actual runtime of
the job, has been well documented and is a perennial problem mentioned
in the job scheduling literature. Typically users provide these estimates
under circumstances where their job will be killed after the provided
amount of time elapses. Also, users may be unaware of the potential
benefits of providing accurate estimates, such as increased likelihood of
backfilling. This study examines user behavior when the threat of job
killing is removed, and when a tangible reward for accuracy is provided.
We show that under these conditions, about half of users provide an
improved estimate, but there is not a substantial improvement in the
overall average accuracy.

1 Introduction

It is a well-documented fact that user-provided runtime estimates are inaccurate.
Characterizations of this error in various real workload traces can be found in
several classic and recent papers. Cirne and Berman [1] showed that in four
different traces, 50 to 60% of jobs use less than 20% of their requested time.
Ward, Mahood and West [7] report that jobs on a Cray T3E used on average
only 29% of their requested time. Chiang, Arpaci-Dusseau and Vernon [4] studied
the workload of a system where there is a 1-hour grace period before jobs are
killed, but found that users still grossly overestimate their jobs’ runtime, with
35% of jobs using less than 10% of their requested time (includes only jobs
requesting more than one minute). Similar patterns are seen in other workload
analyses [2,3,5].

Many factors contribute to the inaccuracy of user estimates. All workloads
show a significant portion of jobs that crash immediately upon loading. This
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is likely more indicative of users’ difficulties with configuring their job to run
correctly, than difficulties with providing accurate runtime estimate [2]. How-
ever, a job’s runtime may also vary from run to run due to load conditions on
the system. In an extreme example, Jones and Nitzberg [9] found that on an
Origin system where different jobs on the same node share memory resources,
job runtime varied 30% on a lightly loaded system, to 300% on a heavily loaded
system.

Mu’alem and Feitelson [2] note that because many systems kill jobs after the
estimated time has elapsed, users may be influenced to “pad” their estimates, to
avoid any possibility of having their job killed. Therefore, we believe that it is
important to be precise about what users are typically asked to provide, which
is a time after which they would be willing to have their jobs killed, and to
distinguish this from the abstract notion of an estimate of their jobs’ runtime.
This leads us to prefer the term, requested runtime for the former, reserving the
term estimated runtime for a best guess the user can make without any penalty
(and possibly even with an incentive for accuracy).

This paper focuses on two specific causes of error in user provided runtime
estimates:

1. Requested runtimes are used as a “kill time”—in other words, jobs are killed
after the provided time has elapsed.

2. Users may be insufficiently motivated to provide accurate runtime estimates.
Many users are likely unaware of the potential benefits of providing an ac-
curate request, such as higher probability of receiving quicker turnaround
(because of an increased likelihood of backfilling), or this motivation may
not be strong enough to elicit maximum accuracy.

A significant unanswered question is, can and would users be accurate if
these two barriers to accuracy were removed? This study addresses this question
by asking users of the Blue Horizon system at the San Diego Supercomputer
Center (SDSC) [8] for a non-kill-time estimate of their jobs’ runtime, and offering
rewards for accuracy.

The rest of the paper is organized as follows. In Section 2, we describe the
experiment design. In Sections 3 and 4 we present the results of the accuracy
of users’ non-kill estimates, and their confidence in their estimates, respectively.
Section 5 reviews related work on the impact of user inaccuracy on scheduler
performance. Finally, Sections 6 and 7 present the conclusions and future work.

2 Survey Experiment Design

Users of the Blue Horizon system submit jobs by using the command llsubmit,
passing as an argument the name of a file called the job script. The script contains
vital job information such as the location and name of the executable, the number
of nodes and processors required, and a requested runtime. An analysis of the
requested runtimes from the period prior to the experiment shows that the error
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has a similar distribution to that observed in other workloads. Specifically, a
majority of jobs use less than 20% of their requested time.

During the survey period, users were prompted for a non-kill-time estimate
of their jobs’ runtime by the llsubmit program, randomly one of every five times
they run. We asked at the moment of job submission, as this will be the most
timely and realistic moment to measure the user’s forecasting abilities. The tra-
ditional requested runtime is not modified in the job script, we merely reflect
that value back to the user and ask them to reconsider it, with the assurance
that their response in no way affects this job.

Users were notified of the study, by email and newsletter, a week prior to the
start of the survey period. The notification included information about prizes
to reward the most accurate users (with consideration given also to frequency
of participation). One MP3 player (64MB Nomad, approximate value: 80 USD)
and 18 USB pen drives (64MB, approximate value: 20 USD) were awarded. The
prizes were intended to provide a tangible motivation for accuracy and thus to
elicit the most accurate estimates users are capable of providing.

The text of the survey is as follows. First, the user is reminded of the re-
quested runtime (kill time) provided in their script. The user is then queried for
a better estimate. Finally, the user is asked to rate their confidence in the new
estimate they provided, on a scale from 0 to 5 (5 being the highest). This ques-
tion was designed to test if users could self-identify as good or poor estimators.
The survey does not provide default values. The text of the survey (with sample
responses) is shown below:

You have been randomly selected to participate in a two-question survey
about job scheduling (as posted on www.npaci.edu/News). Your partic-
ipation is greatly appreciated. If you do not wish to participate again,
type NEVER at the prompt and you will be added to a do-not-disturb
list.
In the submission script for this job you requested a 01:00:00 wall-clock
limit. We understand this may be an overestimate of the wall clock time
you expect the job to take. To the best of your ability, please provide a
guess as to how long you think your job will actually run.
NOTE: Your response to this survey will in no way affect your job’s
scheduling or execution on Blue Horizon.
Your guess (HH:MM:SS)? 00:10:00
Please rate(0-5) your confidence in your guess: (0 = no confidence, 5=
most confident): 3
Thank you for your participation.Your Blue Horizon job will now be
submitted as usual.

3 User Accuracy

Over the 9-week period of the survey there were 10,397 job submissions. However,
only 2,870 of those ran until completion (many jobs are withdrawn while still
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waiting in the queue or cancelled while running). Since approximately one out
of every five job submissions were requested to complete the survey, 2,478 of
the jobs that ran until completion were not surveyed. Furthermore, we did not
survey automated submissions (81) or jobs that requested less than 20 minutes
of runtime (172). We had 21 timeouts, where there was no response for more
than 90 seconds; and 59 jobs that were submitted by the 11 people that decided
not to take part in the survey.

Of the 143 jobs that ran until completion and completed the survey, 20 had
equal or slightly higher runtimes than their requested runtime. This situation
could either indicate that the user was very accurate or, more likely, that the
job got killed once it reached its requested runtime due to scheduling policies.
We decided to discard these survey entries since it was not possible to determine
whether the job was completed or killed from the information we collected. In 16
of the responses, the estimate given in response to the survey was higher than
the requested runtime in the script. Taken at face value, this means that upon
further reflection, the user thought the job would need more time than they had
requested for it, in which case the job is certain to be killed before completing.
Some of these responses appeared to be garbage (e.g. “99:99:99”) from users who
perhaps did not really want to participate in the study or just hoped a random
response had some chance of winning a prize. In our analysis, all of these higher
responses were discarded, as well as a survey response indicating an expected
runtime of 0 seconds.

Fifty-six of the survey response runtime estimates were the same as the re-
quested runtime in the script. Of the 51 responses where users provided a tighter
estimate, users cut substantially (an average of 35%) from the requested time
(see Figure 1). The average inaccuracy in this group decreased from 68% to 60%.
By inaccuracy we mean the percent of requested (or estimated) time that was
unused or exceeded (in the case of estimates it is possible, though unusual, in
this survey, to underestimate the runtime), as given in the following formula:

Inaccuracy = abs(base − actualruntime)/base (1)

Where base is either the requested runtime or the estimated time from the survey.
So for example, an estimated time inaccuracy of 68% means either that 32% of
the estimated runtime was used, or that 168% of the estimated time was used.
A requested time inaccuracy of 68% means that 32% of the requested runtime
was used.

Because not all users tightened their estimates, overall the inaccuracy de-
creased from an average of 61% to 57%. Those users who did not tighten their
estimate were notably less inaccurate than those who did revise it; their initial
inaccuracy was 55%. To fully understand our two metrics it is helpful to under-
stand an example. A not atypical user requested their job to run for 120 minutes,
revised (estimated) the runtime to 60 minutes in response to the survey, and the
job actually ran for 50 seconds (!). In this example the user tightened their es-
timate by 50%. But the inaccuracy of the request is 99%, and the inaccuracy
of the estimate is improved only 1% down to 98%. Intuitively, many users are
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Fig. 1. Histogram of percent decrease from the requested time to the estimate
provided in response to the survey (includes only responses that were different
from the requested time). Categories represent a number of respondents up to
the label, e.g. 20% represents 7 responses that were between 10% (exclusive) and
20% (inclusive) decreased from the requested time in the script.

substantially improving extreme overestimates, still without making the bounds
very tight.

In Figure 3 we show the comparison between the requested runtime in the
script, and the actual runtime for the survey entries. The results are similar to
those seen in Figure 2, where we see the same information but for the entire
workload during the survey period, suggesting that the survey entries collected
are a representative population sample. The results are also similar to those seen
in the literature, in particular see [2]. Figure 4 shows the results if the estimate
provided in the survey is used, instead of the requested runtime in the script.
Note that no job’s actual runtime can exceed the requested runtime, but because
the survey responses were unconstrained in terms of being a kill time, the actual
runtime can be either more or less than this estimate. The great majority of
survey responses were still overestimates of the actual runtime. We cannot be
sure why this is so, but it may be a lingering tendency due to users having been
conditioned to overestimate by system kill-time policies.

Some degree of improvement can be seen in the pattern of error, for example a
cluster of points on the right to right-bottom area of Figure 3 is largely dissipated
in Figure 4. We can see that users still tend to round their times to 12, 24 and
36 hours in the survey, but not quite as heavily.

4 User Confidence

It is likely that even the most motivated of users will not always be able to provide
an accurate runtime request or estimate. But it may be useful if users can at
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Fig. 2. Comparison of actual runtime and requested runtime for all jobs on Blue
Horizon during the survey period (Figure 3 shows the same data but only for
jobs in the survey.) Note that some data points are overlapping.
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Fig. 3. Correlation between requested runtime and actual runtime. Note that
some data points are overlapping.
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Fig. 4. Correlation between users’ survey runtime estimates and actual job du-
ration. Note that some data points are overlapping.
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least self-identify when they are unsure of their forecast. In our study, we asked
users to rate their confidence in the runtime estimate they provided in response
to the survey on a scale from 0 (least confident) to 5 (most confident). Figure 5,
below, shows the distribution of responses. In a majority (70%) of the responses,
users rated themselves as most confident or very confident (5 or 4 rating) in the
estimate. This is in spite of the fact that, overall, the accuracy of the requested
runtimes and runtime estimates was poor (though typical, as observed in other
workloads). It may be that users did not significantly adjust their forecasts of
their jobs’ runtime to account for possible crashes and other problems [11,12].

2%2%

8%

18%

32%

38%

Fig. 5. Distribution of user accuracy self-assessments (i.e. confidence).

4%
14%

 
22%60%

Fig. 6. Distribution of user accuracy self-assessments in users who did not change
their requested runtime in response to the survey.

The responses can be divided into those users who provided a revised estimate in
response to the survey, and those who reiterated the requested runtime in their
script. In Figure 6, we see that in 60% of responses that were the same as the
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Fig. 7. Distribution of user accuracy self-assessments in users did change their
requested runtime in response to the survey.

requested runtime, users rated themselves as most confident (5), with another
22% rated very confident (4). No users in this group rated themselves as low or
very low confidence (1 or 0). In contrast, of those responses that were a different
estimate (Figure 7), most users rated themselves somewhere in the middle (4 or
3).

Psychologists Kruger and Dunning [10] have observed that people who are
most ignorant of a subject area are more likely to overestimate their own abilities
than those who are knowledgeable. We wondered if our results were an instance
of the same phenomenon. In other words, perhaps users reiterated the same re-
quested runtime out of ignorance, and were then very self-confident, as predicted
by Kruger and Dunning. However, it appears that users who did not change in
response to the survey, and had high confidence, did on average have more ac-
curate estimates (as seen in Figure 8). For the unchanged responses, there is a
clear pattern of decreasing average inaccuracy as the confidence increases. For
both changed and unchanged responses, the highest average inaccuracy is seen
in the category of lowest confidence, and the lowest average inaccuracy is seen
in the category of highest confidence.

5 Impact of User Inaccuracy on Scheduler Performance

One might ask what impact user inaccuracy has on scheduler performance—why
worry if user estimates are inaccurate? Indeed, some studies have shown that if
workloads are modified by setting the requested times to R * actual runtime,
average slowdown for the EASY and conservative backfilling algorithms actually
improves when R = 2 or R = 4, compared to R = 1 (total accuracy) [3,14].
Similar results have been shown when R is a random number with uniform
distribution between 1 and 2, or between 1 and 4, etc. [2,14].

But simply taking the accurate time and multiplying it by a factor does not
mimic the “full badness of real user estimates” [2]. Still, in other studies where
real user-provided times were used [2,3], some scheduling algorithms did perform
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Fig. 8. Average percent inaccuracy of user survey responses, separated into those
responses that were changed and not changed with respect to the requested
runtime in the script.

equivalently or slightly better, compared to the same workload with completely
accurate times.

However, some other algorithms experience significant performance degra-
dation as a result of user inaccuracy [4,5]. Also, even for an algorithm such as
conservative backfilling, which shows a slightly improved average slowdown with
inaccurate estimates, it is at the cost of less useful wait time guarantees at the
time of job submittal, and causing an increased tendency to favor small jobs
over large jobs (which may or may not be desirable) [4,14].

Asking the user for a more accurate time, as we have done in this study, is
not the only approach to mitigating inaccuracy. One suggestion is to weed out
some inaccurate jobs through speculative runs, to detect jobs that immediately
crash [5,13]. Or, the system could generate its own estimates for jobs with a
regular loop structure, via extrapolation from timings of the first few iterations
[4]. Another proposal [6] is to charge users for the entire time they requested,
not only the time they actually used. This idea, meant to discourage users from
“padding” their estimates, may seem unfair to users and thus be unattractive
to implement.

6 Conclusion

Mu’alem and Feitelson [2] documented and modeled discrepancies between user
provided time limits and actual execution time on several HPC systems, in-
cluding Blue Horizon. We analyze a more recent trace, with similar results. We
then ask the question, are users capable of providing more accurate runtime
estimates?
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To answer this question, we surveyed users upon job submittal, asking them
to provide the best estimate they can of their job’s runtime, with the assurance
that their job will not be killed after that amount of time has elapsed.

We have demonstrated that some users will provide a substantially revised
estimate but that, on average, the accuracy of their new estimates was only
slightly better than their original requested runtime. On the other hand, many
users were able to correctly identify themselves as more or less accurate in their
estimating than other users.

An inherent weakness in our survey experiment design is that we can never be
sure if users are motivated “enough” to provide the best estimates they can. In
other words, it is not clear if a bigger or better prize offering would have elicited
better estimates from users. However, that most users were very confident in
their estimates indicates that perhaps many were in fact exhibiting their “best”
in our study.

7 Future Work

In future work, we will measure the impact that better user estimates have on
supercomputer performance. We intend to carry out additional surveys to find
a scheduling system that understands user behavior and uses this knowledge
as a key scheduling factor. The survey will possibly include educating feedback
in order to measure users’ improvement over the lifetime of the experiment. In
addition, we wish to help users improve their estimates. One possible way to
accomplish this is by educating them about the potential benefits of providing
accurate estimates, other than the prizes offered specifically for this study. For
example, our prototype web-based tool Blue View visually presents the Blue
Horizon scheduler’s current plans for running and queued jobs. We hope this
tool will give incentive to the users to give shorter time estimates with the
promise that their jobs will fit the backfill slots shown in it. Furthermore, this
tool will also give the user the opportunity to mold their job according to what
is readily available.
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Abstract. Idle computation cycles of a shared network of workstations
are increasingly being used to run batch parallel programs. For one com-
mon paradigm, the batch program task running on an idle workstation
is preempted when the owner reclaims the workstation. This owner in-
terference has a considerable impact on the execution time of a batch
program, especially in the case of large parallel programs. Replication of
batch program tasks has been used to reduce the impact of owner inter-
ference. We show analytically that replication can significantly improve
parallel program speedup. Perhaps surprisingly, replication can also im-
prove efficiency for certain workloads. We present analysis to quantify the
amount of speedup and efficiency improvement. Furthermore, we provide
analysis to help determine whether extra available workstations should
be used for increasing job parallelism or for task replication.

1 Introduction

Networks of workstations (NOWs) have been used to run parallel programs for
some time [1,2,3,4,5,6,7,8,9,10]. The NOW may be dedicated as in the case of
Beowulf [11] or shared as in the case of Condor [12,13]. When the NOW is shared
with workstation owner processes, it is referred to as a shared network of work-
stations (SNOW). The speedup of parallel programs running on a SNOW can
be greatly affected by workstation owner interference. In this paper we consider
a SNOW where parallel jobs are run in an opportunistic fashion as in Condor.
In such an environment, workstation owner processes have preemptive priority
over batched parallel programs. Workstation reclamations by owner processes
stop execution of the batch job task and hence may significantly impact the
parallel job response time.

One approach to prevent a workstation reclamation from impacting parallel
job performance is to replicate some or all of the parallel tasks [5,6]. When
replication is used, parallel job performance is not affected by reclamations as
long as, at least one replica of each task completes without interference.

In [5] the author compares competition protocols and migration protocols for
sequential and distributed programs on variable-speed processors. A SNOW is
� This work was supported by the NSF grant ACI-9733658.
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treated as a collection of variable-speed processors where background programs
have lower priority than foreground owner programs. Competition protocols use
replication to reduce the impact of owner interference. Simulation results of the
performance of competition for distributed programs are presented. However
there is no mathematical analysis of the performance of competition protocols
for distributed programs. Competition policy issues such as, how to allocate
workstations for replicating tasks of a program, are not studied.

The authors in [6] demonstrate that owner interference considerably impacts
the performance of a parallel program running in a SNOW environment. Futher-
more, they demonstrate that using task replication can significantly improve
job response time. The study only considers the loss of up to one workstation
in a batch of tasks. Tasks are assumed to be of different sizes allowing for a
mix of short and long service demand tasks. Performance of replication for pro-
grams with tight coscheduling requirements is not studied. They consider one
no-replication and two replication strategies to alleviate the negative impact of
owner interference: no-replication (NR) adds the extra workstations to the gen-
eral pool, single replication (SR) replicates the largest task in a batch using one
extra workstation and uses other extra workstations in the general pool, and
complete replication (CR) replicates the K largest tasks using K extra work-
stations. They show with experimental workloads that CR performs better than
SR. Our work differs in that we provide analysis and proofs instead of simulation,
we consider synchronized workloads, we study various tradeoffs in how best to
allocate K extra workstations, and we consider the tradeoff between using extra
processors for parallelism versus replication.

Rosenberg [10] develops a model for devising a schedule that maximizes the
amount of work accomplished from an embarassingly parallel workload. Owner
interference is considered as an adversial process between the owner and the
user running background programs. The instantaneous probability of worksta-
tion reclamation is assumed to be known. In [2] the authors consider sharing
a bag of identically complex tasks in a heterogeneous network of workstations
(HNOW). The problem considered is accomplishing as much work as possible on
the HNOW, during a prespecified fixed period of time. Neither of [2,10] consider
the effect of replication for reducing the impact of owner interference on parallel
program performance.

In this paper we show that replication can result in significant speedup im-
provements and we analytically quantify parallel task replication benefits for
two workload models: tightly-coupled barrier synchronized and loosely-coupled
barrier synchronized. We allow for multiple workstation reclamations during the
execution of a batch of tasks. We assume knowledge of the probability that a
workstation may be reclaimed before a task completes, but do not assume knowl-
edge of the instantaneous probability of workstation reclamation as in [2,10]. We
analytically study how to distribute extra workstations not only among tasks of
a program but also between two programs.

In a dedicated parallel processing machine, increasing a parallel program’s
workstation allocation beyond the program’s maximum parallelism will reduce
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workstation efficiency without any speedup improvement [14]. We show that this
assumption does not hold in the case of a SNOW. On the contrary, and somewhat
surprisingly, additional workstation allocation in the form of task replication can
result in improvements in efficiency as well as speedup.

The rest of the paper is organized as follows. In Sect. 2 we describe our ma-
chine and workload models. In Sect. 3 we present replication analysis and results
for both workload models considered. In Sect. 4 we present analysis and explore
the trade-off between using additional workstations for replication versus for in-
creasing job parallelism. In Sect. 5 we prove lemmas that are used in theorems.
We state our conclusions in Sect. 6.

2 Machine and Workload Model

In this section we explain our overall system model, specific parallel program
models, and performance metrics.

2.1 System and Workstation Model

We assume a SNOW system of N homogeneous workstations. As in the Condor
system [12,13], we assume workstations execute both owner jobs and batched
jobs. We assume batch jobs are parallel programs, that are decomposed into
tasks, and then the tasks are run in parallel on idle workstations. For simplicity
we assume that all the tasks are of an equal length, that owner jobs are sequential
processes local to the workstation, and migration and checkpointing overheads
are absorbed in the workload demand. Similarly, homogeneity of workstations is
assumed for simplicity.

We assume workstation owner processes have preemptive priority over batch
tasks. As soon as an owner job begins execution after an idle period, the worksta-
tion is reclaimed, and the running batch task, if any, is preempted immediately.
All task work completed since the last checkpoint is lost.

We assume workstation reclamations are independently and identically dis-
tributed, and that the probability of a workstation being reclaimed during the
length of a task unit is pr, 0 < pr < 1. When a task is preempted the task
is allocated to another idle workstation and is restarted on that workstation.
The partial work completed by the task is lost and the task is restarted at the
beginning on the newly allocated workstation. The task only restarts after the
current length of a task unit is finished. The time when one set of job tasks is
deemed to be completed and the next set of tasks started, may represent the
point in the program where barrier synchronization takes place or when a job
checkpoints.

We assume we have enough workstations at hand so when one (or more) of
the workstations is reclaimed we have another one (or more) upon which to run
the task(s). Thus a job always has a fixed number of workstations allocated to
it. We make this assumption to simplify analysis, but it should have no effect on
the qualitative results gleaned from this study.
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When we say a task is replicated d times, we mean there are a total of d > 1
identical tasks scheduled, and the task completes when one (or more) of them
finishes. However if d = 1, we say the task has not been replicated.

2.2 Parallel Job Models

The batch workload consists of parallel programs, or jobs, each with N tasks,
where N ≥ 1. A job completes when all of the N tasks have completed. For
simplicity, we assume all tasks to be of unit length. Different inter-task syn-
chronization constraints impact the job performance. We have recently begun
exploration of the effectiveness of replication for a Master-Worker workload [15],
but for now consider the following workload models:

1. Tightly-Coupled Barrier
We assume a job is composed of N equal sized parallel tasks. A series of B
barriers must be completed. A barrier is reached when each of the N tasks
completes. All tasks must be simultaneously scheduled for forward progress.
If any of the N tasks is preempted, all N tasks must be started over. Thus, a
barrier is only achieved after a task-demand sized time interval where none
of the N workstations is reclaimed.
We assume that tasks always start at fixed intervals of time. When a work-
station is reclaimed, the task must be moved and hence the completed work
of all job tasks (of the current barrier) is lost and all these tasks must be
re-executed from the beginning. We also assume, for simplicity and to model
task migration time, that the tasks can be restarted only at the beginning
of the next interval.
We only explicitly model one barrier, since the analysis is the same for B
barriers, with the response time being B times that in the case of one barrier.

2. Loosely-Coupled Barrier
The model for loosely-coupled is the same as tightly-coupled with one differ-
ence: the only synchronization constraint during the time between barriers
is waiting for each of the other N − 1 tasks to reach the barrier. Thus pre-
emption of one task does not affect the completion of the other N − 1 tasks.
It is necessary for all the N workstations to have finished their current task
before the job (any of its tasks) can proceed to the next barrier. Again, we
do not explicitly model more than one barrier, since the analysis is the same
for B barriers, with the response time being B times that of one barrier.

2.3 Performance Metrics and Notation

Our primary metrics of interest are batch job speedup and efficiency [14]. Since
we want to study the impact of replication, we define Sd to be the speedup of
a job when each of its tasks is replicated d times. Likewise, Rd and Ed are the
response time and efficiency assuming each task is replicated d times. In the case
when the tasks of a program have different degrees of replication, d represents
the relevant degree of replication being discussed. We summarize our notation
in Table 1.
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Table 1: Notation

N Parallelism of a program
d Degree of replication
pr Probability of workstation reclamation
Sd Speedup, where d is the degree of replication
Rd Response Time, where d is the degree of replication
Ed Efficiency, where d is the degree of replication

F (t) CDF of the probability distribution
μN:N Mean of a maximum of N geometric variables

B Number of barriers in a program, each having N tasks
f Sequential fraction of a parallel program
Ti Task i of a program

3 Analysis and Results

In this section we present replication analysis and results for the tightly cou-
pled barrier and loosely coupled barrier synchronized workloads. For the sake of
readability we state the relevant Lemmas before the Theorem statements. The
proofs of the Lemmas are in section 5

3.1 Tightly Coupled Barrier

Here we present our analysis and results for the tighly-coupled barrier synchro-
nization model. Assume a job has parallelism N and that the probability of
a workstation reclamation during task execution is pr. The probability that a
task completes is (1 − pr). The program completes a set of N tasks, if all the
workstations complete the task allocated to them. Thus the probability that the
job completes a set of N tasks is (1 − pr)N . Assuming the program has a linear
speedup on a dedicated set of workstations, the expected speedup of the program
on a non-dedicated set of workstations is S1 = N(1 − pr)N .

When a task is replicated on two workstations, the task gets completed when
either one of them completes. The probability that the task is completed during
the first allocation is (1−p2

r). If all the tasks in a program are replicated then the
probability that a program completes a set of tasks is (1 − p2

r)N . The expected
speedup of the replicated program (assuming linear speedup) is S2 = N(1−p2

r)
N .

The ratio of speedup with replication to the speedup without replication is

S2

S1
=

N(1 − p2
r)

N

N(1 − pr)N
=

(
1 − p2

r

1 − pr

)N

0 ≤ pr ≤ 1 implies (1 − p2
r) ≥ (1 − pr) and the speedup ratio grows ex-

ponentially as the parallelism N is increased. The speedup with replication is
guaranteed to be at least as much as the speedup without replication, if not
better.
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In Fig. 1 we present plots of the ratio of speedup with replication over the
speedup with no replication. Unless varied, we assume pr = 0.1, N = 32, and d
(replication degree) = 2. We chose N to be 32 as a typical sized parallel program.
Even though replication provides a much better performance improvement for
higher values of pr, we select pr = 0.1 because running tightly coupled parallel
jobs on a SNOW with high owner interference may not be practical.

In all three graphs, on the y-axis we plot the ratio of speedup with replication
over the speedup with no replication. In Fig. 1(a) we vary job parallelism. We see
that the ratio increases with the job parallelism. This is because as N increases,
the probability of a task being preempted, and all of the tasks requiring a restart,
also increases. With replication, both a task and its replica must be preempted
before a barrier needs to be re-executed. Hence, the speedup ratio increases
significantly.

In Fig. 1(b) we vary pr. We see that as pr increases, the utility of replicating
tasks increases.

In Fig. 1(c) we vary the degree of replication, d. We see that for the param-
eters chosen, increasing the degree of replication up to 3 significantly improves
job speedup.

Replication can also increase the efficiency [14] defined as the ratio of speedup
to the number of workstations, E(n) = S(n)/n. Assuming all the tasks of a
program are replicated once, the number of additional workstations allocated to
the parallel program is equal to N , where N is the parallelism of the program
and is equal to the number of workstations allocated to the program without
replication. The efficiency is improved if E2/E1 ≥ 1 where E2 , E1 represent the
efficiency of the program with and without replication respectively. E2/E1 =
S2/(2S1), so the efficiency is improved if S2/S1 ≥ 2. This happens when :

(1 − p2
r)N

(1 − pr)N
≥ 2

1 − p2
r

1 − pr
≥ 21/N

log2

(
1 − p2

r

1 − pr

)
≥ 1

N

N ≥ 1

log2

(
1−p2

r

1−pr

)
Given pr, we can calculate the parallelism for which the efficiency of the

program will be improved by replicating all its tasks. We can use the knowledge
of N and pr to determine the degree of improvement (or degradation) replication
causes in the efficiency.

In the general case when each task i of the program of parallelism N is
replicated di times, where di ≥ 1, the speedup of the replicated program is
N

∏N
i=1(1 − pdi

r ). Replication causes improvement in efficiency if N
∏N

i=1(1 −
pdi

r ) ≥ (1 − pr)N
∑N

i=1 di.
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Figure 2 shows the minimum parallelism a program must have, to achieve
improved efficiency by replication. Programs that are larger (have higher paral-
lelism) than the minimum parallelism will have better efficiency with replication
than without replication. All the tasks of a program are replicated to an equal
degree.

In Fig. 2(a) we vary pr. We plot the minimum parallelism needed when the
degree of replication is 2, 3 and 5. For a low value of pr (low owner interference),
replication improves efficiency only for large programs. When the owner inter-
ference is high, replication improves performance significantly and is thus able
to improve the efficiency of both large and small programs.

In Fig. 2(b) we vary the degree of replication d on the x-axis and view its
effect on the minimum parallelism which is plotted on the y-axis. A lower degree
of replication improves the efficiency for programs with smaller parallelism than
does a higher degree of replication. Note, for higher degrees of replication where
the efficiency ratio is less than 1, it is the case that higher speedup is achieved,
but at the cost of a lower efficiency.
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Fig. 2: Minimum parallelism for which replication improves efficiency

Allocating Extra Workstations to the Same Program with Equal Repli-
cation. In the previous sections we considered the benefit of replicating all of
the tasks relative to no replication. In this section we investigate the best way to
allocate additional replicas when we do not have enough workstations available
to replicate all the tasks an additional time. Suppose we have k workstations
(1 ≤ k ≤ N) to allocate to a program of parallelism N , whose tasks are all
replicated d times. The question we have is : Is it better to use all these k work-
stations to replicate just one task of the program k additional times, or to use
them to replicate k tasks of the program 1 additional time?
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Lemma 5.1: If 0 < p < 1, n > 0 and k > 0, then ∀m > n, we have

1 − pn+k

1 − pn
>

1 − pm+k

1 − pm

Theorem 3.1. Replicating k tasks one additional time gives better speedup (and
response time) than replicating one of the tasks k additional times.

Proof. Let Sd+k, Sd+1 denote the estimated speedups when one task is repli-
cated k additional times and when k tasks are replicated one additional time
respectively. We have

Sd+k = N(1 − pd
r)

N−1(1 − pd+k
r )

Sd+1 = N(1 − pd
r)

N−k(1 − pd+1
r )k

For k = 1, we have Sd+1 = Sd+k = N(1 − pd
r)N−1(1 − pd+1

r ). For k = 2, we
have

Sd+k = N(1 − pd
r)

N−1(1 − pd+2
r )

Sd+k = N(1 − pd
r)

N−1(1 − pd+1
r )

(1 − pd+2
r )

(1 − pd+1
r )

Sd+1 = N(1 − pd
r)

N−1(1 − pd+1
r )

(1 − pd+1
r )

(1 − pd
r)

By Lemma 5.1 (Sect. 5) we know Sd+1 > Sd+k. Similarly, for k > 2, we can
reapply Lemma 5.1 k − 1 times to show that Sd+1 > Sd+k.

Thus it is better to replicate k tasks of the program one additional time,
than to replicate one task k times. ��

In Fig. 3 we present plots of the ratio of speedup (Sd+1) when one workstation
is allocated to each of k tasks over the speedup (Sd+k) when all k workstations
are allocated to one of the tasks. In all four graphs, we plot the speedup ratio
Sd+1/Sd+k, as the y-axis. Unless varied, we assume pr = 0.1, d = 2, N = 32,
and the number of extra workstations to be allocated k = 4. Before allocation
of the extra workstations, each of the tasks has an equal degree of replication.

In Fig. 3(a) we vary the parallelism N . We plot N only for values where N ≥
k. Assume, without loss of generality, that the allocation of the k workstations
is done among the first k tasks. For every value of N allocating the additional
workstation evenly results in a speedup ratio of 1.03 for d = 2 and 1.32 for d = 1.
From the expressions for Sd+1 and Sd+k, we can see that the tasks k+1 through
N contribute equally to the speedup in both cases. Consequently, they do not
affect the ratio Sd+1/Sd+k. For N ≥ k, the ratio of the speedups is independent
of N .

In Fig. 3(b) we vary the initial degree of replication d (before allocating the
k extra workstations) and study its effect on the ratio Sd+1/Sd+k. For a lower
initial degree of replication, the allocation of k workstations to the program has



Improving Speedup and Response Times by Replicating Parallel Programs 273

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

5 10 15 20 25 30

S
d+

1/
S

d+
k

N (Parallelism)

d=1
d=2

(a) pr = 0.1, d = 2, k = 4

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1 2 3 4 5 6 7 8 9 10

S
d+

1/
S

d+
k

d (Degree of replication)

(b) pr = 0.1, N = 32, k = 4

1

1.5

2

2.5

3

3.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
d+

1/
S

d+
k

pr (Reclamation probability)

d=1
d=2

(c) d = 2, N = 32, k = 4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

5 10 15 20 25 30

S
d+

1/
S

d+
k

k

d=2

(d) pr = 0.1, d = 2, N = 32

Fig. 3: Speedup ratio (One-to-each over All-to-one)

a greater effect. As d increases, the k workstations have a smaller effect on the
overall speedup. Thus the ratio of speedups approaches 1 for higher values of d.

In Fig. 3(c) we vary pr. The benefit of allocating the k workstations is greater
for higher amounts of owner interference. Thus the benefit of distributing the
extra workstations among the k tasks is more pronounced for higher values of
pr.

In Fig. 3(d) we vary the number of extra workstations k. When k = 1 the
ratio of speedups equals 1. As the number of extra workstations is increased, the
difference in the performance of the two allocation policies increases.

Allocating an Extra Workstation to the Same Program with Non-
identical Replication. Let us assume we have a program J with N tasks (T1,
T2, ... TN) running in parallel. Let us assume each task Ti has di replicas. If we
have an extra workstation to allocate to one of these tasks, we wish to determine
the allocation that will maximize speedup.
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Lemma 5.1: If 0 < p < 1, n > 0 and k > 0, then ∀m > n, we have

1 − pn+k

1 − pn
>

1 − pm+k

1 − pm

Theorem 3.2. Speedup is maximized when the extra workstation is allocated to
the task that has the least replicas.

Proof. The speedup of the program before allocating the extra workstation is
given by S = N(1−pd1

r )(1−pd2
r )...(1−pdN

r ) = N
∏N

i=1(1−pdi
r ). Let Sj denote the

speedup of the program when the extra workstation is allocated to task Tj (i.e.
task Tj is replicated one additional time). Sj = N(1 − p

dj+1
r )

∏N
i
=j,i=1(1 − pdi

r ).
Also,

Sj

S
=

N(1 − p
dj+1
r )

∏N
i
=j,i=1(1 − pdi

r )

N
∏N

i=1(1 − pdi
r )

Sj

S
=

(1 − p
dj+1
r )

(1 − p
dj
r )

We can assume, without loss of generality, that T1 has the least replicas, i.e.
d1 ≤ dj , ∀j �= 1. By Lemma 5.1 we know that S1/S ≥ Sj/S, ∀j, 1 < j ≤ N . Thus
S1 ≥ Sj . Therefore we maximize speedup by allocating the extra workstation to
the least replicated task. ��

In Fig. 4 we plot the ratio of the speedup when we allocate the extra worksta-
tion to the task with degree of replication d1 over the speedup when we allocate
the extra workstation to the task with degree of replication dj , where d1 ≤ dj .
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Fig. 4: Speedup Ratio (Allocate-to-lower-d over Allocate-to-higher-d)
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In Fig. 4(a), we vary d1 with a fixed value of dj = 10. As the difference in the
initial degrees of replication between the two tasks (before the extra workstation
is allocated) is low, the ratio of the speedups approaches 1. It is more important
to allocate the extra workstation to the least replicated task, when the difference
in their degrees of replication is high.

In Fig. 4(b), we vary pr. At higher values of owner interference using the extra
workstation to replicate the least replicated task becomes more important.

Allocating Extra Workstations to Identical Programs. We now consider
the case where we have TWO parallel jobs, each with equal parallelism, and want
to allocate additional replicas in the best way possible. Consider the problem of
allocating k extra workstations to jobs J1 and J2 which each have N ≥ k tasks.
Each task of both the programs has d replicas. In other words, the parallelism
and replication of each job is equal. Our objective is to allocate the additional
k workstations so as to minimize mean response time.

Lemma 5.3: If x ≥ 1, m ≥ 0, n ≥ 0 and wlog m ≥ n, then 1+xm+n ≥ xm+xn.

Theorem 3.3. Giving some extra workstations to each program results in a
better mean response time than giving all of them to one of the programs.

Proof. Let Rd+k be the mean response time when all k additional workstations
are allocated to one of the programs, say J1. Let Rd+k1 be the mean response time
when k1, (0 < k1 < k), workstations are allocated to J1 and k− k1 workstations
are allocated to J2. Assuming that the program is composed of one barrier, and
all the tasks are of unit length, the expected response time of J1 (or J2) before
allocation of the extra workstations is 1

(1−pd
r)N . Therefore we have

Rd+k =
1
2

(
1

(1 − pd
r)N

+
1

(1 − pd
r)N−k(1 − pd+1

r )k

)
and

Rd+k1 =
1
2

(
1

(1 − pd
r)N−k1(1 − pd+1

r )k1
+

1
(1 − pd

r)N−k+k1 (1 − pd+1
r )k−k1

)
Since d ≥ 1, we know 1−pd+1

r

1−pd
r

≥ 1. As k ≥ 1 and 0 < k1 < k, applying Lemma
5.3 we get

1 +
(

1 − pd+1
r

1 − pd
r

)k

≥
(

1 − pd+1
r

1 − pd
r

)k−k1

+
(

1 − pd+1
r

1 − pd
r

)k1

1
(1 − pd

r)N−k(1 − pd+1
r )k

[
1 +

(1 − pd+1
r )k

(1 − pd
r)k

]
≥

1
(1 − pd

r)N−k(1 − pd+1
r )k

[
(1 − pd+1

r )k−k1

(1 − pd
r)k−k1

+
(1 − pd+1

r )k1

(1 − pd
r)k1

]
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1
(1 − pd

r)N−k(1 − pd+1
r )k

[
1

(1 − pd
r)k(1 − pd+1

r )−k
+ 1

]
≥

1
(1 − pd

r)N−k(1 − pd+1
r )k[

1
(1 − pd

r)k−k1 (1 − pd+1
r )−k+k1

+
1

(1 − pd
r)k1(1 − pd+1

r )−k1

]

1
(1 − pd

r)N
+

1
(1 − pd

r)N−k(1 − pd+1
r )k

≥
1

(1 − pd
r)N−k1(1 − pd+1

r )k1
+

1
(1 − pd

r)N−k+k1(1 − pd+1
r )k−k1

Hence Rd+k ≥ Rd+k1 , so we get a better mean response time by splitting the
extra workstations among the two programs than by giving them all to one of
them. ��

Theorem 3.4. The mean response time of two programs is minimized when the
extra workstations are split equally among the two programs.

Proof. Now, for a fixed k, we find k1 so as to minimize the mean response time.
Note, we can minimize the mean response time, by minimizing(

1 − pd+1
r

1 − pd
r

)k−k1

+
(

1 − pd+1
r

1 − pd
r

)k1

Let a = 1−pd+1
r

1−pd
r

, and let f(x) = ak−x + ax.

f ′(x) = log a (ax − ak−x)

f ′(x) = 0 when ax = ak−x which is true when x = k/2.

f ′′(x) = log2 a (ax + ak−x)

f ′′(k/2) > 0, therefore x = k/2 is the minima of f(x).
Hence, we get the best mean response time when we equally share the addi-

tional workstations among the two programs J1 and J2. ��
In Fig. 5 we plot the effect of distributing k extra workstations among two

identical programs on their mean job response time. Unless varied, we assume
N = 32, pr = 0.1, d = 2, k = 32. A distribution (ki, kj) means, without loss of
generality, ki workstations are allocated to the first program and kj workstations
are allocated to the second program.

In both the graphs, we plot the ratio of the mean job response time for the
distribution (k1, k − k1) over the response time for the distribution (k/2, k/2).
We use different values of k1 for the plots.
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Fig. 5: Mean Response Time Ratio

In Fig. 5(a), we vary k1 (x-axis) in the range 0 through k = N = 32. We plot
the curves corresponding to d values of 1, 2, 3 and 4. In each case, the plot is
symmetric about the line x = k/2 and the minimum mean job response time is
reached for (k/2, k/2). The ratio is higher for lower values of d. So it is especially
important to divide the extra workstations equally among the two programs
for low initial degree of replication. As seen earlier, increasing replication for
higher values of d does not improve performance significantly. Thus the benefit
of distributing the workstations among the programs is low for d = 2, 3, 4. In
the plot the difference between d = 2, 3 and 4 is not discernible.

In Fig. 5(b), we vary pr along the x-axis and plot the response time ratio
from top to bottom for k1 values of 0, 3, 6, 9 and 12. The y-axis has a logarithmic
scale. A higher owner interference causes the ratio to increase significantly. For
high values of pr, even a slight imbalance in the allocation of the workstations
among the two programs has a stiff penalty in terms of mean job response time.

3.2 Loosely Coupled Barrier

Here we consider barrier synchronized programs whose tasks do not have to be
co-scheduled. So a job makes a barrier so long as all the tasks in the set are
completed irrespective of whether they were all running simultaneously or not.
In this loosely coupled scenario, the time a program needs to reach a barrier is the
maximum of the time needed for each task of the corresponding set to complete.
When a task is replicated, it is sufficient for one of the replicas to finish. Thus we
only need to consider the replica that has the minimum completion time. Hence
for a program with replicated tasks, the time needed to complete a set of tasks
(reach a barrier) is the maximum of the time required to complete each of the
individual tasks, which is in turn the minimum of the completion times of the
task’s replicas.

The probability that a task gets completed follows a geometric distribution
with parameter (1 − pr). The c.d.f of the distribution is given by F (t) = 1 −
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(1 − (1 − pr))t = 1 − pt
r. FN (t) = (1 − pt

r)
N . The mean of the maximum of N

geometric variables with parameter 1 − pr [16] is μN :N =
∑∞

t=0(1 − FN (t)) =∑∞
t=0(1 − (1 − pt

r)
N ).

Now consider the case where each task is replicated d times. The time needed
to complete a task is the minimum of d geometric variables with the parameter
1−pr. The minimum of d geometric variables (with parameter 1−pr ) follows a
geometric distribution with parameter 1− (1 − (1 − pr))d = 1− pd

r . The c.d.f of
the geometric distribution with parameter 1−pd

r is given by Fd(t) = 1−(1−(1−
pd

r))
t = 1− pdt

r . The mean of the maximum of N such geometric variables (with
parameter 1−pd

r) is given by μ′
N :N =

∑∞
t=0(1−FN

d (t)) =
∑∞

t=0(1− (1−pdt
r )N ).

μ′
N :N gives the mean time required to complete one barrier. If a program

has B such barriers, then the time needed to complete the program is Bμ′
N :N .

Similarly the time needed to complete a program with no replication is BμN :N .
The completion time of the sequential version of the program is BN . Hence

the speedup of the program without replication is S1 = BN
BμN :N

= N∑∞
t=0(1−(1−pt

r)N )

and the speedup of the program with d replicas is Sd = BN
Bμ′

N :N
= N∑∞

t=0(1−(1−pdt
r )N ) .

The ratio of the speedup with replication to the speedup without replication is
given by

Sd

S1
=

N/
(∑∞

t=0(1 − (1 − pdt
r )N )

)
N/ (

∑∞
t=0(1 − (1 − pt

r)N ))

Sd

S1
=

∑∞
t=0(1 − (1 − pt

r)N ))∑∞
t=0(1 − (1 − pdt

r )N ))

Since 0 < pr < 1 and d ≥ 1, we have pd
r ≤ pr. Given t ≥ 0, pdt

r ≤ pt
r.

(1 − pdt
r ) ≥ (1 − pt

r) and (1 − pdt
r )N ≥ (1− pt

r)
N , where N ≥ 1. Hence, (1 − (1−

pdt
r )N ) ≤ (1 − (1 − pt

r)
N ), ∀t ≥ 0. Therefore Sd ≥ S1. Note for d > 1, Sd > S1.

From the above we conclude that replication always results in better speedups
when 0 < pr < 1.

In both the graphs of Fig. 6 we plot, on the y-axis, the ratio of speedup
with replication over the speedup without replication. Unless varied, we assume
N = 32, pr = 0.1 and d = 2.

In Fig. 6(a), we plot the speedup ratio as we vary the parallelism N on the
x-axis. The speedup ratio is greater than 1, as replication provides at least as
much speedup as no replication. The speedup improvement is better for larger
jobs (higher values of N) than for smaller jobs. The graph tends to level off for
larger N , because for larger N values, the chances of one of the workstations
being reclaimed are much higher, so adding just one degree of replication is not
as effective (as compared to smaller jobs).

In Fig. 6(b), we plot the speedup ratio as we vary the degree of replication d.
The speedup improvement increases significantly until about d = 3 (for N = 32,
pr = 0.1), after which the improvement levels off.

Allocating Extra Workstations to the Same Program with Equal Repli-
cation. Now consider the problem of allocating 1 ≤ k ≤ N additional worksta-
tions to a program whose tasks are all replicated d times.
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Fig. 6: Speedup Ratio (Replication over No-Replication)

Lemma 5.2: If 0 < p < 1, t > 0, d > 0, and n ≥ 1, then ∀k, k,n integers and
1 ≤ k ≤ n, we have

(1 − pdt)n−k(1 − p(d+1)t)k ≥ (1 − pdt)n−1(1 − p(d+k)t)

Theorem 3.5. Replicating k tasks one additional time gives better speedup (and
response time) than replicating one of the tasks k additional times.

Proof. Let Sd+k, Sd+1 denote the speedups when one task is replicated k addi-
tional times (d + k times) and when k tasks are replicated one additional time
(d + 1 times) respectively. Thus we have

Sd+k =
N∑∞

t=0(1 − (1 − pdt
r )N−1(1 − p

(d+k)t
r ))

Sd+1 =
N∑∞

t=0(1 − (1 − pdt
r )N−k(1 − p

(d+1)t
r )k)

Sd+1

Sd+k
=

∑∞
t=0(1 − (1 − pdt

r )N−1(1 − p
(d+k)t
r ))∑∞

t=0(1 − (1 − pdt
r )N−k(1 − p

(d+1)t
r )k)

From Lemma 5.2 we know that ∀t ≥ 0, (1 − pdt
r )N−k(1 − p

(d+1)t
r )k ≥ (1 −

pdt
r )N−1(1 − p

(d+k)t
r ). Therefore, 1 − (1 − pdt

r )N−k(1 − p
(d+1)t
r )k ≤ 1 − (1 −

pdt
r )N−1(1 − p

(d+k)t
r ) which implies

Sd+1

Sd+k
≥ 1

Thus it is better to replicate k tasks one additional time than to use all the k
workstations to replicate just one process k times more. ��
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Allocating Extra Workstations to the Same Program with Different
Replication. Suppose we have a program that has one task, T1 with m total
replicas and another task, T2 with n total replicas, where m > n. Since the change
in speedup of the program, after allocating k ≥ 1 additional workstations to one
of these tasks, only depends on the change in speedups due to the additional
replication of one of these tasks, we can assume, without loss of generality, that
the program only has 2 tasks T1, T2.

Lemma 5.1: If 0 < p < 1, n > 0 and k > 0, then ∀m > n, we have

1 − pn+k

1 − pn
>

1 − pm+k

1 − pm

Theorem 3.6. Allocating extra workstations to the task that is replicated the
least results in better speedup (and response time) than allocating extra worksta-
tions to other tasks.

Proof. The speedup of the program when the k extra workstations are allocated
to T1 is

Sm+k =
N∑∞

t=0(1 − (1 − p
(m+k)t
r )(1 − pnt

r ))

and the speedup of the program when the k workstations are used to replicate
T2 is

Sn+k =
N∑∞

t=0(1 − (1 − pmt
r )(1 − p

(n+k)t
r ))

where, N = 2.
From Lemma 5.1, we know ∀t ≥ 0, (1−pmt

r )(1−p
(n+k)t
r ) ≥ (1−p

(m+k)t
r )(1−

pnt
r ). Hence, (1−(1−pmt

r )(1−p
(n+k)t
r )) ≤ (1−(1−p

(m+k)t
r )(1−pnt

r )). Therefore,
Sn+k ≥ Sm+k. So allocating the k additional workstations to the task which is
replicated fewer times (before the allocation) is better. ��

Allocating Extra Workstations to Identical Programs. Consider two pro-
grams J1 and J2 which have N ≥ k ≥ 1 tasks each. The tasks of both the pro-
grams are replicated a total of d times each. Now we wish to allocate k additional
workstations to the two programs so as to minimize the mean response time of
the programs. We claim that allocating all k workstations to just one of the two
programs is at least as good (better in most cases) as allocating some to each
program.

Lemma 5.3: If x ≥ 1, m ≥ 0, n ≥ 0 and wlog m ≥ n, then 1+xm+n ≥ xm+xn.

Theorem 3.7. The mean response time is lower when all the extra workstations
are allocated to either one of the programs, rather than split among both the
programs.
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Proof. Let Rd+k be the mean response time of the programs when k workstations
are all allocated to one of the programs and none to the other. Let Rd+k1 be
the mean response time of the programs when k1, 1 ≤ k1 < k workstations are
allocated to one of the programs and k − k1 workstations are allocated to the
other program. Here we assume the (identical) programs both have one set of
tasks (barrier).

Rd+k =
1
2

[ ∞∑
t=0

(1 − (1 − pdt
r )N ) +

∞∑
t=0

(1 − (1 − pdt
r )N−k(1 − p(d+1)t

r )k)

]

Rd+k1 =
1
2
[
∞∑

t=0

(1 − (1 − pdt
r )N−k1(1 − p(d+1)t

r )k1)

+
∞∑

t=0

(1 − (1 − pdt
r )N−k+k1(1 − p(d+1)t

r )k−k1 )]

For d ≥ 1, t ≥ 0 we have (1 − p
(d+1)t
r ) ≥ (1 − pdt

r ). Therefore,
(

1−p(d+1)t
r

1−pdt
r

)
≥ 1.

By Lemma 5.3, we have

1 +

(
1 − p

(d+1)t
r

1 − pdt
r

)k

≥
(

1 − p
(d+1)t
r

1 − pdt
r

)k1

+

(
1 − p

(d+1)t
r

1 − pdt
r

)k−k1

1 +
(1 − p

(d+1)t
r )k

(1 − pdt
r )k

≥ (1 − p
(d+1)t
r )k1

(1 − pdt
r )k1

+
(1 − p

(d+1)t
r )k−k1

(1 − pdt
r )k−k1

(1−pdt
r )k+(1−p(d+1)t

r )k ≥ (1−pdt
r )k−k1(1−p(d+1)t

r )k1+(1−pdt
r )k1(1−p(d+1)t

r )k−k1

Multiplying both sides by (1 − pdt
r )N−k, we get

(1 − pdt
r )N + (1 − pdt

r )N−k(1 − p(d+1)t
r )k ≥

(1 − pdt
r )N−k1(1 − p(d+1)t

r )k1 + (1 − pdt
r )N−k+k1(1 − p(d+1)t

r )k−k1

− (1 − pdt
r )N − (1 − pdt

r )N−k(1 − p(d+1)t
r )k ≤

− (1 − pdt
r )N−k1(1 − p(d+1)t

r )k1 − (1 − pdt
r )N−k+k1(1 − p(d+1)t

r )k−k1

2 − (1 − pdt
r )N − (1 − pdt

r )N−k(1 − p(d+1)t
r )k ≤

2 − (1 − pdt
r )N−k1(1 − p(d+1)t

r )k1 − (1 − pdt
r )N−k+k1(1 − p(d+1)t

r )k−k1

(1 − (1 − pdt
r )N ) + (1 − (1 − pdt

r )N−k(1 − p(d+1)t
r )k) ≤

(1 − (1 − pdt
r )N−k1(1 − p(d+1)t

r )k1) + (1 − (1 − pdt
r )N−k+k1(1 − p(d+1)t

r )k−k1 )
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∞∑
t=0

(1 − (1 − pdt
r )N ) +

∞∑
t=0

(1 − (1 − pdt
r )N−k(1 − p(d+1)t

r )k) ≤
∞∑

t=0

(1 − (1 − pdt
r )N−k1(1 − p(d+1)t

r )k1)

+
∞∑

t=0

(1 − (1 − pdt
r )N−k+k1(1 − p(d+1)t

r )k−k1 )

Thus Rd+k ≤ Rd+k1 , so we get a better mean response time if we allocate all k
workstations to one of J1 or J2. ��

4 Replication Vs Parallelization

4.1 Tightly Coupled Barrier

Suppose we have a program J1 with a sequential fraction f . Assume there is no
upper bound on the maximum parallelism. By Amdahl’s Law, we know that the
speedup of this program has an upper bound of S(N) = 1/(f +(1−f)/N), where
N is the number of tasks of J1. We shall assume that this speedup is achieved
by the program when run on a set of N dedicated workstations, even though in
a real scenario, the speedup achieved is much lower due to other constraints. Let
us further assume that each of the N tasks has been replicated d times. Thus we
are running J1 on dN workstations. If we have dN + 1 workstations available to
us, we need to find out if it is more profitable (in terms of speedup) to increase
the parallelism of J1 to N + 1 or to replicate an existing task one additional
time.

Let Sd denote the speedup of J1 when run on a SNOW with increased
parallelism of N + 1, and let Sd+1 denote the speedup of J1 when run on a
SNOW with parallelism N but with extra replication. Note, for simplicity we
assume pr remains constant when the parallelism is increased to N + 1. We
have Sd = S(N + 1)(1 − pd

r)
N (1 − pr) and Sd+1 = S(N)(1 − pd

r)
N−1(1 − pd+1

r ).
Sd+1 > Sd when : S(N)(1 − pd+1

r ) > S(N + 1)(1 − pd
r)(1 − pr). The gain in

improvement when the parallelism is increased by 1 is given by Sd+1/Sd.

Sd+1

Sd
=

S(N)(1 − pd
r)

N−1(1 − pd+1
r )

S(N + 1)(1 − pd
r)N (1 − pr)

=
S(N)(1 − pd+1

r )
S(N + 1)(1 − pd

r)(1 − pr)

= a
S(N)

S(N + 1)

where a = (1−pd+1
r )

(1−pd
r)(1−pr) . Note a > 1 for d > 0.
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Sd+1

Sd
= a

f + (1 − f)/(N + 1)
f + (1 − f)/N

= a
(Nf + f + 1 − f)N

(Nf + 1 − f)(N + 1)

= a
N + N2f

(N + 1) + (N2 − 1)f

Sd+1

Sd
− 1 = b[a(N + N2f) − (N + 1) − (N2 − 1)f ]

where b = 1/[N + 1 + (N2 − 1)f ]. Note b > 0 for N > 0.

Sd+1

Sd
− 1 = b[aN + aN2f − N − N2f − (1 − f)]

= b[(a − 1)fN2 + (a − 1)N − (1 − f)]

= (a − 1)b
[
fN2 + N − 1 − f

a − 1

]
Example 4.1 (N=1). If N = 1,

Sd+1

Sd
− 1 = (a − 1)b

[
f + 1 − 1 − f

a − 1

]
= b(af + a − 2)

Thus it is always better to increase replication (rather than parallelism) if f >
2/a− 1.

In Fig. 7 we plot the ratio of speedup with increased replication over the
speedup with increased parallelism. Unless varied, we assume d = 2, N = 32,
pr = 0.1 and the sequential fraction of the parallel program f = 0.2.

In Fig. 7(a), we vary N along the x-axis and study its effect on the ratio
of speedup with increased replication over speedup with increased parallelism.
For this choice of parameters it is better to increase replication for all N ≥ 4.
For N < 4, increasing parallelism gives a better performance. When N is large,
using just one extra workstation to replicate a task has a reduced effect on overall
performance. Thus we see the ratio levelling off.

In Fig. 7(b), we vary the initial degree of replication d (before using the extra
workstation). An increase in the initial degree of replication, means the amount of
improvement possible, by replicating one of the tasks once more, is lower. Hence
the improvement by increased replication is less relative to the improvement
possible by increasing parallelism. So we see a drop in the speedup ratio. For
higher values of d, using one extra replication of one task of the program has a
low effect on overall speedup and thus we see the speedup ratio levelling off.

In Fig. 7(c), we vary pr. Replication is especially helpful when owner inter-
ference is high. Thus when pr increases, the speedup ratio also increases signifi-
cantly.

In Fig. 7(d), we vary the sequential fraction of the program f . We notice
that the sequential fraction of the program has a very low effect on the speedup
ratio.
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5 Proofs

Lemma 5.1. If 0 < p < 1, n > 0 and k > 0, then ∀m > n, we have

1 − pn+k

1 − pn
>

1 − pm+k

1 − pm

Proof. Since k > 0, n > 0 and 0 < p < 1, pn > pn+k. And also since m > n,
pm−n < 1 which implies (1 − pm−n) > 0. Therefore, we have

pn(1 − pm−n) > pn+k(1 − pm−n)

pn − pm > pn+k − pm+k

−pm − pn+k > −pn − pm+k

1 − pn+k + pm+n+k − pm > 1 − pm+k + pm+n+k − pn
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1 − pn+k + pm(pn+k − 1) > 1 − pm+k + pn(pm+k − 1)

(1 − pn+k)(1 − pm) > (1 − pm+k)(1 − pn)

1 − pn+k

1 − pn
>

1 − pm+k

1 − pm

��

Lemma 5.2. If 0 < p < 1, t > 0, d > 0, and n ≥ 1, then ∀k, k,n integers and
1 ≤ k ≤ n, we have

(1 − pdt)n−k(1 − p(d+1)t)k ≥ (1 − pdt)n−1(1 − p(d+k)t)

Proof. Since d > 0 and t > 0, from Lemma 5.1 we have for 1 ≤ i ≤ k − 1

1 − pdt+t

1 − pdt
≥ 1 − p(d+i)t+t

1 − p(d+i)t

Therefore,
(1 − pdt+t)k−1

(1 − pdt)k−1
≥

k−1∏
i=1

1 − p(d+i)t+t

1 − p(d+i)t

(1 − p(d+1)t)k−1 ≥ (1 − pdt)k−1
k−1∏
i=1

1 − p(d+i+1)t

1 − p(d+i)t

≥ (1 − pdt)k−1 1 − p(d+k)t

1 − p(d+1)t

(1 − p(d+1)t)k ≥ (1 − pdt)k−1(1 − p(d+k)t)

(1 − pdt)n−k(1 − p(d+1)t)k ≥ (1 − pdt)n−1(1 − p(d+k)t)

��

Lemma 5.3. If x ≥ 1, m ≥ 0, n ≥ 0 and wlog m ≥ n, then 1+xm+n ≥ xm+xn.

Proof. Case 1: n = 0
n = 0 implies xm+n = xm and xn = 1. So 1 + xm+n = 1 + xm = xm + xn.

Thus, 1 + xm+n ≥ xm + xn.
Case 2: n > 0
Let f(x) = 1 + xm+n − xm − xn. Now, f ′(x) = (m + n)xm+n−1 − mxm−1 −

nxn−1.

f ′(x) = (m + n)xm+n−1

[
1 − m

m + n

1
xn

− n

m + n

1
xm

]
= (m + n)xm+n−1

[
1 − 1

xn

(
m

m + n
+

n

m + n

1
xm−n

)]
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Since, x ≥ 1 and m ≥ n, we have 1
xm−n ≤ 1, and hence(

m

m + n
+

n

m + n

1
xm−n

)
≤ 1

Because n > 0, 1
xn ≤ 1, therefore f ′(x) ≥ 0 so f(x) is increasing when x ≥ 1. At

x = 1, f(1) = 0 which implies f(x) ≥ 0, for x ≥ 1. Hence, 1 + xm+n ≥ xm + xn.
��

6 Conclusions

We have analyzed the performance improvements resulting from task replica-
tion of batch parallel programs running on a SNOW. Specifically, we have de-
rived formulas to calculate the speedup and efficiency improvements due to task
replication. With our analysis we have shown that replicating tasks of parallel
programs can result in significant speedup improvements. Also, for some work-
loads, replication can also improve efficiency. Furthermore, when the probability
of workstation reclamation rises, the speedup and efficiency improvements due to
replication increase. Likewise, as job parallelism increases, replication becomes
even more beneficial in improving speedup.

We have also analyzed the problem of using extra workstations to replicate
tasks of a parallel program and shown how to distribute the extra workstations
among the tasks. Specifically, for the workload models considered, if we have k
extra workstations, we have shown it is better to replicate k tasks one additional
time than to replicate one of the tasks k additional times. If there is only one
extra workstation, we have shown it is best to allocate the extra workstation
to the least replicated task. Finally, if we have extra workstations to distribute
among two identical programs, distributing the workstations equally between
the two programs gives least mean response time for a tightly coupled workload
and giving all the extra workstations to one of the programs gives least mean
response time for a loosely coupled workload.

Lastly, we have presented an analysis of the trade-off between using an extra
workstation to increase parallelism and increasing replication, and have found
that replication can be more beneficial than increasing parallelism for a range of
tightly-coupled workloads.

We have made a strong case for considering the use of replication in the
design and implementation of scheduling policies for SNOWs.

We plan on further investigating the speedup improvements of replication
for the master-worker workload and for workloads with un-equal task demands.
We also plan to consider the problem of distributing extra workstations among
several batch parallel programs.
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Abstract. Job scheduling typically focuses on the CPU with little work
existing to include I/O or memory. Time-shared execution provides the
chance to hide I/O and long-communication latencies though potentially
creating a memory conflict. We consider two different cases: standard
local CPU scheduling and coscheduling on hyperthreaded CPUs. The
latter supports coscheduling without any context switches and provides
additional options for CPU-internal resource sharing. We present an ap-
proach that includes all possible resources into the schedule optimization
and improves utilization by coscheduling two jobs if feasible. Our LO-
MARC approach partially reorders the queue by lookahead to increase
the potential to find good matches. In simulations based on the work-
load model of [12], we have obtained improvements of about 50% in both
response times and relative bounded response times on hyperthreaded
CPUs (i.e. cut times by half) and of about 25% on standard CPUs for
our LOMARC scheduling approach.

1 Introduction

The primary goal in job scheduling is to provide good response times to users.
A secondary goal is to improve utilization. Both objectives may conflict with
each other though often improved response times also mean improved (though
potentially not optimum) utilization. The relationship between them is typically
not well expressed. The best response-time behavior so far has been reported for
gang scheduling [16,6]. Gang scheduling is a time-sharing approach and means
that all processes of the same job are scheduled across nodes at the same time
by globally synchronous time slicing [6]. Gang scheduling has shortcomings as
regards latency hiding for I/O and long-latency communication. Latency hid-
ing plays an increasingly significant role for the emerging class of data-intensive
applications like datamining. Long-latency hiding is important also for poten-
tial grid applications. Loosely coordinated coscheduling [1,24,17,34,27] (avoiding
the globally synchronous execution and enabling to release the CPU if waiting)
and relaxed combinations of gang and local CPU scheduling [23] provide al-
ternatives performing better in this regard. Loosely coordinated coscheduling
requires modifications of the communication software and potentially the OS,
typically using a spin-blocking approach to release the CPU after some time

D. Feitelson, L.Rudolph, and U. Schwiegelshohn (Eds.): JSSPP 2004, LNCS 3277, pp. 288–315, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of waiting and a priority boost to schedule processes that have been waiting
for communication. Hyperthreading processors like the Xeon and the new Intel
Pentium 4 make it possible to run two applications at the same time without
any context switches and without the need to change the communication soft-
ware. However, the processes compete for CPU-internal and network resources
in addition to memory and I/O. Thus, interesting new options for time-shared
execution are available but have to be handled carefully. The target architecture
considered is a cluster with high-performance network (like Myrinet or Quadrics
[35]) and user-level communication. In this paper, we only consider single-CPU
nodes (hyperthreaded or standard) but our approach would be extendible to
multi-way nodes. Considering the possibilities of hyperthreaded CPUs, we limit
our coscheduling to a maximum of two jobs, i.e. a multiprogramming level of 2.
In the following, we use the term coscheduling in the sense of running multiple
jobs together.

The objectives for our own LOMARC job scheduler are:

– Inclusion of all relevant resources (CPU, network, disk, memory)
– Support of standard time-shared execution on standard CPU and coschedul-

ing on hyperthreaded CPUs
– Increase of utilization though keeping basic primary goal of improved re-

sponse times
– Usage of application characteristics via a-priori knowledge
– Usage of otherwise standard state-of-the-art scheduling approaches (priori-

ties, backfilling etc.)

We address our objectives by the following innovative solutions:

– Optimizing the schedule by matching two applications whenever possible to
share resources for high utilization

– Calculating estimates for response-time impact and utilization improvement
while considering reordering to match jobs

– Including application characteristics (CPU, network, disk, memory) via an
integrated cost model to estimate matchability and slowdowns

– Relaxing the scheduling order and sorting jobs more flexibly by permitting
jobs to move ahead in the schedule if they pair well with other jobs though
potentially to some extent pushing other jobs backward in the queue

We apply the standard per-job approach for scheduling jobs, i.e. do not at-
tempt any global optimization. The reasons are that global optimization has a
high – O(n3) – time complexity and that its benefit is even questionable, con-
sidering that the submissions are dynamic and, in standard approaches with
priorities, the overall context of jobs changes permanently.

We have tested our approach via an event-based simulation and the workload
described in [12], comparing it to standard space-shared job scheduling. Our
tests include investigations of different heuristics, focusing either on utilization
or response-time impact. We present a maximum slowdown model for the cases of
resource competition and validate our estimates by practical tests with synthetic
programs on a cluster with hyperthreaded CPUs.
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2 Related Scheduling Work

Space/time-shared execution of parallel programs has been shown to outper-
form mere space sharing by providing better response times [16]. The typical
practically applied approach for time/space sharing is gang scheduling which
means globally synchronized execution of parallel programs [20]. We have shown
that with adaptive space allocation, we can obtain even better response times
with a lower multiprogramming level [25]. This has the essential benefit of re-
ducing memory pressure. Furthermore, gang scheduling has shortcomings with
respect to the overhead involved and not being able to hide I/O and other long
latencies unless the application internally is doing that. Most parallel applica-
tions avoid I/O and compute in-core. However, data-intensive applications like
datamining are emerging. Several different approaches have been proposed for
a loosely coordinated form of coscheduling (implicit and dynamic coschedul-
ing, periodic boost) which is more flexible and can hide latencies [1,24,17,34].
See also [27] for a survey. Most loosely-coordinated coscheduling approaches ap-
ply spin-blocking at the waiting side to avoid wasting CPU time if the partner
process is not currently scheduled. Furthermore, some form of priority boost
is applied at the receiving side for processes that are waiting for communica-
tion but are not currently scheduled. These mechanisms are supposed to keep
jobs coscheduled if they are in synchrony and drive processes into synchrony if
they are not currently coscheduled but communicating with each other. Loosely
coordinated coscheduling is, however, in experimental status. One system re-
flecting some of these findings is Sun MPI [28], though in own experiments on
an SMP server, we found that it does not satisfactorily accomplish coscheduling
[25,26]. To overcome the I/O problems of gang scheduling and the problems of
proper coscheduling for applications with high communication intensity, flexi-
ble coscheduling with a combination of gang and local CPU scheduling has been
proposed [23,8]. The main idea is to keep frequently communicating applications
gang scheduled, while relaxing the scheduling toward local CPU scheduling for
coarse-grain applications that potentially have I/O or communication with long
latencies. The decision can be made dynamically and per node.

One possible approach to schedule jobs with different combinations of I/O-
bound and computation-bound jobs in gang scheduling is to reorder the gang-
matrix rows to match jobs in the schedule and schedule them together [33].
The benefit of this approach is that it is dynamic, i.e. does not depend on
pre-knowledge about characteristics and can accommodate different phases of
the programs, e.g. jobs switching between I/O-bound and computation-bound
phases. Then, jobs can be paired or not be paired in different phases. However,
this approach needs to use the maximum I/O time of different jobs per row
and requires a larger number of rows for choice, i.e. a high multiprogramming
level. However, a large multiprogramming level is undesirable as regards mem-
ory pressure and the probability of actually finding pairs on large machines with
potentially many different jobs per row is low. Flexible coscheduling as described
above [23,8] overcomes the problem of different jobs in the row behaving differ-
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ently and the dependence on the maximum per row but still depends on which
jobs are randomly allocated to the same nodes as candidates for matching.

Most approaches apply a heuristic on a per-job basis to allocate jobs and de-
termine the schedule. There is little work to perform a more global optimization.
One approach optimizes the job ordering during backfilling (instead of using the
common first-fit heuristic) to obtain better response times and utilization. A
certain lookahead window is applied and the solution found via dynamic pro-
gramming [22]. Slack-based scheduling [29] not only considers multiple factors for
priority calculation but is more ambitious as regards finding optimum schedules.
The approach, in principle, permits free reordering of the whole queue but sets
constraints by the slack that represents maximum delays per job. In a practical
setting, the approach boils down to a number of different possible heuristics.
In this approach, priority-based heuristics performed best and utilization-based
ones worst.

For all approaches of job scheduling, memory pressure creates constraints
for scheduling which can increase fragmentation and response time significantly
[21,2]. All of the above consider only one resource (I/O or memory) in addition
to the computation. The approach in [10] can handle several resources, trying
to balance the overall resource usage. The approach is applied during backfilling
and searches the whole queue to find the best match. In [5], an optimal resource
allocation in the sense of adapting the size of the job is found by, at the time
of submission, simulating different possible job sizes with the current job queue
and selecting the optimum.

3 Hyperthreading

Hyperthreading is a special case of simultaneous multithreading [30] with 2
threads (of the same or different applications) running simultaneously, based
on the idea of letting multiple threads share the internal CPU resources in each
cycle to increase their utilization. This addresses the problem that modern su-
perscalar processors often cannot keep all their resources busy with a single pro-
gram. The Xeon hyperthreaded physical CPU has only minor extensions (5%
die) to support multiple architectural states – the rest of the resources including
the L1 data cache and the L2/L3 unified caches are shared [14]. Hyperthreading
is not limited to the Xeon processor but will become widespread with the Intel
Pentium 4. However, the effectiveness of Hyperthreading depends on how well a
single thread already would utilize the resources of the CPU and to what extent
the threads compete for resources – such as integer and floating-point units –
or complement each other. Furthermore, the impact of stalls due to insufficient
instruction-level parallelism and branch misses is reduced. Another problem is
the sharing of the cache which is typically a scarce resource anyway. The impact
of this effect depends on the cache behavior of the program. If the working set
is large but just fits nicely into the cache (which may mean that the application
is cache-optimized), the competition of a second process/thread running on the
CPU can severely slow down the program. However, future versions of hyper-
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threaded CPUs may perform better by increased cache sizes. Applications that
sequentially run over a large set of data in a single pass may perform very well
because having little locality (this may apply to, e.g., many datamining appli-
cations in comparison to, e.g., a matrix multiplications which use the same rows
and columns multiple times). If the program has no cache locality (because of
irregular accesses or poor implementation), the effects of longer-latency memory
accesses can even be mitigated. Though, memory can equally well create an ad-
ditional problem if the machine architecture does not provide sufficient memory
bandwidth to support two processes as this is often the case [3]. Parallel applica-
tions typically use different data subsets per process/thread and thus compete for
the cache. In addition, scientific applications often use floating-point operations.
If they are already well optimized, they can keep the floating-point resources
busy with a single thread [11]. [13] comes to the conclusion that scientific ap-
plications typically show less improvement than business applications (10%-30%
vs. 60%). Symbiotic scheduling [31] and MASA [18] monitor resource conflicts
among running jobs on single-CPU simultaneous multithreading processors and
coschedule the jobs that have the least resource contention.

Hyperthreading provides a different option of coscheduling by running mul-
tiple applications together on the same physical CPU. This saves overhead for
context switches and coordination. Especially applications that are dominated
by floating-point operations can run well together with applications that are
dominated by integer operations [18]. Though, the threads have to share the
network, with communication not only creating network contention but also
memory-access contention. In [11], the communication effects were studied and,
for communication-intensive benchmarks, a degradation in performance was ob-
served. In [18], an approach is presented to set affinity to certain physical or
logical CPUs at user level. This would make it possible to extend our approach
to run on dual SMP nodes. Furthermore, the involved modification of the OS-
internal CPU scheduling can be used to switch hyperthreading dynamically on
and off (i.e. switch from multithreading mode MT to single-threaded mode ST).
This can be done by using the privileged (OS) instruction hlt (HALT).

4 The Slowdown Estimation and Empirical Evaluation

4.1 The Slowdown Estimation

For the following discussion, we first need to define our view of slowdown. Note
that we always assume two jobs being coscheduled.

Definition individual-execution-slowdown: The factor in execution time
by which an application A runs slower in joint execution with another application
B (TA,B) than it would run on its own (TA), i.e. slA,B = TA,B/TA.

Note that this definition is different from the slowdown definition in loosely
coordinated coscheduling such as implicit coscheduling [1] which bases on jobs
normally running twice as long in joint time-shared execution. Thus, the slow-
down is the relative factor beyond that, i.e. TA,B/(2TA) if TA

<= TB. For example,
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if two jobs with equal runtime together run 3 times as long, the slowdown is con-
sidered to be 3/2 = 1.5. Since our concern is increasing utilization, this view is
not appropriate for us.

Previous research [13,11] has investigated the performance on hyperthreaded
SMP nodes and/or cluster for applications as a whole. Thus, no detailing into
computation and synchronization/communication cost was done and no I/O was
considered. Below we present a slightly more detailed model which estimates the
maximum slowdown. We split execution time into the fraction of computation
time fcomp, the fraction of communication time fcomm, and the fraction of I/O
time fio. For simplification, we assume that fcomp + fcomm + fio = 1, i.e. we
currently do not consider any application-internal latency hiding. For applica-
tions with many short communications, we may actually attribute most of the
communication time (similar to [7]) as computation time because most of the
time (fcomm,O,Lmcopy) is spent on the CPU for setting up the communication,
copying to and from buffers, polling to wait on communication, and copying be-
tween host and NI (network interface) memory (because typically being buffered
and handled via Programmed I/O – PIO). Long communication involves little
CPU time because employing Direct Memory Access – DMA – and zero-copy
communication [35]. Similarly, I/O spends a certain amount of time fio,OS in
OS handling – especially buffer copying – on the CPU. We basically assume I/O
is to the local disk – if I/O goes to an I/O server, the message-passing part
(fio,comm) has to be attributed to the network. Thus,

– fCPU = fcomp + fcomm,O,Lmcopy + fio,OS

– fnetwork = fcomm − fcomm,O,Lmcopyn + fio,comm

– fdisk = fio − fio,OS − fio,comm

with fCPU being the time on the CPU, fnetwork the time on the network,
and fdisk the time on the disk. We assume that the time on each resource is
distributed more or less equally along the execution time (e.g., not I/O clustering
at the beginning and end of the job).

In the perfect case, applications would exploit different resources all the time
but typically TA,B

>= TA.
Disk, network, and CPU usages do not conflict with each other. In the gen-

eral case, applications use all three resources though in different shares. Race
conditions may apply and, in the worst case, the applications are using the same
resources at the same time, and we therefore have to estimate competition on
resources. Cost estimates have to consider worst case behavior per node because
the probability for the worst case to happen on at least one node increases with
larger number of nodes, converging to a probability of 1 (if applications need to
synchronize with each other). The potential for conflicts is described below for
the different resources.

Communication: Two jobs may communicate at the same time: the com-
munication will be serialized on the NI and in the DMA. On different nodes,
communications may interleave in different order, leading to delays for both
applications. Since according to our measurements, non L2/L3 cache integer op-
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erations have little slowdown, we can ignore additional CPU time from added
polling time. Thus, we estimate the slowdown as

slA,B,network = 1 + knetwork ∗ min{fnetwork,A, fnetwork,B}/fnetwork,A

with knetwork being a factor for potential superlinear slowdowns from network
contention.

Hyperthreaded CPUs: they compete for floating-point and integer CPU-in-
ternal resources and for the cache. The former serializes instructions, the latter
creates additional cache misses. The exact resource competition depends on how
much instruction parallelism is available per application and which execution
resources are needed at any time vs. the available resources in the CPU. In [13],
the major difference made is between integer- and floating-point-dominated ap-
plications. However, in own measurements, we found a somewhat more complex
relationship. As regards the cache, we found that often cache-miss latencies can
be hidden within the application or among applications. Thus, coscheduling two
applications with cache conflict does not necessarily reduce performance signif-
icantly more than if there are no conflicts. Furthermore, the sum of the cache-
space needs does not linearly translate into cache misses because caches are not
perfectly LRU (Least Recently Used) but n-way direct (the Xeon L2/L3 caches
are 8-way) caches that may lead to replacements even if the working set still fits
into the cache. We estimate

slA,B,CPU = 1 + kCPU ∗ (fA,B,competing + (slA,B,mem − 1))∗
min{fCPU,A, fCPU,B}/fCPU,A

with fA,B,competing being the fraction of the code competing for CPU-internal
resources; and kCPU being a factor expressing potential superlinear effects from
CPU contention or effects from running the CPU in hyperthreaded vs. single-
threaded mode. Detailed modelling would require an advanced cache/CPU cost
model and a detailed application model (access patterns, instructions mixture)
which goes beyond the scope of this paper. Similar arguments apply to slA,B,mem

which expresses the slowdown from paging if the two applications do not fit into
memory together.

I/O: the system calls for I/O will be partially serialized, may interfere with
each other by going to different tracks (and therefore adding seek times), and
compete for buffer space. However, the different I/O calls may also provide
potential for OS-internal optimization or overlapping each other on the disk. The
details depend on the OS. We make the assumption that the same serialization
of cost applies as for the other cost components, i.e.

slA,B,disk = 1 + kdisk ∗ min{fdisk,A, fdisk,B}/fdisk,A

with kdisk being a factor for potential superlinear slowdowns from disk con-
tention.

The above leads to the following overall maximum slowdown:
slA,B = slB,A = 1+

kCPU ∗ (fA,B,competing + (slA,B,mem − 1)) ∗ min{fCPU,A, fCPU,B}+
knetwork ∗ min{fnetwork,A, fnetwork,B}+
kdisk ∗ min{fdisk,A, fdisk,B}
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Note that the slowdown for A and B is the same (since we count the shared
parts) and that the maximum slowdown according to the above formula is 2 as
long as no memory conflicts are involved. Then, a slowdown of 2 corresponds
to time-sharing on a standard CPU and any slowdown > 2 means a decrease
in utilization. The slowdown is the lower, the more different the characteristics
of the two applications are, i.e. the smaller the shared parts on the different
resources.

As an example, if all k factors and slA,B,mem are 1 and fCPU,A = 0.4,
fnetwork,A = 0.1, fdisk,A = 0.5, fCPU,B = 0.5, fnetwork,B = 0.4, fdisk,B = 0.1,
and fA,B,competing = 0.5, then slA,B = 1 + 0.5 ∗ 0.4 + 0.1 + 0.1 = 1.4.

Information about application characteristics can be obtained by monitoring
shortened sample runs or by monitoring normal application runs and keeping the
information for future runs in performance databases [9]. A tool like Paradyn
[15] may be used to obtain the standard characteristics fcomp, fcomm, fio. Vtune
[32] can obtain performance counters for CPU-internal usage and measure, for
example, retired floating-point operations and cache misses to obtain estimates
about CPU-internal resource usage and conflicts.

Considering the discussion above, we can now compare our coscheduling on
hyperthreaded CPUs to loosely coordinated coscheduling. The latter can hide
I/O latency though I/O intensive applications can significantly disturb the coor-
dinated execution of intensively communicating jobs (and cause process switches
and delays). Thus, both types of jobs should not be coscheduled. However, this
negative effect does not exist on hyperthreaded processors because both applica-
tions can continue to execute at any time. For loosely coordinated coscheduling
of communication and/or computation-dominated jobs, the best results obtained
so far are about a factor of 2.4 slowdown, and it is not even sure whether these
results generalize. Thus, the benefits are more limited. We only coschedule jobs
if we can obtain a benefit, i.e. a slowdown below a sllimit

<= 2. As a benefit
of loosely coordinated coscheduling, it is less sensitive to the cache though the
spin-block also in a negative cache impact (process switches on standard CPUs
invalidate the whole cache) [27].

Above, we have made the simplification not to consider application-internal
latency hiding. Such consideration is, however, possible. We only have to make
sure to recognize that no external latency-hiding potential is available anymore
for the corresponding fractions of the code. We can simply mark these fractions
as the combination of the typically two resource types. An estimation on the safe
side, then, is to count the whole combined fraction for each of the corresponding
resource types when estimating conflicts. Latency hiding (and improved resource
usage) is still possible for such applications if matching with an application which
is dominant in the third resource type.

4.2 Empirical Evaluation of Slowdowns

We have tested slowdowns with synthetic applications on a cluster with Intel
Xeon processor and Myrinet interconnect, running MPICH-GM with user-level
MPI communication. L2 cache size is 512 k and memory size per node 512 Mbyte.
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The operating system is Linux 2.6. The compiler used was gcc with option ”-O”.
In all measurements, we use fcomp, fcomm, and fio due to our current lack of low-
level monitoring tools that could reveal the CPU, network, and disk fraction. We
could find hardly any difference for our test program for the CPU set to MT or ST
mode (for the ”streaming” application below, we found 1.5% but otherwise none
at all). If runtimes were different under coscheduling, slowdowns are calculated
for the shared execution time.

We first investigate hyperthreaded CPU behavior and ran applications dom-
inating in either float (double) or integer calculations, using complex multiplica-
tion or simpler add instructions, running totally in L1 cache (using 400 bytes) or
using some (40k) or much (400k) of the L2 cache. The code sequences are simple
and easily fit into the cache. The summary of results can be seen in Table 1. As
far as L2 usage is involved, we have modelled an access patterns that runs over
the same data structure serially per iteration (thus, all data would be repeat-
edly replaced if not fitting totally into the cache). We have used two variants:
one where adjacent array elements are accessed (creating dependencies among
iteration steps) and one where only elements of the same index are used from
3 different arrays (avoiding dependencies among iteration steps). The former is
similar to calculating the stencil in a mesh computation. Our results are to a large
extent consistent with research as far as available – though we also found some
interesting differences in the details. In [13], scientific applications benefited be-
tween 10% and 30% by running each with two threads on a hyperthreaded CPU.
However, even performance on a dual SMP was not optimal. Thus, translating
the hyperthreading improvement to the relative best-possible threaded perfor-
mance, the slowdowns according to our definition were approximately 1.4 which
is not worse than the up to 30% improvement measured for business applications.
[11] shows slowdowns up to 3, including communication, for cache-intensive ap-
plications. Since the tests were done by increasing the number of processes per
application, however, also the speedup behavior changed (speedup curves typi-
cally flatten with larger number of processes) and the results therefore appear
to be too negative.

Table 1. Slowdown for different types of computation. + means application uses
add operations, ∗ means it uses mult operations; the number indicates the size
of the data in L2 cache.

int int int int int int float
+ 0 + 40k + 400k * 0 * 40k * 400k any type

2x same, 1 1 1.4 1.2 1.2 1.25 between 2
dependencies and 2.2

int and float 1/1.2 1.1/1.2 1.2/1.2 1.8/1.6 2/1.6 2/1.8
of same type

2 x same, no 3.7 1.2 4.2 1.7 1.3 2.6 between 2
dependencies and 2.2
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Float calculations coschedule poorly – slowdowns are between 2 and 2.2.
However, they are insensitive to the cache which obviously is due to the fact
that the execution time is dominating and L2 cache or memory-access latencies
can be hidden. We also tested a 2D FFT calculation (using float instructions and
32 Mbyte space, i.e. exceeding the cache capacity in a repetitive execution of the
algorithm). Coscheduling resulted only in a slowdown of 1.3. Our synthetic pro-
grams are extreme cases of almost exclusive float instructions and thus represent
a maximum of contention – which is unlikely to occur in any real program. Inte-
ger calculations coschedule much better as long as there are access dependencies.
Coscheduling integer and float works well for add operations but less well for
multiplication. Coscheduling of integer calculations becomes poor, however, for
the ”streaming” calculations which fill the instruction pipeline well and accom-
plish maximum execution speed. The slowdown is up to 4.2 if there are cache
conflicts. Memory latencies can no longer be hidden. However, we assume that
such calculations on integers are unlikely to occur in practice but typically are
used on floats. For ”streaming” float calculations the slowdown is in the same
range as for the dependent calculations. For detailed modelling, an integration
of instruction and cache cost would be needed.

In Table 2, we show results from running applications together with a) differ-
ent mixtures of communication and computation, and b) different communica-
tion granularity. In all cases, fio = 0. The applications are run on 4 nodes and are
loosely synchronous, communicating with all 3 other neighbors, sending to them
and receiving from them in each communication phase. The computations are of
type ”int+” and run within L2 cache to focus on the effects of CPU vs. network.
Note that the short communication is spending a significant amount of time on
the CPU via PIO (with integer operations), whereas the long communication em-
ploys DMA and zero copy in a rendezvous protocol. Communication cost results
into 13.3 μsec for a message with 200 bytes and into 120 μsec for a message with
18k bytes. In all cases, the actual slowdown is lower than the estimated maxi-
mum slowdown. As can be seen from the table, the slowdown is different for each
application if running coarse- and fine-grain communication together. The appli-
cation with the finer communication (smaller and more communications) suffers
more. The explanation is that if the communications interleave, the finer-grain
communications are stretched more, adding idling time to this application. If
applications are slowed down to different extent, it would be important to make
sure that enough non-competitive time is left for the application with the larger
slowdown to catch up with communication (as not possible with fnetwork being
0.6 for both applicationss). Thus, additional conditions for the matching may
be necessary to ensure that fnetwork,A + fnetwork,B

<= 1 (considered in the pa-
rameter settings of our LOMARC coscheduling algorithm). We also coscheduled
a 2D FFT program on 4 nodes (employing all-to-all communication in 10% of
the overall runtime) which resulted in a slowdown of 1.4 – which is exactly the
projected slowdown from the known slCPU .

Finally, we show in Table 3 our results of testing different classes of applica-
tions together. The I/O is repeatedly reading a file sequentially in 1 k blocks from
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Table 2. Runtimes and slowdowns for coscheduling two applications with differ-
ent mixtures of computation and communication (and different communication
granularities). The left number represents the row application, the right number
represents the column application. Numbers in italic and parenthesis show esti-
mated maximum slowdown (left) and estimated slowdown if there would be no
CPU slowdown (right). Csize is the number of bytes per communication.

fcomm = 0.4, fcomm = 0.4, fcomm = 0.6, fcomm = 0.6,
Csize = 200 Csize = 18k Csize = 200 Csize = 18k

fcomm = 0.4, Csize = 200 1 / 1 1.1 / 1 1 / 1.1 1.25 / 1
(2, 1.4) (2, 1.4) (1.8, 1.4) (1.8, 1.4)

fcomm = 0.4, Csize = 18k 1.2 / 1.2 1 / 1.35 1.2 / 1.25
(2, 1.4) (1.8, 1.4) (1.8, 1.4)

fcomm = 0.6, Csize = 200 1.1 / 1.1 1.7 / 1.1
(2, 1.6) (2, 1.6)

fcomm = 0.6, Csize = 18k 1.2 / 1.2
(2, 1.6)

the local disk. The communicating application is running a standard pingpong
test. Note that the combinations using two communication or two I/O intensive
applications are stress-tests only – LOMARC would not normally coschedule
such applications.

Table 3. Slowdown if running different classes of applications together. Csize is
the number of bytes per communication and Fsize the file size.

fcomm = 1, fcomm = 1, fcomp = 1, fio = 1
Csize = 200 Csize = 18k int + 0 Fsize = 600Mbyte

fcomm = 1, Csize = 200 1.4 / 1.4 2.3 / 1.2 1 / 1 1 / 1
fcomm = 1, Csize = 18k 1.3 / 1.3 1 / 1 1 / 1
fcomp = 1, int + 0 1 / 1 1 / 1
fio = 1, Fsize = 600Mbyte 2 / 2

The results show that there is no negative impact if the job classes are dif-
ferent. Doing the same test with ”float+400k”, we found minor slowdowns (1.1
or 1.2) if coscheduling computation with communication or I/O applications.
The explanation is that we are here including computational times in I/O and
communication and both involve memory accesses, too.

Finally, we have studied the effect of paging. Using the same type of appli-
cation as for cache measurements, we have compared the effect of running two
applications with 400 Mbyte and 260 Mbyte memory usage each. The slowdown
is 4.8 in the former and 2.1 in the latter case for floats. In the optimal case of fast
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non-dependent int calculations with 3 arrays, the slowdown is about 300 (though
the absolute paging cost is similar). Thus, memory conflicts can be severe.

In summary, our measurements show that there are no unexpected superlin-
ear slowdowns for normal cases and that the k factors can typically be set to
1. Conversely, the slowdowns actually measured are in many cases much lower
than our maximum estimate if setting the k factors to 1, i.e. simply adding the
cost for the overlapping shares (though the slowdowns may increase with larger
numbers of nodes). Note that though we have done our best efforts to extract
behavior with typical code, our tests are not exhaustive and a separate study on
hyperthreaded, communication, and I/O behavior would be needed. However,
the parameters used in our simulations are consistent with results reported in
other research with full applications.

5 The Look-Ahead Scheduling Algorithm

5.1 The General Algorithm

We apply a standard job-scheduling algorithm with the following features

– Usage of priorities, classifying the jobs into short, medium, and long and
allocating priorities according to these classes; usage of aging to prevent
starvation

– First-fit during allocation of jobs onto nodes
– Flexible and dynamic allocation of nodes (no fixed and contiguous partitions

required)
– Backfilling (EASY backfilling)

We basically keep short response times as the primary schedule-optimization
objective and exploit utilization as far as it does not contradict good response
times. However, we propose different heuristics, mainly aiming at either opti-
mization for response times (as it would be meaningful during the day) or opti-
mization for utilization (as it would be meaningful during the night). Memory
consumption currently only plays the role of a constraint.

The key special features in our LOMARC scheduling approach are:

– Estimating the utilization gain
– Estimating the impact on the response times
– Allocating jobs to free nodes by themselves if the accumulated node requests

in the queue <= the available nodes by 20% (machine is weakly loaded)
– Finding a possible best match for the next job subject to scheduling among

• The remaining jobs in the waiting queue
• The running jobs

This means that LOMARC never coschedules jobs if the machine is weakly
loaded, i.e. there are empty nodes to run the job. We classify jobs into CPU-
bound, disk-bound, and network-bound, according to which of fCPU , fdisk, or



300 Angela C. Sodan and Lei Lan

fnetwork dominates. Only medium and long jobs are considered for coscheduling
– short ones are not worth the effort.

LOMARC can schedule either on standard or hyperthreaded CPUs with the
following scheme:

– On a standard CPU, we only schedule CPU-bound and disk-bound jobs
together. Only they can benefit as regards CPU utilization in this case.

– On a hyperthreaded CPU, more options exist to coschedule jobs. We con-
sider joint execution of CPU-bound and CPU-bound jobs, CPU-bound and
network-bound jobs, and network-bound and I/O-bound jobs in addition to
CPU-bound and disk-bound jobs.

Thus, LOMARC does not depend on any special coscheduling software (gang
or implicit coscheduling). However, LOMARC depends on the option to share
the network [27]. Such sharing is, however, provided by the widespread standard
native GM communication library for Myrinet and the MPICH and LAM MPI
implementations that build on top of GM [35].

Fig. 1 shows pseudo code of the abstracted LOMARC algorithm. Fig. 2 and
Fig. 3 graphically demonstrate the matchmaking.

Our LOMARC algorithm depends on knowing the characteristics of the ap-
plications as regards the fractions of time on CPU, network, and disk and making
correct upper bound estimations for slowdowns. We assume the applications to
be occasionally monitored (we have accompanying research work running on this
topic). If the estimates are severely wrong in a negative sense, one application
may be preempted and its execution be completed when the other one is finished
[19]. Shorter overall job runtimes than estimated, however, do not hurt at all as
we can try to find a new match if one job finishes.

5.2 The Utilization-Gain and Response-Time-Impact Calculation

Fig. 4 shows the search for the best match among all jobs in the waiting queue
(if searching there) and the definition of matchable jobs. We first check whether
job classes can be matched (e.g. whether their requirements fit). Furthermore,
we estimate the slowdown according to our description above. If the slowdown is
less than a certain threshold sllimit (MAX SLOWDOWN), the job becomes a
candidate for matching. Different heuristics can be applied as explained below.
Either response-time impact and utilization gain can be estimated.

The calculation of the response-time impact does not consider any detailed
packing, i.e. does not calculate any actual schedule. The reason is that the pack-
ing anyway is subject to change under dynamic submission with priorities. Fur-
thermore, the complexity of incorporating such calculation is high – backfilling
has O(n2) time complexity and, if trying all jobs in the waiting queue to find the
optimum, complexity increases to O(n3). Thus, we simply assume that a perfect
packing would be possible (by taking work = runtime ∗ size for each job and
adding the corresponding work up for all jobs) and determine all delays on the
basis of this simple heuristic. A future improvement might be to calculate exact
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while (! waiting_queue.is_empty ()) { //run over all jobs in queue

current_job = waiting_queue.first; // as long as can be scheduled

while (current_job.size<=freenodes.size){//enough space for job

if(current_job.is_medium_or_long_job())//try find a match for job

match = find_match (current_job); // among remaining jobs in

allocate_nodes (current_job); // waiting queue

if (match != null) //coallocate match on

coallocate_nodes(current_job,match);// same nodes

if (end_of_queue) return ();

else current_job = waiting_queue.first;

}

if(current_job.is_medium_or_long_job){ //job won’t fit on free nodes

match = find_match_among_running (current_job);

//co-schedule with running job

if (match != null) //find best match among running

// jobs

coallocate_nodes(match,current_job); //allocate job on same nodes

if (match == null) //job does not match any job

break; //job cannot be scheduled now;

// continue with backfilling

} //end of loop over queue

backfill(); //try to backfill(applying

// same matching as above)

Fig. 1. Abstracted LOMARC scheduling algorithm as invoked upon job-
termination or submission.

order for the first few jobs in the queue and apply the heuristic estimate for the
rest.

As regards utilization, a detailed utilization metric would have to consider
the maximum capacity of hyperthreaded CPUs, disk, and network and their
utilization by each application (making detailed resource and application models
necessary). Therefore, instead of absolute utilization, we consider the relative
utilization improvement on the basis of the scheduled applications.

Definition Relative Utilization Gain: We consider the overlap in time
the two jobs run together and calculate how much faster the jobs run if cosched-
uled than they would run if scheduled individually. We have the following two
options: to consider a timeless metric (Ugain,2) or to include the shared (over-
lap) runtime that is affected by the utilization change (Ugain,1). This leads to
the following two formulas:

Ugain,1 = (min{SA, SB} ∗ (2/slA,B − 1)−
|SA − SB | ∗ (1− 1/slA,B)) ∗ (min{TA, TB}/ max{TA, TB)}/max{SA, SB}

Ugain,2 = (min{SA, SB}∗(2/slA,B−1)− |SA−SB|∗(1−1/slA,B))/max{SA, SB}
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Fig. 2. Finding best match among currently running jobs.

current 
job to be 
scheduled

match 
candidate 

pull-up push-
down

Fig. 3. Reordering the job queue if finding a match in the waiting queue.

with S being job size. These formulas consider both the win in the overlapped
part and the fact that the application with larger size is – if needing synchro-
nization – slowed down without any utilization win in the non-overlapped part.

As regards relative response times, the impact from reordering the queue can
be estimated in the following way:

– Jobs in front of the job that is matched and thus moved ahead get delayed:
For them, we calculate an estimate of the impact by the sum of all relative
delays. We call these jobs push-down jobs.

– Jobs behind the job that is matched get scheduled earlier, assuming that the
match decreases the joint runtime of the two jobs vs. running them on their
own: For these jobs, we calculate an estimate of the impact by the sum of
all relative improvements. We call these jobs pull-up jobs.

In both cases, we include a prediction about future job submissions and the
impact of these jobs on response times. We do a one-level prediction, calculating
new job submissions in the time interval which we estimate for the execution of
the jobs that are currently in the queue. To do so, we use parameters (average
work) from the workload model. We simplify the calculation of relative response
times by taking them relative from the current time on. See Fig. 5 for the details
of the algorithm.
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find_match (job) {

maxprofit = 0; match = null;

for each_job_in_queue (match_cand) {

if (matchable (job, match_cand)){

slowdown_cand = slowdown (job, match_cand);// determine slowdown

if (slowdown_cand <= MAX_SLOWDOWN) { // check slowdown limit

switch (heuristic) {

case 1: // utilization gain 1

profit = utilization_gain_1 (job, match_cand);

case 2: // utilization gain 2

profit =utilization_gain_2(job,match_cand);

case 3: // response times

profit = response_time (job, match_cand, slowdown_cand);

}

if profit > maxprofit // keep best match

{maxprofit = profit;

match = match_cand;}

}

} }

return match;

}

matchable(jobi, jobj){

if (jobi.memory + jobj.memory <=1)

if (jobi_is_CPU_intensive && jobj_is_CPU_intensive)

return true;

else (if jobi.type !=jobj.type ) return true;

return false;

}

Fig. 4. Finding best match in waiting queue and definition of matchable jobs.

The complexity of our algorithm is O(n2). However, the worst case for search-
ing through all jobs in the queue – O(nlgn) – is always met if we look for the
optimum match. To check whether we can reduce cost, we also incorporate a
simplified version in our experiments that takes the first match.

6 Experimental Results

Our experiments are based on an event simulation with parameter settings and
workload modelling as described below. The machine modelled is a cluster with
128 single-CPU nodes.

6.1 Metrics and Workloads

We use the following metrics to evaluate the performance of our LOMARC
scheduling algorithm:
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response_time (jobi, jobj, slowdown) {

pairruntime = min (jobi.runtime, jobj.runtime) * (slowdown-1) +

max (jobi.runtime, jobj.runtime);

pairsize = max (jobi.size, jobj.size);

improvement = jobi.runtime*jobi.size / n_nodes;

delay = (pairruntime * pairsize - jobi.runtime*jobi.size) / n_nodes;

response_decrease = jobj.runtime*jobj.size / n_nodes - delay;

response_increase = delay / responsetime;

//estimate delay for push-down jobs

for (all push_down_jobs (jobn)) {

response_time += jobn.runtime * jobn.size / n_nodes;

response_increase += delay / response_time; }

// response time improvement for job being moved

response_time += jobj.runtime* jobj.size / n_nodes;

response_decrease = (response_time - jobj.runtime* slowdown

* jobj.size / n_nodes) / response_time;

// estimate improvement for pull-up jobs

for (all_pull_up_jobs) {

response_time += jobn.runtime * jobn.size / n_nodes;

response_decrease += improvement / response_time; }

for (future_arrival_short_jobs(jobn)) {

response_time = jobn.runtime * jobn.size / n_nodes;

response_increase+= delay / response_time; }

for (future_arrival_med_or_long jobs (jobn)) {

response_time = jobn.runtime * jobn.size / n_nodes;

response_decrease+= improvement / response_time; }

return (response_decrease - response_increase) / (number(push_down_job)

- number(pull-up_jobs));

}

Fig. 5. Pseudo code for abstracted calculation of utilization gain and response-
time impact. Calculates increase/decrease relative to normal response time.

– Average response times
– Average relative bounded response times: response time in relation to run-

time time, bounded by a 60 sec minimum runtime to avoid overly high impact
of very small jobs

– Utilization: percentage of used-nodes time over the makespan; i.e., ratio of
the accumulated used nodes and the product of makespan T and number of
nodes P

– Utilization efficiency: if coscheduling, also considers positive improvements
by increasing the utilization per CPU, indirectly reflected by a shortened
makespan: E =

∑
i piti/PT with pi and ti being size and runtime per job

– Makespan: the runtime of the whole job batch
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We have used the model in [12] for the workload generation. This model is
a complex statistical workload description, considering job sizes, job runtimes,
and job interarrival times. The model includes correlations between sizes and
runtimes, fractions of sequential jobs, fractions of power-of-two sizes, and differ-
ing interarrival times according to day/night-cycles. All numbers are generated
in logarithmic space. A two-stage uniform distribution is used for job sizes (in-
cluding probabilities for serial and power-of-two job sizes), a hyper-Gamma dis-
tribution for job runtimes, and two Gamma distributions for interarrival times
(one for peak times and one for the overall daily cycle). The parameters of the
model are extracted from three traces of supercomputing centers and propose
a generalization from the three test cases. The nice feature of this generalized
model is that it can be adapted to different machine sizes and, thus, be applied
to our machine size of 128 nodes. We have modelled 8,000 jobs.

Furthermore, we have modified the original workload by shortening the job
interarrival times, determined by the α parameter of the Gamma distribution.
Workload 1 is the original workload, Workload 2 and Workload 3 have smaller
α parameters as shown in Table 4. The table also shows the resulting load value
Load = (r−n)/(P ∗a) with r being the mean runtime, n the mean job size, and
a the mean job interarrival time [12].

Table 4. Workloads modelled.

Workload 1 Workload 2 Workload 3

α 10.23 9.83 8.83
Load 10.6 13 21

To the best of our knowledge, there do not exist any studies on the distribu-
tion of the application’s resource-usage characteristics as regards CPU, network,
and disk. We model the following mixtures

– M1: 40% CPU-bound, 30% network-bound, 30% disk-bound
– M2: 40% CPU-bound, 10% network-bound, 50% disk-bound
– M3: 30% CPU-bound, 50% network-bound, 20% disk-bound

We perform the majority of our tests with the mixture M1 which can be
considered the mixture we expect to see on clusters with a share of scientific
and datamining applications. We do some comparisons that include M3 as a
representation of what might be the conventional mixture and M2 which might
be the mixture for clusters specializing on datamining.

Detailed job characteristics are generated randomly, using an equal distribu-
tion per value range, according to the following scheme:

– CPU-bound jobs: fCPU in [0.5,0.9), fdisk in [0.05,0.4) with fCPU + fdisk in
[0.6,0.95)
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– Disk-bound jobs: fdisk in [0.4,0.65), fnetwork in [0.05,0.4) with fdisk+fnetwork

in [0.5,0.8)
– Network-bound jobs: fnetwork in [0.4,0.65), fdisk in [0.05,0.4) with fnetwork

+ fdisk in [0.5,0.8)

As regards the CPU-behavior, we model different probabilities that the CPU-
parts of the two applications go well or poorly together, i.e. increase or decrease
utilization. We set the probability for the former case to p=0.33 and for the latter
to p=0.67. We assume slCPU=1.4 in the former and slCPU=2 which picks two
typical cases from our measurements in Sect. 4.2 and is consistent with results
from the literature. In the latter case, LOMARC does not schedule CPU-bound
applications together.

Memory consumption is modelled by random generation for each job in
[0.05,1] with 70% of the jobs in [0.05,0.5], 25% in (0.5,0.8), and 5% in [0.8.1].
1 represents the maximum memory size that is available for applications. This
distribution is roughly modelled as an average over existing memory studies as
in [4]. LOMARC does not coschedule jobs that do not fit into memory together
but, for the comparison with other scheduling approaches, we need to model the
memory slowdown and set slmem=2.5. This is a lower value from our measure-
ments in Sect. 4.2, i.e. an optimistic assumption about other approaches that do
not care about memory conflicts.

6.2 Experiments with LOMARC Scheduler

To evaluate the benefits of our approach, we compare to

– Standard single-job scheduling (mere space sharing PSS)
– Always coscheduling two jobs if running on a hyperthreaded CPU (AC)
– Coscheduling two jobs that are adjacent in the queue if they are a match

according to the LOMARC definition (AM) if running on hyperthreaded
CPUs

For our LOMARC approach, we test the following variants:

– Scheduling on standard CPUs (L-N) using Ugain,1

– Optimization with different heuristics on hyperthreaded CPUs: utilization
Ugain,1 (L-U1) and Ugain,2 (L-U2), response-time impact (L-R), and a variant
which selects the first match found (L-FM)

We set the maximum acceptable slowdown MAX SLOWDOWN to 1.6. For
all approaches, we use priorities and EASY backfilling. We define job classes in
the following way: runtimes in [1sec,1min] are classified as short, in (1min,1h] as
medium, and in (1h,45h] as long with 45h being the maximum runtime modelled.
Aging (to prevent starvation) is based on average waiting time Tage. Per each
Tage, the priority of one job will be boosted to a higher level, so it will take a
long job 2 Tage to have the same priority as a short job.
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In Fig. 6 and Fig. 7, we show the results from comparing several LOMARC
variants (L-U1 L-U2, L-R, L-FM, and L-N) with PSS, AC, and AM under the
3 different workloads W1, W2, and W3. In all cases, the characteristics mix
M1 is used. For all workloads, all LOMARC variants perform clearly better
than all other approaches. The arbitrary coscheduling AC is significantly worse
than space sharing PSS and, thus, not a reasonable choice. This demonstrates
that detailed match considerations are necessary to make coscheduling on a
hyperthreaded CPU meaningful.
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AM 6.29 14.4 36.6
L-N 7.01 12.8 34.56
PSS 9.11 17.61 50.07
AC 17.69 32.6 74.9

Workload 1 Workload 2 Workload 3

Fig. 6. Response times for different scheduling approaches and different work-
loads.

We can see that with the workload becoming heavier, our approaches, L-
U1, L-U2, L-R, L-FM and L-N, show more obvious improvement over other
approaches in response time, relative bounded response time and effective uti-
lization. The improvement in response time of L-R increases from 48% to 56%,
and the improvement in relative bounded response time of L-R increases from
50% to 66% compared to PSS. Thus, response time and relative bounded re-
sponse time are approximately reduced to half by using our approach.
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L-U1 58.57 103.2 226.15
L-U2 69.32 98.34 243.88
L-R 47.62 86.68 207.25
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AM 61.91 144.04 369.4
L-N 93.66 149.84 373.33
PSS 100.93 180.49 613.72
AC 192.92 281.26 891.265
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Fig. 7. Relative bounded response times for different scheduling approaches and
different workloads.

Comparing our different LOMARC heuristics, all are pretty close to each
other as regards response times. However, L-U1 performs slightly better than
L-U2. L-U1 provides almost the same results as L-R for all workloads. The
differences are more pronounced for the relative bounded response times. L-U2 is
again worse than L-U1. Obviously, Ugain,1 provides the more adequate estimate.
L-R is better than L-U1, especially for W1 where it is better by 19% whereas only
better by 16% for W2, and by 8% for W3. To perform better as regards relative
response times is the expected result for a metric focusing on them. Selecting
simply the first match in L-FM is not too much worse if the workload is lighter
(W1) but becomes worse than the workload becomes heavier where there are
more choices to select the match but ignored by this approach. Response times
are by 17% worse than L-R under W3 and relative bounded response times by
24%. Relating the performance to PSS, the improvement in response times of
L-FM vs. PSS is 40% for W1, 41% for W2, and 48% for W3. The improvement
in relative bounded response times is 47% for W1, 42% for W2, and 52% for W3.
Thus, the much simpler heuristic provides still very good results. AM that only
matches adjacent jobs in the queue is still doing significantly better than PSS
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but still significantly worse than L-R and also worse than L-FM, especially for
heavier workloads. Considering scheduling on standard CPUs (L-N), LOMARC
still provides significant improvements: as regards response times 23% for W1,
27% for W2, and 31% for W3. Relative bounded response times are improved
by 7% for W1, 17% for W2, and 40% for W3.

The makespans for Workload 1 are about 10 weeks and are by only 5%
improved by L-R vs. PSS. This indicates that there are often not enough jobs
to fully utilize the machine. The improvement for Workload 2 is 20% and for
Workload 33%.
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Fig. 8. Utilization (left) and utilization efficiency (right) for different scheduling
approaches and different workloads.

In Fig. 8, we show utilization and utilization efficiency for all approaches.
Utilization is almost the same for all approaches and for all approaches improves
if the workload becomes heavier (because more options for packing exist). For
utilization efficiency, LOMARC shows improvements, especially under heavier
workloads, for L-U1, L-U2, and L-R: 8.5% for W1, 19% for W2, and 38% for
W3. However, there are no relevant differences between L-U1, L-U2, and L-R.
This means using a heuristic which focuses on utilization does not make any
difference. L-FM is slightly worse – the improvement is 6% for W1, 15% for W2,
and 31% for W3. L-N only accomplishes 2% improvement for L1, 9% for W2,
and 18% for W3.
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Fig. 9. Average response times and average relative bounded response times for
M2 (upper row) and M3 (lower row).

To check how much difference the assumptions about the characteristics mix
make, we present response times and relative bounded response times for Work-
load 1 and M2 and M3 in Fig. 9.

For M2 and M3, the relative improvements of L-U1, L-U2, and L-R vs. PSS
and AC are similar to M1. However, for M2, L-N now improves upon PSS by
34% in response times and by 38% in relative bounded response times and for
M3 it is closer to PSS than under M1. This is consistent with the expectation
because in M2 there are more disk-bound jobs that can still be coscheduled with
CPU-bound jobs and, in M3, there are fewer of them.

In Fig. 10, we show response times and relative bounded response times for
different job classes. We see that LOMARC favors medium and long jobs due
to its job-scheduling policy but creates no disadvantage for short jobs. CPU-
intensive jobs benefit most because they have more opportunities for coschedul-
ing.

Finally, we investigate the detailed behavior of L-U1, L-U2, and L-R (un-
der M1) by looking at the average queue lengths, the number of jobs left in
each comparison step for finding a match, and which job in the end is selected.
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Fig. 10. Response times (top) and relative bounded response times (bottom) for
different job classes.

See Table 5. As we can see, after meeting all the constraints, the number of jobs
left as candidates to choose from by the different heuristics is relatively small:
for W1 between 5 and 7. With this small number of choices, there is not much
room for the different heuristics to create different effects. For all heuristics, on
average the 3rd match candidate is selected. L-U1 and L-R select the 4th match
candidate under Workload W2. For Workload 3, we see a significant difference:
L-U1 selects the 6th job and L-R the 4th which is an expected effect as optimizing
with a focus on response times should be more reluctant to select a job which
has a position further down in the queue. However, the results for response times
and relative bounded response times as discussed above do not really confirm
this as the actual improvement of L-R is higher for W1.
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Table 5. Average queue lengths, average numbers of jobs left under the different
constraints, and average job selected for candidates.

Average Medium SizeB <
= Memory Matchable Slowdown Number

Queue or Long SizeA Fit <
= Max Selected

Length Job

L-U1 W1 36 24 10 8 6 5 3
W2 81 45 21 12 10 8 4
W3 213 86 40 20 16 14 6

L-U2 W1 40 25 11 8 6 5 3
W2 77 49 25 16 12 11 5
W3 233 85 39 21 16 14 7

L-R W1 36 24 13 11 8 7 3
W2 80 51 31 21 15 14 4
W3 222 87 48 25 20 17 4

7 Summary and Conclusion

We have presented an approach to find matches between two jobs on hyper-
threaded and standard CPUs for better resource utilization via coscheduling.
The approach partially reorders the queue and searches for the best match while
estimating impacts on relative bounded response times and utilization. In simula-
tions, we have shown that our LOMARC scheduler clearly outperforms standard
space sharing as regards response times and relative bounded response times by
reducing them to about half their original value on hyperthreaded CPUs and
to about 3/4 on standard CPUs. The heuristic performing best is to estimate
the response-time impact when selecting the best match. The improvement is
accomplished by an improvement in utilization efficiency from running multiple
jobs with complementary resource requirements. Each individual application is
unlikely to accomplish the same internally, especially if the application does not
use multithreading per CPU but simply doubles the number of processes.

Future work includes a more detailed investigation of hyperthreading behav-
ior, a refined slowdown model, experiments with other simplified heuristics (like
making the choice between the first three candidates only or selecting a candi-
date if it is beyond a certain match threshold), and testing the scheduler with
conservative backfilling which may be more sensitive to whether utilization or
response-time impact is considered. Furthermore, extension to multi-way nodes
is of interest. Then, another choice is to schedule one or multiple applications
on the different CPUs per node. For such nodes, applications are more likely to
be prepared to use multithreading per node and may already use the network
very intensively. Thus, there may be fewer options for coscheduling as regards
network usage but also new options in using physical and virtual CPUs.
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